Science.gov

Sample records for zinc stannate films

  1. Chemical and thermal stability of the characteristics of filtered vacuum arc deposited ZnO, SnO2 and zinc stannate thin films

    NASA Astrophysics Data System (ADS)

    Çetinörgü, E.; Goldsmith, S.

    2007-09-01

    ZnO, SnO2 and zinc stannate thin films were deposited on commercial microscope glass and UV fused silica substrates using filtered vacuum arc deposition system. During the deposition, the substrate temperature was at room temperature (RT) or at 400 °C. The film structure and composition were determined using x-ray diffraction and x-ray photoelectron spectroscopy, respectively. The transmission of the films in the VIS was 85% to 90%. The thermal stability of the film electrical resistance was determined in air as a function of the temperature in the range 28 °C (RT) to 200 °C. The resistance of ZnO increased from ~ 5000 to 105 Ω when heated to 200 °C, that of SnO2 films increased from 500 to 3900 Ω, whereas that of zinc stannate thin films increased only from 370 to 470 Ω. During sample cooling to RT, the resistance of ZnO and SnO2 thin films continued to rise considerably; however, the increase in the zinc stannate thin film resistance was significantly lower. After cooling to RT, ZnO and SnO2 thin films became practically insulators, while the resistance of zinc stannate was 680 Ω. The chemical stability of the films was determined by immersing in acidic and basic solutions up to 27 h. The SnO2 thin films were more stable in the HCl solution than the ZnO and the zinc stannate thin films; however, SnO2 and zinc stannate thin films that were immersed in the NaOH solution did not dissolve after 27 h.

  2. Cadmium stannate selective optical films for solar energy applications

    NASA Technical Reports Server (NTRS)

    Haacke, G.

    1975-01-01

    Efforts concentrated on reducing the electrical sheet resistance of sputtered cadmium stannate films, installing and testing equipment for spray coating experiments, and sputter deposition of thin cadmium sulfide layers onto cadmium stannate electrodes. In addition, single crystal silicon wafers were coated with cadmium stannate. Work also continued on the development of the backwall CdS solar cell.

  3. Thin transparent conducting films of cadmium stannate

    DOEpatents

    Wu, Xuanzhi; Coutts, Timothy J.

    2001-01-01

    A process for preparing thin Cd.sub.2 SnO.sub.4 films. The process comprises the steps of RF sputter coating a Cd.sub.2 SnO.sub.4 layer onto a first substrate; coating a second substrate with a CdS layer; contacting the Cd.sub.2 SnO.sub.4 layer with the CdS layer in a water- and oxygen-free environment and heating the first and second substrates and the Cd.sub.2 SnO.sub.4 and CdS layers to a temperature sufficient to induce crystallization of the Cd.sub.2 SnO.sub.4 layer into a uniform single-phase spinel-type structure, for a time sufficient to allow full crystallization of the Cd.sub.2 SnO.sub.4 layer at that temperature; cooling the first and second substrates to room temperature; and separating the first and second substrates and layers from each other. The process can be conducted at temperatures less than 600.degree. C., allowing the use of inexpensive soda lime glass substrates.

  4. Photovoltaic devices comprising zinc stannate buffer layer and method for making

    DOEpatents

    Wu, Xuanzhi; Sheldon, Peter; Coutts, Timothy J.

    2001-01-01

    A photovoltaic device has a buffer layer zinc stannate Zn.sub.2 SnO.sub.4 disposed between the semiconductor junction structure and the transparent conducting oxide (TCO) layer to prevent formation of localized junctions with the TCO through a thin window semiconductor layer, to prevent shunting through etched grain boundaries of semiconductors, and to relieve stresses and improve adhesion between these layers.

  5. Humidity Sensor Based on PEDOT:PSS and Zinc Stannate Nano-composite

    NASA Astrophysics Data System (ADS)

    Aziz, Shahid; Chang, Dong Eui; Doh, Yang Hoi; Kang, Chul Ung; Choi, Kyung Hyun

    2015-10-01

    A composite of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and zinc stannate (ZnSnO3) has been introduced for impedance-based humidity sensing, owing to its high sensitivity, good stability, very fast response (˜0.2 s) and recovery time (˜0.2 s), small hysteresis, repeatability, low-cost fabrication and wide range of sensitivity. Both materials were mixed in three different weight percentage ratios, to optimize the performance of the sensors. Best response was observed for 5 wt.% PEDOT:PSS and 5 wt.% ZnSnO3. The impedance of the sensor was dropped immensely from 1.5 MΩ to 50 kΩ by changing relative humidity from 0% to 90%. The reason for this improvement in sensitivity was analyzed by virtue of sensing mechanisms and different characterizations (three dimensional (3D) nano-profiler, optical microscope, and fourier transform infra-red (FTIR) spectroscopy) revealing the surface morphology and chemical structure of the film. Due to its response and ability to sense human breath and skin humidity, it is suitable for environmental, artificial skin and food industry applications.

  6. Synthesis of humidity sensitive zinc stannate nanomaterials and modelling of Freundlich adsorption isotherm model

    NASA Astrophysics Data System (ADS)

    Sharma, Alfa; Kumar, Yogendra; Shirage, Parasharam M.

    2018-04-01

    The chemi-resistive humidity sensing behaviour of as prepared and annealed ZnSnO3 nanoparticles synthesized using a wet chemical synthesis method was investigated. The effect of stirring temperature over the evolution of varied nanomorphology of zinc stannate is in accordance to Ostwald's ripening law. At room temperature, an excellent humidity sensitivity of ˜800% and response/recovery time of 70s./102s. is observed for ZnSnO3 sample within 08-97% relative humidity range. The experimental data observed over the entire range of RH values well fitted with the Freundlich adsorption isotherm model, and revealing two distinct water adsorption regimes. The excellent humidity sensitivity observed in the nanostructures is attributed to Grotthuss mechanism considering the availability and distribution of available adsorption sites. This present result proposes utilization of low cost synthesis technique of ZnSnO3 holds the promising capabilities as potential candidate for the fabrication of next generation humidity sensors.

  7. Preparation of bismuth stannate/silver@silver chloride film samples with enhanced photocatalytic performance and self-cleaning ability.

    PubMed

    Zhao, Xiaojuan; Lv, Xiang; Cui, Hongda; Wang, Tianhe

    2017-12-01

    We report a novel technique to fabricate bismuth stannate/silver@silver chloride (Bi 2 Sn 2 O 7 /Ag@AgCl) films on conventional glass substrates. The film exhibited a remarkable self-cleaning capability against organic dyes under visible light. Porous Bi 2 Sn 2 O 7 (BSO) film was first sintered on a glass substrate, followed by implantation of AgCl in it and photo-induction to produce Ag@AgCl. The degradation of organic dyes and photoelectrochemical studies indicate that, compared with BSO film, Bi 2 Sn 2 O 7 /Ag@AgCl film had a much improved photocatalytic ability, probably due to the enhanced electron transfer efficiency and synergistic effect of visible light absorption of the two semiconductors. The possible mechanism of this marked improvement was investigated and interpreted in terms of electrons and holes separation efficiency and charge circulation routes at the interfaces within the Bi 2 Sn 2 O 7 /Ag@AgCl composite film. The film provided in this study may well have practical applications due to its simplicity of preparation, excellent photocatalytic ability and reasonable stability. Copyright © 2017. Published by Elsevier Inc.

  8. Selectivity shifting behavior of Pd nanoparticles loaded zinc stannate/zinc oxide (Zn2SnO4/ZnO) nanowires sensors

    NASA Astrophysics Data System (ADS)

    Arafat, M. M.; Ong, J. Y.; Haseeb, A. S. M. A.

    2018-03-01

    In this research, the gas sensing behavior of Pd nanoparticles loaded zinc stannate/zinc oxide (Zn2SnO4/ZnO) nanowires were investigated. The Zn2SnO4/ZnO nanowires were grown on Au interdigitated alumina substrate by carbon assisted thermal evaporation process. Pd nanoparticles were loaded on the Zn2SnO4/ZnO nanowires by wet reduction process. The nanowires were characterized by X-ray diffractometer, field emission scanning electron microscope and energy dispersive X-ray spectroscope. The Zn2SnO4/ZnO and Pd nanoparticles loaded Zn2SnO4/ZnO nanowires were investigated for detecting H2, H2S and C2H5OH gases in N2 background. Results revealed that the average diameter and length of as-grown Zn2SnO4/ZnO nanowires were 74 nm and 30 μm, respectively. During wet reduction process,Pd particles having size of 20-60 nm were evenly distributed on the Zn2SnO4/ZnO nanowires. The Zn2SnO4/ZnO nanowires based sensors showed selective response towards C2H5OH whereas Pd nanoparticles loaded Zn2SnO4/ZnO nanowires showed selective response towards H2. The recovery time of the sensors reduced with Pd loading on Zn2SnO4/ZnO nanowires. A mechanism is proposed to elucidate the gas sensing mechanism of Pd nanoparticles loaded Zn2SnO4/ZnO nanowires.

  9. Photovoltaic devices comprising cadmium stannate transparent conducting films and method for making

    DOEpatents

    Wu, X.; Coutts, T.J.; Sheldon, P.; Rose, D.H.

    1999-07-13

    A photovoltaic device is disclosed having a substrate, a layer of Cd[sub 2]SnO[sub 4] disposed on said substrate as a front contact, a thin film comprising two or more layers of semiconductor materials disposed on said layer of Cd[sub 2]SnO[sub 4], and an electrically conductive film disposed on said thin film of semiconductor materials to form a rear electrical contact to said thin film. The device is formed by RF sputter coating a Cd[sub 2]SnO[sub 4] layer onto a substrate, depositing a thin film of semiconductor materials onto the layer of Cd[sub 2]SnO[sub 4], and depositing an electrically conductive film onto the thin film of semiconductor materials. 10 figs.

  10. Photovoltaic devices comprising cadmium stannate transparent conducting films and method for making

    DOEpatents

    Wu, Xuanzhi; Coutts, Timothy J.; Sheldon, Peter; Rose, Douglas H.

    1999-01-01

    A photovoltaic device having a substrate, a layer of Cd.sub.2 SnO.sub.4 disposed on said substrate as a front contact, a thin film comprising two or more layers of semiconductor materials disposed on said layer of Cd.sub.2 SnO.sub.4, and an electrically conductive film disposed on said thin film of semiconductor materials to form a rear electrical contact to said thin film. The device is formed by RF sputter coating a Cd.sub.2 SnO.sub.4 layer onto a substrate, depositing a thin film of semiconductor materials onto the layer of Cd.sub.2 SnO.sub.4, and depositing an electrically conductive film onto the thin film of semiconductor materials.

  11. Process for fabricating polycrystalline semiconductor thin-film solar cells, and cells produced thereby

    DOEpatents

    Wu, Xuanzhi; Sheldon, Peter

    2000-01-01

    A novel, simplified method for fabricating a thin-film semiconductor heterojunction photovoltaic device includes initial steps of depositing a layer of cadmium stannate and a layer of zinc stannate on a transparent substrate, both by radio frequency sputtering at ambient temperature, followed by the depositing of dissimilar layers of semiconductors such as cadmium sulfide and cadmium telluride, and heat treatment to convert the cadmium stannate to a substantially single-phase material of a spinel crystal structure. Preferably, the cadmium sulfide layer is also deposited by radio frequency sputtering at ambient temperature, and the cadmium telluride layer is deposited by close space sublimation at an elevated temperature effective to convert the amorphous cadmium stannate to the polycrystalline cadmium stannate with single-phase spinel structure.

  12. Preparation of silver-activated zinc sulfide thin films

    NASA Technical Reports Server (NTRS)

    Feldman, C.; Swindells, F. E.

    1968-01-01

    Silver improves luminescence and reduces contamination of zinc sulfide phosphors. The silver is added after the zinc sulfide phosphors are deposited in thin films by vapor evaporation, but before calcining, by immersion in a solution of silver salt.

  13. Ion beam sputter deposited zinc telluride films

    NASA Technical Reports Server (NTRS)

    Gulino, D. A.

    1986-01-01

    Zinc telluride is of interest as a potential electronic device material, particularly as one component in an amorphous superlattice, which is a new class of interesting and potentially useful materials. Some structural and electronic properties of ZnTe films deposited by argon ion beam sputter deposition are described. Films (up to 3000 angstroms thick) were deposited from a ZnTe target. A beam energy of 1000 eV and a current density of 4 mA/sq cm resulted in deposition rates of approximately 70 angstroms/min. The optical band gap was found to be approximately 1.1 eV, indicating an amorphous structure, as compared to a literature value of 2.26 eV for crystalline material. Intrinsic stress measurements showed a thickness dependence, varying from tensile for thicknesses below 850 angstroms to compressive for larger thicknesses. Room temperature conductivity measurement also showed a thickness dependence, with values ranging from 1.86 x 10 to the -6th/ohm cm for 300 angstrom film to 2.56 x 10 to the -1/ohm cm for a 2600 angstrom film. Measurement of the temperature dependence of the conductivity for these films showed complicated behavior which was thickness dependent. Thinner films showed at least two distinct temperature dependent conductivity mechanisms, as described by a Mott-type model. Thicker films showed only one principal conductivity mechanism, similar to what might be expected for a material with more crystalline character.

  14. Ion beam sputter deposited zinc telluride films

    NASA Technical Reports Server (NTRS)

    Gulino, D. A.

    1985-01-01

    Zinc telluride is of interest as a potential electronic device material, particularly as one component in an amorphous superlattice, which is a new class of interesting and potentially useful materials. Some structural and electronic properties of ZnTe films deposited by argon ion beam sputter depoairion are described. Films (up to 3000 angstroms thick) were deposited from a ZnTe target. A beam energy of 1000 eV and a current density of 4 mA/sq. cm. resulted in deposition rates of approximately 70 angstroms/min. The optical band gap was found to be approximately 1.1 eV, indicating an amorphous structure, as compared to a literature value of 2.26 eV for crystalline material. Intrinsic stress measurements showed a thickness dependence, varying from tensile for thicknesses below 850 angstroms to compressive for larger thicknesses. Room temperature conductivity measurement also showed a thickness dependence, with values ranging from 1.86 x to to the -6/ohm. cm. for 300 angstrom film to 2.56 x 10 to the -1/ohm. cm. for a 2600 angstrom film. Measurement of the temperature dependence of the conductivity for these films showed complicated behavior which was thickness dependent. Thinner films showed at least two distinct temperature dependent conductivity mechanisms, as described by a Mott-type model. Thicker films showed only one principal conductivity mechanism, similar to what might be expected for a material with more crystalline character.

  15. Study of microstructure and electroluminescence of zinc sulfide thin film

    NASA Astrophysics Data System (ADS)

    Zhao-hong, Liu; Yu-jiang, Wang; Mou-zhi, Chen; Zhen-xiang, Chen; Shu-nong, Sun; Mei-chun, Huang

    1998-03-01

    The electroluminscent zinc sulfide thin film doped with erbium, fabricated by thermal evaporation with two boats, are examined. The surface and internal electronic states of ZnS thin film are measured by means of x-ray diffraction and x-ray photoemission spectroscopy. The information on the relations between electroluminescent characteristics and internal electronic states of the film is obtained. And the effects of the microstructure of thin film doped with rare earth erbium on electroluminescence are discussed as well.

  16. Electrodeposition of zinc hydroxysulfate nanosheets and reduction to zinc metal microdendrites on polypyrrole films.

    PubMed

    Andreoli, Enrico; Rooney, Denise A; Redington, Wynette; Gunning, Robert; Breslin, Carmel B

    2012-01-01

    Nanothin sheets made of zinc sulfate hydroxide hydrate, ZnSO4[Zn(OH)2]3 x 5H2O, are easily and quickly prepared using an innovative electrochemical route onto polypyrrole-polystyrene sulfonate (PPy-PSS) films. The sheets are characterized using a range of experimental techniques. The deposits are formed on the film surface with instantaneous nucleation to grow into a network of entangled nanosheets. The effect of the experimental conditions on the deposition is reported. Interestingly, the formation of the nanosheets is observed on PPy-PSS films only, and not on films doped with other sulfate/sulfonate dopants. The zinc nanosheets can be easily electrochemically reduced to metallic zinc microdentrites.

  17. Metal-Enhanced Fluorescence from Nanoparticulate Zinc Films

    PubMed Central

    Aslan, Kadir; Previte, Michael J.R.; Zhang, Yongxia; Geddes, Chris D.

    2009-01-01

    A detailed study of metal-enhanced fluorescence (MEF) from fluorophores in the blue-to- red spectral region placed in close proximity to thermally evaporated zinc nanostructured films is reported. The zinc nanostructured films were deposited onto glass microscope slides as individual particles and were 1–10 nm in height and 20–100 nm in width, as characterized by Atomic Force Microscopy. The surface plasmon resonance peak of the zinc nanostructured films was ≈ 400 nm. Finite-difference time-domain calculations for single and multiple nanostructures organized in a staggered fashion on a solid support predict, as expected, that the electric fields are concentrated both around and between the nanostructures. Additionally, Mie scattering calculations show that the absorption and scattering components of the extinction spectrum are dominant in the UV and visible spectral ranges, respectively. Enhanced fluorescence emission accompanied by no significant changes in excited state lifetimes of fluorophores with emission wavelengths in the visible blue-to-red spectral range near-to zinc nanostructured films were observed, implying that MEF from zinc nanostructured films is mostly due to an electric field enhancement effect. PMID:19946356

  18. Zinc nitride thin films: basic properties and applications

    NASA Astrophysics Data System (ADS)

    Redondo-Cubero, A.; Gómez-Castaño, M.; García Núñez, C.; Domínguez, M.; Vázquez, L.; Pau, J. L.

    2017-02-01

    Zinc nitride films can be deposited by radio frequency magnetron sputtering using a Zn target at substrate temperatures lower than 250°C. This low deposition temperature makes the material compatible with flexible substrates. The asgrown layers present a black color, polycrystalline structures, large conductivities, and large visible light absorption. Different studies have reported about the severe oxidation of the layers in ambient conditions. Different compositional, structural and optical characterization techniques have shown that the films turn into ZnO polycrystalline layers, showing visible transparency and semi-insulating properties after total transformation. The oxidation rate is fairly constant as a function of time and depends on environmental parameters such as relative humidity or temperature. Taking advantage of those properties, potential applications of zinc nitride films in environmental sensing have been studied in the recent years. This work reviews the state-of-the-art of the zinc nitride technology and the development of several devices such as humidity indicators, thin film (photo)transistors and sweat monitoring sensors.

  19. Combinatorial study of zinc tin oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    McDowell, M. G.; Sanderson, R. J.; Hill, I. G.

    2008-01-01

    Groups of thin-film transistors using a zinc tin oxide semiconductor layer have been fabricated via a combinatorial rf sputtering technique. The ZnO :SnO2 ratio of the film varies as a function of position on the sample, from pure ZnO to SnO2, allowing for a study of zinc tin oxide transistor performance as a function of channel stoichiometry. The devices were found to have mobilities ranging from 2to12cm2/Vs, with two peaks in mobility in devices at ZnO fractions of 0.80±0.03 and 0.25±0.05, and on/off ratios as high as 107. Transistors composed predominantly of SnO2 were found to exhibit light sensitivity which affected both the on/off ratios and threshold voltages of these devices.

  20. Zinc Oxide Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Fortunato, E.; Barquinha, P.; Pimentel, A.; Gonçalves, A.; Marques, A.; Pereira, L.; Martins, R.

    ZnO thin film transistors (ZnO-TFT) have been fabricated by rf magnetron sputtering at room temperature with a bottom-gate configuration. The ZnO-TFT operates in the enhancement mode with a threshold voltage of 21 V, a field effect mobility of 20 cm2/Vs, a gate voltage swing of 1.24 V/decade and an on/off ratio of 2×105. The ZnO-TFT present an average optical transmission (including the glass substrate) of 80 % in the visible part of the spectrum. The combination of transparency, high channel mobility and room temperature processing makes the ZnO-TFT a very promising low cost optoelectronic device for the next generation of invisible and flexible electronics. Moreover, the processing technology used to fabricate this device is relatively simple and it is compatible with inexpensive plastic/flexible substrate technology.

  1. Review of Zinc Oxide Thin Films

    DTIC Science & Technology

    2014-12-23

    decomposition.  Chemical  stability  of  ZnO  improves  significantly with  addition  of  dopants  (such as Al, Ga, fluorine (F),  Cobalt  (Co)). The best...films. However, it is achieved by producing them with a non-stoichiometric composition or by introducing appropriate dopants which decrease the...non‐stoichiometric  composition  or  by  introducing  appropriate  dopants   which  decrease  the  resistivity  while  retaining a good transparency [3

  2. Deposition of zinc sulfide thin films by chemical bath process

    NASA Astrophysics Data System (ADS)

    Oladeji, Isaiah O.; Chow, Lee

    1996-11-01

    Deposition of high quality zinc sulfide (ZnS) thin film over a large area is required if it is to be effectively used in electroluminescent devices, solar cells, and other optoelectronic devices. Of all deposition techniques, chemical bath deposition (CBD) is the least costly technique that meets the above requirements. Recently it is found that the growth of ZnS film, of thickness less than 100 nm in a single dip, by CBD is facilitated by the use of ammonia and hydrazine as complexing agents. Here we report that the thickness of the deposited ZnS film can be increased if ammonium salt is used as a buffer. We also present an analytical study to explain our results and to further understand the ZnS growth process in CBD.

  3. Intrinsic defect oriented visible region absorption in zinc oxide films

    NASA Astrophysics Data System (ADS)

    Rakhesh, V.; Shankar, Balakrishnan

    2018-05-01

    Zinc Oxide films were deposited on the glass substrate using vacuum arc sputtering technology. Films were prepared in oxygen ambience for 10mA and 15 mA deposition current separately. The UV-Visible spectroscopy of the samples showed that both samples possess sharp absorption near 3.5eV which is the characteristic band gap absorption energy of ZnO films. The absorption coefficient were calculated for the samples and the (αℎϑ)2 vs energy plot is drawn. The plot suggested that in addition to the sharp band edge absorption, the sample prepared at 10mA deposition current showed sharp absorption edge near 1.51eV and that at 15 mA showed absorption edge near 1.47eV. This refers to the presence of an intrinsic defect level which is likely to be deep in the band gap.

  4. The calculation of band gap energy in zinc oxide films

    NASA Astrophysics Data System (ADS)

    Arif, Ali; Belahssen, Okba; Gareh, Salim; Benramache, Said

    2015-01-01

    We investigated the optical properties of undoped zinc oxide thin films as the n-type semiconductor; the thin films were deposited at different precursor molarities by ultrasonic spray and spray pyrolysis techniques. The thin films were deposited at different substrate temperatures ranging between 200 and 500 °C. In this paper, we present a new approach to control the optical gap energy of ZnO thin films by concentration of the ZnO solution and substrate temperatures from experimental data, which were published in international journals. The model proposed to calculate the band gap energy with the Urbach energy was investigated. The relation between the experimental data and theoretical calculation suggests that the band gap energies are predominantly estimated by the Urbach energies, film transparency, and concentration of the ZnO solution and substrate temperatures. The measurements by these proposal models are in qualitative agreements with the experimental data; the correlation coefficient values were varied in the range 0.96-0.99999, indicating high quality representation of data based on Equation (2), so that the relative errors of all calculation are smaller than 4%. Thus, one can suppose that the undoped ZnO thin films are chemically purer and have many fewer defects and less disorder owing to an almost complete chemical decomposition and contained higher optical band gap energy.

  5. Nanostructure of aluminium (Al) - Doped zinc oxide (AZO) thin films

    NASA Astrophysics Data System (ADS)

    Hussin, Rosniza; Husin, M. Asri

    2017-12-01

    Aluminium (Al)-doped Zinc Oxide (ZnO) was deposited on glass substrates by using the sol-gel dip coating technique. Next, AZO sol-gel solution was produced via sol-gel method. Al was used as doped element with molar ratios of 1%, 2%, and 3%, while the calcination temperatures were set at 400°C, 500°C, and 600°C for 2 hours. In fact, characterization was carried out in order to determine the effect of calcination temperature and molar ratio of doping by using several techniques, such as X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM), Field Emission Scanning Electron Microscopy (FESEM), and Ultraviolet-Visible spectroscopy (UV-Vis). XRD was performed to investigate the crystal structure in which the ZnO was in wurtzite hexagonal form. Next, Energy Dispersive Spectroscopy (EDS) was used to determine the composition of thin films where the result revealed the existence of zinc, oxygen, and aluminium. The roughness of the deposited film was later measured by using the AFM approach where the findings indicated increment in RMS from 8.496 nm to 35.883 nm as the temperature was increased. Additionally, FESEM was carried out to look into the microstructure surfaces of the deposited AZO thin film for increased temperature caused the particle to grow bigger for all molar ratio of dopant. Lastly, UV-Vis was conducted to study the optical properties of AZO, in which the result demonstrated that AZO thin film possessed the highest transmittance percentage among all samples above 90% with band gap value that ranged from 3.25 eV to 3.32 eV.

  6. Anomalous photoelectric emission from Ag on zinc-phthalocyanine film

    SciT

    Tanaka, Senku, E-mail: senku@ele.kindai.ac.jp; Otani, Tomohiro; Fukuzawa, Ken

    2014-05-12

    Photoelectric emission from organic and metal thin films is generally observed with irradiation of photon energy larger than 4 eV. In this paper, however, we report photoelectric emission from Ag on a zinc-phthalocyanine (ZnPc) layer at a photon energy of 3.4 eV. The threshold energy for this photoelectric emission is much smaller than the work function of Ag estimated by conventional photoelectron spectroscopy. The photoelectric emission by low-energy photons is significant for Ag thicknesses of less than 1 nm. Photoelectron spectroscopy and morphological study of the Ag/ZnPc suggest that the anomalous photoelectric emission from the Ag surface is caused by a vacuum levelmore » shift at the Ag/ZnPc interface and by surface plasmons of the Ag nanoparticles.« less

  7. The peculiarity of the formation of zinc films on a glass substrate

    SciT

    Tomaev, V. V., E-mail: tvaza@mail.ru; Saint Petersburg Mining University, Russia, 199106, St. Petersburg, V.O., 21-st line, 2; Polishchuk, V. A., E-mail: vpvova2010@yandex.ru

    2016-06-17

    Thin Nanocrystalline films of the zinc have been fabricated by thermal spraying on the glass substrate. Morphologies and structure of the films had been investigated by the methods X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). It is found that the surface of the films has a different types of the nanocrystals zinc. Were detected intergrowths of two or more the nanocrystals, hexagonal shape. Using the theory of homogeneous and heterogeneous nucleation of a new phase, had been evaluated the geometrical and thermodynamic parameters nanocrystals zinc.

  8. Mechanical properties of bioplastics cassava starch film with Zinc Oxide nanofiller as reinforcement

    NASA Astrophysics Data System (ADS)

    Harunsyah; Yunus, M.; Fauzan, Reza

    2017-06-01

    This study focuses on investigating the influence of zinc oxide nanofiller on the mechanical properties of bioplastic cassava starch films. Bioplastic cassava starch film-based zinc oxide reinforced composite biopolymeric films were prepared by casting technique. The content of zinc oxide in the bioplastic films was varied from 0.2%, 0.4%, 0.6%, 0.8% and 1.0% (w/w) by weight of starch. Surface morphologies of the composites bioplastic films were examined by scanning electron microscope (SEM).The result showed that the Tensile strength (TS) was improved significantly with the additional of zinc oxide but the elongation at break (EB %) of the composites was decreased. The maximum tensile strength obtained was 22.30 kgf / mm on the additional of zinc oxide by 0.6% and plastilizer by 25%. Based on data of FTIR, the produced film plastic did not change the group function and it can be concluded that theinteraction in film plastic produced was only a physical interaction. Biodegradable plastic film based on cassava starch-zinc oxide and plasticizer glycerol showed that interesting mechanical properties being transparent, clear, homogeneous, flexible, and easily handled.

  9. Effect of Zinc Oxide Film Deposition Position on the Characteristics of Zinc Oxide Thin Film Transistors Fabricated by Low-Temperature Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Takechi, Kazushige; Nakata, Mitsuru; Eguchi, Toshimasa; Otsuki, Shigeyoshi; Yamaguchi, Hirotaka; Kaneko, Setsuo

    2008-09-01

    We report on the effect of zinc oxide (ZnO) film deposition position on the characteristics of ZnO thin-film transistors (TFTs) fabricated by magnetron sputtering with no intentional heating of the substrate. We evaluate the properties of ZnO (channel semiconductor) films deposited at various positions with respect to the target position. We show that the film deposition at a position off-centered from the target results in good TFT characteristics. This might be due to the fact that the off-centered deposition position is effective for suppressing the effect of energetic negative ions in the plasma.

  10. Zinc

    MedlinePlus

    ... Using toothpastes containing zinc, with or without an antibacterial agent, appears to prevent plaque and gingivitis. Some ... is some evidence that zinc has some antiviral activity against the herpes virus. Low zinc levels can ...

  11. Bandgap-Engineered Zinc-Tin-Oxide Thin Films for Ultraviolet Sensors.

    PubMed

    Cheng, Tien-Hung; Chang, Sheng-Po; Chang, Shoou-Jinn

    2018-07-01

    Zinc-tin-oxide thin-film transistors were prepared by radio frequency magnetron co-sputtering, while an identical zinc-tin-oxide thin film was deposited simultaneously on a clear glass substrate to facilitate measurements of the optical properties. When we adjusted the deposition power of ZnO and SnO2, the bandgap of the amorphous thin film was dominated by the deposition power of SnO2. Since the thin-film transistor has obvious absorption in the ultraviolet region owing to the wide bandgap, the drain current increases with the generation of electron-hole pairs. As part of these investigations, a zinc-tin-oxide thin-film transistor has been fabricated that appears to be very promising for ultraviolet applications.

  12. The influence of oxidation time on the properties of oxidized zinc films

    NASA Astrophysics Data System (ADS)

    Rambu, A. P.

    2012-09-01

    The effect of oxidation time on the structural characteristics and electronic transport mechanism of zinc oxide thin films prepared by thermal oxidation, have been investigated. Zinc metallic films were deposited by thermal evaporation under vacuum, the subsequent oxidation of Zn films being carried out in open atmosphere. XRD and AFM analysis indicate that obtained films posses a polycrystalline structure, the crystallites having a preferential orientation. Structural analysis reveals that microstructure of the films (crystallite size, surface roughness, internal stress) is depending on the oxidation time of metallic films. The electrical behavior of ZnO films was investigated, during a heat treatment (two heating/cooling cycles). It was observed that after the first heating, the temperature dependences of electrical conductivity become reversible. Mott variable range hopping model was proposed to analyze the temperature dependence of the electrical conductivity, in low temperature ranges. Values of some characteristic parameters were calculated.

  13. Indium Doped Zinc Oxide Thin Films Deposited by Ultrasonic Chemical Spray Technique, Starting from Zinc Acetylacetonate and Indium Chloride

    PubMed Central

    Biswal, Rajesh; Maldonado, Arturo; Vega-Pérez, Jaime; Acosta, Dwight Roberto; Olvera, María De La Luz

    2014-01-01

    The physical characteristics of ultrasonically sprayed indium-doped zinc oxide (ZnO:In) thin films, with electrical resistivity as low as 3.42 × 10−3 Ω·cm and high optical transmittance, in the visible range, of 50%–70% is presented. Zinc acetylacetonate and indium chloride were used as the organometallic zinc precursor and the doping source, respectively, achieving ZnO:In thin films with growth rate in the order of 100 nm/min. The effects of both indium concentration and the substrate temperature on the structural, morphological, optical, and electrical characteristics were measured. All the films were polycrystalline, fitting well with hexagonal wurtzite type ZnO. A switching in preferential growth, from (002) to (101) planes for indium doped samples were observed. The surface morphology of the films showed a change from hexagonal slices to triangle shaped grains as the indium concentration increases. Potential applications as transparent conductive electrodes based on the resulting low electrical resistance and high optical transparency of the studied samples are considered. PMID:28788118

  14. Indium Doped Zinc Oxide Thin Films Deposited by Ultrasonic Chemical Spray Technique, Starting from Zinc Acetylacetonate and Indium Chloride.

    PubMed

    Biswal, Rajesh; Maldonado, Arturo; Vega-Pérez, Jaime; Acosta, Dwight Roberto; De La Luz Olvera, María

    2014-07-04

    The physical characteristics of ultrasonically sprayed indium-doped zinc oxide (ZnO:In) thin films, with electrical resistivity as low as 3.42 × 10 -3 Ω·cm and high optical transmittance, in the visible range, of 50%-70% is presented. Zinc acetylacetonate and indium chloride were used as the organometallic zinc precursor and the doping source, respectively, achieving ZnO:In thin films with growth rate in the order of 100 nm/min. The effects of both indium concentration and the substrate temperature on the structural, morphological, optical, and electrical characteristics were measured. All the films were polycrystalline, fitting well with hexagonal wurtzite type ZnO. A switching in preferential growth, from (002) to (101) planes for indium doped samples were observed. The surface morphology of the films showed a change from hexagonal slices to triangle shaped grains as the indium concentration increases. Potential applications as transparent conductive electrodes based on the resulting low electrical resistance and high optical transparency of the studied samples are considered.

  15. Effect of iron doping on structural and microstructural properties of nanocrystalline ZnSnO3 thin films prepared by spray pyrolysis techniques

    NASA Astrophysics Data System (ADS)

    Pathan, Idris G.; Suryawanshi, Dinesh N.; Bari, Anil R.; Patil, Lalchand A.

    2018-05-01

    This work presents the effect of iron doping having different volume ratios (1 ml, 2.5 ml and 5 ml) on the structural, microstructural and electrical properties of zinc stannate thin films, prepared by spray pyrolysis method. These properties were characterized with X-ray diffraction (XRD) and Transmission Electron Microscope (TEM). In our study, XRD pattern indicates that ZnSnO3 has a perovskite phase with face exposed hexahedron structure. The electron diffraction fringes observed are in consistent with the peak observed in XRD patterns. Moreover the sensor reported in our study is cost-effective, user friendly and easy to fabricate.

  16. Analysis of Zinc Oxide Thin Films Synthesized by Sol-Gel via Spin Coating

    NASA Astrophysics Data System (ADS)

    Wolgamott, Jon Carl

    Transparent conductive oxides are gaining an increasingly important role in optoelectronic devices such as solar cells. Doped zinc oxide is a candidate as a low cost and nontoxic alternative to tin doped indium oxide. Lab results have shown that both n-type and p-type zinc oxide can be created on a small scale. This can allow zinc oxide to be used as either an electrode as well as a buffer layer to increase efficiency and protect the active layer in solar cells. Sol-gel synthesis is emerging as a low temperature, low cost, and resource efficient alternative to producing transparent conducting oxides such as zinc oxide. For sol-gel derived zinc oxide thin films to reach their potential, research in this topic must continue to optimize the known processing parameters and expand to new parameters to tighten control and create novel processing techniques that improve performance. The processing parameters of drying and annealing temperatures as well as cooling rate were analyzed to see their effect on the structure of the prepared zinc oxide thin films. There were also preliminary tests done to modify the sol-gel process to include silver as a dopant to produce a p-type thin film. The results from this work show that the pre- and post- heating temperatures as well as the cooling rate all play their own unique role in the crystallization of the film. Results from silver doping show that more work needs to be done to create a sol-gel derived p-type zinc oxide thin film.

  17. Zinc oxide films chemically grown onto rigid and flexible substrates for TFT applications

    NASA Astrophysics Data System (ADS)

    Suchea, M.; Kornilios, N.; Koudoumas, E.

    2010-10-01

    This contribution presents some preliminary results regarding the use of a chemical route for the growth of good quality ZnO thin films that can be used for the fabrication of thin film transistors (TFTs). The films were grown at rather low temperature (60 °C) on glass and PET substrates using non-aqueous (zinc acetate dihydrate in methanol) precursor solution and their surface morphology, crystalline structure, optical transmittance and electrical characteristics were studied. The study indicated that good quality films with desirable ZnO structure onto rigid and flexible substrates can be obtained, using a simple, cheap, low temperature chemical growth method.

  18. Paramagnetic dysprosium-doped zinc oxide thin films grown by pulsed-laser deposition

    SciT

    Lo, Fang-Yuh, E-mail: fangyuhlo@ntnu.edu.tw; Ting, Yi-Chieh; Chou, Kai-Chieh

    2015-06-07

    Dysprosium(Dy)-doped zinc oxide (Dy:ZnO) thin films were fabricated on c-oriented sapphire substrate by pulsed-laser deposition with doping concentration ranging from 1 to 10 at. %. X-ray diffraction (XRD), Raman-scattering, optical transmission spectroscopy, and spectroscopic ellipsometry revealed incorporation of Dy into ZnO host matrix without secondary phase. Solubility limit of Dy in ZnO under our deposition condition was between 5 and 10 at. % according to XRD and Raman-scattering characteristics. Optical transmission spectroscopy and spectroscopic ellipsometry also showed increase in both transmittance in ultraviolet regime and band gap of Dy:ZnO with increasing Dy density. Zinc vacancies and zinc interstitials were identified by photoluminescencemore » spectroscopy as the defects accompanied with Dy incorporation. Magnetic investigations with a superconducting quantum interference device showed paramagnetism without long-range order for all Dy:ZnO thin films, and a hint of antiferromagnetic alignment of Dy impurities was observed at highest doping concentration—indicating the overall contribution of zinc vacancies and zinc interstitials to magnetic interaction was either neutral or toward antiferromagnetic. From our investigations, Dy:ZnO thin films could be useful for spin alignment and magneto-optical applications.« less

  19. Electrical transport properties of spray deposited transparent conducting ortho-Zn2SnO4 thin films

    NASA Astrophysics Data System (ADS)

    Ramarajan, R.; Thangaraju, K.; Babu, R. Ramesh; Joseph, D. Paul

    2018-04-01

    Ortho Zinc Stannate (Zn2SnO4) exhibits excellent electrical and optical properties to serve as alternate transparent electrode in optoelectronic devices. Here we have optimized ortho-Zn2SnO4 thin film by spray pyrolysis method. Deposition was done onto a pre-heated glass substrate at a temperature of 400 °C. The XRD pattern indicated films to be polycrystalline with cubic structure. The surface of films had globular and twisted metal sheet like morphologies. Films were transparent in the visible region with band gap around 3.6 eV. Transport properties were studied by Hall measurements at 300 K. Activation energies were calculated from Arrhenius's plot from temperature dependent electrical measurements and the conduction mechanism is discussed.

  20. Subtractive Plasma-Assisted-Etch Process for Developing High Performance Nanocrystalline Zinc-Oxide Thin-Film-Transistors

    DTIC Science & Technology

    2015-03-26

    THIN - FILM - TRANSISTORS THESIS Thomas M. Donigan, First Lieutenant, USAF AFIT-ENG-MS-15-M-027 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR...DEVELOPING HIGH PERFORMANCE NANOCRYSTALLINE ZINC-OXIDE THIN - FILM - TRANSISTORS THESIS Presented to the Faculty Department of Electrical and...15-M-027 SUBTRACTIVE PLASMA-ASSISTED-ETCH PROCESS FOR DEVELOPING HIGH PERFORMANCE NANOCRYSTALLINE ZINC-OXIDE THIN - FILM - TRANSISTORS

  1. Electrical and optical properties of molybdenum doped zinc oxide films prepared by reactive RF magnetron sputtering

    SciT

    Reddy, R. Subba; Sreedhar, A.; Uthanna, S., E-mail: uthanna@rediffmail.com

    Molybdenum doped zinc oxide (MZO) films were deposited on to glass substrates held at temperatures in the range from 303 to 673 K by reactive RF magnetron sputtering method. The chemical composition, crystallographic structure and surface morphology, electrical and optical properties of the films were determined. The films contained the molybdenum of 2.7 at. % in ZnO. The films deposited at 303 K were of X-ray amorphous. The films formed at 473 K were of nanocrystalline in nature with wurtzite structure. The crystallite size of the films was increased with the increase of substrate temperature. The optical transmittance of the films was inmore » the visible range was 80–85%. The molybdenum (2.7 at %) doped zinc oxide films deposited at substrate temperature of 573 K were of nanocrystalline with electrical resistivity of 7.2×10{sup −3} Ωcm, optical transmittance of 85 %, optical band gap of 3.35 eV and figure of merit 30.6 Ω{sup −1}cm{sup −1}.« less

  2. Zinc

    MedlinePlus

    ... Guidelines for Americans and the U.S. Department of Agriculture's MyPlate . Where can I find out more about ... on food sources of zinc: U.S. Department of Agriculture's (USDA’s) National Nutrient Database Nutrient List for zinc ( ...

  3. Zinc

    Zinc was recognized as an essential trace metal for humans during the studies of Iranian adolescent dwarfs in the early 1960s. Zinc metal existing as Zn2+ is a strong electron acceptor in biological systems without risks of oxidant damage to cells. Zn2+ functions in the structure of proteins and is ...

  4. High sensitive formaldehyde graphene gas sensor modified by atomic layer deposition zinc oxide films

    SciT

    Mu, Haichuan; Zhang, Zhiqiang; Wang, Keke

    2014-07-21

    Zinc oxide (ZnO) thin films with various thicknesses were fabricated by Atomic Layer Deposition on Chemical Vapor Deposition grown graphene films and their response to formaldehyde has been investigated. It was found that 0.5 nm ZnO films modified graphene sensors showed high response to formaldehyde with the resistance change up to 52% at the concentration of 9 parts-per-million (ppm) at room temperature. Meanwhile, the detection limit could reach 180 parts-per-billion (ppb) and fast response of 36 s was also obtained. The high sensitivity could be attributed to the combining effect from the highly reactive, top mounted ZnO thin films, and high conductivemore » graphene base network. The dependence of ZnO films surface morphology and its sensitivity on the ZnO films thickness was also investigated.« less

  5. Morphological Influence of Solution-Processed Zinc Oxide Films on Electrical Characteristics of Thin-Film Transistors.

    PubMed

    Lee, Hyeonju; Zhang, Xue; Hwang, Jaeeun; Park, Jaehoon

    2016-10-19

    We report on the morphological influence of solution-processed zinc oxide (ZnO) semiconductor films on the electrical characteristics of ZnO thin-film transistors (TFTs). Different film morphologies were produced by controlling the spin-coating condition of a precursor solution, and the ZnO films were analyzed using atomic force microscopy, X-ray diffraction, X-ray photoemission spectroscopy, and Hall measurement. It is shown that ZnO TFTs have a superior performance in terms of the threshold voltage and field-effect mobility, when ZnO crystallites are more densely packed in the film. This is attributed to lower electrical resistivity and higher Hall mobility in a densely packed ZnO film. In the results of consecutive TFT operations, a positive shift in the threshold voltage occurred irrespective of the film morphology, but the morphological influence on the variation in the field-effect mobility was evident. The field-effect mobility in TFTs having a densely packed ZnO film increased continuously during consecutive TFT operations, which is in contrast to the mobility decrease observed in the less packed case. An analysis of the field-effect conductivities ascribes these results to the difference in energetic traps, which originate from structural defects in the ZnO films. Consequently, the morphological influence of solution-processed ZnO films on the TFT performance can be understood through the packing property of ZnO crystallites.

  6. Morphological Influence of Solution-Processed Zinc Oxide Films on Electrical Characteristics of Thin-Film Transistors

    PubMed Central

    Lee, Hyeonju; Zhang, Xue; Hwang, Jaeeun; Park, Jaehoon

    2016-01-01

    We report on the morphological influence of solution-processed zinc oxide (ZnO) semiconductor films on the electrical characteristics of ZnO thin-film transistors (TFTs). Different film morphologies were produced by controlling the spin-coating condition of a precursor solution, and the ZnO films were analyzed using atomic force microscopy, X-ray diffraction, X-ray photoemission spectroscopy, and Hall measurement. It is shown that ZnO TFTs have a superior performance in terms of the threshold voltage and field-effect mobility, when ZnO crystallites are more densely packed in the film. This is attributed to lower electrical resistivity and higher Hall mobility in a densely packed ZnO film. In the results of consecutive TFT operations, a positive shift in the threshold voltage occurred irrespective of the film morphology, but the morphological influence on the variation in the field-effect mobility was evident. The field-effect mobility in TFTs having a densely packed ZnO film increased continuously during consecutive TFT operations, which is in contrast to the mobility decrease observed in the less packed case. An analysis of the field-effect conductivities ascribes these results to the difference in energetic traps, which originate from structural defects in the ZnO films. Consequently, the morphological influence of solution-processed ZnO films on the TFT performance can be understood through the packing property of ZnO crystallites. PMID:28773973

  7. Chemical stability and electrical performance of dual-active-layered zinc-tin-oxide/indium-gallium-zinc-oxide thin-film transistors using a solution process.

    PubMed

    Kim, Chul Ho; Rim, You Seung; Kim, Hyun Jae

    2013-07-10

    We investigated the chemical stability and electrical properties of dual-active-layered zinc-tin-oxide (ZTO)/indium-gallium-zinc-oxide (IGZO) structures (DALZI) with the durability of the chemical damage. The IGZO film was easily corroded or removed by an etchant, but the DALZI film was effectively protected by the high chemical stability of ZTO. Furthermore, the electrical performance of the DALZI thin-film transistor (TFT) was improved by densification compared to the IGZO TFT owing to the passivation of the pin holes or pore sites and the increase in the carrier concentration due to the effect of Sn(4+) doping.

  8. Nanostructuring on zinc phthalocyanine thin films for single-junction organic solar cells

    SciT

    Chaudhary, Dhirendra K.; Kumar, Lokendra, E-mail: lokendrakr@allduniv.ac.in

    2016-05-23

    Vertically aligned and random oriented crystalline molecular nanorods of organic semiconducting Zinc Phthalocyanine (ZnPc) have been grown on ITO coated glass substrate using solvent volatilization method. Interesting changes in surface morphology were observed under different solvent treatment. Vertically aligned nanorods of ZnPc thin film were observed in the films treated with acetone, where as the random oriented nanorods were observed in the films treated with chloroform. The X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) have been used for characterization of nanostructures. The optical properties of the nanorods have been investigated by UV-Vis. absorption spectroscopy.

  9. Morphological impact of zinc oxide layers on the device performance in thin-film transistors.

    PubMed

    Faber, Hendrik; Klaumünzer, Martin; Voigt, Michael; Galli, Diana; Vieweg, Benito F; Peukert, Wolfgang; Spiecker, Erdmann; Halik, Marcus

    2011-03-01

    Zinc oxide thin-films are prepared either by spin coating of an ethanolic dispersion of nanoparticles (NP, diameter 5 nm) or by spray pyrolysis of a zinc acetate dihydrate precursor. High-resolution electron microscopy studies reveal a monolayer of particles for the low temperature spin coating approach and larger crystalline domains of more than 30 nm for the spray pyrolysis technique. Thin-film transistor devices (TFTs) based on spray pyrolysis films exhibit higher electron mobilities of up to 24 cm2 V(-1) s(-1) compared to 0.6 cm2 V(-1) s(-1) for NP based TFTs. These observations were dedicated to a reduced number of grain boundaries within the transistor channel.

  10. High Mobility Thin Film Transistors Based on Amorphous Indium Zinc Tin Oxide

    PubMed Central

    Noviyana, Imas; Lestari, Annisa Dwi; Putri, Maryane; Won, Mi-Sook; Bae, Jong-Seong; Heo, Young-Woo; Lee, Hee Young

    2017-01-01

    Top-contact bottom-gate thin film transistors (TFTs) with zinc-rich indium zinc tin oxide (IZTO) active layer were prepared at room temperature by radio frequency magnetron sputtering. Sintered ceramic target was prepared and used for deposition from oxide powder mixture having the molar ratio of In2O3:ZnO:SnO2 = 2:5:1. Annealing treatment was carried out for as-deposited films at various temperatures to investigate its effect on TFT performances. It was found that annealing treatment at 350 °C for 30 min in air atmosphere yielded the best result, with the high field effect mobility value of 34 cm2/Vs and the minimum subthreshold swing value of 0.12 V/dec. All IZTO thin films were amorphous, even after annealing treatment of up to 350 °C. PMID:28773058

  11. Zinc oxide doped graphene oxide films for gas sensing applications

    SciT

    Chetna,, E-mail: chetna2288@gmail.com; Kumar, Shani; Chaudhary, S.

    Graphene Oxide (GO) is analogous to graphene, but presence of many functional groups makes its physical and chemical properties essentially different from those of graphene. GO is found to be a promising material for low cost fabrication of highly versatile and environment friendly gas sensors. Selectivity, reversibility and sensitivity of GO based gas sensor have been improved by hybridization with Zinc Oxide nanoparticles. The device is fabricated by spin coating of deionized water dispersed GO flakes (synthesized using traditional hummer’s method) doped with Zinc Oxide on standard glass substrate. Since GO is an insulator and functional groups on GO nanosheetsmore » play vital role in adsorbing gas molecules, it is being used as an adsorber. Additionally, on being exposed to certain gases the electric and optical characteristics of GO material exhibit an alteration in behavior. For the conductivity, we use Zinc Oxide, as it displays a high sensitivity towards conduction. The effects of the compositions, structural defects and morphologies of graphene based sensing layers and the configurations of sensing devices on the performances of gas sensors were investigated by Raman Spectroscopy, X-ray diffraction(XRD) and Keithley Sourcemeter.« less

  12. Properties of Nitrogen-Doped Zinc Telluride Films for Back Contact to Cadmium Telluride Photovoltaics

    NASA Astrophysics Data System (ADS)

    Shimpi, Tushar M.; Drayton, Jennifer; Swanson, Drew E.; Sampath, Walajabad S.

    2017-08-01

    Zinc telluride (ZnTe) films have been deposited onto uncoated glass superstrates by reactive radiofrequency (RF) sputtering with different amounts of nitrogen introduced into the process gas, and the structural and electronic transport properties of the resulting nitrogen-doped ZnTe (ZnTe:N) films characterized. Based on transmission and x-ray diffraction measurements, it was observed that the crystalline quality of the ZnTe:N films decreased with increasing nitrogen in the deposition process. The bulk carrier concentration of the ZnTe:N films determined from Hall-effect measurements showed a slight decrease at 4% nitrogen flow rate. The effect of ZnTe:N films as back contact to cadmium telluride (CdTe) solar cells was also investigated. ZnTe:N films were deposited before or after CdCl2 passivation on CdTe/CdS samples. Small-area devices were characterized for their electronic properties. Glancing-angle x-ray diffraction measurements and energy-dispersive spectroscopy analysis confirmed substantial loss of zinc from the samples where CdCl2 passivation was carried out after ZnTe:N film deposition.

  13. Chromium and Ruthenium-Doped Zinc Oxide Thin Films for Propane Sensing Applications

    PubMed Central

    Gómez-Pozos, Heberto; González-Vidal, José Luis; Torres, Gonzalo Alberto; Rodríguez-Baez, Jorge; Maldonado, Arturo; de la Luz Olvera, María; Acosta, Dwight Roberto; Avendaño-Alejo, Maximino; Castañeda, Luis

    2013-01-01

    Chromium and ruthenium-doped zinc oxide (ZnO:Cr) and (ZnO:Ru) thin solid films were deposited on soda-lime glass substrates by the sol-gel dip-coating method. A 0.6 M solution of zinc acetate dihydrate dissolved in 2-methoxyethanol and monoethanolamine was used as basic solution. Chromium (III) acetylacetonate and Ruthenium (III) trichloride were used as doping sources. The Ru incorporation and its distribution profile into the films were proved by the SIMS technique. The morphology and structure of the films were studied by SEM microscopy and X-ray diffraction measurements, respectively. The SEM images show porous surfaces covered by small grains with different grain size, depending on the doping element, and the immersions number into the doping solutions. The sensing properties of ZnO:Cr and ZnO:Ru films in a propane (C3H8) atmosphere, as a function of the immersions number in the doping solution, have been studied in the present work. The highest sensitivity values were obtained for films doped from five immersions, 5.8 and 900, for ZnO:Cr and ZnO:Ru films, respectively. In order to evidence the catalytic effect of the chromium (Cr) and ruthenium (Ru), the sensing characteristics of undoped ZnO films are reported as well. PMID:23482091

  14. Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films

    SciT

    Jiang, Hua; Chou, Kang Wei; Petrash, Stanislas

    Zinc oxide (ZnO) thin films have been reported to suffer from degradation in electrical properties, when exposed to elevated heat and humidity, often leading to failures of electronic devices containing ZnO films. This degradation appears to be linked to water and oxygen penetration into the ZnO film. However, a direct observation in the ZnO film morphological evolution detailing structural and chemical changes has been lacking. Here, we systematically investigated the chemical and morphological heterogeneities of ZnO thin films caused by elevated heat and humidity, simulating an environmental aging. X-ray fluorescence microscopy, X-ray absorption spectroscopy, grazing incidence small angle and widemore » angle X-ray scattering, scanning electron microscopy (SEM), ultra-high-resolution SEM, and optical microscopy were carried out to examine ZnO and Al-doped ZnO thin films on two different substrates—silicon wafers and flexible polyethylene terephthalate (PET) films. In the un-doped ZnO thin film, the simulated environmental aging is resulting in pin-holes. In the Al-doped ZnO thin films, significant morphological changes occurred after the treatment, with an appearance of platelet-shaped structures that are 100–200 nm wide by 1 μm long. Synchrotron x-ray characterization further confirmed the heterogeneity in the aged Al-doped ZnO, showing the formation of anisotropic structures and disordering. X-ray diffraction and X-ray absorption spectroscopy indicated the formation of a zinc hydroxide in the aged Al-doped films. Utilizing advanced characterization methods, our studies provided information with an unprecedented level of details and revealed the chemical and morphologically heterogeneous nature of the degradation in ZnO thin films.« less

  15. Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films

    SciT

    Jiang, Hua; Chou, Kang Wei; Petrash, Stanislas

    Zinc oxide (ZnO) thin films have been reported to suffer from degradation in electrical properties, when exposed to elevated heat and humidity, often leading to failures of electronic devices containing ZnO films. This degradation appears to be linked to water and oxygen penetration into the ZnO film. However, a direct observation in the ZnO film morphological evolution detailing structural and chemical changes has been lacking. Here, we systematically investigated the chemical and morphological heterogeneities of ZnO thin films caused by elevated heat and humidity, simulating an environmental aging. X-ray fluorescence microscopy, X-ray absorption spectroscopy, grazing incidence small angle and widemore » angle X-ray scattering, scanning electron microscopy (SEM), ultra-high-resolution SEM, and optical microscopy were carried out to examine ZnO and Al-doped ZnO thin films on two different substrates—silicon wafers and flexible polyethylene terephthalate (PET) films. In the un-doped ZnO thin film, the simulated environmental aging is resulting in pin-holes. In the Al-doped ZnO thin films, significant morphological changes occurred after the treatment, with an appearance of platelet-shaped structures that are 100–200 nm wide by 1μm long. Synchrotron x-ray characterization further confirmed the heterogeneity in the aged Al-doped ZnO, showing the formation of anisotropic structures and disordering. X-ray diffraction and X-ray absorption spectroscopy indicated the formation of a zinc hydroxide in the aged Al-doped films. In conclusion, utilizing advanced characterization methods, our studies provided information with an unprecedented level of details and revealed the chemical and morphologically heterogeneous nature of the degradation in ZnO thin films.« less

  16. Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films

    DOE PAGES

    Jiang, Hua; Chou, Kang Wei; Petrash, Stanislas; ...

    2016-09-02

    Zinc oxide (ZnO) thin films have been reported to suffer from degradation in electrical properties, when exposed to elevated heat and humidity, often leading to failures of electronic devices containing ZnO films. This degradation appears to be linked to water and oxygen penetration into the ZnO film. However, a direct observation in the ZnO film morphological evolution detailing structural and chemical changes has been lacking. Here, we systematically investigated the chemical and morphological heterogeneities of ZnO thin films caused by elevated heat and humidity, simulating an environmental aging. X-ray fluorescence microscopy, X-ray absorption spectroscopy, grazing incidence small angle and widemore » angle X-ray scattering, scanning electron microscopy (SEM), ultra-high-resolution SEM, and optical microscopy were carried out to examine ZnO and Al-doped ZnO thin films on two different substrates—silicon wafers and flexible polyethylene terephthalate (PET) films. In the un-doped ZnO thin film, the simulated environmental aging is resulting in pin-holes. In the Al-doped ZnO thin films, significant morphological changes occurred after the treatment, with an appearance of platelet-shaped structures that are 100–200 nm wide by 1μm long. Synchrotron x-ray characterization further confirmed the heterogeneity in the aged Al-doped ZnO, showing the formation of anisotropic structures and disordering. X-ray diffraction and X-ray absorption spectroscopy indicated the formation of a zinc hydroxide in the aged Al-doped films. In conclusion, utilizing advanced characterization methods, our studies provided information with an unprecedented level of details and revealed the chemical and morphologically heterogeneous nature of the degradation in ZnO thin films.« less

  17. Acoustoelectric current saturation in c-axis fiber-textured polycrystalline zinc oxide films

    NASA Astrophysics Data System (ADS)

    Pompe, T.; Srikant, V.; Clarke, D. R.

    1996-12-01

    Acoustoelectric current saturation, which until now has only been observed in piezoelectric single crystals, is observed in thin polycrystalline zinc oxide films. Epitaxial ZnO films on c-plane sapphire and textured ZnO polycrystalline films on fused silica both exhibit current saturation phenomenon. The values of the saturation current densities are in the range 105-106 A/cm2, depending on the carrier concentration in the film, with corresponding saturation electric fields of 3-5×103 V/cm. In addition to the current saturation, the electrical properties of the films degraded with the onset of the acoustoelectric effect but could be restored by annealing at 250 °C in a vacuum for 30 min.

  18. Characterization of Antimicrobial Poly (Lactic Acid)/Nano-Composite Films with Silver and Zinc Oxide Nanoparticles

    PubMed Central

    Chu, Zhuangzhuang; Zhao, Tianrui; Li, Lin; Fan, Jian; Qin, Yuyue

    2017-01-01

    Antimicrobial active films based on poly (lactic acid) (PLA) were prepared with nano-silver (nano-Ag) and nano-zinc oxide (nano-ZnO) using a solvent volatilizing method. The films were characterized for mechanical, structural, thermal, physical and antimicrobial properties. Scanning electron microscopy (SEM) images characterized the fracture morphology of the films with different contents of nano-Ag and nano-ZnO. The addition of nanoparticles into the pure PLA film decreased the tensile strength and elasticity modulus and increased the elongation of breaks—in other words, the flexibility and extensibility of these composites improved. According to the results of differential scanning calorimetry (DSC), the glass transition temperature of the PLA nano-composite films decreased, and the crystallinity of these films increased; a similar result was apparent from X-ray diffraction (XRD) analysis. The water vapor permeability (WVP) and opacity of the PLA nano-composite films augmented compared with pure PLA film. Incorporation of nanoparticles to the PLA films significantly improved the antimicrobial activity to inhibit the growth of Escherichia coli. The results indicated that PLA films with nanoparticles could be considered a potential environmental-friendly packaging material. PMID:28773018

  19. Alcohol vapor sensing by cadmium-doped zinc oxide thick films based chemical sensor

    NASA Astrophysics Data System (ADS)

    Zargar, R. A.; Arora, M.; Chackrabarti, S.; Ahmad, S.; Kumar, J.; Hafiz, A. K.

    2016-04-01

    Cadmium-doped zinc oxide nanoparticles were derived by simple chemical co-precipitation route using zinc acetate dihydrate and cadmium acetate dihydrate as precursor materials. The thick films were casted from chemical co-precipitation route prepared nanoparticles by economic facile screen printing method. The structural, morphological, optical and electrical properties of the film were characterized relevant to alcohol vapor sensing application by powder XRD, SEM, UV-VIS and DC conductivity techniques. The response and sensitivity of alcohol (ethanol) vapor sensor are obtained from the recovery curves at optimum working temperature range from 20∘C to 50∘C. The result shows that maximum sensitivity of the sensor is observed at 25∘C operating temperature. On varying alcohol vapor concentration, minor variation in resistance has been observed. The sensing mechanism of sensor has been described in terms of physical adsorption and chemical absorption of alcohol vapors on cadmium-doped zinc oxide film surface and inside film lattice network through weak hydrogen bonding, respectively.

  20. Analysis of indium zinc oxide thin films by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Popescu, A. C.; Beldjilali, S.; Socol, G.; Craciun, V.; Mihailescu, I. N.; Hermann, J.

    2011-10-01

    We have performed spectroscopic analysis of the plasma generated by Nd:YAG (λ = 266 nm) laser irradiation of thin indium zinc oxide films with variable In content deposited by combinatorial pulsed laser deposition on glass substrates. The samples were irradiated in 5 × 104 Pa argon using laser pulses of 5 ns duration and 10 mJ energy. The plasma emission spectra were recorded with an Echelle spectrometer coupled to a gated detector with different delays with respect to the laser pulse. The relative concentrations of indium and zinc were evaluated by comparing the measured spectra to the spectral radiance computed for a plasma in local thermal equilibrium. Plasma temperature and electron density were deduced from the relative intensities and Stark broadening of spectral lines of atomic zinc. Analyses at different locations on the deposited thin films revealed that the In/(In + Zn) concentration ratio significantly varies over the sample surface, from 0.4 at the borders to about 0.5 in the center of the film. The results demonstrate that laser-induced breakdown spectroscopy allows for precise and fast characterization of thin films with variable composition.

  1. Origins of n -type doping difficulties in perovskite stannates

    NASA Astrophysics Data System (ADS)

    Weston, L.; Bjaalie, L.; Krishnaswamy, K.; Van de Walle, C. G.

    2018-02-01

    The perovskite stannates (A SnO3 ; A = Ba, Sr, Ca) are promising for oxide electronics, but control of n -type doping has proved challenging. Using first-principles hybrid density functional calculations, we investigate La dopants and explore the formation of compensating acceptor defects. We find that La on the A site always behaves as a shallow donor, but incorporation of La on the Sn site can lead to self-compensation. At low La concentrations and in O-poor conditions, oxygen vacancies form in BaSnO3. A -site cation vacancies are found to be dominant among the native compensating centers. Compared to BaSnO3, charge compensation is a larger problem for the wider-band-gap stannates, SrSnO3 and CaSnO3, a trend we can explain based on conduction-band alignments. The formation of compensating acceptor defects can be inhibited by choosing oxygen-poor (cation-rich) growth or annealing conditions, thus providing a pathway for improved n -type doping.

  2. Copper-Zinc-Tin-Sulfur Thin Film Using Spin-Coating Technology

    PubMed Central

    Yeh, Min-Yen; Lei, Po-Hsun; Lin, Shao-Hsein; Yang, Chyi-Da

    2016-01-01

    Cu2ZnSnS4 (CZTS) thin films were deposited on glass substrates by using spin-coating and an annealing process, which can improve the crystallinity and morphology of the thin films. The grain size, optical gap, and atomic contents of copper (Cu), zinc (Zn), tin (Sn), and sulfur (S) in a CZTS thin film absorber relate to the concentrations of aqueous precursor solutions containing copper chloride (CuCl2), zinc chloride (ZnCl2), tin chloride (SnCl2), and thiourea (SC(NH2)2), whereas the electrical properties of CZTS thin films depend on the annealing temperature and the atomic content ratios of Cu/(Zn + Sn) and Zn/Sn. All of the CZTS films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDXS), Raman spectroscopy, and Hall measurements. Furthermore, CZTS thin film was deposited on an n-type silicon substrate by using spin-coating to form an Mo/p-CZTS/n-Si/Al heterostructured solar cell. The p-CZTS/n-Si heterostructured solar cell showed a conversion efficiency of 1.13% with Voc = 520 mV, Jsc = 3.28 mA/cm2, and fill-factor (FF) = 66%. PMID:28773647

  3. Crystallization behavior of amorphous indium-gallium-zinc-oxide films and its effects on thin-film transistor performance

    NASA Astrophysics Data System (ADS)

    Suko, Ayaka; Jia, JunJun; Nakamura, Shin-ichi; Kawashima, Emi; Utsuno, Futoshi; Yano, Koki; Shigesato, Yuzo

    2016-03-01

    Amorphous indium-gallium-zinc oxide (a-IGZO) films were deposited by DC magnetron sputtering and post-annealed in air at 300-1000 °C for 1 h to investigate the crystallization behavior in detail. X-ray diffraction, electron beam diffraction, and high-resolution electron microscopy revealed that the IGZO films showed an amorphous structure after post-annealing at 300 °C. At 600 °C, the films started to crystallize from the surface with c-axis preferred orientation. At 700-1000 °C, the films totally crystallized into polycrystalline structures, wherein the grains showed c-axis preferred orientation close to the surface and random orientation inside the films. The current-gate voltage (Id-Vg) characteristics of the IGZO thin-film transistor (TFT) showed that the threshold voltage (Vth) and subthreshold swing decreased markedly after the post-annealing at 300 °C. The TFT using the totally crystallized films also showed the decrease in Vth, whereas the field-effect mobility decreased considerably.

  4. Evaluation of the optical axis tilt of zinc oxide films via noncollinear second harmonic generation

    SciT

    Bovino, F. A.; Larciprete, M. C.; Belardini, A.

    2009-06-22

    We investigated noncollinear second harmonic generation form zinc oxide films, grown on glass substrates by dual ion beam sputtering technique. At a fixed incidence angle, the generated signal is investigated by scanning the polarization state of both fundamental beams. We show that the map of the generated signal as a function of polarization states of both pump beams, together with the analytical curves, allows to retrieve the orientation of the optical axis and eventually, its angular tilt, with respect to the surface normal.

  5. pH effect on structural and optical properties of nanostructured zinc oxide thin films

    SciT

    Munef, R. A.

    2015-03-30

    ZnO nanostructures were Deposited on Objekttrager glasses for various pH values by chemical bath deposition method using Zn (NO3)2·6H2O (zinc nitrate hexahydrate) solution at 75°C reaction temperature without any posterior treatments. The ZnO nanostructures obtained were characterized by X-ray Diffraction (XRD, UV). The structure was hexagonal and it was found that some peaks disappear with various pH values. The grain sizes of ZnO films increases from 22-to-29nm with increasing pH. The transmission of the films was (85-95%)

  6. Properties of zinc tin oxide thin film by aerosol assisted chemical vapor deposition (AACVD)

    NASA Astrophysics Data System (ADS)

    Riza, Muhammad Arif; Rahman, Abu Bakar Abd; Sepeai, Suhaila; Ludin, Norasikin Ahmad; Teridi, Mohd Asri Mat; Ibrahim, Mohd Adib

    2018-05-01

    This study focuses on the properties of ZTO which have been deposited by a low-cost method namely aerosol assisted chemical vapor deposition (AACVD). The precursors used in this method were zinc acetate dihidrate and tin chloride dihydrate for ZTO thin film deposition. Both precursors were mixed and stirred until fully dissolved before deposition. The ZTO was deposited on borosilicate glass substrate for the investigation of optical properties. The films deposited have passed the scotch tape adherence test. XRD revealed that the crystal ZTO is slightly in the form of perovskite structure but several deteriorations were also seen in the spectrum. The UV-Vis analysis showed high transmittance of ˜85% and the band gap was calculated to be 3.85 eV. The average thickness of the film is around 284 nm. The results showed that the ZTO thin films have been successfully deposited by the utilization of AACVD method.

  7. Photocatalysis of zinc oxide nanotip array/titanium oxide film heterojunction prepared by aqueous solution deposition

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Lee, Bo-Wei; Kao, Chen-Yu

    2017-05-01

    A TiO2 film was prepared on indium tin oxide (ITO)/glass by aqueous solution deposition (ASD) with precursors of ammonium hexafluoro-titanate and boric acid at 40 °C. The photocatalysis of annealed TiO2 film increases with increasing growth time and decreases with increasing growth times longer than 60 min. A ZnO nanotip array was prepared on ZnO seed layer/TiO2 film/glass by aqueous solution deposition with precursors of zinc nitrate and ammonium hydroxide at 70 °C. The photocatalysis of ASD-ZnO/ASD-TiO2 film/ITO glass can be better than that of P25.

  8. Characteristics of zinc oxide nanorod array/titanium oxide film heterojunction prepared by aqueous solution deposition

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Hong, Min-Hsuan; Li, Bo-Wei

    2016-07-01

    The characteristics of a ZnO nanorod array/TiO2 film heterojunction were investigated. A TiO2 film was prepared on glass by aqueous solution deposition with precursors of ammonium hexafluorotitanate and boric acid at 40 °C. Then, a ZnO seed layer was prepared on a TiO2 film/glass substrate by RF sputtering. A vertically oriented ZnO nanorod array was grown on a ZnO seed layer/TiO2 film/glass substrate by aqueous solution deposition with precursors of zinc nitrate and hexamethylenetetramine (HMT) at 70 °C. After thermal annealing in N2O ambient at 300 °C, this heterojunction used as an oxygen gas sensor shows much better rise time, decay time, and on/off current ratio than as-grown and annealed ZnO nanorods.

  9. Aluminum-doped zinc oxide thin films grown on various substrates using facing target sputtering system

    NASA Astrophysics Data System (ADS)

    Kim, Hwa-Min; Lee, Chang Hyun; Shon, Sun Young; Kim, Bong Hwan

    2017-11-01

    Aluminum-doped zinc oxide (AZO) films were fabricated on various substrates, such as glass, polyethylene naphthalate (PEN), and polyethylene terephthalate (PET), at room temperature using a facing target sputtering (FTS) system with hetero ZnO and Al2O3 targets, and their electrical and optical properties were investigated. The AZO film on glass exhibited compressive stress while the films on the plastic substrates showed tensile stress. These stresses negatively affected the crystalline quality of the AZO films, and it is suggested that the poor crystalline quality of the films may be related to the neutral Al-based defect complexes formed in the films; these complexes act as neutral impurity scattering centers. AZO films with good optoelectronic properties could be formed on the glass and plastic substrates by the FTS technique using the hetero targets. The AZO films deposited on the glass, PEN, and PET substrates showed very low resistivities, of 5.0 × 10-4 Ω cm, 7.0 × 10-4 Ω cm, and 7.4 × 10-4 Ω cm, respectively. Further, the figure merit of the AZO film formed on the PEN substrate in the visible range (400-700 nm) was significantly higher than that of the AZO film on PET and similar to that of the AZO film on glass. Finally, the average transmittances of the films in the visible range (400-700 nm) were 83.16% (on glass), 76.3% (on PEN), and 78.16% (on PET).

  10. Zinc Oxide Grown by CVD Process as Transparent Contact for Thin Film Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    Faÿ, S.; Shah, A.

    Metalorganic chemical vapor deposition of ZnO films (MOCVD) [1] started to be comprehensively investigated in the 1980s, when thin film industries were looking for ZnO deposition processes especially useful for large-scale coatings at high growth rates. Later on, when TCO for thin film solar cells started to be developed, another advantage of growing TCO films by the CVD process has been highlighted: the surface roughness. Indeed, a large number of studies on CVD ZnO revealed that an as-grown rough surface cn be obtained with this deposition process [2-4]. A rough surface induces a light scattering effect, which can significantly improve light trapping (and therefore current photo-generation) within thin film silicon solar cells. The CVD process, indeed, directly leads to as-grown rough ZnO films without any post-etching step (the latter is often introduced to obtain a rough surface, when working with as-deposited flat sputtered ZnO). This fact could turn out to be a significant advantage when upscaling the manufacturing process for actual commercial production of thin film solar modules. The zinc and oxygen sources for CVD growth of ZnO films are given in Table 6.1.

  11. Effect of cadmium incorporation on the properties of zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Bharath, S. P.; Bangera, Kasturi V.; Shivakumar, G. K.

    2018-02-01

    Cd x Zn1- x O (0 ≤ x ≤ 0.20) thin films are deposited on soda lime glass substrates using spray pyrolysis technique. To check the thermal stability, Cd x Zn1- x O thin films are subjected to annealing. Both the as-deposited and annealed Cd x Zn1- x O thin films are characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) and energy-dispersive X-ray analysis (EDAX) to check the structural, surface morphological and compositional properties, respectively. XRD analysis reveals that the both as-deposited and annealed Cd x Zn1- x O thin films are (002) oriented with wurtzite structure. SEM studies confirm that as-deposited, as well as annealed Cd x Zn1- x O thin films are free from pinholes and cracks. Compositional analysis shows the deficiency in Cd content after annealing. Optical properties evaluated from UV-Vis spectroscopy shows red shift in the band gap for Cd x Zn1- x O thin films. Electrical property measured using two probe method shows a decrease in the resistance after Cd incorporation. The results indicate that cadmium can be successfully incorporated in zinc oxide thin films to achieve structural changes in the properties of films.

  12. The zinc-loss effect and mobility enhancement of DUV-patterned sol-gel IGZO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Wang, Kuan-Hsun; Zan, Hsiao-Wen; Soppera, Olivier

    2018-03-01

    We investigate the composition of the DUV-patterned sol-gel indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) and observe a significant zinc loss effect during developing when the DUV exposure is insufficient. The zinc loss, however, is beneficial for increasing the mobility. Reducing zinc to indium composition ratio from 0.5 to 0.02 can effectively increase mobility from 0.27 to 7.30 cm2 V-1 s-1 when the gallium to indium ratio is fixed as 0.25 and the post annealing process is fixed as 300 °C for 2 h. On the other hand, an IGO TFT fails to deliver a uniform film and a reproducible TFT performance, revealing the critical role of zinc in forming homogeneous IGZO TFTs.

  13. High Stability Performance of Quinary Indium Gallium Zinc Aluminum Oxide Films and Thin-Film Transistors Deposited Using Vapor Cooling Condensation Method

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Hao; Lee, Ching-Ting

    2017-08-01

    High-quality indium gallium zinc aluminum oxide (IGZAO) thin films with various Al contents have been deposited using the vapor cooling condensation method. The electron mobility of the IGZAO films was improved by 89.4% on adding Al cation to IGZO film. The change in the electron concentration and mobility of the IGZAO films was 7.3% and 7.0%, respectively, when the temperature was changed from 300 K to 225 K. These experimental results confirm the high performance and stability of the IGZAO films. The performance stability mechanisms of IGZAO thin-film transistors (TFTs) were investigated in comparison with IGZO TFTs.

  14. Size dependent nonlinear optical properties of spin coated zinc oxide-polystyrene nanocomposite films

    NASA Astrophysics Data System (ADS)

    Jeeju, Pullarkat P.; Jayalekshmi, S.; Chandrasekharan, K.; Sudheesh, P.

    2012-11-01

    Using simple wet chemical method at room temperature, zinc oxide (ZnO) nanoparticles embedded in polystyrene (PS) matrix were synthesized. The size of the ZnO nanoparticles could be varied by varying the precursor concentration, reaction time and stirring speed. Transparent films of ZnO/PS nanocomposites of thickness around 1 μm were coated on ultrasonically cleaned glass substrates by spin coating. The optical absorptive nonlinearity in ZnO/PS nanocomposite films was investigated using open aperture Z-scan technique with nanosecond laser pulses at 532 nm. The results indicate optical limiting type nonlinearity in the films due to two-photon absorption in ZnO. These films also show a self-defocusing type negative nonlinear refraction in closed aperture Z-scan experiment. The observed nonlinear absorption is strongly dependent on particle size and the normalized transmittance could be reduced to as low as 0.43 by the suitable choice of the ZnO nanoparticle size. These composite films can hence be used as efficient optical limiters for sensor protection. The much-pronounced nonlinear response of these composite films, compared to pure ZnO, combined with the improved stability of ZnO nanoparticles in the PS matrix offer prospects of application of these composite films in the fabrication of stable non-linear optical devices.

  15. Structure evolution of zinc oxide thin films deposited by unbalance DC magnetron sputtering

    SciT

    Aryanto, Didik, E-mail: didi027@lipi.go.id; Materials Research Group, Physics Department, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah; Marwoto, Putut

    Zinc oxide (ZnO) thin films are deposited on corning glass substrates using unbalanced DC magnetron sputtering. The effect of growth temperature on surface morphology and crystallographic orientation of ZnO thin film is studied using atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. The surface morphology and crystallographic orientation of ZnO thin film are transformed against the increasing of growth temperature. The mean grain size of film and the surface roughness are inversely and directly proportional towards the growth temperature from room temperature to 300 °C, respectively. The smaller grain size and finer roughness of ZnO thin film are obtainedmore » at growth temperature of 400 °C. The result of AFM analysis is in good agreement with the result of XRD analysis. ZnO thin films deposited in a series of growth temperatures have hexagonal wurtzite polycrystalline structures and they exhibit transformations in the crystallographic orientation. The results in this study reveal that the growth temperature strongly influences the surface morphology and crystallographic orientation of ZnO thin film.« less

  16. Synthesis of zinc oxide thin films prepared by sol-gel for specific bioactivity

    NASA Astrophysics Data System (ADS)

    Adam, Tijjani; Basri, B.; Dhahi, Th. S.; Mohammed, Mohammed; Hashim, U.; Noriman, N. Z.; Dahham, Omar S.

    2017-09-01

    Zinc oxide (ZnO) thin films this device to used for many application like chemical sensor, biosensor, solar energy, etc but my project to use for bioactivity(biosensor). Zinc oxide (ZnO) thin films have been grown using sol-gel technique. Characterization was done using Scanning Electron Microscope (SEM), Energy Dispersive X-ray(EDX) and Electrical Measurement(I-V). ZnO thin film was successfully synthesized using low cost sol-gel spin coating method. The coupling of DNA probe to ZnO thin film supports modified with carboxylic acid (COOH) is certainly the best practical method to make DNA immobilization and it does not require any coupling agent which could be a source of variability during the spotting with an automatic device. So, selected this coupling procedure for further experiments. The sensor was tested with initial trial with low concentrated DNA and able to detect detection of the disease effectively. Silicon-on-insulator (SOI) wafer device with ZnO can detect at different concentration in order to valid the device capabilities for detecting development. The lowest concentration 1 µM HPV DNA probe can detect is 0.1 nM HPV target DNA.

  17. Photoconductivity study of acid on Zinc phthalocyanine pyridine thin films

    SciT

    Singh, Sukhwinder, E-mail: ss7667@gmail.com; Saini, G. S. S.; Tripathi, S. K.

    2016-05-06

    The Metal Phthalocyanine (MPc) have attracted much interest because of chemical and high thermal stability. Molecules forming a crystal of MPc are held together by weak attractive Vander Waals forces. Organic semiconductors have π conjugate bonds which allow electrons to move via π-electron cloud overlaps. Conduction mechanisms for organic semiconductor are mainly through tunneling; hopping between localized states, mobility gaps, and phonon assisted hopping. The photo conductivity of thin films of these complexes changes when exposed to oxidizing and reducing gases. Arrhenius plot is used to find the thermal activation energy in the intrinsic region and impurity scattering region. Arrheniusmore » plotsare used to find the thermal activation energy.« less

  18. Low-Concentration Indium Doping in Solution-Processed Zinc Oxide Films for Thin-Film Transistors.

    PubMed

    Zhang, Xue; Lee, Hyeonju; Kwon, Jung-Hyok; Kim, Eui-Jik; Park, Jaehoon

    2017-07-31

    We investigated the influence of low-concentration indium (In) doping on the chemical and structural properties of solution-processed zinc oxide (ZnO) films and the electrical characteristics of bottom-gate/top-contact In-doped ZnO thin-film transistors (TFTs). The thermogravimetry and differential scanning calorimetry analysis results showed that thermal annealing at 400 °C for 40 min produces In-doped ZnO films. As the In content of ZnO films was increased from 1% to 9%, the metal-oxygen bonding increased from 5.56% to 71.33%, while the metal-hydroxyl bonding decreased from 72.03% to 9.63%. The X-ray diffraction peaks and field-emission scanning microscope images of the ZnO films with different In concentrations revealed a better crystalline quality and reduced grain size of the solution-processed ZnO thin films. The thickness of the In-doped ZnO films also increased when the In content was increased up to 5%; however, the thickness decreased on further increasing the In content. The field-effect mobility and on/off current ratio of In-doped ZnO TFTs were notably affected by any change in the In concentration. Considering the overall TFT performance, the optimal In doping concentration in the solution-processed ZnO semiconductor was determined to be 5% in this study. These results suggest that low-concentration In incorporation is crucial for modulating the morphological characteristics of solution-processed ZnO thin films and the TFT performance.

  19. Low-Concentration Indium Doping in Solution-Processed Zinc Oxide Films for Thin-Film Transistors

    PubMed Central

    Zhang, Xue; Lee, Hyeonju; Kim, Eui-Jik; Park, Jaehoon

    2017-01-01

    We investigated the influence of low-concentration indium (In) doping on the chemical and structural properties of solution-processed zinc oxide (ZnO) films and the electrical characteristics of bottom-gate/top-contact In-doped ZnO thin-film transistors (TFTs). The thermogravimetry and differential scanning calorimetry analysis results showed that thermal annealing at 400 °C for 40 min produces In-doped ZnO films. As the In content of ZnO films was increased from 1% to 9%, the metal-oxygen bonding increased from 5.56% to 71.33%, while the metal-hydroxyl bonding decreased from 72.03% to 9.63%. The X-ray diffraction peaks and field-emission scanning microscope images of the ZnO films with different In concentrations revealed a better crystalline quality and reduced grain size of the solution-processed ZnO thin films. The thickness of the In-doped ZnO films also increased when the In content was increased up to 5%; however, the thickness decreased on further increasing the In content. The field-effect mobility and on/off current ratio of In-doped ZnO TFTs were notably affected by any change in the In concentration. Considering the overall TFT performance, the optimal In doping concentration in the solution-processed ZnO semiconductor was determined to be 5% in this study. These results suggest that low-concentration In incorporation is crucial for modulating the morphological characteristics of solution-processed ZnO thin films and the TFT performance. PMID:28773242

  20. Electrical instability of high-mobility zinc oxynitride thin-film transistors upon water exposure

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hwan; Jeong, Hwan-Seok; Kwon, Hyuck-In

    2017-03-01

    We investigate the effects of water absorption on the electrical performance and stability in high-mobility zinc oxynitride (ZnON) thin-film transistors (TFTs). The ZnON TFT exhibits a smaller field-effect mobility, lower turn-on voltage, and higher subthreshold slope with a deteriorated electrical stability under positive gate bias stresses after being exposed to water. From the Hall measurements, an increase of the electron concentration and a decrease of the Hall mobility are observed in the ZnON thin film after water absorption. The observed phenomena are mainly attributed to the water molecule-induced increase of the defective ZnXNY bond and the oxygen vacancy inside the ZnON thin film based on the x-ray photoelectron spectroscopy analysis.

  1. The effect of zinc thickness on corrosion film breakdown of Colombian galvanized steel

    NASA Astrophysics Data System (ADS)

    Sandoval-Amador, A.; E Torres Ramirez, J.; Cabrales-Villamizar, P. A.; Laverde Cataño, D.; Y Peña-Ballesteros, D.

    2017-12-01

    This work studies the corrosion behaviour of Colombian galvanized steel in solutions of chloride and sulphate ions. The effect of the thickness and exposure time on the film’s breakdown susceptibility and protectiveness of the corrosion products were studied using potentiodynamic polarization curves and electrochemical impedance spectroscopy. The corrosion products were analysed using SEM-EDS and XRD. The samples with a higher thickness level in the zinc film (Z180) have the lowest corrosion rate. In this case, one of the products that was formed by the chemical reactions that occurred was Zinc hydroxide, which exhibits a passive behaviour as observed in the Pourbaix curves of the obtained potentials and in how the different Ph levels of the solutions worked. The sheets with the highest thickness (Z180) had the best performance, since at the end of the study they showed the least amount of damage on the surface of the zinc layer. This is because the thickness of the zinc layer favours the formation of simonkolleite, which is the corrosion product that protects the material under the conditions of the study.

  2. Properties of solid solutions, doped film, and nanocomposite structures based on zinc oxide

    NASA Astrophysics Data System (ADS)

    Lashkarev, G. V.; Shtepliuk, I. I.; Ievtushenko, A. I.; Khyzhun, O. Y.; Kartuzov, V. V.; Ovsiannikova, L. I.; Karpyna, V. A.; Myroniuk, D. V.; Khomyak, V. V.; Tkach, V. N.; Timofeeva, I. I.; Popovich, V. I.; Dranchuk, N. V.; Khranovskyy, V. D.; Demydiuk, P. V.

    2015-02-01

    A study of the properties of materials based on the wide bandgap zinc oxide semiconductor, which are promising for application in optoelectronics, photovoltaics and nanoplasmonics. The structural and optical properties of solid solution Zn1-xCdxO films with different cadmium content, are studied. The samples are grown using magnetron sputtering on sapphire backing. Low-temperature photoluminescence spectra revealed emission peaks associated with radiative recombination processes in those areas of the film that have varying amounts of cadmium. X-ray phase analysis showed the presence of a cadmium oxide cubic phase in these films. Theoretical studies of the solid solution thermodynamic properties allowed for a qualitative interpretation of the observed experimental phenomena. It is established that the growth of the homogeneous solid solution film is possible only at high temperatures, whereas regions of inhomogeneous composition can be narrowed through elastic deformation, caused by the mismatch of the film-backing lattice constants. The driving forces of the spinodal decomposition of the Zn1-xCdxO system are identified. Fullerene-like clusters of Znn-xCdxOn are used to calculate the bandgap and the cohesive energy of ZnCdO solid solutions. The properties of transparent conductive ZnO films, doped with Group III donor impurities (Al, Ga, In), are examined. It is shown that oxygen vacancies are responsible for the hole trap centers in the zinc oxide photoconductivity process. We also examine the photoluminescence properties of metal-ZnO nanocomposite structures, caused by surface plasmons.

  3. Zinc interstitial threshold in Al-doped ZnO film: Effect on microstructure and optoelectronic properties

    NASA Astrophysics Data System (ADS)

    Singh, Chetan C.; Panda, Emila

    2018-04-01

    In order to know the threshold quantity of the zinc interstitials that contributes to an increase in carrier concentration in the Al-doped ZnO (AZO) films and their effect on the overall microstructure and optoelectronic properties of these films, in this work, Zn-rich-AZO and ZnO thin films are fabricated by adding excess zinc (from a zinc metallic target) during their deposition in RF magnetron sputtering and are then investigated using a wide range of experimental techniques. All these films are found to grow in a ZnO hexagonal wurtzite crystal structure with strong (002) orientation of the crystallites, with no indication of Al2O3, metallic Zn, and Al. The excessively introduced zinc in these AZO and/or ZnO films is found to increase the shallow donor level defects (i.e., zinc interstitials and oxygen-related electronic defect states), which is found to significantly increase the carrier concentration in these films. Additionally, aluminum is seen to enhance the creation of these electronic defect states in these films, thereby contributing more to the overall carrier concentration of these films. However, carrier mobility is found to decrease when the carrier concentration values are higher than 4 × 1020 cm-3, because of the electron-electron scattering. Whereas the optical band gap of the ZnO films is found to increase with increasing carrier concentration because of the Burstein-Moss shift, these decrease for the AZO films due to the band gap narrowing effect caused by excess carrier concentration.

  4. Photoconductivity study of acid on Zinc phthalocyanine pyridine thin films

    NASA Astrophysics Data System (ADS)

    Singh, Sukhwinder; Saini, G. S. S.; Tripathi, S. K.

    2016-05-01

    The Metal Phthalocyanine (MPc) have attracted much interest because of chemical and high thermal stability. Molecules forming a crystal of MPc are held together by weak attractive Vander Waals forces. Organic semiconductors have π conjugate bonds which allow electrons to move via π-electron cloud overlaps. Conduction mechanisms for organic semiconductor are mainly through tunneling; hopping between localized states, mobility gaps, and phonon assisted hopping. The photo conductivity of thin films of these complexes changes when exposed to oxidizing and reducing gases. Arrhenius plot is used to find the thermal activation energy in the intrinsic region and impurity scattering region. Arrhenius plotsare used to find the thermal activation energy. The original version of this article supplied to AIP Publishing contained erroneous text at the end of the abstract. "Arrhenius plots are used to find the thermal activation energy." was deleted as it does not pertain to the article. In addition, a figure citation was cited incorrectly and an equation was missing. This has been corrected in the updated version republished on 4 December 2017.

  5. Electrical properties of thin film transistors with zinc tin oxide channel layer

    NASA Astrophysics Data System (ADS)

    Hong, Seunghwan; Oh, Gyujin; Kim, Eun Kyu

    2017-10-01

    We have investigated thin film transistors (TFTs) with zinc tin oxide (ZTO) channel layer fabricated by using an ultra-high vacuum radio frequency sputter. ZTO thin films were grown at room temperature by co-sputtering of ZnO and SnO2, which applied power for SnO2 target was varied from 15 W to 90 W under a fixed sputtering power of 70 W for ZnO target. A post-annealing treatment to improve the film quality was done at temperature ranges from 300 to 600 °C by using the electrical furnace. The ZTO thin films showed good electrical and optical properties such as Hall mobility of more than 9 cm2/V·s, specific resistivity of about 2 × 102 Ω·cm, and optical transmittance of 85% in visible light region by optical bandgap of 3.3 eV. The ZTO-TFT with an excellent performance of channel mobility of 19.1 cm2/V·s and on-off ratio ( I on / I off ) of 104 was obtained from the films grown with SnO2 target power of 25 W and post-annealed at 450 °C. This result showed that ZTO film is promising on application to a high performance transparent TFTs.

  6. Characterization of zinc oxide thin film for pH detector

    NASA Astrophysics Data System (ADS)

    Hashim, Uda; Fathil, M. F. M.; Arshad, M. K. Md; Gopinath, Subash C. B.; Uda, M. N. A.

    2017-03-01

    This paper presents the fabrication process of the zinc oxide thin films for using to act as pH detection by using different PH solution. Sol-gel solution technique is used for preparing zinc oxide seed solution, followed by metal oxide deposition process by using spin coater on the silicon dioxide. Silicon dioxide layer is grown on the silicon wafer, then, ZnO seed solution is deposited on the silicon layer, baked, and annealing process carried on to undergo the characterization of its surface morphology, structural and crystalline phase. Electrical characterization is showed by using PH 4, 7, and 10 is dropped on the surface of the die, in addition, APTES solution is used as linker and also as a references of the electrical characterization.

  7. Multi-layered zinc oxide-graphene composite thin films for selective nitrogen dioxide sensing

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Bhowmick, T.; Majumder, S. B.

    2018-02-01

    In the present work, selective nitrogen dioxide (NO2) sensing characteristics of multi-layered graphene-zinc oxide (G-ZnO) thin films have been demonstrated at 150 °C. The response% of 5 ppm NO2 was measured to be 894% with response and recovery times estimated to be 150 s and 315 s, respectively. In these composite films, the interaction between graphene and zinc oxide is established through X-ray photoelectron spectroscopy in conjunction with the analyses of photoluminescence spectra. Superior NO2 sensing of these films is due to simultaneous chemiadsorption of molecular oxygen and NO2 gases onto graphene and ZnO surfaces, resulting in an appreciable increase in the depletion layer width and thereby the sensor resistance. The sensor responses for other reducing gases (viz., CO, H2, and i-C4H10) are postulated to be due to their catalytic oxidation on the sensor surface, resulting in a decrease in the sensor resistance upon gas exposure. At lower operating temperature, due to the molecular nature of the chemiadsorbed oxygen, poor catalytic oxidation leads to a far lower sensor response for reducing gases as compared to NO2. For mixed NO2 and reducing gas sensing, we have reported that fast Fourier transformation of the resistance transients of all these gases in conjunction with principal component analyses forms a reasonably distinct cluster and, therefore, could easily be differentiated.

  8. Temperature Dependence of the Seebeck Coefficient in Zinc Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Noori, Amirreza; Masoumi, Saeed; Hashemi, Najmeh

    2017-12-01

    Thermoelectric devices are reliable tools for converting waste heat into electricity as they last long, produce no noise or vibration, have no moving elements, and their light weight makes them suitable for the outer space usage. Materials with high thermoelectric figure of merit (zT) have the most important role in the fabrication of efficient thermoelectric devices. Metal oxide semiconductors, specially zinc oxide has recently received attention as a material suitable for sensor, optoelectronic and thermoelectric device applications because of their wide direct bandgap, chemical stability, high-energy radiation endurance, transparency and acceptable zT. Understanding the thermoelectric properties of the undoped ZnO thin films can help design better ZnO-based devices. Here, we report the results of our experimental work on the thermoelectric properties of the undoped polycrystalline ZnO thin films. These films are deposited on alumina substrates by thermal evaporation of zinc in vacuum followed by a controlled oxidation process in air carried out at the 350-500 °C temperature range. The experimental setup including gradient heaters, thermometry system and Seebeck voltage measurement equipment for high resistance samples is described. Seebeck voltage and electrical resistivity of the samples are measured at different conditions. The observed temperature dependence of the Seebeck coefficient is discussed.

  9. Properties of Al- and Ga-doped thin zinc oxide films treated with UV laser radiation

    NASA Astrophysics Data System (ADS)

    Al-Asedy, Hayder J.; Al-Khafaji, Shuruq A.; Bakhtiar, Hazri; Bidin, Noriah

    2018-03-01

    This paper reports the Nd:YAG laser irradiation treated modified properties of aluminum (Al) and gallium (Ga) co-doped zinc oxide (ZnO) (AGZO) films prepared on Si-substrate via combined sol-gel and spin-coating method. The impact of varying laser energy (150-200 mJ) on the structure, morphology, electrical and optical properties of such AGZO films were determined. Laser-treated samples were characterized using various analytical tools. Present techniques could achieve a high-quality polycrystalline films compared with those produced via conventional high temperature processing. AGZO films irradiated with third harmonics UV radiation (355 nm) from Nd:YAG laser source revealed very low resistivity of 4.02 × 10- 3 Ω cm. The structural properties grain size was calculated firm the X-ray diffraction spectra using the Scherrer equation that increased from 12.7 to 22.5 nm as the annealing laser energy increased from (150-200) mJ. The differences in crystallinity and orientation are explained in terms of the thermal effect caused by laser irradiation. (FESEM) images have been demonstrated that Nd:YAG laser annealing can significantly improve the crystallinity level, densification, and surface flatness of sol-gel derived AGZO thin films that occurred as a result of laser processing. Synthesized AGZO films displayed favorable growth orientation along (101) lattice direction. AGZO films with energy band gap of 3.37-3.41 eV were obtained. Results on the crystallinity, surface morphology, roughness, bonding vibration, absorption, photoluminescence, and resistivity of the laser-irradiated films were analyzed and discussed.

  10. Fabrication and RF characterization of zinc oxide based Film Bulk Acoustic Resonator

    NASA Astrophysics Data System (ADS)

    Patel, Raju; Bansal, Deepak; Agrawal, Vimal Kumar; Rangra, Kamaljit; Boolchandani, Dharmendar

    2018-06-01

    This work reports fabrication and characterization of Film Bulk Acoustic Resonator (FBAR) to improve the performance characteristics for RF filter and sensing application. Zinc oxide as a piezoelectric (PZE) material was deposited on an aluminum bottom electrode using an RF magnetron sputtering, at room temperature, and gold as top electrode for the resonator. Tetramethyl ammonium hydroxide (TMAH) setup was used for bulk silicon etching to make back side cavity to confine the acoustic signals. The transmission characteristics show that the FBARs have a central frequency at 1.77 GHz with a return loss of -10.7 dB.

  11. Zinc oxide integrated area efficient high output low power wavy channel thin film transistor

    SciT

    Hanna, A. N.; Ghoneim, M. T.; Bahabry, R. R.

    2013-11-25

    We report an atomic layer deposition based zinc oxide channel material integrated thin film transistor using wavy channel architecture allowing expansion of the transistor width in the vertical direction using the fin type features. The experimental devices show area efficiency, higher normalized output current, and relatively lower power consumption compared to the planar architecture. This performance gain is attributed to the increased device width and an enhanced applied electric field due to the architecture when compared to a back gated planar device with the same process conditions.

  12. Chemical Etching of Zinc Oxide for Thin-Film Silicon Solar Cells

    PubMed Central

    Hüpkes, Jürgen; Owen, Jorj I; Pust, Sascha E; Bunte, Eerke

    2012-01-01

    Abstract Chemical etching is widely applied to texture the surface of sputter-deposited zinc oxide for light scattering in thin-film silicon solar cells. Based on experimental findings from the literature and our own results we propose a model that explains the etching behavior of ZnO depending on the structural material properties and etching agent. All grain boundaries are prone to be etched to a certain threshold, that is defined by the deposition conditions and etching solution. Additionally, several approaches to modify the etching behavior through special preparation and etching steps are provided. PMID:22162035

  13. Plasma-enhanced atomic layer deposition of highly transparent zinc oxy-sulfide thin films

    NASA Astrophysics Data System (ADS)

    Bugot, C.; Schneider, N.; Lincot, D.; Donsanti, F.

    2018-05-01

    The potential of Plasma Enhanced Atomic Layer Deposition (PEALD) for the synthesis of zinc oxy-sulfide Zn(O,S) thin films was explored for the first time, using a supercycle strategy and DEZ, Ar/O2 plasma and H2S as precursors. The growth and the properties of the material were studied by varying the pulse ratio on the full range of composition and the process temperature from Tdep = 120 °C to 220 °C. PEALD-Zn(O,S) films could be grown from pure ZnO to pure ZnS compositions by varying the H2S/(O2 plasma + H2S) pulse ratio. Three distinct growth modes were identified depending on the nature of exchange mechanisms at the film surface during the growth. Films globally have an amorphous structure, except for the extremely sulfur-rich or sulfur-poor ones. High transmission values (up to 85% for Zn(O,S) for 500 < λ < 2500 nm) and optical band gaps (3.3-3.8 eV) have been obtained. The PEALD-Zn(O,S) process and the thin film properties were compared with ALD-Zn(O,S) to highlight the specificities, disadvantages and benefits of plasma enhancement for the synthesis of multi-element materials.

  14. Synthesizing photovoltaic thin films of high quality copper-zinc-tin alloy with at least one chalcogen species

    DOEpatents

    Teeter, Glenn; Du, Hui; Young, Matthew

    2013-08-06

    A method for synthesizing a thin film of copper, zinc, tin, and a chalcogen species ("CZTCh" or "CZTSS") with well-controlled properties. The method includes depositing a thin film of precursor materials, e.g., approximately stoichiometric amounts of copper (Cu), zinc (Zn), tin (Sn), and a chalcogen species (Ch). The method then involves re-crystallizing and grain growth at higher temperatures, e.g., between about 725 and 925 degrees K, and annealing the precursor film at relatively lower temperatures, e.g., between 600 and 650 degrees K. The processing of the precursor film takes place in the presence of a quasi-equilibrium vapor, e.g., Sn and chalcogen species. The quasi-equilibrium vapor is used to maintain the precursor film in a quasi-equilibrium condition to reduce and even prevent decomposition of the CZTCh and is provided at a rate to balance desorption fluxes of Sn and chalcogens.

  15. Diagnostics of RF magnetron sputtering plasma for synthesizing transparent conductive Indium-Zinc-Oxide film

    NASA Astrophysics Data System (ADS)

    Ohta, Takayuki; Inoue, Mari; Takota, Naoki; Ito, Masafumi; Higashijima, Yasuhiro; Kano, Hiroyuki; den, Shoji; Yamakawa, Koji; Hori, Masaru

    2009-10-01

    Transparent conductive Oxide film has been used as transparent conducting electrodes of optoelectronic devices such as flat panel display, solar cells, and so on. Indium-Zinc-Oxide (IZO) has been investigated as one of promising alternatives Indium Tin Oxide film, due to amorphous, no nodule and so on. In order to control a sputtering process with highly precise, RF magnetron sputtering plasma using IZO composite target was diagnosed by absorption and emission spectroscopy. We have developed a multi-micro hollow cathode lamp which can emit simultaneous multi-atomic lines for monitoring Zn and In densities simultaneously. Zn and In densities were measured to be 10^9 from 10^10 cm-3 at RF power from 40 to 100 W, pressure of 5Pa, and Ar flow rate of 300 sccm. The emission intensities of Zn, In, InO, and Ar were also observed.

  16. Water-soluble thin film transistors and circuits based on amorphous indium-gallium-zinc oxide.

    PubMed

    Jin, Sung Hun; Kang, Seung-Kyun; Cho, In-Tak; Han, Sang Youn; Chung, Ha Uk; Lee, Dong Joon; Shin, Jongmin; Baek, Geun Woo; Kim, Tae-il; Lee, Jong-Ho; Rogers, John A

    2015-04-22

    This paper presents device designs, circuit demonstrations, and dissolution kinetics for amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) comprised completely of water-soluble materials, including SiNx, SiOx, molybdenum, and poly(vinyl alcohol) (PVA). Collections of these types of physically transient a-IGZO TFTs and 5-stage ring oscillators (ROs), constructed with them, show field effect mobilities (∼10 cm2/Vs), on/off ratios (∼2×10(6)), subthreshold slopes (∼220 mV/dec), Ohmic contact properties, and oscillation frequency of 5.67 kHz at supply voltages of 19 V, all comparable to otherwise similar devices constructed in conventional ways with standard, nontransient materials. Studies of dissolution kinetics for a-IGZO films in deionized water, bovine serum, and phosphate buffer saline solution provide data of relevance for the potential use of these materials and this technology in temporary biomedical implants.

  17. Low Temperature Annealed Zinc Oxide Nanostructured Thin Film-Based Transducers: Characterization for Sensing Applications

    PubMed Central

    Haarindraprasad, R.; Hashim, U.; Gopinath, Subash C. B.; Kashif, Mohd; Veeradasan, P.; Balakrishnan, S. R.; Foo, K. L.; Poopalan, P.

    2015-01-01

    The performance of sensing surfaces highly relies on nanostructures to enhance their sensitivity and specificity. Herein, nanostructured zinc oxide (ZnO) thin films of various thicknesses were coated on glass and p-type silicon substrates using a sol-gel spin-coating technique. The deposited films were characterized for morphological, structural, and optoelectronic properties by high-resolution measurements. X-ray diffraction analyses revealed that the deposited films have a c-axis orientation and display peaks that refer to ZnO, which exhibits a hexagonal structure with a preferable plane orientation (002). The thicknesses of ZnO thin films prepared using 1, 3, 5, and 7 cycles were measured to be 40, 60, 100, and 200 nm, respectively. The increment in grain size of the thin film from 21 to 52 nm was noticed, when its thickness was increased from 40 to 200 nm, whereas the band gap value decreased from 3.282 to 3.268 eV. Band gap value of ZnO thin film with thickness of 200 nm at pH ranging from 2 to 10 reduces from 3.263eV to 3.200 eV. Furthermore, to evaluate the transducing capacity of the ZnO nanostructure, the refractive index, optoelectric constant, and bulk modulus were analyzed and correlated. The highest thickness (200 nm) of ZnO film, embedded with an interdigitated electrode that behaves as a pH-sensing electrode, could sense pH variations in the range of 2-10. It showed a highly sensitive response of 444 μAmM-1cm-2 with a linear regression of R2 =0.9304. The measured sensitivity of the developed device for pH per unit is 3.72μA/pH. PMID:26167853

  18. Dual operation characteristics of resistance random access memory in indium-gallium-zinc-oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Yang, Jyun-Bao; Chang, Ting-Chang; Huang, Jheng-Jie; Chen, Yu-Chun; Chen, Yu-Ting; Tseng, Hsueh-Chih; Chu, Ann-Kuo; Sze, Simon M.

    2014-04-01

    In this study, indium-gallium-zinc-oxide thin film transistors can be operated either as transistors or resistance random access memory devices. Before the forming process, current-voltage curve transfer characteristics are observed, and resistance switching characteristics are measured after a forming process. These resistance switching characteristics exhibit two behaviors, and are dominated by different mechanisms. The mode 1 resistance switching behavior is due to oxygen vacancies, while mode 2 is dominated by the formation of an oxygen-rich layer. Furthermore, an easy approach is proposed to reduce power consumption when using these resistance random access memory devices with the amorphous indium-gallium-zinc-oxide thin film transistor.

  19. The role of crystallographic texture in achieving low friction zinc oxide nanolaminate films

    NASA Astrophysics Data System (ADS)

    Mojekwu, Nneoma

    Metal oxide nanolaminate films are potential high temperature solid lubricants due to their ability to exhibit significant plasticity when grain size is reduced to the nanometer scale, and defective growth structure is achieved by condensation of oxygen vacancies to form intrinsic stacking faults. This is in contrast to conventional microcrystalline and single crystal oxides that exhibit brittle fracture during loading in a sliding contact. This study emphasizes the additional effect of growth orientation, in particular crystallographic texture, on determining the sliding friction behavior in nanocolumnar grain zinc oxide films grown by atomic layer deposition. It was determined that zinc oxide low (0002) versus higher (101¯3) surface energy crystallographic planes influenced the sliding friction coefficient. Texturing of the (0002) grains resulted in a decreased adhesive component of friction thereby lowering the sliding friction coefficient to ˜0.25, while the friction coefficient doubled to ˜0.5 with increasing contribution of surface (101¯3) grains. In addition, the variation of the x-ray grazing incident angle from 0.5° to 5° was studied to better understand the surface grain orientation as a function of ZnO layer thickness in one versus four bilayer nanolaminates where the under layer (seed layer) was load-bearing Zn(Ti,Zr)O3.

  20. Surface plasmon resonance based fiber optic detection of chlorine utilizing polyvinylpyrolidone supported zinc oxide thin films.

    PubMed

    Tabassum, Rana; Gupta, Banshi D

    2015-03-21

    A highly sensitive chlorine sensor for an aqueous medium is fabricated using an optical fiber surface plasmon resonance (OFSPR) system. An OFSPR-based chlorine sensor is designed with a multilayer-type platform by zinc oxide (ZnO) and polyvinylpyrollidone (PVP) film morphology manipulations. Among all the methodologies of transduction reported in the field of solid state chemical and biochemical sensing, our attention is focused on the Kretschmann configuration optical fiber sensing technique using the mechanism of surface plasmon resonance. The optical fiber surface plasmon resonance (SPR) chlorine sensor is developed using a multimode optical fiber with the PVP-supported ZnO film deposited over a silver-coated unclad core of the fiber. A spectral interrogation mode of operation is used to characterize the sensor. In an Ag/ZnO/PVP multilayer system, the absorption of chlorine in the vicinity of the sensing region is performed by the PVP layer and the zinc oxide layer enhances the shift in resonance wavelength. It is, experimentally, demonstrated that the SPR wavelength shifts nonlinearly towards the red side of the visible region with an increase in the chlorine concentration in an aqueous medium while the sensitivity of the sensor decreases linearly with an increase in the chlorine concentration. As the proposed sensor utilizes an optical fiber, it possesses the additional advantages of fiber such as less signal degradation, less susceptibility to electromagnetic interference, possibility of remote sensing, probe miniaturization, probe re-usability, online monitoring, small size, light weight and low cost.

  1. Fully transparent flexible tin-doped zinc oxide thin film transistors fabricated on plastic substrate.

    PubMed

    Han, Dedong; Zhang, Yi; Cong, Yingying; Yu, Wen; Zhang, Xing; Wang, Yi

    2016-12-12

    In this work, we have successfully fabricated bottom gate fully transparent tin-doped zinc oxide thin film transistors (TZO TFTs) fabricated on flexible plastic substrate at low temperature by RF magnetron sputtering. The effect of O 2 /Ar gas flow ratio during channel deposition on the electrical properties of TZO TFTs was investigated, and we found that the O 2 /Ar gas flow ratio have a great influence on the electrical properties. TZO TFTs on flexible substrate has very nice electrical characteristics with a low off-state current (I off ) of 3 pA, a high on/off current ratio of 2 × 10 7 , a high saturation mobility (μ sat ) of 66.7 cm 2 /V•s, a steep subthreshold slope (SS) of 333 mV/decade and a threshold voltage (V th ) of 1.2 V. Root-Mean-Square (RMS) roughness of TZO thin film is about 0.52 nm. The transmittance of TZO thin film is about 98%. These results highlight that the excellent device performance can be realized in TZO film and TZO TFT can be a promising candidate for flexible displays.

  2. Fully transparent flexible tin-doped zinc oxide thin film transistors fabricated on plastic substrate

    NASA Astrophysics Data System (ADS)

    Han, Dedong; Zhang, Yi; Cong, Yingying; Yu, Wen; Zhang, Xing; Wang, Yi

    2016-12-01

    In this work, we have successfully fabricated bottom gate fully transparent tin-doped zinc oxide thin film transistors (TZO TFTs) fabricated on flexible plastic substrate at low temperature by RF magnetron sputtering. The effect of O2/Ar gas flow ratio during channel deposition on the electrical properties of TZO TFTs was investigated, and we found that the O2/Ar gas flow ratio have a great influence on the electrical properties. TZO TFTs on flexible substrate has very nice electrical characteristics with a low off-state current (Ioff) of 3 pA, a high on/off current ratio of 2 × 107, a high saturation mobility (μsat) of 66.7 cm2/V•s, a steep subthreshold slope (SS) of 333 mV/decade and a threshold voltage (Vth) of 1.2 V. Root-Mean-Square (RMS) roughness of TZO thin film is about 0.52 nm. The transmittance of TZO thin film is about 98%. These results highlight that the excellent device performance can be realized in TZO film and TZO TFT can be a promising candidate for flexible displays.

  3. Rapid Thermal Annealing for Solution Synthesis of Transparent Conducting Aluminum Zinc Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Ullah, Sana; De Matteis, Fabio; Davoli, Ivan

    2017-11-01

    Transparent conducting oxide films with optimized dopant molar ratio have been prepared with limited pre- and postdeposition annealing duration of 10 min. Multiple aluminum zinc oxide (AZO) layers were spin-coated on ordinary glass substrates. The predeposition consolidation temperature and dopant molar ratio were optimized for electrical conductivity and optical transparency. Next, a group of films were deposited on Corning glass substrates from precursor solutions with the optimized dopant ratio, followed by postdeposition rapid thermal annealing (RTA) at different temperatures and in controlled environments. The lowest resistivity of 10.1 × 10-3 Ω cm was obtained for films receiving RTA at 600°C for 10 min each in vacuum then in N2-5%H2 environment, while resistivity of 20.3 × 10-3 Ω cm was obtained for films subjected to RTA directly in N2-5%H2. Optical measurements revealed average total transmittance of about 85% in the visible region. A direct allowed transition bandgap was determined based on the absorption edge with a value slightly above 3.0 eV, within the typical range for semiconductors. RTA resulted in desorption of oxygen with enhanced carrier concentration and crystallinity, which increased the carrier mobility with decreased bulk resistivity while maintaining the required optical transparency.

  4. Optimizing amorphous indium zinc oxide film growth for low residual stress and high electrical conductivity

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Sigdel, A. K.; Gennett, T.; Berry, J. J.; Perkins, J. D.; Ginley, D. S.; Packard, C. E.

    2013-10-01

    With recent advances in flexible electronics, there is a growing need for transparent conductors with optimum conductivity tailored to the application and nearly zero residual stress to ensure mechanical reliability. Within amorphous transparent conducting oxide (TCO) systems, a variety of sputter growth parameters have been shown to separately impact film stress and optoelectronic properties due to the complex nature of the deposition process. We apply a statistical design of experiments (DOE) approach to identify growth parameter-material property relationships in amorphous indium zinc oxide (a-IZO) thin films and observed large, compressive residual stresses in films grown under conditions typically used for the deposition of highly conductive samples. Power, growth pressure, oxygen partial pressure, and RF power ratio (RF/(RF + DC)) were varied according to a full-factorial test matrix and each film was characterized. The resulting regression model and analysis of variance (ANOVA) revealed significant contributions to the residual stress from individual growth parameters as well as interactions of different growth parameters, but no conditions were found within the initial growth space that simultaneously produced low residual stress and high electrical conductivity. Extrapolation of the model results to lower oxygen partial pressures, combined with prior knowledge of conductivity-growth parameter relationships in the IZO system, allowed the selection of two promising growth conditions that were both empirically verified to achieve nearly zero residual stress and electrical conductivities >1480 S/cm. This work shows that a-IZO can be simultaneously optimized for high conductivity and low residual stress.

  5. Synthesis of ALD zinc oxide and thin film materials optimization for UV photodetector applications

    NASA Astrophysics Data System (ADS)

    Tapily, Kandabara Nouhoum

    Zinc oxide (ZnO) is a direct, wide bandgap semiconductor material. It is thermodynamically stable in the wurtzite structure at ambient temperature conditions. ZnO has very interesting optical and electrical properties and is a suitable candidate for numerous optoelectronic applications such as solar cells, LEDs and UV-photodetectors. ZnO is a naturally n-type semiconductor. Due to the lack of reproducible p-type ZnO, achieving good homojunction ZnO-based photodiodes such as UV-photodetectors remains a challenge. Meanwhile, heterojunction structures of ZnO with p-type substrates such as SiC, GaN, NiO, AlGaN, Si etc. are used; however, those heterojunction diodes suffer from low efficiencies. ZnO is an n-type material with numerous intrinsic defect levels responsible for the electrical and optical behaviors. Presently, there is no clear consensus about the origin of those defects. In this work, ZnO was synthesized by atomic layer deposition (ALD). ALD is a novel deposition technique suitable for nanotechnology engineering that provides unique features such as precise control of ZnO thin film with atomic resolution, high uniformity, good conformity and high aspect ratio. Using this novel deposition technique, the ALD ZnO deposition process was developed and optimized using diethyl zinc as the precursor for zinc and water vapor as the oxygen source. In order to optimize the film quality for use in electronic applications, the physical, mechanical and electrical properties were investigated. The structural and mechanical properties of the ALD ZnO thin films were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), scanning electron microscopy (SEM), spectroscopic Ellipsometry, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-VIS absorption and nanoindentation. The electrical characterizations were performed using C-V, I-V, DLTS, Hall Effect, and four-point probe. The intrinsic defects responsible

  6. Structural and spectroscopic analysis of ex-situ annealed RF sputtered aluminium doped zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Otieno, Francis; Airo, Mildred; Erasmus, Rudolph M.; Billing, David G.; Quandt, Alexander; Wamwangi, Daniel

    2017-08-01

    Aluminium doped zinc oxide thin films are prepared by Radio Frequency magnetron sputtering in pure argon atmosphere at 100 W. The structural results reveal good film adhesion on a silicon substrate (001). The thin films were then subjected to heat treatment in a furnace under ambient air. The structural, morphological, and optical properties of the thin films as a function of deposition time and annealing temperatures have been investigated using Grazing incidence X-Ray Diffraction (GIXRD), Atomic Force Microscopy, and Scanning Electronic Microscopy. The photoluminescence properties of the annealed films showed significant changes in the optical properties attributed to mid gap defects. Annealing increases the crystallite size and the roughness of the film. The crystallinity of the films also improved as evident from the Raman and XRD studies.

  7. Rapid curing of solution-processed zinc oxide films by pulse-light annealing for thin-film transistor applications

    NASA Astrophysics Data System (ADS)

    Kim, Dong Wook; Park, Jaehoon; Hwang, Jaeeun; Kim, Hong Doo; Ryu, Jin Hwa; Lee, Kang Bok; Baek, Kyu Ha; Do, Lee-Mi; Choi, Jong Sun

    2015-01-01

    In this study, a pulse-light annealing method is proposed for the rapid fabrication of solution-processed zinc oxide (ZnO) thinfilm transistors (TFTs). Transistors that were fabricated by the pulse-light annealing method, with the annealing being carried out at 90℃ for 15 s, exhibited a mobility of 0.05 cm2/Vs and an on/off current ratio of 106. Such electrical properties are quite close to those of devices that are thermally annealed at 165℃ for 40 min. X-ray photoelectron spectroscopy analysis of ZnO films showed that the activation energy required to form a Zn-O bond is entirely supplied within 15 s of pulse-light exposure. We conclude that the pulse-light annealing method is viable for rapidly curing solution-processable oxide semiconductors for TFT applications.

  8. Aqueous synthesis of zinc oxide films for GaN optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Reading, Arthur H.

    GaN-based LEDs have generally made use of ITO transparent contacts as current-spreading layers for uniform current injection. However, the high raw material and processing costs of ITO layers have generated interest in potentially cheaper alternatives. In this work, zinc oxide transparent layers were fabricated by a low-cost, low-temperature aqueous epitaxial growth method at 90°C for use as transparent contacts to GaN LEDs on c-plane sapphire, and on semipolar bulk GaN substrates. Low-voltage operation was achieved for c-plane devices, with voltages below 3.8V for 1mm2 broad-area LEDs at a current density of 30A/cm 2. Blue-green LEDs on 202¯1¯-plane GaN also showed low voltage operation below 3.5V at 30A/cm2. Ohmic contact resistivity of 1:8 x 10-2Ocm2 was measured for films on (202¯1) p-GaN templates. Ga-doped films had electrical conductivities as high as 660S/cm after annealing at 300°C. Optical characterization revealed optical absorption coefficients in the 50--200cm -1 range for visible light, allowing thick films with sheet resistances below 10O/□ to be grown while minimizing absorption of the emitted light. Accurate and reproducible etch-free patterning of the ZnO films was achieved using templated growths with SiOx hard masks. A roughening method is described which was found to increase peak LED efficiencies by 13% on c-plane patterned sapphire (PSS) substrates. In addition, ZnO films were successfully employed as laser-cladding layers for blue (202¯1) lasers, with a threshold current density of 8.8kA/cm 2.

  9. Silicon induced stability and mobility of indium zinc oxide based bilayer thin film transistors

    NASA Astrophysics Data System (ADS)

    Chauhan, Ram Narayan; Tiwari, Nidhi; Liu, Po-Tsun; Shieh, Han-Ping D.; Kumar, Jitendra

    2016-11-01

    Indium zinc oxide (IZO), silicon containing IZO, and IZO/IZO:Si bilayer thin films have been prepared by dual radio frequency magnetron sputtering on glass and SiO2/Si substrates for studying their chemical compositions and electrical characteristics in order to ascertain reliability for thin film transistor (TFT) applications. An attempt is therefore made here to fabricate single IZO and IZO/IZO:Si bilayer TFTs to study the effect of film thickness, silicon incorporation, and bilayer active channel on device performance and negative bias illumination stress (NBIS) stability. TFTs with increasing single active IZO layer thickness exhibit decrease in carrier mobility but steady improvement in NBIS; the best values being μFE ˜ 27.0, 22.0 cm2/Vs and ΔVth ˜ -13.00, -6.75 V for a channel thickness of 7 and 27 nm, respectively. While silicon incorporation is shown to reduce the mobility somewhat, it raises the stability markedly (ΔVth ˜ -1.20 V). Further, IZO (7 nm)/IZO:Si (27 nm) bilayer based TFTs display useful characteristics (field effect mobility, μFE = 15.3 cm2/Vs and NBIS value, ΔVth =-0.75 V) for their application in transparent electronics.

  10. Zinc doping of large-area MoS2 films via chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Xu, Enzhi; Liu, Haoming; Park, Kyungwha; Li, Zhen; Losovyj, Yaroslav; Starr, Matthew; Werbianskyj, Madilynn; Fertig, Herbert; Zhang, Shixiong

    Atomically thin molybdenum disulfide (MoS2) has attracted significant attention because of its great potential for electronic and optoelectronic applications. Undoped MoS2 is n-type presumably due to the formation of native defects, and realizing p-type conduction has often turned out to be challenging. In this work, we report on the synthesis and characterizations of large-area Zn-doped MoS2 thin films in which the zinc dopant is demonstrated to be p-type. The films were grown by chemical vapor deposition and are monolayers or bilayers with a lateral dimension on the order of millimeters. The p-type nature of Zn dopants was evidenced by the suppression of n-type conduction and a downward shift of the Fermi level with doping. Density-functional-theory calculations were carried out to demonstrate the stability of the Zn dopants and to determine the impurity states. A p-type gate transfer characteristic was observed after the Zn-MoS2 film was thermally annealed in a sulfur atmosphere. This work is supported by the NSF through Grant Nos. DMR-1506460, DMR-1506263, and DMR-1206354, the San Diego Supercomputer Center (SDSC) Gordon under DMR060009N, and by the US-Israel Binational Science Foundation.

  11. Electrical Study of Trapped Charges in Copper-Doped Zinc Oxide Films by Scanning Probe Microscopy for Nonvolatile Memory Applications

    PubMed Central

    Su, Ting; Zhang, Haifeng

    2017-01-01

    Charge trapping properties of electrons and holes in copper-doped zinc oxide (ZnO:Cu) films have been studied by scanning probe microscopy. We investigated the surface potential dependence on the voltage and duration applied to the copper-doped ZnO films by Kelvin probe force microscopy. It is found that the Fermi Level of the 8 at.% Cu-doped ZnO films shifted by 0.53 eV comparing to undoped ZnO films. This shift indicates significant change in the electronic structure and energy balance in Cu-doped ZnO films. The Fermi Level (work function) of zinc oxide films can be tuned by Cu doping, which are important for developing this functional material. In addition, Kelvin probe force microscopy measurements demonstrate that the nature of contact at Pt-coated tip/ZnO:Cu interface is changed from Schottky contact to Ohmic contact by increasing sufficient amount of Cu ions. The charge trapping property of the ZnO films enhance greatly by Cu doping (~10 at.%). The improved stable bipolar charge trapping properties indicate that copper-doped ZnO films are promising for nonvolatile memory applications. PMID:28135335

  12. Exchange bias in zinc ferrite-FeNiMoB based metallic glass composite thin films

    NASA Astrophysics Data System (ADS)

    R, Lisha; T, Hysen; P, Geetha; B, Aravind P.; Ojha, S.; Avasthi, D. K.; Ramanujan, R. V.; Anantharaman, M. R.

    2015-06-01

    The Exchange bias phenomenon and methods to manipulate the bias field in a controlled manner are thrust areas in magnetism due to its sophisticated theoretical concepts as well as advanced technological utility in the field of spintronics. The Exchange bias effect is observed as a result of ferromagnetic-antiferromagnetic (FM-AFM) exchange interaction, usually observed as a loop shift on field cooling below the Neel temperature of AFM. In the present study, we have chosen zinc ferrite which is a well known antiferromagnet, and FeNiMoB based metallic glass as the ferromagnet. The films were prepared by RF sputtering technique. The thickness and composition was obtained by RBS. The magnetic studies using SQUID VSM indicate exchange bias effect in the system. The effect of thermal annealing on exchange bias effect was studied. The observed exchange bias in the zinc ferrite-FeNiMoB system is not due to FM-AFM coupling but due to spin glass-ferromagnetic interaction.

  13. Exchange bias in zinc ferrite-FeNiMoB based metallic glass composite thin films

    SciT

    R, Lisha; P, Geetha; B, Aravind P.

    2015-06-24

    The Exchange bias phenomenon and methods to manipulate the bias field in a controlled manner are thrust areas in magnetism due to its sophisticated theoretical concepts as well as advanced technological utility in the field of spintronics. The Exchange bias effect is observed as a result of ferromagnetic-antiferromagnetic (FM-AFM) exchange interaction, usually observed as a loop shift on field cooling below the Neel temperature of AFM. In the present study, we have chosen zinc ferrite which is a well known antiferromagnet, and FeNiMoB based metallic glass as the ferromagnet. The films were prepared by RF sputtering technique. The thickness andmore » composition was obtained by RBS. The magnetic studies using SQUID VSM indicate exchange bias effect in the system. The effect of thermal annealing on exchange bias effect was studied. The observed exchange bias in the zinc ferrite-FeNiMoB system is not due to FM-AFM coupling but due to spin glass-ferromagnetic interaction.« less

  14. Reactively-sputtered zinc semiconductor films of high conductivity for heterojunction devices

    NASA Technical Reports Server (NTRS)

    Stirn, Richard J. (Inventor)

    1986-01-01

    A high conductivity, n-doped semiconductor film is produced from zinc, or Zn and Cd, and group VI elements selected from Se, S and Te in a reactive magnetron sputtering system having a chamber with one or two targets, a substrate holder, means for heating the substrate holder, and an electric field for ionizing gases in the chamber. Zinc or a compound of Zn and Cd is placed in the position of one of the two targets and doping material in the position of the other of the two targets. Zn and Cd may be placed in separate targets while a dopant is placed in the third target. Another possibility is to place an alloy of Zn and dopant, or Zn, Cd and dopant in one target, thus using only one target. A flow of the inert gas is ionized and directed toward said targets, while a flow of a reactant gas consisting of hydrides of the group VI elements is directed toward a substrate on the holder. The targets are biased to attract negatively ionized inert gas. The desired stochiometry for high conductivity is achieved by controlling the temperature of the substrate, and partial pressures of the gases, and the target power and total pressure of the gases in the chamber.

  15. Hydrogen plasma treatment for improved conductivity in amorphous aluminum doped zinc tin oxide thin films

    SciT

    Morales-Masis, M., E-mail: monica.moralesmasis@epfl.ch; Ding, L.; Dauzou, F.

    2014-09-01

    Improving the conductivity of earth-abundant transparent conductive oxides (TCOs) remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H{sub 2})-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H{sub 2}-plasma treatment performed at a substrate temperature of 50 °C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitivemore » substrates.« less

  16. The influence of visible light on transparent zinc tin oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Görrn, P.; Lehnhardt, M.; Riedl, T.; Kowalsky, W.

    2007-11-01

    The characteristics of transparent zinc tin oxide thin film transistors (TTFTs) upon illumination with visible light are reported. Generally, a reversible decrease of threshold voltage Vth, saturation field effect mobility μsat, and an increase of the off current are found. The time scale of the recovery in the dark is governed by the persistent photoconductivity in the semiconductor. Devices with tuned [Zn]:[Sn] ratio show a shift of Vth of less 2V upon illumination at 5mW/cm2 (brightness >30000cd/m2) throughout the visible spectrum. These results demonstrate TTFTs which are candidates as pixel drivers in transparent active-matrix organic light emitting diode displays.

  17. Light induced instabilities in amorphous indium-gallium-zinc-oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Chowdhury, Md Delwar Hossain; Migliorato, Piero; Jang, Jin

    2010-10-01

    The effect of exposure to ultraviolet radiation on the characteristics of amorphous indium-gallium-zinc-oxide thin-film transistors (TFTs) fabricated by sputtering is investigated. After illumination with 1.5 mW cm-2 of 365 nm radiation, in the absence of any bias stress, a persistent negative shift in the characteristics is observed in the dark. The magnitude of the shift increases with exposure time, saturating after about 10 min. Under these conditions the subthreshold exhibits a rigid shift of around 3.6 V and 7.5 V for TFTs with an active layer thickness of 20 nm and 50 nm, respectively. The shift in the dark increases (decreases) when a negative (positive) bias stress is applied under illumination. The instability behavior caused by exposure to light, in the absence of any bias stress, can be explained on the basis of ionization of neutral oxygen vacancies.

  18. Humidity sensing properties of Al-doped zinc oxide coating films

    NASA Astrophysics Data System (ADS)

    Saidi, S. A.; Mamat, M. H.; Ismail, A. S.; Malek, M. F.; Yusoff, M. M.; Sin, N. D. Md.; Zoolfakar, A. S.; Khusaimi, Z.; Rusop, M.

    2018-05-01

    Humidity sensor was fabricated using Al-doped zinc oxide (ZnO) coating films through spin-coating at room temperature. The sensing mechanism was discussed based on their nanostructures, such as surface area and porous nanostructures. Surface area and water adsorption are an important component in the low humidity, while at high humidity, porous nanostructures and capillary condensation become important. The results showed that the sensitivity of the Al-doped ZnO coating improved compared to that of the Al-doped ZnO nanorod arrays, with values of 7.38 at 40% to 90%RH (Relative humidity). All these results indicated that Al-doped ZnO coating had high potential for humidity-sensor applications.

  19. Structure of a zinc oxide ultra-thin film on Rh(100)

    SciT

    Yuhara, J.; Kato, D.; Matsui, T.

    The structural parameters of ultra-thin zinc oxide films on Rh(100) are investigated using low-energy electron diffraction intensity (LEED I–V) curves, scanning tunneling microscopy (STM), and first-principles density functional theory (DFT) calculations. From the analysis of LEED I–V curves and DFT calculations, two optimized models A and B are determined. Their structures are basically similar to the planer h-BN ZnO(0001) structure, although some oxygen atoms protrude from the surface, associated with an in-plane shift of Zn atoms. From a comparison of experimental STM images and simulated STM images, majority and minority structures observed in the STM images represent the two optimizedmore » models A and B, respectively.« less

  20. Effect of nitrogen doping on structural, morphological, optical and electrical properties of radio frequency magnetron sputtered zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Perumal, R.; Hassan, Z.

    2016-06-01

    Zinc oxide receives remarkable attention due to its several attractive physical properties. Zinc oxide thin films doped with nitrogen were grown by employing RF magnetron sputtering method at room temperature. Doping was accomplished in gaseous medium by mixing high purity nitrogen gas along with argon sputtering gas. Structural studies confirmed the high crystalline nature with c-axis oriented growth of the nitrogen doped zinc oxide thin films. The tensile strain was developed due to the incorporation of the nitrogen into the ZnO crystal lattice. Surface roughness of the grown films was found to be decreased with increasing doping level was identified through atomic force microscope analysis. The presenting phonon modes of each film were confirmed through FTIR spectral analysis. The increasing doping level leads towards red-shifting of the cut-off wavelength due to decrement of the band gap was identified through UV-vis spectroscopy. All the doped films exhibited p-type conductivity was ascertained using Hall measurements and the obtained results were presented.

  1. The effect of Mg dopants on magnetic and structural properties of iron oxide and zinc ferrite thin films

    NASA Astrophysics Data System (ADS)

    Saritaş, Sevda; Ceviz Sakar, Betul; Kundakci, Mutlu; Yildirim, Muhammet

    2018-06-01

    Iron oxide thin films have been obtained significant interest as a material that put forwards applications in photovoltaics, gas sensors, biosensors, optoelectronic and especially in spintronics. Iron oxide is one of the considerable interest due to its chemical and thermal stability. Metallic ion dopant influenced superexchange interactions and thus changed the structural, electrical and magnetic properties of the thin film. Mg dopped zinc ferrite (Mg:ZnxFe3-xO4) crystal was used to avoid the damage of Fe3O4 (magnetite) crystal instead of Zn2+ in this study. Because the radius of the Mg2+ ion in the A-site (tetrahedral) is almost equal to that of the replaced Fe3+ ion. Inverse-spinel structure in which oxygen ions (O2-) are arranged to form a face-centered cubic (FCC) lattice where there are two kinds of sublattices, namely, A-site and B-site (octahedral) interstitial sites and in which the super exchange interactions occur. In this study, to increase the saturation of magnetization (Ms) value for iron oxide, inverse-spinal ferrite materials have been prepared, in which the iron oxide was doped by multifarious divalent metallic elements including Zn and Mg. Triple and quaternary; iron oxide and zinc ferrite thin films with Mg metal dopants were grown by using Spray Pyrolysis (SP) technique. The structural, electrical and magnetic properties of Mg dopped iron oxide (Fe2O3) and zinc ferrite (ZnxFe3-xO4) thin films have been investigated. Vibrating Sample Magnetometer (VSM) technique was used to study for the magnetic properties. As a result, we can say that Mg dopped iron oxide thin film has huge diamagnetic and of Mg dopped zinc ferrite thin film has paramagnetic property at bigger magnetic field.

  2. Diffusion at the boundary between the film and substrate upon the electrocrystallization of zinc on a copper substrate

    NASA Astrophysics Data System (ADS)

    Shtapenko, E. Ph.; Zabludovsky, V. A.; Dudkina, V. V.

    2015-03-01

    In this paper, we present the results of experimental investigations of the diffusion layer formed at the film-substrate interface upon the electrodeposition of zinc films on a copper substrate. The investigations have shown that, in the transient layer, the deposited metal is diffused into the material of the substrate. The depth of the diffusion layer and, consequently, the concentrations of the incorporated zinc atoms depend strongly on the conditions of electrocrystallization, which vary from 1.5 μm when using direct current to 4 μm when using direct current in combination with laser-stimulated deposition (LSD). The X-ray diffraction investigations of the transient layer at the film-substrate interface have shown that, upon electrocrystallization using pulsed current in rigid regimes with the application of the LSD, a CuZn2 phase is formed in the diffusion layer. This indicates that the diffusion of zinc into copper occurs via two mechanisms, i.e., grainboundary and bulk. The obtained values of the coefficient of diffusion of zinc adatoms in polycrystalline copper are equal to 1.75 × 10-15 m2/s when using direct current and 1.74 × 10-13 m2/s when using LSD.

  3. Preparation of Zinc Oxide (ZnO) Thin Film as Transparent Conductive Oxide (TCO) from Zinc Complex Compound on Thin Film Solar Cells: A Study of O2 Effect on Annealing Process

    NASA Astrophysics Data System (ADS)

    Muslih, E. Y.; Kim, K. H.

    2017-07-01

    Zinc oxide (ZnO) thin film as a transparent conductive oxide (TCO) for thin film solar cell application was successfully prepared through two step preparations which consisted of deposition by spin coating at 2000 rpm for 10 second and followed by annealing at 500 °C for 2 hours under O2 and ambient atmosphere. Zinc acetate dehydrate was used as a precursor which dissolved in ethanol and acetone (1:1 mol) mixture in order to make a zinc complex compound. In this work, we reported the O2 effect, reaction mechanism, structure, morphology, optical and electrical properties. ZnO thin film in this work shows a single phase of wurtzite, with n-type semiconductor and has band gap, carrier concentration, mobility, and resistivity as 3.18 eV, 1.21 × 10-19cm3, 11 cm2/Vs, 2.35 × 10-3 Ωcm respectively which is suitable for TCO at thin film solar cell.

  4. Surface morphology and nanomechanical properties of tribological antiwear films derived from zinc dialkyl dithiophosphate compounds

    NASA Astrophysics Data System (ADS)

    Aktary, Mirwais

    The protection of mechanical equipment from wear is of significant economic interest. It has been estimated that up to half of a percent of the gross domestic product of industrialized countries goes to replacing mechanical components that have lost compliance due to wear. Antiwear additives are key ingredients in lubrication oils that assist in protecting components from wear during high loads. These agents form sacrificial films on metal parts that limit the adhesion between the contacting surfaces and reduce the wear rate considerably. One of the most common classes of compounds employed as an antiwear agent is zinc dialkyldithiophosphates (ZDDP). This work will explore the formation, structure, and mechanical properties of ZDDP derived antiwear films on the nanoscale. These studies are important because the macroscopic performance of antiwear coatings is dictated by their nanoscale surface properties. As a first study, scanning force microscopy (SFM) is employed to track the formation of films formed from the thermooxidative decomposition of ZDDP on gold substrates. The SFM analysis is correlated with infrared spectroscopy to relate surface structure to chemical composition. The morphology and mechanical strength of ZDDP tribofilms formed at the interface of sliding stainless steel contacts is also investigated. The tribofilms evolve morphologically with contact time and are characterized by distinct segregated islands at low times that transforms to a full film at longer times. The nanomechanical properties of the tribofilms are evaluated by nanoindentation analysis. It is found that the films are mechanically softer than the underlying steel substrate. SFM and nanoindentation analyses reveal that calcium sulphonate detergents promote the formation of ZDDP tribofilms and impart to them greater mechanical stability. By contrast succinimide dispersants reduce the capacity of ZDDP to form effective antiwear films. The first application of SFM and nanoindentation

  5. Stability study of solution-processed zinc tin oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Ndabakuranye, Jean Pierre; Kim, Dong Wook; Choi, Jong Sun; Park, Jaehoon

    2015-11-01

    In this study, the environmental dependence of the electrical stability of solution-processed n-channel zinc tin oxide (ZTO) thin-film transistors (TFTs) is reported. Under a prolonged negative gate bias stress, a negative shift in threshold voltage occurs in atmospheric air, whereas a negligible positive shift in threshold voltage occurs under vacuum. In the positive bias-stress experiments, a positive shift in threshold voltage was invariably observed both in atmospheric air and under vacuum. In this study, the negative gate-bias-stress-induced instability in atmospheric air is explained through an internal potential in the ZTO semiconductor, which can be generated owing to the interplay between H2O molecules and majority carrier electrons at the surface of the ZTO film. The positive bias-stress-induced instability is ascribed to electron-trapping phenomenon in and around the TFT channel region, which can be further augmented in the presence of air O2 molecules. These results suggest that the interaction between majority carriers and air molecules will have crucial implications for a reliable operation of solution-processed ZTO TFTs. [Figure not available: see fulltext.

  6. Defect-induced instability mechanisms of sputtered amorphous indium tin zinc oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Park, Jinhee; Rim, You Seung; Li, Chao; Wu, Jiechen; Goorsky, Mark; Streit, Dwight

    2018-04-01

    We report the device performance and stability of sputtered amorphous indium-tin-zinc-oxide (ITZO) thin-film transistors as a function of oxygen ratio [O2/(Ar + O2)] during growth. Increasing the oxygen ratio enhanced the incorporation of oxygen during ITZO film growth and reduced the concentration of deep-level defects associated with oxygen vacancies. Under illumination with no bias stress, device stability and persistent photocurrent were improved with increased oxygen ratio. Bias stress tests of the devices were also performed with and without illumination. While high oxygen ratio growth conditions resulted in decreased deep-level oxygen vacancies in the ITZO material, the same conditions resulted in degradation of the interfacial layer between the ITZO channel and dielectric due to the migration of energetic oxygen ions to the interface. Therefore, when bias stress was applied, increased carrier trap density at the interface led to a decrease in device stability that offsets any improvement in the material itself. In order to take advantage of the improved ITZO material growth at a high oxygen ratio, the interface-related problems must be solved.

  7. The Enhancement Of UV Sensor Response By Zinc Oxide Nanorods / Reduced Graphene Oxide Bilayer Nanocomposites Film

    NASA Astrophysics Data System (ADS)

    Mohammed, Ali A. A.; Suriani, AB; Jabur, Akram R.

    2018-05-01

    Zinc oxide nanorods (ZnO NRs) / reduced graphene oxide (rGO) nanocomposites assisted by sodium dodecyl sulfate surfactant (ZnO NRs/rGO-SDS) showed a good response for UV sensor application that has sensitivity of around ∼32.54. Whereas, the UV sensor response on pristine ZnO NRs showed almost 15 times lower response than the ZnO NRs/rGO-SDS nanocomposites. The pristine ZnO NRs were prepared by sol-gel immersion method before rGO solution was sprayed on the ZnO films using spraying method. The GO solution was produced via electrochemical exfoliation method at 0.1 M SDS electrolyte then the solution was reduced using hydrazine hydrate under 24 hours magnetic stirring at a temperature of around ∼100 °C. The samples were characterized using energy dispersive X-ray, field emission scanning electron microscope, micro-Raman, ultraviolet visible, X-ray diffraction, UV lamp and four-point probe measurement. The aim of this study was to improve the UV sensor response based on ZnO/rGO-SDS nanocomposites. In conclusion, the fabricated ZnO NRs/rGO-SDS nanocomposites assisted with SDS is a good candidate for the use in UV sensor applications as compared to pristine ZnO NRs films.

  8. Thermal Cycling Behavior of Zinc Antimonide Thin Films for High Temperature Thermoelectric Power Generation Applications.

    PubMed

    Shim, Hyung Cheoul; Woo, Chang-Su; Han, Seungwoo

    2015-08-19

    The zinc antimonide compound ZnxSby is one of the most efficient thermoelectric materials known at high temperatures due to its exceptional low thermal conductivity. For this reason, it continues to be the focus of active research, especially regarding its glass-like atomic structure. However, before practical use in actual surroundings, such as near a vehicle manifold, it is imperative to analyze the thermal reliability of these materials. Herein, we present the thermal cycling behavior of ZnxSby thin films in nitrogen (N2) purged or ambient atmosphere. ZnxSby thin films were prepared by cosputtering and reached a power factor of 1.39 mW m(-1) K(-2) at 321 °C. We found maximum power factor values gradually decreased in N2 atmosphere due to increasing resistivity with repeated cycling, whereas the specimen in air kept its performance. X-ray diffraction and electron microscopy observations revealed that fluidity of Zn atoms leads to nanoprecipitates, porous morphologies, and even growth of a coating layer or fiber structures on the surface of ZnxSby after repetitive heating and cooling cycles. With this in mind, our results indicate that proper encapsulation of the ZnxSby surface would reduce these unwanted side reactions and the resulting degradation of thermoelectric performance.

  9. Modeling drain current of indium zinc oxide thin film transistors prepared by solution deposition technique

    NASA Astrophysics Data System (ADS)

    Qiang, Lei; Liang, Xiaoci; Cai, Guangshuo; Pei, Yanli; Yao, Ruohe; Wang, Gang

    2018-06-01

    Indium zinc oxide (IZO) thin film transistor (TFT) deposited by solution method is of considerable technological interest as it is a key component for the fabrication of flexible and cheap transparent electronic devices. To obtain a principal understanding of physical properties of solution-processed IZO TFT, a new drain current model that account for the charge transport is proposed. The formulation is developed by incorporating the effect of gate voltage on mobility and threshold voltage with the carrier charges. It is demonstrated that in IZO TFTs the below threshold regime should be divided into two sections: EC - EF > 3kT and EC - EF ≤ 3kT, where kT is the thermal energy, EF and EC represent the Fermi level and the conduction band edge, respectively. Additionally, in order to describe conduction mechanisms more accurately, the extended mobility edge model is conjoined, which can also get rid of the complicated and lengthy computations. The good agreement between measured and calculated results confirms the efficiency of this model for the design of integrated large-area thin film circuits.

  10. Synthesis and characterization of transparent conductive zinc oxide thin films by sol-gel spin coating method

    NASA Astrophysics Data System (ADS)

    Winarski, David

    Zinc oxide has been given much attention recently as it is promising for various semiconductor device applications. ZnO has a direct band gap of 3.3 eV, high exciton binding energy of 60 meV and can exist in various bulk powder and thin film forms for different applications. ZnO is naturally n-type with various structural defects, which sparks further investigation into the material properties. Although there are many potential applications for this ZnO, an overall lack of understand and control of intrinsic defects has proven difficult to obtain consistent, repeatable results. This work studies both synthesis and characterization of zinc oxide in an effort to produce high quality transparent conductive oxides. The sol-gel spin coating method was used to obtain highly transparent ZnO thin films with high UV absorbance. This research develops a new more consistent method for synthesis of these thin films, providing insight for maintaining quality control for each step in the procedure. A sol-gel spin coating technique is optimized, yielding highly transparent polycrystalline ZnO thin films with tunable electrical properties. Annealing treatment in hydrogen and zinc atmospheres is researched in an effort to increase electrical conductivity and better understand intrinsic properties of the material. These treatment have shown significant effects on the properties of ZnO. Characterization of doped and undoped ZnO synthesized by the sol-gel spin coating method was carried out using scanning electron microscopy, UV-Visible range absorbance, X-ray diffraction, and the Hall Effect. Treatment in hydrogen shows an overall decrease in the number of crystal phases and visible absorbance while zinc seems to have the opposite effect. The Hall Effect has shown that both annealing environments increase the n-type conductivity, yielding a ZnO thin film with a carrier concentration as high as 3.001 x 1021 cm-3.

  11. Evaluation of the optical characteristics of c-axis oriented zinc oxide thin films grown by sol gel spin coating technique

    NASA Astrophysics Data System (ADS)

    Baisakh, K.; Behera, S.; Pati, S.

    2018-03-01

    In this work we have systematically studied the optical characteristics of synthesized wurzite zinc oxide thin films exhibiting (002) orientation. Using sol gel spin coating technique zinc oxide thin films are grown on pre cleaned fused quartz substrates. Structural properties of the films are studied using X-ray diffraction analysis. Micro structural analysis and thickness of the grown samples are analyzed using field emission scanning electron microscopy. With an aim to investigate the optical characteristics of the grown zinc oxide thin films the transmission and reflection spectra are evaluated in the ultraviolet-visible (UV-VIS) range. Using envelope method, the refractive index, extinction coefficient, absorption coefficient, band gap energy and the thickness of the synthesized films are estimated from the recorded UV-VIS spectra. An attempt has also been made to study the influence of crystallographic orientation on the optical characteristics of the grown films.

  12. Influence of pH on optoelectronic properties of zinc sulphide thin films prepared using hydrothermal and spin coating method

    NASA Astrophysics Data System (ADS)

    Choudapur, V. H.; Bennal, A. S.; Raju, A. B.

    2018-04-01

    The ZnS nanomaterial is synthesized by hydrothermal method under optimized conditions using Zinc acetate and sodium sulphide as precursors. The Zinc Sulphide thin films are obtained by simple spin coating method with high optical transmittance. The prepared thin films are adhesive and uniform. The x-ray diffraction analysis showed that the films are polycrystalline in cubic phase with the preferred orientation along (111) direction. Current-voltage curves were recorded at room temperature using Keithley 617 programmable electrometer and conductivity is calculated for the film coated on ITO by two probe method. The pH of the solution is varied by using ammonia and hydrochloric acid. The comparative studies of effect of pH on the morphology, crystallanity and optoelectronic properties of the films are studied. It is observed that the pH of the solution has large influence on optoelectronic properties. The thin film prepared with neutral pH has higher crystallanity, bandgap and conductivity as compared to the samples prepared in acidic or basic solutions.

  13. Processing of Copper Zinc Tin Sulfide Nanocrystal Dispersions for Thin Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Williams, Bryce Arthur

    A scalable and inexpensive renewable energy source is needed to meet the expected increase in electricity demand throughout the developed and developing world in the next 15 years without contributing further to global warming through CO2 emissions. Photovoltaics may meet this need but current technologies are less than ideal requiring complex manufacturing processes and/or use of toxic, rare-earth materials. Copper zinc tin sulfide (Cu 2ZnSnS4, CZTS) solar cells offer a true "green" alternative based upon non-toxic and abundant elements. Solution-based processes utilizing CZTS nanocrystal dispersions followed by high temperature annealing have received significant research attention due to their compatibility with traditional roll-to-roll coating processes. In this work, CZTS nanocrystal (5-35 nm diameters) dispersions were utilized as a production pathway to form solar absorber layers. Aerosol-based coating methods (aerosol jet printing and ultrasonic spray coating) were optimized for formation of dense, crack-free CZTS nanocrystal coatings. The primary variables underlying determination of coating morphology within the aerosol-coating parameter space were investigated. It was found that the liquid content of the aerosol droplets at the time of substrate impingement play a critical role. Evaporation of the liquid from the aerosol droplets during coating was altered through changes to coating parameters as well as to the CZTS nanocrystal dispersions. In addition, factors influencing conversion of CZTS nanocrystal coatings into dense, large-grained polycrystalline films suitable for solar cell development during thermal annealing were studied. The roles nanocrystal size, carbon content, sodium uptake, and sulfur pressure were found to have pivotal roles in film microstructure evolution. The effects of these parameters on film morphology, grain growth rates, and chemical makeup were analyzed from electron microscopy images as well as compositional analysis

  14. Hybrid phototransistors based on bulk heterojunction films of poly(3-hexylthiophene) and zinc oxide nanoparticle.

    PubMed

    Nam, Sungho; Seo, Jooyeok; Park, Soohyeong; Lee, Sooyong; Jeong, Jaehoon; Lee, Hyena; Kim, Hwajeong; Kim, Youngkyoo

    2013-02-01

    Hybrid phototransistors (HPTRs) were fabricated on glass substrates using organic/inorganic hybrid bulk heterojunction films of p-type poly(3-hexylthiophene) (P3HT) and n-type zinc oxide nanoparticles (ZnO(NP)). The content of ZnO(NP) was varied up to 50 wt % in order to understand the composition effect of ZnO(NP) on the performance of HPTRs. The morphology and nanostructure of the P3HT:ZnO(NP) films was examined by employing high resolution electron microscopes and synchrotron radiation grazing angle X-ray diffraction system. The incident light intensity (P(IN)) was varied up to 43.6 μW/cm², whereas three major wavelengths (525 nm, 555 nm, 605 nm) corresponded to the optical absorption of P3HT were applied. Results showed that the present HPTRs showed typical p-type transistor performance even though the n-type ZnO(NP) content increased up to 50 wt %. The highest transistor performance was obtained at 50 wt %, whereas the lowest performance was measured at 23 wt % because of the immature bulk heterojunction morphology. The drain current (I(D)) was proportionally increased with P(IN) due to the photocurrent generation in addition to the field-effect current. The highest apparent and corrected responsivities (R(A) = 4.7 A/W and R(C) = 2.07 A/W) were achieved for the HPTR with the P3HT:ZnO(NP) film (50 wt % ZnO(NP)) at P(IN) = 0.27 μW/cm² (555 nm).

  15. Plasmon resonance and perfect light absorption in subwavelength trench arrays etched in gallium-doped zinc oxide film

    SciT

    Hendrickson, Joshua R., E-mail: joshua.hendrickson.4@us.af.mil; Leedy, Kevin; Cleary, Justin W.

    Near-perfect light absorption in subwavelength trench arrays etched in highly conductive gallium-doped zinc oxide films was experimentally observed in the mid infrared regime. At wavelengths corresponding to the resonant excitation of surface plasmons, up to 99% of impinging light is efficiently trapped and absorbed in the periodic trenches. Scattering cross sectional calculations reveal that each individual trench acts like a vertical split ring resonator with a broad plasmon resonance spectrum. The coupling of these individual plasmon resonators in the grating structure leads to enhanced photon absorption and significant resonant spectral linewidth narrowing. Ellipsometry measurements taken before and after device fabricationmore » result in different permittivity values for the doped zinc oxide material, indicating that localized annealing occurred during the plasma etching process due to surface heating. Simulations, which incorporate a 50 nm annealed region at the zinc oxide surface, are in a good agreement with the experimental results.« less

  16. Low-temperature growth and electronic structures of ambipolar Yb-doped zinc tin oxide transparent thin films

    NASA Astrophysics Data System (ADS)

    Oh, Seol Hee; Ferblantier, Gerald; Park, Young Sang; Schmerber, Guy; Dinia, Aziz; Slaoui, Abdelilah; Jo, William

    2018-05-01

    The compositional dependence of the crystal structure, optical transmittance, and surface electric properties of the zinc tin oxide (Zn-Sn-O, shortened ZTO) thin films were investigated. ZTO thin films with different compositional ratios were fabricated on glass and p-silicon wafers using radio frequency magnetron sputtering. The binding energy of amorphous ZTO thin films was examined by a X-ray photoelectron spectroscopy. The optical transmittance over 70% in the visible region for all the ZTO films was observed. The optical band gap of the ZTO films was changed as a result of the competition between the Burstein-Moss effect and renormalization. An electron concentration in the films and surface work function distribution were measured by a Hall measurement and Kelvin probe force microscopy, respectively. The mobility of the n- and p-type ZTO thin films have more than 130 cm2/V s and 15 cm2/V s, respectively. We finally constructed the band structure which contains band gap, work function, and band edges such as valence band maximum and conduction band minimum of ZTO thin films. The present study results suggest that the ZTO thin film is competitive compared with the indium tin oxide, which is a representative material of the transparent conducting oxides, regarding optoelectronic devices applications.

  17. The Effect of UV Aging on Antimicrobial and Mechanical Properties of PLA Films with Incorporated Zinc Oxide Nanoparticles

    PubMed Central

    Mizielińska, Małgorzata; Kowalska, Urszula; Jarosz, Michał; Sumińska, Patrycja; Landercy, Nicolas; Duquesne, Emmanuel

    2018-01-01

    The aim of this study was to examine the influence of accelerated UV-aging on the activity against chosen microorganisms and the mechanical properties of poly-lactic acid (PLA) films enhanced with ZnO nanoparticles. The pure PLA films and tri-layered PLAZnO1%/PLA/PLAZnO1% films of 150 µm thickness were extruded. The samples were treated with UV-A and Q-SUN irradiation. After irradiation the antimicrobial activity and mechanical properties of the films were analyzed. The results of the study demonstrated that PLA films did not inhibit the growth of Staphylococcus aureus, Bacillus cereus, Escherichia coli, Bacillus atrophaeus, and Candida albicans cells. PLA films with incorporated zinc oxide nanoparticles decreased the number of analyzed microorganisms. Accelerated UV aging had no negative effect on the activity of the film containing nano-ZnO against Gram-positive bacteria, but it influenced the activity against Gram-negative cells and C. albicans. Q-SUN irradiation decreased the antimicrobial effect of films with incorporated nanoparticles against B. cereus. UV-A and Q-UV irradiation did not influence the mechanical properties of PLA films containing incorporated ZnO nanoparticles. PMID:29670066

  18. The Effect of UV Aging on Antimicrobial and Mechanical Properties of PLA Films with Incorporated Zinc Oxide Nanoparticles.

    PubMed

    Mizielińska, Małgorzata; Kowalska, Urszula; Jarosz, Michał; Sumińska, Patrycja; Landercy, Nicolas; Duquesne, Emmanuel

    2018-04-18

    The aim of this study was to examine the influence of accelerated UV-aging on the activity against chosen microorganisms and the mechanical properties of poly-lactic acid (PLA) films enhanced with ZnO nanoparticles. The pure PLA films and tri-layered PLAZnO1%/PLA/PLAZnO1% films of 150 µm thickness were extruded. The samples were treated with UV-A and Q-SUN irradiation. After irradiation the antimicrobial activity and mechanical properties of the films were analyzed. The results of the study demonstrated that PLA films did not inhibit the growth of Staphylococcus aureus , Bacillus cereus , Escherichia coli , Bacillus atrophaeus , and Candida albicans cells. PLA films with incorporated zinc oxide nanoparticles decreased the number of analyzed microorganisms. Accelerated UV aging had no negative effect on the activity of the film containing nano-ZnO against Gram-positive bacteria, but it influenced the activity against Gram-negative cells and C. albicans . Q-SUN irradiation decreased the antimicrobial effect of films with incorporated nanoparticles against B. cereus . UV-A and Q-UV irradiation did not influence the mechanical properties of PLA films containing incorporated ZnO nanoparticles.

  19. The pressure-induced structural response of rare earth hafnate and stannate pyrochlore from 0.1-50 GPa

    NASA Astrophysics Data System (ADS)

    Turner, K. M.; Rittman, D.; Heymach, R.; Turner, M.; Tracy, C.; Mao, W. L.; Ewing, R. C.

    2017-12-01

    Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types undergo structural transformations under high-pressure. These compounds are under consideration for applications including as a proposed waste-form for actinides generated in the nuclear fuel cycle. High-pressure transformations in rare earth hafnates (A2Hf2O7, A=Sm, Eu, Gd, Dy, Y, Yb) and stannates (A2Sn2O7, A=Nd, Gd, Er) were investigated to 50 GPa by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Rare-earth hafnates form the pyrochlore structure for A=La-Tb and the defect-fluorite structure for A=Dy-Lu. Lanthanide stannates form the pyrochlore structure. Raman spectra revealed that at ambient pressure all compositions have pyrochlore-type short-range order. Stannate compositions show a larger degree of pyrochlore-type short-range ordering relative to hafnates. In situ high-pressure synchrotron XRD showed that rare earth hafnates and stannates underwent a pressure-induced phase transition to a cotunnite-like (Pnma) structure that begins between 18-25 GPa in hafnates and between 30-33 GPa in stannates. The phase transition is not complete at 50 GPa, and upon decompression, XRD indicates that all compositions transform to defect-fluorite with an amorphous component. In situ Raman spectroscopy showed that disordering in stannates and hafnates occurs gradually upon compression. Pyrochlore-structured hafnates retain short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Hafnates and stannates decompressed from 50 GPa show Raman spectra consistent with weberite-type structures, also reported in irradiated stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of 250 GPa for hafnate compositions with the pyrochlore structure, and 400 GPa for hafnate compositions with the defect-fluorite structure. Stannates have a lower bulk modulus relative to hafnates (between 80-150 GPa

  20. Lanthanide stannate pyrochlores (Ln2Sn2O7; Ln  =  Nd, Gd, Er) at high pressure

    NASA Astrophysics Data System (ADS)

    Turner, Katlyn M.; Tracy, Cameron L.; Mao, Wendy L.; Ewing, Rodney C.

    2017-12-01

    Lanthanide stannate pyrochlores (Ln2Sn2O7; Ln  =  Nd, Gd, and Er) were investigated in situ to 50 GPa in order to determine their structural response to compression and compare their response to that of lanthanide titanate, zirconate, and hafnate pyrochlores. The cation radius ratio of A3+/B4+ in pyrochlore oxides (A2B2O7) is thought to be the dominant feature that influences their response on compression. The ionic radius of Sn4+ is intermediate to that of Ti4+, Zr4+, and Hf4+, but the 〈Sn-O〉 bond in stannate pyrochlore is more covalent than the 〈B-O〉 bonds in titanates, zirconate, and hafnates. In stannates, based on in situ Raman spectroscopy, pyrochlore cation and anion sublattices begin to disorder with the onset of compression, first measured at 0.3 GPa. The extent of sublattice disorder versus pressure is greater in stannates with a smaller Ln3+ cation. Stannate pyrochlores (Fd-3m) begin a sluggish transformation to an orthorhombic, cotunnite-like structure at ~28 GPa similar transitions have been observed in titanate, zirconate, and hafnate pyrochlores at varying pressures (18-40 GPa) with cation radius ratio. The extent of the phase transition versus pressure varies directly with the size of the Ln3+ cation. Post-decompression from ~50 GPa, Er2Sn2O7 and Gd2Sn2O7 adopt a pyrochlore structure, rather than the multi-scale defect-fluorite  +  weberite-type structure adopted by Nd2Sn2O7 that is characteristic of titanate, zirconate, and hafnate pyrochlores under similar conditions. Like pyrochlore titanates, zirconates, and hafnates, the bulk modulus, B 0, of stannates varies linearly and inversely with cation radius ratio from 1 1 1 GPa (Nd2Sn2O7) to 251 GPa (Er2Sn2O7). The trends of bulk moduli in stannates in this study are in excellent agreement with previous experimental studies on stannates and suggest that the size of the Ln3+ cation is the primary determining factor of B 0. Additionally, when normalized to r A

  1. Electrical properties of zinc-oxide-based thin-film transistors using strontium-oxide-doped semiconductors

    NASA Astrophysics Data System (ADS)

    Wu, Shao-Hang; Zhang, Nan; Hu, Yong-Sheng; Chen, Hong; Jiang, Da-Peng; Liu, Xing-Yuan

    2015-10-01

    Strontium-zinc-oxide (SrZnO) films forming the semiconductor layers of thin-film transistors (TFTs) are deposited by using ion-assisted electron beam evaporation. Using strontium-oxide-doped semiconductors, the off-state current can be dramatically reduced by three orders of magnitude. This dramatic improvement is attributed to the incorporation of strontium, which suppresses carrier generation, thereby improving the TFT. Additionally, the presence of strontium inhibits the formation of zinc oxide (ZnO) with the hexagonal wurtzite phase and permits the formation of an unusual phase of ZnO, thus significantly changing the surface morphology of ZnO and effectively reducing the trap density of the channel. Project supported by the National Natural Science Foundation of China (Grant No. 6140031454) and the Innovation Program of Chinese Academy of Sciences and State Key Laboratory of Luminescence and Applications.

  2. Ag-Cu nanoalloyed film as a high-performance cathode electrocatalytic material for zinc-air battery

    NASA Astrophysics Data System (ADS)

    Lei, Yimin; Chen, Fuyi; Jin, Yachao; Liu, Zongwen

    2015-04-01

    A novel Ag50Cu50 film electrocatalyst for oxygen reduction reaction (ORR) was prepared by pulsed laser deposition (PLD) method. The electrocatalyst actually is Ag-Cu alloyed nanoparticles embedded in amorphous Cu film, based on transmission electron microscopy (TEM) characterization. The rotating disk electrode (RDE) measurements provide evidence that the ORR proceed via a four-electron pathway on the electrocatalysts in alkaline solution. And it is much more efficient than pure Ag catalyst. The catalytic layer has maximum power density of 67 mW cm-2 and an acceptable cell voltage at 0.863 V when current densities increased up to 100 mA cm-2 in the Ag50Cu50-based primary zinc-air battery. The resulting rechargeable zinc-air battery exhibits low charge-discharge voltage polarization of 1.1 V at 20 mAcm-2 and high durability over 100 cycles in natural air.

  3. Fully transparent thin film transistors based on zinc oxide channel layer and molybdenum doped indium oxide electrodes

    NASA Astrophysics Data System (ADS)

    MÄ dzik, Mateusz; Elamurugu, Elangovan; Viegas, Jaime

    2016-03-01

    In this work we report the fabrication of thin film transistors (TFT) with zinc oxide channel and molybdenum doped indium oxide (IMO) electrodes, achieved by room temperature sputtering. A set of devices was fabricated, with varying channel width and length from 5μm to 300μm. Output and transfer characteristics were then extracted to study the performance of thin film transistors, namely threshold voltage and saturation current, enabling to determine optimal fabrication process parameters. Optical transmission in the UV-VIS-IR are also reported.

  4. Codoping of zinc and tungsten for practical high-performance amorphous indium-based oxide thin film transistors

    SciT

    Kizu, Takio, E-mail: KIZU.Takio@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Tsukagoshi, Kazuhito, E-mail: KIZU.Takio@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp

    2015-09-28

    Using practical high-density sputtering targets, we investigated the effect of Zn and W codoping on the thermal stability of the amorphous film and the electrical characteristics in thin film transistors. zinc oxide is a potentially conductive component while W oxide is an oxygen vacancy suppressor in oxide films. The oxygen vacancy from In-O and Zn-O was suppressed by the W additive because of the high oxygen bond dissociation energy. With controlled codoping of W and Zn, we demonstrated a high mobility with a maximum mobility of 40 cm{sup 2}/V s with good stability under a negative bias stress in InWZnO thinmore » film transistors.« less

  5. Flexible and High-Performance Amorphous Indium Zinc Oxide Thin-Film Transistor Using Low-Temperature Atomic Layer Deposition.

    PubMed

    Sheng, Jiazhen; Lee, Hwan-Jae; Oh, Saeroonter; Park, Jin-Seong

    2016-12-14

    Amorphous indium zinc oxide (IZO) thin films were deposited at different temperatures, by atomic layer deposition (ALD) using [1,1,1-trimethyl-N-(trimethylsilyl)silanaminato]indium (INCA-1) as the indium precursor, diethlzinc (DEZ) as the zinc precursor, and hydrogen peroxide (H 2 O 2 ) as the reactant. The ALD process of IZO deposition was carried by repeated supercycles, including one cycle of indium oxide (In 2 O 3 ) and one cycle of zinc oxide (ZnO). The IZO growth rate deviates from the sum of the respective In 2 O 3 and ZnO growth rates at ALD growth temperatures of 150, 175, and 200 °C. We propose growth temperature-dependent surface reactions during the In 2 O 3 cycle that correspond with the growth-rate results. Thin-film transistors (TFTs) were fabricated with the ALD-grown IZO thin films as the active layer. The amorphous IZO TFTs exhibited high mobility of 42.1 cm 2 V -1 s -1 and good positive bias temperature stress stability. Finally, flexible IZO TFT was successfully fabricated on a polyimide substrate without performance degradation, showing the great potential of ALD-grown TFTs for flexible display applications.

  6. Luminescence properties of Sm3+-doped alkaline earth ortho-stannates

    NASA Astrophysics Data System (ADS)

    Stanulis, Andrius; Katelnikovas, Artūras; Enseling, David; Dutczak, Danuta; Šakirzanovas, Simas; Bael, Marlies Van; Hardy, An; Kareiva, Aivaras; Jüstel, Thomas

    2014-05-01

    A series of Sm3+ doped M2SnO4 (M = Ca, Sr and Ba) samples were prepared by a conventional high temperature solid-state reaction route. All samples were characterized by powder X-ray diffraction (XRD) analysis, photoluminescence (PL), photoluminescence thermal quenching (TQ) and fluorescence lifetime (FL) measurements. The morphology of synthesized phosphor powders was examined by scanning electron microscopy (SEM). Moreover, luminous efficacies (LE) and color points of the CIE 1931 color space diagram were calculated and discussed. Synthesized powders showed bright orange-red emission under UV excitation. Based on the results obtained we demonstrate that Sm3+ ions occupy Ca and Sr sites in the Ca2SnO4 and Sr2SnO4 ortho-stannate structures, respectively. In contrast, Sm3+ substitutes Sn in the barium ortho-stannate Ba2SnO4 structure.

  7. Investigation of the tunnel magnetoresistance in junctions with a strontium stannate barrier

    NASA Astrophysics Data System (ADS)

    Althammer, Matthias; Mishra, Rohan; Borisevich, Albina J.; Singh, Amit Vikam; Keshavarz, Sahar; Yurtisigi, Mehmet Kenan; Leclair, Patrick; Gupta, Arunava

    We experimentally investigate the structural, magnetic and electrical transport properties of La0.67Sr0.33MnO3 based magnetic tunnel junctions with a SrSnO3 barrier. Our results show that despite the high density of defects in the strontium stannate barrier the observed tunnel magnetoresistance is comparable to tunnel junctions with a better lattice matched SrTiO3 barrier, reaching values of up to 350 % at T = 5 K . Further analysis of the current-voltage characteristics of the junction and the bias voltage dependence of the observed tunnel magnetoresistance show a decrease of the TMR with increasing bias voltage. Our results suggest that by reducing the structural defects in the strontium stannate barrier, even larger TMR ratios might be possible in the future. We gratefully acknowledge financial support via NSF-ECCS Grant No. 1509875.

  8. Fabrication of zinc-dicarboxylate- and zinc-pyrazolate-carboxylate-framework thin films through vapour-solid deposition.

    PubMed

    Medishetty, Raghavender; Zhang, Zongji; Sadlo, Alexander; Cwik, Stefan; Peeters, Daniel; Henke, Sebastian; Mangayarkarasi, Nagarathinam; Devi, Anjana

    2018-05-17

    Fabrication of three-dimensional metal-organic framework (MOF) thin films has been investigated for the first time through the conversion of a ZnO layer via a pure vapour-solid deposition reaction at ambient pressure. The fabrication of MOF thin films with a dicarboxylate linker, (DMA)2[Zn3(bdc)4] (1) (bdc = 1,4-benzenedicarboxylate), and a carboxy-pyrazolate linker, [Zn4O(dmcapz)6] (2) (dmcapz = 3,5-dimethyl-4-carboxypyrazole), involves the deposition of the linker and/or the preparation of a composite film preliminarily and its subsequent conversion into a MOF film using closed cell thermal treatment. Furthermore, it was possible to isolate thin films with a MOF-5 isotype structure grown along the [110] direction, using a carboxy-pyrazolate linker. This was achieved just by the direct reaction of the ZnO film and the organic linker vapors, employing a simple route that demonstrates the feasibility of MOF thin film fabrication using inexpensive routes at ambient pressure.

  9. Effects of vacuum rapid thermal annealing on the electrical characteristics of amorphous indium gallium zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Woo; Cho, Won-Ju

    2018-01-01

    We investigated the effects of vacuum rapid thermal annealing (RTA) on the electrical characteristics of amorphous indium gallium zinc oxide (a-IGZO) thin films. The a-IGZO films deposited by radiofrequency sputtering were subjected to vacuum annealing under various temperature and pressure conditions with the RTA system. The carrier concentration was evaluated by Hall measurement; the electron concentration of the a-IGZO film increased and the resistivity decreased as the RTA temperature increased under vacuum conditions. In a-IGZO thin-film transistors (TFTs) with a bottom-gate top-contact structure, the threshold voltage decreased and the leakage current increased as the vacuum RTA temperature increased. As the annealing pressure decreased, the threshold voltage decreased, and the leakage current increased. X-ray photoelectron spectroscopy indicated changes in the lattice oxygen and oxygen vacancies of the a-IGZO films after vacuum RTA. At higher annealing temperatures, the lattice oxygen decreased and oxygen vacancies increased, which suggests that oxygen was diffused out in a reduced pressure atmosphere. The formation of oxygen vacancies increased the electron concentration, which consequently increased the conductivity of the a-IGZO films and reduced the threshold voltage of the TFTs. The results showed that the oxygen vacancies and electron concentrations of the a-IGZO thin films changed with the vacuum RTA conditions and that high-temperature RTA treatment at low pressure converted the IGZO thin film to a conductor.

  10. Influence of stress on the structural and dielectric properties of rf magnetron sputtered zinc oxide thin film

    NASA Astrophysics Data System (ADS)

    Menon, Rashmi; Sreenivas, K.; Gupta, Vinay

    2008-05-01

    Highly c axis oriented zinc oxide (ZnO) thin films have been prepared on 1737 Corning glass substrate by planar rf magnetron sputtering under varying pressure (10-50mTorr) and different oxygen percentage (40%-100%) in reactive gas mixtures. The as-grown ZnO thin films were found to have stress over a wide range from -6×1010to-9×107dynes/cm2. The presence of stress depends strongly on processing conditions, and films become almost stress free under a unique combination of sputtering pressure and reactive gas composition. The studies show a correlation of stress with structural and electrical properties of the ZnO thin film. The stressed films possess high electrical conductivity and exhibits strong dielectric dispersion over a wide frequency (1kHz-1MHz). The dielectric constant ɛ'(ω) of stress free ZnO film was almost frequency independent and was close to the bulk value. The measured value of dc conductivity, σdc(ω) and ac conductivity σac(ω) of stress free ZnO film was 1.3×10-9 and 6.8×10-5Ω-1cm-1, respectively. The observed variation in the structural and electrical properties of ZnO thin film with stress has been analyzed in the light of growth kinetics.

  11. Stacked color image sensor using wavelength-selective organic photoconductive films with zinc-oxide thin film transistors as a signal readout circuit

    NASA Astrophysics Data System (ADS)

    Seo, Hokuto; Aihara, Satoshi; Namba, Masakazu; Watabe, Toshihisa; Ohtake, Hiroshi; Kubota, Misao; Egami, Norifumi; Hiramatsu, Takahiro; Matsuda, Tokiyoshi; Furuta, Mamoru; Nitta, Hiroshi; Hirao, Takashi

    2010-01-01

    Our group has been developing a new type of image sensor overlaid with three organic photoconductive films, which are individually sensitive to only one of the primary color components (blue (B), green (G), or red (R) light), with the aim of developing a compact, high resolution color camera without any color separation optical systems. In this paper, we firstly revealed the unique characteristics of organic photoconductive films. Only choosing organic materials can tune the photoconductive properties of the film, especially excellent wavelength selectivities which are good enough to divide the incident light into three primary colors. Color separation with vertically stacked organic films was also shown. In addition, the high-resolution of organic photoconductive films sufficient for high-definition television (HDTV) was confirmed in a shooting experiment using a camera tube. Secondly, as a step toward our goal, we fabricated a stacked organic image sensor with G- and R-sensitive organic photoconductive films, each of which had a zinc oxide (ZnO) thin film transistor (TFT) readout circuit, and demonstrated image pickup at a TV frame rate. A color image with a resolution corresponding to the pixel number of the ZnO TFT readout circuit was obtained from the stacked image sensor. These results show the potential for the development of high-resolution prism-less color cameras with stacked organic photoconductive films.

  12. Spectral and angular-selective thermal emission from gallium-doped zinc oxide thin film structures

    NASA Astrophysics Data System (ADS)

    Sakr, Enas; Bermel, Peter

    2017-02-01

    Simultaneously controlling both the spectral and angular emission of thermal photons can qualitatively change the nature of thermal radiation, and offers a great potential to improve a broad range of applications, including infrared light sources and thermophotovoltaic (TPV) conversion of waste heat to electricity. For TPV in particular, frequency-selective emission is necessary for spectral matching with a photovoltaic converter, while directional emission is needed to maximize the fraction of emission reaching the receiver at large separation distances. This can allow the photovoltaics to be moved outside vacuum encapsulation. In this work, we demonstrate both directionally and spectrally-selective thermal emission for p-polarization, using a combination of an epsilon-near-zero (ENZ) thin film backed by a metal reflector, a high contrast grating, and an omnidirectional mirror. Gallium-doped zinc oxide is selected as an ENZ material, with cross-over frequency in the near-infrared. The proposed structure relies on coupling guided modes (instead of plasmonic modes) to the ENZ thin film using the high contrast grating. The angular width is thus controlled by the choice of grating period. Other off-directional modes are then filtered out using the omnidirectional mirror, thus enhancing frequency selectivity. Our emitter design maintains both a high view factor and high frequency selectivity, leading to a factor of 8.85 enhancement over a typical blackbody emitter, through a combination of a 22.26% increase in view factor and a 6.88x enhancement in frequency selectivity. This calculation assumes a PV converter five widths away from the same width emitter in 2D at 1573 K.

  13. Mechanical Flexibility of Zinc Oxide Thin-Film Transistors Prepared by Transfer Printing Method

    NASA Astrophysics Data System (ADS)

    Eun, K. T.; Hwang, W. J.; Sharma, B. K.; Ahn, J. H.; Lee, Y. K.; Choa, S. H.

    In the present study, we demonstrate the performance of Zinc oxide thin film transistors (ZnO TFTs) array subjected to the strain under high bending test and the reliability of TFTs was confirmed for the bending fatigue test of 2000 cycles. Initially, ZnO TFTs were fabricated on Si substrate and subsequently transferred on flexible PET substrate using transfer printing process. It was observed that when the bending radius reached ≥ 11 mm then cracks start to initiate first at SiO2 bridges, acting as interconnecting layers among individual TFT. Whatever the strain is applied to the devices, it is almost equivalently adopted by the SiO2 bridges, as they are relatively weak compared to rest of the part. The initial cracking of destructed SiO2 bridge leads to the secondary cracks to the ITO electrodes upon further increment of bending radius. Numerical simulation suggested that the strain of SiO2 layer reached to fracture level of 0.55% which was concentrated at the edge of SiO2 bridge layer. It also suggests that the round shape of SiO2 bridge can be more fruitful to compensate the stress concentration and to prevent failure of device.

  14. Thin-Film Transistors Fabricated Using Sputter Deposition of Zinc Oxide

    NASA Astrophysics Data System (ADS)

    Xiao, Nan

    2013-01-01

    Development of thin film transistors (TFTs) with conventional channel layer materials, such as amorphous silicon (a-Si) and polysilicon (poly-Si), has been extensively investigated. A-Si TFT currently serves the large flat panel industry; however advanced display products are demanding better TFT performance because of the associated low electron mobility of a-Si. This has motivated interest in semiconducting metal oxides, such as Zinc Oxide (ZnO), for TFT backplanes. This work involves the fabrication and characterization of TFTs using ZnO deposited by sputtering. An overview of the process details and results from recently fabricated TFTs following a full-factorial designed experiment will be presented. Material characterization and analysis of electrical results will be described. The investigated process variables were the gate dielectric and ZnO sputtering process parameters including power density and oxygen partial pressure. Electrical results showed clear differences in treatment combinations, with certain I-V characteristics demonstrating superior performance to preliminary work. A study of device stability will also be discussed.

  15. Solution-processed zinc oxide nanoparticles/single-walled carbon nanotubes hybrid thin-film transistors

    NASA Astrophysics Data System (ADS)

    Liu, Fangmei; Sun, Jia; Qian, Chuan; Hu, Xiaotao; Wu, Han; Huang, Yulan; Yang, Junliang

    2016-09-01

    Solution-processed thin-film transistors (TFTs) are the essential building blocks for manufacturing the low-cost and large-area consumptive electronics. Herein, solution-processed TFTs based on the composites of zinc oxide (ZnO) nanoparticles and single-walled carbon nanotubes (SWCNTs) were fabricated by the methods of spin-coating and doctor-blading. Through controlling the weight of SWCNTs, the ZnO/SWCNTs TFTs fabricated by spin-coating demonstrated a field-effect mobility of 4.7 cm2/Vs and a low threshold voltage of 0.8 V, while the TFTs devices fabricated by doctor-blading technique showed reasonable electrical performance with a mobility of 0.22 cm2/Vs. Furthermore, the ion-gel was used as an efficient electrochemical gate dielectric because of its large electric double-layer capacitance. The operating voltage of all the TFTs devices is as low as 4.0 V. The research suggests that ZnO/SWCNTs TFTs have the potential applications in low-cost, large-area and flexible consumptive electronics, such as chemical-biological sensors and smart label.

  16. Temporal and voltage stress stability of high performance indium-zinc-oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Song, Yang; Katsman, Alexander; Butcher, Amy L.; Paine, David C.; Zaslavsky, Alexander

    2017-10-01

    Thin film transistors (TFTs) based on transparent oxide semiconductors, such as indium zinc oxide (IZO), are of interest due to their improved characteristics compared to traditional a-Si TFTs. Previously, we reported on top-gated IZO TFTs with an in-situ formed HfO2 gate insulator and IZO active channel, showing high performance: on/off ratio of ∼107, threshold voltage VT near zero, extracted low-field mobility μ0 = 95 cm2/V·s, and near-perfect subthreshold slope at 62 mV/decade. Since device stability is essential for technological applications, in this paper we report on the temporal and voltage stress stability of IZO TFTs. Our devices exhibit a small negative VT shift as they age, consistent with an increasing carrier density resulting from an increasing oxygen vacancy concentration in the channel. Under gate bias stress, freshly annealed TFTs show a negative VT shift during negative VG gate bias stress, while aged (>1 week) TFTs show a positive VT shift during negative VG stress. This indicates two competing mechanisms, which we identify as the field-enhanced generation of oxygen vacancies and the field-assisted migration of oxygen vacancies, respectively. A simplified kinetic model of the vacancy concentration evolution in the IZO channel under electrical stress is provided.

  17. Microwave hydrothermal synthesis and characterization of rare-earth stannate nanoparticles

    NASA Astrophysics Data System (ADS)

    Huang, Shuang; Xu, Hua-lan; Zhong, Sheng-liang; Wang, Lei

    2017-07-01

    Rare-earth stannate (Ln2Sn2O7 (Ln = Y, La-Lu)) nanocrystals with an average diameter of 50 nm were prepared through a facile microwave hydrothermal method at 200°C within 60 min. The products were well characterized. The effect of reaction parameters such as temperature, reaction time, pH value, and alkali source on the preparation was investigated. The results revealed that the pH value plays an important role in the formation process of gadolinium stannate (Gd2Sn2O7) nanoparticles. By contrast, the alkali source had no effect on the phase composition or morphology of the final product. Uniform and sphere-like nanoparticles with an average size of approximately 50 nm were obtained at the pH value of 11.5. A possible formation mechanism was briefly proposed. Gd2Sn2O7:Eu3+ nanoparticles displayed strong orange-red emission. Magnetic measurements revealed that Gd2Sn2O7 nanoparticles were paramagnetic. The other rare-earth stannate Ln2Sn2O7 (Ln = Y, La-Lu) nanocrystals were prepared by similar approaches.

  18. MOCVD Growth and Characterization of n-type Zinc Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Ben-Yaacov, Tammy

    In the past decade, there has been widespread effort in the development of zinc oxide as a II-V1 semiconductor material. ZnO has potential advantages in optoelectronip device applications due to its unique electrical and optical properties. What stands out among these properties is its wide direct bandgap of 3.37 eV and its high electrical conductivity and transparency in the visible and near-UV regions of the spectrum. ZnO can be grown heteroepitaxially on GaN under near lattice-matched conditions and homoepitaxially as well, as high-quality bulk ZnO substrates are commercially available. This dissertation focuses on the development of the growth of high-quality, single crystal n-type ZnO films, control of n-type conductivity, as well as its application as a transparent contact material in GaN-based devices. The first part of this dissertation is an extensive heteroepitaxial and homoepitaxial growth study presenting the properties of ZnO(0001) layers grown on GaN(0001) templates and ZnO(0001) substrates. We show that deposition on GaN requires a two-step growth technique involving the growth of a low temperature nucleation layer before growing a high temperature epitaxial layer in order to obtain smooth ZnO films with excellent crystal quality and step-flow surface morphology. We obtained homoepitaxial ZnO(0001) films of structural quality and surface morphology that is comparable to the as-received substrates, and showed that a high growth temperature (≥1000°C) is needed in order to achieve step-flow growth mode. We performed n-type doping experiments, and established the conditions for which Indium effectively controls the n-type conductivity of ZnO films grown on GaN(0001) templates. A peak carrier concentration of 3.22x 10 19cm-3 and minimum sheet resistance of 97 O/square was achieved, while simultaneously maintaining good morphology and crystal quality. Finally, we present In-doped ZnO films implemented as p-contacts for GaN-based solar cells and LEDs

  19. Growth, intermixing, and surface phase formation for zinc tin oxide nanolaminates produced by atomic layer deposition

    SciT

    Hägglund, Carl, E-mail: carl.hagglund@angstrom.uu.se; Grehl, Thomas; Brongersma, Hidde H.

    2016-03-15

    A broad and expanding range of materials can be produced by atomic layer deposition at relatively low temperatures, including both oxides and metals. For many applications of interest, however, it is desirable to grow more tailored and complex materials such as semiconductors with a certain doping, mixed oxides, and metallic alloys. How well such mixed materials can be accomplished with atomic layer deposition requires knowledge of the conditions under which the resulting films will be mixed, solid solutions, or laminated. The growth and lamination of zinc oxide and tin oxide is studied here by means of the extremely surface sensitivemore » technique of low energy ion scattering, combined with bulk composition and thickness determination, and x-ray diffraction. At the low temperatures used for deposition (150 °C), there is little evidence for atomic scale mixing even with the smallest possible bilayer period, and instead a morphology with small ZnO inclusions in a SnO{sub x} matrix is deduced. Postannealing of such laminates above 400 °C however produces a stable surface phase with a 30% increased density. From the surface stoichiometry, this is likely the inverted spinel of zinc stannate, Zn{sub 2}SnO{sub 4}. Annealing to 800 °C results in films containing crystalline Zn{sub 2}SnO{sub 4}, or multilayered films of crystalline ZnO, Zn{sub 2}SnO{sub 4}, and SnO{sub 2} phases, depending on the bilayer period.« less

  20. Low-Temperature, Solution-Processed, Transparent Zinc Oxide-Based Thin-Film Transistors for Sensing Various Solvents.

    PubMed

    You, Hsin-Chiang; Wang, Cheng-Jyun

    2017-02-26

    A low temperature solution-processed thin-film transistor (TFT) using zinc oxide (ZnO) film as an exposed sensing semiconductor channel was fabricated to detect and identify various solution solvents. The TFT devices would offer applications for low-cost, rapid and highly compatible water-soluble detection and could replace conventional silicon field effect transistors (FETs) as bio-sensors. In this work, we demonstrate the utility of the TFT ZnO channel to sense various liquids, such as polar solvents (ethanol), non-polar solvents (toluene) and deionized (DI) water, which were dropped and adsorbed onto the channel. It is discussed how different dielectric constants of polar/non-polar solvents and DI water were associated with various charge transport properties, demonstrating the main detection mechanisms of the thin-film transistor.

  1. Low-Temperature, Solution-Processed, Transparent Zinc Oxide-Based Thin-Film Transistors for Sensing Various Solvents

    PubMed Central

    You, Hsin-Chiang; Wang, Cheng-Jyun

    2017-01-01

    A low temperature solution-processed thin-film transistor (TFT) using zinc oxide (ZnO) film as an exposed sensing semiconductor channel was fabricated to detect and identify various solution solvents. The TFT devices would offer applications for low-cost, rapid and highly compatible water-soluble detection and could replace conventional silicon field effect transistors (FETs) as bio-sensors. In this work, we demonstrate the utility of the TFT ZnO channel to sense various liquids, such as polar solvents (ethanol), non-polar solvents (toluene) and deionized (DI) water, which were dropped and adsorbed onto the channel. It is discussed how different dielectric constants of polar/non-polar solvents and DI water were associated with various charge transport properties, demonstrating the main detection mechanisms of the thin-film transistor. PMID:28772592

  2. Modulation of the electrical properties in amorphous indium-gallium zinc-oxide semiconductor films using hydrogen incorporation

    NASA Astrophysics Data System (ADS)

    Song, Aeran; Park, Hyun-Woo; Chung, Kwun-Bum; Rim, You Seung; Son, Kyoung Seok; Lim, Jun Hyung; Chu, Hye Yong

    2017-12-01

    The electrical properties of amorphous-indium-gallium-zinc-oxide (a-IGZO) thin films were investigated after thermal annealing and plasma treatment under different gas conditions. The electrical resistivity of a-IGZO thin films post-treated in a hydrogen ambient were lower than those without treatment and those annealed in air, regardless of the methods used for both thermal annealing and plasma treatment. The electrical properties can be explained by the quantity of hydrogen incorporated into the samples and the changes in the electronic structure in terms of the chemical bonding states, the distribution of the near-conduction-band unoccupied states, and the band alignment. As a result, the carrier concentrations of the hydrogen treated a-IGZO thin films increased, while the mobility decreased, due to the increase in the oxygen vacancies from the occurrence of unoccupied states in both shallow and deep levels.

  3. Bipolar charge storage characteristics in copper and cobalt co-doped zinc oxide (ZnO) thin film.

    PubMed

    Kumar, Amit; Herng, Tun Seng; Zeng, Kaiyang; Ding, Jun

    2012-10-24

    The bipolar charge phenomenon in Cu and Co co-doped zinc oxide (ZnO) film samples has been studied using scanning probe microscopy (SPM) techniques. Those ZnO samples are made using a pulsed laser deposition (PLD) technique. It is found that the addition of Cu and Co dopants suppresses the electron density in ZnO and causes a significant change in the work function (Fermi level) value of the ZnO film; this results in the ohmic nature of the contact between the electrode (probe tip) and codoped sample, whereas this contact exhibits a Schottky nature in the undoped and single-element-doped samples. These results are verified by Kelvin probe force microscopy (KPFM) and ultraviolet photoelectron spectroscopy (UPS) measurements. It is also found that the co-doping (Cu and Co) can stabilize the bipolar charge, whereas Cu doping only stabilizes the positive charge in ZnO thin films.

  4. Wrinkle-free graphene electrodes in zinc tin oxide thin-film transistors for large area applications.

    PubMed

    Lee, Se-Hee; Kim, Jae-Hee; Park, Byeong-Ju; Park, Jozeph; Kim, Hyun-Suk; Yoon, Soon-Gil

    2017-02-17

    Wrinkle-free graphene was used to form the source-drain electrodes in thin film transistors based on a zinc tin oxide (ZTO) semiconductor. A 10 nm thick titanium adhesion layer was applied prior to transferring a conductive graphene film on top of it by chemical detachment. The formation of an interlayer oxide between titanium and graphene allows the achievement of uniform surface roughness over the entire substrate area. The resulting devices were thermally treated in ambient air, and a substantial decrease in field effect mobility is observed with increasing annealing temperature. The increase in electrical resistivity of the graphene film at higher annealing temperatures may have some influence, however the growth of the oxide interlayer at the ZTO/Ti boundary is suggested to be most influential, thereby inducing relatively high contact resistance.

  5. Wrinkle-free graphene electrodes in zinc tin oxide thin-film transistors for large area applications

    NASA Astrophysics Data System (ADS)

    Lee, Se-Hee; Kim, Jae-Hee; Park, Byeong-Ju; Park, Jozeph; Kim, Hyun-Suk; Yoon, Soon-Gil

    2017-02-01

    Wrinkle-free graphene was used to form the source-drain electrodes in thin film transistors based on a zinc tin oxide (ZTO) semiconductor. A 10 nm thick titanium adhesion layer was applied prior to transferring a conductive graphene film on top of it by chemical detachment. The formation of an interlayer oxide between titanium and graphene allows the achievement of uniform surface roughness over the entire substrate area. The resulting devices were thermally treated in ambient air, and a substantial decrease in field effect mobility is observed with increasing annealing temperature. The increase in electrical resistivity of the graphene film at higher annealing temperatures may have some influence, however the growth of the oxide interlayer at the ZTO/Ti boundary is suggested to be most influential, thereby inducing relatively high contact resistance.

  6. Thin film transistor performance of amorphous indium–zinc oxide semiconductor thin film prepared by ultraviolet photoassisted sol–gel processing

    NASA Astrophysics Data System (ADS)

    Kodzasa, Takehito; Nobeshima, Taiki; Kuribara, Kazunori; Yoshida, Manabu

    2018-05-01

    We have fabricated an amorphous indium–zinc oxide (IZO, In/Zn = 3/1) semiconductor thin-film transistor (AOS-TFT) by the sol–gel technique using ultraviolet (UV) photoirradiation and post-treatment in high-pressure O2 at 200 °C. The obtained TFT showed a hole carrier mobility of 0.02 cm2 V‑1 s‑1 and an on/off current ratio of 106. UV photoirradiation leads to the decomposition of the organic agents and hydroxide group in the IZO gel film. Furthermore, the post-treatment annealing at a high O2 pressure of more than 0.6 MPa leads to the filling of the oxygen vacancies in a poor metal–oxygen network in the IZO film.

  7. Enhancement of the electrical characteristics of thin-film transistors with indium-zinc-tin oxide/Ag/indium-zinc-tin oxide multilayer electrodes

    NASA Astrophysics Data System (ADS)

    Oh, Dohyun; Yun, Dong Yeol; Cho, Woon-Jo; Kim, Tae Whan

    2014-08-01

    Transparent indium-zinc-tin oxide (IZTO)-based thin-film transistors (TFTs) with IZTO/Ag/IZTO multilayer electrodes were fabricated on glass substrates using a tilted dual-target radio-frequency magnetron sputtering system. The IZTO TFTs with IZTO/Ag/IZTO multilayer electrodes exhibited a high optical transmittance in a visible region. The threshold voltage, the mobility, and the on/off-current ratio of the TFTs with IZTO/Ag/IZTO multilayer electrodes were enhanced in comparison with those of the TFTs with ITO electrodes. The source/drain contact resistance of the IZTO TFTs with IZTO/Ag/IZTO multilayer electrodes was smaller than that of the IZTO TFTs with ITO electrodes, resulting in enhancement of their electrical characteristics.

  8. Characterization of an Olive Flounder Bone Gelatin-Zinc Oxide Nanocomposite Film and Evaluation of Its Potential Application in Spinach Packaging.

    PubMed

    Beak, Songee; Kim, Hyeri; Song, Kyung Bin

    2017-11-01

    Olive flounder bone gelatin (OBG) was used for a film base material in this study. In addition, zinc oxide nanoparticles (ZnO) were incorporated into the OBG film to prepare a nanocomposite film and to impart antimicrobial activity to it. The tensile strength of the OBG film increased by 6.62 MPa, and water vapor permeability and water solubility decreased by 0.93 × 10 -9 g/m s Pa and 13.79%, respectively, by the addition of ZnO to the OBG film. In particular, the OBG-ZnO film exhibited antimicrobial activity against Listeria monocytogenes. To investigate the applicability of the OBG-ZnO packaging film, fresh spinach was wrapped in this film and stored for a week. The results indicated that the OBG-ZnO film showed antimicrobial activity against L. monocytogenes inoculated on spinach without affecting the quality of spinach, such as vitamin C content and color. Thus, the OBG-ZnO nanocomposite film can be applied as an efficient antimicrobial food packaging material. As a base material of edible films, gelatin was extracted from olive flounder bone, which is fish processing by-product. Olive flounder bone gelatin (OBG) nanocomposite films were prepared with zinc oxide nanoparticles (ZnO). For an application to antimicrobial packaging, spinach was wrapped with the OBG-ZnO nanocomposite film. © 2017 Institute of Food Technologists®.

  9. Synthesis And Characterization of Copper Zinc Tin Sulfide Nanoparticles And Thin Films

    NASA Astrophysics Data System (ADS)

    Khare, Ankur

    Copper zinc tin sulfide (Cu2ZnSnS4, or CZTS) is emerging as an alternative material to the present thin film solar cell technologies such as Cu(In,Ga)Se2 and CdTe. All the elements in CZTS are abundant, environmentally benign, and inexpensive. In addition, CZTS has a band gap of ˜1.5 eV, the ideal value for converting the maximum amount of energy from the solar spectrum into electricity. CZTS has a high absorption coefficient (>104 cm-1 in the visible region of the electromagnetic spectrum) and only a few micron thick layer of CZTS can absorb all the photons with energies above its band gap. CZT(S,Se) solar cells have already reached power conversion efficiencies >10%. One of the ways to improve upon the CZTS power conversion efficiency is by using CZTS quantum dots as the photoactive material, which can potentially achieve efficiencies greater than the present thin film technologies at a fraction of the cost. However, two requirements for quantum-dot solar cells have yet to be demonstrated. First, no report has shown quantum confinement in CZTS nanocrystals. Second, the syntheses to date have not provided a range of nanocrystal sizes, which is necessary not only for fundamental studies but also for multijunction photovoltaic architectures. We resolved these two issues by demonstrating a simple synthesis of CZTS, Cu2SnS3, and alloyed (Cu2SnS3) x(ZnS)y nanocrystals with diameters ranging from 2 to 7 nm from diethyldithiocarbamate complexes. As-synthesized nanocrystals were characterized using high resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and energy dispersive spectroscopy to confirm their phase purity. Nanocrystals of diameter less than 5 nm were found to exhibit a shift in their optical absorption spectra towards higher energy consistent with quantum confinement and previous theoretical predictions. Thin films from CZTS nanocrystals deposited on Mo-coated quartz substrates using drop casting were found to be continuous

  10. Influence of annealing temperature on the structural, optical and electrical properties of amorphous Zinc Sulfide thin films

    NASA Astrophysics Data System (ADS)

    Göde, F.; Güneri, E.; Kariper, A.; Ulutaş, C.; Kirmizigül, F.; Gümüş, C.

    2011-11-01

    Zinc sulfide films have been deposited on glass substrates at room temperature by the chemical bath deposition technique. The growth mechanism is studied using X-ray diffraction, scanning electron microscopy, optical absorption spectra and electrical measurements. The as-deposited film was given thermal annealing treatment in air atmosphere at various temperatures (100, 200, 300 400 and 500 °C) for 1 h. The annealed film was also characterized by structural, optical and electrical studies. The structural analyses revealed that the as-deposited film was amorphous, but after being annealed at 500 °C, it changed to polycrystalline. The optical band gap is direct with a value of 4.01 eV, but this value decreased to 3.74 eV with annealing temperature, except for the 500 °C anneal where it only decreased to 3.82 eV. The refractive index (n), extinction coefficient (k), and real (ɛ1) and imaginary (ɛ2) parts of the dielectric constant are evaluated. Raman peaks appearing at ~478 cm-1, ~546 cm-1, ~778 cm-1 and ~1082 cm-1 for the annealed film (500 °C) were attributed to [TOl+LAΣ, 2TOΓ, 2LO, 3LO phonons of ZnS. The electrical conductivities of both as-deposited and annealed films have been calculated to be of the order of ~10-10 (Ω cm)-1 .

  11. Observation of decreasing resistivity of amorphous indium gallium zinc oxide thin films with an increasing oxygen partial pressure

    NASA Astrophysics Data System (ADS)

    Singh, Anup K.; Adhikari, Sonachand; Gupta, Rajeev; Deepak

    2017-01-01

    We have investigated the electrical resistivity behavior in amorphous indium gallium zinc oxide (a-IGZO) thin films. It is well known that resistivity increases as the film is deposited at a higher and higher oxygen partial pressure; we also record the same. However, in process we have discovered a remarkable region, in the oxygen deficient condition, that the resistivity shows an inverse behavior. This leads to the possibility that resistive films, suitable for thin film transistors, can also be obtained in oxygen deficient deposition conditions. Optical spectroscopic investigation could discern between a-IGZO films grown in oxygen deficient and oxygen rich conditions. The related resistivity behavior could be correlated to the presence of sub-bandgap states in films deposited in oxygen deficiency. These subgap states appear to be due to defects arising from local variations around the cations or oxygen atoms. The likely cause is an increase in Ga relative to In around O atom and the nature of cation-cation interaction when an oxygen atom is missing.

  12. Microstructure evolution of Al-doped zinc oxide films prepared by in-line reactive mid-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hong, R. J.; Jiang, X.

    2006-07-01

    Aluminium-doped zinc oxide (ZnO:Al or AZO) thin films were deposited on glass substrates by reactive mid-frequency (MF) magnetron sputtering from Zn/Al metallic targets. Strong (002) preferred orientation was detected by X-ray diffraction (XRD). It was observed by plan-view transmission electron microscopy (TEM) that an AZO film deposited at low substrate temperature was composed of irregular large grains; but the film prepared at high temperature was composed of moderate sized grains with a regular shape. A secondary phase of ZnO2 was also observed for the film deposited at low substrate temperature. The cross-sectional TEM study of the AZO film showed that prior to the well-aligned columnar growth an initial interfacial zone with nano crystallites were formed. The nano crystallites formed initially with a large tilt angle normal to the substrate surface and during the growth of the transition zone, the tilt angle decreased until it vanished. The evolution of the film structure is discussed in terms of evolutionary selection model and the dynamic deposition process.

  13. Improvement in the electrical performance and bias-stress stability of dual-active-layered silicon zinc oxide/zinc oxide thin-film transistor

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Rong; Zhao, Gao-Wei; Lai, Pai-To; Yao, Ruo-He

    2016-08-01

    Si-doped zinc oxide (SZO) thin films are deposited by using a co-sputtering method, and used as the channel active layers of ZnO-based TFTs with single and dual active layer structures. The effects of silicon content on the optical transmittance of the SZO thin film and electrical properties of the SZO TFT are investigated. Moreover, the electrical performances and bias-stress stabilities of the single- and dual-active-layer TFTs are investigated and compared to reveal the effects of the Si doping and dual-active-layer structure. The average transmittances of all the SZO films are about 90% in the visible light region of 400 nm-800 nm, and the optical band gap of the SZO film gradually increases with increasing Si content. The Si-doping can effectively suppress the grain growth of ZnO, revealed by atomic force microscope analysis. Compared with that of the undoped ZnO TFT, the off-state current of the SZO TFT is reduced by more than two orders of magnitude and it is 1.5 × 10-12 A, and thus the on/off current ratio is increased by more than two orders of magnitude. In summary, the SZO/ZnO TFT with dual-active-layer structure exhibits a high on/off current ratio of 4.0 × 106 and superior stability under gate-bias and drain-bias stress. Projected supported by the National Natural Science Foundation of China (Grant Nos. 61076113 and 61274085), the Natural Science Foundation of Guangdong Province (Grant No. 2016A030313474), and the University Development Fund (Nanotechnology Research Institute, Grant No. 00600009) of the University of Hong Kong, China.

  14. Zinc oxyfluoride transparent conductor

    DOEpatents

    Gordon, Roy G.

    1991-02-05

    Transparent, electrically conductive and infrared-reflective films of zinc oxyfluoride are produced by chemical vapor deposition from vapor mixtures of zinc, oxygen and fluorine-containing compounds. The substitution of fluorine for some of the oxygen in zinc oxide results in dramatic increases in the electrical conductivity. For example, diethyl zinc, ethyl alcohol and hexafluoropropene vapors are reacted over a glass surface at 400.degree. C. to form a visibly transparent, electrically conductive, infrared reflective and ultraviolet absorptive film of zinc oxyfluoride. Such films are useful in liquid crystal display devices, solar cells, electrochromic absorbers and reflectors, energy-conserving heat mirrors, and antistatic coatings.

  15. Amorphous indium-tin-zinc oxide films deposited by magnetron sputtering with various reactive gases: Spatial distribution of thin film transistor performance

    SciT

    Jia, Junjun; Torigoshi, Yoshifumi; Shigesato, Yuzo, E-mail: yuzo@chem.aoyama.ac.jp

    This work presents the spatial distribution of electrical characteristics of amorphous indium-tin-zinc oxide film (a-ITZO), and how they depend on the magnetron sputtering conditions using O{sub 2}, H{sub 2}O, and N{sub 2}O as the reactive gases. Experimental results show that the electrical properties of the N{sub 2}O incorporated a-ITZO film has a weak dependence on the deposition location, which cannot be explained by the bombardment effect of high energy particles, and may be attributed to the difference in the spatial distribution of both the amount and the activity of the reactive gas reaching the substrate surface. The measurement for themore » performance of a-ITZO thin film transistor (TFT) also suggests that the electrical performance and device uniformity of a-ITZO TFTs can be improved significantly by the N{sub 2}O introduction into the deposition process, where the field mobility reach to 30.8 cm{sup 2} V{sup –1} s{sup –1}, which is approximately two times higher than that of the amorphous indium-gallium-zinc oxide TFT.« less

  16. Influence of a Boron Precursor on the Growth and Optoelectronic Properties of Electrodeposited Zinc Oxide Thin Film.

    PubMed

    Tsin, Fabien; Thomere, Angélica; Bris, Arthur Le; Collin, Stéphane; Lincot, Daniel; Rousset, Jean

    2016-05-18

    Highly transparent and conductive materials are required for many industrial applications. One of the interesting features of ZnO is the possibility to dope it using different elements, hence improving its conductivity. Results concerning the zinc oxide thin films electrodeposited in a zinc perchlorate medium containing a boron precursor are presented in this study. The addition of boron to the electrolyte leads to significant effects on the morphology and crystalline structure as well as an evolution of the optical properties of the material. Varying the concentration of boric acid from 0 to 15 mM strongly improves the compactness of the deposit and increases the band gap from 3.33 to 3.45 eV. Investigations were also conducted to estimate and determine the influence of boric acid on the electrical properties of the ZnO layers. As a result, no doping effect effect by boron was demonstrated. However, the role of boric acid on the material quality has also been proven and discussed. Boric acid strongly contributes to the growth of high quality electrodeposited zinc oxide. The high doping level of the film can be attributed to the perchlorate ions introduced in the bath. Finally, a ZnO layer electrodeposited in a boron rich electrolyte was tested as front contact of a Cu(In, Ga)(S, Se)2 based solar cell. An efficiency of 12.5% was measured with a quite high fill factor (>70%) which confirms the high conductivity of the ZnO thin film.

  17. Effect of structure and thermodynamic stability on the response of lanthanide stannate pyrochlores to ion beam irradiation.

    PubMed

    Lian, J; Helean, K B; Kennedy, B J; Wang, L M; Navrotsky, A; Ewing, R C

    2006-02-09

    The lanthanide stannates, Ln2Sn2O7, Ln=La-Lu and Y, have the isometric pyrochlore structure, A2B2O7, and their structural properties have been refined by Rietveld analysis of powder neutron and synchrotron X-ray diffraction data. In this study, the enthalpies of formation of selected stannate pyrochlores, Ln=La, Nd, Sm, Eu, Dy, and Yb, were measured by high-temperature oxide melt solution calorimetry. Their radiation response was determined by 1 MeV Kr2+ ion irradiation combined with in situ TEM observation over the temperature range of 25 to 1000 K. The enthalpy of formation from binary oxides of stannate pyrochlores became more endothermic (from -145 to -40 kJ/mol) as the size of the lanthanide in the A-site decreases. A more exothermic trend of the enthalpy of formation was observed in stannate pyrochlores with larger lanthanide ions, particularly La, possibly as a result of increased covalency in the Sn-O bond. In contrast to lanthanide titanate pyrochlores, Ln2Ti2O7, that are generally susceptible to radiation-induced amorphization and zirconate pyrochlores, Ln2Zr2O7, that are generally resistant to radiation-induced amorphization, the lanthanide stannate pyrochlores show a much greater variation in their response to ion irradiation. La, Nd, and Gd stannates experience the radiation-induced transformation to the aperiodic state, and the critical amorphization temperatures are approximately 960, 700, and 350 K, respectively. Y and Er stannate pyrochlores cannot be amorphized by ion beam irradiation, even at 25 K, and instead disorder to a defect fluorite structure. Comparison of the calorimetric and ion irradiation data for titanate, zirconate, and stannate pyrochlores reveals a strong correlation among subtle changes in crystal structure with changing composition, the energetics of the disordering process, and the temperature above which the material can no longer be amorphized. In summary, as the structure approaches the ideal, ordered pyrochlore structure

  18. Numerical modeling and performance analysis of zinc oxide (ZnO) thin-film based gas sensor

    NASA Astrophysics Data System (ADS)

    Punetha, Deepak; Ranjan, Rashmi; Pandey, Saurabh Kumar

    2018-05-01

    This manuscript describes the modeling and analysis of Zinc Oxide thin film based gas sensor. The conductance and sensitivity of the sensing layer has been described by change in temperature as well as change in gas concentration. The analysis has been done for reducing and oxidizing agents. Simulation results revealed the change in resistance and sensitivity of the sensor with respect to temperature and different gas concentration. To check the feasibility of the model, all the simulated results have been analyze by different experimental reported work. Wolkenstein theory has been used to model the proposed sensor and the simulation results have been shown by using device simulation software.

  19. Selective metallization of amorphous-indium-gallium-zinc-oxide thin-film transistor by using helium plasma treatment

    NASA Astrophysics Data System (ADS)

    Jang, Hun; Lee, Su Jeong; Porte, Yoann; Myoung, Jae-Min

    2018-03-01

    In this study, the effects of helium (He) plasma treatment on amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) have been investigated. The He plasma treatment induced a dramatic decrease of the resistivity in a-IGZO thin films from 1.25 × 106 to 5.93 mΩ cm. After 5 min He plasma treatment, the a-IGZO films showed an increase in carrier concentration to 6.70 × 1019 cm-3 combined with a high hall mobility of 15.7 cm2 V-1 s-1. The conductivity improvement was linked to the formation of oxygen vacancies during the He plasma treatment, which was observed by x-ray photoelectron spectroscopy analysis. The a-IGZO films did not appear to be damaged on the surface following the plasma treatment and showed a high transmittance of about 88.3% at a wavelength of 550 nm. The He plasma-treated a-IGZO films were used as source/drain (S/D) electrodes in a-IGZO TFTs. The devices demonstrated promising characteristics, on pair with TFTs using Al electrodes, with a threshold voltage (V T) of -1.97 V, sub-threshold slope (SS) of 0.52 V/decade, saturation mobility (μ sat) of 8.75 cm2 V-1 s-1, and on/off current ratio (I on/I off) of 2.66 × 108.

  20. Optical properties of aluminum-doped zinc oxide films deposited by direct-current pulse magnetron reactive sputtering

    NASA Astrophysics Data System (ADS)

    Gao, Xiao-Yong; Chen, Chao; Zhang, Sa

    2014-03-01

    A series of <103>-oriented aluminum-doped zinc oxide (AZO) films were deposited on glass substrates via direct-current pulse magnetron reactive sputtering at different O2-to-Ar gas flow ratios (GFRs). The optical properties of the films were characterized using the fitted optical constants in the general oscillator model (which contains two Psemi-Tri oscillators) through the use of measured ellipsometric parameters. The refractive index dispersion data below the interband absorption edge were analyzed using a single-oscillator model. The fitted optical energy gap obtained using the single-oscillator model clearly shows a blue shift, followed by a red shift, as the GFR increases from 0.9/18 to 2.1/18. This shift can be attributed to the change in the free electron concentration of the film, which is closely related to the film stress. In addition, the fitted β value indicates that the AZO film falls under the ionic class. The photoluminescence spectrum indicates a photoluminescence mechanism of the direct and wide energy gap semiconductor.

  1. Enhanced electrical and optical properties of room temperature deposited Aluminium doped Zinc Oxide (AZO) thin films by excimer laser annealing

    NASA Astrophysics Data System (ADS)

    El hamali, S. O.; Cranton, W. M.; Kalfagiannis, N.; Hou, X.; Ranson, R.; Koutsogeorgis, D. C.

    2016-05-01

    High quality transparent conductive oxides (TCOs) often require a high thermal budget fabrication process. In this study, Excimer Laser Annealing (ELA) at a wavelength of 248 nm has been explored as a processing mechanism to facilitate low thermal budget fabrication of high quality aluminium doped zinc oxide (AZO) thin films. 180 nm thick AZO films were prepared by radio frequency magnetron sputtering at room temperature on fused silica substrates. The effects of the applied RF power and the sputtering pressure on the outcome of ELA at different laser energy densities and number of pulses have been investigated. AZO films deposited with no intentional heating at 180 W, and at 2 mTorr of 0.2% oxygen in argon were selected as the optimum as-deposited films in this work, with a resistivity of 1×10-3 Ω.cm, and an average visible transmission of 85%. ELA was found to result in noticeably reduced resistivity of 5×10-4 Ω.cm, and enhancing the average visible transmission to 90% when AZO is processed with 5 pulses at 125 mJ/cm2. Therefore, the combination of RF magnetron sputtering and ELA, both low thermal budget and scalable techniques, can provide a viable fabrication route of high quality AZO films for use as transparent electrodes.

  2. High Transparent Conductive Aluminum-Doped Zinc Oxide Thin Films by Reactive Co-Sputtering (Postprint)

    DTIC Science & Technology

    2016-03-30

    wavelength where n = k) is 1605 nm from the film (f). Figure 1 XRD patterns of the AZO films on quartz substrate Figure 2 UV-Vis-NIR...71.6 1605 9.87 x10 -4 Figure 3 Refractive index n (left) and extinction coefficient k of (right) the AZO films. 4. Conclusions AZO films were

  3. Oxygen Partial Pressure Impact on Characteristics of Indium Titanium Zinc Oxide Thin Film Transistor Fabricated via RF Sputtering

    PubMed Central

    Hsu, Ming-Hung; Chang, Sheng-Po; Chang, Shoou-Jinn; Wu, Wei-Ting; Li, Jyun-Yi

    2017-01-01

    Indium titanium zinc oxide (InTiZnO) as the channel layer in thin film transistor (TFT) grown by RF sputtering system is proposed in this work. Optical and electrical properties were investigated. By changing the oxygen flow ratio, we can suppress excess and undesirable oxygen-related defects to some extent, making it possible to fabricate the optimized device. XPS patterns for O 1s of InTiZnO thin films indicated that the amount of oxygen vacancy was apparently declined with the increasing oxygen flow ratio. The fabricated TFTs showed a threshold voltage of −0.9 V, mobility of 0.884 cm2/Vs, on-off ratio of 5.5 × 105, and subthreshold swing of 0.41 V/dec. PMID:28672868

  4. Oxygen Partial Pressure Impact on Characteristics of Indium Titanium Zinc Oxide Thin Film Transistor Fabricated via RF Sputtering.

    PubMed

    Hsu, Ming-Hung; Chang, Sheng-Po; Chang, Shoou-Jinn; Wu, Wei-Ting; Li, Jyun-Yi

    2017-06-26

    Indium titanium zinc oxide (InTiZnO) as the channel layer in thin film transistor (TFT) grown by RF sputtering system is proposed in this work. Optical and electrical properties were investigated. By changing the oxygen flow ratio, we can suppress excess and undesirable oxygen-related defects to some extent, making it possible to fabricate the optimized device. XPS patterns for O 1s of InTiZnO thin films indicated that the amount of oxygen vacancy was apparently declined with the increasing oxygen flow ratio. The fabricated TFTs showed a threshold voltage of -0.9 V, mobility of 0.884 cm²/Vs, on-off ratio of 5.5 × 10⁵, and subthreshold swing of 0.41 V/dec.

  5. Optimization of method for zinc analysis in several bee products on renewable mercury film silver based electrode.

    PubMed

    Opoka, Włodzimierz; Szlósarczyk, Marek; Maślanka, Anna; Piech, Robert; Baś, Bogusław; Włodarczyk, Edyta; Krzek, Jan

    2013-01-01

    Zinc is an interesting target for detection as it is one of the elements necessary for the proper functioning of the human body, its excess and deficiency can cause several symptoms. Several techniques including electrochemistry have been developed but require laboratory equipment, preparative steps and mercury or complex working electrodes. We here described the development of a robust, simple and commercially available electrochemical system. Differential pulse (DP) voltammetry was used for this purpose with the cyclic renewable mercury film silver based electrode (Hg(Ag)FE) and 0.05 M KNO3 solution as a supporting electrolyte. The effect of various factors such as: preconcentration potential and time, pulse amplitude and width, step potential and supporting electrolyte composition are optimized. The limits of detection (LOD) and quantification (LOQ) were 1.62 ng/mL and 4.85 ng/mL, respectively. The repeatability of the method at a concentration level of the analyte as low as 3 ng/mL, expressed as RSD is 3.5% (n = 6). Recovery was determined using certified reference material: Virginia Tobacco Leaves (CTA-VTL-2). The recovery of zinc ranged from 96.6 to 106.5%. The proposed method was successfully applied for determination of zinc in bee products (honey, propolis and diet supplements) after digestion procedure.

  6. Optimization of the Solution-Based Indium-Zinc Oxide/Zinc-Tin Oxide Channel Layer for Thin-Film Transistors.

    PubMed

    Lim, Kiwon; Choi, Pyungho; Kim, Sangsub; Kim, Hyunki; Kim, Minsoo; Lee, Jeonghyun; Hyeon, Younghwan; Koo, Kwangjun; Choi, Byoungdeog

    2018-09-01

    Double stacked indium-zinc oxide (IZO)/zinc-tin oxide (ZTO) active layers were employed in amorphous-oxide-semiconductor thin-film transistors (AOS TFTs). Channel layers of the TFTs were optimized by varying the molarity of ZTO back channel layers (0.05, 0.1, 0.2, 0.3 M) and the electrical properties of IZO/ZTO double stacked TFTs were compared to single IZO and ZTO TFTs with varying the molarity and molar ratio. On the basis of the results, IZO/ZTO (0.1 M) TFTs showed the excellent electrical properties of saturation mobility (13.6 cm2/V·s), on-off ratio (7×106), and subthreshold swing (0.223 V/decade) compared to ZTO (0.1 M) of 0.73 cm2/V · s, 1 × 107, 0.416 V/decade and IZO (0.04 M) of 0.10 cm2/V · s, 5 × 106, 0.60 V/decade, respectively. This may be attributed to diffusing Sn into front layer during annealing process. In addition, with varying molarity of ZTO back channel layer, from 0.1 M to 0.3 M ZTO back channel TFTs, electrical properties and positive bias stability deteriorated with increasing molarity of back channel layer because of increasing total trap states. On the other hand, 0.05 M ZTO back channel TFT had inferior electrical properties than that of 0.1 M ZTO back channel TFT. It was related to back channel effect because of having thin thickness of channel layer. Among these devices, 0.1 M ZTO back channel TFT had a lowest total trap density, outstanding electrical properties and stability. Therefore, we recommended IZO/ZTO (0.1 M) TFT as a promising channel structure for advanced display applications.

  7. Direct synthesis and characterization of optically transparent conformal zinc oxide nanocrystalline thin films by rapid thermal plasma CVD

    NASA Astrophysics Data System (ADS)

    Pedersen, Joachim D.; Esposito, Heather J.; Teh, Kwok Siong

    2011-10-01

    We report a rapid, self-catalyzed, solid precursor-based thermal plasma chemical vapor deposition process for depositing a conformal, nonporous, and optically transparent nanocrystalline ZnO thin film at 130 Torr (0.17 atm). Pure solid zinc is inductively heated and melted, followed by ionization by thermal induction argon/oxygen plasma to produce conformal, nonporous nanocrystalline ZnO films at a growth rate of up to 50 nm/min on amorphous and crystalline substrates including Si (100), fused quartz, glass, muscovite, c- and a-plane sapphire (Al2O3), gold, titanium, and polyimide. X-ray diffraction indicates the grains of as-deposited ZnO to be highly textured, with the fastest growth occurring along the c-axis. The individual grains are observed to be faceted by (103) planes which are the slowest growth planes. ZnO nanocrystalline films of nominal thicknesses of 200 nm are deposited at substrate temperatures of 330°C and 160°C on metal/ceramic substrates and polymer substrates, respectively. In addition, 20-nm- and 200-nm-thick films are also deposited on quartz substrates for optical characterization. At optical spectra above 375 nm, the measured optical transmittance of a 200-nm-thick ZnO film is greater than 80%, while that of a 20-nm-thick film is close to 100%. For a 200-nm-thick ZnO film with an average grain size of 100 nm, a four-point probe measurement shows electrical conductivity of up to 910 S/m. Annealing of 200-nm-thick ZnO films in 300 sccm pure argon at temperatures ranging from 750°C to 950°C (at homologous temperatures between 0.46 and 0.54) alters the textures and morphologies of the thin film. Based on scanning electron microscope images, higher annealing temperatures appear to restructure the ZnO nanocrystalline films to form nanorods of ZnO due to a combination of grain boundary diffusion and bulk diffusion. PACS: films and coatings, 81.15.-z; nanocrystalline materials, 81.07.Bc; II-VI semiconductors, 81.05.Dz.

  8. Fabrication of Amorphous Indium Gallium Zinc Oxide Thin Film Transistor by using Focused Ion Beam

    NASA Astrophysics Data System (ADS)

    Zhu, Wencong

    Compared with other transparent semiconductors, amorphous indium gallium zinc oxide (a-IGZO) has both good uniformity and high electron mobility, which make it as a good candidate for displays or large-scale transparent circuit. The goal of this research is to fabricate alpha-IGZO thin film transistor (TFT) with channel milled by focused ion beam (FIB). TFTs with different channel geometries can be achieved by applying different milling strategies, which facilitate modifying complex circuit. Technology Computer-Aided Design (TCAD) was also introduced to understand the effect of trapped charges on the device performance. The investigation of the trapped charge at IGZO/SiO2 interface was performed on the IGZO TFT on p-Silicon substrate with thermally grown SiO2 as dielectric. The subgap density-of-state model was used for the simulation, which includes conduction band-tail trap states and donor-like state in the subgap. The result shows that the de-trapping and donor-state ionization determine the interface trapped charge density at various gate biases. Simulation of IGZO TFT with FIB defined channel on the same substrate was also applied. The drain and source were connected intentionally during metal deposition and separated by FIB milling. Based on the simulation, the Ga ions in SiO2 introduced by the ion beam was drifted by gate bias and affects the saturation drain current. Both side channel and direct channel transparent IGZO TFTs were fabricated on the glass substrate with coated ITO. Higher ion energy (30 keV) was used to etch through the substrate between drain and source and form side channels at the corner of milled trench. Lower ion energy (16 keV) was applied to stop the milling inside IGZO thin film and direct channel between drain and source was created. Annealing after FIB milling removed the residual Ga ions and the devices show switch feature. Direct channel shows higher saturation drain current (~10-6 A) compared with side channel (~10-7 A) because

  9. Transparent and Flexible Zinc Tin Oxide Thin Film Transistors and Inverters using Low-pressure Oxygen Annealing Process

    NASA Astrophysics Data System (ADS)

    Lee, Kimoon; Kim, Yong-Hoon; Kim, Jiwan; Oh, Min Suk

    2018-05-01

    We report on the transparent and flexible enhancement-load inverters which consist of zinc tin oxide (ZTO) thin film transistors (TFTs) fabricated at low process temperature. To control the electrical characteristics of oxide TFTs by oxygen vacancies, we applied low-pressure oxygen rapid thermal annealing (RTA) process to our devices. When we annealed the ZTO TFTs in oxygen ambient of 2 Torr, they showed better electrical characteristics than those of the devices annealed in the air ambient of 760 Torr. To realize oxide thin film transistor and simple inverter circuits on flexible substrate, we annealed the devices in O2 of 2 Torr at 150° C and could achieve the decent electrical properties. When we used transparent conductive oxide electrodes such as indium zinc oxide (IZO) and indium tin oxide (ITO), our transparent and flexible inverter showed the total transmittance of 68% in the visible range and the voltage gain of 5. And the transition voltage in voltage transfer curve was located well within the range of operation voltage.

  10. Effect of substrates on Zinc Oxide thin films fabrication using sol-gel method

    NASA Astrophysics Data System (ADS)

    Kadir, Rosmalini Ab; Taib, Nurmalina Mohd; Ahmad, Wan Rosmaria Wan; Aziz, Anees Abdul; Sabirin Zoolfakar, Ahmad

    2018-03-01

    The properties of ZnO thin films were deposited on three different substrates via dip coating method was investigated. The films were prepared on glass, ITO and p-type silicon. Characterization of the film revealed that the properties of the dip coated ZnO thin films were influenced by the type of substrates. The grains on ITO and glass were ∼10 nm in size while the grains on wafer agglomerate together to form a denser film. Studies of the optical properties using UV-VIS-NIR of the fabricated films demonstrated that glass has the highest transmittance compared to ITO.

  11. On the possibility to grow zinc oxide-based transparent conducting oxide films by hot-wire chemical vapor deposition

    SciT

    Abrutis, Adulfas, E-mail: adulfas.abrutis@chf.vu.lt; Silimavicus, Laimis; Kubilius, Virgaudas

    Hot-wire chemical vapor deposition (HW-CVD) was applied to grow zinc oxide (ZnO)-based transparent conducting oxide (TCO) films. Indium (In)-doped ZnO films were deposited using a cold wall pulsed liquid injection CVD system with three nichrome wires installed at a distance of 2 cm from the substrate holder. The wires were heated by an AC current in the range of 0–10 A. Zn and In 2,2,6,6-tetramethyl-3,5-heptanedionates dissolved in 1,2-dimethoxyethane were used as precursors. The hot wires had a marked effect on the growth rates of ZnO, In-doped ZnO, and In{sub 2}O{sub 3} films; at a current of 6–10 A, growth rates weremore » increased by a factor of ≈10–20 compared with those of traditional CVD at the same substrate temperature (400 °C). In-doped ZnO films with thickness of ≈150 nm deposited on sapphire-R grown at a wire current of 9 A exhibited a resistivity of ≈2 × 10{sup −3} Ωcm and transparency of >90% in the visible spectral range. These initial results reveal the potential of HW-CVD for the growth of TCOs.« less

  12. Low-Temperature-Processed Zinc Oxide Thin-Film Transistors Fabricated by Plasma-Assisted Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Kawamura, Yumi; Tani, Mai; Hattori, Nozomu; Miyatake, Naomasa; Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu

    2012-02-01

    We investigated zinc oxide (ZnO) thin films prepared by plasma assisted atomic layer deposition (PA-ALD), and thin-film transistors (TFTs) with the ALD ZnO channel layer for application to next-generation displays. We deposited the ZnO channel layer by PA-ALD at 100 or 300 °C, and fabricated TFTs. The transfer characteristic of the 300 °C-deposited ZnO TFT exhibited high mobility (5.7 cm2 V-1 s-1), although the threshold voltage largely shifted toward the negative (-16 V). Furthermore, we deposited Al2O3 thin film as a gate insulator by PA-ALD at 100 °C for the low-temperature TFT fabrication process. In the case of ZnO TFTs with the Al2O3 gate insulator, the shift of the threshold voltage improved (-0.1 V). This improvement of the negative shift seems to be due to the negative charges of the Al2O3 film deposited by PA-ALD. On the basis of the experimental results, we confirmed that the threshold voltage of ZnO TFTs is controlled by PA-ALD for the deposition of the gate insulator.

  13. Facile fabrication of wire-type indium gallium zinc oxide thin-film transistors applicable to ultrasensitive flexible sensors.

    PubMed

    Kim, Yeong-Gyu; Tak, Young Jun; Kim, Hee Jun; Kim, Won-Gi; Yoo, Hyukjoon; Kim, Hyun Jae

    2018-04-03

    We fabricated wire-type indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) using a self-formed cracked template based on a lift-off process. The electrical characteristics of wire-type IGZO TFTs could be controlled by changing the width and density of IGZO wires through varying the coating conditions of template solution or multi-stacking additional layers. The fabricated wire-type devices were applied to sensors after functionalizing the surface. The wire-type pH sensor showed a sensitivity of 45.4 mV/pH, and this value was an improved sensitivity compared with that of the film-type device (27.6 mV/pH). Similarly, when the wire-type device was used as a glucose sensor, it showed more variation in electrical characteristics than the film-type device. The improved sensing properties resulted from the large surface area of the wire-type device compared with that of the film-type device. In addition, we fabricated wire-type IGZO TFTs on flexible substrates and confirmed that such structures were very resistant to mechanical stresses at a bending radius of 10 mm.

  14. Solution-processed flexible fluorine-doped indium zinc oxide thin-film transistors fabricated on plastic film at low temperature.

    PubMed

    Seo, Jin-Suk; Jeon, Jun-Hyuck; Hwang, Young Hwan; Park, Hyungjin; Ryu, Minki; Park, Sang-Hee Ko; Bae, Byeong-Soo

    2013-01-01

    Transparent flexible fluorine-doped indium zinc oxide (IZO:F) thin-film transistors (TFTs) were demonstrated using the spin-coating method of the metal fluoride precursor aqueous solution with annealing at 200°C for 2 hrs on polyethylene naphthalate films. The proposed thermal evolution mechanism of metal fluoride aqueous precursor solution examined by thermogravimetric analysis and Raman spectroscopy can easily explain oxide formation. The chemical composition analysed by XPS confirms that the fluorine was doped in the thin films annealed below 250°C. In the IZO:F thin films, a doped fluorine atom substitutes for an oxygen atom generating a free electron or occupies an oxygen vacancy site eliminating an electron trap site. These dual roles of the doped fluorine can enhance the mobility and improve the gate bias stability of the TFTs. Therefore, the transparent flexible IZO:F TFT shows a high mobility of up to 4.1 cm(2)/V·s and stable characteristics under the various gate bias and temperature stresses.

  15. Solution-Processed Flexible Fluorine-doped Indium Zinc Oxide Thin-Film Transistors Fabricated on Plastic Film at Low Temperature

    PubMed Central

    Seo, Jin-Suk; Jeon, Jun-Hyuck; Hwang, Young Hwan; Park, Hyungjin; Ryu, Minki; Park, Sang-Hee Ko; Bae, Byeong-Soo

    2013-01-01

    Transparent flexible fluorine-doped indium zinc oxide (IZO:F) thin-film transistors (TFTs) were demonstrated using the spin-coating method of the metal fluoride precursor aqueous solution with annealing at 200°C for 2 hrs on polyethylene naphthalate films. The proposed thermal evolution mechanism of metal fluoride aqueous precursor solution examined by thermogravimetric analysis and Raman spectroscopy can easily explain oxide formation. The chemical composition analysed by XPS confirms that the fluorine was doped in the thin films annealed below 250°C. In the IZO:F thin films, a doped fluorine atom substitutes for an oxygen atom generating a free electron or occupies an oxygen vacancy site eliminating an electron trap site. These dual roles of the doped fluorine can enhance the mobility and improve the gate bias stability of the TFTs. Therefore, the transparent flexible IZO:F TFT shows a high mobility of up to 4.1 cm2/V·s and stable characteristics under the various gate bias and temperature stresses. PMID:23803977

  16. Microscopic structure and electrical transport property of sputter-deposited amorphous indium-gallium-zinc oxide semiconductor films

    NASA Astrophysics Data System (ADS)

    Yabuta, H.; Kaji, N.; Shimada, M.; Aiba, T.; Takada, K.; Omura, H.; Mukaide, T.; Hirosawa, I.; Koganezawa, T.; Kumomi, H.

    2014-06-01

    We report on microscopic structures and electrical and optical properties of sputter-deposited amorphous indium-gallium-zinc oxide (a-IGZO) films. From electron microscopy observations and an x-ray small angle scattering analysis, it has been confirmed that the sputtered a-IGZO films consist of a columnar structure. However, krypton gas adsorption measurement revealed that boundaries of the columnar grains are not open-pores. The conductivity of the sputter-deposited a-IGZO films shows a change as large as seven orders of magnitude depending on post-annealing atmosphere; it is increased by N2-annealing and decreased by O2-annealing reversibly, at a temperature as low as 300°C. This large variation in conductivity is attributed to thermionic emission of carrier electrons through potential barriers at the grain boundaries, because temperature dependences of the carrier density and the Hall mobility exhibit thermal activation behaviours. The optical band-gap energy of the a-IGZO films changes between before and after annealing, but is independent of the annealing atmosphere, in contrast to the noticeable dependence of conductivity described above. For exploring other possibilities of a-IGZO, we formed multilayer films with an artificial periodic lattice structure consisting of amorphous InO, GaO, and ZnO layers, as an imitation of the layer-structured InGaZnO4 homologous phase. The hall mobility of the multilayer films was almost constant for thicknesses of the constituent layer between 1 and 6 Å, suggesting rather small contribution of lateral two-dimensional conduction It increased with increasing the thickness in the range from 6 to 15 Å, perhaps owing to an enhancement of two-dimensional conduction in InO layers.

  17. Investigation of the tunnel magnetoresistance in junctions with a strontium stannate barrier

    DOE PAGES

    Althammer, Matthias; Bavarian Academy of Sciences and Humanities; Vikam Singh, Amit; ...

    2016-12-16

    In this paper, we experimentally investigate the structural, magnetic, and electrical transport properties of La 0.67 Sr 0.33MnO 3 based magnetic tunnel junctions with a SrSnO 3 barrier. Our results show that despite the high density of defects in the strontium stannate barrier, due to the large lattice mismatch, the observed tunnel magnetoresistance (TMR) is comparable to tunnel junctions with a better lattice matched SrTiO 3 barrier, reaching values of up to 350% at T = 5K. Further analysis of the current-voltage characteristics of the junction and the bias voltage dependence of the observed tunnel magnetoresistance show a decrease ofmore » the TMR with increasing bias voltage. In addition, the observed TMR vanishes for T > 200K. Finally, our results suggest that by employing a better lattice matched ferromagnetic electrode, and thus reducing the structural defects in the strontium stannate barrier, even larger TMR ratios might be possible in the future.« less

  18. Behavior of lanthanum containing barium stannate nanoparticles synthesized by cetyltriammonium bromide assisted wet chemistry route

    NASA Astrophysics Data System (ADS)

    Kumar, Astakala Anil; Kumar, Ashok; Quamara, J. K.

    2018-02-01

    In present study, we report dielectric, ferroelectric and pyroelectric behavior of pristine and La3+ containing barium stannate nanoparticles synthesized via wet chemical route involving cetyltriammonium bromide assisted thermal decomposition of binary precursors. The X-ray diffraction patterns of pristine and La3+ (2, 4 and 6 at%) doped BaSnO3 nanoparticles showed the formation of cubic perovskite phase. On substitution of Ba2+ lattice sites by La3+ at the La content of 6 at%, the sample exhibited fourfold increase in conductivity in comparison to pristine BaSnO3. Polarization hysteresis (P-E) curves of La containing barium stannate nanoparticles showed anti-ferroelectric behavior. The pyroelectric coefficient of pristine and La (2, 4 and 6 at%) containing BaSnO3 nanoparticles at 473 K were found to be 7.8, 11.6, 14.1 and 17.2 μCm-2K-1, respectively. Further, the responsivity and detectivity values were higher in comparison to the materials, such as AlN, GaN, CdS and ZnO.

  19. Investigation of the tunnel magnetoresistance in junctions with a strontium stannate barrier

    SciT

    Althammer, Matthias; Bavarian Academy of Sciences and Humanities; Vikam Singh, Amit

    In this paper, we experimentally investigate the structural, magnetic, and electrical transport properties of La 0.67 Sr 0.33MnO 3 based magnetic tunnel junctions with a SrSnO 3 barrier. Our results show that despite the high density of defects in the strontium stannate barrier, due to the large lattice mismatch, the observed tunnel magnetoresistance (TMR) is comparable to tunnel junctions with a better lattice matched SrTiO 3 barrier, reaching values of up to 350% at T = 5K. Further analysis of the current-voltage characteristics of the junction and the bias voltage dependence of the observed tunnel magnetoresistance show a decrease ofmore » the TMR with increasing bias voltage. In addition, the observed TMR vanishes for T > 200K. Finally, our results suggest that by employing a better lattice matched ferromagnetic electrode, and thus reducing the structural defects in the strontium stannate barrier, even larger TMR ratios might be possible in the future.« less

  20. Synthesis, Deposition, and Microstructure Development of Thin Films Formed by Sulfidation and Selenization of Copper Zinc Tin Sulfide Nanocrystals

    NASA Astrophysics Data System (ADS)

    Chernomordik, Boris David

    Significant reduction in greenhouse gas emission and pollution associated with the global power demand can be accomplished by supplying tens-of-terawatts of power with solar cell technologies. No one solar cell material currently on the market is poised to meet this challenge due to issues such as manufacturing cost, material shortage, or material toxicity. For this reason, there is increasing interest in efficient light-absorbing materials that are comprised of abundant and non-toxic elements for thin film solar cell. Among these materials are copper zinc tin sulfide (Cu2ZnSnS4, or CZTS), copper zinc tin selenide (Cu2ZnSnSe4, or CZTSe), and copper zinc tin sulfoselenide alloys [Cu2ZnSn(SxSe1-x )4, or CZTSSe]. Laboratory power conversion efficiencies of CZTSSe-based solar cells have risen to almost 13% in less than three decades of research. Meeting the terawatt challenge will also require low cost fabrication. CZTSSe thin films from annealed colloidal nanocrystal coatings is an example of solution-based methods that can reduce manufacturing costs through advantages such as high throughput, high material utilization, and low capital expenses. The film microstructure and grain size affects the solar cell performance. To realize low cost commercial production and high efficiencies of CZTSSe-based solar cells, it is necessary to understand the fundamental factors that affect crystal growth and microstructure evolution during CZTSSe annealing. Cu2ZnSnS4 (CZTS) nanocrystals were synthesized via thermolysis of single-source cation and sulfur precursors copper, zinc and tin diethyldithiocarbamates. The average nanocrystal size could be tuned between 2 nm and 40 nm, by varying the synthesis temperature between 150 °C and 340 °C. The synthesis is rapid and is completed in less than 10 minutes. Characterization by X-ray diffraction, Raman spectroscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy confirm that the nanocrystals are nominally

  1. Thickness Dependent Nanostructural, Morphological, Optical and Impedometric Analyses of Zinc Oxide-Gold Hybrids: Nanoparticle to Thin Film.

    PubMed

    Perumal, Veeradasan; Hashim, Uda; Gopinath, Subash C B; Haarindraprasad, R; Liu, Wei-Wen; Poopalan, P; Balakrishnan, S R; Thivina, V; Ruslinda, A R

    2015-01-01

    The creation of an appropriate thin film is important for the development of novel sensing surfaces, which will ultimately enhance the properties and output of high-performance sensors. In this study, we have fabricated and characterized zinc oxide (ZnO) thin films on silicon substrates, which were hybridized with gold nanoparticles (AuNPs) to obtain ZnO-Aux (x = 10, 20, 30, 40 and 50 nm) hybrid structures with different thicknesses. Nanoscale imaging by field emission scanning electron microscopy revealed increasing film uniformity and coverage with the Au deposition thickness. Transmission electron microscopy analysis indicated that the AuNPs exhibit an increasing average diameter (5-10 nm). The face center cubic Au were found to co-exist with wurtzite ZnO nanostructure. Atomic force microscopy observations revealed that as the Au content increased, the overall crystallite size increased, which was supported by X-ray diffraction measurements. The structural characterizations indicated that the Au on the ZnO crystal lattice exists without any impurities in a preferred orientation (002). When the ZnO thickness increased from 10 to 40 nm, transmittance and an optical bandgap value decreased. Interestingly, with 50 nm thickness, the band gap value was increased, which might be due to the Burstein-Moss effect. Photoluminescence studies revealed that the overall structural defect (green emission) improved significantly as the Au deposition increased. The impedance measurements shows a decreasing value of impedance arc with increasing Au thicknesses (0 to 40 nm). In contrast, the 50 nm AuNP impedance arc shows an increased value compared to lower sputtering thicknesses, which indicated the presence of larger sized AuNPs that form a continuous film, and its ohmic characteristics changed to rectifying characteristics. This improved hybrid thin film (ZnO/Au) is suitable for a wide range of sensing applications.

  2. Thickness Dependent Nanostructural, Morphological, Optical and Impedometric Analyses of Zinc Oxide-Gold Hybrids: Nanoparticle to Thin Film

    PubMed Central

    Perumal, Veeradasan; Hashim, Uda; Gopinath, Subash C. B.; Haarindraprasad, R.; Liu, Wei-Wen; Poopalan, P.; Balakrishnan, S. R.; Thivina, V.; Ruslinda, A. R.

    2015-01-01

    The creation of an appropriate thin film is important for the development of novel sensing surfaces, which will ultimately enhance the properties and output of high-performance sensors. In this study, we have fabricated and characterized zinc oxide (ZnO) thin films on silicon substrates, which were hybridized with gold nanoparticles (AuNPs) to obtain ZnO-Aux (x = 10, 20, 30, 40 and 50 nm) hybrid structures with different thicknesses. Nanoscale imaging by field emission scanning electron microscopy revealed increasing film uniformity and coverage with the Au deposition thickness. Transmission electron microscopy analysis indicated that the AuNPs exhibit an increasing average diameter (5–10 nm). The face center cubic Au were found to co-exist with wurtzite ZnO nanostructure. Atomic force microscopy observations revealed that as the Au content increased, the overall crystallite size increased, which was supported by X-ray diffraction measurements. The structural characterizations indicated that the Au on the ZnO crystal lattice exists without any impurities in a preferred orientation (002). When the ZnO thickness increased from 10 to 40 nm, transmittance and an optical bandgap value decreased. Interestingly, with 50 nm thickness, the band gap value was increased, which might be due to the Burstein-Moss effect. Photoluminescence studies revealed that the overall structural defect (green emission) improved significantly as the Au deposition increased. The impedance measurements shows a decreasing value of impedance arc with increasing Au thicknesses (0 to 40 nm). In contrast, the 50 nm AuNP impedance arc shows an increased value compared to lower sputtering thicknesses, which indicated the presence of larger sized AuNPs that form a continuous film, and its ohmic characteristics changed to rectifying characteristics. This improved hybrid thin film (ZnO/Au) is suitable for a wide range of sensing applications. PMID:26694656

  3. Effect of substrate baking temperature on zinc sulfide and germanium thin films optical parameters

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Gao, Jiaobo; Yang, Chongmin; Zhang, Jianfu; Liu, Yongqiang; Liu, Qinglong; Wang, Songlin; Mi, Gaoyuan; Wang, Huina

    2016-10-01

    ZnS and Ge are very normal optical thin film materials in Infrared wave. Studying the influence of different substrate baking temperature to refractive index and actual deposition rates is very important to promote optical thin film quality. In the same vacuum level, monitoring thickness and evaporation rate, we use hot evaporation to deposit ZnS thin film materials and use ion-assisted electron beam to deposit Ge thin film materials with different baking temperature. We measure the spectral transmittance with the spectrophotometer and calculate the actual deposition rates and the refractive index in different temperature. With the higher and higher temperature in a particular range, ZnS and Ge refractive index become higher and actual deposition rates become smaller. The refractive index of Ge film material change with baking temperature is more sensitive than ZnS. However, ZnS film actual deposition rates change with baking temperature is more sensitive than Ge.

  4. Internal Stress and Microstructure of Zinc Oxide Films Sputter-Deposited with Carbon Dioxide Gas

    NASA Astrophysics Data System (ADS)

    Toru Ashida,; Kazuhiro Kato,; Hideo Omoto,; Atsushi Takamatsu,

    2010-06-01

    The internal stress and microstructure of ZnO films were investigated as a function of carbon dioxide (CO2) gas flow ratio [CO2/(O2+CO2)] during sputter deposition. The internal stress of the ZnO films decreased with increasing CO2 gas flow ratio. The carbon concentration in the films deposited using CO2 gas increased by up to 4.0 at. %. Furthermore, the ZnO films deposited without CO2 gas exhibited a preferred orientation of (002); however, the C-doped ZnO films exhibited random orientations. These findings suggest that the C atoms incorporated in the ZnO crystal lattice induce this random orientation, thereby relaxing the internal stress of C-doped ZnO films.

  5. Electrical properties of films of zinc oxide nanoparticles and its hybrid with reduced graphene oxide

    SciT

    Madhuri, K. Priya; Bramhaiah, K.; John, Neena S., E-mail: jsneena@cnsms.res.in

    Free-standing films of ZnO nanoparticles (NPs) and reduced graphene oxide (rGO)-ZnO NPs hybrid are prepared at a liquid/liquid interface. The films are characterized by UV-visible spectroscopy, X-ray diffraction, scanning electron microscopy and atomic force microscopy. ZnO film consists of spherical aggregated NPs while the hybrid film contains folded sheets of rGO with embedded ZnO NPs. Electrical properties of the films and its photoresponse in presence of UV radiation are investigated using current sensing atomic force microscopy (CSAFM) at nanoscale and bulk measurements using two probe methods. Enhancement in photocurrent is observed in both cases and the current imaging reveals anmore » inhomogeneous contribution by different ZnO grains in the film.« less

  6. Selective UV–O3 treatment for indium zinc oxide thin film transistors with solution-based multiple active layer

    NASA Astrophysics Data System (ADS)

    Kim, Yu-Jung; Jeong, Jun-Kyo; Park, Jung-Hyun; Jeong, Byung-Jun; Lee, Hi-Deok; Lee, Ga-Won

    2018-06-01

    In this study, a method to control the electrical performance of solution-based indium zinc oxide (IZO) thin film transistors (TFTs) is proposed by ultraviolet–ozone (UV–O3) treatment on the selective layer during multiple IZO active layer depositions. The IZO film is composed of triple layers formed by spin coating and UV–O3 treatment only on the first layer or last layer. The IZO films are compared by X-ray photoelectron spectroscopy, and the results show that the atomic ratio of oxygen vacancy (VO) increases in the UV–O3 treatment on the first layer, while it decreases on last layer. The device characteristics of the bottom gated structure are also improved in the UV–O3 treatment on the first layer. This indicates that the selective UV–O3 treatment in a multi-stacking active layer is an effective method to optimize TFT properties by controlling the amount of VO in the IZO interface and surface independently.

  7. Photovoltaic cells employing zinc phosphide

    DOEpatents

    Barnett, Allen M.; Catalano, Anthony W.; Dalal, Vikram L.; Masi, James V.; Meakin, John D.; Hall, Robert B.

    1984-01-01

    A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.

  8. The saturable absorption and reverse saturable absorption properties of Cu doped zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Yao, Cheng-Bao; Wen, Xin; Li, Qiang-Hua; Yan, Xiao-Yan; Li, Jin; Zhang, Ke-Xin; Sun, Wen-Jun; Bai, Li-Na; Yang, Shou-Bin

    2017-03-01

    We present the structure and nonlinear absorption (NLA) properties of Cu-doped ZnO (CZO) films prepared by magnetron sputtering. The films were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results show that the CZO films can maintain a wurtzite structure. Furthermore, the open-aperture (OA) Z-scan measurements of the film were carried out by nanosecond laser pulse. A transition from saturable absorption (SA) to reverse saturable absorption (RSA) was observed as the excitation intensity increasing. With good excellent nonlinear optical coefficient, the samples were expected to be the potential applications in optical devices.

  9. Growth and characterization of zinc oxide and PZT films for micromachined acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Yoon, Sang Hoon

    The ability to detect the presence of low concentrations of harmful substances, such as biomolecular agents, warfare agents, and pathogen cells, in our environment and food chain would greatly advance our safety, provide more sensitive tools for medical diagnostics, and protect against terrorism. Acoustic wave (AW) devices have been widely studied for such applications due to several attractive properties, such as rapid response, reliability, portability, ease of use, and low cost. The principle of these sensors is based on a fundamental feature of the acoustic wave that is generated and detected by a piezoelectric material. The performance of the device, therefore, greatly depends on the properties of piezoelectric thin film. The required properties include a high piezoelectric coefficient and high electromechanical coefficients. The surface roughness and the mechanical properties, such as Young's modulus and hardness, are also factors that can affect the wave propagation of the device. Since the film properties are influenced by the structure of the material, understanding thin film structure is very important for the design of high-performance piezoelectric MEMS devices for biosensor applications. In this research, two piezoelectric thin film materials were fabricated and investigated. ZnO films were fabricated by CSD (Chemical Solution Deposition) and sputtering, and PZT films were fabricated by CSD only. The process parameters for solution derived ZnO and PZT films, such as the substrate type, the effect of the chelating agent, and heat treatment, were studied to find the relationship between process parameters and thin film structure. In the case of the sputtered ZnO films, the process gas types and their ratio, heat treatment in situ, and post deposition were investigated. The key results of systematic experiments show that the combined influence of chemical modifiers and substrates in chemical solution deposition have an effect on the crystallographic

  10. Annealing in tellurium-nitrogen co-doped ZnO films: The roles of intrinsic zinc defects

    SciT

    Tang, Kun, E-mail: ktang@nju.edu.cn; Gu, Ran; Gu, Shulin, E-mail: slgu@nju.edu.cn

    2015-04-07

    In this article, the authors have conducted an extensive investigation on the roles of intrinsic zinc defects by annealing of a batch of Te-N co-doped ZnO films. The formation and annihilation of Zn interstitial (Zn{sub i}) clusters have been found in samples with different annealing temperatures. Electrical and Raman measurements have shown that the Zn{sub i} clusters are a significant compensation source to holes, and the Te co-doping has a notable effect on suppressing the Zn{sub i} clusters. Meanwhile, shallow acceptors have been identified in photoluminescence spectra. The N{sub O}-Zn-Te complex, zinc vacancy (V{sub Zn})-N{sub O} complex, and V{sub Zn}more » clusters are thought to be the candidates as the shallow acceptors. The evolution of shallow acceptors upon annealing temperature have been also studied. The clustering of V{sub Zn} at high annealing temperature is proposed to be a possible candidate as a stable acceptor in ZnO.« less

  11. On the effect of Ti on the stability of amorphous indium zinc oxide used in thin film transistor applications

    NASA Astrophysics Data System (ADS)

    Lee, Sunghwan; Paine, David C.

    2011-06-01

    In2O3-based amorphous oxide channel materials are of increasing interest for thin film transisitor applications due, in part, to the remarkable stability of this class of materials amorphous structure and electronic properties. We report that this stability is degraded in the presence of Ti, which is widely used as a contact and/or adhesion layer. A cross-sectional transmission electron microscopy analysis, supported by glancing incident angle x-ray and selected area diffraction examination, shows that amorphous indium zinc oxide in contact with Ti undergoes crystallization to the bixbyite phase and reacts to form the rutile phase of TiO2 at a temperature of 200 °C. A basic thermodynamic analysis is presented and forms the basis of a model that describes both the crystallization and the resistivity decrease.

  12. Defect generation in amorphous-indium-gallium-zinc-oxide thin-film transistors by positive bias stress at elevated temperature

    SciT

    Um, Jae Gwang; Mativenga, Mallory; Jang, Jin, E-mail: jjang@khu.ac.kr

    2014-04-07

    We report on the generation and characterization of a hump in the transfer characteristics of amorphous indium gallium zinc-oxide thin-film transistors by positive bias temperature stress. The hump depends strongly on the gate bias stress at 100 °C. Due to the hump, the positive shift of the transfer characteristic in deep depletion is always smaller that in accumulation. Since, the latter shift is twice the former, with very good correlation, we conclude that the effect is due to creation of a double acceptor, likely to be a cation vacancy. Our results indicate that these defects are located near the gate insulator/activemore » layer interface, rather than in the bulk. Migration of donor defects from the interface towards the bulk may also occur under PBST at 100 °C.« less

  13. Effect of organic buffer layer in the electrical properties of amorphous-indium gallium zinc oxide thin film transistor.

    PubMed

    Wang, Jian-Xun; Hyung, Gun Woo; Li, Zhao-Hui; Son, Sung-Yong; Kwon, Sang Jik; Kim, Young Kwan; Cho, Eou Sik

    2012-07-01

    In this research, we reported on the fabrication of top-contact amorphous-indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) with an organic buffer layer between inorganic gate dielectric and active layer in order to improve the electrical properties of devices. By inserting an organic buffer layer, it was possible to make an affirmation of the improvements in the electrical characteristics of a-IGZO TFTs such as subthreshold slope (SS), on/off current ratio (I(ON/OFF)), off-state current, and saturation field-effect mobility (muFE). The a-IGZO TFTs with the cross-linked polyvinyl alcohol (c-PVA) buffer layer exhibited the pronounced improvements of the muFE (17.4 cm2/Vs), SS (0.9 V/decade), and I(ON/OFF) (8.9 x 10(6)).

  14. Indium-gallium-zinc-oxide thin-film transistor with a planar split dual-gate structure

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Rong; Liu, Jie; Song, Jia-Qi; Lai, Pui-To; Yao, Ruo-He

    2017-12-01

    An amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) with a planar split dual gate (PSDG) structure has been proposed, fabricated and characterized. Experimental results indicate that the two independent gates can provide dynamical control of device characteristics such as threshold voltage, sub-threshold swing, off-state current and saturation current. The transconductance extracted from the output characteristics of the device increases from 4.0 × 10-6S to 1.6 × 10-5S for a change of control gate voltage from -2 V to 2 V, and thus the device could be used in a variable-gain amplifier. A significant advantage of the PSDG structure is its flexibility in controlling the device performance according to the need of practical applications.

  15. Crystalline-like temperature dependence of the electrical characteristics in amorphous Indium-Gallium-Zinc-Oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Estrada, M.; Hernandez-Barrios, Y.; Cerdeira, A.; Ávila-Herrera, F.; Tinoco, J.; Moldovan, O.; Lime, F.; Iñiguez, B.

    2017-09-01

    A crystalline-like temperature dependence of the electrical characteristics of amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) thin film transistors (TFTs) is reported, in which the drain current reduces as the temperature is increased. This behavior appears for values of drain and gate voltages above which a change in the predominant conduction mechanism occurs. After studying the possible conduction mechanisms, it was determined that, for gate and drain voltages below these values, hopping is the predominant mechanism with the current increasing with temperature, while for values above, the predominant conduction mechanism becomes percolation in the conduction band or band conduction and IDS reduces as the temperature increases. It was determined that this behavior appears, when the effect of trapping is reduced, either by varying the density of states, their characteristic energy or both. Simulations were used to further confirm the causes of the observed behavior.

  16. Silicon Cations Intermixed Indium Zinc Oxide Interface for High-Performance Thin-Film Transistors Using a Solution Process.

    PubMed

    Na, Jae Won; Rim, You Seung; Kim, Hee Jun; Lee, Jin Hyeok; Hong, Seonghwan; Kim, Hyun Jae

    2017-09-06

    Solution-processed amorphous metal-oxide thin-film transistors (TFTs) utilizing an intermixed interface between a metal-oxide semiconductor and a dielectric layer are proposed. In-depth physical characterizations are carried out to verify the existence of the intermixed interface that is inevitably formed by interdiffusion of cations originated from a thermal process. In particular, when indium zinc oxide (IZO) semiconductor and silicon dioxide (SiO 2 ) dielectric layer are in contact and thermally processed, a Si 4+ intermixed IZO (Si/IZO) interface is created. On the basis of this concept, a high-performance Si/IZO TFT having both a field-effect mobility exceeding 10 cm 2 V -1 s -1 and a on/off current ratio over 10 7 is successfully demonstrated.

  17. A compact model and direct parameters extraction techniques For amorphous gallium-indium-zinc-oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Moldovan, Oana; Castro-Carranza, Alejandra; Cerdeira, Antonio; Estrada, Magali; Barquinha, Pedro; Martins, Rodrigo; Fortunato, Elvira; Miljakovic, Slobodan; Iñiguez, Benjamin

    2016-12-01

    An advanced compact and analytical drain current model for the amorphous gallium indium zinc oxide (GIZO) thin film transistors (TFTs) is proposed. Its output saturation behavior is improved by introducing a new asymptotic function. All model parameters were extracted using an adapted version of the Universal Method and Extraction Procedure (UMEM) applied for the first time for GIZO devices in a simple and direct form. We demonstrate the correct behavior of the model for negative VDS, a necessity for a complete compact model. In this way we prove the symmetry of source and drain electrodes and extend the range of applications to both signs of VDS. The model, in Verilog-A code, is implemented in Electronic Design Automation (EDA) tools, such as Smart Spice, and compared with measurements of TFTs. It describes accurately the experimental characteristics in the whole range of GIZO TFTs operation, making the model suitable for the design of circuits using these types of devices.

  18. Phosphorus Doping Effect in a Zinc Oxide Channel Layer to Improve the Performance of Oxide Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Han, Dong-Suk; Moon, Yeon-Keon; Lee, Sih; Kim, Kyung-Taek; Moon, Dae-Yong; Lee, Sang-Ho; Kim, Woong-Sun; Park, Jong-Wan

    2012-09-01

    In this study, we fabricated phosphorus-doped zinc oxide-based thin-film transistors (TFTs) using direct current (DC) magnetron sputtering at a relatively low temperature of 100°C. To improve the TFT device performance, including field-effect mobility and bias stress stability, phosphorus dopants were employed to suppress the generation of intrinsic defects in the ZnO-based semiconductor. The positive and negative bias stress stabilities were dramatically improved by introducing the phosphorus dopants, which could prevent turn-on voltage ( V ON) shift in the TFTs caused by charge trapping within the active channel layer. The study showed that phosphorus doping in ZnO was an effective method to control the electrical properties of the active channel layers and improve the bias stress stability of oxide-based TFTs.

  19. Disorder induced semiconductor to metal transition and modifications of grain boundaries in nanocrystalline zinc oxide thin film

    SciT

    Singh, Fouran; Kumar, Vinod; Chaudhary, Babloo

    2012-10-01

    This paper report on the disorder induced semiconductor to metal transition (SMT) and modifications of grain boundaries in nanocrystalline zinc oxide thin film. Disorder is induced using energetic ion irradiation. It eliminates the possibility of impurities induced transition. However, it is revealed that some critical concentration of defects is needed for inducing such kind of SMT at certain critical temperature. Above room temperature, the current-voltage characteristics in reverse bias attributes some interesting phenomenon, such as electric field induced charge transfer, charge trapping, and diffusion of defects. The transition is explained by the defects induced disorder and strain in ZnO crystallitesmore » created by high density of electronic excitations.« less

  20. Metal-induced crystallization of amorphous zinc tin oxide semiconductors for high mobility thin-film transistors

    NASA Astrophysics Data System (ADS)

    Hwang, Ah Young; Kim, Sang Tae; Ji, Hyuk; Shin, Yeonwoo; Jeong, Jae Kyeong

    2016-04-01

    Transition tantalum induced crystallization of amorphous zinc tin oxide (a-ZTO) was observed at low temperature annealing of 300 °C. Thin-film transistors (TFTs) with an a-ZTO channel layer exhibited a reasonable field-effect mobility of 12.4 cm2/V s, subthreshold swing (SS) of 0.39 V/decade, threshold voltage (VTH) of 1.5 V, and ION/OFF ratio of ˜107. A significant improvement in the field-effect mobility (up to ˜33.5 cm2/V s) was achieved for crystallized ZTO TFTs: this improvement was accomplished without compromising the SS, VTH, or ION/OFF ratio due to the presence of a highly ordered microstructure.

  1. Metal-induced crystallization of amorphous zinc tin oxide semiconductors for high mobility thin-film transistors

    SciT

    Hwang, Ah Young; Ji, Hyuk; Kim, Sang Tae

    2016-04-11

    Transition tantalum induced crystallization of amorphous zinc tin oxide (a-ZTO) was observed at low temperature annealing of 300 °C. Thin-film transistors (TFTs) with an a-ZTO channel layer exhibited a reasonable field-effect mobility of 12.4 cm{sup 2}/V s, subthreshold swing (SS) of 0.39 V/decade, threshold voltage (V{sub TH}) of 1.5 V, and I{sub ON/OFF} ratio of ∼10{sup 7}. A significant improvement in the field-effect mobility (up to ∼33.5 cm{sup 2}/V s) was achieved for crystallized ZTO TFTs: this improvement was accomplished without compromising the SS, V{sub TH}, or I{sub ON/OFF} ratio due to the presence of a highly ordered microstructure.

  2. Nanostructured zinc oxide films synthesized by successive chemical solution deposition for gas sensor applications

    SciT

    Lupan, O.; Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816-2385; Chow, L.

    2009-01-08

    Nanostructured ZnO thin films have been deposited using a successive chemical solution deposition method. The structural, morphological, electrical and sensing properties of the films were studied for different concentrations of Al-dopant and were analyzed as a function of rapid photothermal processing temperatures. The films were investigated by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron and micro-Raman spectroscopy. Electrical and gas sensitivity measurements were conducted as well. The average grain size is 240 and 224 A for undoped ZnO and Al-doped ZnO films, respectively. We demonstrate that rapid photothermal processing is an efficient method for improving themore » quality of nanostructured ZnO films. Nanostructured ZnO films doped with Al showed a higher sensitivity to carbon dioxide than undoped ZnO films. The correlations between material compositions, microstructures of the films and the properties of the gas sensors are discussed.« less

  3. Zinc oxide nanoparticle-coated films: fabrication, characterization, and antibacterial properties

    NASA Astrophysics Data System (ADS)

    Jiang, Yunhong; O'Neill, Alex J.; Ding, Yulong

    2015-04-01

    In this article, novel antibacterial PVC-based films coated with ZnO nanoparticles (NPs) were fabricated, characterized, and studied for their antibacterial properties. It was shown that the ZnO NPs were coated on the surface of the PVC films uniformly and that the coating process did not affect the size and shape of the NPs on the surface of PVC films. Films coated with concentrations of either 0.2 or 0.075 g/L of ZnO NPs exhibited antibacterial activity against both Gram-positive ( Staphylococcus aureus) and Gram-negative ( Escherichia coli) bacteria, but exhibited no antifungal activity against Aspergillus flavus and Penicillium citrinum. Smaller particles (100 nm) exhibited more potent antibacterial activity than larger particles (1000 nm). All ZnO-coated films maintained antibacterial activity after 30 days in water.

  4. Amorphous indium gallium zinc oxide thin film grown by pulse laser deposition technique

    SciT

    Mistry, Bhaumik V., E-mail: bhaumik-phy@yahoo.co.in; Joshi, U. S.

    Highly electrically conducting and transparent in visible light IGZO thin film were grown on glass substrate at substrate temperature of 400 C by a pulse laser deposition techniques. Structural, surface, electrical, and optical properties of IGZO thin films were investigated at room temperature. Smooth surface morphology and amorphous nature of the film has been confirmed from the AFM and GIXRD analysis. A resistivity down to 7.7×10{sup −3} V cm was reproducibly obtained while maintaining optical transmission exceeding 70% at wavelengths from 340 to 780 nm. The carrier densities of the film was obtain to the value 1.9×10{sup 18} cm{sup 3},more » while the Hall mobility of the IGZO thin film was 16 cm{sup 2} V{sup −1}S{sup −1}.« less

  5. Analysis of amorphous indium-gallium-zinc-oxide thin-film transistor contact metal using Pilling-Bedworth theory and a variable capacitance diode model

    NASA Astrophysics Data System (ADS)

    Kiani, Ahmed; Hasko, David G.; Milne, William I.; Flewitt, Andrew J.

    2013-04-01

    It is widely reported that threshold voltage and on-state current of amorphous indium-gallium-zinc-oxide bottom-gate thin-film transistors are strongly influenced by the choice of source/drain contact metal. Electrical characterisation of thin-film transistors indicates that the electrical properties depend on the type and thickness of the metal(s) used. Electron transport mechanisms and possibilities for control of the defect state density are discussed. Pilling-Bedworth theory for metal oxidation explains the interaction between contact metal and amorphous indium-gallium-zinc-oxide, which leads to significant trap formation. Charge trapping within these states leads to variable capacitance diode-like behavior and is shown to explain the thin-film transistor operation.

  6. Fabrication and characterization of high mobility spin-coated zinc oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Singh, Shaivalini; Chakrabarti, P.

    2012-10-01

    A ZnO based thin film transistor (TFT) with bottom-gate configuration and SiO2 as insulating layer has been fabricated and characterized. The ZnO thin film was prepared by spin coating the sol-gel solution on the p-type Si wafers. The optical and structural properties of ZnO films were investigated using UV measurements and scanning electron microscope (SEM). The result of UV-visible study confirms that the films have a good absorbance in UV region and relatively low absorbance in the visible region. The TFT exhibited an off-current of 2.5×10-7 A. The values of field effect channel mobility and on/off current ratio extracted for the device, measured 11 cm2/V.s and ~102 respectively. The value of threshold voltage was found to be 1.3 V.

  7. Structural and optical studies on antimony and zinc doped CuInS2 thin films

    NASA Astrophysics Data System (ADS)

    Ben Rabeh, M.; Chaglabou, N.; Kanzari, M.; Rezig, B.

    2009-11-01

    The influence of Zn and Sb impurities on the structural, optical and electrical properties of CuInS2 thin films on corning 7059 glass substrates was studied. Undoped and Zn or Sb doped CuInS2 thin films were deposited by thermal evaporation method and annealed in vacuum at temperature of 450 ∘C Undoped thin films were grown from CuInS2 powder using resistively heated tungsten boats. Zn species was evaporated from a thermal evaporator all together to the CuInS2 powder and Sb species was mixed in the starting powders. The amount of the Zn or Sb source was determined to be in the range 0-4 wt% molecular weight compared with the CuInS2 alloy source. The films were studied by means of X-ray diffraction (XRD), Optical reflection and transmission and resistance measurements. The films thicknesses were in the range 450-750 nm. All the Zn: CuInS2 and Sb: CuInS2 thin films have relatively high absorption coefficient between 104 cm-1 and 105 cm-1 in the visible and the near-IR spectral range. The bandgap energies are in the range of 1.472-1.589 eV for Zn: CuInS2 samples and 1.396-1.510 eV for the Sb: CuInS2 ones. The type of conductivity of these films was determined by the hot probe method. Furthermore, we found that Zn and Sb-doped CuInS2 thin films exhibit P type conductivity and we predict these species can be considered as suitable candidates for use as acceptor dopants to fabricate CuInS2-based solar cells.

  8. Electrical and structural characterization of IZO (indium oxide-zinc oxide) thin films for device applications

    NASA Astrophysics Data System (ADS)

    Yaglioglu, Burag

    Materials for oxide-based transparent electronics have been recently reported in the literature. These materials include various amorphous and crystalline compounds based on multi-component oxides and many of them offer useful combinations of transparency, controllable carrier concentrations, and reasonable n-carrier mobility. In this thesis, the properties of amorphous and crystalline In2O3-10wt%ZnO, IZO, thin films were investigated for their potential use in oxide electronics. The room temperature deposition of this material using DC magnetron sputtering results in the formation of amorphous films. Annealing amorphous IZO films at 500°C in air produces a previously unknown crystalline compound. Using electron diffraction experiments, it is reported that the crystal structure of this compound is based on the high-pressure rhombohedral phase of In2O3. Electrical properties of different phases of IZO were explored and it was concluded that amorphous films offer most promising characteristics for device applications. Therefore, thin film transistors (TFT) were fabricated based on amorphous IZO films where both the channel and metallization layers were deposited from the same target. The carrier densities in the channel and source-drain layers were adjusted by changing the oxygen content in the sputter chamber during deposition. The resulting transistors operate as depletion mode n-channel field effect devices with high saturation mobilities.

  9. Origin of stress in radio frequency magnetron sputtered zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Menon, Rashmi; Gupta, Vinay; Tan, H. H.; Sreenivas, K.; Jagadish, C.

    2011-03-01

    Highly c-axis oriented ZnO thin films have been deposited on silicon substrates by planar rf magnetron sputtering under varying pressure (10-50 mTorr) and oxygen percentage (50-100%) in the reactive gas (Ar + O2) mixture. The as-grown films were found to be stressed over a wide range from -1 × 1011 to -2 × 108 dyne/cm2 that in turn depends strongly on the processing conditions, and the film becomes stress free at a unique combination of sputtering pressure and reactive gas composition. Raman spectroscopy and photoluminescence (PL) analyses identified the origin of stress as lattice distortion due to defects introduced in the ZnO thin film. FTIR study reveals that Zn-O bond becomes stronger with the increase in oxygen fraction in the reactive gas mixture. The lattice distortion or stress depends on the type of defects introduced during deposition. PL spectra show the formation of a shoulder in band emission with an increase in the processing pressure and are related to the presence of stress. The ratio of band emission to defect emission decreases with the increase in oxygen percentage from 50 to 100%. The studies show a correlation of stress with the structural, vibrational, and photoluminescence properties of the ZnO thin film. The systematic study of the stress will help in the fabrication of efficient devices based on ZnO film.

  10. Timothy J. Coutts | NREL

    conducting films of cadmium stannate: X. Wu, and T. J. Coutts (NREL IR#9545) PV devices comprising cadmium (NREL IR#9535) PV devices comprising zinc stannate buffer layer and method for making: X. Wu, P. Sheldon , and T. J. Coutts (NREL IR#9721) (filed) Publications View all NREL publications for Dr. Coutts. Awards

  11. A mixed solution-processed gate dielectric for zinc-tin oxide thin-film transistor and its MIS capacitance

    NASA Astrophysics Data System (ADS)

    Kim, Hunho; Kwack, Young-Jin; Yun, Eui-Jung; Choi, Woon-Seop

    2016-09-01

    Solution-processed gate dielectrics were fabricated with the combined ZrO2 and Al2O3 (ZAO) in the form of mixed and stacked types for oxide thin film transistors (TFTs). ZAO thin films prepared with double coatings for solid gate dielectrics were characterized by analytical tools. For the first time, the capacitance of the oxide semiconductor was extracted from the capacitance-voltage properties of the zinc-tin oxide (ZTO) TFTs with the combined ZAO dielectrics by using the proposed metal-insulator-semiconductor (MIS) structure model. The capacitance evolution of the semiconductor from the TFT model structure described well the threshold voltage shift observed in the ZTO TFT with the ZAO (1:2) gate dielectric. The electrical properties of the ZTO TFT with a ZAO (1:2) gate dielectric showed low voltage driving with a field effect mobility of 37.01 cm2/Vs, a threshold voltage of 2.00 V, an on-to-off current ratio of 1.46 × 105, and a subthreshold slope of 0.10 V/dec.

  12. A mixed solution-processed gate dielectric for zinc-tin oxide thin-film transistor and its MIS capacitance

    PubMed Central

    Kim, Hunho; Kwack, Young-Jin; Yun, Eui-Jung; Choi, Woon-Seop

    2016-01-01

    Solution-processed gate dielectrics were fabricated with the combined ZrO2 and Al2O3 (ZAO) in the form of mixed and stacked types for oxide thin film transistors (TFTs). ZAO thin films prepared with double coatings for solid gate dielectrics were characterized by analytical tools. For the first time, the capacitance of the oxide semiconductor was extracted from the capacitance-voltage properties of the zinc-tin oxide (ZTO) TFTs with the combined ZAO dielectrics by using the proposed metal-insulator-semiconductor (MIS) structure model. The capacitance evolution of the semiconductor from the TFT model structure described well the threshold voltage shift observed in the ZTO TFT with the ZAO (1:2) gate dielectric. The electrical properties of the ZTO TFT with a ZAO (1:2) gate dielectric showed low voltage driving with a field effect mobility of 37.01 cm2/Vs, a threshold voltage of 2.00 V, an on-to-off current ratio of 1.46 × 105, and a subthreshold slope of 0.10 V/dec. PMID:27641430

  13. Compositional dependence of optical and electrical properties of indium doped zinc oxide (IZO) thin films deposited by chemical spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Dintle, Lawrence K.; Luhanga, Pearson V. C.; Moditswe, Charles; Muiva, Cosmas M.

    2018-05-01

    The structural and optoelectronic properties of undoped and indium doped zinc oxide (IZO) thin films grown on glass substrates through a simple reproducible custom-made pneumatic chemical spray pyrolysis technique are presented. X-ray diffraction (XRD) results showed a polycrystalline structure of hexagonal wurtzite phase growing preferentially along the (002) plane for the undoped sample. Increase in dopant content modified the orientation leading to more pronounced (100) and (101) reflections. Optical transmission spectra showed high transmittance of 80-90% in the visible range for all thin films. The optical band gap energy (Eg) was evaluated on the basis of the derivative of transmittance (dT/dλ) versus wavelength (λ) model and Tauc's extrapolation method in the region where the absorption coefficient, α ≥ 104 cm-1. The observed values of Eg were found to decrease generally with increasing In dopant concentration. From the figure of merit calculations a sample with 4 at.% In dopant concentration showed better optoelectronic properties.

  14. Activation of sputter-processed indium–gallium–zinc oxide films by simultaneous ultraviolet and thermal treatments

    PubMed Central

    Tak, Young Jun; Du Ahn, Byung; Park, Sung Pyo; Kim, Si Joon; Song, Ae Ran; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-01-01

    Indium–gallium–zinc oxide (IGZO) films, deposited by sputtering at room temperature, still require activation to achieve satisfactory semiconductor characteristics. Thermal treatment is typically carried out at temperatures above 300 °C. Here, we propose activating sputter- processed IGZO films using simultaneous ultraviolet and thermal (SUT) treatments to decrease the required temperature and enhance their electrical characteristics and stability. SUT treatment effectively decreased the amount of carbon residues and the number of defect sites related to oxygen vacancies and increased the number of metal oxide (M–O) bonds through the decomposition-rearrangement of M–O bonds and oxygen radicals. Activation of IGZO TFTs using the SUT treatment reduced the processing temperature to 150 °C and improved various electrical performance metrics including mobility, on-off ratio, and threshold voltage shift (positive bias stress for 10,000 s) from 3.23 to 15.81 cm2/Vs, 3.96 × 107 to 1.03 × 108, and 11.2 to 7.2 V, respectively. PMID:26902863

  15. Analytical drain current model for symmetric dual-gate amorphous indium gallium zinc oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Qin, Ting; Liao, Congwei; Huang, Shengxiang; Yu, Tianbao; Deng, Lianwen

    2018-01-01

    An analytical drain current model based on the surface potential is proposed for amorphous indium gallium zinc oxide (a-InGaZnO) thin-film transistors (TFTs) with a synchronized symmetric dual-gate (DG) structure. Solving the electric field, surface potential (φS), and central potential (φ0) of the InGaZnO film using the Poisson equation with the Gaussian method and Lambert function is demonstrated in detail. The compact analytical model of current-voltage behavior, which consists of drift and diffusion components, is investigated by regional integration, and voltage-dependent effective mobility is taken into account. Comparison results demonstrate that the calculation results obtained using the derived models match well with the simulation results obtained using a technology computer-aided design (TCAD) tool. Furthermore, the proposed model is incorporated into SPICE simulations using Verilog-A to verify the feasibility of using DG InGaZnO TFTs for high-performance circuit designs.

  16. Achieving high carrier mobility exceeding 70 cm2/Vs in amorphous zinc tin oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Sang Tae; Shin, Yeonwoo; Yun, Pil Sang; Bae, Jong Uk; Chung, In Jae; Jeong, Jae Kyeong

    2017-09-01

    This paper proposes a new defect engineering concept for low-cost In- and Ga-free zinc tin oxide (ZTO) thin-film transistors (TFTs). This concept is comprised of capping ZTO films with tantalum (Ta) and a subsequent modest thermal annealing treatment at 200 °C. The Ta-capped ZTO TFTs exhibited a remarkably high carrier mobility of 70.8 cm2/Vs, low subthreshold gate swing of 0.18 V/decade, threshold voltage of -1.3 V, and excellent ION/OFF ratio of 2 × 108. The improvement (> two-fold) in the carrier mobility compared to the uncapped ZTO TFT can be attributed to the effective reduction of the number of adverse tailing trap states, such as hydroxyl groups or oxygen interstitial defects, which stems from the scavenging effect of the Ta capping layer on the ZTO channel layer. Furthermore, the Ta-capped ZTO TFTs showed excellent positive and negative gate bias stress stabilities. [Figure not available: see fulltext.

  17. Activation of sputter-processed indium-gallium-zinc oxide films by simultaneous ultraviolet and thermal treatments.

    PubMed

    Tak, Young Jun; Ahn, Byung Du; Park, Sung Pyo; Kim, Si Joon; Song, Ae Ran; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-02-23

    Indium-gallium-zinc oxide (IGZO) films, deposited by sputtering at room temperature, still require activation to achieve satisfactory semiconductor characteristics. Thermal treatment is typically carried out at temperatures above 300 °C. Here, we propose activating sputter- processed IGZO films using simultaneous ultraviolet and thermal (SUT) treatments to decrease the required temperature and enhance their electrical characteristics and stability. SUT treatment effectively decreased the amount of carbon residues and the number of defect sites related to oxygen vacancies and increased the number of metal oxide (M-O) bonds through the decomposition-rearrangement of M-O bonds and oxygen radicals. Activation of IGZO TFTs using the SUT treatment reduced the processing temperature to 150 °C and improved various electrical performance metrics including mobility, on-off ratio, and threshold voltage shift (positive bias stress for 10,000 s) from 3.23 to 15.81 cm(2)/Vs, 3.96 × 10(7) to 1.03 × 10(8), and 11.2 to 7.2 V, respectively.

  18. Device level optimization of poly(vinylidene fluoride-trifluoroethylene)–zinc oxide polymer nanocomposite thin films for ferroelectric applications

    SciT

    C K, Subash, E-mail: cksubash08@gmail.com; Valiyaneerilakkal, Uvais; Varghese, Soney

    Polymer nanocomposite was prepared using poly(vinylidene fluoride-trifluoroethylene) and zinc oxide (ZnO) nanopowder, which are ferroelectric in nature. Nanocomposite was prepared in various concentrations(0.2, 0.4, 0.8, and 1 wt. %) using probe ultra-sonication, followed by spin coating and annealing at 120 °C for 2 h to improve the formation of β-phase. Metal-ferroelectric-metal capacitor was fabricated using this optimized thin film as a ferroelectric layer. Device level optimization was carried out by polarization-electric field (P-E) hysteresis studies of this film, which shows polarization enhancement of composite. Various characterization techniques like atomic force microscopy, Fourier transform infra-red spectroscopy (FT-IR), Differential scanning calorimetry, and X-ray diffractionmore » were used to study the β-phase formation of nancomposite. The capacitance–voltage (C-V) and current-voltage (I-V) characteristics were studied through varying frequency and temperature. C-V measurements show an increase of 79% in the capacitance of polymer nanocomposite, which can be used for the fabrication of ferroelectric devices.« less

  19. Polylactic acid/zinc oxide biocomposite films for food packaging application.

    PubMed

    Marra, Antonella; Silvestre, Clara; Duraccio, Donatella; Cimmino, Sossio

    2016-07-01

    Although PLA is much more expensive than polyolefins, such as PP and PE, there is a great interest to propose PLA based material as alternative films for food packaging being PLA derivable from natural source, compostable and biodegradable. For this purpose the research has the task to investigate and propose PLA materials with enhanced properties to be effectively and efficiently alternative to polyolefin films for food packaging application. In this contribution, biocomposite films of PLA with 1, 3 and 5wt% of ZnO have been investigated to determine mechanical, barrier and antimicrobial (against Escherichia coli) properties. It is found that the biocomposite films are characterized by a good dispersion of the ZnO particles in PLA matrix, although no previous treatment was performed on ZnO particles, such as silanization, to decrease its incompatibility with the polymer. The biocomposite films have shown good mechanical properties, decrease of permeability to CO2 and O2, and only a slight increase to water vapour. Particularly important is that, for the biocomposite with 5wt% of ZnO, the % Reduction for E. Coli test reached the value of 99.99 already after 24h. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The effect of annealing ambient on the characteristics of an indium-gallium-zinc oxide thin film transistor.

    PubMed

    Park, Soyeon; Bang, Seokhwan; Lee, Seungjun; Park, Joohyun; Ko, Youngbin; Jeon, Hyeongtag

    2011-07-01

    In this study, the effects of different annealing conditions (air, O2, N2, vacuum) on the chemical and electrical characteristics of amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFT) were investigated. The contact resistance and interface properties between the IGZO film and the gate dielectric improved after an annealing treatment. However, the chemical bonds in the IGZO bulk changed under various annealing atmospheres, which, in turn, altered the characteristics of the TFTs. The TFTs annealed in vacuum and N2 ambients exhibited undesired switching properties due to the high carrier concentration (>10(17) cm(-3)) of the IGZO active layer. In contrast, the IGZO TFTs annealed in air and oxygen ambients displayed clear transfer characteristics due to an adequately adjusted carrier concentration in the operating range of the TFT. Such an optimal carrier concentration arose through the stabilization of unstable chemical bonds in the IGZO film. With regard to device performance, the TFTs annealed in O2 and air exhibited saturation mobility values of 8.29 and 7.54 cm2/Vs, on-off ratios of 7.34 x 10(8) and 3.95 x 10(8), and subthreshold swing (SS) values of 0.23 and 0.19 V/decade, respectively. Therefore, proper annealing ambients contributed to internal modifications in the IGZO structure and led to an enhancement in the oxidation state of the metal. As a result, defects such as oxygen vacancies were eliminated. Oxygen annealing is thus effective for controlling the carrier concentration of the active layer, decreasing electron traps, and enhancing TFT performance.

  1. Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda.

    PubMed

    Nabulo, Grace; Oryem-Origa, Hannington; Diamond, Miriam

    2006-05-01

    The relationship between traffic density and trace metal concentrations in roadside soils, surface films, and a selected vegetable weed, Amaranthus dubius Mart. Ex Thell., was determined in 11 farming sites along major highways around Kampala City in Uganda. Surface soil, atmospherically deposited surface films on windows, and leaves of Amaranthus dubius were sampled at known distances from the roads and analyzed for lead (Pb), zinc (Zn), and cadmium (Cd) using flame atomic absorption spectrophotometry. Atmospherically deposited trace metal particulates were sampled using window glass as an inert, passive collector. Total trace metal concentrations in soils ranged from 30.0+/-2.3 to 64.6+/-11.7 mg/kg Pb, 78.4+/-18.4 to 265.6+/-63.2 mg/kg Zn, and 0.8+/-0.13 to 1.40+/-0.16 mg/kg Cd. Total trace metal levels in soil decreased rapidly with distance from the road. Total Pb decreased with distance up to 30 m from the road, where it reached a background soil concentration of 28 mg/kg dry weight. The study found background values of 50 and 1.4 mg/kg for Zn and Cd in roadside soils, respectively. Similarly, Pb concentration in Amaranthus dubius leaves decreased with increasing distance from the road edge. The dominant pathway for Pb contamination was from atmospheric deposition, which was consistent with Pb concentrations in surface films. The mean Pb concentrations in leaves of roadside crops were higher than those in their respective roots, with the highest leaf-to-root ratio observed in the Brassica oleraceae acephala group. The lowest Pb and Zn concentrations were found in the fruit compared to the leaves of the same crops. Leaves of roadside vegetables were therefore considered a potential source of heavy metal contamination to farmers and consumers in urban areas. It is recommended that leafy vegetables should be grown 30 m from roads in high-traffic, urban areas.

  2. Arsenic doped p-type zinc oxide films grown by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Fan, J. C.; Zhu, C. Y.; Fung, S.; Zhong, Y. C.; Wong, K. S.; Xie, Z.; Brauer, G.; Anwand, W.; Skorupa, W.; To, C. K.; Yang, B.; Beling, C. D.; Ling, C. C.

    2009-10-01

    As-doped ZnO films were grown by the radio frequency magnetron sputtering method. As the substrate temperature during growth was raised above ˜400 °C, the films changed from n type to p type. Hole concentration and mobility of ˜6×1017 cm-3 and ˜6 cm2 V-1 s-1 were achieved. The ZnO films were studied by secondary ion mass spectroscopy, x-ray photoelectron spectroscopy (XPS), low temperature photoluminescence (PL), and positron annihilation spectroscopy (PAS). The results were consistent with the AsZn-2VZn shallow acceptor model proposed by Limpijumnong et al. [Phys. Rev. Lett. 92, 155504 (2004)]. The results of the XPS, PL, PAS, and thermal studies lead us to suggest a comprehensive picture of the As-related shallow acceptor formation.

  3. Microstructure and electroluminescent performance of chemical vapor deposited zinc sulfide doped with manganese films for integration in thin film electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Topol, Anna Wanda

    Zinc sulfide (ZnS) doped with manganese (Mn), ZnS:Mn, is widely recognized as the brightest and most effective electroluminescent (EL) phosphor used in current thin film electroluminescent (TFEL) devices. ZnS acts as a host lattice for the luminescent activator, Mn, leading to a highly efficient yellow-orange EL emission, and resulting in a wide array of applications in monochrome, multi-color and full color displays. Although this wide band dap (3.7 eV) material can be prepared by several deposition techniques, the chemical vapor deposition (CVD) is the most promising for TFEL applications in terms of viable deposition rates, high thickness and composition uniformity, and excellent yield over large area panels. This study describes the development and optimization of a CVD ZnS:Mn process using diethylzinc [(C2H5)2Zn, DEZ], di-pi-cyclopentadienylmanganese [(C5H5)2Mn, CPMn], and hydrogen sulfide [H2S] as the chemical sources for, respectively, Zn, Mn, and S. The effects of key deposition parameters on resulting Film microstructure and performance are discussed, primarily in the context of identifying an optimized process window for best electroluminescence behavior. In particular, substrate temperature was observed to play a key role in the formation of high quality crystalline ZnS:Mn films leading to improved brightness and EL efficiency. Further investigations of the influence of temperature treatment on the structural characteristics and EL performance of the CVD ZnS:Mn film were carried out. In this study, the influence of post-deposition annealing both in-situ and ex-situ annealing processes, on chemical, structural, and electroluminescent characteristics of the phosphor layer are described. The material properties of the employed dielectric are among the key factors determining the performance, stability and reliability of the TFEL display and therefore, the choice of dielectric material for use in ACTFEL displays is crucial. In addition, the luminous

  4. Investigation on the negative bias illumination stress-induced instability of amorphous indium-tin-zinc-oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Jang, Jaeman; Kim, Dae Geun; Kim, Dong Myong; Choi, Sung-Jin; Lim, Jun-Hyung; Lee, Je-Hun; Kim, Yong-Sung; Ahn, Byung Du; Kim, Dae Hwan

    2014-10-01

    The quantitative analysis of mechanism on negative bias illumination stress (NBIS)-induced instability of amorphous indium-tin-zinc-oxide thin-film transistor (TFT) was suggested along with the effect of equivalent oxide thickness (EOT) of gate insulator. The analysis was implemented through combining the experimentally extracted density of subgap states and the device simulation. During NBIS, it was observed that the thicker EOT causes increase in both the shift of threshold voltage and the variation of subthreshold swing as well as the hump-like feature in a transfer curve. We found that the EOT-dependence of NBIS instability can be clearly explicated with the donor creation model, in which a larger amount of valence band tail states is transformed into either the ionized oxygen vacancy VO2+ or peroxide O22- with the increase of EOT. It was also found that the VO2+-related extrinsic factor accounts for 80%-92% of the total donor creation taking place in the valence band tail states while the rest is taken by the O22- related intrinsic factor. The ratio of extrinsic factor compared to the total donor creation also increased with the increase of EOT, which could be explained by more prominent oxygen deficiency. The key founding of our work certainly represents that the established model should be considered very effective for analyzing the instability of the post-indium-gallium-zinc-oxide (IGZO) ZnO-based compound semiconductor TFTs with the mobility, which is much higher than those of a-IGZO TFTs.

  5. Electro-thermal control of aluminum-doped zinc oxide/vanadium dioxide multilayered thin films for smart-device applications

    PubMed Central

    Skuza, J. R.; Scott, D. W.; Mundle, R. M.; Pradhan, A. K.

    2016-01-01

    We demonstrate the electro-thermal control of aluminum-doped zinc oxide (Al:ZnO) /vanadium dioxide (VO2) multilayered thin films, where the application of a small electric field enables precise control of the applied heat to the VO2 thin film to induce its semiconductor-metal transition (SMT). The transparent conducting oxide nature of the top Al:ZnO film can be tuned to facilitate the fine control of the SMT of the VO2 thin film and its associated properties. In addition, the Al:ZnO film provides a capping layer to the VO2 thin film, which inhibits oxidation to a more energetically favorable and stable V2O5 phase. It also decreases the SMT of the VO2 thin film by approximately 5–10 °C because of an additional stress induced on the VO2 thin film and/or an alteration of the oxygen vacancy concentration in the VO2 thin film. These results have significant impacts on technological applications for both passive and active devices by exploiting this near-room-temperature SMT. PMID:26884225

  6. A tri-layer thin film containing graphene oxide to protect zinc substrates from wear

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Gu, Zhengpeng; Yuan, Ningyi; Chu, Fuqiang; Cheng, Guanggui; Ding, Jianning

    2018-06-01

    Due to its excellent properties, Zn alloy is widely used in daily life. However, the poor wear-resisting properties of Zn alloys limits their application. In this paper, a tri-layer thin film consisting of 3-aminopropyltriethoxysilane (APS), graphene oxide (GO) and perfluoropolyethers (PFPE) were successfully prepared on the surface of Zn alloy to improve the wear-resisting properties. The as-prepared tri-layer thin films were characterized by atomic force microscopy, Raman spectroscopy, x-ray photoelectron spectroscopy and contact angle measurement. In addition, the tribological properties of the as-prepared tri-layer thin films were studied on a ball-on-plate tribometer and the morphologies of worn surfaces were observed using 3D noncontact interferometric microscope. Compared with the control samples, the tri-layer thin films showed excellent friction-reducing and wear-resisting properties, which was attributed to the synergistic effect of the GO as the load-carrying layer and the PFPE as the lubricating layer.

  7. Homo-junction ferroelectric field-effect-transistor memory device using solution-processed lithium-doped zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Bhansali, Unnat. S.; Alshareef, H. N.

    2012-06-01

    High performance homo-junction field-effect transistor memory devices were prepared using solution processed transparent lithium-doped zinc oxide thin films for both the ferroelectric and semiconducting active layers. A highest field-effect mobility of 8.7 cm2/Vs was obtained along with an Ion/Ioff ratio of 106. The ferroelectric thin film transistors showed a low sub-threshold swing value of 0.19 V/dec and a significantly reduced device operating voltage (±4 V) compared to the reported hetero-junction ferroelectric transistors, which is very promising for low-power non-volatile memory applications.

  8. Effect of solvent volume on the physical properties of aluminium doped nanocrystalline zinc oxide thin films deposited using a simplified spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Jabena Begum, N.; Mohan, R.; Ravichandran, K.

    2013-01-01

    Aluminium doped zinc oxide (AZO) thin films were deposited by employing a low cost and simplified spray technique using a perfume atomizer from starting solutions having different volumes (10, 20, … , 50 mL) of solvent. The effect of solvent volume on the structural, electrical, optical, photoluminescence (PL) and surface morphological properties was studied. The electrical resistivity of the AZO films is remarkably influenced by the variation in the solvent volume. The X-ray diffraction profiles clearly showed that all the films have preferential orientation along the (0 0 2) plane irrespective of the solvent volume. The crystallite size was found to be in the nano range of 35-46 nm. The optical transmittance in the visible region is desirably high (>85%). The AFM images show columnar morphology with varying grain size. The PL studies revealed that the AZO film deposited from 50 mL of solvent volume has good quality with lesser defect density.

  9. Novel Film Formation Pathways for Copper Zinc Tin Selenide for Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    Bendapudi, Sree Satya Kanth

    Because of the anticipated high demand for Indium, ongoing growth of CIGS technology may be limited. Kesterite materials, which replace In with a Zn/Sn couple, are thought to be a solution to this issue. However, efficiencies are still below the 10% level, and these materials are proving to be complex. Even determination of the bandgap is not settled because of the occurrence of secondary phases. We use a film growth process, 2SSS, which we believe helps control the formation of secondary phases. Under the right growth conditions we find 1/1 Zn/Sn ratios and XRD signatures for Cu2ZnSnSe 4 with no evidence of secondary phases. The optical absorption profile of our films is also a good match to the CIS profile even for films annealed at 500°C. We see no evidence of phase separation. The effect of intentional variation of the Zn/Sn ratio on material and device properties is also presented.

  10. Structure and Internal Stress of Tin-Doped Indium Oxide and Indium-Zinc Oxide Films Deposited by DC Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Nishimura, Eriko; Sasabayashi, Tomoko; Ito, Norihiro; Sato, Yasushi; Utsumi, Kentaro; Yano, Koki; Kaijo, Akira; Inoue, Kazuyoshi; Shigesato, Yuzo

    2007-12-01

    Representative transparent conductive oxide films, such as tin-doped indium oxide (ITO) and indium-zinc oxide (IZO) films, were deposited by dc magnetron sputtering using corresponding oxide targets under various total gas pressures (Ptot) ranging from 0.3 to 3.0 Pa. The ITO films deposited at a Ptot lower than 0.7 Pa were polycrystalline and were found to have a large compressive stress of about 1.5 × 109 Pa, whereas the ITO films deposited at 1.5-3.0 Pa were amorphous and had a low tensile stress. In contrast, all the IZO films deposited at a Ptot range of 0.3-3.0 Pa showed an entirely amorphous structure, where the compressive stress in the IZO films deposited at a Ptot lower than 1.5 Pa was lower than that in the ITO films. Such compressive stress was considered to be generated by the atomic peening effect of high-energy neutrals (Ar0) recoiled from the target or high-energy negative ions (O-) accelerated in the cathode sheath toward the film surface.

  11. Structure and Electronic Properties of Crystalline and Amorphous Zinc Indium Tin Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Proffit, Diana Elizabeth

    The local structures and surface electronic properties of crystalline (c-) and amorphous (a-) Zn and Sn codoped In2O3 (ZITO) films were studied. X-ray absorption spectroscopy (XAS) measurements confirm that Zn and Sn dopants occupy In sites in the bixbyite structure of c-ZITO. Also, Zn dopants are generally under-coordinated and some compensated Sn dopants are over-coordinated, as demonstrated by the trend in coordination numbers (CN) of CNSn>CNIn>CNZn. Aliovalent Sn dopants form Frank-Kostlin clusters, (2Sn•InO'' i)x , which can act as donors when reduced. XAS and anomalous X-ray scattering studies on a-ZITO show that the local structure in a-ZITO is somewhat different than that in c-ZITO, particularly around Zn. The Zn-O bond length is significantly smaller than in c-ZITO and Zn is 4-fold coordinated. The smaller coordination numbers in a-ZITO follow the same trend as in c-ZITO. Unlike in c-ZITO, variations in the Sn/Zn ratio do not alter the electrical properties of a-ZITO, although variations in deposition oxygen pressure do. The 3-D geometrical arrangement linking local structure units seems to play a key role in charge balancing ZITO. As measured by in situ grazing incidence wide angle X-ray scattering, ZITO crystallizes at a higher temperature than In2 O3 and Sn-doped In2O3. The difference is attributed to a higher activation energy, which may result from the unique structure around Zn in a-ZITO. Increasing the codoping level consistently increases crystallization temperature. For a given codoping level, the crystallization temperature during deposition is lower than that during post-deposition annealing. X-ray and ultraviolet photoelectron spectroscopy measurements show that a-ZITO and c-ZITO thin films have similar surface electronic properties. In situ a-ZITO and c-ZITO films have low ionization potentials that are similar to In2O3. However, dry-air-annealed in situ films, ex situ films, and bulk ceramics have higher ionization potentials that are

  12. Defect-mediated magnetism of transition metal doped zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Roberts, Bradley Kirk

    Magnetism in transition metal doped wide band-gap materials is of interest to further the fundamental science of materials and future spintronics applications. Large inter-dopant separations require mediation of ferromagnetism by some method; carrier-mediated mechanisms are typically applicable to dilute magnetic semiconductors with low Curie temperatures. Dilute magnetic oxides, commonly with poor conductivity and TC above room temperature, cannot be described within this theory. Recent experiment and theory developments suggest that ferromagnetic exchange in these materials can be mediated by defects. This research includes experimental results justifying and developing this approach. Thin films of Cr doped ZnO (band gap ˜3.3 eV) were deposited with several processing variations to enhance the effects of either 0-dimensional (vacancy, hydrogen-related defect) or two-dimensional defects (surface/interface) and thereby affect magnetism and conductivity. We observe surface magnetism in dielectric thin films of oxygen-saturated ZnO:Cr with spontaneous magnetic moment and conductance dropping approximately exponentially with increasing thickness. Uniform defect concentrations would not result in such magnetic ordering behavior indicating that magnetism is mediated either by surface defects or differing concentrations of point defects near the surface. Polarized neutron reflectivity profiling confirms a magnetically active region of ˜8 nm at the film surface. Hydrogen is notoriously present as a defect and carrier dopant in ZnO, and artificial introduction of hydrogen in dielectric ZnO:Cr films results in varying electronic and magnetic behavior. Free carriers introduced with hydrogen doping are not spin-polarized requiring an alternative explanation for ferromagnetism. We find from positron annihilation spectroscopy measurements that hydrogen doping increases the concentration of an altered VZn-related defect (a preliminary interpretation) throughout the film, which

  13. Charge Transport in Low-Temperature Processed Thin-Film Transistors Based on Indium Oxide/Zinc Oxide Heterostructures.

    PubMed

    Krausmann, Jan; Sanctis, Shawn; Engstler, Jörg; Luysberg, Martina; Bruns, Michael; Schneider, Jörg J

    2018-06-20

    The influence of the composition within multilayered heterostructure oxide semiconductors has a critical impact on the performance of thin-film transistor (TFT) devices. The heterostructures, comprising alternating polycrystalline indium oxide and zinc oxide layers, are fabricated by a facile atomic layer deposition (ALD) process, enabling the tuning of its electrical properties by precisely controlling the thickness of the individual layers. This subsequently results in enhanced TFT performance for the optimized stacked architecture after mild thermal annealing at temperatures as low as 200 °C. Superior transistor characteristics, resulting in an average field-effect mobility (μ sat. ) of 9.3 cm 2 V -1 s -1 ( W/ L = 500), an on/off ratio ( I on / I off ) of 5.3 × 10 9 , and a subthreshold swing of 162 mV dec -1 , combined with excellent long-term and bias stress stability are thus demonstrated. Moreover, the inherent semiconducting mechanism in such multilayered heterostructures can be conveniently tuned by controlling the thickness of the individual layers. Herein, devices comprising a higher In 2 O 3 /ZnO ratio, based on individual layer thicknesses, are predominantly governed by percolation conduction with temperature-independent charge carrier mobility. Careful adjustment of the individual oxide layer thicknesses in devices composed of stacked layers plays a vital role in the reduction of trap states, both interfacial and bulk, which consequently deteriorates the overall device performance. The findings enable an improved understanding of the correlation between TFT performance and the respective thin-film composition in ALD-based heterostructure oxides.

  14. Channel length dependence of negative-bias-illumination-stress in amorphous-indium-gallium-zinc-oxide thin-film transistors

    SciT

    Um, Jae Gwang; Mativenga, Mallory; Jang, Jin, E-mail: jjang@khu.ac.kr

    2015-06-21

    We have investigated the dependence of Negative-Bias-illumination-Stress (NBIS) upon channel length, in amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs). The negative shift of the transfer characteristic associated with NBIS decreases for increasing channel length and is practically suppressed in devices with L = 100-μm. The effect is consistent with creation of donor defects, mainly in the channel regions adjacent to source and drain contacts. Excellent agreement with experiment has been obtained by an analytical treatment, approximating the distribution of donors in the active layer by a double exponential with characteristic length L{sub D} ∼ L{sub n} ∼ 10-μm, the latter being the electron diffusion length. The model alsomore » shows that a device with a non-uniform doping distribution along the active layer is in all equivalent, at low drain voltages, to a device with the same doping averaged over the active layer length. These results highlight a new aspect of the NBIS mechanism, that is, the dependence of the effect upon the relative magnitude of photogenerated holes and electrons, which is controlled by the device potential/band profile. They may also provide the basis for device design solutions to minimize NBIS.« less

  15. Improvement in gate bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors using microwave irradiation

    SciT

    Jo, Kwang-Won; Cho, Won-Ju, E-mail: chowj@kw.ac.kr

    In this study, we evaluated the effects of microwave irradiation (MWI) post-deposition-annealing (PDA) treatment on the gate bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs) and compared the results with a conventional thermal annealing PDA treatment. The MWI-PDA-treated a-IGZO TFTs exhibited enhanced electrical performance as well as improved long-term stability with increasing microwave power. The positive turn-on voltage shift (ΔV{sub ON}) as a function of stress time with positive bias and varying temperature was precisely modeled on a stretched-exponential equation, suggesting that charge trapping is a dominant mechanism in the instability of MWI-PDA-treated a-IGZO TFTs. The characteristicmore » trapping time and average effective barrier height for electron transport indicate that the MWI-PDA treatment effectively reduces the defects in a-IGZO TFTs, resulting in a superior resistance against gate bias stress.« less

  16. Semiconductor to metallic transition in bulk accumulated amorphous indium-gallium-zinc-oxide dual gate thin-film transistor

    SciT

    Chun, Minkyu; Chowdhury, Md Delwar Hossain; Jang, Jin, E-mail: jjang@khu.ac.kr

    We investigated the effects of top gate voltage (V{sub TG}) and temperature (in the range of 25 to 70 {sup o}C) on dual-gate (DG) back-channel-etched (BCE) amorphous-indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs) characteristics. The increment of V{sub TG} from -20V to +20V, decreases the threshold voltage (V{sub TH}) from 19.6V to 3.8V and increases the electron density to 8.8 x 10{sup 18}cm{sup −3}. Temperature dependent field-effect mobility in saturation regime, extracted from bottom gate sweep, show a critical dependency on V{sub TG}. At V{sub TG} of 20V, the mobility decreases from 19.1 to 15.4 cm{sup 2}/V ⋅ s with increasingmore » temperature, showing a metallic conduction. On the other hand, at V{sub TG} of - 20V, the mobility increases from 6.4 to 7.5cm{sup 2}/V ⋅ s with increasing temperature. Since the top gate bias controls the position of Fermi level, the temperature dependent mobility shows metallic conduction when the Fermi level is above the conduction band edge, by applying high positive bias to the top gate.« less

  17. Coplanar amorphous-indium-gallium-zinc-oxide thin film transistor with He plasma treated heavily doped layer

    SciT

    Jeong, Ho-young; LG Display R and D Center, 245 Lg-ro, Wollong-myeon, Paju-si, Gyeonggi-do 413-811; Lee, Bok-young

    We report thermally stable coplanar amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) with heavily doped n{sup +} a-IGZO source/drain regions. Doping is through He plasma treatment in which the resistivity of the a-IGZO decreases from 2.98 Ω cm to 2.79 × 10{sup −3} Ω cm after treatment, and then it increases to 7.92 × 10{sup −2} Ω cm after annealing at 300 °C. From the analysis of X-ray photoelectron spectroscopy, the concentration of oxygen vacancies in He plasma treated n{sup +}a-IGZO does not change much after thermal annealing at 300 °C, indicating thermally stable n{sup +} a-IGZO, even for TFTs with channel length L = 4 μm. Field-effect mobility of the coplanar a-IGZO TFTsmore » with He plasma treatment changes from 10.7 to 9.2 cm{sup 2}/V s after annealing at 300 °C, but the performance of the a-IGZO TFT with Ar or H{sub 2} plasma treatment degrades significantly after 300 °C annealing.« less

  18. Inert gas annealing effect in solution-processed amorphous indium-gallium-zinc-oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Lee, Seungwoon; Jeong, Jaewook

    2017-08-01

    In this paper, the annealing effect of solution-processed amorphous indium-gallium-zinc-oxide thin-film transistors (a-IGZO TFTs), under ambient He (He-device), is systematically analyzed by comparison with those under ambient O2 (O2-device) and N2 (N2-device), respectively. The He-device shows high field-effect mobility and low subthreshold slope owing to the minimization of the ambient effect. The degradation of the O2- and N2-device performances originate from their respective deep acceptor-like and shallow donor-like characteristics, which can be verified by comparison with the He-device. However, the three devices show similar threshold voltage instability under prolonged positive bias stress due to the effect of excess oxygen. Therefore, annealing in ambient He is the most suitable method for the fabrication of reference TFTs to study the various effects of the ambient during the annealing process in solution-processed a-IGZO TFTs.

  19. Enhancement of the Device Performance and the Stability with a Homojunction-structured Tungsten Indium Zinc Oxide Thin Film Transistor.

    PubMed

    Park, Hyun-Woo; Song, Aeran; Choi, Dukhyun; Kim, Hyung-Jun; Kwon, Jang-Yeon; Chung, Kwun-Bum

    2017-09-14

    Tungsten-indium-zinc-oxide thin-film transistors (WIZO-TFTs) were fabricated using a radio frequency (RF) co-sputtering system with two types of source/drain (S/D)-electrode material of conducting WIZO (homojunction structure) and the indium-tin oxide (ITO) (heterojunction structure) on the same WIZO active-channel layer. The electrical properties of the WIZO layers used in the S/D electrode and the active-channel layer were adjusted through oxygen partial pressure during the deposition process. To explain enhancements of the device performance and stability of the homojunction-structured WIZO-TFT, a systematic investigation of correlation between device performance and physical properties at the interface between the active layer and the S/D electrodes such as the contact resistance, surface/interfacial roughness, interfacial-trap density, and interfacial energy-level alignments was conducted. The homojunction-structured WIZO-TFT exhibited a lower contact resistance, smaller interfacial-trap density, and flatter interfacial roughness than the WIZO-TFT with the heterojunction structure. The 0.09 eV electron barrier of the homojunction-structured WIZO-TFT is lower than the 0.21 eV value that was obtained for the heterojunction-structured WIZO-TFT. This reduced electron barrier may be attributed to enhancements of device performance and stability, that are related to the carrier transport.

  20. Optically transparent thin-film transistors based on 2D multilayer MoS₂ and indium zinc oxide electrodes.

    PubMed

    Kwon, Junyeon; Hong, Young Ki; Kwon, Hyuk-Jun; Park, Yu Jin; Yoo, Byungwook; Kim, Jiwan; Grigoropoulos, Costas P; Oh, Min Suk; Kim, Sunkook

    2015-01-21

    We report on optically transparent thin film transistors (TFTs) fabricated using multilayered molybdenum disulfide (MoS2) as the active channel, indium tin oxide (ITO) for the back-gated electrode and indium zinc oxide (IZO) for the source/drain electrodes, respectively, which showed more than 81% transmittance in the visible wavelength. In spite of a relatively large Schottky barrier between MoS2 and IZO, the n-type behavior with a field-effect mobility (μ(eff)) of 1.4 cm(2) V(-1) s(-1) was observed in as-fabricated transparent MoS2 TFT. In order to enhance the performances of transparent MoS2 TFTs, a picosecond pulsed laser was selectively irradiated onto the contact region of the IZO electrodes. Following laser annealing, μ(eff) increased to 4.5 cm(2) V(-1) s(-1), and the on-off current ratio (I(on)/I(off)) increased to 10(4), which were attributed to the reduction of the contact resistance between MoS2 and IZO.

  1. Fabrication of Zinc Oxide-Based Thin-Film Transistors by Radio Frequency Sputtering for Ultraviolet Sensing Applications.

    PubMed

    Hsu, Ming-Hung; Chang, Sheng-Po; Chang, Shoou-Jinn; Li, Chih-Wei; Li, Jyun-Yi; Lin, Chih-Chien

    2018-05-01

    In this study, zinc indium tin oxide thin-film transistors (ZITO TFTs) were fabricated by the radio frequency (RF) sputtering deposition method. Adding indium cations to ZnO by co-sputtering allows the development of ZITO TFTs with improved performance. Material characterization revealed that ZITO TFTs have a threshold voltage of 0.9 V, a subthreshold swing of 0.294 V/decade, a field-effect mobility of 5.32 cm2/Vs, and an on-off ratio of 4.7 × 105. Furthermore, an investigation of the photosensitivity of the fabricated devices was conducted by an illumination test. The responsivity of ZITO TFTs was 26 mA/W, with 330-nm illumination and a gate bias of -1 V. The UV-to-visible rejection ratio for ZITO TFTs was 2706. ZITO TFTs were observed to have greater UV light sensitivity than that of ZnO TFTs. We believe that these results suggest a significant step toward achieving high photosensitivity. In addition, the ZITO semiconductor system could be a promising candidate for use in high performance transparent TFTs, as well as further sensing applications.

  2. Fabrication and characteristics of high-performance and high-stability aluminum-doped zinc oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Shan, Dongfang; Han, Dedong; Huang, Fuqing; Tian, Yu; Zhang, Suoming; Qi, Lin; Cong, Yingying; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2014-01-01

    Fully transparent aluminum-doped zinc oxide (AZO) thin-film transistors (TFTs) were successfully fabricated on glass substrates at room temperature. Superior properties, such as a high saturation mobility of 59.3 cm2 V-1 s-1, a positive threshold voltage of 1.3 V, a steep subthreshold swing of 122.9 mV/dec, an off-state current on the order of 10-12 A, and an on/off ratio of 2.7 × 108, were obtained. The electrical properties of the AZO TFTs were successively studied within a period of six months. Small property degenerations could be observed from the test results obtained within the study period, which proved the high-performance and high-stability characteristics of AZO TFTs. Furthermore, hysteresis loop scanning of AZO TFTs was performed, and a small hysteresis could be detected in the scanning curves, which suggested the superior properties of a dielectric and a channel-insulator interface. Lastly, we succeeded in manufacturing an organic LED (OLED) flat panel display panel driven by AZO TFTs and obtained an excellent display effect from it. We believe that AZO TFTs are a promising candidate successor to Si-based TFTs in next-generation flat panel displays.

  3. Micro-nano zinc oxide film fabricated by biomimetic mineralization: Designed architectures for SERS substrates

    NASA Astrophysics Data System (ADS)

    Lu, Fei; Guo, Yue; Wang, Yunxin; Song, Wei; Zhao, Bing

    2018-05-01

    In this study, we have investigated the effect of the surface morphologies of the zinc oxide (ZnO) substrates on surface enhanced Raman spectroscopy (SERS). During synthetic process, the self-assembly monolayers (SAMs) with different terminal groups are used as templates to induce the nucleation and growth of Zn(NO3)2·6H2O crystals, then different morphologies micro-nano ZnO powders are obtained by annealing Zn(NO3)2·6H2O crystals at 450 °C. The products obtained at different conditions are characterized by means of X-ray diffraction (XRD) patterns, scanning electron microscopy (SEM) and Raman spectra. The as-prepared ZnO micro-sized particles have been used the efficient Surface enhanced Raman scattering (SERS) substrates, and the SERS signals of 4-mercaptopyridine (Mpy) probe molecules are much influenced by the morphologies of the ZnO structures. Results indicated that the more (0001) facets appear in the of ZnO morphology, the greater degree of charge-transfer (PCT) for the SERS enhancement on the surface of semiconductors is achieved. The chemical interaction between ZnO structures and Mpy molecules plays a very important role in the SERS enhancement.

  4. High transconductance zinc oxide thin-film transistors on flexible plastic substrates

    NASA Astrophysics Data System (ADS)

    Kimura, Yuta; Higaki, Tomohiro; Maemoto, Toshihiko; Sasa, Shigehiko; Inoue, Masataka

    2012-02-01

    We report the fabrication and characterization on high-performance ZnO based TFTs on unheated plastic substrate. ZnO films were grown by pulsed laser deposition (PLD) on polyethylene napthalate (PEN) substrates. Top-gate ZnO-TFTs were fabricated by photolithography and wet chemical etching. The source and drain contacts were formed by lift-off of e-beam deposited Ti(20 nm)/Au(200 nm). An HfO2 with thickness 100 nm was selected as the gate insulator, and top gate electrode Ti(20 nm)/Au(200 nm) was deposited by e-beam evaporation. We prepared a set of the structure with SiO2/TiO2 to investigate the characteristic changes that appear in the film characteristics in response to bending. From the ID-VDS and the transfer characteristics which are affected by bending and return for the ZnO-TFT with SiO2/TiO2 buffers, the TFTs were bent to a curvature radius of 8.5 mm. The transconductance, gm is obtained 1.7 mS/mm on flat, 1.4 mS/mm on bending and 1.3 mS/mm on returning the film, respectively. The ID-VDS characteristics were therefore not changed by bending. All of the devices exhibited a clear pinch-off behavior and a high on/off current ratio of ˜10^6. The threshold voltages, Vth were not changed drastically. Furthermore, TFT structures were changed from a conventional top-gate type to a bottom-gate type. A high transconductance of 95.8 mS/mm was achieved in the bottom-gate type TFT by using Al2O3 oxide buffer.

  5. Nanostructured zinc oxide thin film for application to surface plasmon resonance based cholesterol biosensor

    NASA Astrophysics Data System (ADS)

    Kaur, Gurpreet; Tomar, Monika; Gupta, Vinay

    2015-11-01

    ZnO thin film was deposited on gold coated glass prism by RF sputtering technique in glancing angle deposition (GLAD) configuration. The structural, morphological and optical properties of the deposited film were investigated using X-ray diffraction (XRD), Atomic Force Microscopy (AFM) and Fourier Transform Infrared (FTIR) Spectroscopy. ZnO coated Au prisms (ZnO/Au/prism) were used to excite surface plasmons in Kretschmann configuration at the Au- ZnO interface on a laboratory assembled Surface Plasmon Resonance (SPR) measurement setup. Cholesterol oxidase (ChOx) enzyme was immobilized on the ZnO/Au/prism structure by physical adsorption technique. Polydimethylsiloxane (PDMS) microchannels were fabricated over ChOx/ZnO/Au/prism system and various concentrations of cholesterol were passed over the sensor surface. The concentration of cholesterol was varied from 0.12 to 10.23 mM and the SPR reflectance curves were recorded in both static as well as dynamic modes demonstrating a high sensitivity of 0.36° mM-1.

  6. Mechanism of polarization switching in wurtzite-structured zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Konishi, Ayako; Ogawa, Takafumi; Fisher, Craig A. J.; Kuwabara, Akihide; Shimizu, Takao; Yasui, Shintaro; Itoh, Mitsuru; Moriwake, Hiroki

    2016-09-01

    The properties of a potentially new class of ferroelectric materials based on wurtzite-structured ZnO thin films are examined using the first-principles calculations. Theoretical P-E hysteresis loops were calculated using the fixed-D method for both unstrained and (biaxially) strained single crystals. Ferroelectric polarization switching in ZnO (S.G. P63mc) is shown to occur via an intermediate non-polar structure with centrosymmetric P63/mmc symmetry by displacement of cations relative to anions in the long-axis direction. The calculated coercive electric field (Ec) for polarization switching was estimated to be 7.2 MV/cm for defect-free monocrystalline ZnO. During switching, the short- and long-axis lattice parameters expand and contract, respectively. The large structural distortion required for switching may explain why ferroelectricity in this compound has not been reported experimentally for pure ZnO. Applying an epitaxial tensile strain parallel to the basal plane is shown to be effective in lowering Ec during polarization, with a 5% biaxial expansion resulting in a decrease of Ec to 3.5 MV/cm. Comparison with calculated values for conventional ferroelectric materials suggests that the ferroelectric polarization switching of wurtzite-structured ZnO may be achievable by preparing high-quality ZnO thin films with suitable strain levels and low defect concentrations.

  7. Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda

    SciT

    Nabulo, Grace; Oryem-Origa, Hannington; Diamond, Miriam

    2006-05-15

    The relationship between traffic density and trace metal concentrations in roadside soils, surface films, and a selected vegetable weed, Amaranthus dubius Mart. Ex Thell., was determined in 11 farming sites along major highways around Kampala City in Uganda. Surface soil, atmospherically deposited surface films on windows, and leaves of Amaranthus dubius were sampled at known distances from the roads and analyzed for lead (Pb), zinc (Zn), and cadmium (Cd) using flame atomic absorption spectrophotometry. Atmospherically deposited trace metal particulates were sampled using window glass as an inert, passive collector. Total trace metal concentrations in soils ranged from 30.0{+-}2.3 to 64.6{+-}11.7more » mg/kg Pb, 78.4{+-}18.4 to 265.6{+-}63.2 mg/kg Zn, and 0.8{+-}0.13 to 1.40{+-}0.16 mg/kg Cd. Total trace metal levels in soil decreased rapidly with distance from the road. Total Pb decreased with distance up to 30 m from the road, where it reached a background soil concentration of 28 mg/kg dry weight. The study found background values of 50 and 1.4 mg/kg for Zn and Cd in roadside soils, respectively. Similarly, Pb concentration in Amaranthus dubius leaves decreased with increasing distance from the road edge. The dominant pathway for Pb contamination was from atmospheric deposition, which was consistent with Pb concentrations in surface films. The mean Pb concentrations in leaves of roadside crops were higher than those in their respective roots, with the highest leaf-to-root ratio observed in the Brassica oleraceae acephala group. The lowest Pb and Zn concentrations were found in the fruit compared to the leaves of the same crops. Leaves of roadside vegetables were therefore considered a potential source of heavy metal contamination to farmers and consumers in urban areas. It is recommended that leafy vegetables should be grown 30 m from roads in high-traffic, urban areas.« less

  8. Effects of plasmonic field due to gold nanoparticles and magnetic field on photocurrents of zinc porphyrin-viologen linked compound-gold nanoparticle composite films

    NASA Astrophysics Data System (ADS)

    Yonemura, Hiroaki; Niimi, Tomoki; Yamada, Sunao

    2016-03-01

    Composite films of zinc-porphyrin-viologen (ZnP-V2+) linked compound containing six methylene group [ZnP(6)V]-gold nanoparticles (AuNP) were fabricated by combining electrostatic layer-by-layer adsorption and the Langmuir-Blodgett method. The anodic photocurrents of the ZnP(6)V-AuNP composite films are higher than those of the ZnP(6)V films. The large photocurrents in ZnP(6)V-AuNP composite films are most likely attributable to the combination of localized surface plasmon resonance due to AuNP and photoinduced intramolecular electron transfer from excited state of ZnP to V2+. The photocurrents of the ZnP(6)V-AuNP composite films increase in the presence of magnetic field. The photocurrents increase with low magnetic fields (B ≤ 150 mT) and are almost constant under high magnetic fields (B ≥ 150 mT). Magnetic field effects (MFEs) were clearly observed for both ZnP(6)V-AuNP composite films and ZnP(6)V films. The MFEs can be explained by a radical pair mechanism.

  9. Plasma-enhanced atomic layer deposition zinc oxide for multifunctional thin film electronics

    NASA Astrophysics Data System (ADS)

    Mourey, Devin A.

    A novel, weak oxidant, plasma-enhanced atomic layer deposition (PEALD) process has been used to fabricate stable, high mobility ZnO thin film transistors (TFTs) and fast circuits on glass and polyimide substrates at 200°C. Weak oxidant PEALD provides a simple, fast deposition process which results in uniform, conformal coatings and highly crystalline, dense ZnO thin films. These films and resulting devices have been compared with those prepared by spatial atomic layer deposition (SALD) throughout the work. Both PEALD and SALD ZnO TFTs have high field-effect mobility (>20 cm 2/V·s) and devices with ALD Al2O3 passivation can have excellent bias stress stability. Temperature dependent measurements of PEALD ZnO TFTs revealed a mobility activation energy < 5 meV and can be described using a simple percolation model with a Gaussian distribution of near-conduction band barriers. Interestingly, both PEALD and SALD devices operate with mobility > 1 cm2/V·s even at temperatures < 10 K. The effects of high energy irradiation have also been investigated. Devices exposed to 1 MGy of gamma irradiation showed small threshold voltage shifts (<2 V) which were fully recoverable with short (1 min) low-temperature (200°C) anneals. ZnO TFTs exhibit a range of non-ideal behavior which has direct implications on how important parameters such as mobility and threshold voltage are quantified. For example, the accumulation-dependent mobility and contact effects can lead to significant overestimations in mobility. It is also found that self-heating plays and important role in the non-ideal behavior of oxide TFTs on low thermal conductivity substrates. In particular, the output conductance and a high current device runaway breakdown effect can be directly ascribed to self-heating. Additionally, a variety of simple ZnO circuits on glass and flexible substrates were demonstrated. A backside exposure process was used to form gate-self-aligned structures with reduced parasitic capacitance and

  10. Effect of mesa structure formation on the electrical properties of zinc oxide thin film transistors.

    PubMed

    Singh, Shaivalini; Chakrabarti, P

    2014-05-01

    ZnO based bottom-gate thin film transistor (TFT) with SiO2 as insulating layer has been fabricated with two different structures. The effect of formation of mesa structure on the electrical characteristics of the TFTs has been studied. The formation of mesa structure of ZnO channel region can definitely result in better control over channel region and enhance value of channel mobility of ZnO TFT. As a result, by fabricating a mesa structured TFT, a better value of mobility and on-state current are achieved at low voltages. A typical saturation current of 1.85 x 10(-7) A under a gate bias of 50 V is obtained for non mesa structure TFT while for mesa structured TFT saturation current of 5 x 10(-5) A can be obtained at comparatively very low gate bias of 6.4 V.

  11. Mechanism of polarization switching in wurtzite-structured zinc oxide thin films

    SciT

    Konishi, Ayako; Ogawa, Takafumi; Fisher, Craig A. J.

    2016-09-05

    The properties of a potentially new class of ferroelectric materials based on wurtzite-structured ZnO thin films are examined using the first-principles calculations. Theoretical P-E hysteresis loops were calculated using the fixed-D method for both unstrained and (biaxially) strained single crystals. Ferroelectric polarization switching in ZnO (S.G. P6{sub 3}mc) is shown to occur via an intermediate non-polar structure with centrosymmetric P6{sub 3}/mmc symmetry by displacement of cations relative to anions in the long-axis direction. The calculated coercive electric field (E{sub c}) for polarization switching was estimated to be 7.2 MV/cm for defect-free monocrystalline ZnO. During switching, the short- and long-axis latticemore » parameters expand and contract, respectively. The large structural distortion required for switching may explain why ferroelectricity in this compound has not been reported experimentally for pure ZnO. Applying an epitaxial tensile strain parallel to the basal plane is shown to be effective in lowering E{sub c} during polarization, with a 5% biaxial expansion resulting in a decrease of E{sub c} to 3.5 MV/cm. Comparison with calculated values for conventional ferroelectric materials suggests that the ferroelectric polarization switching of wurtzite-structured ZnO may be achievable by preparing high-quality ZnO thin films with suitable strain levels and low defect concentrations.« less

  12. Influence of sputtering deposition parameters on electrical and optical properties of aluminium-doped zinc oxide thin films for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Krawczak, Ewelina; Agata, Zdyb; Gulkowski, Slawomir; Fave, Alain; Fourmond, Erwann

    2017-11-01

    Transparent Conductive Oxides (TCOs) characterized by high visible transmittance and low electrical resistivity play an important role in photovoltaic technology. Aluminum doped zinc oxide (AZO) is one of the TCOs that can find its application in thin film solar cells (CIGS or CdTe PV technology) as well as in other microelectronic applications. In this paper some optical and electrical properties of ZnO:Al thin films deposited by RF magnetron sputtering method have been investigated. AZO layers have been deposited on the soda lime glass substrates with use of variable technological parameters such as pressure in the deposition chamber, power applied and temperature during the process. The composition of AZO films has been investigated by EDS method. Thickness and refraction index of the deposited layers in dependence on certain technological parameters of sputtering process have been determined by spectroscopic ellipsometry. The measurements of transmittance and sheet resistance were also performed.

  13. Effective enhancement of hydrophilicity of solution indium zinc oxide-based thin-film transistors by oxygen plasma treatment of deposition layer surface

    NASA Astrophysics Data System (ADS)

    You, Hsin-Chiang; Wang, Yu-Chih

    2016-06-01

    In this paper, we describe the use of a simple and efficient sol-gel solution method for synthesizing indium zinc oxide (IZO) films for use as semiconductor channel layers in thin-film transistors (TFTs) on p-type silicon substrates. The performance of IZO-based TFTs was investigated, and the effect of oxygen plasma treatment on the surface of dielectric SiN x was observed. Oxygen plasma treatment effectively enhanced the electron mobility in IZO-based TFT devices from 0.005 to 1.56 cm2 V-1 s-1, an increase of more than 312 times, and effectively enhanced device performance. X-ray photoelectron spectroscopy analysis of the IZO film was performed to clarify element bonding.

  14. Relative SHG measurements of metal thin films: Gold, silver, aluminum, cobalt, chromium, germanium, nickel, antimony, titanium, titanium nitride, tungsten, zinc, silicon and indium tin oxide

    NASA Astrophysics Data System (ADS)

    Che, Franklin; Grabtchak, Serge; Whelan, William M.; Ponomarenko, Sergey A.; Cada, Michael

    We have experimentally measured the surface second-harmonic generation (SHG) of sputtered gold, silver, aluminum, zinc, tungsten, copper, titanium, cobalt, nickel, chromium, germanium, antimony, titanium nitride, silicon and indium tin oxide thin films. The second-harmonic response was measured in reflection using a 150 fs p-polarized laser pulse at 1561 nm. We present a clear comparison of the SHG intensity of these films relative to each other. Our measured relative intensities compare favorably with the relative intensities of metals with published data. We also report for the first time to our knowledge the surface SHG intensity of tungsten and antimony relative to that of well known metallic thin films such as gold and silver.

  15. High-performance varistors simply by hot-dipping zinc oxide thin films in Pr6O11: Influence of temperature

    PubMed Central

    Wang, Yang; Peng, Zhijian; Wang, Qi; Wang, Chengbiao; Fu, Xiuli

    2017-01-01

    High-performance ZnO-Pr6O11 thin-film varistors were fabricated simply by hot-dipping oxygen-deficient zinc oxide thin films in Pr6O11 powder. The films had a composition of ZnO0.81 and a thickness of about 200 nm, which were deposited by radio frequency magnetron sputtering a sintered zinc oxide ceramic target. Special attention was paid on the temperature dependence of the varistors. In 50 min with hot-dipping temperature increased from 300–700 °C, the nonlinear coefficient (α) of the varistors increased, but with higher temperature it decreased again. Correspondingly, the leakage current (IL) decreased first and then increased, owing mainly to the formation and destroying of complete zinc oxide/Pr6O11 grain boundaries. The breakdown field (E1mA) decreased monotonously from 0.02217 to 0.01623 V/nm with increasing temperature (300–800 °C), due to the decreased number of effective grain boundaries in the varistors. The varistors prepared at 700 °C exhibited the optimum nonlinear properties with the highest α = 39.29, lowest IL = 0.02736 mA/cm2, and E1mA = 0.01757 V/nm. And after charge-discharge at room temperature for 1000 times, heating at 100 or 250 °C for up to 100 h, or applying at up to 250 °C, the varistors still performed well. Such nanoscaled thin-film varistors will be very promising in electrical/electronic devices working at low voltage. PMID:28155890

  16. Photo-Patternable ZnO Thin Films Based on Cross-Linked Zinc Acrylate for Organic/Inorganic Hybrid Complementary Inverters.

    PubMed

    Jeong, Yong Jin; An, Tae Kyu; Yun, Dong-Jin; Kim, Lae Ho; Park, Seonuk; Kim, Yebyeol; Nam, Sooji; Lee, Keun Hyung; Kim, Se Hyun; Jang, Jaeyoung; Park, Chan Eon

    2016-03-02

    Complementary inverters consisting of p-type organic and n-type metal oxide semiconductors have received considerable attention as key elements for realizing low-cost and large-area future electronics. Solution-processed ZnO thin-film transistors (TFTs) have great potential for use in hybrid complementary inverters as n-type load transistors because of the low cost of their fabrication process and natural abundance of active materials. The integration of a single ZnO TFT into an inverter requires the development of a simple patterning method as an alternative to conventional time-consuming and complicated photolithography techniques. In this study, we used a photocurable polymer precursor, zinc acrylate (or zinc diacrylate, ZDA), to conveniently fabricate photopatternable ZnO thin films for use as the active layers of n-type ZnO TFTs. UV-irradiated ZDA thin films became insoluble in developing solvent as the acrylate moiety photo-cross-linked; therefore, we were able to successfully photopattern solution-processed ZDA thin films using UV light. We studied the effects of addition of a tiny amount of indium dopant on the transistor characteristics of the photopatterned ZnO thin films and demonstrated low-voltage operation of the ZnO TFTs within ±3 V by utilizing Al2O3/TiO2 laminate thin films or ion-gels as gate dielectrics. By combining the ZnO TFTs with p-type pentacene TFTs, we successfully fabricated organic/inorganic hybrid complementary inverters using solution-processed and photopatterned ZnO TFTs.

  17. Electric Field-aided Selective Activation for Indium-Gallium-Zinc-Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Lee, Heesoo; Chang, Ki Soo; Tak, Young Jun; Jung, Tae Soo; Park, Jeong Woo; Kim, Won-Gi; Chung, Jusung; Jeong, Chan Bae; Kim, Hyun Jae

    2016-10-01

    A new technique is proposed for the activation of low temperature amorphous InGaZnO thin film transistor (a-IGZO TFT) backplanes through application of a bias voltage and annealing at 130 °C simultaneously. In this ‘electrical activation’, the effects of annealing under bias are selectively focused in the channel region. Therefore, electrical activation can be an effective method for lower backplane processing temperatures from 280 °C to 130 °C. Devices fabricated with this method exhibit equivalent electrical properties to those of conventionally-fabricated samples. These results are analyzed electrically and thermodynamically using infrared microthermography. Various bias voltages are applied to the gate, source, and drain electrodes while samples are annealed at 130 °C for 1 hour. Without conventional high temperature annealing or electrical activation, current-voltage curves do not show transfer characteristics. However, electrically activated a-IGZO TFTs show superior electrical characteristics, comparable to the reference TFTs annealed at 280 °C for 1 hour. This effect is a result of the lower activation energy, and efficient transfer of electrical and thermal energy to a-IGZO TFTs. With this approach, superior low-temperature a-IGZO TFTs are fabricated successfully.

  18. Electric Field-aided Selective Activation for Indium-Gallium-Zinc-Oxide Thin Film Transistors

    PubMed Central

    Lee, Heesoo; Chang, Ki Soo; Tak, Young Jun; Jung, Tae Soo; Park, Jeong Woo; Kim, Won-Gi; Chung, Jusung; Jeong, Chan Bae; Kim, Hyun Jae

    2016-01-01

    A new technique is proposed for the activation of low temperature amorphous InGaZnO thin film transistor (a-IGZO TFT) backplanes through application of a bias voltage and annealing at 130 °C simultaneously. In this ‘electrical activation’, the effects of annealing under bias are selectively focused in the channel region. Therefore, electrical activation can be an effective method for lower backplane processing temperatures from 280 °C to 130 °C. Devices fabricated with this method exhibit equivalent electrical properties to those of conventionally-fabricated samples. These results are analyzed electrically and thermodynamically using infrared microthermography. Various bias voltages are applied to the gate, source, and drain electrodes while samples are annealed at 130 °C for 1 hour. Without conventional high temperature annealing or electrical activation, current-voltage curves do not show transfer characteristics. However, electrically activated a-IGZO TFTs show superior electrical characteristics, comparable to the reference TFTs annealed at 280 °C for 1 hour. This effect is a result of the lower activation energy, and efficient transfer of electrical and thermal energy to a-IGZO TFTs. With this approach, superior low-temperature a-IGZO TFTs are fabricated successfully. PMID:27725695

  19. Electric Field-aided Selective Activation for Indium-Gallium-Zinc-Oxide Thin Film Transistors.

    PubMed

    Lee, Heesoo; Chang, Ki Soo; Tak, Young Jun; Jung, Tae Soo; Park, Jeong Woo; Kim, Won-Gi; Chung, Jusung; Jeong, Chan Bae; Kim, Hyun Jae

    2016-10-11

    A new technique is proposed for the activation of low temperature amorphous InGaZnO thin film transistor (a-IGZO TFT) backplanes through application of a bias voltage and annealing at 130 °C simultaneously. In this 'electrical activation', the effects of annealing under bias are selectively focused in the channel region. Therefore, electrical activation can be an effective method for lower backplane processing temperatures from 280 °C to 130 °C. Devices fabricated with this method exhibit equivalent electrical properties to those of conventionally-fabricated samples. These results are analyzed electrically and thermodynamically using infrared microthermography. Various bias voltages are applied to the gate, source, and drain electrodes while samples are annealed at 130 °C for 1 hour. Without conventional high temperature annealing or electrical activation, current-voltage curves do not show transfer characteristics. However, electrically activated a-IGZO TFTs show superior electrical characteristics, comparable to the reference TFTs annealed at 280 °C for 1 hour. This effect is a result of the lower activation energy, and efficient transfer of electrical and thermal energy to a-IGZO TFTs. With this approach, superior low-temperature a-IGZO TFTs are fabricated successfully.

  20. Pulsed direct flame deposition and thermal annealing of transparent amorphous indium zinc oxide films as active layers in field effect transistors.

    PubMed

    Kilian, Daniel; Polster, Sebastian; Vogeler, Isabell; Jank, Michael P M; Frey, Lothar; Peukert, Wolfgang

    2014-08-13

    Indium-zinc oxide (IZO) films were deposited via flame spray pyrolysis (FSP) by pulsewise shooting a Si/SiO2 substrate directly into the combustion area of the flame. Based on UV-vis measurements of thin-films deposited on glass substrates, the optimal deposition parameters with respect to low haze values and film thicknesses of around 100 nm were determined. Thermal annealing of the deposited films at temperatures between 300 and 700 °C was carried out and staggered bottom gate thin-film transistors (TFT) were fabricated. The thin films were investigated by scanning electron microscopy, atomic force microscopy, X-ray diffraction, Fourier transformed infrared spectroscopy, and room-temperature photoluminescence measurements. The outcome of these investigations lead to two major requirements in order to implement a working TFT: (i) organic residues from the deposition process need to be removed and (ii) the net free charge carrier concentration has to be minimized by controlling the trap states in the semiconductor. The optimal annealing temperature was 300 °C as both requirements are fulfilled best in this case. This leads to field effect transistors with a low hysteresis, a saturation mobility of μSat = 0.1 cm(2)/(V s), a threshold voltage of Vth = -18.9 V, and an Ion/Ioff ratio on the order of 10(7). Depending on thermal treatment, the defect density changes significantly strongly influencing the transfer characteristics of the device.

  1. Optimization of the optical and electrical properties of electron beam evaporated aluminum-doped zinc oxide films for opto-electronic applications

    NASA Astrophysics Data System (ADS)

    Ali, H. M.; Abd El-Raheem, M. M.; Megahed, N. M.; Mohamed, H. A.

    2006-08-01

    Aluminum-doped zinc oxide (AZO) thin films have been deposited by electron beam evaporation technique on glass substrates. The structural, electrical and optical properties of AZO films have been investigated as a function of annealing temperature. It was observed that the optical properties such as transmittance, reflectance, optical band gap and refractive index of AZO films were strongly affected by annealing temperature. The transmittance values of 84% in the visible region and 97% in the NIR region were obtained for AZO film annealed at 475 °C. The room temperature electrical resistivity of 4.6×10-3 Ω cm has been obtained at the same temperature of annealing. It was found that the calculated refractive index has been affected by the packing density of the thin films, whereas, the high annealing temperature gave rise to improve the homogeneity of the films. The single-oscillator model was used to analyze the optical parameters such as the oscillator and dispersion energies.

  2. The effect of the solution flow rate on the properties of zinc oxide (ZnO) thin films deposited by ultrasonic spray

    NASA Astrophysics Data System (ADS)

    Attaf, A.; Benkhetta, Y.; Saidi, H.; Bouhdjar, A.; Bendjedidi, H.; Nouadji, M.; Lehraki, N.

    2015-03-01

    In this work, we used a system based on ultrasonic spray pyrolysis technique. By witch, we have deposited thin films of zinc oxide (ZnO) with the variation of solution flow rate from 50 ml / h to 150 ml / h, and set other parameters such as the concentration of the solution, the deposition time, substrate temperature and the nozzel -substrate distance. In order to study the influence of the solution flow rate on the properties of the films produced, we have several characterization techniques such as X-ray diffraction to determine the films structure, the scanning electron microscopy SEM for the morphology of the surfaces, EDS spectroscopy for the chemical composition, UV-Visible-Nir spectroscopy for determination the optical proprieties of thin films.The experimental results show that: the films have hexagonal structure at the type (wurtzite), the average size of grains varies from 20.11 to 32.45 nm, the transmittance of the films equals 80% in visible rang and the band gap is varied between 3.274 and 3.282 eV, when the solution flow rate increases from 50 to 150 ml/h.

  3. Improvement of Electrical Characteristics and Stability of Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Using Nitrocellulose Passivation Layer.

    PubMed

    Shin, Kwan Yup; Tak, Young Jun; Kim, Won-Gi; Hong, Seonghwan; Kim, Hyun Jae

    2017-04-19

    In this research, nitrocellulose is proposed as a new material for the passivation layers of amorphous indium gallium zinc oxide thin film transistors (a-IGZO TFTs). The a-IGZO TFTs with nitrocellulose passivation layers (NC-PVLs) demonstrate improved electrical characteristics and stability. The a-IGZO TFTs with NC-PVLs exhibit improvements in field-effect mobility (μ FE ) from 11.72 ± 1.14 to 20.68 ± 1.94 cm 2 /(V s), threshold voltage (V th ) from 1.85 ± 1.19 to 0.56 ± 0.35 V, and on/off current ratio (I on/off ) from (5.31 ± 2.19) × 10 7 to (4.79 ± 1.54) × 10 8 compared to a-IGZO TFTs without PVLs, respectively. The V th shifts of a-IGZO TFTs without PVLs, with poly(methyl methacrylate) (PMMA) PVLs, and with NC-PVLs under positive bias stress (PBS) test for 10,000 s represented 5.08, 3.94, and 2.35 V, respectively. These improvements were induced by nitrogen diffusion from NC-PVLs to a-IGZO TFTs. The lone-pair electrons of diffused nitrogen attract weakly bonded oxygen serving as defect sites in a-IGZO TFTs. Consequently, the electrical characteristics are improved by an increase of carrier concentration in a-IGZO TFTs, and a decrease of defects in the back channel layer. Also, NC-PVLs have an excellent property as a barrier against ambient gases. Therefore, the NC-PVL is a promising passivation layer for next-generation display devices that simultaneously can improve electrical characteristics and stability against ambient gases.

  4. Influence of Sulfide Nanoparticles on Dissolved Mercury and Zinc Quantification by Diffusive Gradient in Thin-Film Passive Samplers.

    PubMed

    Pham, Anh Le-Tuan; Johnson, Carol; Manley, Devon; Hsu-Kim, Heileen

    2015-11-03

    Diffusive gradient in thin-film (DGT) passive samplers are frequently used to monitor the concentrations of metals such as mercury and zinc in sediments and other aquatic environments. The application of these samplers generally presumes that they quantify only the dissolved fraction and not particle-bound metal species that are too large to migrate into the sampler. However, metals associated with very small nanoparticles (smaller than the pore size of DGT samplers) can be abundant in certain environments, yet the implications of these nanoparticles for DGT measurements are unclear. The objective of this study was to determine how the performance of the DGT sampler is affected by the presence of nanoparticulate species of Hg and Zn. DGT samplers were exposed to solutions containing known amounts of dissolved Hg(II) and nanoparticulate HgS (or dissolved Zn(II) and nanoparticulate ZnS). The amounts of Hg and Zn accumulated onto the DGT samplers were quantified over hours to days, and the rates of diffusion of the dissolved metal (i.e., the effective diffusion coefficient D) into the sampler's diffusion layer were calculated and compared for solutions containing varying concentrations of nanoparticles. The results suggested that the nanoparticles deposited on the surface of the samplers might have acted as sorbents, slowing the migration of the dissolved species into the samplers. The consequence was that the DGT sampler data underestimated the dissolved metal concentration in the solution. In addition, X-ray absorption spectroscopy was employed to determine the speciation of the Hg accumulated on the sampler binding layer, and the results indicated that HgS nanoparticles did not appear to directly contribute to the DGT measurement. Overall, our findings suggest that the deployment of DGT samplers in settings where nanoparticles are relevant (e.g., sediments) may result in DGT data that incorrectly estimated the dissolved metal concentrations. Models for metal uptake

  5. Structural properties of perovskite films on zinc oxide nanoparticles-reduced graphene oxide (ZnO-NPs/rGO) prepared by electrophoretic deposition technique

    NASA Astrophysics Data System (ADS)

    Bahtiar, Ayi; Nurazizah, Euis Siti; Latiffah, Efa; Risdiana, Furukawa, Yukio

    2018-02-01

    Perovskite solar cells highly believed as next generation solar cells to replace currently available inorganic silicon solar cells due to their high power conversion efficiency and easy processing to thin films using solution processing techniques. Performance and stability, however still need to be improved for mass production and widely used for public electricity generation. Perovskite solar cells are commonly deposited on Titanium Dioxide (TiO2) film as an effective electron transport layer (ETL). We used Zinc Oxide nanoparticles (ZnO-NPs) as ETL in perovskite solar cells due to the low temperature required for crystallization and can be formed into different shapes of nanostructures. However, perovskite film can easily degrade into insulating lead iodide due to deprotonation of the methylammoniumcation at the surface of ZnO-NPs, in particular when it stored in ambient air with high relative humidity. The degradation of perovskite layer is therefore needed to be overcome. Here, we capped ZnO-NPs with reduced graphene oxide (rGO) to overcome the degradation of perovskite film where ZnO-NPs is synthesized by sol-gel method. The average nanoparticle size of ZnO is 15 nm. ZnO-NPs and ZnO-NPs-rGO films are prepared using electrophoretic deposition technique, which can produce large area with good homogeneity and high reproducibility. The stability of perovskite layer can significantly be improved by capping ZnO with rGO, which is indicated by absence of color change of perovskite after storage for 5 (five) days in ambient air with relative humidity above 95%. Moreover, the X-Ray Diffaction peaks of perovskite film are more preserved when deposited on ZnO/rGO film than using only ZnO film. We strongly believe, by capping ZnO film with rGO, both the performance and stability of perovskite solar cells can be improved significantly.

  6. Sprayed zinc oxide films: Ultra-violet light-induced reversible surface wettability and platinum-sensitization-assisted improved liquefied petroleum gas response.

    PubMed

    Nakate, Umesh T; Patil, Pramila; Bulakhe, R N; Lokhande, C D; Kale, Sangeeta N; Naushad, Mu; Mane, Rajaram S

    2016-10-15

    We report the rapid (superhydrophobic to superhydrophilic) transition property and improvement in the liquefied petroleum gas (LPG) sensing response of zinc oxide (ZnO) nanorods (NRs) on UV-irradiation and platinum (Pt) surface sensitization, respectively. The morphological evolution of ZnO NRs is evidenced from the field emission scanning electron microscope and atomic force microscope digital images and for the structural elucidation X-ray diffraction pattern is used. Elemental survey mapping is obtained from energy dispersive X-ray analysis spectrum. The optical properties have been studied by UV-Visible and photoluminescence spectroscopy measurements. The rapid (120sec) conversion of superhydrophobic (154°) ZnO NRs film to superhydrophilic (7°) is obtained under UV light illumination and the superhydrophobicity is regained by storing sample in dark. The mechanism for switching wettability behavior of ZnO NRs has thoroughly been discussed. In second phase, Pt-sensitized ZnO NRs film has demonstrated considerable gas sensitivity at 260ppm concentration of LPG. At 623K operating temperature, the maximum LPG response of 58% and the response time of 49sec for 1040ppm LPG concentration of Pt- sensitized ZnO NRs film are obtained. This higher LPG response of Pt-sensitized ZnO NRs film over pristine is primarily due to electronic effect and catalytic effect (spill-over effect) caused by an additional of Pt on ZnO NRs film surface. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Positive Bias Instability of Bottom-Gate Zinc Oxide Thin-Film Transistors with a SiOx/SiNx-Stacked Gate Insulator

    NASA Astrophysics Data System (ADS)

    Furuta, Mamoru; Kamada, Yudai; Hiramatsu, Takahiro; Li, Chaoyang; Kimura, Mutsumi; Fujita, Shizuo; Hirao, Takashi

    2011-03-01

    The positive bias instabilities of the zinc oxide thin-film transistors (ZnO TFTs) with a SiOx/SiNx-stacked gate insulator have been investigated. The film quality of a gate insulator of SiOx, which forms an interface with the ZnO channel, was varied by changing the gas mixture ratio of SiH4/N2O/N2 during plasma-enhanced chemical vapor deposition. The positive bias stress endurance of ZnO TFT strongly depended on the deposition condition of the SiOx gate insulator. From the relaxations of the transfer curve shift after imposition of positive bias stress, transfer curves could not be recovered completely without any thermal annealing. A charge trapping in a gate insulator rather than that in bulk ZnO and its interface with a gate insulator is a dominant instability mechanism of ZnO TFTs under positive bias stress.

  8. Improvement of Self-Heating of Indium Gallium Zinc Aluminum Oxide Thin-Film Transistors Using Al2O3 Barrier Layer

    NASA Astrophysics Data System (ADS)

    Jian, Li-Yi; Lee, Hsin-Ying; Lin, Yung-Hao; Lee, Ching-Ting

    2018-02-01

    To study the self-heating effect, aluminum oxide (Al2O3) barrier layers of various thicknesses have been inserted between the channel layer and insulator layer in bottom-gate-type indium gallium zinc aluminum oxide (IGZAO) thin-film transistors (TFTs). Each IGZAO channel layer was deposited on indium tin oxide (ITO)-coated glass substrate by using a magnetron radiofrequency cosputtering system with dual targets composed of indium gallium zinc oxide (IGZO) and Al. The 3 s orbital of Al cation provided an extra transport pathway and widened the conduction-band bottom, thus increasing the electron mobility of the IGZAO films. The Al-O bonds were able to sustain the oxygen stability of the IGZAO films. The self-heating behavior of the resulting IGZAO TFTs was studied by Hall measurements on the IGZAO films as well as the electrical performance of the IGZAO TFTs with Al2O3 barrier layers of various thicknesses at different temperatures. IGZAO TFTs with 50-nm-thick Al2O3 barrier layer were stressed by positive gate bias stress (PGBS, at gate-source voltage V GS = 5 V and drain-source voltage V DS = 0 V); at V GS = 5 V and V DS = 10 V, the threshold voltage shifts were 0.04 V and 0.2 V, respectively, much smaller than for the other IGZAO TFTs without Al2O3 barrier layer, which shifted by 0.2 V and 1.0 V when stressed under the same conditions.

  9. Influence of gamma ray irradiation and annealing temperature on the optical constants and spectral dispersion parameters of metal-free and zinc tetraphenylporphyrin thin films: A comparative study.

    PubMed

    Zeyada, H M; Makhlouf, M M; El-Nahass, M M

    2015-09-05

    In this work, we report on the effect of γ-ray irradiation and annealing temperature on the optical properties of metal-free tetraphenylporphyrin, H2TPP, and zinc tetraphenylporphyrin, ZnTPP, thin films. Thin films of H2TPP and ZnTPP were successfully prepared by the thermal evaporation technique. The optical properties of H2TPP and ZnTPP films were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence of light in the wavelength range from 200 to 2500 nm. The absorption spectra of H2TPP showed four absorption bands, namely the Q, B, N and M bands. The effect of inserting Zn atom into the cavity of porphyrin macrocycle in ZnTPP molecule distorted the Q and B bands, reduced the width of absorption region and influenced the optical constants and dispersion parameters. In all conditions, the type of electron transition is indirect allowed transition. Anomalous dispersion is observed in the absorption region but normal dispersion occurs in the transparent region of spectra. We adopted multi-oscillator model and the single oscillator model to interpret the anomalous and normal dispersion, respectively. We have found that the annealing temperature has mostly the opposite effect of γ-ray irradiation on absorption and dispersion characteristics of these films. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. On the origin of the changes in the opto-electrical properties of boron-doped zinc oxide films after plasma surface treatment for thin-film silicon solar cell applications

    NASA Astrophysics Data System (ADS)

    Le, Anh Huy Tuan; Kim, Youngkuk; Lee, Youn-Jung; Hussain, Shahzada Qamar; Nguyen, Cam Phu Thi; Lee, Jaehyung; Yi, Junsin

    2018-03-01

    The modification of the steep and sharp valleys on the surface of the boron-doped zinc oxide (BZO) front electrodes by plasma surface treatment is a critical process for avoiding a significant reduction in the electrical performance of thin-film silicon solar cells. In this work, we report the origin of the changes in the electrical and optical properties of the BZO films that occur after this process. On the basis of an analysis of the chemical states, we found an improvement of the carrier concentration along with the treatment time that was mainly due to an increase of the oxygen vacancy. This indicated a deficiency of the oxygen in the BZO films under argon-ion bombardment. The red-shift of the A1 longitudinal optical mode frequency in the Raman spectra that was attributed to the existence of vacancy point defects within the films also strengthened this argument. The significant reduction of the haze ratio as well as the appearance of interference peaks on the transmittance spectra as the treatment time was increased were mainly due to the smoothing of the film surface, which indicated a degradation of the light-scattering capability of the BZO films. We also observed a gain of the visible-region transmittance that was attributed to the decrease of the thickness of the BZO films after the plasma surface treatment, instead of the crystallinity improvement. On the basis of our findings, we have proposed a further design rule of the BZO front electrodes for thin-film silicon solar cell applications.

  11. Zinc Enzymes.

    ERIC Educational Resources Information Center

    Bertini, I.; And Others

    1985-01-01

    Discusses the role of zinc in various enzymes concerned with hydration, hydrolysis, and redox reactions. The binding of zinc to protein residues, properties of noncatalytic zinc(II) and catalytic zinc, and the reactions catalyzed by zinc are among the topics considered. (JN)

  12. Tuning the surface morphology of aluminium doped zinc oxide thin films by arrayed nanorods through chemical growth process

    NASA Astrophysics Data System (ADS)

    Devasia, Sebin; Anila, E. I.

    2018-04-01

    Here we report the growth and characterization of chemically grown aluminium doped zinc oxide nanorods on seed layers. The seed layers were prepared by chemical spray pyrolysis which acted as the growth centers. The growth duration of nanorods were varied from 3h to 12h in steps of 3h. Further, investigations on their structural, morphological, electrical and optical properties. The SEM images confirmed the hexagonal shaped nanorod arrays grown on the seed layers. Later, the x-ray diffraction measurements revealed the pure zinc oxide phase of the samples. Photoluminescence and photoconductivity studies were carried out to analyze the potential of its optoelectronic properties.

  13. The effect of temperature and addition of reducing agent on sodium stannate preparation from cassiterite by the alkaline roasting process

    NASA Astrophysics Data System (ADS)

    Lalasari, Latifa Hanum; Andriyah, Lia; Arini, Tri; Firdiyono, F.

    2018-04-01

    Sodium stannate is an intermediate compound with the formula Na2SnO3. This compound is easily dissolved in water and has many applications in the electroplating industry, tin alloy production, and catalysts for organic synthesis. In this occasion was investigated the effect of temperature and the addition of reducing agent on making of sodium stannate phase from cassiterite by an alkaline roasting process using sodium carbonate (Na2CO3). Firstly, cassiterite was roasted at 700 °C for 3 hours and continued leaching process using 10% HCl solution at 110 °C for 2 hours. The cassiterite residue than was dried at 110 °C and mixed homogenously with a Na2CO3 decomposer at a mass ratio Na2CO3/cassiterite as 5:3 for the decomposition process. It was done by variation temperatures (300 °C, 700 °C, 800 °C, 870 °C, 900 °C) for 3 hours, variation times (3, 4, 5 hours) at a roasting temperature of 700 °C and addition of reducing agent such as sub-bituminous coal. The result of the experiment shows that cassiterite prepared by roasting and acid leaching process has the chemical composition as follows: 59.98% Sn, 22.58% O, 3.20% Ce, 3.15% La, 2.57% Nd, 1.67% Ti, 1.56% Fe, 1.24% P, 0.62% Ca and others. The Na2SnO3 phase begins to form at a roasting temperature of 870 °C for 3 hours. Although the roasting times was extended from 3 hours to 5 hours at 700 °C, the Na2SnO3 phase also has not yet formed. In other conditions, the addition of coal reducing agent to the roasting process would cause formations of Sn metal besides Na2SnO3 phase at 870 °C. At temperatures lower than 870 °C, the addition of coal only forms Sn metal, whereas the sodium stannate phase is not formed.

  14. Zirconium-based conversion film formation on zinc, aluminium and magnesium oxides and their interactions with functionalized molecules

    NASA Astrophysics Data System (ADS)

    Fockaert, L. I.; Taheri, P.; Abrahami, S. T.; Boelen, B.; Terryn, H.; Mol, J. M. C.

    2017-11-01

    Zirconium-based conversion treatment of zinc, aluminium and magnesium oxides have been studied in-situ using ATR-FTIR in a Kretschmann geometry. This set-up was coupled to an electrochemical cell, which allowed to obtain chemical and electrochemical information simultaneously as a function of conversion time. This elucidated the strong relation between physico-chemical surface properties and zirconium-based conversion kinetics. Whereas the surface hydroxyl density of zinc and aluminium increased during conversion, magnesium (hydr)oxide was shown to dissolve in the acid solution. Due to this dissolution, strong surface alkalization can be expected, explaining the rapid conversion kinetics. AES depth profiling was used to determine the final oxide thickness and elemental composition. This confirmed that magnesium is most active and forms a zirconium oxide layer approximately 10 times thicker than zinc. On the other hand, the presence of zirconium oxide on aluminium is very low and can be considered as not fully covering the metal oxide. Additionally, the converted oxide chemistry was related to the bonding mechanisms of amide functionalized molecules using ATR-FTIR and XPS. It was shown that inclusion of zirconium altered the acid-base properties, increasing the substrate proton donating capabilities in case of magnesium oxide and increasing hydrogen bonding and Bronsted interactions due to increased surface hydroxide fractions on zinc and aluminium substrates.

  15. Synergistic effects of water addition and step heating on the formation of solution-processed zinc tin oxide thin films: towards high-mobility polycrystalline transistors

    NASA Astrophysics Data System (ADS)

    Huang, Genmao; Duan, Lian; Zhao, Yunlong; Zhang, Yunge; Dong, Guifang; Zhang, Deqiang; Qiu, Yong

    2016-11-01

    Thin-film transistors (TFTs) with high mobility and good uniformity are attractive for next-generation flat panel displays. In this work, solution-processed polycrystalline zinc tin oxide (ZTO) thin film with well-ordered microstructure is prepared, thanks to the synergistic effect of water addition and step heating. The step heating treatment other than direct annealing induces crystallization, while adequate water added to precursor solution further facilitates alloying and densification process. The optimal polycrystalline ZTO film is free of hierarchical sublayers, and featured with an increased amount of ternary phases, as well as a decreased fraction of oxygen vacancies and hydroxides. TFT devices based on such an active layer exhibit a remarkable field-effect mobility of 52.5 cm2 V-1 s-1, a current on/off ratio of 2 × 105, a threshold voltage of 2.32 V, and a subthreshold swing of 0.36 V dec-1. Our work offers a facile method towards high-performance solution-processed polycrystalline metal oxide TFTs.

  16. Addressing the selectivity issue of cobalt doped zinc oxide thin film iso-butane sensors: Conductance transients and principal component analyses

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Majumder, S. B.

    2017-07-01

    Iso-butane (i-C4H10) is one of the major components of liquefied petroleum gas which is used as fuel in domestic and industrial applications. Developing chemi-resistive selective i-C4H10 thin film sensors remains a major challenge. Two strategies were undertaken to differentiate carbon monoxide, hydrogen, and iso-butane gases from the measured conductance transients of cobalt doped zinc oxide thin films. Following the first strategy, the response and recovery transients of conductances in these gas environments are fitted using the Langmuir adsorption kinetic model to estimate the heat of adsorption, response time constant, and activation energies for adsorption (response) and desorption (recovery). Although these test gases have seemingly different vapor densities, molecular diameters, and reactivities, analyzing the estimated heat of adsorption and activation energies (for both adsorption and desorption), we could not differentiate these gases unequivocally. However, we have found that the lower the vapor density, the faster the response time irrespective of the test gas concentration. As a second strategy, we demonstrated that feature extraction of conductance transients (using fast Fourier transformation) in conjunction with the pattern recognition algorithm (principal component analysis) is more fruitful to address the cross-sensitivity of Co doped ZnO thin film sensors. We have found that although the dispersion among different concentrations of hydrogen and carbon monoxide could not be avoided, each of these three gases forms distinct clusters in the plot of principal component 2 versus 1 and therefore could easily be differentiated.

  17. 2DEGs at Perovskite Interfaces between KTaO3 or KNbO3 and Stannates

    PubMed Central

    Fan, Xiaofeng; Zheng, Weitao; Chen, Xin; Singh, David J.

    2014-01-01

    We report density functional studies of electron rich interfaces between KTaO3 or KNbO3 and CaSnO3 or ZnSnO3 and in particular the nature of the interfacial electron gasses that can be formed. We find that depending on the details these may occur on either the transition metal or stannate sides of the interface and in the later case can be shifted away from the interface by ferroelectricity. We also present calculations for bulk KNbO3, KTaO3, CaSnO3, BaSnO3 and ZnSnO3, showing the different transport and optical properties that may be expected on the two sides of such interfaces. The results suggest that these interfaces may display a wide range of behaviors depending on conditions, and in particular the interplay with ferroelectricity suggests that electrical control of these properties may be possible. PMID:24626191

  18. Formation of Indium-Doped Zinc Oxide Thin Films Using Ultrasonic Spray Pyrolysis: The Importance of the Water Content in the Aerosol Solution and the Substrate Temperature for Enhancing Electrical Transport

    PubMed Central

    Biswal, Rajesh; Castañeda, Luis; Moctezuma, Rosario; Vega-Pérez, Jaime; De La Luz Olvera, María; Maldonado, Arturo

    2012-01-01

    Indium doped zinc oxide [ZnO:In] thin films have been deposited at 430°C on soda-lime glass substrates by the chemical spray technique, starting from zinc acetate and indium acetate. Pulverization of the solution was done by ultrasonic excitation. The variations in the electrical, structural, optical, and morphological characteristics of ZnO:In thin films, as a function of both the water content in the starting solution and the substrate temperature, were studied. The electrical resistivity of ZnO:In thin films is not significantly affected with the increase in the water content, up to 200 mL/L; further increase in water content causes an increase in the resistivity of the films. All films show a polycrystalline character, fitting well with the hexagonal ZnO wurtzite-type structure. No preferential growth in samples deposited with the lowest water content was observed, whereas an increase in water content gave rise to a (002) growth. The surface morphology of the films shows a consistency with structure results, as non-geometrical shaped round grains were observed in the case of films deposited with the lowest water content, whereas hexagonal slices, with a wide size distribution were observed in the other cases. In addition, films deposited with the highest water content show a narrow size distribution. PMID:28817056

  19. Formation of Indium-Doped Zinc Oxide Thin Films Using Ultrasonic Spray Pyrolysis: The Importance of the Water Content in the Aerosol Solution and the Substrate Temperature for Enhancing Electrical Transport.

    PubMed

    Biswal, Rajesh; Castañeda, Luis; Moctezuma, Rosario; Vega-Pérez, Jaime; Olvera, María De La Luz; Maldonado, Arturo

    2012-03-12

    Indium doped zinc oxide [ZnO:In] thin films have been deposited at 430°C on soda-lime glass substrates by the chemical spray technique, starting from zinc acetate and indium acetate. Pulverization of the solution was done by ultrasonic excitation. The variations in the electrical, structural, optical, and morphological characteristics of ZnO:In thin films, as a function of both the water content in the starting solution and the substrate temperature, were studied. The electrical resistivity of ZnO:In thin films is not significantly affected with the increase in the water content, up to 200 mL/L; further increase in water content causes an increase in the resistivity of the films. All films show a polycrystalline character, fitting well with the hexagonal ZnO wurtzite-type structure. No preferential growth in samples deposited with the lowest water content was observed, whereas an increase in water content gave rise to a (002) growth. The surface morphology of the films shows a consistency with structure results, as non-geometrical shaped round grains were observed in the case of films deposited with the lowest water content, whereas hexagonal slices, with a wide size distribution were observed in the other cases. In addition, films deposited with the highest water content show a narrow size distribution.

  20. Defect free C-axis oriented zinc oxide (ZnO) films grown at room temperature using RF magnetron sputtering

    SciT

    Kunj, Saurabh, E-mail: saurabhkunj22@gmail.com; Sreenivas, K.

    2016-05-23

    Radio frequency Magnetron sputtering technique was employed to fabricate ZnO thin films on quartz substrate at room temperature. The effect of varying oxygen to argon (O{sub 2}/Ar) gas ratio on the structural and photoluminescence properties of the film is analyzed.X-ray diffraction (XRD) spectra reveals the formation of hexagonal wurtzite structured ZnO thin films with preferred orientation along (002) plane. Photoluminescence (PL) characterization reveals the preparation of highly crystalline films exhibiting intense Ultraviolet (UV) emission with negligible amount of defects as indicated by the absence of Deep Level Emission (DLE) in the PL spectra.

  1. Defect free C-axis oriented zinc oxide (ZnO) films grown at room temperature using RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kunj, Saurabh; Sreenivas, K.

    2016-05-01

    Radio frequency Magnetron sputtering technique was employed to fabricate ZnO thin films on quartz substrate at room temperature. The effect of varying oxygen to argon (O2/Ar) gas ratio on the structural and photoluminescence properties of the film is analyzed.X-ray diffraction (XRD) spectra reveals the formation of hexagonal wurtzite structured ZnO thin films with preferred orientation along (002) plane. Photoluminescence (PL) characterization reveals the preparation of highly crystalline films exhibiting intense Ultraviolet (UV) emission with negligible amount of defects as indicated by the absence of Deep Level Emission (DLE) in the PL spectra.

  2. Highly stable field emission from ZnO nanowire field emitters controlled by an amorphous indium–gallium–zinc-oxide thin film transistor

    NASA Astrophysics Data System (ADS)

    Li, Xiaojie; Wang, Ying; Zhang, Zhipeng; Ou, Hai; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2018-04-01

    Lowering the driving voltage and improving the stability of nanowire field emitters are essential for them to be applied in devices. In this study the characteristics of zinc oxide (ZnO) nanowire field emitter arrays (FEAs) controlled by an amorphous indium–gallium–zinc-oxide thin film transistor (a-IGZO TFT) were studied. A low driving voltage along with stabilization of the field emission current were achieved. Modulation of field emission currents up to three orders of magnitude was achieved at a gate voltage of 0–32 V for a constant anode voltage. Additionally, a-IGZO TFT control can dramatically reduce the emission current fluctuation (i.e., from 46.11 to 1.79% at an emission current of ∼3.7 µA). Both the a-IGZO TFT and ZnO nanowire FEAs were prepared on glass substrates in our research, demonstrating the feasibility of realizing large area a-IGZO TFT-controlled ZnO nanowire FEAs.

  3. Gate bias stress stability under light irradiation for indium zinc oxide thin-film transistors based on anodic aluminium oxide gate dielectrics

    NASA Astrophysics Data System (ADS)

    Li, Min; Lan, Linfeng; Xu, Miao; Wang, Lei; Xu, Hua; Luo, Dongxiang; Zou, Jianhua; Tao, Hong; Yao, Rihui; Peng, Junbiao

    2011-11-01

    Thin-film transistors (TFTs) using indium zinc oxide as the active layer and anodic aluminium oxide (Al2O3) as the gate dielectric layer were fabricated. The device showed an electron mobility of as high as 10.1 cm2 V-1 s-1, an on/off current ratio of as high as ~108, and a turn-on voltage (Von) of only -0.5 V. Furthermore, this kind of TFTs was very stable under positive bias illumination stress. However, when the device experienced negative bias illumination stress, the threshold voltage shifted to the positive direction. It was found that the instability under negative bias illumination stress (NBIS) was due to the electrons from the Al gate trapping into the Al2O3 dielectric when exposed to the illuminated light. Using a stacked structure of Al2O3/SiO2 dielectrics, the device became more stable under NBIS.

  4. Influences of Gate Bias and Light Stresses on Device Characteristics of High-Energy Electron-Beam-Irradiated Indium Gallium Zinc Oxide Based Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Yu, Kyeong Min; Moon, Hye Ji; Ryu, Min Ki; Cho, Kyoung Ik; Yun, Eui-Jung; Bae, Byung Seong

    2012-09-01

    Under white light illumination, amorphous indium-gallium-zinc oxide (a-IGZO)-based thin-film transistors (TFTs) showed a large negative shift of threshold voltage of more than -15 V depending on the process conditions. We investigated the influences of both gate bias and white light illumination on device properties of IGZO-based TFTs untreated and treated with high-energy electron beam irradiation (HEEBI). The TFTs were treated with HEEBI in air at room temperature (RT), electron beam energy of 0.8 MeV, and a dose of 1×1014 electrons/cm2. The HEEBI-treated TFTs showed an improved stability under negative bias illumination stress (NBIS) and positive bias illumination stress (PBIS) compared with non-HEEBI-treated TFTs, suggesting that the acceptor-like defects might be generated by HEEBI treatment near the valence band edge.

  5. A thermalization energy analysis of the threshold voltage shift in amorphous indium gallium zinc oxide thin film transistors under positive gate bias stress

    SciT

    Niang, K. M.; Flewitt, A. J., E-mail: ajf@eng.cam.ac.uk; Barquinha, P. M. C.

    Thin film transistors (TFTs) employing an amorphous indium gallium zinc oxide (a-IGZO) channel layer exhibit a positive shift in the threshold voltage under the application of positive gate bias stress (PBS). The time and temperature dependence of the threshold voltage shift was measured and analysed using the thermalization energy concept. The peak energy barrier to defect conversion is extracted to be 0.75 eV and the attempt-to-escape frequency is extracted to be 10{sup 7} s{sup −1}. These values are in remarkable agreement with measurements in a-IGZO TFTs under negative gate bias illumination stress (NBIS) reported recently (Flewitt and Powell, J. Appl. Phys.more » 115, 134501 (2014)). This suggests that the same physical process is responsible for both PBS and NBIS, and supports the oxygen vacancy defect migration model that the authors have previously proposed.« less

  6. Alumina nanoparticle/polymer nanocomposite dielectric for flexible amorphous indium-gallium-zinc oxide thin film transistors on plastic substrate with superior stability

    SciT

    Lai, Hsin-Cheng; Pei, Zingway, E-mail: zingway@dragon.nchu.edu.tw; Graduate Institute of Optoelectronic Engineering, National Chung Hsing University, Taichung 40227, Taiwan

    In this study, the Al{sub 2}O{sub 3} nanoparticles were incorporated into polymer as a nono-composite dielectric for used in a flexible amorphous Indium-Gallium-Zinc Oxide (a-IGZO) thin-film transistor (TFT) on a polyethylene naphthalate substrate by solution process. The process temperature was well below 100 °C. The a-IGZO TFT exhibit a mobility of 5.13 cm{sup 2}/V s on the flexible substrate. After bending at a radius of 4 mm (strain = 1.56%) for more than 100 times, the performance of this a-IGZO TFT was nearly unchanged. In addition, the electrical characteristics are less altered after positive gate bias stress at 10 V for 1500 s. Thus, this technology ismore » suitable for use in flexible displays.« less

  7. Thin-film transistors based on poly(3,3‴-dialkyl-quarterthiophene) and zinc oxide nanowires with improved ambient stability

    NASA Astrophysics Data System (ADS)

    Vieira, Sara M. C.; Hsieh, Gen-Wen; Unalan, Husnu E.; Dag, Sefa; Amaratunga, Gehan A. J.; Milne, William I.

    2011-03-01

    The ambient stability of thin-film transistors (TFTs) based on zinc oxide (ZnO) nanowires embedded in poly(3,3‴-dialkyl-quarterthiophene) was monitored through time dependence of electrical characteristics over a period of 16 months. The hybrid-based TFT showed an initial hole mobility in the linear regime of 4.2×10-4 cm2/V s. After 16 months storage in ambient conditions (exposed to air, moisture, and light) the mobility decreased to 2.3×10-5 cm2/V s. Comparatively the organic-based TFT lost total carrier mobility after one month storage making the hybrid-based TFTs more suitable for transistor applications when improved stability combined with structural flexibility are required.

  8. Back-channel-etch amorphous indium-gallium-zinc oxide thin-film transistors: The impact of source/drain metal etch and final passivation

    NASA Astrophysics Data System (ADS)

    Nag, Manoj; Bhoolokam, Ajay; Steudel, Soeren; Chasin, Adrian; Myny, Kris; Maas, Joris; Groeseneken, Guido; Heremans, Paul

    2014-11-01

    We report on the impact of source/drain (S/D) metal (molybdenum) etch and the final passivation (SiO2) layer on the bias-stress stability of back-channel-etch (BCE) configuration based amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). It is observed that the BCE configurations TFTs suffer poor bias-stability in comparison to etch-stop-layer (ESL) TFTs. By analysis with transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS), as well as by a comparative analysis of contacts formed by other metals, we infer that this poor bias-stability for BCE transistors having Mo S/D contacts is associated with contamination of the back channel interface, which occurs by Mo-containing deposits on the back channel during the final plasma process of the physical vapor deposited SiO2 passivation.

  9. Effect of Al2O3 insulator thickness on the structural integrity of amorphous indium-gallium-zinc-oxide based thin film transistors.

    PubMed

    Kim, Hak-Jun; Hwang, In-Ju; Kim, Youn-Jea

    2014-12-01

    The current transparent oxide semiconductors (TOSs) technology provides flexibility and high performance. In this study, multi-stack nano-layers of TOSs were designed for three-dimensional analysis of amorphous indium-gallium-zinc-oxide (a-IGZO) based thin film transistors (TFTs). In particular, the effects of torsional and compressive stresses on the nano-sized active layers such as the a-IGZO layer were investigated. Numerical simulations were carried out to investigate the structural integrity of a-IGZO based TFTs with three different thicknesses of the aluminum oxide (Al2O3) insulator (δ = 10, 20, and 30 nm), respectively, using a commercial code, COMSOL Multiphysics. The results are graphically depicted for operating conditions.

  10. Effects of low-temperature (120 °C) annealing on the carrier concentration and trap density in amorphous indium gallium zinc oxide thin film transistors

    SciT

    Kim, Jae-sung; Piao, Mingxing; Jang, Ho-Kyun

    2014-12-28

    We report an investigation of the effects of low-temperature annealing on the electrical properties of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). X-ray photoelectron spectroscopy was used to characterize the charge carrier concentration, which is related to the density of oxygen vacancies. The field-effect mobility was found to decrease as a function of the charge carrier concentration, owing to the presence of band-tail states. By employing the transmission line method, we show that the contact resistance did not significantly contribute to the changes in device performance after annealing. In addition, using low-frequency noise analyses, we found that themore » trap density decreased by a factor of 10 following annealing at 120 °C. The switching operation and on/off ratio of the a-IGZO TFTs improved considerably after low-temperature annealing.« less

  11. Triple-wavelength passively Q-switched ytterbium-doped fibre laser using zinc oxide nanoparticles film as a saturable absorber

    NASA Astrophysics Data System (ADS)

    Mohsin Al-Hayali, Sarah Kadhim; Hadi Al-Janabi, Abdul

    2018-07-01

    We report on the generation of a triple-wavelength passively Q-switched ytterbium-doped fibre laser using a saturable absorber (SA) based on zinc oxide nanoparticles (ZnO NPs) film. The SA was fabricated by embedding ZnO NPs powder into a polyvinyl alcohol as a host polymer. By properly adjusting the pump power and the polarization state, single-, dual- and triple-wavelength Q-switching are stably generated without additional components (such as optical filter, or fibre grating). For the triple wavelength operation, the fibre laser generates a maximum pulse repetition of 87.9 kHz with the shortest pulse duration of 2.7 μs. To the best of authors' knowledge, it's the first demonstration of triple-wavelength passively Q-switching fibre laser using ZnO NPs as a SA. Our results suggest that ZnO is a promising SA for multi-wavelength laser operation.

  12. Effects of Ga:N addition on the electrical performance of zinc tin oxide thin film transistor by solution-processing.

    PubMed

    Ahn, Byung Du; Jeon, Hye Ji; Park, Jin-Seong

    2014-06-25

    This paper addressed the effect of gallium nitrate hydrate addition on thin film transistor (TFT) performance and positive bias stability of amorphous zinc tin oxide (ZTO) TFTs by solution processing, Further, the mechanisms responsible for chemical properties and electronic band structure are explored. A broad exothermic peak accompanied by weight loss appeared in the range from about 350 to 570 °C for the ZTO solution; the thermal reaction of the Ga-ZTO:N solution was completed at 520 °C. This is because the gallium nitrate hydrate precursor promoted the decomposition and dehydroxylation reaction for Zn(CH3COO)2·2H2O and/or SnCl2·2H2O precursors. The concentrations of carbon and chloride in gallium nitrate hydrate added ZTO films annealed at 400 °C have a lower value (C 0.65, Cl 0.65 at. %) compared with those of ZTO films (C 3.15, Cl 0.82 at. %). Absorption bands at 416, 1550, and 1350 cm(-1) for GaZTO:N films indicated the presence of ZnGa2O4, N-H, and N═O groups by Fourier transform infrared spectroscopy measurement, respectively. As a result, an inverted staggered Ga-ZTO:N TFT exhibited a mobility of 4.84 cm(2) V(-1) s(-1) in the saturation region, a subthreshold swing of 0.35 V/decade, and a threshold gate voltage (Vth) of 0.04 V. In addition, the instability of Vth values of the ZTO TFTs under positive bias stress conditions was suppressed by adding Ga and N from 13.6 to 3.17 V, which caused a reduction in the oxygen-related defects located near the conduction band.

  13. Preparation and characterization of bionanocomposite film based on tapioca starch/bovine gelatin/nanorod zinc oxide.

    PubMed

    Marvizadeh, Mohammad Mehdi; Oladzadabbasabadi, Nazila; Mohammadi Nafchi, Abdorreza; Jokar, Maryam

    2017-06-01

    To exploring a nano-packaging materials for using as coating or edible films, tapioca starch/gelatin/nanorod ZnO (ZnON) bionanocomposites were prepared via solution casting technique. The effects of nanofiller addition on the mechanical, physicochemical, and crystalline structures, as well as the barrier properties of bionanocomposite films were investigated. X-ray diffraction analysis showed that the bionanocomposite film incorporated with ZnON at a concentration of 3.5% w/w exhibited high intensity peaks compared with control samples. Results of UV-vis spectra analysis showed that incorporation of ZnON into the films can absorb the whole UV light. Tensile strength of the films was increased from 14 to 18MPa whereas elongation at breaks decreased from 18 to 8 percent and oxygen permeability decreased from 151.03 to 91.52cm 3 μm/(m 2 -day) by incorporation of 3.5% ZnON into biopolymer matrix. In summary combined starch/gelatin films supported by ZnON showed better properties compared to starch or gelatin alone. Thus, the bionanocomposite films can be used in food, medicine, and pharmaceutical packaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Mechanics of graded glass composites and zinc oxide thin films grown at 90 degrees Celsius in water

    NASA Astrophysics Data System (ADS)

    Fillery, Scott Pierson

    2007-06-01

    The purpose of this research was to study the mechanical stability of two different material systems. The glass laminate system, exhibiting a threshold strength when placed under an applied load and ZnO thin films grown on GaN buffered Al2O3 substrates, exhibiting variations in film stability with changes to the Lateral Epitaxial Overgrowth architecture. The glass laminates were fabricated to contain periodic thin layers containing biaxial compressive stresses using ion exchange treatments to create residual compressive stresses at the surface of soda lime silicate glass sheets. Wafer direct bonding of the ion exchanged glass sheets resulted in the fabrication of glass laminates with thin layers of compressive stress adjacent to the glass interfaces. The threshold flexural strength of the ion exchanged glass laminates was determined to be 112 MPa after the introduction of indentation cracks with indent loads ranging from 1kg to 5kg and the laminates were found to exhibit a threshold strength, i.e., a stress below which failure will not occur. Contrary to similar ceramic laminates where cracks either propagate across the compressive layer or bifurcate within the compressive layer, the cracks in the glass laminates were deflected along the interface between the bonded sheets. ZnO films were grown on (0001) GaN buffered Al2O3 substrates by aqueous solution routes at 90°C. The films were found to buckle under compressive residual stresses at film thicknesses greater than 4mum. Lateral epitaxial overgrowth techniques using hexagonal hole arrays showed an increasing film stability with larger array spacing, resulting in film thicknesses up to 92mum. Stress determinations using Raman spectroscopy indicated that stress relaxation at the free surface during film growth played a major role in film stability. Investigations using Finite Element Analysis and Raman spectroscopy demonstrated that the strain energy within the film/substrate system decreased with increasing array

  15. Highly improved photo-induced bias stability of sandwiched triple layer structure in sol-gel processed fluorine-doped indium zinc oxide thin film transistor

    NASA Astrophysics Data System (ADS)

    Kim, Dongha; Park, Hyungjin; Bae, Byeong-Soo

    2016-03-01

    In order to improve the reliability of TFT, an Al2O3 insulating layer is inserted between active fluorine doped indium zinc oxide (IZO:F) thin films to form a sandwiched triple layer. All the thin films were fabricated via low-cost sol-gel process. Due to its large energy bandgap and high bonding energy with oxygen atoms, the Al2O3 layer acts as a photo-induced positive charge blocking layer that effectively blocks the migration of both holes and V o2+ toward the interface between the gate insulator and the semiconductor. The inserted Al2O3 triple layer exhibits a noticeably low turn on voltage shift of -0.7 V under NBIS as well as the good TFT performance with a mobility of 10.9 cm2/V ṡ s. We anticipate that this approach can be used to solve the stability issues such as NBIS, which is caused by inescapable oxygen vacancies.

  16. Solution-processed lithium-doped zinc oxide thin-film transistors at low temperatures between 100 and 300 °C

    NASA Astrophysics Data System (ADS)

    Liu, Fangmei; Qian, Chuan; Sun, Jia; Liu, Peng; Huang, Yulan; Gao, Yongli; Yang, Junliang

    2016-04-01

    Lithium-doped zinc oxide (Li-ZnO) thin-film transistors (TFTs) were fabricated by solution process at the low temperatures ranged from 100 to 300 °C. Li-ZnO TFTs fabricated at 300 °C under nitrogen condition showed a mobility of 1.2 cm2/Vs. Most importantly, the mobility of Li-ZnO TFT devices fabricated at 100 °C could be increased significantly from 0.08 to 0.4 cm2/Vs by using double spin-coated and UV irradiation-treated Li-ZnO film, and the on-/off-current ratio is in the order of 106. Notably, the XPS analyses proved that the performance improvement was originated from the chemical composition or stoichiometry evolution, in which the hydroxide was converted into metal oxide and accelerated the formation of the oxygen vacancies. Furthermore, low-voltage operating Li-ZnO TFTs were demonstrated by using a high-capacitance ion gel gate dielectrics. The Li-ZnO TFTs with an operating voltage as low as 2 V exhibited the carrier mobilities of 2.1 and 0.65 cm2/Vs for the devices treated at 300 and 100 °C, respectively. The low-temperature, solution-processed Li-ZnO TFTs showed greatly potential applications in flexible displays, smart label, and sensors.

  17. Optimization of a Solution-Processed SiO2 Gate Insulator by Plasma Treatment for Zinc Oxide Thin Film Transistors.

    PubMed

    Jeong, Yesul; Pearson, Christopher; Kim, Hyun-Gwan; Park, Man-Young; Kim, Hongdoo; Do, Lee-Mi; Petty, Michael C

    2016-01-27

    We report on the optimization of the plasma treatment conditions for a solution-processed silicon dioxide gate insulator for application in zinc oxide thin film transistors (TFTs). The SiO2 layer was formed by spin coating a perhydropolysilazane (PHPS) precursor. This thin film was subsequently thermally annealed, followed by exposure to an oxygen plasma, to form an insulating (leakage current density of ∼10(-7) A/cm(2)) SiO2 layer. Optimized ZnO TFTs (40 W plasma treatment of the gate insulator for 10 s) possessed a carrier mobility of 3.2 cm(2)/(V s), an on/off ratio of ∼10(7), a threshold voltage of -1.3 V, and a subthreshold swing of 0.2 V/decade. In addition, long-term exposure (150 min) of the pre-annealed PHPS to the oxygen plasma enabled the maximum processing temperature to be reduced from 180 to 150 °C. The resulting ZnO TFT exhibited a carrier mobility of 1.3 cm(2)/(V s) and on/off ratio of ∼10(7).

  18. Low-temperature fabrication of an HfO2 passivation layer for amorphous indium-gallium-zinc oxide thin film transistors using a solution process.

    PubMed

    Hong, Seonghwan; Park, Sung Pyo; Kim, Yeong-Gyu; Kang, Byung Ha; Na, Jae Won; Kim, Hyun Jae

    2017-11-24

    We report low-temperature solution processing of hafnium oxide (HfO 2 ) passivation layers for amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). At 150 °C, the hafnium chloride (HfCl 4 ) precursor readily hydrolyzed in deionized (DI) water and transformed into an HfO 2 film. The fabricated HfO 2 passivation layer prevented any interaction between the back surface of an a-IGZO TFT and ambient gas. Moreover, diffused Hf 4+ in the back-channel layer of the a-IGZO TFT reduced the oxygen vacancy, which is the origin of the electrical instability in a-IGZO TFTs. Consequently, the a-IGZO TFT with the HfO 2 passivation layer exhibited improved stability, showing a decrease in the threshold voltage shift from 4.83 to 1.68 V under a positive bias stress test conducted over 10,000 s.

  19. Highly improved photo-induced bias stability of sandwiched triple layer structure in sol-gel processed fluorine-doped indium zinc oxide thin film transistor

    SciT

    Kim, Dongha; Park, Hyungjin; Bae, Byeong-Soo, E-mail: bsbae@kaist.ac.kr

    In order to improve the reliability of TFT, an Al{sub 2}O{sub 3} insulating layer is inserted between active fluorine doped indium zinc oxide (IZO:F) thin films to form a sandwiched triple layer. All the thin films were fabricated via low-cost sol-gel process. Due to its large energy bandgap and high bonding energy with oxygen atoms, the Al{sub 2}O{sub 3} layer acts as a photo-induced positive charge blocking layer that effectively blocks the migration of both holes and V {sub o}{sup 2+} toward the interface between the gate insulator and the semiconductor. The inserted Al{sub 2}O{sub 3} triple layer exhibits amore » noticeably low turn on voltage shift of −0.7 V under NBIS as well as the good TFT performance with a mobility of 10.9 cm{sup 2}/V ⋅ s. We anticipate that this approach can be used to solve the stability issues such as NBIS, which is caused by inescapable oxygen vacancies.« less

  20. Realization of write-once-read-many-times memory device with O{sub 2} plasma-treated indium gallium zinc oxide thin film

    SciT

    Liu, P., E-mail: liup0013@ntu.edu.sg; Chen, T. P., E-mail: echentp@ntu.edu.sg; Li, X. D.

    2014-01-20

    A write-once-read-many-times (WORM) memory devices based on O{sub 2} plasma-treated indium gallium zinc oxide (IGZO) thin films has been demonstrated. The device has a simple Al/IGZO/Al structure. The device has a normally OFF state with a very high resistance (e.g., the resistance at 2 V is ∼10{sup 9} Ω for a device with the radius of 50 μm) as a result of the O{sub 2} plasma treatment on the IGZO thin films. The device could be switched to an ON state with a low resistance (e.g., the resistance at 2 V is ∼10{sup 3} Ω for the radius of 50 μm) by applying amore » voltage pulse (e.g., 10 V/1 μs). The WORM device has good data-retention and reading-endurance capabilities.« less

  1. Investigation of anticorrosion properties of nanocomposites of spray coated zinc oxide and titanium dioxide thin films on stainless steel (304L SS) in saline environment

    NASA Astrophysics Data System (ADS)

    P, Muhamed Shajudheen V.; S, Saravana Kumar; V, Senthil Kumar; Maheswari A, Uma; M, Sivakumar; Rani K, Anitha

    2018-01-01

    The present study reports the anticorrosive nature of nanocomposite thin films of zinc oxide and titanium dioxide on steel substrate (304L SS) using spray coating method. The morphology and chemical constituents of the nanocomposite thin film were characterized by field effect scanning electron microscopy and energy dispersive analysis of x-ray (EDAX) studies. From the EDAX studies, it was observed that nanocomposite coatings of desired stoichiometry can be synthesized using present coating technique. The cyclic voltametric techniques such as Tafel analysis and electrochemical impedance spectroscopy (EIS) analysis were conducted to study the anticorrosion properties of the coatings. The E corr values obtained from Tafel polarization curves of the sample coated with nanocomposites of ZnO and TiO2 in different ratios (5:1, 1:1 and 1:5) indicated that the corrosion resistance was improved compared to bare steel. The coating resistance values obtained from the Nyquist plot after fitting with equivalent circuit confirmed the improved anticorrosion performance of the coated samples. The sample coated with ZnO: TiO2 in the ratio 1:5 showed better corrosion resistance compared to other ratios. The Tafel and EIS studies were repeated after exposure to 5% NaCl for 390 h and the results indicated the anticorrosive nature of the coating in the aggressive environment. The root mean square deviation of surface roughness values calculated from the AFM images before and after salt spray indicated the stability of coating in the saline environment.

  2. Low-Resistivity Zinc Selenide for Heterojunctions

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.

    1986-01-01

    Magnetron reactive sputtering enables doping of this semiconductor. Proposed method of reactive sputtering combined with doping shows potential for yielding low-resistivity zinc selenide films. Zinc selenide attractive material for forming heterojunctions with other semiconductor compounds as zinc phosphide, cadmium telluride, and gallium arsenide. Semiconductor junctions promising for future optoelectronic devices, including solar cells and electroluminescent displays. Resistivities of zinc selenide layers deposited by evaporation or chemical vapor deposition too high to form practical heterojunctions.

  3. High quality nitrogen-doped zinc oxide thin films grown on ITO by sol-gel method

    NASA Astrophysics Data System (ADS)

    Pathak, Trilok Kumar; Kumar, Vinod; Purohit, L. P.

    2015-11-01

    Highly transparent N-doped ZnO thin films were deposited on ITO coated corning glass substrate by sol-gel method. Ammonium nitrate was used as a dopant source of N with varying the doping concentration 0, 0.5, 1.0, 2.0 and 3.0 at%. The DSC analysis of prepared NZO sols is observed a phase transition at 150 °C. X-ray diffraction pattern showed the preferred (002) peak of ZnO, which was deteriorated with increased N concentrations. The transmittance of NZO thin films was observed to be ~88%. The bandgap of NZO thin films increased from 3.28 to 3.70 eV with increased N concentration from 0 to 3 at%. The maximum carrier concentration 8.36×1017 cm-3 and minimum resistivity 1.64 Ω cm was observed for 3 at% N doped ZnO thin films deposited on glass substrate. These highly transparent ZnO thin films can be used as a window layer in solar cells and optoelectronic devices.

  4. Electrical dependence on the chemical composition of the gate dielectric in indium gallium zinc oxide thin-film transistors

    SciT

    Tari, Alireza, E-mail: atari@uwaterloo.ca; Lee, Czang-Ho; Wong, William S.

    Bottom-gate thin-film transistors were fabricated by depositing a 50 nm InGaZnO (IGZO) channel layer at 150 °C on three separate gate dielectric films: (1) thermal SiO{sub 2}, (2) plasma-enhanced chemical-vapor deposition (PECVD) SiN{sub x}, and (3) a PECVD SiO{sub x}/SiN{sub x} dual-dielectric. X-ray photoelectron and photoluminescence spectroscopy showed the V{sub o} concentration was dependent on the hydrogen concentration of the underlying dielectric film. IGZO films on SiN{sub x} (high V{sub o}) and SiO{sub 2} (low V{sub o}) had the highest and lowest conductivity, respectively. A PECVD SiO{sub x}/SiN{sub x} dual-dielectric layer was effective in suppressing hydrogen diffusion from the nitride layer intomore » the IGZO and resulted in higher resistivity films.« less

  5. Investigation of Zinc Oxide-Loaded Poly(Vinyl Alcohol) Nanocomposite Films in Tailoring Their Structural, Optical and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Aslam, Muhammad; Kalyar, Mazhar Ali; Raza, Zulfiqar Ali

    2018-04-01

    Wurtzite ZnO nanoparticles, as a nanofiller, were incorporated in a poly(vinyl alcohol) (PVA) matrix to prepare multipurpose nanocomposite films using a solution casting approach. Some advanced analytical techniques were used to investigate the properties of prepared nanocomposite films. The mediation of ZnO nanofillers resulted in modification of structural, optical and mechanical properties of nanocomposite films. A comprehensive band structure investigation might be useful for designing technological applications like in optoelectronic devices. The experimental results were found to be closely dependent on the nanofiller contents. Some theoretical models like Tauc's and Wemple-DiDomenico, were employed to investigate the band structure parameters. The imaginary part of the dielectric constant was used to investigate the band gap. Then, the Helpin-Tsai model was employed to predict Young's moduli of the prepared nanocomposite films. On 3 wt.% ZnO nanofiller loading, the optical band gap of the PVA-based nanocomposite film was decreased from 5.26 eV to 3 eV, the tensile strength increased from 25.3 MPa to 48 MPa and Young's modulus increased from 144 MPa to 544 MPa.

  6. Investigation of Zinc Oxide-Loaded Poly(Vinyl Alcohol) Nanocomposite Films in Tailoring Their Structural, Optical and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Aslam, Muhammad; Kalyar, Mazhar Ali; Raza, Zulfiqar Ali

    2018-07-01

    Wurtzite ZnO nanoparticles, as a nanofiller, were incorporated in a poly(vinyl alcohol) (PVA) matrix to prepare multipurpose nanocomposite films using a solution casting approach. Some advanced analytical techniques were used to investigate the properties of prepared nanocomposite films. The mediation of ZnO nanofillers resulted in modification of structural, optical and mechanical properties of nanocomposite films. A comprehensive band structure investigation might be useful for designing technological applications like in optoelectronic devices. The experimental results were found to be closely dependent on the nanofiller contents. Some theoretical models like Tauc's and Wemple-DiDomenico, were employed to investigate the band structure parameters. The imaginary part of the dielectric constant was used to investigate the band gap. Then, the Helpin-Tsai model was employed to predict Young's moduli of the prepared nanocomposite films. On 3 wt.% ZnO nanofiller loading, the optical band gap of the PVA-based nanocomposite film was decreased from 5.26 eV to 3 eV, the tensile strength increased from 25.3 MPa to 48 MPa and Young's modulus increased from 144 MPa to 544 MPa.

  7. Effect of Hydrogen in Zinc Oxide Thin-Film Transistor Grown by Metal Organic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Jo, Jungyol; Seo, Ogweon; Jeong, Euihyuk; Seo, Hyunseok; Lee, Byeongon; Choi, Yearn-Ik

    2007-04-01

    We studied the transport characteristics of ZnO grown by metal organic chemical vapor deposition (MOCVD) at temperatures between 200 and 500 °C. The crystal quality, measured by X-ray diffraction, improved as the growth temperature increased. However, the mobility measured in the thin-film transistor (TFT) decreased in films grown at higher temperatures. In our experiments, a ZnO TFT grown at 250 °C showed good electrical characteristics, with a 13 cm2 V-1 s-1 mobility and a 103 on/off ratio. We conclude that hydrogen incorporated during MOCVD growth plays an important role in determining the transistor characteristics. This was supported by results of secondary ion mass spectroscopy (SIMS), where a higher hydrogen concentration was observed in films grown at lower temperatures.

  8. Bio-sorbable, liquid electrolyte gated thin-film transistor based on a solution-processed zinc oxide layer.

    PubMed

    Singh, Mandeep; Palazzo, Gerardo; Romanazzi, Giuseppe; Suranna, Gian Paolo; Ditaranto, Nicoletta; Di Franco, Cinzia; Santacroce, Maria Vittoria; Mulla, Mohammad Yusuf; Magliulo, Maria; Manoli, Kyriaki; Torsi, Luisa

    2014-01-01

    Among the metal oxide semiconductors, ZnO has been widely investigated as a channel material in thin-film transistors (TFTs) due to its excellent electrical properties, optical transparency and simple fabrication via solution-processed techniques. Herein, we report a solution-processable ZnO-based thin-film transistor gated through a liquid electrolyte with an ionic strength comparable to that of a physiological fluid. The surface morphology and chemical composition of the ZnO films upon exposure to water and phosphate-buffered saline (PBS) are discussed in terms of the operation stability and electrical performance of the ZnO TFT devices. The improved device characteristics upon exposure to PBS are associated with the enhancement of the oxygen vacancies in the ZnO lattice due to Na(+) doping. Moreover, the dissolution kinetics of the ZnO thin film in a liquid electrolyte opens the possible applicability of these devices as an active element in "transient" implantable systems.

  9. Zinc Information

    MedlinePlus

    ... for Eye Conditions Clinical Digest: Hepatitis C and Dietary Supplements Related Resources From Other Agencies Age-Related Eye Disease Study 2 (AREDS2) ( NEI ) Can Zinc Be Harmful? ( ODS ) Zinc ( ODS ) Follow NCCIH: Read our disclaimer ...

  10. Influence of processing conditions on the optical properties of chemically deposited zinc sulphide (ZnS) thin film

    NASA Astrophysics Data System (ADS)

    Igweoko, A. E.; Augustine, C.; Idenyi, N. E.; Okorie, B. A.; Anyaegbunam, F. N. C.

    2018-03-01

    In this paper, we present the influence of post deposition annealing and varying concentration on the optical properties of ZnS thin films fabricated by chemical bath deposition (CBD) at 65 °C from chemical baths comprising NH3/SC(NH2)2/ZnSO4 solutions at pH of about 10. The film samples were annealed at temperatures ranging from 373 K–473 K and the concentration of the film samples vary from 0.1 M–0.7 M. Post deposition annealing and concentration played an important role on the optical parameters investigated which includes absorbance, transmittance, reflectance, absorption coefficient, band gap, refractive index and extinction coefficient. The optical parameters were found to vary with post deposition annealing in one direction and concentration of Zn2+ in the reverse direction. For instance, post deposition annealing increases the band gap from 3.65 eV for as-deposited to 3.70 eV, 3.75 eV and 3.85 eV for annealed at 373 K, 423 K and 473 K respectively whereas concentration of Zn2+ decreases the band gap from 3.95 eV at 0.1 M to 3.90 eV, 3.85 eV and 3.80 eV at 0.3 M, 0.5 M and 0.7 M respectively. The fundamental absorption edge of ZnS thin films shifted toward the highest photon energies (blue shift) after annealing and shifted toward the lowest photon energies (red shift) with increasing Zn ions concentration. A linear relation between band gap energy and Urbach energy was found. After annealing, the Urbach energy increases form 3.10 eV to 3.50 eV and decreases from 3.40 eV to 3.10 eV at varying Zn2+ concentration. The property of wide band gap makes ZnS suitable for buffer layer of film solar cells, permitting more light especially the short wavelength light into absorber layer.

  11. Influence of source and drain contacts on the properties of indium-gallium-zinc-oxide thin-film transistors based on amorphous carbon nanofilm as barrier layer.

    PubMed

    Luo, Dongxiang; Xu, Hua; Zhao, Mingjie; Li, Min; Xu, Miao; Zou, Jianhua; Tao, Hong; Wang, Lei; Peng, Junbiao

    2015-02-18

    Amorphous indium-gallium-zinc-oxide thin film transistors (α-IGZO TFTs) with damage-free back channel wet-etch (BCE) process were achieved by introducing a carbon nanofilm as a barrier layer. We investigate the effects of different source-and-drain (S/D) materials on TFT performance. We find the TFT with Ti/C S/D electrodes exhibits a superior performance with higher output current, lower threshold voltage, and higher effective electron mobility compared to that of Mo/C S/D electrodes. Transmittance electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) are employed to analysis the interfacial interaction between S/D metal/C/α-IGZO layers. The results indicate that the better performance of TFTs with Ti/C electrodes should be attributed to the formations of Ti-C and Ti-O at the Ti/C-contact regions, which lead to a lower contact resistance, whereas Mo film is relatively stable and does not react easily with C nanofilm, resulting in a nonohmic contact behavior between Mo/C and α-IGZO layer. However, both kinds of α-IGZO TFTs show good stability under thermal bias stress, indicating that the inserted C nanofilms could avoid the impact on the α-IGZO channel regions during S/D electrodes formation. Finally, we successfully fabricated a high-definition active-matrix organic lighting emitting diode prototype driven by α-IGZO TFTs with Ti/C electrodes in a pilot line.

  12. In situ studies of ion irradiated inverse spinel compound magnesium stannate (Mg 2SnO 4)

    NASA Astrophysics Data System (ADS)

    Xu, P.; Tang, M.; Nino, J. C.

    2009-06-01

    Magnesium stannate spinel (Mg 2SnO 4) was synthesized through conventional solid state processing and then irradiated with 1.0 MeV Kr 2+ ions at low temperatures 50 and 150 K. Structural evolutions during irradiation were monitored and recorded through bright field images and selected-area electron diffraction patterns using in situ transmission electron microscopy. The amorphization of Mg 2SnO 4 was achieved at an ion dose of 5 × 10 19 Kr ions/m 2 at 50 K and 10 20 Kr ions/m 2 at 150 K, which is equivalent to an atomic displacement damage of 5.5 and 11.0 dpa, respectively. The spinel crystal structure was thermally recovered at room temperature from the amorphous phase caused by irradiation at 50 K. The calculated electronic and nuclear stopping powers suggest that the radiation damage caused by 1 MeV Kr 2+ ions in Mg 2SnO 4 is mainly due to atomic displacement induced defect accumulation. The radiation tolerance of Mg 2SnO 4 was finally compared with normal spinel MgAl 2O 4.

  13. Synthesis and characterization of three-dimensional transition metal ions doped zinc oxide based dilute magnetic semiconductor thin films

    NASA Astrophysics Data System (ADS)

    Samanta, Kousik

    Dilute magnetic semiconductors (DMS), especially 3d-transition metal (TM) doped ZnO based DMS materials are the most promising candidates for optoelectronics and spintronics applications; e.g. in spin light emitting diode (SLED), spin transistors, and spin field effect transistors (SFET), etc. In the present dissertation, thin films of Zn1-xTMxO (TM = Co2+, Cu2+, and Mn2+) were grown on (0001) oriented Al2O3 substrates by pulsed laser deposition (PLD) technique. The films were highly c-axis oriented, nearly single crystalline, and defects free for a limited concentration of the dilution of transition metal ions. In particular, we have obtained single crystalline phases of Zn1-xTMxO thin films for up to 10, 3, and 5 stoichiometric percentages of Co2+, Cu2+, and Mn2+ respectively. Raman micro-probe system was used to understand the structural and lattice dynamical properties at different physical conditions. The confinement of optical phonons in the disorder lattice was explained by alloy potential fluctuation (APF) using a spatial correlation (SC) model. The detailed analysis of the optical phonon behavior in disorder lattice confirmed the substitution of the transition metal ions in Zn 2+ site of the ZnO host lattice. The secondary phases of ZnCo 2O4, CuO, and ZnMn2O4 were detected in higher Co, Cu, and Mn doped ZnO thin films respectively; where as, XRD did not detect these secondary phases in the same samples. Room temperature ferromagnetism was observed in Co2+ and Cu2+ ions doped ZnO thin films with maximum saturation magnetization (Ms) of 1.0 and 0.76 muB respectively. The origin of the observed ferromagnetism in Zn1-xCoxO thin films was tested by the controlled introduction of shallow donors (Al) in Zn0.9-x Co0.1O:Alx (x = 0.005 and 0.01) thin films. The saturation magnetization for the 10% Co-doped ZnO (1.0 muB /Co) at 300K reduced (˜0.25 muB/Co) due to Al doping. The observed ferromagnetism and the reduction due to Al doping can be explained by the Bound

  14. Light/negative bias stress instabilities in indium gallium zinc oxide thin film transistors explained by creation of a double donor

    NASA Astrophysics Data System (ADS)

    Migliorato, Piero; Delwar Hossain Chowdhury, Md; Gwang Um, Jae; Seok, Manju; Jang, Jin

    2012-09-01

    The analysis of current-voltage (I-V) and capacitance-voltage (C-V) characteristics for amorphous indium gallium zinc oxide Thin film transistors as a function of active layer thickness shows that negative bias under illumination stress (NBIS) is quantitatively explained by creation of a bulk double donor, with a shallow singly ionized state ɛ(0/+) > EC-0.073 eV and a deep doubly ionized state ɛ(++/+) < EC-0.3 eV. The gap density of states, extracted from the capacitance-voltage curves, shows a broad peak between EC-E = 0.3 eV and 1.0 eV, which increases in height with NBIS stress time and corresponds to the broadened transition energy between singly and doubly ionized states. We propose that the center responsible is an oxygen vacancy and that the presence of a stable singly ionized state, necessary to explain our experimental results, could be due to the defect environment provided by the amorphous network.

  15. Synaptic behaviors of thin-film transistor with a Pt/HfO x /n-type indium-gallium-zinc oxide gate stack.

    PubMed

    Yang, Paul; Park, Daehoon; Beom, Keonwon; Kim, Hyung Jun; Kang, Chi Jung; Yoon, Tae-Sik

    2018-07-20

    We report a variety of synaptic behaviors in a thin-film transistor (TFT) with a metal-oxide-semiconductor gate stack that has a Pt/HfO x /n-type indium-gallium-zinc oxide (n-IGZO) structure. The three-terminal synaptic TFT exhibits a tunable synaptic weight with a drain current modulation upon repeated application of gate and drain voltages. The synaptic weight modulation is analog, voltage-polarity dependent reversible, and strong with a dynamic range of multiple orders of magnitude (>10 4 ). This modulation process emulates biological synaptic potentiation, depression, excitatory-postsynaptic current, paired-pulse facilitation, and short-term to long-term memory transition behaviors as a result of repeated pulsing with respect to the pulse amplitude, width, repetition number, and the interval between pulses. These synaptic behaviors are interpreted based on the changes in the capacitance of the Pt/HfO x /n-IGZO gate stack, the channel mobility, and the threshold voltage that result from the redistribution of oxygen ions by the applied gate voltage. These results demonstrate the potential of this structure for three-terminal synaptic transistor using the gate stack composed of the HfO x gate insulator and the IGZO channel layer.

  16. Electrical Performance and Reliability Improvement of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors with HfO2 Gate Dielectrics by CF4 Plasma Treatment

    PubMed Central

    Fan, Ching-Lin; Tseng, Fan-Ping; Tseng, Chiao-Yuan

    2018-01-01

    In this work, amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs) with a HfO2 gate insulator and CF4 plasma treatment was demonstrated for the first time. Through the plasma treatment, both the electrical performance and reliability of the a-IGZO TFT with HfO2 gate dielectric were improved. The carrier mobility significantly increased by 80.8%, from 30.2 cm2/V∙s (without treatment) to 54.6 cm2/V∙s (with CF4 plasma treatment), which is due to the incorporated fluorine not only providing an extra electron to the IGZO, but also passivating the interface trap density. In addition, the reliability of the a-IGZO TFT with HfO2 gate dielectric has also been improved by the CF4 plasma treatment. By applying the CF4 plasma treatment to the a-IGZO TFT, the hysteresis effect of the device has been improved and the device’s immunity against moisture from the ambient atmosphere has been enhanced. It is believed that the CF4 plasma treatment not only significantly improves the electrical performance of a-IGZO TFT with HfO2 gate dielectric, but also enhances the device’s reliability. PMID:29772767

  17. Effect of top gate potential on bias-stress for dual gate amorphous indium-gallium-zinc-oxide thin film transistor

    SciT

    Chun, Minkyu; Um, Jae Gwang; Park, Min Sang

    We report the abnormal behavior of the threshold voltage (V{sub TH}) shift under positive bias Temperature stress (PBTS) and negative bias temperature stress (NBTS) at top/bottom gate in dual gate amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs). It is found that the PBTS at top gate shows negative transfer shift and NBTS shows positive transfer shift for both top and bottom gate sweep. The shift of bottom/top gate sweep is dominated by top gate bias (V{sub TG}), while bottom gate bias (V{sub BG}) is less effect than V{sub TG}. The X-ray photoelectron spectroscopy (XPS) depth profile provides the evidence of Inmore » metal diffusion to the top SiO{sub 2}/a-IGZO and also the existence of large amount of In{sup +} under positive top gate bias around top interfaces, thus negative transfer shift is observed. On the other hand, the formation of OH{sup −} at top interfaces under the stress of negative top gate bias shows negative transfer shift. The domination of V{sub TG} both on bottom/top gate sweep after PBTS/NBTS is obviously occurred due to thin active layer.« less

  18. Electrical Performance and Reliability Improvement of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors with HfO₂ Gate Dielectrics by CF₄ Plasma Treatment.

    PubMed

    Fan, Ching-Lin; Tseng, Fan-Ping; Tseng, Chiao-Yuan

    2018-05-17

    In this work, amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs) with a HfO₂ gate insulator and CF₄ plasma treatment was demonstrated for the first time. Through the plasma treatment, both the electrical performance and reliability of the a-IGZO TFT with HfO₂ gate dielectric were improved. The carrier mobility significantly increased by 80.8%, from 30.2 cm²/V∙s (without treatment) to 54.6 cm²/V∙s (with CF₄ plasma treatment), which is due to the incorporated fluorine not only providing an extra electron to the IGZO, but also passivating the interface trap density. In addition, the reliability of the a-IGZO TFT with HfO₂ gate dielectric has also been improved by the CF₄ plasma treatment. By applying the CF₄ plasma treatment to the a-IGZO TFT, the hysteresis effect of the device has been improved and the device's immunity against moisture from the ambient atmosphere has been enhanced. It is believed that the CF₄ plasma treatment not only significantly improves the electrical performance of a-IGZO TFT with HfO₂ gate dielectric, but also enhances the device's reliability.

  19. High-pressure Gas Activation for Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors at 100 °C.

    PubMed

    Kim, Won-Gi; Tak, Young Jun; Du Ahn, Byung; Jung, Tae Soo; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-03-14

    We investigated the use of high-pressure gases as an activation energy source for amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs). High-pressure annealing (HPA) in nitrogen (N2) and oxygen (O2) gases was applied to activate a-IGZO TFTs at 100 °C at pressures in the range from 0.5 to 4 MPa. Activation of the a-IGZO TFTs during HPA is attributed to the effect of the high-pressure environment, so that the activation energy is supplied from the kinetic energy of the gas molecules. We reduced the activation temperature from 300 °C to 100 °C via the use of HPA. The electrical characteristics of a-IGZO TFTs annealed in O2 at 2 MPa were superior to those annealed in N2 at 4 MPa, despite the lower pressure. For O2 HPA under 2 MPa at 100 °C, the field effect mobility and the threshold voltage shift under positive bias stress were improved by 9.00 to 10.58 cm(2)/V.s and 3.89 to 2.64 V, respectively. This is attributed to not only the effects of the pressurizing effect but also the metal-oxide construction effect which assists to facilitate the formation of channel layer and reduces oxygen vacancies, served as electron trap sites.

  20. Damage-free back channel wet-etch process in amorphous indium-zinc-oxide thin-film transistors using a carbon-nanofilm barrier layer.

    PubMed

    Luo, Dongxiang; Zhao, Mingjie; Xu, Miao; Li, Min; Chen, Zikai; Wang, Lang; Zou, Jianhua; Tao, Hong; Wang, Lei; Peng, Junbiao

    2014-07-23

    Amorphous indium-zinc-oxide thin film transistors (IZO-TFTs) with damage-free back channel wet-etch (BCE) process were investigated. A carbon (C) nanofilm was inserted into the interface between IZO layer and source/drain (S/D) electrodes as a barrier layer. Transmittance electron microscope images revealed that the 3 nm-thick C nanofilm exhibited a good corrosion resistance to a commonly used H3PO4-based etchant and could be easily eliminated. The TFT device with a 3 nm-thick C barrier layer showed a saturated field effect mobility of 14.4 cm(2) V(-1) s(-1), a subthreshold swing of 0.21 V/decade, an on-to-off current ratio of 8.3 × 10(10), and a threshold voltage of 2.0 V. The favorable electrical performance of this kind of IZO-TFTs was due to the protection of the inserted C to IZO layer in the back-channel-etch process. Moreover, the low contact resistance of the devices was proved to be due to the graphitization of the C nanofilms after annealing. In addition, the hysteresis and thermal stress testing confirmed that the usage of C barrier nanofilms is an effective method to fabricate the damage-free BCE-type devices with high reliability.

  1. Indium oxide co-doped with tin and zinc: A simple route to highly conducting high density targets for TCO thin-film fabrication

    NASA Astrophysics Data System (ADS)

    Saadeddin, I.; Hilal, H. S.; Decourt, R.; Campet, G.; Pecquenard, B.

    2012-07-01

    Indium oxide co-doped with tin and zinc (ITZO) ceramics have been successfully prepared by direct sintering of the powders mixture at 1300 °C. This allowed us to easily fabricate large highly dense target suitable for sputtering transparent conducting oxide (TCO) films, without using any cold or hot pressing techniques. Hence, the optimized ITZO ceramic reaches a high relative bulk density (˜ 92% of In2O3 theoretical density) and higher than the well-known indium oxide doped with tin (ITO) prepared under similar conditions. All X-ray diagrams obtained for ITZO ceramics confirms a bixbyte structure typical for In2O3 only. This indicates a higher solubility limit of Sn and Zn when they are co-doped into In2O3 forming a solid-solution. A very low value of electrical resistivity is obtained for [In2O3:Sn0.10]:Zn0.10 (1.7 × 10-3 Ω cm, lower than ITO counterpart) which could be fabricated to high dense ceramic target suing pressure-less sintering.

  2. Synaptic behaviors of thin-film transistor with a Pt/HfO x /n-type indium–gallium–zinc oxide gate stack

    NASA Astrophysics Data System (ADS)

    Yang, Paul; Park, Daehoon; Beom, Keonwon; Kim, Hyung Jun; Kang, Chi Jung; Yoon, Tae-Sik

    2018-07-01

    We report a variety of synaptic behaviors in a thin-film transistor (TFT) with a metal-oxide-semiconductor gate stack that has a Pt/HfO x /n-type indium–gallium–zinc oxide (n-IGZO) structure. The three-terminal synaptic TFT exhibits a tunable synaptic weight with a drain current modulation upon repeated application of gate and drain voltages. The synaptic weight modulation is analog, voltage-polarity dependent reversible, and strong with a dynamic range of multiple orders of magnitude (>104). This modulation process emulates biological synaptic potentiation, depression, excitatory-postsynaptic current, paired-pulse facilitation, and short-term to long-term memory transition behaviors as a result of repeated pulsing with respect to the pulse amplitude, width, repetition number, and the interval between pulses. These synaptic behaviors are interpreted based on the changes in the capacitance of the Pt/HfO x /n-IGZO gate stack, the channel mobility, and the threshold voltage that result from the redistribution of oxygen ions by the applied gate voltage. These results demonstrate the potential of this structure for three-terminal synaptic transistor using the gate stack composed of the HfO x gate insulator and the IGZO channel layer.

  3. Reduced Graphene Oxide-Cadmium Zinc Sulfide Nanocomposite with Controlled Band Gap for Large-Area Thin-Film Optoelectronic Device Application

    NASA Astrophysics Data System (ADS)

    Ibrahim, Sk; Chakraborty, Koushik; Pal, Tanusri; Ghosh, Surajit

    2017-12-01

    Herein, we report the one pot single step solvothermal synthesis of reduced grapheme oxide-cadmium zinc sulfide (RGO-Cd0.5Zn0.5S) composite. The reduction in graphene oxide (GO), synthesis of Cd0.5Zn0.5S (mentioned as CdZnS in the text) nanorod and decoration of CdZnS nanorods onto RGO sheet were done simultaneously. The structural, morphological and optical properties were studied thoroughly by different techniques, such as XRD, TEM, UV-Vis and PL. The PL intensity of CdZnS nanorods quenches significantly after the attachment of RGO, which confirms photoinduced charge transformation from CdZnS nanorods to RGO sheet through the interface of RGO-CdZnS. An excellent photocurrent generation in RGO-CdZnS thin-film device has been observed under simulated solar light irradiation. The photocurrent as well as photosensitivity increases linearly with the solar light intensity for all the composites. Our study establishes that the synergistic effect of RGO and CdZnS in the composite is capable of getting promising applications in the field of optoelectronic devising.

  4. Long-term stabilization of sprayed zinc oxide thin film transistors by hexafluoropropylene oxide self assembled monolayers

    NASA Astrophysics Data System (ADS)

    Ortel, Marlis; Kalinovich, Nataliya; Röschenthaler, Gerd-Volker; Wagner, Veit

    2013-09-01

    Surface functionalization of solution processed zinc oxide layers was studied in transistors with bottom-gate bottom-contact configuration aiming at suppression of trapping processes to increase device stability. Saturation of electrically active surface sites and formation of a moisture barrier to decrease the impact of humid atmosphere was successfully shown by binding hexafluoropropylene oxide (HFPO) on the metal oxide semiconductor. Deep trap level related electrical parameters, i.e., stability, hysteresis, and on-set voltage, improved rapidly within 60 s of exposure which was attributed to occupation of sites characterized by low adsorption energies, e.g., at edges. In contrast, shallow trap level related parameters, i.e., mobility, showed a much slower process of improvement. Identical behavior was determined for the contact angle. A physical model is presented by applying first order reaction kinetics equation to Young's law and multiple trapping and release model which relates the dependence of the contact angle and the mobility to the hexafluoropropylene oxide deposition time. Consistent time constants of τ = ≪1 min, 2 min, and 250 min were extracted for mobility and contact angle which implies a direct dependence on the surface coverage. Mobility decreased at short deposition times, recovered at medium deposition times and improved strongly by 2.4 cm2 V-1 s-1 for long deposition times of 1400 min. A microscopic model of these phenomena is given with interpretation of the different time constants found in the experiment.

  5. Band structure engineering for solar energy applications: Zinc oxide(1-x) selenium(x) films and devices

    NASA Astrophysics Data System (ADS)

    Mayer, Marie Annette

    New technologies motivate the development of new semiconducting materials, for which structural, electrical and chemical properties are not well understood. In addition to new materials systems, there are huge opportunities for new applications, especially in solar energy conversion. In this dissertation I explore the role of band structure engineering of semiconducting oxides for solar energy. Due to the abundance and electrochemical stability of oxides, the appropriate modification could make them appealing for applications in both photovoltaics and photoelectrochemical hydrogen production. This dissertation describes the design, synthesis and evaluation of the alloy ZnO1-xSe x for these purposes. I review several methods of band structure engineering including strain, quantum confinement and alloying. A detailed description of the band anticrossing (BAC) model for highly mismatched alloys is provided, including the derivation of the BAC model as well as recent work and potential applications. Thin film ZnOxSe1-x samples are grown by pulsed laser deposition (PLD). I describe in detail the effect of growth conditions (temperature, pressure and laser fluence) on the chemistry, structure and optoelectronic properties of ZnOxSe1-x. The films are grown using different combinations of PLD conditions and characterized with a variety of techniques. Phase pure films with low roughness and high crystallinity were obtained at temperatures below 450¢ªC, pressures less than 10-4 Torr and laser fluences on the order of 1.5 J/cm 2. Electrical conduction was still observed despite heavy concentrations of grain boundaries. The band structure of ZnO1-xSex is then examined in detail. The bulk electron affinity of a ZnO thin film was measured to be 4.5 eV by pinning the Fermi level with native defects. This is explained in the framework of the amphoteric defect model. A shift in the ZnO1-xSe x valence band edge with x is observed using synchrotron x-ray absorption and emission

  6. Reply to the 'Comment on "Proton transport in barium stannate: classical, semi-classical and quantum regime"'.

    PubMed

    Geneste, Grégory; Hermet, Jessica; Dezanneau, Guilhem

    2017-08-09

    We respond to the erroneous criticisms about our modeling of proton transport in barium stannate [G. Geneste et al., Phys. Chem. Chem. Phys., 2015, 17, 19104]. In this previous work, we described, on the basis of density-functional calculations, proton transport in the classical and semi-classical regimes, and provided arguments in favor of an adiabatic picture for proton transfer at low temperature. We re-explain here our article (with more detail and precision), the content of which has been distorted in the Comment, and reiterate our arguments in this reply. We refute all criticisms. They are completely wrong in the context of our article. Even though a few of them are based on considerations probably true in some metals, they make no sense here since they do not correspond to the content of our work. It has not been understood in the Comment that two competitive configurations, associated with radically different transfer mechanisms, have been studied in our work. It has also not been understood in the Comment that the adiabatic regime described for transfer occurs in the protonic ground state, in a very-low barrier configuration with the protonic ground state energy larger than the barrier. Serious confusion has been made in the Comment with the case of H in metals like Nb or Ta, leading to the introduction of the notion of (protonic) "excited-state proton transfer", relevant for H in some metals, but (i) that does not correspond to the (ground state) adiabatic transfers here described, and (ii) that does not correspond to what is commonly described as the "adiabatic limit for proton transfer" in the scientific literature. We emphasize, accordingly, the large differences between proton transfer in the present oxide and hydrogen jumps in metals like Nb or Ta, and the similarities between proton transfer in the present oxide and in acid-base solutions. We finally describe a scenario for proton transfer in the present oxide regardless of the temperature regime.

  7. High-pressure Gas Activation for Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors at 100 °C

    PubMed Central

    Kim, Won-Gi; Tak, Young Jun; Du Ahn, Byung; Jung, Tae Soo; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-01-01

    We investigated the use of high-pressure gases as an activation energy source for amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs). High-pressure annealing (HPA) in nitrogen (N2) and oxygen (O2) gases was applied to activate a-IGZO TFTs at 100 °C at pressures in the range from 0.5 to 4 MPa. Activation of the a-IGZO TFTs during HPA is attributed to the effect of the high-pressure environment, so that the activation energy is supplied from the kinetic energy of the gas molecules. We reduced the activation temperature from 300 °C to 100 °C via the use of HPA. The electrical characteristics of a-IGZO TFTs annealed in O2 at 2 MPa were superior to those annealed in N2 at 4 MPa, despite the lower pressure. For O2 HPA under 2 MPa at 100 °C, the field effect mobility and the threshold voltage shift under positive bias stress were improved by 9.00 to 10.58 cm2/V.s and 3.89 to 2.64 V, respectively. This is attributed to not only the effects of the pressurizing effect but also the metal-oxide construction effect which assists to facilitate the formation of channel layer and reduces oxygen vacancies, served as electron trap sites. PMID:26972476

  8. Improvement in electrical characteristics of eco-friendly indium zinc oxide thin-film transistors by photocatalytic reaction.

    PubMed

    Kang, Jun Ki; Park, Sung Pyo; Na, Jae Won; Lee, Jin Hyeok; Kim, Dongwoo; Kim, Hyun Jae

    2018-05-11

    Eco-friendly solution-processed oxide thin-film transistors (TFTs) were fabricated through photocatalytic reaction of titanium dioxide (PRT). The titanium dioxide (TiO 2 ) surface reacts with H 2 O under ultraviolet (UV) light irradiation and generates hydroxyl radicals (OH∙). These hydroxyl radicals accelerate the decomposition of large organic compounds such as 2-methoxyethanol (2ME; one of the representative solvents for solution-processed metal oxides), creating smaller organic molecular structures compared with 2ME. The decomposed small organic materials have low molar masses and low boiling points, which help improving electrical properties via diminishing defect sites in oxide channel layers and fabricating low temperature solution-processed oxide TFTs. As a result, the field-effect mobility improved from 4.29 to 10.24 cm 2 /V·s for IGZO TFTs and from 2.78 to 7.82 cm 2 /V·s for IZO TFTs, and the V th shift caused by positive bias stress (PBS) and negative bias illumination stress (NBIS) over 1,000 s under 5,700 lux decreased from 6.2 to 2.9 V and from 15.3 to 2.8 V, respectively. In theory, TiO 2 has a permanent photocatalytic reaction; as such, hydroxyl radicals are generated continuously under UV irradiation, improving the electrical characteristics of solution-processed IZO TFTs even after four iterations of TiO 2 recycling in this study. Thus, the PRT method provides an eco-friendly approach for high-performance solution-processed oxide TFTs.

  9. Zinc-The key to preventing corrosion

    Kropschot, S.J.; Doebrich, Jeff L.

    2011-01-01

    Centuries before it was identified as an element, zinc was used to make brass (an alloy of zinc and copper) and for medicinal purposes. Metallic zinc and zinc oxide were produced in India sometime between the 11th and 14th centuries and in China in the 17th century, although the discovery of pure metallic zinc is credited to the German chemist Andreas Marggraf, who isolated the element in 1746. Refined zinc metal is bluish-white when freshly cast; it is hard and brittle at most temperatures and has relatively low melting and boiling points. Zinc alloys readily with other metals and is chemically active. On exposure to air, it develops a thin gray oxide film (patina), which inhibits deeper oxidation (corrosion) of the metal. The metal's resistance to corrosion is an important characteristic in its use.

  10. Effect of direct current sputtering power on the behavior of amorphous indium-gallium-zinc-oxide thin-film transistors under negative bias illumination stress: A combination of experimental analyses and device simulation

    SciT

    Jang, Jun Tae; Kim, Dong Myong; Choi, Sung-Jin

    The effect of direct current sputtering power of indium-gallium-zinc-oxide (IGZO) on the performance and stability of the corresponding thin-film transistor devices was studied. The field effect mobility increases as the IGZO sputter power increases, at the expense of device reliability under negative bias illumination stress (NBIS). Device simulation based on the extracted sub-gap density of states indicates that the field effect mobility is improved as a result of the number of acceptor-like states decreasing. The degradation by NBIS is suggested to be induced by the formation of peroxides in IGZO rather than charge trapping.

  11. Tuning optical properties of transparent conducting barium stannate by dimensional reduction

    DOE PAGES

    Li, Yuwei; Zhang, Lijun; Ma, Yanming; ...

    2015-01-30

    We report calculations of the electronic structure and optical properties of doped n-type perovskite BaSnO 3 and layered perovskites. While doped BaSnO 3 retains its transparency for energies below the valence to conduction band onset, the doped layered compounds exhibit below band edge optical conductivity due to transitions from the lowest conduction band. This gives absorption in the visible for Ba 2SnO 4. It is important to minimize this phase in transparent conducting oxide (TCO) films. Ba 3Sn 2O 7 and Ba 4Sn 3O 10 have strong transitions only in the red and infrared, respectively. Thus, there may be opportunitiesmore » for using these as wavelength filtering TCO.« less

  12. Effect of top gate bias on photocurrent and negative bias illumination stress instability in dual gate amorphous indium-gallium-zinc oxide thin-film transistor

    SciT

    Lee, Eunji; Chowdhury, Md Delwar Hossain; Park, Min Sang

    We have studied the effect of top gate bias (V{sub TG}) on the generation of photocurrent and the decay of photocurrent for back channel etched inverted staggered dual gate structure amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film-transistors. Upon 5 min of exposure of 365 nm wavelength and 0.7 mW/cm{sup 2} intensity light with negative bottom gate bias, the maximum photocurrent increases from 3.29 to 322 pA with increasing the V{sub TG} from −15 to +15 V. By changing V{sub TG} from negative to positive, the Fermi level (E{sub F}) shifts toward conduction band edge (E{sub C}), which substantially controls the conversion of neutral vacancy to charged one (V{submore » O} → V{sub O}{sup +}/V{sub O}{sup 2+} + e{sup −}/2e{sup −}), peroxide (O{sub 2}{sup 2−}) formation or conversion of ionized interstitial (O{sub i}{sup 2−}) to neutral interstitial (O{sub i}), thus electron concentration at conduction band. With increasing the exposure time, more carriers are generated, and thus, maximum photocurrent increases until being saturated. After negative bias illumination stress, the transfer curve shows −2.7 V shift at V{sub TG} = −15 V, which gradually decreases to −0.42 V shift at V{sub TG} = +15 V. It clearly reveals that the position of electron quasi-Fermi level controls the formation of donor defects (V{sub O}{sup +}/V{sub O}{sup 2+}/O{sub 2}{sup 2−}/O{sub i}) and/or hole trapping in the a-IGZO /interfaces.« less

  13. Improving the properties of zinc oxide thin-film surface acoustic wave device on glass substrate by introducing double alumina layers

    NASA Astrophysics Data System (ADS)

    Shih, Wen-Ching; Huang, Yi-Fan; Wu, Mu-Shiang

    2017-10-01

    ZnO films with c-axis (0002) orientation have been successfully grown by RF magnetron sputtering on Al2O3/glass substrates. The alumina films were firstly deposited on glass substrates, and then secondly deposited on interdigital transducer/ZnO film/alumina film/glass substrates by electron beam evaporation. The crystalline structure and surface roughness of the films were investigated by X-ray diffraction and atomic force microscopy, respectively. The phase velocity and coupling coefficient of the surface acoustic wave (SAW) device were both increased when we deposited the double alumina layers. On the other hand, the temperature coefficient of frequency becomes better if we increase the thickness of the lower alumina film. The experimental result is beneficial for improving the performance of the ZnO thin-film SAW devices on inexpensive glass substrates.

  14. Zinc cyanide

    Integrated Risk Information System (IRIS)

    Zinc cyanide ; CASRN 557 - 21 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effe

  15. Zinc phosphide

    Integrated Risk Information System (IRIS)

    Zinc phoshide ; CASRN 1314 - 84 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  16. Remarkable changes in interface O vacancy and metal-oxide bonds in amorphous indium-gallium-zinc-oxide thin-film transistors by long time annealing at 250 °C

    SciT

    Chowdhury, Md Delwar Hossain; Um, Jae Gwang; Jang, Jin, E-mail: jjang@khu.ac.kr

    We have studied the effect of long time post-fabrication annealing on negative bias illumination stress (NBIS) of amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film-transistors. Annealing for 100 h at 250 °C increased the field effect mobility from 14.7 cm{sup 2}/V s to 17.9 cm{sup 2}/V s and reduced the NBIS instability remarkably. Using X-ray photoelectron spectroscopy, the oxygen vacancy and OH were found to exist at the interfaces of a-IGZO with top and bottom SiO{sub 2}. Long time annealing helps to decrease the vacancy concentration and increase the metal-oxygen bonds at the interfaces; this leads to increase in the free carrier concentrations in a-IGZO and field-effect mobility.more » X-ray reflectivity measurement indicated the increment of a-IGZO film density of 5.63 g cm{sup −3} to 5.83 g cm{sup −3} (3.4% increase) by 100 h annealing at 250 °C. The increase in film density reveals the decrease of O vacancy concentration and reduction of weak metal-oxygen bonds in a-IGZO, which substantially helps to improve the NBIS stability.« less

  17. Status of zinc injection in PWRs

    SciT

    Bergmann, C.A.

    1995-03-01

    Based on laboratory and other studies, it was concluded that zinc addition in a PWR primary coolant should result in reduced Alloy 600 PWSCC and general corrosion rates of the materials of construction. Because of these positive results, a Westinghouse Owner`s Subgroup, EPRI, and Westinghouse provided funds to continue the development and application of zinc in an operating plant. As part of the program, Southern Operating Nuclear Company agreed to operate the Farley 2 plant with zinc addition as a demonstration test of the effectiveness of zinc. Since zinc is incorporated in the corrosion oxide film on the primary systemmore » surfaces and Farley 2 is a mature plant, it was estimated that about 10 kgs of zinc would be needed to condition the plant before an equilibrium value in the coolant would be reached. The engineered aspects of a Zinc Addition and Monitoring System (ZAMS) considered such items as the constitutents, location, sizing and water supply of the ZAMS. Baseline data such as the PWSCC history of the Alloy 600 steam generator tubing, fuel oxide thickness, fuel crud deposits, radiation levels, and RCP seal leak-off rates were obtained before zinc addition is initiated. This presentation summarizes some of the work performed under the program, and the status of zinc injection in the Farley 2 plant.« less

  18. Two-stage unified stretched-exponential model for time-dependence of threshold voltage shift under positive-bias-stresses in amorphous indium-gallium-zinc oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Jeong, Chan-Yong; Kim, Hee-Joong; Hong, Sae-Young; Song, Sang-Hun; Kwon, Hyuck-In

    2017-08-01

    In this study, we show that the two-stage unified stretched-exponential model can more exactly describe the time-dependence of threshold voltage shift (ΔV TH) under long-term positive-bias-stresses compared to the traditional stretched-exponential model in amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). ΔV TH is mainly dominated by electron trapping at short stress times, and the contribution of trap state generation becomes significant with an increase in the stress time. The two-stage unified stretched-exponential model can provide useful information not only for evaluating the long-term electrical stability and lifetime of the a-IGZO TFT but also for understanding the stress-induced degradation mechanism in a-IGZO TFTs.

  19. Using KrF ELA to Improve Gate-Stacked LaAlO₃/ZrO₂ Indium Gallium Zinc Oxide Thin-Film Transistors with Novel Atmospheric Pressure Plasma-Enhanced Chemical Vapor Deposition Technique.

    PubMed

    Wu, Chien-Hung; Chang, Kow-Ming; Chen, Yi-Ming; Huang, Bo-Wen; Zhang, Yu-Xin; Wang, Shui-Jinn

    2018-03-01

    Atmospheric pressure plasma-enhanced chemical vapor deposition (AP-PECVD) technique and KrF excimer laser annealing (ELA) were employed for the fabrication of indium gallium zinc oxide thin-film transistors (IGZO-TFTs). Device with a 150 mJ/cm2 laser annealing densities demonstrated excellent electrical characteristics with improved on/off current ratio of 4.7×107, high channel mobility of 10 cm2/V-s, and low subthreshold swing of 0.15 V/dec. The improvements are attributed to the adjustment of oxygen vacancies in the IGZO channel to an appropriate range of around 28.3% and the reduction of traps at the high-k/IGZO interface.

  20. An overview of zinc addition for BWR dose rate control

    SciT

    Marble, W.J.

    1995-03-01

    This paper presents an overview of the BWRs employing feedwater zinc addition to reduce primary system dose rates. It identifies which BWRs are using zinc addition and reviews the mechanical injection and passive addition hardware currently being employed. The impact that zinc has on plant chemistry, including the factor of two to four reduction in reactor water Co-60 concentrations, is discussed. Dose rate results, showing the benefits of implementing zinc on either fresh piping surfaces or on pipes with existing films are reviewed. The advantages of using zinc that is isotopically enhanced by the depletion of the Zn-64 precursor tomore » Zn-65 are identified.« less

  1. Cosputtering crystal growth of zinc oxide-based composite films: From the effects of doping to phase on photoactivity and gas sensing properties

    NASA Astrophysics Data System (ADS)

    Liang, Yuan-Chang; Lee, Chia-Min

    2016-10-01

    ZnO-In2O3 (InO) composite thin films were grown by radio frequency cosputtering ZnO and InO ceramic targets in this study. The indium content of the composite films was varied from 1.7 at. % to 8.2 at. % by varying the InO sputtering power during cosputtering thin-film growth. X-ray diffraction and transmission electron microscopy analysis results show that the high indium content leads to the formation of a separated InO phase in the ZnO matrix. The surface crystallite size and roughness of the ZnO-InO composite films grown here increased with an increasing indium content. Furthermore, under the conditions of a higher indium content and InO sputtering power, the number of crystal defects in the composite films increased, and the optical absorbance edge of the composite films broadened. The photoactivity and ethanol gas sensing response of the ZnO-InO composite films increased as their indium content increased; this finding is highly correlated with the microstructural evolution of ZnO-InO composite films of various indium contents, which is achieved by varying the InO sputtering power during cosputtering.

  2. Thin-film semiconductor rectifier has improved properties

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Cadmium selenide-zinc selenide film is used as a thin film semiconductor rectifier. The film is vapor-deposited in a controlled concentration gradient into a glass substrate to form the required junctions between vapor-deposited gold electrodes.

  3. Zinc Signals and Immunity.

    PubMed

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-10-24

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as "zinc waves", and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.

  4. Microstructure evolution of zinc oxide films derived from dip-coating sol-gel technique: formation of nanorods through orientation attachment.

    PubMed

    Huang, Nan; Sun, Chao; Zhu, Mingwei; Zhang, Bin; Gong, Jun; Jiang, Xin

    2011-07-01

    ZnO:Al thin films with Al incorporation of 0-20 at.% were deposited through the sol-gel technique. Such a film undergoes a significant microstructure development, from columnar to granular structures and then nanorod arrays with increasing Al content. The important role of Al incorporation level in the microstructure evolution was determined using scanning electron microscopy, x-ray photoelectron spectroscopy and transmission electron microscopy. At low Al level, the transition from columnar to granular grains can be attributed to the coarsening barrier resulting from the introduction of Al into the matrix. However, oriented structures of ZnO nanorod arrays are formed at a high Al level. TEM investigation reveals that a nanorod with smooth morphology at the top and rough morphology at the bottom has a single-crystalline wurtzite structure, which is the aggregation of nanoparticles of a few nanometers in size formed through the orientation attachment mechanism followed by epitaxial growth on the aggregated particles. Finally, the physical properties of the ZnO films with different degrees of Al concentration are discussed. Such detailed microstructure studies may aid the understanding of the doping effect process on the growth of a film, which is essential to altering its physical or chemical properties.

  5. Optical properties of thin films of zinc oxide quantum dots and polydimethylsiloxane: UV-blocking and the effect of cross-linking.

    PubMed

    Eita, Mohamed; El Sayed, Ramy; Muhammed, Mamoun

    2012-12-01

    Thin films of polydimethylsiloxane (PDMS) and ZnO quantum dots (QDs) were built up as multilayers by spin-coating. The films are characterized by a UV-blocking ability that increases with increasing number of bilayers. Photoluminescence (PL) emission spectra of the thin films occur at 522 nm, which is the PL wavelength of the ZnO QDs dispersion, but with a lower intensity and a quantum yield (QY) less than 1% that of the dispersion. Cross-linking has introduced new features to the absorption spectra in that the absorption peak was absent. These changes were attributed to the morphological and structural changes revealed by transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR), respectively. TEM showed that the ZnO particle size in the film increased from 7 (±2.7) nm to 16 (±7.8) upon cross-linking. The FTIR spectra suggest that ZnO QDs are involved in the cross-linking of PDMS and that the surface of the ZnO QDs has been chemically modified. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Update on zinc biology.

    PubMed

    Solomons, Noel W

    2013-01-01

    Zinc has become a prominent nutrient of clinical and public health interest in the new millennium. Functions and actions for zinc emerge as increasingly ubiquitous in mammalian anatomy, physiology and metabolism. There is undoubtedly an underpinning in fundamental biology for all of the aspects of zinc in human health (clinical and epidemiological) in pediatric and public health practice. Unfortunately, basic science research may not have achieved a full understanding as yet. As a complement to the applied themes in the companion articles, a selection of recent advances in the domains homeostatic regulation and transport of zinc is presented; they are integrated, in turn, with findings on genetic expression, intracellular signaling, immunity and host defense, and bone growth. The elements include ionic zinc, zinc transporters, metallothioneins, zinc metalloenzymes and zinc finger proteins. In emerging basic research, we find some plausible mechanistic explanations for delayed linear growth with zinc deficiency and increased infectious disease resistance with zinc supplementation. Copyright © 2013 S. Karger AG, Basel.

  7. Production of zinc pellets

    DOEpatents

    Cooper, J.F.

    1996-11-26

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries. 6 figs.

  8. Production of zinc pellets

    DOEpatents

    Cooper, John F.

    1996-01-01

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries.

  9. Dietary phytate, zinc and hidden zinc deficiency.

    PubMed

    Sandstead, Harold H; Freeland-Graves, Jeanne H

    2014-10-01

    Epidemiological data suggest at least one in five humans are at risk of zinc deficiency. This is in large part because the phytate in cereals and legumes has not been removed during food preparation. Phytate, a potent indigestible ligand for zinc prevents it's absorption. Without knowledge of the frequency of consumption of foods rich in phytate, and foods rich in bioavailable zinc, the recognition of zinc deficiency early in the illness may be difficult. Plasma zinc is insensitive to early zinc deficiency. Serum ferritin concentration≤20μg/L is a potential indirect biomarker. Early effects of zinc deficiency are chemical, functional and may be "hidden". The clinical problem is illustrated by 2 studies that involved US Mexican-American children, and US premenopausal women. The children were consuming home diets that included traditional foods high in phytate. The premenopausal women were not eating red meat on a regular basis, and their consumption of phytate was mainly from bran breakfast cereals. In both studies the presence of zinc deficiency was proven by functional responses to controlled zinc treatment. In the children lean-mass, reasoning, and immunity were significantly affected. In the women memory, reasoning, and eye-hand coordination were significantly affected. A screening self-administered food frequency questionnaire for office might help caregiver's identify patients at risk of zinc deficiency. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. A study on the high temperature-dependence of the electrical properties in a solution-deposited zinc-tin-oxide thin-film transistor operated in the saturation region

    NASA Astrophysics Data System (ADS)

    Yu, Kyeong Min; Bae, Byung Seong; Jung, Myunghee; Yun, Eui-Jung

    2016-06-01

    We investigate the effects of high temperatures in the range of 292 - 393 K on the electrical properties of solution-processed amorphous zinc-tin-oxide (a-ZTO) thin-film transistors (TFTs) operated in the saturation region. The fabricated a-ZTO TFTs have a non-patterned bottom gate and top contact structure, and they use a heavily-doped Si wafer and SiO2 as a gate electrode and a gate insulator layer, respectively. In a-ZTO TFTs, the trap release energy ( E TR ) was deduced by using Maxwell-Boltzmann statistics. The decreasing E TR toward zero with increasing gate voltage (the density of trap states ( n s )) in the a-ZTO active layer can be attributed to a shift of the Fermi level toward the mobility edge with increasing gate voltage. The TFTs with low gate voltage (low n s ) exhibit multiple trap and release characteristics and show thermally-activated behavior. In TFTs with a high gate voltage (high n s ), however, we observe decreasing mobility and conductivity with increasing temperature at temperatures ranging from 303 to 363 K. This confirms that the E TR can drop to zero, indicating a shift of the Fermi level beyond the mobility edge. Hence, the mobility edge is detected at the cusp between thermally-activated transport and band transport.

  11. Improvement of bias-stability in amorphous-indium-gallium-zinc-oxide thin-film transistors by using solution-processed Y{sub 2}O{sub 3} passivation

    SciT

    An, Sungjin; Mativenga, Mallory; Kim, Youngoo

    2014-08-04

    We demonstrate back channel improvement of back-channel-etch amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors by using solution-processed yttrium oxide (Y{sub 2}O{sub 3}) passivation. Two different solvents, which are acetonitrile (35%) + ethylene glycol (65%), solvent A and deionized water, solvent B are investigated for the spin-on process of the Y{sub 2}O{sub 3} passivation—performed after patterning source/drain (S/D) Mo electrodes by a conventional HNO{sub 3}-based wet-etch process. Both solvents yield devices with good performance but those passivated by using solvent B exhibit better light and bias stability. Presence of yttrium at the a-IGZO back interface, where it occupies metal vacancy sites, is confirmed by X-ray photoelectronmore » spectroscopy. The passivation effect of yttrium is more significant when solvent A is used because of the existence of more metal vacancies, given that the alcohol (65% ethylene glycol) in solvent A may dissolve the metal oxide (a-IGZO) through the formation of alkoxides and water.« less

  12. A room temperature process for the fabrication of amorphous indium gallium zinc oxide thin-film transistors with co-sputtered Zr x Si1- x O2 Gate dielectric and improved electrical and hysteresis performance

    NASA Astrophysics Data System (ADS)

    Hung, Chien-Hsiung; Wang, Shui-Jinn; Liu, Pang-Yi; Wu, Chien-Hung; Wu, Nai-Sheng; Yan, Hao-Ping; Lin, Tseng-Hsing

    2017-04-01

    The use of co-sputtered zirconium silicon oxide (Zr x Si1- x O2) gate dielectrics to improve the gate controllability of amorphous indium gallium zinc oxide (α-IGZO) thin-film transistors (TFTs) through a room-temperature fabrication process is proposed and demonstrated. With the sputtering power of the SiO2 target in the range of 0-150 W and with that of the ZrO2 target kept at 100 W, a dielectric constant ranging from approximately 28.1 to 7.8 is obtained. The poly-structure formation immunity of the Zr x Si1- x O2 dielectrics, reduction of the interface trap density suppression, and gate leakage current are examined. Our experimental results reveal that the Zr0.85Si0.15O2 gate dielectric can lead to significantly improved TFT subthreshold swing performance (103 mV/dec) and field effect mobility (33.76 cm2 V-1 s-1).

  13. High-performance low-cost back-channel-etch amorphous gallium-indium-zinc oxide thin-film transistors by curing and passivation of the damaged back channel.

    PubMed

    Park, Jae Chul; Ahn, Seung-Eon; Lee, Ho-Nyeon

    2013-12-11

    High-performance, low-cost amorphous gallium-indium-zinc oxide (a-GIZO) thin-film-transistor (TFT) technology is required for the next generation of active-matrix organic light-emitting diodes. A back-channel-etch structure is the most appropriate device structure for high-performance, low-cost a-GIZO TFT technology. However, channel damage due to source/drain etching and passivation-layer deposition has been a critical issue. To solve this problem, the present work focuses on overall back-channel processes, such as back-channel N2O plasma treatment, SiOx passivation deposition, and final thermal annealing. This work has revealed the dependence of a-GIZO TFT characteristics on the N2O plasma radio-frequency (RF) power and frequency, the SiH4 flow rate in the SiOx deposition process, and the final annealing temperature. On the basis of these results, a high-performance a-GIZO TFT with a field-effect mobility of 35.7 cm(2) V(-1) s(-1), a subthreshold swing of 185 mV dec(-1), a switching ratio exceeding 10(7), and a satisfactory reliability was successfully fabricated. The technology developed in this work can be realized using the existing facilities of active-matrix liquid-crystal display industries.

  14. Method of capturing or trapping zinc using zinc getter materials

    SciT

    Hunyadi Murph, Simona E.; Korinko, Paul S.

    2017-07-11

    A method of trapping or capturing zinc is disclosed. In particular, the method comprises a step of contacting a zinc vapor with a zinc getter material. The zinc getter material comprises nanoparticles and a metal substrate.

  15. Luminescence and electroluminescence of bis (2-(benzimidazol-2-yl) quinolinato) zinc. Exciplex formation and energy transfer in mixed film of bis (2-(benzimidazol-2-yl) quinolinato) zinc and N,N‧-bis-(1-naphthyl)-N,N‧-diphenyl-1,1‧-biphenyl-4,4‧-diamine

    NASA Astrophysics Data System (ADS)

    Chen, Tsun-Ren

    2005-02-01

    The absorption and emission properties of benzimidazol-2-yl-quinoline (BIQ) and bis (2-(benzimidazol-2-yl) quinolinato) zinc (ZnBIQ) a new emitter used for organic light emitting device (OLED) were reported. Exciplexes are observed for ZnBIQ with N, N'-bis-(1-naphthyl)- N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB) system, in both electro- and photoluminescent processes. The identification of exciplex emission in co-evaporated and multi-layer ZnBIQ thin film was reported for the first time. The optical formation of the exciplex involves the excitation of a single molecule, followed by the relaxation of that exciton into a lower energy exciplex state. Both BIQ and ZnBIQ possess very high thermal stabilities and can be purified by subliming under the high vacuum condition. Devices consisting of ZnBIQ as the emitting layer have been fabricated, and the emission spectra of ZnBIQ-base devices gave a voltage-dependent spectrum, with the red emission observed (3-7 V), switching over to strong white emission as the bias was raised.

  16. Structural and photoluminescence properties of stannate based displaced pyrochlore-type red phosphors: Ca(3-x)Sn₃Nb₂O₁₄:xEu³⁺.

    PubMed

    Sreena, T S; Prabhakar Rao, P; Francis, T Linda; Raj, Athira K V; Babu, Parvathi S

    2015-05-14

    New stannate based displaced pyrochlore-type red phosphors, Ca(3-x)Sn3Nb2O14:xEu(3+), were prepared via a conventional solid state method. The influence of partial occupancy of Sn in both A and B sites of the pyrochlore-type oxides on the photoluminescence properties was studied using powder X-ray diffraction, FT-Raman, transmission electron microscopy, scanning electron microscopy with energy dispersive spectrometry, UV-visible absorption spectroscopy, and photoluminescence excitation and emission spectra with lifetime measurements. The structural analysis establishes that these oxides belong to a cubic displaced pyrochlore type structure with a space group Fd3̄m. These phosphors exhibit strong absorptions at near UV and blue wavelength regions and emit intense multiband emissions due to Eu(3+ 5)D0-(7)F(0, 1, 2) transitions. The absence of characteristic MD transition splitting points out that local cation disorder exists in this type of displaced pyrochlores, reducing the D(3d) inversion symmetry, which is not evidenced by such disorder in the X-ray diffraction analysis. The unusual forbidden intense sharp (5)D0-(7)F0 transition indicates single site occupancy of Eu(3+) with a narrower range of bonding environment, preventing the cluster formation. This is supported by the stable (5)D0 lifetime with Eu(3+) concentration. The Judd-Ofelt intensity parameter assessment corroborates these results. The CIE color coordinates of these phosphors were found to be (0.60, 0.40), which are close to the NTSC standard values (0.67, 0.33) for a potential red phosphor.

  17. The Influence of Hafnium Doping on Density of States in Zinc Oxide Thin-Film Transistors Deposited via Atomic Layer Deposition.

    PubMed

    Ding, Xingwei; Qin, Cunping; Song, Jiantao; Zhang, Jianhua; Jiang, Xueyin; Zhang, Zhilin

    2017-12-01

    Thin-film transistors (TFTs) with atomic layer deposition (ALD) HfZnO (HZO) as channel layer and Al 2 O 3 as gate insulator were successfully fabricated. Compared with ZnO-TFT, the stability of HZO-TFT was obviously improved as Hf doping can suppress the generation of oxygen related defects. The transfer characteristics of TFTs at different temperatures were also investigated, and temperature stability enhancement was observed for the TFT with Hf doping. The density of states (DOS) was calculated based on the experimentally obtained E a , which can explain the experimental observation. A high-field effect mobility of 9.4 cm 2 /Vs, a suitable turn-on voltage of 0.26 V, a high on/off ratio of over 10 7 and a steep sub-threshold swing of 0.3 V/decade were obtained in HZO-TFT. The results showed that temperature stability enhancement in HfZnO thin-film transistors are attributed to the smaller DOS.

  18. The Influence of Hafnium Doping on Density of States in Zinc Oxide Thin-Film Transistors Deposited via Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Ding, Xingwei; Qin, Cunping; Song, Jiantao; Zhang, Jianhua; Jiang, Xueyin; Zhang, Zhilin

    2017-01-01

    Thin-film transistors (TFTs) with atomic layer deposition (ALD) HfZnO (HZO) as channel layer and Al2O3 as gate insulator were successfully fabricated. Compared with ZnO-TFT, the stability of HZO-TFT was obviously improved as Hf doping can suppress the generation of oxygen related defects. The transfer characteristics of TFTs at different temperatures were also investigated, and temperature stability enhancement was observed for the TFT with Hf doping. The density of states (DOS) was calculated based on the experimentally obtained E a, which can explain the experimental observation. A high-field effect mobility of 9.4 cm2/Vs, a suitable turn-on voltage of 0.26 V, a high on/off ratio of over 107 and a steep sub-threshold swing of 0.3 V/decade were obtained in HZO-TFT. The results showed that temperature stability enhancement in HfZnO thin-film transistors are attributed to the smaller DOS.

  19. Zinc at glutamatergic synapses.

    PubMed

    Paoletti, P; Vergnano, A M; Barbour, B; Casado, M

    2009-01-12

    It has long been known that the mammalian forebrain contains a subset of glutamatergic neurons that sequester zinc in their synaptic vesicles. This zinc may be released into the synaptic cleft upon neuronal activity. Extracellular zinc has the potential to interact with and modulate many different synaptic targets, including glutamate receptors and transporters. Among these targets, NMDA receptors appear particularly interesting because certain NMDA receptor subtypes (those containing the NR2A subunit) contain allosteric sites exquisitely sensitive to extracellular zinc. The existence of these high-affinity zinc binding sites raises the possibility that zinc may act both in a phasic and tonic mode. Changes in zinc concentration and subcellular zinc distribution have also been described in several pathological conditions linked to glutamatergic transmission dysfunctions. However, despite intense investigation, the functional significance of vesicular zinc remains largely a mystery. In this review, we present the anatomy and the physiology of the glutamatergic zinc-containing synapse. Particular emphasis is put on the molecular and cellular mechanisms underlying the putative roles of zinc as a messenger involved in excitatory synaptic transmission and plasticity. We also highlight the many controversial issues and unanswered questions. Finally, we present and compare two widely used zinc chelators, CaEDTA and tricine, and show why tricine should be preferred to CaEDTA when studying fast transient zinc elevations as may occur during synaptic activity.

  20. Zinc oxide overdose

    MedlinePlus

    Zinc oxide is an ingredient in many products. Some of these are certain creams and ointments used ... prevent or treat minor skin burns and irritation. Zinc oxide overdose occurs when someone eats one of ...

  1. Optical phonons in nanostructured thin films composed by zincblende zinc selenide quantum dots in strong size-quantization regime: Competition between phonon confinement and strain-related effects

    NASA Astrophysics Data System (ADS)

    Pejova, Biljana

    2014-05-01

    Raman scattering in combination with optical spectroscopy and structural studies by X-ray diffraction was employed to investigate the phonon confinement and strain-induced effects in 3D assemblies of variable-size zincblende ZnSe quantum dots close packed in thin film form. Nanostructured thin films were synthesized by colloidal chemical approach, while tuning of the nanocrystal size was enabled by post-deposition thermal annealing treatment. In-depth insights into the factors governing the observed trends of the position and half-width of the 1LO band as a function of the average QD size were gained. The overall shifts in the position of 1LO band were found to result from an intricate compromise between the influence of phonon confinement and lattice strain-induced effects. Both contributions were quantitatively and exactly modeled. Accurate assignments of the bands due to surface optical (SO) modes as well as of the theoretically forbidden transverse optical (TO) modes were provided, on the basis of reliable physical models (such as the dielectric continuum model of Ruppin and Englman). The size-dependence of the ratio of intensities of the TO and LO modes was studied and discussed as well. Relaxation time characterizing the phonon decay processes in as-deposited samples was found to be approximately 0.38 ps, while upon post-deposition annealing already at 200 °C it increases to about 0.50 ps. Both of these values are, however, significantly smaller than those characteristic for a macrocrystalline ZnSe sample.

  2. Zinc and gastrointestinal disease

    PubMed Central

    Skrovanek, Sonja; DiGuilio, Katherine; Bailey, Robert; Huntington, William; Urbas, Ryan; Mayilvaganan, Barani; Mercogliano, Giancarlo; Mullin, James M

    2014-01-01

    This review is a current summary of the role that both zinc deficiency and zinc supplementation can play in the etiology and therapy of a wide range of gastrointestinal diseases. The recent literature describing zinc action on gastrointestinal epithelial tight junctions and epithelial barrier function is described. Zinc enhancement of gastrointestinal epithelial barrier function may figure prominently in its potential therapeutic action in several gastrointestinal diseases. PMID:25400994

  3. Amorphous indium-gallium-zinc-oxide thin-film transistors using organic-inorganic hybrid films deposited by low-temperature plasma-enhanced chemical vapor deposition for all dielectric layers

    NASA Astrophysics Data System (ADS)

    Hsu, Chao-Jui; Chang, Ching-Hsiang; Chang, Kuei-Ming; Wu, Chung-Chih

    2017-01-01

    We investigated the deposition of high-performance organic-inorganic hybrid dielectric films by low-temperature (close to room temperature) inductively coupled plasma chemical vapor deposition (ICP-CVD) with hexamethyldisiloxane (HMDSO)/O2 precursor gas. The hybrid films exhibited low leakage currents and high breakdown fields, suitable for thin-film transistor (TFT) applications. They were successfully integrated into the gate insulator, the etch-stop layer, and the passivation layer for bottom-gate staggered amorphous In-Ga-Zn-O (a-IGZO) TFTs having the etch-stop configuration. With the double-active-layer configuration having a buffer a-IGZO back-channel layer grown in oxygen-rich atmosphere for better immunity against plasma damage, the etch-stop-type bottom-gate staggered a-IGZO TFTs with good TFT characteristics were successfully demonstrated. The TFTs showed good field-effect mobility (μFE), threshold voltage (V th), subthreshold swing (SS), and on/off ratio (I on/off) of 7.5 cm2 V-1 s-1, 2.38 V, 0.38 V/decade, and 2.2 × 108, respectively, manifesting their usefulness for a-IGZO TFTs.

  4. Experiments On Transparent Conductive Films For Spacecraft

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Rutledge, Sharon K.; De Groh, Kim K.; Hung, Ching-Cheh; Malave-Sanabria, Tania; Hambourger, Paul; Roig, David

    1995-01-01

    Report describes experiments on thin, transparent, electrically conductive films made, variously, of indium tin oxide covered by magnesium fluoride (ITO/MgF2), aluminum-doped zinc oxide (AZO), or pure zinc oxide (ZnO). Films are candidates for application to such spacecraft components, including various optoelectronic devices and window surfaces that must be protected against buildup of static electric charge. On Earth, such films useful on heat mirrors, optoelectronic devices, gas sensors, and automotive and aircraft windows.

  5. Self-aligned top-gate amorphous indium zinc oxide thin-film transistors exceeding low-temperature poly-Si transistor performance.

    PubMed

    Park, Jae Chul; Lee, Ho-Nyeon; Im, Seongil

    2013-08-14

    Thin-film transistor (TFT) is a key component of active-matrix flat-panel displays (AMFPDs). These days, the low-temperature poly silicon (LTPS) TFTs are to match with advanced AMFPDs such as the active matrix organic light-emitting diode (AMOLED) display, because of their high mobility for fast pixel switching. However, the manufacturing process of LTPS TFT is quite complicated, costly, and scale-limited. Amorphous oxide semiconductor (AOS) TFT technology is another candidate, which is as simple as that of conventioanl amorphous (a)-Si TFTs in fabrication but provides much superior device performances to those of a-Si TFTs. Hence, various AOSs have been compared with LTPS for active channel layer of the advanced TFTs, but have always been found to be relatively inferior to LTPS. In the present work, we clear the persistent inferiority, innovating the device performaces of a-IZO TFT by adopting a self-aligned coplanar top-gate structure and modifying the surface of a-IZO material. Herein, we demonstrate a high-performance simple-processed a-IZO TFT with mobility of ∼157 cm(2) V(-1) s(-1), SS of ∼190 mV dec(-1), and good bias/photostabilities, which overall surpass the performances of high-cost LTPS TFTs.

  6. Simultaneous Automatic Electrochemical Detection of Zinc, Cadmium, Copper and Lead Ions in Environmental Samples Using a Thin-Film Mercury Electrode and an Artificial Neural Network

    PubMed Central

    Kudr, Jiri; Nguyen, Hoai Viet; Gumulec, Jaromir; Nejdl, Lukas; Blazkova, Iva; Ruttkay-Nedecky, Branislav; Hynek, David; Kynicky, Jindrich; Adam, Vojtech; Kizek, Rene

    2015-01-01

    In this study a device for automatic electrochemical analysis was designed. A three electrodes detection system was attached to a positioning device, which enabled us to move the electrode system from one well to another of a microtitre plate. Disposable carbon tip electrodes were used for Cd(II), Cu(II) and Pb(II) ion quantification, while Zn(II) did not give signal in this electrode configuration. In order to detect all mentioned heavy metals simultaneously, thin-film mercury electrodes (TFME) were fabricated by electrodeposition of mercury on the surface of carbon tips. In comparison with bare electrodes the TMFEs had lower detection limits and better sensitivity. In addition to pure aqueous heavy metal solutions, the assay was also performed on mineralized rock samples, artificial blood plasma samples and samples of chicken embryo organs treated with cadmium. An artificial neural network was created to evaluate the concentrations of the mentioned heavy metals correctly in mixture samples and an excellent fit was observed (R2 = 0.9933). PMID:25558996

  7. Thin film photovoltaic device

    DOEpatents

    Catalano, Anthony W.; Bhushan, Manjul

    1982-01-01

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  8. Thin film photovoltaic device

    DOEpatents

    Catalano, A.W.; Bhushan, M.

    1982-08-03

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

  9. Influence of the charge trap density distribution in a gate insulator on the positive-bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors

    SciT

    Kim, Eungtaek; Kim, Choong-Ki; Lee, Myung Keun

    We investigated the positive-bias stress (PBS) instability of thin film transistors (TFTs) composed of different types of first-gate insulators, which serve as a protection layer of the active surface. Two different deposition methods, i.e., the thermal atomic layer deposition (THALD) and plasma-enhanced ALD (PEALD) of Al{sub 2}O{sub 3}, were applied for the deposition of the first GI. When THALD was used to deposit the GI, amorphous indium-gallium-zinc oxide (a-IGZO) TFTs showed superior stability characteristics under PBS. For example, the threshold voltage shift (ΔV{sub th}) was 0 V even after a PBS time (t{sub stress}) of 3000 s under a gate voltage (V{submore » G}) condition of 5 V (with an electrical field of 1.25 MV/cm). On the other hand, when the first GI was deposited by PEALD, the ΔV{sub th} value of a-IGZO TFTs was 0.82 V after undergoing an identical amount of PBS. In order to interpret the disparate ΔV{sub th} values resulting from PBS quantitatively, the average oxide charge trap density (N{sub T}) in the GI and its spatial distribution were investigated through low-frequency noise characterizations. A higher N{sub T} resulted during in the PEALD type GI than in the THALD case. Specifically, the PEALD process on a-IGZO layer surface led to an increasing trend of N{sub T} near the GI/a-IGZO interface compared to bulk GI owing to oxygen plasma damage on the a-IGZO surface.« less

  10. Zinc Signals and Immunity

    PubMed Central

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-01-01

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as “zinc waves”, and late homeostatic zinc signals regarding prolonged changes in intracellular zinc. PMID:29064429

  11. Zinc and Autophagy

    PubMed Central

    Liuzzi, Juan P.; Guo, Liang; Yoo, Changwon; Stewart, Tiffanie S

    2014-01-01

    Autophagy is a highly conserved degradative process through which cells overcome stressful conditions. Inasmuch as faulty autophagy has been associated with aging, neuronal degeneration disorders, diabetes, and fatty liver, autophagy is regarded as a potential therapeutic target. This review summarizes the present state of knowledge concerning the role of zinc in the regulation of autophagy, the role of autophagy in zinc metabolism, and the potential role of autophagy as a mediator of the protective effects of zinc. Data from in vitro studies consistently support the notion that zinc is critical for early and late autophagy. Studies have shown inhibition of early and late autophagy in cells cultured in medium treated with zinc chelators. Conversely, excess zinc added to the medium has shown to potentiate the stimulation of autophagy by tamoxifen, H2O2, ethanol and dopamine. The potential role of autophagy in zinc homeostasis has just begun to be investigated.Increasing evidence indicates that autophagy dysregulation causes significant changes in cellular zinc homeostasis. Autophagy may mediate the protective effect of zinc against lipid accumulation, apoptosis and inflammation by promoting degradation of lipid droplets, inflammasomes, p62/SQSTM1 and damaged mitochondria.Studies with humans and animal models are necessary to determine whether autophagy is influenced by zinc intake. PMID:25012760

  12. Acetone sensor based on zinc oxide hexagonal tubes

    SciT

    Hastir, Anita, E-mail: anitahastir@gmail.com; Singh, Onkar, E-mail: anitahastir@gmail.com; Anand, Kanika, E-mail: anitahastir@gmail.com

    2014-04-24

    In this work hexagonal tubes of zinc oxide have been synthesized by co-precipitation method. For structural, morphological, elemental and optical analysis synthesized powders were characterized by using x-ray diffraction, field emission scanning microscope, EDX, UV-visible and FTIR techniques. For acetone sensing thick films of zinc oxide have been deposited on alumina substrate. The fabricated sensors exhibited maximum sensing response towards acetone vapour at an optimum operating temperature of 400°C.

  13. Improved zinc electrode and rechargeable zinc-air battery

    DOEpatents

    Ross, P.N. Jr.

    1988-06-21

    The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

  14. Tribological performance of Zinc soft metal coatings in solid lubrication

    NASA Astrophysics Data System (ADS)

    Regalla, Srinivasa Prakash; Krishnan Anirudh, V.; Reddy Narala, Suresh Kumar

    2018-04-01

    Solid lubrication by soft coatings is an important technique for superior tribological performance in machine contacts involving high pressures. Coating with soft materials ensures that the subsurface machine component wear decreases, ensuring longer life. Several soft metal coatings have been studied but zinc coatings have not been studied much. This paper essentially deals with the soft coating by zinc through electroplating on hard surfaces, which are subsequently tested in sliding experiments for tribological performance. The hardness and film thickness values have been found out, the coefficient of friction of the zinc coating has been tested using a pin on disc wear testing machine and the results of the same have been presented.

  15. Protective Coats For Zinc-Rich Primers

    NASA Technical Reports Server (NTRS)

    Macdowell, Louis G, III

    1993-01-01

    Report describes tests of topcoats for inorganic zinc-rich primers on carbon steel. Topcoats intended to provide additional protection against corrosion in acidic, salty seacoast-air/rocket-engine-exhaust environment of Space Shuttle launch site. Tests focused on polyurethane topcoats on epoxy tie coats on primers. Part of study involved comparison between "high-build" coating materials and thin-film coating materials.

  16. Zinc in Entamoeba invadens.

    NASA Technical Reports Server (NTRS)

    Morgan, R. S.; Sattilaro, R. F.

    1972-01-01

    Atomic absorption spectroscopy, electron microprobe analysis, and dithizone staining of trophozoites and cysts of Entamoeba invadens demonstrate that these cells have a high concentration of zinc (approximately one picogram per cell or 1% of their dry weight). In the cysts of this organism, the zinc is confined to the chromatoid bodies, which previous work has shown to contain crystals of ribosomes. The chemical state and function of this zinc are unknown.

  17. Zinc and Chlamydia trachomatis

    SciT

    Sugarman, B.; Epps, L.R.

    1985-07-01

    Zinc was noted to have significant effects upon the infection of McCoy cells by each of two strains of Chlamydia trachomatis. With a high or low Chlamydia inoculant, the number of infected cells increased up to 200% utilizing supplemental zinc (up to 1 x 10/sup -4/ M) in the inoculation media compared with standard Chlamydia cultivation media (8 x 10/sup -6/ M zinc). Ferric chloride and calcium chloride did not effect any such changes. Higher concentrations of zinc, after 2 hr of incubation with Chlamydia, significantly decreased the number of inclusions. This direct effect of zinc on the Chlamydia remainedmore » constant after further repassage of the Chlamydia without supplemental zinc, suggesting a lethal effect of the zinc. Supplemental zinc (up to 10/sup -4/ M) may prove to be a useful addition to inoculation media to increase the yield of culturing for Chlamydia trachomatis. Similarly, topical or oral zinc preparations used by people may alter their susceptibility to Chamydia trachomatis infections.« less

  18. Zinc triggers microglial activation

    PubMed Central

    Kauppinen, Tiina M.; Higashi, Youichirou; Suh, Sang Won; Escartin, Carole; Nagasawa, Kazuki; Swanson, Raymond A.

    2009-01-01

    Microglia are resident immune cells of the central nervous system. When stimulated by infection, tissue injury, or other signals, microglia assume an activated, “amoeboid” morphology and release matrix metalloproteinases, reactive oxygen species, and other pro-inflammatory factors. This innate immune response augments host defenses, but it can also contribute to neuronal death. Zinc is released by neurons under several conditions in which microglial activation occurs, and zinc chelators can reduce neuronal death in animal models of cerebral ischemia and neurodegenerative disorders. Here we show that zinc directly triggers microglial activation. Microglia transfected with an NF-kB reporter gene showed a several-fold increase in NF-kB activity in response to 30 μM zinc. Cultured mouse microglia exposed to 15 – 30 μM zinc increased nitric oxide production, increased F4/80 expression, altered cytokine expression, and assumed the activated morphology. Zinc-induced microglial activation was blocked by inhibiting NADPH oxidase, poly(ADP-ribose) polymerase-1 (PARP-1), or NF-κB activation. Zinc injected directly into mouse brain induced microglial activation in wild-type mice, but not in mice genetically lacking PARP-1 or NADPH oxidase activity. Endogenous zinc release, induced by cerebral ischemia-reperfusion, likewise induced a robust microglial reaction, and this reaction was suppressed by the zinc chelator CaEDTA. Together, these results suggest that extracellular zinc triggers microglial activation through the sequential activation of NADPH oxidase, PARP-1, and NF-κB. These findings identify a novel trigger for microglial activation and a previously unrecognized mechanism by which zinc may contribute to neurological disorders. PMID:18509044

  19. Zinc triggers microglial activation.

    PubMed

    Kauppinen, Tiina M; Higashi, Youichirou; Suh, Sang Won; Escartin, Carole; Nagasawa, Kazuki; Swanson, Raymond A

    2008-05-28

    Microglia are resident immune cells of the CNS. When stimulated by infection, tissue injury, or other signals, microglia assume an activated, "ameboid" morphology and release matrix metalloproteinases, reactive oxygen species, and other proinflammatory factors. This innate immune response augments host defenses, but it can also contribute to neuronal death. Zinc is released by neurons under several conditions in which microglial activation occurs, and zinc chelators can reduce neuronal death in animal models of cerebral ischemia and neurodegenerative disorders. Here, we show that zinc directly triggers microglial activation. Microglia transfected with a nuclear factor-kappaB (NF-kappaB) reporter gene showed a severalfold increase in NF-kappaB activity in response to 30 microm zinc. Cultured mouse microglia exposed to 15-30 microm zinc increased nitric oxide production, increased F4/80 expression, altered cytokine expression, and assumed the activated morphology. Zinc-induced microglial activation was blocked by inhibiting NADPH oxidase, poly(ADP-ribose) polymerase-1 (PARP-1), or NF-kappaB activation. Zinc injected directly into mouse brain induced microglial activation in wild-type mice, but not in mice genetically lacking PARP-1 or NADPH oxidase activity. Endogenous zinc release, induced by cerebral ischemia-reperfusion, likewise induced a robust microglial reaction, and this reaction was suppressed by the zinc chelator CaEDTA. Together, these results suggest that extracellular zinc triggers microglial activation through the sequential activation of NADPH oxidase, PARP-1, and NF-kappaB. These findings identify a novel trigger for microglial activation and a previously unrecognized mechanism by which zinc may contribute to neurological disorders.

  20. [Zinc and chronic enteropathies].

    PubMed

    Giorgi, P L; Catassi, C; Guerrieri, A

    1984-01-01

    In recent years the nutritional importance of zinc has been well established; its deficiency and its symptoms have also been recognized in humans. Furthermore, Acrodermatitis Enteropathica has been isolated, a rare but severe disease, of which skin lesions, chronic diarrhoea and recurring infections are the main symptoms. The disease is related to the malfunctioning of intestinal absorption of zinc and can be treated by administering pharmacological doses of zinc orally. Good dietary sources of zinc are meat, fish and, to a less extent, human milk. The amount of zinc absorbed in the small intestine is influenced by other nutrients: some compounds inhibit this process (dietary fiber, phytate) while others (picolinic acid, citric acid), referred to as Zn-binding ligands (ZnBL) facilitate it. Citric acid is thought to be the ligand which accounts for the high level of bioavailability of zinc in human milk. zinc absorption occurs throughout the small intestine, not only in the prossimal tract (duodenum and jejunum) but also in the distal tract (ileum). Diarrhoea is one of the clinical manifestations of zinc deficiency, thus many illnesses distinguished by chronic diarrhoea entail a bad absorption of zinc. In fact, in some cases of chronic enteropathies in infants, like coeliac disease and seldom cystic fibrosis, a deficiency of zinc has been isolated. Some of the symptoms of Crohn's disease, like retarded growth and hypogonadism, have been related to hypozinchemia which is present in this illness. Finally, it is possible that some of the dietary treatments frequently used for persistent post-enteritis diarrhoea (i.e. cow's milk exclusion, abuse and misuse of dietary fiber like carrot and carub powder, use of soy formula) can constitute a scarce supply of zinc and therefore could promote the persistency of diarrhoea itself.

  1. Graphitic nanofilms of zinc-blende materials: ab initio calculations

    NASA Astrophysics Data System (ADS)

    Hu, San-Lue; Zhao, Li; Li, Yan-Li

    2017-12-01

    Ab initio calculations on ultra-thin nanofilms of 25 kinds of zinc-blende semiconductors demonstrate their stable geometry structures growth along (1 1 1) surface. Our results show that the (1 1 1) surfaces of 9 kinds of zinc-blende semiconductors can transform into a stable graphitelike structure within a certain thickness. The tensile strain effect on the thickness of graphitic films is not obvious. The band gaps of stable graphitic films can be tuned over a wide range by epitaxial tensile strain, which is important for applications in microelectronic devices, solar cells and light-emitting diodes.

  2. Thin film oxygen partial pressure sensor

    NASA Technical Reports Server (NTRS)

    Wortman, J. J.; Harrison, J. W.; Honbarrier, H. L.; Yen, J.

    1972-01-01

    The development is described of a laboratory model oxygen partial pressure sensor using a sputtered zinc oxide thin film. The film is operated at about 400 C through the use of a miniature silicon bar. Because of the unique resistance versus temperature relation of the silicon bar, control of the operational temperature is achieved by controlling the resistance. A circuit for accomplishing this is described. The response of sputtered zinc oxide films of various thicknesses to oxygen, nitrogen, argon, carbon dioxide, and water vapor caused a change in the film resistance. Over a large range, film conductance varied approximately as the square root of the oxygen partial pressure. The presence of water vapor in the gas stream caused a shift in the film conductance at a given oxygen partial pressure. A theoretical model is presented to explain the characteristic features of the zinc oxide response to oxygen.

  3. Low-temperature solution-processed zinc oxide field effect transistor by blending zinc hydroxide and zinc oxide nanoparticle in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Shin, Hyeonwoo; Kang, Chan-mo; Baek, Kyu-Ha; Kim, Jun Young; Do, Lee-Mi; Lee, Changhee

    2018-05-01

    We present a novel methods of fabricating low-temperature (180 °C), solution-processed zinc oxide (ZnO) transistors using a ZnO precursor that is blended with zinc hydroxide [Zn(OH)2] and zinc oxide hydrate (ZnO • H2O) in an ammonium solution. By using the proposed method, we successfully improved the electrical performance of the transistor in terms of the mobility (μ), on/off current ratio (I on/I off), sub-threshold swing (SS), and operational stability. Our new approach to forming a ZnO film was systematically compared with previously proposed methods. An atomic forced microscopic (AFM) image and an X-ray photoelectron spectroscopy (XPS) analysis showed that our method increases the ZnO crystallite size with less OH‑ impurities. Thus, we attribute the improved electrical performance to the better ZnO film formation using the blending methods.

  4. Designing Hydrolytic Zinc Metalloenzymes

    PubMed Central

    2015-01-01

    Zinc is an essential element required for the function of more than 300 enzymes spanning all classes. Despite years of dedicated study, questions regarding the connections between primary and secondary metal ligands and protein structure and function remain unanswered, despite numerous mechanistic, structural, biochemical, and synthetic model studies. Protein design is a powerful strategy for reproducing native metal sites that may be applied to answering some of these questions and subsequently generating novel zinc enzymes. From examination of the earliest design studies introducing simple Zn(II)-binding sites into de novo and natural protein scaffolds to current studies involving the preparation of efficient hydrolytic zinc sites, it is increasingly likely that protein design will achieve reaction rates previously thought possible only for native enzymes. This Current Topic will review the design and redesign of Zn(II)-binding sites in de novo-designed proteins and native protein scaffolds toward the preparation of catalytic hydrolytic sites. After discussing the preparation of Zn(II)-binding sites in various scaffolds, we will describe relevant examples for reengineering existing zinc sites to generate new or altered catalytic activities. Then, we will describe our work on the preparation of a de novo-designed hydrolytic zinc site in detail and present comparisons to related designed zinc sites. Collectively, these studies demonstrate the significant progress being made toward building zinc metalloenzymes from the bottom up. PMID:24506795

  5. Recent Developments in Silver/Zinc Rechargeable Cell Studies

    NASA Technical Reports Server (NTRS)

    Lewis, Harlan L.

    2001-01-01

    This viewgraph presentation discusses silver/zinc cell casing configurations and test results examining discharge capacity and silver migration comparisons. The following recommendations were proposed: 1) Use silver-treated cellophane instead of clear cellophane; 2) Use split wrap for cellophane whenever possible; and 3) Strongly consider use of sausage casing with PVA film in the following configuration: 1-mil (tubular) SC/1-mil PVA film/2.3-mil plain or 6-mil fiber-reinforced SC tubular.

  6. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  7. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  8. Structural Properties of Barium Stannate.

    SciT

    Phelan, D.; Han, F.; Lopez-Bezanilla, A.

    2018-06-01

    BaSnO3 has attracted attention as a transparent conducting oxide with high room temperature carrier mobility. We report a series of measurements that were carried out to assess the structure of BaSnO3 over a variety of length scales. Measurements included single crystal neutron and x-ray diffraction, Rietveld and pair distribution analysis of neutron powder diffraction, Raman scattering, and high-pressure x-ray diffraction. Results from the various diffraction probes indicate that both the long-range and local structures are consistent with the cubic symmetry. The diffraction data under pressure was consistent with a robustly cubic phase up to 48.9 GPa, which is supported bymore » density functional calculations. Additionally, transverse phonon velocities were determined from measured dispersion of the transverse acoustic phonon branches, the results of which are in good agreement with previous theoretical estimates and ultrasound measurements.« less

  9. Structural properties of barium stannate

    NASA Astrophysics Data System (ADS)

    Phelan, D.; Han, F.; Lopez-Bezanilla, A.; Krogstad, M. J.; Gim, Y.; Rong, Y.; Zhang, Junjie; Parshall, D.; Zheng, H.; Cooper, S. L.; Feygenson, M.; Yang, Wenge; Chen, Yu-Sheng

    2018-06-01

    BaSnO3 has attracted attention as a transparent conducting oxide with high room temperature carrier mobility. We report a series of measurements that were carried out to assess the structure of BaSnO3 over a variety of length scales. Measurements included single crystal neutron and x-ray diffraction, Rietveld and pair distribution analysis of neutron powder diffraction, Raman scattering, and high-pressure x-ray diffraction. Results from the various diffraction probes indicate that both the long-range and local structures are consistent with the cubic symmetry. The diffraction data under pressure was consistent with a robustly cubic phase up to 48.9 GPa, which is supported by density functional calculations. Additionally, transverse phonon velocities were determined from measured dispersion of the transverse acoustic phonon branches, the results of which are in good agreement with previous theoretical estimates and ultrasound measurements.

  10. Investigation on growth, structural, optical, electrical and X-ray sensing properties of chemically deposited zinc bismuth sulfide (ZnxBi2‑xS3) thin films

    NASA Astrophysics Data System (ADS)

    Sabarish, R.; Suriyanarayanan, N.; Kalita, J. M.; Sarma, M. P.; Wary, G.

    2018-05-01

    In the present work, ZnxBi2‑xS3 films were synthesized (x = 0.2 M) by a chemical bath deposition (CBD) technique at different bath temperatures (60 °C, 70 °C and 80 °C). The role of bath temperature on the formation of the films has been examined. The crystalline nature, structural parameters and surface morphology of the films were ascertained using x-ray diffraction (XRD), Raman spectroscopy and scanning electron microscope (SEM) and energy dispersive x-ray spectroscopy (EDS) respectively. These studies confirmed the formation of crystalline Zn0.2Bi1.8S3 films with uniform distribution of homogenous grains. The characterization results revealed that the film deposited at 70 °C has the good crystalline quality than the films deposited at 60 and 80 °C. Further, the optical absorption spectra showed that the bandgap (E g ) of the film deposited at 70 °C was about 2.39 eV which was found to be less than the same film deposited at 60 and 80 °C. The Current-Voltage (I-V) characteristics of all the films were measured under dark condition. This showed that the electrical conductivity of the film deposited at 70 °C was 1.61 × 10‑5 S cm‑1 which is ten times higher than other films. Further, the I-V characteristics of the film deposited at 70 °C was studied under x-ray radiation. The current under the x-ray radiation was significantly higher compared to the dark current. The x-ray detection sensitivity of the film was found to be maximum at 0.7 V and gradually decreases with increase of bias voltage. This analysis reveals that the film deposited at 70 °C can be used as an x-ray sensor.

  11. Ellipsometry of anodic film growth

    SciT

    Smith, C.G.

    1978-08-01

    An automated computer interpretation of ellisometer measurements of anodic film growth was developed. Continuous mass and charge balances were used to utilize more fully the time dependence of the ellipsometer data and the current and potential measurements. A multiple-film model was used to characterize the growth of films which proceeds via a dissolution--precipitation mechanism; the model also applies to film growth by adsorption and nucleation mechanisms. The characteristic parameters for film growth describe homogeneous and heterogeneous crystallization rates, film porosities and degree of hydration, and the supersaturation of ionic species in the electrolyte. Additional descriptions which may be chosen aremore » patchwise film formation, nonstoichiometry of the anodic film, and statistical variations in the size and orientation of secondary crystals. Theories were developed to describe the optical effects of these processes. An automatic, self-compensating ellipsometer was used to study the growth in alkaline solution of anodic films on silver, cadmium, and zinc. Mass-transport conditions included stagnant electrolyte and forced convection in a flow channel. Multiple films were needed to characterize the optical properties of these films. Anodic films grew from an electrolyte supersatuated in the solution-phase dissolution product. The degree of supersaturation depended on transport conditions and had a major effect on the structure of the film. Anodic reaction rates were limited by the transport of charge carriers through a primary surface layer. The primary layers on silver, zinc, and cadmium all appeared to be nonstoichiometric, containing excess metal. Diffusion coefficients, transference numbers, and the free energy of adsorption of zinc oxide were derived from ellipsometer measurements. 97 figures, 13 tables, 198 references.« less

  12. An infrared and Raman spectroscopic study of natural zinc phosphates.

    PubMed

    Frost, Ray L

    2004-06-01

    Zinc phosphates are important in the study of the phosphatisation of metals. Raman spectroscopy in combination with infrared spectroscopy has been used to characterise the zinc phosphate minerals. The minerals may be characterised by the patterns of the hydroxyl stretching vibrations in both the Raman and infrared spectra. Spencerite is characterised by a sharp Raman band at 3516 cm(-1) and tarbuttite by a single band at 3446 cm(-1). The patterns of the Raman spectra of the hydroxyl stretching region of hopeite and parahopeite are different in line with their differing crystal structures. The Raman spectrum of the PO4 stretching region shows better band separated peaks than the infrared spectra which consist of a complex set of overlapping bands. The position of the PO4 symmetric stretching mode can be used to identify the zinc phosphate mineral. It is apparent that Raman spectroscopy lends itself to the fundamental study of the evolution of zinc phosphate films.

  13. Preparation of superhydrophobic coatings on zinc as effective corrosion barriers.

    PubMed

    Liu, Hongqin; Szunerits, Sabine; Xu, Wenguo; Boukherroub, Rabah

    2009-06-01

    Stable superhydrophobic films with a contact angle of 151 +/- 2 degrees were prepared on zinc substrates by a simple immersion technique into a methanol solution of hydrolyzed 1H,1H,2H,2H-perfluorooctyltrichlorosilane [CF3(CF2)5(CH2)2SiCl3, PFTS] for 5 days at room temperature followed by a short annealing at 130 degrees C in air for 1 h. The superhydrophobic film provides an effective corrosion-resistant coating for the zinc interface when immersed in an aqueous solution of sodium chloride (3% NaCl) for up to 29 days. The corrosion process was investigated by following the change of the water contact angle over time and by electrochemical means. The results are compared to those of unprotected zinc interfaces.

  14. Zinc electrode and rechargeable zinc-air battery

    DOEpatents

    Ross, Jr., Philip N.

    1989-01-01

    An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.

  15. Synthesis and characterization of zinc oxide-neem oil-chitosan bionanocomposite for food packaging application.

    PubMed

    Sanuja, S; Agalya, A; Umapathy, M J

    2015-03-01

    Nano zinc oxide at different concentrations (0.1, 0.3 and 0.5%) and neem essential oil were incorporated into the chitosan polymer by solution cast method to enhance the properties of the bionanocomposite film. The functional groups, crystalline particle size, thermal stability and morphology were determined using FTIR, XRD, TGA and SEM, respectively. The results showed that 0.5% nano zinc oxide incorporated composite film have improved tensile strength, elongation, film thickness, film transparency and decreased water solubility, swelling and barrier properties due to the presence of neem oil and nano zinc oxide in the polymer matrix. Further antibacterial activity by well diffusion assay method was followed against Escherichia coli which were found to have good inhibition effect. In addition to this food quality application were carried against carrot and compared with the commercial film. Copyright © 2014. Published by Elsevier B.V.

  16. Endogenous Zinc in Neurological Diseases

    PubMed Central

    2005-01-01

    The use of zinc in medicinal skin cream was mentioned in Egyptian papyri from 2000 BC (for example, the Smith Papyrus), and zinc has apparently been used fairly steadily throughout Roman and modern times (for example, as the American lotion named for its zinc ore, 'Calamine'). It is, therefore, somewhat ironic that zinc is a relatively late addition to the pantheon of signal ions in biology and medicine. However, the number of biological functions, health implications and pharmacological targets that are emerging for zinc indicate that it might turn out to be 'the calcium of the twenty-first century'. Here neurobiological roles of endogenous zinc is summarized. PMID:20396459

  17. 99. ZINC ROUGHER CELLS ON LEFT, ZINC CLEANER CELLS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    99. ZINC ROUGHER CELLS ON LEFT, ZINC CLEANER CELLS ON RIGHT, LOOKING NORTH. NOTE ONE STYLE OF DENVER AGITATOR IN LOWER RIGHT CELL. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  18. Suppression of zinc dendrites in zinc electrode power cells

    NASA Technical Reports Server (NTRS)

    Damjanovic, A.; Diggle, J. W.

    1970-01-01

    Addition of various tetraalkyl quarternary ammonium salts, to alkaline zincate electrolyte of cell, prevents formation of zinc dendrites during charging of zinc electrode. Electrode capacity is not impaired and elimination of dendrites prolongs cell life.

  19. Zinc oxide nanowire networks for macroelectronic devices

    NASA Astrophysics Data System (ADS)

    Unalan, Husnu Emrah; Zhang, Yan; Hiralal, Pritesh; Dalal, Sharvari; Chu, Daping; Eda, Goki; Teo, K. B. K.; Chhowalla, Manish; Milne, William I.; Amaratunga, Gehan A. J.

    2009-04-01

    Highly transparent zinc oxide (ZnO) nanowire networks have been used as the active material in thin film transistors (TFTs) and complementary inverter devices. A systematic study on a range of networks of variable density and TFT channel length was performed. ZnO nanowire networks provide a less lithographically intense alternative to individual nanowire devices, are always semiconducting, and yield significantly higher mobilites than those achieved from currently used amorphous Si and organic TFTs. These results suggest that ZnO nanowire networks could be ideal for inexpensive large area electronics.

  20. Preparation and Conductivity Measurements of Thin Film (PEO)nZnCl2 Electrolyte System

    NASA Astrophysics Data System (ADS)

    Salehuddin, N.; Mohamad, A. A.; Alias, Y.

    2010-03-01

    We report zinc ion conducting thin film polymer based on non-volatile room temperature ionic liquid, with a zinc chloride dissolved in a water and blend with poly(ethylene) oxide in different ratio of salt. The resultant films are free standing, translucent, flexible and elastic. The conductivity measurement of the films was carried out at room temperature to find the highest conductivity films.

  1. Auger spectroscopy analysis of lubrication with zinc dialkyldithiophosphate of several metal combinations in sliding contact

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with aluminum and other riders rubbing on disks of various elemental metals in the presence of a thin film of zinc dialkyldithiophosphate (ZDP). Auger emission spectroscopy was used to in situ monitor the changes in surface chemistry with rubbing under various loads. The metal disks examined included iron, titanium, rhodium, tungsten, molybdenum, and copper. For equivalent films of ZDP the film is a more effective lubricant for some metals than it is for others. The important active element in the compound varies with the metal lubricated and is a function of metal chemistry. The zinc in the ZDP is susceptible to electron beam induced desorption.

  2. Zinc titanate sorbents

    DOEpatents

    Gupta, R.P.; Gangwal, S.K.; Jain, S.C.

    1998-02-03

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750 to about 950 C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 microns, and about 1 part titanium dioxide having a median particle size of less than about 1 micron. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  3. Zinc titanate sorbents

    DOEpatents

    Gupta, Raghubir P.; Gangwal, Santosh K.; Jain, Suresh C.

    1998-01-01

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750.degree. C. to about 950.degree. C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 .mu., and about 1 part titanium dioxide having a median particle size of less than about 1 .mu.. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  4. Observations of interstellar zinc

    NASA Technical Reports Server (NTRS)

    Jura, M.; York, D.

    1981-01-01

    The International Ultraviolet Explorer observations of interstellar zinc toward 10 stars are examined. It is found that zinc is at most only slightly depleted in the interstellar medium; its abundance may serve as a tracer of the true metallicity in the gas. The local interstellar medium has abundances that apparently are homogeneous to within a factor of two, when integrated over paths of about 500 pc, and this result is important for understanding the history of nucleosynthesis in the solar neighborhood. The intrinsic errors in detecting weak interstellar lines are analyzed and suggestions are made as to how this error limit may be lowered to 5 mA per target observation.

  5. History of zinc in agriculture

    Zinc was established as essential for green plants in 1926 and for mammals in 1934. However, over 20 years would past before the first descriptions of zinc deficiencies in farm animals appeared. In 1955, it was reported that zinc supplementation would cure a parakeratosis in swine. In 1958, it wa...

  6. Recovering Zinc From Discarded Tires

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1984-01-01

    Zinc sulfate monohydrate sold at profit. Shredded tire material steeped in three sulfuric acid baths to extract zinc. Final product removed by evaporating part of solution until product crystallizes out. Recovered as zinc sulfate monohydrate and sold as fertilizer or for general use.

  7. Performance characteristics of zinc-rich coatings applied to carbon steel

    NASA Technical Reports Server (NTRS)

    Paton, W. J.

    1973-01-01

    A program was conducted to evaluate the performance of topcoated and untopcoated zinc-rich coatings. Sacrificial coatings of this type are required for protecting carbon steel structures from the aggressive KSC sea coast environment. A total of 59 commercially available zinc-rich coatings and 47 topcoated materials were exposed for an 18-month period. Test panels were placed in special racks placed approximately 30.5 m (100 feet) above the high tide line at the KSC Corrosion Test Site. Laboratory tests to determine the temperature resistance, abrasion resistance, and adhesion of the untopcoated zinc-rich coatings were also performed. It has been concluded that: (1) The inorganic types of zinc-rich coatings are far superior to the organic types in the KSC environment. (2) Organic zinc-rich coatings applied at 0.1 - 0.15 mm (4-6 mils) film thickness provide better corrosion protection than when applied at the manufacturers' recommended nominal film thickness of .08 mm (3 mils). (3) Topcoats are not necessary, or even desirable, when used in conjunction with zinc-rich coatings in the KSC environment. (4) Some types of inorganic zinc-rich coatings require an extended outdoor weathering period in order to obtain adequate mechanical properties. and (5) A properly formulated inorganic zinc-rich coating is not affected by a 24-hour thermal exposure to 400 C (752 F).

  8. Doped zinc oxide microspheres

    DOEpatents

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  9. Zinc and Compounds

    Integrated Risk Information System (IRIS)

    Zinc and Compounds ; CASRN 7440 - 66 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogen

  10. Doped zinc oxide microspheres

    DOEpatents

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1993-12-14

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel. 4 figures.

  11. Zinc sulfide liquefaction catalyst

    DOEpatents

    Garg, Diwakar

    1984-01-01

    A process for the liquefaction of carbonaceous material, such as coal, is set forth wherein coal is liquefied in a catalytic solvent refining reaction wherein an activated zinc sulfide catalyst is utilized which is activated by hydrogenation in a coal derived process solvent in the absence of coal.

  12. Synthesis and characterization of ZnO thin films

    SciT

    Anilkumar, T. S., E-mail: anil24march@gmail.com; Girija, M. L., E-mail: girija.ml.grt1@gmail.com; Venkatesh, J., E-mail: phph9502@yahoo.com

    2016-05-06

    Zinc oxide (ZnO) Thin films were deposited on glass substrate using Spin coating method. Zinc acetate dehydrate, Carbinol and Mono-ethanolamine were used as the precursor, solvent and stabilizer respectively to prepare ZnO Thin-films. The molar ratio of Monoethanolamine to Zinc acetate was maintained as approximately 1. The thickness of the films was determined by Interference technique. The optical properties of the films were studied by UV Vis-Spectrophotometer. From transmittance and absorbance curve, the energy band gap of ZnO is found out. Electrical Conductivity measurements of ZnO are carried out by two probe method and Activation energy for the electrical conductivitymore » of ZnO are found out. The crystal structure and orientation of the films were analyzed by XRD. The XRD patterns show that the ZnO films are polycrystalline with wurtzite hexagonal structure.« less

  13. Zinc supplementation in public health.

    PubMed

    Penny, Mary Edith

    2013-01-01

    Zinc is necessary for physiological processes including defense against infections. Zinc deficiency is responsible for 4% of global child morbidity and mortality. Zinc supplements given for 10-14 days together with low-osmolarity oral rehydration solution (Lo-ORS) are recommended for the treatment of childhood diarrhea. In children aged ≥ 6 months, daily zinc supplements reduce the duration of acute diarrhea episodes by 12 h and persistent diarrhea by 17 h. Zinc supplements could reduce diarrhea mortality in children aged 12-59 months by an estimated 23%; they are very safe but are associated with an increase in vomiting especially with the first dose. Heterogeneity between the results of trials is not understood but may be related to dose and the etiology of the diarrhea infection. Integration of zinc and Lo-ORS into national programs is underway but slowly, procurement problems are being overcome and the greatest challenge is changing health provider and caregiver attitudes to diarrhea management. Fewer trials have been conducted of zinc adjunct therapy in severe respiratory tract infections and there is as yet insufficient evidence to recommend addition of zinc to antibiotic therapy. Daily zinc supplements for all children >12 months of age in zinc deficient populations are estimated to reduce diarrhea incidence by 11-23%. The greatest impact is in reducing multiple episodes of diarrhea. The effect on duration of diarrheal episodes is less clear, but there may be up to 9% reduction. Zinc is also efficacious in reducing dysentery and persistent diarrhea. Zinc supplements may also prevent pneumonia by about 19%, but heterogeneity across studies has not yet been explained. When analyses are restricted to better quality studies using CHERG (Child Health Epidemiology Reference Group) methodology, zinc supplements are estimated to reduce diarrheal deaths by 13% and pneumonia deaths by 20%. National-level programs to combat childhood zinc deficiency should be

  14. Photoluminescence of ZnS-SiO2:Ce Thin Films Deposited by Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Mizuno, Masao

    2011-12-01

    Photoluminescent emissions of zinc sulfide-silica-cerium thin films deposited by magnetron sputtering were observed. The films consisted of ZnS nanocrystals embedded in amorphous SiO2 matrices. ZnS-SiO2:Ce films exhibited photoluminescence even without postannealing. Their emission spectra showed broad patterns in the visible range; the emitted colors depended on film composition.

  15. Influence of Silver and Gold Nanoparticles and Thin Layers on Charge Carrier Generation in InGaN/GaN Multiple Quantum Well Structures and Crystalline Zinc Oxide Films

    NASA Astrophysics Data System (ADS)

    Mezdrogina, M. M.; Vinogradov, A. Ya.; Kozhanova, Yu. V.; Levitskii, V. S.

    2018-04-01

    It has been shown that Ag and Au nanoparticles and thin layers influence charge carrier generation in InGaN/GaN multiple quantum well structures and crystalline ZnO films owing to the surface morphology heterogeneity of the semiconductors. When nanoparticles 10 < d < 20 nm in size are applied on InGaN/GaN multiple quantum well structures with surface morphology less nonuniform than that of ZnO films, the radiation intensity has turned out to grow considerably because of a plasmon resonance with the participation of localized plasmons. The application of Ag or Au layers on the surface of the structures strongly attenuates the radiation. When Ag and Au nanoparticles are applied on crystalline ZnO films obtained by rf magnetron sputtering, the radiation intensity in the short-wavelength part of the spectrum increases insignificantly because of their highly heterogeneous surface morphology.

  16. Acute changes in cellular zinc alters zinc uptake rates prior to zinc transporter gene expression in Jurkat cells.

    PubMed

    Holland, Tai C; Killilea, David W; Shenvi, Swapna V; King, Janet C

    2015-12-01

    A coordinated network of zinc transporters and binding proteins tightly regulate cellular zinc levels. Canonical responses to zinc availability are thought to be mediated by changes in gene expression of key zinc transporters. We investigated the temporal relationships of actual zinc uptake with patterns of gene expression in membrane-bound zinc transporters in the human immortalized T lymphocyte Jurkat cell line. Cellular zinc levels were elevated or reduced with exogenous zinc sulfate or N,N,N',N-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), respectively. Excess zinc resulted in a rapid 44 % decrease in the rate of zinc uptake within 10 min. After 120 min, the expression of metallothionein (positive control) increased, as well as the zinc exporter, ZnT1; however, the expression of zinc importers did not change during this time period. Zinc chelation with TPEN resulted in a rapid twofold increase in the rate of zinc uptake within 10 min. After 120 min, the expression of ZnT1 decreased, while again the expression of zinc importers did not change. Overall, zinc transporter gene expression kinetics did not match actual changes in cellular zinc uptake with exogenous zinc or TPEN treatments. This suggests zinc transporter regulation may be the initial response to changes in zinc within Jurkat cells.

  17. Zinc in human health: effect of zinc on immune cells.

    PubMed

    Prasad, Ananda S

    2008-01-01

    Although the essentiality of zinc for plants and animals has been known for many decades, the essentiality of zinc for humans was recognized only 40 years ago in the Middle East. The zinc-deficient patients had severe immune dysfunctions, inasmuch as they died of intercurrent infections by the time they were 25 years of age. In our studies in an experimental human model of zinc deficiency, we documented decreased serum testosterone level, oligospermia, severe immune dysfunctions mainly affecting T helper cells, hyperammonemia, neurosensory disorders, and decreased lean body mass. It appears that zinc deficiency is prevalent in the developing world and as many as two billion subjects may be growth retarded due to zinc deficiency. Besides growth retardation and immune dysfunctions, cognitive impairment due to zinc deficiency also has been reported recently. Our studies in the cell culture models showed that the activation of many zinc-dependent enzymes and transcription factors were adversely affected due to zinc deficiency. In HUT-78 (T helper 0 [Th(0)] cell line), we showed that a decrease in gene expression of interleukin-2 (IL-2) and IL-2 receptor alpha(IL-2Ralpha) were due to decreased activation of nuclear factor-kappaB (NF-kappaB) in zinc deficient cells. Decreased NF-kappaB activation in HUT-78 due to zinc deficiency was due to decreased binding of NF-kappaB to DNA, decreased level of NF-kappaB p105 (the precursor of NF-kappaB p50) mRNA, decreased kappaB inhibitory protein (IkappaB) phosphorylation, and decreased Ikappa kappa. These effects of zinc were cell specific. Zinc also is an antioxidant and has anti-inflammatory actions. The therapeutic roles of zinc in acute infantile diarrhea, acrodermatitis enteropathica, prevention of blindness in patients with age-related macular degeneration, and treatment of common cold with zinc have been reported. In HL-60 cells (promyelocytic leukemia cell line), zinc enhances the up-regulation of A20 mRNA, which, via TRAF

  18. Interaction Between Yeasts and Zinc

    NASA Astrophysics Data System (ADS)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  19. Structural and electrical properties of sputter deposited ZnO thin films

    NASA Astrophysics Data System (ADS)

    Muhammed Shameem P., V.; Mekala, Laxman; Kumar, M. Senthil

    2018-05-01

    The growth of zinc oxide thin films having different oxygen content was achieved at ambient temperature by reactive dc magnetron sputtering technique and their structural and electrical properties are studied. The structural studies show that the films are polycrystalline with a preferential orientation of the grains along the c-axis [002], which increases with increase in oxygen partial pressure. The grain size and the surface roughness of the zinc oxide films are found to decrease with increasing oxygen partial pressure. It is observed that the resistivity of the zinc oxide films can be tuned from semiconducting to insulating regime by varying the oxygen content.

  20. Zinc and Zinc Transporters: Novel Regulators of Ventricular Myocardial Development.

    PubMed

    Lin, Wen; Li, Deqiang

    2018-06-01

    Ventricular myocardial development is a well-orchestrated process involving different cardiac structures, multiple signal pathways, and myriad proteins. Dysregulation of this important developmental event can result in cardiomyopathies, such as left ventricle non-compaction, which affect the pediatric population and the adults. Human and mouse studies have shed light upon the etiology of some cardiomyopathy cases and highlighted the contribution of both genetic and environmental factors. However, the regulation of ventricular myocardial development remains incompletely understood. Zinc is an essential trace metal with structural, enzymatic, and signaling function. Perturbation of zinc homeostasis has resulted in developmental and physiological defects including cardiomyopathy. In this review, we summarize several mechanisms by which zinc and zinc transporters can impact the regulation of ventricular myocardial development. Based on our review, we propose that zinc deficiency and mutations of zinc transporters may underlie some cardiomyopathy cases especially those involving ventricular myocardial development defects.

  1. Cubic zirconia as a species permeable coating for zinc diffusion in gallium arsenide

    NASA Astrophysics Data System (ADS)

    Bisberg, J. E.; Dabkowski, F. P.; Chin, A. K.

    1988-10-01

    Diffusion of zinc into GaAs through an yttria-stabilized cubic zirconia (YSZ) passivation layer has been demonstrated with an open-tube diffusion method. Pure zinc or GaAs/Zn2As3 sources produced high quality planar p-n junctions. The YSZ layer protects the GaAs surface from excessive loss of arsenic, yet is permeable to zinc, allowing its diffusion into the semiconductor. The YSZ films, deposited by electron beam evaporation, were typically 2000 Å thick. Zinc diffusion coefficients (DT) at 650 °C in the YSZ passivated GaAs ranged from 3.6×10-10 cm2/min for the GaAs/Zn2As3 source to 1.9×10-9 cm2/min for the pure zinc source. Doping concentrations for both YSZ passivated and uncapped samples were approximately 5×1019 cm-3.

  2. Observations of interstellar zinc

    NASA Technical Reports Server (NTRS)

    York, D. G.; Jura, M.

    1982-01-01

    IUE observations toward 10 stars have shown that zinc is not depleted in the interstellar medium by more than a factor of two, suggesting that its abundance may serve as a tracer of the true metallicity in the gas. A result pertinent to the history of nucleosynthesis in the solar neighborhood is that the local interstellar medium has abundances that appear to be homogeneous to within a factor of two, when integrated over paths of about 500 pc.

  3. Molecular beam epitaxial growth, transmittance and photoluminescence spectra of zinc-blende CdTe thin films with high-quality on perovskite SrTiO3 (1 1 1) substrates

    NASA Astrophysics Data System (ADS)

    Song, Kun; Zhu, Xuanting; Tang, Kai; Bai, W.; Zhu, Liangqing; Yang, Jing; Zhang, Yuanyuan; Tang, Xiaodong; Chu, Junhao

    2018-03-01

    High-crystalline quality CdTe thin films are grown on the largely lattice-mismatched SrTiO3 (STO) (1 1 1) substrates by molecular beam epitaxy. A transformation from a three dimensional regime to a two dimensional one is observed by the reflection high energy electron diffraction (RHEED) and atomic force microscopy (AFM). The formation of an elastic deformation CdTe layer on STO (1 1 1), namely a pseudomorphic growth mode with a critical thickness of ∼40 nm, is supported by the RHEED, AFM and X-ray diffraction. Crystal structures and epitaxial relationships of CdTe epitaxial films on STO (1 1 1) are characterized by 2θ-ω scans and reciprocal space mapping. Two strong absorption peaks at the energies of ∼1.621 eV and ∼1.597 eV at 5 K are clearly observed for a ∼120 nm thick CdTe epitaxial film, which are proposed to be ascribed to the strained and unstrained epitaxial CdTe layers, respectively. Moreover, the presence of the exciton band while the absence of deep level defect states for the ∼120 nm thick CdTe film characterized by the temperature dependent photoluminescence spectra further supports the high-crystalline quality.

  4. Comparison of characteristics of fluorine doped zinc and gallium tin oxide composite thin films deposited on stainless steel 316 bipolar plate by electron cyclotron resonance-metal organic chemical vapor deposition for proton exchange membrane fuel cells.

    PubMed

    Park, Jihun; Hudaya, Chairul; Lee, Joong Kee

    2011-09-01

    In order to replace the brittle graphite bipolar plates currently used for the PEMFC stack, coated SUS 316 was employed. As a metallic bipolar plate, coated SUS 316 can provide higher mechanical strength, better durability to shocks and vibration, less permeability, improved thermal and bulk electrical conductivity, as well as being thinner and lighter. To enhance the interfacial contact resistance and corrosion resistance of SUS 316, the deposition of GTO:F and ZTO:F composite films was carried out by ECR-MOCVD. The surface morphology of the films consisted of tiny elliptically shaped grains with a thickness of 1 microm. The corrosion current for GTO:F was 0.13 Acm(-2) which was much lower than that of bare SUS 316 (50.16 Acm(-2)). The GTO:F coated film had the smallest corrosion current due to the formation of a tight surface morphology with very few pin-holes. The GTO:F coated film exhibited the highest cell voltage and power density due to its lower ICR values.

  5. Zinc Signal in Brain Diseases.

    PubMed

    Portbury, Stuart D; Adlard, Paul A

    2017-11-23

    The divalent cation zinc is an integral requirement for optimal cellular processes, whereby it contributes to the function of over 300 enzymes, regulates intracellular signal transduction, and contributes to efficient synaptic transmission in the central nervous system. Given the critical role of zinc in a breadth of cellular processes, its cellular distribution and local tissue level concentrations remain tightly regulated via a series of proteins, primarily including zinc transporter and zinc import proteins. A loss of function of these regulatory pathways, or dietary alterations that result in a change in zinc homeostasis in the brain, can all lead to a myriad of pathological conditions with both acute and chronic effects on function. This review aims to highlight the role of zinc signaling in the central nervous system, where it may precipitate or potentiate diverse issues such as age-related cognitive decline, depression, Alzheimer's disease or negative outcomes following brain injury.

  6. Zinc supplementation for tinnitus.

    PubMed

    Person, Osmar C; Puga, Maria Es; da Silva, Edina Mk; Torloni, Maria R

    2016-11-23

    Tinnitus is the perception of sound without external acoustic stimuli. Patients with severe tinnitus may have physical and psychological complaints and their tinnitus can cause deterioration in their quality of life. At present no specific therapy for tinnitus has been found to be satisfactory in all patients. In recent decades, a number of reports have suggested that oral zinc supplementation may be effective in the management of tinnitus. Since zinc has a role in cochlear physiology and in the synapses of the auditory system, there is a plausible mechanism of action for this treatment. To evaluate the effectiveness and safety of oral zinc supplementation in the management of patients with tinnitus. The Cochrane ENT Information Specialist searched the ENT Trials Register; Central Register of Controlled Trials (CENTRAL 2016, Issue 6); PubMed; EMBASE; CINAHL; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the search was 14 July 2016. Randomised controlled trials comparing zinc supplementation versus placebo in adults (18 years and over) with tinnitus. We used the standard methodological procedures recommended by Cochrane. Our primary outcome measures were improvement in tinnitus severity and disability, measured by a validated tinnitus-specific questionnaire, and adverse effects. Secondary outcomes were quality of life, change in socioeconomic impact associated with work, change in anxiety and depression disorders, change in psychoacoustic parameters, change in tinnitus loudness, change in overall severity of tinnitus and change in thresholds on pure tone audiometry. We used GRADE to assess the quality of the evidence for each outcome; this is indicated in italics. We included three trials involving a total of 209 participants. The studies were at moderate to high risk of bias. All included studies had differences in participant selection criteria, length of follow-up and outcome measurement

  7. Low Temperature Film Growth of the Oxides of Zinc, Aluminum, and Vanadium (and Related Systems, Oxides of Gold and Germanium, Nitrides of Aluminum and Tungsten) by Reactive Sputter Deposition.

    DTIC Science & Technology

    1988-02-01

    the optical behavior of the material in its preswitched, or A Perkin-Elmer Model 330 UV - Visible -IR double beam ,% spectrophotometer with a specular...S ~ * ." at.* U a * . a. *%~ ~9g 0 ~ --- a.. ’ a * ~ .r~vaa- *a,~ * ~ * ~****.,*a,* *** UV - Visible -IR Optical Behavior of Sputter Deposited Gee x...Films deposited in 0 to 60% Ar were nominally germania. However, transmission in the UV - visible , the strength of the 245nm defect center, the optical

  8. Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide.

    PubMed

    Moezzi, Amir; Cortie, Michael; McDonagh, Andrew

    2016-04-25

    Thermal decomposition of layered zinc hydroxide double salts provides an interesting alternative synthesis for particles of zinc oxide. Here, we examine the sequence of changes occurring as zinc hydroxide chloride monohydrate (Zn5(OH)8Cl2·H2O) is converted to crystalline ZnO by thermal decomposition. The specific surface area of the resultant ZnO measured by BET was 1.3 m(2) g(-1). A complicating and important factor in this process is that the thermal decomposition of zinc hydroxide chloride is also accompanied by the formation of volatile zinc-containing species under certain conditions. We show that this volatile compound is anhydrous ZnCl2 and its formation is moisture dependent. Therefore, control of atmospheric moisture is an important consideration that affects the overall efficiency of ZnO production by this process.

  9. Uptake and partitioning of zinc in Lemnaceae.

    PubMed

    Lahive, Elma; O'Callaghan, Michael J A; Jansen, Marcel A K; O'Halloran, John

    2011-11-01

    Macrophytes provide food and shelter for aquatic invertebrates and fish, while also acting as reservoirs for nutrients and trace elements. Zinc accumulation has been reported for various Lemnaceae species. However, comparative accumulation across species and the link between zinc accumulation and toxicity are poorly understood. Morphological distribution and cellular storage, in either bound or soluble form, are important for zinc tolerance. This study shows differences in the uptake and accumulation of zinc by three duckweed species. Landoltia punctata and Lemna minor generally accumulated more zinc than Lemna gibba. L. minor, but not L. gibba or L. punctata, accumulated greater concentrations of zinc in roots compared to fronds when exposed to high levels of zinc. The proportion of zinc stored in the bound form relative to the soluble-form was higher in L. minor. L. punctata accumulated greater concentrations of zinc in fronds compared to roots and increased the proportion of zinc it stored in the soluble form, when exposed to high zinc levels. L. gibba is the only species that significantly accumulated zinc at low concentrations, and was zinc-sensitive. Overall, internal zinc concentrations showed no consistent correlation with toxic effect. We conclude that relationships between zinc toxicity and uptake and accumulation are species specific reflecting, among others, zinc distribution and storage. Differences in zinc distribution and storage are also likely to have implications for zinc bioavailability and trophic mobility.

  10. Zinc starvation induces autophagy in yeast

    PubMed Central

    Kawamata, Tomoko; Horie, Tetsuro; Matsunami, Miou; Sasaki, Michiko; Ohsumi, Yoshinori

    2017-01-01

    Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes. PMID:28264932

  11. Zinc starvation induces autophagy in yeast.

    PubMed

    Kawamata, Tomoko; Horie, Tetsuro; Matsunami, Miou; Sasaki, Michiko; Ohsumi, Yoshinori

    2017-05-19

    Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Layered zinc hydroxide monolayers by hydrolysis of organozincs† †Electronic supplementary information (ESI) available: LZH-OAc and LZH-OHex characterisation data (powder XRD, IR, SEM, TGA, DTA), bulk LZH-Ole solid-state SAXS data, exfoliated LZH-Ole TEM data, AFM data with histogram and line profiles of samples (N ∼ 100) taken from image, UV-vis spectra of ZnO@Ole and ZnO thin films, 1H NMR of LZH-Ole, ZnO@Ole and pre-hydrolysis mixture of synthesis of LZH-Ole, photographs of thin films of LZH-Ole and ZnO on glass substrate, method used for determining the content of ZnO nanoparticles in synthesis mixture, calculation of yields of LZHs based on Zn. See DOI: 10.1039/c7sc04256f

    PubMed Central

    Leung, Alice H. M.; Pike, Sebastian D.; Clancy, Adam J.; Yau, Hin Chun; Lee, Won Jun; Orchard, Katherine L.

    2018-01-01

    2D inorganic materials and their exfoliated counterparts are both of fundamental interest and relevant for applications including catalysis, electronics and sensing. Here, a new bottom-up synthesis route is used to prepare functionalised nanoplatelets, in apolar organic solvents, via the hydrolysis of organometallic reagents; the products can be prepared in high yield, at room temperature. In particular, a series of layered zinc hydroxides, coordinated by aliphatic carboxylate ligands, were produced by the hydrolysis of diethyl zinc and zinc carboxylate mixtures, optimally at a molar ratio of [COOR]/[Zn] = 0.6. Layered zinc hydroxides coordinated by oleate ligands form high concentration solutions of isolated monolayers (3 nm thick x ∼ 26 nm) in apolar organic solvents (up to 23 mg mL–1 in toluene), as confirmed by both atomic force and transmission electron microscopies of deposited species. The high solubility of the product allows the synthetic pathway to be monitored directly in situ through 1H NMR spectroscopy. The high solubility also provides a route to solution deposition of active functional materials, as illustrated by the formation of nanoporous films of optically transparent porous zinc oxide (1 μm thickness) after annealing at 500 °C. This new organometallic route to 2D materials obviates common complications of top-down exfoliation syntheses, including sonochemical-degradation and low yields of aggregated polydispersed layers, and may potentially be extended to a wide range of systems. PMID:29719687

  13. Zinc in Infection and Inflammation

    PubMed Central

    Gammoh, Nour Zahi; Rink, Lothar

    2017-01-01

    Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli. PMID:28629136

  14. Zinc in Infection and Inflammation.

    PubMed

    Gammoh, Nour Zahi; Rink, Lothar

    2017-06-17

    Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli.

  15. Film Reviews.

    ERIC Educational Resources Information Center

    Lance, Larry M.; Atwater, Lynn

    1987-01-01

    Reviews four Human Sexuality films and videos. These are: "Personal Decisions" (Planned Parenthood Federation of America, 1985); "The Touch Film" (Sterling Production, 1986); "Rethinking Rape" (Film Distribution Center, 1985); "Not A Love Story" (National Film Board of Canada, 1981). (AEM)

  16. Zinc as a Gatekeeper of Immune Function

    PubMed Central

    Wessels, Inga; Maywald, Martina; Rink, Lothar

    2017-01-01

    After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc “importers” (ZIP 1–14), zinc “exporters” (ZnT 1–10), and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate “zinc waves”, and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function. PMID:29186856

  17. Cadmium zinc sulfide by solution growth

    DOEpatents

    Chen, Wen S.

    1992-05-12

    A process for depositing thin layers of a II-VI compound cadmium zinc sulfide (CdZnS) by an aqueous solution growth technique with quality suitable for high efficiency photovoltaic or other devices which can benefit from the band edge shift resulting from the inclusion of Zn in the sulfide. A first solution comprising CdCl.sub.2 2.5H.sub.2 O, NH.sub.4 Cl, NH.sub.4 OH and ZnCl.sub.2, and a second solution comprising thiourea ((NH.sub.2).sub.2 CS) are combined and placed in a deposition cell, along with a substrate to form a thin i.e. 10 nm film of CdZnS on the substrate. This process can be sequentially repeated with to achieve deposition of independent multiple layers having different Zn concentrations.

  18. A zinc oxide nanorod ammonia microsensor integrated with a readout circuit on-a-chip.

    PubMed

    Yang, Ming-Zhi; Dai, Ching-Liang; Wu, Chyan-Chyi

    2011-01-01

    A zinc oxide nanorod ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process was investigated. The structure of the ammonia sensor is composed of a sensitive film and polysilicon electrodes. The ammonia sensor requires a post-process to etch the sacrificial layer, and to coat the sensitive film on the polysilicon electrodes. The sensitive film that is prepared by a hydrothermal method is made of zinc oxide. The sensor resistance changes when the sensitive film adsorbs or desorbs ammonia gas. The readout circuit is used to convert the sensor resistance into the voltage output. Experiments show that the ammonia sensor has a sensitivity of about 1.5 mV/ppm at room temperature.

  19. The zinc paradigm for metalloneurochemistry.

    PubMed

    Barr, Chelsea A; Burdette, Shawn C

    2017-05-09

    Neurotransmission and sensory perception are shaped through metal ion-protein interactions in various brain regions. The term "metalloneurochemistry" defines the unique field of bioinorganic chemistry focusing on these processes, and zinc has been the leading target of metalloneurochemists in the almost 15 years since the definition was introduced. Zinc in the hippocampus interacts with receptors that dictate ion flow and neurotransmitter release. Understanding the intricacies of these interactions is crucial to uncovering the role that zinc plays in learning and memory. Based on receptor similarities and zinc-enriched neurons (ZENs) in areas of the brain responsible for sensory perception, such as the olfactory bulb (OB), and dorsal cochlear nucleus (DCN), zinc participates in odor and sound perception. Development and improvement of methods which allow for precise detection and immediate manipulation of zinc ions in neuronal cells and in brain slices will be critical in uncovering the synaptic action of zinc and, more broadly, the bioinorganic chemistry of cognition. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  20. Study on the Hydrogenated ZnO-Based Thin Film Transistors. Part 1

    DTIC Science & Technology

    2011-04-30

    IGZO film on the performance of thin film transistors 5 Chapter 2. Hydrogenation of a- IGZO channel layer in the thin film transistors 12...effect of substrate temperature during the deposition of a- IGZO film on the performance of thin film transistors Introduction The effect of substrate...temperature during depositing IGZO channel layer on the performance of amorphous indium-gallium-zinc oxide (a- IGZO

  1. Metal Induced Growth of Si Thin Films and NiSi Nanowires

    DTIC Science & Technology

    2010-02-25

    Zinc Oxide Over MIG Silicon- We have been studying the formation of ZnO films by RF sputtering. Part of this study deals with...about 50 nm. 15. SUBJECT TERMS Thin film silicon, solar cells, thin film transistors , nanowires, metal induced growth 16. SECURITY CLASSIFICATION...to achieve, µc-Si is more desirable than a-Si due to its increased mobility. Thin film µc-Si is also a popular material for thin film transistors

  2. Regeneration of zinc chloride hydrocracking catalyst

    DOEpatents

    Zielke, Clyde W.

    1979-01-01

    Improved rate of recovery of zinc values from the solids which are carried over by the effluent vapors from the oxidative vapor phase regeneration of spent zinc chloride catalyst is achieved by treatment of the solids with both hydrogen chloride and calcium chloride to selectively and rapidly recover the zinc values as zinc chloride.

  3. 21 CFR 522.2690 - Zinc gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Zinc gluconate. 522.2690 Section 522.2690 Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.2690 Zinc gluconate. (a) Specifications. Each milliliter of solution contains 13.1 milligrams zinc as zinc gluconate...

  4. 21 CFR 522.2690 - Zinc gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc gluconate. 522.2690 Section 522.2690 Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.2690 Zinc gluconate. (a) Specifications. Each milliliter of solution contains 13.1 milligrams zinc as zinc gluconate...

  5. Mineral resource of the month: zinc

    Tolcin, Amy C.

    2009-01-01

    The article provides information on zinc, the fourth most-widely consumed metal. It traces the first use of zinc with the Romans' production of brass. It describes the presence of zinc in Earth's crust and the importance of sphalerite as a source of zinc and other some minor metal production. The production and consumption of zinc as well as the commercial and industrial uses of this metal are also discussed.

  6. Zinc: an essential but elusive nutrient123

    PubMed Central

    King, Janet C

    2011-01-01

    Zinc is essential for multiple aspects of metabolism. Physiologic signs of zinc depletion are linked with diverse biochemical functions rather than with a specific function, which makes it difficult to identify biomarkers of zinc nutrition. Nutrients, such as zinc, that are required for general metabolism are called type 2 nutrients. Protein and magnesium are examples of other type 2 nutrients. Type 1 nutrients are required for one or more specific functions: examples include iron, vitamin A, iodine, folate, and copper. When dietary zinc is insufficient, a marked reduction in endogenous zinc loss occurs immediately to conserve the nutrient. If zinc balance is not reestablished, other metabolic adjustments occur to mobilize zinc from small body pools. The location of those pools is not known, but all cells probably have a small zinc reserve that includes zinc bound to metallothionein or zinc stored in the Golgi or in other organelles. Plasma zinc is also part of this small zinc pool that is vulnerable to insufficient intakes. Plasma zinc concentrations decline rapidly with severe deficiencies and more moderately with marginal depletion. Unfortunately, plasma zinc concentrations also decrease with a number of conditions (eg, infection, trauma, stress, steroid use, after a meal) due to a metabolic redistribution of zinc from the plasma to the tissues. This redistribution confounds the interpretation of low plasma zinc concentrations. Biomarkers of metabolic zinc redistribution are needed to determine whether this redistribution is the cause of a low plasma zinc rather than poor nutrition. Measures of metallothionein or cellular zinc transporters may fulfill that role. PMID:21715515

  7. A dynamic model for predicting growth in zinc-deficient stunted infants given supplemental zinc.

    PubMed

    Wastney, Meryl E; McDonald, Christine M; King, Janet C

    2018-05-01

    Zinc deficiency limits infant growth and increases susceptibility to infections, which further compromises growth. Zinc supplementation improves the growth of zinc-deficient stunted infants, but the amount, frequency, and duration of zinc supplementation required to restore growth in an individual child is unknown. A dynamic model of zinc metabolism that predicts changes in weight and length of zinc-deficient, stunted infants with dietary zinc would be useful to define effective zinc supplementation regimens. The aims of this study were to develop a dynamic model for zinc metabolism in stunted, zinc-deficient infants and to use that model to predict the growth response when those infants are given zinc supplements. A model of zinc metabolism was developed using data on zinc kinetics, tissue zinc, and growth requirements for healthy 9-mo-old infants. The kinetic model was converted to a dynamic model by replacing the rate constants for zinc absorption and excretion with functions for these processes that change with zinc intake. Predictions of the dynamic model, parameterized for zinc-deficient, stunted infants, were compared with the results of 5 published zinc intervention trials. The model was then used to predict the results for zinc supplementation regimes that varied in the amount, frequency, and duration of zinc dosing. Model predictions agreed with published changes in plasma zinc after zinc supplementation. Predictions of weight and length agreed with 2 studies, but overpredicted values from a third study in which other nutrient deficiencies may have been growth limiting; the model predicted that zinc absorption was impaired in that study. The model suggests that frequent, smaller doses (5-10 mg Zn/d) are more effective for increasing growth in stunted, zinc-deficient 9-mo-old infants than are larger, less-frequent doses. The dose amount affects the duration of dosing necessary to restore and maintain plasma zinc concentration and growth.

  8. Serum thymulin in human zinc deficiency.

    PubMed Central

    Prasad, A S; Meftah, S; Abdallah, J; Kaplan, J; Brewer, G J; Bach, J F; Dardenne, M

    1988-01-01

    The activity of thymulin (a thymic hormone) is dependent on the presence of zinc in the molecule. We assayed serum thymulin activity in three models of mildly zinc-deficient (ZD) human subjects before and after zinc supplementation: (a) two human volunteers in whom a specific and mild zinc deficiency was induced by dietary means; (b) six mildly ZD adult sickle cell anemia (SCA) subjects; and (c) six mildly ZD adult non-SCA subjects. Their plasma zinc levels were normal and they showed no overt clinical manifestations of zinc deficiency. The diagnosis of mild zinc deficiency was based on the assay of zinc in lymphocytes, granulocytes, and platelets. Serum thymulin activity was decreased as a result of mild zinc deficiency and was corrected by in vivo and in vitro zinc supplementation, suggesting that this parameter was a sensitive indicator of zinc deficiency in humans. An increase in T101-, sIg-cells, decrease in T4+/T8+ ratio, and decreased IL 2 activity were observed in the experimental human model during the zinc depletion phase, all of which were corrected after repletion with zinc. Similar changes in lymphocyte subpopulation, correctable with zinc supplementation, were also observed in mildly ZD SCA subjects. Inasmuch as thymulin is known to induce intra- and extrathymic T cell differentiation, our studies provide a possible mechanism for the role of zinc on T cell functions. Images PMID:3262625

  9. Stabilized nickel-zinc battery

    SciT

    Himy, A.; Wagner, O.C.

    An alkaline nickel-zinc cell which has (1) a nickel-nickel hydroxide cathode; (2) a zinc-zinc oxide anode containing (A) a corrosion inhibitor such as PBO, SNO2, Tl2O3, in(OH)3 or mixtures thereof; (B) a slight corrosion accelerator such as cdo, bi2o3, ga2o3, or mixtures thereof; and (C) a zinc active material; (3) a mass-transport separator; (4) an alkaline electrolyte; and (5) means for charging the cell with an interrupted current having a frequency of from more than zero to 16 hertz with a rest period of not less than 60 milliseconds. Another desirable feature is the use of a pressure-cutoff switch tomore » terminate charging when the internal pressure of the cell reaches a selected value in the range of from 5 to 8 psig.« less

  10. Zinc toxicology following particulate inhalation

    PubMed Central

    Cooper, Ross G.

    2008-01-01

    The current mini-review describes the toxic effects of zinc inhalation principally in the workplace and associated complications with breathing and respiration. The International Classification of Functioning, Disability and Health Criteria were used to specifically select articles. Most of the commercial production of zinc involves the galvanizing of iron and the manufacture of brass. The recommended daily allowance for adults is 15 mg zinc/day. Metal fume fever associated with inhalation of fumes of ZnO is characterized by fatigue, chills, fever, myalgias, cough, dyspnea, leukocytosis, thirst, metallic taste and salivation. ZnCl2 inhalation results in edema in the alveolar surface and the protein therein the lavage fluid is elevated. Particular pathological changes associated with zinc intoxication include: pale mucous membranes; jaundice; numerous Heinz bodies; and marked anemia. Adequate ambient air monitors for permissible exposure limits, excellent ventilation and extraction systems, and approved respirators are all important in providing adequate protection. PMID:20040991

  11. High Performance and Highly Reliable ZnO Thin Film Transistor Fabricated by Atomic Layer Deposition for Next Generation Displays

    DTIC Science & Technology

    2011-08-19

    zinc oxide ( ZnO ) thin film as an active channel layer in TFT has become of great interest owing to their specific...630-0192 Japan Phone: +81-743-72-6060 Fax: +81-743-72-6069 E-mail: uraoka@ms.naist.jp Keywords: zinc oxide , thin film transistors , atomic layer...deposition Symposium topic: Transparent Semiconductors Oxides [Abstract] In this study, we fabricated TFTs using ZnO thin film as the

  12. Zinc in innate and adaptive tumor immunity

    PubMed Central

    2010-01-01

    Zinc is important. It is the second most abundant trace metal with 2-4 grams in humans. It is an essential trace element, critical for cell growth, development and differentiation, DNA synthesis, RNA transcription, cell division, and cell activation. Zinc deficiency has adverse consequences during embryogenesis and early childhood development, particularly on immune functioning. It is essential in members of all enzyme classes, including over 300 signaling molecules and transcription factors. Free zinc in immune and tumor cells is regulated by 14 distinct zinc importers (ZIP) and transporters (ZNT1-8). Zinc depletion induces cell death via apoptosis (or necrosis if apoptotic pathways are blocked) while sufficient zinc levels allows maintenance of autophagy. Cancer cells have upregulated zinc importers, and frequently increased zinc levels, which allow them to survive. Based on this novel synthesis, approaches which locally regulate zinc levels to promote survival of immune cells and/or induce tumor apoptosis are in order. PMID:21087493

  13. Zinc for the common cold.

    PubMed

    Singh, Meenu; Das, Rashmi R

    2011-02-16

    The common cold is one of the most widespread illnesses and is a leading cause of visits to the doctor and absenteeism from school and work. Trials conducted since 1984 investigating the role of zinc for the common cold symptoms have had mixed results. Inadequate treatment masking and reduced bioavailability of zinc from some formulations have been cited as influencing results. To assess the effect of zinc on common cold symptoms. We searched CENTRAL (2010, Issue 2) which contains the Acute Respiratory Infections Group's Specialised Register, MEDLINE (1966 to May week 3, 2010) and EMBASE (1974 to June 2010). Randomised, double-blind, placebo-controlled trials using zinc for at least five consecutive days to treat, or for at least five months to prevent the common cold. Two review authors independently extracted data and assessed trial quality. We included 13 therapeutic trials (966 participants) and two preventive trials (394 participants). Intake of zinc is associated with a significant reduction in the duration (standardized mean difference (SMD) -0.97; 95% confidence interval (CI) -1.56 to -0.38) (P = 0.001), and severity of common cold symptoms (SMD -0.39; 95% CI -0.77 to -0.02) (P = 0.04). There was a significant difference between the zinc and control group for the proportion of participants symptomatic after seven days of treatment (OR 0.45; 95% CI 0.2 to 1.00) (P = 0.05). The incidence rate ratio (IRR) of developing a cold (IRR 0.64; 95% CI 0.47 to 0.88) (P = 0.006), school absence (P = 0.0003) and prescription of antibiotics (P < 0.00001) was lower in the zinc group. Overall adverse events (OR 1.59; 95% CI 0.97 to 2.58) (P = 0.06), bad taste (OR 2.64; 95% CI 1.91 to 3.64) (P < 0.00001) and nausea (OR 2.15; 95% CI 1.44 to 3.23) (P = 0.002) were higher in the zinc group. Zinc administered within 24 hours of onset of symptoms reduces the duration and severity of the common cold in healthy people. When supplemented for at least five months, it reduces cold

  14. Zinc Absorption by Young Adults from Supplemental Zinc Citrate Is Comparable with That from Zinc Gluconate and Higher than from Zinc Oxide123

    PubMed Central

    Wegmüller, Rita; Tay, Fabian; Zeder, Christophe; Brnić, Marica; Hurrell, Richard F.

    2014-01-01

    The water-soluble zinc salts gluconate, sulfate, and acetate are commonly used as supplements in tablet or syrup form to prevent zinc deficiency and to treat diarrhea in children in combination with oral rehydration. Zinc citrate is an alternative compound with high zinc content, slightly soluble in water, which has better sensory properties in syrups but no absorption data in humans. We used the double-isotope tracer method with 67Zn and 70Zn to measure zinc absorption from zinc citrate given as supplements containing 10 mg of zinc to 15 healthy adults without food and compared absorption with that from zinc gluconate and zinc oxide (insoluble in water) using a randomized, double-masked, 3-way crossover design. Median (IQR) fractional absorption of zinc from zinc citrate was 61.3% (56.6–71.0) and was not different from that from zinc gluconate with 60.9% (50.6–71.7). Absorption from zinc oxide at 49.9% (40.9–57.7) was significantly lower than from both other supplements (P < 0.01). Three participants had little or no absorption from zinc oxide. We conclude that zinc citrate, given as a supplement without food, is as well absorbed by healthy adults as zinc gluconate and may thus be a useful alternative for preventing zinc deficiency and treating diarrhea. The more insoluble zinc oxide is less well absorbed when given as a supplement without food and may be minimally absorbed by some individuals. This trial was registered at clinicaltrials.gov as NCT01576627. PMID:24259556

  15. Zinc for the common cold.

    PubMed

    Singh, Meenu; Das, Rashmi R

    2013-06-18

    The common cold is one of the most widespread illnesses and is a leading cause of visits to the doctor and absenteeism from school and work. Trials conducted in high-income countries since 1984 investigating the role of zinc for the common cold symptoms have had mixed results. Inadequate treatment masking and reduced bioavailability of zinc from some formulations have been cited as influencing results. To assess whether zinc (irrespective of the zinc salt or formulation used) is efficacious in reducing the incidence, severity and duration of common cold symptoms. In addition, we aimed to identify potential sources of heterogeneity in results obtained and to assess their clinical significance. In this updated review, we searched CENTRAL (2012, Issue 12), MEDLINE (1966 to January week 2, 2013), EMBASE (1974 to January 2013), CINAHL (1981 to January 2013), Web of Science (1985 to January 2013), LILACS (1982 to January 2013), WHO ICTRP and clinicaltrials.gov. Randomised, double-blind, placebo-controlled trials using zinc for at least five consecutive days to treat, or for at least five months to prevent the common cold. Two review authors independently extracted data and assessed trial quality. Five trials were identified in the updated searches in January 2013 and two of them did not meet our inclusion criteria. We included 16 therapeutic trials (1387 participants) and two preventive trials (394 participants). Intake of zinc was associated with a significant reduction in the duration (days) (mean difference (MD) -1.03, 95% confidence interval (CI) -1.72 to -0.34) (P = 0.003) (I(2) statistic = 89%) but not the severity of common cold symptoms (MD -1.06, 95% CI -2.36 to 0.23) (P = 0.11) (I(2) statistic = 84%). The proportion of participants who were symptomatic after seven days of treatment was significantly smaller (odds ratio (OR) 0.45, 95% CI 0.20 to 1.00) (P = 0.05) than those in the control, (I(2 )statistic = 75%). The incidence rate ratio (IRR) of developing a

  16. History of Zinc in Agriculture12

    PubMed Central

    Nielsen, Forrest H.

    2012-01-01

    Zinc was established as essential for green plants in 1926 and for mammals in 1934. However, >20 y would pass before the first descriptions of zinc deficiencies in farm animals appeared. In 1955, it was reported that zinc supplementation would cure parakeratosis in swine. In 1958, it was reported that zinc deficiency induced poor growth, leg abnormalities, poor feathering, and parakeratosis in chicks. In the 1960s, zinc supplementation was found to alleviate parakeratosis in grazing cattle and sheep. Within 35 y, it was established that nearly one half of the soils in the world may be zinc deficient, causing decreased plant zinc content and production that can be prevented by zinc fertilization. In many of these areas, zinc deficiency is prevented in grazing livestock by zinc fertilization of pastures or by providing salt licks. For livestock under more defined conditions, such as poultry, swine, and dairy and finishing cattle, feeds are easily supplemented with zinc salts to prevent deficiency. Today, the causes and consequences of zinc deficiency and methods and effects of overcoming the deficiency are well established for agriculture. The history of zinc in agriculture is an outstanding demonstration of the translation of research into practical application. PMID:23153732

  17. Influence of DNA-methylation on zinc homeostasis in myeloid cells: Regulation of zinc transporters and zinc binding proteins.

    PubMed

    Kessels, Jana Elena; Wessels, Inga; Haase, Hajo; Rink, Lothar; Uciechowski, Peter

    2016-09-01

    The distribution of intracellular zinc, predominantly regulated through zinc transporters and zinc binding proteins, is required to support an efficient immune response. Epigenetic mechanisms such as DNA methylation are involved in the expression of these genes. In demethylation experiments using 5-Aza-2'-deoxycytidine (AZA) increased intracellular (after 24 and 48h) and total cellular zinc levels (after 48h) were observed in the myeloid cell line HL-60. To uncover the mechanisms that cause the disturbed zinc homeostasis after DNA demethylation, the expression of human zinc transporters and zinc binding proteins were investigated. Real time PCR analyses of 14 ZIP (solute-linked carrier (SLC) SLC39A; Zrt/IRT-like protein), and 9 ZnT (SLC30A) zinc transporters revealed significantly enhanced mRNA expression of the zinc importer ZIP1 after AZA treatment. Because ZIP1 protein was also enhanced after AZA treatment, ZIP1 up-regulation might be the mediator of enhanced intracellular zinc levels. The mRNA expression of ZIP14 was decreased, whereas zinc exporter ZnT3 mRNA was also significantly increased; which might be a cellular reaction to compensate elevated zinc levels. An enhanced but not significant chromatin accessibility of ZIP1 promoter region I was detected by chromatin accessibility by real-time PCR (CHART) assays after demethylation. Additionally, DNA demethylation resulted in increased mRNA accumulation of zinc binding proteins metallothionein (MT) and S100A8/S100A9 after 48h. MT mRNA was significantly enhanced after 24h of AZA treatment also suggesting a reaction of the cell to restore zinc homeostasis. These data indicate that DNA methylation is an important epigenetic mechanism affecting zinc binding proteins and transporters, and, therefore, regulating zinc homeostasis in myeloid cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Lifetime estimates for sterilizable silver-zinc battery separators

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Walmsley, D. E.; Moacanin, J.

    1972-01-01

    The lifetime of separator membranes currently employed in the electrolyte environment of silver-zinc batteries was estimated at 3 to 5 years. The separator membranes are crosslinked polyethylene film containing grafted poly (potassium acrylate)(PKA), the latter being the hydrophilic agent which promotes electrolyte ion transport. The lifetime was estimated by monitoring the rate of loss of PKA from the separators, caused by chemical attack of the electrolyte, and relating this loss rate to a known relationship between battery performance and PKA concentration in the separators.

  19. Zinc finger proteins in cancer progression.

    PubMed

    Jen, Jayu; Wang, Yi-Ching

    2016-07-13

    Zinc finger proteins are the largest transcription factor family in human genome. The diverse combinations and functions of zinc finger motifs make zinc finger proteins versatile in biological processes, including development, differentiation, metabolism and autophagy. Over the last few decades, increasing evidence reveals the potential roles of zinc finger proteins in cancer progression. However, the underlying mechanisms of zinc finger proteins in cancer progression vary in different cancer types and even in the same cancer type under different types of stress. Here, we discuss general mechanisms of zinc finger proteins in transcription regulation and summarize recent studies on zinc finger proteins in cancer progression. In this review, we also emphasize the importance of further investigations in elucidating the underlying mechanisms of zinc finger proteins in cancer progression.

  20. Evaluation of zinc coating procedures : final report.

    DOT National Transportation Integrated Search

    1978-01-01

    This research project was conducted in order to compare the existing procedure of zinc coating by hot-dip galvanizing with the other zinc coating systems of painting and electroplating. : Hardware coated by these processes was exposed to varied labor...

  1. Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life12

    PubMed Central

    Maret, Wolfgang

    2013-01-01

    The nutritional essentiality of zinc for the growth of living organisms had been recognized long before zinc biochemistry began with the discovery of zinc in carbonic anhydrase in 1939. Painstaking analytical work then demonstrated the presence of zinc as a catalytic and structural cofactor in a few hundred enzymes. In the 1980s, the field again gained momentum with the new principle of “zinc finger” proteins, in which zinc has structural functions in domains that interact with other biomolecules. Advances in structural biology and a rapid increase in the availability of gene/protein databases now made it possible to predict zinc-binding sites from metal-binding motifs detected in sequences. This procedure resulted in the definition of zinc proteomes and the remarkable estimate that the human genome encodes ∼3000 zinc proteins. More recent developments focus on the regulatory functions of zinc(II) ions in intra- and intercellular information transfer and have tantalizing implications for yet additional functions of zinc in signal transduction and cellular control. At least three dozen proteins homeostatically control the vesicular storage and subcellular distribution of zinc and the concentrations of zinc(II) ions. Novel principles emerge from quantitative investigations on how strongly zinc interacts with proteins and how it is buffered to control the remarkably low cellular and subcellular concentrations of free zinc(II) ions. It is fair to conclude that the impact of zinc for health and disease will be at least as far-reaching as that of iron. PMID:23319127

  2. Zinc oxide nanostructured layers for gas sensing applications

    NASA Astrophysics Data System (ADS)

    Caricato, A. P.; Cretí, A.; Luches, A.; Lomascolo, M.; Martino, M.; Rella, R.; Valerini, D.

    2011-03-01

    Various kinds of zinc oxide (ZnO) nanostructures, such as columns, pencils, hexagonal pyramids, hexagonal hierarchical structures, as well as smooth and rough films, were grown by pulsed laser deposition using KrF and ArF excimer lasers, without use of any catalyst. ZnO films were deposited at substrate temperatures from 500 to 700°C and oxygen background pressures of 1, 5, 50, and 100 Pa. Quite different morphologies of the deposited films were observed using scanning electron microscopy when different laser wavelengths (248 or 193 nm) were used to ablate the bulk ZnO target. Photoluminescence studies were performed at different temperatures (down to 7 K). The gas sensing properties of the different nanostructures were tested against low concentrations of NO2. The variation in the photoluminescence emission of the films when exposed to NO2 was used as transduction mechanism to reveal the presence of the gas. The nanostructured films with higher surface-to-volume ratio and higher total surface available for gas adsorption presented higher responses, detecting NO2 concentrations down to 3 ppm at room temperature.

  3. Zinc oxide varistors and/or resistors

    DOEpatents

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1993-07-27

    Varistors and/or resistors are described that include doped zinc oxide gel microspheres. The doped zinc oxide gel microspheres preferably have from about 60 to about 95% by weight zinc oxide and from about 5 to about 40% by weight dopants based on the weight of the zinc oxide. The dopants are a plurality of dopants selected from silver salts, boron oxide, silicon oxide and hydrons oxides of aluminum, bismuth, cobalt, chromium, manganese, nickel, and antimony.

  4. Zinc oxide varistors and/or resistors

    DOEpatents

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    Varistors and/or resistors that includes doped zinc oxide gel microspheres. The doped zinc oxide gel microspheres preferably have from about 60 to about 95% by weight zinc oxide and from about 5 to about 40% by weight dopants based on the weight of the zinc oxide. The dopants are a plurality of dopants selected from silver salts, boron oxide, silicon oxide and hydrons oxides of aluminum, bismuth, cobalt, chromium, manganese, nickel, and antimony.

  5. [Improvement in zinc nutrition due to zinc transporter-targeting strategy].

    PubMed

    Kambe, Taiho

    2016-07-01

    Adequate intake of zinc from the daily diet is indispensable to maintain health. However, the dietary zinc content often fails to fulfill the recommended daily intake, leading to zinc deficiency and also increases the risk of developing chronic diseases, particularly in elderly individuals. Therefore, increased attention is required to overcome zinc deficiency and it is important to improve zinc nutrition in daily life. In the small intestine, the zinc transporter, ZIP4, functions as a component that is essential for zinc absorption. In this manuscript, we present a brief overview regarding zinc deficiency. Moreover, we review a novel strategy, called "ZIP4-targeting", which has the potential to enable efficient zinc absorption from the diet. ZIP4-targeting strategy is possibly a major step in preventing zinc deficiency and improving human health.

  6. Influence of Dopants in ZnO Films on Defects

    NASA Astrophysics Data System (ADS)

    Peng, Cheng-Xiao; Weng, Hui-Min; Zhang, Yang; Ma, Xing-Ping; Ye, Bang-Jiao

    2008-12-01

    The influence of dopants in ZnO films on defects is investigated by slow positron annihilation technique. The results show S that parameters meet SAl > Sun > SAg for Al-doped ZnO films, undoped and Ag-doped ZnO films. Zinc vacancies are found in all ZnO films with different dopants. According to S parameter and the same defect type, it can be induced that the zinc vacancy concentration is the highest in the Al-doped ZnO film, and it is the least in the Ag-doped ZnO film. When Al atoms are doped in the ZnO films grown on silicon substrates, Zn vacancies increase as compared to the undoped and Ag-doped ZnO films. The dopant concentration could determine the position of Fermi level in materials, while defect formation energy of zinc vacancy strongly depends on the position of Fermi level, so its concentration varies with dopant element and dopant concentration.

  7. Zinc supplementation in children with cystic fibrosis

    Cystic fibrosis (CF) leads to malabsorption of macro- and micronutrients. Symptomatic zinc deficiency has been reported in CF but little is known about zinc homeostasis in children with CF. Zinc supplementation (Zn suppl) is increasingly common in children with CF but it is not without theoretcial r...

  8. 21 CFR 73.1991 - Zinc oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... amounts consistent with good manufacturing practice. (d) Labeling. The color additive and any mixtues... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1991 Zinc oxide. (a) Identity. (1) The color additive zinc...). It is principally composed of Zn. (2) Color additive mixtures for drug use made with zinc oxide may...

  9. 21 CFR 582.5997 - Zinc sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Zinc sulfate. 582.5997 Section 582.5997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance is...

  10. 21 CFR 582.5997 - Zinc sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Zinc sulfate. 582.5997 Section 582.5997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance is...

  11. 21 CFR 182.8994 - Zinc stearate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Zinc stearate. 182.8994 Section 182.8994 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8994 Zinc stearate. (a) Product. Zinc stearate prepared from...

  12. 21 CFR 182.8997 - Zinc sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Zinc sulfate. 182.8997 Section 182.8997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of...

  13. 21 CFR 182.8985 - Zinc chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Zinc chloride. 182.8985 Section 182.8985 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions...

  14. 21 CFR 182.8988 - Zinc gluconate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Zinc gluconate. 182.8988 Section 182.8988 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8988 Zinc gluconate. (a) Product. Zinc gluconate. (b...

  15. 21 CFR 182.8991 - Zinc oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Zinc oxide. 182.8991 Section 182.8991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8991 Zinc oxide. (a) Product. Zinc oxide. (b) Conditions of use...

  16. 21 CFR 73.2991 - Zinc oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Zinc oxide. 73.2991 Section 73.2991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2991 Zinc oxide. (a) Identity and specifications. The color additive zinc oxide shall conform in...

  17. 21 CFR 582.5991 - Zinc oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Zinc oxide. 582.5991 Section 582.5991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5991 Zinc oxide. (a) Product. Zinc...

  18. 21 CFR 73.2991 - Zinc oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Zinc oxide. 73.2991 Section 73.2991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2991 Zinc oxide. (a) Identity and specifications. The color additive zinc oxide shall conform in...

  19. 21 CFR 582.5991 - Zinc oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Zinc oxide. 582.5991 Section 582.5991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5991 Zinc oxide. (a) Product. Zinc...

  20. 21 CFR 582.5997 - Zinc sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Zinc sulfate. 582.5997 Section 582.5997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance is...