Sample records for zinc phosphide zn3p2

  1. Orientation of Zn3P2 films via phosphidation of Zn precursors

    NASA Astrophysics Data System (ADS)

    Katsube, Ryoji; Nose, Yoshitaro

    2017-02-01

    Orientation of solar absorber is an important factor to achieve high efficiency of thin film solar cells. In the case of Zn3P2 which is a promising absorber of low-cost and high-efficiency solar cells, (110)/(001) orientation was only reported in previous studies. We have successfully prepared (101)-oriented Zn3P2 films by phosphidation of (0001)-oriented Zn films at 350 °C. The phosphidation mechanism of Zn is discussed through STEM observations on the partially-reacted sample and the consideration of the relationship between the crystal structures of Zn and Zn3P2 . We revealed that (0001)-oriented Zn led to nucleation of (101)-oriented Zn3P2 due to the similarity in atomic arrangement between Zn and Zn3P2 . The electrical resistivity of the (101)-oriented Zn3P2 film was lower than those of (110)/(001)-oriented films, which is an advantage of the phosphidation technique to the growth processes in previous works. The results in this study demonstrated that well-conductive Zn3P2 films could be obtained by controlling orientations of crystal grains, and provide a guiding principle for microstructure control in absorber materials.

  2. Responses of Siberian ferrets to secondary zinc phosphide poisoning

    USGS Publications Warehouse

    Hill, E.F.; Carpenter, J.W.

    1982-01-01

    The hazard of operational-type applications of zinc phosphide (Zn3P2) on a species closely related to the black-footed ferret (Mustela nigripes), was evaluated by feeding 16 Siberian ferrets (M. eversmanni) rats that had been killed by consumption of 2% zinc phosphide treated bait or by an oral dose of 40, 80, or 160 mg of Zn3P2. All ferrets accepted rats and a single emesis by each of 3 ferrets was the only evidence of acute intoxication. All ferrets learned to avoid eating gastrointestinal tracts of the rats. Subacute zinc phosphide toxicity in the ferrets was indicated by significant decreases (18-48%) in hemoglobin, increases of 35-91 % in serum iron, and elevated levels of serum globulin, cholesterol, and triglycerides. Hemoglobin/iron, urea nitrogen/creatinine, and albumin/globulin ratios also were altered by the treatments. This study demonstrated that Siberian ferrets, or other species with a sensitive emetic reflex, are afforded a degree of protection from acute zinc phosphide poisoning due to its emetic action. The importance of toxicity associated with possible respiratory, liver, and kidney damage indicated by altered blood chemistries is not known.

  3. Byproduct-free mass production of compound semiconductor nanowires: zinc phosphide

    NASA Astrophysics Data System (ADS)

    Chen, Yixi; Polinnaya, Rakesh; Vaddiraju, Sreeram

    2018-05-01

    A method for the mass production of compound semiconductor nanowires that involves the direct reaction of component elements in a chemical vapor deposition chamber (CVD) is presented. This method results in nanowires, without the associated production of any other byproducts such as nanoparticles or three-dimensional (3D) bulk crystals. Furthermore, no unreacted reactants remain mixed with the nanowire product in this method. This byproduct-free nanowire production thus circumvents the need to tediously purify and collect nanowires from a mixture of products/reactants after their synthesis. Demonstration made using zinc phosphide (Zn3P2) material system as an example indicated that the direct reaction of zinc microparticles with phosphorus supplied via the vapor phase results in the production of gram quantities of nanowires. To enhance thermal transport and achieve the complete reaction of zinc microparticles, while simultaneously ensuring that the microparticles do not agglomerate into macroscale zinc particles and partly remain unreacted (owing to diffusion limitations), pellets composed of mixtures of zinc and a sacrificial salt, NH4Cl, were employed as the starting material. The sublimation by decomposition of NH4Cl in the early stages of the reaction leaves a highly porous pellet of zinc composed of only zinc microparticles, which allows for inward diffusion of phosphorus/outward diffusion of zinc and the complete conversion of zinc into Zn3P2 nanowires. NH4Cl also aids in removal of any native oxide layer present on the zinc microparticles that may prevent their reaction with phosphorus. This method may be used to mass produce many other nanowires in a byproduct-free manner, besides Zn3P2.

  4. Rational Design of Zinc Phosphide Heterojunction Photovoltaics

    NASA Astrophysics Data System (ADS)

    Bosco, Jeffrey Paul

    The prospect of terawatt-scale electricity generation using a photovoltaic (PV) device places strict requirements on the active semiconductor optoelectronic properties and elemental abundance. After reviewing the constraints placed on an ``earth-abundant'' solar absorber, we find zinc phosphide (α-Zn 3P2) to be an ideal candidate. In addition to its near-optimal direct band gap of 1.5 eV, high visible-light absorption coefficient (>10. 4cm-1), and long minority-carrier diffusion length (>5 μm), Zn3P 2 is composed of abundant Zn and P elements and has excellent physical properties for scalable thin-film deposition. However, to date, a Zn 3P2 device of sufficient efficiency for commercial applications has not been demonstrated. Record efficiencies of 6.0% for multicrystalline and 4.3% for thin-film cells have been reported, respectively. Performance has been limited by the intrinsic p-type conductivity of Zn3P 2 which restricts us to Schottky and heterojunction device designs. Due to our poor understanding of Zn3P2 interfaces, an ideal heterojunction partner has not yet been found. The goal of this thesis is to explore the upper limit of solar conversion efficiency achievable with a Zn3P2 absorber through the design of an optimal heterojunction PV device. To do so, we investigate three key aspects of material growth, interface energetics, and device design. First, the growth of Zn3P2 on GaAs(001) is studied using compound-source molecular-beam epitaxy (MBE). We successfully demonstrate the pseudomorphic growth of Zn3P2 epilayers of controlled orientation and optoelectronic properties. Next, the energy-band alignments of epitaxial Zn3P2 and II-VI and III-V semiconductor interfaces are measured via high-resolution x-ray photoelectron spectroscopy in order to determine the most appropriate heterojunction partner. From this work, we identify ZnSe as a nearly ideal n-type emitter for a Zn3P 2 PV device. Finally, various II-VI/Zn3P2 heterojunction solar cells designs are

  5. Photovoltaic cells employing zinc phosphide

    DOEpatents

    Barnett, Allen M.; Catalano, Anthony W.; Dalal, Vikram L.; Masi, James V.; Meakin, John D.; Hall, Robert B.

    1984-01-01

    A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.

  6. 40 CFR 180.284 - Zinc phosphide; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Zinc phosphide; tolerances for... § 180.284 Zinc phosphide; tolerances for residues. (a) General. Tolerances are established for residues of the phosphine resulting from the use of the rodenticide zinc phosphide in or on the raw...

  7. Occupational phosphine gas poisoning at veterinary hospitals from dogs that ingested zinc phosphide--Michigan, Iowa, and Washington, 2006-2011.

    PubMed

    2012-04-27

    Zinc phosphide (Zn3P2) is a readily available rodenticide that, on contact with stomach acid and water, produces phosphine (PH3), a highly toxic gas. Household pets that ingest Zn3P2 often will regurgitate, releasing PH3 into the air. Veterinary hospital staff members treating such animals can be poisoned from PH3 exposure. During 2006-2011, CDC's National Institute for Occupational Safety and Health (NIOSH) received reports of PH3 poisonings at four different veterinary hospitals: two in Michigan, one in Iowa, and one in Washington. Each of the four veterinary hospitals had treated a dog that ingested Zn3P2. Among hospital workers, eight poisoning victims were identified, all of whom experienced transient symptoms related to PH3 inhalation. All four dogs recovered fully. Exposure of veterinary staff members to PH3 can be minimized by following phosphine product precautions developed by the American Veterinary Medical Association (AVMA). Exposure of pets, pet owners, and veterinary staff members to PH3 can be minimized by proper storage, handling, and use of Zn3P2 and by using alternative methods for gopher and mole control, such as snap traps.

  8. Clinical characteristics of zinc phosphide poisoning in Thailand.

    PubMed

    Trakulsrichai, Satariya; Kosanyawat, Natcha; Atiksawedparit, Pongsakorn; Sriapha, Charuwan; Tongpoo, Achara; Udomsubpayakul, Umaporn; Rittilert, Panee; Wananukul, Winai

    2017-01-01

    The objectives of this study were to describe the clinical characteristics and outcomes of poisoning by zinc phosphide, a common rodenticide in Thailand, and to evaluate whether these outcomes can be prognosticated by the clinical presentation. A 3-year retrospective cohort study was performed using data from the Ramathibodi Poison Center Toxic Exposure Surveillance System. In total, 455 poisonings were identified. Most were males (60.5%) and from the central region of Thailand (71.0%). The mean age was 39.91±19.15 years. The most common route of exposure was oral (99.3%). Most patients showed normal vital signs, oxygen saturation, and consciousness at the first presentation. The three most common clinical presentations were gastrointestinal (GI; 68.8%), cardiovascular (22.0%), and respiratory (13.8%) signs and symptoms. Most patients had normal blood chemistry laboratory results and chest X-ray findings at presentation. The median hospital stay was 2 days, and the mortality rate was 7%. Approximately 70% of patients underwent GI decontamination, including gastric lavage and a single dose of activated charcoal. In all, 31 patients were intubated and required ventilator support. Inotropic drugs were given to 4.2% of patients. Four moribund patients also received hyperinsulinemia-euglycemia therapy and intravenous hydrocortisone; however, all died. Patients who survived and died showed significant differences in age, duration from taking zinc phosphide to hospital presentation, abnormal vital signs at presentation (tachycardia, low blood pressure, and tachypnea), acidosis, hypernatremia, hyperkalemia, in-hospital acute kidney injury, in-hospital hypoglycemia, endotracheal tube intubation, and inotropic requirement during hospitalization ( P <0.05). Zinc phosphide poisoning causes fatalities. Most patients have mild symptoms, and GI symptoms are the most common. Patients who present with abnormal vital signs or electrolytes might have more severe poisoning and should

  9. 40 CFR 180.284 - Zinc phosphide; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Zinc phosphide; tolerances for residues. 180.284 Section 180.284 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.284 Zinc phosphide; tolerances for...

  10. 40 CFR 180.284 - Zinc phosphide; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Zinc phosphide; tolerances for residues. 180.284 Section 180.284 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.284 Zinc phosphide; tolerances for...

  11. 40 CFR 180.284 - Zinc phosphide; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Zinc phosphide; tolerances for residues. 180.284 Section 180.284 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.284 Zinc phosphide; tolerances for...

  12. Strongly luminescent InP/ZnS core-shell nanoparticles.

    PubMed

    Haubold, S; Haase, M; Kornowski, A; Weller, H

    2001-05-18

    The wide-bandgap semiconducting material, zinc sulfide, has been coated on indium phosphide nanoclusters to a 1-2-Å thickness. The resulting InP-ZnS core-shell particle (as shown in the TEM image; scale 1 cm=5 nm) exhibits bright luminescence at room temperature with quantum efficiencies as high as 23 %. © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  13. Hydrazine-Assisted Formation of Indium Phosphide (InP)-Based Nanowires and Core-Shell Composites

    PubMed Central

    Patzke, Greta R.; Kontic, Roman; Shiolashvili, Zeinab; Makhatadze, Nino; Jishiashvili, David

    2012-01-01

    Indium phosphide nanowires (InP NWs) are accessible at 440 °C from a novel vapor phase deposition approach from crystalline InP sources in hydrazine atmospheres containing 3 mol % H2O. Uniform zinc blende (ZB) InP NWs with diameters around 20 nm and lengths up to several tens of micrometers are preferably deposited on Si substrates. InP particle sizes further increase with the deposition temperature. The straightforward protocol was extended on the one-step formation of new core-shell InP–Ga NWs from mixed InP/Ga source materials. Composite nanocables with diameters below 20 nm and shells of amorphous gallium oxide are obtained at low deposition temperatures around 350 °C. Furthermore, InP/Zn sources afford InP NWs with amorphous Zn/P/O-coatings at slightly higher temperatures (400 °C) from analogous setups. At 450 °C, the smooth outer layer of InP-Zn NWs is transformed into bead-shaped coatings. The novel combinations of the key semiconductor InP with isotropic insulator shell materials open up interesting application perspectives in nanoelectronics. PMID:28809296

  14. Hydrazine-Assisted Formation of Indium Phosphide (InP)-Based Nanowires and Core-Shell Composites.

    PubMed

    Patzke, Greta R; Kontic, Roman; Shiolashvili, Zeinab; Makhatadze, Nino; Jishiashvili, David

    2012-12-27

    Indium phosphide nanowires (InP NWs) are accessible at 440 °C from a novel vapor phase deposition approach from crystalline InP sources in hydrazine atmospheres containing 3 mol % H₂O. Uniform zinc blende (ZB) InP NWs with diameters around 20 nm and lengths up to several tens of micrometers are preferably deposited on Si substrates. InP particle sizes further increase with the deposition temperature. The straightforward protocol was extended on the one-step formation of new core-shell InP-Ga NWs from mixed InP/Ga source materials. Composite nanocables with diameters below 20 nm and shells of amorphous gallium oxide are obtained at low deposition temperatures around 350 °C. Furthermore, InP/Zn sources afford InP NWs with amorphous Zn/P/O-coatings at slightly higher temperatures (400 °C) from analogous setups. At 450 °C, the smooth outer layer of InP-Zn NWs is transformed into bead-shaped coatings. The novel combinations of the key semiconductor InP with isotropic insulator shell materials open up interesting application perspectives in nanoelectronics.

  15. New ternary phosphides and arsenides. Syntheses, crystal structures, physical properties of Eu{sub 2}ZnP{sub 2}, Eu{sub 2}Zn{sub 2}P{sub 3} and Eu{sub 2}Cd{sub 2}As{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian; Xia, Sheng-Qing, E-mail: shqxia@sdu.edu.cn; Tao, Xu-Tang

    2013-09-15

    Three new europium pnictides Eu{sub 2}ZnP{sub 2}, Eu{sub 2}Zn{sub 2}P{sub 3} and Eu{sub 2}Cd{sub 2}As{sub 3} have been synthesized and their structures were determined by single-crystal X-ray diffraction. Eu{sub 2}ZnP{sub 2} is isotypic with Yb{sub 2}CdSb{sub 2} (Cmc2{sub 1} (No. 36); cell parameters a=4.1777(7) Å, b=15.925(3) Å, c=7.3008(12) Å), while the latter two compounds crystallize with the Ba{sub 2}Cd{sub 2}Sb{sub 3} structure type (C2/m (No. 12); cell parameters a=15.653(5)/16.402(1) Å, b=4.127(1)/4.445(4) Å, c=11.552(4)/12.311(1) Å and β=126.647(4)/126.515(7)° for Eu{sub 2}Zn{sub 2}P{sub 3} and Eu{sub 2}Cd{sub 2}As{sub 3}, respectively). Magnetic susceptibility measurements in the interval 5–300 K confirm paramagnetic behavior and effectivemore » magnetic moments characteristic of Eu{sup 2+} ([Xe] 4f{sup 7}) ground states. Temperature-dependent electrical conductivity measurements also prove that Eu{sub 2}Cd{sub 2}As{sub 3} is a semiconducting compound with a narrow band gap of 0.059 eV below 100 K. According to TG/DSC analyses, Eu{sub 2}Cd{sub 2}As{sub 3} starts to decompose at about 950 K. - Graphical abstract: A polyhedral view of the crystal structure of new pnictides Eu{sub 2}T{sub 2}Pn{sub 3} (T=Zn or Cd; Pn=P or As). Display Omitted - Highlights: • Three new ternary pnictide Zintl compounds, Eu{sub 2}ZnP{sub 2}, Eu{sub 2}Zn{sub 2}P{sub 3} and Eu{sub 2}Cd{sub 2}As{sub 3}, have been synthesized and characterized. • The europium cations are divalent and ferromagnetically coupled in both Eu{sub 2}Zn{sub 2}P{sub 3} and Eu{sub 2}Cd{sub 2}As{sub 3}. • Eu{sub 2}Cd{sub 2}As{sub 3} has a very small band gap of 0.06 eV and starts to decompose over 950 K.« less

  16. P-type ZnO:N Films Prepared by Thermal Oxidation of Zn3N2

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Li, Min; Wang, Jian-Zhong; Shi, Li-Qun

    2013-02-01

    We prepare p-type ZnO:N films by annealing Zn3N2 films in oxygen over a range of temperatures. The prepared films are characterized by various techniques, such as Rutherford backscattering spectroscopy, x-ray diffraction, x-ray photoemission spectroscopy, the Hall effect and photoluminescence spectra. The results show that the Zn3N2 films start to transform to ZnO at 300°C and the N content decreases with an increase in annealing temperature. N has two local chemical states: zinc oxynitride (ZnO1-xNx) and substitutional NO in O-rich local environments (α -NO). The conduction type changes from n-type to p-type upon oxidation at 400-600°C, indicating that N is an effective acceptor in the ZnO film. The photoluminescence spectra show the UV emission and defect-related emissions of ZnO:N films. The mechanism and efficiency of p-type doping are briefly discussed.

  17. Zinc transporter ZnT-3 regulates presynaptic Erk1/2 signaling and hippocampus-dependent memory.

    PubMed

    Sindreu, Carlos; Palmiter, Richard D; Storm, Daniel R

    2011-02-22

    The physiological role of vesicular zinc at central glutamatergic synapses remains poorly understood. Here we show that mice lacking the synapse-specific vesicular zinc transporter ZnT3 (ZnT3KO mice) have reduced activation of the Erk1/2 MAPK in hippocampal mossy fiber terminals, disinhibition of zinc-sensitive MAPK tyrosine phosphatase activity, and impaired MAPK signaling during hippocampus-dependent learning. Activity-dependent exocytosis is required for the effect of zinc on presynaptic MAPK and phosphatase activity. ZnT3KO mice have complete deficits in contextual discrimination and spatial working memory. Local blockade of zinc or MAPK in the mossy fiber pathway of wild-type mice impairs contextual discrimination. We conclude that ZnT3 is important for zinc homeostasis modulating presynaptic MAPK signaling and is required for hippocampus-dependent memory.

  18. Zinc transporter ZnT-3 regulates presynaptic Erk1/2 signaling and hippocampus-dependent memory

    PubMed Central

    Sindreu, Carlos; Palmiter, Richard D.; Storm, Daniel R.

    2011-01-01

    The physiological role of vesicular zinc at central glutamatergic synapses remains poorly understood. Here we show that mice lacking the synapse-specific vesicular zinc transporter ZnT3 (ZnT3KO mice) have reduced activation of the Erk1/2 MAPK in hippocampal mossy fiber terminals, disinhibition of zinc-sensitive MAPK tyrosine phosphatase activity, and impaired MAPK signaling during hippocampus-dependent learning. Activity-dependent exocytosis is required for the effect of zinc on presynaptic MAPK and phosphatase activity. ZnT3KO mice have complete deficits in contextual discrimination and spatial working memory. Local blockade of zinc or MAPK in the mossy fiber pathway of wild-type mice impairs contextual discrimination. We conclude that ZnT3 is important for zinc homeostasis modulating presynaptic MAPK signaling and is required for hippocampus-dependent memory. PMID:21245308

  19. Lithiation-induced zinc clustering of Zn 3, Zn 12, and Zn 18 units in Zintl-like Ca ~30Li 3+xZn 60-x (x=0.44-1.38)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Qisheng

    2014-11-14

    Zinc clusters are not common for binary intermetallics with relatively low zinc content, but this work shows that zinc clustering can be triggered by lithiation, as exemplified by Ca ~30Li 3+xZn 60-x, P6/mmm, Z = 1, which can be directly converted from CaZn 2. Two end members of the solid solution (x = 0.44 and 1.38) were established and structurally characterized by single-crystal X-ray diffraction analyses: Ca 30Li 3.44(6)Zn59.56(6), a = 15.4651(9) Å, c = 9.3898(3) Å; Ca 30.45(2)Li 4.38(6)Zn 58.62(6), a = 15.524(3) Å, c = 9.413(2) Å. The structures of Ca ~30Li 3+xZn 60-x feature a condensed anionicmore » network of Zn3 triangles, lithium-centered Zn12 icosahedra, and arachno-(Zn,Li)18 tubular clusters that are surrounded respectively by Ca 14, Ca 20, and Ca 30 polyhedra. These polyhedra share faces and form a clathrate-like cationic framework. The specific occupation of lithium in the structure is consistent with theoretical “coloring” analyses. Analysis by the linear muffin-tin orbital (LMTO) method within the atomic sphere approximation reveals that Ca ~30Li 3+xZn 60-x is a metallic, Zintl-like phase with an open-shell electronic structure. The contribution of Ca–Zn polar covalent interactions is about 41%.« less

  20. Self-supported Zn3P2 nanowire arrays grafted on carbon fabrics as an advanced integrated anode for flexible lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Wenwu; Gan, Lin; Guo, Kai; Ke, Linbo; Wei, Yaqing; Li, Huiqiao; Shen, Guozhen; Zhai, Tianyou

    2016-04-01

    We, for the first time, successfully grafted well-aligned binary lithium-reactive zinc phosphide (Zn3P2) nanowire arrays on carbon fabric cloth by a facile CVD method. When applied as a novel self-supported binder-free anode for lithium ion batteries (LIBs), the hierarchical three-dimensional (3D) integrated anode shows excellent electrochemical performances: a highly reversible initial lithium storage capacity of ca. 1200 mA h g-1 with a coulombic efficiency of up to 88%, a long lifespan of over 200 cycles without obvious decay, and a high rate capability of ca. 400 mA h g-1 capacity retention at an ultrahigh rate of 15 A g-1. More interestingly, a flexible LIB full cell is assembled based on the as-synthesized integrated anode and the commercial LiFePO4 cathode, and shows striking lithium storage performances very close to the half cells: a large reversible capacity over 1000 mA h g-1, a long cycle life of over 200 cycles without obvious decay, and an ultrahigh rate performance of ca. 300 mA h g-1 even at 20 A g-1. Considering the excellent lithium storage performances of coin-type half cells as well as flexible full cells, the as-prepared carbon cloth grafted well-aligned Zn3P2 nanowire arrays would be a promising integrated anode for flexible LIB full cell devices.We, for the first time, successfully grafted well-aligned binary lithium-reactive zinc phosphide (Zn3P2) nanowire arrays on carbon fabric cloth by a facile CVD method. When applied as a novel self-supported binder-free anode for lithium ion batteries (LIBs), the hierarchical three-dimensional (3D) integrated anode shows excellent electrochemical performances: a highly reversible initial lithium storage capacity of ca. 1200 mA h g-1 with a coulombic efficiency of up to 88%, a long lifespan of over 200 cycles without obvious decay, and a high rate capability of ca. 400 mA h g-1 capacity retention at an ultrahigh rate of 15 A g-1. More interestingly, a flexible LIB full cell is assembled based on the as

  1. Origin of Blue-Green Emission in α-Zn2P2O7 and Local Structure of Ln3+ Ion in α-Zn2P2O7:Ln3+ (Ln = Sm, Eu): Time-Resolved Photoluminescence, EXAFS, and DFT Measurements.

    PubMed

    Gupta, Santosh Kumar; Ghosh, Partha Sarathi; Yadav, Ashok Kumar; Jha, Shambhu Nath; Bhattacharyya, Dibyendu; Kadam, Ramakant Mahadeo

    2017-01-03

    Considering the fact that pyrophosphate-based hosts are in high demand for making highly efficient luminescence materials, we doped two visible lanthanide ions, viz. Sm 3+ and Eu 3+ , in Zn 2 P 2 O 7 . Interestingly, it was oberved that pure Zn 2 P 2 O 7 displayed blue-green dual emission on irradiation with ultraviolet light. Emission and lifetime spectroscopy shows the presence of defects in pyrophosphate samples which are responsible for such emission. DFT calculations clearly pinpointed that the electronic transitions between defect states located at just below the conduction band minimum (arises due to V O 1+ and V O 2+ defects) and valence band maximum, as well as impurity states situated in the band gap, can lead to dual emission in the blue-green region, as is also indicated by emission and lifetime spectra. X-ray absorption near edge spectroscopy (XANES) shows the stabilization of europium as well as samarium ion in the +3 oxidation state in α-Zn 2 P 2 O 7 . The fact that α-Zn 2 P 2 O 7 has two different coordination numbers for zinc ions, i.e. five- and six-coordinate, the study of dopant ion distribution in this particular matrix will be an important step in realizing a highly efficient europium- and samarium-based red-emitting phosphor. Time resolved photoluminescence (TRPL) shows that both of these ions are heterogeneously distributed between five- and six-coordinated Zn 2+ sites and it is the six-coordinated Zn 2+ site which is the most favorable for lanthanide ion doping. Extended X-ray absorption fine structure (EXAFS) measurements also suggested that a six-coordinated zinc ion is the preferred site occupied by trivalent lanthanide ions, which is in complete agreement with TRPL results. It was observed that there is almost complete transfer of photon energy from Zn 2 P 2 O 7 to Eu 3+ , whereas this transfer is inefficient and almost incomplete in case of Sm 3+ , which is indeed important information for the realization of pyrophosphate

  2. Combined plasma gas-phase synthesis and colloidal processing of InP/ZnS core/shell nanocrystals.

    PubMed

    Gresback, Ryan; Hue, Ryan; Gladfelter, Wayne L; Kortshagen, Uwe R

    2011-01-12

    Indium phosphide nanocrystals (InP NCs) with diameters ranging from 2 to 5 nm were synthesized with a scalable, flow-through, nonthermal plasma process at a rate ranging from 10 to 40 mg/h. The NC size is controlled through the plasma operating parameters, with the residence time of the gas in the plasma region strongly influencing the NC size. The NC size distribution is narrow with the standard deviation being less than 20% of the mean NC size. Zinc sulfide (ZnS) shells were grown around the plasma-synthesized InP NCs in a liquid phase reaction. Photoluminescence with quantum yields as high as 15% were observed for the InP/ZnS core-shell NCs.

  3. Combined plasma gas-phase synthesis and colloidal processing of InP/ZnS core/shell nanocrystals

    PubMed Central

    2011-01-01

    Indium phosphide nanocrystals (InP NCs) with diameters ranging from 2 to 5 nm were synthesized with a scalable, flow-through, nonthermal plasma process at a rate ranging from 10 to 40 mg/h. The NC size is controlled through the plasma operating parameters, with the residence time of the gas in the plasma region strongly influencing the NC size. The NC size distribution is narrow with the standard deviation being less than 20% of the mean NC size. Zinc sulfide (ZnS) shells were grown around the plasma-synthesized InP NCs in a liquid phase reaction. Photoluminescence with quantum yields as high as 15% were observed for the InP/ZnS core-shell NCs. PMID:21711589

  4. Combined plasma gas-phase synthesis and colloidal processing of InP/ZnS core/shell nanocrystals

    NASA Astrophysics Data System (ADS)

    Gresback, Ryan; Hue, Ryan; Gladfelter, Wayne L.; Kortshagen, Uwe R.

    2011-12-01

    Indium phosphide nanocrystals (InP NCs) with diameters ranging from 2 to 5 nm were synthesized with a scalable, flow-through, nonthermal plasma process at a rate ranging from 10 to 40 mg/h. The NC size is controlled through the plasma operating parameters, with the residence time of the gas in the plasma region strongly influencing the NC size. The NC size distribution is narrow with the standard deviation being less than 20% of the mean NC size. Zinc sulfide (ZnS) shells were grown around the plasma-synthesized InP NCs in a liquid phase reaction. Photoluminescence with quantum yields as high as 15% were observed for the InP/ZnS core-shell NCs.

  5. A review of episodes of zinc phosphide toxicosis in wild geese (Branta spp.) in Oregon (2004−2011)

    USGS Publications Warehouse

    Bildfell, Rob J.; Rumbeiha, Wilson K.; Schuler, Krysten L.; Meteyer, Carol U.; Wolff, Peregrine L.; Gillin, Colin M.

    2013-01-01

    Epizootic mortality in several geese species, including cackling geese (Branta hutchinsii) and Canada geese (Branta canadensis), has been recognized in the Willamette Valley of Oregon for over a decade. Birds are generally found dead on a body of water or are occasionally observed displaying neurologic clinical signs such as an inability to raise or control the head prior to death. Investigation of these epizootic mortality events has revealed the etiology to be accidental poisoning with the rodenticide zinc phosphide (Zn3P2). Gross and histologic changes are restricted to acute pulmonary congestion and edema, sometimes accompanied by distension of the upper alimentary tract by fresh grass. Geese are unusually susceptible to this pesticide; when combined with an epidemiologic confluence of depredation of specific agricultural crops by rodents and seasonal avian migration pathways, epizootic toxicosis may occur. Diagnosis requires a high index of suspicion, appropriate sample collection and handling, plus specific test calibration for this toxicant. Interagency cooperation, education of farmers regarding pesticide use, and enforcement of regulations has been successful in greatly decreasing these mortality events since 2009.

  6. TNFα Post-Translationally Targets ZnT2 to Accumulate Zinc in Lysosomes.

    PubMed

    Hennigar, Stephen R; Kelleher, Shannon L

    2015-10-01

    Mammary epithelial cells undergo widespread lysosomal-mediated cell death (LCD) during early mammary gland involution. Recently, we demonstrated that tumor necrosis factor-α (TNFα), a cytokine released during early involution, redistributes the zinc (Zn) transporter ZnT2 to accumulate Zn in lysosomes and activate LCD and involution. The objective of this study is to determine how TNFα retargets ZnT2 to lysosomes. We tested the hypothesis that TNFα signaling dephosphorylates ZnT2 to uncover a highly conserved dileucine motif (L294L) in the C-terminus of ZnT2, allowing adaptor protein complex-3 (AP-3) to bind and traffic ZnT2 to lysosomes. Confocal micrographs showed that TNFα redistributed wild-type (WT) ZnT2 from late endosomes (Pearson's coefficient = 0.202 ± 0.05 and 0.097 ± 0.03; P<0.05) to lysosomes (0.292 ± 0.03 and 0.649 ± 0.03; P<0.0001), which increased lysosomal Zn (P<0.0001) and activated LCD (P<0.0001) compared to untreated cells. Mutation of the dileucine motif (L294V) eliminated the ability of TNFα to redistribute ZnT2 from late endosomes to lysosomes, increase lysosomal Zn, or activate LCD. Moreover, TNFα increased (P<0.05) AP-3 binding to wt ZnT2 but not to L294V immunoprecipitates. Finally, using phospho- and dephospho-mimetics of predicted phosphorylation sites (T281, T288, and S296), we found that dephosphorylated S296 was required to target ZnT2 to accumulate Zn in lysosomes and activate LCD. Our findings suggest that women with variation in the C-terminus of ZnT2 may be at risk for inadequate involution and breast disease due the inability to traffic ZnT2 to lysosomes. © 2015 Wiley Periodicals, Inc.

  7. Novel p-n heterojunction copper phosphide/cuprous oxide photocathode for solar hydrogen production.

    PubMed

    Chen, Ying-Chu; Chen, Zhong-Bo; Hsu, Yu-Kuei

    2018-08-01

    A Copper phosphide (Cu 3 P) micro-rod (MR) array, with coverage by an n-Cu 2 O thin layer by electrodeposition as a photocathode, has been directly fabricated on copper foil via simple electro-oxidation and phosphidation for photoelectrochemical (PEC) hydrogen production. The morphology, structure, and composition of the Cu 3 P/Cu 2 O heterostructure are systematically analyzed using a scanning electron microscope (SEM), X-ray diffraction and X-ray photoelectron spectra. The PEC measurements corroborate that the p-Cu 3 P/n-Cu 2 O heterostructural photocathode illustrates efficient charge separation and low charge transfer resistance to achieve the highest photocurrent of 430 μA cm -2 that is greater than other transition metal phosphide materials. In addition, a detailed energy diagram of the p-Cu 3 P/n-Cu 2 O heterostructure was investigated using Mott-Schottky analysis. Our study paves the way to explore phosphide-based materials in a new class for solar energy applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Two new three-dimensional zinc phosphites templated by piperazine: [H2pip][Zn3(HPO3)4(H2O)2] and K[H2pip]0.5[Zn3(HPO3)4

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Wang, Guo-Ming; Wang, Zong-Hua; Wang, Ying-Xia; Lin, Jian-Hua

    2014-01-01

    Two three-dimensional open-framework zinc phosphites with the same organically templated, [H2pip][Zn3(HPO3)4(H2O)2] (1) and K[H2pip]0.5[Zn3(HPO3)4] (2) (pip = piperazine), have been solvothermally synthesized and structurally characterized by IR, elemental analysis, thermogravimetric analysis, powder and single-crystal X-ray diffractions. Compound 1 consists of ZnO4 tetrahedra, [HPO3] pseudopyramids and [ZnO4(H2O)2] octahedra, which are linked through their vertexes to generate three-dimensional architecture with intersecting 8-membered channels along the [1 0 0], [0 0 1] and [1 0 1] directions. Compound 2 is constructed from strictly alternating ZnO4 tetrahedra and [HPO3] pseudopyramids, and exhibits (3,4)-connected inorganic framework with 8-, and 12-membered channels, in which the K+ and diprotonated H2pip2+ extra-framework cations reside, respectively. The coexistence of inorganic K+ and organic piperazine mixed templates in the structure is unique and, to the best of our knowledge, firstly observed in metal-phosphite materials. In addition, the participation of left-handed and right-handed helical chains in construction of the puckered 4.82 sheet structure in 2 is also noteworthy.

  9. Novel elastic, lattice dynamics and thermodynamic properties of metallic single-layer transition metal phosphides: 2H-M 2P (Mo2P, W2P, Nb2P and Ta2P)

    NASA Astrophysics Data System (ADS)

    Yin, Jiuren; Wu, Bozhao; Wang, Yanggang; Li, Zhimi; Yao, Yuanpeng; Jiang, Yong; Ding, Yanhuai; Xu, Fu; Zhang, Ping

    2018-04-01

    Recently, there has been a surge of interest in the research of two-dimensional (2D) phosphides due to their unique physical properties and wide applications. Transition metal phosphides 2H-M 2Ps (Mo2P, W2P, Nb2P and Ta2P) show considerable catalytic activity and energy storage potential. However, the electronic structure and mechanical properties of 2D 2H-M 2Ps are still unrevealed. Here, first-principles calculations are employed to investigate the lattice dynamics, elasticity and thermodynamic properties of 2H-M 2Ps. Results show that M 2Ps with lower stiffness exhibit remarkable lateral deformation under unidirectional loads. Due to the largest average Grüneisen parameter, single-layer Nb2P has the strongest anharmonic vibrations, resulting in the highest thermal expansion coefficient. The lattice thermal conductivities of Ta2P, W2P and Nb2P contradict classical theory, which would predict a smaller thermal conductivity due to the much heavier atom mass. Moreover, the calculations also demonstrate that the thermal conductivity of Ta2P is the highest as well as the lowest thermal expansion, owing to its weak anharmonic phonon scattering and the lowest average Grüneisen parameter. The insight provided by this study may be useful for future experimental and theoretical studies concerning 2D transition metal phosphide materials.

  10. Crystal structures of ZnCl2·2.5H2O, ZnCl2·3H2O and ZnCl2·4.5H2O

    PubMed Central

    Hennings, Erik; Schmidt, Horst; Voigt, Wolfgang

    2014-01-01

    The formation of different complexes in aqueous solutions is an important step in understanding the behavior of zinc chloride in water. The structure of concentrated ZnCl2 solutions is governed by coordination competition of Cl− and H2O around Zn2+. According to the solid–liquid phase diagram, the title compounds were crystallized below room temperature. The structure of ZnCl2·2.5H2O contains Zn2+ both in a tetra­hedral coordination with Cl− and in an octa­hedral environment defined by five water mol­ecules and one Cl− shared with the [ZnCl4]2− unit. Thus, these two different types of Zn2+ cations form isolated units with composition [Zn2Cl4(H2O)5] (penta­aqua-μ-chlorido-tri­chlorido­di­zinc). The trihydrate {hexa­aqua­zinc tetra­chlorido­zinc, [Zn(H2O)6][ZnCl4]}, consists of three different Zn2+ cations, one of which is tetra­hedrally coordinated by four Cl− anions. The two other Zn2+ cations are each located on an inversion centre and are octa­hedrally surrounded by water mol­ecules. The [ZnCl4] tetra­hedra and [Zn(H2O)6] octa­hedra are arranged in alternating rows parallel to [001]. The structure of the 4.5-hydrate {hexa­aqua­zinc tetra­chlorido­zinc trihydrate, [Zn(H2O)6][ZnCl4]·3H2O}, consists of isolated octa­hedral [Zn(H2O)6] and tetra­hedral [ZnCl4] units, as well as additional lattice water mol­ecules. O—H⋯O hydrogen bonds between the water mol­ecules as donor and ZnCl4 tetra­hedra and water mol­ecules as acceptor groups leads to the formation of a three-dimensional network in each of the three structures. PMID:25552980

  11. Variable dimensionality and framework found in a series of quaternary zinc selenites, A{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4}·xH{sub 2}O (A = Na, Rb, and Cs; 0≤x≤1) and Cs{sub 2}Zn{sub 2}(SeO{sub 3}){sub 32H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lü, Minfeng; Jo, Hongil; Oh, Seung-Jin

    Five new alkali metal zinc selenites, A{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4}·xH{sub 2}O (A = Na, Rb, and Cs; 0≤x≤1) and Cs{sub 2}Zn{sub 2}(SeO{sub 3}){sub 32H{sub 2}O have been synthesized by heating a mixture of ZnO, SeO{sub 2} and A{sub 2}CO{sub 3} (A = Na, Rb, and Cs), and characterized by X-ray diffraction (XRD) and spectroscopic analyses techniques. All of the reported materials revealed a rich structural chemistry with different frameworks and connection modes of Zn{sup 2+}. While Rb{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4} and Cs{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4}·H{sub 2}O revealed three-dimensional frameworks consisting of isolated ZnO{sub 4} tetrahedra and SeO{submore » 3} polyhedra, Na{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4}, Cs{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4}, and Cs{sub 2}Zn{sub 2}(SeO{sub 3}){sub 32H{sub 2}O contained two-dimensional [Zn{sub 3}(SeO{sub 3}){sub 4}]{sup 2-} layers. Specifically, whereas isolated ZnO{sub 4} tetrahedra and SeO{sub 3} polyhedra are arranged into two-dimensional [Zn{sub 3}(SeO{sub 3}){sub 4}]{sup 2-} layers in two cesium compounds, circular [Zn{sub 3}O{sub 10}]{sup 14-} chains and SeO{sub 3} linkers are formed in two-dimensional [Zn{sub 3}(SeO{sub 3}){sub 4}]{sup 2-} layers in Na{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4}. Close structural examinations suggest that the size of alkali metal is significant in determining the framework geometry as well as connection modes of transition metal cations. - Graphical abstract: Variable dimensions and frameworks were found in a series of quaternary zinc selenites, A{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4} (A = Na, Rb and Cs). - Highlights: • Five novel quaternary zinc selenites are synthesized. • All the selenites with different structures contain polarizable d{sup 10} and lone pair cations. • The size of alkali metal cations is significant in determining the framework geometry.« less

  12. Polymorphic one-dimensional (N2H4)2ZnTe: soluble precursors for the formation of hexagonal or cubic zinc telluride.

    PubMed

    Mitzi, David B

    2005-10-03

    Two hydrazine zinc(II) telluride polymorphs, (N2H4)2ZnTe, have been isolated, using ambient-temperature solution-based techniques, and the crystal structures determined: alpha-(N2H4)2ZnTe (1) [P21, a = 7.2157(4) Angstroms, b = 11.5439(6) Angstroms, c = 7.3909(4) Angstroms, beta = 101.296(1) degrees, Z = 4] and beta-(N2H4)2ZnTe (2) [Pn, a = 8.1301(5) Angstroms, b = 6.9580(5) Angstroms, c = 10.7380(7) Angstroms, beta = 91.703(1) degrees, Z = 4]. The zinc atoms in 1 and 2 are tetrahedrally bonded to two terminal hydrazine molecules and two bridging tellurium atoms, leading to the formation of extended one-dimensional (1-D) zinc telluride chains, with different chain conformations and packings distinguishing the two polymorphs. Thermal decomposition of (N2H4)2ZnTe first yields crystalline wurtzite (hexagonal) ZnTe at temperatures as low as 200 degrees C, followed by the more stable zinc blende (cubic) form at temperatures above 350 degrees C. The 1-D polymorphs are soluble in hydrazine and can be used as convenient precursors for the low-temperature solution processing of p-type ZnTe semiconducting films.

  13. Selectivity shifting behavior of Pd nanoparticles loaded zinc stannate/zinc oxide (Zn2SnO4/ZnO) nanowires sensors

    NASA Astrophysics Data System (ADS)

    Arafat, M. M.; Ong, J. Y.; Haseeb, A. S. M. A.

    2018-03-01

    In this research, the gas sensing behavior of Pd nanoparticles loaded zinc stannate/zinc oxide (Zn2SnO4/ZnO) nanowires were investigated. The Zn2SnO4/ZnO nanowires were grown on Au interdigitated alumina substrate by carbon assisted thermal evaporation process. Pd nanoparticles were loaded on the Zn2SnO4/ZnO nanowires by wet reduction process. The nanowires were characterized by X-ray diffractometer, field emission scanning electron microscope and energy dispersive X-ray spectroscope. The Zn2SnO4/ZnO and Pd nanoparticles loaded Zn2SnO4/ZnO nanowires were investigated for detecting H2, H2S and C2H5OH gases in N2 background. Results revealed that the average diameter and length of as-grown Zn2SnO4/ZnO nanowires were 74 nm and 30 μm, respectively. During wet reduction process,Pd particles having size of 20-60 nm were evenly distributed on the Zn2SnO4/ZnO nanowires. The Zn2SnO4/ZnO nanowires based sensors showed selective response towards C2H5OH whereas Pd nanoparticles loaded Zn2SnO4/ZnO nanowires showed selective response towards H2. The recovery time of the sensors reduced with Pd loading on Zn2SnO4/ZnO nanowires. A mechanism is proposed to elucidate the gas sensing mechanism of Pd nanoparticles loaded Zn2SnO4/ZnO nanowires.

  14. Transparent ZnO-based ohmic contact to p-GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminska, E.; Piotrowska, A.; Golaszewska, K.

    2002-04-09

    Highly conductive ZnO films were fabricated on p-GaN in a two-step process. First, zinc was thermally evaporated on p-GaN. Next, zinc film was oxidized in oxygen flow. To increase the conductivity of ZnO, nitrogen was introduced into zinc during its deposition. The above procedure proved successful in fabricating ZnO of the resistivity of {approx}1 x 10{sup -3} {Omega}cm and resulted in ohmic contacts of resistivity {approx}1 x 10{sup -2} {Omega}cm{sup 2} to low-doped p-GaN, and light transmittance of {approx}75% in the wavelength range of 400-700 nm.

  15. Fabrication of a P3HT-ZnO Nanowires Gas Sensor Detecting Ammonia Gas

    PubMed Central

    Kuo, Chin-Guo; Chen, Jung-Hsuan; Chao, Yi-Chieh; Chen, Po-Lin

    2017-01-01

    In this study, an organic-inorganic semiconductor gas sensor was fabricated to detect ammonia gas. An inorganic semiconductor was a zinc oxide (ZnO) nanowire array produced by atomic layer deposition (ALD) while an organic material was a p-type semiconductor, poly(3-hexylthiophene) (P3HT). P3HT was suitable for the gas sensing application due to its high hole mobility, good stability, and good electrical conductivity. In this work, P3HT was coated on the zinc oxide nanowires by the spin coating to form an organic-inorganic heterogeneous interface of the gas sensor for detecting ammonia gas. The thicknesses of the P3HT were around 462 nm, 397 nm, and 277 nm when the speeds of the spin coating were 4000 rpm, 5000 rpm, and 6000 rpm, respectively. The electrical properties and sensing characteristics of the gas sensing device at room temperature were evaluated by Hall effect measurement and the sensitivity of detecting ammonia gas. The results of Hall effect measurement for the P3HT-ZnO nanowires semiconductor with 462 nm P3HT film showed that the carrier concentration and the mobility were 2.7 × 1019 cm−3 and 24.7 cm2∙V−1∙s−1 respectively. The gas sensing device prepared by the P3HT-ZnO nanowires semiconductor had better sensitivity than the device composed of the ZnO film and P3HT film. Additionally, this gas sensing device could reach a maximum sensitivity around 11.58 per ppm. PMID:29295573

  16. Autism phenotypes in ZnT3 null mice: Involvement of zinc dyshomeostasis, MMP-9 activation and BDNF upregulation.

    PubMed

    Yoo, Min Heui; Kim, Tae-Youn; Yoon, Young Hee; Koh, Jae-Young

    2016-06-29

    To investigate the role of synaptic zinc in the ASD pathogenesis, we examined zinc transporter 3 (ZnT3) null mice. At 4-5 weeks of age, male but not female ZnT3 null mice exhibited autistic-like behaviors. Cortical volume and neurite density were significantly greater in male ZnT3 null mice than in WT mice. In male ZnT3 null mice, consistent with enhanced neurotrophic stimuli, the level of BDNF as well as activity of MMP-9 was increased. Consistent with known roles for MMPs in BDNF upregulation, 2.5-week treatment with minocycline, an MMP inhibitor, significantly attenuated BDNF levels as well as megalencephaly and autistic-like behaviors. Although the ZnT3 null state removed synaptic zinc, it rather increased free zinc in the cytosol of brain cells, which appeared to increase MMP-9 activity and BDNF levels. The present results suggest that zinc dyshomeostasis during the critical period of brain development may be a possible contributing mechanism for ASD.

  17. Extracellular pH Regulates Zinc Signaling via an Asp Residue of the Zinc-sensing Receptor (ZnR/GPR39)*

    PubMed Central

    Cohen, Limor; Asraf, Hila; Sekler, Israel; Hershfinkel, Michal

    2012-01-01

    Zinc activates a specific Zn2+-sensing receptor, ZnR/GPR39, and thereby triggers cellular signaling leading to epithelial cell proliferation and survival. Epithelial cells that express ZnR, particularly colonocytes, face frequent changes in extracellular pH that are of physiological and pathological implication. Here we show that the ZnR/GPR39-dependent Ca2+ responses in HT29 colonocytes were maximal at pH 7.4 but were reduced by about 50% at pH 7.7 and by about 62% at pH 7.1 and were completely abolished at pH 6.5. Intracellular acidification did not attenuate ZnR/GPR39 activity, indicating that the pH sensor of this protein is located on an extracellular domain. ZnR/GPR39-dependent activation of extracellular-regulated kinase (ERK)1/2 or AKT pathways was abolished at acidic extracellular pH of 6.5. A similar inhibitory effect was monitored for the ZnR/GPR39-dependent up-regulation of Na+/H+ exchange activity at pH 6.5. Focusing on residues putatively facing the extracellular domain, we sought to identify the pH sensor of ZnR/GPR39. Replacing the histidine residues forming the Zn2+ binding site, His17 or His19, or other extracellular-facing histidines to alanine residues did not abolish the pH dependence of ZnR/GPR39. In contrast, replacing Asp313 with alanine resulted in similar Ca2+ responses triggered by ZnR/GPR39 at pH 7.4 or 6.5. This mutant also showed similar activation of ERK1/2 and AKT pathways, and ZnR-dependent up-regulation of Na+/H+ exchange at pH 7.4 and pH 6.5. Substitution of Asp313 to His or Glu residues restored pH sensitivity of the receptor. This indicates that Asp313, which was shown to modulate Zn2+ binding, is an essential residue of the pH sensor of GPR39. In conclusion, ZnR/GPR39 is tuned to sense physiologically relevant changes in extracellular pH that thus regulate ZnR-dependent signaling and ion transport activity. PMID:22879599

  18. Extracellular pH regulates zinc signaling via an Asp residue of the zinc-sensing receptor (ZnR/GPR39).

    PubMed

    Cohen, Limor; Asraf, Hila; Sekler, Israel; Hershfinkel, Michal

    2012-09-28

    Zinc activates a specific Zn(2+)-sensing receptor, ZnR/GPR39, and thereby triggers cellular signaling leading to epithelial cell proliferation and survival. Epithelial cells that express ZnR, particularly colonocytes, face frequent changes in extracellular pH that are of physiological and pathological implication. Here we show that the ZnR/GPR39-dependent Ca(2+) responses in HT29 colonocytes were maximal at pH 7.4 but were reduced by about 50% at pH 7.7 and by about 62% at pH 7.1 and were completely abolished at pH 6.5. Intracellular acidification did not attenuate ZnR/GPR39 activity, indicating that the pH sensor of this protein is located on an extracellular domain. ZnR/GPR39-dependent activation of extracellular-regulated kinase (ERK)1/2 or AKT pathways was abolished at acidic extracellular pH of 6.5. A similar inhibitory effect was monitored for the ZnR/GPR39-dependent up-regulation of Na(+)/H(+) exchange activity at pH 6.5. Focusing on residues putatively facing the extracellular domain, we sought to identify the pH sensor of ZnR/GPR39. Replacing the histidine residues forming the Zn(2+) binding site, His(17) or His(19), or other extracellular-facing histidines to alanine residues did not abolish the pH dependence of ZnR/GPR39. In contrast, replacing Asp(313) with alanine resulted in similar Ca(2+) responses triggered by ZnR/GPR39 at pH 7.4 or 6.5. This mutant also showed similar activation of ERK1/2 and AKT pathways, and ZnR-dependent up-regulation of Na(+)/H(+) exchange at pH 7.4 and pH 6.5. Substitution of Asp(313) to His or Glu residues restored pH sensitivity of the receptor. This indicates that Asp(313), which was shown to modulate Zn(2+) binding, is an essential residue of the pH sensor of GPR39. In conclusion, ZnR/GPR39 is tuned to sense physiologically relevant changes in extracellular pH that thus regulate ZnR-dependent signaling and ion transport activity.

  19. Modeling the thermal conductivities of the zinc antimonides ZnSb and Zn4Sb3

    NASA Astrophysics Data System (ADS)

    Bjerg, Lasse; Iversen, Bo B.; Madsen, Georg K. H.

    2014-01-01

    ZnSb and Zn4Sb3 are interesting as thermoelectric materials because of their low cost and low thermal conductivity. We introduce a model of the lattice thermal conductivity which is independent of fitting parameters and takes the full phonon dispersions into account. The model is found to give thermal conductivities with the correct relative magnitudes and in reasonable quantitative agreement with experiment for a number of semiconductor structures. The thermal conductivities of the zinc antimonides are reviewed and the relatively large effect of nanostructuring on the zinc antimonides is rationalized in terms of the mean free paths of the heat carrying phonons. The very low thermal conductivity of Zn4Sb3 is found to be intrinsic to the structure. However, the low-lying optical modes are observed in both Zn-Sb structures and involve both Zn and Sb vibrations, thereby strongly questioning dumbbell rattling. A mechanism for the very low thermal conductivity observed in Zn4Sb3 is identified. The large Grüneisen parameter of this compound is traced to the Sb atoms which coordinate only Zn atoms.

  20. Autism phenotypes in ZnT3 null mice: Involvement of zinc dyshomeostasis, MMP-9 activation and BDNF upregulation

    PubMed Central

    Yoo, Min Heui; Kim, Tae-Youn; Yoon, Young Hee; Koh, Jae-Young

    2016-01-01

    To investigate the role of synaptic zinc in the ASD pathogenesis, we examined zinc transporter 3 (ZnT3) null mice. At 4–5 weeks of age, male but not female ZnT3 null mice exhibited autistic-like behaviors. Cortical volume and neurite density were significantly greater in male ZnT3 null mice than in WT mice. In male ZnT3 null mice, consistent with enhanced neurotrophic stimuli, the level of BDNF as well as activity of MMP-9 was increased. Consistent with known roles for MMPs in BDNF upregulation, 2.5-week treatment with minocycline, an MMP inhibitor, significantly attenuated BDNF levels as well as megalencephaly and autistic-like behaviors. Although the ZnT3 null state removed synaptic zinc, it rather increased free zinc in the cytosol of brain cells, which appeared to increase MMP-9 activity and BDNF levels. The present results suggest that zinc dyshomeostasis during the critical period of brain development may be a possible contributing mechanism for ASD. PMID:27352957

  1. Fabrication of a P3HT-ZnO Nanowires Gas Sensor Detecting Ammonia Gas.

    PubMed

    Kuo, Chin-Guo; Chen, Jung-Hsuan; Chao, Yi-Chieh; Chen, Po-Lin

    2017-12-25

    In this study, an organic-inorganic semiconductor gas sensor was fabricated to detect ammonia gas. An inorganic semiconductor was a zinc oxide (ZnO) nanowire array produced by atomic layer deposition (ALD) while an organic material was a p-type semiconductor, poly(3-hexylthiophene) (P3HT). P3HT was suitable for the gas sensing application due to its high hole mobility, good stability, and good electrical conductivity. In this work, P3HT was coated on the zinc oxide nanowires by the spin coating to form an organic-inorganic heterogeneous interface of the gas sensor for detecting ammonia gas. The thicknesses of the P3HT were around 462 nm, 397 nm, and 277 nm when the speeds of the spin coating were 4000 rpm, 5000 rpm, and 6000 rpm, respectively. The electrical properties and sensing characteristics of the gas sensing device at room temperature were evaluated by Hall effect measurement and the sensitivity of detecting ammonia gas. The results of Hall effect measurement for the P3HT-ZnO nanowires semiconductor with 462 nm P3HT film showed that the carrier concentration and the mobility were 2.7 × 10 19 cm -3 and 24.7 cm²∙V -1 ∙s -1 respectively. The gas sensing device prepared by the P3HT-ZnO nanowires semiconductor had better sensitivity than the device composed of the ZnO film and P3HT film. Additionally, this gas sensing device could reach a maximum sensitivity around 11.58 per ppm.

  2. K2 ZnSn3 Se8 : A Non-Centrosymmetric Zinc Selenidostannate(IV) Featuring Interesting Covalently Bonded [ZnSn3 Se8 ]2- Layer and Exhibiting Intriguing Second Harmonic Generation Activity.

    PubMed

    Zhou, Molin; Jiang, Xingxing; Yang, Yi; Guo, Yangwu; Lin, Zheshuai; Yao, JJiyong; Wu, Yicheng

    2017-06-19

    Non-centrosymmetric zinc selenidostannate(IV) K 2 ZnSn 3 Se 8 was synthesized. It features interesting covalently bonded [ZnSn 3 Se 8 ] 2- layers with K + cations filling in the interlayer voids. The phonon spectrum was calculated to clarify its structural stability. Based on the X-ray diffraction data along with the Raman spectrum, the major bonding features of the title compound were identified. According to the UV/vis-NIR spectroscopy, K 2 ZnSn 3 Se 8 possesses a typical direct band gap of 2.10 eV, which is in good agreement with the band structure calculations. Moreover, our experimental measurements and detailed theoretical calculations reveal that K 2 ZnSn 3 Se 8 is a new phase-matchable nonlinear optical material with a powder second harmonic generation (SHG) signal about 0.6 times of that of AgGaS 2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effects of P/Ni ratio and Ni content on performance of γ-Al2O3-supported nickel phosphides for deoxygenation of methyl laurate to hydrocarbons

    NASA Astrophysics Data System (ADS)

    Zhang, Zhena; Tang, Mingxiao; Chen, Jixiang

    2016-01-01

    γ-Al2O3-supported nickel phosphides (mNi-Pn) were prepared by the TPR method and tested for the deoxygenation of methyl laurate to hydrocarbons. The effects of the P/Ni ratio (n = 1.0-2.5) and Ni content (m = 5-15 wt.%) in the precursors on their structure and performance were investigated. Ni/γ-Al2O3 was also studied for comparison. It was found that the formation of AlPO4 in the precursor inhibited the reduction of phosphate and so the formation of nickel phosphides. With increasing the P/Ni ratio and Ni content, the Ni, Ni3P, Ni12P5 and Ni2P phases orderly formed, accompanying with the increases of their particle size and the amount of weak acid sites (mainly due to P-OH group), while the CO uptake and the amount of medium strong acid sites (mainly related to Ni sites) reached maximum on 10%Ni-P1.5. In the deoxygenation reaction, compared with Ni/γ-Al2O3, the mNi-Pn catalysts showed much lower activities for decarbonylation, Csbnd C hydrogenolysis and methanation due to the ligand and ensemble effects of P. The conversion and the selectivity to n-C11 and n-C12 hydrocarbons achieved maximum on 10%Ni-P 2.0 for the 10%Ni-Pn catalysts and on 8%Ni-P2.0 for the mNi-P2.0 catalysts, while the turnover frequency (TOF) of methyl laurate mainly increased with the P/Ni ratio and Ni content. We propose that TOF was influenced by the nickel phosphide phases, the catalyst acidity and the particle size as well as the synergetic effect between the Ni site and acid site. Again, the hydrodeoxygenation pathway of methyl laurate was promoted with increasing P/Ni ratio and Ni content, ascribed to the phase change in the order of Ni, Ni3P, Ni12P5 and Ni2P in the prepared catalysts.

  4. Investigation of trapping levels in p-type Zn3P2 nanowires using transport and optical properties

    NASA Astrophysics Data System (ADS)

    Lombardi, G. A.; de Oliveira, F. M.; Teodoro, M. D.; Chiquito, A. J.

    2018-05-01

    Here, we report the synthesis and structural characterization of high-quality Zn3P2 nanowires via chemical vapour deposition. Structural and morphological characterization studies revealed a reliable growth process of long, uniform, and single-crystalline nanowires. From temperature dependent transport and photoluminescence measurements, we have observed the contribution of different acceptor levels (15, 50, 70, 90, and 197 meV) to the conduction mechanisms. These levels were associated with zinc vacancies and phosphorous interstitial atoms which assigned a p-type character to this semiconductor. From time resolved photoluminescence experiments, a 91 ps lifetime decay was found. Such a fast lifetime decay is in agreement with the exciton transition along the bulk emission from high quality crystalline nanowires.

  5. Chemical-Biological Properties of Zinc Sensors TSQ and Zinquin: Formation of Sensor-Zn-Protein Adducts versus Zn(Sensor)2 Complexes.

    PubMed

    Nowakowski, Andrew B; Meeusen, Jeffrey W; Menden, Heather; Tomasiewicz, Henry; Petering, David H

    2015-12-21

    Fluorescent zinc sensors are the most commonly used tool to study the intracellular mobile zinc status within cellular systems. Previously, we have shown that the quinoline-based sensors Zinquin and 6-methoxy-8-p-toluenesulfonamido-quinoline (TSQ) predominantly form ternary adducts with members of the Zn-proteome. Here, the chemistries of these sensors are further characterized, including how Zn(sensor)2 complexes may react in an intracellular environment. We demonstrate that these sensors are typically used in higher concentrations than needed to obtain maximum signal. Exposing cells to either Zn(Zinquin)2 or Zn(TSQ)2 resulted in efficient cellular uptake and the formation of sensor-Zn-protein adducts as evidenced by both a fluorescence spectral shift toward that of ternary adducts and the localization of the fluorescence signal within the proteome after gel filtration of cellular lysates. Likewise, reacting Zn(sensor)2 with the Zn-proteome from LLC-PK1 cells resulted in the formation of sensor-Zn-protein ternary adducts that could be inhibited by first saturating the Zn- proteome with excess sensor. Further, a native SDS-PAGE analysis of the Zn-proteome reacted with either the sensor or the Zn(sensor)2 complex revealed that both reactions result in the formation of a similar set of sensor-Zn-protein fluorescent products. The results of this experiment also demonstrated that TSQ and Zinquin react with different members of the Zn-proteome. Reactions with the model apo-Zn-protein bovine serum albumin showed that both Zn(TSQ)2 and Zn(Zinquin)2 reacted to form ternary adducts with its apo-Zn-binding site. Moreover, incubating Zn(sensor)2 complexes with non-zinc binding proteins failed to elicit a spectral shift in the fluorescence spectrum, supporting the premise that blue-shifted emission spectra are due to sensor-Zn-protein ternary adducts. It was concluded that Zn(sensors)2 species do not play a significant role in the overall reaction between these sensors and

  6. Energetic band structure of Zn3P2 crystals

    NASA Astrophysics Data System (ADS)

    Stamov, I. G.; Syrbu, N. N.; Dorogan, A. V.

    2013-01-01

    Optical functions n, k, ε1, ε2 and d2ε2/dE2 have been determined from experimental reflection spectra in the region of 1-10 eV. The revealed electronic transitions are localized in the Brillouin zone. The magnitude of valence band splitting caused by the spin-orbital interaction ΔSO is lower than the splitting caused by the crystal field ΔCR in the center of Brillouin zone and L and X points. The switching effects are investigated in Zn3P2 crystals. The characteristics of experimental samples with electric switching, adjustable resistors, and time relays based on Zn3P2 are presented.

  7. Sulfur-Doped Zinc Oxide (ZnO) Nanostars: Synthesis and Simulation of Growth Mechanism

    DTIC Science & Technology

    2011-10-01

    Zinc Oxide ( ZnO ) Nanostars: Synthesis and Simulation of Growth Mechanism Jinhyun Cho1, Qiubao Lin2,3, Sungwoo...characterization, and ab initio simulations of star-shaped hexagonal zinc oxide ( ZnO ) nanowires. The ZnO nanostructures were synthesized by a low...Introduction Zinc oxide ( ZnO ) is a wide bandgap (3.37 eV), Ⅱ–Ⅵ semiconductor of great interest for optoelectronic applications [1–3]. Its

  8. Elastic, magnetic and electronic properties of iridium phosphide Ir 2P

    DOE PAGES

    Wang, Pei; Wang, Yonggang; Wang, Liping; ...

    2016-02-24

    Cubic (space group: Fm3¯m) iridium phosphide, Ir 2P, has been synthesized at high pressure and high temperature. Angle-dispersive synchrotron X-ray diffraction measurements on Ir 2P powder using a diamond-anvil cell at room temperature and high pressures (up to 40.6 GPa) yielded a bulk modulus of B 0 = 306(6) GPa and its pressure derivative B 0'= 6.4(5). Such a high bulk modulus attributed to the short and strongly covalent Ir-P bonds as revealed by first – principles calculations and three-dimensionally distributed [IrP 4] tetrahedron network. Indentation testing on a well–sintered polycrystalline sample yielded the hardness of 11.8(4) GPa. Relatively lowmore » shear modulus of ~64 GPa from theoretical calculations suggests a complicated overall bonding in Ir 2P with metallic, ionic, and covalent characteristics. Additionally, a spin glass behavior is indicated by magnetic susceptibility measurements.« less

  9. Single-layer ZnMN2 (M = Si, Ge, Sn) zinc nitrides as promising photocatalysts.

    PubMed

    Bai, Yujie; Luo, Gaixia; Meng, Lijuan; Zhang, Qinfang; Xu, Ning; Zhang, Haiyang; Wu, Xiuqiang; Kong, Fanjie; Wang, Baolin

    2018-05-30

    Searching for two-dimensional semiconductor materials that are suitable for visible-light photocatalytic water splitting provides a sustainable solution to deal with the future energy crisis and environmental problems. Herein, based on first-principles calculations, single-layer ZnMN2 (M = Si, Ge, Sn) zinc nitrides are proposed as efficient photocatalysts for water splitting. Stability analyses show that the single-layer ZnMN2 zinc nitrides exhibit energetic and dynamical stability. The electronic properties reveal that all of the single-layer ZnMN2 zinc nitrides are semiconductors. Interestingly, single-layer ZnSnN2 is a direct band gap semiconductor with a desirable band gap (1.74 eV), and the optical adsorption spectrum confirms its optical absorption in the visible light region. The hydrogen evolution reaction (HER) calculations show that the catalytic activity for single-layer ZnMN2 (M = Ge, Sn) is better than that of single-layer ZnSiN2. Furthermore, the band gaps and band edge positions for the single-layer ZnMN2 zinc nitrides can be effectively tuned by biaxial strain. Especially, single-layer ZnGeN2 can be effectively tuned to match better with the redox potentials of water and enhance the light absorption in the visible light region at a tensile strain of 5%, which is confirmed by the corresponding optical absorption spectrum. Our results provide guidance for experimental synthesis efforts and future searches for single-layer materials suitable for photocatalytic water splitting.

  10. Facile synthesis of p-type Zn-doped α-Fe2O3 films for solar water splitting

    NASA Astrophysics Data System (ADS)

    Kuo, Chun-Lin; Hsu, Yu-Kuei; Lin, Yan-Gu

    2014-10-01

    A facile and simple fabrication of Zn-doped α-Fe2O3 thin films as a photocathode for solar hydrogen generation was proposed in this report. Transparent Zn-doped α-Fe2O3 films were prepared by a deposition-annealing (DA) process using nontoxic iron(III) chloride as the Fe precursor and zinc chloride as a acceptor dopant, followed by annealing at 550 °C in air. In terms of the structural examination of as-grown samples, X-ray diffraction analysis demonstrated an increase in the lattice parameters of Zn incorporated in Fe2O3 by substituting Fe in the host lattice. No second phase was determined, indicating no phase separation in the ternary materials. Energy dispersive spectroscopy results demonstrated that Zn, Fe, and O elements existed in the deposits. Furthermore, impedance measurements show that the Zn-dopant serves as an hole acceptor and increases the acceptor concentration by increasing concentration of zinc precursor. Significantly, the photoelectrochemical measurements exhibited remarkable cathodic current, corresponding to the reduction reaction of hydrogen. Finally, the optimum photocurrent can be achieved by controlled variation of the Fe and Zni precursor concentration, annealing conditions, and the number of DA cycles. According to our investigation, the understandings of morphology effect on PEC activity give the blueprint for materials design in the application of solar hydrogen.

  11. Structure and mechanism of Zn2+-transporting P-type ATPases

    PubMed Central

    Wang, Kaituo; Sitsel, Oleg; Meloni, Gabriele; Autzen, Henriette Elisabeth; Andersson, Magnus; Klymchuk, Tetyana; Nielsen, Anna Marie; Rees, Douglas C.; Nissen, Poul; Gourdon, Pontus

    2014-01-01

    Zinc is an essential micronutrient for all living organisms, required for signaling and proper function of a range of proteins involved in e.g. DNA-binding and enzymatic catalysis1. In prokaryotes and photosynthetic eukaryotes Zn2+-transporting P-type ATPases of class IB (ZntA) are crucial for cellular redistribution and detoxification of Zn2+ and related elements2,3. Here we present crystal structures representing the phosphoenzyme ground state (E2P) and a dephosphorylation intermediate (E2.Pi) of ZntA from Shigella sonnei, determined at 3.2 and 2.7 Å resolution, respectively. The structures reveal a similar fold as the Cu+-ATPases with an amphipathic helix at the membrane interface. A conserved electronegative funnel connects this region to the intramembranous high-affinity ion-binding site and may promote specific uptake of cellular Zn2+ ions. The E2P structure displays a wide extracellular release pathway reaching the invariant residues at the high-affinity site, including Cys392, Cys394 and Asp714. The pathway closes in the E2.Pi state where Asp714 interacts with the conserved Lys693, which possibly stimulates Zn2+ release as a built-in counter-ion, as also proposed for H+-ATPases. Indeed, transport studies in liposomes provide experimental support for ZntA activity without counter-transport. These findings suggest a mechanistic link between PIB-type Zn2+-ATPases and PIII-type H+-ATPases, and show at the same time structural features of the extracellular release pathway that resemble the PII-type ATPases such as the sarco(endo)plasmic reticulum Ca2+-ATPase4,5 (SERCA) and Na+,K+-ATPase6. PMID:25132545

  12. Molecular and functional characterization of two drought-induced zinc finger proteins, ZmZnF1 and ZmZnF2 from maize kernels

    USDA-ARS?s Scientific Manuscript database

    We have isolated two cDNA clones encoding Zinc Finger proteins, designated as ZmZnF1 and ZmZnF2, from water-stressed maize kernels. Sequence analyses indicates that ZmZnF1 is homologous to the A20/AN1-type zinc finger protein and contains the zinc finger motif of Cx2–Cx10–CxCx4Cx2Hx5HxC. Whereas ZmZ...

  13. One-step facile synthesis of Ni2P/C as cathode material for Ni/Zn aqueous secondary battery

    NASA Astrophysics Data System (ADS)

    Li, JiLan; Chen, ChangGuo

    2018-01-01

    Nickel phosphides/carbon(Ni2P/C) composites have been successfully synthesized via a simple one-pot hydrothermal method using glucose as carbon source for the first time. By contrast, the pure Ni2P was prepared under the same conditions without glucose. The results show that glucose not only provide the carbon source, but also prevent the aggregation of Ni2P particles. The as-obtained Ni2P/C composites and pure Ni2P were used as cathode material for alkaline Ni/Zn battery. Owing to unique Ni2P/C composites and loose, Ultra thin flower-like shape the synthesized Ni2P/C material delivers high capacity of 176 mAh g-1 at 1 A g-1 and 82 mAh g-1 at 5 A g-1 current density in Ni2P/C-Zn battery. Moreover, it shows a good cycling life that capacity fading only about 6.2% after 1500 cycles. All of these indicate that the prepared Ni2P/C composites may be a new promising cathode material for Ni-Zn rechargeable battery.

  14. Luminescence properties of In(Zn)P alloy core/ZnS shell quantum dots

    NASA Astrophysics Data System (ADS)

    Thuy, Ung Thi Dieu; Reiss, Peter; Liem, Nguyen Quang

    2010-11-01

    Chemically synthesized InP/ZnS core/shell quantum dots (QDs) are studied using time-resolved photoluminescence spectroscopy and x-ray diffraction. Zinc stearate, which is added during the synthesis of the InP core, significantly improves the optical characteristics of the QDs. The luminescence quantum yield (QY) reaches 60%-70% and the emission is tunable from 485 to 586 nm by varying the Zn2+:In3+ molar ratio and growth temperature. The observed increased Stokes shift, luminescence decay time, and QY in the presence of Zn are rationalized by the formation of an In(Zn)P alloy structure that causes band-edge fluctuation to enhance the confinement of the excited carriers.

  15. Cation-Deficient Spinel ZnMn2O4 Cathode in Zn(CF3SO3)2 Electrolyte for Rechargeable Aqueous Zn-Ion Battery.

    PubMed

    Zhang, Ning; Cheng, Fangyi; Liu, Yongchang; Zhao, Qing; Lei, Kaixiang; Chen, Chengcheng; Liu, Xiaosong; Chen, Jun

    2016-10-05

    Rechargeable aqueous Zn-ion batteries are attractive cheap, safe and green energy storage technologies but are bottlenecked by limitation in high-capacity cathode and compatible electrolyte to achieve satisfactory cyclability. Here we report the application of nonstoichiometric ZnMn 2 O 4 /carbon composite as a new Zn-insertion cathode material in aqueous Zn(CF 3 SO 3 ) 2 electrolyte. In 3 M Zn(CF 3 SO 3 ) 2 solution that enables ∼100% Zn plating/stripping efficiency with long-term stability and suppresses Mn dissolution, the spinel/carbon hybrid exhibits a reversible capacity of 150 mAh g -1 and a capacity retention of 94% over 500 cycles at a high rate of 500 mA g -1 . The remarkable electrode performance results from the facile charge transfer and Zn insertion in the structurally robust spinel featuring small particle size and abundant cation vacancies, as evidenced by combined electrochemical measurements, XRD, Raman, synchrotron X-ray absorption spectroscopy, FTIR, and NMR analysis. The results would enlighten and promote the use of cation-defective spinel compounds and trifluoromethanesulfonic electrolyte to develop high-performance rechargeable zinc batteries.

  16. Growth of antimony doped P-type zinc oxide nanowires for optoelectronics

    DOEpatents

    Wang, Zhong Lin; Pradel, Ken

    2016-09-27

    In a method of growing p-type nanowires, a nanowire growth solution of zinc nitrate (Zn(NO.sub.3).sub.2), hexamethylenetetramine (HMTA) and polyethylenemine (800 M.sub.w PEI) is prepared. A dopant solution to the growth solution, the dopant solution including an equal molar ration of sodium hydroxide (NaOH), glycolic acid (C.sub.2H.sub.4O.sub.3) and antimony acetate (Sb(CH.sub.3COO).sub.3) in water is prepared. The dopant solution and the growth solution combine to generate a resulting solution that includes antimony to zinc in a ratio of between 0.2% molar to 2.0% molar, the resulting solution having a top surface. An ammonia solution is added to the resulting solution. A ZnO seed layer is applied to a substrate and the substrate is placed into the top surface of the resulting solution with the ZnO seed layer facing downwardly for a predetermined time until Sb-doped ZnO nanowires having a length of at least 5 .mu.m have grown from the ZnO seed layer.

  17. (012)-cut chalcopyrite ZnGeP2 as a high-bandwidth terahertz electro-optic detection crystal

    NASA Astrophysics Data System (ADS)

    Carnio, B. N.; Greig, S. R.; Firby, C. J.; Zawilski, K. T.; Schunemann, P. G.; Elezzabi, A. Y.

    2017-02-01

    The detection properties of a chalcopyrite zinc germanium diphosphide (ZnGeP2, ZGP) electro-optic (EO) crystal, having thickness of 1080 μm and cut along the <012> plane, is studied in the terahertz (THz) frequency range. Outstanding phase matching is achieved between the optical probe pulse and the THz frequency components, leading to a large EO detection bandwidth. ZGP has the ability to measure frequencies that are 1.3 and 1.2 times greater than that of ZnTe for crystal thicknesses of 1080 and 500 μm, respectively. Furthermore, the ZGP crystal is able to detect frequency components that are >=4.6 times larger than both ZnSe and GaP (for crystal thicknesses of 1080 μm) and >=2.2 times larger than ZnSe and GaP (for crystal thicknesses of 500 μm).

  18. Compound heterozygous mutations in SLC30A2/ZnT2 results in low milk zinc concentrations: a novel mechanism for zinc deficiency in a breast-fed infant.

    PubMed

    Itsumura, Naoya; Inamo, Yasuji; Okazaki, Fumiko; Teranishi, Fumie; Narita, Hiroshi; Kambe, Taiho; Kodama, Hiroko

    2013-01-01

    Zinc concentrations in breast milk are considerably higher than those of the maternal serum, to meet the infant's requirements for normal growth and development. Thus, effective mechanisms ensuring secretion of large amounts of zinc into the milk operate in mammary epithelial cells during lactation. ZnT2 was recently found to play an essential role in the secretion of zinc into milk. Heterozygous mutations of human ZnT2 (hZnT2), including H54R and G87R, in mothers result in low (>75% reduction) secretion of zinc into the breast milk, and infants fed on the milk develop transient neonatal zinc deficiency. We identified two novel missense mutations in the SLC30A2/ZnT2 gene in a Japanese mother with low milk zinc concentrations (>90% reduction) whose infant developed severe zinc deficiency; a T to C transition (c.454T>C) at exon 4, which substitutes a tryptophan residue with an arginine residue (W152R), and a C to T transition (c.887C>T) at exon 7, which substitutes a serine residue with a leucine residue (S296L). Biochemical characterization using zinc-sensitive DT40 cells indicated that the W152R mutation abolished the abilities to transport zinc and to form a dimer complex, indicating a loss-of-function mutation. The S296L mutation retained both abilities but was extremely destabilized. The two mutations were found on different alleles, indicating that the genotype of the mother with low milk zinc was compound heterozygous. These results show novel compound heterozygous mutations in the SLC30A2/ZnT2 gene causing zinc deficiency in a breast-fed infant.

  19. Compound Heterozygous Mutations in SLC30A2/ZnT2 Results in Low Milk Zinc Concentrations: A Novel Mechanism for Zinc Deficiency in a Breast-Fed Infant

    PubMed Central

    Itsumura, Naoya; Inamo, Yasuji; Okazaki, Fumiko; Teranishi, Fumie; Narita, Hiroshi; Kambe, Taiho; Kodama, Hiroko

    2013-01-01

    Zinc concentrations in breast milk are considerably higher than those of the maternal serum, to meet the infant's requirements for normal growth and development. Thus, effective mechanisms ensuring secretion of large amounts of zinc into the milk operate in mammary epithelial cells during lactation. ZnT2 was recently found to play an essential role in the secretion of zinc into milk. Heterozygous mutations of human ZnT2 (hZnT2), including H54R and G87R, in mothers result in low (>75% reduction) secretion of zinc into the breast milk, and infants fed on the milk develop transient neonatal zinc deficiency. We identified two novel missense mutations in the SLC30A2/ZnT2 gene in a Japanese mother with low milk zinc concentrations (>90% reduction) whose infant developed severe zinc deficiency; a T to C transition (c.454T>C) at exon 4, which substitutes a tryptophan residue with an arginine residue (W152R), and a C to T transition (c.887C>T) at exon 7, which substitutes a serine residue with a leucine residue (S296L). Biochemical characterization using zinc-sensitive DT40 cells indicated that the W152R mutation abolished the abilities to transport zinc and to form a dimer complex, indicating a loss-of-function mutation. The S296L mutation retained both abilities but was extremely destabilized. The two mutations were found on different alleles, indicating that the genotype of the mother with low milk zinc was compound heterozygous. These results show novel compound heterozygous mutations in the SLC30A2/ZnT2 gene causing zinc deficiency in a breast-fed infant. PMID:23741301

  20. Soil pH effects on the comparative toxicity of dissolved zinc, non-nano and nano ZnO to the earthworm Eisenia fetida.

    PubMed

    Heggelund, Laura R; Diez-Ortiz, Maria; Lofts, Stephen; Lahive, Elma; Jurkschat, Kerstin; Wojnarowicz, Jacek; Cedergreen, Nina; Spurgeon, David; Svendsen, Claus

    2014-08-01

    To determine how soil properties influence nanoparticle (NP) fate, bioavailability and toxicity, this study compared the toxicity of nano zinc oxide (ZnO NPs), non-nano ZnO and ionic ZnCl2 to the earthworm Eisenia fetida in a natural soil at three pH levels. NP characterisation indicated that reaction with the soil media greatly controls ZnO properties. Three main conclusions were drawn. First that Zn toxicity, especially for reproduction, was influenced by pH for all Zn forms. This can be linked to the influence of pH on Zn dissolution. Secondly, that ZnO fate, toxicity and bioaccumulation were similar (including relationships with pH) for both ZnO forms, indicating the absence of NP-specific effects. Finally, earthworm Zn concentrations were higher in worms exposed to ZnO compared to ZnCl2, despite the greater toxicity of the ionic form. This observation suggests the importance of considering the relationship between uptake and toxicity in nanotoxicology studies.

  1. Oxidation and Condensation of Zinc Fume From Zn-CO 2-CO-H 2O Streams Relevant to Steelmaking Off-Gas Systems

    DOE PAGES

    Bronson, Tyler Mark; Ma, Naiyang; Zhu, Liang Zhu; ...

    2017-01-23

    Here the objective of this research was to study the condensation of zinc vapor to metallic zinc and zinc oxide solid under varying environments to investigate the feasibility of in-process separation of zinc from steelmaking off-gas dusts. Water vapor content, temperature, degree of cooling, gas composition, and initial zinc partial pressure were varied to simulate the possible conditions that can occur within steelmaking off-gas systems, limited to Zn-CO 2-CO-H 2O gas compositions. The temperature of deposition and the effect of rapidly quenching the gas were specifically studied. A homogeneous nucleation model for applicable experiments was applied to the analysis of the experimental data. It was determined that under the experimental conditions, oxidation of zinc vapor by H 2O or CO 2 does not occur above 1108 K (835 °C) even for highly oxidizing streams (CO 2/CO = 40/7). Rate expressions that correlate CO 2 and H 2O oxidation rates to gas composition, partial pressure of water vapor, temperature, and zinc partial pressure were determined to be as follows: Ratemore » $$ \\left(\\frac{mol}{m^2s}\\right) $$ = 406 exp $$ \\left(\\frac{-50.2 kJ/mol}{RT}\\right) $$ (pZnpCO 2 $-$ PCO/K eqCO 2) $$\\frac{mol}{m^2 x s}$$ Rate $$ \\left(\\frac{mol}{m^2s}\\right) $$ = 32.9 exp $$ \\left(\\frac{-13.7 kJ/mol}{RT}\\right) $$ (pZnPH 2O $-$ PH 2/K eqH 2O) $$\\frac{mol}{m^2 x s}$$. It was proven that a rapid cooling rate (500 K/s) significantly increases the ratio of metallic zinc to zinc oxide as opposed to a slow cooling rate (250 K/s). SEM analysis found evidence of heterogeneous growth of ZnO as well as of homogeneous formation of metallic zinc. The homogeneous nucleation model fit well with experiments where only metallic zinc deposited. An expanded model with rates of oxidation by CO 2 and H 2O as shown was combined with the homogenous nucleation model and then compared with experimental data. The calculated results based on the model gave a reasonable fit to the

  2. Oxidation and Condensation of Zinc Fume From Zn-CO 2-CO-H 2O Streams Relevant to Steelmaking Off-Gas Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronson, Tyler Mark; Ma, Naiyang; Zhu, Liang Zhu

    Here the objective of this research was to study the condensation of zinc vapor to metallic zinc and zinc oxide solid under varying environments to investigate the feasibility of in-process separation of zinc from steelmaking off-gas dusts. Water vapor content, temperature, degree of cooling, gas composition, and initial zinc partial pressure were varied to simulate the possible conditions that can occur within steelmaking off-gas systems, limited to Zn-CO 2-CO-H 2O gas compositions. The temperature of deposition and the effect of rapidly quenching the gas were specifically studied. A homogeneous nucleation model for applicable experiments was applied to the analysis of the experimental data. It was determined that under the experimental conditions, oxidation of zinc vapor by H 2O or CO 2 does not occur above 1108 K (835 °C) even for highly oxidizing streams (CO 2/CO = 40/7). Rate expressions that correlate CO 2 and H 2O oxidation rates to gas composition, partial pressure of water vapor, temperature, and zinc partial pressure were determined to be as follows: Ratemore » $$ \\left(\\frac{mol}{m^2s}\\right) $$ = 406 exp $$ \\left(\\frac{-50.2 kJ/mol}{RT}\\right) $$ (pZnpCO 2 $-$ PCO/K eqCO 2) $$\\frac{mol}{m^2 x s}$$ Rate $$ \\left(\\frac{mol}{m^2s}\\right) $$ = 32.9 exp $$ \\left(\\frac{-13.7 kJ/mol}{RT}\\right) $$ (pZnPH 2O $-$ PH 2/K eqH 2O) $$\\frac{mol}{m^2 x s}$$. It was proven that a rapid cooling rate (500 K/s) significantly increases the ratio of metallic zinc to zinc oxide as opposed to a slow cooling rate (250 K/s). SEM analysis found evidence of heterogeneous growth of ZnO as well as of homogeneous formation of metallic zinc. The homogeneous nucleation model fit well with experiments where only metallic zinc deposited. An expanded model with rates of oxidation by CO 2 and H 2O as shown was combined with the homogenous nucleation model and then compared with experimental data. The calculated results based on the model gave a reasonable fit to the

  3. Preparation and antibacterial properties of titanium-doped ZnO from different zinc salts

    PubMed Central

    2014-01-01

    To research the relationship of micro-structures and antibacterial properties of the titanium-doped ZnO powders and probe their antibacterial mechanism, titanium-doped ZnO powders with different shapes and sizes were prepared from different zinc salts by alcohothermal method. The ZnO powders were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED), and the antibacterial activities of titanium-doped ZnO powders on Escherichia coli and Staphylococcus aureus were evaluated. Furthermore, the tested strains were characterized by SEM, and the electrical conductance variation trend of the bacterial suspension was characterized. The results indicate that the morphologies of the powders are different due to preparation from different zinc salts. The XRD results manifest that the samples synthesized from zinc acetate, zinc nitrate, and zinc chloride are zincite ZnO, and the sample synthesized from zinc sulfate is the mixture of ZnO, ZnTiO3, and ZnSO4 · 3Zn (OH)2 crystal. UV-vis spectra show that the absorption edges of the titanium-doped ZnO powders are red shifted to more than 400 nm which are prepared from zinc acetate, zinc nitrate, and zinc chloride. The antibacterial activity of titanium-doped ZnO powders synthesized from zinc chloride is optimal, and its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) are lower than 0.25 g L−1. Likewise, when the bacteria are treated by ZnO powders synthesized from zinc chloride, the bacterial cells are damaged most seriously, and the electrical conductance increment of bacterial suspension is slightly high. It can be inferred that the antibacterial properties of the titanium-doped ZnO powders are relevant to the microstructure, particle size, and the crystal. The powders can damage the

  4. Organometallic chemical vapor deposition and characterization of ZnGeP2/GaP multiple heterostructures on GaP substrates

    NASA Technical Reports Server (NTRS)

    Xing, G. C.; Bachmann, Klaus J.

    1993-01-01

    The growth of ZnGeP2/GaP double and multiple heterostructures on GaP substrates by organometallic chemical vapor deposition is reported. These epitaxial films were deposited at a temperature of 580 C using dimethylzinc, trimethylgallium, germane, and phosphine as source gases. With appropriate deposition conditions, mirror smooth epitaxial GaP/ZnGeP2 multiple heterostructures were obtained on (001) GaP substrates. Transmission electron microscopy (TEM) and secondary ion mass spectroscopy (SIMS) studies of the films showed that the interfaces are sharp and smooth. Etching study of the films showed dislocation density on the order of 5x10(exp 4)cm(sup -2). The growth rates of the GaP layers depend linearly on the flow rates of trimethylgallium. While the GaP layers crystallize in zinc-blende structure, the ZnGeP2 layers crystallize in the chalcopyrite structure as determined by (010) electron diffraction pattern. This is the first time that multiple heterostructures combining these two crystal structures were made.

  5. Carbon Dioxide Electroreduction using a Silver-Zinc Alloy [CO 2 Electroreduction on a Ag-Zn Alloy

    DOE PAGES

    Hatsukade, Toru; Kuhl, Kendra P.; Cave, Etosha R.; ...

    2017-02-20

    We report on CO 2 electroreduction activity and selectivity of a polycrystalline AgZn foil in aqueous bicarbonate electrolyte. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) measurements show that the alloy foil was slightly enriched in zinc both at the surface and in the bulk, with a surface alloy composition of 61.3±5.4 at % zinc and with Ag 5Zn 8 as the most prominent bulk phase. AgZn is active for CO 2 reduction; CO is the main product, likely due to the weak CO binding energy of the surface, with methane and methanol emerging as minor products. Compared to puremore » silver and pure zinc foils, enhancements in activity and selectivity for methane and methanol are observed. A five-fold increase is observed in the combined partial current densities for methane and methanol at –1.43 V vs. the reversible hydrogen electrode (RHE), representing a four- to six-fold increase in faradaic efficiency. Here, such enhancements indicate the existence of a synergistic effect between silver and zinc at the surface of the alloy that contributes to the enhanced formation of further reduced products.« less

  6. A p-Type Zinc-Based Metal-Organic Framework.

    PubMed

    Shang, Congcong; Gautier, Romain; Jiang, Tengfei; Faulques, Eric; Latouche, Camille; Paris, Michael; Cario, Laurent; Bujoli-Doeuff, Martine; Jobic, Stéphane

    2017-06-05

    An original concept for the property tuning of semiconductors is demonstrated by the synthesis of a p-type zinc oxide (ZnO)-like metal-organic framework (MOF), (ZnC 2 O 3 H 2 ) n , which can be regarded as a possible alternative for ZnO, a natural n-type semiconductor. When small oxygen-rich organic linkers are introduced to the Zn-O system, oxygen vacancies and a deep valence-band maximum, the two obstacles for generating p-type behavior in ZnO, are restrained and raised, respectively. Further studies of this material on the doping and photoluminescence behaviors confirm its resemblance to metal oxides (MOs). This result answers the challenges of generating p-type behavior in an n-type-like system. This concept reveals that a new category of hybrid materials, with an embedded continuous metal-oxygen network, lies between the MOs and MOFs. It provides concrete support for the development of p-type hybrid semiconductors in the near future and, more importantly, the enrichment of tuning possibilities in inorganic semiconductors.

  7. Retaining the 3D framework of zinc sponge anodes upon deep discharge in Zn-air cells.

    PubMed

    Parker, Joseph F; Nelson, Eric S; Wattendorf, Matthew D; Chervin, Christopher N; Long, Jeffrey W; Rolison, Debra R

    2014-11-26

    We fabricate three-dimensional zinc electrodes from emulsion-cast sponges of Zn powder that are thermally treated to produce rugged monoliths. This highly conductive, 3D-wired aperiodic scaffold achieves 740 mA h gZn(-1) when discharged in primary Zn-air cells (>90% of theoretical Zn capacity). We use scanning electron microscopy and X-ray diffraction to monitor the microstructural evolution of a series of Zn sponges when oxidized in Zn-air cells to specific depths-of-discharge (20, 40, 60, 80% DOD) at a technologically relevant rate (C/40; 4-6 mA cm(-2)). The Zn sponges maintain their 3D-monolithic form factor at all DOD. The cell resistance remains low under all test conditions, indicating that an inner core of metallic Zn persists that 3D-electrically wires the electrode, even to deep DOD.

  8. Zinc bioaccumulation in a terrestrial invertebrate fed a diet treated with particulate ZnO or ZnCl2 solution.

    PubMed

    Pipan-Tkalec, Ziva; Drobne, Damjana; Jemec, Anita; Romih, Tea; Zidar, Primoz; Bele, Marjan

    2010-03-10

    A number of reports on potential toxicity of nanoparticles are available, but there is still a lack of knowledge concerning bioaccumulation. The aim of this work was to investigate how different sources of zinc, such as uncoated and unmodified ZnO nanoparticles, ZnCl(2) in solution, and macropowder ZnO influence the bioaccumulation of this metal in the terrestrial isopod Porcellio scaber. After exposure to different sources of Zn in the diet, the amount of assimilated Zn in whole body, the efficiency of zinc assimilation, and bioaccumulation factors (BAFs) were assessed. The bioaccumulation potential of Zn was found to be the same regardless of Zn source. The amount of assimilated Zn and BAF were dose-dependent, and Zn assimilation efficiency was independent of exposure concentrations. The Zn assimilation capacity was found to be up to 16% of ingested Zn. It is known that as much as approximately 20% of Zn can be accreted from ZnO particles by dissolution. We conclude that bioaccumulation of Zn in isopods exposed to particulate ZnO depends most probably on Zn dissolution from ZnO particles and not on bioaccumulation of particulate ZnO.

  9. Enhancement of efficiency by embedding ZnS and Mn-doped ZnS nanoparticles in P3HT:PCBM hybrid solid state solar cells

    NASA Astrophysics Data System (ADS)

    Jabeen, Uzma; Adhikari, Tham; Shah, Syed Mujtaba; Nunzi, Jean-Michel; Badshah, Amin; Ahmad, Iqbal

    2017-06-01

    Zinc sulphide (ZnS) and Mn-doped ZnS nanoparticles were synthesized by wet chemical method. The synthesized nanoparticles were characterized by UV-visible, fluorescence, X-ray diffraction (XRD), fourier transform infra-red (FTIR) spectrometer, field emission scanning electron microscope (FESEM) and high resolution transmission electron microscope (HRTEM). Scanning electron microscope (SEM) was used to find particle size while chemical composition of the synthesized materials was investigated by EDAX. UV-visible absorption spectrum of Mn-doped ZnS was slightly shifted to lower wavelength with respect to the un-doped zinc sulphide with decrease in the size of nanoparticles. Consequently, the band gap was tuned from 3.04 to 3.13 eV. The photoluminescence (PL) emission positioned at 597 nm was ascribed to 4T1 → 6A1 transition within the 3d shell of Mn2+. X-ray diffraction (XRD) analysis revealed that the synthesized nanomaterials existed in cubic crystalline state. The effect of embedding un-doped and doped ZnS nanoparticles in the active layer and changing the ratio of PCBM ([6, 6]-phenyl-C61-butyric acid methyl ester) to nanoparticles on the performance of hybrid solar cell was studied. The device with active layer consisting of poly(3-hexylthiophene) (P3HT), [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM), and un-doped ZnS nanoparticles combined in the ratio of (1:0.5:0.5) attained an efficiency of 2.42% which was found 71% higher than the reference device under the same conditions but not containing nanoparticles. Replacing ZnS nanoparticles with Mn-doped ZnS had a little effect on the enhancement of efficiency. The packing behavior and morphology of blend of nanoparticles with P3HT:PCBM were examined using atomic force microscope (AFM) and XRD. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  10. Effect of aging on ZnO and nitrogen doped P-Type ZnO

    NASA Astrophysics Data System (ADS)

    Majumdar, Sayanee; Bhunia, S.

    2012-06-01

    The withholding of p-type conductivity in as-prepared and 3% nitrogen (N) doped zinc oxide (ZnO) even after 2 months of preparation was systematically studied. The films were grown on glass substrates by pulsed laser deposition (PLD) at 350 °C under different conditions, viz. under vacuum and at oxygen (O) ambience using 2000 laser pulses. In O ambience for as-prepared ZnO the carrier concentration reduces and mobility increases with increasing number of laser shots. The resistivity of as-prepared and 3% N-doped ZnO is found to increase with reduction in hole concentration after 60 days of aging while maintaining its p-type conductivity irrespective of growth condition. AFM and electrical properties showed aging effect on the doped and undoped samples. For as-prepared ZnO, with time, O migration makes the film high resistive by reducing free electron concentrations. But for N-doped p-type ZnO, O-migration, metastable N and hydrogen atom present in the source induced instability in structure makes it less conducting p-type.

  11. Synthesis, crystal structure and DFT studies of a Zinc(II) complex of 1,3-diaminopropane (Dap), [Zn(Dap)(NCS)2][Zn(Dap)(NCS)2]n. The additional stabilizing role of S⋯π chalcogen bond

    NASA Astrophysics Data System (ADS)

    Alotaibi, Mshari A.; Alharthi, Abdulrahman I.; Zierkiewicz, Wiktor; Akhtar, Muhammad; Tahir, Muhammad Nawaz; Mazhar, Muhammad; Isab, Anvarhusein A.; Ahmad, Saeed

    2017-04-01

    A zinc(II) complex of 1,3-diaminopropane (Dap), [Zn(Dap)(NCS)2][Zn(Dap)(NCS)2]n (1) has been prepared and characterized by elemental analysis, IR, 1H &13C NMR spectroscopy, and its crystal structure was determined by X-ray crystallography. The crystal structure of 1 consists of two types of molecules, a discrete monomer and a polymeric one. In the monomeric unit, the zinc atom is bound to one terminal Dap molecule and to two N-bound thiocyanate ions, while in the polymeric unit, Dap acts as a bridging ligand forming a linear chain. The Zn(II) ions in both assume a slightly distorted tetrahedral geometry. The structures of two systems: the [Zn(Dap)(NCS)2][Zn(Dap)(NCS)2]3 complex as a model of 1 and [Zn(Dap)(NCS)2]4 as a simple polymeric structure were optimized with the B3LYP-D3 method. The DFT results support that the experimentally determined structure (1) is more stable in comparison to a simple polymeric structure, [Zn(Dap)(NCS)2]n (2). The interaction energies (ΔE) for NCS anions obtained by B3LYP-D3 method are about -145 kcal mol-1, while the calculated ΔE values for neutral organic ligands are about twice smaller. The X-ray structure of 1 shows that the complex is stabilized mainly by hydrogen bonds. We also found that weak chalcogen bonds play an additional role in stabilization of compound 1. Some of the intermolecular S⋯N distances are smaller than the sum of the van der Waals radii of the corresponding atoms. To the best of our knowledge, this is the first study that shows the structure where the trivalent sulfur is involved in formation of a S⋯π chalcogen bond. The NBO and NCI analyses confirm the existence of this kind of interactions.

  12. Anti-cancer activity of ZnO chips by sustained zinc ion release.

    PubMed

    Moon, Seong-Hee; Choi, Won Jin; Choi, Sik-Won; Kim, Eun Hye; Kim, Jiyeon; Lee, Jeong-O; Kim, Seong Hwan

    2016-01-01

    We report anti-cancer activity of ZnO thin-film-coated chips by sustained release of zinc ions. ZnO chips were fabricated by precisely tuning ZnO thickness using atomic layer deposition, and their potential to release zinc ions relative to the number of deposition cycles was evaluated. ZnO chips exhibited selective cytotoxicity in human B lymphocyte Raji cells while having no effect on human peripheral blood mononuclear cells. Of importance, the half-maximal inhibitory concentration of the ZnO chip on the viability of Raji cells was 121.5 cycles, which was comparable to 65.7 nM of daunorubicin, an anti-cancer drug for leukemia. Molecular analysis of cells treated with ZnO chips revealed that zinc ions released from the chips increased cellular levels of reactive oxygen species, including hydrogen peroxide, which led to the down-regulation of anti-apoptotic molecules (such as HIF-1α, survivin, cIAP-2, claspin, p-53, and XIAP) and caspase-dependent apoptosis. Because the anti-cancer activity of ZnO chips and the mode of action were comparable to those of daunorubicin, the development and optimization of ZnO chips that gradually release zinc ions might have clinical anti-cancer potential. A further understanding of the biological action of ZnO-related products is crucial for designing safe biomaterials with applications in disease treatment.

  13. In situ Zn/ZnO mapping elucidating for "shape change" of zinc electrode

    NASA Astrophysics Data System (ADS)

    Nakata, Akiyoshi; Arai, Hajime; Murayama, Haruno; Fukuda, Katsutoshi; Yamane, Tomokazu; Hirai, Toshiro; Uchimoto, Yoshiharu; Yamaki, Jun-ichi; Ogumi, Zempachi

    2018-04-01

    For the use of the zinc anode in secondary batteries, it is necessary to solve the "shape change" deterioration issue in that zinc species agglomerate in the center of the electrode to fade the available capacity. The local chemical compositions of the zinc electrodes during "shape change" were precisely analyzed using the synchrotron X-ray diffraction mapping analysis of practical zinc-nickel cells in a non-destructive manner. The in situ Zn/ZnO mapping shows that metallic Zn deposition chiefly occurs in the periphery of ZnO while ZnO are left in the center of electrode like a hill on charging. On discharging, the ZnO hill grows to the perpendicular direction on the electrode while metallic zinc is oxidized and dissolved. These findings allow us to propose a mechanism for the shape change; thus dissolved zincate species are decomposed on the ZnO hill during discharging to be accumulated in the center of the electrode. It is suggested that suppressing zincate dissolution and non-uniform zinc deposition slow the growth rate of the ZnO hill to enhance the cyclability of zinc-based secondary batteries.

  14. Zener behaviour of p-SnS/ZnO and p-SnS/ZnS heterojunctions

    NASA Astrophysics Data System (ADS)

    Gupta, Yashika; Arun, P.

    2018-03-01

    p-SnS absorbing layers were grown by thermal evaporation on layers of various Zinc compounds, like ZnO and ZnS. This present work reports the J-V characteristics of thus obtained p-SnS/ZnO and p-SnS/ZnS heterojunctions. The pn junctions of these structures did not show any photovoltaic activity, however a zener like behaviour was observed in the 3rd quadrant of the J-V characteristics. Our analysis of the diodes suggest that the reverse breakdown or zener voltage obtained from the dark J-V characteristics can be used to estimate the energy band diagram of the junction and in turn the band-alignment at the junction. This makes it an easy alternative to x-ray Photoelectron Spectroscopy method usually used.

  15. Essential role for zinc-triggered p75NTR activation in preconditioning neuroprotection.

    PubMed

    Lee, Jin-Yeon; Kim, Yu-Jin; Kim, Tae-Youn; Koh, Jae-Young; Kim, Yang-Hee

    2008-10-22

    Ischemic preconditioning (PC) of the brain is a phenomenon by which mild ischemic insults render neurons resistant to subsequent strong insults. Key steps in ischemic PC of the brain include caspase-3 activation and poly(ADP-ribose) polymerase-1 (PARP-1) cleavage, but upstream events have not been clearly elucidated. We have tested whether endogenous zinc is required for ischemic PC of the brain in rats. Mild, transient zinc accumulation was observed in certain neurons after ischemic PC. Moreover, intraventricular administration of CaEDTA during ischemic PC abrogated both zinc accumulation and the protective effect against subsequent full ischemia. To elucidate the mechanism of the zinc-triggered PC (Zn PC) effect, cortical cultures were exposed to sublethal levels of zinc, and 18 h later to lethal levels of zinc or NMDA. Zn PC exhibited the characteristic features of ischemic PC, including caspase-3 activation, PARP-1 cleavage, and HSP70 induction, all of which are crucial for subsequent neuroprotection against NMDA or zinc toxicity. HSP70 induction was necessary for protection, as it halted caspase-3 activation before apoptosis. Interestingly, in both Zn PC in vitro and ischemic PC in vivo, p75(NTR) was necessary for neuroprotection. These results suggest that caspase-3 activation during ischemic PC, a necessary event for subsequent neuroprotection, may result from mild zinc accumulation and the consequent p75(NTR) activation in neurons.

  16. Structure and optical properties of ZnO produced from microwave hydrothermal hydrolysis of tris(ethylenediamine)zinc nitrate complex

    NASA Astrophysics Data System (ADS)

    Mostafa, Nasser Y.; Heiba, Zein K.; Ibrahim, Mohamed M.

    2015-01-01

    ZnO powders were synthesized using a solution microwave hydrothermal hydrolysis process and tris(ethylenediamine)zinc nitrate {[Zn(en)3](NO3)2} (en = ethylenediamine) as a precursor. Hydrolysis of the precursor complex at different pH produced zinc oxide with a diversity of well-defined morphologies. The effect of hydrolysis pH values on the structural and optical properties has been explored using XRD, SEM, and UV-visible diffuse reflectance spectroscopy (DRS). At pH = 7.0, randomly dispersed rods were formed. Whereas flower-like morphologies were obtained by treating the complex precursor in water at pH = 10.0 and 12.0. The ZnO4 tetrahedrons are greatly affected by the pH value. The band gap decreased sharply with increasing the pH value from 7.0 to 10.0, then slightly decreased with further increasing the pH to 12.0. The relationship between band gap and both structure and surface defects of the samples is also discussed.

  17. Removal of Ca2+ and Zn2+ from aqueous solutions by zeolites NaP and KP.

    PubMed

    Yusof, Alias Mohd; Malek, Nik Ahmad Nizam Nik; Kamaruzaman, Nurul Asyikin; Adil, Muhammad

    2010-01-01

    Zeolites P in sodium (NaP) and potassium (KP) forms were used as adsorbents for the removal of calcium (Ca2+) and zinc (Zn2+) cations from aqueous solutions. Zeolite KP was prepared by ion exchange of K+ with Na+ which neutralizes the negative charge of the zeolite P framework structure. The ion exchange capacity of K+ on zeolite NaP was determined through the Freundlich isotherm equilibrium study. Characterization of zeolite KP was determined using infrared spectroscopy and X-ray diffraction (XRD) techniques. From the characterization, the structure of zeolite KP was found to remain stable after the ion exchange process. Zeolites KP and NaP were used for the removal of Ca and Zn from solution. The amount of Ca2+ and Zn2+ in aqueous solution before and after the adsorption by zeolites was analysed using the flame atomic absorption spectroscopy method. The removal of Ca2+ and Zn2+ followed the Freundlich isotherm rather than the Langmuir isotherm model. This result also revealed that zeolite KP adsorbs Ca2+ and Zn2+ more than zeolite NaP and proved that modification of zeolite NaP with potassium leads to an increase in the adsorption efficiency of the zeolite. Therefore, the zeolites NaP and KP can be used for water softening (Ca removal) and reducing water pollution/toxicity (Zn removal).

  18. Short-Term Subclinical Zinc Deficiency in Weaned Piglets Affects Cardiac Redox Metabolism and Zinc Concentration.

    PubMed

    Brugger, Daniel; Windisch, Wilhelm M

    2017-04-01

    Background: Subclinical zinc deficiency (SZD) represents the common zinc malnutrition phenotype. However, its association with oxidative stress is not well understood. The heart muscle may be a promising target for studying early changes in redox metabolism. Objective: We investigated the effects of short-term SZD on cardiac redox metabolism in weaned piglets. Methods: Forty-eight weaned German Large White × Landrace × Piétrain piglets (50% castrated males and 50% females; body weight of 8.5 kg) were fed diets with different zinc concentrations for 8 d. Measurements included cardiac parameters of antioxidative capacity, stress-associated gene expression, and tissue zinc status. Analyses comprised (linear, broken-line) regression models and Pearson correlation coefficients. Results: Glutathione and α-tocopherol concentrations as well as catalase, glutathione reductase, B-cell lymphoma 2-associated X protein, and caspase 9 gene expression plateaued in response to reduction in dietary zinc from 88.0 to 57.6, 36.0, 36.5, 41.3, 55.3, and 33.8 mg/kg, respectively ( P < 0.0001). Further reduction in dietary zinc promoted a linear decrease of glutathione and α-tocopherol (30 and 0.6 nmol/mg dietary Zn, respectively; P < 0.05) and a linear increase of gene expression [0.02, 0.01, 0.003, and 0.02 Log 10 (2 -ΔΔCt )/mg dietary Zn, respectively; P < 0.05)]. Tissue zinc declined linearly with reduction in dietary zinc (0.21 mg tissue Zn/mg dietary Zn; P = 0.004) from 88.0 to 42.7 mg/kg ( P < 0.0001), below which it linearly increased inversely to further reduction in dietary zinc (0.57 mg tissue Zn/mg dietary Zn; P = 0.006). H 2 O 2 -detoxification activity and metallothionein 1A gene expression decreased linearly with reduction in dietary zinc from 88.0 to 28.1 mg/kg [0.02 mU and 0.008 Log 10 (2 -ΔΔCt )/mg dietary Zn, respectively; P < 0.05]. Fas cell-surface death receptor, etoposide-induced 2.4 and cyclin-dependent kinase inhibitor 1A gene expression correlated

  19. Electronic properties of hexagonal gallium phosphide: A DFT investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Vipin; Shah, Esha V.; Roy, Debesh R., E-mail: drr@ashd.svnit.ac.in

    2016-05-23

    A detail density functional investigation is performed to develop hexagonal 2D gallium phosphide material. The geometry, band structure and density of states (total and projected) of 2D hexagonal GaP are reported in detail. It is heartening to note that the developed material is identified as an indirect band gap semiconductor. The indirect gap for this material is predicted as 1.97 eV at K-Γ, and a direct gap of 2.28 eV at K point is achieved, which is very close to the reported direct band gap for zinc blende and buckled structures of GaP.

  20. Electronic and Magnetic Properties of Ni-Doped Zinc-Blende ZnO: A First-Principles Study.

    PubMed

    Xue, Suqin; Zhang, Fuchun; Zhang, Shuili; Wang, Xiaoyang; Shao, Tingting

    2018-04-26

    The electronic structure, band structure, density of state, and magnetic properties of Ni-doped zinc-blende (ZB) ZnO are studied by using the first-principles method based on the spin-polarized density-functional theory. The calculated results show that Ni atoms can induce a stable ferromagnetic (FM) ground state in Ni-doped ZB ZnO. The magnetic moments mainly originate from the unpaired Ni 3 d orbitals, and the O 2 p orbitals contribute a little to the magnetic moments. The magnetic moment of a supercell including a single Ni atom is 0.79 μ B . The electronic structure shows that Ni-doped ZB ZnO is a half-metallic FM material. The strong spin-orbit coupling appears near the Fermi level and shows obvious asymmetry for spin-up and spin-down density of state, which indicates a significant hybrid effects from the Ni 3 d and O 2 p states. However, the coupling of the anti-ferromagnetic (AFM) state show metallic characteristic, the spin-up and spin-down energy levels pass through the Fermi surface. The magnetic moment of a single Ni atom is 0.74 μ B . Moreover, the results show that the Ni 3 d and O 2 p states have a strong p - d hybridization effect near the Fermi level and obtain a high stability. The above theoretical results demonstrate that Ni-doped zinc blende ZnO can be considered as a potential half-metal FM material and dilute magnetic semiconductors.

  1. pH effect on structural and optical properties of nanostructured zinc oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munef, R. A.

    2015-03-30

    ZnO nanostructures were Deposited on Objekttrager glasses for various pH values by chemical bath deposition method using Zn (NO3)2·6H2O (zinc nitrate hexahydrate) solution at 75°C reaction temperature without any posterior treatments. The ZnO nanostructures obtained were characterized by X-ray Diffraction (XRD, UV). The structure was hexagonal and it was found that some peaks disappear with various pH values. The grain sizes of ZnO films increases from 22-to-29nm with increasing pH. The transmission of the films was (85-95%)

  2. Soil pH effects on the interactions between dissolved zinc, non-nano- and nano-ZnO with soil bacterial communities.

    PubMed

    Read, Daniel S; Matzke, Marianne; Gweon, Hyun S; Newbold, Lindsay K; Heggelund, Laura; Ortiz, Maria Diez; Lahive, Elma; Spurgeon, David; Svendsen, Claus

    2016-03-01

    Zinc oxide nanoparticles (ZnO NPs) are used in an array of products and processes, ranging from personal care products to antifouling paints, textiles, food additives, antibacterial agents and environmental remediation processes. Soils are an environment likely to be exposed to manmade nanoparticles due to the practice of applying sewage sludge as a fertiliser or as an organic soil improver. However, understanding on the interactions between soil properties, nanoparticles and the organisms that live within soil is lacking, especially with regards to soil bacterial communities. We studied the effects of nanoparticulate, non-nanoparticulate and ionic zinc (in the form of zinc chloride) on the composition of bacterial communities in soil with a modified pH range (from pH 4.5 to pH 7.2). We observed strong pH-dependent effects on the interaction between bacterial communities and all forms of zinc, with the largest changes in bacterial community composition occurring in soils with low and medium pH levels (pH 4.8 and 5.9). The high pH soil (pH 7.2) was less susceptible to the effects of zinc exposure. At the highest doses of zinc (2500 mg/kg dw soil), both nano and non-nano particulate zinc applications elicited a similar response in the soil bacterial community, and this differed significantly to the ionic zinc salt treatment. The results highlight the importance of considering soil pH in nanotoxicology studies, although further work is needed to determine the exact mechanisms controlling the toxicity and fate and interactions of nanoparticles with soil microbial communities.

  3. Low Pressure Synthesis of Indium Phosphide,

    DTIC Science & Technology

    1982-04-01

    UNCLASSIFIED F/G 713 M EEEEEEEEEII MEEMMMME W , 2~ h IW 𔃼 * ).I 2 MICROCOP RESOWI1OW TWS CHAT . . WROmNA RUIEJ MT STHDMS-W3-ALORMO TNDM- m &6.4. MM RO - TMS...pNode . M-V Semiconductor compound ’S.T o a.ek* !cm .. EImd’b lc a ..... . P Pocry sline large g rain .bgot of indiumn phosphide have been synthe- simed...indium temperature of 1003"C. 2. BACKGROUND .r. Indium phosphide is a compound composed of elements from the third and fifth columns of the periodic

  4. Studies on solid solutions based on layered honeycomb-ordered phases P2-Na{sub 2}M{sub 2}TeO{sub 6} (M=Co, Ni, Zn)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berthelot, Romain; Schmidt, Whitney; Sleight, A.W.

    2012-12-15

    Three complete solid solutions between the layered phases P2-Na{sub 2}M{sub 2}TeO{sub 6} (M=Co, Ni, Zn) have been prepared by conventional solid state method and investigated through X-ray diffraction, magnetism and optical measurements. All compositions are characterized by a M{sup 2+}/X{sup 6+} honeycomb ordering within the slabs and crystallize in a hexagonal unit cell. However, a structural transition based on a different stacking is observed as nickel (space group P6{sub 3}/mcm) is substituted by zinc or cobalt (space group P6{sub 3}22). All compositions exhibit a paramagnetic Curie-Weiss behavior at high temperatures; and the magnetic moment values confirm the presence of Ni{supmore » 2+} and/or Co{sup 2+} cations. The low-temperature antiferromagnetic order of Na{sub 2}Ni{sub 2}TeO{sub 6} and Na{sub 2}Co{sub 2}TeO{sub 6} is suppressed by zinc substitution. The color of the obtained compositions varies from pink, to light green and white when M=Co, Ni, Zn, respectively. - Graphical abstract: The comparison between the structure of Na{sub 2}Ni{sub 2}TeO{sub 6} (left) and Na{sub 2}M{sub 2}TeO{sub 6} (M=Co, Zn) (right) evidences the stacking difference with distinct atom sequences along the hexagonal c-axis. Highlights: Black-Right-Pointing-Pointer Solid solutions between lamellar phases Na{sub 2}M{sub 2}TeO{sub 6} (M=Co, Ni, Zn) are investigated. Black-Right-Pointing-Pointer A M{sup 2+}/X{sup 6+} honeycomb ordering characterized all the compositions. Black-Right-Pointing-Pointer A structural transition is shown when Ni is replaced by Co or Zn. Black-Right-Pointing-Pointer The low-temperature AFM ordering of Na{sub 2}Ni{sub 2}TeO{sub 6} and Na{sub 2}Co{sub 2}TeO{sub 6} is suppressed by zinc substitution. Black-Right-Pointing-Pointer Color changes from pink to light green and white when M=Co, Ni, Zn, respectively.« less

  5. Solubilization of insoluble zinc compounds by Gluconacetobacter diazotrophicus and the detrimental action of zinc ion (Zn2+) and zinc chelates on root knot nematode Meloidogyne incognita.

    PubMed

    Saravanan, V S; Kalaiarasan, P; Madhaiyan, M; Thangaraju, M

    2007-03-01

    To examine the zinc (Zn) solubilization potential and nematicidal properties of Gluconacetobacter diazotrophicus. Atomic Absorption Spectrophotometer, Differential Pulse Polarography and Gas Chromatography Coupled Mass Spectrometry were used to estimate the total Zn and Zn(2+) ions and identify the organic acids present in the culture supernatants. The effect of culture filtrate of Zn-amended G. diazotrophicus PAl5 on Meloidogyne incognita in tomato was examined under gnotobiotic conditions. Gluconacetobacter diazotrophicus PAl5 effectively solubilized the Zn compounds tested and 5-ketogluconic acid was identified as the major organic acid aiding the solubilization of zinc oxide. The presence of Zn compounds in the culture filtrates of G. diazotrophicus enhanced the mortality and reduced the root penetration of M. incognita under in vitro conditions. 5-ketogluconic acid produced by G. diazotrophicus mediated the solubilization process and the available Zn(2+) ions enhanced the nematicidal activity of G. diazotrophicus against M. incognita. Zn solubilization and enhanced nematicidal activity of Zn-amended G. diazotrophicus provides the possibility of exploiting it as a plant growth promoting bacteria.

  6. Effects of Long-Term Exposure to Zinc Oxide Nanoparticles on Development, Zinc Metabolism and Biodistribution of Minerals (Zn, Fe, Cu, Mn) in Mice

    PubMed Central

    Wang, Chao; Lu, Jianjun; Zhou, Le; Li, Jun; Xu, Jiaman; Li, Weijian; Zhang, Lili; Zhong, Xiang; Wang, Tian

    2016-01-01

    Zinc oxide nanoparticles (nano-ZnOs) are widely used and possess great potentials in agriculture and biomedicine. It is inevitable for human exposure to these nanoparticles. However, no study had been conducted to investigate the long term effects of nano-ZnOs. This study aimed at investigating effects of nano-ZnOs on development, zinc metabolism and biodistribution of minerals (Zn, Fe, Cu, and Mn) in mice from week 3 to 35. After the characteristics of nano-ZnOs were determined, they were added into the basal diet at 0, 50, 500 and 5000 mg/kg. Results indicated that added 50 and 500 mg/kg nano-ZnOs showed minimal toxicity. However, 5000 mg/kg nano-ZnOs significantly decreased body weight (from week 4 to 16) and increased the relative weights of the pancreas, brain and lung. Added 5000 mg/kg nano-ZnOs significantly increased the serum glutamic-pyruvic transaminase activity and zinc content, and significantly enhanced mRNA expression of zinc metabolism-related genes, including metallothionein 1(32.66 folds), metallothionein 2 (31.42 folds), ZIP8 (2.21folds), ZIP14 (2.45 folds), ZnT1 (4.76 folds), ZnT2 (6.19 folds) and ZnT4 (1.82 folds). The biodistribution determination showed that there was a significant accumulation of zinc in the liver, pancreas, kidney, and bones (tibia and fibula) after receiving 5000 mg/kg nano-ZnO diet, while no significant effects on Cu, Fe, and Mn levels, except for liver Fe content and pancreas Mn level. Our results demonstrated that long term exposure to 50 and 500 mg/kg nano-ZnO diets showed minimal toxicity. However, high dose of nano-ZnOs (5000 mg/kg) caused toxicity on development, and altered the zinc metabolism and biodistribution in mice. PMID:27732669

  7. Effects of Long-Term Exposure to Zinc Oxide Nanoparticles on Development, Zinc Metabolism and Biodistribution of Minerals (Zn, Fe, Cu, Mn) in Mice.

    PubMed

    Wang, Chao; Lu, Jianjun; Zhou, Le; Li, Jun; Xu, Jiaman; Li, Weijian; Zhang, Lili; Zhong, Xiang; Wang, Tian

    2016-01-01

    Zinc oxide nanoparticles (nano-ZnOs) are widely used and possess great potentials in agriculture and biomedicine. It is inevitable for human exposure to these nanoparticles. However, no study had been conducted to investigate the long term effects of nano-ZnOs. This study aimed at investigating effects of nano-ZnOs on development, zinc metabolism and biodistribution of minerals (Zn, Fe, Cu, and Mn) in mice from week 3 to 35. After the characteristics of nano-ZnOs were determined, they were added into the basal diet at 0, 50, 500 and 5000 mg/kg. Results indicated that added 50 and 500 mg/kg nano-ZnOs showed minimal toxicity. However, 5000 mg/kg nano-ZnOs significantly decreased body weight (from week 4 to 16) and increased the relative weights of the pancreas, brain and lung. Added 5000 mg/kg nano-ZnOs significantly increased the serum glutamic-pyruvic transaminase activity and zinc content, and significantly enhanced mRNA expression of zinc metabolism-related genes, including metallothionein 1(32.66 folds), metallothionein 2 (31.42 folds), ZIP8 (2.21folds), ZIP14 (2.45 folds), ZnT1 (4.76 folds), ZnT2 (6.19 folds) and ZnT4 (1.82 folds). The biodistribution determination showed that there was a significant accumulation of zinc in the liver, pancreas, kidney, and bones (tibia and fibula) after receiving 5000 mg/kg nano-ZnO diet, while no significant effects on Cu, Fe, and Mn levels, except for liver Fe content and pancreas Mn level. Our results demonstrated that long term exposure to 50 and 500 mg/kg nano-ZnO diets showed minimal toxicity. However, high dose of nano-ZnOs (5000 mg/kg) caused toxicity on development, and altered the zinc metabolism and biodistribution in mice.

  8. Synthesis and catalytic activity of the metastable phase of gold phosphide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernando, Deshani; Nigro, Toni A.E.; Dyer, I.D.

    Recently, transition metal phosphides have found new applications as catalysts for the hydrogen evolution reaction that has generated an impetus to synthesize these materials at the nanoscale. In this work, Au{sub 2}P{sub 3} was synthesized utilizing the high temperature decomposition of tri-n-octylphosphine as a source of elemental phosphorous. Gold nanorods were used as morphological templates with the aim of controlling the shape and size of the resulting gold phosphide particles. We demonstrate that the surface capping ligand of the gold nanoparticle precursors can influence the purity and extent to which the gold phosphide phase will form. Gold nanorods functionalized withmore » 1-dodecanethiol undergo digestive ripening to produce discrete spherical particles that exhibit reduced reactivity towards phosphorous, resulting in low yields of the gold phosphide. In contrast, gold phosphide was obtained as a phase pure product when cetyltrimethylammonium bromide functionalized gold nanorods are used instead. The Au{sub 2}P{sub 3} nanoparticles exhibited higher activity than polycrystalline gold towards the hydrogen evolution reaction. - Graphical abstract: Au{sub 2}P{sub 3} was synthesized utilizing the high temperature decomposition of tri-n-octylphosphine as a source of elemental phosphorous and gold nanoparticles as reactants. We demonstrate that the surface capping ligand of the gold nanoparticle precursors influence the purity and extent to which the Au{sub 2}P{sub 3} phase will form. Gold nanorods functionalized with 1-dodecanethiol undergo digestive ripening to produce discrete spherical particles that exhibit reduced reactivity towards phosphorous, resulting in low yields of the gold phosphide. In contrast, gold phosphide was obtained as a phase pure product when cetyltrimethylammonium bromide functionalized gold nanoparticles are used instead. The Au{sub 2}P{sub 3} nanoparticles exhibited higher activity than polycrystalline gold towards the hydrogen

  9. Hydrodeoxygenation of phenolic compounds to cycloalkanes over supported nickel phosphides

    DOE PAGES

    Yu, Zhiquan; Wang, Anjie; Liu, Shan; ...

    2018-05-07

    SiO 2, HZSM-5 and Al 2O 3 were used to support nickel phosphides to prepare hydrodeoxygenation (HDO) catalysts. The nickel loading was kept at 20 wt% while the Ni/P molar ratio was varied among 3, 2, and 1 in the preparation by incipient wetness impregnation. XRD characterization revealed that Ni 3P, Ni 12P 5, and Ni 2P as the major crystal phases were obtained at Ni/P ratio of 3, 2, and 1, respectively, on SiO 2 and HZSM-5. When Al 2O 3 was used as the support, nickel metal rather than nickel phosphides was generated. Among SiO 2-supported nickel phosphides,more » Ni 3P exhibited highest hydrogenation activity and catalytic performance in phenol HDO. Ni 3P/HZSM-5 showed the high catalytic performance in HDO of phenol as well as catechol and o-cresol, with Ni 3P as the hydrogenation site and the acid sites in HZSM-5 zeolite as the dehydration site. In conclusion, the strong acidity in HZSM-5 also facilitated the isomerization of cycloalkanes at elevated temperatures.« less

  10. InP (Indium Phosphide): Into the future

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1989-01-01

    Major industry is beginning to be devoted to indium phosphide and its potential applications. Key to these applications are high speed and radiation tolerance; however the high cost of indium phosphide may be an inhibitor to progress. The broad applicability of indium phosphide to many devices will be discussed with an emphasis on photovoltaics. Major attention is devoted to radiation tolerance and means of reducing cost of devices. Some of the approaches applicable to solar cells may also be relevant to other devices. The intent is to display the impact of visionary leadership in the field and enable the directions and broad applicability of indium phosphide.

  11. Organometallic complexes of bulky, optically active, C 3-symmetric tris(4 S-isopropyl-5,5-dimethyl-2-oxazolinyl)phenylborate (To P*)

    DOE PAGES

    Xu, Songchen; Magoon, Yitzhak; Reinig, Regina R.; ...

    2015-07-16

    A bulky, optically active monoanionic scorpionate ligand, tris(4S-isopropyl-5,5-dimethyl-2-oxazolinyl)phenylborate (To P*), is synthesized from the naturally occurring amino acid l-valine as its lithium salt, Li[To P*] (1). That compound is readily converted to the thallium complex Tl[To P*] (2) and to the acid derivative H[To P*] (3). Group 7 tricarbonyl complexes To P*M(CO) 3 (M = Mn (4), Re (5)) are synthesized by the reaction of MBr(CO) 5 and Li[To P*] and are crystallographically characterized. The ν CO bands in their infrared spectra indicate that π back-donation in the rhenium compounds is greater with To P* than with non-methylated tris(4S-isopropyl-2-oxazolinyl)phenylborate (Tomore » P). The reaction of H[To P*] and ZnEt 2 gives To P*ZnEt (6), while To P*ZnCl (7) is synthesized from Li[To P*] and ZnCl 2. The reaction of To P*ZnCl and KOtBu followed by addition of PhSiH 3 provides the zinc hydride complex To P*ZnH (8). In this study, compound 8 is the first example of a crystallographically characterized optically active zinc hydride. We tested its catalytic reactivity in the cross-dehydrocoupling of silanes and alcohols, which provided Si-chiral silanes with moderate enantioselectivity.« less

  12. Organometallic complexes of bulky, optically active, C 3-symmetric tris(4 S-isopropyl-5,5-dimethyl-2-oxazolinyl)phenylborate (To P*)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Songchen; Magoon, Yitzhak; Reinig, Regina R.

    A bulky, optically active monoanionic scorpionate ligand, tris(4S-isopropyl-5,5-dimethyl-2-oxazolinyl)phenylborate (To P*), is synthesized from the naturally occurring amino acid l-valine as its lithium salt, Li[To P*] (1). That compound is readily converted to the thallium complex Tl[To P*] (2) and to the acid derivative H[To P*] (3). Group 7 tricarbonyl complexes To P*M(CO) 3 (M = Mn (4), Re (5)) are synthesized by the reaction of MBr(CO) 5 and Li[To P*] and are crystallographically characterized. The ν CO bands in their infrared spectra indicate that π back-donation in the rhenium compounds is greater with To P* than with non-methylated tris(4S-isopropyl-2-oxazolinyl)phenylborate (Tomore » P). The reaction of H[To P*] and ZnEt 2 gives To P*ZnEt (6), while To P*ZnCl (7) is synthesized from Li[To P*] and ZnCl 2. The reaction of To P*ZnCl and KOtBu followed by addition of PhSiH 3 provides the zinc hydride complex To P*ZnH (8). In this study, compound 8 is the first example of a crystallographically characterized optically active zinc hydride. We tested its catalytic reactivity in the cross-dehydrocoupling of silanes and alcohols, which provided Si-chiral silanes with moderate enantioselectivity.« less

  13. Effect of different processes and Ti/Zn molar ratios on the structure, morphology, and enhanced photoelectrochemical and photocatalytic performance of Ti3+ self-doped titanium-zinc hybrid oxides

    NASA Astrophysics Data System (ADS)

    Fu, Rongrong; Wang, Qingyao; Gao, Shanmin; Wang, Zeyan; Huang, Baibiao; Dai, Ying; Lu, Jun

    2015-07-01

    Ti3+ self-doped titanium-zinc hybrid oxides with different phase compositions and morphologies were successfully synthesized using Zn powder as the reductant and Zn source by a chemical-reduction precipitation method with subsequent thermal treatment. The fabricated Ti3+ self-doped TiO2(A)/TiO2(R), TiO2(A)/TiO2(R)/ZnTiO3, and TiO2(A)/ZnO heterojunctions were characterized by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectroscopy. The effects of various Ti/Zn molar ratios and preparation processes on the structural, morphological, optical, photocurrent and photocatalytic properties of the resultant samples were investigated systematically. Results reveal that Ti3+ self-doping enhances the photoabsorption capability of titanium-zinc hybrid oxides in the visible-light region. Moreover, different processes and Ti/Zn molar ratios play great influences on the structure, morphology, optical, photocurrent and photocatalytic properties of the final products. Ti3+ self-doped titanium-zinc hybrid oxides exhibit excellent photocurrent and photocatalytic activity than pure TiO2 and ZnTiO3 under visible-light irradiation (λ ≥ 400 nm). The most active Ti3+ self-doped titanium-zinc hybrid oxides photoanode presents significantly improved water splitting performance. The synergistic effect between the Ti3+ self-doped and heterojunctions is responsible for the enhanced performance of these materials.

  14. Effect of different processes and Ti/Zn molar ratios on the structure, morphology, and enhanced photoelectrochemical and photocatalytic performance of Ti3+ self-doped titanium–zinc hybrid oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Rongrong; Wang, Qingyao; Gao, shanmin

    2015-07-01

    Ti3+ self-doped titanium–zinc hybrid oxides with different phase compositions and morphologies were successfully synthesized using Zn powder as the reductant and Zn source by a chemical-reduction precipitation method with subsequent thermal treatment. The fabricated Ti3+ self-doped TiO2(A)/TiO2(R), TiO2(A)/TiO2(R)/ZnTiO3, and TiO2(A)/ZnO heterojunctions were characterized by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and UV–Vis diffuse reflectance spectroscopy. The effects of various Ti/Zn molar ratios and preparation processes on the structural, morphological, optical, photocurrent and photocatalytic properties of the resultant samples were investigated systematically. Results reveal that Ti3+ self-doping enhances the photoabsorption capability of titanium–zinc hybrid oxidesmore » in the visible-light region. Moreover, different processes and Ti/Zn molar ratios play great influences on the structure, morphology, optical, photocurrent and photocatalytic properties of the final products. Ti3+ self-doped titanium–zinc hybrid oxides exhibit excellent photocurrent and photocatalytic activity than pure TiO2 and ZnTiO3 under visible-light irradiation (λ ≥ 400 nm). The most active Ti3+ self-doped titanium–zinc hybrid oxides photoanode presents significantly improved water splitting performance. The synergistic effect between the Ti3+ self-doped and heterojunctions is responsible for the enhanced performance of these materials.« less

  15. Interdependence of free zinc changes and protein complex assembly - insights into zinc signal regulation.

    PubMed

    Kocyła, Anna; Adamczyk, Justyna; Krężel, Artur

    2018-01-24

    Cellular zinc (Zn(ii)) is bound with proteins that are part of the proteomes of all domains of life. It is mostly utilized as a catalytic or structural protein cofactor, which results in a vast number of binding architectures. The Zn(ii) ion is also important for the formation of transient protein complexes with a Zn(ii)-dependent quaternary structure that is formed upon cellular zinc signals. The mechanisms by which proteins associate with and dissociate from Zn(ii) and the connection with cellular Zn(ii) changes remain incompletely understood. In this study, we aimed to examine how zinc protein domains with various Zn(ii)-binding architectures are formed under free Zn(ii) concentration changes and how formation of the Zn(ii)-dependent assemblies is related to the protein concentration and reactivity. To accomplish these goals we chose four zinc domains with different Zn(ii)-to-protein binding stoichiometries: classical zinc finger (ZnP), LIM domain (Zn 2 P), zinc hook (ZnP 2 ) and zinc clasp (ZnP 1 P 2 ) folds. Our research demonstrated a lack of changes in the saturation level of intraprotein zinc binding sites, despite various peptide concentrations, while homo- and heterodimers indicated a concentration-dependent tendency. In other words, at a certain free Zn(ii) concentration, the fraction of a formed dimeric complex increases or decreases with subunit concentration changes. Secondly, even small or local changes in free Zn(ii) may significantly affect protein saturation depending on its architecture, function and subcellular concentration. In our paper, we indicate the importance of interdependence of free Zn(ii) availability and protein subunit concentrations for cellular zinc signal regulation.

  16. Sulfur and Zinc Availability from Co-granulated Zn-Enriched Elemental Sulfur Fertilizers.

    PubMed

    Mattiello, Edson M; da Silva, Rodrigo C; Degryse, Fien; Baird, Roslyn; Gupta, Vadakattu V S R; McLaughlin, Michael J

    2017-02-15

    Acidification by oxidation of elemental sulfur (ES) can solubilize ZnO, providing slow release of both sulfur (S) and zinc (Zn) in soil. For this study, a new granular fertilizer with ES and ZnO was produced and evaluated. The effect of incorporating microorganisms or a carbon source in the granule was also evaluated. Four granulated ES-Zn fertilizers with and without S-oxidizing microorganisms, a commercial ES pastille, ZnSO 4 , and ZnO were applied to the center of Petri dishes containing two contrasting pH soils. Soil pH, CaCl 2 -extractable S and Zn, and remaining ES were evaluated at 30 and 60 days in two soil sections (0-5 and 5-9 mm from the fertilizer application site). A visualization test was performed to evaluate Zn diffusion over time. A significant pH decrease was observed in the acidic soil for all ES-Zn fertilizer treatments and in the alkaline soil for the Acidithiobacillus thiooxidans-inoculated treatment only. In agreement with Zn visualization tests, extractable-Zn concentrations were higher from the point of application in the acidic (62.9 mg dm -3 ) compared to the alkaline soil (5.5 mg dm -3 ). Elemental S oxidation was greater in the acidic soil (20.9%) than slightly alkaline soil (12%). The ES-Zn granular fertilizers increased S and Zn concentrations in soil and can provide a strategically slow release of nutrients to the soil.

  17. ZnCl 2- and NH 4Cl-hydroponics gel electrolytes for zinc-carbon batteries

    NASA Astrophysics Data System (ADS)

    Khalid, N. H.; Ismail, Y. M. Baba; Mohamad, A. A.

    Absorbency testing is used to determine the percentage of ZnCl 2 or NH 4Cl solution absorbed by a hydroponics gel (HPG). It is found that the absorbency of ZnCl 2 or NH 4Cl solution decreases with increasing solution concentration. The conductivity of ZnCl 2- and NH 4Cl-HPG electrolytes is dependent on the solution concentration. A mixture of salt solution with HPG yields excellent gel polymer electrolytes with conductivities of 0.026 and 0.104 S cm -1 at 3 M ZnCl 2 and 7 M NH 4Cl, respectively. These gel electrolytes are then used to produce zinc-carbon cells. The fabricated cells give capacities of 8.8 and 10.0 mAh, have an internal resistance of 25.4 and 19.8 Ω, a maximum power density of 12.7 and 12.2 mW cm -2, and a short-circuit current density of 29.1 and 33.9 mA cm -2 for ZnCl 2- and NH 4Cl-HPG electrolytes, respectively.

  18. Effect of inhibitors on Zn-dendrite formation for zinc-polyaniline secondary battery

    NASA Astrophysics Data System (ADS)

    Kan, Jinqing; Xue, Huaiguo; Mu, Shaolin

    The effects of Pb 2+, sodium lauryl sulfate and Triton X-100 on inhibition of Zn-dendrite growth in Zn-polyaniline batteries were studied by scanning electron micrograph and cyclic voltammetry. The results show that Triton X-100 in the region of 0.02-500 ppm in the electrolyte containing 2.5 M ZnCl 2 and 2.0 M NH 4Cl with pH 4.40 can effectively inhibit zinc-dendrite growth during charge-discharge cycles of the battery and yield longer cycles.

  19. Effect of compressive stress on stability of N-doped p-type ZnO

    NASA Astrophysics Data System (ADS)

    Chen, Xingyou; Zhang, Zhenzhong; Yao, Bin; Jiang, Mingming; Wang, Shuangpeng; Li, Binghui; Shan, Chongxin; Liu, Lei; Zhao, Dongxu; Shen, Dezhen

    2011-08-01

    Nitrogen-doped p-type zinc oxide (p-ZnO:N) thin films were fabricated on a-/c-plane sapphire (a-/c-Al2O3) by plasma-assisted molecular beam epitaxy. Hall-effect measurements show that the p-type ZnO:N on c-Al2O3 degenerated into n-type after a preservation time; however, the one grown on a-Al2O3 showed good stability. The conversion of conductivity in the one grown on c-Al2O3 ascribed to the faster disappearance of NO and the growing N2(O), which is demonstrated by x-ray photoelectron spectroscopy (XPS). Compressive stress, caused by lattice misfit, was revealed by Raman spectra and optical absorption spectra, and it was regarded as the root of the instability in ZnO:N.

  20. Loss of synaptic Zn2+ transporter function increases risk of febrile seizures

    PubMed Central

    Hildebrand, Michael S.; Phillips, A. Marie; Mullen, Saul A.; Adlard, Paul A.; Hardies, Katia; Damiano, John A.; Wimmer, Verena; Bellows, Susannah T.; McMahon, Jacinta M.; Burgess, Rosemary; Hendrickx, Rik; Weckhuysen, Sarah; Suls, Arvid; De Jonghe, Peter; Scheffer, Ingrid E.; Petrou, Steven; Berkovic, Samuel F.; Reid, Christopher A.

    2015-01-01

    Febrile seizures (FS) are the most common seizure syndrome and are potentially a prelude to more severe epilepsy. Although zinc (Zn2+) metabolism has previously been implicated in FS, whether or not variation in proteins essential for Zn2+ homeostasis contributes to susceptibility is unknown. Synaptic Zn2+ is co-released with glutamate and modulates neuronal excitability. SLC30A3 encodes the zinc transporter 3 (ZNT3), which is primarily responsible for moving Zn2+ into synaptic vesicles. Here we sequenced SLC30A3 and discovered a rare variant (c.892C > T; p.R298C) enriched in FS populations but absent in population-matched controls. Functional analysis revealed a significant loss-of-function of the mutated protein resulting from a trafficking deficit. Furthermore, mice null for ZnT3 were more sensitive than wild-type to hyperthermia-induced seizures that model FS. Together our data suggest that reduced synaptic Zn2+ increases the risk of FS and more broadly support the idea that impaired synaptic Zn2+ homeostasis can contribute to neuronal hyperexcitability. PMID:26647834

  1. Loss of synaptic Zn2+ transporter function increases risk of febrile seizures.

    PubMed

    Hildebrand, Michael S; Phillips, A Marie; Mullen, Saul A; Adlard, Paul A; Hardies, Katia; Damiano, John A; Wimmer, Verena; Bellows, Susannah T; McMahon, Jacinta M; Burgess, Rosemary; Hendrickx, Rik; Weckhuysen, Sarah; Suls, Arvid; De Jonghe, Peter; Scheffer, Ingrid E; Petrou, Steven; Berkovic, Samuel F; Reid, Christopher A

    2015-12-09

    Febrile seizures (FS) are the most common seizure syndrome and are potentially a prelude to more severe epilepsy. Although zinc (Zn(2+)) metabolism has previously been implicated in FS, whether or not variation in proteins essential for Zn(2+) homeostasis contributes to susceptibility is unknown. Synaptic Zn(2+) is co-released with glutamate and modulates neuronal excitability. SLC30A3 encodes the zinc transporter 3 (ZNT3), which is primarily responsible for moving Zn(2+) into synaptic vesicles. Here we sequenced SLC30A3 and discovered a rare variant (c.892C > T; p.R298C) enriched in FS populations but absent in population-matched controls. Functional analysis revealed a significant loss-of-function of the mutated protein resulting from a trafficking deficit. Furthermore, mice null for ZnT3 were more sensitive than wild-type to hyperthermia-induced seizures that model FS. Together our data suggest that reduced synaptic Zn(2+) increases the risk of FS and more broadly support the idea that impaired synaptic Zn(2+) homeostasis can contribute to neuronal hyperexcitability.

  2. Fabrication of hierarchical flower-like porous ZnO nanostructures from layered ZnC2O4·3Zn(OH)2 and gas sensing properties

    NASA Astrophysics Data System (ADS)

    Cui, Jiashan; Sun, Jianbo; Liu, Xin; Li, Jinwei; Ma, Xinzhi; Chen, Tingting

    2014-07-01

    ZnO materials with porous and hierarchical flower-like structure were synthesized through mild hydrothermal and simple calcination approach, in which the flower-like layered zinc oxalate hydroxide (ZnC2O4·3Zn(OH)2) precursor was first synthesized and then calcined at 600 °C. The obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopic (TEM), Brunauer-Emmett-Teller (BET) and thermogravimetric (TG) analysis. We proposed the possible growth mechanism of the material via studying the time evolution experiment results. In the process of reaction, oxalic acid as a structure-directing agent hydrolyzed and then formed primarily sheets-like intermediate ZnC2O4·2H2O. Hexamethylenetetramine (HMT) as surfactant, with directional adsorption, leads to the formation of layered zinc oxalate hydroxide precursor. Furthermore, the gas sensitivity also can be characterized, whose results indicated that the synthesized materials had a preferable selectivity to ethanol gas. The fast response rate and reversible performance can be attributed to the produced greater specific surface area produced, which was caused by the porous and hierarchical flower-like structure.

  3. Ga for Zn Cation Exchange Allows for Highly Luminescent and Photostable InZnP-Based Quantum Dots

    PubMed Central

    2017-01-01

    In this work, we demonstrate that a preferential Ga-for-Zn cation exchange is responsible for the increase in photoluminescence that is observed when gallium oleate is added to InZnP alloy QDs. By exposing InZnP QDs with varying Zn/In ratios to gallium oleate and monitoring their optical properties, composition, and size, we conclude that Ga3+ preferentially replaces Zn2+, leading to the formation of InZnP/InGaP core/graded-shell QDs. This cation exchange reaction results in a large increase of the QD photoluminescence, but only for InZnP QDs with Zn/In ≥ 0.5. For InP QDs that do not contain zinc, Ga is most likely incorporated only on the quantum dot surface, and a PL enhancement is not observed. After further growth of a GaP shell and a lattice-matched ZnSeS outer shell, the cation-exchanged InZnP/InGaP QDs continue to exhibit superior PL QY (over 70%) and stability under long-term illumination (840 h, 5 weeks) compared to InZnP cores with the same shells. These results provide important mechanistic insights into recent improvements in InP-based QDs for luminescent applications. PMID:28706347

  4. Synthesis and Hydrodeoxygenation Properties of Ruthenium Phosphide Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowker, Richard H.; Smith, Mica C.; Pease, Melissa

    2011-07-01

    Ru2P/SiO2 and RuP/SiO2 catalysts were prepared by the temperature-programmed reduction (TPR) of uncalcined precursors containing hypophosphite ion (H2PO2-) as the phosphorus source. The Ru2P/SiO2 and RuP/SiO2 catalysts had small average particle sizes (~4 nm) and high CO chemisorption capacities (90-110 umol/g). The Ru phosphide catalysts exhibited similar or higher furan (C4H4O) hydrodeoxygenation (HDO) activities than did a Ru/SiO2 catalyst, and the phosphide catalysts favored C4 hydrocarbon products while the Ru metal catalyst produced primarily C3 hydrocarbons.

  5. Mechanism of hydrodenitrogenation on phosphides and sulfides.

    PubMed

    Oyama, S Ted; Lee, Yong-Kul

    2005-02-17

    The mechanism of hydrodenitrogenation (HDN) of 2-methylpiperidine was studied over a silica-supported nickel phosphide catalyst (Ni2P/SiO2, Ni/P = 1/2) and a commercial Ni-Mo-S/Al2O3 catalyst in a three-phase trickle-bed reactor operated at 3.1 MPa and 450-600 K. Analysis of the product distribution as a function of contact time indicated that the reaction proceeded in both cases predominantly by a substitution mechanism, with a smaller contribution of an elimination mechanism. Fourier transform infrared spectroscopy (FTIR) of the 2-methylpiperidine indicated that at reaction conditions a piperidinium ion intermediate was formed on both the sulfide and the phosphide. It is concluded that the mechanism of HDN on nickel phosphide is very similar to that on sulfides. The mechanism on the nickel phosphide was also probed by comparing the reactivity of piperidine and several of its derivatives in the presence of 3000 ppm S. The relative elimination rates depended on the structure of the molecules, and followed the sequence: 4-methylpiperidine approximately piperidine > 3-methylpiperidine > 2,6-dimethylpiperidine > 2-methylpiperidine. [Chemical structure: see text] This order of reactivity was not dependent on the number of alpha-H or beta-H atoms in the molecules, ruling out their reaction through a single, simple mechanism. It is likely that the unhindered piperidine molecules reacted by an S(N)2 substitution process and the more hindered 2,6-dimethylpiperidine reacted by an E2 elimination process.

  6. Syntheses, structures and luminescence for zinc coordination polymers based on a multifunctional 4‧-(3-carboxyphenyl)- 3,2‧:6‧,3″-terpyridine ligand

    NASA Astrophysics Data System (ADS)

    Cheng, Yue; Yang, Meng-Lin; Hu, Huai-Ming; Xu, Bing; Wang, Xiaofang; Xue, Ganglin

    2016-07-01

    Six new coordination polymers, [ZnLCl]n(1), [ZnL2]n·2nH2O (2), [Zn2L(o-bdc)(OH)]n·0.5nH2O (3), [Zn2L(m-bdc)(OH)]n·nH2O (4), [Zn2L2(p-bdc) (H2O)2]n·nH2O (5), [Zn2L(1,2,4-btc)(H2O)]n(6), (HL=4‧-(3-carboxyphenyl)- 3,2‧:6‧,3″-terpyridine, H2(o-bdc)= benzene-1,2-dicarboxylic acid, H2(m-bdc)= benzene-1,3-dicarboxylic acid, H2(p-bdc)= benzene-1,4-dicarboxylic acid, H3(1,2,4-btc)= benzene-1,2,4-tricarboxylic acid) have been synthesized under the hydrothermal conditions. Compound 1 displays a 3-connected 2D network structure with point symbol of {82.10}. Compound 2 exhibits 1D infinite loop chain structure. Compound 3 possesses a (3,8)-connected 3D framework composed of tetranuclear units with point symbol of {43}2{46.618.84}. Compound 4 features a typical 2D hcb network based on tetranuclear zinc(II) units with point symbol of {44.62}. Compound 5 presents a classical two-fold penetration sql network with point symbol of {63}. Compound 6 can be seen as a (3,3,6)-connected 3D net with point symbol of {42.64.89}{42.6}{63}. The thermal stability and luminescent properties of compounds 1-6 in the solid state are discussed in detail.

  7. Fabrication of hierarchical CoP nanosheet@microwire arrays via space-confined phosphidation toward high-efficiency water oxidation electrocatalysis under alkaline conditions.

    PubMed

    Ji, Xuqiang; Zhang, Rong; Shi, Xifeng; Asiri, Abdullah M; Zheng, Baozhan; Sun, Xuping

    2018-05-03

    In spite of recent advances in the synthesis of transition metal phosphide nanostructures, the simple fabrication of hierarchical arrays with more accessible active sites still remains a great challenge. In this Communication, we report a space-confined phosphidation strategy toward developing hierarchical CoP nanosheet@microwire arrays on nickel foam (CoP NS@MW/NF) using a Co(H2PO4)2·2H3PO4 microwire array as the precursor. The thermally stable nature of the anion in the precursor is key to hierarchical nanostructure formation. When used as a 3D electrode for water oxidation electrocatalysis, such CoP NS@MW/NF needs an overpotential as low as 296 mV to drive a geometrical catalytic current density of 100 mA cm-2 in 1.0 M KOH, outperforming all reported Co phosphide catalysts in alkaline media. This catalyst also shows superior long-term electrochemical durability, maintaining its activity for at least 65 h. This study offers us a general method for facile preparation of hierarchical arrays for applications.

  8. Effect of zinc-borate glass addition on the thermal properties of the cordierite/Al2O3 composites containing nano-sized spinel crystal.

    PubMed

    Jo, Sinae; Kang, Seunggu

    2013-11-01

    Low-melting zinc-borate glass was added to the cordierite/Al2O3 composite in order to improve the sintering facility of Al2O3 and formation of nano-sized spinel crystal of high thermal conductivity. Increasing the ZnO/B2O3 ratio in the zinc-borate glass increased the ZnAl2O4 spinel and decreased the Al4B2O9 crystal peak intensities in X-ray diffraction pattern. The XRD peak intensities of the ZnAl2O4 spinel and Al4B2O9 crystals in the specimen containing 10 wt% zinc-borate glass (10G series) are higher than that of the specimen containing 5 wt% zinc-borate glass (5G series). The microstructures of most 10G series specimens had the flower-shaped crystal which was composed of 50 nm wide and 250 nm long needle-like crystals and identified as ZnAl2O4 spinel phase. The thermal conductivity of the 10G series specimen was higher than that of the 5G series in any ZnO/B2O3 ratio due to the formation of plenty of nano-sized ZnAl2O4 spinel of high thermal conductivity. Particularly, the thermal conductivity of the cordierite/Al2O3 composite containing 10 wt% zinc-borate glass of ZnO/B2O3 weight ratio = 1.5 was 3.8 W/Km which is much higher than that of the published value (3.0 W/Km).

  9. Disordered Zinc in Zn4Sb3 with Phonon-Glass and Electron-Crystal Thermoelectric Properties

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey; Christensen, Mogens; Nishibori, Eiji; Caillat, Thierry; Brummerstedt Iversen, Bo

    2004-01-01

    By converting waste heat into electricity, thermoelectric generators could be an important part of the solution to today's energy challenges. The compound Zn4Sb3 is one of the most efficient thermoelectric materials known. Its high efficiency results from an extraordinarily low thermal conductivity in conjunction with the electronic structure of a heavily doped semiconductor. Previous structural studies have been unable to explain this unusual combination of properties. Here, we show through a comprehensive structural analysis using single-crystal X-ray and powder-synchrotron-radiation diffraction methods, that both the electronic and thermal properties of Zn4Sb3 can be understood in terms of unique structural features that have been previously overlooked. The identification of Sb3- ions and Sb-2(4-) dimers reveals that Zn4Sb3 is a valence semiconductor with the ideal stoichiometry Zn13Sb10. In addition, the structure contains significant disorder, with zinc atoms distributed over multiple positions. The discovery of glass-like interstitial sites uncovers a highly effective mechanism for reducing thermal conductivity. Thus Zn4Sb3 is in many ways an ideal 'phonon glass, electron crystal' thermoelectric material.

  10. Moessbauer studies in Zn(2+)0.3 Mn(2+)0.7 Mn(3+) (2-y) Fe(3+) (2-y) O4

    NASA Technical Reports Server (NTRS)

    Gupta, R. G.; Mendiratta, R. G.; Escue, W. T.

    1975-01-01

    The Mossbauer effect has proven to be effective in the study of nuclear hyperfine interactions. Ferrite systems having the formula (Zn(2+)0.3)(Mn(2+)0.7)(Mn(3+)y)(Fe(3+)2-y)(O4) were prepared and studied. These systems can be interpreted as mangacese-doped zinc and a part of iron ions. A systematic study of these systems is presented to promote an understanding of their microstructure for which various theories were proposed.

  11. Supersaturation of aqueous species and hydrothermal crystal growth of ZnO

    NASA Astrophysics Data System (ADS)

    Gelabert, M. C.

    2015-05-01

    Synthesis of ZnO crystals prepared with zinc acetate or chloride, disodium dihydrogen ethylenediaminetetraacetate (EDTA), potassium hydroxide and sodium triflate at 200 °C and variable pH 8-12 is reported. Crystals were imaged and size-analyzed with optical microscopy. Using aqueous speciation modeling software, supersaturation dependence on pH was calculated for five zinc species-Zn2+, Zn(OH)+, Zn(OH)2, Zn(OH)3- and Zn(OH)42- -to investigate connections between predominate crystal habits at different pH and dominant aqueous species. For zinc acetate and chloride systems, the zinc species with highest supersaturation was Zn(OH)42- throughout the pH 8-12 range, and the second highest was Zn2+ or Zn(OH)3-, with a crossover pH of 10.2-10.4 depending on counterion. The prominence of the tetrahydroxyl zinc species in ZnO crystal growth is supported by these calculations, and total supersaturation is inversely proportional to average crystal sizes, as expected. Optical microscopy and size analysis on products revealed crystals with a needle or prismatic habit throughout the studied pH range, and the change in aspect ratio correlates with supersaturation changes for the Zn2+ in this pH range, thus suggesting that growth rates along the [001] crystallographic direction are affected by small concentration changes of this ion.

  12. Zn2+ at a cellular crossroads

    PubMed Central

    Liang, Xiaomeng; Dempski, Robert E.; Burdette, Shawn C.

    2016-01-01

    Zinc is an essential micronutrient for cellular homeostasis. Initially proposed to only contribute to cellular viability through structural roles and non-redox catalysis, advances in quantifying changes in nM and pM quantities of Zn2+ have elucidated increasing functions as an important signaling molecule. This includes Zn2+-mediated regulation of transcription factors and subsequent protein expression, storage and release of intracellular compartments of zinc quanta into the extracellular space which modulates plasma membrane protein function, as well as intracellular signaling pathways which contribute to the immune response. This review highlights some recent advances in our understanding of zinc signaling. PMID:27010344

  13. Bismuth zinc vanadate, BiZn{sub 2}VO{sub 6}: New crystal structure type and electronic structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliziario Nunes, Sayonara; Department of Materials Engineering, Federal University of São Carlos, 13565-905 São Carlos, SP; Wang, Chun-Hai

    2015-02-15

    We report a combined experimental and computational study of the crystal structure and electronic properties of bismuth zinc vanadate, BiZn{sub 2}VO{sub 6}, known for its visible light photocatalytic activity. The crystal structure has been solved from laboratory powder X-ray diffraction data using the repeated minimisations from random starting values method. BiZn{sub 2}VO{sub 6} adopts a new structure type, based on the following building blocks: corner- and edge-sharing ZnO{sub 4} tetrahedra, ZnO{sub 6} octahedra and VO{sub 4} tetrahedra, and Bi{sub 2}O{sub 12} dimers. It is the only known member of the BiM{sub 2}AO{sub 6} (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu;more » A=V, P, As) family which does not appear to be structurally closely related to others. The electronic structure of BiZn{sub 2}VO{sub 6}, calculated by DFT methods, shows that it is an indirect gap semiconductor with a calculated band gap of 1.6 eV, which compares favourably to the experimentally measured value of 2.4 eV. - Graphical abstract: The crystal structure of BiZn{sub 2}VO{sub 6}, a new structure type in the BiM{sub 2}AO{sub 6} (M=Mg, Ca, Cd, Cu, Pb, Mn, Zn; A=V, P, As) family. - Highlights: • Structure solution from PXRD data by repeated minimisations from random starting values. • New structure type in the BiM{sub 2}AO{sub 6} (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family. • Electronic structure calculation.« less

  14. 40 CFR 721.3031 - Boric acid (H3BO3), zinc salt (2=3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Boric acid (H3BO3), zinc salt (2=3... Substances § 721.3031 Boric acid (H3BO3), zinc salt (2=3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as boric acid (H3BO3), zinc salt (2=3) (PMN P...

  15. 40 CFR 721.3031 - Boric acid (H3BO3), zinc salt (2=3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Boric acid (H3BO3), zinc salt (2=3... Substances § 721.3031 Boric acid (H3BO3), zinc salt (2=3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as boric acid (H3BO3), zinc salt (2=3) (PMN P...

  16. Hexagonal ZnO porous plates prepared from microwave synthesized layered zinc hydroxide sulphate via thermal decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machovsky, Michal, E-mail: machovsky@ft.utb.cz; Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, Nam. T.G. Masaryka 275, 762 72 Zlin; Kuritka, Ivo, E-mail: ivo@kuritka.net

    2013-10-15

    Graphical abstract: - Highlights: • Zinc hydroxy sulphate was synthesized in 3 min via microwave hydrothermal route. • Zinc hydroxy sulphate was converted into mesh like porous ZnO by calcining at 900°. • The process of transformation is topotactic. - Abstract: Layered zinc hydroxide sulphate (ZHS) was prepared by microwave-assisted hydrothermal precipitation of zinc sulphate monohydrate with hexamethylenetetramine. Under ambient conditions, the structure of ZHS determined by X-ray diffraction (XRD) was found to be a mixture of zinc hydroxide sulphate pentahydrate Zn{sub 4}SO{sub 4}(OH){sub 6}·5H{sub 2}O and tetrahydrate Zn{sub 4}SO{sub 4}(OH){sub 6}·4H{sub 2}O. Fourier transform infrared (FTIR) spectroscopy was usedmore » for characterization of the prepared materials. Based on the interpretation of ZHS's thermal decomposition profile obtained by thermogravimetric analysis, ZnO of high purity was prepared by calcination at 900 °C for 2 h. The structure of the resulting ZnO was confirmed by the XRD. The morphology examination by scanning electron microscopy revealed a porous mesh-like ZnO structure developed from the ZHS precursor at the expense of mass removal due to the release of water and sulphate during the calcination.« less

  17. Photo-Patternable ZnO Thin Films Based on Cross-Linked Zinc Acrylate for Organic/Inorganic Hybrid Complementary Inverters.

    PubMed

    Jeong, Yong Jin; An, Tae Kyu; Yun, Dong-Jin; Kim, Lae Ho; Park, Seonuk; Kim, Yebyeol; Nam, Sooji; Lee, Keun Hyung; Kim, Se Hyun; Jang, Jaeyoung; Park, Chan Eon

    2016-03-02

    Complementary inverters consisting of p-type organic and n-type metal oxide semiconductors have received considerable attention as key elements for realizing low-cost and large-area future electronics. Solution-processed ZnO thin-film transistors (TFTs) have great potential for use in hybrid complementary inverters as n-type load transistors because of the low cost of their fabrication process and natural abundance of active materials. The integration of a single ZnO TFT into an inverter requires the development of a simple patterning method as an alternative to conventional time-consuming and complicated photolithography techniques. In this study, we used a photocurable polymer precursor, zinc acrylate (or zinc diacrylate, ZDA), to conveniently fabricate photopatternable ZnO thin films for use as the active layers of n-type ZnO TFTs. UV-irradiated ZDA thin films became insoluble in developing solvent as the acrylate moiety photo-cross-linked; therefore, we were able to successfully photopattern solution-processed ZDA thin films using UV light. We studied the effects of addition of a tiny amount of indium dopant on the transistor characteristics of the photopatterned ZnO thin films and demonstrated low-voltage operation of the ZnO TFTs within ±3 V by utilizing Al2O3/TiO2 laminate thin films or ion-gels as gate dielectrics. By combining the ZnO TFTs with p-type pentacene TFTs, we successfully fabricated organic/inorganic hybrid complementary inverters using solution-processed and photopatterned ZnO TFTs.

  18. In-situ synthesis of hydrogen peroxide in a novel Zn-CNTs-O2 system

    NASA Astrophysics Data System (ADS)

    Gong, Xiao-bo; Yang, Zhao; Peng, Lin; Zhou, An-lan; Liu, Yan-lan; Liu, Yong

    2018-02-01

    A novel strategy of in-situ synthesis of hydrogen peroxide (H2O2) was formulated and evaluated. Oxygen was selectively reduced to H2O2 combined with electrochemical corrosion of zinc in the Zn-CNTs-O2 system. The ratio of zinc and CNTs, heat treatment temperature, and operational parameters such as composite dosage, initial pH, solution temperature, oxygen flow rate were systematically investigated to improve the efficiency of H2O2 generation. The Zn-CNTs composite (weight ratio of 2.5:1) prepared at 500 °C showed the maximum H2O2 accumulation concentration of 293.51 mg L-1 within 60 min at the initial pH value of 3.0, Zn-CNTs dosage of 0.4 g and oxygen flow rate of 400 mL min-1. The oxygen was reduced through two-electron pathway to hydrogen peroxide on CNTs while the zinc was oxidized in the system and the dissolved zinc ions convert to zinc hydroxide and depositing on the surface of CNTs. It was proposed that the increment of direct H2O2 production was caused by the improvement of the formed Zn/CNTs corrosion cell. This provides promising strategy for in-situ synthesis and utilization of hydrogen peroxide in the novel Zn-CNTs-O2 system, which enhances the environmental and economic attractiveness of the use of H2O2 as green oxidant for wastewater treatments.

  19. Highly efficient photocatalytic H2 evolution using TiO2 nanoparticles integrated with electrocatalytic metal phosphides as cocatalysts

    NASA Astrophysics Data System (ADS)

    Song, Rui; Zhou, Wu; Luo, Bing; Jing, Dengwei

    2017-09-01

    In this work, electrocatalysts like the metal phosphides Ni2P, NiCoP, and FeP, can serve as cocatalysts of TiO2 to form efficient composite photocatalysts for hydrogen generation from an aqueous methanol solution. On comparing Ni2P, NiCoP, and FeP and optimizing their proportions, the NiCoP(1 wt%)/TiO2 composite was found to exhibit the highest activity toward photocatalytic H2 production (1.54 μmol h-1 mg-1), which is about thirteen times that of the naked TiO2 nanoparticles. Mott-Schottky (MS) analysis indicated that the large upward shift or band bending of the Fermi energy level (EF) in metal phosphides was responsible for the enhanced activity of the composites. The steady-state photoluminescence (PL) spectra and photocurrent transient response further confirmed that the enhanced photoinduced charge transfer and band separation after TiO2 was integrated with the metal phosphides. Thus, these electrocatalysts were shown to be efficient cocatalysts that can replace noble metals as low-cost photocatalytic H2 production.

  20. Preparation of Zinc Oxide (ZnO) Thin Film as Transparent Conductive Oxide (TCO) from Zinc Complex Compound on Thin Film Solar Cells: A Study of O2 Effect on Annealing Process

    NASA Astrophysics Data System (ADS)

    Muslih, E. Y.; Kim, K. H.

    2017-07-01

    Zinc oxide (ZnO) thin film as a transparent conductive oxide (TCO) for thin film solar cell application was successfully prepared through two step preparations which consisted of deposition by spin coating at 2000 rpm for 10 second and followed by annealing at 500 °C for 2 hours under O2 and ambient atmosphere. Zinc acetate dehydrate was used as a precursor which dissolved in ethanol and acetone (1:1 mol) mixture in order to make a zinc complex compound. In this work, we reported the O2 effect, reaction mechanism, structure, morphology, optical and electrical properties. ZnO thin film in this work shows a single phase of wurtzite, with n-type semiconductor and has band gap, carrier concentration, mobility, and resistivity as 3.18 eV, 1.21 × 10-19cm3, 11 cm2/Vs, 2.35 × 10-3 Ωcm respectively which is suitable for TCO at thin film solar cell.

  1. Zinc Transporter 3 Is Involved in Learned Fear and Extinction, but Not in Innate Fear

    ERIC Educational Resources Information Center

    Martel, Guillaume; Hevi, Charles; Friebely, Olivia; Baybutt, Trevor; Shumyatsky, Gleb P.

    2010-01-01

    Synaptically released Zn[superscript 2+] is a potential modulator of neurotransmission and synaptic plasticity in fear-conditioning pathways. Zinc transporter 3 (ZnT3) knock-out (KO) mice are well suited to test the role of zinc in learned fear, because ZnT3 is colocalized with synaptic zinc, responsible for its transport to synaptic vesicles,…

  2. Enhanced photoelectrochemical performance and photocatalytic activity of ZnO/TiO2 nanostructures fabricated by an electrostatically modified electrospinning

    NASA Astrophysics Data System (ADS)

    Ramos, Pierre G.; Flores, Edson; Sánchez, Luis A.; Candal, Roberto J.; Hojamberdiev, Mirabbos; Estrada, Walter; Rodriguez, Juan

    2017-12-01

    In this work, ZnO/TiO2 nanostructures were fabricated by an electrostatically modified electrospinning technique using zinc acetate and commercially available TiO2-P25, polyvinyl alcohol, and a solvent. The ZnO/TiO2 nanostructures were fabricated on fluorine-doped tin oxide (FTO) glass substrate by electrospinning of aqueous solution containing different amounts of zinc acetate. The TiO2-P25 nanoparticles were immobilized within zinc acetate/PVA nanofibers. The precursor nanofibers obtained were converted into polycrystalline ZnO and ZnO/TiO2 by calcination at 600 °C. The structure and morphology of the obtained nanostructures were characterized by X-ray diffraction and field emission scanning electron microscopy, respectively. It was found that the TiO2-P25 nanoparticles were attached to the ZnO nanostructures, and the mean diameter of the nanoparticles forming the nanostructures ranged from 31 to 52 nm with increasing the amount of zinc acetate. The incident photon-to-current efficiency (IPCE) spectra of the fabricated nanostructures were measured in a three-electrode cell. The photocatalytic activities of ZnO and ZnO/TiO2 nanostructures were evaluated toward the decomposition of methyl orange. The obtained results evidenced that the coupling of TiO2 with ZnO enhanced the IPCE and improved the photocatalytic activity of ZnO. Particularly, the ZnO/TiO2 nanostructures fabricated with a zinc acetate-to-PVA ratio of 2:3 exhibited the highest IPCE and photocatalytic activity.

  3. InP/ZnSe/ZnS core-multishell quantum dots for improved luminescence efficiency

    NASA Astrophysics Data System (ADS)

    Greco, Tonino; Ippen, Christian; Wedel, Armin

    2012-04-01

    Semiconductor quantum dots (QDs) exhibit unique optical properties like size-tunable emission color, narrow emission peak, and high luminescence efficiency. QDs are therefore investigated towards their application in light-emitting devices (QLEDs), solar cells, and for bio-imaging purposes. In most cases QDs made from cadmium compounds like CdS, CdSe or CdTe are studied because of their facile and reliable synthesis. However, due to the toxicity of Cd compounds and the corresponding regulation (e.g. RoHS directive in Europe) these materials are not feasible for customer applications. Indium phosphide is considered to be the most promising alternative because of the similar band gap (InP 1.35 eV, CdSe 1.73 eV). InP QDs do not yet reach the quality of CdSe QDs, especially in terms of photoluminescence quantum yield and peak width. Typically, QDs are coated with another semiconductor material of wider band gap, often ZnS, to passivate surface defects and thus improve luminescence efficiency. Concerning CdSe QDs, multishell coatings like CdSe/CdS/ZnS or CdSe/ZnSe/ZnS have been shown to be advantageous due to the improved compatibility of lattice constants. Here we present a method to improve the luminescence efficiency of InP QDs by coating a ZnSe/ZnS multishell instead of a ZnS single shell. ZnSe exhibits an intermediate lattice constant of 5.67 Å between those of InP (5.87 Å) and ZnS (5.41 Å) and thus acts as a wetting layer. As a result, InP/ZnSe/ZnS is introduced as a new core-shell quantum dot material which shows improved photoluminescence quantum yield (up to 75 %) compared to the conventional InP/ZnS system.

  4. Synthesis and catalytic activity of the metastable phase of gold phosphide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernando, Deshani; Nigro, Toni A. E.; Dyer, I. D.

    Recently, transition metal phosphides have found new applications as catalysts for the hydrogen evolution reaction that has generated an impetus to synthesize these materials at the nanoscale. In this work, Au2P3 was synthesized utilizing the high temperature decomposition of tri-n-octylphosphine as a source of elemental phosphorous. Gold nanorods were used as morphological templates with the aim of controlling the shape and size of the resulting gold phosphide particles. We demonstrate that the surface capping ligand of the gold nanoparticle precursors can influence the purity and extent to which the gold phosphide phase will form. Gold nanorods functionalized with 1-dodecanethiol undergomore » digestive ripening to produce discrete spherical particles that exhibit reduced reactivity towards phosphorous, resulting in low yields of the gold phosphide. In contrast, gold phosphide was obtained as a phase pure product when cetyltrimethylammonium bromide functionalized gold nanorods are used instead. The Au2P3 nanoparticles exhibited higher activity than polycrystalline gold towards the hydrogen evolution reaction.« less

  5. Interaction between zinc and freshwater and marine diatom species: Surface complexation and Zn isotope fractionation

    NASA Astrophysics Data System (ADS)

    Gélabert, A.; Pokrovsky, O. S.; Viers, J.; Schott, J.; Boudou, A.; Feurtet-Mazel, A.

    2006-02-01

    This work is devoted to characterization of zinc interaction in aqueous solution with two marine planktonic ( Thalassiosira weissflogii = TW, Skeletonema costatum = SC) and two freshwater periphytic species ( Achnanthidium minutissimum = AMIN, Navicula minima = NMIN) by combining adsorption and electrophoretic measurements with surface complexation modeling and by assessing Zn isotopes fractionation during both long term uptake and short term adsorption on diatom cells and their frustules. Reversible adsorption experiments were performed at 25 and 5 °C as a function of exposure time (5 min to 140 h), pH (2 to 10), zinc concentration in solution (10 nM to 1 mM), ionic strength ( I = 0.001 to 1.0 M) and the presence of light. While the shape of pH-dependent adsorption edge is almost the same for all four species, the constant-pH adsorption isotherm and maximal Zn binding capacities differ by an order of magnitude. The extent of adsorption increases with temperature from 5 to 25 °C and does not depend on light intensity. Zinc adsorption decreases with increase of ionic strength suggesting competition with sodium for surface sites. Cell number-normalized concentrations of sorbed zinc on whole cells and their silica frustules demonstrated only weak contribution of the latter (10-20%) to overall zinc binding by diatom cell wall. Measurements of electrophoretic mobilities ( μ) revealed negative diatoms surface potential in the full range of zinc concentrations investigated (0.15-760 μmol/L), however, the absolute value of μ decreases at [Zn] > 15 μmol/L suggesting a change in surface speciation. These observations allowed us to construct a surface complexation model for Zn binding by diatom surfaces that postulates the constant capacitance of the electric double layer and considers Zn complexation with carboxylate and silanol groups. Thermodynamic and structural parameters of this model are based on previous acid-base titration and spectroscopic results and allow

  6. Relationship of /sup 65/Zn absorption kinetics to intestinal metallothionein in rats: effects of zinc depletion and fasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoadley, J.E.; Leinart, A.S.; Cousins, R.J.

    1988-04-01

    Intestinal 65Zn transport and metallothionein levels were examined in rats fed zinc-adequate and zinc-deficient diets and in rats subjected to an overnight fast. 65Zn uptake by intestines perfused with 1.5 microM 65Zn was greater in both zinc-deficient and fasted groups than in the control group. Mucosal retention of 65Zn was also greater in the zinc-deficient group but not in the fasted group. The greater 65Zn uptake in the fasted group was associated with a compartment that readily released 65Zn back into the lumen. Kinetic analysis of the rate of 65Zn transfer to the vascular space (absorption) showed that 65Zn absorptionmore » involved approximately 3% of mucosal 65Zn in a 40-min perfusion period. The half-life (t1/2) of this mucosal 65Zn rapid transport pool corresponded directly to changes in intestinal metallothionein levels. Both metallothionein and t1/2 were higher in the fasted group and lower in the zinc-deficient group than in controls. While the rate of 65Zn transport from this rapid transport pool decreased with increasing metallothionein level, the predicted pool size increased when the metallothionein level was elevated by fasting. These results indicate that the rate of zinc absorption is inversely related to intestinal metallothionein levels, but the portion of mucosal 65Zn available for absorption is directly related to intestinal metallothionein.« less

  7. Electrocatalytic activity of cobalt phosphide-modified graphite felt toward VO2+/VO2+ redox reaction

    NASA Astrophysics Data System (ADS)

    Ge, Zhijun; Wang, Ling; He, Zhangxing; Li, Yuehua; Jiang, Yingqiao; Meng, Wei; Dai, Lei

    2018-04-01

    A novel strategy for improving the electro-catalytic properties of graphite felt (GF) electrode in vanadium redox flow battery (VRFB) is designed by depositing cobalt phosphide (CoP) onto GF surface. The CoP powder is synthesized by direct carbonization of Co-based zeolitic imidazolate framework (ZIF-67) followed by phosphidation. Cyclic voltammetry results confirm that the CoP-modified graphite felt (GF-CoP) electrode has excellent reversibility and electro-catalytic activity to the VO2+/VO2+ cathodic reaction compared with the pristine GF electrode. The cell using GF-CoP electrode shows apparently higher discharge capacity over that based on GF electrode. The cell using GF-CoP electrode has the capacity of 67.2 mA h at 100 mA cm-2, 32.7 mA h larger than that using GF electrode. Compared with cell using GF electrode, the voltage efficiency of the cell based on GF-CoP electrode increases by 5.9% and energy efficiency by 5.4% at a current density of 100 mA cm-2. The cell using GF-CoP electrode can reach 94.31% capacity retention after 50 cycles at a current density of 30 mA cm-2. The results show that the CoP can effectively promote the VO2+/VO2+ redox reaction, implying that metal phosphides are a new kind of potential catalytic materials for VRFB.

  8. A new approach to synthesize supported ruthenium phosphides for hydrodesulfurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qingfang; Key Laboratory of Advanced Energy Materials Chemistry; Wang, Zhiqiang

    2016-02-15

    Highlights: • We bring out a new method to synthesize noble metal phosphides at low temperature. • Both RuP and Ru{sub 2}P were synthesized using triphenylphosphine as phosphorus sources. • Ru{sub 2}P was the better active phase for HDS than RuP and metal Ru. • RuP/SiO{sub 2} prepared by new method had better HDS activity to that by TPR method. - Abstract: Supported noble metal ruthenium phosphides were synthesized by one-step H{sub 2}-thermal treatment method using triphenylphosphine (TPP) as phosphorus sources at low temperatures. Two phosphides RuP and Ru{sub 2}P can be prepared by this method via varying the molarmore » ratio of metal salt and TPP. The as-prepared phosphides were characterized by X-ray powder diffraction (XRD), low-temperature N{sub 2} adsorption, CO chemisorption and transmission electronic microscopy (TEM). The supported ruthenium phosphides prepared by new method and conventional method together with contradistinctive metallic ruthenium were evaluated in hydrodesulfurization (HDS) of dibenzothiophene (DBT). The catalytic results showed that metal-rich Ru{sub 2}P was the better active phase for HDS than RuP and metal Ru. Besides this, ruthenium phosphide catalyst prepared by new method exhibited superior HDS activity to that prepared by conventional method.« less

  9. Formation and morphology of Zn(2)Ti(3)O(8) powders using hydrothermal process without dispersant agent or mineralizer.

    PubMed

    Wang, Cheng-Li; Hwang, Weng-Sing; Chang, Kuo-Ming; Ko, Horng-Huey; Hsi, Chi-Shiung; Huang, Hong-Hsin; Wang, Moo-Chin

    2011-01-28

    Synthesis of Zn(2)Ti(3)O(8) powders for attenuating UVA using TiCl(4), Zn(NO(3))(2)·6H(2)O and NH(4)OH as precursor materials by hydrothermal process has been investigated. The X-ray diffractometry (XRD) results show the phases of ZnO, anatase TiO(2) and Zn(2)Ti(3)O(8) coexisted when the zinc titanate powders were calcined at 600 °C for 1 h. When calcined at 900 °C for 1 h, the XRD results reveal the existence of ZnO, Zn(2)TiO(4), rutile TiO(2) and ZnTiO(3). Scanning electron microscope (SEM) observations show extensive large agglomeration in the samples. Transmission electron microscope (TEM) and electron diffraction (ED) examination results indicate that ZnTiO(3) crystallites formed with a size of about 5 nm on the matrix of plate-like ZnO when calcined at 700 °C for 1 h. The calcination samples have acceptable absorbance at a wavelength of 400 nm, indicating that the zinc titanate precursor powders calcined at 700 °C for 1 h can be used as an UVA-attenuating agent.

  10. Formation and Morphology of Zn2Ti3O8 Powders Using Hydrothermal Process without Dispersant Agent or Mineralizer

    PubMed Central

    Wang, Cheng-Li; Hwang, Weng-Sing; Chang, Kuo-Ming; Ko, Horng-Huey; Hsi, Chi-Shiung; Huang, Hong-Hsin; Wang, Moo-Chin

    2011-01-01

    Synthesis of Zn2Ti3O8 powders for attenuating UVA using TiCl4, Zn(NO3)2·6H2O and NH4OH as precursor materials by hydrothermal process has been investigated. The X-ray diffractometry (XRD) results show the phases of ZnO, anatase TiO2 and Zn2Ti3O8 coexisted when the zinc titanate powders were calcined at 600 °C for 1 h. When calcined at 900 °C for 1 h, the XRD results reveal the existence of ZnO, Zn2TiO4, rutile TiO2 and ZnTiO3. Scanning electron microscope (SEM) observations show extensive large agglomeration in the samples. Transmission electron microscope (TEM) and electron diffraction (ED) examination results indicate that ZnTiO3 crystallites formed with a size of about 5 nm on the matrix of plate-like ZnO when calcined at 700 °C for 1 h. The calcination samples have acceptable absorbance at a wavelength of 400 nm, indicating that the zinc titanate precursor powders calcined at 700 °C for 1 h can be used as an UVA-attenuating agent. PMID:21541035

  11. Zinc Vacancy Formation and its Effect on the Conductivity of ZnO

    NASA Astrophysics Data System (ADS)

    Khan, Enamul; Weber, Marc; Langford, Steve; Dickinson, Tom

    2010-03-01

    Exposing single crystal ZnO to 193-nm ArF excimer laser radiation can produce metallic zinc nanoparticles along the surface. The particle production mechanism appears to involve interstitial-vacancy pair formation in the near-surface bulk. Conductivity measurements made with one probe inside the laser spot and the other outside show evidence for rectifying behavior. Positron annihilation spectroscopy confirms the presence of Zn vacancies. We suggest that Zn vacancies are a possible source of p-type behavior in irradiated ZnO. Quadrupole mass spectroscopy shows that both oxygen and zinc are emitted during irradiation. Electron-hole pair production has previously been invoked to account for particle desorption from ZnO during UV illumination. Our results suggest that preexisting and laser-generated defects play a critical role in particle desorption and Zn vacancy formation.

  12. Zinc complexes of the biomimetic N,N,O ligand family of substituted 3,3-bis(1-alkylimidazol-2-yl)propionates: the formation of oxalate from pyruvate

    PubMed Central

    Bruijnincx, Pieter C. A.; Lutz, Martin; den Breejen, Johan P.; van Koten, Gerard

    2007-01-01

    The coordination chemistry of the 2-His-1-carboxylate facial triad mimics 3,3-bis(1-methylimidazol-2-yl)propionate (MIm2Pr) and 3,3-bis(1-ethyl-4-isopropylimidazol-2-yl) propionate (iPrEtIm2Pr) towards ZnCl2 was studied both in solution and in the solid state. Different coordination modes were found depending both on the stoichiometry and on the ligand that was employed. In the 2:1 ligand-to-metal complex [Zn(MIm2Pr)2], the ligand coordinates in a tridentate, tripodal N,N,O fashion similar to the 2-His-1-carboxylate facial triad. However, the 1:1 ligand-to-metal complexes [Zn(MIm2Pr)Cl(H2O)] and [Zn(iPrEtIm2Pr)Cl] were crystallographically characterized and found to be polymeric in nature. A new, bridging coordination mode of the ligands was observed in both structures comprising N,N-bidentate coordination of the ligand to one zinc atom and O-monodentate coordination to a zinc second atom. A rather unique transformation of pyruvate into oxalate was found with [Zn(MIm2Pr)Cl], which resulted in the isolation of the new, oxalato bridged zinc coordination polymer [Zn2(MIm2Pr)2(ox)]·6H2O, the structure of which was established by X-ray crystal structure determination. PMID:17828423

  13. Evidence of zinc superoxide formation in the gas phase: comparisons in behaviour between ligated Zn(I/II) and Cu(I/II) with regard to the attachment of O2 or H2O.

    PubMed

    Cox, Hazel; Norris, Caroline; Wu, Guohua; Guan, Jingang; Hessey, Stephen; Stace, Anthony J

    2011-11-14

    Singly and doubly charged atomic ions of zinc and copper have been complexed with pyridine and held in an ion trap. Complexes involving Zn(II) and Cu(I) (3d(10)) display a strong tendency to bind with H(2)O, whilst the Zn(I) (3d(10)4s(1)) complexes exhibit a strong preference for the attachment of O(2). DFT calculations show that this latter result can be interpreted as internal oxidation leading to the formation of superoxide complexes, [Zn(II)O(2)(-)](pyridine)(n), in the gas phase. The calculations also show that the oxidation of Zn(I) to form Zn(II)O(2)(-) is promoted by a mixing of the occupied 4s and vacant 4p orbitals on the metal cation, and that this process is facilitated by the presence of the pyridine ligands.

  14. The effect of zinc (Zn) content to cell potential value and efficiency aluminium sacrificial anode in 0.2 M sulphuric acid environment

    NASA Astrophysics Data System (ADS)

    Akranata, Ahmad Ridho; Sulistijono, Awali, Jatmoko

    2018-04-01

    Sacrificial anode is sacirifial component that used to protect steel from corrosion. Generally, the component are made of aluminium and zinc in water environment. Sacrificial anode change the protected metal structure become cathodic with giving current. The advantages of aluminium is corrosion resistance, non toxicity and easy forming. Zinc generally used for coating in steel to prevent steel from corrosion. This research was conducted to analyze the effect of zinc content to the value of cell potential and efficiency aluminium sacrificial anode with sand casting method in 0.2 M sulphuric acid environment. The sacrificial anode fabrication made with alloying aluminium and zinc metals with variation composition of alloy with pure Al, Al-3Zn, Al-6Zn, and Al-9Zn with open die sand casting process. The component installed with ASTM A36 steel. After the research has been done the result showed that addition of zinc content increase the cell potential, protection efficiency, and anode efficiency from steel plate. Cell potential value measurement and weight loss measurement showed that addition of zinc content increase the cell potential value into more positive that can protected the ASTM A36 steel more efficiently that showed in weight loss measurement where the protection efficiency and anodic efficiency of Al-9Zn sacrificial anode is better than protection efficiency and anodic efficiency of pure Al. The highest protection efficiency gotten by Al-9Zn alloy

  15. Optical properties of P ion implanted ZnO

    NASA Astrophysics Data System (ADS)

    Pong, Bao-Jen; Chou, Bo-Wei; Pan, Ching-Jen; Tsao, Fu-Chun; Chi, Gou-Chung

    2006-02-01

    Red and green emissions are observed from P ion implanted ZnO. Red emission at ~680 nm (1.82 eV) is associated with the donor-acceptor pair (DAP) transition, where the corresponding donor and acceptor are interstitial zinc (Zn i) and interstitial oxygen (O i), respectively. Green emission at ~ 516 nm (2.40 eV) is associated with the transition between the conduction band and antisite oxygen (O Zn). Green emission at ~516nm (2.403 eV) was observed for ZnO annealed at 800 oC under ambient oxygen, whereas, it was not visible when it was annealed in ambient nitrogen. Hence, the green emission is most likely not related to oxygen vacancies on ZnO sample, which might be related to the cleanliness of ZnO surface, a detailed study is in progress. The observed micro-strain is larger for N ion implanted ZnO than that for P ion implanted ZnO. It is attributed to the larger straggle of N ion implanted ZnO than that of P ion implanted ZnO. Similar phenomenon is also observed in Be and Mg ion implanted GaN.

  16. NH3 molecule adsorption on spinel-type ZnFe2O4 surface: A DFT and experimental comparison study

    NASA Astrophysics Data System (ADS)

    Zou, Cong-yang; Ji, Wenchao; Shen, Zhemin; Tang, Qingli; Fan, Maohong

    2018-06-01

    Ammonia (NH3) is a caustic environment pollutant which contributes to haze formation and water pollution. Zinc ferrite (ZnFe2O4) exhibits good catalytic activity in NH3 removal. The density functional theory (DFT) was applied to explore the interaction mechanism of NH3 molecule adsorption on spinel-type ZnFe2O4 (1 1 0) surface with GGA-PW91 method in atomic and electronic level. The results indicated that NH3 molecule preferred to adsorb on surface Zn atom with the formation of H3Nsbnd Zn coordinate bond over ZnFe2O4 (1 1 0) surface. The H3Nsbnd Zn state was exothermic process with adsorption energy of -203.125 kJ/mol. About 0.157e were transferred from NH3 molecule to the surface which resulted in strong interaction. Higher activation degree occurred in H3Nsbnd Zn configuration with two Nsbnd H bonds elongated and NH3 structure became more flat on the surface. The PDOS change of NH3 molecule was consistent with the result of adsorption energy. It was concluded that s orbital of NH3 (N) and s, p orbitals of Zn atom overlapped at -0.619 Ha. The p orbital of NH3 (N) has interaction with d orbital of Zn atom suggesting the hybridization between them. Based on NH3 removal experimental and XPS spectra results, NH3sbnd ZnFe2O4 interaction was mainly depended on the coordination between Zn atom and NH3 molecule. The DFT calculations have deepened our understanding on NH3sbnd ZnFe2O4 interaction system.

  17. Zinc interstitial threshold in Al-doped ZnO film: Effect on microstructure and optoelectronic properties

    NASA Astrophysics Data System (ADS)

    Singh, Chetan C.; Panda, Emila

    2018-04-01

    In order to know the threshold quantity of the zinc interstitials that contributes to an increase in carrier concentration in the Al-doped ZnO (AZO) films and their effect on the overall microstructure and optoelectronic properties of these films, in this work, Zn-rich-AZO and ZnO thin films are fabricated by adding excess zinc (from a zinc metallic target) during their deposition in RF magnetron sputtering and are then investigated using a wide range of experimental techniques. All these films are found to grow in a ZnO hexagonal wurtzite crystal structure with strong (002) orientation of the crystallites, with no indication of Al2O3, metallic Zn, and Al. The excessively introduced zinc in these AZO and/or ZnO films is found to increase the shallow donor level defects (i.e., zinc interstitials and oxygen-related electronic defect states), which is found to significantly increase the carrier concentration in these films. Additionally, aluminum is seen to enhance the creation of these electronic defect states in these films, thereby contributing more to the overall carrier concentration of these films. However, carrier mobility is found to decrease when the carrier concentration values are higher than 4 × 1020 cm-3, because of the electron-electron scattering. Whereas the optical band gap of the ZnO films is found to increase with increasing carrier concentration because of the Burstein-Moss shift, these decrease for the AZO films due to the band gap narrowing effect caused by excess carrier concentration.

  18. Metal phosphide catalysts and methods for making the same and uses thereof

    DOEpatents

    Habas, Susan Ellen; Wang, Jun; Ruddy, Daniel A.; Baddour, Frederick Raymond Gabriel; Schaidle, Joshua

    2017-05-02

    The present disclosure relates to a method that includes heating a mixture that includes a metal phenylphosphine-containing precursor that includes at least one of Mo(PPh.sub.3).sub.2(CO).sub.4, Pd(PPh.sub.3).sub.4, Ru(PPh.sub.3).sub.3Cl.sub.2, Ru(PPh.sub.3).sub.2(CO).sub.2Cl.sub.2, Co(PPh.sub.3)(CO).sub.2(NO), and/or Rh(PPh.sub.3).sub.2(CO)Cl, a surfactant, and a solvent. The heating is to a target temperature to form a heated mixture containing a metal phosphide nanoparticle that includes at least one of MoP, Ru.sub.2P, Co.sub.2P, Rh.sub.2P, and/or Pd.sub.3P, and the metal phosphide nanoparticle is not hollow.

  19. 40 CFR 721.10135 - Phosphinic acid, P,P-diethyl-, zinc salt (2:1).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphinic acid, P,P-diethyl-, zinc... Specific Chemical Substances § 721.10135 Phosphinic acid, P,P-diethyl-, zinc salt (2:1). (a) Chemical... acid, P,P-diethyl-, zinc salt (2:1) (PMN P-05-11; CAS No. 284685-45-6) is subject to reporting under...

  20. 40 CFR 721.10135 - Phosphinic acid, P,P-diethyl-, zinc salt (2:1).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphinic acid, P,P-diethyl-, zinc... Specific Chemical Substances § 721.10135 Phosphinic acid, P,P-diethyl-, zinc salt (2:1). (a) Chemical... acid, P,P-diethyl-, zinc salt (2:1) (PMN P-05-11; CAS No. 284685-45-6) is subject to reporting under...

  1. Behaviour of Zinc Complexes and Zinc Sulphide Nanoparticles Revealed by Using Screen Printed Electrodes and Spectrometry

    PubMed Central

    Nejdl, Lukas; Ruttkay-Nedecky, Branislav; Kudr, Jiří; Kremplova, Monika; Cernei, Natalia; Prasek, Jan; Konecna, Marie; Hubalek, Jaromir; Zitka, Ondrej; Kynicky, Jindrich; Kopel, Pavel; Kizek, Rene; Adam, Vojtech

    2013-01-01

    In this study, we focused on microfluidic electrochemical analysis of zinc complexes (Zn(phen)(his)Cl2, Zn(his)Cl2) and ZnS quantum dots (QDs) using printed electrodes. This method was chosen due to the simple (easy to use) instrumentation and variable setting of flows. Reduction signals of zinc under the strictly defined and controlled conditions (pH, temperature, flow rate, accumulation time and applied potential) were studied. We showed that the increasing concentration of the complexes (Zn(phen)(his)Cl2, Zn(his)Cl2) led to a decrease in the electrochemical signal and a significant shift of the potential to more positive values. The most likely explanation of this result is that zinc is strongly bound in the complex and its distribution on the electrode is very limited. Changing the pH from 3.5 to 5.5 resulted in a significant intensification of the Zn(II) reduction signal. The complexes were also characterized by UV/VIS spectrophotometry, chromatography, and ESI-QTOF mass spectrometry. PMID:24233071

  2. New reactions involving the oxidative O-, N-, and C-phosphorylation of organic compounds by phosphorus and phosphides in the presence of metal complexes

    NASA Astrophysics Data System (ADS)

    Dorfman, Ya A.; Aleshkova, M. M.; Polimbetova, G. S.; Levina, L. V.; Petrova, T. V.; Abdreimova, R. R.; Doroshkevich, D. M.

    1993-09-01

    The mechanisms of new catalytic reactions leading to the formation of di-, and tri-alkyl phosphates, di- and tri-alkyl phosphites, phosphoramidites, phosphazenes, phosphines, and phosphine oxides from hydrogen, copper, and zinc phosphides and white and red phosphorus are analysed. The mechanisms of the activation of the reactants by metal complexes and of the reactions involving the oxidative P-O, P-N, and P-C coupling of organic compounds to phosphorus and phosphides are considered. The bibliography includes 124 references.

  3. Bioavailability of Zinc in Wistar Rats Fed with Rice Fortified with Zinc Oxide

    PubMed Central

    Della Lucia, Ceres Mattos; Santos, Laura Luiza Menezes; Rodrigues, Kellen Cristina da Cruz; Rodrigues, Vivian Cristina da Cruz; Martino, Hércia Stampini Duarte; Pinheiro Sant’Ana, Helena Maria

    2014-01-01

    The study of zinc bioavailability in foods is important because this mineral intake does not meet the recommended doses for some population groups. Also, the presence of dietary factors that reduce zinc absorption contributes to its deficiency. Rice fortified with micronutrients (Ultra Rice®) is a viable alternative for fortification since this cereal is already inserted into the population habit. The aim of this study was to evaluate the bioavailability of zinc (Zn) in rice fortified with zinc oxide. During 42 days, rats were divided into four groups and fed with diets containing two different sources of Zn (test diet: UR® fortified with zinc oxide, or control diet: zinc carbonate (ZnCO3)), supplying 50% or 100%, respectively, of the recommendations of this mineral for animals. Weight gain, food intake, feed efficiency ratio, weight, thickness and length of femur; retention of zinc, calcium (Ca) and magnesium (Mg) in the femur and the concentrations of Zn in femur, plasma and erythrocytes were evaluated. Control diet showed higher weight gain, feed efficiency ratio, retention of Zn and Zn concentration in the femur (p < 0.05). However, no differences were observed (p > 0.05) for dietary intake, length and thickness of the femur, erythrocyte and plasmatic Zn between groups. Although rice fortified with zinc oxide showed a lower bioavailability compared to ZnCO3, this food can be a viable alternative to be used as a vehicle for fortification. PMID:24932657

  4. Synthesis and Crystal Structure of Dibromido{2-[(4-tert-butylmethylphenyl) iminomethyl]pyridine-κ2 N, N'}Zinc

    NASA Astrophysics Data System (ADS)

    Khalaj, M.; Ghazanfarpour-Darjani, M.; Seftejani, F. B.; Lalegani, A.

    2017-12-01

    The title compound [Zn( dip)Br2] was synthesized using the Schiff base bidentate ligand (E)-4- tert-butyl- N-(pyridine-2-ylmethylene)benzeneamine ( dip) and zinc(II) bromide salts. It has been characterized by elemental analysis, X-ray diffraction, and optical spectroscopy. The X-ray diffraction analysis demonstrates that in this structure, the zinc(II) ion is located on an inversion center and exhibits a ZnN2Br2 tetrahedral geometry. In this structure the dip ligand is coordinated with zinc(II) ion in a cyclic-bidentate fashion forming a five-membered metallocyclic ring. The compound crystallizes in the monoclinic sp. gr. P21/ m with a = 9.2700(13) Å, b = 7.6128(11) Å, c = 12.3880(17) Å, and β = 97.021(3)°.

  5. Novel Rechargeable M3V2(PO4)3//Zinc (M = Li, Na) Hybrid Aqueous Batteries with Excellent Cycling Performance

    PubMed Central

    Zhao, H. B.; Hu, C. J.; Cheng, H. W.; Fang, J. H.; Xie, Y. P.; Fang, W. Y.; Doan, T. N. L.; Hoang, T. K. A.; Xu, J. Q.; Chen, P.

    2016-01-01

    A rechargeable hybrid aqueous battery (ReHAB) containing NASICON-type M3V2(PO4)3 (M = Li, Na) as the cathodes and Zinc metal as the anode, working in Li2SO4-ZnSO4 aqueous electrolyte, has been studied. Both of Li3V2(PO4)3 and Na3V2(PO4)3 cathodes can be reversibly charge/discharge with the initial discharge capacity of 128 mAh g−1 and 96 mAh g−1 at 0.2C, respectively, with high up to 84% of capacity retention ratio after 200 cycles. The electrochemical assisted ex-XRD confirm that Li3V2(PO4)3 and Na3V2(PO4)3 are relative stable in aqueous electrolyte, and Na3V2(PO4)3 showed more complicated electrochemical mechanism due to the co-insertion of Li+ and Na+. The effect of pH of aqueous electrolyte and the dendrite of Zn on the cycling performance of as designed MVP/Zn ReHABs were investigated, and weak acidic aqueous electrolyte with pH around 4.0–4.5 was optimized. The float current test confirmed that the designed batteries are stable in aqueous electrolytes. The MVP//Zn ReHABs could be a potential candidate for future rechargeable aqueous battery due to their high safety, fast dynamic speed and adaptable electrochemical window. Moreover, this hybrid battery broadens the scope of battery material research from single-ion-involving to double-ions -involving rechargeable batteries. PMID:27174224

  6. Novel Rechargeable M3V2(PO4)3//Zinc (M = Li, Na) Hybrid Aqueous Batteries with Excellent Cycling Performance

    NASA Astrophysics Data System (ADS)

    Zhao, H. B.; Hu, C. J.; Cheng, H. W.; Fang, J. H.; Xie, Y. P.; Fang, W. Y.; Doan, T. N. L.; Hoang, T. K. A.; Xu, J. Q.; Chen, P.

    2016-05-01

    A rechargeable hybrid aqueous battery (ReHAB) containing NASICON-type M3V2(PO4)3 (M = Li, Na) as the cathodes and Zinc metal as the anode, working in Li2SO4-ZnSO4 aqueous electrolyte, has been studied. Both of Li3V2(PO4)3 and Na3V2(PO4)3 cathodes can be reversibly charge/discharge with the initial discharge capacity of 128 mAh g-1 and 96 mAh g-1 at 0.2C, respectively, with high up to 84% of capacity retention ratio after 200 cycles. The electrochemical assisted ex-XRD confirm that Li3V2(PO4)3 and Na3V2(PO4)3 are relative stable in aqueous electrolyte, and Na3V2(PO4)3 showed more complicated electrochemical mechanism due to the co-insertion of Li+ and Na+. The effect of pH of aqueous electrolyte and the dendrite of Zn on the cycling performance of as designed MVP/Zn ReHABs were investigated, and weak acidic aqueous electrolyte with pH around 4.0-4.5 was optimized. The float current test confirmed that the designed batteries are stable in aqueous electrolytes. The MVP//Zn ReHABs could be a potential candidate for future rechargeable aqueous battery due to their high safety, fast dynamic speed and adaptable electrochemical window. Moreover, this hybrid battery broadens the scope of battery material research from single-ion-involving to double-ions -involving rechargeable batteries.

  7. Zinc Supplementation, via GPR39, Upregulates PKCζ to Protect Intestinal Barrier Integrity in Caco-2 Cells Challenged by Salmonella enterica Serovar Typhimurium.

    PubMed

    Shao, Yu-Xin; Lei, Zhao; Wolf, Patricia G; Gao, Yan; Guo, Yu-Ming; Zhang, Bing-Kun

    2017-07-01

    Background: Zinc has been shown to improve intestinal barrier function against Salmonella enterica serovar Typhimurium ( S. typhimurium ) infection, but the mechanisms involved in this process remain undefined. Objective: We aimed to explore the roles of G protein-coupled receptor (GPR)39 and protein kinase Cζ (PKCζ) in the regulation by zinc of intestinal barrier function. Methods: A Transwell Caco-2 monolayer was pretreated with 0, 50, or 100 μM Zn and then incubated with S. typhimurium for 0-6 h. Afterward, cells silenced by the small interfering RNA for GPR39 or PKCζ were pretreated with 100 μM Zn and incubated with S. typhimurium for 3 h. Finally, transepithelial electrical resistance (TEER), permeability, tight junction (TJ) proteins, and signaling molecules GPR39 and PKCζ were measured. Results: Compared with controls, S. typhimurium decreased TEER by 62.3-96.2% at 4-6 h ( P < 0.001), increased ( P < 0.001) permeability at 6 h, and downregulated ( P < 0.05) TJ protein zonula occludens (ZO)-1 and occludin by 104-123%, as well as Toll-like receptor 2 and PKCζ by 35.1% and 75.2%, respectively. Compared with S. typhimurium- challenged cells, 50 and 100 μM Zn improved TEER by 26.3-60.9% at 4-6 h ( P < 0.001) and decreased ( P < 0.001) permeability and bacterial invasion at 6 h. A total of 100 μM Zn increased ZO-1, occludin, GPR39, and PKCζ 0.72- to 1.34-fold ( P < 0.05); however, 50 μM Zn did not affect ZO-1 or occludin ( P > 0.1). Silencing GPR39 decreased ( P < 0.05) zinc-activated PKCζ and blocked ( P < 0.05) the promotion of zinc on epithelial integrity. Furthermore, silencing PKCζ counteracted the protective effect of zinc on epithelial integrity but did not inhibit GPR39 ( P = 0.138). Conclusion: We demonstrated that zinc upregulates PKCζ by activating GPR39 to enhance the abundance of ZO-1, thereby improving epithelial integrity in S. typhimurium- infected Caco-2 cells. © 2017 American Society for Nutrition.

  8. Cross talk between increased intracellular zinc (Zn2+) and accumulation of reactive oxygen species in chemical ischemia.

    PubMed

    Slepchenko, Kira G; Lu, Qiping; Li, Yang V

    2017-10-01

    Both zinc (Zn 2+ ) and reactive oxygen species (ROS) have been shown to accumulate during hypoxic-ischemic stress and play important roles in pathological processes. To understand the cross talk between the two of them, here we studied Zn 2+ and ROS accumulation by employing fluorescent probes in HeLa cells to further the understanding of the cause and effect relationship of these two important cellular signaling systems during chemical-ischemia, stimulated by oxygen and glucose deprivation (OGD). We observed two Zn 2+ rises that were divided into four phases in the course of 30 min of OGD. The first Zn 2+ rise was a transient, which was followed by a latent phase during which Zn 2+ levels recovered; however, levels remained above a basal level in most cells. The final phase was the second Zn 2+ rise, which reached a sustained plateau called Zn 2+ overload. Zn 2+ rises were not observed when Zn 2+ was removed by TPEN (a Zn 2+ chelator) or thapsigargin (depleting Zn 2+ from intracellular stores) treatment, indicating that Zn 2+ was from intracellular storage. Damaging mitochondria with FCCP significantly reduced the second Zn 2+ rise, indicating that the mitochondrial Zn 2+ accumulation contributes to Zn 2+ overload. We also detected two OGD-induced ROS rises. Two Zn 2+ rises preceded two ROS rises. Removal of Zn 2+ reduced or delayed OGD- and FCCP-induced ROS generation, indicating that Zn 2+ contributes to mitochondrial ROS generation. There was a Zn 2+ -induced increase in the functional component of NADPH oxidase, p47 phox , thus suggesting that NADPH oxidase may mediate Zn 2+ -induced ROS accumulation. We suggest a new mechanism of cross talk between Zn 2+ and mitochondrial ROS through positive feedback processes that eventually causes excessive free Zn 2+ and ROS accumulations during the course of ischemic stress. Copyright © 2017 the American Physiological Society.

  9. Enhanced degradation and mineralization of 4-chloro-3-methyl phenol by Zn-CNTs/O3 system.

    PubMed

    Liu, Yong; Zhou, Anlan; Liu, Yanlan; Wang, Jianlong

    2018-01-01

    A novel zinc-carbon nanotubes (Zn-CNTs) composite was prepared, characterized and used in O 3 system for the enhanced degradation and mineralization of chlorinated phenol. The Zn-CNTs was characterized by SEM, BET and XRD, and the degradation of 4-chloro-3-methyl phenol (CMP) in aqueous solution was investigated using Zn-CNTs/O 3 system. The experimental results showed that the rate constant of total organic carbon (TOC) removal was 0.29 min -1 , much higher than that of only O 3 system (0.059 min -1 ) because Zn-CNTs/O 2 system could generate H 2 O 2 in situ, the concentration of H 2 O 2 could reach 156.14 mg/L within 60 min at pH 6.0. The high mineralization ratio of CMP by Zn-CNTs/O 3 occurred at wide pH range (3.0-9.0). The increase of Zn-CNTs dosage or gas flow rate contributed to the enhancement of CMP mineralization. The intermediates of CMP degradation were identified and the possible degradation pathway was tentatively proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Enhanced hydrogen evolution reaction on hybrids of cobalt phosphide and molybdenum phosphide

    NASA Astrophysics Data System (ADS)

    Fang, Si-Ling; Chou, Tsu-Chin; Samireddi, Satyanarayana; Chen, Kuei-Hsien; Chen, Li-Chyong; Chen, Wei-Fu

    2017-03-01

    Production of hydrogen from water electrolysis has stimulated the search of sustainable electrocatalysts as possible alternatives. Recently, cobalt phosphide (CoP) and molybdenum phosphide (MoP) received great attention owing to their superior catalytic activity and stability towards the hydrogen evolution reaction (HER) which rivals platinum catalysts. In this study, we synthesize and study a series of catalysts based on hybrids of CoP and MoP with different Co/Mo ratio. The HER activity shows a volcano shape and reaches a maximum for Co/Mo = 1. Tafel analysis indicates a change in the dominating step of Volmer-Hyrovský mechanism. Interestingly, X-ray diffraction patterns confirmed a major ternary interstitial hexagonal CoMoP2 crystal phase is formed which enhances the electrochemical activity.

  11. Investigation of the 66Zn(p,2pn) 64Cu and 68Zn(p,x) 64Cu nuclear processes up to 100 MeV: Production of 64Cu

    NASA Astrophysics Data System (ADS)

    Szelecsényi, F.; Steyn, G. F.; Kovács, Z.; Vermeulen, C.; van der Meulen, N. P.; Dolley, S. G.; van der Walt, T. N.; Suzuki, K.; Mukai, K.

    2005-11-01

    Cross-sections of the 66Zn(p,2pn)64Cu and 68Zn(p,x)64Cu nuclear processes were measured on highly enriched zinc targets using the stacked-foil activation technique up to 100 MeV. The new cross-sections were compared to literature data. The optimum energy range for production of 64Cu was found to be 70 → 35 MeV on 66Zn and 37 → 20 MeV on 68Zn. The thick-target yields were determined as 777 MBq/μAh (21.0 mCi/μAh) and 185 MBq/μAh (5.0 mCi/μAh), respectively. The yields of the longer-lived contaminant copper radioisotopes (i.e. 61Cu when using 66Zn as target material and both 61Cu and 67Cu in the case of 68Zn target material) were also calculated. The results obtained from the present study indicate that both reactions are suited for the production of 64Cu at a medium energy cyclotron. The optimum energy ranges are also complementary therefore the potential to utilize tandem targetry exists.

  12. Dietary Zinc Deficiency Affects Blood Linoleic Acid: Dihomo-γ-linolenic Acid (LA:DGLA) Ratio; a Sensitive Physiological Marker of Zinc Status in Vivo (Gallus gallus)

    PubMed Central

    Reed, Spenser; Qin, Xia; Ran-Ressler, Rinat; Brenna, James Thomas; Glahn, Raymond P.; Tako, Elad

    2014-01-01

    Zinc is a vital micronutrient used for over 300 enzymatic reactions and multiple biochemical and structural processes in the body. To date, sensitive and specific biological markers of zinc status are still needed. The aim of this study was to evaluate Gallus gallus as an in vivo model in the context of assessing the sensitivity of a previously unexplored potential zinc biomarker, the erythrocyte linoleic acid: dihomo-γ-linolenic acid (LA:DGLA) ratio. Diets identical in composition were formulated and two groups of birds (n = 12) were randomly separated upon hatching into two diets, Zn(+) (zinc adequate control, 42.3 μg/g zinc), and Zn(−) (zinc deficient, 2.5 μg/g zinc). Dietary zinc intake, body weight, serum zinc, and the erythrocyte fatty acid profile were measured weekly. At the conclusion of the study, tissues were collected for gene expression analysis. Body weight, feed consumption, zinc intake, and serum zinc were higher in the Zn(+) control versus Zn(−) group (p < 0.05). Hepatic TNF-α, IL-1β, and IL-6 gene expression were higher in the Zn(+) control group (p < 0.05), and hepatic Δ6 desaturase was significantly higher in the Zn(+) group (p < 0.001). The LA:DGLA ratio was significantly elevated in the Zn(−) group compared to the Zn(+) group (22.6 ± 0.5 and 18.5 ± 0.5, % w/w, respectively, p < 0.001). This study suggests erythrocyte LA:DGLA is able to differentiate zinc status between zinc adequate and zinc deficient birds, and may be a sensitive biomarker to assess dietary zinc manipulation. PMID:24658588

  13. Antimicrobial activity of ZnO-TiO2 nanomaterials synthesized from three different precursors of ZnO: influence of ZnO/TiO2 weight ratio.

    PubMed

    Daou, Ikram; Moukrad, Najia; Zegaoui, Omar; Rhazi Filali, Fouzia

    2018-03-01

    In this study, ZnO-TiO 2 nanoparticles were synthesized from three different precursors for ZnO (zinc acetate di-hydrate, zinc nitrate hexahydrate and zinc sulfate heptahydrate) and titanium (IV) isopropoxide for TiO 2 . The prepared nanomaterials were calcined at 500 °C for 3 h and characterized by various physicochemical techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy, combined with energy dispersive X-ray spectroscopy (TEM-EDS). The obtained results showed that the crystalline structure, size and morphology of the ZnO-TiO 2 nanoparticles are strongly influenced by the nature of the precursor of ZnO, as well as the ZnO/TiO 2 weight ratio. The antibacterial and antifungal activities of the synthesized nanomaterials were evaluated, in the dark, against five multi-resistant of Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Salmonella Paratyphi A) bacteria and a fungus (Candida albicans), which are pathogenic for humans. The obtained results showed that pure TiO 2 anatase is inactive against the tested strains, while the addition of ZnO to TiO 2 improves noticeably the effectiveness of TiO 2 nanoparticles, depending on the nature of the precursor of ZnO and the ZnO/TiO 2 weight ratio.

  14. Iron Bioavailability from Ferric Pyrophosphate in Extruded Rice Cofortified with Zinc Sulfate Is Greater than When Cofortified with Zinc Oxide in a Human Stable Isotope Study.

    PubMed

    Hackl, Laura; Zimmermann, Michael B; Zeder, Christophe; Parker, Megan; Johns, Paul W; Hurrell, Richard F; Moretti, Diego

    2017-03-01

    Background: Extruded rice grains are often cofortified with iron and zinc. However, it is uncertain if the addition of zinc to iron-fortified rice affects iron absorption and whether this is zinc-compound specific. Objective: We investigated whether zinc, added as zinc oxide (ZnO) or zinc sulfate (ZnSO 4 ), affects human iron absorption from extruded rice fortified with ferric pyrophosphate (FePP). Methods: In 19 iron-depleted Swiss women (plasma ferritin ≤16.5 μ/L) aged between 20 and 39 y with a normal body mass index (in kg/m 2 ; 18.7-24.8), we compared iron absorption from 4 meals containing fortified extruded rice with 4 mg Fe and 3 mg Zn. Three of the meals contained extruded rice labeled with FePP ( 57 FePP): 1 ) 1 meal without added zinc ( 57 FePP-Zn), 2 ) 1 cofortified with ZnO ( 57 FePP+ZnO), and 3 ) 1 cofortified with ZnSO 4 ( 57 FePP+ZnSO 4 ). The fourth meal contained extruded rice without iron or zinc, extrinsically labeled with ferrous sulfate ( 58 FeSO 4 ) added as a solution after cooking. All 4 meals contained citric acid. Iron bioavailability was measured by isotopic iron ratios in red blood cells. We also measured relative in vitro iron solubility from 57 FePP-Zn, 57 FePP+ZnO, and 57 FePP+ZnSO 4 expressed as a fraction of FeSO 4 solubility. Results: Geometric mean fractional iron absorption (95% CI) from 57 FePP+ZnSO 4 was 4.5% (3.4%, 5.8%) and differed from 57 FePP+ZnO (2.7%; 1.8%, 4.1%) ( P < 0.03); both did not differ from 57 FePP-Zn: 4.0% (2.8%, 5.6%). Relative iron bioavailabilities compared with 58 FeSO 4 were 62%, 57%, and 38% from 57 FePP+ZnSO 4 , 57 FePP-Zn, and 57 FePP+ZnO, respectively. In vitro solubility from 57 FePP+ZnSO 4 differed from that of 57 FePP-Zn (14.3%; P < 0.02) but not from that of 57 FePP+ZnO (10.2% compared with 13.1%; P = 0.08). Conclusions: In iron-depleted women, iron absorption from FePP-fortified extruded rice cofortified with ZnSO 4 was 1.6-fold (95% CI: 1.4-, 1.9-fold) that of rice cofortified with Zn

  15. Hydrothermal synthesis of zinc(II)-phosphonate coordination polymers with different dimensionality (0D, 2D, 3D) and dimensionality change in the solid phase (0D→3D) induced by temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández-Zapico, Eva; Montejo-Bernardo, Jose; Fernández-González, Alfonso

    2015-05-15

    Three new zinc(II) coordination polymers, [Zn(HO{sub 3}PCH{sub 2}CH{sub 2}COO)(C{sub 12}H{sub 8}N{sub 2})(H{sub 2}O)] (1), [Zn{sub 3}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2})](H{sub 2}O){sub 3.40} (2) and [Zn{sub 5}(HO{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2}){sub 4}](H{sub 2}O){sub 0.32} (3), with different structural dimensionality (0D, 2D and 3D, respectively) have been prepared by hydrothermal synthesis, and their structures were determined by single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic system (P2{sub 1}/c) forming discrete dimeric units bonded through H-bonds, while compounds 2 and 3 crystallize in the triclinic (P−1) and the monoclinic (C2/c) systems, respectively.more » Compound 3, showing three different coordination numbers (4, 5 and 6) for the zinc atoms, has also been obtained by thermal treatment of 1 (probed by high-temperature XRPD experiments). The crystalline features of these compounds, related to the coordination environments for the zinc atoms in each structure, provoke the increase of the relative fluorescence for 2 and 3, compared to the free phenanthroline. Thermal analysis (TG and DSC) and XPS studies have been also carried out for all compounds. - Graphical abstract: Three new coordination compounds of zinc with 2-carboxyethylphosphonic acid (H{sub 2}PPA) and phenanthroline have been obtained by hydrothermal synthesis. The crystalline structure depends on the different coordination environments of the zinc atoms (see two comparative Zn{sub 6}-moieties). The influence of the different coordination modes of H{sub 2}PPA with the central atom in all structures have been studied, being found new coordination modes for this ligand. Several compounds show a significant increase in relative fluorescence with respect to the free phenanthroline. - Highlights: • Compounds have been obtained modifying the reaction time and the rate

  16. Zinc phosphide

    Integrated Risk Information System (IRIS)

    Zinc phoshide ; CASRN 1314 - 84 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  17. Semiconducting ZnSnN{sub 2} thin films for Si/ZnSnN{sub 2} p-n junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Ruifeng; Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, and Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo 315201; Cao, Hongtao

    ZnSnN{sub 2} is regarded as a promising photovoltaic absorber candidate due to earth-abundance, non-toxicity, and high absorption coefficient. However, it is still a great challenge to synthesize ZnSnN{sub 2} films with a low electron concentration, in order to promote the applications of ZnSnN{sub 2} as the core active layer in optoelectronic devices. In this work, polycrystalline and high resistance ZnSnN{sub 2} films were fabricated by magnetron sputtering technique, then semiconducting films were achieved after post-annealing, and finally Si/ZnSnN{sub 2} p-n junctions were constructed. The electron concentration and Hall mobility were enhanced from 2.77 × 10{sup 17} to 6.78 × 10{sup 17 }cm{sup −3} and frommore » 0.37 to 2.07 cm{sup 2} V{sup −1} s{sup −1}, corresponding to the annealing temperature from 200 to 350 °C. After annealing at 300 °C, the p-n junction exhibited the optimum rectifying characteristics, with a forward-to-reverse ratio over 10{sup 3}. The achievement of this ZnSnN{sub 2}-based p-n junction makes an opening step forward to realize the practical application of the ZnSnN{sub 2} material. In addition, the nonideal behaviors of the p-n junctions under both positive and negative voltages are discussed, in hope of suggesting some ideas to further improve the rectifying characteristics.« less

  18. Hyperaccumulation of zinc by zinc-depleted Candida utilis grown in chemostat culture.

    PubMed

    Lawford, H G; Pik, J R; Lawford, G R; Williams, T; Kligerman, A

    1980-01-01

    The steady-state levels of zinc in Candida utilis yeast grown in continuous culture under conditions of zinc limitations are <1nmol Zn2+/mg dry weight of cells. Unlike carbon-limited cells, zinc-depleted cells from a zinc-limited chemostat possess the capacity to accumulate and store zinc at levels far in excess of the steady-state level of 4 nmol/mg dry biomass observed in carbon-limited chemostat cultures. Zinc uptake is energy-dependent and apparently undirectional since accumulated 65Zn neither exists from preloaded cells nor exchanges with cold Zn2+. The transport system exhibits a high affinity for Zn2+ (Km =.36micrM) with a Vmaxof 2.2 nmol per minute per milligram dry weight of cells. Growth during the period of the uptake assay is responsible for the apparent plateau level of 35 nmol Zn2+/mg dry weight of cells achieved after 20-30 min in the presence of 65Zn at pH 4.5 and 30 degrees C. Inhibition of growth during the uptake assay by cycloheximide results in a biphasic linear pattern of zinc accumulation where the cellular zinc is about 60 nmol/mg dry weight after 1 h. The enhanced level of accumulated zinc is not inhibtory to growth. Zinc-depleted C. utilis contains elevated amounts of polyphosphate and this anionic evidence does not allow discrimination between possible regulation of zinc homestasis either by inhibitions of zinc efflux through control of the membrane carrier or by control of the synthesis of a cytoplasmic zinc-sequestering macromolecule.

  19. Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide.

    PubMed

    Moezzi, Amir; Cortie, Michael; McDonagh, Andrew

    2016-04-25

    Thermal decomposition of layered zinc hydroxide double salts provides an interesting alternative synthesis for particles of zinc oxide. Here, we examine the sequence of changes occurring as zinc hydroxide chloride monohydrate (Zn5(OH)8Cl2·H2O) is converted to crystalline ZnO by thermal decomposition. The specific surface area of the resultant ZnO measured by BET was 1.3 m(2) g(-1). A complicating and important factor in this process is that the thermal decomposition of zinc hydroxide chloride is also accompanied by the formation of volatile zinc-containing species under certain conditions. We show that this volatile compound is anhydrous ZnCl2 and its formation is moisture dependent. Therefore, control of atmospheric moisture is an important consideration that affects the overall efficiency of ZnO production by this process.

  20. Influence of soil pH on the toxicity of zinc oxide nanoparticles to the terrestrial isopod Porcellionides pruinosus.

    PubMed

    Tourinho, Paula S; van Gestel, Cornelis A M; Lofts, Stephen; Soares, Amadeu M V M; Loureiro, Susana

    2013-12-01

    The effects of soil pH on the toxicity of ZnO nanoparticles (NPs) to the terrestrial isopod Porcellionides pruinosus were evaluated. Isopods were exposed to a natural soil amended with CaCO3 to reach 3 different pH(CaCl2) levels (4.5, 6.2, and 7.3) and to standard LUFA 2.2 soil (pH 5.5) spiked with ZnO NPs (30 nm), non-nano ZnO (200 nm), and ionic Zn as ZnCl₂. Toxicity was expressed based on total Zn concentration in soil, as well as total Zn and free Zn²⁺ ion concentrations in porewater. Compared with ZnO-spiked soils, the ZnCl₂-spiked soils had lower pH and higher porewater Ca²⁺ and Zn levels. Isopod survival did not differ between Zn forms and soils, but survival was higher for isopods exposed to ZnO NPs at pH 4.5. Median effect concentrations (EC50s) for biomass change showed similar trends for all Zn forms in all soils, with higher values at intermediate pH. Median lethal concentration (LC50) and EC50 values based on porewater Zn or free Zn ion concentrations were much lower for ZnO than for ionic zinc. Zn body concentrations increased in a dose-related manner, but no effect of soil pH was found. It is suggested not only that dissolved or free Zn in porewater contributed to uptake and toxicity, but also that oral uptake (i.e., ingestion of soil particles) could be an important additional route of exposure. © 2013 SETAC.

  1. Chemical and thermal stability of the characteristics of filtered vacuum arc deposited ZnO, SnO2 and zinc stannate thin films

    NASA Astrophysics Data System (ADS)

    Çetinörgü, E.; Goldsmith, S.

    2007-09-01

    ZnO, SnO2 and zinc stannate thin films were deposited on commercial microscope glass and UV fused silica substrates using filtered vacuum arc deposition system. During the deposition, the substrate temperature was at room temperature (RT) or at 400 °C. The film structure and composition were determined using x-ray diffraction and x-ray photoelectron spectroscopy, respectively. The transmission of the films in the VIS was 85% to 90%. The thermal stability of the film electrical resistance was determined in air as a function of the temperature in the range 28 °C (RT) to 200 °C. The resistance of ZnO increased from ~ 5000 to 105 Ω when heated to 200 °C, that of SnO2 films increased from 500 to 3900 Ω, whereas that of zinc stannate thin films increased only from 370 to 470 Ω. During sample cooling to RT, the resistance of ZnO and SnO2 thin films continued to rise considerably; however, the increase in the zinc stannate thin film resistance was significantly lower. After cooling to RT, ZnO and SnO2 thin films became practically insulators, while the resistance of zinc stannate was 680 Ω. The chemical stability of the films was determined by immersing in acidic and basic solutions up to 27 h. The SnO2 thin films were more stable in the HCl solution than the ZnO and the zinc stannate thin films; however, SnO2 and zinc stannate thin films that were immersed in the NaOH solution did not dissolve after 27 h.

  2. A Facile Molecular Precursor Route to Metal Phosphide Nanoparticles and Their Evaluation as Hydrodeoxygenation Catalysts

    DOE PAGES

    Habas, Susan E.; Baddour, Frederick G.; Ruddy, Daniel A.; ...

    2015-11-05

    Metal phosphides have been identified as a promising class of materials for the catalytic upgrading of bio-oils, which are renewable and potentially inexpensive sources for liquid fuels. Herein, we report the facile synthesis of a series of solid, phase-pure metal phosphide nanoparticles (NPs) (Ni 2P, Rh 2P, and Pd 3P) utilizing commercially available, air-stable metal–phosphine complexes in a one-pot reaction. This single-source molecular precursor route provides an alternative method to access metal phosphide NPs with controlled phases and without the formation of metal NP intermediates that can lead to hollow particles. The formation of the Ni 2P NPs was shownmore » to proceed through an amorphous Ni–P intermediate, leading to the desired NP morphology and metal-rich phase. This low-temperature, rapid route to well-defined metal NPs is expected to have broad applicability to a variety of readily available or easily synthesized metal–phosphine complexes with high decomposition temperatures. Hydrodeoxygenation of acetic acid, an abundant bio-oil component, was performed to investigate H 2 activation and deoxygenation pathways under conditions that are relevant to ex situ catalytic fast pyrolysis (high temperatures, low pressures, and near-stoichiometric H 2 concentrations). The catalytic performance of the silica-supported metal phosphide NPs was compared to the analogous incipient wetness (IW) metal and metal phosphide catalysts over the range 200–500 °C. Decarbonylation was the primary pathway for H 2 incorporation in the presence of all of the catalysts except NP-Pd 3P, which exhibited minimal productive activity, and IW-Ni, which evolved H 2. The highly controlled NP-Ni2P and NP-Rh2P catalysts, which were stable under these conditions, behaved comparably to the IW-metal phosphides, with a slight shift to higher product onset temperatures, likely due to the presence of surface ligands. Most importantly, the NP-Ni 2P catalyst exhibited H 2 activation

  3. Pore-water chemistry explains zinc phytotoxicity in soil.

    PubMed

    Kader, Mohammed; Lamb, Dane T; Correll, Ray; Megharaj, Mallavarapu; Naidu, Ravi

    2015-12-01

    Zinc (Zn) is a widespread soil contaminant arising from a numerous anthropogenic sources. However, adequately predicting toxicity of Zn to ecological receptors remains difficult due to the complexity of soil characteristics. In this study, we examined solid-solution partitioning using pore-water data and toxicity of Zn to cucumber (Cucumis sativus L.) in spiked soils. Pore-water effective concentration (ECx, x=10%, 20% and 50% reduction) values were negatively related to pH, indicating lower Zn pore water concentration were needed to cause phytotoxicity at high pH soils. Total dissolved zinc (Znpw) and free zinc (Zn(2+)) in soil-pore water successfully described 78% and 80.3% of the variation in relative growth (%) in the full dataset. When the complete data set was used (10 soils), the estimated EC50pw was 450 and 79.2 µM for Znpw and Zn(2+), respectively. Total added Zn, soil pore water pH (pHpw) and dissolve organic carbon (DOC) were the best predictors of Znpw and Zn(2+) in pore-water. The EC10 (total loading) values ranged from 179 to 5214 mg/kg, depending on soil type. Only pH measurements in soil were related to ECx total Zn data. The strongest relationship to ECx overall was pHca, although pHw and pHpw were in general related to Zn ECx. Similarly, when a solution-only model was used to predict Zn in shoot, DOC was negatively related to Zn in shoot, indicating a reduction in uptake/ translocation of Zn from solution with increasing DOC. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Protonation of a lanthanum phosphide-alkyl occurs at the P-La not the C-La bond: isolation of a cationic lanthanum alkyl complex.

    PubMed

    Izod, Keith; Liddle, Stephen T; Clegg, William

    2004-08-07

    Protonation of the heteroleptic, cyclometalated lanthanum phosphide complex [((Me3Si)2CH)(C6H4-2-CH2NMe2)P]La(THF)[P(C6H4-2-CH2NMe2)(CH(SiMe3)(SiMe2CH2))] with [Et3NH][BPh4] yields the cationic alkyllanthanum complex [(THF)4La[P(C6H4-2-CH2NMe2)(CH(SiMe3)(SiMe2CH2))

  5. Chemical bath deposited ZnS buffer layer for Cu(In,Ga)Se2 thin film solar cell

    NASA Astrophysics Data System (ADS)

    Hong, Jiyeon; Lim, Donghwan; Eo, Young-Joo; Choi, Changhwan

    2018-02-01

    The dependence of Zn precursors using zinc sulfate (ZnSO4), zinc acetate (Zn(CH3COO)2), and zinc chloride (ZnCl2) on the characteristics of the chemical bath deposited ZnS thin film used as a buffer layer of Cu(In,Ga)Se2 (CIGS) thin film solar cell was studied. It is found that the ZnS film deposition rate increases with higher stability constant during decomplexation reaction of zinc ligands, which affects the crack formation and the amount of sulfur and oxygen contents within the film. The band gap energies of all deposited films are in the range of 3.40-3.49 eV, which is lower than that of the bulk ZnS film due to oxygen contents within the films. Among the CIGS solar cells having ZnS buffer layers prepared by different Zn precursors, the best cell efficiency with 9.4% was attained using Zn(CH3COO)2 precursor due to increased Voc mainly. This result suggests that [Zn(NH3)4]2+ complex formation should be well controlled to attain the high quality ZnS thin films.

  6. A Reduced Zinc Diet or Zinc Transporter 3 Knockout Attenuate Light Induced Zinc Accumulation and Retinal Degeneration△

    PubMed Central

    Bai, Shi; Sheline, Carolyn R.; Zhou, Yongdong; Sheline, Christian T.

    2013-01-01

    Our previous study on retinal light exposure suggests the involvement of zinc (Zn2+) toxicity in the death of RPE and photoreceptors (LD) which could be attenuated by pyruvate and nicotinamide, perhaps through restoration of NAD+ levels. In the present study, we examined Zn2+ toxicity, and the effects of NAD+ restoration in primary retinal cultures. We then reduced Zn2+ levels in rodents by reducing Zn2+ levels in the diet, or by genetics and measured LD. Sprague Dawley albino rats were fed 2, or 61 mg Zn2+/kg of diet for 3 weeks, and exposed to 18 kLux of white light for 4h. We light exposed (70 kLux of white light for 50h) Zn2+ transporter 3 knockout (ZnT3-KO, no synaptic Zn2+), or RPE65 knockout mice (RPE65-KO, lack rhodopsin cycling), or C57/BI6/J controls and determined light damage and Zn2+ staining. Retinal Zn2+ staining was examined at 1h and 4h after light exposure. Retinas were examined after 7d by optical coherence tomography and histology. After LD, rats fed the reduced Zn2+ diet showed less photoreceptor Zn2+ staining and degeneration compared to a normal Zn2+ diet. Similarly, ZnT3-KO and RPE65-KO mice showed less Zn2+ staining, NAD+ loss, and RPE or photoreceptor death than C57/BI6/J control mice. Dietary or ZnT3-dependent Zn2+ stores, and intracellular Zn2+ release from rhodopsin recycling are suggested to be involved in light-induced retinal degeneration. These results implicate novel rhodopsin-mediated mechanisms and therapeutic targets for LD. Our companion manuscript demonstrates that pharmacologic, circadian, or genetic manipulations which maintain NAD+ levels reduce LD. PMID:23274584

  7. Formation of zinc sulfide species during roasting of ZnO with pyrite and its contribution on flotation.

    PubMed

    Zheng, Yong-Xing; Lv, Jin-Fang; Wang, Hua; Wen, Shu-Ming; Pang, Jie

    2018-05-18

    In this paper, formation of zinc sulfide species during roasting of ZnO with FeS 2 was investigated and its contribution on flotation was illustrated. The evolution process, phase and crystal growth were investigated by thermogravimetry (TG), X-Ray diffraction (XRD) along with thermodynamic calculation and scanning electron microscopy-Energy-dispersive X-ray spectroscopy (SEM-EDS), respectively, to interpret the formation mechanism of ZnS species. It was found that ZnS was initially generated at about 450 °C and then the reaction prevailed at about 600 °C. The generated Fe x S would dissolve into ZnS and then form (Zn, Fe)S compound in form of Fe 2 Zn 3 S 5 when temperature increased to about 750 °C. This obviously accelerated ZnS phase formation and growth. In addition, it was known that increasing of ZnO dosage had few effects on the decomposition behavior of FeS 2 . Then, flotation tests of different zinc oxide materials before and after treatment were performed to further confirm that the flotation performances of the treated materials could be obviously improved. Finally, a scheme diagram was proposed to regular its application to mineral processing. It was systematically illustrated that different types of ZnS species needed to be synthetized when sulfidization roasting-flotation process was carried out to treat zinc oxide materials.

  8. Zinc complex chemistry of N,N,O ligands providing a hydrophobic cavity.

    PubMed

    Gross, Florian; Vahrenkamp, Heinrich

    2005-05-02

    Three new highly substituted bis(2-picolyl)(2-hydroxybenzyl)amine ligands were synthesized, and their biomimetic zinc complex chemistry was explored. They have tert-butyl substituents at the 3-and 5-positions of their phenyl rings, and they bear one phenyl group (HL2), two methyl groups (HL3), or two phenyl groups (HL4) at the 6-positions of their pyridyl rings. Their reactions with hydrated zinc perchlorate yield three distinctively different complex types. L2 forms a trigonal-bipyramidal aqua complex, and L3, a square-pyramidal aqua complex. The substituents on L4 leave no room for a water ligand, and the resulting zinc complex is trigonal-monopyramidal with a vacant coordination site. The water ligands on the L2Zn and L3Zn units can be replaced by anionic halide, thiocyanate, p-nitrophenolate, benzoate, and organophosphate as well as uncharged pyridine ligands. The L4Zn unit forms labile halide, p-nitrophenolate, and pyridine complexes. Triethylamine converts the aqua complexes to the labile hydroxides L2Zn-OH and L3Zn-OH, and in polar media [L3Zn-OH2]+ seems to be in equilibrium with L3Zn-OH. The hydroxides, but not the water complexes, effect the hydrolytic cleavage of tris(p-nitrophenyl) phosphate to bis(p-nitrophenyl) phosphate. The kinetic investigation of the cleavage reactions has shown them to be second-order reactions, thereby supporting the proposed four-center mechanism.

  9. Laser stimulated third harmonic generation studies in ZnO-Ta2O5-B2O3 glass ceramics entrenched with Zn3Ta2O8 crystal phases

    NASA Astrophysics Data System (ADS)

    Siva Sesha Reddy, A.; Jedryka, J.; Ozga, K.; Ravi Kumar, V.; Purnachand, N.; Kityk, I. V.; Veeraiah, N.

    2018-02-01

    In this study zinc borate glasses doped with different concentrations Ta2O5 were synthesized and were crystallized by heat treatment for prolonged times. The samples were characterized by XRD, SEM, IR and Raman spectroscopy techniques. The SEM images of the crystallized samples have indicated that the samples contain randomly distributed crystal grains with size ∼1 μm entrenched in the residual amorphous phase. XRD studies have exhibited diffraction peaks identified as being due to the reflections from (1 1 1) planes of monoclinic Zn3Ta2O8 crystal phase that contains intertwined tetrahedral zinc and octahedral tantalate structural units. The concentration of such crystal phases in the bulk samples is observed to increase with increase of Ta2O5 up to 3.0 mol%. The IR and Raman spectroscopy studies have confirmed the presence of ZnO4 and TaO6 structural units in the glass network in addition to the conventional borate structural units. For measuring third harmonic generation (THG) in the samples, the samples were irradiated with 532 nm laser beam and the intensity of THG of probing beam (Nd:YAG λ = 1064 nm 20 ns pulsed laser (ω)) is measured as a function of fundamental beam power varying up to 200 J/m2. The intensity of THG is found to be increasing with increase of fundamental beam power and found to be the maximal for the glass crystallized with 3.0 mol% of Ta2O5. The intensity of THG of the ceramicized samples is found to be nearly 5 times higher with respect to that of pre-crystallized samples. The generation of 3ω is attributed to the perturbation/interaction between Zn3Ta2O8 anisotropic crystal grains and the incident probing beam.

  10. Zinc Fortification Decreases ZIP1 Gene Expression of Some Adolescent Females with Appropriate Plasma Zinc Levels

    PubMed Central

    Méndez, Rosa O.; Santiago, Alejandra; Yepiz-Plascencia, Gloria; Peregrino-Uriarte, Alma B.; de la Barca, Ana M. Calderón; García, Hugo S.

    2014-01-01

    Zinc homeostasis is achieved after intake variation by changes in the expression levels of zinc transporters. The aim of this study was to evaluate dietary intake (by 24-h recall), absorption, plasma zinc (by absorption spectrophotometry) and the expression levels (by quantitative PCR), of the transporters ZIP1 (zinc importer) and ZnT1 (zinc exporter) in peripheral white blood cells from 24 adolescent girls before and after drinking zinc-fortified milk for 27 day. Zinc intake increased (p < 0.001) from 10.5 ± 3.9 mg/day to 17.6 ± 4.4 mg/day, and its estimated absorption from 3.1 ± 1.2 to 5.3 ± 1.3 mg/day. Mean plasma zinc concentration remained unchanged (p > 0.05) near 150 µg/dL, but increased by 31 µg/dL (p < 0.05) for 6/24 adolescents (group A) and decreased by 25 µg/dL (p < 0.05) for other 6/24 adolescents (group B). Expression of ZIP1 in blood leukocytes was reduced 1.4-fold (p < 0.006) in group A, while for the expression of ZnT1 there was no difference after intervention (p = 0.39). An increase of dietary zinc after 27-days consumption of fortified-milk did not increase (p > 0.05) the plasma level of adolescent girls but for 6/24 participants from group A in spite of the formerly appropriation, which cellular zinc uptake decreased as assessed by reduction of the expression of ZIP1. PMID:24922175

  11. Real structure of (Sb1/3Zn2/3)GaO3(ZnO)3, a member of the homologous series ARO3(ZnO)m with ordered site occupation

    NASA Astrophysics Data System (ADS)

    Garling, Jennifer; Assenmacher, Wilfried; Schmid, Herbert; Longo, Paolo; Mader, Werner

    2018-02-01

    The hitherto unknown compound (Sb1/3Zn2/3)GaO3(ZnO)3, a member of the homologous series with general formula ARO3(ZnO)m (A,R = trivalent metal cation), was prepared by solid state methods from the binary oxides in sealed Pt-tubes. The structure of (Sb1/3Zn2/3)GaO3(ZnO)3 has been determined by X-ray diffraction from flux-grown single crystals (R 3 ̅ m , Z = 3, aR = 3.2387(7) Å, cR = 41.78(1) Å. The analysis revealed that (Sb1/3Zn2/3)GaO3(ZnO)m is isostructural with InGaO3(ZnO)m, where In3+ on octahedral sites is replaced by Sb5+ and Zn2+ in a ratio of 1:2, preserving an average charge of 3+. (Sb1/3Zn2/3)GaO3(ZnO)3 was furthermore analyzed by electron diffraction, High Angle Annular Dark Field (HAADF) scanning TEM, and high precision EELS spectroscopic imaging, where a periodic ordering of SbO6 octahedra connected via edge sharing to six ZnO6 octahedra in the octahedral layers in a honeycomb motif is found. Due to the large lateral distance of ca. 1.4 nm between adjacent octahedral layers, electrostatic interaction might hardly dictate Sb and Zn positions in neighbouring layers, and hence is a characteristic of the real structure of (Sb1/3Zn2/3)GaO3(ZnO)3. A structure model of the compound in space group P3112 (Nr. 151) with strictly ordered and discrete Sb and Zn positions is derived by crystallographic transformations as closest approximant for the real structure of (Sb1/3Zn2/3)GaO3(ZnO)3. UV-vis measurements confirm this compound to be a transparent oxide with an optical band gap in the UV region with Eg = 3.15 eV.

  12. Cs promoted oxidation of Zn and CuZn surfaces: a combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Sanjay; Rodriguez, JoséA.; Hrbek, Jan

    1997-07-01

    The interaction of O 2 with Zn, {Cs}/{Zn} and {Cs}/{CuZn} surfaces was investigated using photoemission and ab initio self-consistent-field (SCF) calculations. On zinc films, the sticking probability of O 2 is extremely low (10 -3-10 -2), and O 2 exposures in the range of 10 3 to 10 4 langmuirs are necessary to produce a significant adsorption of oxygen and the transformation of metallic zinc into zinc oxide. The presence of sub monolayer coverages of cesium enhances the oxidation rate of zinc by 2-3 orders of magnitude. In the {Cs}/{Zn} system, the alkali atom donates electrons to zinc. This charge transfer facilitates the formation of Zn→O 2 dative bonds and breaking of the OO bond. For the coadsorption of Cs and O 2 on Zn(001), the larger the electron transfer from Zn into the O 2 (1 πg) orbitals, the bigger the adsorption energy of the molecule and the elongation of the OO bond. In general, cesium does not promote the oxidation of copper. In the {Cs}/{CuZn} system, copper withdraws electrons from zinc. The presence of copper in the {Cs}/{CuZn} system inhibits the oxidation of the Zn component compared with the {Cs}/{Zn} system by lowering the electron density on the Zn atoms. After exposing the {Cs}/{CuZn} system to O 2, zinc is oxidized at a rate that is larger than that found for clean CuZn surfaces and smaller than seen in {Cs}/{Zn} surfaces. Molecular hydrogen is found to have no effect on oxidized Cu, Zn and CuZn films. However, atomic hydrogen reduces ZnO to metallic zinc and CuO to Cu 2O. In the oxidized CuZn alloy, CuO is reduced first followed by the reduction of ZnO. A comparison of the behavior of O 2/Cs/Zn and H 2O/Cs/Zn systems shows that while O 2 causes severe oxidation of Cs promoted Zn surfaces, H 2O has little or no effect.

  13. Significant Enhancement of Photocatalytic Reduction of CO2 with H2O over ZnO by the Formation of Basic Zinc Carbonate.

    PubMed

    Xin, Chunyu; Hu, Maocong; Wang, Kang; Wang, Xitao

    2017-07-11

    Electron-hole pair separation efficiency and adsorption performance of photocatalysts to CO 2 are the two key factors affecting the performance of photocatalytic CO 2 reduction with H 2 O. Distinct from conventional promoter addition, this study proposed a novel approach to address these two issues by tuning the own surface features of semiconductor photocatalyst. Three ZnO samples with different morphologies, surface area, and defect content were fabricated by varying preparation methods, characterized by XRD, TEM, and room-temperature PL spectra, and tested in photoreduction of CO 2 with H 2 O. The results show that the as-prepared porous ZnO nanosheets exhibit a much higher activity for photoreduction of CO 2 with H 2 O when compared to ZnO nanoparticles and nanorods attributed to the existence of more defect sites, that is, zinc and oxygen vacancies. These defects would lower the combination rate of electron-hole pair as well as promote the formation of basic zinc carbonate by Lewis acid-base interaction, which is the active intermediate species for photoreduction of CO 2 . ZnO nanoparticles and ZnO nanorods with few defects show weak adsorption for CO 2 leading to the inferior photocatalytic activities. This work provides new insight on the CO 2 activation under light irradiation.

  14. Effect of ZnO:Cs2CO3 on the performance of organic photovoltaics

    PubMed Central

    2014-01-01

    We demonstrate a new solution-processed electron transport layer (ETL), zinc oxide doped with cesium carbonate (ZnO:Cs2CO3), for achieving organic photovoltaics (OPVs) with good operational stability at ambient air. An OPV employing the ZnO:Cs2CO3 ETL exhibits a fill factor of 62%, an open circuit voltage of 0.90 V, and a short circuit current density of −6.14 mA/cm2 along with 3.43% power conversion efficiency. The device demonstrated air stability for a period over 4 weeks. In addition, we also studied the device structure dependence on the performance of organic photovoltaics. Thus, we conclude that ZnO:Cs2CO3 ETL could be employed in a suitable architecture to achieve high-performance OPV. PMID:25045340

  15. Fixation of CO2 in bi-layered coordination networks of zinc tetra(4-carboxyphenyl)porphyrin with multi-component [Pr2Na3(NO3)(H2O)3] connectors.

    PubMed

    Nandi, Goutam; Goldberg, Israel

    2014-11-14

    CO2 is fixed in a rare μ2-η bridging mode by bi-layered coordination networks of ZnTCPP tessellated along the four equatorial directions by [Pr2Na3(NO3)(H2O)3](8+) connecting clusters in a 2 : 1 ratio (1), but not in the isomorphous free-base porphyrin analogue [(TCPPH2)2(Pr2Na3(NO3)(H2O)3)]n (2), revealing the crucial role of the zinc metal in this process.

  16. ZnO/Sn:In2O3 and ZnO/CdTe band offsets for extremely thin absorber photovoltaics

    NASA Astrophysics Data System (ADS)

    Kaspar, T. C.; Droubay, T.; Jaffe, J. E.

    2011-12-01

    Band alignments were measured by x-ray photoelectron spectroscopy for thin films of ZnO on polycrystalline Sn:In2O3 (ITO) and single crystal CdTe. Hybrid density functional theory calculations of epitaxial zinc blende ZnO(001) on CdTe(001) were performed to compare with experiment. A conduction band (CB) offset of -0.6 eV was measured for ZnO/ITO, which is larger than desired for efficient electron injection. For ZnO/CdTe, the experimental conduction band offset of 0.25 eV is smaller than the calculated value of 0.67 eV, possibly due to the TeOx layer at the ZnO/CdTe interface. The measured conduction band offset for ZnO/CdTe is favorable for photovoltaic devices.

  17. The effect of pH on the toxicity of zinc oxide nanoparticles to Folsomia candida in amended field soil.

    PubMed

    Waalewijn-Kool, Pauline L; Ortiz, Maria Diez; Lofts, Stephen; van Gestel, Cornelis A M

    2013-10-01

    The effect of soil pH on the toxicity of 30 nm ZnO to Folsomia candida was assessed in Dorset field soils with pHCaCl2 adjusted to 4.31, 5.71, and 6.39. To unravel the contribution of particle size and dissolved Zn, 200 nm ZnO and ZnCl2 were tested. Zinc sorption increased with increasing pH, and Freundlich kf values ranged from 98.9 (L/kg)(1/n) to 333 (L/kg)(1/n) for 30 nm ZnO and from 64.3 (L/kg)(1/n) to 187 (L/kg)(1/n) for ZnCl2. No effect of particle size was found on sorption, and little difference was found in toxicity between 30 nm and 200 nm ZnO. The effect on reproduction decreased with increasing pH for all Zn forms, with 28-d median effective concentrations (EC50s) of 553 mg Zn/kg, 1481 mg Zn/kg, and 3233 mg Zn/kg for 30 nm ZnO and 331 mg Zn/kg, 732 mg Zn/kg, and 1174 mg Zn/kg for ZnCl2 at pH 4.31, 5.71, and 6.39, respectively. The EC50s based on porewater Zn concentrations increased with increasing pH for 30 nm ZnO from 4.77 mg Zn/L to 18.5 mg Zn/L, while for ZnCl2 no consistent pH-related trend in EC50s was found (21.0-63.3 mg Zn/L). Porewater calcium levels were 10 times higher in ZnCl2 -spiked soils than in ZnO-spiked soils. The authors' results suggest that the decreased toxicity of ZnCl2 compared with 30 nm ZnO based on porewater concentrations was because of a protective effect of calcium and not a particle effect. © 2013 SETAC.

  18. [Study on solid phase extraction spectrophotometric determination of zinc with 2-(2-quinolylazo)-5-dimthylaminophenol].

    PubMed

    Zhou, Shi-ping; Duan, Chang-qun; Liu, Hong-cheng; Hu, Qiu-fen

    2005-10-01

    A highly sensitive, selective and rapid method for the determination of zinc based on the rapid reaction of zinc(II) with 2-(2-quinolylazo)-5-dimthylaminophenol (QADMAP) and the solid phase extraction of zinc ion with anion exchange resin cartridge was developed. In the presence of pH 8.5 buffer solution and Triton X-100 medium, QADMAP can react with zinc(II) to form a stable 2 :1 complex (QADMAP:Zn(II)). The molar absorptivity is 1.22 x 10(5)L x moL(-1) x cm(-1) at 590 nm. Beer's law is obeyed in the range of 0-1.0 microg x mL(-1). The zinc ions in the samples can be enriched and separated by solid phase extraction with anion exchange resincartridge. Testing results show that recovery for zinc(II) was from 95% to 104%, and RSD was below 3%. This method was applied to the determination of zinc in water and food with good results.

  19. 40 CFR 721.3032 - Boric acid (H3BO2), zinc salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Boric acid (H3BO2), zinc salt. 721... Substances § 721.3032 Boric acid (H3BO2), zinc salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as boric acid (H3BO2), zinc salt (PMN P-97-553...

  20. 40 CFR 721.3032 - Boric acid (H3BO2), zinc salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Boric acid (H3BO2), zinc salt. 721... Substances § 721.3032 Boric acid (H3BO2), zinc salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as boric acid (H3BO2), zinc salt (PMN P-97-553...

  1. Mechanical mixtures of metal oxides and phosphorus pentoxide as novel precursors for the synthesis of transition-metal phosphides.

    PubMed

    Guo, Lijuan; Zhao, Yu; Yao, Zhiwei

    2016-01-21

    This study presents a new type of precursor, mechanical mixtures of metal oxides (MOs) and phosphorus pentoxide (P2O5) are used to synthesize Ni2P, Co2P and MoP phosphides by the H2 reduction method. In addition, this is first report of common solid-state P2O5 being used as a P source for the synthesis of metal phosphides. The traditional precursors are usually prepared via a complicated preparation procedure involving dissolution, drying and calcination steps. However, these novel MOs/P2O5 precursors can be obtained only by simple mechanical mixing of the starting materials. Furthermore, unlike the direct transformation from amorphous phases to phosphides, various specific intermediates were involved in the transformation from MOs/P2O5 to phosphides. It is worthy to note that the dispersions of Ni2P, Co2P and MoP obtained from MOs/P2O5 precursors were superior to those of the corresponding phosphides prepared from the abovementioned traditional precursors. It is suggested that the morphology of the as-prepared metal phosphides might be inherited from the corresponding MOs. Based on the results of XRD, XPS, SEM and TEM, the formation pathway of phosphides can be defined as MOs/P2O5 precursors → complex intermediates (metals, metal phosphates and metal oxide-phosphates) → metal phosphides.

  2. Expression of zinc transporter ZnT7 in mouse superior cervical ganglion

    USDA-ARS?s Scientific Manuscript database

    The superior cervical ganglion (SCG) neurons contain a considerable amount of zinc ions, but little is known about zinc homeostasis in the SCG. It is known that zinc transporter 7 (ZnT7, Slc30a7), a member of the Slc30 ZnT family, is involved in mobilizing zinc ions from the cytoplasm into the Golgi...

  3. III-nitrides on oxygen- and zinc-face ZnO substrates

    NASA Astrophysics Data System (ADS)

    Namkoong, Gon; Burnham, Shawn; Lee, Kyoung-Keun; Trybus, Elaissa; Doolittle, W. Alan; Losurdo, Maria; Capezzuto, Pio; Bruno, Giovanni; Nemeth, Bill; Nause, Jeff

    2005-10-01

    The characteristics of III-nitrides grown on zinc- and oxygen-face ZnO by plasma-assisted molecular beam epitaxy were investigated. The reflection high-energy electron diffraction pattern indicates formation of a cubic phase at the interface between III-nitride and both Zn- and O-face ZnO. The polarity indicates that Zn-face ZnO leads to a single polarity, while O-face ZnO forms mixed polarity of III-nitrides. Furthermore, by using a vicinal ZnO substrate, the terrace-step growth of GaN was realized with a reduction by two orders of magnitude in the dislocation-related etch pit density to ˜108cm-2, while a dislocation density of ˜1010cm-2 was obtained on the on-axis ZnO substrates.

  4. The Enhanced Formaldehyde-Sensing Properties of P3HT-ZnO Hybrid Thin Film OTFT Sensor and Further Insight into Its Stability

    PubMed Central

    Tai, Huiling; Li, Xian; Jiang, Yadong; Xie, Guangzhong; Du, Xiaosong

    2015-01-01

    A thin-film transistor (TFT) having an organic–inorganic hybrid thin film combines the advantage of TFT sensors and the enhanced sensing performance of hybrid materials. In this work, poly(3-hexylthiophene) (P3HT)-zinc oxide (ZnO) nanoparticles' hybrid thin film was fabricated by a spraying process as the active layer of TFT for the employment of a room temperature operated formaldehyde (HCHO) gas sensor. The effects of ZnO nanoparticles on morphological and compositional features, electronic and HCHO-sensing properties of P3HT-ZnO thin film were systematically investigated. The results showed that P3HT-ZnO hybrid thin film sensor exhibited considerable improvement of sensing response (more than two times) and reversibility compared to the pristine P3HT film sensor. An accumulation p-n heterojunction mechanism model was developed to understand the mechanism of enhanced sensing properties by incorporation of ZnO nanoparticles. X-ray photoelectron spectroscope (XPS) and atomic force microscopy (AFM) characterizations were used to investigate the stability of the sensor in-depth, which reveals the performance deterioration was due to the changes of element composition and the chemical state of hybrid thin film surface induced by light and oxygen. Our study demonstrated that P3HT-ZnO hybrid thin film TFT sensor is beneficial in the advancement of novel room temperature HCHO sensing technology. PMID:25608214

  5. The enhanced formaldehyde-sensing properties of P3HT-ZnO hybrid thin film OTFT sensor and further insight into its stability.

    PubMed

    Tai, Huiling; Li, Xian; Jiang, Yadong; Xie, Guangzhong; Du, Xiaosong

    2015-01-19

    A thin-film transistor (TFT) having an organic-inorganic hybrid thin film combines the advantage of TFT sensors and the enhanced sensing performance of hybrid materials. In this work, poly(3-hexylthiophene) (P3HT)-zinc oxide (ZnO) nanoparticles' hybrid thin film was fabricated by a spraying process as the active layer of TFT for the employment of a room temperature operated formaldehyde (HCHO) gas sensor. The effects of ZnO nanoparticles on morphological and compositional features, electronic and HCHO-sensing properties of P3HT-ZnO thin film were systematically investigated. The results showed that P3HT-ZnO hybrid thin film sensor exhibited considerable improvement of sensing response (more than two times) and reversibility compared to the pristine P3HT film sensor. An accumulation p-n heterojunction mechanism model was developed to understand the mechanism of enhanced sensing properties by incorporation of ZnO nanoparticles. X-ray photoelectron spectroscope (XPS) and atomic force microscopy (AFM) characterizations were used to investigate the stability of the sensor in-depth, which reveals the performance deterioration was due to the changes of element composition and the chemical state of hybrid thin film surface induced by light and oxygen. Our study demonstrated that P3HT-ZnO hybrid thin film TFT sensor is beneficial in the advancement of novel room temperature HCHO sensing technology.

  6. Essential elucidation for preparation of supported nickel phosphide upon nickel phosphate precursor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xuguang, E-mail: liuxuguang@qust.edu.cn; Xu, Lei; Zhang, Baoquan

    2014-04-01

    Preparation of supported nickel phosphide (Ni{sub 2}P) depends on nickel phosphate precursor, generally related to its chemical composition and supports. Study of this dependence is essential and meaningful for the preparation of supported Ni{sub 2}P with excellent catalytic activity. The chemical nature of nickel phosphate precursor is revealed by Raman and UV–vis spectra. It is found that initial P/Ni mole ratio ≥0.8 prohibits the Ni-O-Ni bridge bonding (i.e., nickel oxide). This chemical bonding will not result in Ni{sub 2}P structure, verified by XRD characterization results. The alumina (namely, γ-Al{sub 2}O{sub 3}, θ-Al{sub 2}O{sub 3}, or α-Al{sub 2}O{sub 3}) with distinctmore » physiochemical properties also results in diverse chemical nature of nickel phosphate, and then different nickel phosphides. The influence of alumina support on producing Ni{sub 2}P was explained by the theory of surface energy heterogeneity, calculated by the NLDFT method based on N{sub 2}-sorption isotherm. The uniform surface energy of α-Al{sub 2}O{sub 3} results only in the nickel phosphosate precursor and thus the Ni{sub 2}P phase. - Graphical abstract: Surface energy heterogeneity in alumina (namely α-Al{sub 2}O{sub 3}, θ-Al{sub 2}O{sub 3}, and γ-Al{sub 2}O{sub 3}) supported multi-oxidic precursors with different reducibilities and thus diverse nickel phosphides (i.e., Ni{sub 3}P, Ni{sub 12}P{sub 5}, Ni{sub 2}P). - Highlights: • Preparing pure Ni{sub 2}P. • Elucidating nickel phosphate precursor. • Associating with surface energy.« less

  7. Formation of homologous In{sub 2}O{sub 3}(ZnO){sub m} thin films and its thermoelectric properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Junjun; Nakamura, Shin-ichi; Shigesato, Yuzo, E-mail: yuzo@chem.aoyama.ac.jp

    Homologous In{sub 2}O{sub 3}(ZnO){sub 5} thin films were produced on a synthetic quartz glass substrate by thermal annealing of magnetron sputtered In{sub 2}O{sub 3}-ZnO compound films. When the annealing temperature was increased to 700 °C, the sputtered In{sub 2}O{sub 3}-ZnO film with In{sub 2}O{sub 3} microcrystalline changed to a c-oriented homologous In{sub 2}O{sub 3}(ZnO){sub 5} structure, for which the crystallization is suggested to begin from the surface and proceed along with the film thickness. The annealing temperature of 700 °C to form the In{sub 2}O{sub 3}(ZnO){sub 5} structure was substantially lower than temperatures of conventional solid state synthesis from In{sub 2}O{sub 3}more » and ZnO powders, which is attributed to the rapid diffusional transport of In and Zn due to the mixing of In{sub 2}O{sub 3} and ZnO in the atomic level for sputtered In{sub 2}O{sub 3}-ZnO compound films. The homologous structure collapsed at temperatures above 900 °C, which is attributed to (1) zinc vaporization from the surface and (2) a gradual increase of zinc silicate phase at the interface. This c-oriented layer structure of homologous In{sub 2}O{sub 3}(ZnO){sub 5} thin films along the film thickness allowed the thin film to reach a power factor of 1.3 × 10{sup −4} W/m K{sup 2} at 670 °C, which is comparable with the reported maximum value for the textured In{sub 2}O{sub 3}(ZnO){sub 5} powder (about 1.6 × 10{sup −4} W/m K{sup 2} at 650 °C).« less

  8. The new barium zinc mercurides Ba3ZnHg10 and BaZn0.6Hg3.4 - Synthesis, crystal and electronic structure

    NASA Astrophysics Data System (ADS)

    Schwarz, Michael; Wendorff, Marco; Röhr, Caroline

    2012-12-01

    The title compounds Ba3ZnHg10 and BaZn0.6Hg3.4 were synthesized from stoichiometric ratios of the elements in Ta crucibles. Their crystal structures, which both represent new structure types, have been determined using single crystal X-ray data. The structure of Ba3ZnHg10 (orthorhombic, oP28, space group Pmmn, a=701.2(3), b=1706.9(8), c=627.3(3)pm, Z=2, R1=0.0657) contains folded 44 Hg nets, where the meshes form the bases of flat rectangular pyramids resembling the structure of BaAl4. The flat pyramids are connected via Hg-Zn/Hg bonds, leaving large channels at the folds, in which Ba(1) and Hg(2) atoms alternate. Whereas the remaining Hg/Zn atoms form a covalent 3D network of three- to five-bonded atoms with short M-M distances (273-301 pm; CN 9-11), the Hg(2) atoms in the channels adopt a comparatively large coordination number of 12 and increased distances (317-348 pm) to their Zn/Hg neighbours. In the structure of BaZn0.6Hg3.4 (cubic, cI320, space group I4bar3d, a=2025.50(7) pm, Z=64, R1=0.0440), with a chemical composition not much different from that of Ba3ZnHg10, the Zn/Hg atoms of the mixed positions M(1/2) are arranged in an slightly distorted primitive cubic lattice with a 4×4×4 subcell relation to the unit cell. The 24 of the originating 64 cubes contain planar cis tetramers Hg(5,6)4 with Hg in a nearly trigonal planar or tetrahedral coordination. In another 24 of the small cubes, two opposing faces are decorated by Hg(3,4)2 dumbbells, two by Ba(2) atoms respectively. The third type of small cubes are centered by Ba(1) atoms only. The complex 3D polyanionic Hg/Zn network thus formed is compared with the Hg partial structure in Rb3Hg20 applying a group-subgroup relation. Despite their different overall structures, the connectivity of the negatively charged Hg atoms, the rather metallic Zn bonding characteristic (as obtained from FP-LAPW band structure calculations) and the coordination number of 16 for all Ba cations relate the two title compounds.

  9. Effects of zinc supplementation on Shiga toxin 2e-producing Escherichia coli in vitro.

    PubMed

    Uemura, Ryoko; Katsuge, Tomoko; Sasaki, Yosuke; Goto, Shinya; Sueyoshi, Masuo

    2017-10-07

    Swine edema disease is caused by Shiga toxin (Stx) 2e-producing Escherichia coli (STEC). Addition of highly concentrated zinc formulations to feed has been used to treat and prevent the disease, but the mechanism of the beneficial effect is unknown. The purpose of the present study was to investigate the effects of highly concentrated zinc formulations on bacterial growth, hemolysin production, and an Stx2e release by STEC in vitro. STEC strain MVH269 isolated from a piglet with edema disease was cultured with zinc oxide (ZnO) or with zinc carbonate (ZnCO 3 ), each at up to 3,000 ppm. There was no effect of zinc addition on bacterial growth. Nonetheless, the cytotoxic activity of Stx2e released into the supernatant was significantly attenuated in the zinc-supplemented media compared to that in the control, with the 50% cytotoxic dose values of 163.2 ± 12.7, 211.6 ± 33.1 and 659.9 ± 84.2 after 24 hr of growth in the presence of ZnO, ZnCO 3 , or no supplemental zinc, respectively. The hemolytic zones around colonies grown on sheep blood agar supplemented with zinc were significantly smaller than those of colonies grown on control agar. Similarly, hemoglobin absorbance after exposure to the supernatants of STEC cultures incubated in sheep blood broth supplemented with zinc was significantly lower than that resulting from exposure to the control supernatant. These in vitro findings indicated that zinc formulations directly impair the factors associated with the virulence of STEC, suggesting a mechanism by which zinc supplementation prevents swine edema disease.

  10. Characterization of the zinc-induced Shank3 interactome of mouse synaptosome.

    PubMed

    Lee, Yeunkum; Ryu, Jae Ryun; Kang, Hyojin; Kim, Yoonhee; Kim, Shinhyun; Zhang, Yinhua; Jin, Chunmei; Cho, Hyo Min; Kim, Won-Ki; Sun, Woong; Han, Kihoon

    2017-12-16

    Variants of the SHANK3 gene, which encodes a core scaffold protein of the postsynaptic density of excitatory synapses, have been causally associated with numerous brain disorders. Shank3 proteins directly bind zinc ions through their C-terminal sterile α motif domain, which enhances the multimerization and synaptic localization of Shank3, to regulate excitatory synaptic strength. However, no studies have explored whether zinc affects the protein interactions of Shank3, which might contribute to the synaptic changes observed after zinc application. To examine this, we first purified Shank3 protein complexes from mouse brain synaptosomal lysates that were incubated with different concentrations of ZnCl 2 , and analyzed them with mass spectrometry. We used strict criteria to identify 71 proteins that specifically interacted with Shank3 when extra ZnCl 2 was added to the lysate. To characterize the zinc-induced Shank3 interactome, we performed various bioinformatic analyses that revealed significant associations of the interactome with subcellular compartments, including mitochondria, and brain disorders, such as bipolar disorder and schizophrenia. Together, our results showing that zinc affected the Shank3 protein interactions of in vitro mouse synaptosomes provided an additional link between zinc and core synaptic proteins that have been implicated in multiple brain disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Boron Arsenide and Boron Phosphide for High Temperature and Luminescent Devices. [semiconductor devices - crystal growth/crystal structure

    NASA Technical Reports Server (NTRS)

    Chu, T. L.

    1975-01-01

    The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.

  12. Histidine pairing at the metal transport site of mammalian ZnT transporters controls Zn2+ over Cd2+ selectivity.

    PubMed

    Hoch, Eitan; Lin, Wei; Chai, Jin; Hershfinkel, Michal; Fu, Dax; Sekler, Israel

    2012-05-08

    Zinc and cadmium are similar metal ions, but though Zn(2+) is an essential nutrient, Cd(2+) is a toxic and common pollutant linked to multiple disorders. Faster body turnover and ubiquitous distribution of Zn(2+) vs. Cd(2+) suggest that a mammalian metal transporter distinguishes between these metal ions. We show that the mammalian metal transporters, ZnTs, mediate cytosolic and vesicular Zn(2+) transport, but reject Cd(2+), thus constituting the first mammalian metal transporter with a refined selectivity against Cd(2+). Remarkably, the bacterial ZnT ortholog, YiiP, does not discriminate between Zn(2+) and Cd(2+). A phylogenetic comparison between the tetrahedral metal transport motif of YiiP and ZnTs identifies a histidine at the mammalian site that is critical for metal selectivity. Residue swapping at this position abolished metal selectivity of ZnTs, and fully reconstituted selective Zn(2+) transport of YiiP. Finally, we show that metal selectivity evolves through a reduction in binding but not the translocation of Cd(2+) by the transporter. Thus, our results identify a unique class of mammalian transporters and the structural motif required to discriminate between Zn(2+) and Cd(2+), and show that metal selectivity is tuned by a coordination-based mechanism that raises the thermodynamic barrier to Cd(2+) binding.

  13. Histidine pairing at the metal transport site of mammalian ZnT transporters controls Zn2+ over Cd2+ selectivity

    PubMed Central

    Hoch, Eitan; Lin, Wei; Chai, Jin; Hershfinkel, Michal; Fu, Dax; Sekler, Israel

    2012-01-01

    Zinc and cadmium are similar metal ions, but though Zn2+ is an essential nutrient, Cd2+ is a toxic and common pollutant linked to multiple disorders. Faster body turnover and ubiquitous distribution of Zn2+ vs. Cd2+ suggest that a mammalian metal transporter distinguishes between these metal ions. We show that the mammalian metal transporters, ZnTs, mediate cytosolic and vesicular Zn2+ transport, but reject Cd2+, thus constituting the first mammalian metal transporter with a refined selectivity against Cd2+. Remarkably, the bacterial ZnT ortholog, YiiP, does not discriminate between Zn2+ and Cd2+. A phylogenetic comparison between the tetrahedral metal transport motif of YiiP and ZnTs identifies a histidine at the mammalian site that is critical for metal selectivity. Residue swapping at this position abolished metal selectivity of ZnTs, and fully reconstituted selective Zn2+ transport of YiiP. Finally, we show that metal selectivity evolves through a reduction in binding but not the translocation of Cd2+ by the transporter. Thus, our results identify a unique class of mammalian transporters and the structural motif required to discriminate between Zn2+ and Cd2+, and show that metal selectivity is tuned by a coordination-based mechanism that raises the thermodynamic barrier to Cd2+ binding. PMID:22529353

  14. Sonochemical Synthesis of a Zinc Oxide Core-Shell Nanorod Radial p-n Homojunction Ultraviolet Photodetector.

    PubMed

    Vabbina, Phani Kiran; Sinha, Raju; Ahmadivand, Arash; Karabiyik, Mustafa; Gerislioglu, Burak; Awadallah, Osama; Pala, Nezih

    2017-06-14

    We report for the first time on the growth of a homogeneous radial p-n junction in the ZnO core-shell configuration with a p-doped ZnO nanoshell structure grown around a high-quality unintentionally n-doped ZnO nanorod using sonochemistry. The simultaneous decomposition of phosphorous (P), zinc (Zn), and oxygen (O) from their respective precursors during sonication allows for the successful incorporation of P atoms into the ZnO lattice. The as-formed p-n junction shows a rectifying current-voltage characteristic that is consistent with a p-n junction with a threshold voltage of 1.3 V and an ideality factor of 33. The concentration of doping was estimated to be N A = 6.7 × 10 17 cm -3 on the p side from the capacitance-voltage measurements. The fabricated radial p-n junction demonstrated a record optical responsivity of 9.64 A/W and a noise equivalent power of 0.573 pW/√Hz under ultraviolet illumination, which is the highest for ZnO p-n junction devices.

  15. Physical chemical effects of zinc on in vitro enamel demineralization.

    PubMed

    Mohammed, N R; Mneimne, M; Hill, R G; Al-Jawad, M; Lynch, R J M; Anderson, P

    2014-09-01

    Zinc salts are formulated into oral health products as antibacterial agents, yet their interaction with enamel is not clearly understood. The aim was to investigate the effect of zinc concentration [Zn(2+)] on the in vitro demineralization of enamel during exposure to caries-simulating conditions. Furthermore, the possible mechanism of zinc's action for reducing demineralization was determined. Enamel blocks and synthetic hydroxyapatite (HAp) were demineralized in a range of zinc-containing acidic solutions (0-3565ppm [Zn(2+)]) at pH 4.0 and 37°C. Inductively coupled-plasma optical emission spectroscopy (ICP-OES) was used to measure ion release into solution. Enamel blocks were analysed by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), and HAp by X-ray diffraction (XRD) and neutron diffraction (ND). ICP-OES analysis of the acidic solutions showed a decrease in [Ca(2+)] and [PO4(3-)] release with increasing [Zn(2+)]. FTIR revealed a α-hopeite (α-Zn3(PO4)2.4H2O)-like phase on the enamel surfaces at >107ppm [Zn(2+)]. XRD and ND analysis confirmed a zinc-phosphate phase present alongside the HAp. This study confirms that zinc reduces enamel demineralization. Under the conditions studied, zinc acts predominantly on enamel surfaces at PO4(3-) sites in the HAp lattice to possibly form an α-hopeite-like phase. These results have a significant implication on the understanding of the fundamental chemistry of zinc in toothpastes and demonstrate its therapeutic potential in preventing tooth mineral loss. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Mitochondrial and Chromosomal Damage Induced by Oxidative Stress in Zn2+ Ions, ZnO-Bulk and ZnO-NPs treated Allium cepa roots

    PubMed Central

    Ahmed, Bilal; Dwivedi, Sourabh; Abdin, Malik Zainul; Azam, Ameer; Al-Shaeri, Majed; Khan, Mohammad Saghir; Saquib, Quaiser; Al-Khedhairy, Abdulaziz A.; Musarrat, Javed

    2017-01-01

    Large-scale synthesis and release of nanomaterials in environment is a growing concern for human health and ecosystem. Therefore, we have investigated the cytotoxic and genotoxic potential of zinc oxide nanoparticles (ZnO-NPs), zinc oxide bulk (ZnO-Bulk), and zinc ions (Zn2+) in treated roots of Allium cepa, under hydroponic conditions. ZnO-NPs were characterized by UV-visible, XRD, FT-IR spectroscopy and TEM analyses. Bulbs of A. cepa exposed to ZnO-NPs (25.5 nm) for 12 h exhibited significant decrease (23 ± 8.7%) in % mitotic index and increase in chromosomal aberrations (18 ± 7.6%), in a dose-dependent manner. Transmission electron microcopy and FT-IR data suggested surface attachment, internalization and biomolecular intervention of ZnO-NPs in root cells, respectively. The levels of TBARS and antioxidant enzymes were found to be significantly greater in treated root cells vis-à-vis untreated control. Furthermore, dose-dependent increase in ROS production and alterations in ΔΨm were observed in treated roots. FT-IR analysis of root tissues demonstrated symmetric and asymmetric P=O stretching of >PO2− at 1240 cm−1 and stretching of C-O ribose at 1060 cm−1, suggestive of nuclear damage. Overall, the results elucidated A. cepa, as a good model for assessment of cytotoxicity and oxidative DNA damage with ZnO-NPs and Zn2+ in plants. PMID:28120857

  17. Reinventing a p-type doping process for stable ZnO light emitting devices

    NASA Astrophysics Data System (ADS)

    Xie, Xiuhua; Li, Binghui; Zhang, Zhenzhong; Shen, Dezhen

    2018-06-01

    A tough challenge for zinc oxide (ZnO) as the ultraviolet optoelectronics materials is realizing the stable and reliable p-type conductivity. Self-compensation, coming from native donor-type point defects, is a big obstacle. In this work, we introduce a dynamic N doping process with molecular beam epitaxy, which is accomplished by a Zn, N-shutter periodic switch (a certain time shift between them for independent optimization of surface conditions). During the epitaxy, N adatoms are incorporated under the condition of (2  ×  2)  +  Zn vacancies reconstruction on a Zn-polar surface, at which oxygen vacancies (V O), the dominating compensating donors, are suppressed. With the p-ZnO with sufficient holes surviving, N concentration ~1  ×  1019 cm‑3, is employed in a p-i-n light emitting devices. Significant ultraviolet emission of electroluminescence spectra without broad green band (related to V O) at room-temperature are demonstrated. The devices work incessantly without intentional cooling for over 300 h at a luminous intensity reduction of one order of magnitude under the driving of a 10 mA continuous current, which are the demonstration for p-ZnO stability and reliability.

  18. Influence of zinc deficiency on cell-membrane fluidity in Jurkat, 3T3 and IMR-32 cells.

    PubMed Central

    Verstraeten, Sandra V; Zago, M Paola; MacKenzie, Gerardo G; Keen, Carl L; Oteiza, Patricia I

    2004-01-01

    We investigated whether zinc deficiency can affect plasma membrane rheology. Three cell lines, human leukaemia T-cells (Jurkat), rat fibroblasts (3T3) and human neuroblastoma cells (IMR-32), were cultured for 48 h in control medium, in zinc-deficient medium (1.5 microM zinc; 1.5 Zn), or in the zinc-deficient medium supplemented with 15 microM zinc (15 Zn). The number of viable cells was lower in the 1.5 Zn group than in the control and 15 Zn groups. The frequency of apoptosis was higher in the 1.5 Zn group than in the control and 15 Zn groups. Membrane fluidity was evaluated using the 6-(9-anthroyloxy)stearic acid and 16-(9-anthroyloxy)palmitic acid probes. Membrane fluidity was higher in 1.5 Zn cells than in the control cells; no differences were observed between control cells and 15 Zn cells. The effect of zinc deficiency on membrane fluidity at the water/lipid interface was associated with a higher phosphatidylserine externalization. The higher membrane fluidity in the hydrophobic region of the bilayer was correlated with a lower content of arachidonic acid. We suggest that the increased fluidity of the membrane secondary to zinc deficiency is in part due to a decrease in arachidonic acid content and the apoptosis-related changes in phosphatidylserine distribution. PMID:14629198

  19. Zinc tetraaminophthalocyanine-Fe3O4 nanoparticle composite for laccase immobilization

    PubMed Central

    Huang, Jun; Liu, Cheng; Xiao, Haiyan; Wang, Juntao; Jiang, Desheng; GU, Erdan

    2007-01-01

    Zinc tetraaminophthalocyanine-Fe3O4 nanoparticle composites were prepared by organic-inorganic complex technology and characterized. It has been proved that the ZnTAPc dispersed randomly onto the surface of Fe3O4 nanoparticles to form molecular dispersion layer and there was a relatively strong bond between central zinc cation and oxygen. The nanoparticle composite took the shape of roundish spheres with the mean diameter of about 15 nm. Active amino groups of magnetic carriers could be used to bind laccase via glutaraldehyde. The optimal pH for the activity of the immobilized laccases and free laccase were the same at pH 3.0 and the optimal temperature for laccase immobilization on ZnTAPc-Fe3O4 nanoparticle composite was 45°. The immobilization yields and Km value of the laccase immobilized on ZnTAPc-Fe3O4 nanoparticle composite were 25% and 20.1 μM, respectively. This kind of immobilized laccase has good thermal, storage and operation stability, and could be used as the sensing biocomponent for the fiber optic biosensor based on enzyme catalysis. PMID:18203444

  20. Development of self-powered strain sensor using mechano-luminescent ZnS:Cu and mechano-optoelectronic P3HT

    NASA Astrophysics Data System (ADS)

    Pulliam, Elias; Hoover, George; Tiparti, Dhruv; Ryu, Donghyeon

    2017-04-01

    Aerospace structural systems are prone to structural damage during their use by vibration, impact, material degradation, and other factors. Due to the harsh environments in which aerospace structures operate, aerospace structures are susceptible to various types of damage and often their structural integrity is jeopardized unless damage onset is detected in timely manner. Yet, current state-of-the-art sensor technologies are still limited for structural health monitoring (SHM) of aerospace structures due to their high power consumption, need for large form factor design, and manageable integration into aerospace structures. This study proposes a design of multilayered self-powered strain sensor by coupling mechano-luminescent (ML) property of copper-doped zinc sulfide (ZnS:Cu) and mechano-optoelectronic (MO) property of poly(3-hexylthiophene) (P3HT). One functional layer of the self-powered strain sensor is ZnS:Cu-based elastomeric composites that emit light in response to mechanical deformation. Another functional layer is P3HT-based thin films that generate direct current (DC) under light illumination and DC magnitude changes with applied strain. First, ML light emission characteristics of ZnS:Cu-based composites are studied under cyclic tensile strain with two various maximum strain up to 10% and 15% at various loading frequencies from 5 Hz to 20 Hz. Second, piezo-optical properties of P3HT-based thin films are investigated by acquiring light absorption of the thin films at various strains from 0% to 2% tensile strain. Last, micro-mechanical properties of the P3HT-based thin films are characterized using nanoindentation.

  1. Fabrication of hierarchical porous ZnO-Al2O3 microspheres with enhanced adsorption performance

    NASA Astrophysics Data System (ADS)

    Lei, Chunsheng; Pi, Meng; Xu, Difa; Jiang, Chuanjia; Cheng, Bei

    2017-12-01

    Hierarchical porous ZnO-Al2O3 microspheres were fabricated through a simple hydrothermal route. The as-prepared hierarchical porous ZnO-Al2O3 composites were utilized as adsorbents to remove organic dye Congo red (CR) from water. The ZnO-Al2O3 composites had morphology of microspheres with diameters in the range of 12-16 μm, which were assembled by nanosheets with thicknesses of approximately 60 nm. The adsorption kinetics of CR onto the ZnO-Al2O3 composites was properly fitted by the pseudo-second-order kinetic model. The equilibrium adsorption data were perfectly described by the Langmuir isotherm and had a maximum adsorption capacity that reached 397 mg/g, which was significantly higher than the value of the pure alumina (Al2O3) and zinc oxide (ZnO) samples. The superior CR removal efficiency of the ZnO-Al2O3 composites was attributed to its well-developed hierarchical porous structures and larger specific surface area (201 m2/g), which were conducive to the diffusion and adsorption of CR molecules. Moreover, the regeneration study reveals that the ZnO-Al2O3 composites have suitable stability and reusability. The results also indicate that the as-prepared sample can act as a highly effective adsorbent in anionic dye removal from wastewater.

  2. Interrelationships among mediators of cellular zinc homeostasis in healthy and type 2 diabetes mellitus populations.

    PubMed

    Chu, Anna; Foster, Meika; Hancock, Dale; Petocz, Peter; Samman, Samir

    2017-04-01

    The involvement of zinc in multiple physiological systems requires tight control of cellular zinc concentration. This study aims to explore the relationships among selected mediators of cellular zinc homeostasis in an apparently healthy (AH) population and a cohort with type 2 diabetes mellitus (T2DM). Baseline data of three trials forming two cohorts, AH (n = 70) and T2DM (n = 42), were used for multivariate analyses to identify groupings within ten zinc transporter and metallothionein (MT) gene expressions, stratified by health status. Multiple regression models were used to explore relationships among zinc transporter/MT groupings and plasma zinc. Gene expression of zinc transporters and MTs, with the exception of ZnT6, were significantly lower in the T2DM cohort (p < 0.01). Cluster analysis showed that the groupings of zinc transporters and MTs were largely similar between the two cohorts, with the exception for ZnT1 and ZIP7. Zinc transporters and MTs were significant determinants of plasma zinc (r 2 = 0.48, p = 0.001) in the AH cohort, but not in the T2DM cohort. The current study suggests altered cellular zinc homeostasis in T2DM and supports the use of multiple zinc transporters and MTs groupings to further understand zinc homeostasis in health and T2DM. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Perinatal ω-3 polyunsaturated fatty acid supply modifies brain zinc homeostasis during adulthood

    PubMed Central

    Jayasooriya, Anura P.; Ackland, M. Leigh; Mathai, Michael L.; Sinclair, Andrew J.; Weisinger, Harrison S.; Weisinger, Richard S.; Halver, John E.; Kitajka, Klára; Puskás, László G.

    2005-01-01

    Dietary ω-3 polyunsaturated fatty acid (PUFA) influences the expression of a number of genes in the brain. Zinc transporter (ZnT) 3 has been identified as a putative transporter of zinc into synaptic vesicles of neurons and is found in brain areas such as hippocampus and cortex. Neuronal zinc is involved in the formation of amyloid plaques, a major characteristic of Alzheimer's disease. The present study evaluated the influence of dietary ω-3 PUFA on the expression of the ZnT3 gene in the brains of adult male Sprague-Dawley rats. The rats were raised and/or maintained on a control (CON) diet that contained ω-3 PUFA or a diet deficient (DEF) in ω-3 PUFA. ZnT3 gene expression was analyzed by using real-time PCR, free zinc in brain tissue was determined by zinquin staining, and total zinc concentrations in plasma and cerebrospinal fluid were determined by atomic absorption spectrophotometry. Compared with CON-raised animals, DEF-raised animals had increased expression of ZnT3 in the brain that was associated with an increased level of free zinc in the hippocampus. In addition, compared with CON-raised animals, DEF-raised animals had decreased plasma zinc level. No difference in cerebrospinal fluid zinc level was observed. The results suggest that overexpression of ZnT3 due to a perinatal ω-3 PUFA deficiency caused abnormal zinc metabolism in the brain. Conceivably, the influence of dietary ω-3 PUFA on brain zinc metabolism could explain the observation made in population studies that the consumption of fish is associated with a reduced risk of dementia and Alzheimer's disease. PMID:15883362

  4. Perinatal omega-3 polyunsaturated fatty acid supply modifies brain zinc homeostasis during adulthood.

    PubMed

    Jayasooriya, Anura P; Ackland, M Leigh; Mathai, Michael L; Sinclair, Andrew J; Weisinger, Harrison S; Weisinger, Richard S; Halver, John E; Kitajka, Klára; Puskás, László G

    2005-05-17

    Dietary omega-3 polyunsaturated fatty acid (PUFA) influences the expression of a number of genes in the brain. Zinc transporter (ZnT) 3 has been identified as a putative transporter of zinc into synaptic vesicles of neurons and is found in brain areas such as hippocampus and cortex. Neuronal zinc is involved in the formation of amyloid plaques, a major characteristic of Alzheimer's disease. The present study evaluated the influence of dietary omega-3 PUFA on the expression of the ZnT3 gene in the brains of adult male Sprague-Dawley rats. The rats were raised and/or maintained on a control (CON) diet that contained omega-3 PUFA or a diet deficient (DEF) in omega-3 PUFA. ZnT3 gene expression was analyzed by using real-time PCR, free zinc in brain tissue was determined by zinquin staining, and total zinc concentrations in plasma and cerebrospinal fluid were determined by atomic absorption spectrophotometry. Compared with CON-raised animals, DEF-raised animals had increased expression of ZnT3 in the brain that was associated with an increased level of free zinc in the hippocampus. In addition, compared with CON-raised animals, DEF-raised animals had decreased plasma zinc level. No difference in cerebrospinal fluid zinc level was observed. The results suggest that overexpression of ZnT3 due to a perinatal omega-3 PUFA deficiency caused abnormal zinc metabolism in the brain. Conceivably, the influence of dietary omega-3 PUFA on brain zinc metabolism could explain the observation made in population studies that the consumption of fish is associated with a reduced risk of dementia and Alzheimer's disease.

  5. Synthesis, characterization and photocatalysis enhancement of Eu2O3-ZnO mixed oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohamed, W. S.; Abu-Dief, Ahmed M.

    2018-05-01

    Pure ZnO nanoparticles (NPs) and mixed Eu2O3 and ZnO NPs with different Eu2O3 ratios (5%, 10%, and 15%) were synthesized by a precipitation method under optimum conditions. The synthesized samples were characterized by means of X-ray diffraction, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and UV-vis diffuse reflectance spectroscopy. The as-synthesized ZnO NPs exhibit high phase purity and a highly crystalline wurtzite ZnO structure. The mixed Eu2O3 and ZnO NPs exhibit a Eu2O3 zinc blend phase in addition to the wurtzite phase of pure ZnO, confirming the high purity and good crystallinity of the as-synthesized samples. The high-purity formation of ZnO and Eu2O3 phases was confirmed by FTIR and Raman spectra. Microstructural analysis by SEM and TEM confirmed the sphere-like morphology with different particle sizes (29-40 nm) of the as-synthesized samples. The photocatalytic activities of pure ZnO NPs and mixed Eu2O3 and ZnO NPs for the degradation of methylene blue were evaluated under ultraviolet (UV) irradiation. The results show that Eu2O3 plays an important role in the enhancement of the photocatalytic properties of ZnO NPs. We found that mixed 5% Eu2O3 and ZnO NPs exhibit the highest photocatalytic activity (degradation efficiency of 96.5% after 180 min of UV irradiation) as compared with pure ZnO NPs (degradation efficiency of 80.3% after 180 min of UV irradiation). The increased photocatalytic activity of the optimum mixed Eu2O3 and ZnO NPs is due to the high crystallinity, high surface area with small particle size, and narrow energy gap.

  6. Hierarchical cobalt poly-phosphide hollow spheres as highly active and stable electrocatalysts for hydrogen evolution over a wide pH range

    NASA Astrophysics Data System (ADS)

    Wu, Tianli; Pi, Mingyu; Wang, Xiaodeng; Guo, Weimeng; Zhang, Dingke; Chen, Shijian

    2018-01-01

    Exploring highly-efficient and low-cost non-noble metal electrocatalyst toward the hydrogen evolution reaction (HER) is highly desired for renewable energy system but remains challenging. In this work, three dimensional hierarchical porous cobalt poly-phosphide hollow spheres (CoP3 HSs) were prepared by topotactic phosphidation of the cobalt-based precursor via vacuum encapsulation technique. As a porous HER cathode, the CoP3 HSs delivers remarkable electrocatalytic performance over the wide pH range. It needs overpotentials of -69 mV and -118 mV with a small Tafel slope of 51 mV dec-1 to obtain current densities of 10 mA cm-2 and 50 mA cm-2, respectively, and maintains its electrocatalytic performance over 30 h in acidic solution. In addition, CoP3 also exhibit superior electrocatalytic performance and stability under neutral and alkaline conditions for the HER. Both experimental measurements and density functional theory (DFT) calculations are performed to explore the mechanism behind the excellent HER performance. The results of our study make the porous CoP3 HSs as a promising electrocatalyst for practical applications toward energy conversion system and present a new way for designing and fabricating HER electrodes through high degree of phosphorization and nano-porous architecture.

  7. Zinc pharmacokinetic parameters in the determination of body zinc status in children.

    PubMed

    Vale, S H L; Leite, L D; Alves, C X; Dantas, M M G; Costa, J B S; Marchini, J S; França, M C; Brandão-Neto, J

    2014-02-01

    Serum or tissue zinc concentrations are often used to assess body zinc status. However, all of these methods are relatively inaccurate. Thus, we investigated three different kinetic methods for the determination of zinc clearance to establish which of these could detect small changes in the body zinc status of children. Forty apparently healthy children were studied. Renal handling of zinc was investigated during intravenous zinc administration (0.06537 mg Zn/kg of body weight), both before and after oral zinc supplementation (5 mg Zn/day for 3 months). Three kinetic methods were used to determine zinc clearance: CZn-Formula A and CZn-Formula B were both used to calculate systemic clearance; the first is a general formula and the second is used for the specific analysis of a single-compartment model; CZn-Formula C is widely used in medical practices to analyze kinetic routine. Basal serum zinc values, which were within the reference range for healthy children, increased significantly after oral zinc supplementation. The three formulas used gave different results for zinc clearance both before and after oral zinc supplementation. CZn-Formula B showed a positive correlation with basal serum zinc concentration after oral supplementation (R2=0.1172, P=0.0306). In addition, CZn-Formula B (P=0.0002) was more effective than CZn-Formula A (P=0.6028) and CZn-Formula C (P=0.0732) in detecting small variations in body zinc status. All three of the formulas used are suitable for studying zinc kinetics; however, CZn-Formula B is particularly effective at detecting small changes in body zinc status in healthy children.

  8. Electrostatically driven resonance energy transfer in "cationic" biocompatible indium phosphide quantum dots.

    PubMed

    Devatha, Gayathri; Roy, Soumendu; Rao, Anish; Mallick, Abhik; Basu, Sudipta; Pillai, Pramod P

    2017-05-01

    Indium Phosphide Quantum Dots (InP QDs) have emerged as an alternative to toxic metal ion based QDs in nanobiotechnology. The ability to generate cationic surface charge, without compromising stability and biocompatibility, is essential in realizing the full potential of InP QDs in biological applications. We have addressed this challenge by developing a place exchange protocol for the preparation of cationic InP/ZnS QDs. The quaternary ammonium group provides the much required permanent positive charge and stability to InP/ZnS QDs in biofluids. The two important properties of QDs, namely bioimaging and light induced resonance energy transfer, are successfully demonstrated in cationic InP/ZnS QDs. The low cytotoxicity and stable photoluminescence of cationic InP/ZnS QDs inside cells make them ideal candidates as optical probes for cellular imaging. An efficient resonance energy transfer ( E ∼ 60%) is observed, under physiological conditions, between the cationic InP/ZnS QD donor and anionic dye acceptor. A large bimolecular quenching constant along with a linear Stern-Volmer plot confirms the formation of a strong ground state complex between the cationic InP/ZnS QDs and the anionic dye. Control experiments prove the role of electrostatic attraction in driving the light induced interactions, which can rightfully form the basis for future nano-bio studies between cationic InP/ZnS QDs and anionic biomolecules.

  9. N doped ZnO and ZnO nanorods based p-n homojunction fabricated by ion implantation

    NASA Astrophysics Data System (ADS)

    Chakraborty, Mohua; Thangavel, R.; Asokan, K.

    2018-05-01

    Nitrogen (N) doped and undoped Zinc Oxide (ZnO) nanorod p-n homojunctions were fabricated by ion implantation method. The structural and optical characterizations showed that the N atoms doped into the ZnO crystal lattice. The UV-Vis absorption spectra revealed shift in optical absorption edge towards higher wavelength with ion implantation on ZnO, which attributed N acceptor levels above the valence band. The current-voltage (I-V) measurements exhibit a typical semiconductor rectification characteristic indicating the electrical conductivity of the N-doped ZnO nanorod have p-type conductivity. Moreover, a high photocurrent response has been observed with these p-n homojunctions.

  10. Effect of Sulfur on Liquidus Temperatures in the ZnO-"FeO"-Al2O3-CaO-SiO2-S System in Equilibrium with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2011-10-01

    The phase equilibria in the ZnO-"FeO"-Al2O3-CaO-SiO2-S system have been determined experimentally in equilibrium with metallic iron. A pseudoternary section of the form ZnO-"FeO"-(Al2O3+CaO+SiO2) for CaO/SiO2 = 0.71 (weight), (CaO+SiO2)/Al2O3 = 5.0 (weight), and fixed 2.0 wt pct S concentration has been constructed. It was found that the addition of 2.0 wt pct S to the liquid extends the spinel primary phase field significantly and decreases the size of the wustite primary phase field. The liquidus temperature in the wustite primary phase field is decreased by approximately 80 K and the liquidus temperature in the spinel primary phase field is decreased by approximately 10 K with addition of 2.0 wt pct S in the composition range investigated. It was also found that iron-zinc sulfides are present in some samples in the spinel primary phase field, which are matte appearing at low zinc concentrations and sphalerite (Zn,Fe)S at higher zinc concentrations. The presence of sulfur in the slag has a minor effect on the partitioning of ZnO between the wustite and liquid phases but no effect on the partitioning of ZnO between the spinel and liquid phases.

  11. Effect of RE (Nd3+, Sm3+) oxide on structural, optical properties of Na2O-Li2O-ZnO-B2O3 glass system

    NASA Astrophysics Data System (ADS)

    Hivrekar, Mahesh M.; Bhoyar, D. N.; Mande, V. K.; Dhole, V. V.; Solunke, M. B.; Jadhav, K. M.

    2018-05-01

    Zinc borate glass activated with rare earth oxide (Nd2O3, Sm2O3) of Na2O-Li2O-ZnO-B2O3 quaternary system has been prepared successfully by melt quenching method. The nucleation and growth of RE oxide were controlled temperature range 950-1000° C and rapid cooling at room temperature. The physical, structural and optical properties were characterized by using X-ray diffraction (XRD), SEM, Ultraviolet-visible spectroscopy (UV-Vis). XRD and SEM studies confirmed the amorphous nature, surface morphology of prepared zinc borate glass. The physical parameters like density, molar volume, molar mass of Nd3+, Sm3+ doped borate glass are summarized in the present article. The optical absorption spectra along with tauc's plot are presented. The optical energy band gap increases due to the addition of rare earth oxide confirming the role of network modifier.

  12. Synthesis and photocatalytic property of Zinc Oxide (ZnO) fine particle using flame spray pyrolysis method

    NASA Astrophysics Data System (ADS)

    Widiyandari, Hendri; Ayu Ketut Umiati, Ngurah; Dwi Herdianti, Rizki

    2018-05-01

    Advance oxidation process (AOP) using photocatalysis constitute a promising technology for the treatment of wastewaters containing non-easily removable organic compound. Zinc oxide (ZnO) is one of efficient photocatalyst materials. This research reported synthesis of ZnO fine particle from zinc nitrate hexahydrate using Flame Spray Pyrolysis (FSP) method. In this method, oxygen (O2) gas were used as oxidizer and LPG (liquid petroleum gas) were used as fuel. The effect of O2 gas flow rate during ZnO particle fabrication to the microstructure, optical and photocatalytic properties were systematically discussed. The photocatalytic activity of ZnO was tested for the degradation of amaranth dye with initial concentration of 10 ppm under irradiation of solar simulator. The rate of decrease in amaranth concentration was measured using UV-Visible spectrophotometer. The ZnO synthesized using FSP has a hexagonal crystalline structure. Scanning electron microscope images showed that ZnO has a spherical formed which was the mixture of solid and hollow particles. The optimum condition for amaranth degradation was shown by ZnO produced at a flow rate of 1.5 L/min which able to degrade amaranth dye up to 95,3 % at 75 minutes irradiation.

  13. Reassessment of the transport mechanism of the human zinc transporter SLC39A2.

    PubMed

    Franz, Marie Christine; Pujol-Gimenez, Jonai; Montalbetti, Nicolas; Fernandez-Tenorio, Miguel; DeGrado, Timothy R; Niggli, Ernst; Romero, Michael F; Hediger, Matthias A

    2018-05-23

    The human zinc transporter SLC39A2, also known as ZIP2, was shown to mediate zinc transport that could be inhibited at pH values below 7.0 and stimulated by HCO3-, suggesting a Zn2+/HCO3- cotransport mechanism (1). In contrast, recent experiments in our laboratory indicated that the functional activity of ZIP2 increases at acidic pH (2). The present study was therefore designed to reexamine the findings on the pH-dependence and to extend the functional characterization of ZIP2. Our current results show that ZIP2-mediated transport is modulated by extracellular pH, but independent of the H+ driving force. Also, in our experiments, ZIP2-mediated transport is not modulated by extracellular HCO3-. Moreover, high extracellular [K+], which induces depolarization, inhibited ZIP2-mediated transport, indicating that the transport mechanism is voltage-dependent. We also show that ZIP2-mediates the uptake of Cd2+ (Km~ 1.57 µM) in a pH-dependent manner (KH+ of ~66 nM). Cd2+ transport is inhibited by extracellular [Zn2+] (IC50~ 0.32 µM), [Cu2+] (IC50~ 1.81 µM) and to a lower extend by [Co2+], but not by [Mn2+] or [Ba2+]. Fe2+ is not transported by ZIP2. Accordingly, the substrate selectivity of ZIP2 decreases in the order Zn2+ > Cd2+ ≥ Cu2+ > Co2+. Altogether, we propose that ZIP2 is a facilitated divalent metal ion transporter that can be modulated by extracellular pH and membrane potential. Given that ZIP2 expression has been reported in acidic environments (3-5), we suggest that the herein described H+-mediated regulatory mechanism might be important to determine the velocity and direction of the transport process.

  14. Zn(2+) release behavior and surface characteristics of Zn/LDPE nanocomposites and ZnO/LDPE nanocomposites in simulated uterine solution.

    PubMed

    Yang, Zhihong; Xie, Changsheng; Xia, Xianping; Cai, Shuizhou

    2008-11-01

    To decrease the side effects of the existing copper-bearing intrauterine devices, the zinc/low-density polyethylene (Zn/LDPE) nanocomposite and zinc-oxide/low-density polyethylene (ZnO/LDPE) nanocomposite have been developed in our research for intrauterine devices (IUDs). In this study, the influences of preparation methods of nanocomposites and particle sizes of zinc and zinc oxide on Zn(2+) release from composites incubated in simulated uterine solution were investigated. All release profiles are biphasic: an initial rapid release phase is followed by a near zero-order release period. Zn(2+) release rates of nanocomposites prepared by compressing moulding are higher than those of the nanocomposites prepared by hot-melt extrusing. Compared with Zn(2+) release from the microcomposites, the release profiles of the nanocomposites exhibit a sharp decrease in Zn(2+) release rate in the first 18 days, an early onset of the zero-order release period and a high release rate of Zn(2+) at the later stage. The microstructure of the Zn/LDPE sample and the ZnO/LDPE sample after being incubated for 200 days was characterized by SEM, XRD and EDX techniques. The results show that the dissolution depth of ZnO/LDPE nanocomposite is about 60 mum. Lots of pores were formed on the surface of the Zn/LDPE sample and ZnO/LDPE sample, indicating that these pores can provide channels for the dissolution of nanoparticles in the matrix. The undesirable deposits that are composed of ZnO are only detected on the surface of Zn/LDPE nanocomposite, which may increase the risk of side effects associated with IUDs. It can be expected that ZnO/LDPE nanocomposite is more suitable for IUDs than Zn/LDPE nanocomposite.

  15. Diel cycling of zinc in a stream impacted by acid rock drainage: Initial results from a new in situ Zn analyzer

    USGS Publications Warehouse

    Chapin, T.P.; Nimick, D.A.; Gammons, C.H.; Wanty, R.B.

    2007-01-01

    Recent work has demonstrated that many trace metals undergo dramatic diel (24-h) cycles in near neutral pH streams with metal concentrations reproducibly changing up to 500% during the diel period (Nimick et al., 2003). To examine diel zinc cycles in streams affected by acid rock drainage, we have developed a novel instrument, the Zn-DigiScan, to continuously monitor in situ zinc concentrations in near real-time. Initial results from a 3-day deployment at Fisher Creek, Montana have demonstrated the ability of the Zn-DigiScan to record diel Zn cycling at levels below 100 ??g/l. Longer deployments of this instrument could be used to examine the effects of episodic events such as rainstorms and snowmelt pulses on zinc loading in streams affected by acid rock drainage. ?? Springer Science+Business Media B.V. 2006.

  16. Regulation of biokinetics of (65)Zn by curcumin and zinc in experimentally induced colon carcinogenesis in rats.

    PubMed

    Jain, Kinnri; Dhawan, Devinder K

    2014-10-01

    This study was conducted to investigate the role of curcumin and zinc on the biokinetics and biodistribution of (65)Zn during colon carcinogenesis. Male wistar rats were divided into five groups, namely normal control, 1,2-dimethylhydrazine (DMH) treated, DMH + curcumin treated, DMH + zinc treated, and DMH + curcumin + zinc treated. Weekly subcutaneous injections of DMH (30 mg/kg body weight) for 16 weeks initiated colon carcinogenesis. Curcumin (100 mg/kg body weight orally) and ZnSO4 (227 mg/L in drinking water) were supplemented for 16 weeks. This study revealed a significant depression in the fast (Tb1) and slow component (Tb2) of biological half-life of (65)Zn in the whole body of DMH-treated rats, whereas liver showed a significant elevation in these components. Further, DMH treatment showed a significant increase in the uptake values of (65)Zn in colon, small intestine, and kidneys. Subcellular distribution depicted a significant increase in (65)Zn uptake values in mitochondrial, microsomal, and postmicrosomal fractions of colon. However, curcumin and zinc supplementation when given separately or in combination reversed the trends and restored the uptake values close to normal range. Our study concludes that curcumin and zinc supplementation during colon carcinogenesis shall prove to be efficacious in regulating the altered zinc metabolism.

  17. 2,6-diacetylpyridine bis(thiosemicarbazones) zinc complexes: synthesis, structure, and biological activity.

    PubMed

    Rodriguez-Argüelles, M C; Belicchi Ferrari, M; Gasparri Fava, G; Pelizzi, C; Tarasconi, P; Albertini, R; Dall'Aglio, P P; Lunghi, P; Pinelli, S

    1995-05-15

    The reaction of zinc chloride, acetate, or perchlorate with two bis(thiosemicarbazones) of 2,6-diacetylpyridine [H2daptsc = 2,6-diacetylpyridine bis(thiosemicarbazone) and H2dapipt = 2,6-diacetylpyridine bis(hydrazinopyruvoylthiosemicarbazone)] leads to the formation of four novel complexes that have been characterized by spectroscopic studies (NMR, IR) and biological properties. The crystal structures of the two compounds--[Zn(daptsc)]2.2DMF (1) and [Zn(H2dapipt)(OH2)2](CIO4)2.3H2O (2)--also have been determined by x-ray methods from diffractometer data. Compound (1) is dimeric and the two zinc atoms have a distorted octahedral coordination. The ligand is deprotonated. In compound (2), the coordination geometry about zinc is pentagonal--bipyramidal and the ligand is in the neutral form. The molecular structure of (2) consists of cations [Zn(H2dapipt)(OH2)]2+, CIO4- disordered anions, and three water molecules of solvation. Biological studies have shown that the ligands and the complexes Zn(daptsc).1/2EtOH and Zn(H2daptsc)Cl2 have an effect in vitro on cell proliferation and differentiation (inhibition); both are concentration dependent. [Zn(daptsc)]2.2DMF (1) shows the effects at lower concentration values with respect to other compounds.

  18. Synthesis and Optimization of Thermoelectric Properties of Zn(x)Sb3

    NASA Technical Reports Server (NTRS)

    Doan-Nguyen, Vicky V.

    2005-01-01

    High-performance thermoelectric materials are studied to investigate their abilities to optimize electrical and minimize thermal conductivities. A stoichiometric range of p-type zinc antimonide compounds was synthesized to analyze the trends in their thermoelectric properties. Zn(x)Sb3 (x=3.80, 3.85, 3.90, 3.95, 4.00, 4.05, 4.10) was reacted at 750 C and annealed at 300 C for 24 hours at each temperature. Electronic transport properties such as Seebeck and Hall Effect were measured to analyze possible trends in the set of compositions. SEM, EDS, and XRD were used to quantify both ingots and hot-pressed samples to confirm that they were single-phase and of the expected stoichiometries. Recent SEM data indicated that Zn(3.90)Sb3 and Zn(4.00)Sb3 samples were actually Zn3Sb2. In hopes of further improving the figure-of-merit (ZT) of the binary system, V, Cr, Mn, Fe, Co, In, and Sn were used to dope (Zn(0.95)M(0.05))(3.95)Sb3.

  19. Synthesis, characterization and applications of carboxylated and polyethylene-glycolated bifunctionalized InP/ZnS quantum dots in cellular internalization mediated by cell-penetrating peptides.

    PubMed

    Liu, Betty R; Winiarz, Jeffrey G; Moon, Jong-Sik; Lo, Shih-Yen; Huang, Yue-Wern; Aronstam, Robert S; Lee, Han-Jung

    2013-11-01

    Semiconductor nanoparticles, also known as quantum dots (QDs), are widely used in biomedical imaging studies and pharmaceutical research. Cell-penetrating peptides (CPPs) are a group of small peptides that are able to traverse cell membrane and deliver a variety of cargoes into living cells. CPPs deliver QDs into cells with minimal nonspecific absorption and toxic effect. In this study, water-soluble, monodisperse, carboxyl-functionalized indium phosphide (InP)/zinc sulfide (ZnS) QDs coated with polyethylene glycol lipids (designated QInP) were synthesized for the first time. The physicochemical properties (optical absorption, fluorescence and charging state) and cellular internalization of QInP and CPP/QInP complexes were characterized. CPPs noncovalently interact with QInP in vitro to form stable CPP/QInP complexes, which can then efficiently deliver QInP into human A549 cells. The introduction of 500nM of CPP/QInP complexes and QInP at concentrations of less than 1μM did not reduce cell viability. These results indicate that carboxylated and polyethylene-glycolylated (PEGylated) bifunctionalized QInP are biocompatible nanoparticles with potential for use in biomedical imaging studies and drug delivery applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Short-sweep capillary electrophoresis with a selective zinc fluorescence imaging reagent FluoZin-3 for determination of free and metalothionein-2a-bound Zn2+ ions.

    PubMed

    Nejdl, Lukas; Moravanska, Andrea; Smerkova, Kristyna; Mravec, Filip; Krizkova, Sona; Pomorski, Adam; Krężel, Artur; Macka, Mirek; Adam, Vojtech; Vaculovicova, Marketa

    2018-08-09

    A capillary electrophoretic (CE) method using a short-sweep approach and laser-induced fluorescence (LIF) detection (ShortSweepCE-LIF) was developed for determination of Zn 2+ and Cd 2+ as complexes with highly selective and sensitive fluorescent probe FluoZin-3. The ShortSweepCE-LIF method, established in this work, can be used for examining competitive Zn 2+ and Cd 2+ binding properties of metalloproteins or peptides. The parameters including background electrolyte composition, injection pressure and time as well as separation voltage were investigated. Under the optimized conditions, 80 mM HEPES, pH 7.4, with 1.5 μM FluoZin-3 was used as an electrolyte, hydrodynamic injection was performed at 50 mbar for 5 s, and separation voltage of 25 kV. Limits of detection for Zn 2+ and Cd 2+ were 4 and 125 nM, respectively. The developed method was demonstrated in a study of interactions between metalothionein-2a isoform and metal ions Zn 2+ , Co 2+ and Cd 2+ . It was found that FluoZin-3 was able to extract a single Zn 2+ ion, while added Co 2+ (in surplus) extracted only 2.4 Zn 2+ ions, and Cd 2+ extracted all 7 Zn 2+ ions present in the metalothionein molecule. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Thorium Copper Phosphides: More Diverse Metal-Phosphorus and Phosphorus-Phosphorus Interactions than U analogues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Geng Bang; Malliakas, Christos D.; Lin, Jian

    To explore the chemical analogy between thorium and heavier actinides in soft anionic environments, three new thorium phosphides (ThCuP 2, beta-ThCu 2P 2, and ThCu 5P 3) have been prepared through solid-state reactions using CuI as a reaction promoter. The structure of ThCuP 2 can be described as a filled UTe 2-type with both dimeric P 2 4- and monomeric P 3- anions, in which Th is coordinated by eight P atoms in a bicapped trigonal prismatic arrangement and Cu is tetrahedrally coordinated by four P atoms. β-ThCu 2P 2 contains only P 3- anions and is isostructural with BaCumore » 2S 2. In this structure, Th is coordinated by seven P atoms in monocapped trigonal prismatic geometry and Cu is tetrahedrally coordinated by four P atoms. ThCu 5P 3 adopts the YCo 5P 3-type structure consisting of P 3- anions. This structure contains Th atoms coordinated by six P atoms in a trigonal prismatic arrangement and Cu atoms that are either tetrahedrally coordinated by four P atoms or square pyramidally coordinated by five P atoms. Electric resistivity measurements and electronic structure calculations on β-ThCu 2P 2 indicate a metal. These new compounds may be charge-balanced and formulated as Th 4+Cu +(P 2 4-) 1/2P 3-, Th 4+(Cu +) 2(P 3-) 2, and Th 4+(Cu +) 5(P 3-) 3, respectively. The structural, bonding, and property relationships between these Th compounds and related actinide and rare-earth phases are discussed. In conclusion, titled compounds display more diverse ion-ion interactions and different electronic structures from those in UCuP 2 and UCu 2P 2 that were synthesized under similar experimental conditions, suggesting divergence of thorium-phosphide chemistry from uranium-phosphide chemistry.« less

  2. Thorium Copper Phosphides: More Diverse Metal-Phosphorus and Phosphorus-Phosphorus Interactions than U analogues

    DOE PAGES

    Jin, Geng Bang; Malliakas, Christos D.; Lin, Jian

    2017-09-28

    To explore the chemical analogy between thorium and heavier actinides in soft anionic environments, three new thorium phosphides (ThCuP 2, beta-ThCu 2P 2, and ThCu 5P 3) have been prepared through solid-state reactions using CuI as a reaction promoter. The structure of ThCuP 2 can be described as a filled UTe 2-type with both dimeric P 2 4- and monomeric P 3- anions, in which Th is coordinated by eight P atoms in a bicapped trigonal prismatic arrangement and Cu is tetrahedrally coordinated by four P atoms. β-ThCu 2P 2 contains only P 3- anions and is isostructural with BaCumore » 2S 2. In this structure, Th is coordinated by seven P atoms in monocapped trigonal prismatic geometry and Cu is tetrahedrally coordinated by four P atoms. ThCu 5P 3 adopts the YCo 5P 3-type structure consisting of P 3- anions. This structure contains Th atoms coordinated by six P atoms in a trigonal prismatic arrangement and Cu atoms that are either tetrahedrally coordinated by four P atoms or square pyramidally coordinated by five P atoms. Electric resistivity measurements and electronic structure calculations on β-ThCu 2P 2 indicate a metal. These new compounds may be charge-balanced and formulated as Th 4+Cu +(P 2 4-) 1/2P 3-, Th 4+(Cu +) 2(P 3-) 2, and Th 4+(Cu +) 5(P 3-) 3, respectively. The structural, bonding, and property relationships between these Th compounds and related actinide and rare-earth phases are discussed. In conclusion, titled compounds display more diverse ion-ion interactions and different electronic structures from those in UCuP 2 and UCu 2P 2 that were synthesized under similar experimental conditions, suggesting divergence of thorium-phosphide chemistry from uranium-phosphide chemistry.« less

  3. Controllable synthesis, magnetic properties, and enhanced photocatalytic activity of spindlelike mesoporous α-Fe(2)O(3)/ZnO core-shell heterostructures.

    PubMed

    Wu, Wei; Zhang, Shaofeng; Xiao, Xiangheng; Zhou, Juan; Ren, Feng; Sun, Lingling; Jiang, Changzhong

    2012-07-25

    Mesoporous spindlelike iron oxide/ZnO core-shell heterostructures are successfully fabricated by a low-cost, surfactant-free, and environmentally friendly seed-mediate strategy with the help of postannealing treatment. The material composition and stoichiometry, as well as these magnetic and optical properties, have been examined and verified by means of high-resolution transmission electron microscopy and X-ray diffraction, the thickness of ZnO layer can be simply tailored by the concentration of zinc precursor. Considering that both α-Fe2O3 and ZnO are good photocatalytic materials, we have investigated the photodegradation performances of the core-shell heterostructures using organic dyes Rhodamin B (RhB). It is interesting to find that the as-obtained iron oxides/ZnO core-shell heterostructures exhibited enhanced visible light or UV photocatalytic abilities, remarkably superior to the as-used α-Fe2O3 seeds and commercial TiO2 products (P25), mainly owing to the synergistic effect between the narrow and wide bandgap semiconductors and effective electron-hole separation at the interfaces of iron oxides/ZnO.

  4. Enhanced performance of P3HT/(PCBM:ZnO:TiO{sub 2}) blend based hybrid organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikram, M., E-mail: mianraj.1981@gmail.com; Murray, R.; Imran, M.

    Highlights: • We fabricated hybrid bulk heterojunction organic solar cells. • TiO{sub 2} and ZnO nanoparticles replace PCBM with fixed amount of P3HT in active layer • PCE was significantly improved by the introduction of TiO{sub 2} and ZnO. • A possible route toward low-cost OPV. • To the best of my knowledge, this work is the first time going to report. - Abstract: Quaternary blend hybrid organic solar cells enjoy both an increased light absorption range and an easy method to fabricate because of the simple structure. In this study effects of mixing inorganic metal oxides (ZnO and TiO{submore » 2}) nanoparticles to the active layer of organic photovoltaics devices were investigated. The active layer primarily consists of various ratios of electron donor poly (3-hexylthiophene) (P3HT) and an electron acceptor [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) together with nanostructured ZnO and TiO{sub 2} dispersed in chlorobenzene (CB) and 1,2-dichlorobenzene (DCB). The ratio of PCBM to nanoparticles was varied keeping the ratio of P3HT to acceptor material constant. Mixing of nanoparticle plays a significant role in the resulting power conversion efficiency (PCE) of the devices. An increased PCE for ZnO/TiO{sub 2} doped devices can be attributed to increased absorption in the visible region and enhanced charge collection due to the percolation networks formed by metal oxides nanoparticles.« less

  5. Dual role of Zn2+ in maintaining structural integrity and suppressing deacetylase activity of SIRT1.

    PubMed

    Chen, Lei; Feng, Yu; Zhou, Yinqiu; Zhu, Weiliang; Shen, Xu; Chen, Kaixian; Jiang, Hualiang; Liu, Dongxiang

    2010-02-01

    Zn(2+) directly participates in catalysis of histone deacetylase (HDAC) Classes I, II, IV enzymes while its role in HDAC Class III activity is not well established. Herein we investigated the effects of Zn(2+) on the deacetylase activity of sirtuin 1 (silent mating type information regulation 2 homolog 1, SIRT1). We found that the inherent Zn(2+) at the zinc-finger motif of SIRT1 is essential for the structural integrity and the deacetylase activity of SIRT1, whereas the exogenous Zn(2+) strongly inhibits the deacetylase activity with an IC(50) of 0.82muM for Zn(Gly)(2). SIRT1 activity suppressed by the exogenous Zn(2+) can be fully recovered by the metal chelator EDTA but not by the activator resveratrol. We also identified Zn(2+) as a noncompetitive inhibitor for the substrates of NAD(+) and the acetyl peptide P53-AMC. The 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence titration experiments and site-directed mutagenesis study suggested that the exogenous Zn(2+) binds to SIRT1 but not at the zinc-finger motif. These results indicate that Zn(2+) plays a dual role in SIRT1 activity. Inherent Zn(2+) at the zinc-finger motif is structurally related and essential for SIRT1 activity. On the other hand, Zn(2+) may also bind to another site different from the zinc-finger motif or the binding sites for the substrates or resveratrol and act as a potent inhibitor of SIRT1.

  6. Surface characterization of ZnO/ZnMn{sub 2}O{sub 4} and Cu/Mn{sub 3}O{sub 4} powders obtained by thermal degradation of heterobimetallic complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrault, Joeel, E-mail: joel.barrault@univ-poitiers.fr; Makhankova, Valeriya G., E-mail: leram@univ.kiev.ua; Khavryuchenko, Oleksiy V.

    2012-03-15

    From the selective transformation of the heterometallic (Zn-Mn or Cu-Mn) carboxylate complexes with 2,2 Prime -bipyridyl by thermal degradation at relatively low (350 Degree-Sign C) temperature, it was possible to get either well defined spinel ZnMn{sub 2}O{sub 4} over zinc oxide or well dispersed copper particles surrounded by a manganese oxide (Mn{sub 3}O{sub 4}) in a core-shell like structure. Morphology of the powder surface was examined by scanning electron microscopy with energy dispersive X-ray microanalysis (SEM/EDX). Surface composition was determined by X-ray photoelectron spectroscopy (XPS). Specific surface of the powders by nitrogen adsorption was found to be 33{+-}0.2 and 9{+-}0.06more » m{sup 2} g{sup -1} for Zn-Mn and Cu-Mn samples, respectively, which is comparable to those of commercial products. - Graphical abstract: From the selective transformation of heterometallic (Zn-Mn or Cu-Mn) carboxylate complexes, it was possible to get either well defined spinel ZnMn{sub 2}O{sub 4} over zinc oxide or well dispersed copper particles surrounded by a manganese oxide (Mn{sub 3}O{sub 4}) in a core-shell like structure. Highlights: Black-Right-Pointing-Pointer Thermal degradation of heterometallic complexes results in fine disperse particles. Black-Right-Pointing-Pointer Core-shell Cu/Mn{sub 3}O{sub 4} particles are obtained. Black-Right-Pointing-Pointer ZnMn{sub 2}O{sub 4} spinel layer covers ZnO particles.« less

  7. Lithium Storage Performance of Zinc Ferrite Nanoparticle Synthesized with the Assistance of Triblock Copolymer P123.

    PubMed

    Yao, J H; Li, Y W; Song, X B; Zhang, Y F; Yan, J

    2018-05-01

    The ZnFe2O4 samples with the triblock copolymer P123 (P123) additive quantity of 0 wt.%, 2 wt.%, 5 wt.%, 8 wt.% and 10 wt.% were prepared by a very facile homogeneous precipitation method followed by high temperature sintering. The microstructures of the prepared samples were analyzed by X-ray diffraction (XRD) and Field emission scanning electron microscopy (FESEM). The results revealed that the five prepared samples are all normal spinel zinc ferrite (ZnFe2O4); the sample with the P123 additive quantity of 8 wt.% has the smallest particle size among the five samples. The lithium storage performances of the prepared samples are characterized by cyclic voltammograms (CV), electrochemical impedance spectroscopy (EIS), and charge-discharge tests. The results demonstrated that adding proper amount of P123 can obviously improve the lithium storage performances of zinc ferrite spinel powder. But excessive P123 can induce the particle agglomerates so that the lithium storage performance of sample decays significantly. The ZnFe2O4 sample with the P123 additive quantity of 8 wt.% exhibited the highest electrochemical activity, the best rate performance, and superior cycling stability. For example, after 50 charge/discharge cycles under a current density of 120 mA g-1, the ZnFe2O4 sample with the P123 additive quantity of 8 wt.% can retain a specific discharge capacity of 468 mAh g-1, much higher than that of for the ZnFe2O4 sample with the P123 additive quantity of 0 wt.% (224 mAh g-1).

  8. Acceptors in ZnO

    DOE PAGES

    Mccluskey, Matthew D.; Corolewski, Caleb; Lv, Jinpeng; ...

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence shows that these point defects have acceptor levels 3.2, 1.5, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO2 contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peakmore » in ZnO nanocrystals has been attributed to an acceptor, which may involve a zinc vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g = 2.0033 and g = 2.0075, along with an isotropic center at g = 2.0053.« less

  9. In vitro evaluation of cellular responses induced by ZnO nanoparticles, zinc ions and bulk ZnO in fish cells.

    PubMed

    Fernández, Dolores; García-Gómez, Concepción; Babín, Mar

    2013-05-01

    Zinc oxide nanoparticles (ZnO-NPs) are inevitably released into the environment and are potentially dangerous for aquatic life. However, the potential mechanisms of cytotoxicity of zinc nanoparticles remain unclear. Studying the toxicity of ZnO-NPs with In vitro systems will help to determine their interactions with cellular biomolecules. The aim of this study was to evaluate the cytotoxic potentials of ZnO-NPs in established fish cell lines (RTG-2, RTH-149 and RTL-W1) and compare them with those of bulk ZnO and Zn(2+) ions. Membrane function (CFDA-AM assay), mitochondrial function (MTT assay), cell growth (KBP assay), cellular stress (β-galactosidase assay), reductase enzyme activity (AB assay), reactive oxygen species (ROS), total glutathione cellular content (tGSH assay) and glutathione S-transferase (GST) activities were assessed for all cell lines. ZnO-NPs cytotoxicity was greater than those of bulk ZnO and Zn(2+). ZnO-NPs induced oxidative stress is dependent on their dose. Low cost tests, such as CFDA-AM, ROS, GST activity and tGSH cell content test that use fish cell lines, may be used to detect oxidative stress and redox status changes. Particle dissolution of the ZnO-NPs did not appear to play an important role in the observed toxicity in this study. Published by Elsevier B.V.

  10. HOMEOSTATIC REGULATION OF KCC2 ACTIVITY BY THE ZINC RECEPTOR mZnR/GPR39 DURING SEIZURES

    PubMed Central

    Gilad, David; Shorer, Sharon; Ketzef, Maya; Friedman, Alon; Sekler, Israel; Aizenman, Elias; Hershfinkel, Michal

    2015-01-01

    The aim of this study was to investigate the role of the synaptic metabotropic zinc receptor mZnR/GPR39 in physiological adaptation to epileptic seizures. We previously demonstrated that synaptic activation of mZnR/GPR39 enhances inhibitory drive in the hippocampus by upregulating neuronal K+/Cl− co-transporter 2 (KCC2) activity. Here, we first show that mZnR/GPR39 knockout (KO) adult mice have dramatically enhanced susceptibility to seizures triggered by a single intraperitoneal injection of kainic acid, when compared to wild type (WT) littermates. Kainate also substantially enhances seizure-associated gamma oscillatory activity in juvenile mZnR/GPR39 KO hippocampal slices, a phenomenon that can be reproduced in WT tissue by extracellular Zn2+ chelation. Importantly, kainate-induced synaptic Zn2+ release enhances surface expression and transport activity of KCC2 in WT, but not mZnR/GPR39 KO hippocampal neurons. Kainate-dependent upregulation of KCC2 requires mZnR/GPR39 activation of the Gαq/phospholipase C/extracellular regulated kinase (ERK1/2) signaling cascade. We suggest that mZnR/GPR39-dependent upregulation of KCC2 activity provides homeostatic adaptation to an excitotoxic stimulus by increasing inhibition. As such, mZnR/GPR39 may provide a novel pharmacological target for dampening epileptic seizure activity. PMID:25562657

  11. Self-assembled 3D zinc borate florets via surfactant assisted synthesis under moderate pressures: Process temperature dependent morphology study

    NASA Astrophysics Data System (ADS)

    Mahajan, Dhiraj S.; Deshpande, Tushar; Bari, Mahendra L.; Patil, Ujwal D.; Narkhede, Jitendra S.

    2018-04-01

    In the present study, we prepared zinc borates using aqueous phase synthesis under moderate pressures (MP) (<150 psi) with ethanol as a co-solvent in the presence of a quaternary ammonium surfactant-Cetyltrimethylammonium bromide (CTAB). 3D morphologies of self-assembled zinc borate (Zn(H2O)B2O4 · 0.12 H2O, Zn3B6O12 · 3.5H2O, ZnB2O4) resembling flower-like structures were obtained by varying temperature under moderate pressure conditions. Synthesized zinc borates’ florets were morphologically characterized by Field Emission Scanning Electron Microscopy. The x-ray diffractions of borate species reveal rhombohydra, monoclinic and cubic phases of zinc borate crystals as a function of process temperature. Additionally, thermal analysis confirms excellent dehydration/degradation behavior for the zinc borate crystals synthesized at moderate pressures and elevated temperatures and could be utilized as potential flame retardant fillers in the polymer matrices.

  12. Synthesis of zinc chlorophyll materials for dye-sensitized solar cell applications

    NASA Astrophysics Data System (ADS)

    Erten-Ela, Sule; Vakuliuk, Olena; Tarnowska, Anna; Ocakoglu, Kasim; Gryko, Daniel T.

    2015-01-01

    To design sensitizers for dye sensitized solar cells (DSSCs), a series of zinc chlorins with different substituents were synthesized. Novel zinc methyl 3-devinyl-3-hydroxymethyl-20-phenylacetylenylpyropheophorbide-a (ZnChl-1), zinc methyl 20-bromo-3-devinyl-3-hydroxymethylpyropheophorbide-a (ZnChl-2), zinc methyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-a (ZnChl-3), zinc propyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-a (ZnChl-4) were synthesized and their photovoltaic performances were evaluated in dye-sensitized solar cells. Photoelectrodes with a 7 μm thick nanoporous layer and a 5 μm thick light-scattering layer were used to fabricate dye sensitized solar cells. The best efficiency was obtained with ZnChl-2 sensitizer. ZnChl-2 gave a Jsc of 3.5 mA/cm2, Voc of 412 mV, FF of 0.56 and an overall conversion efficiency of 0.81 at full sun (1000 W m-2).

  13. The Phase Relations in the In 2O 3-Al 2ZnO 4-ZnO System at 1350°C

    NASA Astrophysics Data System (ADS)

    Nakamura, Masaki; Kimizuka, Noboru; Mohri, Takahiko; Isobe, Mitsumasa

    1993-08-01

    Phase relations in the In 2O 3-Al 2ZnO 4-ZnO system at 1350°C are determined by a classical quenching method. This system consists of In 2O 3, Al 2ZnO 4, ZnO, and homologous phases InAlO 3(ZnO) m ( m = 2, 3, …) having solid solutions with LuFeO 3(ZnO) m-type crystal structures. These solid solution ranges are as follows: In 1+ x1Al 1- x1O 3(ZnO) 2 ( x1 = 0.70)-In 1+ x2Al 1- x2O 3(ZnO) 2 ( x2 = 0.316-0.320), In 2O 3(ZnO) 3-In 1+ xAl 1- xO 3(ZnO) 3 ( x = 0.230), In 2O 3(ZnO) 4-In 1+ xAl 1- xO 3(ZnO) 4 ( x = 0.15-0.16), In 2O 3(ZnO) 5-In 1+ xAl 1- xO 3(ZnO) 5 ( x = 0.116-0.130), In 2O 3(ZnO) 6-In 1+ xAl 1- xO 3(ZnO) 6 ( x = 0.000-0.111), In 2O 3(ZnO) 7-In 1+ xAl 1- xO 3(ZnO) 7 ( x = 0.08), In 2O 3(ZnO) 8-In 1+ xAl 1- xO 3(ZnO) 8 ( x: undetermined), and In 2O 3(ZnO) m-InAlO 3(ZnO) m ( m = 9, 10, 11, 13, 15, 17, and 19). The space groups of these homologous phases belong to R3¯ m for m = odd or P6 3/ mmc for m = even. Their crystal structures, In 1+ xAl 1- xO 3(ZnO) m (0 < x < 1), consist of three kinds of layers: an InO 1.5 layer, an (In xAl 1- xZn)O 2.5 layer, and ZnO layers. A comparison of the phase relations in the In 2O 3- M2ZnO 4-ZnO systems ( M = Fe, Ga, or Al) is made and their characteristic features are discussed in terms of the ionic radii and site preferences of the M cations.

  14. Imaging pancreatic cancer using bioconjugated InP quantum dots.

    PubMed

    Yong, Ken-Tye; Ding, Hong; Roy, Indrajit; Law, Wing-Cheung; Bergey, Earl J; Maitra, Anirban; Prasad, Paras N

    2009-03-24

    In this paper, we report the successful use of non-cadmium-based quantum dots (QDs) as highly efficient and nontoxic optical probes for imaging live pancreatic cancer cells. Indium phosphide (core)-zinc sulfide (shell), or InP/ZnS, QDs with high quality and bright luminescence were prepared by a hot colloidal synthesis method in nonaqueous media. The surfaces of these QDs were then functionalized with mercaptosuccinic acid to make them highly dispersible in aqueous media. Further bioconjugation with pancreatic cancer specific monoclonal antibodies, such as anticlaudin 4 and antiprostate stem cell antigen (anti-PSCA), to the functionalized InP/ZnS QDs, allowed specific in vitro targeting of pancreatic cancer cell lines (both immortalized and low passage ones). The receptor-mediated delivery of the bioconjugates was further confirmed by the observation of poor in vitro targeting in nonpancreatic cancer based cell lines which are negative for the claudin-4-receptor. These observations suggest the immense potential of InP/ZnS QDs as non-cadmium-based safe and efficient optical imaging nanoprobes in diagnostic imaging, particularly for early detection of cancer.

  15. Influences of Silver and Zinc Contents in the Stannite Ag2ZnSnS4 Photoelectrodes on Their Photoelectrochemical Performances in the Salt-Water Solution.

    PubMed

    Cheng, Kong-Wei; Hong, Shu-Wei

    2018-06-13

    The multicomponent metal sulphide (stannite Ag2ZnSnS4) samples were grown onto the conductive metal oxide coated glass substrates by using the sulfurization of co-sputtering silver-zinc-tin precursors. Several [Ag]/[Zn+Sn] and [Zn]/[Sn] ratios were set in the metal precursors to investigate their influences on the crystal phases, microstructures and physical properties of the stannite Ag2ZnSnS4 samples. The results of the crystal phases and compositions of samples showed that the stannite Ag2ZnSnS4 phase can be obtained using the two-step sulfurization process, which maintained the silver-zinc-tin precursors at 160C for 1 hour and then kept them at 450oC for 30 minutes under sulfur/nitrogen atmosphere. N-type stannite Ag2ZnSnS4 samples with the carrier concentrations of 5.54x1012 - 9.11x1012 cm-3 can be obtained. High resistivities of Ag2ZnSnS4 samples were observed due to the low values of carrier concentration. Increasing the silver content in the sample can improve its PEC performance due to the decrease in the sample resistivity. The ratio of [Ag]/[Zn+Sn] kept at 0.8 and ratio of [Zn]/[Sn] set at 0.90 in the stannite Ag2ZnSnS4 sample had the highest photoelectrochemical performance of 0.31 mA.cm-2 with the potential set at 1.23 V vs. relative hydrogen electrode applied on the sample because of it having the lowest charge transfer resistance in electrolyte.

  16. Charge transport study in bis{2-(2-hydroxyphenyl) benzoxazolate} zinc [Zn(hpb)2

    NASA Astrophysics Data System (ADS)

    Rai, Virendra Kumar; Srivastava, Ritu; Chauhan, Gayatri; Kumar, Arunandan; Kamalasanan, M. N.

    2008-10-01

    The nature of the electrical transport mechanism for carrier transport in pure bis {2-(2-hydroxyphenyl) benzoxazolate} zinc [Zn(hpb)2] has been studied by current voltage measurements of samples at different thicknesses and at different temperatures. Hole-only devices show ohmic conduction at low voltages and space charge conduction at high voltages. The space charge conduction is clearly identifiable with a square law dependence of current on voltage as well as the scaling of current inversely with the cube of thickness. With a further increase in voltage, the current increases with a Vm dependence with m varying with temperature typical of trap limited conduction with an exponential distribution of trap states. From the square law region the effective charge carrier mobility of holes has been evaluated as 2.5 × 10-11 m2 V-1 s-1. Electron-only devices however show electrode limited conduction, which was found to obey the Scott Malliaras model of charge injection.

  17. Comment on "Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts".

    PubMed

    Nakamura, Junji; Fujitani, Tadahiro; Kuld, Sebastian; Helveg, Stig; Chorkendorff, Ib; Sehested, Jens

    2017-09-01

    Kattel et al (Reports, 24 March 2017, p. 1296) report that a zinc on copper (Zn/Cu) surface undergoes oxidation to zinc oxide/copper (ZnO/Cu) during carbon dioxide (CO 2 ) hydrogenation to methanol and conclude that the Cu-ZnO interface is the active site for methanol synthesis. Similar experiments conducted two decades ago by Fujitani and Nakamura et al demonstrated that Zn is attached to formate rather than being fully oxidized. Copyright © 2017, American Association for the Advancement of Science.

  18. Zinc transporter 3 is involved in learned fear and extinction, but not in innate fear.

    PubMed

    Martel, Guillaume; Hevi, Charles; Friebely, Olivia; Baybutt, Trevor; Shumyatsky, Gleb P

    2010-11-01

    Synaptically released Zn²+ is a potential modulator of neurotransmission and synaptic plasticity in fear-conditioning pathways. Zinc transporter 3 (ZnT3) knock-out (KO) mice are well suited to test the role of zinc in learned fear, because ZnT3 is colocalized with synaptic zinc, responsible for its transport to synaptic vesicles, highly enriched in the amygdala-associated neural circuitry, and ZnT3 KO mice lack Zn²+ in synaptic vesicles. However, earlier work reported no deficiency in fear memory in ZnT3 KO mice, which is surprising based on the effects of Zn²+ on amygdala synaptic plasticity. We therefore reexamined ZnT3 KO mice in various tasks for learned and innate fear. The mutants were deficient in a weak fear-conditioning protocol using single tone-shock pairing but showed normal memory when a stronger, five-pairing protocol was used. ZnT3 KO mice were deficient in memory when a tone was presented as complex auditory information in a discontinuous fashion. Moreover, ZnT3 KO mice showed abnormality in trace fear conditioning and in fear extinction. By contrast, ZnT3 KO mice had normal anxiety. Thus, ZnT3 is involved in associative fear memory and extinction, but not in innate fear, consistent with the role of synaptic zinc in amygdala synaptic plasticity.

  19. Green Synthesized Zinc Oxide (ZnO) Nanoparticles Induce Oxidative Stress and DNA Damage in Lathyrus sativus L. Root Bioassay System

    PubMed Central

    Panda, Kamal K.; Golari, Dambaru; Venugopal, A.; Achary, V. Mohan M.; Phaomei, Ganngam; Parinandi, Narasimham L.; Sahu, Hrushi K.; Panda, Brahma B.

    2017-01-01

    Zinc oxide nanoparticles (ZnONP-GS) were synthesised from the precursor zinc acetate (Zn(CH3COO)2) through the green route using the milky latex from milk weed (Calotropis gigantea L. R. Br) by alkaline precipitation. Formation of the ZnONP-GS was monitored by UV-visible spectroscopy followed by characterization and confirmation by energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Both the ZnONP-GS and the commercially available ZnONP-S (Sigma-Aldrich) and cationic Zn2+ from Zn(CH3COO)2 were tested in a dose range of 0–100 mg·L−1 for their potency (i) to induce oxidative stress as measured by the generation reactive oxygen species (ROS: O2•−, H2O2 and •OH), cell death, and lipid peroxidation; (ii) to modulate the activities of antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), guaiacol peroxidase (GPX), and ascorbate peroxidase (APX); and (iii) to cause DNA damage as determined by Comet assay in Lathyrus sativus L. root bioassay system. Antioxidants such as Tiron and dimethylthiourea significantly attenuated the ZnONP-induced oxidative and DNA damage, suggesting the involvement of ROS therein. Our study demonstrated that both ZnONP-GS and ZnONP-S induced oxidative stress and DNA damage to a similar extent but were significantly less potent than Zn2+ alone. PMID:28524089

  20. Thermodynamics of Pb(ii) and Zn(ii) binding to MT-3, a neurologically important metallothionein.

    PubMed

    Carpenter, M C; Shami Shah, A; DeSilva, S; Gleaton, A; Su, A; Goundie, B; Croteau, M L; Stevenson, M J; Wilcox, D E; Austin, R N

    2016-06-01

    Isothermal titration calorimetry (ITC) was used to quantify the thermodynamics of Pb(2+) and Zn(2+) binding to metallothionein-3 (MT-3). Pb(2+) binds to zinc-replete Zn7MT-3 displacing each zinc ion with a similar change in free energy (ΔG) and enthalpy (ΔH). EDTA chelation measurements of Zn7MT-3 and Pb7MT-3 reveal that both metal ions are extracted in a tri-phasic process, indicating that they bind to the protein in three populations with different binding thermodynamics. Metal binding is entropically favoured, with an enthalpic penalty that reflects the enthalpic cost of cysteine deprotonation accompanying thiolate ligation of the metal ions. These data indicate that Pb(2+) binding to both apo MT-3 and Zn7MT-3 is thermodynamically favourable, and implicate MT-3 in neuronal lead biochemistry.

  1. Long Life, High Energy Silver-Zinc Batteries

    NASA Technical Reports Server (NTRS)

    Kainthla, Ramesh; Coffey, Brendan

    2003-01-01

    This viewgraph presentation includes: 1) an introduction to RBC Technologies; 2) Rechargeable Zinc Alkaline (RZA(tm)) Systems which include MnO2/Zn, Ni/Zn, Ag/Zn, and Zn/Air; and 3) RZA Silver/Zinc Battery Developments. Conclusions include the following: 1)Issues with long term wet life and cycle life of the silver/zinc battery system are being overcome through the use of new anode formulations and separator designs; 2) Performance may exceed 200 cycles to 80% of initial capacity and ultimate wet-life of > 36 months; and 3) Rechargeable silver/zinc batteries available in prismatic and cylindrical formats may provide a high energy, high power alternative to lithium-ion in military/aerospace applications.

  2. The recovery of Zn and Pb and the manufacture of lightweight bricks from zinc smelting slag and clay.

    PubMed

    Hu, Huiping; Deng, Qiufeng; Li, Chao; Xie, Yue; Dong, Zeqin; Zhang, Wei

    2014-04-30

    Novel lightweight bricks have been produced by sintering mixes of zinc smelting slag and clay. A two-stage sintered process has been proposed to recovery of Zn and Pb and reutilization of the zinc smelting slag. In the first stage of the process, called reduction and volatilization procedure, zinc and lead were reduced by the carbon contained in the zinc smelting slag and volatilized into the dust, and the dust can be used as a secondary zinc resource. In the second stage of the process, called oxidation sintering procedure, a lightweight brick was produced. Samples containing up to 60 wt.% zinc smelting slag and 40 wt.% kaolin clay were reduced at 1050°C for 6h, and then sintered at 1050°C for 4h. The recoveries of Zn and Pb from the brick are 94.5 ± 0.6% and 97.6 ± 0.2%, respectively. Low bulk density (1.42 g cm(-3)) and relatively high compressive strength (2 2MPa) sintered bricks were produced, and the leaching toxicity of the sintered bricks was below the regulatory thresholds of Chinese National Standards. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Formation of p-type ZnO thin film through co-implantation

    NASA Astrophysics Data System (ADS)

    Chuang, Yao-Teng; Liou, Jhe-Wei; Woon, Wei-Yen

    2017-01-01

    We present a study on the formation of p-type ZnO thin film through ion implantation. Group V dopants (N, P) with different ionic radii are implanted into chemical vapor deposition grown ZnO thin film on GaN/sapphire substrates prior to thermal activation. It is found that mono-doped ZnO by N+ implantation results in n-type conductivity under thermal activation. Dual-doped ZnO film with a N:P ion implantation dose ratio of 4:1 is found to be p-type under certain thermal activation conditions. Higher p-type activation levels (1019 cm-3) under a wider thermal activation range are found for the N/P dual-doped ZnO film co-implanted by additional oxygen ions. From high resolution x-ray diffraction and x-ray photoelectron spectroscopy it is concluded that the observed p-type conductivities are a result of the promoted formation of PZn-4NO complex defects via the concurrent substitution of nitrogen at oxygen sites and phosphorus at zinc sites. The enhanced solubility and stability of acceptor defects in oxygen co-implanted dual-doped ZnO film are related to the reduction of oxygen vacancy defects at the surface. Our study demonstrates the prospect of the formation of stable p-type ZnO film through co-implantation.

  4. Synthesis, characterization, and application of Zn(NH 3)(CO3) for selective adsorptive separation of CO2

    NASA Astrophysics Data System (ADS)

    Khazeni, Naasser

    This study explores the potential of Zn(NH3)(CO3) for selective CO2 separation. It develops a novel, highly controllable, single-pot synthesis approach based on urea hydrolysis and solvothermal aging to increase the feasibility of synthesizing Zn(NH3)(CO3), determines the structure of Zn(NH3)(CO3) in detail through single crystal X-ray diffraction and powder X-ray diffraction analyses, and performs adsorption analyses for the compound using CO2, N 2, H2, O2, and CH4 as adsorptives. Through adsorptive characterization, a systematic adsorbent selection screening is performed to assess the potential application of Zn(NH3)(CO 3) for adsorptive separation of CO2 from an upstream gas mixture of power generation, hydrogen production, and natural gas industries. Structural analysis shows Zn(NH3)(CO3) to have an inorganic helical framework that consists of a small helix of (ZnOCO) 2 and a large helix of (ZnOCO)4 with two ammines (NH 3) pendant from every other zinc. In terms of adsorption capacity and CO2 selectivity, Zn(NH3)(CO3) adsorbed 0.550 mmole/g CO2 at 293 K and 4500 mmHg, but only 0.047 mmole/g N 2, 0.084 mmole/g H2, 0.207 mmole/g 02, and 0.060 mmole/g CH4 at the same temperature and pressure. This behavior demonstrates considerable equilibrium selectivities - 36, 31, 63, and 11 - for separating CO2 from CH4, CO2 from H 2, CO2 from N2, and CO2 from 02, respectively. During adsorption, the pendant ammines act as the gates of check-valves: applied pressure opens the gates for adsorption; and during desorption, the gates are closed, trapping the adsorbates, until a reduction of pressure to near-atmospheric levels. Therefore, Zn(NH3)(CO3) exhibits low-pressure H3 or H4 hysteresis, indicating that the Zn(NH3)(CO3) framework can achieve gas storage at near-atmospheric pressures. Additionally, the compound proves structurally stable, with an adsorption decrease of 0.8% after 20 adsorption/desorption cycles - a factor that, considered with the other characteristics of Zn

  5. Photodetectors and birefringence in ZnP22h5 crystals

    NASA Astrophysics Data System (ADS)

    Stamov, I. G.; Syrbu, N. N.; Dorogan, A. V.

    2013-03-01

    The spectral dependences of refractive indexes no(n⊥), ne(n||) and Δn=no(n⊥)-ne(n||) were studied in ZnP2-C2h5 crystals. The intersection of no(n⊥) and ne(n||) was found for λ0=0.906 μm. The crystal possesses positive dispersion Δn=no(n⊥)-ne(n||) in the region where λ>λ0, and a negative dispersion is observed in the region where λ<λ0. The electrical, spectral and azimuth characteristics of monolith n-р- and Ме-n-р-ZnP2C2h5 and discrete ZnP2-C2h5-ZnP2-D48 structures were studied, and a prognosis was made on the usage perspective of these devices.

  6. Rates of zinc and trace metal release from dissolving sphalerite at pH 2.0-4.0

    USGS Publications Warehouse

    Stanton, M.R.; Gemery-Hill, P. A.; Shanks, Wayne C.; Taylor, C.D.

    2008-01-01

    High-Fe and low-Fe sphalerite samples were reacted under controlled pH conditions to determine nonoxidative rates of release of Zn and trace metals from the solid-phase. The release (solubilization) of trace metals from dissolving sphalerite to the aqueous phase can be characterized by a kinetic distribution coefficient, (Dtr), which is defined as [(Rtr/X(tr)Sph)/(RZn/X(Zn) Sph)], where R is the trace metal or Zn release rate, and X is the mole fraction of the trace metal or Zn in sphalerite. This coefficient describes the relationship of the sphalerite dissolution rate to the trace metal mole fraction in the solid and its aqueous concentration. The distribution was used to determine some controls on metal release during the dissolution of sphalerite. Departures from the ideal Dtr of 1.0 suggest that some trace metals may be released via different pathways or that other processes (e.g., adsorption, solubility of trace minerals such as galena) affect the observed concentration of metals. Nonoxidative sphalerite dissolution (mediated by H+) is characterized by a "fast" stage in the first 24-30 h, followed by a "slow" stage for the remainder of the reaction. Over the pH range 2.0-4.0, and for similar extent of reaction (reaction time), sphalerite composition, and surface area, the rates of release of Zn, Fe, Cd, Cu, Mn and Pb from sphalerite generally increase with lower pH. Zinc and Fe exhibit the fastest rates of release, Mn and Pb have intermediate rates of release, and Cd and Cu show the slowest rates of release. The largest variations in metal release rates occur at pH 2.0. At pH 3.0 and 4.0, release rates show less variation and appear less dependent on the metal abundance in the solid. For the same extent of reaction (100 h), rates of Zn release range from 1.53 ?? 10-11 to 5.72 ?? 10-10 mol/m2/s; for Fe, the range is from 4.59 ?? 10-13 to 1.99 ?? 10-10 mol/m2/s. Trace metal release rates are generally 1-5 orders of magnitude slower than the Zn or Fe rates

  7. Single crystalline wurtzite ZnO/zinc blende ZnS coaxial heterojunctions and hollow zinc blende ZnS nanotubes: synthesis, structural characterization and optical properties.

    PubMed

    Huang, Xing; Willinger, Marc-Georg; Fan, Hua; Xie, Zai-lai; Wang, Lei; Klein-Hoffmann, Achim; Girgsdies, Frank; Lee, Chun-Sing; Meng, Xiang-Min

    2014-08-07

    Synthesis of ZnO/ZnS heterostructures under thermodynamic conditions generally results in the wurtzite (WZ) structure of the ZnS component because its WZ phase is thermodynamically more stable than its zinc blende (ZB) phase. In this report, we demonstrate for the first time the preparation of ZnO/ZnS coaxial nanocables composed of single crystalline ZB structured ZnS epitaxially grown on WZ ZnO via a two-step thermal evaporation method. The deposition temperature is believed to play a crucial role in determining the crystalline phase of ZnS. Through a systematic structural analysis, the ZnO core and the ZnS shell are found to have an orientation relationship of (0002)ZnO(WZ)//(002)ZnS(ZB) and [01-10]ZnO(WZ)//[2-20]ZnS(ZB). Observation of the coaxial nanocables in cross-section reveals the formation of voids between the ZnO core and the ZnS shell during the coating process, which is probably associated with the nanoscale Kirkendall effect known to result in porosity. Furthermore, by immersing the ZnO/ZnS nanocable heterojunctions in an acetic acid solution to etch away the inner ZnO cores, single crystalline ZnS nanotubes orientated along the [001] direction of the ZB structure were also achieved for the first time. Finally, optical properties of the hollow ZnS tubes were investigated and discussed in detail. We believe that our study could provide some insights into the controlled fabrication of one dimensional (1D) semiconductors with desired morphology, structure and composition at the nanoscale, and the synthesized WZ ZnO/ZB ZnS nanocables as well as ZB ZnS nanotubes could be ideal candidates for the study of optoelectronics based on II-VI semiconductors.

  8. Mechanisms of zinc transport into pig small intestine brush-border membrane vesicles.

    PubMed Central

    Tacnet, F; Lauthier, F; Ripoche, P

    1993-01-01

    1. The purpose of the present work was to examine certain membrane transport mechanisms likely to carry zinc across the brush-border membrane of pig small intestine, isolated in a vesicular form. 2. In initial velocity conditions, saturation kinetics revealed a great effect of pH on zinc transport: optimal conditions were observed with an intravesicular pH of around 6.6 with or without a H+ gradient; however, this did not allow us to conclude the existence of a neutral exchange between Zn2+ and H+ ions. 3. By measuring 36Cl uptakes, the presence of the Cl(-)-HCO3- or Cl(-)-OH-antiporter with typical 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) sensitivity was detected in vesicles; zinc did not alter this anionic exchange activity. A 65Zn time course, performed in conditions identical with those for 36Cl uptake, was DIDS insensitive and was greatly inhibited by an outward OH- gradient. This could argue against a transport of zinc as a complex with Cl- and HCO3- through the anion antiporter. 4. When external Cl- and HCO3- were replaced by SCN-, able to form a Zn(SCN)4(2-) complex, we observed a stimulating effect of outward HCO3- gradients on 65Zn uptake but neither DIDS nor diphenylamine-2-carboxylate (DPC) inhibited the transport in these conditions. This suggested that the intestinal anion antiporter was not a major route for zinc reabsorption. 5. The tripeptide Gly-Gly-His at low concentrations stimulated 65Zn uptake, then inhibited it in a dose-dependent manner either in the presence of an inward H+ gradient or in the presence of a membrane potential 'negative inside' or in both situations. These conditions are necessary for the active transport of the peptide and this strongly suggests that zinc can be transported as a [Gly-Gly-His-Zn] complex, utilizing the peptide carrier system. PMID:8229851

  9. STAT5-glucocorticoid receptor interaction and MTF-1 regulate the expression of ZnT2 (Slc30a2) in pancreatic acinar cells

    PubMed Central

    Guo, Liang; Lichten, Louis A.; Ryu, Moon-Suhn; Liuzzi, Juan P.; Wang, Fudi; Cousins, Robert J.

    2010-01-01

    The exocrine pancreas plays an important role in endogenous zinc loss by regulating excretion into the intestinal tract and hence influences the dietary zinc requirement. The present experiments show that the zinc transporter ZnT2 (Slc30a2) is localized to the zymogen granules and that dietary zinc restriction in mice decreased the zinc concentration of zymogen granules and ZnT2 expression. Excess zinc given orally increased ZnT2 expression and was associated with increased pancreatic zinc accumulation. Rat AR42J acinar cells when induced into a secretory phenotype, using the glucocorticoid analog dexamethasone (DEX), exhibited increased ZnT2 expression and labile zinc as measured with a fluorophore. DEX administrated to mice also induced ZnT2 expression that accompanied a reduction of the pancreatic zinc content. ZnT2 promoter analyses identified elements required for responsiveness to zinc and DEX. Zinc regulation was traced to a MRE located downstream from the ZnT2 transcription start site. Responsiveness to DEX is produced by two upstream STAT5 binding sites that require the glucocorticoid receptor for activation. ZnT2 knockdown in the AR42J cells using siRNA resulted in increased cytoplasmic zinc and decreased zymogen granule zinc that further demonstrated that ZnT2 may mediate the sequestration of zinc into zymogen granules. We conclude, based upon experiments with intact mice and pancreatic acinar cells in culture, that ZnT2 participates in zinc transport into pancreatic zymogen granules through a glucocorticoid pathway requiring glucocorticoid receptor and STAT5, and zinc-regulated signaling pathways requiring MTF-1. The ZnT2 transporter appears to function in a physiologically responsive manner involving entero-pancreatic zinc trafficking. PMID:20133611

  10. Nonstoichiometry of ZnGeP 2 crystals probed by static tensimetric method

    NASA Astrophysics Data System (ADS)

    Vasilyeva, I. G.; Nikolaev, R. E.; Verozubova, G. A.

    2010-09-01

    The nonstoichiometry of ZnGeP 2 has been determined based on the p-T dependences measured above ZnP 2-Ge samples in the temperature range of 980-1225 K by a high-sensitive and precise tensimetric static method with a quartz Bourdon gauge. Scanning of the compositional range 49-51 mol% ZnP 2 in the closed system and construction of the p-T dependences were possible due to incongruent evaporation of ZnGeP 2 and formation of volatile species Zn(g), P 4(g) and P 2(g). The maximum homogeneity range of the solid ZnGeP 2 was determined between 50.03 and 49.61 mol% ZnP 2 at a temperature of 1128 K, based on the inflection points on the p-T dependences, corresponding to transitions of the three-phase (solid-solid-vapor) equilibrium to a two-phase (solid-vapor) one and vice visa. The nonstoichiometry as the overall concentration of defects is considered to gain a better insight into the defect chemistry of ZnGeP 2.

  11. Cubic zirconia as a species permeable coating for zinc diffusion in gallium arsenide

    NASA Astrophysics Data System (ADS)

    Bisberg, J. E.; Dabkowski, F. P.; Chin, A. K.

    1988-10-01

    Diffusion of zinc into GaAs through an yttria-stabilized cubic zirconia (YSZ) passivation layer has been demonstrated with an open-tube diffusion method. Pure zinc or GaAs/Zn2As3 sources produced high quality planar p-n junctions. The YSZ layer protects the GaAs surface from excessive loss of arsenic, yet is permeable to zinc, allowing its diffusion into the semiconductor. The YSZ films, deposited by electron beam evaporation, were typically 2000 Å thick. Zinc diffusion coefficients (DT) at 650 °C in the YSZ passivated GaAs ranged from 3.6×10-10 cm2/min for the GaAs/Zn2As3 source to 1.9×10-9 cm2/min for the pure zinc source. Doping concentrations for both YSZ passivated and uncapped samples were approximately 5×1019 cm-3.

  12. SiO2 and ZnO Dopants in 3D Printed TCP Scaffolds Enhances Osteogenesis and Angiogenesis in vivo

    PubMed Central

    Fielding, Gary; Bose, Susmita

    2013-01-01

    Calcium phosphate (CaP) scaffolds with three dimensionally (3D) interconnected pores play an important role in mechanical interlocking and biological fixation in bone implant applications. CaPs alone, however, are only osteoconductive (ability to guide bone growth). Much attention has been given to the incorporation of biologics and pharmacologics to add osteoinductive (ability to cause new bone growth) properties to CaP materials. Because biologics and pharmacologics are generally delicate compounds and also subject to increased regulatory scrutiny, there is a need to investigate alternative methods to introduce osteoinductivity to CaP materials. In this study silica (SiO2) and zinc oxide (ZnO) have been incorporated in to 3D printed β-tricalcium phosphate (TCP) scaffolds to investigate their potential to trigger osteoinduction in vivo. Silicon and zinc are trace elements that are common to bone and have also been shown to have many beneficial properties from increased bone regeneration to angiogenesis. Implants were placed in bicortical femur defects introduced to a murine model for up to 16 weeks. Addition of dopants into TCP increased the capacity for new early bone formation by modulating collagen I production and osteocalcin production. Neovascularization was found to be up to three times more than the pure TCP control group. The findings from this study indicate that the combination of SiO2 and ZnO dopants in TCP may be a viable alternative to introduce osteoinductive properties to CaPs. PMID:23871941

  13. Hybrid phototransistors based on bulk heterojunction films of poly(3-hexylthiophene) and zinc oxide nanoparticle.

    PubMed

    Nam, Sungho; Seo, Jooyeok; Park, Soohyeong; Lee, Sooyong; Jeong, Jaehoon; Lee, Hyena; Kim, Hwajeong; Kim, Youngkyoo

    2013-02-01

    Hybrid phototransistors (HPTRs) were fabricated on glass substrates using organic/inorganic hybrid bulk heterojunction films of p-type poly(3-hexylthiophene) (P3HT) and n-type zinc oxide nanoparticles (ZnO(NP)). The content of ZnO(NP) was varied up to 50 wt % in order to understand the composition effect of ZnO(NP) on the performance of HPTRs. The morphology and nanostructure of the P3HT:ZnO(NP) films was examined by employing high resolution electron microscopes and synchrotron radiation grazing angle X-ray diffraction system. The incident light intensity (P(IN)) was varied up to 43.6 μW/cm², whereas three major wavelengths (525 nm, 555 nm, 605 nm) corresponded to the optical absorption of P3HT were applied. Results showed that the present HPTRs showed typical p-type transistor performance even though the n-type ZnO(NP) content increased up to 50 wt %. The highest transistor performance was obtained at 50 wt %, whereas the lowest performance was measured at 23 wt % because of the immature bulk heterojunction morphology. The drain current (I(D)) was proportionally increased with P(IN) due to the photocurrent generation in addition to the field-effect current. The highest apparent and corrected responsivities (R(A) = 4.7 A/W and R(C) = 2.07 A/W) were achieved for the HPTR with the P3HT:ZnO(NP) film (50 wt % ZnO(NP)) at P(IN) = 0.27 μW/cm² (555 nm).

  14. Potential effect of CuInS2/ZnS core-shell quantum dots on P3HT/PEDOT:PSS heterostructure based solar cell

    NASA Astrophysics Data System (ADS)

    Jindal, Shikha; Giripunje, S. M.

    2018-07-01

    Nanostructured quantum dots (QDs) are quite promising in the solar cell application due to quantum confinement effect. QDs possess multiple exciton generation and large surface area. The environment friendly CuInS2/ZnS core-shell QDs were prepared by solvothermal method. Thus, the 3 nm average sized CuInS2/ZnS QDs were employed in the bulk heterojunction device and the active blend layer consisting of the P3HT and CuInS2/ZnS QDs was investigated. The energy level information of CuInS2/ZnS QDs as an electron acceptor was explored by ultra violet photoelectron spectroscopy. Bulk heterojunction hybrid device of ITO/PEDOT:PSS/P3HT: (CuInS2/ZnS QDs)/ZnO/Ag was designed by spin coating approach and its electrical characterization was investigated by solar simulator. Current density - voltage characteristics shows the enhancement in power conversion efficiency with increasing concentration of CuInS2/ZnS QDs in bulk heterojunction device.

  15. Green synthesis of novel zinc iron oxide (ZnFe2O4) nanocomposite via Moringa Oleifera natural extract for electrochemical applications

    NASA Astrophysics Data System (ADS)

    Matinise, N.; Kaviyarasu, K.; Mongwaketsi, N.; Khamlich, S.; Kotsedi, L.; Mayedwa, N.; Maaza, M.

    2018-07-01

    The main motivation of the research study involves development of reliable, accurate, inexpensive and environmental friendly method for the synthesis of zinc ferrite (ZnFe2O4) nanocomposites. It was thought of interest to synthesized zinc ferrite via green synthetic method using Moringa Oleifera extract. For the first time, we used green synthetic route via Moringa Oleifera extract acted as both chelating and reducing agents to synthesis spinel ZnFe2O4 nanocomposites. The physical and electrochemical properties were characterized using different techniques such as High Resolve Transmission Electron Microscope (HRTEM) Energy Dispersive X-ray Spectroscopy (EDS) X-ray diffraction (XRD) Fourier transform-infrared (FT-IR) Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The XRD pattern thus clearly illustrated that the ZnFe2O4 nanocmposites synthesized by the green method were good crystalline in nature. The time constant and exchange current of ZnFe2O4 nanocomposites from EIS analysis were calculated and found to be 5.2001 × 10-4 s/rad and 6.59432 × 10-4 A, respectively. Based on the electrochemical results, GCE/ZnFe2O4 electrode exhibited a good voltametric response, high electro-activity, and excellent electrochemical performance making it a highly suitable/promising electrode for electrochemical applications.

  16. Synthesis of zinc sulfide nanoparticles during zinc oxidization by H2S and H2S/H2O supercritical fluids

    NASA Astrophysics Data System (ADS)

    Vostrikov, A. A.; Fedyaeva, O. N.; Sokol, M. Ya.; Shatrova, A. V.

    2014-12-01

    Formation of zinc sulfide nanoparticles was detected during interaction of bulk samples with hydrogen sulfide at supercritical parameters. Synthesis proceeds with liberation of H2 by the reaction nZn + nH2S = (ZnS) n + nH2. It has been found by the X-ray diffraction method, scanning electron microscopy, and mass spectrometry that the addition of water stimulates coupled reactions of nanoparticle synthesis nZn + nH2O = (ZnO) n + nH2 and (ZnO) n + nH2S = (ZnS) n + nH2O and brings about an increase in the synthesis rate and morphological changes of (ZnS) n nanoparticles.

  17. Synthesis, cytotoxicity, and hydroxyapatite formation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses

    NASA Astrophysics Data System (ADS)

    Kaur, Gurbinder; Pickrell, G.; Kimsawatde, G.; Homa, D.; Allbee, H. A.; Sriranganathan, N.

    2014-03-01

    CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses were prepared via an optimized sol-gel method. The current investigation was focused on producing novel zinc based calcium phosphoborosilicate glasses and to evaluate their mechanical, rheological, and biocompatible properties. The morphology and composition of these glasses were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The particle size, mechanical and flexural strength was also determined. Furthermore, the zeta potential of all the glasses were determined to estimate their flocculation tendency. The thermal analysis and weight loss measurements were carried out using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) respectively. For assessing the in-vitro bioactive character of synthesized glasses, the ability for apatite formation on their surface upon their immersion in simulated body fluid (SBF) was checked using SEM and pH measurements. MTS assay cytotoxicity assay and live-dead cell viability test were conducted on J774A.1 cells murine macrophage cells for different glass concentrations.

  18. Synthesis, cytotoxicity, and hydroxyapatite formation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses.

    PubMed

    Kaur, Gurbinder; Pickrell, G; Kimsawatde, G; Homa, D; Allbee, H A; Sriranganathan, N

    2014-03-18

    CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses were prepared via an optimized sol-gel method. The current investigation was focused on producing novel zinc based calcium phosphoborosilicate glasses and to evaluate their mechanical, rheological, and biocompatible properties. The morphology and composition of these glasses were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The particle size, mechanical and flexural strength was also determined. Furthermore, the zeta potential of all the glasses were determined to estimate their flocculation tendency. The thermal analysis and weight loss measurements were carried out using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) respectively. For assessing the in-vitro bioactive character of synthesized glasses, the ability for apatite formation on their surface upon their immersion in simulated body fluid (SBF) was checked using SEM and pH measurements. MTS assay cytotoxicity assay and live-dead cell viability test were conducted on J774A.1 cells murine macrophage cells for different glass concentrations.

  19. Synthesis, cytotoxicity, and hydroxyapatite formation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses

    PubMed Central

    Kaur, Gurbinder; Pickrell, G.; Kimsawatde, G.; Homa, D.; Allbee, H. A.; Sriranganathan, N.

    2014-01-01

    CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses were prepared via an optimized sol–gel method. The current investigation was focused on producing novel zinc based calcium phosphoborosilicate glasses and to evaluate their mechanical, rheological, and biocompatible properties. The morphology and composition of these glasses were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The particle size, mechanical and flexural strength was also determined. Furthermore, the zeta potential of all the glasses were determined to estimate their flocculation tendency. The thermal analysis and weight loss measurements were carried out using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) respectively. For assessing the in-vitro bioactive character of synthesized glasses, the ability for apatite formation on their surface upon their immersion in simulated body fluid (SBF) was checked using SEM and pH measurements. MTS assay cytotoxicity assay and live-dead cell viability test were conducted on J774A.1 cells murine macrophage cells for different glass concentrations. PMID:24637634

  20. SLC30A3 Responds to Glucose- and Zinc Variations in ß-Cells and Is Critical for Insulin Production and In Vivo Glucose-Metabolism During ß-Cell Stress

    PubMed Central

    Smidt, Kamille; Jessen, Niels; Petersen, Andreas Brønden; Larsen, Agnete; Magnusson, Nils; Jeppesen, Johanne Bruun; Stoltenberg, Meredin; Culvenor, Janetta G.; Tsatsanis, Andrew; Brock, Birgitte; Schmitz, Ole; Wogensen, Lise; Bush, Ashley I.; Rungby, Jørgen

    2009-01-01

    Background Ion transporters of the Slc30A- (ZnT-) family regulate zinc fluxes into sub-cellular compartments. β-cells depend on zinc for both insulin crystallization and regulation of cell mass. Methodology/Principal Findings This study examined: the effect of glucose and zinc chelation on ZnT gene and protein levels and apoptosis in β-cells and pancreatic islets, the effects of ZnT-3 knock-down on insulin secretion in a β-cell line and ZnT-3 knock-out on glucose metabolism in mice during streptozotocin-induced β-cell stress. In INS-1E cells 2 mM glucose down-regulated ZnT-3 and up-regulated ZnT-5 expression relative to 5 mM. 16 mM glucose increased ZnT-3 and decreased ZnT-8 expression. Zinc chelation by DEDTC lowered INS-1E insulin content and insulin expression. Furthermore, zinc depletion increased ZnT-3- and decreased ZnT-8 gene expression whereas the amount of ZnT-3 protein in the cells was decreased. Zinc depletion and high glucose induced apoptosis and necrosis in INS-1E cells. The most responsive zinc transporter, ZnT-3, was investigated further; by immunohistochemistry and western blotting ZnT-3 was demonstrated in INS-1E cells. 44% knock-down of ZnT-3 by siRNA transfection in INS-1E cells decreased insulin expression and secretion. Streptozotocin-treated mice had higher glucose levels after ZnT-3 knock-out, particularly in overt diabetic animals. Conclusion/Significance Zinc transporting proteins in β-cells respond to variations in glucose and zinc levels. ZnT-3, which is pivotal in the development of cellular changes as also seen in type 2 diabetes (e.g. amyloidosis in Alzheimer's disease) but not previously described in β-cells, is present in this cell type, up-regulated by glucose in a concentration dependent manner and up-regulated by zinc depletion which by contrast decreased ZnT-3 protein levels. Knock-down of the ZnT-3 gene lowers insulin secretion in vitro and affects in vivo glucose metabolism after streptozotocin treatment. PMID:19492079

  1. Improvement in LPG sensing response by surface activation of ZnO thick films with Cr2O3

    NASA Astrophysics Data System (ADS)

    Hastir, Anita; Virpal, Kaur, Jasmeet; Singh, Gurpreet; Kohli, Nipin; Singh, Onkar; Singh, Ravi Chand

    2015-05-01

    Liquefied Petroleum Gas (LPG) sensing response of pure and Cr2O3 activated ZnO has been investigated in this study. Zinc oxide was synthesized by co-precipitation route and deposited as a thick film on an alumina substrate. The surface of ZnO sensor was activated by chromium oxide on surface oxidation by chromium chloride. The concentration of chromium chloride solution used to activate the ZnO sensor surface has been varied from 0 to 5 %. It is observed that response to LPG has improved as compared to pure ZnO.

  2. Zn or O? An Atomic Level Comparison on Antibacterial Activities of Zinc Oxides.

    PubMed

    Yu, Fen; Fang, Xuan; Jia, Huimin; Liu, Miaoxing; Shi, Xiaotong; Xue, Chaowen; Chen, Tingtao; Wei, Zhipeng; Fang, Fang; Zhu, Hui; Xin, Hongbo; Feng, Jing; Wang, Xiaolei

    2016-06-06

    For the first time, the influence of different types of atoms (Zn and O) on the antibacterial activities of nanosized ZnO was quantitatively evaluated with the aid of a 3D-printing-manufactured evaluation system. Two different outermost atomic layers were manufactured separately by using an ALD (atomic layer deposition) method. Interestingly, we found that each outermost atomic layer exhibited certain differences against gram-positive or gram-negative bacterial species. Zinc atoms as outermost layer (ZnO-Zn) showed a more pronounced antibacterial effect towards gram-negative E. coli (Escherichia coli), whereas oxygen atoms (ZnO-O) showed a stronger antibacterial activity against gram-positive S. aureus (Staphylococcus aureus). A possible antibacterial mechanism has been comprehensively discussed from different perspectives, including Zn(2+) concentrations, oxygen vacancies, photocatalytic activities and the DNA structural characteristics of different bacterial species. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Electrical and optical properties of p-type codoped ZnO thin films prepared by spin coating technique

    NASA Astrophysics Data System (ADS)

    Pathak, Trilok Kumar; Kumar, Vinod; Swart, H. C.; Purohit, L. P.

    2016-03-01

    Undoped, doped and codoped ZnO thin films were synthesized on glass substrates using a spin coating technique. Zinc acetate dihydrate, ammonium acetate and aluminum nitrate were used as precursor for zinc, nitrogen and aluminum, respectively. X-ray diffraction shows that the thin films have a hexagonal wurtzite structure for the undoped, doped and co-doped ZnO. The transmittance of the films was above 80% and the band gap of the film varied from 3.20 eV to 3.24 eV for undoped and doped ZnO. An energy band diagram to describe the photoluminescence from the thin films was also constructed. This diagram includes the various defect levels and possible quasi-Fermi levels. A minimum resistivity of 0.0834 Ω-cm was obtained for the N and Al codoped ZnO thin films with p-type carrier conductivity. These ZnO films can be used as a window layer in solar cells and in UV lasers.

  4. Drying Temperature Dependence of Sol-gel Spin Coated Bilayer Composite ZnO/TiO2 Thin Films for Extended Gate Field Effect Transistor pH Sensor

    NASA Astrophysics Data System (ADS)

    Rahman, R. A.; Zulkefle, M. A.; Yusoff, K. A.; Abdullah, W. F. H.; Rusop, M.; Herman, S. H.

    2018-03-01

    This study presents an investigation on zinc oxide (ZnO) and titanium dioxide (TiO2) bilayer film applied as the sensing membrane for extended-gate field effect transistor (EGFET) for pH sensing application. The influences of the drying temperatures on the pH sensing capability of ZnO/TiO2 were investigated. The sensing performance of the thin films were measured by connecting the thin film to a commercial MOSFET to form the extended gates. By varying the drying temperature, we found that the ZnO/TiO2 thin film dried at 150°C gave the highest sensitivity compared to other drying conditions, with the sensitivity value of 48.80 mV/pH.

  5. Effect of N2 flow during deposition on p-type ZnO film

    NASA Astrophysics Data System (ADS)

    Lin, Chiung-Wei; Liu, Bor-Chang

    2017-01-01

    In this study, the influence of a nitrogen source on p-type conductive ZnO films was studied. Rapid thermal oxidation was conducted to oxidize ZnN films and convert them to ZnO films. When an as-deposited ZnN film was prepared at a high nitrogen gas flow rate, the converted ZnO film possessed many acceptors and showed stable p-type conduction. This p-type conduction was attributed to the nitrogen gas flow providing many “No” states, which act as acceptors within the processed ZnO film. It was found that the as-deposited ZnN film prepared at a high nitrogen gas flow rate is oxidized slightly so that only a few nitrogen atoms were replaced by oxygen. The carrier concentration and mobility of the optimized oxidized ZnN film were 9.76 × 1017 cm-3 and 62.78 cm2 V-1 s-1, respectively. A good rectified current-voltage characteristic with a turn-on voltage of 3.65 V was achieved for the optimized ZnO:N/ZnO junction.

  6. Optical properties of Zn-diffused InP layers for the planar-type InGaAs/InP photodetectors

    NASA Astrophysics Data System (ADS)

    Chen, Guifeng; Wang, Mengxue; Yang, Wenxian; Tan, Ming; Wu, Yuanyuan; Dai, Pan; Huang, Yuyang; Lu, Shulong

    2017-12-01

    Zn diffusion into InP was carried out ex-situ using a new Zn diffusion technique with zinc phosphorus particles placed around InP materials as zinc source in a semi-closed chamber formed by a modified diffusion furnace. The optical characteristics of the Zn-diffused InP layer for the planar-type InGaAs/InP PIN photodetectors grown by molecular beam epitaxy (MBE) has been investigated by photoluminescence (PL) measurements. The temperature-dependent PL spectrum of Zn-diffused InP samples at different diffusion temperatures showed that band-to-acceptor transition dominates the PL emission, which indicates that Zn was commendably diffused into InP layer as the acceptor. High quality Zn-diffused InP layer with typically smooth surface was obtained at 580 °C for 10 min. Furthermore, more interstitial Zn atoms were activated to act as acceptors after a rapid annealing process. Based on the above Zn-diffusion technique, a 50 μm planar-type InGaAs/InP PIN photodector device was fabricated and exhibited a low dark current of 7.73 pA under a reverse bias potential of -5 V and a high breakdown voltage of larger than 41 V (I < 10 μA). In addition, a high responsivity of 0.81 A/W at 1.31 μm and 0.97 A/W at 1.55 μm was obtained in the developed PIN photodetector. Project supported by the Key R&D Program of Jiangsu Province (No. BE2016085) , the National Natural Science Foundation of China (Nos. 61674051), and the External Cooperation Program of BIC, Chinese Academy of Sciences (No. 121E32KYSB20160071).

  7. Dual-step synthesis of 3-dimensional niobium oxide - Zinc oxide

    NASA Astrophysics Data System (ADS)

    Rani, Rozina Abdul; Zoolfakar, Ahmad Sabirin; Rusop, M.

    2018-05-01

    A facile fabrication process for constructing 3-dimensional (3D) structure of Niobium oxide - Zinc oxide (Nb2O5-ZnO) consisting of branched ZnO microrods on top of nanoporous Nb2O5 films was developed based on dual-step synthesis approach. The preliminary procedure was anodization of sputtered niobium metal on Fluorine doped Tin Oxide (FTO) to produce nanoporous Nb2O5, and continued with the growth of branched microrods of ZnO by hydrothermal process. This approach offers insight knowledge on the development of novel 3D metal oxide films via dual-step synthesis process, which might potentially use for multi-functional applications ranging from sensing to photoconversion.

  8. Effect of Aluminum Doping on the Nanocrystalline ZnS:Al3+ Films Fabricated on Heavily-Doped p-type Si(100) Substrates by Chemical Bath Deposition Method

    NASA Astrophysics Data System (ADS)

    Zhu, He-Jie; Liang, Yan; Gao, Xiao-Yong; Guo, Rui-Fang; Ji, Qiang-Min

    2015-06-01

    Intrinsic ZnS and aluminum-doped nanocrystalline ZnS (ZnS:Al3+) films with zinc-blende structure were fabricated on heavily-doped p-type Si(100) substrates by chemical bath deposition method. Influence of aluminum doping on the microstructure, and photoluminescent and electrical properties of the films, were intensively investigated. The average crystallite size of the films varying in the range of about 9.0 ˜ 35.0 nm initially increases and then decreases with aluminum doping contents, indicating that the crystallization of the films are initially enhanced and then weakened. The incorporation of Al3+ was confirmed from energy dispersive spectrometry and the induced microstrain in the films. Strong and stable visible emission band resulting from the defect-related light emission were observed for the intrinsic ZnS and ZnS:Al3+ films at room temperature. The photoluminescence related to the aluminum can annihilate due to the self-absorption of ZnS:Al3+ when the Al3+ content surpasses certain value. The variation of the resistivity of the films that initially reduces and then increases is mainly caused by the partial substitute for Zn2+ by Al3+ as well as the enhanced crystallization, and by the enhanced crystal boundary scattering, respectively.

  9. Nano/microstructure and optical properties of ZnO particles precipitated from zinc acetylacetonate

    NASA Astrophysics Data System (ADS)

    Petrović, Željka; Ristić, Mira; Musić, Svetozar; Fabián, Martin

    2015-06-01

    The influence of experimental conditions on the nano/microstructure and optical properties of ZnO particles produced by rapid hydrolysis of zinc acetylacetonate, followed by aging of the precipitation system at 160 °C, was investigated. Samples were characterized by XRD, FE scanning electron microscopy (FE-SEM), FT-IR, UV/Vis/NIR and photoluminescence (PL) spectroscopies. XRD patterns of all samples were assigned to the hexagonal ZnO phase (wurtzite-type), as well as the corresponding FT-IR spectra. FE-SEM inspection showed a high dependence of the ZnO nano/microstructure on the chemical composition of the reaction mixture and autoclaving time after the rapid hydrolysis of zinc acetylacetonate. Microstructural differences were noticed between C2H5OH/H2O and H2O media, as well as under the influence of NH4OH addition. Measurements of nanocrystallite sizes showed no significant preferential orientation in the (1 0 0) and (0 0 2) directions relative to the (1 0 1) and (1 1 0) directions. Somewhat smaller crystallite sizes were noticed for ZnO samples synthesized by adding the NH4OH solution. Dissolution/recrystallization of ZnO particles played an important role in the formation of different ZnO nano/microstructures. The band gap values for prepared ZnO samples were calculated on the basis of recorded UV/Vis spectra. PL spectra were recorded for ZnO samples in powder form and their suspensions in pure ethanol. Noticed differences are discussed.

  10. Synthesis, characterization and photovoltaic performance of Mn-doped ZnS quantum dots- P3HT hybrid bulk heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Jabeen, Uzma; Adhikari, Tham; Shah, Syed Mujtaba; Pathak, Dinesh; Nunzi, Jean-Michel

    2017-11-01

    Zinc sulphide (ZnS) and transition metal-doped ZnS nanocrystals were synthesized by co-precipitation method. Further the synthesized nanocrystals were characterized by Field Emission Scanning Electron Microscope (FESEM), High Resolution Transmission Electron Microscope (HRTEM), Fluorescence, UV-Visible, X-ray diffraction (XRD) and Fourier Transformed Infra-red (FTIR) Spectrometer (FTIR). Scanning electron microscope supplemented with EDAX was employed to attain grain size and chemical composition of the nanomaterials. A considerable blue shift of absorption band was noted by the manganese concentration (0.5 M) in the doped sample in comparison with ZnS quantum dots because of the decrease in the size of nanoparticles which may be due to quantum confinement. The photoluminescence emission observed at 596 nm is due to the emission of divalent manganese and can be ascribed to a 4T1→6A1 transition within the 3d shell. Though, the broad blue emission band was observed at 424 nm which may originates from the radiative recombination comprising defect states in the un-doped zinc sulphide quantum dots. XRD analysis exhibited that the synthesized nanomaterial endured in cubic structure. The synthesized nanomaterial combined with organic polymer P3HT, poly (3-hexyl thiophene) and worked in the construction of inverted solar cells. The photovoltaic devices with un-doped zinc sulphide quantum dots showed power conversion efficiency of 0.48% without annealing and 0.52% with annealing. By doping with manganese, the efficiency was enhanced by a factor of 0.52 without annealing and 0.59 with annealing. The morphology and packing behavior of blend of nanocrystals with organic polymer were explored using Atomic Force Microscopy.

  11. Chemistry of the oxophosphinidene ligand. 2. Reactivity of the anionic complexes [MCp{P(O)R*}(CO)(2)](-) (M = Mo, W; R* = 2,4,6-C(6)H(2)(t)Bu(3)) toward electrophiles based on elements different from carbon.

    PubMed

    Alonso, María; Alvarez, M Angeles; García, M Esther; Ruiz, Miguel A; Hamidov, Hayrullo; Jeffery, John C

    2010-12-20

    The anionic oxophosphinidene complexes (H-DBU)[MCp{P(O)R*}(CO)(2)] (M = Mo, W; R* = 2,4,6-C(6)H(2)(t)Bu(3); Cp = η(5)-C(5)H(5), DBU = 1,8-diazabicyclo [5.4.0] undec-7-ene) displayed multisite reactivity when faced with different electrophilic reagents. The reactions with the group 14 organochloride compounds ER(4-x)Cl(x) (E = Si, Ge, Sn, Pb) led to either phosphide-like, oxophosphinidene-bridged derivatives [MCp{P(OE')R*}(CO)(2)] (E' = SiMe(3), SiPh(3), GePh(3), GeMe(2)Cl) or to terminal oxophosphinidene complexes [MCp{P(O)R*}(CO)(2)(E')] (E' = SnPh(3), SnPh(2)Cl, PbPh(3); Mo-Pb = 2.8845(4) Å for the MoPb compound). A particular situation was found in the reaction with SnMe(3)Cl, this giving a product existing in both tautomeric forms, with the phosphide-like complex [MCp{P(OSnMe(3))R*}(CO)(2)] prevailing at room temperature and the tautomer [MCp{P(O)R*}(CO)(2)(SnMe(3))] being the unique species present below 203 K in dichloromethane solution. The title anions also showed a multisite behavior when reacting with transition-metal based electrophiles. Thus, the reactions with the complexes [M'Cp(2)Cl(2)] (M' = Ti, Zr) gave phosphide-like derivatives [MCp{P(OM')R*}(CO)(2)] (M = Mo, M' = TiCp(2)Cl, ZrCp(2)Cl; M = W, M' = ZrCp(2)Cl), displaying a bridging κ(1),κ(1)-P,O- oxophosphinidene ligand connecting MCp(CO)(2) and M'Cp(2)Cl metal fragments (W-P = 2.233(1) Å, O-Zr = 2.016(4) Å for the WZr compound]. In contrast, the reactions with the complex [AuCl{P(p-tol)(3)}] gave the metal-metal bonded derivatives trans-[MCp{P(O)R*}(CO)(2){AuP(p-tol)(3)}] (M = Mo, W; Mo-Au = 2.7071(7) Å). From all the above results it was concluded that the terminal oxophosphinidene complexes are preferentially formed under conditions of orbital control, while charge-controlled reactions tend to give derivatives with the electrophilic fragment bound to the oxygen atom of the oxophosphinidene ligand (phosphide-like, oxophosphinidene-bridged derivatives).

  12. Unraveling aminophosphine redox mechanisms for glovebox-free InP quantum dot syntheses.

    PubMed

    Laufersky, Geoffry; Bradley, Siobhan; Frécaut, Elian; Lein, Matthias; Nann, Thomas

    2018-05-10

    The synthesis of colloidal indium phosphide quantum dots (InP QDs) has always been plagued by difficulties arising from limited P3- sources. Being effectively restricted to the highly pyrophoric tris(trimethylsilyl) phosphine (TMS3P) creates complications for the average chemist and presents a significant risk for industrially scaled reactions. The adaptation of tris(dialkylamino) phosphines for these syntheses has garnered attention, as these new phosphines are much safer and can generate nanoparticles with competitive photoluminescence properties to those from (TMS)3P routes. Until now, the reaction mechanics of this precursor were elusive due to many experimental optimizations, such as the inclusion of a high concentration of zinc salts, being atypical of previous InP syntheses. Herein, we utilize density functional theory calculations to outline a logical reaction mechanism. The aminophosphine precursor is found to require activation by a zinc halide before undergoing a disproportionation reaction to self-reduce this P(iii) material to a P(-iii) source. We use this understanding to adapt this precursor for a two-pot nanoparticle synthesis in a noncoordinating solvent outside of glovebox conditions. This allowed us to generate spherical InP/ZnS nanoparticles possessing fluorescence quantum yields >55% and lifetimes as fast as 48 ns, with tunable emission according to varying zinc halide acidity. The development of high quality and efficient InP QDs with this safer aminophosphine in simple Schlenk environments will enable a broader range of researchers to synthesize these nontoxic materials for a variety of high-value applications.

  13. The influence of prepulse level on the 3p-3s XUV laser output from Ne-like ions of Zn, Cu and Ni

    NASA Astrophysics Data System (ADS)

    MacPhee, A. G.; Lewis, C. L. S.; Warwick, P. J.; Weaver, I.; Jaeglé, P.; Carillon, A.; Jamelot, G.; Klisnick, A.; Rus, B.; Zeitoun, Ph.; Nantel, M.; Goedkindt, P.; Sebban, S.; Tallents, G. J.; Demir, A.; Holden, M.; Krishnan, J.

    1997-02-01

    We have studied the effect of prepulses in enhancing the efficiency of generating ASE beams in soft X-ray laser plasma amplifiers based on pumping Ne-like ions. Slab targets were irradiated with a weak prepulse followed by a main plasma heating pulse of nanosecond duration. Time-integrated: time and spectrally resolved and time and angularly resolved lasing emissions on the 3p-3s ( J = 0-1) XUV lasing lines of Ne-like Ni, Cu and Zn at wavelengths 232 Å, 221 Å and 212 Å respectively have been monitored. Measurements were made for pre-pulse/main-pulse intensity ratios from 10 -5-10 -1 and for pump delay times of 2 ns and 4.5 ns. Zinc is shown to exhibit a peak in output intensity at ˜ 2 × 10 -3 pre-pulse fraction for a 4.5 ns pump delay, with a main pulse pump intensity of ˜ 1.3 × 10 13W cm -2 on a 20 mm target. The Zn lasing emission had a duration of ˜ 240 ps and this was insensitive to prepulse fraction. The J = 0-1 XUV laser output for nickel and copper increased monotonically with prepulse fraction, with copper targets showing least sensitivity to either prepulse level or prepulse to main pulse delay. Under the conditions of the study, the pre-pulse level was observed to have no significant influence on the output intensity of the 3p-3s ( J = 2-1) lines of any of the elements investigated.

  14. Development of an optical Zn 2+ probe based on a single fluorescent protein

    DOE PAGES

    Qin, Yan; Sammond, Deanne W.; Braselmann, Esther; ...

    2016-07-28

    Various fluorescent probes have been developed to reveal the biological functions of intracellular labile Zn 2+. Here we present Green Zinc Probe (GZnP), a novel genetically encoded Zn 2+ sensor design based on a single fluorescent protein (single-FP). The GZnP sensor is generated by attaching two zinc fingers (ZF) of the transcription factor Zap1 (ZF1 and ZF2) to the two ends of a circularly permuted green fluorescent protein (cpGFP). Formation of ZF folds induces interaction between the two ZFs, which induces a change in the cpGFP conformation, leading to an increase in fluorescence. A small sensor library is created tomore » include mutations in the ZFs, cpGFP and linkers between ZF and cpGFP to improve signal stability, sensor brightness and dynamic range based on rational protein engineering and computational design by Rosetta. Using a cell-based library screen, we identify sensor GZnP1 which demonstrates a stable maximum signal, decent brightness (QY = 0.42 at apo state), as well as specific and sensitive response to Zn 2+ in HeLa cells (F max/F min = 2.6, K d = 58 pM, pH 7.4). The subcellular localizing sensors mito-GZnP1 (in mitochondria matrix) and Lck-GZnP1 (on plasma membrane) display sensitivity to Zn 2+ (F max/F min = 2.2). In conclusion, this sensor design provides freedom to be used in combination with other optical indicators and optogenetic tools for simultaneous imaging and advancing our understanding of cellular Zn 2+ function.« less

  15. Role of zinc in chronic gastritis.

    PubMed

    Marjanović, Ksenija; Dovhanj, Jasna; Kljaić, Ksenija; Sakić, Katarina; Kondza, Goran; Tadzić, Refmir; Vcev, Aleksandar

    2010-06-01

    Oxidative stress occurs in inflammation of gastric mucosa. The role of zinc in modulating oxidative stress has recently been recognized. Zn deficiency results in an increased sensitivity to oxidative stress and have a higher risk of musoca damage in inflammation. The aim of this study was to determine wheather chronic inflammation affects on the concentration of Zn2+ ions in gastric mucosa of patients with chronic gastritis. Forthy-three patients with chronic gastitis were enrolled. Patients were endoscoped. Histology and scoring of gastritis was performed following the guidelines of the updated Sydney system. Endoscopic finding of mucosa were scored according to a Lanza scoring system. The diagnosis of Helicobacter pylori (H. pylori) infection, histopathologic changes, intensity of inflammation and zinc concentration were determined from biopsies of gastric mucosa. The atomic absorption spectrophotometer was used to determine tissue concentrations of zinc. Twenty of 43 patients with chronic gastritis were uninfected by H. pylori. There was no statistically significant difference in tissue concentrations of zinc between H. pylori-positive and H. pylori-negative patients. From those infected patients 53.3% had chronic active gastritis. There was no statistically significant difference in tissue concentrations of zinc between patients with chronic active gastritis and patients with chronic inactive gastritis (p = 0.966). Zn in antrum showed positive correlation with density of H. pylori in antrum (Spearman' rho = 0.481, p = 0.020), negative correlation with density of H. pylori in corpus (Spearman' rho = -0.492, p = 0.017) and with zinc in corpus (Spearman' rho = 0.631, p =0.001). Tissue concentration of zinc was not affected by chronic inflammation of gastric mucosa in patients with chronic gastritis.

  16. Phosphide oxides RE2AuP2O (RE = La, Ce, Pr, Nd): synthesis, structure, chemical bonding, magnetism, and 31P and 139La solid state NMR.

    PubMed

    Bartsch, Timo; Wiegand, Thomas; Ren, Jinjun; Eckert, Hellmut; Johrendt, Dirk; Niehaus, Oliver; Eul, Matthias; Pöttgen, Rainer

    2013-02-18

    Polycrystalline samples of the phosphide oxides RE(2)AuP(2)O (RE = La, Ce, Pr, Nd) were obtained from mixtures of the rare earth elements, binary rare earth oxides, gold powder, and red phosphorus in sealed silica tubes. Small single crystals were grown in NaCl/KCl fluxes. The samples were studied by powder X-ray diffraction, and the structures were refined from single crystal diffractometer data: La(2)AuP(2)O type, space group C2/m, a = 1515.2(4), b = 424.63(8), c = 999.2(2) pm, β = 130.90(2)°, wR2 = 0.0410, 1050 F(2) values for Ce(2)AuP(2)O, and a = 1503.6(4), b = 422.77(8), c = 993.0(2) pm, β = 130.88(2)°, wR2 = 0.0401, 1037 F(2) values for Pr(2)AuP(2)O, and a = 1501.87(5), b = 420.85(5), c = 990.3(3) pm, β = 131.12(1)°, wR2 = 0.0944, 1143 F(2) values for Nd(2)AuP(2)O with 38 variables per refinement. The structures are composed of [RE(2)O](4+) polycationic chains of cis-edge-sharing ORE(4/2) tetrahedra and polyanionic strands [AuP(2)](4-), which contain gold in almost trigonal-planar phosphorus coordination by P(3-) and P(2)(4-) entities. The isolated phosphorus atoms and the P(2) pairs in La(2)AuP(2)O could clearly be distinguished by (31)P solid state NMR spectroscopy and assigned on the basis of a double quantum NMR technique. Also, the two crystallographically inequivalent La sites could be distinguished by static (139)La NMR in conjunction with theoretical electric field gradient calculations. Temperature-dependent magnetic susceptibility measurements show diamagnetic behavior for La(2)AuP(2)O. Ce(2)AuP(2)O and Pr(2)AuP(2)O are Curie-Weiss paramagnets with experimental magnetic moments of 2.35 and 3.48 μ(B) per rare earth atom, respectively. Their solid state (31)P MAS NMR spectra are strongly influenced by paramagnetic interactions. Ce(2)AuP(2)O orders antiferromagnetically at 13.1(5) K and shows a metamagnetic transition at 11.5 kOe. Pr(2)AuP(2)O orders ferromagnetically at 7.0 K.

  17. Regulation of zinc homeostasis by inducible NO synthase-derived NO: nuclear metallothionein translocation and intranuclear Zn2+ release.

    PubMed

    Spahl, Daniela U; Berendji-Grün, Denise; Suschek, Christoph V; Kolb-Bachofen, Victoria; Kröncke, Klaus-D

    2003-11-25

    Zn2+ is critical for the functional and structural integrity of cells and contributes to a number of important processes including gene expression. It has been shown that NO exogenously applied via NO donors resulting in nitrosative stress leads to cytoplasmic Zn2+ release from the zinc storing protein metallothionein (MT) and probably other proteins that complex Zn2+ via cysteine thiols. We show here that, in cytokine-activated murine aortic endothelial cells, NO derived from the inducible NO synthase (iNOS) induces a transient nuclear release of Zn2+. This nuclear Zn2+ release depends on the presence of MT as shown by the lack of this effect in activated endothelial cells from MT-deficient mice and temporally correlates with nuclear MT translocation. Data also show that NO is an essential but not sufficient signal for MT-mediated Zn2+ trafficking from the cytoplasm into the nucleus. In addition, we found that, endogenously via iNOS, synthesized NO increases the constitutive mRNA expression of both MT-1 and MT-2 genes and that nitrosative stress exogenously applied via an NO donor increases constitutive MT mRNA expression via intracellular Zn2+ release. In conclusion, we here provide evidence for a signaling mechanism based on iNOS-derived NO through the regulation of intracellular Zn2+ trafficking and homeostasis.

  18. Regulation of zinc homeostasis by inducible NO synthase-derived NO: Nuclear metallothionein translocation and intranuclear Zn2+ release

    PubMed Central

    Spahl, Daniela U.; Berendji-Grün, Denise; Suschek, Christoph V.; Kolb-Bachofen, Victoria; Kröncke, Klaus-D.

    2003-01-01

    Zn2+ is critical for the functional and structural integrity of cells and contributes to a number of important processes including gene expression. It has been shown that NO exogenously applied via NO donors resulting in nitrosative stress leads to cytoplasmic Zn2+ release from the zinc storing protein metallothionein (MT) and probably other proteins that complex Zn2+ via cysteine thiols. We show here that, in cytokine-activated murine aortic endothelial cells, NO derived from the inducible NO synthase (iNOS) induces a transient nuclear release of Zn2+. This nuclear Zn2+ release depends on the presence of MT as shown by the lack of this effect in activated endothelial cells from MT-deficient mice and temporally correlates with nuclear MT translocation. Data also show that NO is an essential but not sufficient signal for MT-mediated Zn2+ trafficking from the cytoplasm into the nucleus. In addition, we found that, endogenously via iNOS, synthesized NO increases the constitutive mRNA expression of both MT-1 and MT-2 genes and that nitrosative stress exogenously applied via an NO donor increases constitutive MT mRNA expression via intracellular Zn2+ release. In conclusion, we here provide evidence for a signaling mechanism based on iNOS-derived NO through the regulation of intracellular Zn2+ trafficking and homeostasis. PMID:14617770

  19. Root Associated Bacillus sp. Improves Growth, Yield and Zinc Translocation for Basmati Rice (Oryza sativa) Varieties

    PubMed Central

    Shakeel, Muhammad; Rais, Afroz; Hassan, Muhammad Nadeem; Hafeez, Fauzia Yusuf

    2015-01-01

    Plant associated rhizobacteria prevailing in different agro-ecosystems exhibit multiple traits which could be utilized in various aspect of sustainable agriculture. Two hundred thirty four isolates were obtained from the roots of basmati-385 and basmati super rice varieties growing in clay loam and saline soil at different locations of Punjab (Pakistan). Out of 234 isolates, 27 were able to solubilize zinc (Zn) from different Zn ores like zinc phosphate [Zn3 (PO4)2], zinc carbonate (ZnCO3) and zinc oxide (ZnO). The strain SH-10 with maximum Zn solubilization zone of 24 mm on Zn3 (PO4)2ore and strain SH-17 with maximum Zn solubilization zone of 14–15 mm on ZnO and ZnCO3ores were selected for further studies. These two strains solubilized phosphorous (P) and potassium (K) in vitro with a solubilization zone of 38–46 mm and 47–55 mm respectively. The strains also suppressed economically important rice pathogens Pyricularia oryzae and Fusarium moniliforme by 22–29% and produced various biocontrol determinants in vitro. The strains enhanced Zn translocation toward grains and increased yield of basmati-385 and super basmati rice varieties by 22–49% and 18–47% respectively. The Zn solubilizing strains were identified as Bacillus sp. and Bacillus cereus by 16S rRNA gene analysis. PMID:26635754

  20. Characteristics of TiO2/ZnO bilayer film towards pH sensitivity prepared by different spin coating deposition process

    NASA Astrophysics Data System (ADS)

    Rahman, Rohanieza Abdul; Zulkefle, Muhammad Al Hadi; Abdullah, Wan Fazlida Hanim; Rusop, M.; Herman, Sukreen Hana

    2016-07-01

    In this study, titanium dioxide (TiO2) and zinc oxide (ZnO) bilayer film for pH sensing application will be presented. TiO2/ZnO bilayer film with different speed of spin-coating process was deposited on Indium Tin Oxide (ITO), prepared by sol-gel method. This fabricated bilayer film was used as sensing membrane for Extended Gate Field-Effect Transistor (EGFET) for pH sensing application. Experimental results indicated that the sensor is able to detect the sensitivity towards pH buffer solution. In order to obtained the result, sensitivity measurement was done by using the EGFET setup equipment with constant-current (100 µA) and constant-voltage (0.3 V) biasing interfacing circuit. TiO2/ZnO bilayer film which the working electrode, act as the pH-sensitive membrane was connected to a commercial metal-oxide semiconductor FET (MOSFET). This MOSFET then was connected to the interfacing circuit. The sensitivity of the TiO2 thin film towards pH buffer solution was measured by dipping the sensing membrane in pH4, pH7 and pH10 buffer solution. These thin films were characterized by using Field Emission Scanning Electron Microscope (FESEM) to obtain the surface morphology of the composite bilayer films. In addition, I-V measurement was done in order to determine the electrical properties of the bilayer films. According to the result obtained in this experiment, bilayer film that spin at 4000 rpm, gave highest sensitivity which is 52.1 mV/pH. Relating the I-V characteristic of the thin films and sensitivity, the sensing membrane with higher conductivity gave better sensitivity.

  1. The phase relations in the In 2O 3Fe 2ZnO 4ZnO system at 1350°C

    NASA Astrophysics Data System (ADS)

    Nakamura, Masaki; Kimizuka, Noboru; Mohri, Takahiko

    1990-05-01

    The phase relations in the In 2O 3Fe 2ZnO 4ZnO system at 1350°C are determined by means of a classical quenching method. There are a series of homologous solid solutions, In 1.28Fe 0.72O 3(ZnO)InFeO 3(ZnO), In 1.69Fe 0.31O 3(ZnO) 2InFeO 3(ZnO) 2In 0.85Fe 1.15O 3(ZnO) 2, In 2O 3(ZnO) 3InFeO 3(ZnO) 3In 0.78Fe 1.22O 3(ZnO) 3, In 2O 3(ZnO) 4InFeO 3(ZnO) 4In 0.62Fe 1.38O 3(ZnO) 4, In 2O 3(ZnO) 5InFeO 3(ZnO) 5In 0.67Fe 1.33O 3(ZnO) 5, In 2O 3(ZnO) 6InFeO 3(ZnO) 6In 0.60Fe 1.40O 3(ZnO) 6, In 2O 3(ZnO) 7InFeO 3(ZnO) 7In 0.51Fe 1.49O 3(ZnO) 7, In 2O 3(ZnO) 8InFeO 3(ZnO) 8In 1- xFe 1+ xO 3(ZnO) 8 (0.44 ≦ x ≦ 0.64), In 2O 3(ZnO) 9InFeO 3(ZnO) 9In 0.20Fe 1.80O 3(ZnO) 9, In 2O 3(ZnO) 10InFeO 3(ZnO) 10In 1- xFe 1+ xO 3(ZnO) 10 (0.74 ≦ x ≦ 0.89), In 2O 3(ZnO) 11InFeO 3(ZnO) 11In 1- xFe 1+ xO 3(ZnO) 11 (0.60 ≦ x < 1.00), and In 2O 3(ZnO) 13InFeO 3(ZnO) 13Fe 2O 3(ZnO) 13 having the layered structures with space group R overline3m (m = odd) or {P6 3}/{mmc} (m = even) for m in the InFeO 3(ZnO) m. We conclude that there are a series of homologous phases, (Fe 2O 3)(ZnO) m (m ≧ 12) , in the binary ZnOFe 2O 3 system. The lattice constants for these solid solutions are presented as a hexagonal crystal system. It is also concluded that the crystal structures for each solid solution consist of three kinds of layers which are stacked perpendicular to the c-axis in the hexagonal crystal system. In 1+ xFe 1- xO 3(ZnO) m (0 ≦ x ≦ 1) is composed of the InO 1.5, (In xFe 1- xZn)O 2.5, and ZnO layers, and In 1- xFe 1+ xO 3(ZnO) m (0 ≦ x ≦ 1) is composed of (In 1- xFe x)O 1.5, (FeZn)O 2.5, and ZnO layers, respectively. The solid solution range between Fe 2ZnO 4 and In xFe 2- xZnO 4 ( x = 0.40 ± 0.02) with a spinel structure is observed.

  2. Assessments of serum copper and zinc concentration, and the Cu/Zn ratio determination in patients with multidrug resistant pulmonary tuberculosis (MDR-TB) in Côte d'Ivoire.

    PubMed

    Bahi, Gnogbo Alexis; Boyvin, Lydie; Méité, Souleymane; M'Boh, Gervais Melaine; Yeo, Kadjowely; N'Guessan, Kouassi Raymond; Bidié, Alain Dit Philippe; Djaman, Allico Joseph

    2017-04-11

    In Côte d'Ivoire, multidrug-resistant tuberculosis (MDR-TB) is a serious public health problem with a prevalence estimated at 2.5% in 2006. Zinc and copper are essential Trace element needed to strengthen the immune system and also useful in the fight against tuberculosis. The Cu / Zn ratio is a good indicator of oxidative stress. The principal aim of this study was to evaluate the serum concentration of some trace element and determine the Cu / Zn ratio in patients with multidrug resistant pulmonary tuberculosis (MDR-TB) before and after second line treatment of TB. Blood samples were obtained from 100 MDR-TB patients after confirmation of their status through the microscopic and molecular diagnosis of resistance to Isoniazid and Rifampicin by GeneXpert. The concentration level of zinc and copper were determined using flame air / acetylene atomic absorption spectrometer (AAS) Type Varian Spectr AA-20 Victoria, Australlia. A significant decrease in zinc levels (P < 0.05) and an increased Cu / Zn ratio (P < 0.05) was observed in MDR-TB patients compared to controls TB free. During treatment a significant reduction in Cu / Zn ratio (P < 0.05) was observed compared to the initial result. The decrease in serum zinc level and the high Cu / Zn ratio could explain the immune system dysfunction and the high level of oxidative stress in patients with MDR-TB. Therefore the evaluation of the zinc and copper status could represent essential parameters in monitoring of TB second line treatment for better treatment management.

  3. Low-temperature hydrothermal synthesis of ZnO nanorods: Effects of zinc salt concentration, various solvents and alkaline mineralizers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edalati, Khatereh, E-mail: kh_ed834@stu.um.ac.ir; Shakiba, Atefeh; Vahdati-Khaki, Jalil

    2016-02-15

    Highlights: • We synthesized ZnO nanorods by a simple hydrothermal process at 60 °C. • Effects of zinc salt concentration, solvent and alkaline mineralizer was studied. • Increasing concentration of zinc salt changed ZnO nucleation system. • NaOH yielded better results in the production of nanorods in both solvents. • Methanol performed better in the formation of nanorods using the two mineralizers. - Abstract: ZnO has been produced using various methods in the solid, gaseous, and liquid states, and the hydrothermal synthesis at low temperatures has been shown to be an environmentally-friendly one. The current work utilizes a low reactionmore » temperature (60 °C) for the simple hydrothermal synthesis of ZnO nanorod morphologies. Furthermore, the effects of zinc salt concentration, solvent type and alkaline mineralizer type on ZnO nanorods synthesis at a low reaction temperature by hydrothermal processing was studied. Obtained samples were analyzed using X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Increasing the concentration of the starting zinc salt from 0.02 to 0.2 M changed ZnO nucleation system from the homogeneous to the heterogeneous state. The XRD results confirmed the production hexagonal ZnO nanostructures of with a crystallite size of 40.4 nm. Varying the experimental parameters (mineralizer and solvent) yielded ZnO nanorods with diameters ranging from 90–250 nm and lengths of 1–2 μm.« less

  4. Surface characterization of ZnO/ZnMn2O4 and Cu/Mn3O4 powders obtained by thermal degradation of heterobimetallic complexes

    NASA Astrophysics Data System (ADS)

    Barrault, Joël; Makhankova, Valeriya G.; Khavryuchenko, Oleksiy V.; Kokozay, Vladimir N.; Ayrault, Philippe

    2012-03-01

    From the selective transformation of the heterometallic (Zn-Mn or Cu-Mn) carboxylate complexes with 2,2'-bipyridyl by thermal degradation at relatively low (350 °C) temperature, it was possible to get either well defined spinel ZnMn2O4 over zinc oxide or well dispersed copper particles surrounded by a manganese oxide (Mn3O4) in a core-shell like structure. Morphology of the powder surface was examined by scanning electron microscopy with energy dispersive X-ray microanalysis (SEM/EDX). Surface composition was determined by X-ray photoelectron spectroscopy (XPS). Specific surface of the powders by nitrogen adsorption was found to be 33±0.2 and 9±0.06 m2 g-1 for Zn-Mn and Cu-Mn samples, respectively, which is comparable to those of commercial products.

  5. Fabrication of Single Crystal Gallium Phosphide Thin Films on Glass.

    PubMed

    Emmer, Hal; Chen, Christopher T; Saive, Rebecca; Friedrich, Dennis; Horie, Yu; Arbabi, Amir; Faraon, Andrei; Atwater, Harry A

    2017-07-05

    Due to its high refractive index and low absorption coefficient, gallium phosphide is an ideal material for photonic structures targeted at the visible wavelengths. However, these properties are only realized with high quality epitaxial growth, which limits substrate choice and thus possible photonic applications. In this work, we report the fabrication of single crystal gallium phosphide thin films on transparent glass substrates via transfer bonding. GaP thin films on Si (001) and (112) grown by MOCVD are bonded to glass, and then the growth substrate is removed with a XeF 2 vapor etch. The resulting GaP films have surface roughnesses below 1 nm RMS and exhibit room temperature band edge photoluminescence. Magnesium doping yielded p-type films with a carrier density of 1.6 × 10 17  cm -3 that exhibited mobilities as high as 16 cm 2 V -1 s -1 . Due to their unique optical properties, these films hold much promise for use in advanced optical devices.

  6. Synthesis of nanocrystalline α - Zn 2SiO 4 at ZnO-porous silicon interface: Phase transition study

    NASA Astrophysics Data System (ADS)

    Singh, R. G.; Singh, Fouran; Mehra, R. M.; Kanjilal, D.; Agarwal, V.

    2011-05-01

    Thermal annealing induced formation of nanocrystalline Zinc silicate (α-Zn 2SiO 4) at the interface of ZnO-porous silicon (PSi) nanocomposites is reported. The PSi templates were formed by electrochemical anodization of p-type (100) Si and ZnO crystallites were deposited on the PSi surface by a Sol-gel spin coating process. The formation of α-Zn 2SiO 4 is confirmed by glancing angle X-ray diffraction and Fourier transform infrared spectroscopy studies. The presence of intense yellow-green emission also confirms the formation of α-Zn 2SiO 4. The mechanism of silicate phase formation at the ZnO-PSi interface and the origin of various photoluminescence (PL) bands are discussed in view of its potential applications in advanced optoelectronic devices.

  7. CePd2Ga3 and CePd2Zn3 - Kondo lattices and magnetic behaviour

    NASA Astrophysics Data System (ADS)

    Bartha, A.; Vališka, M.; Míšek, M.; Proschek, P.; Kaštil, J.; Dušek, M.; Sechovský, V.; Prokleška, J.

    2018-05-01

    We report the single crystal properties of CePd2Zn3 and CePd2Ga3 compounds. The compounds were prepared by Bridgman method in high-frequency induction furnace. Both compounds adopt the hexagonal PrNi2Al3-type structure with a = 5.3914(2) Å, c = 4.3012(2) Å for CePd2Zn3 and a = 5.4106(8) Å, c = 4.2671(8) Å for CePd2Ga3, respectively. CePd2Zn3 orders antiferromagnetically below TN = 1.9 K. Magnetoresistance measurements revealed a crossover at Bc = 0.95 T. CePd2Ga3 orders ferromagnetically at TC = 6.7 K. Applied hydrostatic pressure reduces the value of the Curie-temperature (rate ∂TC / ∂ p = 0.9 K GPa -1) down to 3.9 K at 3.2 GPa. Both compounds display a strong magnetocrystalline anisotropy with easy axis of magnetization perpendicular to the c-axis in the hexagonal lattice.

  8. Genome-wide analysis of the Zn(II)2Cys6 zinc cluster-encoding gene family in Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Proteins with a Zn(II)2Cys6 domain, Cys-X2-Cys-X6-Cys-X5-12-Cys-X2-Cys-X6-9-Cys (hereafter, referred to as the C6 domain), form a subclass of zinc finger proteins found exclusively in fungi and yeast. Genome sequence databases of Saccharomyces cerevisiae and Candida albicans have provided an overvie...

  9. Zinc Absorption by Young Adults from Supplemental Zinc Citrate Is Comparable with That from Zinc Gluconate and Higher than from Zinc Oxide123

    PubMed Central

    Wegmüller, Rita; Tay, Fabian; Zeder, Christophe; Brnić, Marica; Hurrell, Richard F.

    2014-01-01

    The water-soluble zinc salts gluconate, sulfate, and acetate are commonly used as supplements in tablet or syrup form to prevent zinc deficiency and to treat diarrhea in children in combination with oral rehydration. Zinc citrate is an alternative compound with high zinc content, slightly soluble in water, which has better sensory properties in syrups but no absorption data in humans. We used the double-isotope tracer method with 67Zn and 70Zn to measure zinc absorption from zinc citrate given as supplements containing 10 mg of zinc to 15 healthy adults without food and compared absorption with that from zinc gluconate and zinc oxide (insoluble in water) using a randomized, double-masked, 3-way crossover design. Median (IQR) fractional absorption of zinc from zinc citrate was 61.3% (56.6–71.0) and was not different from that from zinc gluconate with 60.9% (50.6–71.7). Absorption from zinc oxide at 49.9% (40.9–57.7) was significantly lower than from both other supplements (P < 0.01). Three participants had little or no absorption from zinc oxide. We conclude that zinc citrate, given as a supplement without food, is as well absorbed by healthy adults as zinc gluconate and may thus be a useful alternative for preventing zinc deficiency and treating diarrhea. The more insoluble zinc oxide is less well absorbed when given as a supplement without food and may be minimally absorbed by some individuals. This trial was registered at clinicaltrials.gov as NCT01576627. PMID:24259556

  10. Imaging Pancreatic Cancer Using Bioconjugated InP Quantum Dots

    PubMed Central

    Yong, Ken-Tye; Ding, Hong; Roy, Indrajit; Law, Wing-Cheung; Bergey, Earl J.; Maitra, Anirban; Prasad, Paras N.

    2009-01-01

    In this paper, we report the successful use of non-cadmium based quantum dots (QDs) as highly efficient and non-toxic optical probes for imaging live pancreatic cancer cells. Indium phosphide (core)-zinc sulphide (shell), or InP/ZnS, QDs with high quality and bright luminescence were prepared by a hot colloidal synthesis method in non-aqueous media. The surfaces of these QDs were then functionalized with mercaptosuccinic acid to make them highly dispersible in aqueous media. Further bioconjugation with pancreatic cancer specific monoclonal antibodies, such as anti-claudin 4 and anti-prostate stem cell antigen (anti-PSCA), to the functionalized InP/ZnS QDs, allowed specific in vitro targeting of pancreatic cancer cell lines (both immortalized and low passage ones). The receptor mediated delivery of the bioconjugates was further confirmed by the observation of poor in vitro targeting in non-pancreatic cancer based cell lines which are negative for the claudin-4-receptor. These observations suggest the immense potential of InP/ZnS QDs as non-cadmium based safe and efficient optical imaging nanoprobes in diagnostic imaging, particularly for early detection of cancer. PMID:19243145

  11. Bimetallic Cobalt-Based Phosphide Zeolitic Imidazolate Framework: CoP x Phase-Dependent Electrical Conductivity and Hydrogen Atom Adsorption Energy for Efficient Overall Water Splitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Junhua; Zhu, Chengzhou; Xu, Bo Z.

    Cobalt-based bimetallic phosphide encapsulated in carbonized zeolitic imadazolate frameworks has been successfully synthesized and showed excellent activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Density functional theory calculation and electrochemical measurements reveal that the electrical conductivity and electrochemical activity are closely associated with the Co2P/CoP mixed phase behaviors upon Cu metal doping. This relationship is found to be the decisive factor for enhanced electrocatalytic performance. Moreover, the precise control of Cu content in Co-host lattice effectively alters the Gibbs free energy for H* adsorption, which is favorable for facilitating reaction kinetics. Impressively, an optimized performance hasmore » been achieved with mild Cu doping in Cu0.3Co2.7P/nitrogen-doped carbon (NC) which exhibits an ultralow overpotential of 0.19 V at 10 mA cm–2 and satisfying stability for OER. Cu0.3Co2.7P/NC also shows excellent HER activity, affording a current density of 10 mA cm–2 at a low overpotential of 0.22 V. In addition, a homemade electrolyzer with Cu0.3Co2.7P/NC paired electrodes shows 60% larger current density than Pt/ RuO2 couple at 1.74 V, along with negligible catalytic deactivation after 50 h operation. The manipulation of electronic structure by controlled incorporation of second metal sheds light on understanding and synthesizing bimetallic transition metal phosphides for electrolysis-based energy conversion.« less

  12. Zinc fractionation in contaminated soils by sequential and single extractions: influence of soil properties and zinc content.

    PubMed

    Voegelin, Andreas; Tokpa, Gerome; Jacquat, Olivier; Barmettler, Kurt; Kretzschmar, Ruben

    2008-01-01

    We studied the fractionation of zinc (Zn) in 49 contaminated soils as influenced by Zn content and soil properties using a seven-step sequential extraction procedure (F1: NH4NO3; F2: NH4-acetate, pH 6; F3: NH3OHCl, pH 6; F4: NH4-EDTA, pH 4.6; F5: NH4-oxalate, pH 3; F6: NH4-oxalate/ascorbic acid, pH 3; F7: residual). The soils had developed from different geologic materials and covered a wide range in soil pH (4.0-7.3), organic C content (9.3-102 g kg(-1)), and clay content (38-451 g kg(-1)). Input of aqueous Zn with runoff water from electricity towers during 26 to 74 yr resulted in total soil Zn contents of 3.8 to 460 mmol kg(-1). In acidic soils (n = 24; pH <6.0), Zn was mainly found in the mobile fraction (F1) and the last two fractions (F6 and F7). In neutral soils (n = 25; pH > or =6.0), most Zn was extracted in the mobilizable fraction (F2) and the intermediate fractions (F4 and F5). The extractability of Zn increased with increasing Zn contamination of the soils. The sum of mobile (F1) and mobilizable (F2) Zn was independent of soil pH, the ratio of Zn in F1 over F1+F2 plotted against soil pH, exhibited the typical shape of a pH sorption edge and markedly increased from pH 6 to pH 5, reflecting the increasing lability of mobilizable Zn with decreasing soil pH. In conclusion, the extractability of Zn from soils contaminated with aqueous Zn after decades of aging under field conditions systematically varied with soil pH and Zn content. The same trends are expected to apply to aqueous Zn released from decomposing Zn-bearing contaminants, such as sewage sludge or smelter slag. The systematic trends in Zn fractionation with varying soil pH and Zn content indicate the paramount effect of these two factors on molecular scale Zn speciation. Further research is required to characterize the link between the fractionation and speciation of Zn and to determine how Zn loading and soil physicochemical properties affect Zn speciation in soils.

  13. In Vitro Selective Anti-Proliferative Effect of Zinc Oxide Nanoparticles Against Co-Cultured C2C12 Myoblastoma Cancer and 3T3-L1 Normal Cells.

    PubMed

    Chandrasekaran, Murugesan; Pandurangan, Muthuraman

    2016-07-01

    The zinc oxide (ZnO) nanoparticle has been widely used in biomedical applications and cancer therapy and has been reported to induce a selective cytotoxic effect on cancer cell proliferation. The present study investigated the cytotoxicity of ZnO nanoparticles against co-cultured C2C12 myoblastoma cancer cells and 3T3-L1 adipocytes. Our results showed that the ZnO nanoparticles could be cytotoxic to C2C12 myoblastoma cancer cells than 3T3-L1 cells. The messenger RNA (mRNA) expressions of p53 and bax were significantly increased 114.3 and 118.2 % in the C2C12 cells, whereas 42.5 and 40 % were increased in 3T3-L1 cells, respectively. The mRNA expression of bcl-2 was reduced 38.2 and 28.5 % in the C2C12 and 3T3-L1 cells, respectively, whereas the mRNA expression of caspase-3 was increased 80.7 and 51.6 % in the C2C12 and 3T3-L1 cells, respectively. The protein expressions of p53, bax, and caspase-3 were significantly increased 40, 81.8, and 80 % in C2C12 cells, whereas 20.3, 28.2, and 37.9 % were increased in 3T3-L1 cells, respectively. The mRNA expression of bcl-2 was significantly reduced 32.2 and 22.7 % in C2C12 and 3T3-L1 cells, respectively. Caspase-3 enzyme activity and reactive oxygen species (ROS) were increased in co-cultured C2C12 cells compared to 3T3-L1 cells. Taking all these data together, it may suggest that ZnO nanoparticles severely induce apoptosis in C2C12 myoblastoma cancer cells than 3T3-L1 cells.

  14. Regulation of neuronal pH by the metabotropic Zn(2+)-sensing Gq-coupled receptor, mZnR/GPR39.

    PubMed

    Ganay, Thibault; Asraf, Hila; Aizenman, Elias; Bogdanovic, Milos; Sekler, Israel; Hershfinkel, Michal

    2015-12-01

    Synaptically released Zn(2+) acts as a neurotransmitter, in part, by activating the postsynaptic metabotropic Zn(2+)-sensing Gq protein-coupled receptor (mZnR/GPR39). In previous work using epithelial cells, we described crosstalk between Zn(2+) signaling and changes in intracellular pH and/or extracellular pH (pHe). As pH changes accompany neuronal activity under physiological and pathological conditions, we tested whether Zn(2+) signaling is involved in regulation of neuronal pH. Here, we report that up-regulation of a major H(+) extrusion pathway, the Na(+)/H(+) exchanger (NHE), is induced by mZnR/GPR39 activation in an extracellular-regulated kinase 1/2-dependent manner in hippocampal neurons in vitro. We also observed that changes in pHe can modulate neuronal mZnR/GPR39-dependent signaling, resulting in reduced activity at pHe 8 or 6.5. Similarly, Zn(2+)-dependent extracellular-regulated kinase 1/2 phosphorylation and up-regulation of NHE activity were absent at acidic pHe. Thus, our results suggest that when pHe is maintained within the physiological range, mZnR/GPR39 activation can up-regulate NHE-dependent recovery from intracellular acidification. During acidosis, as pHe drops, mZnR/GPR39-dependent NHE activation is inhibited, thereby attenuating further H(+) extrusion. This mechanism may serve to protect neurons from excessive decreases in pHe. Thus, mZnR/GPR39 signaling provides a homeostatic adaptive process for regulation of intracellular and extracellular pH changes in the brain. We show that the postsynaptic metabotropic Zn(2+)-sensing Gq protein-coupled receptor (mZnR/GPR39) activation induces up-regulation of a major neuronal H(+) extrusion pathway, the Na(+)/H(+) exchanger (NHE), thereby enhancing neuronal recovery from intracellular acidification. Changes in extracellular pH (pHe), however, modulate neuronal mZnR/GPR39-dependent signaling, resulting in reduced activity at pHe 8 or 6.5. This mechanism may serve to protect neurons from excessive

  15. Production of ⁶¹Cu by the natZn(p,α) reaction: Improved separation and specific activity determination by titration with three chelators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asad, Ali H.; Smith, Suzanne V.; Morandeau, Laurence M.

    In this study, the cyclotron-based production of position-emitting ⁶¹Cu using the (p,α) reaction at 11.7 MeV was investigated starting from natural-zinc ( natZn) and enriched ⁶⁴Zn-foil targets, as well as its subsequent purification. For natZn, a combination of three resins were assessed to separate ⁶¹Cu from contaminating 66,67,68Ga and natZn. The specific activity of the purified ⁶¹Cu determined using ICP-MS analysis ranged from 143.3±14.3(SD) to 506.2±50.6 MBq/μg while the titration method using p-SCN-Bn-DOTA, p-SCN-Bn-NOTA and diamsar gave variable results (4.7±0.2 to 412.5±15.3 MBq/μg), with diamsar lying closest to the ICP-MS values. Results suggest that the p-SCN-Bn-DOTA and p-SCN-Bn-NOTA titration methodsmore » are significantly affected by the presence of trace-metal contaminants.« less

  16. Production of ⁶¹Cu by the natZn(p,α) reaction: Improved separation and specific activity determination by titration with three chelators

    DOE PAGES

    Asad, Ali H.; Smith, Suzanne V.; Morandeau, Laurence M.; ...

    2015-09-01

    In this study, the cyclotron-based production of position-emitting ⁶¹Cu using the (p,α) reaction at 11.7 MeV was investigated starting from natural-zinc ( natZn) and enriched ⁶⁴Zn-foil targets, as well as its subsequent purification. For natZn, a combination of three resins were assessed to separate ⁶¹Cu from contaminating 66,67,68Ga and natZn. The specific activity of the purified ⁶¹Cu determined using ICP-MS analysis ranged from 143.3±14.3(SD) to 506.2±50.6 MBq/μg while the titration method using p-SCN-Bn-DOTA, p-SCN-Bn-NOTA and diamsar gave variable results (4.7±0.2 to 412.5±15.3 MBq/μg), with diamsar lying closest to the ICP-MS values. Results suggest that the p-SCN-Bn-DOTA and p-SCN-Bn-NOTA titration methodsmore » are significantly affected by the presence of trace-metal contaminants.« less

  17. Aquabis[1-hydroxy-2-(imidazol-3-ium-1-yl)-1,1′-ethylidenediphophonato-κ2 O,O′]zinc(II) dihydrate

    PubMed Central

    Freire, Eleonora; Vega, Daniel R.

    2009-01-01

    In the title complex, [Zn(C5H9NO7P2)2(H2O)]·2H2O, the zinc atom is coordinated by two zoledronate anions [zoledronate = (2-(1-imidazole)-1-hydr­oxy-1,1′-ethyl­idenediphophonate)] and one water mol­ecule. The coordination number is 5. There is one half-mol­ecule in the asymmetric unit, the zinc atom being located on a twofold rotation axis passing through the metal centre and the coordinating water O atom. The anion exists as a zwitterion with an overall charge of −1; the protonated nitro­gen in the ring has a positive charge and the two phospho­nates groups each have a single negative charge. Inter­molecular O—H⋯O hydrogen bonds link the mol­ecules. An N—H⋯O inter­action is also present. PMID:21578165

  18. Excess zinc ions are a competitive inhibitor for carboxypeptidase A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirose, J.; Ando, S.; Kidani, Y.

    The mechanism for inhibition of enzyme activity by excess zinc ions has been studied by kinetic and equilibrium dialysis methods at pH 8.2, I = 0.5 M. With carboxypeptidase A (bovine pancreas), peptide (carbobenzoxyglycyl-L-phenylalanine and hippuryl-L-phenylalanine) and ester (hippuryl-L-phenyl lactate) substrates were inhibited competitively by excess zinc ions. The K/sub i/ values for excess zinc ions with carboxypeptidase A at pH 8.2 are all similar. The apparent constant for dissociation of excess zinc ions from carboxypeptidase A was also obtained by equilibrium dialysis at pH 8.2 and was 2.4 x 10/sup -5/ M, very close to the K/sub i/ valuesmore » above. With arsanilazotyrosine-248 carboxypeptidase A ((Azo-CPD)Zn)), hippuryl-L-phenylalanine, carbobenzoxyglycyl-L-phenylalanine, and hippuryl-L-phenyl lactate were also inhibited with a competitive pattern by excess zinc ions, and the K/sub i/ values were (3.0-3.5) x 10/sup -5/ M. The apparent constant for dissociation of excess zinc ions from arsanilazotyrosine-248 carboxypeptidase A, which was obtained from absorption changes at 510 nm, was 3.2 x 10/sup -5/ M and is similar to the K/sub i/ values for ((Azo-CPD)Zn). The apparent dissociation and inhibition constants, which were obtained by inhibition of enzyme activity and spectrophotometric and equilibrium dialysis methods with native carboxypeptidase A and arsanilazotyrosine-248 carboxypeptidase A, were almost the same. This agreement between the apparent dissociation and inhibition constants indicates that the zinc binding to the enzymes directly relates to the inhibition of enzyme activity by excess zinc ions. Excess zinc ions were competitive inhibitors for both peptide and ester substrates. This behavior is believed to arise by the excess zinc ions fixing the enzyme in a conformation to which the substrates cannot bind.« less

  19. Cobalt phosphide based nanostructures as bifunctional electrocatalysts for low temperature alkaline water splitting

    DOE PAGES

    Lambert, Timothy N.; Vigil, Julian A.; Christensen, Ben

    2016-08-22

    Cobalt phosphide based thin films and nanoparticles were prepared by the thermal phosphidation of spinel Co 3O 4 precursor films and nanoparticles, respectively. CoP films were prepared with overall retention of the Co 3O 4 nanoplatelet morphology while the spherical/cubic Co 3O 4 and Ni 0.15Co 2.85O 4 nanoparticles were converted to nanorods or nanoparticles, respectively. The inclusion of nickel in the nanoparticles resulted in a 2.5 fold higher surface area leading to higher gravimetric performance. In each case high surface area structures were obtained with CoP as the primary phase. All materials were found to act as effective bifunctionalmore » electrocatalysts for both the HER and the OER and compared well to commercial precious metal benchmark materials in alkaline electrolyte. As a result, a symmetrical water electrolysis cell prepared from the CoP-based film operated at a low overpotential of 0.41-0.51 V.« less

  20. Mg- and Zn-modified calcium phosphates prepared by biomimetic precipitation and subsequent treatment at high temperature.

    PubMed

    Rabadjieva, D; Tepavitcharova, S; Gergulova, R; Sezanova, K; Titorenkova, R; Petrov, O; Dyulgerova, E

    2011-10-01

    Powders of magnesium-modified as well as zinc-modified calcium phosphates (Me-β-TCP and HA) with a (Ca(2+)+Mg(2+)+Zn(2+)+Na(+)+K(+))/P ratio of 1.3-1.4 and various Me(2+)/(Me(2+)+Ca(2+)) ratios (from 0.005 to 0.16) were prepared in biomimetic electrolyte systems at pH 8, mother liquid maturation and further syntering at 600-1000°C. Some differences in zinc and magnesium modifications have been prognosed on the basis of thermodynamic modeling of the studied systems and explained by the Mg(2+) and Zn(2+) ion chemical behaviour. The temperature as well as the degree of Zn(2+) and Mg(2+) ions substitutions were found to stabilize the β-TCP structure and this effect was more prononced for zinc. Thus, zinc-modified β-TCP powders consisting of idiomorphic crystals were obtained through sintering of Zn(2+) ion substituted calcium phosphates precursors at 800-1000°C. The Mg(2+) ion substitution leads to obtaining magnesium-modified β-TCP with spherical grains.

  1. Comparison of Cu2+ and Zn2+ thermalcatalyst in treating diazo dye

    NASA Astrophysics Data System (ADS)

    Lau, Y. Y.; Wong, Y. S.; Ong, S. A.; Lutpi, N. A.; Ho, L. N.

    2018-05-01

    This research demonstrates the comparison between copper (II) sulphate (CuSO4) and zinc oxide (ZnO) as thermalcatalysts in thermolysis process for the treatment of diazo reactive black 5 (RB 5) wastewater. CuSO4 was found to be the most effective thermalcatalyst in comparison to ZnO. The color removal efficiency of RB 5 catalysed by CuSO4 and ZnO were 91.55 % at pH 9.5 and 7.36 % at pH 2, respectively. From the UV-Vis wavelength scan, CuSO4 catalyst is able to cleave the molecular structure bonding more efficiently compared to ZnO. ZnO which only show a slight decay on the main chemical network strands: azo bond, naphthalene and benzene rings whereas CuSO4 catalyst is able to fragment azo bond and naphthalene more effectively. The degradation reactions of CuSO4 and ZnO as thermalcatalysts in thermolysis process were compared.

  2. Fundamental studies of the metallurgical, electrical, and optical properties of gallium phosphide and gallium phosphide alloys

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Abstracts, bibliographic data, oral presentations, and published papers on (1) Diffusion of Sulfur in Gallium Phosphide and Gallium Arsenide, and (2) Properties of Gallium Phosphide Schottky Barrier Rectifiers for Use at High Temperature are presented.

  3. Spectral analysis of Cu 2+: B 2O 3-ZnO-PbO glasses

    NASA Astrophysics Data System (ADS)

    Lakshminarayana, G.; Buddhudu, S.

    2005-11-01

    A new series of heavy metal oxide (PbO) based zinc borate glasses in the chemical composition of (95 - x)B 2O 3-5ZnO- xPbO ( x = 10, 15, 20, 25, 30, 35, 40, 45 and 50 mol%) have been prepared to verify their UV filtering performance. Both direct and indirect optical band gaps ( Eopt) have been evaluated for these glasses. For a reference glass of 45B 2O 3-5ZnO-50PbO, refractive indices at different wavelengths are measured and found the results satisfactorily correlated with the theoretical data upon the computation of Cauchy's constants of A = 1.766029949, B = 159531.024 nm 2 and C = -1.078 × 10 10 nm 4. Measurements concerning X-ray diffraction (XRD), FT-IR, differential scanning colorimeter (DSC) profiles have been carried out for this glass. The FT-IR profile has revealed that the glass has both BO 3 and BO 4 units. From DSC thermogram, glass transition temperature ( Tg), crystallization temperature ( Tc) and melting temperature ( Tm) have been located and from them, other related parameters of the glass have also been calculated. Visible absorption spectra of 45B 2O 3-5ZnO-(50 - x)PbO- xCuO ( x = 0. 1, 0.2, 0.5 and 1.0 mol%) have revealed two absorption bands at around 400 nm ( 2B 1g → 2E g) and 780 nm ( 2B 1g → 2B 2g) of Cu 2+ ions, respectively. Emission bands at 422 and 512 nm are found for the 1 mol% CuO doped glass with excitations at 306 and 332 nm.

  4. Zinc Oxide Nanoparticles Demoted MDM2 Expression to Suppress TSLP-Induced Mast Cell Proliferation.

    PubMed

    Kim, Min-Ho; Jeong, Hyun-Ja

    2016-03-01

    Activation of murine double minute 2 (MDM2) through thymic stromal lymphopoietin (TSLP)-induced signal transducers and activators of transcription (STAT6) phosphorylation plays a critical role in proliferation and survival of mast cells. Previously, we reported that zinc oxide nanoparticles (ZnO-NP) effectively decrease the mast cell-mediated allergic inflammatory reactions. Here, we evaluated the effect of ZnO-NP on TSLP-induced proliferation of mast cells. ZnO-NP significantly reduced the number of BrdU-incorporating mast cells increased by TSLP. ZnO-NP decreased the expression of MDM2 through the blockade of STAT6 phosphorylation. TSLP increased the production and mRNA expression of interleukin-13 (a growth factor of mast cells), its increase was significantly decreased by ZnO-NP (10 μg/mL). ZnO-NP induced the down-regulation of Bcl2 (an anti-apoptotic factor) and up-regulation of Bax (an apoptotic factor) through the stabilization of p53 protein. However, ZnO-NP has no effect on caspase-3 activation, cytochrome c release into cytosol, and apoptosis-inducing factor translocation into nucleus in TSLP-stimulated cells. The results of the present study demonstrated that ZnO-NP inhibited the proliferation of mast cells through the regulation of MDM2 and p53 protein levels. These finding suggest that ZnO-NP could be improved mast cell-mediated various diseases.

  5. Zinc-Containing Hydroxyapatite Enhances Cold-Light-Activated Tooth Bleaching Treatment In Vitro

    PubMed Central

    Shi, Xinchang

    2017-01-01

    Cold-light bleaching treatment has grown to be a popular tooth whitening procedure in recent years, but its side effect of dental enamel demineralization is a widespread problem. The aim of this study was to synthesize zinc-substituted hydroxyapatite as an effective biomaterial to inhibit demineralization or increase remineralization. We synthesized zinc-substituted hydroxyapatite containing different zinc concentrations and analysed the product using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and energy dispersive spectrometer (EDS). The biological assessment of Zn-HA was conducted by CCK-8 assay and bacterial inhibition tests. pH cycling was performed to estimate the effect of Zn-HA on the enamel surface after cold-light bleaching treatment. The XRD, FTIR, and EDS results illustrated that zinc ions and hydroxyapatite combined in two forms: (1) Zn2+ absorbed on the surface of HA crystal and (2) Zn2+ incorporated into the lattice of HA. The results indicated that 2% Zn-HA, 4% Zn-HA, and 8% Zn-HA effectively inhibited the growth of bacteria yet showed poor biocompatibility, whereas 1% Zn-HA positively affected osteoblast proliferation. The XRD and scanning electron microscopy (SEM) results showed that the use of Zn-HA in pH cycling is obviously beneficial for enamel remineralization. Zinc-substituted hydroxyapatite could be a promising biomaterial for use in cold-light bleaching to prevent enamel demineralization. PMID:29159178

  6. Structure, photoluminescence and thermoluminescence study of a composite ZnTa2O6/ZnGa2O4 compound doped with Pr3+

    NASA Astrophysics Data System (ADS)

    Noto, L. L.; Shaat, S. K. K.; Poelman, D.; Dhlamini, M. S.; Mothudi, B. M.; Swart, H. C.

    2016-05-01

    The study of persistent luminescence is interesting for applications related to biological imaging, self-lit roads and security signs. Composite Pr-doped samples were prepared in one pot by solid chemical reaction at 1200 °C for 4 h. The X-ray diffraction patterns of the samples showed mixed phases which correspond to ZnGa2O4 and ZnTa2O6 phases. Interestingly, the secondary electron microscopy images showed that the surface morphology is composed of particles with different shapes: irregular, rhombus and rod shapes. The X-ray maps obtained using field emission scanning electron microscopy, confirmed that the irregular particles correspond to ZnTa2O6, and the rods correspond to ZnGa2O4. Red emission was observed from 1D23H4, 3P0 → 3H6, 3P0 → 3F2 and 1D23H5 transitions of Pr3+. The lifetime of the persistent luminescence was measured, and the corresponding trapping centres were investigated using thermoluminescence spectroscopy.

  7. Zinc deficiency exacerbates while zinc supplement attenuates cardiac hypertrophy in high-fat diet-induced obese mice through modulating p38 MAPK-dependent signaling.

    PubMed

    Wang, Shudong; Luo, Manyu; Zhang, Zhiguo; Gu, Junlian; Chen, Jing; Payne, Kristen McClung; Tan, Yi; Wang, Yuehui; Yin, Xia; Zhang, Xiang; Liu, Gilbert C; Wintergerst, Kupper; Liu, Quan; Zheng, Yang; Cai, Lu

    2016-09-06

    Childhood obesity often leads to cardiovascular diseases, such as obesity-related cardiac hypertrophy (ORCH), in adulthood, due to chronic cardiac inflammation. Zinc is structurally and functionally essential for many transcription factors; however, its role in ORCH and underlying mechanism(s) remain unclear and were explored here in mice with obesity induced with high-fat diet (HFD). Four week old mice were fed on either HFD (60%kcal fat) or normal diet (ND, 10% kcal fat) for 3 or 6 months, respectively. Either diet contained one of three different zinc quantities: deficiency (ZD, 10mg zinc per 4057kcal), normal (ZN, 30mg zinc per 4057kcal) or supplement (ZS, 90mg zinc per 4057kcal). HFD induced a time-dependent obesity and ORCH, which was accompanied by increased cardiac inflammation and p38 MAPK activation. These effects were worsened by ZD in HFD/ZD mice and attenuated by ZS in HFD/ZS group, respectively. Also, administration of a p38 MAPK specific inhibitor in HFD mice for 3 months did not affect HFD-induced obesity, but completely abolished HFD-induced, and zinc deficiency-worsened, ORCH and cardiac inflammation. In vitro exposure of adult cardiomyocytes to palmitate induced cell hypertrophy accompanied by increased p38 MAPK activation, which was heightened by zinc depletion with its chelator TPEN. Inhibition of p38 MAPK with its specific siRNA also prevented the effects of palmitate on cardiomyocytes. These findings demonstrate that ZS alleviates but ZD heightens cardiac hypertrophy in HFD-induced obese mice through suppressing p38 MAPK-dependent cardiac inflammatory and hypertrophic pathways. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. (ZnO){sub 3}In{sub 2}O{sub 3} fine powder prepared by combustion reaction of nitrates-glycine mixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikkawa, S.; Sasaki, H.; Tamura, H.

    2004-10-04

    Conducting fine powder was obtained in the Zn-In-O system by combustion of the gel prepared from an aqueous solution of mixed zinc and indium nitrates in the presence of glycine. Glycine worked as a fuel as well as a gelling agent in the combustion under the strong oxidizing power of the nitrates. In spite of the low furnace temperature of 350 deg. C, the product was (ZnO){sub 3}In{sub 2}O{sub 3} which has been obtained above 1260 deg. C in a solid state reaction of a mixture of ZnO and In{sub 2}O{sub 3}. The combustion synthesis led to an aggregated finemore » powder of hexagonal platelets of about 40 nm in diameter. Its compacted mass showed an electrical resistivity of about 700 {omega} cm. The agglomeration was improved by dispersing the fine powder in an acetic acid aqueous solution.« less

  9. Insulin Storage and Glucose Homeostasis in Mice Null for the Granule Zinc Transporter ZnT8 and Studies of the Type 2 Diabetes–Associated Variants

    PubMed Central

    Nicolson, Tamara J.; Bellomo, Elisa A.; Wijesekara, Nadeeja; Loder, Merewyn K.; Baldwin, Jocelyn M.; Gyulkhandanyan, Armen V.; Koshkin, Vasilij; Tarasov, Andrei I.; Carzaniga, Raffaella; Kronenberger, Katrin; Taneja, Tarvinder K.; da Silva Xavier, Gabriela; Libert, Sarah; Froguel, Philippe; Scharfmann, Raphael; Stetsyuk, Volodymir; Ravassard, Philippe; Parker, Helen; Gribble, Fiona M.; Reimann, Frank; Sladek, Robert; Hughes, Stephen J.; Johnson, Paul R.V.; Masseboeuf, Myriam; Burcelin, Remy; Baldwin, Stephen A.; Liu, Ming; Lara-Lemus, Roberto; Arvan, Peter; Schuit, Frans C.; Wheeler, Michael B.; Chimienti, Fabrice; Rutter, Guy A.

    2009-01-01

    OBJECTIVE Zinc ions are essential for the formation of hexameric insulin and hormone crystallization. A nonsynonymous single nucleotide polymorphism rs13266634 in the SLC30A8 gene, encoding the secretory granule zinc transporter ZnT8, is associated with type 2 diabetes. We describe the effects of deleting the ZnT8 gene in mice and explore the action of the at-risk allele. RESEARCH DESIGN AND METHODS Slc30a8 null mice were generated and backcrossed at least twice onto a C57BL/6J background. Glucose and insulin tolerance were measured by intraperitoneal injection or euglycemic clamp, respectively. Insulin secretion, electrophysiology, imaging, and the generation of adenoviruses encoding the low- (W325) or elevated- (R325) risk ZnT8 alleles were undertaken using standard protocols. RESULTS ZnT8−/− mice displayed age-, sex-, and diet-dependent abnormalities in glucose tolerance, insulin secretion, and body weight. Islets isolated from null mice had reduced granule zinc content and showed age-dependent changes in granule morphology, with markedly fewer dense cores but more rod-like crystals. Glucose-stimulated insulin secretion, granule fusion, and insulin crystal dissolution, assessed by total internal reflection fluorescence microscopy, were unchanged or enhanced in ZnT8−/− islets. Insulin processing was normal. Molecular modeling revealed that residue-325 was located at the interface between ZnT8 monomers. Correspondingly, the R325 variant displayed lower apparent Zn2+ transport activity than W325 ZnT8 by fluorescence-based assay. CONCLUSIONS ZnT8 is required for normal insulin crystallization and insulin release in vivo but not, remarkably, in vitro. Defects in the former processes in carriers of the R allele may increase type 2 diabetes risks. PMID:19542200

  10. Transition Metal Phosphide Nanoparticles Supported on SBA-15 as Highly Selective Hydrodeoxygenation Catalysts for the Production of Advanced Biofuels.

    PubMed

    Yang, Yongxing; Ochoa-Hernández, Cristina; de la Peña O'Shea, Víctor A; Pizarro, Patricia; Coronado, Juan M; Serrano, David P

    2015-09-01

    A series of catalysts constituted by nanoparticles of transition metal (M = Fe, Co, Ni and Mo) phosphides (TMP) dispersed on SBA-15 were synthesized by reduction of the corresponding metal phosphate precursors previously impregnated on the mesostructured support. All the samples contained a metal-loading of 20 wt% and with an initial M/P mole ratio of 1, and they were characterized by X-ray diffraction (XRD), N2 sorption, H2-TPR and transmission electron microscopy (TEM). Metal phosphide nanocatalysts were tested in a high pressure continuous flow reactor for the hydrodeoxygenation (HDO) of a methyl ester blend containing methyl oleate (C17H33-COO-CH3) as main component (70%). This mixture constitutes a convenient surrogate of triglycerides present in vegetable oils, and following catalytic hydrotreating yields mainly n-alkanes. The results of the catalytic assays indicate that Ni2P/SBA-15 catalyst presents the highest ester conversion, whereas the transformation rate is about 20% lower for MoP/SBA-15. In contrast, catalysts based on Fe and Co phosphides show a rather limited activity. Hydrocarbon distribution in the liquid product suggests that both hydrodeoxygenation and decarboxylation/decarbonylation reactions occur simultaneously over the different catalysts, although MoP/SBA-15 possess a selectivity towards hydrodeoxygenation exceeding 90%. Accordingly, the catalyst based on MoP affords the highest yield of n-octadecane, which is the preferred product in terms of carbon atom economy. Subsequently, in order to conjugate the advantages of both Ni and Mo phosphides, a series of catalysts containing variable proportions of both metals were prepared. The obtained results reveal that the mixed phosphides catalysts present a catalytic behavior intermediate between those of the monometallic phosphides. Accordingly, only marginal enhancement of the yield of n-octadecane is obtained for the catalysts with a Mo/Ni ratio of 3. Nevertheless, owing to this high selectivity

  11. Gallium phosphide nanowires as a substrate for cultured neurons.

    PubMed

    Hällström, Waldemar; Mårtensson, Thomas; Prinz, Christelle; Gustavsson, Per; Montelius, Lars; Samuelson, Lars; Kanje, Martin

    2007-10-01

    Dissociated sensory neurons were cultured on epitaxial gallium phosphide (GaP) nanowires grown vertically from a gallium phosphide surface. Substrates covered by 2.5 microm long, 50 nm wide nanowires supported cell adhesion and axonal outgrowth. Cell survival was better on nanowire substrates than on planar control substrates. The cells interacted closely with the nanostructures, and cells penetrated by hundreds of wires were observed as well as wire bending due to forces exerted by the cells.

  12. Biogenesis of zinc storage granules in Drosophila melanogaster.

    PubMed

    Tejeda-Guzmán, Carlos; Rosas-Arellano, Abraham; Kroll, Thomas; Webb, Samuel M; Barajas-Aceves, Martha; Osorio, Beatriz; Missirlis, Fanis

    2018-03-19

    Membrane transporters and sequestration mechanisms concentrate metal ions differentially into discrete subcellular microenvironments for use in protein cofactors, signalling, storage or excretion. Here we identify zinc storage granules as the insect's major zinc reservoir in principal Malpighian tubule epithelial cells of Drosophila melanogaster The concerted action of Adaptor Protein-3, Rab32, HOPS and BLOC complexes as well as of the white-scarlet (ABCG2-like) and ZnT35C (ZnT2/ZnT3/ZnT8-like) transporters is required for zinc storage granule biogenesis. Due to lysosome-related organelle defects caused by mutations in the homologous human genes, patients with Hermansky-Pudlak syndrome may lack zinc granules in beta pancreatic cells, intestinal paneth cells and presynaptic vesicles of hippocampal mossy fibers. © 2018. Published by The Company of Biologists Ltd.

  13. P-Type Transparent Cu-Alloyed ZnS Deposited at Room Temperature

    DOE PAGES

    Woods-Robinson, Rachel; Cooper, Jason K.; Xu, Xiaojie; ...

    2016-03-16

    All transparent conducting materials (TCMs) of technological practicality are n-type; the inferior conductivity of p-type TCMs has limited their adoption. Additionally, many relatively high-performing p-type TCMs require synthesis temperatures > 400 °C. Here, room-temperature pulsed laser deposition of copper-alloyed zinc sulfide (Cu x Zn 1- x S) thin films (0 ≤ x ≤ 0.75) is reported. For 0.09 ≤ x ≤ 0.35, Cu x Zn 1- x S has high p-type conductivity, up to 42 S cm -1 at x = 0.30, with an optical band gap tunable from ≈3.0–3.3 eV and transparency, averaged over the visible, of 50%–71% formore » 200–250 nm thick films. In this range, synchrotron X-ray and electron diffraction reveal a nanocrystalline ZnS structure. Secondary crystalline Cu y S phases are not observed, and at higher Cu concentrations, x > 0.45, films are amorphous and poorly conducting. Furthermore, within the TCM regime, the conductivity is temperature independent, indicating degenerate hole conduction. A decrease in lattice parameter with Cu content suggests that the hole conduction is due to substitutional incorporation of Cu onto Zn sites. This hole-conducting phase is embedded in a less conducting amorphous Cu y S, which dominates at higher Cu concentrations. Finally, the combination of high hole conductivity and optical transparency for the peak conductivity Cu x Zn 1- x S films is among the best reported to date for a room temperature deposited p-type TCM.« less

  14. On-chip surface modified nanostructured ZnO as functional pH sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Liu, Wenpeng; Sun, Chongling; Zhang, Hao; Pang, Wei; Zhang, Daihua; Duan, Xuexin

    2015-09-01

    Zinc oxide (ZnO) nanostructures are promising candidates as electronic components for biological and chemical applications. In this study, ZnO ultra-fine nanowire (NW) and nanoflake (NF) hybrid structures have been prepared by Au-assisted chemical vapor deposition (CVD) under ambient pressure. Their surface morphology, lattice structures, and crystal orientation were investigated by scanning electron microscopy (SEM), x-ray diffraction (XRD), and transmission electron microscopy (TEM). Two types of ZnO nanostructures were successfully integrated as gate electrodes in extended-gate field-effect transistors (EGFETs). Due to the amphoteric properties of ZnO, such devices function as pH sensors. We found that the ultra-fine NWs, which were more than 50 μm in length and less than 100 nm in diameter, performed better in the pH sensing process than NW-NF hybrid structures because of their higher surface-to-volume ratio, considering the Nernst equation and the Gouy-Chapman-Stern model. Furthermore, the surface coating of (3-Aminopropyl)triethoxysilane (APTES) protects ZnO nanostructures in both acidic and alkaline environments, thus enhancing the device stability and extending its pH sensing dynamic range.

  15. Zinc Tantalum Oxynitride (ZnTaO2N) Photoanode Modified with Cobalt Phosphate Layers for the Photoelectrochemical Oxidation of Alkali Water

    PubMed Central

    T. Weller, Mark

    2018-01-01

    Photoanodes fabricated by the electrophoretic deposition of a thermally prepared zinc tantalum oxynitride (ZnTaO2N) catalyst onto indium tin oxide (ITO) substrates show photoactivation for the oxygen evolution reaction (OER) in alkaline solutions. The photoactivity of the OER is further boosted by the photodeposition of cobalt phosphate (CoPi) layers onto the surface of the ZnTaO2N photoanodes. Structural, morphological, and photoelectrochemical (PEC) properties of the modified ZnTaO2N photoanodes are studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet visible (UV−Vis) diffuse reflectance spectroscopy, and electrochemical techniques. The presence of the CoPi layer significantly improved the PEC performance of water oxidation in an alkaline sulphate solution. The photocurrent-voltage behavior of the CoPi-modified ZnTaO2N anodes was improved, with the influence being more prominent at lower oxidation potentials. A stable photocurrent density of about 2.3 mA·cm−2 at 1.23 V vs. RHE was attained upon visible light illumination. Relative to the ZnTaO2N photoanodes, an almost three-fold photocurrent increase was achieved at the CoPi/ZnTaO2N photoelectrode. Perovskite-based oxynitrides are modified using an oxygen-evolution co-catalyst of CoPi, and provide a new dimension for enhancing the photoactivity of oxygen evolution in solar-assisted water-splitting reactions. PMID:29346306

  16. Fabrication of n-ZnO/ p-Si (100) and n-ZnO:Al/ p-Si (100) Heterostructures and Study of Current-Voltage, Capacitance-Voltage and Room-Temperature Photoluminescence

    NASA Astrophysics Data System (ADS)

    Shah, M. A. H.; Khan, M. K. R.; Tanveer Karim, A. M. M.; Rahman, M. M.; Kamruzzaman, M.

    2018-01-01

    Heterojunction diodes of n-ZnO/ p-Si (100) and n-ZnO:Al/ p-Si (100) were fabricated by spray pyrolysis technique. X-ray diffraction (XRD), energy dispersive x-ray spectroscopy (EDX), and field emission scanning electron microscopy (FESEM) were used to characterize the as-prepared samples. The XRD pattern indicates the hexagonal wurzite structure of zinc oxide (ZnO) and Al-doped ZnO (AZO) thin films grown on Si (100) substrate. The compositional analysis by EDX indicates the presence of Al in the AZO structure. The FESEM image indicates the smooth and compact surface of the heterostructures. The current-voltage characteristics of the heterojunction confirm the rectifying diode behavior at different temperatures and illumination intensities. For low forward bias voltage, the ideality factors were determined to be 1.24 and 1.38 for un-doped and Al-doped heterostructures at room temperature (RT), respectively, which indicates the good diode characteristics. The capacitance-voltage response of the heterojunctions was studied for different oscillation frequencies. From the 1/ C 2- V plot, the junction built-in potentials were found 0.30 V and 0.40 V for un-doped and Al-doped junctions at RT, respectively. The differences in built-in potential for different heterojunctions indicate the different interface state densities of the junctions. From the RT photoluminescence (PL) spectrum of the n-ZnO/ p-Si (100) heterostructure, an intense main peak at near band edge (NBE) 378 nm (3.28 eV) and weak deep-level emissions (DLE) centered at 436 nm (2.84 eV) and 412 nm (3.00 eV) were observed. The NBE emission is attributed to the radiative recombination of the free and bound excitons and the DLE results from the radiative recombination through deep level defects.

  17. Low-Resistivity Zinc Selenide for Heterojunctions

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.

    1986-01-01

    Magnetron reactive sputtering enables doping of this semiconductor. Proposed method of reactive sputtering combined with doping shows potential for yielding low-resistivity zinc selenide films. Zinc selenide attractive material for forming heterojunctions with other semiconductor compounds as zinc phosphide, cadmium telluride, and gallium arsenide. Semiconductor junctions promising for future optoelectronic devices, including solar cells and electroluminescent displays. Resistivities of zinc selenide layers deposited by evaporation or chemical vapor deposition too high to form practical heterojunctions.

  18. Zinc

    USDA-ARS?s Scientific Manuscript database

    Zinc was recognized as an essential trace metal for humans during the studies of Iranian adolescent dwarfs in the early 1960s. Zinc metal existing as Zn2+ is a strong electron acceptor in biological systems without risks of oxidant damage to cells. Zn2+ functions in the structure of proteins and is ...

  19. Zn/gelled 6 M KOH/O 2 zinc-air battery

    NASA Astrophysics Data System (ADS)

    Mohamad, A. A.

    The gel electrolyte for the zinc-air cell was prepared by mixing hydroponics gel with a 6 M potassium hydroxide aqueous solution. The self-discharge of cells was characterized by measuring the open-circuit voltage. The effect of a discharge rate of 50 mA constant current on cell voltage and plateau hour, as well as the voltage-current and current density-power density were measured and analysed. The electrode degradation after discharge cycling was characterized by structural and surface methods. The oxidation of the electrode surface further blocked the utilization of the Zn anode and was identified as a cause for the failure of the cell.

  20. Band alignment and p -type doping of ZnSnN2

    NASA Astrophysics Data System (ADS)

    Wang, Tianshi; Ni, Chaoying; Janotti, Anderson

    2017-05-01

    Composed of earth-abundant elements, ZnSnN2 is a promising semiconductor for photovoltaic and photoelectrochemical applications. However, basic properties such as the precise value of the band gap and the band alignment to other semiconductors are still unresolved. For instance, reported values for the band gap vary from 1.4 to 2.0 eV. In addition, doping in ZnSnN2 remains largely unexplored. Using density functional theory with the Heyd-Scuseria-Ernzerhof hybrid functional, we investigate the electronic structure of ZnSnN2, its band alignment to GaN and ZnO, and the possibility of p -type doping. We find that the position of the valence-band maximum of ZnSnN2 is 0.39 eV higher than that in GaN, yet the conduction-band minimum is close to that in ZnO, which suggests that achieving p -type conductivity is likely as in GaN, yet it may be difficult to control unintentional n -type conductivity as in ZnO. Among possible p -type dopants, we explore Li, Na, and K substituting on the Zn site. We show that while LiZn is a shallow acceptor, NaZn and KZn are deep acceptors, which we trace back to large local relaxations around the Na and K impurities due to the atomic size mismatches.

  1. Effects of zinc on the production of alcohol by Clostridium carboxidivorans P7 using model syngas.

    PubMed

    Li, Demao; Meng, Chunxiao; Wu, Guanxun; Xie, Bintao; Han, Yifan; Guo, Yaqiong; Song, Chunhui; Gao, Zhengquan; Huang, Zhiyong

    2018-01-01

    Renewable energy, including biofuels such as ethanol and butanol from syngas bioconversed by Clostridium carboxidivorans P7, has been drawing extensive attention due to the fossil energy depletion and global eco-environmental issues. Effects of zinc on the growth and metabolites of C. carboxidivorans P7 were investigated with model syngas as the carbon source. The cell concentration was doubled, the ethanol content increased 3.02-fold and the butanol content increased 7.60-fold, the hexanol content increased 44.00-fold in the medium with 280 μM Zn 2+ , when comparing with those in the control medium [Zn 2+ , (7 μM)]. Studies of the genes expression involved in the carbon fixation as well as acid and alcohol production in the medium with 280 μM Zn 2+ indicated that fdhII was up-regulated on the second day, acs A, fdhII, bdh35 and bdh50 were up-regulated on the third day and bdh35, acsB, fdhI, fdhIII, fdhIV, buk, bdh10, bdh35, bdh40 and bdh50 were up-regulated on the fourth day. The results indicated that the increased Zn 2+ content increased the alcohol production through increase in the gene expression of the carbon fixation and alcohol dehydrogenase.

  2. Ba3CuOs2O9 and Ba3ZnOs2O9, a comparative study

    NASA Astrophysics Data System (ADS)

    Feng, Hai L.; Jansen, Martin

    2018-02-01

    Polycrystalline samples of Ba3CuOs2O9 and Ba3ZnOs2O9 were synthesized by solid-state reactions. Ba3CuOs2O9 crystallizes in Cmcm, while Ba3ZnOs2O9 adopts the hexagonal space group P63/mmc. Both the crystal structures consist of face-sharing Os-centered octahedra forming dimer-like Os2O9 units, which are interconnected by corner-sharing CuO6, or ZnO6 octahedra, respectively. In Ba3CuOs2O9, the CuO6 octahedra show a characteristic Jahn-Teller distortion. Both, Ba3CuOs2O9 and Ba3ZnOs2O9, are electrically insulating. Magnetic and specific heat measurements confirm that Ba3CuOs2O9 is antiferromagnetically ordered below 47 K. Analysis of the magnetic data indicated that its magnetic properties are dominated by Cu2+ ions. The magnetic susceptibility of Ba3ZnOs2O9 is weakly temperature-dependent with a broad maximum ≈ 280 K, indicating the presence of strong exchange interactions within the Os2O9 dimer. The residual magnetic susceptibility at low temperatures also suggests the presence of appreciable exchange coupling between the dimers.

  3. Effect of Bi2O3 on structural, optical, and other physical properties of semiconducting zinc vanadate glasses

    NASA Astrophysics Data System (ADS)

    Punia, R.; Kundu, R. S.; Hooda, J.; Dhankhar, S.; Dahiya, Sajjan; Kishore, N.

    2011-08-01

    Zinc bismuth vanadate glasses with compositions 50V2O5-xBi2O3-(50-x) ZnO have been prepared using a conventional melt-quenching method and the solubility limit of Bi2O3 in zinc vanadate glass system has been investigated using x-ray diffraction. Density has been measured using Archimedes' principle; molar volume (Vm) and crystalline volumes (Vc) have also been estimated. With an increase in Bi2O3 content, there is an increase in density and molar volume of the glass samples. The glass transition temperature (Tg) and Hurby coefficient (Kgl) have been determined using differential scanning calorimetry (DSC) and are observed to increase with increase in Bi2O3 content (i.e., x), up to x = 15, thereby indicating the structural modifications and increased thermal stability of zinc vanadate glasses on addition of Bi2O3. FTIR spectra have been recorded and the analysis of FTIR shows that the structure depends upon the Bi2O3 content in the glass compositions. On addition of Bi2O3 into the zinc vanadate system, the structure of V2O5 changes from VO4 tetrahedral to VO5 trigonal bi-pyramid configuration. The optical parameters have been calculated by using spectroscopic ellipsometry for bulk oxide glasses (perhaps used first time for bulk glasses) and optical bandgap energy is found to increase with increase in Bi2O3 content.

  4. Hydrogen-related complexes in Li-diffused ZnO single crystals

    DOE PAGES

    Corolewski, Caleb D.; Parmar, Narendra S.; Lynn, Kelvin G.; ...

    2016-07-21

    Zinc oxide (ZnO) is a wide band gap semiconductor and a potential candidate for next generation white solid state lighting applications. In this work, hydrogen-related complexes in lithium diffused ZnO single crystals were studied. In addition to the well-known Li-OH complex, several other hydrogen defects were observed. When a mixture of Li 2O and ZnO is used as the dopant source, zinc vacancies are suppressed and the bulk Li concentration is very high (>10 19 cm -3). In that case, the predominant hydrogen complex has a vibrational frequency of 3677 cm -1, attributed to surface O-H species. When Li 2COmore » 3 is used, a structured blue luminescence band and O-H mode at 3327 cm -1 are observed at 10K. These observations, along with positron annihilation measurements, suggest a zinc vacancy–hydrogen complex, with an acceptor level 0.3 eV above the valence-band maximum. In conclusion, this relatively shallow acceptor could be beneficial for p-type ZnO.« less

  5. Hydrogen-related complexes in Li-diffused ZnO single crystals

    NASA Astrophysics Data System (ADS)

    Corolewski, Caleb D.; Parmar, Narendra S.; Lynn, Kelvin G.; McCluskey, Matthew D.

    2016-07-01

    Zinc oxide (ZnO) is a wide band gap semiconductor and a potential candidate for next generation white solid state lighting applications. In this work, hydrogen-related complexes in lithium diffused ZnO single crystals were studied. In addition to the well-known Li-OH complex, several other hydrogen defects were observed. When a mixture of Li2O and ZnO is used as the dopant source, zinc vacancies are suppressed and the bulk Li concentration is very high (>1019 cm-3). In that case, the predominant hydrogen complex has a vibrational frequency of 3677 cm-1, attributed to surface O-H species. When Li2CO3 is used, a structured blue luminescence band and O-H mode at 3327 cm-1 are observed at 10 K. These observations, along with positron annihilation measurements, suggest a zinc vacancy-hydrogen complex, with an acceptor level ˜0.3 eV above the valence-band maximum. This relatively shallow acceptor could be beneficial for p-type ZnO.

  6. Can Ni phosphides become viable hydroprocessing catalysts?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soled, S.; Miseo, S.; Baumgartner, J.

    2015-05-15

    We prepared higher surface area nickel phosphides than are normally found by reducing nickel phosphate. To do this, we hydrothermally synthesized Ni hydroxy phosphite precursors with low levels of molybdenum substitution. The molybdenum substitution increases the surface area of these precursors. During pretreatment in a sulfiding atmosphere (such as H2S/H2) dispersed islands of MoS2 segregate from the precursor and provide a pathway for H2 dissociation that allows reduction of the phosphite precursor to nickel phosphide at substantially lower temperatures than in the absence of MoS2. The results reported here show that to create nickel phosphides with comparable activity to conventionalmore » supported sulfide catalysts, one would have to synthesize the phosphide with surface areas exceeding 400 m2/g (i.e. with nanoparticles less than 30 Å in lateral dimension).« less

  7. Serum Concentration of Zinc, Copper, Selenium, Manganese, and Cu/Zn Ratio in Children and Adolescents with Myopia.

    PubMed

    Fedor, Monika; Socha, Katarzyna; Urban, Beata; Soroczyńska, Jolanta; Matyskiela, Monika; Borawska, Maria H; Bakunowicz-Łazarczyk, Alina

    2017-03-01

    The purpose of the present study was the assessment of the serum concentration of antioxidant microelements-zinc, copper, selenium, manganese, and Cu/Zn ratio in children and adolescents with myopia. Eighty-three children were examined (mean age 14.36 ± 2.49 years) with myopia. The control group was 38 persons (mean age 12.89 ± 3.84 years). Each patient had complete eye examination. The serum concentration of zinc, copper, manganese, and selenium was determined by atomic absorption spectrometry. Cu/Zn ratio, which is the indicator of the oxidative stress, was also calculated. The average serum concentration of zinc in myopic patients was significantly lower (0.865 ± 0.221 mg L -1 ) in comparison to the control group (1.054 ± 0.174 mg L -1 ). There was significantly higher Cu/Zn ratio in myopic patients (1.196 ± 0.452) in comparison to that in the control group (0.992 ± 0.203). The average serum concentration of selenium in the study group was significantly lower (40.23 ± 12.07 μg L -1 ) compared with that in the control group (46.00 ± 12.25 μg L -1 ). There were no essential differences between serum concentration of copper and manganese in the study group and the control group. Low serum concentration of zinc and selenium in myopic children may imply an association between insufficiency of these antioxidant microelements and the development of the myopia and could be the indication for zinc and selenium supplementation in the prevention of myopia. Significantly, higher Cu/Zn ratio in the study group can suggest the relationship between myopia and oxidative stress.

  8. Synthesis, characterization and solid-state properties of [Zn(Hdmmthiol)2]\\cdot2H2O complex

    NASA Astrophysics Data System (ADS)

    Dagdelen, Fethi; Aydogdu, Yildirim; Dey, Kamalendu; Biswas, Susobhan

    2016-05-01

    The zinc(II) complex with tridentate thiohydrazone ligand have been prepared by metal template reaction. The metal template reaction was used to prepare the zinc (II) complex with tridentate thiohydrazone ligand. The reaction of diacetylmonoxime and, morpholine N-thiohydrazidewith Zn(OAc)2 \\cdot2H2O under reflux yielded the formation of the [Zn(Hdmmthiol )2]\\cdot2H2O complex. The complex was characterized by a combination of protocols including elemental analysis, UV+vis, FT-IR, TG and PXRD. The temperature dependence of the electrical conductivity and the optical property of the [Zn(Hdmmthiol )2] \\cdot2H2O complex is called H2dammthiol was studied. Powder X-ray diffraction (PXRD) method was used to investigate the crystal structure of the sample. The zinc complex was shown to be a member of the triclinic system. The zinc complex was determined to have n-type conductivity as demonstrated in the hot probe measurements. The complex was determined to display direct optical transition with band gaps of 2.52eV as determined by the optical absorption analysis.

  9. Pushing indium phosphide quantum dot emission deeper into the near infrared

    NASA Astrophysics Data System (ADS)

    Saeboe, A. M.; Kays, J.; Mahler, A. H.; Dennis, A. M.

    2018-02-01

    Cadmium-free near infrared (NIR) emitting quantum dots (QDs) have significant potential for multiplexed tissue-depth imaging applications in the first optical tissue window (i.e., 650 - 900 nm). Indium phosphide (InP) chemistry provides one of the more promising cadmium-free options for biomedical imaging, but the full tunability of this material has not yet been achieved. Specifically, InP QD emission has been tuned from 480 - 730 nm in previous literature reports, but examples of samples emitting from 730 nm to the InP bulk bandgap limit of 925 nm are lacking. We hypothesize that by generating inverted structures comprising ZnSe/InP/ZnS in a core/shell/shell heterostructure, optical emission from the InP shell can be tuned by changing the InP shell thickness, including pushing deeper into the NIR than current InP QDs. Colloidal synthesis methods including hot injection precipitation of the ZnSe core and a modified successive ion layer adsorption and reaction (SILAR) method for stepwise shell deposition were used to promote growth of core/shell/shell materials with varying thicknesses of the InP shell. By controlling the number of injections of indium and phosphorous precursor material, the emission peak was tuned from 515 nm to 845 nm (2.41 - 1.47 eV) with consistent full width half maximum (FWHM) values of the emission peak 0.32 eV. To confer water solubility, the nanoparticles were encapsulated in PEGylated phospholipid micelles, and multiplexing of NIR-emitting InP QDs was demonstrated using an IVIS imaging system. These materials show potential for multiplexed imaging of targeted QD contrast agents in the first optical tissue window.

  10. Scalable and Tunable Carbide-Phosphide Composite Catalyst System for the Thermochemical Conversion of Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regmi, Yagya; Rogers, Bridget; Labbe, Nicole

    We have prepared composite materials of hexagonal nickel phosphide and molybdenum carbide (Mo2C) utilizing a simple and scalable two-stage synthesis method comprised of carbothermic reduction followed by hydrothermal incubation. We observe the monophasic hexagonal phosphide Ni2P in the composite at low phosphide-to-carbide (P:C) ratios. Upon increasing the proportion of P:C, the carbide surface becomes saturated, and we detect the emergence of a second hexagonal nickel phosphide phase (Ni5P4) upon annealing. We demonstrate that vapor-phase upgrading (VPU) of whole biomass via catalytic fast pyrolysis is achievable using the composite material as a catalyst, and we monitor the resulting product slates usingmore » pyrolysis gas chromatography/mass spectrometry. Our analysis of the product vapors indicates that variation of the P:C molar ratio in the composite material affords product slates of varying complexity and composition, which is indicated by the number of products and their relative proportions in the product slate. Our results demonstrate that targeted vapor product composition can be obtained, which can potentially be utilized to tune the composition of the bio-oil downstream.« less

  11. Scalable and Tunable Carbide-Phosphide Composite Catalyst System for the Thermochemical Conversion of Biomass

    DOE PAGES

    Regmi, Yagya; Rogers, Bridget; Labbe, Nicole; ...

    2017-07-13

    We have prepared composite materials of hexagonal nickel phosphide and molybdenum carbide (Mo2C) utilizing a simple and scalable two-stage synthesis method comprised of carbothermic reduction followed by hydrothermal incubation. We observe the monophasic hexagonal phosphide Ni2P in the composite at low phosphide-to-carbide (P:C) ratios. Upon increasing the proportion of P:C, the carbide surface becomes saturated, and we detect the emergence of a second hexagonal nickel phosphide phase (Ni5P4) upon annealing. We demonstrate that vapor-phase upgrading (VPU) of whole biomass via catalytic fast pyrolysis is achievable using the composite material as a catalyst, and we monitor the resulting product slates usingmore » pyrolysis gas chromatography/mass spectrometry. Our analysis of the product vapors indicates that variation of the P:C molar ratio in the composite material affords product slates of varying complexity and composition, which is indicated by the number of products and their relative proportions in the product slate. Our results demonstrate that targeted vapor product composition can be obtained, which can potentially be utilized to tune the composition of the bio-oil downstream.« less

  12. Amplified spontaneous emission from ZnO in n-ZnO/ZnO nanodots-SiO(2) composite/p-AlGaN heterojunction light-emitting diodes.

    PubMed

    Shih, Ying Tsang; Wu, Mong Kai; Li, Wei Chih; Kuan, Hon; Yang, Jer Ren; Shiojiri, Makoto; Chen, Miin Jang

    2009-04-22

    This study demonstrates amplified spontaneous emission (ASE) of the ultraviolet (UV) electroluminescence (EL) from ZnO at lambda~380 nm in the n-ZnO/ZnO nanodots-SiO(2) composite/p- Al(0.12)Ga(0.88)N heterojunction light-emitting diode. A SiO(2) layer embedded with ZnO nanodots was prepared on the p-type Al(0.12)Ga(0.88)N using spin-on coating of SiO(2) nanoparticles followed by atomic layer deposition (ALD) of ZnO. An n-type Al-doped ZnO layer was deposited upon the ZnO nanodots-SiO(2) composite layer also by the ALD technique. High-resolution transmission electron microscopy (HRTEM) reveals that the ZnO nanodots embedded in the SiO(2) matrix have diameters of 3-8 nm and the wurtzite crystal structure, which allows the transport of carriers through the thick ZnO nanodots-SiO(2) composite layer. The high quality of the n-ZnO layer was manifested by the well crystallized lattice image in the HRTEM picture and the low-threshold optically pumped stimulated emission. The low refractive index of the ZnO nanodots-SiO(2) composite layer results in the increase in the light extraction efficiency from n-ZnO and the internal optical feedback of UV EL into n-ZnO layer. Consequently, significant enhancement of the UV EL intensity and super-linear increase in the EL intensity, as well as the spectral narrowing, with injection current were observed owing to ASE in the n-ZnO layer.

  13. Characterization of the ZAT1p zinc transporter from Arabidopsis thaliana in microbial model organisms and reconstituted proteoliposomes.

    PubMed

    Bloss, Tanja; Clemens, Stephan; Nies, Dietrich H

    2002-03-01

    The ZAT1p zinc transporter from Arabidopsis thaliana (L.) Heynh. is a member of the cation diffusion facilitator (CDF) protein family. When heterologously expressed in Escherichia coli, ZAT1p bound zinc in a metal blot. Binding of zinc occurred mainly to the hydrophilic amino acid region from H182 to H232. A ZAT1p/ZAT1p*Delta(M1-I25) protein mixture was purified and reconstituted into proteoliposomes. Uptake of zinc into the proteoliposomes did not require a proton gradient across the liposomal membrane. ZAT1p did not transport cobalt, and transported cadmium at only 1% of the zinc transport rate. ZAT1p functioned as an uptake system for 65Zn2+ in two strains of the Gram-negative bacterium Ralstonia metallidurans, which were different in their content of zinc-efflux systems. The ZAT1 gene did not rescue increased zinc sensitivity of a Delta ZRC1single-mutant strain or of a Delta ZRC1 Delta COT1 double-mutant strain of Saccharomyces cerevisiae, but ZAT1 complemented this phenotype in a Delta SpZRC1 mutant strain of Schizosaccharomyces pombe.

  14. Effects of Al2O3 and CaO/SiO2 Ratio on Phase Equilbria in the ZnO-"FeO"-Al2O3-CaO-SiO2 System in Equilibrium with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2011-02-01

    The phase equilibria and liquidus temperatures in the ZnO-"FeO"-Al2O3-CaO-SiO2 system in equilibrium with metallic iron have been determined experimentally in the temperature range 1383 K to 1573 K (1150 °C to 1300 °C). The experimental conditions were selected to characterize lead blast furnace and imperial smelting furnace slags. The results are presented in a form of pseudoternary sections ZnO-"FeO"-(Al2O3 + CaO + SiO2) with fixed CaO/SiO2 and (CaO + SiO2)/Al2O3 ratios. It was found that wustite and spinel are the major primary phases in the composition range investigated. Effects of Al2O3 concentration as well as the CaO/SiO2 ratio on the primary phase field, the liquidus temperature, and the partitioning of ZnO between liquid and solid phases have been discussed for zinc-containing slags.

  15. Plasma treatment of p-GaN/n-ZnO nanorod light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Leung, Yu Hang; Ng, Alan M. C.; Djurišic, Aleksandra B.; Chan, Wai Kin; Fong, Patrick W. K.; Lui, Hsien Fai; Surya, Charles

    2014-03-01

    Zinc oxide (ZnO) is a material of great interest for short-wavelength optoelectronic applications due to its wide band gap (3.37 eV) and high exciton binding energy (60 meV). Due to the difficulty in stable p-type doping of ZnO, other p-type materials such as gallium nitride (GaN) have been used to form heterojunctions with ZnO. p-GaN/n-ZnO heterojunction devices, in particular light-emitting diodes (LED) have been extensively studied. There was a huge variety of electronic properties and emission colors on the reported devices. It is due to the different energy alignment at the interface caused by different properties of the GaN layer and ZnO counterpart in the junction. Attempts have been made on modifying the heterojunction by various methods, such as introducing a dielectric interlayer and post-growth surface treatment, and changing the growth methods of ZnO. In this study, heterojunction LED devices with p-GaN and ZnO nanorods array are demonstrated. The ZnO nanorods were grown by a solution method. The ZnO nanorods were exposed to different kinds of plasma treatments (such as nitrogen and oxygen) after the growth. It was found that the treatment could cause significant change on the optical properties of the ZnO nanorods, as well as the electronic properties and light emissions of the resultant LED devices.

  16. Highly textured and transparent RF sputtered Eu2O3 doped ZnO films

    PubMed Central

    Sreedharan, Remadevi Sreeja; Ganesan, Vedachalaiyer; Sudarsanakumar, Chellappan Pillai; Bhavsar, Kaushalkumar; Prabhu, Radhakrishna; Mahadevan Pillai, Vellara Pappukutty Pillai

    2015-01-01

    Background Zinc oxide (ZnO) is a wide, direct band gap II-VI oxide semiconductor. ZnO has large exciton binding energy at room temperature, and it is a good host material for obtaining visible and infrared emission of various rare-earth ions. Methods Europium oxide (Eu2O3) doped ZnO films are prepared on quartz substrate using radio frequency (RF) magnetron sputtering with doping concentrations 0, 0.5, 1, 3 and 5 wt%. The films are annealed in air at a temperature of 773 K for 2 hours. The annealed films are characterized using X-ray diffraction (XRD), micro-Raman spectroscopy, atomic force microscopy, ultraviolet (UV)-visible spectroscopy and photoluminescence (PL) spectroscopy. Results XRD patterns show that the films are highly c-axis oriented exhibiting hexagonalwurtzite structure of ZnO. Particle size calculations using Debye-Scherrer formula show that average crystalline size is in the range 15–22 nm showing the nanostructured nature of the films. The observation of low- and high-frequency E2 modes in the Raman spectra supports the hexagonal wurtzite structure of ZnO in the films. The surface morphology of the Eu2O3 doped films presents dense distribution of grains. The films show good transparency in the visible region. The band gaps of the films are evaluated using Tauc plot model. Optical constants such as refractive index, dielectric constant, loss factor, and so on are calculated using the transmittance data. The PL spectra show both UV and visible emissions. Conclusion Highly textured, transparent, luminescent Eu2O3 doped ZnO films have been synthesized using RF magnetron sputtering. The good optical and structural properties and intense luminescence in the ultraviolet and visible regions from the films suggest their suitability for optoelectronic applications. PMID:25765728

  17. Graphene oxide-zinc oxide nanocomposite as channel layer for field effect transistors: effect of ZnO loading on field effect transport.

    PubMed

    Jilani, S Mahaboob; Banerji, Pallab

    2014-10-08

    The effects of ZnO on graphene oxide (GO)-ZnO nanocomposites are investigated to tune the conductivity in GO under field effect regime. Zinc oxides with different concentrations from 5 wt % to 25 wt % are used in a GO matrix to increase the conductivity in the composite. Six sets of field effect transistors with pristine GO and GO-ZnO as the channel layer at varying ZnO concentrations were fabricated. From the transfer characteristics, it is observed that GO exhibited an insulating behavior and the transistors with low ZnO (5 wt %) concentration initially showed p-type conductivity that changes to n-type with increases in ZnO loading. This n-type dominance in conductivity is a consequence of the transfer of electrons from ZnO to the GO matrix. From X-ray photoelectron spectroscopic measurements, it is observed that the progressive reduction in the C-OH oxygen group took place with increases in ZnO loading. Thus, from insulating GO to p- and then n-type, conductivity in GO could be achieved with reduction in the C-OH oxygen group by photocatalytic reduction of GO with varying degrees of ZnO. The restoration of sp(2) electron network in the GO matrix with the anchoring of ZnO nanostructures was observed from Raman spectra. From UV-visible spectra, the band gap in pristine GO was found to be 3.98 eV and reduced to 2.8 eV with increase in ZnO attachment.

  18. Fabrication of Single Crystal Gallium Phosphide Thin Films on Glass

    DOE PAGES

    Emmer, Hal; Chen, Christopher T.; Saive, Rebecca; ...

    2017-07-05

    Due to its high refractive index and low absorption coefficient, gallium phosphide is an ideal material for photonic structures targeted at the visible wavelengths. However, these properties are only realized with high quality epitaxial growth, which limits substrate choice and thus possible photonic applications. In this work, we report the fabrication of single crystal gallium phosphide thin films on transparent glass substrates via transfer bonding. GaP thin films on Si (001) and (112) grown by MOCVD are bonded to glass, and then the growth substrate is removed with a XeF 2 vapor etch. The resulting GaP films have surface roughnessesmore » below 1 nm RMS and exhibit room temperature band edge photoluminescence. Magnesium doping yielded p-type films with a carrier density of 1.6 × 10 17 cm -3 that exhibited mobilities as high as 16 cm 2V -1s -1. Therefore, due to their unique optical properties, these films hold much promise for use in advanced optical devices.« less

  19. Fabrication of Single Crystal Gallium Phosphide Thin Films on Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emmer, Hal; Chen, Christopher T.; Saive, Rebecca

    Due to its high refractive index and low absorption coefficient, gallium phosphide is an ideal material for photonic structures targeted at the visible wavelengths. However, these properties are only realized with high quality epitaxial growth, which limits substrate choice and thus possible photonic applications. In this work, we report the fabrication of single crystal gallium phosphide thin films on transparent glass substrates via transfer bonding. GaP thin films on Si (001) and (112) grown by MOCVD are bonded to glass, and then the growth substrate is removed with a XeF 2 vapor etch. The resulting GaP films have surface roughnessesmore » below 1 nm RMS and exhibit room temperature band edge photoluminescence. Magnesium doping yielded p-type films with a carrier density of 1.6 × 10 17 cm -3 that exhibited mobilities as high as 16 cm 2V -1s -1. Therefore, due to their unique optical properties, these films hold much promise for use in advanced optical devices.« less

  20. Assembly of phosphide nanocrystals into porous networks: formation of InP gels and aerogels.

    PubMed

    Hitihami-Mudiyanselage, Asha; Senevirathne, Keerthi; Brock, Stephanie L

    2013-02-26

    The applicability of sol-gel nanoparticle assembly routes, previously employed for metal chalcogenides, to phosphides is reported for the case of InP. Two different sizes (3.5 and 6.0 nm) of InP nanoparticles were synthesized by solution-phase arrested precipitation, capped with thiolate ligands, and oxidized with H₂O₂ or O₂/light to induce gel formation. The gels were aged, solvent-exchanged, and then supercritically dried to obtain aerogels with both meso- (2-50 nm) and macropores (>50 nm) and accessible surface areas of ∼200 m²/g. Aerogels showed higher band gap values relative to precursor nanoparticles, suggesting that during the process of assembling nanoparticles into 3D architectures, particle size reduction may have taken place. In contrast to metal chalcogenide gelation, InP gels did not form using tetranitromethane, a non-oxygen-transferring oxidant. The requirement of an oxygen-transferring oxidant, combined with X-ray photoelectron spectroscopy data showing oxidized phosphorus, suggests gelation is occurring due to condensation of phosphorus oxoanionic moieties generated at the interfaces. The ability to link discrete InP nanoparticles into a 3D porous network while maintaining quantum confinement is expected to facilitate exploitation of nanostructured InP in solid-state devices.

  1. Evaluation of Serum Levels of Zinc, Copper, Iron, and Zinc/Copper Ratio in Cutaneous Leishmaniasis

    PubMed Central

    Pourfallah, F; Javadian, S; Zamani, Z; Saghiri, R; Sadeghi, S; Zarea, B; Faiaz, Sh; Mirkhani, F; Fatemi, N

    2009-01-01

    Background: The purpose of this study was to evaluate the levels of zinc (Zn), copper (Cu), iron (Fe) and zinc/ copper ratio in the serum of patients with cutaneous leishmaniasis in Qom Province, center of Iran. Methods: Serum levels of zinc and copper were determined by flame atomic absorption spectrophotometer and serum iron concentration was measured by using an Auto Analyzer. The study group consisted of 60 patients with cutaneous leishmaniasis and the control group of 100 healthy volunteers from the same area who were not exposed to cutaneous leishmaniasis. Result: There were no statistically significant differences in age and body mass index between the two groups. Serum Zn (P< 0.001) and Fe (P< 0.05) levels were lower in patients with cutaneous leishmaniasis than the control group. We also found serum Cu concentration (P< 0.05) in the patient group was significantly higher than that of the control group. However, zinc/ copper ratio (P< 0.001) was lower in patients with cutaneous leishmaniasis than in the control group. Conclusion: Our data indicated that Zn/Cu ratio was significantly lower in patients with CL as compared to the controls. Earlier reports suggest that, this ratio imbalance could be a useful marker for immune dysfunction in leishmaniasis. There was also strong association of Zn, Cu and Fe with CL. It suggests the use of blood zinc, copper, iron concentration and the copper/zinc ratio (Zn/Cu), as a means for estimating the prognosis of CL. PMID:22808376

  2. Stable p-i-n FAPbBr 3 devices with improved efficiency using sputtered ZnO as electron transport layer [Stable p-i-n FAPbBr 3 devices with improved efficiency using sputtered inorganic electron transport layer

    DOE PAGES

    Subbiah, Anand S.; Agarwal, Sumanshu; Mahuli, Neha; ...

    2017-02-10

    Here, radio-frequency magnetron sputtering is demonstrated as an effective tool to deposit highly crystalline thin zinc oxide (ZnO) layer directly on perovskite absorber as an electron transport layer (ETL). As an absorber, formamidinium lead tribromide (FAPbBr 3) is fabricated through a modified single-step solution process using hydrogen bromide (HBr) as an additive resulting in complete surface coverage and highly crystalline material. A planar p-i-n device architecture with spin-coated poly-(3,4-ethylenedioxythiophene):poly-styrenesulfonic acid (PEDOT:PSS) as hole transport material (HTM) and sputtered ZnO as ETL results in a short circuit current density of 9.5 mA cm -2 and an open circuit potential of 1.19more » V. Numerical simulations are performed to validate the underlying loss mechanisms. The use of phenyl C 60 butyric acid methyl ester (PCBM) interface layer between FAPbBr 3 and sputter-coated ZnO offers shielding from potential plasma-related interface damage. The modified interface results in a better device efficiency of 8.3% with an open circuit potential of 1.35 V. Such devices offer better stability under continuous illumination under ambient conditions in comparison with the conventional organic ETL (PCBM)-based devices.« less

  3. Stable p-i-n FAPbBr 3 devices with improved efficiency using sputtered ZnO as electron transport layer [Stable p-i-n FAPbBr 3 devices with improved efficiency using sputtered inorganic electron transport layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subbiah, Anand S.; Agarwal, Sumanshu; Mahuli, Neha

    Here, radio-frequency magnetron sputtering is demonstrated as an effective tool to deposit highly crystalline thin zinc oxide (ZnO) layer directly on perovskite absorber as an electron transport layer (ETL). As an absorber, formamidinium lead tribromide (FAPbBr 3) is fabricated through a modified single-step solution process using hydrogen bromide (HBr) as an additive resulting in complete surface coverage and highly crystalline material. A planar p-i-n device architecture with spin-coated poly-(3,4-ethylenedioxythiophene):poly-styrenesulfonic acid (PEDOT:PSS) as hole transport material (HTM) and sputtered ZnO as ETL results in a short circuit current density of 9.5 mA cm -2 and an open circuit potential of 1.19more » V. Numerical simulations are performed to validate the underlying loss mechanisms. The use of phenyl C 60 butyric acid methyl ester (PCBM) interface layer between FAPbBr 3 and sputter-coated ZnO offers shielding from potential plasma-related interface damage. The modified interface results in a better device efficiency of 8.3% with an open circuit potential of 1.35 V. Such devices offer better stability under continuous illumination under ambient conditions in comparison with the conventional organic ETL (PCBM)-based devices.« less

  4. Particulate nanocomposite from oyster (Crassostrea rivularis) hydrolysates via zinc chelation improves zinc solubility and peptide activity.

    PubMed

    Zhang, Ziran; Zhou, Feibai; Liu, Xiaoling; Zhao, Mouming

    2018-08-30

    An oyster protein hydrolysates-zinc complex (OPH-Zn) was prepared and investigated to improve zinc bioaccessibility. Zinc ions chelating with oyster protein hydrolysates (OPH) cause intramolecular and intermolecular folding and aggregation, homogeneously forming the OPH-Zn complex as nanoclusters with a Z-average at 89.28 nm (PDI: 0.16 ± 0.02). The primary sites of zinc-binding in OPH were carboxyl groups, carbonyl groups, and amino groups, and they were related to the high number of charged amino acid residues. Furthermore, formation of the OPH-Zn complex could significantly enhance zinc solubility both under specific pH conditions as well as during simulated gastrointestinal digestion, compared to the commonly used ZnSO 4 . Additionally, after digestion, either preserved or enhanced antioxidant activity of OPH was found when chelated with zinc. These results indicated that the OPH-Zn complex could be a potential functional ingredient with improved antioxidant bioactivity and zinc bioaccessibility. Copyright © 2018. Published by Elsevier Ltd.

  5. Association of reduced zinc status with poor glycemic control in individuals with type 2 diabetes mellitus.

    PubMed

    Bandeira, Verônica da Silva; Pires, Liliane Viana; Hashimoto, Leila Leiko; Alencar, Luciane Luca de; Almondes, Kaluce Gonçalves Sousa; Lottenberg, Simão Augusto; Cozzolino, Silvia Maria Franciscato

    2017-12-01

    This study evaluated the relationship between the zinc-related nutritional status and glycemic and insulinemic markers in individuals with type 2 diabetes mellitus (T2DM). A total of 82 individuals with T2DM aged between 29 and 59 years were evaluated. The concentration of zinc in the plasma, erythrocytes, and urine was determined by the flame atomic absorption spectrometry method. Dietary intake was assessed using a 3-day 24-h recall. In addition, concentrations of serum glucose, glycated hemoglobin percentage, total cholesterol and fractions, triglycerides, and serum insulin were determined. The insulin resistance index (HOMA-IR) and β-cell function (HOMA- β) were calculated. The markers of zinc status (plasma: 83.3±11.9μg/dL, erythrocytes: 30.1±4.6μg/g Hb, urine: 899.1±622.4μg Zn/24h, and dietary: 9.9±0.8mg/day) were classified in tertiles and compared to insulinemic and glycemic markers. The results showed that lower zinc concentrations in plasma and erythrocytes, as well as its high urinary excretion, were associated with higher percentages of glycated hemoglobin, reflecting a worse glycemic control in individuals with T2DM (p<0.05). Furthermore, there was a significant inverse correlation between plasma zinc levels and glycated hemoglobin percentage (r=-0.325, p=0.003), and a positive correlation between urinary zinc excretion and glycemia (r=0.269, p=0.016), glycated hemoglobin percentage (r=0.318, p=0.004) and HOMA-IR (r=0.289, p=0.009). According to our study results, conclude that T2DM individuals with reduced zinc status exhibited poor glycemic control. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Rapid and solvent-free solid-state synthesis and characterization of Zn3V2O8 nanostructures and their phenol red aqueous solution photodegradation

    NASA Astrophysics Data System (ADS)

    Mazloom, Fatemeh; Masjedi-Arani, Maryam; Salavati-Niasari, Masoud

    2017-08-01

    Zinc vanadate (Zn3V2O8) nanostructures have been successfully synthesized via simple, rapid and solvent-free solid-state method by using different complex precursors of Zn and NH4VO3 as novel starting materials. Effects of various zinc (II) Schiff base complex precursors and calcination temperatures were investigated to reach optimum condition. It was found that particle size and optical property of the as-prepared products could be greatly influenced via these parameters. The products were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, energy dispersive X-ray microanalysis (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Photoluminescence and ultraviolet-visible (UV-Vis) spectroscopy. The photocatalytic activity of zinc vanadate nano and bulk structures were compared by degradation of phenol red aqueous solution.

  7. A Zn isotope perspective on the rise of continents.

    PubMed

    Pons, M-L; Fujii, T; Rosing, M; Quitté, G; Télouk, P; Albarède, F

    2013-05-01

    Zinc isotope abundances are fairly constant in igneous rocks and shales and are left unfractionated by hydrothermal processes at pH < 5.5. For that reason, Zn isotopes in sediments can be used to trace the changing chemistry of the hydrosphere. Here, we report Zn isotope compositions in Fe oxides from banded iron formations (BIFs) and iron formations of different ages. Zinc from early Archean samples is isotopically indistinguishable from the igneous average (δ(66) Zn ~0.3‰). At 2.9-2.7 Ga, δ(66) Zn becomes isotopically light (δ(66) Zn < 0‰) and then bounces back to values >1‰ during the ~2.35 Ga Great Oxygenation Event. By 1.8 Ga, BIF δ(66) Zn has settled to the modern value of FeMn nodules and encrustations (~0.9‰). The Zn cycle is largely controlled by two different mechanisms: Zn makes strong complexes with phosphates, and phosphates in turn are strongly adsorbed by Fe hydroxides. We therefore review the evidence that the surface geochemical cycles of Zn and P are closely related. The Zn isotope record echoes Sr isotope evidence, suggesting that erosion starts with the very large continental masses appearing at ~2.7 Ga. The lack of Zn fractionation in pre-2.9 Ga BIFs is argued to reflect the paucity of permanent subaerial continental exposure and consequently the insignificant phosphate input to the oceans and the small output of biochemical sediments. We link the early decline of δ(66) Zn between 3.0 and 2.7 Ga with the low solubility of phosphate in alkaline groundwater. The development of photosynthetic activity at the surface of the newly exposed continents increased the oxygen level in the atmosphere, which in turn triggered acid drainage and stepped up P dissolution and liberation of heavy Zn into the runoff. Zinc isotopes provide a new perspective on the rise of continents, the volume of carbonates on continents, changing weathering conditions, and compositions of the ocean through time. © 2013 Blackwell Publishing Ltd.

  8. Synthesis, structure and reactivity of [Tm(Bu(t))]ZnH, a monomeric terminal zinc hydride compound in a sulfur-rich coordination environment: access to a heterobimetallic compound.

    PubMed

    Kreider-Mueller, Ava; Quinlivan, Patrick J; Rauch, Michael; Owen, Jonathan S; Parkin, Gerard

    2016-02-07

    The first terminal zinc hydride complex that features a sulfur-rich coordination environment, namely the tris(2-mercapto-1-tert-butylimidazolyl)hydroborato compound, [Tm(Bu(t))]ZnH, has been synthesized via the reaction of [Tm(Bu(t))]ZnOPh with PhSiH3. The Zn-H bond of [Tm(Bu(t))]ZnH is subject to insertion of CO2 and facile protolytic cleavage, of which the latter provides access to heterobimetallic [Tm(Bu(t))]ZnMo(CO)3Cp.

  9. Ultrasound-assisted synthesis of nano-structured Zinc(II)-based metal-organic frameworks as precursors for the synthesis of ZnO nano-structures.

    PubMed

    Bigdeli, Fahime; Ghasempour, Hosein; Azhdari Tehrani, Alireza; Morsali, Ali; Hosseini-Monfared, Hassan

    2017-07-01

    A 3D, porous Zn(II)-based metal-organic framework {[Zn 2 (oba) 2 (4-bpmn)]·(DMF) 1.5 } n (TMU-21), (4-bpmn=N,N'-Bis-pyridin-4-ylmethylene-naphtalene-1,5-diamine, H 2 oba=4,4'-oxybis(benzoic acid)) with nano-rods morphology under ultrasonic irradiation at ambient temperature and atmospheric pressure was prepared and characterized by scanning electron microscopy. Sonication time and concentration of initial reagents effects on the size and morphology of nano-structured MOFs were studied. Also {[Zn 2 (oba) 2 (4-bpmn)] (TMU-21) and {[Zn 2 (oba) 2 (4-bpmb)] (TMU-6), 4-bpmb=N,N'-(1,4-phenylene)bis(1-(pyridin-4-yl)methanimine) were easily prepared by mechanochemical synthesis. Nanostructures of Zinc(II) oxide were obtained by calcination of these compounds and their de-solvated analogue as activated MOFs, at 550°C under air atmosphere. As a result of that, different Nanostructures of Zinc(II) oxide were obtained. The ZnO nanoparticles were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and FT-IR spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Characteristics of TiO{sub 2}/ZnO bilayer film towards pH sensitivity prepared by different spin coating deposition process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Rohanieza Abdul, E-mail: rohanieza.abdrahman@gmail.com; Zulkefle, Muhammad Al Hadi, E-mail: alhadizulkefle@gmail.com; Abdullah, Wan Fazlida Hanim, E-mail: wanfaz@salam.uitm.edu.my

    In this study, titanium dioxide (TiO{sub 2}) and zinc oxide (ZnO) bilayer film for pH sensing application will be presented. TiO{sub 2}/ZnO bilayer film with different speed of spin-coating process was deposited on Indium Tin Oxide (ITO), prepared by sol-gel method. This fabricated bilayer film was used as sensing membrane for Extended Gate Field-Effect Transistor (EGFET) for pH sensing application. Experimental results indicated that the sensor is able to detect the sensitivity towards pH buffer solution. In order to obtained the result, sensitivity measurement was done by using the EGFET setup equipment with constant-current (100 µA) and constant-voltage (0.3 V)more » biasing interfacing circuit. TiO{sub 2}/ZnO bilayer film which the working electrode, act as the pH-sensitive membrane was connected to a commercial metal-oxide semiconductor FET (MOSFET). This MOSFET then was connected to the interfacing circuit. The sensitivity of the TiO2 thin film towards pH buffer solution was measured by dipping the sensing membrane in pH4, pH7 and pH10 buffer solution. These thin films were characterized by using Field Emission Scanning Electron Microscope (FESEM) to obtain the surface morphology of the composite bilayer films. In addition, I-V measurement was done in order to determine the electrical properties of the bilayer films. According to the result obtained in this experiment, bilayer film that spin at 4000 rpm, gave highest sensitivity which is 52.1 mV/pH. Relating the I-V characteristic of the thin films and sensitivity, the sensing membrane with higher conductivity gave better sensitivity.« less

  11. Flexible Memristive Devices Based on InP/ZnSe/ZnS Core-Multishell Quantum Dot Nanocomposites.

    PubMed

    Kim, Do Hyeong; Wu, Chaoxing; Park, Dong Hyun; Kim, Woo Kyum; Seo, Hae Woon; Kim, Sang Wook; Kim, Tae Whan

    2018-05-02

    The effects of the ZnS shell layer on the memory performances of flexible memristive devices based on quantum dots (QDs) with an InP/ZnSe/ZnS core-multishell structure embedded in a poly(methylmethacrylate) layer were investigated. The on/off ratios of the devices based on QDs with an InP/ZnSe core-shell structure and with an InP/ZnSe/ZnS core-multishell structure were approximately 4.2 × 10 2 and 8.5 × 10 3 , respectively, indicative of enhanced charge storage capability in the latter. After bending, the memory characteristics of the memristive devices based on QDs with the InP/ZnSe/ZnS structure were similar to those before bending. In addition, those devices maintained the same on/off ratios for retention time of 1 × 10 4 s, and the number of endurance cycles was above 1 × 10 2 . The reset voltages ranged from -2.3 to -3.1 V, and the set voltages ranged from 1.3 to 2.1 V, indicative of reliable electrical characteristics. Furthermore, the possible operating mechanisms of the devices are presented on the basis of the electron trapping and release mode.

  12. Activation like behaviour on the temperature dependence of the carrier density in In2O3-ZnO films

    NASA Astrophysics Data System (ADS)

    K, Makise; B, Shinozaki; T, Asano; K, Yano; H, Nakamura

    2012-12-01

    We study the effect of annealing in high vacuum on the transport properties for In2O3-ZnO films. We prepared indium zinc oxide films by the DC-magnetron sputtering method using an In2O3-ZnO target (89.3 wt % In2O3 and 10.7 wt % ZnO). The annealing temperature is from 373 to 773K. From the XRD analysis, we find that all as deposited films are amorphous. In addition we find that amorphous films are crystallized by annealing at a temperature above 773 K over 2 hours. The temperature dependence of resistivity ρ of all amorphous films shows metallic behaviour. On the other hand, ρ(T) of poly In2O3-ZnO films shows semi-conducting behaviour. We carry out a detailed analysis of the temperature dependence of Hall mobility. The activation energy Ed has been obtained from the slope of the carrier concentration Ne vs. the inverse temperature plot at high temperatures. We found that the Ed takes values between 0.43 and 0.19 meV. Meanwhile, temperature dependence of Ne for poly-In2O3-ZnO films did not show activation-like behaviour. This behaviour is thought to be causally related to impurity conduction band.

  13. Implication of zinc excess on soil health.

    PubMed

    Wyszkowska, Jadwiga; Boros-Lajszner, Edyta; Borowik, Agata; Baćmaga, Małgorzata; Kucharski, Jan; Tomkiel, Monika

    2016-01-01

    This study was undertaken to evaluate zinc's influence on the resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease. The experiment was conducted in a greenhouse of the University of Warmia and Mazury (UWM) in Olsztyn, Poland. Plastic pots were filled with 3 kg of sandy loam with pHKCl - 7.0 each. The experimental variables were: zinc applied to soil at six doses: 100, 300, 600, 1,200, 2,400 and 4,800 mg of Zn(2+) kg(-1) in the form of ZnCl2 (zinc chloride), and species of plant: oat (Avena sativa L.) cv. Chwat and white mustard (Sinapis alba) cv. Rota. Soil without the addition of zinc served as the control. During the growing season, soil samples were subjected to microbiological analyses on experimental days 25 and 50 to determine the abundance of organotrophic bacteria, actinomyces and fungi, and the activity of dehydrogenases, catalase and urease, which provided a basis for determining the soil resistance index (RS). The physicochemical properties of soil were determined after harvest. The results of this study indicate that excessive concentrations of zinc have an adverse impact on microbial growth and the activity of soil enzymes. The resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease decreased with an increase in the degree of soil contamination with zinc. Dehydrogenases were most sensitive and urease was least sensitive to soil contamination with zinc. Zinc also exerted an adverse influence on the physicochemical properties of soil and plant development. The growth of oat and white mustard plants was almost completely inhibited in response to the highest zinc doses of 2,400 and 4,800 mg Zn(2+) kg(-1).

  14. Structure of (Ga2O3)2(ZnO)13 and a unified description of the homologous series (Ga2O3)2(ZnO)(2n + 1).

    PubMed

    Michiue, Yuichi; Kimizuka, Noboru; Kanke, Yasushi; Mori, Takao

    2012-06-01

    The structure of (Ga(2)O(3))(2)(ZnO)(13) has been determined by a single-crystal X-ray diffraction technique. In the monoclinic structure of the space group C2/m with cell parameters a = 19.66 (4), b = 3.2487 (5), c = 27.31 (2) Å, and β = 105.9 (1)°, a unit cell is constructed by combining the halves of the unit cell of Ga(2)O(3)(ZnO)(6) and Ga(2)O(3)(ZnO)(7) in the homologous series Ga(2)O(3)(ZnO)(m). The homologous series (Ga(2)O(3))(2)(ZnO)(2n + 1) is derived and a unified description for structures in the series is presented using the (3+1)-dimensional superspace formalism. The phases are treated as compositely modulated structures consisting of two subsystems. One is constructed by metal ions and another is by O ions. In the (3 + 1)-dimensional model, displacive modulations of ions are described by the asymmetric zigzag function with large amplitudes, which was replaced by a combination of the sawtooth function in refinements. Similarities and differences between the two homologous series (Ga(2)O(3))(2)(ZnO)(2n + 1) and Ga(2)O(3)(ZnO)(m) are clarified in (3 + 1)-dimensional superspace. The validity of the (3 + 1)-dimensional model is confirmed by the refinements of (Ga(2)O(3))(2)(ZnO)(13), while a few complex phenomena in the real structure are taken into account by modifying the model.

  15. Zinc(II) complexation by some biologically relevant pH buffers.

    PubMed

    Wyrzykowski, D; Tesmar, A; Jacewicz, D; Pranczk, J; Chmurzyński, L

    2014-12-01

    The isothermal titration calorimetry (ITC) technique supported by potentiometric titration data was used to study the interaction of zinc ions with pH buffer substances, namely 2-(N-morpholino)ethanesulfonic acid (Mes), piperazine-N,N'-bis(2-ethanesulfonic acid) (Pipes), and dimethylarsenic acid (Caco). The displacement ITC titration method with nitrilotriacetic acid as a strong, competitive ligand was applied to determine conditional-independent thermodynamic parameters for the binding of Zn(II) to Mes, Pipes, and Caco. Furthermore, the relationship between the proposed coordination mode of the buffers and the binding enthalpy has been discussed. Copyright © 2014 John Wiley & Sons, Ltd.

  16. In vitro evaluation of bioactivity of SiO2-CaO-P2O5-Na2O-CaF2-ZnO glass-ceramics

    NASA Astrophysics Data System (ADS)

    Riaz, Madeeha; Zia, Rehana; Saleemi, Farhat; Bashir, Farooq; Hossain, Tousif; Kayani, Zohra

    2014-09-01

    Zinc is an essential trace element that stimulates bone formation but it is also known as an inhibitor of apatite crystal growth. In this work addition of ZnO to SiO2-CaO-P2O5-Na2O-CaF2 glass-ceramic system was made by conventional melt-quenching technique. DSC curves showed that the addition of ZnO moved the endothermic and exothermic peaks to lower temperatures. X-ray diffraction analysis did not reveal any additional phase caused by ZnO addition and showed the presence of wollastonite and hydroxyapatite crystalline phases only in all the glass-ceramic samples. As bio-implant apatite forming ability is an essential condition, the surface reactivity of the prepared glass-ceramic specimens was studied in vitro in Kokubo's simulated body fluid (SBF) [1] with ion concentration nearly equal to human blood plasma for 30 days at 37 °C under static condition. Atomic absorption spectroscopy (AAS) was used to study the changes in element concentrations in soaking solutions and XRD, FT-IR and SEM were used to elucidate surface properties of prepared glass-ceramics, which confirmed the formation of HCAp on the surface of all glass-ceramics. It was found that the addition of ZnO had a positive effect on bioactivity of glass-ceramics and made it a potential candidate for restoration of damaged bones.

  17. HvHMA2, a P1B-ATPase from Barley, Is Highly Conserved among Cereals and Functions in Zn and Cd Transport

    PubMed Central

    Mills, Rebecca F.; Peaston, Kerry A.; Runions, John; Williams, Lorraine E.

    2012-01-01

    Manipulation of crops to improve their nutritional value (biofortification) and optimisation of plants for removal of toxic metals from contaminated soils (phytoremediation) are major goals. Identification of membrane transporters with roles in zinc and cadmium transport would be useful for both aspects. The P1B-ATPases play important roles in heavy metal allocation and detoxification in Arabidopsis and it is now important to elucidate their roles in monocots. We identified nine P1B-ATPases in barley and this study focuses on the functional characterization of HvHMA2, providing evidence for its role in heavy metal transport. HvHMA2 was cloned using information from EST analysis and 5′ RACE. It possesses the conserved aspartate that is phosphorylated during the reaction cycle of P-type pumps and has motifs and key residues characteristic of P1B-ATPases, falling into the P1B-2 subclass. Homologous sequences occur in three major sub-families of the Poaceae (Gramineae). Heterologous expression in Saccharomyces cerevisiae demonstrates that HvHMA2 functions as a Zn and Cd pump. Mutagenesis studies show that proposed cation coordination sites of the P1B-2 pumps are crucial for the metal responses conferred by HvHMA2 in yeast. HvHMA2 expression suppresses the Zn-deficient phenotype of the Arabidopsis hma2hma4 mutant indicating that HvHMA2 functions as a Zn pump in planta and could play a role in root to shoot Zn transport. When expressed in Arabidopsis, HvHMA2 localises predominantly to the plasma membrane. PMID:22880063

  18. Incorporation of zinc in MOCVD growth of Ga 0.5In 0.5P

    NASA Astrophysics Data System (ADS)

    Kurtz, Sarah R.; Olson, J. M.; Kibbler, A. E.; Bertness, K. A.

    1992-11-01

    Data are presented for the Zn doping of Ga 0.5In 0.5P, showing that the hole and zinc concentrations increase almost linearly with zinc flow, and also increase with the V/III ratio and with growth rate at a fixed V/III ratio. These observations are consistent with other reports that show the incorporation of zinc to increase with V/III ratio for both GaAs and Ga 0.5In 0.5P deposition by metalorganic chemical vapor deposition (MOCVD). The growth-rate dependence of the zinc incorporation in Ga 0.5In 0.5P has not previously been reported. A model based on varying group V coverage of the step where zinc is most strongly bound is presented and compared with the data. The model predicts that the zinc incorporation increases with increasing phosphorus overpressure, but should be independent of group III overpressure in the parameter space investigated here.

  19. Fe2 PO5 -Encapsulated Reverse Energetic ZnO/Fe2 O3 Heterojunction Nanowire for Enhanced Photoelectrochemical Oxidation of Water.

    PubMed

    Qin, Dong-Dong; He, Cai-Hua; Li, Yang; Trammel, Antonio C; Gu, Jing; Chen, Jing; Yan, Yong; Shan, Duo-Liang; Wang, Qiu-Hong; Quan, Jing-Jing; Tao, Chun-Lan; Lu, Xiao-Quan

    2017-07-10

    Zinc oxide is regarded as a promising candidate for application in photoelectrochemical water oxidation due to its higher electron mobility. However, its instability under alkaline conditions limits its application in a practical setting. Herein, we demonstrate an easily achieved wet-chemical route to chemically stabilize ZnO nanowires (NWs) by protecting them with a thin layer Fe 2 O 3 shell. This shell, in which the thickness can be tuned by varying reaction times, forms an intact interface with ZnO NWs, thus protecting ZnO from corrosion in a basic solution. The reverse energetic heterojunction nanowires are subsequently activated by introducing an amorphous iron phosphate, which substantially suppressed surface recombination as a passivation layer and improved photoelectrochemical performance as a potential catalyst. Compared with pure ZnO NWs (0.4 mA cm -2 ), a maximal photocurrent of 1.0 mA cm -2 is achieved with ZnO/Fe 2 O 3 core-shell NWs and 2.3 mA cm -2 was achieved for the PH 3 -treated NWs at 1.23 V versus RHE. The PH 3 low-temperature treatment creates a dual function, passivation and catalyst layer (Fe 2 PO 5 ), examined by X-ray photoelectron spectroscopy, TEM, photoelectrochemical characterization, and impedance measurements. Such a nano-composition design offers great promise to improve the overall performance of the photoanode material. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Prenatal zinc supplementation of zinc-adequate rats adversely affects immunity in offspring.

    PubMed

    Sharkar, Mohammad T K; Jou, Ming-Yu; Hossain, Mohammad B; Lönnerdal, Bo; Stephensen, Charles B; Raqib, Rubhana

    2011-08-01

    We previously showed that zinc (Zn) supplementation of Zn-adequate dams induced immunosuppressive effects that persist in the offspring after weaning. We investigated whether the immunosuppressive effects were due to in utero exposure and/or mediated via milk using a cross-fostering design. Pregnant rats with adequate Zn nutriture were supplemented with either Zn (1.5 mg Zn in 10% sucrose) or placebo (10% sucrose) during pregnancy (3 times/wk). At postnatal d 3, 4 pups of Zn-supplemented dams (Zn-P) were exchanged with 4 of placebo-supplemented dams (P-Zn). The remaining pups continued with their biological mothers (Zn-Zn and P-P). Pups were orally immunized with dinitrophenol ovalbumin-BSA and/or cholera toxin B subunit (CTB), and serum Zn concentrations and cellular and humoral responses were assessed. Pups of Zn-supplemented dams had higher serum Zn when fostered either by placebo- or Zn-supplemented dams compared to pups of placebo-supplemented dams (P < 0.01). Postnatal Zn exposure reduced the number of Peyer's patches in both the Zn-Zn and P-Zn groups (P < 0.01). Prenatal Zn exposure suppressed CTB- (P = 0.05) and BSA-specific proliferation response of Peyer's Patch lymphocytes (P = 0.07). Prenatal Zn exposure effects on the splenocyte cytokine response were differently influenced by fostering mothers' Zn status. Antigen presenting cell (APC) activity of splenocytes was lower in the Zn-Zn group than in the P-P group (P < 0.08). In conclusion, prenatal Zn exposure increases serum Zn levels in pups and suppresses antigen-specific proliferation and antibody responses and APC function, whereas postnatal exposure may suppress the mucosal immune reservoir.

  1. Nucleoside-(5'→P) methylenebisphosphonodithioate analogues: synthesis and chemical properties.

    PubMed

    Meltzer, Diana; Nadel, Yael; Lecka, Joanna; Amir, Aviran; Sévigny, Jean; Fischer, Bilha

    2013-09-06

    Nucleoside-(5'→P) methylenebisphosphonodithioate analogues are bioisosteres of natural nucleotides. The potential therapeutic applications of these analogues are limited by their relative instability. With a view toward improving their chemical and metabolic stability as well as their affinity toward zinc ions, we developed a novel nucleotide scaffold, nucleoside-5'-tetrathiobisphosphonate. We synthesized P1-(uridine/adenosine-5')-methylenebisphosphonodithioate, 2 and 3, and P1,P2-di(uridine/adenosine-5')-methylenebisphosphonodithioate, 4 and 5. Using (1)H and (31)P NMR-monitored Zn(2+)/Mg(2+) titrations, we found that 5 coordinated Zn(2+) by both N7 nitrogen atoms and both dithiophosphonate moieties, whereas 3 coordinated Zn(2+) by an N7 nitrogen atom and Pβ. Both 3 and 5 did not coordinate Mg(2+) ions. (31)P NMR-monitored kinetic studies showed that 3 was more stable at pD 1.5 than 5, with t(1/2) of 44 versus 9 h, respectively, and at pD 11 both showed no degradation for at least 2 weeks. However, 5 was more stable than 3 under an air-oxidizing atmosphere, with t1/2 of at least 3 days versus 14 h, respectively. Analogues 3 and 5 were highly stable to NPP1,3 and NTPDase1,2,3,8 hydrolysis (0-7%). However, they were found to be poor ectonucleotidase inhibitors. Although 3 and 5 did not prove to be effective inhibitors of zinc-containing NPP1/3, which is involved in the pathology of osteoarthritis and diabetes, they may be promising zinc chelators for the treatment of other health disorders involving an excess of zinc ions.

  2. LiZIP3 is a cellular zinc transporter that mediates the tightly regulated import of zinc in Leishmania infantum parasites

    PubMed Central

    Carvalho, Sandra; da Silva, Rosa Barreira; Shawki, Ali; Castro, Helena; Lamy, Márcia; Eide, David; Costa, Vítor; Mackenzie, Bryan; Tomás, Ana M.

    2016-01-01

    Summary Cellular zinc homeostasis ensures that the intracellular concentration of this element is kept within limits that enable its participation in critical physiological processes without exerting toxic effects. We report here the identification and characterization of the first mediator of zinc homeostasis in Leishmania infantum, LiZIP3, a member of the ZIP family of divalent metal-ion transporters. The zinc transporter activity of LiZIP3 was first disclosed by its capacity to rescue the growth of Saccharomyces cerevisiae strains deficient in zinc acquisition. Subsequent expression of LiZIP3 in Xenopus laevis oocytes was shown to stimulate the uptake of a broad range of metal ions, among which Zn2+ was the preferred LiZIP3 substrate (K0.5 ≈ 0.1 μM). Evidence that LiZIP3 functions as a zinc importer in L. infantum came from the observations that the protein locates to the cell membrane and that its overexpression leads to augmented zinc internalization. Importantly, expression and cell-surface location of LiZIP3 are lost when parasites face high zinc bioavailability. LiZIP3 decline in response to zinc is regulated at the mRNA level in a process involving (a) short-lived protein(s). Collectively, our data reveal that LiZIP3 enables L. infantum to acquire zinc in a highly regulated manner, hence contributing to zinc homeostasis. PMID:25644708

  3. Gallium phosphide energy converters

    NASA Technical Reports Server (NTRS)

    Sims, P. E.; DiNetta, Louis C.; DuganCavanagh, K.; Goetz, M. A.

    1996-01-01

    Betavoltaic power supplies based on gallium phosphide can supply long term low-level power with high reliability. Results are presented for GaP devices powered by Ni-63 and tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/cm(exp 2) have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. A small demonstration system has been assembled that generates and stores enough electricity to light up an LED.

  4. Effect of biomimetic zinc-containing tricalcium phosphate (Zn-TCP) on the growth and osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Chou, Joshua; Hao, Jia; Hatoyama, Hirokazu; Ben-Nissan, Besim; Milthorpe, Bruce; Otsuka, Makoto

    2015-07-01

    Several studies have shown the effectiveness of zinc-tricalcium phosphate (Zn-TCP) for bone tissue engineering. In this study, marine calcareous foraminifera possessing uniform pore size distribution were hydrothermally converted to Zn-TCP. The ability of a scaffold to combine effectively with mesenchymal stem cells (MSCs) is a key tissue-engineering aim. In order to demonstrate the osteogenic ability of MSCs with Zn-TCP, the scaffolds were cultured in an osteogenic induction medium to elicit an osteoblastic response. The physicochemical properties of Zn-TCP were characterized by XRD, FT-IR and ICP-MS. MSCs were aspirated from rat femurs and cultured for 3 days before indirectly placing four samples into each respective well. After culture for 7, 10 and 14 days, osteoblastic differentiation was evaluated using alizarin red S stain, measurement of alkaline phosphatase (ALP) levels, cell numbers and cell viability. XRD and FT-IR patterns both showed the replacement of CO(3)(2-) with PO(4)(3-). Chemical analysis showed zinc incorporation of 5 mol%. Significant increases in cell numbers were observed at 10 and 14 days in the Zn-TCP group, while maintaining high levels of cell viability (> 90%). ALP activity in the Zn-TCP group was statistically higher at 10 days. Alizarin red S staining also showed significantly higher levels of calcium mineralization in Zn-TCP compared with the control groups. This study showed that MSCs in the presence of biomimetically derived Zn-TCP can accelerate their differentiation to osteoblasts and could potentially be useful as a scaffold for bone tissue engineering. Copyright © 2014 John Wiley & Sons, Ltd.

  5. First PET Imaging Studies With 63Zn-Zinc Citrate in Healthy Human Participants and Patients With Alzheimer Disease.

    PubMed

    DeGrado, Timothy R; Kemp, Bradley J; Pandey, Mukesh K; Jiang, Huailei; Gunderson, Tina M; Linscheid, Logan R; Woodwick, Allison R; McConnell, Daniel M; Fletcher, Joel G; Johnson, Geoffrey B; Petersen, Ronald C; Knopman, David S; Lowe, Val J

    2016-01-01

    Abnormalities in zinc homeostasis are indicated in many human diseases, including Alzheimer disease (AD). 63 Zn-zinc citrate was developed as a positron emission tomography (PET) imaging probe of zinc transport and used in a first-in-human study in 6 healthy elderly individuals and 6 patients with clinically confirmed AD. Dynamic PET imaging of the brain was performed for 30 minutes following intravenous administration of 63 Zn-zinc citrate (∼330 MBq). Subsequently, body PET images were acquired. Urine and venous blood were analyzed to give information on urinary excretion and pharmacokinetics. Regional cerebral 63 Zn clearances were compared with 11 C-Pittsburgh Compound B ( 11 C-PiB) and 18 F-fluorodeoxyglucose ( 18 F-FDG) imaging data. 63 Zn-zinc citrate was well tolerated in human participants with no adverse events monitored. Tissues of highest uptake were liver, pancreas, and kidney, with moderate uptake being seen in intestines, prostate (in males), thyroid, spleen, stomach, pituitary, and salivary glands. Moderate brain uptake was observed, and regional dependencies were observed in 63 Zn clearance kinetics in relationship with regions of high amyloid-β plaque burden ( 11 C-PiB) and 18 F-FDG hypometabolism. In conclusion, zinc transport was successfully imaged in human participants using the PET probe 63 Zn-zinc citrate. Primary sites of uptake in the digestive system accent the role of zinc in gastrointestinal function. Preliminary information on zinc kinetics in patients with AD evidenced regional differences in clearance rates in correspondence with regional amyloid-β pathology, warranting further imaging studies of zinc homeostasis in patients with AD. © The Author(s) 2016.

  6. First PET Imaging Studies With 63 Zn-Zinc Citrate in Healthy Human Participants and Patients With Alzheimer Disease

    DOE PAGES

    DeGrado, Timothy R.; Kemp, Bradley J.; Pandey, Mukesh K.; ...

    2016-01-01

    Abnormalities in zinc homeostasis are indicated in many human diseases, including Alzheimer disease (AD). 63Zn-zinc citrate was developed as a positron emission tomography (PET) imaging probe of zinc transport and used in a first-in-human study in 6 healthy elderly individuals and 6 patients with clinically confirmed AD. A dynamic PET imaging of the brain was performed for 30 minutes following intravenous administration of 63Zn-zinc citrate (~330 MBq). Subsequently, body PET images were acquired. Urine and venous blood were analyzed to give information on urinary excretion and pharmacokinetics. Regional cerebral 63Zn clearances were compared with 11C-Pittsburgh Compound B ( 11C-PiB) andmore » 18F-fluorodeoxyglucose ( 18F-FDG) imaging data. 63Zn-zinc citrate was well tolerated in human participants with no adverse events monitored. Tissues of highest uptake were liver, pancreas, and kidney, with moderate uptake being seen in intestines, prostate (in males), thyroid, spleen, stomach, pituitary, and salivary glands. Moderate brain uptake was observed, and regional dependencies were observed in 63Zn clearance kinetics in relationship with regions of high amyloid-β plaque burden ( 11C-PiB) and 18F-FDG hypometabolism. In conclusion, zinc transport was successfully imaged in human participants using the PET probe 63Zn-zinc citrate. Primary sites of uptake in the digestive system accent the role of zinc in gastrointestinal function. Preliminary information on zinc kinetics in patients with AD evidenced regional differences in clearance rates in correspondence with regional amyloid-β pathology, warranting further imaging studies of zinc homeostasis in patients with AD.« less

  7. Zincobotryogen, ZnFe3+(SO4)2(OH)ṡ7H2O: validation as a mineral species and new data

    NASA Astrophysics Data System (ADS)

    Yang, Zhuming; Giester, Gerald; Mao, Qian; Ma, Yuguang; Zhang, Di; Li, He

    2017-06-01

    Zincobotryogen occurs in the oxidation zone of the Xitieshan lead-zinc deposit, Qinghai, China. The mineral is associated with jarosite, copiapite, zincocopiapite, and quartz. The mineral forms prismatic crystals, 0.05 to 2 mm in size. It is optically positive (2Vcalc = 54.1°), with Z ‖ b and X ∧ c = 10°. The elongation is negative. The refractive indices are n α = 1.542(5), n β = 1.551(5), n γ = 1.587(5). The pleochroism scheme is X = colorless, Y = light yellow, Z = yellow. Microprobe analysis gave (in wt%): SO3 = 38.04, Al2O3 = 0.04, Fe2O3 = 18.46, ZnO = 13.75, MgO = 1.52, MnO = 1.23, H2O = 31.06 (by calculation), Total = 104.10. The simplified formula is (Zn,Mg)Fe3+(SO4)2(OH)ṡ7H2O. The mineral is monoclinic, P121/ n1, a = 10.504(2), b = 17.801(4), c = 7.1263(14) Å, and β = 100.08(3)°, V = 1311.9(5) Å3, Z = 4. The strongest lines in the powder X-ray diffraction pattern d(I)( hkl) are: 8.92 (100)(110), 6.32 (77)(-101), 5.56 (23)(021), 4.08 (22)(-221),3.21 (31)(231), 3.03 (34)(032), 2.77 (22)(042). The crystal structure was refined using 2816 unique reflections to R1( F) = 0.0355 and wR2( F 2) = 0.0651. The refined formula is (Zn0.84Mg0.16)Fe3+(SO4)2(OH)ṡ7H2O. The atomic arrangement is characterized by chains with composition [Fe3+(SO4)2(OH)(H2O)]2- and 7 Å repeat distance running parallel to the c-axis. The chain links to a [ MO(H2O)5] octahedron ( M = Zn, Mg) and an unshared H2O molecule, and forms a larger chain building module with composition [ M 2+Fe3+(SO4)2(OH)(H2O)6(H2O)]. The inter-chain module linkage involves only hydrogen bonding.

  8. Supramolecular complex of a fused zinc phthalocyanine-zinc porphyrin dyad assembled by two imidazole-C60 units: ultrafast photoevents.

    PubMed

    Follana-Berná, Jorge; Seetharaman, Sairaman; Martín-Gomis, Luis; Charalambidis, Georgios; Trapali, Adelais; Karr, Paul A; Coutsolelos, Athanassios G; Fernández-Lázaro, Fernando; D'Souza, Francis; Sastre-Santos, Ángela

    2018-03-14

    A new zinc phthalocyanine-zinc porphyrin dyad (ZnPc-ZnP) fused through a pyrazine ring has been synthesized as a receptor for imidazole-substituted C 60 (C 60 Im) electron acceptor. Self-assembly via metal-ligand axial coordination and the pertinent association constants in solution were determined by 1 H-NMR, UV-Vis and fluorescence titration experiments at room temperature. The designed host was able to bind up to two C 60 Im electron acceptor guest molecules to yield C 60 Im:ZnPc-ZnP:ImC 60 donor-acceptor supramolecular complex. The spectral data showed that the two binding sites behave independently with binding constants similar in magnitude. Steady-state fluorescence studies were indicative of an efficient singlet-singlet energy transfer from zinc porphyrin to zinc phthalocyanine within the fused dyad. Accordingly, the transient absorption studies covering a wide timescale of femto-to-milli seconds revealed ultrafast energy transfer from 1 ZnP* to ZnPc (k EnT ∼ 10 12 s -1 ) in the fused dyad. Further, a photo induced electron transfer was observed in the supramolecularly assembled C 60 Im:ZnPc-ZnP:ImC 60 donor-acceptor complex leading to charge separated states, which persisted for about 200 ns.

  9. Native Defect Related Optical Properties of ZnGeP2

    NASA Technical Reports Server (NTRS)

    Dietz, N.; Tsveybak, I.; Ruderman, W.; Wood, G.; Bachmann, K. J.

    1994-01-01

    We present photoluminescence, photoconductivity, and optical absorption spectra for ZnGeP2 crystals grown from the melt by gradient freezing and from the vapor phase by high pressure physical vapor transport (HPVT). A model of donor and acceptor related subbands in the energy gap of ZnGeP2 is introduced that explains the experimental results. The emission with peak position at 1.2 eV is attributed to residual disorder on the cation sublattice. The lower absorption upon annealing is interpreted in terms of both the reduction of the disorder on the cation sublattice and changes in the Fermi level position. The n-type conductivity of ZnGeP2 Crystals grown under Ge-deficient conditions by the HPVT is related to the presence of additional donor states.

  10. LAMP-2 mediates oxidative stress-dependent cell death in Zn2+-treated lung epithelium cells.

    PubMed

    Qin, Xia; Zhang, Jun; Wang, Bin; Xu, Ge; Zou, Zhen

    2017-06-17

    Zinc is an essential element for the biological system. However, excessive exogenous Zn 2+ would disrupt cellular Zn 2+ homeostasis and cause toxicity. In particular, Zinc salts or ZnO nanoparticles exposure could induce respiratory injury. Although previous studies have indicated that organelle damage (including mitochondria or lysosomes) and reactive oxygen species (ROS) production are involved in Zn 2+ -induced toxicity, the interplay between mitochondria/lysosomes damage and ROS production is obscure. Herein, we demonstrated that Zn 2+ could induce deglycosylation of lysosome-associated membrane protein 1 and 2 (LAMP-1 and LAMP-2), which primarily locate in late endosomes/lysosomes, in A549 lung epithelium cells. Intriguingly, LAMP-2 knockdown further aggravated Zn 2+ -mediated ROS production and cell death, indicating LAMP-2 (not LAMP-1) was involved in Zn 2+ -induced toxicity. Our results provide a new insight that LAMP-2 contributes to the ROS clearance and cell death induced by Zn 2+ treatment, which would help us to get a better understanding of Zn 2+ -induced toxicity in respiratory system. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Tuning of the Morphology and Optoelectronic Properties of ZnO/P3HT/P3HT- b-PEO Hybrid Films via Spray Deposition Method.

    PubMed

    Wang, Kun; Bießmann, Lorenz; Schwartzkopf, Matthias; Roth, Stephan V; Müller-Buschbaum, Peter

    2018-06-20

    The self-assembly of amphiphilic diblock copolymers yields the possibility of using them as a template for tailoring the film morphologies of sol-gel chemistry-derived inorganic electron transport materials, such as mesoporous ZnO and TiO 2 . However, additional steps including etching and backfilling are required for the common bulk heterojunction fabrication process when using insulating diblock copolymers. Here, we use the conducting diblock copolymer poly(3-hexylthiophene)- block-poly(ethylene oxide) (P3HT- b-PEO) in which P3HT acts as charge carrier transport material and light absorber, whereas PEO serves as a template for ZnO synthesis. The initial solution is subsequently spray-coated to obtain the hybrid film. Scanning electron microscopy and grazing-incidence small-angle X-ray scattering measurements reveal a significant change in the morphology of the hybrid films during deposition. Optoelectronic properties illustrate the improved charge separation and charge transfer process. Both the amount of the diblock copolymer and the annealing temperature play an important role in tuning the morphology and the optoelectronic properties. Hybrid films being sprayed from a solution with the ratio of ω ZnO , ω P3HT , and ω P3HT- b-PEO of 2:1:1 and subsequent annealing at 80 °C show the most promising morphology combined with an optimal photoluminescence quenching. Thus, the presented simple, reagent- and energy-saving fabrication method provides a promising approach for a large-scale preparation of bulk heterojunction P3HT/ZnO films on flexible substrates.

  12. Dendritic Zinc Growth in Acid Electrolyte: Effect of the pH

    NASA Astrophysics Data System (ADS)

    Bengoa, Leandro N.; Pary, Paola; Seré, Pablo R.; Conconi, M. Susana; Egli, Walter A.

    2018-03-01

    In this paper, dendritic growth at the edges of electrogalvanized steel strip has been studied using a specially designed rotating washer electrode which simulates the fluid dynamic conditions and the current density distribution at the steel strip edge found in a production line. The effect of electrolyte pH and current density on dendritic growth in an acidic zinc plating bath (ZnSO4 and H2SO4) was addressed. The temperature was kept constant at 60 °C. Solution pH was adjusted to 1, 2 or 3 using different amounts of H2SO4. In addition, the influence of temperature on the pH of the solution was determined. The current density was set at 40 or 60 A/dm2, similar to that used in the industry. Deposits were characterized using SEM and XRD. The results showed that pH strongly affects dendrites shape, length and texture. Furthermore, the morphology of dendrites at the washer edge and of deposits on the flat portion of the washer changed considerably as solution pH was increased from 1 to 3. It was found that the morphology of dendrites at the washer edge stems from the morphology of the deposit on its flat portion, which in turn determines their shape.

  13. Facile synthesis and photocatalytic activity of ZnO/zinc titanate core-shell nanorod arrays

    NASA Astrophysics Data System (ADS)

    He, Ding-Chao; Fu, Qiu-Ming; Ma, Zhi-Bin; Zhao, Hong-Yang; Tu, Ya-Fang; Tian, Yu; Zhou, Di; Zheng, Guang; Lu, Hong-Bing

    2018-02-01

    ZnO/zinc titanate core-shell nanorod arrays (CSNRs) were successfully prepared via a simple synthesis process by combining hydrothermal synthesis and liquid phase deposition (LPD). The surface morphologies, crystalline characteristics, optical properties and surface electronic states of the ZnO/zinc titanate CSNRs were characterized by scanning electron microscope, transmission electron microscope, x-ray diffractometer, x-ray photoelectron spectroscopy, PL and ultraviolet (UV)-visible absorption spectra. By controlling the reaction time of LPD, the shell thickness could vary with the reaction time. Furthermore, the impacts of the reaction time and post-annealing temperature on the crystalline structure and chemical composition of the CSNRs were also investigated. The studies of photocatalytic activity under UV light irradiation revealed that the ZnO/zinc titanate CSNRs annealed at 700 °C with 30 min deposition exhibited the best photocatalytic activity and good stability for degradation of methylene blue. It had been found that the effective separation of photogenerated electron-hole pairs in the CSNRs led to the enhanced photocatalytic activity. Moreover, the ZnO/zinc titanate CSNRs grown on quartz glass substrate could be easily recycled for reuse with almost unchanged photocatalytic activity.

  14. Improved synthesis of fine zinc borate particles using seed crystals

    NASA Astrophysics Data System (ADS)

    Gürhan, Deniz; Çakal, Gaye Ö.; Eroğlu, İnci; Özkar, Saim

    2009-03-01

    Zinc borate is a flame retardant additive used in polymers, wood applications and textile products. There are different types of zinc borate having different chemical compositions and structures. In this study, the production of zinc borate having the molecular formula of 2Zn3B 2O 3·3.5H 2O was reexamined by studying the effects of reaction parameters on the properties of product as well as the reaction kinetics. Production of zinc borate from the reaction of boric acid and zinc oxide in the presence of seed crystals was performed in a continuously stirred, temperature-controlled batch reactor having a volume of 1.5 L. Samples taken in regular time intervals during the experiments were analyzed for the concentration of zinc oxide and boron oxide in the solid as well as for the conversion of zinc oxide to zinc borate versus time. The zinc borate production reaction was fit to the logistic model. The reaction rate, reaction completion time, composition and particle size distribution of zinc borate product were determined by varying the following parameters: the boric acid to zinc oxide ratio (H 3BO 3:ZnO=3:1, 3.5:1, 5:1 and 7:1), the particle size of zinc oxide (10 and 25 μm), stirring rate (275, 400, 800 and 1600 rpm), temperature (75, 85 and 95 °C) and the size of seed crystals (10 and 2 μm). The products were also analyzed for particle size distribution. The experimental results showed that the reaction rate increases with the increase in H 3BO 3:ZnO ratio, particle size of zinc oxide, stirring rate and temperature. Concomitantly, the reaction completion time is decreased by increasing the H 3BO 3:ZnO ratio, stirring rate and temperature. The average particle sizes of the zinc borate products are in the range 4.3-16.6 μm (wet dispersion analysis).

  15. Effects on external quantum efficiency of electrochemically constructed n-ZnO/p-Cu2O photovoltaic device by annealing

    NASA Astrophysics Data System (ADS)

    Khoo, Pei Loon; Kikkawa, Yuuki; Shinagawa, Tsutomu; Izaki, Masanobu

    2017-07-01

    Cuprous oxide (Cu2O), a terrestrial abundant, low cost, nontoxic, intrinsically p-type oxide semiconductor with bandgap energy of about 2eV, has recently received increasing attention as a light absorbing layer in solar cells. However, the performances of electrochemically constructed Cu2O solar devices are poor compared to the theoretical power conversion efficiency. This research was conducted focusing on the EQE performance, which is closely related to the short circuit current of a solar device. ZnO/Cu2O-PV-devices were constructed electrochemically with 3-electrode cell on Ga:ZnO/SLG substrates; ZnO layers were deposited from an aqueous solution of 8 mmolL-1 zinc nitrate hexahydrate at 63°C, 0.01 Coulomb cm-2, and -0.8V, while Cu2O layers were deposited from aqueous solution containing 0.4 molL-1 copper (II) acetate monohydrate (pH12.5), at 40°C, 1.5 Coulomb cm-2, and -0.4V. Devices were then annealed under different temperatures of 150°C, 200°C, 250°C, and 300°C for 60 minutes with a Rapid Thermal Anneal furnace (RTA). The EQE of the devices were measured with a spectral sensitivity device and compared to the non-annealed device. Further studies were made such as morphology observation of the films by FE-SEM and measurements of X-ray diffraction patterns. Annealed samples showed improved maximum EQE at 150-200°C of annealing, indicating that EQE above 90% can be achieved, proving the validity of EQE improvement via low temperature annealing method for thin film Cu2O photovoltaic devices.

  16. High UV light performance for the degradation of Rhodamine B dye by synthesized Bi2S3ZnO nanocomposite

    NASA Astrophysics Data System (ADS)

    Sangareswari, M.; Meenakshi Sundaram, M.

    2017-05-01

    Heterogeneous photocatalytic degradation of organics in water and wastewater by large band gap semiconductors has offered an attractive alternative for environmental remediation. Zinc oxide is a very fast and efficient catalyst because of its wide band gap and large exciton binding energy. In this study, an efficient Bi2S3ZnO was synthesized by sonochemical method. The obtained product was further characterized by TEM, SEM, XRD, FT-IR and UV-DRS analysis. Scanning electron microscopy images revealed that Bi2S3ZnO has flower-like structure. The synthesized flower-like Bi2S3ZnO nanocomposites were more efficient than commercial ZnO for the degradation of organic contaminants under UV light irradiation. The prepared material shows enhanced photocatalytic activity on Rhodamine B dye solution under UV light irradiation. The percentage removal of dye was calculated by UV-Vis spectrophotometer. In addition, Bi2S3ZnO showed tremendous photocatalytic stability after seven cycles under UV light irradiation. A possible mechanism for the photocatalytic oxidative degradation was also discussed. It is concluded that the Bi2S3ZnO nanocomposite acts as an excellent photocatalyst for the decomposition of RhB and it could be a potential material for essential wastewater treatment.

  17. Longitudinal changes in zinc transport kinetics, metallothionein, and zinc transporter expression in a blood-brain barrier model in response to a moderately excessive zinc environment$

    PubMed Central

    Gauthier, Nicole A.; Karki, Shakun; Olley, Bryony J.; Thomas, W. Kelly

    2008-01-01

    A blood-brain barrier (BBB) model composed of porcine brain capillary endothelial cells (BCEC) was exposed to a moderately excessive zinc environment (50 µmol Zn/L) in cell culture and longitudinal measurements were made of zinc transport kinetics, ZnT-1 (SLC30A1) expression, and changes in the protein concentration of metallothionein (MT), ZnT-1, ZnT-2 (SLC30A2), and Zip1 (SLC39A1). Zinc release by cells of the BBB model was significantly increased after 12–24 h of exposure, but decreased back to control levels after 48–96 h, as indicated by transport across the BBB from both the ablumenal (brain) and lumenal (blood) directions. Expression of ZnT-1, the zinc export protein, increased 169% within 12 h, but was no longer different from controls after 24 h. Likewise, ZnT-1 protein content increased transiently after 12 h of exposure but returned to control levels by 24 h. Capacity for zinc uptake and retention increased from both the lumenal and ablumenal directions within 12–24 h of exposure and remained elevated. MT and ZnT-2 were elevated within 12 h and remained elevated throughout the study. Zip1 was unchanged by the treatment. The BBB’s response to a moderately high zinc environment was dynamic and involved multiple mechanisms. The initial response was to increase the cell’s capacity to sequester zinc with additional MT and increase zinc export with the ZnT-1 protein. But, the longer term strategy involved increasing ZnT-2 transporters, presumably to sequester zinc into intracellular vesicles as a mechanism to protect the brain and maintain brain zinc homeostasis. PMID:18061429

  18. Control of ZnO Nanorod Defects to Enhance Carrier Transportation in p-Cu₂O/i-ZnO Nanorods/n-IGZO Heterojunction.

    PubMed

    Ke, Nguyen Huu; Trinh, Le Thi Tuyet; Mung, Nguyen Thi; Loan, Phan Thi Kieu; Tuan, Dao Anh; Truong, Nguyen Huu; Tran, Cao Vinh; Hung, Le Vu Tuan

    2017-01-01

    The p-Cu₂O/i-ZnO nanorods/n-IGZO heterojunctions were fabricated by electrochemical and sputtering method. ZnO nanorods were grown on conductive indium gallium zinc oxide (IGZO) thin film and then p-Cu₂O layer was deposited on ZnO nanorods to form the heterojunction. ZnO nanorods play an important role in carrier transport mechanisms and performance of the junction. The changing of defects in ZnO nanorods by annealing samples in air and vacuum have studied. The XRD, photoluminescence (PL) spectroscopy, and FTIR were used to study about structure, and defects in ZnO nanorods. The SEM, i–V characteristics methods were also used to define structure, electrical properties of the heterojunctions layers. The results show that the defects in ZnO nanorods affected remarkably on performance of heterojunctions of solar cells.

  19. Synthesis and characterization of two new zinc(II) coordination polymers with bidentate flexible ligands: Formation of a 2D structure with (44.62)-sql topology

    NASA Astrophysics Data System (ADS)

    Lalegani, Arash; Khaledi Sardashti, Mohammad; Gajda, Roman; Woźniak, Krzysztof

    2017-12-01

    Zinc(II) coordination polymers [Zn(bip)2(NCS)2]n (1) and [Zn(μ-bbd)(N3)2]n (2) were synthesized by using the neutral flexible bidentate N-donor ligands 1,4-bis(3,5-dimethylpyrazolyl)butane (bbd) and 1,3-bis(imidazolyl)propane (bip), mono-anionic NCS- or N3-ligand and zinc(II) chloride salts. The results of the X-ray analyses demonstrate that in the structure of 1, the zinc(II) ion is located on an inversion center and exhibits an ZnN6 octahedral arrangement while, in the structure of 2, the zinc(II) ion adopts an ZnN4 tetrahedral geometry. In the polymer 1, the NCS groups are terminally N-bonded to the metal center and the each bip with anti-gauche conformation acts as bridging connecting four zinc(II) ions to form a two-dimensional network with a sql [point symbol (44.62)] topology while, in the polymer 1, the N3 groups are terminally bonded to the metal center and each bbd with anti-anti-anti conformation acts as bridging ligand connecting two zinc(II) ions to form a one-dimensional zig-zag chain. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction. Thermal analyses of polymers were also presented.

  20. Influence of phosphate and solution pH on the mobility of ZnO nanoparticles in saturated sand.

    PubMed

    Li, Lingxiangyu; Schuster, Michael

    2014-02-15

    The mobility of nanoparticles (NPs) strongly depends on the chemical characterization of the environmental medium. However, the influence of phosphate on NPs mobility was ignored by scientists despite the serious phosphate contamination in natural environments. Hence, the influence of phosphate and solution pH on the mobility of zinc oxide nanoparticles (ZnO-NPs) was investigated in water-saturated sand representative of groundwater aquifers, which encompassed a range of P/Zn molar ratios (P/Zn: 0-4) and pH (4.8-10.0). The transport of ZnO-NPs was dramatically enhanced in the presence of phosphate, even at a low P/Zn molar ratio namely 0.25, and the retention of ZnO-NPs in the saturated sand decreased with increasing P/Zn molar ratio. Moreover, attachment efficiencies (α) and deposition rates (kd) of ZnO-NPs rapidly decreased with increasing P/Zn molar ratio. In contrast, the solution pH had negligible effects on ZnO-NP transport behavior under phosphate-abundant condition (P/Zn: 4). The distinct effects may be explained by the energy interaction between ZnO-NPs and sand surface under different conditions. Interestingly, under phosphate-abundant condition (P/Zn: 4), solution pH could strongly affect the transport of Zn(2+) in the water-saturated sand. Overall, this study outlines the importance of taking account of phosphate into risk assessment of NPs in the environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Modified g-C3N4/TiO2 nanosheets/ZnO ternary facet coupled heterojunction for photocatalytic degradation of p-toluenesulfonic acid (p-TSA) under visible light

    NASA Astrophysics Data System (ADS)

    Jiang, Dong; Yu, Han; Yu, Hongbing

    2017-01-01

    Novel ternary nanocomposites with facet coupled structure were synthesized by using modified g-C3N4, TiO2 nanosheets and nano-ZnO. Nanosheet/nanosheet heterojunction structure was investigated by TEM, XPS and XRD. FT-IR and Nitrogen adsorption were illustrated for chemical/physical structure analyses. Solution of p-Toluenesulfonic acid (p-TSA) was chosen as target pollutant for visible light photodegradation and the excellent removal efficiency was achieved by this structurally modified g-C3N4/TiO2/ZnO hybrid. The visible light absorption improvement and quantum efficiency enhancement, which were testified by UV-vis DRS, PL and p-TSA photodegradation measurements, due to the facet coupled structure and appropriate quantity of modified g-C3N4 in the nanocomposites.

  2. Effects of Zinc Supplementation on DNA Damage in Rats with Experimental Kidney Deficiency.

    PubMed

    Yegin, Sevim Çiftçi; Dede, Semiha; Mis, Leyla; Yur, Fatmagül

    2017-04-01

    This study was carried out to determine the effect of zinc on oxidative DNA damage in rats with experimental acute and chronic kidney deficiency. Six groups of five Wistar-Albino rats each were assigned as controls (C), acute kidney deficiency (AKD), zinc-supplemented (+Zn), acute kidney deficiency, zinc-supplemented (AKD + Zn), chronic kidney deficiency (CKD) and zinc-supplemented chronic kidney deficiency (CKD + Zn). The levels of 8-Oxo-2'-deoxyguanosine (8-OHdG) were determined, being the lowest in the CKD group (p < 0.05), higher in the C group than those of rats with CKD but lower than that of all the other groups (p < 0.05). There were no significant differences between the controls and the CKD + Zn group, or between the AKD and the +Zn groups. Among all groups, the highest 8-OHdG level was found in the AKD + Zn group (p < 0.05). DNA damage was greater in acute renal failure than in rats with chronic renal failure. The DNA damage in the zinc group was significantly higher than in the controls.

  3. Deoxygenation of Palmitic Acid on Unsupported Transition-Metal Phosphides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peroni, Marco; Lee, Insu; Huang, Xiaoyang

    Abstract Highly active bulk transition metal phosphides (WP, MoP, and Ni2P) were synthesized for the catalytic hydrodeoxygenation of palmitic acid, hexadecanol, hexadecanal, and microalgae oil. The specific activities positively correlated with the concentration of exposed metal sites, although the relative rates changed with temperature due to activation energies varying from 57 kJ·mol-1 for MoP to 142 kJ·mol-1 for WP. The reduction of the fatty acid to the aldehyde occurs through a Langmuir-Hinshelwood mechanism, where the rate-determining step is the addition of the second H to the hydrocarbon. On WP, the conversion of palmitic acid proceeds via R-CH2COOH R-CH2CHO R-CH2CH2OH R-CHCH2more » R-CH2CH3 (hydrodeoxygenation). Decarbonylation of the intermittently formed aldehyde (R-CH2COOH R-CH2CHO R-CH3) was an important pathway on MoP and Ni2P. Conversion via dehydration to a ketene, followed by its decarbonylation occurred only on Ni2P. The rates of alcohol dehydration (R-CH2CH2OH R-CHCH2) correlate with the concentration of Lewis acid sites of the phosphides. Acknowledgements The authors would like to thank Roel Prins for the critical discussion of the results. We are also grateful to Xaver Hecht for technical support. Funding by the German Federal Ministry of Food and Agriculture in the framework of the Advanced Biomass Value project (03SF0446A) is gratefully acknowledged. J.A.L. acknowledges support for his contribution by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences for exploring non-oxidic supports for deoxygenation reactions.« less

  4. Characterization of Zinc Oxide (ZnO) piezoelectric properties for Surface Acoustic Wave (SAW) device

    NASA Astrophysics Data System (ADS)

    Rosydi Zakaria, Mohd; Johari, Shazlina; Hafiz Ismail, Mohd; Hashim, Uda

    2017-11-01

    In fabricating Surface Acoustic Wave (SAW) biosensors device, the substrate is one of important factors that affected to performance device. there are many types of piezoelectric substrate in the markets and the cheapest is zinc Oxide substrate. Zinc Oxide (ZnO) with its unique properties can be used as piezoelectric substrate along with SAW devices for detection of DNA in this research. In this project, ZnO thin film is deposited onto silicon oxide substrate using electron beam evaporation (E-beam) and Sol-Gel technique. Different material structure is used to compare the roughness and best piezoelectric substrate of ZnO thin film. Two different structures of ZnO target which are pellet and granular are used for e-beam deposition and one sol-gel liquid were synthesize and compared. Parameter for thickness of ZnO e-beam deposition is fixed to a 0.1kÅ for both materials structure and sol-gel was coat using spin coat technique. After the process is done, samples are annealed at temperature of 500°C for 2 hours. The structural properties of effect of post annealing using different material structure of ZnO are studied using Atomic Force Microscopic (AFM) for surface morphology and X-ray Diffraction (XRD) for phase structure.

  5. Controlled synthesis of Eu 2+ and Eu 3+ doped ZnS quantum dots and their photovoltaic and magnetic properties

    DOE PAGES

    Horoz, Sabit; Yakami, Baichhabi; Poudyal, Uma; ...

    2016-04-27

    Eu-doped ZnS quantum dots (QDs) have been synthesized by wet-chemical method and found to form in zinc blende (cubic) structure. Both Eu 2+ and Eu 3+ doped ZnS can be controllably synthesized. The Eu 2+ doped ZnS QDs show broad photoluminescence emission peak around 512 nm, which is from the Eu2+ intra-ion transition of 4f 6d1 – 4f 7, while the Eu 3+ doped samples exhibit narrow emission lines characteristic of transitions between the 4f levels. The investigation of the magnetic properties shows that the Eu 3+ doped samples exhibit signs of ferromagnetism, on the other hand, Eu 2+ dopedmore » samples are paramagnetic of Curie-Weiss type. The incident photon to electron conversion efficiency is increased with the Eu doping, which suggests the QD solar cell efficiency can be enhanced by Eu doping due to widened absorption windows. This is an attractive approach to utilize benign and environmentally friendly wide band gap ZnS QDs in solar cell technology.« less

  6. Zinc supplementation influences genomic stability biomarkers, antioxidant activity, and zinc transporter genes in an elderly Australian population with low zinc status.

    PubMed

    Sharif, Razinah; Thomas, Philip; Zalewski, Peter; Fenech, Michael

    2015-06-01

    An increased intake of Zinc (Zn) may reduce the risk of degenerative diseases but may prove to be toxic if taken in excess. This study aimed to investigate whether zinc carnosine supplement can improve Zn status, genome stability events, and Zn transporter gene expression in an elderly (65-85 years) South Australian cohort with low plasma Zn levels. A 12-week placebo-controlled intervention trial was performed with 84 volunteers completing the study, (placebo, n = 42) and (Zn group, n = 42). Plasma Zn was significantly increased (p < 0.05) by 5.69% in the Zn supplemented group after 12 weeks. A significant (p < 0.05) decrease in the micronucleus frequency (-24.18%) was observed for the Zn supplemented cohort relative to baseline compared to the placebo group. Reductions of -7.09% for tail moment and -8.76% for tail intensity were observed for the Zn group (relative to baseline) (p < 0.05). Telomere base damage was found to be also significantly decreased in the Zn group (p < 0.05). Both MT1A and ZIP1 expression showed a significant increase in the Zn supplemented group (p < 0.05). Zn supplementation may have a beneficial effect in an elderly population with low Zn levels by improving Zn status, antioxidant profile, and lowering DNA damage. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fenton-like oxidation of 4-chlorophenol using H2O2 in situ generated by Zn-Fe-CNTs composite.

    PubMed

    Liu, Yong; Fan, Qing; Liu, Yanlan; Wang, Jianlong

    2018-05-15

    In this paper, a zinc-iron-carbon nanotubes (Zn-Fe-CNTs) composite was prepared, characterized and used to develop a Fenton-like system of Zn-Fe-CNTs/O 2 for the degradation of 4-chlorophenol (4-CP), in which H 2 O 2 was generated in situ from zinc-carbon galvanic cells and oxygen in aqueous solution was activated by iron attached on the surface of CNTs to produce ·OH radicals for the oxidation of 4-CP. The experimental results showed that the particles of Zn and Fe in Zn-Fe-CNTs composite were adhered to the surface of CNTs, which accelerated the electron transfer process. The BET area of Zn-Fe-CNTs composite was 32.9 m 2 /g. The contents of Zn and Fe (% w) in the composite were 44.7% and 4.2%, respectively. The removal efficiency of 4-CP and TOC in Zn-Fe-CNTs/O 2 system was 90.8% and 52.9%, respectively, with the initial pH of 2.0, O 2 flow rate of 800 mL/min, Zn-Fe-CNTs dosage of 1.0 g/L, 4-CP concentration of 50 mg/L and reaction time of 20 min. Based on the analysis of the degradation intermediate products with LC-MS and IC, a possible degradation pathway of 4-CP in Zn-Fe-CNTs/O 2 system was proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Synthesis, spectral and antimicrobial activity of Zn(II) complexes with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and benzaldehyde/2-hydroxyacetophenone/indoline-2,3-dione

    NASA Astrophysics Data System (ADS)

    Singh, Ajay K.; Pandey, O. P.; Sengupta, S. K.

    2013-09-01

    Zn(II) complexes have been synthesized by reacting zinc acetate with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and 2-hydroxyacetophenone/benzaldehyde/indoline-2,3-dione. All these complexes are soluble in DMF and DMSO; low molar conductance values indicate that they are non electrolytes. Elemental analyses suggest that the complexes have 1:2 metal to ligands stoichiometry of the types [ZnL2(H2O)2](L = monoanionic Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and 2-hydroxyacetophenone/indoline-2,3-dione) [ZnL2‧(OOCCH3)2(H2O)2](L‧ = neutral Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and benzaldehyde), and they were characterized by IR, 1H NMR, and 13C NMR. Particle sizes of synthesized compounds were measured with dynamic light scattering (DLS) analyser which indicates that particle diameter are of the range ca. 100-200 nm. All these Schiff bases and their complexes have also been screened for their antibacterial (Bacillus subtilis (B. subtilis), Escherichia coli (E. coli) and antifungal activities (Colletotrichum falcatum (C. falcatum), Aspergillus niger (A. niger), Fusarium oxysporium (F. oxysporium) Curvularia pallescence (C. pallescence). The antimicrobial activities have shown that upon complexation the activity increases.

  9. Modeling the movement of a pH perturbation and its impact on adsorbed zinc and phosphate in a wastewater‐contaminated aquifer

    USGS Publications Warehouse

    Kent, D.B.; Wilkie, J.A.; Davis, J.A.

    2007-01-01

    Chemical conditions were perturbed in an aquifer with an ambient pH of 5.9 and wastewater‐derived adsorbed zinc (Zn) and phosphate (P) contamination by injecting a pulse of amended groundwater. The injected groundwater had low concentrations of dissolved Zn and P, a pH value of 4.5 resulting from equilibration with carbon dioxide gas, and added potassium bromide (KBr). Downgradient of the injection, breakthrough of nonreactive Br and total dissolved carbonate concentrations in excess of ambient values (excess TCO2) were accompanied by a decrease in pH values and over twentyfold increases in dissolved Zn concentrations above preinjection values. Peak concentrations of Br and excess TCO2 were followed by slow increases in pH values accompanied by significant increases in dissolved P above preinjection concentrations. The injected tracers mobilized a significant mass of wastewater‐derived Zn. Reactive transport simulations incorporating surface complexation models for adsorption of Zn, P, hydrogen ions, and major cations onto the aquifer sediments, calibrated using laboratory experimental data, captured most of the important trends observed during the experiment. These include increases in Zn concentrations in response to the pH perturbation, perturbations in major cation concentrations, attenuation of the pH perturbation with transport distance, and increases in alkalinity with transport distance. Observed desorption of P in response to chemical perturbations was not predicted, possibly because of a disparity between the range of chemical conditions in the calibration data set and those encountered during the field experiment. Zinc and P desorbed rapidly in response to changing chemical conditions despite decades of contact with the sediments. Surface complexation models with relatively few parameters in the form of logK values and site concentrations show considerable promise for describing the influence of variable chemistry on the transport of adsorbing

  10. Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage.

    PubMed

    Anwaar, Shad Ali; Ali, Shafaqat; Ali, Skhawat; Ishaque, Wajid; Farid, Mujahid; Farooq, Muhammad Ahsan; Najeeb, Ullah; Abbas, Farhat; Sharif, Muhammad

    2015-03-01

    Silicon (Si) is as an important fertilizer element, which has been found effective in enhancing plant tolerance to variety of biotic and a-biotic stresses. This study investigates the Si potential to alleviate zinc (Zn) toxicity stress in cotton (Gossypium hirsutum L.). Cotton plants were grown in hydroponics and exposed to different Zn concentration, 0, 25, and 50 μM, alone and/or in combination with 1 mM Si. Incremental Zn concentration in growth media instigated the cellular oxidative damage that was evident from elevated levels of hydrogen peroxide (H2O2), electrolyte leakage, and malondialdehyde (MDA) and consequently inhibited cotton growth, biomass, chlorophyll pigments, and photosynthetic process. Application of Si significantly suppressed Zn accumulation in various plant parts, i.e., roots, stems, and leaves and thus promoted biomass, photosynthetic, growth parameters, and antioxidant enzymes activity of Zn-stressed as well unstressed plants. In addition, Si reduced the MDA and H2O2 production and electrolyte leakage suggesting its role in protecting cotton plants from Zn toxicity-induced oxidative damage. Thus, the study indicated that exogenous Si application could improve growth and development of cotton crop experiencing Zn toxicity stress by limiting Zn bioavailability and oxidative damage.

  11. Factors affecting adsorption characteristics of Zn2+ on two natural zeolites.

    PubMed

    Oren, Ali Hakan; Kaya, Abidin

    2006-04-17

    Mining-related and industrial wastes are primary sources of heavy metal contamination in soils and groundwater. The limitation of such waste in drinking water needs to meet government requirements in order to safeguard human health and environment. Zinc, one of the most preponderant pollutants, is difficult to remove from wastewater rather than other heavy metals (i.e. lead, copper and cadmium). This paper investigates Zn2+ adsorption characteristics of two natural zeolites found in the regions of Gordes and Bigadic, in western Turkey. The results show that the Zn2+ adsorption behavior of both zeolites is highly dependent on the pH. Adsorption dependence on lower pH values (pH<4) is explained by the dissolution of crystal structure and the competition of the zinc ions with the H+. Between pH 4 and 6, the basic mechanism is the ion exchange process. The results also showed that decrease in grain size does not increase the adsorption capacity of zeolite from Gordes, yet it increases that of zeolite from Bigadic about 23%. The results also reveal that an increase in the initial concentration of Zn2+ in the system causes an increase in the adsorption capacity to a degree, then it becomes more constant at higher concentrations. With this, the removal efficiency of Gordes zeolite is two times higher than that of Bigadic zeolite. Results show that an increase in slurry concentration results in a lower uptake of Zn2+. In the final part of the paper, we compared the experimental data with the Langmuir and Freundlich isotherms. The results show that there is a good fit between the experimental data and empirical isotherms.

  12. Fate of zinc in an electroplating sludge during electrokinetic treatments.

    PubMed

    Liu, Shou-Heng; Wang, H Paul

    2008-08-01

    Chemical structure of zinc in the electrokinetic treatments of an electroplating sludge has been studied by in situ extended X-ray absorption fine structural (EXAFS) and X-ray absorption near edge structural (XANES) spectroscopies in the present work. The least-square fitted XANES spectra indicate that the main zinc compounds in the sludge were ZnCO(3) (75%), ZnOSiO(2) (17%) and Zn(OH)(2) (7%). Zinc in the sludge possessed a Zn-O bond distance of 2.07 A with a coordination number (CN) of 5. In the second shells, the bond distance of Zn-(O)-Si was 3.05 A (CN=2). An increase of Zn-(O)-Si (0.05 A) with a decrease of its CN (from 5 to <1) was found in the early stage of the electrokinetic treatment. Prolong the electrokinetic treatment time to 180 min, about 34% of Zn(II) was dissolved into the aqueous phase and about 68% of Zn(II) in the sludge (or 23% of total zinc) was migrated to the cathode under the electric field (5 V cm(-1)). The dissolution and electromigration rates of Zn(II) in the sludge were 1.0 and 0.6 mmol h(-1)g(-1) sludge, respectively during the electrokinetic treatment. This work also exemplifies the utilization of in situ EXAFS and XANES for revealing speciation and possible reaction pathways during the course of zinc recycling from the sludge by electrokinetic treatments.

  13. Copper-Zinc-Tin-Sulfur Thin Film Using Spin-Coating Technology

    PubMed Central

    Yeh, Min-Yen; Lei, Po-Hsun; Lin, Shao-Hsein; Yang, Chyi-Da

    2016-01-01

    Cu2ZnSnS4 (CZTS) thin films were deposited on glass substrates by using spin-coating and an annealing process, which can improve the crystallinity and morphology of the thin films. The grain size, optical gap, and atomic contents of copper (Cu), zinc (Zn), tin (Sn), and sulfur (S) in a CZTS thin film absorber relate to the concentrations of aqueous precursor solutions containing copper chloride (CuCl2), zinc chloride (ZnCl2), tin chloride (SnCl2), and thiourea (SC(NH2)2), whereas the electrical properties of CZTS thin films depend on the annealing temperature and the atomic content ratios of Cu/(Zn + Sn) and Zn/Sn. All of the CZTS films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDXS), Raman spectroscopy, and Hall measurements. Furthermore, CZTS thin film was deposited on an n-type silicon substrate by using spin-coating to form an Mo/p-CZTS/n-Si/Al heterostructured solar cell. The p-CZTS/n-Si heterostructured solar cell showed a conversion efficiency of 1.13% with Voc = 520 mV, Jsc = 3.28 mA/cm2, and fill-factor (FF) = 66%. PMID:28773647

  14. Photophysical, photochemical and BSA binding/BQ quenching properties of quaternizable coumarin containing water soluble zinc phthalocyanine complexes

    NASA Astrophysics Data System (ADS)

    Esenpınar, Aliye Aslı; Durmuş, Mahmut; Bulut, Mustafa

    2011-08-01

    The non-peripherally ( np-QZnPc) and peripherally ( p-QZnPc) tetrakis-[7-oxo-(3-[(2-diethylaminomethyliodide)ethyl)]-4-methylcoumarin]-phthalocyaninatozinc complexes have been prepared by quaternization of non-peripherally and peripherally tetrakis[7-oxo-(3-[(2-diethylamino)ethyl)]-methylcoumarin] phthalocyaninato zinc complexes with methyliodide in dimethylsulfoxide (DMSO). The new quaternized zinc phthalocyanine complex ( np-QZnPc) has been characterized by elementel analysis, MALDI-TOF, IR and UV-vis spectral data. The photophysical and photochemical properties of the peripherally and non-peripherally quaternized tetrakis-3-[(2-diethylamino)ethyl]-7-oxo-4-methylcoumarin substituted zinc phthalocyanines are reported. The effects of the position of the substituents and the aggregation of the phthalocyanine molecules on the photophysical and photochemical properties are also investigated. General trends are described for photodegradation, singlet oxygen and fluorescence quantum yields, and fluorescence lifetimes for complexes np-ZnPc/ p-ZnPc in DMSO and for complexes np-QZnPc/p-QZnPc in DMSO, phosphate buffered solution (PBS) and PBS+Triton-X 100 solutions. The fluorescence of the tetra-substituted quaternized zinc phthalocyanine complexes ( np-QZnPc/ p-QZnPc) are effectively quenched addition of 1,4-benzoquinone (BQ) and this study also presented the ionic zinc phthalocyanine complexes strongly bind to bovine serum albumin (BSA).

  15. Annealing in tellurium-nitrogen co-doped ZnO films: The roles of intrinsic zinc defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Kun, E-mail: ktang@nju.edu.cn; Gu, Ran; Gu, Shulin, E-mail: slgu@nju.edu.cn

    2015-04-07

    In this article, the authors have conducted an extensive investigation on the roles of intrinsic zinc defects by annealing of a batch of Te-N co-doped ZnO films. The formation and annihilation of Zn interstitial (Zn{sub i}) clusters have been found in samples with different annealing temperatures. Electrical and Raman measurements have shown that the Zn{sub i} clusters are a significant compensation source to holes, and the Te co-doping has a notable effect on suppressing the Zn{sub i} clusters. Meanwhile, shallow acceptors have been identified in photoluminescence spectra. The N{sub O}-Zn-Te complex, zinc vacancy (V{sub Zn})-N{sub O} complex, and V{sub Zn}more » clusters are thought to be the candidates as the shallow acceptors. The evolution of shallow acceptors upon annealing temperature have been also studied. The clustering of V{sub Zn} at high annealing temperature is proposed to be a possible candidate as a stable acceptor in ZnO.« less

  16. Ferritin: a zinc detoxicant and a zinc ion donor.

    PubMed Central

    Price, D; Joshi, J G

    1982-01-01

    Rats were injected with 1 mg of Zn2+ as zinc sulfate or 2 mg of Cd2+ as cadmium sulfate per kg of body weight on a daily basis. After seven injections, ferritin and metallothionein were isolated from the livers of the rats. Significant amounts of zinc were associated with ferritin. Incubation of such ferritin with apoenzymes of calf intestinal alkaline phosphatase, yeast phosphoglucomutase, and yeast aldolase restored their enzymic activity. The amount of zinc injected was insufficient to stimulate significant synthesis of metallothionein, but similar experiments with injection of cadmium did stimulate the synthesis of metallothionein. The amount of Zn2+ in ferritin of Cd-injected rats was greater than that in ferritin in Zn-injected rats, which was greater than that in ferritin of normal rats. Thus at comparable protein concentration ferritin from Cd-injected rats was a better Zn2+ donor than was ferritin from Zn-injected or normal animals. Ferritin is a normal constituent of several tissues, whereas metallothionein is synthesized under metabolic stress. Thus ferritin may function as a "metal storage and transferring agent" for iron and for zinc. It is suggested that ferritin probably serves as the initial chelator for Zn2+ and perhaps other metal ions as well and that under very high toxic levels of metal ions the synthesis of metallothionein is initiated as the second line of defense. PMID:6212927

  17. Depression and synaptic zinc regulation in Alzheimer disease, dementia with lewy bodies, and Parkinson disease dementia.

    PubMed

    Whitfield, David R; Vallortigara, Julie; Alghamdi, Amani; Hortobágyi, Tibor; Ballard, Clive; Thomas, Alan J; O'Brien, John T; Aarsland, Dag; Francis, Paul T

    2015-02-01

    Depression is a common symptom in dementia with Lewy bodies (DLB), Parkinson disease dementia (PDD), and Alzheimer disease (AD), yet its molecular basis remains unclear and current antidepressants do not appear to be effective. Cerebral zinc has been implicated in depression and synaptic dysfunction. We investigated the relationship between synaptic zinc regulation (for which zinc transporter 3 [ZnT3] is responsible) and depression in a large clinicopathologic study. We examined brains from people with PDD (N = 29), DLB (N = 27), and AD (N = 15) and comparison subjects without depression or dementia (N = 24). Individuals were categorized according to the presence and severity of depression (on a scale of 0-3) based on standardized assessments during life (principally Neuropsychiatric Inventory). Western blotting was used to determine ZnT3 levels in Brodmann area 9 (BA9), and regression analysis was used to determine the relationship between ZnT3 and depression. Reductions in ZnT3 in BA9 were significantly associated with elevated depression scores in the study cohort (β = -0.351, df = 93, t = -3.318 p = 0.0004). This association remained when only individuals with DLB, PDD, and no dementia or depression were examined (β = -0.347, df = 78, t = -3.271, p = 0.002) or only individuals with AD and no dementia or depression were examined (β = -0.433, df = 37, t = -2.924, p = 0.006). Although decreased zinc levels have been implicated in the genesis of depression in animal models and in major depressive disorder in humans, this study provides the first evidence of a role for zinc in depression in people with dementia and highlights zinc metabolism as a therapeutic target. Copyright © 2015 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Preparation and characterization of a supported system of Ni2P/Ni12P5 nanoparticles and their use as the active phase in chemoselective hydrogenation of acetophenone

    NASA Astrophysics Data System (ADS)

    Costa, Dolly C.; Soldati, Analía L.; Pecchi, Gina; Bengoa, José Fernando; Marchetti, Sergio Gustavo; Vetere, Virginia

    2018-05-01

    Ni2P/Ni12P5 nanoparticles were obtained by thermal decomposition of nickel organometallic salt at low temperature. The use of different characterization techniques allowed us to determine that this process produced a mixture of two nickel phosphide phases: Ni2P and Ni12P5. These nickel phosphides nanoparticles, supported on mesoporous silica, showed activity and high selectivity for producing the hydrogenation of the acetophenone carbonyl group to obtain 1-phenylethanol. This is a first report that demonstrates the ability of supported Ni2P/Ni12P5 nanoparticles to produce the chemoselective hydrogenation of acetophenone. We attribute these special catalytic properties to the particular geometry of the Ni–P sites on the surface of the nanoparticles. This is an interesting result because the nickel phosphides have a wide composition range (from Ni3P to NiP3), with different crystallographic structures, therefore we think that different phases could be active and selective to hydrogenate many important molecules with more than one functional group.

  19. Prolactin receptor attenuation induces zinc pool redistribution through ZnT2 and decreases invasion in MDA-MB-453 breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostanci, Zeynep, E-mail: zbostanci@hmc.psu.edu; The Pennsylvania State University Milton S. Hershey Medical Center, Department of Surgery, 500 University Dr., Hershey, PA 17033; Alam, Samina, E-mail: sra116@psu.edu

    2014-02-15

    Prolactin receptor (PRL-R) activation regulates cell differentiation, proliferation, cell survival and motility of breast cells. Prolactin (PRL) and PRL-R over-expression are strongly implicated in breast cancer, particularly contributing to tumor growth and invasion in the more aggressive estrogen-receptor negative (ER−) disease. PRL-R antagonists have been suggested as potential therapeutic agents; however, mechanisms through which PRL-R antagonists exert their actions are not well-understood. Zinc (Zn) is a regulatory factor for over 10% of the proteome, regulating critical cell processes such as proliferation, cell signaling, transcription, apoptosis and autophagy. PRL-R signaling regulates Zn metabolism in breast cells. Herein we determined effects ofmore » PRL-R attenuation on cellular Zn metabolism and cell function in a model of ER-, PRL-R over-expressing breast cancer cells (MDA-MB-453). PRL-R attenuation post-transcriptionally increased ZnT2 abundance and redistributed intracellular Zn pools into lysosomes and mitochondria. ZnT2-mediated lysosomal Zn sequestration was associated with reduced matrix metalloproteinase 2 (MMP-2) activity and decreased invasion. ZnT2-mediated Zn accumulation in mitochondria was associated with increased mitochondrial oxidation. Our results suggest that PRL-R antagonism in PRL-R over-expressing breast cancer cells may reduce invasion through the redistribution of intracellular Zn pools critical for cellular function. - Highlights: • PRL-R attenuation increased ZnT2 expression. • PRL-R attenuation increased lysosomal and mitochondrial Zn accumulation. • PRL-R attenuation decreased MMP-2 and invasion. • PRL-R antagonists may modulate lysosomal and mitochondrial Zn pools.« less

  20. Comparison of the effects and distribution of zinc oxide nanoparticles and zinc ions in activated sludge reactors.

    PubMed

    Zhang, Dongqing; Trzcinski, Antoine P; Oh, Hyun-Suk; Chew, Evelyn; Liu, Yu; Tan, Soon Keat; Ng, Wun Jern

    2017-09-19

    Zinc Oxide nanoparticles (ZnO NPs) are being increasingly applied in the industry, which results inevitably in the release of these materials into the hydrosphere. In this study, simulated waste-activated sludge experiments were conducted to investigate the effects of Zinc Oxide NPs and to compare it with its ionic counterpart (as ZnSO 4 ). It was found that even 1 mg/L of ZnO NPs could have a small impact on COD and ammonia removal. Under 1, 10 and 50 mg/L of ZnO NP exposure, the Chemical Oxygen Demand (COD) removal efficiencies decreased from 79.8% to 78.9%, 72.7% and 65.7%, respectively. The corresponding ammonium (NH 4 + N) concentration in the effluent significantly (P < 0.05) increased from 11.9 mg/L (control) to 15.3, 20.9 and 28.5 mg/L, respectively. Under equal Zn concentration, zinc ions were more toxic towards microorganisms compared to ZnO NPs. Under 50 mg/L exposure, the effluent Zn level was 5.69 mg/L, implying that ZnO NPs have a strong affinity for activated sludge. The capacity for adsorption of ZnO NPs onto activated sludge was found to be 2.3, 6.3, and 13.9 mg/g MLSS at influent ZnO NP concentrations of 1.0, 10 and 50 mg/L respectively, which were 1.74-, 2.13- and 2.05-fold more than under Zn ion exposure.

  1. Modulation of ruminal and intestinal fermentation by medicinal plants and zinc from different sources.

    PubMed

    Váradyová, Zora; Mravčáková, Dominika; Holodová, Monika; Grešáková, Ľubomira; Pisarčíková, Jana; Barszcz, Marcin; Taciak, Marcin; Tuśnio, Anna; Kišidayová, Svetlana; Čobanová, Klaudia

    2018-06-14

    Two experiments were conducted on sheep to determine the effect of dietary supplementation with zinc and a medicinal plant mixture on haematological parameters and microbial activity in the rumen and large intestine. In Experiment 1, 24 male lambs were randomly divided into four groups: One group was fed an unsupplemented basal diet (control), and three groups were fed a diet supplemented with 70 mg Zn/kg diet in the form of Zn sulphate (ZnSO 4 ), a Zn-chelate of glycine hydrate (Zn-Gly) or a Zn-proteinate (Zn-Pro), for five months. The ruminal content was collected separately from each lamb, and batch cultures of ruminal fluid were incubated in vitro with mixture of medicinal plants (Mix) with different roughage:concentrate ratios (800:200 and 400:600, w/w). Bioactive compounds in Mix were quantified by UPLC/MS/MS. In Experiment 2, four sheep were fed a diet consisting of meadow hay and barley grain (400:600, w/w), with Zn-Gly (70 mg Zn/kg diet), Mix (10% replacement of meadow hay) or Zn-Gly and Mix (Zn-Gly-Mix) as supplements in a Latin square design. Mix decreased total gas (p < 0.001) and methane (p < 0.01) production in vitro. In Experiment 1, caecal isobutyrate and isovalerate concentrations varied among the dietary treatments (p < 0.01). The isovalerate concentration of the zinc-supplemented groups in the distal colon was higher (p < 0.001) compared with the control. In Experiment 2, the molar proportion of isobutyrate was the highest in the faeces of the sheep fed the diet with Zn-Gly-Mix (p < 0.01). The plasma zinc concentration was higher in the groups fed a diet supplemented with zinc (p < 0.001). The haematological profile and antioxidant status did not differ between the dietary groups (p > 0.05). The diets containing medicinal plants and organic zinc thus helped to modulate the characteristics of fermentation in ruminants. © 2018 Blackwell Verlag GmbH.

  2. Intracellular accumulation dynamics and fate of zinc ions in alveolar epithelial cells exposed to airborne ZnO nanoparticles at the air–liquid interface

    DOE PAGES

    Mihai, Cosmin; Chrisler, William B.; Xie, Yumei; ...

    2013-12-02

    Airborne nanoparticles (NPs) that enter the respiratory tract are likely to reach the alveolar region. Accumulating observations support a role for zinc oxide (ZnO) NP dissolution in toxicity, but the majority of in vitro studies were conducted in cells exposed to NPs in growth media, where large doses of dissolved ions are shed into the exposure solution. To determine the precise intracellular accumulation dynamics and fate of zinc ions (Zn 2+) shed by airborne NPs in the cellular environment, we exposed alveolar epithelial cells to aerosolized NPs at the air-liquid interface (ALI). Using a fluorescent indicator for Zn 2+, togethermore » with organelle-specific fluorescent proteins, we quantified Zn 2+ in single cells and organelles over time. We found that at the ALI, intracellular Zn 2+ values peaked 3 h post exposure and decayed to normal values by 12 h, while in submersed cultures, intracellular Zn 2+ values continued to increase over time. The lowest toxic NP dose at the ALI generated peak intracellular Zn 2+ values that were nearly 3 folds lower than the peak values generated by the lowest toxic dose of NPs in submersed cultures, and 8 folds lower than the peak values generated by the lowest toxic dose of ZnSO4 or Zn 2+. At the ALI, the majority of intracellular Zn 2+ was found in endosomes and lysosomes as early as 1 h post exposure. In contrast, the majority of intracellular Zn 2+ following exposures to ZnSO 4 was found in other larger vesicles, with less than 10% in endosomes and lysosomes. In conclusion, together, our observations indicate that low but critical levels of intracellular Zn 2+ have to be reached, concentrated specifically in endosomes and lysosomes, for toxicity to occur, and point to the focal dissolution of the NPs in the cellular environment and the accumulation of the ions specifically in endosomes and lysosomes as the processes underlying the potent toxicity of airborne ZnO NPs.« less

  3. Intracellular accumulation dynamics and fate of zinc ions in alveolar epithelial cells exposed to airborne ZnO nanoparticles at the air–liquid interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihai, Cosmin; Chrisler, William B.; Xie, Yumei

    Airborne nanoparticles (NPs) that enter the respiratory tract are likely to reach the alveolar region. Accumulating observations support a role for zinc oxide (ZnO) NP dissolution in toxicity, but the majority of in vitro studies were conducted in cells exposed to NPs in growth media, where large doses of dissolved ions are shed into the exposure solution. To determine the precise intracellular accumulation dynamics and fate of zinc ions (Zn 2+) shed by airborne NPs in the cellular environment, we exposed alveolar epithelial cells to aerosolized NPs at the air-liquid interface (ALI). Using a fluorescent indicator for Zn 2+, togethermore » with organelle-specific fluorescent proteins, we quantified Zn 2+ in single cells and organelles over time. We found that at the ALI, intracellular Zn 2+ values peaked 3 h post exposure and decayed to normal values by 12 h, while in submersed cultures, intracellular Zn 2+ values continued to increase over time. The lowest toxic NP dose at the ALI generated peak intracellular Zn 2+ values that were nearly 3 folds lower than the peak values generated by the lowest toxic dose of NPs in submersed cultures, and 8 folds lower than the peak values generated by the lowest toxic dose of ZnSO4 or Zn 2+. At the ALI, the majority of intracellular Zn 2+ was found in endosomes and lysosomes as early as 1 h post exposure. In contrast, the majority of intracellular Zn 2+ following exposures to ZnSO 4 was found in other larger vesicles, with less than 10% in endosomes and lysosomes. In conclusion, together, our observations indicate that low but critical levels of intracellular Zn 2+ have to be reached, concentrated specifically in endosomes and lysosomes, for toxicity to occur, and point to the focal dissolution of the NPs in the cellular environment and the accumulation of the ions specifically in endosomes and lysosomes as the processes underlying the potent toxicity of airborne ZnO NPs.« less

  4. The effect of nano-TiO2 photocatalysis on the antioxidant activities of Cu, Zn-SOD at physiological pH.

    PubMed

    Zheng, Wen; Zou, Hai-Feng; Lv, Shao-Wu; Lin, Yan-Hong; Wang, Min; Yan, Fei; Sheng, Ye; Song, Yan-Hua; Chen, Jie; Zheng, Ke-Yan

    2017-09-01

    Security issues of nanoparticles on biological toxicity and potential environmental risk have attracted more and more attention with the rapid development and wide applications of nanotechnology. In this work, we explored the effect and probable mechanism of nano-TiO 2 on antioxidant activity of copper, zinc superoxide dismutase (Cu, Zn-SOD) under natural light and mixed light at physiological pH. Nano-TiO 2 was prepared by sol-hydrothermal method, and then characterized by X-ray Diffraction (XRD) and Transmission electron micrographs (TEM). The Cu, Zn-SOD was purified by sephadex G75 chromatography and qualitatively analyzed by sodium dodecyl sulfate polypropylene amide gel electrophoresis (SDS-PAGE). The effect and mechanism were elucidated base on Fourier Transform Infrared Spectrometer (FT-IR), Circular Dichroism (CD), zeta potential, and electron spin resonance (ESR) methods. Accompanying the results of FT-IR, CD and zeta potential, it could be concluded that nano-TiO 2 had no effect on the antioxidant activity of Cu, Zn-SOD by comparing the relative activity under natural light at physiological pH. But the relative activity of Cu, Zn-SOD significantly decreased along with the increase of nano-TiO 2 concentration under the mixed light. The results of ESR showed the cause of this phenomenon was the Cu(II) in the active site of Cu, Zn-SOD was reduced to Cu(I) by H 2 O 2 and decreased the content of active Cu, Zn-SOD. The reduction can be inhibited by catalase. Excess O 2 ·- produced by nano-TiO 2 photocatalysis under mixed light accumulated a mass of H 2 O 2 through disproportionation reaction in this experimental condition. The results show that nano-TiO 2 cannot affect the antioxidant activity of Cu, Zn-SOD in daily life. The study on the effect of nano-TiO 2 on Cu, Zn-SOD will provide a valid theory support for biological safety and the toxicological effect mechanism of nanomaterials on enzyme. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Electronic structure and p-type doping of ZnSnN2

    NASA Astrophysics Data System (ADS)

    Wang, Tianshi; Janotti, Anderson; Ni, Chaoying

    ZnSnN2 is a promising solar-cell absorber material composed of earth abundant elements. Little is known about doping, defects, and how the valence and conduction bands in this material align with the bands in other semiconductors. Using density functional theory with the the Heyd-Scuseria-Ernzerhof hybrid functional (HSE06), we investigate the electronic structure of ZnSnN2, its band alignment to other semiconductors, such as GaN and ZnO, the possibility of p-type doping, and the possible causes of the observed unintentional n-type conductivity. We find that the position of the valence-band maximum of ZnSnN2 is 0.55 eV higher than that of GaN, yet the conduction-band minimum is close to that in ZnO. As possible p-type dopants, we explore Li, Na, and K substituting on the Zn site. Finally, we discuss the cause of unintentional n-type conductivity by analyzing the position of the conduction-band minimum with respect to that of GaN and ZnO.

  6. Synthesis and stability of hetaerolite, ZnMn2O4, at 25°C

    USGS Publications Warehouse

    Hem, J.D.; Roberson, C.E.; Lind, C.J.

    1987-01-01

    A precipitate of nearly pure hetaerolite, ZnMn2O4, a spinel-structured analog of hausmannite, Mn3O4, was prepared by an irreversible wprecipitation of zinc with manganese at 25°C. The synthesis technique entailed constant slow addition of a dilute solution of Mn2+ and Zn2+ chlorides having a Mn/Zn ratio of 2:1 to a reaction vessel that initially contained distilled deionized water, maintained at a pH of 8.50 by addition of dilute NaOH by an automated pH stat, with continuous bubbling of CO2-free air. The solid was identified by means of X-ray diffraction and transmission electron microscopy and consisted of bipyramidal crystals generally less than 0.10 μm in diameter. Zn2+ ions are able to substitute extensively for Mn2+ ions that occupy tetrahedral sites in the hausmannite structure.Hetaerolite appears to be more stable than hausmannite with respect to spontaneous conversion to γMnOOH. The value of the standard free energy of formation of hetaerolite was estimated from the experimental data to be −289.4 ± 0.8 kcal per mole. Solids intermediate in composition between hetaerolite and hausmannite can be prepared by altering the Mn/Zn ratio in the feed solution.

  7. Narrowing the gap: from semiconductor to semimetal in the homologous series of rare-earth zinc arsenides RE(2-y)Zn4As4·n(REAs) and Mn-substituted derivatives RE(2-y)Mn(x)Zn(4-x)As4·n(REAs) (RE = La-Nd, Sm, Gd).

    PubMed

    Lin, Xinsong; Tabassum, Danisa; Mar, Arthur

    2015-12-14

    A homologous series of ternary rare-earth zinc arsenides, prepared by reactions of the elements at 750 °C, has been identified with the formula RE(2-y)Zn4As4·n(REAs) (n = 2, 3, 4) for various RE members. They adopt trigonal structures: RE(4-y)Zn4As6 (RE = La-Nd), space group R3̄m1, Z = 3; RE(5-y)Zn4As7 (RE = Pr, Nd, Sm, Gd), space group P3̄m1, Z = 1; RE(6-y)Zn4As8 (RE = La-Nd, Sm, Gd), space group R3̄m1, Z = 3. The Zn atoms can be partially substituted by Mn atoms, resulting in quaternary derivatives RE(2-y)Mn(x)Zn(4-x)As4·n(REAs). Single-crystal structures were determined for nine ternary and quaternary arsenides RE(2-y)M4As4·n(REAs) (M = Mn, Zn) as representative examples of these series. The structures are built by stacking close-packed nets of As atoms, sometimes in very long sequences, with RE atoms occupying octahedral sites and M atoms occupying tetrahedral sites, resulting in an intergrowth of [REAs] and [M2As2] slabs. The recurring feature of all members of the homologous series is a sandwich of [M2As2]-[REAs]-[M2As2] slabs, while rocksalt-type blocks of [REAs] increase in thickness between these sandwiches with higher n. Similar to the previously known related homologous series REM(2-x)As2·n(REAs) which is deficient in M, this new series RE(2-y)M4As4·n(REAs) exhibits deficiencies in RE to reduce the electron excess that would be present in the fully stoichiometric formulas. Enthalpic and entropic factors are considered to account for the differences in site deficiencies in these two homologous series. Band structure calculations indicate that the semiconducting behaviour of the parent n = 0 member (with CaAl2Si2-type structure) gradually evolves, through a narrowing of the gap between valence and conduction bands, to semimetallic behaviour as the number of [REAs] blocks increases, to the limit of n = ∞ for rocksalt-type REAs.

  8. [Study on X-ray powder diffraction of various structured zinc titanate prepared by the method of direct precipitation].

    PubMed

    Guo, Jian; Wang, Zhi-hua; Tao, Dong-liang; Guo, Guang-sheng

    2007-05-01

    Zinc titanate powders were prepared from Ti(SO4)2, Zn(NO3)2 x (6)H2O and (NH4)2CO3 by the method of direct precipitation. The effects of reaction conditions on the structure of zinc titanate were studied. The sample was analyzed by means of XRD and TG-DTA. The structure of zinc titanate was affected by the reaction subsequence of the formation of titanic acid and zinc carbonate. In the reaction system where titanic acid was generated earlier, collision reaction occurred between the generated zinc carbonate molecule and the surrounding titanic acid molecule. When titanic acid was generated earlier and precipitant (NH4)2CO3 was sufficient, Zn2Ti3O8 was obtained because of the sufficient collision reaction and superfluous titanic acid. In the reaction system where zinc carbonate was generated earlier, collision reaction occurred between the generated titanic acid molecule and the surrounding zinc carbonate molecule. When zinc carbonate was generated earlier and precipitant (NH4)2CO3 was sufficient, Zn2TiO4 was obtained because of the sufficient collision reaction and superfluous zinc carbonate. In addition, the kinds and structure of the production were affected by the dosage of precipitant and the reaction temperature. Zn2Ti3O8 or Zn2TiO4 could be obtained easier when using more precipitant or higher reaction temperature which could cause more sufficient collision reaction. ZnTiO3 could be obtained under the conditions of less precipitant and lower reaction temperature.

  9. Highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent.

    PubMed

    Bao, Shuangyou; Tang, Lihong; Li, Kai; Ning, Ping; Peng, Jinhui; Guo, Huibin; Zhu, Tingting; Liu, Ye

    2016-01-15

    Amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent was used as a novel sorbent to highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste in the presence of Fe(II). These hot-dip galvanizing pickling waste mainly contain ZnCl2 and FeCl2 in aqueous HCl media. The properties of this magnetic adsorbent were examined by transmission electron microscopy (TEM), powder X-ray diffraction (XRD), infrared spectrometer (FT-IR) and BET surface area measurements. Various factors influencing the adsorption of Zn(II) ion such as initial concentration of metal ions, the amount of adsorbent, pH value of the solutions, the concentration of coexisting iron ion were investigated by batch experiments. The results indicated that the adsorption equilibrium data obeyed the Freundlich model with maximum adsorption capacities for Zn(II) to 169.5mg/g. The maximum adsorption occurred at pH 5±0.1 and Fe(II) interferences had no obvious influence. This work provides a potential and unique technique for zinc ion removal from hot-dip galvanizing pickling waste. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. 40 CFR 721.10135 - Phosphinic acid, P,P-diethyl-, zinc salt (2:1).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphinic acid, P,P-diethyl-, zinc salt (2:1). 721.10135 Section 721.10135 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10135...

  11. 40 CFR 721.10135 - Phosphinic acid, P,P-diethyl-, zinc salt (2:1).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphinic acid, P,P-diethyl-, zinc salt (2:1). 721.10135 Section 721.10135 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10135...

  12. 40 CFR 721.10135 - Phosphinic acid, P,P-diethyl-, zinc salt (2:1).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphinic acid, P,P-diethyl-, zinc salt (2:1). 721.10135 Section 721.10135 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10135...

  13. Hyperforin changes the zinc-storage capacities of brain cells.

    PubMed

    Gibon, Julien; Richaud, Pierre; Bouron, Alexandre

    2011-12-01

    In vitro and in vivo experiments were carried out to investigate the consequences on brain cells of a chronic treatment with hyperforin, a plant extract known to dissipate the mitochondrial membrane potential and to release Zn(2+) and Ca(2+) from these organelles. Dissociated cortical neurons were grown in a culture medium supplemented with 1 μM hyperforin. Live-cell imaging experiments with the fluorescent probes FluoZin-3 and Fluo-4 show that a 3 day-hyperforin treatment diminishes the size of the hyperforin-sensitive pools of Ca(2+) and Zn(2+) whereas it increases the size of the DTDP-sensitive pool of Zn(2+) without affecting the ionomycin-sensitive pool of Ca(2+). When assayed by quantitative PCR the levels of mRNA coding for metallothioneins (MTs) I, II and III were increased in cortical neurons after a 3 day-hyperforin treatment. This was prevented by the zinc chelator TPEN, indicating that the plant extract controls the expression of MTs in a zinc-dependent manner. Brains of adult mice who received a daily injection (i.p.) of hyperforin (4 mg/kg/day) for 4 weeks had a higher sulphur content than control animals. They also exhibited an enhanced expression of the genes coding for MTs. However, the long-term treatment did not affect the brain levels of calcium and zinc. Based on these results showing that hyperforin influences the size of the internal pools of Zn(2+), the expression of MTs and the brain cellular sulphur content, it is proposed that hyperforin changes the Zn-storage capacity of brain cells and interferes with their thiol status. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Dietary zinc deficiency reduced growth performance, intestinal immune and physical barrier functions related to NF-κB, TOR, Nrf2, JNK and MLCK signaling pathway of young grass carp (Ctenopharyngodon idella).

    PubMed

    Song, Zheng-Xing; Jiang, Wei-Dan; Liu, Yang; Wu, Pei; Jiang, Jun; Zhou, Xiao-Qiu; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Feng, Lin

    2017-07-01

    Our study investigated the effects of dietary zinc (Zn) deficiency on growth performance, intestinal immune and physical barrier functions of young grass carp (Ctenopharyngodon idella). A total of 630 grass carp (244.14 ± 0.40 g) were fed graded levels of zinc lactate (10.71, 30.21, 49.84, 72.31, 92.56, 110.78 mg Zn/kg diet) and one zinc sulfate group (56.9 mg Zn/kg diet) for 60 days. At the end of the feeding trial, fish were challenged with Aeromonas hydrophila for 14 days. These results indicated that compared with optimal dietary Zn level, dietary Zn deficiency (10.71 mg/kg diet) decreased the production of antibacterial compounds, up-regulated pro-inflammatory cytokines related to nuclear factor kappa B (NF-κB) and down-regulated anti-inflammatory cytokines related to target of rapamycin (TOR) in three intestinal segments of young grass carp (P < 0.05), suggesting that dietary Zn deficiency could impair intestinal immune barrier of fish; decreased the activities and mRNA levels of antioxidant enzymes related to NF-E2-related factor 2 (Nrf2), up-regulated the mRNA levels of caspase-3, -7, -8, -9 related to p38 mitogen activated protein (p38 MAPK) and c-Jun N-terminal protein kinase (JNK), down-regulated the mRNA levels of tight junction complexes (TJs) related to myosin light chain kinase (MLCK) in three intestinal segments of young grass carp (P < 0.05), demonstrating that dietary Zn deficiency could injury intestinal physical barrier of fish. Besides, the Zn requirements (zinc lactate as Zn source) based on percent weight gain (PWG), against enteritis morbidity, acid phosphatase (ACP) activity in the proximal intestine (PI) and malondialdehyde (MDA) content in the PI of young grass carp was estimated to be 61.2, 61.4, 69.2 and 69.5 mg/kg diet, respectively. Finally, based on specific growth rate (SGR), feed efficiency (FE) and against enteritis morbidity of young grass carp, the efficacy of zinc lactate relative to zinc sulfate were 132.59%, 135

  15. Coprecipitation of nickel zinc malonate: A facile and reproducible synthesis route for Ni{sub 1−x}Zn{sub x}O nanoparticles and Ni{sub 1−x}Zn{sub x}O/ZnO nanocomposites via pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lontio Fomekong, Roussin, E-mail: lonforou@yahoo.fr; Institut de la Matière Condensée et des Nanosciences, Université Catholique de Louvain, Croix du Sud 1, 1348 Louvain-La-Neuve; Kenfack Tsobnang, Patrice

    2015-10-15

    Nanoparticles of Ni{sub 1−x}Zn{sub x}O and Ni{sub 1−x}Zn{sub x}O/ZnO, which can be good candidates for selective gas sensors, were successfully obtained via a two-step synthetic route, in which the nickel zinc malonate precursor was first synthesized by co-precipitation from an aqueous solution, followed by pyrolysis in air at a relatively low temperature (~500 °C). The precursor was characterized by ICP-AES, FTIR and TG and the results indicate the molecular structure of the precursor to be compatible with Ni{sub 1−x}Zn{sub x}(OOCCH{sub 2}COO)·2H{sub 2}O. The decomposition product, characterized using various techniques (FTIR, XRD, ToF-SIMS, SEM, TEM and XPS), was established to bemore » a doped nickel oxide (Ni{sub 1−x}Zn{sub x}O for 0.01≤x≤0.1) and a composite material (Ni{sub 1−x}Zn{sub x}O/ZnO for 0.2≤x≤0.5). To elucidate the form in which the Zn is present in the NiO structure, three analytical techniques were employed: ToF-SIMS, XRD and XPS. While ToF SIMS provided a direct evidence of the presence of Zn in the NiO crystal structure, XRD showed that Zn actually substitutes Ni in the structure and XPS is a bit more specific by indicating that the Zn is present in the form of Zn{sup 2+} ions. - Highlights: • Coprecipitation synthesis of nickel zinc malonate single bath precursor was achieved. • The as synthesized precursors are an homogeneous mixture of nickel and zinc malonate. • XRD, ToF-SIMS, XPS, SEM and TEM was used to characterized decomposition products. • Ni{sub 1−x}Zn{sub x}O nanoparticles (0.01≤x≤0.1) formed after pyrolysis (~500 °C) of precursor. • Ni{sub 1−x}Zn{sub x}O/ZnO nanocomposite (0.2≤x≤0.5) formed after pyrolysis at 500 °C of precursor.« less

  16. Transcriptional up-regulation of genes involved in photosynthesis of the Zn/Cd hyperaccumulator Sedum alfredii in response to zinc and cadmium.

    PubMed

    Tang, Lu; Yao, Aijun; Ming Yuan; Tang, Yetao; Liu, Jian; Liu, Xi; Qiu, Rongliang

    2016-12-01

    Zinc (Zn) and cadmium (Cd) are two closely related chemical elements with very different biological roles in photosynthesis. Zinc plays unique biochemical functions in photosynthesis. Previous studies suggested that in some Zn/Cd hyperaccumulators, many steps in photosynthesis may be Cd tolerant or even Cd stimulated. Using RNA-seq data, we found not only that Cd and Zn both up-regulated the CA1 gene, which encodes a β class carbonic anhydrase (CA) in chloroplasts, but that a large number of other Zn up-regulated genes in the photosynthetic pathway were also significantly up-regulated by Cd in leaves of the Zn/Cd hyperaccumulator Sedum alfredii. These genes also include chloroplast genes involved in transcription and translation (rps18 and rps14), electron transport and ATP synthesis (atpF and ccsA), Photosystem II (PSBI, PSBM, PSBK, PSBZ/YCF9, PSBO-1, PSBQ, LHCB1.1, LHCB1.4, LHCB2.1, LHCB4.3 and LHCB6) and Photosystem I (PSAE-1, PSAF, PSAH2, LHCA1 and LHCA4). Cadmium and Zn also up-regulated the VAR1 gene, which encodes the ATP-dependent zinc metalloprotease FTSH 5 (a member of the FtsH family), and the DAG gene, which influences chloroplast differentiation and plastid development, and the CP29 gene, which supports RNA processing in chloroplasts and has a potential role in signal-dependent co-regulation of chloroplast genes. Further morphological parameters (dry biomass, cross-sectional thickness, chloroplast size, chlorophyll content) and chlorophyll fluorescence parameters confirmed that leaf photosynthesis of S. alfredii responded to Cd much as it did to Zn, which will contribute to our understanding of the positive effects of Zn and Cd on growth of this plant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Photoluminescence analysis of Ce3+:Zn2SiO4 & Li++ Ce3+:Zn2SiO4: phosphors by a sol-gel method

    NASA Astrophysics Data System (ADS)

    Babu, B. Chandra; Vandana, C. Sai; Guravamma, J.; Rudramadevi, B. Hemalatha; Buddhudu, S.

    2015-06-01

    Here, we report on the development and photoluminescence analysis of Zn2SiO4, Ce3+:Zn2SiO4 & Li+ + Ce3+: Zn2SiO4 novel powder phosphors prepared by a sol-gel technique. The total amount of Ce3+ ions was kept constant in this experiment at 0.05 mol% total doping. The excitation and emission spectra of undoped (Zn2SiO4) and Ce3+ doped Zn2SiO4 and 0.05 mol% Li+ co-doped samples have been investigated. Cerium doped Zn2SiO4 powder phosphors had broad blue emission corresponding to the 2D3/22FJ transition at 443nm. Stable green-yellow-red emission has been observed from Zn2SiO4 host matrix and also we have been observed the enhanced luminescence of Li+ co-doped Zn2SiO4:Ce3+. Excitation and emission spectra of these blue luminescent phosphors have been analyzed in evaluating their potential as luminescent screen coating phosphors.

  18. Corrosion performance of zinc coated steel in seawater environment

    NASA Astrophysics Data System (ADS)

    Liu, Shuan; Zhao, Xia; Zhao, Haichao; Sun, Huyuan; Chen, Jianmin

    2017-03-01

    Considering the continuous exploitation of marine resources, it is very important to study the anticorrosion performance and durability of zinc coated streel (ZCS) because its increasing use as reinforcements in seawater. Tafel polarization curves and linear polarization curves combined with electrochemical impedance spectroscopy (EIS) were employed to evaluate the corrosion performance of ZCS at Qingdao test station during long-term immersion in seawater. The results indicated that the corrosion rate of the ZCS increased obviously with immersion time in seawater. The corrosion products that formed on the zinc coated steel were loose and porous, and were mainly composed of Zn5(OH)8Cl2, Zn5(OH)6(CO3)2, and ZnO. Pitting corrosion occurred on the steel surface in neutral seawater, and the rate of ZCS corrosion decreased with increasing pH.

  19. Synthesis and self-organization of zinc β-(dialkoxyphosphoryl)porphyrins in the solid state and in solution.

    PubMed

    Vinogradova, Ekaterina V; Enakieva, Yulia Y; Nefedov, Sergey E; Birin, Kirill P; Tsivadze, Aslan Y; Gorbunova, Yulia G; Bessmertnykh Lemeune, Alla G; Stern, Christine; Guilard, Roger

    2012-11-19

    The first synthesis and self-organization of zinc β-phosphorylporphyrins in the solid state and in solution are reported. β-Dialkoxyphosphoryl-5,10,15,20-tetraphenylporphyrins and their Zn(II) complexes have been synthesized in good yields by using Pd- and Cu-mediated carbon-phosphorous bond-forming reactions. The Cu-mediated reaction allowed to prepare the mono-β-(dialkoxyphosphoryl)porphyrins 1 Zn-3Zn starting from the β-bromo-substituted zinc porphyrinate ZnTPPBr (TPP = tetraphenylporphyrin) and dialkyl phosphites HP(O)(OR)(2) (R = Et, iPr, nBu). The derivatives 1 Zn-3Zn were obtained in good yields by using one to three equivalents of CuI. When the reaction was carried out in the presence of catalytic amounts of palladium complexes in toluene, the desired zinc derivative 1 Zn was obtained in up to 72% yield. The use of a Pd-catalyzed C-P bond-forming reaction was further extended to the synthesis of β-poly(dialkoxyphosphoryl)porphyrins. An unprecedented one-pot sequence involving consecutive reduction and phosphorylation of H(2)TPPBr(4) led to the formation of a mixture of the 2,12- and 2,13-bis(dialkoxy)phosphorylporphyrins 5 H(2) and 6 H(2) in 81% total yield. According to the X-ray diffraction studies, 1 Zn and 3Zn are partially overlapped cofacial dimers formed through the coordination of two Zn centers by two phosphoryl groups belonging to the adjacent molecules. The equilibrium between the monomeric and the dimeric species exists in solutions of 1 Zn and 3Zn in weakly polar solvents according to spectroscopic data (UV/Vis absorption and NMR spectroscopy). The ratio of each form is dependent on the concentration, temperature, and traces of water or methanol. These features demonstrated that zinc β-phosphorylporphyrins can be regarded as new model compounds for the weakly coupled chlorophyll pair in the photosynthesis process. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Two mechanisms of oral malodor inhibition by zinc ions.

    PubMed

    Suzuki, Nao; Nakano, Yoshio; Watanabe, Takeshi; Yoneda, Masahiro; Hirofuji, Takao; Hanioka, Takashi

    2018-01-18

    The aim of this study was to reveal the mechanisms by which zinc ions inhibit oral malodor. The direct binding of zinc ions to gaseous hydrogen sulfide (H2S) was assessed in comparison with other metal ions. Nine metal chlorides and six metal acetates were examined. To understand the strength of H2S volatilization inhibition, the minimum concentration needed to inhibit H2S volatilization was determined using serial dilution methods. Subsequently, the inhibitory activities of zinc ions on the growth of six oral bacterial strains related to volatile sulfur compound (VSC) production and three strains not related to VSC production were evaluated. Aqueous solutions of ZnCl2, CdCl2, CuCl2, (CH3COO)2Zn, (CH3COO)2Cd, (CH3COO)2Cu, and CH3COOAg inhibited H2S volatilization almost entirely. The strengths of H2S volatilization inhibition were in the order Ag+ > Cd2+ > Cu2+ > Zn2+. The effect of zinc ions on the growth of oral bacteria was strain-dependent. Fusobacterium nucleatum ATCC 25586 was the most sensitive, as it was suppressed by medium containing 0.001% zinc ions. Zinc ions have an inhibitory effect on oral malodor involving the two mechanisms of direct binding with gaseous H2S and suppressing the growth of VSC-producing oral bacteria.

  1. Effects of dietary supplementation with tribasic zinc sulfate or zinc sulfate on growth performance, zinc content and expression of zinc transporters in young pigs.

    PubMed

    Deng, Bo; Zhou, Xihong; Wu, Jie; Long, Ciming; Yao, Yajun; Peng, Hongxing; Wan, Dan; Wu, Xin

    2017-10-01

    An experiment was conducted to compare the effects of zinc sulfate (ZS) and tribasic zinc sulfate (TBZ) as sources of supplemental zinc on growth performance, serum zinc (Zn) content and messenger RNA (mRNA) expression of Zn transporters (ZnT1/ZnT2/ZnT5/ZIP4/DMT1) of young growing pigs. A total of 96 Duroc × Landrace × Yorkshire pigs were randomly allotted to two treatments and were fed a basal diet supplemented with 100 mg/kg Zn from either ZS or TBZ for 28 days. Feed : gain ratio in pigs fed TBZ were lower (P < 0.05) than pigs fed ZS, and average daily weight gain tended to increase (0.05 ≤ P ≤ 0.10) in pigs fed TBZ. Compared with pigs fed ZS, pigs fed TBZ had a higher CuZn-superoxide dismutase and Zn content in serum (P < 0.05) while they had a lower Zn content in feces (P < 0.05). In addition, ZIP4 mRNA expression of zinc transporter in either duodenum or jejunum of pigs fed TBZ were higher (P < 0.05) than pigs fed ZS. These results indicate that TBZ is more effective in serum Zn accumulation and intestinal Zn absorption, and might be a potential substitute for ZS in young growing pigs. © 2017 Japanese Society of Animal Science.

  2. Therapeutic effects of transdermal systems containing zinc-related materials on thermal burn rats.

    PubMed

    Otsuka, Makoto; Hatakeyama, Haruna; Shikamura, Masayuki; Otsuka, Kuniko; Ito, Atsuo

    2015-01-01

    The aim of the present study is to evaluate the efficacy of slow zinc (Zn) release from β-tricalcium phosphate powder (ZnTCP) containing 10 mol% Zn on rats with thermal burns. The first-aid tapes were contained zinc sulfate (ZnSO4) solution, ZnTCP suspensions or zinc oxide ointment. After thermal burn treatments were performed on Zn-deficient rats, the groups D1, D2 and D3 were treated with tapes containing ZnTCP, ZnSO4 and zinc oxide ointment. The effects of the tapes on wound area, plasma Zn levels and alkaline phosphatase activity (Alp) were investigated. The wound area profiles of all rat groups could be separated into before and after the scab formation at around day 6. The area under the curve (Aw-AUC) for wound area profiles, therefore, was evaluated as an index of therapeutic scores for the thermal wound. The order of Aw-AUC was D3>C>D2>D1. The degree of expansion at the initial stage by thermal burns of group D1 was the lowest and that of group D2 was the highest, and the order was D132. ZnTCP treatment could control the initial inflammation caused by thermal burns.

  3. Potential Interactions of Calcium-Sensitive Reagents with Zinc Ion in Different Cultured Cells

    PubMed Central

    Fujikawa, Koichi; Fukumori, Ryo; Nakamura, Saki; Kutsukake, Takaya; Takarada, Takeshi; Yoneda, Yukio

    2015-01-01

    Background Several chemicals have been widely used to evaluate the involvement of free Ca2+ in mechanisms underlying a variety of biological responses for decades. Here, we report high reactivity to zinc of well-known Ca2+-sensitive reagents in diverse cultured cells. Methodology/Principal Findings In rat astrocytic C6 glioma cells loaded with the fluorescent Ca2+ dye Fluo-3, the addition of ZnCl2 gradually increased the fluorescence intensity in a manner sensitive to the Ca2+ chelator EGTA irrespective of added CaCl2. The addition of the Ca2+ ionophore A23187 drastically increased Fluo-3 fluorescence in the absence of ZnCl2, while the addition of the Zn2+ ionophore pyrithione rapidly and additionally increased the fluorescence in the presence of ZnCl2, but not in its absence. In cells loaded with the zinc dye FluoZin-3 along with Fluo-3, a similarly gradual increase was seen in the fluorescence of Fluo-3, but not of FluoZin-3, in the presence of both CaCl2 and ZnCl2. Further addition of pyrithione drastically increased the fluorescence intensity of both dyes, while the addition of the Zn2+ chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethane-1,2-diamine (TPEN) rapidly and drastically decreased FluoZin-3 fluorescence. In cells loaded with FluoZin-3 alone, the addition of ZnCl2 induced a gradual increase in the fluorescence in a fashion independent of added CaCl2 but sensitive to EGTA. Significant inhibition was found in the vitality to reduce 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide in a manner sensitive to TPEN, EDTA and BAPTA in C6 glioma cells exposed to ZnCl2, with pyrithione accelerating the inhibition. Similar inhibition occurred in an EGTA-sensitive fashion after brief exposure to ZnCl2 in pluripotent P19 cells, neuronal Neuro2A cells and microglial BV2 cells, which all expressed mRNA for particular zinc transporters. Conclusions/Significance Taken together, comprehensive analysis is absolutely required for the demonstration of a

  4. Remediation of arsenic and lead with nanocrystalline zinc sulfide.

    PubMed

    Piquette, Alan; Cannon, Cody; Apblett, Allen W

    2012-07-27

    Nanocrystalline (1.7 ± 0.3 nm) zinc sulfide with a specific surface area up to 360 m(2) g(-1) was prepared from the thermal decomposition of a single-source precursor, zinc ethylxanthate. Zinc ethylxanthate decomposes to cubic zinc sulfide upon exposure to temperatures greater than or equal to 125 °C. The resulting zinc sulfide was tested as a water impurity extractant. The target impurities used in this study were As(5+), As(3+), and Pb(2+). The reaction of the nanocrystalline ZnS with Pb(2+) proceeds as a replacement reaction where solid PbS is formed and Zn(2+) is released into the aqueous system. Removal of lead to a level of less than two parts per billion is achievable. The results of a detailed kinetics experiment between the ZnS and Pb(2+) are included in this study. Unlike the instance of lead, both As(5+) and As(3+) adsorb on the surface of the ZnS extractant as opposed to an ion-exchange process. An uptake capacity of > 25 mg g(-1) for the removal of As(5+) is possible. The uptake of As(3+) appears to proceed by a slower process than that of the As(5+) with a capacity of nearly 20 mg g(-1). The nanocrystalline zinc sulfide was extremely successful for the removal of arsenic and lead from simulated oil sand tailing pond water.

  5. Electronic states of Zn2 - Ab initio calculations of a prototype for Hg2

    NASA Technical Reports Server (NTRS)

    Hay, P. J.; Dunning, T. H., Jr.; Raffenetti, R. C.

    1976-01-01

    The electronic states of Zn2 are investigated by ab initio polarization configuration-interaction calculations. Molecular states dissociating to Zn(1S) + Zn(1S, 3P, 1P) and Zn(3P) + Zn(3P) are treated. Important effects from states arising from Zn(+)(25) + Zn(-)(2P) are found in the potential-energy curves and electronic-transition moments. A model calculation for Hg2 based on the Zn2 curves and including spin-orbit coupling leads to a new interpretation of the emission bands in Hg vapor.

  6. Dendrite-Free Nanocrystalline Zinc Electrodeposition from an Ionic Liquid Containing Nickel Triflate for Rechargeable Zn-Based Batteries.

    PubMed

    Liu, Zhen; Cui, Tong; Pulletikurthi, Giridhar; Lahiri, Abhishek; Carstens, Timo; Olschewski, Mark; Endres, Frank

    2016-02-18

    Metallic zinc is a promising anode material for rechargeable Zn-based batteries. However, the dendritic growth of zinc has prevented practical applications. Herein it is demonstrated that dendrite-free zinc deposits with a nanocrystalline structure can be obtained by using nickel triflate as an additive in a zinc triflate containing ionic liquid. The formation of a thin layer of Zn-Ni alloy (η- and γ-phases) on the surface and in the initial stages of deposition along with the formation of an interfacial layer on the electrode strongly affect the nucleation and growth of zinc. A well-defined and uniform nanocrystalline zinc deposit with particle sizes of about 25 nm was obtained in the presence of Ni(II) . Further, it is shown that the nanocrystalline Zn exhibits a high cycling stability even after 50 deposition/stripping cycles. This strategy of introducing an inorganic metal salt in ionic liquid electrolytes can be considered as an efficient way to obtain dendrite-free zinc. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effect of Zinc Incorporation on the Performance of Red Light Emitting InP Core Nanocrystals.

    PubMed

    Xi, Lifei; Cho, Deok-Yong; Besmehn, Astrid; Duchamp, Martial; Grützmacher, Detlev; Lam, Yeng Ming; Kardynał, Beata E

    2016-09-06

    This report presents a systematic study on the effect of zinc (Zn) carboxylate precursor on the structural and optical properties of red light emitting InP nanocrystals (NCs). NC cores were assessed using X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), energy-dispersive X-ray spectroscopy (EDX), and high-resolution transmission electron microscopy (HRTEM). When moderate Zn:In ratios in the reaction pot were used, the incorporation of Zn in InP was insufficient to change the crystal structure or band gap of the NCs, but photoluminescence quantum yield (PLQY) increased dramatically compared with pure InP NCs. Zn was found to incorporate mostly in the phosphate layer on the NCs. PL, PLQY, and time-resolved PL (TRPL) show that Zn carboxylates added to the precursors during NC cores facilitate the synthesis of high-quality InP NCs by suppressing nonradiative and sub-band-gap recombination, and the effect is visible also after a ZnS shell is grown on the cores.

  8. Structural Characterization and Antifungal Studies of Zinc-Doped Hydroxyapatite Coatings.

    PubMed

    Iconaru, Simona Liliana; Prodan, Alina Mihaela; Buton, Nicolas; Predoi, Daniela

    2017-04-09

    The present study is focused on the synthesis, characterization and antifungal evaluation of zinc-doped hydroxyapatite (Zn:HAp) coatings. The Zn:HAp coatings were deposited on a pure Si (Zn:HAp_Si) and Ti (Zn:HAp_Ti) substrate by a sol-gel dip coating method using a zinc-doped hydroxyapatite nanogel. The nature of the crystal phase was determined by X-ray diffraction (XRD). The crystalline phase of the prepared Zn:HAp composite was assigned to hexagonal hydroxyapatite in the P6 3/m space group. The colloidal properties of the resulting Zn:HAp (x Zn = 0.1) nanogel were analyzed by Dynamic Light Scattering (DLS) and zeta potential. Scanning Electron Microscopy (SEM) was used to investigate the morphology of the zinc-doped hydroxyapatite (Zn:HAp) nanogel composite and Zn:HAp coatings. The elements Ca, P, O and Zn were found in the Zn:HAp composite. According to the EDX results, the degree of Zn substitution in the structure of Zn:HAp composite was 1.67 wt%. Moreover, the antifungal activity of Zn:HAp_Si and Zn:HAp_Ti against Candida albicans ( C. albicans ) was evaluated. A decrease in the number of surviving cells was not observed under dark conditions, whereas under daylight and UV light illumination a major decrease in the number of surviving cells was observed.

  9. An in-situ phosphorus source for the synthesis of Cu 3P and the subsequent conversion to Cu 3PS 4 nanoparticle clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheets, Erik J.; Stach, Eric A.; Yang, Wei -Chang

    2015-09-20

    The search for alternative earth abundant semiconducting nanocrystals for sustainable energy applications has brought forth the need for nanoscale syntheses beyond bulk synthesis routes. Of particular interest are metal phosphides and derivative I-V-VI chalcogenides including copper phosphide (Cu 3P) and copper thiophosphate (Cu 3PS 4). Herein, we report a one-pot, solution-based synthesis of Cu 3P nanocrystals utilizing an in-situ phosphorus source: phosphorus pentasulfide (P 2S 5) in trioctylphosphine (TOP). By injecting this phosphorus source into a copper solution in oleylamine (OLA), uniform and size controlled Cu 3P nanocrystals with a phosphorous-rich surface are synthesized. The subsequent reaction of the Cumore » 3P nanocrystals with decomposing thiourea forms nanoscale Cu 3PS 4 particles having p-type conductivity and an effective optical band gap of 2.36 eV.« less

  10. Spectroscopic study of Pr3+ ions doped Zinc Lead Tungsten Tellurite glasses for visible photonic device applications

    NASA Astrophysics Data System (ADS)

    Sharma, Ritu; Rao, A. S.; Deopa, Nisha; Venkateswarlu, M.; Jayasimhadri, M.; Haranath, D.; Prakash, G. Vijaya

    2018-04-01

    Zinc Lead Tungsten Tellurite (ZnPbWTe) glasses doped with different Pr3+ ion concentrations having the composition 5ZnO + 15PbO + 20WO3 + (60-x)TeO2 + xPr6O11 (where x = 0.5, 1, 1.5, 2.0 and 2.5 mol%) were prepared by using sudden quenching technique and characterized to understand their visible emission characteristic features using spectroscopic techniques such as absorption, excitation and emission. The Judd-Ofelt (J-O) theory has been applied to the absorption spectral features with an aim to evaluate various radiative properties for the prominent fluorescent levels of Pr3+ions in the as-prepared glasses. The emission spectra recorded for the as-prepared glasses under 468 nm excitation show three prominent emission transitions 3P0→3H6, 3P0→3F2 and 3P1→3F4, of which 3P0→3F2 observed in visible red region (648 nm), is relatively more intense. The intensity of 3P0→3F2 emission transition in the titled glasses increases up to 1mol% of Pr3+ ions and beyond concentration quenching is observed. Branching ratios (βR) and emission cross-sections (σse) were estimated for 3P0→3F2 transition to understand the luminescence efficiency in visible red region (648 nm). The CIE chromaticity coordinates were also evaluated in order to understand the suitability of these glasses for visible red luminescence devices. From the emission cross-sections, quantum efficiency and CIE coordinates, it was concluded that 1mol% of Pr3+ ions in ZnPbWTe glasses are quite suitable for preparing visible reddish orange luminescent devices.

  11. Solution and fluorescence properties of symmetric dipicolylamine-containing dichlorofluorescein-based Zn2+ sensors.

    PubMed

    Wong, Brian A; Friedle, Simone; Lippard, Stephen J

    2009-05-27

    The mechanism by which dipicolylamine (DPA) chelate-appended fluorophores respond to zinc was investigated by the synthesis and study of five new analogues of the 2',7'-dichlorofluorescein-based Zn(2+) sensor Zinpyr-1 (ZP1). With the use of absorption and emission spectroscopy in combination with potentiometric titrations, a detailed molecular picture has emerged of the Zn(2+) and H(+) binding properties of the ZP1 family of sensors. The two separate N(3)O donor atom sets on ZP1 converge to form binding pockets in which all four heteroatoms participate in coordination to either Zn(2+) or protons. The position of the pyridyl group nitrogen atom, 2-pyridyl or 4-pyridyl, has a large impact on the fluorescence response of the dyes to protons despite relatively small changes in pK(a) values. The fluorescence quenching effects of such multifunctional electron-donating units are often taken as a whole. Despite the structural complexity of ZP1, however, we provide evidence that the pyridyl arms of the DPA appendages participate in the quenching process, in addition to the contribution from the tertiary nitrogen amine atom. Potentiometric titrations reveal ZP1 dissociation constants (K(d)) for Zn(2+) of 0.04 pM and 1.2 nM for binding to the first and second binding pockets of the ligand, respectively, the second of which correlates with the value observed by fluorescence titration. This result demonstrates that both binding pockets of this symmetric, ditopic sensor need to be occupied in order for full fluorescence turn-on to be achieved. These results have significant implications for the design and implementation of fluorescent sensors for studies of mobile zinc ions in biology.

  12. Biphasic zinc compartmentalisation in a human fungal pathogen.

    PubMed

    Crawford, Aaron C; Lehtovirta-Morley, Laura E; Alamir, Omran; Niemiec, Maria J; Alawfi, Bader; Alsarraf, Mohammad; Skrahina, Volha; Costa, Anna C B P; Anderson, Andrew; Yellagunda, Sujan; Ballou, Elizabeth R; Hube, Bernhard; Urban, Constantin F; Wilson, Duncan

    2018-05-01

    Nutritional immunity describes the host-driven manipulation of essential micronutrients, including iron, zinc and manganese. To withstand nutritional immunity and proliferate within their hosts, pathogenic microbes must express efficient micronutrient uptake and homeostatic systems. Here we have elucidated the pathway of cellular zinc assimilation in the major human fungal pathogen Candida albicans. Bioinformatics analysis identified nine putative zinc transporters: four cytoplasmic-import Zip proteins (Zrt1, Zrt2, Zrt3 and orf19.5428) and five cytoplasmic-export ZnT proteins (orf19.1536/Zrc1, orf19.3874, orf19.3769, orf19.3132 and orf19.52). Only Zrt1 and Zrt2 are predicted to localise to the plasma membrane and here we demonstrate that Zrt2 is essential for C. albicans zinc uptake and growth at acidic pH. In contrast, ZRT1 expression was found to be highly pH-dependent and could support growth of the ZRT2-null strain at pH 7 and above. This regulatory paradigm is analogous to the distantly related pathogenic mould, Aspergillus fumigatus, suggesting that pH-adaptation of zinc transport may be conserved in fungi and we propose that environmental pH has shaped the evolution of zinc import systems in fungi. Deletion of C. albicans ZRT2 reduced kidney fungal burden in wild type, but not in mice lacking the zinc-chelating antimicrobial protein calprotectin. Inhibition of zrt2Δ growth by neutrophil extracellular traps was calprotectin-dependent. This suggests that, within the kidney, C. albicans growth is determined by pathogen-Zrt2 and host-calprotectin. As well as serving as an essential micronutrient, zinc can also be highly toxic and we show that C. albicans deals with this potential threat by rapidly compartmentalising zinc within vesicular stores called zincosomes. In order to understand mechanistically how this process occurs, we created deletion mutants of all five ZnT-type transporters in C. albicans. Here we show that, unlike in Saccharomyces cerevisiae, C

  13. Energy transfer and colour tunability in UV light induced Tm3+/Tb3+/Eu3+: ZnB glasses generating white light emission.

    PubMed

    Naresh, V; Gupta, Kiran; Parthasaradhi Reddy, C; Ham, Byoung S

    2017-03-15

    A promising energy transfer (Tm 3+ →Tb 3+ →Eu 3+ ) approach is brought forward to generate white light emission under ultraviolet (UV) light excitation for solid state lightening. Tm 3+ /Tb 3+ /Eu 3+ ions are combinedly doped in zinc borate glass system in view of understanding energy transfer process resulting in white light emission. Zinc borate (host) glass displayed optical and luminescence properties due to formation of Zn(II) x -[O(-II)] y centres in the ZnB glass matrix. At 360nm (UV) excitation, triply doped Tm 3+ /Tb 3+ /Eu 3+ : ZnB glasses simultaneously shown their characteristic emission bands in blue (454nm: 1 D 23 F 4 ), green (547nm: 5 D 4 → 7 F 5 ) and red (616nm: 5 D 0 → 7 F 2 ) regions. In triple ions doped glasses, energy transfer dynamics is discussed in terms of Forster-Dexter theory, excitation & emission profiles, lifetime curves and from partial energy level diagram of three ions. The role of Tb 3+ in ET from Tm 3+ →Eu 3+ was discussed using branch model. From emission decay analysis, energy transfer probability (P) and efficiency (η) were evaluated. Colour tunability from blue to white on varying (Tb 3+ , Eu 3+ ) content is demonstrated from Commission Internationale de L'Eclairage (CIE) chromaticity coordinates. Based on chromaticity coordinates, other colour related parameters like correlated colour temperature (CCT) and colour purity are also computed for the studied glass samples. An appropriate blending of such combination of rare earth ions could show better suitability as potential candidates in achieving multi-colour and warm/cold white light emission for white LEDs application in the field of solid state lightening. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Energy transfer and colour tunability in UV light induced Tm3 +/Tb3 +/Eu3 +: ZnB glasses generating white light emission

    NASA Astrophysics Data System (ADS)

    Naresh, V.; Gupta, Kiran; Parthasaradhi Reddy, C.; Ham, Byoung S.

    2017-03-01

    A promising energy transfer (Tm3 + → Tb3 + → Eu3 +) approach is brought forward to generate white light emission under ultraviolet (UV) light excitation for solid state lightening. Tm3 +/Tb3 +/Eu3 + ions are combinedly doped in zinc borate glass system in view of understanding energy transfer process resulting in white light emission. Zinc borate (host) glass displayed optical and luminescence properties due to formation of Zn(II)x-[O(- II)]y centres in the ZnB glass matrix. At 360 nm (UV) excitation, triply doped Tm3 +/Tb3 +/Eu3 +: ZnB glasses simultaneously shown their characteristic emission bands in blue (454 nm: 1D23F4), green (547 nm: 5D4 → 7F5) and red (616 nm: 5D0 → 7F2) regions. In triple ions doped glasses, energy transfer dynamics is discussed in terms of Forster-Dexter theory, excitation & emission profiles, lifetime curves and from partial energy level diagram of three ions. The role of Tb3 + in ET from Tm3 + → Eu3 + was discussed using branch model. From emission decay analysis, energy transfer probability (P) and efficiency (η) were evaluated. Colour tunability from blue to white on varying (Tb3 +, Eu3 +) content is demonstrated from Commission Internationale de L'Eclairage (CIE) chromaticity coordinates. Based on chromaticity coordinates, other colour related parameters like correlated colour temperature (CCT) and colour purity are also computed for the studied glass samples. An appropriate blending of such combination of rare earth ions could show better suitability as potential candidates in achieving multi-colour and warm/cold white light emission for white LEDs application in the field of solid state lightening.

  15. Interaction of H+ and Zn2+ on recombinant and native rat neuronal GABAA receptors

    PubMed Central

    Krishek, Belinda J; Moss, Stephen J; Smart, Trevor G

    1998-01-01

    The interaction of Zn2+ and H+ ions with GABAA receptors was examined using Xenopus laevis oocytes expressing recombinant GABAA receptors composed of subunits selected from α1, β1, γ2S and δ types, and by using cultured rat cerebellar granule neurones. The potency of Zn2+ as a non-competitive antagonist of GABA-activated responses on α1β1 receptors was reduced by lowering the external pH from 7.4 to 5.4, increasing the Zn2+ IC50 value from 1.2 to 58.3 μm. Zinc-induced inhibition was largely unaffected by alkaline pH up to pH 9.4. For α1β1δ subunits, concentration-response curves for GABA were displaced laterally by Zn2+ in accordance with a novel mixed/competitive-type inhibition. The Zn2+ IC50 at pH 7.4 was 16.3 μm. Acidification of Ringer solution resulted in a reduced antagonism by Zn2+ (IC50, 49.0 μm) without affecting the type of inhibition. At pH 9.4, Zn2+ inhibition remained unaffected. The addition of the γ2S subunit to the α1β1δ construct caused a marked reduction in the potency of Zn2+ (IC50, 615 μm), comparable to that observed with α1β1γ2S receptors (IC50 639 μm). GABA concentration-response curves were depressed in a mixed/non-competitive fashion. In cultured cerebellar granule neurones, Zn2+ inhibited responses to GABA in a concentration-dependent manner. Lowering external pH from 7.4 to 6.4 increased the IC50 from 139 to 253 μm. The type of inhibition exhibited by Zn2+ on cerebellar granule neurones, previously grown in high K+-containing culture media, was complex, with the GABA concentration-response curves shifting laterally with reduced slopes and similar maxima. The Zn2+-induced shift in the GABA EC50 values was reduced by lowering the external pH from 7.4 to 6.4. The interaction of H+ and Zn2+ ions on GABAA receptors suggests that they share either a common regulatory pathway or coincident binding sites on the receptor protein. The apparent competitive mode of block induced by Zn2+ on α1β1δ receptors is shared by GABAA

  16. Al2O3 Passivation Effect in HfO2·Al2O3 Laminate Structures Grown on InP Substrates.

    PubMed

    Kang, Hang-Kyu; Kang, Yu-Seon; Kim, Dae-Kyoung; Baik, Min; Song, Jin-Dong; An, Youngseo; Kim, Hyoungsub; Cho, Mann-Ho

    2017-05-24

    The passivation effect of an Al 2 O 3 layer on the electrical properties was investigated in HfO 2 -Al 2 O 3 laminate structures grown on indium phosphide (InP) substrate by atomic-layer deposition. The chemical state obtained using high-resolution X-ray photoelectron spectroscopy showed that interfacial reactions were dependent on the presence of the Al 2 O 3 passivation layer and its sequence in the HfO 2 -Al 2 O 3 laminate structures. Because of the interfacial reaction, the Al 2 O 3 /HfO 2 /Al 2 O 3 structure showed the best electrical characteristics. The top Al 2 O 3 layer suppressed the interdiffusion of oxidizing species into the HfO 2 films, whereas the bottom Al 2 O 3 layer blocked the outdiffusion of In and P atoms. As a result, the formation of In-O bonds was more effectively suppressed in the Al 2 O 3 /HfO 2 /Al 2 O 3 /InP structure than that in the HfO 2 -on-InP system. Moreover, conductance data revealed that the Al 2 O 3 layer on InP reduces the midgap traps to 2.6 × 10 12 eV -1 cm -2 (compared to that of HfO 2 /InP, that is, 5.4 × 10 12 eV -1 cm -2 ). The suppression of gap states caused by the outdiffusion of In atoms significantly controls the degradation of capacitors caused by leakage current through the stacked oxide layers.

  17. Radioactive zinc ( sup 65 Zn), zinc, cadmium, and mercury in the Pacific Hake, Merluccius productus (Ayres), off the West Coast of the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naidu, J.R.

    1974-06-01

    The Pacific Hake, Merluccius productus (Ayers) was used to monitor the waters off Puget Sound and the West Coast of the US for zinc(Zn), cadmium(Cd), mercury(Hg) and {sup 65}Zn. The Columbia River is not the source of Zn, Cd or Hg contamination, but is the source of {sup 65}Zn, with the concentration in the Hake reflecting the position of the Columbia River plume. Zn and Cd accumulation in the Hake were fit to the equation Y=B{sub 1}+B{sub 2}e{sup B}{sub 3}X where Y is the concentration of the element and X is the length or weight of the fish. Biological attributesmore » were assigned to the other parameters as follows: B{sub 1} is the asymptotic value for Zn or Cd at chemical maturity; B{sub 2} is the location of the curve with respect to the length or weight of the fish; and B{sub 3} is a constant pertaining to the rate of change of Zn or Cd. Although Zn, Cd and Hg are all Group 2B elements, only the concentrations of Zn and Cd were correlated for all locations; Hg concentrations varied as a function of location. Zn and Cd concentrations increase with fish size and approach an asymptotic value at maturity, while Hg concentrations were linear and the slope is a function of sampling location. Zn and Cd levels are regulated in the adult, while Hg continues to increase with age. It may be significant that the age distribution of fish caught commercially coincides with the maximum concentration of Zn and Cd. 195 refs., 30 figs., 10 tabs. (MHB)« less

  18. Indium phosphide nanowires and their applications in optoelectronic devices

    PubMed Central

    Zafar, Fateen

    2016-01-01

    Group IIIA phosphide nanocrystalline semiconductors are of great interest among the important inorganic materials because of their large direct band gaps and fundamental physical properties. Their physical properties are exploited for various potential applications in high-speed digital circuits, microwave and optoelectronic devices. Compared to II–VI and I–VII semiconductors, the IIIA phosphides have a high degree of covalent bonding, a less ionic character and larger exciton diameters. In the present review, the work done on synthesis of III–V indium phosphide (InP) nanowires (NWs) using vapour- and solution-phase approaches has been discussed. Doping and core–shell structure formation of InP NWs and their sensitization using higher band gap semiconductor quantum dots is also reported. In the later section of this review, InP NW-polymer hybrid material is highlighted in view of its application as photodiodes. Lastly, a summary and several different perspectives on the use of InP NWs are discussed. PMID:27118920

  19. Indium phosphide nanowires and their applications in optoelectronic devices.

    PubMed

    Zafar, Fateen; Iqbal, Azhar

    2016-03-01

    Group IIIA phosphide nanocrystalline semiconductors are of great interest among the important inorganic materials because of their large direct band gaps and fundamental physical properties. Their physical properties are exploited for various potential applications in high-speed digital circuits, microwave and optoelectronic devices. Compared to II-VI and I-VII semiconductors, the IIIA phosphides have a high degree of covalent bonding, a less ionic character and larger exciton diameters. In the present review, the work done on synthesis of III-V indium phosphide (InP) nanowires (NWs) using vapour- and solution-phase approaches has been discussed. Doping and core-shell structure formation of InP NWs and their sensitization using higher band gap semiconductor quantum dots is also reported. In the later section of this review, InP NW-polymer hybrid material is highlighted in view of its application as photodiodes. Lastly, a summary and several different perspectives on the use of InP NWs are discussed.

  20. Spectroscopic characterization approach to study surfactants effect on ZnO 2 nanoparticles synthesis by laser ablation process

    NASA Astrophysics Data System (ADS)

    Drmosh, Q. A.; Gondal, M. A.; Yamani, Z. H.; Saleh, T. A.

    2010-05-01

    Zinc peroxide nanoparticles having grain size less than 5 nm were synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3% H 2O 2. The effect of surfactants on the optical and structure of ZnO 2 was studied by applying different spectroscopic techniques. Structural properties and grain size of the synthesized nanoparticles were studied using XRD method. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7, 3.7, 3.3 and 2.8 nm in pure H 2O 2, and H 2O 2 mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO 2 nanoparticles prepared with and without surfactants show a characteristic ZnO 2 absorption at 435-445 cm -1. FTIR spectrum revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM while it appears in case of SDS. This could be due to high critical micelles SDS concentration comparing with others which is attributed to the adsorption anionic nature of this surfactant. Both FTIR and UV-vis spectra show a red shift in the presence of SDS and blue shift in the presence of CTAB and OGM. The blue shift in the absorption edge indicates the quantum confinement property of nanoparticles. The zinc peroxide nanoparticles prepared in additives-free media was also characterized by Raman spectra which show the characteristic peaks at 830-840 and 420-440 cm -1.

  1. Effect of zinc oxide on the electronic properties of carbonated hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Refaat, Ahmed; Youness, Rasha A.; Taha, Mohammed A.; Ibrahim, Medhat

    2017-11-01

    Zinc oxide (ZnO)-doped carbonate substituted hydroxyapatite (CHA) was successfully prepared with different ZnO contents up to 3 wt% and then samples were subjected to study with Fourier transform infrared (FTIR) spectroscopy. FTIR indicated that the interaction is physical and consequently molecular modeling was consulted to understand the effect of ZnO upon CHA. A model molecule of Ca10(PO4)6(OH)2·14H2O was built then interacted with Zn with different schemes through 4 active sites namely O of (PO4); O of OH; Ca of Ca(OH)2 and P of (PO4). For each interaction, two possibilities were tried; one through oxygen and the other through zinc of ZnO. The interaction of ZnO with CHA resulted in changes in the physical properties such as the final heat of formation, ionization potential, and even molecular dimensions. This may be due to the change in the electronic distribution which in turn changes the total dipole moment and hence the reactivity that could also affect the physical properties.

  2. Evidence for a zinc/proton antiporter in rat brain.

    PubMed

    Colvin, R A; Davis, N; Nipper, R W; Carter, P A

    2000-05-01

    The data presented in this paper are consistent with the existence of a plasma membrane zinc/proton antiport activity in rat brain. Experiments were performed using purified plasma membrane vesicles isolated from whole rat brain. Incubating vesicles in the presence of various concentrations of 65Zn2+ resulted in a rapid accumulation of 65Zn2+. Hill plot analysis demonstrated a lack of cooperativity in zinc activation of 65Zn2+ uptake. Zinc uptake was inhibited in the presence of 1 mM Ni2+, Cd2+, or CO2+. Calcium (1 mM) was less effective at inhibiting 65Zn2+ uptake and Mg2+ and Mn2+ had no effect. The initial rate of vesicular 65Zn2+ uptake was inhibited by increasing extravesicular H+ concentration. Vesicles preloaded with 65Zn2+ could be induced to release 65Zn2+ by increasing extravesicular H+ or addition of 1 mM nonradioactive Zn2+. Hill plot analysis showed a lack of cooperativity in H+ activation of 65Zn2+ release. Based on the Hill analyses, the stoichiometry of transport may include Zn2+/Zn2+ exchange and Zn2+/H+ antiport, the latter being potentially electrogenic. Zinc/proton antiport may be an important mode of zinc uptake into neurons and contribute to the reuptake of zinc to replenish presynaptic vesicle stores after stimulation.

  3. Fractionation and leachability of heavy metals from aged and recent Zn metallurgical leach residues from the Três Marias zinc plant (Minas Gerais, Brazil).

    PubMed

    Sethurajan, Manivannan; Huguenot, David; Lens, Piet N L; Horn, Heinrich A; Figueiredo, Luiz H A; van Hullebusch, Eric D

    2016-04-01

    Various mineral processing operations to produce pure metals from mineral ores generate sludges, residues, and other unwanted by-products/wastes. As a general practice, these wastes are either stored in a reservoir or disposed in the surrounding of mining/smelting areas, which might cause adverse environmental impacts. Therefore, it is important to understand the various characteristics like heavy metal leaching features and potential toxicity of these metallurgical wastes. In this study, zinc plant leach residues (ZLRs) were collected from a currently operating Zn metallurgical industry located in Minas Gerais (Brazil) and investigated for their potential toxicity, fractionation, and leachability. Three different ZLR samples (ZLR1, ZLR2, and ZLR3) were collected, based on their age of production and deposition. They mainly consisted of Fe (6-11.5 %), Zn (2.5 to 5.0 %), and Pb (1.5 to 2.5 %) and minor concentrations of Al, Cd, Cu, and Mn, depending on the sample age. Toxicity Characteristic Leaching Procedure (TCLP) results revealed that these wastes are hazardous for the environment. Accelerated Community Bureau of Reference (BCR) sequential extraction clearly showed that potentially toxic heavy metals such as Cd, Cu, Pb, and Zn can be released into the environment in high quantities under mild acidic conditions. The results of the liquid-solid partitioning as a function of pH showed that pH plays an important role in the leachability of metals from these residues. At low pH (pH 2.5), high concentrations of metals can be leached: 67, 25, and 7 % of Zn can be leached from leach residues ZLR1, ZLR2, and ZLR3, respectively. The release of metals decreased with increasing pH. Geochemical modeling of the pH-dependent leaching was also performed to determine which geochemical process controls the leachability/solubility of the heavy metals. This study showed that the studied ZLRs contain significant concentrations of non-residual extractable fractions of Zn and can

  4. Effects of enhanced zinc and copper in drinking water on spatial memory and fear conditioning

    USGS Publications Warehouse

    Chrosniak, L.D.; Smith, L.N.; McDonald, C.G.; Jones, B.F.; Flinn, J.M.

    2006-01-01

    Ingestion of enhanced zinc can cause memory impairments and copper deficiencies. This study examined the effect of zinc supplementation, with and without copper, on two types of memory. Rats raised pre- and post-natally on 10 mg/kg ZnCO3 or ZnSO4 in the drinking water were tested in a fear-conditioning experiment at 11 months of age. Both zinc groups showed a maladaptive retention of fearful memories compared to controls raised on tap water. Rats raised on 10 mg/kg ZnCO3, 10 mg/kg ZnCO3 + 0.25 mg/kg CuCl2, or tap water, were tested for spatial memory ability at 3 months of age. Significant improvements in performance were found in the ZnCO3 + CuCl2 group compared to the ZnCO3 group, suggesting that some of the cognitive deficits associated with zinc supplementation may be remediated by addition of copper. ?? 2005 Elsevier B.V. All rights reserved.

  5. Synthesis and exploitation of InP/ZnS quantum dots for bioimaging

    NASA Astrophysics Data System (ADS)

    Massadeh, Salam; Xu, Shu; Nann, Thomas

    2009-02-01

    Nano- and cytotoxicity becomes increasingly more important with an increasing number of potential bio-medical applications for semiconductor Quantum Dots (QDs). Therefore, the frequently used CdSe-based QDs are unsuitable per-se, since cadmium is a highly toxic heavy metal and may leach out of QDs. Cadmium-free QDs have not been available for a long time, because the synthesis of e.g. monodisperes and highly crystalline InP QDs caused many problems. We report on the synthesis of InP/ZnS QDs with optical properties similar to those displayed by typical CdSe/ZnS QDs. A major break-through has been reached by addition of zinc ions into the reaction mixture. Furthermore, the transfer of the InP/ZnS QDs to water and their exploitation for bioanalytical applications are reported. It is shown that InP/ZnS QDs can be used to replace CdSe-based ones for almost any bio-medical application.

  6. Mononuclear zinc(II) complexes of 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols: Synthesis, structural characterization, DNA binding and cheminuclease activities

    NASA Astrophysics Data System (ADS)

    Ravichandran, J.; Gurumoorthy, P.; Karthick, C.; Kalilur Rahiman, A.

    2014-03-01

    Four new zinc(II) complexes [Zn(HL1-4)Cl2] (1-4), where HL1-4 = 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols, have been isolated and fully characterized using various spectro-analytical techniques. The X-ray crystal structure of complex 4 shows the distorted trigonal-bipyramidal coordination geometry around zinc(II) ion. The crystal packing is stabilized by intermolecular NH⋯O hydrogen bonding interaction. The complexes display no d-d electronic band in the visible region due to d10 electronic configuration of zinc(II) ion. The electrochemical properties of the synthesized ligands and their complexes exhibit similar voltammogram at reduction potential due to electrochemically innocent Zn(II) ion, which evidenced that the electron transfer is due to the nature of the ligand. Binding interaction of complexes with calf thymus DNA was studied by UV-Vis absorption titration, viscometric titration and cyclic voltammetry. All complexes bind with CT DNA by intercalation, giving the binding affinity in the order of 2 > 1 ≫ 3 > 4. The prominent cheminuclease activity of complexes on plasmid DNA (pBR322 DNA) was observed in the absence and presence of H2O2. Oxidative pathway reveals that the underlying mechanism involves hydroxyl radical.

  7. SrZnO nanostructures grown on templated <0001> Al2O3 substrates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Labis, Joselito P.; Alanazi, Anwar Q.; Albrithen, Hamad A.; El-Toni, Ahmed Mohamed; Hezam, Mahmoud; Elafifi, Hussein Elsayed; Abaza, Osama M.

    2017-09-01

    The parameters of pulsed laser deposition (PLD) have been optimized to design different nanostructures of Strontium-alloyed zinc oxide (SrZnO). In this work, SrZnO nanostructures are grown on <0001>Al2O3 substrates via two-step templating/seeding approach. In the temperature range between 300 - 750 oC and O2 background pressures between 0.01 and 10 Torr, the growth conditions have been tailored to grow unique pointed leaf-like- and pitted olive-like nanostructures. Prior to the growth of the nanostructures, a thin SrZnO layer that serves as seed layer/template is first deposited on the Al2O3 substrates at ˜300oC and background oxygen pressure of 10 mTorr. The optical properties of the nanostructures were examined by UV/Vis spectroscopy and photoluminescence (PL), while the structures/morphologies were examined by SEM, TEM, and XRD. The alloyed SrZnO nanostructures, grown by ablating ZnO targets with 5, 10, 25% SrO contents, have in common a single-crystal hexagonal nanostructure with (0002) preferential orientation and have shown remarkable changes in the morphological and optical properties of the materials. To date, this is the only reported work on optimization of laser ablation parameters to design novel SrZnO nanostructures in the 5-25% alloying range, as most related Sr-doped ZnO studies were done below 7% doping. Although the physical properties of ZnO are modified via Sr doping, the mechanism remains unclear. The PLD-grown SrZnO nanostructures were directly grown onto the Al2O3 substrates; thus making these nanomaterials very promising for potential applications in biosensors, love-wave filters, solar cells, and ultrasonic oscillators.

  8. ZnT-1 enhances the activity and surface expression of T-type calcium channels through activation of Ras-ERK signaling.

    PubMed

    Mor, Merav; Beharier, Ofer; Levy, Shiri; Kahn, Joy; Dror, Shani; Blumenthal, Daniel; Gheber, Levi A; Peretz, Asher; Katz, Amos; Moran, Arie; Etzion, Yoram

    2012-07-15

    Zinc transporter-1 (ZnT-1) is a putative zinc transporter that confers cellular resistance from zinc toxicity. In addition, ZnT-1 has important regulatory functions, including inhibition of L-type calcium channels and activation of Raf-1 kinase. Here we studied the effects of ZnT-1 on the expression and function of T-type calcium channels. In Xenopus oocytes expressing voltage-gated calcium channel (CaV) 3.1 or CaV3.2, ZnT-1 enhanced the low-threshold calcium currents (I(caT)) to 182 ± 15 and 167.95 ± 9.27% of control, respectively (P < 0.005 for both channels). As expected, ZnT-1 also enhanced ERK phosphorylation. Coexpression of ZnT-1 and nonactive Raf-1 blocked the ZnT-1-mediated ERK phosphorylation and abolished the ZnT-1-induced augmentation of I(caT). In mammalian cells (Chinese hamster ovary), coexpression of CaV3.1 and ZnT-1 increased the I(caT) to 166.37 ± 6.37% compared with cells expressing CaV3.1 alone (P < 0.01). Interestingly, surface expression measurements using biotinylation or total internal reflection fluorescence microscopy indicated marked ZnT-1-induced enhancement of CaV3.1 surface expression. The MEK inhibitor PD-98059 abolished the ZnT-1-induced augmentation of surface expression of CaV3.1. In cultured murine cardiomyocytes (HL-1 cells), transient exposure to zinc, leading to enhanced ZnT-1 expression, also enhanced the surface expression of endogenous CaV3.1 channels. Consistently, in these cells, endothelin-1, a potent activator of Ras-ERK signaling, enhanced the surface expression of CaV3.1 channels in a PD-98059-sensitive manner. Our findings indicate that ZnT-1 enhances the activity of CaV3.1 and CaV3.2 through activation of Ras-ERK signaling. The augmentation of CaV3.1 currents by Ras-ERK activation is associated with enhanced trafficking of the channel to the plasma membrane.

  9. Low-temperature solution-processed zinc oxide field effect transistor by blending zinc hydroxide and zinc oxide nanoparticle in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Shin, Hyeonwoo; Kang, Chan-mo; Baek, Kyu-Ha; Kim, Jun Young; Do, Lee-Mi; Lee, Changhee

    2018-05-01

    We present a novel methods of fabricating low-temperature (180 °C), solution-processed zinc oxide (ZnO) transistors using a ZnO precursor that is blended with zinc hydroxide [Zn(OH)2] and zinc oxide hydrate (ZnO • H2O) in an ammonium solution. By using the proposed method, we successfully improved the electrical performance of the transistor in terms of the mobility (μ), on/off current ratio (I on/I off), sub-threshold swing (SS), and operational stability. Our new approach to forming a ZnO film was systematically compared with previously proposed methods. An atomic forced microscopic (AFM) image and an X-ray photoelectron spectroscopy (XPS) analysis showed that our method increases the ZnO crystallite size with less OH‑ impurities. Thus, we attribute the improved electrical performance to the better ZnO film formation using the blending methods.

  10. Highly Durable Na2V6O16·1.63H2O Nanowire Cathode for Aqueous Zinc-Ion Battery.

    PubMed

    Hu, Ping; Zhu, Ting; Wang, Xuanpeng; Wei, Xiujuan; Yan, Mengyu; Li, Jiantao; Luo, Wen; Yang, Wei; Zhang, Wencui; Zhou, Liang; Zhou, Zhiqiang; Mai, Liqiang

    2018-03-14

    Rechargeable aqueous zinc-ion batteries are highly desirable for grid-scale applications due to their low cost and high safety; however, the poor cycling stability hinders their widespread application. Herein, a highly durable zinc-ion battery system with a Na 2 V 6 O 16 ·1.63H 2 O nanowire cathode and an aqueous Zn(CF 3 SO 3 ) 2 electrolyte has been developed. The Na 2 V 6 O 16 ·1.63H 2 O nanowires deliver a high specific capacity of 352 mAh g -1 at 50 mA g -1 and exhibit a capacity retention of 90% over 6000 cycles at 5000 mA g -1 , which represents the best cycling performance compared with all previous reports. In contrast, the NaV 3 O 8 nanowires maintain only 17% of the initial capacity after 4000 cycles at 5000 mA g -1 . A single-nanowire-based zinc-ion battery is assembled, which reveals the intrinsic Zn 2+ storage mechanism at nanoscale. The remarkable electrochemical performance especially the long-term cycling stability makes Na 2 V 6 O 16 ·1.63H 2 O a promising cathode for a low-cost and safe aqueous zinc-ion battery.

  11. Synthesis, spectral and antimicrobial activity of Zn(II) complexes with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and benzaldehyde/2-hydroxyacetophenone/indoline-2,3-dione.

    PubMed

    Singh, Ajay K; Pandey, O P; Sengupta, S K

    2013-09-01

    Zn(II) complexes have been synthesized by reacting zinc acetate with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and 2-hydroxyacetophenone/benzaldehyde/indoline-2,3-dione. All these complexes are soluble in DMF and DMSO; low molar conductance values indicate that they are non electrolytes. Elemental analyses suggest that the complexes have 1:2 metal to ligands stoichiometry of the types [ZnL2(H2O)2](L=monoanionic Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and 2-hydroxyacetophenone/indoline-2,3-dione) [ZnL2(')(OOCCH3)2(H2O)2](L'=neutral Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and benzaldehyde), and they were characterized by IR, (1)H NMR, and (13)C NMR. Particle sizes of synthesized compounds were measured with dynamic light scattering (DLS) analyser which indicates that particle diameter are of the range ca. 100-200nm. All these Schiff bases and their complexes have also been screened for their antibacterial (Bacillus subtilis (B. subtilis), Escherichia coli (E. coli) and antifungal activities (Colletotrichum falcatum (C. falcatum), Aspergillus niger (A. niger), Fusarium oxysporium (F. oxysporium) Curvularia pallescence (C. pallescence). The antimicrobial activities have shown that upon complexation the activity increases. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Chemical nature of silicon nitride-indium phosphide interface and rapid thermal annealing for InP MISFETs

    NASA Technical Reports Server (NTRS)

    Biedenbender, M. D.; Kapoor, V. J.

    1990-01-01

    A rapid thermal annealing (RTA) process in pure N2 or pure H2 was developed for ion-implanted and encapsulated indium phosphide compound semiconductors, and the chemical nature at the silicon nitride-InP interface before and after RTA was examined using XPS. Results obtained from SIMS on the atomic concentration profiles of the implanted silicon in InP before and after RTA are presented, together with electrical characteristics of the annealed implants. Using the RTA process developed, InP metal-insulator semiconductor FETs (MISFETS) were fabricated. The MISFETS prepared had threshold voltages of +1 V, transconductance of 27 mS/mm, peak channel mobility of 1200 sq cm/V per sec, and drain current drift of only 7 percent.

  13. Effect of dietary phytate on zinc homeostasis in young and elderly Korean women.

    PubMed

    Kim, Jihye; Paik, Hee Young; Joung, Hyojee; Woodhouse, Leslie R; Li, Shanji; King, Janet C

    2007-02-01

    Previous studies suggest that consumption of predominantly plant-based diets with high phytate content contribute to zinc deficiency by inhibiting zinc absorption. Age of the individual may also affect the ability to maintain zinc homeostasis. This study was designed to determine the effect of dietary phytate on zinc homeostasis and to evaluate the effect of age on the capacity to maintain the zinc homeostasis with changes in dietary phytate in young and elderly Korean women. Seven healthy young women (22-24 yr) and 10 healthy elderly women (66-75 yr) were studied consecutively for 3 months in 2 metabolic periods (MP) in two different metabolic units. During MP1 the women consumed a high phytate (HP) diet (P:Zn molar ratio = 23) for 9 days. After a 10 d wash-out period at home eating their usual diets, a lower phytate diet (LP) (P:Zn molar ratio = 10) was fed in MP2 for 9 d. Phytase was added to selected foods in the high phytate diet to reduce the phytate content of the meals in the LP period. The zinc content of both diets was about 6.5 mg/d. Stable isotopes of Zn ((70)Zn) were administered intravenously on d 5 of MP 1 and 2 for measuring endogenous fecal zinc excretion. Plasma samples were also collected on d 5 for measuring plasma zinc concentrations by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). 24 hr urine samples were collected for 5 d and complete fecal samples were collected for 9 d after isotope administration. Fractional zinc absorption (FZA) was calculated from mass balance corrected for endogenous fecal zinc (EFZ) excretion and EFZ was determined by using an isotopic dilution technique. Isotopic ratios for FZA and EFZ were measured by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Statistical analyses were done using ANOVA. Both the young and elderly women were in negative zinc balance during the HP period. This was due to a significant decrease in FZA and total absorbed zinc (TAZ) with a HP diet (43 vs 22% in young women

  14. Effect of additional vitamin E and zinc supplementation on immunological changes in peripartum Sahiwal cows.

    PubMed

    Chandra, G; Aggarwal, A; Kumar, M; Singh, A K; Sharma, V K; Upadhyay, R C

    2014-12-01

    This study was conducted to exploit ameliorative effect of additional vitamin E and/or zinc supplementation on immune response of peripartum Sahiwal cows. Thirty-two pregnant dry Sahiwal cows were blocked into four treatment groups (n = 8), namely control, zinc (Zn), vitamin E (Vit E) and zinc + vitamin E (Zn + Vit E). Feeding regimen was same in all the groups except that the Sahiwal cows in the zinc-, vitamin E- and zinc + vitamin E-fed groups were additionally supplemented with 60 mg Zn/kg DM, 1000 IU vitamin E and 60 mg/kg + 1000 IU Zn + vitamin E, respectively, from day 60 pre-partum to day 90 post-partum. Blood samples were collected on days -60, -45, -30, -15, -7, -3, 0, 3, 7, 15, 30, 45, 60, 90 and 120 with respect to day of parturition and analysed for total immunoglobulin (TIG), immunoglobulin G (IgG), interleukin-2 (IL-2), vitamin E (Vit E) and zinc (Zn) status. Before calving, cows showed a decrease in plasma TIG, IgG, IL-2, Vit E and Zn levels. However, increased levels of plasma TIG, IgG, IL-2, Vit E and Zn were observed after calving. After calving, Sahiwal cows supplemented with Zn + Vit E had higher plasma TIG, IgG and IL-2 in comparison with cows of control and Zn + Vit E-fed groups. In the present study, plasma vitamin E level was higher in Vit E-fed and Zn + Vit E-fed cows; however, zinc level was higher in Zn- and Zn + Vit E-supplemented cows. In conclusion, a reduced immune response during peripartum period in Sahiwal cows was ameliorated by dietary vitamin E and zinc supplementation. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  15. Novel, high-activity hydroprocessing catalysts: Iron group phosphides

    NASA Astrophysics Data System (ADS)

    Wang, Xianqin

    A series of iron, cobalt and nickel transition metal phosphides was synthesized by means of temperature-programmed reduction (TPR) of the corresponding phosphates. The same materials, Fe2P, CoP and NO, were also prepared on a silica (SiO2) support. The phase purity of these catalysts was established by x-ray diffraction (XRD), and the surface properties were determined by N2 BET specific surface area (Sg) measurements and CO chemisorption. The activities of the silica-supported catalysts were tested in a three-phase trickle bed reactor for the simultaneous hydrodenitrogenation (HDN) of quinoline and hydrodesulfurization (HDS) of dibenzothiophene using a model liquid feed at realistic conditions (30 atm, 370°C). The reactivity studies showed that the nickel phosphide (Ni2P/SiO2) was the most active of the catalysts. Compared with a commercial Ni-Mo-S/gamma-Al 2O3 catalyst at the same conditions, Ni2P/silica had a substantially higher HDS activity (100% vs. 76%) and HDN activity (82% vs. 38%). Because of their good hydrotreating activity, an extensive study of the preparation of silica supported nickel phosphides, Ni2P/SiO 2, was carried out. The parameters investigated were the phosphorus content and the weight loading of the active phase. The most active composition was found to have a starting synthesis Ni/P ratio close to 1/2, and the best loading of this sample on silica was observed to be 18 wt.%. Extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge spectroscopy (XANES) measurements were employed to determine the structures of the supported samples. The main phase before and after reaction was found to be Ni2P, but some sulfur was found to be retained after reaction. A comprehensive scrutiny of the HDN reaction mechanism was also made over the Ni2P/SiO2 sample (Ni/P = 1/2) by comparing the HDN activity of a series of piperidine derivatives of different structure. It was found that piperidine adsorption involved an alpha-H activation

  16. Visible-blind ultraviolet photodiode fabricated by UV oxidation of metallic zinc on p-Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Dongyuan; Uchida, Kazuo; Nozaki, Shinji, E-mail: nozaki@ee.uec.ac.jp

    A UV photodiode fabricated by the UV oxidation of a metallic zinc thin film on p-Si has manifested unique photoresponse characteristics. The electron concentration found by the Hall measurement was 3 × 10{sup 16 }cm{sup −3}, and such a low electron concentration resulted in a low visible photoluminescence. UV illumination enhances the oxidation at low temperatures and decreases the concentration of the oxygen vacancies. The I-V characteristic showed a good rectification with a four-order magnitude difference in the forward and reverse currents at 2 V, and its linear and frequency independent C{sup −2}–V characteristic confirmed an abrupt pn junction. The photoresponse showed a visiblemore » blindness with a responsivity ratio of UV and visible light as high as 100. Such a visible-blind photoresponse was attributed to the optimum thickness of the SiO{sub 2} formed on the Si surface during the UV oxidation at 400 °C. A lower potential barrier to holes at the ZnO/SiO{sub 2} interface facilitates Fowler-Nordheim tunneling of the photo-generated holes during the UV illumination, while a higher potential barrier to electrons efficiently blocks transport of the photo-generated electrons to the ZnO during the visible light illumination. The presence of oxide resulted in a slow photoresponse to the turn-on and off of the UV light. A detailed analysis is presented to understand how the photo-generated carriers contribute step by step to the photocurrent. In addition to the slow photoresponse associated with the SiO{sub 2} interfacial layer, the decay of the photocurrent was found extremely slow after turn-off of the UV light. Such a slow decay of the photocurrent is referred to as a persistent photoconductivity, which is caused by metastable deep levels. It is hypothesized that Zn vacancies form such a deep level, and that the photo-generated electrons need to overcome a thermal-energy barrier for capture. The ZnO film by the UV oxidation at 400 °C was

  17. Efficiency of a zinc lignosulfonate as Zn source for wheat (Triticum aestivum L.) and corn (Zea mays L.) under hydroponic culture conditions.

    PubMed

    Martín-Ortiz, Diego; Hernández-Apaolaza, Lourdes; Gárate, Agustin

    2009-01-14

    The objective of this study was to evaluate the efficiency of a zinc lignosulfonate (ZnLS) as Zn source for wheat and corn plants under hydroponic conditions. The Zn-complexing capacity of three commercial lignosulfonates (byproducts of the paper and pulp industry) was tested, and a LS-NH4, from spruce wood, was selected. Its efficacy as Zn fertilizer for wheat and corn plants was assessed at different pH values (7.0 and 8.0) in comparison with a chelate (ZnEDTA) and an inorganic salt (ZnSO4). For wheat at pH 7.0, it was concluded that the efficacy of the Zn fertilizers followed the sequence Zn-EDTA > Zn-LS approximately ZnSO4 > zero-Zn; and for wheat and corn at pH 8.0, similar results were obtained: Zn-LS > ZnSO4 approximately 0 Zn. These data give evidence that ZnLS could be used as Zn source to the roots of wheat and corn and seems to be more efficient than ZnSO4 to correct Zn deficiency in both plants.

  18. Nonstoichiometric Zn Ferrite and ZnFe2O4/Fe2O3 Composite Spheres: Preparation, Magnetic Properties, and Chromium Removal

    NASA Astrophysics Data System (ADS)

    Hang, Chun-Liang; Yang, Li-Xia; Sun, Chang-Mei; Liang, Ying

    2018-03-01

    Monodisperse and porous nonstoichiometric Zn ferrite can be prepared by a solvothermal method. Such non-Zn ferrite was used to be the precursor for synthesis of ZnFe2O4/Fe2O3 composite via calcination at 600°C for 3 h in air. X-ray powder diffractometer (XRD) and Energy Dispersive Spectrometer (EDS) proved the nonstoichiometry of Zn ferrite synthesized by solvothermal method and the formation of ZnFe2O4/Fe2O3 composite via calcination. TEM image showed that non-Zn ferrite spheres with wormlike nanopore structure were made of primary nanocrystals. BET surface area of non-Zn ferrite was much higher than that of ZnFe2O4/Fe2O3 composite. Saturation magnetization of non-Zn ferrites was significantly higher than that of ZnFe2O4/Fe2O3 composites. Calcination of non-Zn ferrite resulted in the formation of large amount of non-magnetic Fe2O3,which caused a low magnetization of composite. Because of higher BET surface area and higher saturation magnetization, non-Zn ferrite presented better Cr6+ adsorption property than ZnFe2O4/Fe2O3 composites.

  19. Studies on the bioavailability of zinc in humans: intestinal interaction of tin and zinc.

    PubMed

    Solomons, N W; Marchini, J S; Duarte-Favaro, R M; Vannuchi, H; Dutra de Oliveira, J E

    1983-04-01

    Mineral/mineral interactions at the intestinal level are important in animal nutrition and toxicology, but only limited understanding of their extent or importance in humans has been developed. An inhibitory interaction of dietary tin on zinc retention has been recently described from human metabolic studies. We have explored the tin/zinc interaction using the change-in-plasma-zinc-concentration method with a standard dosage of 12.5 mg of zinc as zinc sulfate in 100 ml of Coca-Cola. Sn/Zn ratios of 2:1, 4:1, and 8:1, constituted by addition of 25, 50, and 100 mg of tin as stannous chloride, had no significant overall effect on zinc uptake. The 100-mg dose of tin produced noxious gastrointestinal symptoms. Addition of iron as ferrous sulfate to form ratios of Sn/Fe/Zn of 1:1:1 and 2:2:1 with the standard zinc solution and the appropriate doses of tin produced a reduction of zinc absorption not dissimilar from that seen previously with zinc and iron alone, and addition of picolinic acid did not influence the uptake of zinc from the solution with the 2:2:1 Sn/Fe/Zn ratio.

  20. Electrodeposition of zinc hydroxysulfate nanosheets and reduction to zinc metal microdendrites on polypyrrole films.

    PubMed

    Andreoli, Enrico; Rooney, Denise A; Redington, Wynette; Gunning, Robert; Breslin, Carmel B

    2012-01-01

    Nanothin sheets made of zinc sulfate hydroxide hydrate, ZnSO4[Zn(OH)2]3 x 5H2O, are easily and quickly prepared using an innovative electrochemical route onto polypyrrole-polystyrene sulfonate (PPy-PSS) films. The sheets are characterized using a range of experimental techniques. The deposits are formed on the film surface with instantaneous nucleation to grow into a network of entangled nanosheets. The effect of the experimental conditions on the deposition is reported. Interestingly, the formation of the nanosheets is observed on PPy-PSS films only, and not on films doped with other sulfate/sulfonate dopants. The zinc nanosheets can be easily electrochemically reduced to metallic zinc microdentrites.

  1. End-of-life Zn-MnO2 batteries: electrode materials characterization.

    PubMed

    Cabral, Marta; Pedrosa, F; Margarido, F; Nogueira, C A

    2013-01-01

    Physical and chemical characterization of several sizes and shapes of alkaline and saline spent Zn-MnO2 batteries was carried out, aiming at contributing for a better definition of the applicable recycling processes. The characterization essays included the mass balance of the components, cathode and anode elemental analysis, the identification of zinc and manganese bearing phases and the morphology analysis of the electrode particles. The electrode materials correspond to 64-79% of the total weigh of the batteries, with the cathodes having clearly the highest contribution (usually more than 50%). The steel components, mainly from the cases, are also important (17-30%). Elemental analysis showed that the electrodes are highly concentrated in zinc (from 48-87% in anodes) and manganese (from 35-50% in cathodes). X-Ray powder diffraction allowed for identifying several phases in the electrodes, namely zinc oxide, in the anodes of all the types of saline and alkaline batteries tested, while zinc hydroxide chloride and ammine zinc chloride only appear in some types of saline batteries. The manganese found in the cathode materials is present as two main phases, MnO x Mn2O3 and ZnO x Mn2O3, the latter corroborating that zinc migration from anode to cathode occurs during the batteries lifespan. A unreacted MnO2 phase was also found presenting a low crystalline level. Leaching trials with diluted HCI solutions of alkaline and saline battery samples showed that all zinc species are reactive attaining easily over than 90% leaching yields, and about 30% of manganese, present as Mn(II/III) forms. The MnO2 phase is less reactive and requires higher temperatures to achieve a more efficient solubilization.

  2. Comparison of porous and nano zinc oxide for replacing high-dose dietary regular zinc oxide in weaning piglets

    PubMed Central

    Long, Lina; Chen, Jiashun; Zhang, Yonggang; Liang, Xiao

    2017-01-01

    The aim of this study was to compare the effect of dietary supplementation with low dose of porous and nano zinc oxide (ZnO) on weaning piglets, and to evaluate the possibility of using them as an alternative to high dose of regular ZnO. Piglets were randomly allocated into four treatment groups fed with four diets: (1) basal diet (NC), (2) NC+ 3000 mg/kg ZnO (PC), (3) NC + 500 mg/kg porous ZnO (HiZ) and (4) NC + 500 mg/kg nano ZnO (ZNP). The result showed that piglets in HiZ group had less diarrhea than ZNP group (P < 0.05). Besides, there was no significant difference between PC, HiZ and ZNP groups in terms of serum malondialdeyhde (MDA) concentration and glutathione peroxidase (GSH-Px) activity (P > 0.05). Analysis of trace metal elements revealed that piglets fed with high dose of regular ZnO had the highest Zn level in kidney (P < 0.05), which may induce kidney stone formation. Additionally, a decrease in ileal crypt depth was observed in PC, HiZ and ZNP group, suggesting an effective protection against intestinal injury. Results of mRNA analysis in intestine showed that ZNP supplementation had better effects on up-regulated trefoil factor 3 (TFF3) and nuclear factor erythroid 2-related factor 2 (Nrf2) levels in duodenum and jejunum than HiZ did (P < 0.05), implying that nano ZnO may possess higher anti-inflammatory capacity than porous ZnO. In conclusion, dietary supplementation with low dose of porous and nano ZnO had similar (even better) effect on improving growth performance and intestinal morphology, reducing diarrhea and intestinal inflammatory as high dose of regular ZnO in weaning piglets. Compared with nano ZnO, porous ZnO had better performance on reducing diarrhea but less effect on up-regulation of intestinal TFF3 and Nrf2. PMID:28792520

  3. Zn1-xAlxO:Cu2O transparent metal oxide composite thin films by sol gel method

    NASA Astrophysics Data System (ADS)

    AlHammad, M. S.

    2017-05-01

    We have synthesized undoped zinc oxide (ZnO) and Cu2O doped Zn1-XAlXO (AZO; Al/Zn = 1.5 at.%) metal oxide films by sol-gel spin coating method. Atomic force microscopy results indicate that the Zn1-xAlxO:Cu2O is are formed form the fibers. The surface morphology of the films is found to depend on the concentration of Cu2O. The optical constants such as band gap, Urbach energy, refractive index, extinction coefficient and dielectric constants of the films were determined. The transmittance spectra shows that all the films are highly transparent. The study revealed that undoped ZnO film has direct bang gap of 3.29 eV and the optical band gap of films is increased with doping content. The hot probe measurements indicate that Zn1-xAlxO:Cu2O transparent metal oxide composite thin films exhibited p-type electrical conductivity.

  4. Detection of Cu2Zn5SnSe8 and Cu2Zn6SnSe9 phases in co-evaporated Cu2ZnSnSe4 thin-films

    NASA Astrophysics Data System (ADS)

    Schwarz, Torsten; Marques, Miguel A. L.; Botti, Silvana; Mousel, Marina; Redinger, Alex; Siebentritt, Susanne; Cojocaru-Mirédin, Oana; Raabe, Dierk; Choi, Pyuck-Pa

    2015-10-01

    Cu2ZnSnSe4 thin-films for photovoltaic applications are investigated using combined atom probe tomography and ab initio density functional theory. The atom probe studies reveal nano-sized grains of Cu2Zn5SnSe8 and Cu2Zn6SnSe9 composition, which cannot be assigned to any known phase reported in the literature. Both phases are considered to be metastable, as density functional theory calculations yield positive energy differences with respect to the decomposition into Cu2ZnSnSe4 and ZnSe. Among the conceivable crystal structures for both phases, a distorted zinc-blende structure shows the lowest energy, which is a few tens of meV below the energy of a wurtzite structure. A band gap of 1.1 eV is calculated for both the Cu2Zn5SnSe8 and Cu2Zn6SnSe9 phases. Possible effects of these phases on solar cell performance are discussed.

  5. Synaptically evoked Ca2+ release from intracellular stores is not influenced by vesicular zinc in CA3 hippocampal pyramidal neurones.

    PubMed

    Evstratova, Alesya; Tóth, Katalin

    2011-12-01

    The co-release of neuromodulatory substances in combination with classic neurotransmitters such as glutamate and GABA from individual presynaptic nerve terminals has the capacity to dramatically influence synaptic efficacy and plasticity. At hippocampal mossy fibre synapses vesicular zinc is suggested to serve as a cotransmitter capable of regulating calcium release from internal stores in postsynaptic CA3 pyramidal cells. Here we investigated this possibility using combined intracellular ratiometric calcium imaging and patch-clamp recording techniques. In acute hippocampal slices a brief train of mossy fibre stimulation produced a large, delayed postsynaptic Ca(2+) wave that was spatially restricted to the proximal apical dendrites of CA3 pyramidal cells within stratum lucidum. This calcium increase was sensitive to intracellularly applied heparin indicating reliance upon release from internal stores and was triggered by activation of both group I metabotropic glutamate and NMDA receptors. Importantly, treatment of slices with the membrane-impermeant zinc chelator CaEDTA did not influence the synaptically evoked postsynaptic Ca(2+) waves. Moreover, mossy fibre stimulus evoked postsynaptic Ca(2+) signals were not significantly different between wild-type and zinc transporter 3 (ZnT3) knock-out animals. Considered together our data do not support a role for vesicular zinc in regulating mossy fibre evoked Ca(2+) release from CA3 pyramidal cell internal stores.

  6. Synaptically evoked Ca2+ release from intracellular stores is not influenced by vesicular zinc in CA3 hippocampal pyramidal neurones

    PubMed Central

    Evstratova, Alesya; Tóth, Katalin

    2011-01-01

    Abstract The co-release of neuromodulatory substances in combination with classic neurotransmitters such as glutamate and GABA from individual presynaptic nerve terminals has the capacity to dramatically influence synaptic efficacy and plasticity. At hippocampal mossy fibre synapses vesicular zinc is suggested to serve as a cotransmitter capable of regulating calcium release from internal stores in postsynaptic CA3 pyramidal cells. Here we investigated this possibility using combined intracellular ratiometric calcium imaging and patch-clamp recording techniques. In acute hippocampal slices a brief train of mossy fibre stimulation produced a large, delayed postsynaptic Ca2+ wave that was spatially restricted to the proximal apical dendrites of CA3 pyramidal cells within stratum lucidum. This calcium increase was sensitive to intracellularly applied heparin indicating reliance upon release from internal stores and was triggered by activation of both group I metabotropic glutamate and NMDA receptors. Importantly, treatment of slices with the membrane-impermeant zinc chelator CaEDTA did not influence the synaptically evoked postsynaptic Ca2+ waves. Moreover, mossy fibre stimulus evoked postsynaptic Ca2+ signals were not significantly different between wild-type and zinc transporter 3 (ZnT3) knock-out animals. Considered together our data do not support a role for vesicular zinc in regulating mossy fibre evoked Ca2+ release from CA3 pyramidal cell internal stores. PMID:21986206

  7. Ferrate(VI) oxidation of zinc-cyanide complex.

    PubMed

    Yngard, Ria; Damrongsiri, Seelawut; Osathaphan, Khemarath; Sharma, Virender K

    2007-10-01

    Zinc-cyanide complexes are found in gold mining effluents and in metal finishing rinse water. The effect of Zn(II) on the oxidation of cyanide by ferrate(VI) (Fe(VI)O(4)(2-), Fe(VI)) was thus investigated by studying the kinetics of the reaction of Fe(VI) with cyanide present in a potassium salt of a zinc cyanide complex (K(2)Zn(CN)(4)) and in a mixture of Zn(II) and cyanide solutions as a function of pH (9.0-11.0). The rate-law for the oxidation of Zn(CN)(4)(2-) by Fe(VI) was found to be -d[Fe(VI)]/dt=k[Fe(VI)][Zn(CN)(4)(2-)](0.5). The rate constant, k, decreased with an increase in pH. The effect of temperature (15-45 degrees C) on the oxidation was studied at pH 9.0, which gave an activation energy of 45.7+/-1.5kJmol(-1). The cyanide oxidation rate decreased in the presence of the Zn(II) ions. However, Zn(II) ions had no effect on the cyanide removal efficiency by Fe(VI) and the stoichiometry of Fe(VI) to cyanide was approximately 1:1; similar to the stoichiometry in absence of Zn(II) ions. The destruction of cyanide by Fe(VI) resulted in cyanate. The experiments on removal of cyanide from rinse water using Fe(VI) demonstrated complete conversion of cyanide to cyanate.

  8. Evaluation of layered zinc hydroxide nitrate and zinc/nickel double hydroxide salts in the removal of chromate ions from solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bortolaz de Oliveira, Henrique; Wypych, Fernando, E-mail: wypych@ufpr.br

    Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO{sub 4}{sup 2−}/g of material, respectively. Although the removal values obtained for Zn/NiHN andmore » Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO{sub 4}{sup 2−}/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated. - Highlights: • Zinc hydroxide nitrate and Zn/Ni hydroxide nitrate or acetate were synthesized. • The interlayer anions were replaced by chromate anions at pH=8.0. • Only Zn/Ni hydroxide nitrate or acetate have the structure preserved after exchange. • Fast exchange reaction and high capacity of chromate removal were observed. • Magnetic materials were obtained to facilitate the solids removal the from solutions.« less

  9. Molecular docking and dynamics simulation study on the influence of Zn2+ on the binding modes of aggrecanase with its inhibitors.

    PubMed

    Suganya, Panneer S R; Kalva, Sukesh; Saleena, Lilly M

    2014-01-01

    Zinc plays a vital role in structural organization, regulation of function and stabilization of the folded protein, which ultimately activates or inactivates the binding sites of the protein. Its transition makes a major change in the protein and its binding affinity. The ligand binding aggrecanases can be influenced by Zn2+ ions; therefore the study focuses on checking the binding mode in the presence and absence of zinc using Docking and Molecular dynamics simulation. The crystal structure with zinc was considered as wild type (ADAMTS-4-1Zn2+, ADAMTS-5-1Zn2+) and the crystal structure without zinc was considered as the mutant type (ADAMTS-4-0Zn2+, ADAMTS-5-0Zn2+). Mutations were made manually by deleting the zinc atom. ADAMTS-4-1Zn2+ had the best Glide score of -12.66 kcal·mol−1, whereas ADAMTS-4-0Zn2+ had -11.69 kcal·mol−1. ADAMTS-4-1Zn2+ had the best glide energy of -72.29 kcal·mol−1, whereas ADAMTS-4-0Zn2+ had-68.44 kcal·mol−1. ADAMTS-4-1Zn2+ had the best glide e-model of -116.34, whereas ADAMTS-4-0Zn2+ had -104.264. The RMSD value for ADAMTS-4-1Zn2+ and ADAMTS-4-0Zn2+ was 1.9. These results suggested that the absence of zinc decreases the binding affinity of ADAMTS-4 with its inhibitor. ADAMTS-5-1Zn2+ had the best Glide score of -8.32 kcal·mol−1, whereas ADAMTS-5-0Zn2+ had -6.62 kcal·mol−1. ADAMTS-5-1Zn2+ had the best glide energy of -70.28 kcal·mol−1, whereas ADAMTS-5-0Zn2+ had -66.02 kcal·mol−1. ADAMTS-5-1Zn2+ had the best glide e-model of-108.484, whereas ADAMTS-5-0Zn2+ had -93.81. The RMSD value for ADAMTS-5-1Zn2+ and ADAMTS-5-0Zn2+ was 0.48Å. These results confirmed that the absence of zinc decreased the binding affinity of ADAMTS-5 with its inhibitor whereas the presence extended the docking energy range and strengthened the binding affinity. Per-residue interaction study, MM-GBSA and Molecular Dynamics showed that all the four complexes underwent extensive structural changes whereas the complex with zinc was stable throughout

  10. Effect of modifying agents on the hydrophobicity and yield of zinc borate synthesized by zinc oxide

    NASA Astrophysics Data System (ADS)

    Acarali, Nil Baran; Bardakci, Melek; Tugrul, Nurcan; Derun, Emek Moroydor; Piskin, Sabriye

    2013-06-01

    The aim of this study was to synthesize zinc borate using zinc oxide, reference boric acid, and reference zinc borate (reference ZB) as the seed, and to investigate the effects of modifying agents and reaction parameters on the hydrophobicity and yield, respectively. The reaction parameters include reaction time (1-5 h), reactant ratio (H3BO3/ZnO by mass: 2-5), seed ratio (seed crystal/(H3BO3+ZnO) by mass: 0-2wt%), reaction temperature (50-120°C), cooling temperature (10-80°C), and stirring rate (400-700 r/min); the modifying agents involve propylene glycol (PG, 0-6wt%), kerosene (1wt%-6wt%), and oleic acid (OA, 1wt%-6wt%) with solvents (isopropyl alcohol (IPA), ethanol, and methanol). The results of reaction yield obtained from either magnetically or mechanically stirred systems were compared. Zinc borate produced was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and contact angle tests to identify the hydrophobicity. In conclusion, zinc borate is synthesized successfully under the optimized reaction conditions, and the different modifying agents with various solvents affect the hydrophobicity of zinc borate.

  11. Luminescence, magnetic and vibrational properties of novel heterometallic niccolites [(CH3)2NH2][CrIIIMII(HCOO)6] (MII=Zn, Ni, Cu) and [(CH3)2NH2][AlIIIZnII(HCOO)6]:Cr3+

    NASA Astrophysics Data System (ADS)

    Mączka, Mirosław; Pietraszko, Adam; Pikul, Adam; Hermanowicz, Krzysztof

    2016-01-01

    We report synthesis of three novel heterometallic MOFs, [(CH3)2NH2][CrIIIMII(HCOO)6] with M=Zn (DMCrZn), Ni (DMCrNi) and Cu (DMCrCu), crystallizing in the niccolite type structure. We also successfully synthesized [(CH3)2NH2][AlCu(HCOO)6] (DMAlCu) and [(CH3)2NH2][AlZn(HCOO)6] doped with 5.8 mol% of Cr3+ (DMAlZn: Cr). X-ray diffraction shows that DMCrZn, DMCrNi and DMAlZn: Cr3+ crystallize in the trigonal structure (space group P 3 bar1c) while DMCrCu and DMAlCu crystallize in the monoclinic structure (space group C2/c). Magnetic investigation of the chromium-based niccolites reveals no magnetic order in DMCrZn and ferromagnetic order in DMCrNi and DMCrCu below 23 and 11 K, respectively. Optical studies show that DMCrZn and DMAlZn: Cr samples exhibit efficient emission typical for chromium ions located at sites of strong crystal field with the Dq/B values 2.62 and 2.67, respectively. We also discuss role of geometrical parameters in stability of the perovskite and niccolite structures.

  12. Zinc protoporphyrin-IX stimulates tumor immunity by disrupting the immunosuppressive enzyme indoleamine 2,3-dioxygenase

    PubMed Central

    Metz, Richard; DuHadaway, James B.; Rust, Sonja; Munn, David H.; Muller, Alexander J.; Mautino, Mario; Prendergast, George C.

    2010-01-01

    The tryptophan catabolic enzyme indoleamine 2,3-dioxygenase (IDO) has emerged as an important driver of immune escape in a growing number of cancers and cancer-associated chronic infections. In this study, we define novel immunotherapeutic applications for the heme precursor compound zinc protoporphyrin IX (ZnPP) based on our discovery that it is a potent small molecule inhibitor of IDO. Inhibitory activity was determined using in vitro and in-cell enzyme assays as well as a novel in vivo pharmacodynamic system. An irreversible mechanism of inhibition was documented consistent with competition for heme binding in newly synthesized cellular protein. siRNA methodology and an IDO-deficient mouse strain were used to verify specificity as an IDO inhibitor. In a preclinical model of melanoma, ZnPP displayed antitumor properties that relied upon T cell function and IDO integrity. ZnPP also phenocopied the known antitumor properties of IDO inhibitors in preclinical models of skin and breast carcinoma. Our results suggest clinical evaluation of ZnPP as an adjuvant immunochemotherapy in chronic infections and cancers where there is emerging recognition of a pathophysiological role for IDO dysregulation. PMID:20530717

  13. The electrical properties of n-ZnO/p-SnO heterojunction diodes

    NASA Astrophysics Data System (ADS)

    Javaid, K.; Xie, Y. F.; Luo, H.; Wang, M.; Zhang, H. L.; Gao, J. H.; Zhuge, F.; Liang, L. Y.; Cao, H. T.

    2016-09-01

    In the present work, n-type zinc oxide (ZnO) and p-type tin monoxide (SnO) based heterostructure diodes were fabricated on an indium-tin-oxide glass using the radio frequency magnetron sputtering technique. The prepared ZnO/SnO diodes exhibited a typical rectifying behavior, with a forward to reverse current ratio about 500 ± 5 at 2 V and turn on voltage around 1.6 V. The built-in voltage of the diode was extracted to be 0.5 V based on the capacitance-voltage (C-V) measurement. The valence and conduction band offsets were deliberated through the band energy diagram of ZnO/SnO heterojunction, as 1.08 eV and 0.41 eV, respectively. The potential barrier-dependent carrier transportation mechanism across the space charge region was also investigated.

  14. Effects of O2 plasma post-treatment on ZnO: Ga thin films grown by H2O-thermal ALD

    NASA Astrophysics Data System (ADS)

    Lee, Yueh-Lin; Chuang, Jia-Hao; Huang, Tzu-Hsuan; Ho, Chong-Long; Wu, Meng-Chyi

    2013-03-01

    Transparent conducting oxides have been widely employed in optoelectronic devices using the various deposition methods such as sputtering, thermal evaporator, and e-gun evaporator technologies.1-3 In this work, gallium doped zinc oxide (ZnO:Ga) thin films were grown on glass substrates via H2O-thermal atomic layer deposition (ALD) at different deposition temperatures. ALD-GZO thin films were constituted as a layer-by-layer structure by stacking zinc oxides and gallium oxides. Diethylzinc (DEZ), triethylgallium (TEG) and H2O were used as zinc, gallium precursors and oxygen source, respectively. Furthermore, we investigated the influences of O2 plasma post-treatment power on the surface morphology, electrical and optical property of ZnO:Ga films. As the result of O2 plasma post-treatment, the characteristics of ZnO:Ga films exhibit a smooth surface, low resistivity, high carrier concentration, and high optical transmittance in the visible spectrum. However, the transmittance decreases with O2 plasma power in the near- and mid-infrared regions.

  15. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chibli, H.; Carlini, L.; Park, S.

    Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to whatmore » is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.« less

  16. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation.

    PubMed

    Chibli, Hicham; Carlini, Lina; Park, Soonhyang; Dimitrijevic, Nada M; Nadeau, Jay L

    2011-06-01

    Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to what is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.

  17. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation

    NASA Astrophysics Data System (ADS)

    Chibli, Hicham; Carlini, Lina; Park, Soonhyang; Dimitrijevic, Nada M.; Nadeau, Jay L.

    2011-06-01

    Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to what is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.

  18. Two mechanisms of oral malodor inhibition by zinc ions

    PubMed Central

    Suzuki, Nao; Nakano, Yoshio; Watanabe, Takeshi; Yoneda, Masahiro; Hirofuji, Takao; Hanioka, Takashi

    2018-01-01

    Abstract Objectives The aim of this study was to reveal the mechanisms by which zinc ions inhibit oral malodor. Material and Methods The direct binding of zinc ions to gaseous hydrogen sulfide (H2S) was assessed in comparison with other metal ions. Nine metal chlorides and six metal acetates were examined. To understand the strength of H2S volatilization inhibition, the minimum concentration needed to inhibit H2S volatilization was determined using serial dilution methods. Subsequently, the inhibitory activities of zinc ions on the growth of six oral bacterial strains related to volatile sulfur compound (VSC) production and three strains not related to VSC production were evaluated. Results Aqueous solutions of ZnCl2, CdCl2, CuCl2, (CH3COO)2Zn, (CH3COO)2Cd, (CH3COO)2Cu, and CH3COOAg inhibited H2S volatilization almost entirely. The strengths of H2S volatilization inhibition were in the order Ag+ > Cd2+ > Cu2+ > Zn2+. The effect of zinc ions on the growth of oral bacteria was strain-dependent. Fusobacterium nucleatum ATCC 25586 was the most sensitive, as it was suppressed by medium containing 0.001% zinc ions. Conclusions Zinc ions have an inhibitory effect on oral malodor involving the two mechanisms of direct binding with gaseous H2S and suppressing the growth of VSC-producing oral bacteria. PMID:29364345

  19. Unravelling the origin of the giant Zn deficiency in wurtzite type ZnO nanoparticles

    PubMed Central

    Renaud, Adèle; Cario, Laurent; Rocquelfelte, Xavier; Deniard, Philippe; Gautron, Eric; Faulques, Eric; Das, Tilak; Cheviré, François; Tessier, Franck; Jobic, Stéphane

    2015-01-01

    Owing to its high technological importance for optoelectronics, zinc oxide received much attention. In particular, the role of defects on its physical properties has been extensively studied as well as their thermodynamical stability. In particular, a large concentration of Zn vacancies in ZnO bulk materials is so far considered highly unstable. Here we report that the thermal decomposition of zinc peroxide produces wurtzite-type ZnO nanoparticles with an extraordinary large amount of zinc vacancies (>15%). These Zn vacancies segregate at the surface of the nanoparticles, as confirmed by ab initio calculations, to form a pseudo core-shell structure made of a dense ZnO sphere coated by a Zn free oxo-hydroxide mono layer. In others terms, oxygen terminated surfaces are privileged over zinc-terminated surfaces for passivation reasons what accounts for the Zn off-stoichiometry observed in ultra-fine powdered samples. Such Zn-deficient Zn1-xO nanoparticles exhibit an unprecedented photoluminescence signature suggesting that the core-shell-like edifice drastically influences the electronic structure of ZnO. This nanostructuration could be at the origin of the recent stabilisation of p-type charge carriers in nitrogen-doped ZnO nanoparticles. PMID:26333510

  20. Intracellular uptake and behavior of two types zinc protoporphyrin (ZnPP) micelles, SMA-ZnPP and PEG-ZnPP as anticancer agents; unique intracellular disintegration of SMA micelles.

    PubMed

    Nakamura, Hideaki; Fang, Jun; Gahininath, Bharate; Tsukigawa, Kenji; Maeda, Hiroshi

    2011-11-07

    SMA-ZnPP and PEG-ZnPP are micellar drugs, encapsulating zinc protoporphyrin IX (ZnPP) with styrene maleic acid copolymer (SMA) and covalent conjugate of ZnPP with polyethylene glycol (PEG) respectively. Their intracellular uptake rate and subcellular localization were investigated. We found SMA-ZnPP showed higher and more efficient (about 2.5 times) intracellular uptake rate than PEG-ZnPP, although both SMA-ZnPP and PEG-ZnPP micelles were localized at endoplasmic reticulum (ER) and inhibited the target enzyme heme oxygenase 1 (HO-1) similarly. Both micellar ZnPP were taken up into the tumor cells by endocytosis. Furthermore SMA-ZnPP and PEG-ZnPP were examined for their drug releasing mechanisms. Liberation of ZnPP from the SMA micelle appears to depend on cellular amphiphilic components such as lecithin, while that for PEG-ZnPP depends on hydrolytic cleavage. These results indicate that these micelle formulations make water insoluble ZnPP to water soluble practical anticancer agents. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Kinetic Aspects of Leaching Zinc from Waste Galvanizing Zinc by Using Hydrochloric Acid Solutions

    NASA Astrophysics Data System (ADS)

    Sminčáková, Emília; Trpčevská, Jarmila; Pirošková, Jana

    2017-10-01

    In this work, the results of acid leaching of flux skimmings coming from two plants are presented. Sample A contained two phases, Zn(OH)Cl and NH4Cl. In sample B, the presence of three phases, Zn5(OH)8Cl2·H2O, (NH4)2(ZnCl4) and ZnCl2(NH3)2, was proved. The aqueous solution of hydrochloric acid and distilled water was used as the leaching medium. The effects of the leaching time, temperature and concentration of the leaching medium on the zinc extraction were investigated. The apparent activation energy, E a = 4.61 kJ mol-1, and apparent reaction order n = 0.18 for sample A, and the values E a = 6.28 kJ mol-1 and n = 0.33 for sample B were experimentally determined. Zinc leaching in acid medium is a diffusion-controlled process.

  2. Binding of the Zn2+ ion to ferric uptake regulation protein from E. coli and the competition with Fe2+ binding: a molecular modeling study of the effect on DNA binding and conformational changes of Fur

    NASA Astrophysics Data System (ADS)

    Jabour, Salih; Hamed, Mazen Y.

    2009-04-01

    The three dimensional structure of Ferric uptake regulation protein dimer from E. coli, determined by molecular modeling, was docked on a DNA fragment (iron box) and Zn2+ ions were added in two steps. The first step involved the binding of one Zn2+ ion to what is known as the zinc site which consists of the residues Cys 92, Cys 95, Asp 137, Asp141, Arg139, Glu 140, His 145 and His 143 with an average metal-Nitrogen distance of 2.5 Å and metal-oxygen distance of 3.1-3.2 Å. The second Zn2+ ion is bound to the iron activating site formed from the residues Ile 50, His 71, Asn 72, Gly 97, Asp 105 and Ala 109. The binding of the second Zn2+ ion strengthened the binding of the first ion as indicated by the shortening of the zinc-residue distances. Fe2+, when added to the complex consisting of 2Zn2+/Fur dimer/DNA, replaced the Zn2+ ion in the zinc site and when a second Fe2+ was added, it replaced the second zinc ion in the iron activating site. The binding of both zinc and iron ions induced a similar change in Fur conformations, but shifted residues closer to DNA in a different manner. This is discussed along with a possible role for the Zn2+ ion in the Fur dimer binding of DNA in its repressor activity.

  3. Zinc in Cellular Regulation: The Nature and Significance of "Zinc Signals".

    PubMed

    Maret, Wolfgang

    2017-10-31

    In the last decade, we witnessed discoveries that established Zn 2+ as a second major signalling metal ion in the transmission of information within cells and in communication between cells. Together with Ca 2+ and Mg 2+ , Zn 2+ covers biological regulation with redox-inert metal ions over many orders of magnitude in concentrations. The regulatory functions of zinc ions, together with their functions as a cofactor in about three thousand zinc metalloproteins, impact virtually all aspects of cell biology. This article attempts to define the regulatory functions of zinc ions, and focuses on the nature of zinc signals and zinc signalling in pathways where zinc ions are either extracellular stimuli or intracellular messengers. These pathways interact with Ca 2+ , redox, and phosphorylation signalling. The regulatory functions of zinc require a complex system of precise homeostatic control for transients, subcellular distribution and traffic, organellar homeostasis, and vesicular storage and exocytosis of zinc ions.

  4. Effect of multiple deposition of NiO layer on the performance of inverted type organic solar cell based on ZnO/P3HT:PCBM

    NASA Astrophysics Data System (ADS)

    Sabri, Nasehah Syamin; Lim, Eng Liang; Yap, Chi Chin; Yahaya, Muhammad; Salleh, Muhamad Mat; Jumali, Mohammad Hafizuddin Haji

    2017-05-01

    In this work, the effect of multiple deposition of nickel oxide (NiO) hole transport layer (HTL) on the performance of inverted type organic solar cell with a configuration of fluorine tin oxide (FTO)/zinc oxide (ZnO) nanorods/ poly(3-hexylthiopene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM)/NiO/silver (Ag) was investigated. The NiO nanoparticles solution was spin-coated on top of the photoactive layer (P3HT:PCBM) prior to deposition of Ag electrode. Different numbers of NiO layers (1, 2, and 4) were deposited on the photoactive layer to obtain the optimum surface morphology of HTL. The device with 2 layers of NiO exhibited the optimum power conversion efficiency of 1.10%. It is believed that the optimum NiO deposition layer gives the complete coverage at photoactive layer and forms ohmic contact between the photoactive layer and Ag electrode.

  5. Charge compensation mechanisms in favor of the incorporation of the Eu3+ ion into the ZnO host lattice

    NASA Astrophysics Data System (ADS)

    Baira, M.; Bekhti-Siad, A.; Hebali, K.; Bouhani-Benziane, H.; Sahnoun, M.

    2018-05-01

    Eu3+ doped phosphors with charge compensation are potential candidates of red emitting phosphors for lamp applications. Charge compensation improves the luminescence performance of the material. The charge compensation can most probably be achieved by three possible mechanisms: (a) two Zn2+ ions are replaced by one Eu3+ ions and one monovalent cation, 2Zn2+ →Eu3++ Li+, where Li+ is acting as a charge compensator; (b) the charge compensation is provided by a zinc vacancy (VZn) defects, 3Zn2+ → 2Eu3++ VZn, the subscript Zn denotes an ion in a normal zinc site in the lattice; (c) two Zn2+ ions are replaced by one Eu3+ ions with the presence of interstitial oxygen (Oi), 2Zn2+ → 2Eu3++ Oi. Electronic structures of the crystals corresponding to the three models are evaluated by the first-principles quantum mechanical calculations based on the density functional theory. It is found that the charge compensator defects make Eu3+ doping in ZnO energetically more favorable. They break the local symmetry around the Eu3+ ion and lead to deep states below the empty upper band, the conduction band that could facilitate intra-4f shell transitions, which can obviously improve the emission intensity of Eu3+-doped ZnO. Therefore, the effect of these defects on the host crystals electronic band states relative to the Eu3+ states is reported, since both electron transfer and electronically energy transfer processes enhance the performance of optoelectronic devices based on this material. These theoretical insights are helpful for designing rare-earth doped oxide materials with high photoluminescence (PL) performance.

  6. Functional studies of Drosophila zinc transporters reveal the mechanism for dietary zinc absorption and regulation

    PubMed Central

    2013-01-01

    Background Zinc is key to the function of many proteins, but the process of dietary zinc absorption is not well clarified. Current knowledge about dietary zinc absorption is fragmented, and mostly derives from incomplete mammalian studies. To gain a comprehensive picture of this process, we systematically characterized all zinc transporters (that is, the Zip and ZnT family members) for their possible roles in dietary zinc absorption in a genetically amenable model organism, Drosophila melanogaster. Results A set of plasma membrane-resident zinc transporters was identified to be responsible for absorbing zinc from the lumen into the enterocyte and the subsequent exit of zinc to the circulation. dZip1 and dZip2, two functionally overlapping zinc importers, are responsible for absorbing zinc from the lumen into the enterocyte. Exit of zinc to the circulation is mediated through another two functionally overlapping zinc exporters, dZnT1, and its homolog CG5130 (dZnT77C). Somewhat surprisingly, it appears that the array of intracellular ZnT proteins, including the Golgi-resident dZnT7, is not directly involved in dietary zinc absorption. By modulating zinc status in different parts of the body, we found that regulation of dietary zinc absorption, in contrast to that of iron, is unresponsive to bodily needs or zinc status outside the gut. The zinc transporters that are involved in dietary zinc absorption, including the importers dZip1 and dZip2, and the exporter dZnT1, are respectively regulated at the RNA and protein levels by zinc in the enterocyte. Conclusions Our study using the model organism Drosophila thus starts to reveal a comprehensive sketch of dietary zinc absorption and its regulatory control, a process that is still incompletely understood in mammalian organisms. The knowledge gained will act as a reference for future mammalian studies, and also enable an appreciation of this important process from an evolutionary perspective. PMID:24063361

  7. Simultaneous growth of pure hyperbranched Zn3As2 structures and long Ga2O3 nanowires.

    PubMed

    Li, Jianye; Wang, Lung-Shen; Buchholz, D Bruce; Chang, Robert P H

    2009-05-01

    Through a facile and highly repeatable chemical vapor method, pure three-dimensional hyperbranched Zn(3)As(2) structures and ultralong Ga(2)O(3) nanowires were simultaneously grown with controllable locations in the same experiment. The hyperbranched Zn(3)As(2) consists of cone-shaped submicro-/nanowires and has a single-crystalline tetragonal structure. This is the first report of nano Zn(3)As(2) and hyperbranched Zn(3)As(2) structures. The as-grown Ga(2)O(3) nanowires are monoclinic single crystals. A vapor-solid-solid mechanism is suggested for the growth of the Ga(2)O(3) nanowires, and a vapor-solid mechanism, for the Zn(3)As(2) structures.

  8. Extracellular zinc and ATP-gated P2X receptor calcium entry channels: New zinc receptors as physiological sensors and therapeutic targets.

    PubMed

    Schwiebert, Erik M; Liang, Lihua; Cheng, Nai-Lin; Williams, Clintoria Richards; Olteanu, Dragos; Welty, Elisabeth A; Zsembery, Akos

    2005-12-01

    In this review, we focus on two attributes of P2X receptor channel function, one essential and one novel. First, we propose that P2X receptors are extracellular sensors as well as receptors and ion channels. In particular, the large extracellular domain (that comprises 70% of the molecular mass of the receptor channel protein) lends itself to be a cellular sensor. Moreover, its exquisite sensitivity to extracellular pH, ionic strength, and multiple ligands evokes the function of a sensor. Second, we propose that P2X receptors are extracellular zinc receptors as well as receptors for nucleotides. We provide novel data in multiple publications and illustrative data in this invited review to suggest that zinc triggers ATP-independent activation of P2X receptor channel function. In this light, P2X receptors are the cellular site of integration between autocrine and paracrine zinc signaling and autocrine and paracrine purinergic signaling. P2X receptors may sense changes in these ligands as well as in extracellular pH and ionic strength and transduce these sensations via calcium and/or sodium entry and changes in membrane potential.

  9. Role of H2O2 in the Oxidative Effects of Zinc Exposure in Human Airway Epithelial Cells

    EPA Science Inventory

    Human exposure to particulate matter (PM) is a global environmental health concern. Zinc (Zn(2+)) is a ubiquitous respiratory toxicant that has been associated with PM health effects. However, the molecular mechanism of Zn(2+) toxicity is not fully understood. H202 and Zn(2+) hav...

  10. Studies of high temperature ternary phases in mixed-metal-rich early transition metal sulfide and phosphide systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marking, Gregory Allen

    1994-01-04

    Investigations of ternary mixed early transition metal-rich sulfide and phosphide systems resulted in the discovery of new structures and new phases. A new series of Zr and Hf - group V transition metal - sulfur K-phases was synthesized and crystallographically characterized. When the group V transition metal was Nb or Ta, the unit cell volume was larger than any previously reported K-phase. The presence of adventitious oxygen was determined in two K-phases through a combination of neutron scattering and X-ray diffraction experiments. A compound Hf 10Ta 3S 3 was found to crystallize in a new-structure type similar to the knownmore » gamma brasses. This structure is unique in that it is the only reported "stuffed" gamma-brass type structure. The metal components, Hf and Ta, are larger in size and more electropositive than the metals found in normal gamma brasses (e.g. Cu and Zn) and because of the larger metallic radii, sulfur can be incorporated into the structure where it plays an integral role in stabilizing this phase relative to others. X-ray single-crystal, X-ray powder and neutron powder refinements were performed on this structure. A new structure was found in the ternary Nb-Zr-P system which has characteristics in common with many known early transition metal-rich sulfides, selenides, and phosphides. This structure has the simplest known interconnection of the basic building blocks known for this structural class. Anomalous scattering was a powerful tool for differentiating between Zr and Nb when using Mo Kα X-radiation. The compounds ZrNbP and HfNbP formed in the space group Prima with the simple Co 2Si structure which is among the most common structures found for crystalline solid materials. Solid solution compounds in the Ta-Nb-P, Ta-Zr-P, Nb-Zr-P, Hf-Nb-P, and Hf-Zr-S systems were crystallographically characterized. The structural information corroborated ideas about bonding in metal-rich compounds.« less

  11. Intercalation studies of zinc hydroxide chloride: Ammonia and amino acids

    NASA Astrophysics Data System (ADS)

    Arízaga, Gregorio Guadalupe Carbajal

    2012-01-01

    Zinc hydroxide chloride (ZHC) is a layered hydroxide salt with formula Zn5(OH)8Cl2·2H2O. It was tested as intercalation matrix for the first time and results were compared with intercalation products of the well-known zinc hydroxide nitrate and a Zn/Al layered double hydroxide. Ammonia was intercalated into ZHC, while no significant intercalation occurred in ZHN. Aspartic acid intercalation was only achieved by co-precipitation at pH=10 with ZHC and pH=8 with zinc hydroxide nitrate. Higher pH resistance in ZHC favored total deprotonation of both carboxylic groups of the Asp molecule. ZHC conferred more thermal protection against Asp combustion presenting exothermic peaks even at 452 °C while the exothermic event in ZHN was 366 °C and in the LDH at 276 °C.

  12. Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stan, Manuela, E-mail: manuela.stan@itim-cj.ro; Popa, Adriana; Toloman, Dana

    The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn{sup 2+} ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes andmore » oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.« less

  13. Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts

    NASA Astrophysics Data System (ADS)

    Stan, Manuela; Popa, Adriana; Toloman, Dana; Silipas, Teofil-Danut; Vodnar, Dan Cristian; Katona, Gabriel

    2015-12-01

    The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn2+ ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes and oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.

  14. Electrodeposition of nanostructured Sn-Zn coatings

    NASA Astrophysics Data System (ADS)

    Salhi, Y.; Cherrouf, S.; Cherkaoui, M.; Abdelouahdi, K.

    2016-03-01

    The electrodeposition of Sn-Zn coating at ambient temperature was investigated. The bath consists of metal salts SnCl2·2H2O and ZnSO4·7H2O and sodium citrate (NaC6H5Na3O7·2H2O) as complexing agent. To prevent precipitation, the pH is fixed at 5. Reducing tin and zinc through Sncit2- and ZnHcit- complex respectively is confirmed by the presence of two cathodic peaks on the voltammogram. The kinetic of tin (II) reduction process is limited by the SnCit2- dissociation. The SEM and TEM observations have showed that the coating consists of a uniform Sn-Zn layer composed of fine grains on which tin aggregates grow up. XRD revealed peaks corresponding to the hexagonal Zn phase and the tetragonal β-Sn phase.

  15. Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion.

    PubMed

    Parker, Joseph F; Chervin, Christopher N; Pala, Irina R; Machler, Meinrad; Burz, Michael F; Long, Jeffrey W; Rolison, Debra R

    2017-04-28

    The next generation of high-performance batteries should include alternative chemistries that are inherently safer to operate than nonaqueous lithium-based batteries. Aqueous zinc-based batteries can answer that challenge because monolithic zinc sponge anodes can be cycled in nickel-zinc alkaline cells hundreds to thousands of times without undergoing passivation or macroscale dendrite formation. We demonstrate that the three-dimensional (3D) zinc form-factor elevates the performance of nickel-zinc alkaline cells in three fields of use: (i) >90% theoretical depth of discharge (DOD Zn ) in primary (single-use) cells, (ii) >100 high-rate cycles at 40% DOD Zn at lithium-ion-commensurate specific energy, and (iii) the tens of thousands of power-demanding duty cycles required for start-stop microhybrid vehicles. Copyright © 2017, American Association for the Advancement of Science.

  16. Zinc and volatile element loss during planetary magma ocean phases

    NASA Astrophysics Data System (ADS)

    Dhaliwal, Jasmeet K.; Day, James M. D.; Moynier, Frédéric

    2016-10-01

    Zinc is a moderately volatile element and a key tracer of volatile depletion on planetary bodies due to lack of significant isotopic fractionation under high-temperature processes. Terrestrial basalts have δ66Zn values similar to some chondrites (+ 0.15 to 0.3‰ where [{66Zn/64Znsample/66Zn/64ZnJMC-Lyon-1} × 1000]) and elevated Zn concentrations (100 ppm). Lunar mare basalts yield a mean δ66Zn value of +1.4 ± 0.5‰ and have low Zn concentrations (~2 ppm). Late-stage lunar magmatic products, such as ferroan anorthosite, Mg-suite and Alkali suite rocks exhibit heavier δ66Zn values (+3 to +6‰). The heavy δ66Zn lunar signature is thought to reflect evaporative loss and fractionation of zinc, either during a giant impact or in a magma ocean phase.We explore conditions of volatile element loss within a lunar magma ocean (LMO) using models of Zn isotopic fractionation that are widely applicable to planetary magma oceans. For the Moon, our objective was to identify conditions that would yield a δ66Zn signature of ~ +1.4‰ within the mantle, assuming a terrestrial mantle zinc starting composition.We examine two cases of zinc evaporative fractionation: (1) lunar surface zinc fractionation that was completed prior to LMO crystallization and (2) lunar surface zinc fractionation that was concurrent with LMO crystallization. The first case resulted in a homogeneous lunar mantle and the second case yielded a stratified lunar mantle, with the greatest zinc isotopic enrichment in late-stage crystallization products. This latter case reproduces the distribution of zinc isotope compositions in lunar materials quite well.We find that hydrodynamic escape was not a dominant process in losing Zn, but that erosion of a nascent lunar atmosphere, or separation of condensates into a proto-lunar crust are possible. While lunar volatile depletion is still possible as a consequence of the giant impact, this process cannot reproduce the variable δ66Zn found in the Moon. Outgassing

  17. Metal chaperones prevent zinc-mediated cognitive decline.

    PubMed

    Adlard, Paul A; Parncutt, Jacqui; Lal, Varsha; James, Simon; Hare, Dominic; Doble, Philip; Finkelstein, David I; Bush, Ashley I

    2015-09-01

    Zinc transporter-3 (ZnT3) protein is responsible for loading zinc into presynaptic vesicles and consequently controls the availability of zinc at the glutamatergic synapse. ZnT3 has been shown to decline with age and in Alzheimer's disease (AD) and is crucially involved in learning and memory. In this study, we utilised whole animal behavioural analyses in the ZnT3 KO mouse line, together with electrophysiological analysis of long-term potentiation in brain slices from ZnT3 KO mice, to show that metal chaperones (clioquinol, 30 mg/kg/day for 6weeks) can prevent the age-dependent cognitive phenotype that characterises these animals. This likely occurs as a result of a homeostatic restoration of synaptic protein expression, as clioquinol significantly restored levels of various pre- and postsynaptic proteins that are critical for normal cognition, including PSD-95; AMPAR and NMDAR2b. We hypothesised that this clioquinol-mediated restoration of synaptic health resulted from a selective increase in synaptic zinc content within the hippocampus. While we demonstrated a small regional increase in hippocampal zinc content using synchrotron x-ray fluorescence microscopy, further sub-region analyses are required to determine whether this effect is seen in other regions of the hippocampal formation that are more closely linked to the synaptic plasticity effects observed in this study. These data support our recent report on the use of a different metal chaperone (PBT2) to prevent normal age-related cognitive decline and demonstrate that metal chaperones are efficacious in preventing the zinc-mediated cognitive decline that characterises ageing and disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Effects of ZnSO4 and Zn-EDTA broadcast or banded to soil on Zn bioavailability in wheat (Triticum aestivum L.) and Zn fractions in soil.

    PubMed

    Zhao, Aiqing; Yang, Shu; Wang, Bini; Tian, Xiaohong; Zhang, Youlin

    2018-08-01

    Human Zn deficiency is prevalent in developing countries, and staple grains are commonly bio-fortified to increase their Zn contents. We measured Zn content, distribution, and bioavailability in calcareous soil and in wheat plants (Triticum aestivum L.) in Shaanxi Province, China, when either an organic Zn-ethylenediaminetetraacetate (Zn-EDTA) or an inorganic zinc sulfate heptahydrate (ZnSO 4 ·7H 2 O) Zn source was banded below the seedbed or broadcasted into soil. Compared with ZnSO 4 ·7H 2 O, Zn-EDTA fertilization produced higher Zn concentration and uptake in wheat plants. However, Zn bioavailability in grain remained low, with [phytate]/[Zn] ratio >15 and the resulting estimated dietary total absorbed zinc (TAZ) < 3 mg Zn/d. ZnSO 4 banded into soil had little short-term effect on grain Zn concentration but had a high residual effect and promoted the maintenance of a high concentration of the Zn fraction bound to loose organic matter (LOM-Zn) in rhizosphere soil. Both ZnSO 4 and Zn-EDTA were more efficient if uniformly mixed through the soil than if banded to soil. Both ZnSO 4 and Zn-EDTA had limited effects on Zn bioavailability in wheat plants due to the high rate of Zn fixation in this calcareous soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. The effect of a toothpaste containing 2% zinc citrate and 0.3% Triclosan on bacterial viability and plaque growth in vivo compared to a toothpaste containing 0.3% Triclosan and 2% copolymer.

    PubMed

    Adams, S E; Theobald, A J; Jones, N M; Brading, M G; Cox, T F; Mendez, A; Chesters, D M; Gillam, D G; Hall, C; Holt, J

    2003-12-01

    To compare the antimicrobial efficacy and effect on plaque growth of a new silica-based fluoride toothpaste containing 2% zinc citrate/ 0.3% Triclosan with a silica-based fluoride toothpaste containing 0.3% Triclosan/2% copolymer. In Study 1, plaque was collected after one week's use of each toothpaste and assessed for bacterial viability, live/ dead ratio and microbial membrane integrity. In study 2, plaque was measured immediately and 18 hours after a single brushing with the specified toothpastes. The 2% zinc citrate/0.3% Triclosan formulation significantly reduced the total number of viable aerobic and anaerobic bacteria (p = 0.0223 and p = 0.0443 respectively) compared to the 0.3% Triclosan/2% copolymer formulation. Both toothpastes increased the bacterial membrane permeability significantly. However, the proportion of live bacteria for the 2% zinc citrate/0.3% Triclosan product was significantly reduced (p < 0.05). Study 2 showed significantly less plaque growth 18 hours after using the 2% zinc citrate/0.3% Triclosan toothpaste compared to the 0.3% Triclosan/2% copolymer toothpaste (p < 0.01). Regular use of a fluoride toothpaste containing 2% zinc citrate and 0.3% Triclosan, significantly reduced the viability of plaque bacteria compared to a fluoride toothpaste containing 0.3% Triclosan/ 2% copolymer 12 hours after brushing. In addition, a clinical plaque growth study confirmed that this anti-microbial efficacy leads to a significant reduction in plaque growth.

  20. Preparation and characterization of nanorod-like TiO2 and ZnO films used for charge-transport buffer layers in P3HT based organic solar cells

    NASA Astrophysics Data System (ADS)

    Thao, Tran Thi; Long, Dang Dinh; Truong, Vo-Van; Dinh, Nguyen Nang

    2016-08-01

    With the aim of findingout the appropriate buffer layers for organic solar cells (OSC), TiO2 and ZnO on ITO/glass were prepared as nanorod-like thin films. The TiO2 films were crystallyzed in the anatase phase and the ZnO films, in the wurtzite structure. The nanorods in both the fims have a similar size of 15 to 20 nm in diameter and 30 to 50 nm in length. The nanorods have an orientation nearly perpendicular to the ITO-substrate surface. From UV-Vis data the bandgap of the TiO2 and ZnO films were determined tobe 3.26 eV and 3.42 eV, respectively. The laminar organic solar cells with added TiO2 and ZnO, namely ITO/TiO2/P3HT:PCBM/LiF/Al (TBD) and ITO/ZnO/P3HT:PCBM/LiF/Al (ZBD)were made for characterization of the energy conversion performance. As a result, comparing to TiO2,the nanorod-likeZnO filmwas found to be a much better buffer layer that made the fill factor improve from a value of 0.60 for TBD to 0.82 for ZBD, and consequently thePCE was enhanced from 0.84 for TBD to 1.17% for ZBD.