Sample records for zinc sulfates

  1. 21 CFR 182.8997 - Zinc sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Zinc sulfate. 182.8997 Section 182.8997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of...

  2. 21 CFR 582.5997 - Zinc sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Zinc sulfate. 582.5997 Section 582.5997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance is...

  3. 21 CFR 582.5997 - Zinc sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Zinc sulfate. 582.5997 Section 582.5997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance is...

  4. 21 CFR 582.5997 - Zinc sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Zinc sulfate. 582.5997 Section 582.5997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance is...

  5. 21 CFR 582.5997 - Zinc sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc sulfate. 582.5997 Section 582.5997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance is...

  6. 21 CFR 182.8997 - Zinc sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc sulfate. 182.8997 Section 182.8997 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance is generally recognized as safe when used in...

  7. 21 CFR 182.8997 - Zinc sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Zinc sulfate. 182.8997 Section 182.8997 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance is generally recognized as safe when used in...

  8. 21 CFR 172.399 - Zinc methionine sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Zinc methionine sulfate. 172.399 Section 172.399... CONSUMPTION Special Dietary and Nutritional Additives § 172.399 Zinc methionine sulfate. Zinc methionine... conditions: (a) The additive is the product of the reaction between equimolar amounts of zinc sulfate and DL...

  9. 21 CFR 172.399 - Zinc methionine sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.399 Zinc methionine sulfate. Zinc methionine... conditions: (a) The additive is the product of the reaction between equimolar amounts of zinc sulfate and DL...

  10. 21 CFR 172.399 - Zinc methionine sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.399 Zinc methionine sulfate. Zinc methionine... conditions: (a) The additive is the product of the reaction between equimolar amounts of zinc sulfate and DL...

  11. 21 CFR 182.8997 - Zinc sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Zinc sulfate. 182.8997 Section 182.8997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8997 Zinc sulfate. (a) Product...

  12. 21 CFR 182.8997 - Zinc sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Zinc sulfate. 182.8997 Section 182.8997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8997 Zinc sulfate. (a) Product...

  13. 21 CFR 172.399 - Zinc methionine sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.399 Zinc methionine sulfate. Zinc methionine sulfate, CAS Reg. No. 56329-42-1, may be safely used in accordance with the following prescribed conditions: (a) The additive is the product of the...

  14. 40 CFR 415.630 - Applicability; description of the zinc sulfate production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sulfate production subcategory. 415.630 Section 415.630 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Zinc Sulfate Production Subcategory § 415.630 Applicability; description of the zinc sulfate... production of zinc sulfate. ...

  15. 40 CFR 415.630 - Applicability; description of the zinc sulfate production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sulfate production subcategory. 415.630 Section 415.630 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Zinc Sulfate Production Subcategory § 415.630 Applicability; description of the zinc sulfate... production of zinc sulfate. ...

  16. 40 CFR 415.630 - Applicability; description of the zinc sulfate production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sulfate production subcategory. 415.630 Section 415.630 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Zinc Sulfate Production Subcategory § 415.630 Applicability; description of the zinc sulfate... production of zinc sulfate. ...

  17. 21 CFR 524.155 - Bacitracin zinc-polymyxin B sulfate-neomycin sulfate-hydrocortisone or hydrocortisone acetate...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... sulfate-hydrocortisone or hydrocortisone acetate ophthalmic ointment. 524.155 Section 524.155 Food and... zinc-polymyxin B sulfate-neomycin sulfate-hydrocortisone or hydrocortisone acetate ophthalmic ointment... hydrocortisone. (2) To 043264; each gram of ointment contains 400 units of bacitracin zinc, 10,000 units of...

  18. 21 CFR 524.155 - Bacitracin zinc-polymyxin B sulfate-neomycin sulfate-hydrocortisone or hydrocortisone acetate...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... sulfate-hydrocortisone or hydrocortisone acetate ophthalmic ointment. 524.155 Section 524.155 Food and... zinc-polymyxin B sulfate-neomycin sulfate-hydrocortisone or hydrocortisone acetate ophthalmic ointment... hydrocortisone. (2) To 025463; each gram of ointment contains 400 units of bacitracin zinc, 10,000 units of...

  19. 21 CFR 524.155 - Bacitracin zinc-polymyxin B sulfate-neomycin sulfate-hydrocortisone or hydrocortisone acetate...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... sulfate-hydrocortisone or hydrocortisone acetate ophthalmic ointment. 524.155 Section 524.155 Food and... zinc-polymyxin B sulfate-neomycin sulfate-hydrocortisone or hydrocortisone acetate ophthalmic ointment... hydrocortisone. (2) To 025463; each gram of ointment contains 400 units of bacitracin zinc, 10,000 units of...

  20. 21 CFR 524.155 - Bacitracin zinc-polymyxin B sulfate-neomycin sulfate-hydrocortisone or hydrocortisone acetate...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... sulfate-hydrocortisone or hydrocortisone acetate ophthalmic ointment. 524.155 Section 524.155 Food and... zinc-polymyxin B sulfate-neomycin sulfate-hydrocortisone or hydrocortisone acetate ophthalmic ointment... hydrocortisone. (2) To 025463; each gram of ointment contains 400 units of bacitracin zinc, 10,000 units of...

  1. 40 CFR 415.630 - Applicability; description of the zinc sulfate production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the zinc... CATEGORY Zinc Sulfate Production Subcategory § 415.630 Applicability; description of the zinc sulfate... production of zinc sulfate. ...

  2. 40 CFR 415.630 - Applicability; description of the zinc sulfate production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the zinc... CATEGORY Zinc Sulfate Production Subcategory § 415.630 Applicability; description of the zinc sulfate... production of zinc sulfate. ...

  3. Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust

    DOEpatents

    Zaromb, Solomon; Lawson, Daniel B.

    1994-01-01

    A process for recovering zinc/rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10.degree. C., separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream.

  4. Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust

    DOEpatents

    Zaromb, S.; Lawson, D.B.

    1994-02-15

    A process for recovering zinc-rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered by distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10 C, separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream. 1 figure.

  5. 21 CFR 524.154 - Bacitracin or bacitracin zinc-neomycin sulfate-polymyxin B sulfate ophthalmic ointment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Bacitracin or bacitracin zinc-neomycin sulfate-polymyxin B sulfate ophthalmic ointment. 524.154 Section 524.154 Food and Drugs FOOD AND DRUG ADMINISTRATION... TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.154 Bacitracin or bacitracin zinc-neomycin sulfate-polymyxin B...

  6. 21 CFR 524.154 - Bacitracin or bacitracin zinc-neomycin sulfate-polymyxin B sulfate ophthalmic ointment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Bacitracin or bacitracin zinc-neomycin sulfate-polymyxin B sulfate ophthalmic ointment. 524.154 Section 524.154 Food and Drugs FOOD AND DRUG ADMINISTRATION... TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.154 Bacitracin or bacitracin zinc-neomycin sulfate-polymyxin B...

  7. 21 CFR 172.399 - Zinc methionine sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.399 Zinc methionine sulfate. Zinc methionine...

  8. Effects of dietary supplementation with tribasic zinc sulfate or zinc sulfate on growth performance, zinc content and expression of zinc transporters in young pigs.

    PubMed

    Deng, Bo; Zhou, Xihong; Wu, Jie; Long, Ciming; Yao, Yajun; Peng, Hongxing; Wan, Dan; Wu, Xin

    2017-10-01

    An experiment was conducted to compare the effects of zinc sulfate (ZS) and tribasic zinc sulfate (TBZ) as sources of supplemental zinc on growth performance, serum zinc (Zn) content and messenger RNA (mRNA) expression of Zn transporters (ZnT1/ZnT2/ZnT5/ZIP4/DMT1) of young growing pigs. A total of 96 Duroc × Landrace × Yorkshire pigs were randomly allotted to two treatments and were fed a basal diet supplemented with 100 mg/kg Zn from either ZS or TBZ for 28 days. Feed : gain ratio in pigs fed TBZ were lower (P < 0.05) than pigs fed ZS, and average daily weight gain tended to increase (0.05 ≤ P ≤ 0.10) in pigs fed TBZ. Compared with pigs fed ZS, pigs fed TBZ had a higher CuZn-superoxide dismutase and Zn content in serum (P < 0.05) while they had a lower Zn content in feces (P < 0.05). In addition, ZIP4 mRNA expression of zinc transporter in either duodenum or jejunum of pigs fed TBZ were higher (P < 0.05) than pigs fed ZS. These results indicate that TBZ is more effective in serum Zn accumulation and intestinal Zn absorption, and might be a potential substitute for ZS in young growing pigs. © 2017 Japanese Society of Animal Science.

  9. Zinc sulfate therapy of vocal process granuloma.

    PubMed

    Sun, Guang-Bin; Sun, Na; Tang, Hai-Hong; Zhu, Qiu-Bei; Wen, Wu; Zheng, Hong-Liang

    2012-09-01

    Vocal process granuloma is a benign lesion that occurs on the arytenoid cartilage. It tends to recur locally, and there is a great diversity of methods to treat it. Here, we reviewed the effects of zinc sulfate therapy program in 16 patients with vocal process granulomas. Eleven patients had a history of trauma or laryngeal intubation and five patients had unknown origin. Eleven had recurrence after one to three failed surgeries, and the others had no prior treatment. Symptoms included hoarseness, sore throat, lump sensation in the throat and cough that apparently improved. The granulomas did not recur for at least 1 year. No complications occurred. For vocal process granuloma, zinc sulfate therapy is good either as an initial or compensatory treatment.

  10. 21 CFR 582.5997 - Zinc sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Zinc sulfate. 582.5997 Section 582.5997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  11. Microwave Synthesis of Zinc Hydroxy Sulfate Nanoplates and Zinc Oxide Nanorods in the Classroom

    ERIC Educational Resources Information Center

    Dziedzic, Rafal M.; Gillian-Daniel, Anne Lynn; Peterson, Greta M.; Martínez-Herna´ndez, Kermin J.

    2014-01-01

    In this hands-on, inquiry-based lab, high school and undergraduate students learn about nanotechnology by synthesizing their own nanoparticles in a single class period. This simple synthesis of zinc oxide nanorods and zinc hydroxy sulfate nanoplates can be done in 15 min using a household microwave oven. Reagent concentration, reaction…

  12. Reexamining the functions of zinc sulfate as a selective depressant in differential sulfide flotation--the role of coagulation.

    PubMed

    Cao, Mingli; Liu, Qi

    2006-09-15

    Zinc sulfate is a well-known selective depressant for zinc sulfide minerals such as sphalerite during the flotation of complex Cu-Pb-Zn sulfide ores. It deactivates sphalerite flotation by substituting the activating metal ions, and depresses sphalerite flotation by forming hydrophilic coatings of zinc hydroxyl species on sphalerite surfaces. However, we recently observed that zinc sulfate could also induce coagulation of fine sphalerite particles and such coagulation significantly reduced the mechanical entrainment of the fine sphalerite. Therefore, it seems that the effectiveness of zinc sulfate as a selective sphalerite depressant is not only due to its ability to make mineral surface hydrophilic, which reduces genuine flotation, but also due to its ability to coagulate the mineral, which reduces mechanical entrainment. Zinc sulfate is a "dual function" selective flotation depressant.

  13. Use of sodium dodecyl sulfate and zinc sulfate as reference substances for toxicity tests with the mussel Perna perna (Linnaeus, 1758) (Mollusca: Bivalvia).

    PubMed

    Jorge, R A D L V C; Moreira, G S

    2005-06-01

    Effects of anthropogenic pollution have been observed at different trophic levels in the oceans, and toxicity tests constitute one way of monitoring these alterations. The present assay proposes the use of two reference substances, sodium dodecyl sulfate (SDS) and zinc sulfate, for Perna perna larvae. This common mussel on the Brazilian coast is used as a bioindicator and is of economic interest. The chronic static embryo-larval test of short duration (48 h) was employed to determine the NOEC, LOEC, and IC50 for SDS and zinc sulfate, as well as the coefficient of variation. Salinity, pH and un-ionized ammonia (NH3) and dissolved oxygen (DO) concentrations were measured to monitor water quality. The results demonstrated that the main alterations in veliger larvae are the development of only one shell, protruded mantle, malformed shell, formation of only part of a valve, clipped edges, uneven sizes and presence of a concave or convex hinge. NOEC values were lower than 0.25 mg L(-1) for zinc sulfate and 0.68 mg L(-1) for SDS. The coefficient of variation was 17.63% and 2.50% for zinc sulfate and SDS, respectively.

  14. Bioavailability of zinc oxide added to corn tortilla is similar to that of zinc sulfate and is not affected by simultaneous addition of iron

    PubMed Central

    Rosado, Jorge L.; Díaz, Margarita; Muñoz, Elsa; Westcott, Jamie L.; González, Karla E.; Krebs, Nancy F.; Caamaño, María C.; Hambidge, Michael

    2013-01-01

    Background Corn tortilla is the staple food of Mexico and its fortification with zinc, iron, and other micronutrients is intended to reduce micronutrient deficiencies. However, no studies have been performed to determine the relative amount of zinc absorbed from the fortified product and whether zinc absorption is affected by the simultaneous addition of iron. Objective To compare zinc absorption from corn tortilla fortified with zinc oxide versus zinc sulfate and to determine the effect of simultaneous addition of two doses of iron on zinc bioavailability. Methods A randomized, double-blind, crossover design was carried out in two phases. In the first phase, 10 adult women received corn tortillas with either 20 mg/kg of zinc oxide added, 20 mg/kg of zinc sulfate added, or no zinc added. In the second phase, 10 adult women received corn tortilla with 20 mg/kg of zinc oxide added and either with no iron added or with iron added at one of two different levels. Zinc absorption was measured by the stable isotope method. Results The mean (± SEM) fractional zinc absorption from unfortified tortilla, tortilla fortified with zinc oxide, and tortilla fortified with zinc sulfate did not differ among treatments: 0.35 ± 0.07, 0.36 ± 0.05, and 0.37 ± 0.07, respectively. The three treatment groups with 0, 30, and 60 mg/kg of added iron had similar fractional zinc absorption (0.32 ± 0.04, 0.33 ± 0.02, and 0.32 ± 0.05, respectively) and similar amounts of zinc absorbed (4.8 ± 0.7, 4.5 ± 0.3, and 4.8 ± 0.7 mg/day, respectively). Conclusions Since zinc oxide is more stable and less expensive and was absorbed equally as well as zinc sulfate, we suggest its use for corn tortilla fortification. Simultaneous addition of zinc and iron to corn tortilla does not modify zinc bioavailability at iron doses of 30 and 60 mg/kg of corn flour. PMID:23424892

  15. Double blind study of the effects of zinc sulfate on taste and smell dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henkin, R.I.; Schecter, P.J.; Friedewald, W.T.

    1976-01-01

    A randomized, double blind crossover study of the effects of zinc sulfate and placebo was carried out in 106 patients with taste and smell dysfunction secondary to a variety of etiological factors. In the patient group prior to treatment, mean serum zinc concentration and leukocyte alkaline phosphatase activity were significantly lower than normal. Results indicate that zinc sulfate was effectively equivalent to placebo in the treatment of these disorders. Although these results demonstrate abnormalities of zinc metabolism in some patients with taste and smell dysfunction they fail to provide evidence for a single, therapeutic approach to the many disorders whichmore » are associated with abnormalities of taste and smell. However, the methods and procedures developed in this study demonstrate that taste and smell dysfunction can be studied in a quantitative, systematic manner.« less

  16. Zinc oxide nanoparticles as a substitute for zinc oxide or colistin sulfate: Effects on growth, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets

    PubMed Central

    Zhang, Ligen; Su, Weipeng; Ying, Zhixiong; He, Jintian; Zhang, Lili; Zhong, Xiang; Wang, Tian

    2017-01-01

    The objective of this study was to evaluate effects of zinc oxide nanoparticles (nano-ZnOs) as a substitute for colistin sulfate (CS) and/or zinc oxide (ZnO) on growth performance, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets. A total of 216 crossbred Duroc×(Landrace×Yorkshire) piglets weaned at 23 days were randomly assigned into 3 groups, which were fed with basal diets supplemented with 20 mg/kg CS (CS group), 20mg/kg CS+3000 mg/kg ZnO (CS+ZnO group), and 1200 mg/kg nano-ZnOs (nano-ZnO group) for 14 days. Results indicated that compared to CS group, supplementation of 1200 mg/kg nano-ZnOs (about 30 nm) significantly increased final body weight and average daily gain, and 3000 mg/kg ZnO plus colistin sulfate significantly increased average daily gain and decreased diarrhea rate in weaned piglets. There was no significant difference in growth performance and diarrhea rate between nano-ZnO and CS+ZnO groups. Supplementation of nano-ZnOs did not affect serum enzymes (glutamic oxalacetic transaminase, glutamic-pyruvic transaminase, and lactate dehydrogenase), but significantly increased plasma and tissue zinc concentrations (liver, tibia), improved intestinal morphology (increased duodenal and ileal villus length, crypt depth, and villus surface), enhanced mRNA expression of ZO-1 in ileal mucosa, and significantly decreased diamine oxidase activity in plasma, total aerobic bacterial population in MLN as compared to CS group. Effects of nano-ZnOs on serum enzymes, intestinal morphology, and mRNA expressions of tight junction were similar to those of high dietary ZnO plus colistin sulfate, while nano-ZnOs significantly reduced zinc concentrations of liver, tibia, and feces, and decreased total aerobic bacterial population in MLN as compared to CS+ZnO group. These results suggested that nano-ZnOs (1200 mg/kg) might be used as a substitute for colistin sulfate and high dietary ZnO in weaned piglets. PMID:28704517

  17. Zinc oxide nanoparticles as a substitute for zinc oxide or colistin sulfate: Effects on growth, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets.

    PubMed

    Wang, Chao; Zhang, Ligen; Su, Weipeng; Ying, Zhixiong; He, Jintian; Zhang, Lili; Zhong, Xiang; Wang, Tian

    2017-01-01

    The objective of this study was to evaluate effects of zinc oxide nanoparticles (nano-ZnOs) as a substitute for colistin sulfate (CS) and/or zinc oxide (ZnO) on growth performance, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets. A total of 216 crossbred Duroc×(Landrace×Yorkshire) piglets weaned at 23 days were randomly assigned into 3 groups, which were fed with basal diets supplemented with 20 mg/kg CS (CS group), 20mg/kg CS+3000 mg/kg ZnO (CS+ZnO group), and 1200 mg/kg nano-ZnOs (nano-ZnO group) for 14 days. Results indicated that compared to CS group, supplementation of 1200 mg/kg nano-ZnOs (about 30 nm) significantly increased final body weight and average daily gain, and 3000 mg/kg ZnO plus colistin sulfate significantly increased average daily gain and decreased diarrhea rate in weaned piglets. There was no significant difference in growth performance and diarrhea rate between nano-ZnO and CS+ZnO groups. Supplementation of nano-ZnOs did not affect serum enzymes (glutamic oxalacetic transaminase, glutamic-pyruvic transaminase, and lactate dehydrogenase), but significantly increased plasma and tissue zinc concentrations (liver, tibia), improved intestinal morphology (increased duodenal and ileal villus length, crypt depth, and villus surface), enhanced mRNA expression of ZO-1 in ileal mucosa, and significantly decreased diamine oxidase activity in plasma, total aerobic bacterial population in MLN as compared to CS group. Effects of nano-ZnOs on serum enzymes, intestinal morphology, and mRNA expressions of tight junction were similar to those of high dietary ZnO plus colistin sulfate, while nano-ZnOs significantly reduced zinc concentrations of liver, tibia, and feces, and decreased total aerobic bacterial population in MLN as compared to CS+ZnO group. These results suggested that nano-ZnOs (1200 mg/kg) might be used as a substitute for colistin sulfate and high dietary ZnO in weaned piglets.

  18. Effects of Sodium Citrate on the Ammonium Sulfate Recycled Leaching of Low-Grade Zinc Oxide Ores

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Li, Shi-wei; Zhang, Li-bo; Peng, Jin-hui; Ma, Ai-yuan; Wang, Bao-bao

    2016-03-01

    The effects of sodium citrate on ammonium sulfate recycled leaching of low-grade zinc oxide ores were studied. By applying various kinds of detection and analysis techniques such as chemical composition analysis, chemical phase method, scanning electron microscopy and energy dispersive spectrum (SEM/EDS), X-ray diffraction (XRD) and Fourier-transforming infrared spectrum (FT-IR), zinc raw ore, its leaching slag and the functional mechanism of sodium citrate were investigated. Based on a comprehensive analysis, it can be concluded that in contrast to hemimorphite (Zn4Si2O7(OH)2 · H2O), amorphous smithsonite (ZnCO3) and zinc silicate (Zn2SiO4) prove to be refractory phases under ammonium sulfate leaching, while sodium citrate has a better chelating action with the refractory phases, resulting in a higher zinc leaching rate. Under conditions of [NH3]/[NH3]T molar ratio being 0.5, [NH3]T being 7.5 mol/L, [Na3C6H5O7] being 0.2 mol/L, S/L ratio being 1:5, temperature being 303 K, holding time being 1 h in each of the two stages, and stirring rate being 300 rpm, the leaching rate of zinc reached 93.4%. In this article, sulfate ammonium recycled technology also reveals its unique advantage in processing low-grade zinc oxide ores accompanied by high silicon and high alkaline gangue.

  19. Removal of Fluorides and Chlorides from Zinc Oxide Fumes by Microwave Sulfating Roasting

    NASA Astrophysics Data System (ADS)

    Li, Zhiqiang; Zhang, Libo; Chen, Guo; Peng, Jinhui; Zhou, Liexing; Yin, Shaohua; Liu, Chenhui

    2015-10-01

    Dechlorination and defluorination from zinc oxide dust by microwave sulfating roasting was investigated in this study. According to proposed reactions in the process, detailed experiments were systematically conducted to study the effect of roasting temperature, holding time, air and steam flow rates on the efficiency of the removal of F and Cl. The results show that 92.3% of F and 90.5% of Cl in the fume could be purified when the condition of the roasting temperature of 650 °C, holding time at 60 min, air flow of 300 L/h and steam flow of 8 ml/min was optimized. Our investigation indicates that microwave sulfating roasting could be a promising new way for the dechlorination and defluorination from zinc oxide dust.

  20. Efficacy of zinc sulfate supplement on febrile seizure recurrence prevention in children with normal serum zinc level: A randomised clinical trial.

    PubMed

    Fallah, Razieh; Sabbaghzadegan, Saeideh; Karbasi, Sedighah Akhavan; Binesh, Fariba

    2015-01-01

    Serum zinc level might be related to pathogenesis of febrile seizure (FS). The purpose of this study was to evaluate efficacy and safety of oral zinc supplementation on FS recurrence prevention in non-zinc-deficient children. In a randomized clinical study, one hundred 18 to 60 mo old children with normal zinc level with first simple FS were referred to Shahid Sadoughi Hospital, Yazd, Iran from May 2012 to June 2013, were randomly assigned to two groups to receive 2 mg/kg/d zinc sulfate for six consecutive months or placebo as control group and were followed up for 1 y for FS recurrence. 41 girls and 59 boys with mean age of 2.47 ± 1.01 y were evaluated. Race, mean weight, height and body fat were similar in both groups. FS recurrence occurred in 19 children (38%) in the control group [95% confidence interval (CI): 19.45%-53.95%] and in 11 children (22%) in the zinc sulfate (95% CI: 57.47%-89.13%) groups, respectively; and the zinc group had lower FS recurrence (P = 0.03). The mean serum zinc level before intervention was lower in children with FS recurrence (72.43 ± 14.58 μg/dL versus 96.33 ± 12.69 μg/dL, P = 0.04). Gastrointestinal side effects (vomiting in five children, heartburn in two children and abdominal pain in one child) were seen in 16% of the zinc group and vomiting occurred in two children (4%) in control group and frequency of adverse events was similar in the two groups (P = 0.1). Zinc supplementation should be considered as effective and safe in prevention of FS recurrence. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Promoting effect of foliage sprayed zinc sulfate on accumulation of sugar and phenolics in berries of Vitis vinifera cv. Merlot growing on zinc deficient soil.

    PubMed

    Song, Chang-Zheng; Liu, Mei-Ying; Meng, Jiang-Fei; Chi, Ming; Xi, Zhu-Mei; Zhang, Zhen-Wen

    2015-02-02

    The effect of foliage sprayed zinc sulfate on berry development of Vitis vinifera cv. Merlot growing on arid zone Zn-deficient soils was investigated over two consecutive seasons, 2013 and 2014. Initial zinc concentration in soil and vines, photosynthesis at three berry developmental stages, berry weight, content of total soluble solids, titratable acidity, phenolics and expression of phenolics biosynthetic pathway genes throughout the stages were measured. Foliage sprayed zinc sulfate showed promoting effects on photosynthesis and berry development of vines and the promotion mainly occurred from veraison to maturation. Zn treatments enhanced the accumulation of total soluble solids, total phenols, flavonoids, flavanols, tannins and anthocyanins in berry skin, decreasing the concentration of titratable acidity. Furthermore, foliage sprayed zinc sulfate could significantly influence the expression of phenolics biosynthetic pathway genes throughout berry development, and the results of expression analysis supported the promotion of Zn treatments on phenolics accumulation. This research is the first comprehensive and detailed study about the effect of foliage sprayed Zn fertilizer on grape berry development, phenolics accumulation and gene expression in berry skin, providing a basis for improving the quality of grape and wine in Zn-deficient areas.

  2. Ultrasound-assisted analyte extraction for the determination of sulfate and elemental sulfur in zinc sulfide by different liquid chromatography techniques.

    PubMed

    Dash, K; Thangavel, S; Krishnamurthy, N V; Rao, S V; Karunasagar, D; Arunachalam, J

    2005-04-01

    The speciation and determination of sulfate (SO4(2-)) and elemental sulfur (S degree) in zinc sulfide (ZnS) using ion-chromatography (IC) and reversed-phase liquid chromatography (RPLC) respectively is described. Three sample pretreatment approaches were employed with the aim of determining sulfate: (i) conventional water extraction of the analyte; (ii) solid-liquid aqueous extraction with an ultrasonic probe; and (iii) elimination of the zinc sulfide matrix via ion-exchange dissolution (IED). The separation of sulfate was carried out by an anion-exchange column (IonPac AS17), followed by suppressed conductivity detection. Elemental sulfur was extracted ultrasonically from the acid treated sample solution into chloroform and separated on a reversed phase HPLC column equipped with a diode array detector (DAD) at 264 nm. The achievable solid detection limits for sulfate and sulfur were 35 and 10 microg g(-1) respectively.

  3. Comparative Study of Antidiabetic Activity and Oxidative Stress Induced by Zinc Oxide Nanoparticles and Zinc Sulfate in Diabetic Rats.

    PubMed

    Nazarizadeh, Ali; Asri-Rezaie, Siamak

    2016-08-01

    In the current study, antidiabetic activity and toxic effects of zinc oxide nanoparticles (ZnO) were investigated in diabetic rats compared to zinc sulfate (ZnSO4) with particular emphasis on oxidative stress parameters. One hundred and twenty male Wistar rats were divided into two healthy and diabetic groups, randomly. Each major group was further subdivided into five subgroups and then orally supplemented with various doses of ZnO (1, 3, and 10 mg/kg) and ZnSO4 (30 mg/kg) for 56 consecutive days. ZnO showed greater antidiabetic activity compared to ZnSO4 evidenced by improved glucose disposal, insulin levels, and zinc status. The altered activities of erythrocyte antioxidant enzymes as well as raised levels of lipid peroxidation and a marked reduction of total antioxidant capacity were observed in rats receiving ZnO. ZnO nanoparticles acted as a potent antidiabetic agent, however, severely elicited oxidative stress particularly at higher doses.

  4. Twinned low-temperature structures of tris(ethylenediamine)zinc(II) sulfate and tris(ethylenediamine)copper(II) sulfate.

    PubMed

    Lutz, Martin

    2010-11-01

    Tris(ethylenediamine)zinc(II) sulfate, [Zn(C(2)H(8)N(2))(3)]SO(4), (I), undergoes a reversible solid-solid phase transition during cooling, accompanied by a lowering of the symmetry from high-trigonal P31c to low-trigonal P3 and by merohedral twinning. The molecular symmetries of the cation and anion change from 32 (D(3)) to 3 (C(3)). This lower symmetry allows an ordered sulfate anion and generates in the complex cation two independent N atoms with significantly different geometries. The twinning is the same as in the corresponding Ni complex [Jameson et al. (1982). Acta Cryst. B38, 3016-3020]. The low-temperature phase of tris(ethylenediamine)copper(II) sulfate, [Cu(C(2)H(8)N(2))(3)]SO(4), (II), has only triclinic symmetry and the unit-cell volume is doubled with respect to the room-temperature structure in P31c. (II) was refined as a nonmerohedral twin with five twin domains. The asymmetric unit contains two independent formula units, and all cations and anions are located on general positions with 1 (C(1)) symmetry. Both molecules of the Cu complex are in elongated octahedral geometries because of the Jahn-Teller effect. This is in contrast to an earlier publication, which describes the complex as a compressed octahedron [Bertini et al. (1979). J. Chem. Soc. Dalton Trans. pp. 1409-1414].

  5. Recovering Zinc From Discarded Tires

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1984-01-01

    Zinc sulfate monohydrate sold at profit. Shredded tire material steeped in three sulfuric acid baths to extract zinc. Final product removed by evaporating part of solution until product crystallizes out. Recovered as zinc sulfate monohydrate and sold as fertilizer or for general use.

  6. Spatial impacts of inorganic ligand availability and localized microbial community structure on mitigation of zinc laden mine water in sulfate-reducing bioreactors.

    PubMed

    Drennan, Dina M; Almstrand, Robert; Ladderud, Jeffrey; Lee, Ilsu; Landkamer, Lee; Figueroa, Linda; Sharp, Jonathan O

    2017-05-15

    Sulfate-reducing bioreactors (SRBRs) represent a passive, sustainable, and long-term option for mitigating mining influenced water (MIW) during release. Here we investigate spatial zinc precipitation profiles as influenced by substrate differentiation, inorganic ligand availability (inorganic carbon and sulfide), and microbial community structure in pilot-scale SRBR columns fed with sulfate and zinc-rich MIW. Through a combination of aqueous sampling, geochemical digests, electron microscopy and energy-dispersive x-ray spectroscopy, we were able to delineate zones of enhanced zinc removal, identify precipitates of varying stability, and discern the temporal and spatial evolution of zinc, sulfur, and calcium associations. These geochemical insights revealed spatially variable immobilization regimes between SRBR columns that could be further contrasted as a function of labile (alfalfa-dominated) versus recalcitrant (woodchip-dominated) solid-phase substrate content. Both column subsets exhibited initial zinc removal as carbonates; however precipitation in association with labile substrates was more pronounced and dominated by metal-sulfide formation in the upper portions of the down flow columns with micrographs visually suggestive of sphalerite (ZnS). In contrast, a more diffuse and lower mass of zinc precipitation in the presence of gypsum-like precipitates occurred within the more recalcitrant column systems. While removal and sulfide-associated precipitation were spatially variable, whole bacterial community structure (ANOSIM) and diversity estimates were comparatively homogeneous. However, two phyla exhibited a potentially selective relationship with a significant positive correlation between the ratio of Firmicutes to Bacteroidetes and sulfide-bound zinc. Collectively these biogeochemical insights indicate that depths of maximal zinc sulfide precipitation are temporally dynamic, influenced by substrate composition and broaden our understanding of bio

  7. Iron Bioavailability from Ferric Pyrophosphate in Extruded Rice Cofortified with Zinc Sulfate Is Greater than When Cofortified with Zinc Oxide in a Human Stable Isotope Study.

    PubMed

    Hackl, Laura; Zimmermann, Michael B; Zeder, Christophe; Parker, Megan; Johns, Paul W; Hurrell, Richard F; Moretti, Diego

    2017-03-01

    Background: Extruded rice grains are often cofortified with iron and zinc. However, it is uncertain if the addition of zinc to iron-fortified rice affects iron absorption and whether this is zinc-compound specific. Objective: We investigated whether zinc, added as zinc oxide (ZnO) or zinc sulfate (ZnSO 4 ), affects human iron absorption from extruded rice fortified with ferric pyrophosphate (FePP). Methods: In 19 iron-depleted Swiss women (plasma ferritin ≤16.5 μ/L) aged between 20 and 39 y with a normal body mass index (in kg/m 2 ; 18.7-24.8), we compared iron absorption from 4 meals containing fortified extruded rice with 4 mg Fe and 3 mg Zn. Three of the meals contained extruded rice labeled with FePP ( 57 FePP): 1 ) 1 meal without added zinc ( 57 FePP-Zn), 2 ) 1 cofortified with ZnO ( 57 FePP+ZnO), and 3 ) 1 cofortified with ZnSO 4 ( 57 FePP+ZnSO 4 ). The fourth meal contained extruded rice without iron or zinc, extrinsically labeled with ferrous sulfate ( 58 FeSO 4 ) added as a solution after cooking. All 4 meals contained citric acid. Iron bioavailability was measured by isotopic iron ratios in red blood cells. We also measured relative in vitro iron solubility from 57 FePP-Zn, 57 FePP+ZnO, and 57 FePP+ZnSO 4 expressed as a fraction of FeSO 4 solubility. Results: Geometric mean fractional iron absorption (95% CI) from 57 FePP+ZnSO 4 was 4.5% (3.4%, 5.8%) and differed from 57 FePP+ZnO (2.7%; 1.8%, 4.1%) ( P < 0.03); both did not differ from 57 FePP-Zn: 4.0% (2.8%, 5.6%). Relative iron bioavailabilities compared with 58 FeSO 4 were 62%, 57%, and 38% from 57 FePP+ZnSO 4 , 57 FePP-Zn, and 57 FePP+ZnO, respectively. In vitro solubility from 57 FePP+ZnSO 4 differed from that of 57 FePP-Zn (14.3%; P < 0.02) but not from that of 57 FePP+ZnO (10.2% compared with 13.1%; P = 0.08). Conclusions: In iron-depleted women, iron absorption from FePP-fortified extruded rice cofortified with ZnSO 4 was 1.6-fold (95% CI: 1.4-, 1.9-fold) that of rice cofortified with Zn

  8. Studies on the bioavailability of zinc in humans: intestinal interaction of tin and zinc.

    PubMed

    Solomons, N W; Marchini, J S; Duarte-Favaro, R M; Vannuchi, H; Dutra de Oliveira, J E

    1983-04-01

    Mineral/mineral interactions at the intestinal level are important in animal nutrition and toxicology, but only limited understanding of their extent or importance in humans has been developed. An inhibitory interaction of dietary tin on zinc retention has been recently described from human metabolic studies. We have explored the tin/zinc interaction using the change-in-plasma-zinc-concentration method with a standard dosage of 12.5 mg of zinc as zinc sulfate in 100 ml of Coca-Cola. Sn/Zn ratios of 2:1, 4:1, and 8:1, constituted by addition of 25, 50, and 100 mg of tin as stannous chloride, had no significant overall effect on zinc uptake. The 100-mg dose of tin produced noxious gastrointestinal symptoms. Addition of iron as ferrous sulfate to form ratios of Sn/Fe/Zn of 1:1:1 and 2:2:1 with the standard zinc solution and the appropriate doses of tin produced a reduction of zinc absorption not dissimilar from that seen previously with zinc and iron alone, and addition of picolinic acid did not influence the uptake of zinc from the solution with the 2:2:1 Sn/Fe/Zn ratio.

  9. Electrodeposition of zinc hydroxysulfate nanosheets and reduction to zinc metal microdendrites on polypyrrole films.

    PubMed

    Andreoli, Enrico; Rooney, Denise A; Redington, Wynette; Gunning, Robert; Breslin, Carmel B

    2012-01-01

    Nanothin sheets made of zinc sulfate hydroxide hydrate, ZnSO4[Zn(OH)2]3 x 5H2O, are easily and quickly prepared using an innovative electrochemical route onto polypyrrole-polystyrene sulfonate (PPy-PSS) films. The sheets are characterized using a range of experimental techniques. The deposits are formed on the film surface with instantaneous nucleation to grow into a network of entangled nanosheets. The effect of the experimental conditions on the deposition is reported. Interestingly, the formation of the nanosheets is observed on PPy-PSS films only, and not on films doped with other sulfate/sulfonate dopants. The zinc nanosheets can be easily electrochemically reduced to metallic zinc microdentrites.

  10. Zinc isotope evidence for sulfate-rich fluid transfer across subduction zones.

    PubMed

    Pons, Marie-Laure; Debret, Baptiste; Bouilhol, Pierre; Delacour, Adélie; Williams, Helen

    2016-12-16

    Subduction zones modulate the chemical evolution of the Earth's mantle. Water and volatile elements in the slab are released as fluids into the mantle wedge and this process is widely considered to result in the oxidation of the sub-arc mantle. However, the chemical composition and speciation of these fluids, which is critical for the mobility of economically important elements, remain poorly constrained. Sulfur has the potential to act both as oxidizing agent and transport medium. Here we use zinc stable isotopes (δ 66 Zn) in subducted Alpine serpentinites to decipher the chemical properties of slab-derived fluids. We show that the progressive decrease in δ 66 Zn with metamorphic grade is correlated with a decrease in sulfur content. As existing theoretical work predicts that Zn-SO 4 2- complexes preferentially incorporate heavy δ 66 Zn, our results provide strong evidence for the release of oxidized, sulfate-rich, slab serpentinite-derived fluids to the mantle wedge.

  11. Zinc isotope evidence for sulfate-rich fluid transfer across subduction zones

    PubMed Central

    Pons, Marie-Laure; Debret, Baptiste; Bouilhol, Pierre; Delacour, Adélie; Williams, Helen

    2016-01-01

    Subduction zones modulate the chemical evolution of the Earth's mantle. Water and volatile elements in the slab are released as fluids into the mantle wedge and this process is widely considered to result in the oxidation of the sub-arc mantle. However, the chemical composition and speciation of these fluids, which is critical for the mobility of economically important elements, remain poorly constrained. Sulfur has the potential to act both as oxidizing agent and transport medium. Here we use zinc stable isotopes (δ66Zn) in subducted Alpine serpentinites to decipher the chemical properties of slab-derived fluids. We show that the progressive decrease in δ66Zn with metamorphic grade is correlated with a decrease in sulfur content. As existing theoretical work predicts that Zn-SO42− complexes preferentially incorporate heavy δ66Zn, our results provide strong evidence for the release of oxidized, sulfate-rich, slab serpentinite-derived fluids to the mantle wedge. PMID:27982033

  12. Final report on the safety assessment of sodium cetearyl sulfate and related alkyl sulfates as used in cosmetics.

    PubMed

    Fiume, Monice; Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Alan Andersen, F

    2010-05-01

    Sodium cetearyl sulfate is the sodium salt of a mixture of cetyl and stearyl sulfate. The other ingredients in this safety assessment are also alkyl salts, including ammonium coco-sulfate, ammonium myristyl sulfate, magnesium coco-sulfate, sodium cetyl sulfate, sodium coco/hydrogenated tallow sulfate, sodium coco-sulfate, sodium decyl sulfate, sodium ethylhexyl sulfate, sodium myristyl sulfate, sodium oleyl sulfate, sodium stearyl sulfate, sodium tallow sulfate, sodium tridecyl sulfate, and zinc coco-sulfate. These ingredients are surfactants used at concentrations from 0.1% to 29%, primarily in soaps and shampoos. Many of these ingredients are not in current use. The Cosmetic Ingredient Review (CIR) Expert Panel previously completed a safety assessment of sodium and ammonium lauryl sulfate. The data available for sodium lauryl sulfate and ammonium lauryl sulfate provide sufficient basis for concluding that sodium cetearyl sulfate and related alkyl sulfates are safe in the practices of use and concentration described in the safety assessment.

  13. Acute changes in cellular zinc alters zinc uptake rates prior to zinc transporter gene expression in Jurkat cells.

    PubMed

    Holland, Tai C; Killilea, David W; Shenvi, Swapna V; King, Janet C

    2015-12-01

    A coordinated network of zinc transporters and binding proteins tightly regulate cellular zinc levels. Canonical responses to zinc availability are thought to be mediated by changes in gene expression of key zinc transporters. We investigated the temporal relationships of actual zinc uptake with patterns of gene expression in membrane-bound zinc transporters in the human immortalized T lymphocyte Jurkat cell line. Cellular zinc levels were elevated or reduced with exogenous zinc sulfate or N,N,N',N-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), respectively. Excess zinc resulted in a rapid 44 % decrease in the rate of zinc uptake within 10 min. After 120 min, the expression of metallothionein (positive control) increased, as well as the zinc exporter, ZnT1; however, the expression of zinc importers did not change during this time period. Zinc chelation with TPEN resulted in a rapid twofold increase in the rate of zinc uptake within 10 min. After 120 min, the expression of ZnT1 decreased, while again the expression of zinc importers did not change. Overall, zinc transporter gene expression kinetics did not match actual changes in cellular zinc uptake with exogenous zinc or TPEN treatments. This suggests zinc transporter regulation may be the initial response to changes in zinc within Jurkat cells.

  14. Comparing the Effects of Zinc Sulfate, Calcium Pantothenate, Their Combination and Minoxidil Solution Regimens on Controlling Hair Loss in Women: A Randomized Controlled Trial.

    PubMed

    Siavash, Mansour; Tavakoli, Fereshteh; Mokhtari, Fatemeh

    2017-01-01

    This study was conducted to evaluate the combination of oral supplements with 2% minoxidil solution in four groups of women with hair loss. A prospective, randomized controlled trial was conducted from July to December 2016 in dermatology clinics affiliated to Isfahan University of Medical Sciences. A total of 73, 15-45-year-old, women with hair loss participated in this 4-month study. Simple randomization using Random Allocation Software was done to put the participants in four groups to receive coadministration of zinc sulfate and calcium pantothenate, zinc sulfate, calcium pantothenate, and 2% minoxidil solution. The primary endpoint was the change in hair density and diameter measured by dermatoscope. Secondary endpoints included the researcher's evaluation, dermatologist's opinion - which was blinded to the study - from comparing the participants' photographs before and after treatment and finally, overall changes in hair density measured by participants' self-assessment. Seventy-three women participated in this study. Primary hair count and thickness were 118.5 ± 10 hairs/cm 2 and 58.8 ± 5.8 μ that changed to 124 ± 11 hairs/cm 2 and 62.3 ± 4.3 μ respectively ( P < 0.001) which in the zinc plus pantothenate group these changes were from 118.6 ± 9.9 hairs/cm 2 to 121.9 ± 11.1 hairs/cm 2 ( P = 0.042) and from 62.2 ± 6.6 μ to 64.0 ± 5.0 μ ( P = 0.126), respectively. Hair density increments were more obvious in the minoxidil group, and hair thickness increments were more obvious in pantothenate group. Participants' satisfaction was 85% in the combination therapy which was more than other groups. Participants' satisfaction, author's and blind dermatologist's opinion showed a significant correlation ( P = 0.0001). Based on the participants' satisfaction, the combination of zinc sulfate and calcium pantothenate when administered in a pulse therapy way could be a good choice for hair loss controlling in initial stages.

  15. Ferritin: a zinc detoxicant and a zinc ion donor.

    PubMed Central

    Price, D; Joshi, J G

    1982-01-01

    Rats were injected with 1 mg of Zn2+ as zinc sulfate or 2 mg of Cd2+ as cadmium sulfate per kg of body weight on a daily basis. After seven injections, ferritin and metallothionein were isolated from the livers of the rats. Significant amounts of zinc were associated with ferritin. Incubation of such ferritin with apoenzymes of calf intestinal alkaline phosphatase, yeast phosphoglucomutase, and yeast aldolase restored their enzymic activity. The amount of zinc injected was insufficient to stimulate significant synthesis of metallothionein, but similar experiments with injection of cadmium did stimulate the synthesis of metallothionein. The amount of Zn2+ in ferritin of Cd-injected rats was greater than that in ferritin in Zn-injected rats, which was greater than that in ferritin of normal rats. Thus at comparable protein concentration ferritin from Cd-injected rats was a better Zn2+ donor than was ferritin from Zn-injected or normal animals. Ferritin is a normal constituent of several tissues, whereas metallothionein is synthesized under metabolic stress. Thus ferritin may function as a "metal storage and transferring agent" for iron and for zinc. It is suggested that ferritin probably serves as the initial chelator for Zn2+ and perhaps other metal ions as well and that under very high toxic levels of metal ions the synthesis of metallothionein is initiated as the second line of defense. PMID:6212927

  16. Does Zinc Sulfate Prevent Therapy-Induced Taste Alterations in Head and Neck Cancer Patients? Results of Phase III Double-Blind, Placebo-Controlled Trial from the North Central Cancer Treatment Group (N01C4)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halyard, Michele Y.; Jatoi, Aminah; Sloan, Jeff A.

    2007-04-01

    Purpose: Taste alterations (dysgeusia) are well described in head and neck cancer patients who undergo radiotherapy (RT). Anecdotal observations and pilot studies have suggested zinc may mitigate these symptoms. This multi-institutional, double-blind, placebo-controlled trial was conducted to provide definitive evidence of this mineral's palliative efficacy. Methods and Materials: A total of 169 evaluable patients were randomly assigned to zinc sulfate 45 mg orally three times daily vs. placebo. Treatment was to be given throughout RT and for 1 month after. All patients were scheduled to receive {>=}2,000 cGy of external beam RT to {>=}30% of the oral cavity, were ablemore » to take oral medication, and had no oral thrush at study entry. Changes in taste were assessed using the previously validated Wickham questionnaire. Results: At baseline, the groups were comparable in age, gender, and planned radiation dose (<6,000 vs. {>=}6,000 cGy). Overall, 61 zinc-treated (73%) and 71 placebo-exposed (84%) patients described taste alterations during the first 2 months (p = 0.16). The median interval to taste alterations was 2.3 vs. 1.6 weeks in the zinc-treated and placebo-exposed patients, respectively (p = 0.09). The reported taste alterations included the absence of any taste (16%), bitter taste (8%), salty taste (5%), sour taste (4%), sweet taste (5%), and the presence of a metallic taste (10%), as well as other descriptions provided by a write in response (81%). Zinc sulfate did not favorably affect the interval to taste recovery. Conclusion: Zinc sulfate, as prescribed in this trial, did not prevent taste alterations in cancer patients who were undergoing RT to the oral pharynx.« less

  17. Sodium lauryl sulfate impedes drug release from zinc-crosslinked alginate beads: switching from enteric coating release into biphasic profiles.

    PubMed

    Taha, Mutasem O; Nasser, Wissam; Ardakani, Adel; Alkhatib, Hatim S

    2008-02-28

    The aim of this research is to investigate the effects of sodium lauryl sulfate (SLS) on ionotropically cross-linked alginate beads. Different levels of SLS were mixed with sodium alginate and chlorpheniramine maleate (as loaded model drug). The resulting viscous solutions were dropped onto aqueous solutions of zinc or calcium ions for ionotropic curing. The generated beads were assessed by their drug releasing profiles, infrared and differential scanning colorimetery (DSC) traits. SLS was found to exert profound concentration-dependent impacts on the characteristics of zinc-crosslinked alginate beads such that moderate modifications in the levels of SLS switched drug release from enteric coating-like behavior to a biphasic release modifiable to sustained-release by the addition of minute amounts of xanthan gum. Calcium cross-linking failed to reproduce the same behavior, probably due to the mainly ionic nature of calcium-carboxylate bonds compared to the coordinate character of their zinc-carboxylate counterparts. Apparently, moderate levels of SLS repel water penetration into the beads, and therefore minimize chlorpheniramine release. However, higher SLS levels seem to discourage polymeric cross-linking and therefore allow biphasic drug release.

  18. Fabrication of visible light-triggered photocatalytic materials from the coupling of n-type zinc oxide and p-type copper oxide

    NASA Astrophysics Data System (ADS)

    Gorospe, A. B.; Herrera, M. U.

    2017-04-01

    Coupling of copper oxide (CuO) and zinc oxide (ZnO) was done by chemical precipitation method. In this method, copper sulfate pentahydrate and zinc sulfate heptahydrate salt precursors were separately dissolved in distilled water; then were mixed together. The copper sulfate-zinc sulfate solution was then combined with a sodium hydroxide solution. The precipitates were collected and washed in distilled water and ethanol several times, then filtered and dried. The dried sample was grounded, and then undergone heat treatment. After heating, the sample was grounded again. Zinc oxide powder and copper oxide powder were also fabricated using chemical precipitation method. X-Ray Diffraction measurements of the coupled CuO/ZnO powder showed the presence of CuO and ZnO in the fabricated sample. Furthermore, other peaks shown by XRD were also identified corresponding to copper, copper (II) oxide, copper sulfate and zinc sulfate. Results of the photocatalytic activity investigation show that the sample exhibited superior photocatalytic degradation of methyl orange under visible light illumination compared to copper oxide powder and zinc oxide powder. This may be attributed to the lower energy gap at the copper oxide-zinc oxide interface, compared to zinc oxide, allowing visible light to trigger its photocatalytic activity.

  19. Zinc Absorption by Young Adults from Supplemental Zinc Citrate Is Comparable with That from Zinc Gluconate and Higher than from Zinc Oxide123

    PubMed Central

    Wegmüller, Rita; Tay, Fabian; Zeder, Christophe; Brnić, Marica; Hurrell, Richard F.

    2014-01-01

    The water-soluble zinc salts gluconate, sulfate, and acetate are commonly used as supplements in tablet or syrup form to prevent zinc deficiency and to treat diarrhea in children in combination with oral rehydration. Zinc citrate is an alternative compound with high zinc content, slightly soluble in water, which has better sensory properties in syrups but no absorption data in humans. We used the double-isotope tracer method with 67Zn and 70Zn to measure zinc absorption from zinc citrate given as supplements containing 10 mg of zinc to 15 healthy adults without food and compared absorption with that from zinc gluconate and zinc oxide (insoluble in water) using a randomized, double-masked, 3-way crossover design. Median (IQR) fractional absorption of zinc from zinc citrate was 61.3% (56.6–71.0) and was not different from that from zinc gluconate with 60.9% (50.6–71.7). Absorption from zinc oxide at 49.9% (40.9–57.7) was significantly lower than from both other supplements (P < 0.01). Three participants had little or no absorption from zinc oxide. We conclude that zinc citrate, given as a supplement without food, is as well absorbed by healthy adults as zinc gluconate and may thus be a useful alternative for preventing zinc deficiency and treating diarrhea. The more insoluble zinc oxide is less well absorbed when given as a supplement without food and may be minimally absorbed by some individuals. This trial was registered at clinicaltrials.gov as NCT01576627. PMID:24259556

  20. Effects of separate delivery of zinc or zinc and vitamin A on hemoglobin response, growth, and diarrhea in young Peruvian children receiving iron therapy for anemia.

    PubMed

    Alarcon, Karl; Kolsteren, Patrick W; Prada, Ana M; Chian, Ana M; Velarde, Ruth E; Pecho, Iris L; Hoeree, Tom F

    2004-11-01

    Anemia is the most prevalent nutritional deficiency in the world. Attempts to improve iron indexes are affected by deficiency of and interaction between other micronutrients. Our goal was to assess whether zinc added to iron treatment alone or with vitamin A improves iron indexes and affects diarrheal episodes. This was a randomized, placebo-controlled, double-blind trial conducted in Peru. Anemic children aged 6-35 mo were assigned to 3 treatment groups: ferrous sulfate (FS; n = 104), ferrous sulfate and zinc sulfate (FSZn; n = 109), and ferrous sulfate, zinc sulfate, and vitamin A (FSZnA; n = 110). Vitamin A or its placebo was supplied only once; iron and zinc were provided under supervision >/=1 h apart 6 d/wk for 18 wk. The prevalence of anemia was 42.97%. The increase in hemoglobin in the FS group (19.5 g/L) was significantly less than that in the other 2 groups (24.0 and 23.8 g/L in the FSZn and FSZnA groups, respectively). The increase in serum ferritin in the FS group (24.5 mug/L) was significantly less than that in the other 2 groups (33.0 and 30.8 mug/L in the FSZn and FSZnA groups, respectively). The median duration of diarrhea and the mean number of stools per day was significantly higher in the FS group than in other 2 groups (P < 0.005). Adding zinc to iron treatment increases hemoglobin response, improves iron indexes, and has positive effects on diarrhea. No additional effect of vitamin A was found.

  1. Synthesis and crystal structures of coordination compounds of pyridoxine with zinc and cadmium sulfates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furmanova, N. G., E-mail: furm@ns.crys.ras.ru; Berdalieva, Zh. I., E-mail: kakin@inbox.ru; Chernaya, T. S.

    2009-03-15

    The pyridoxine complexes with zinc and cadmium sulfates are synthesized. The IR absorption spectra and thermal behavior of the synthesized compounds are described. Crystals of the [M(C{sub 8}H{sub 11}O{sub 3}N){sub 2}(H{sub 2}O){sub 2}]SO{sub 4} . 3H{sub 2}O (M = Zn, Cd) compounds are investigated using X-ray diffraction. In the structures of both compounds, the M atoms are coordinated by the oxygen atoms of the deprotonated OH group and the CH{sub 2}OH group retaining its own hydrogen atom, as well as by two H{sub 2}O molecules, and have an octahedral coordination. The nitrogen atom of the heterocycle is protonated, so thatmore » the heterocycle acquires a pyridinium character. The cationic complexes form layers separated by the anions and crystallization water molecules located in between. The structural units of the crystals are joined together by a complex system of hydrogen bonds.« less

  2. Spectroscopic study of gel grown L-Valine Zinc Glycine Thiourea Sulfate (VZGTS) crystal: A novel NLO crystal

    NASA Astrophysics Data System (ADS)

    Rathod, Kiran T.; Patel, I. B.

    2017-05-01

    In recent years, organometalic non linear optical (NLO) materials have attained immense appeal form researchers due to its range of technological applications in photonic field and optoelectronic technology. In present research work, novel semi organic NLO L-Valine Zinc Glycine Thiourea Sulfate crystals (VZGTS) with different morphologies were grown by gel method at ambient temperature. Presence and identification of functional groups were confirmed by FITR analysis. Spectroscopic studies were carried out for it. The UV-Vis spectroscopy is recorded for crystal. PL study stats that the crystal has insulating nature. Spectroscopic study shows that this crystal has good transparency in the case of fundamental wavelength of Nd : YAG laser. Second Harmonic Generation (SHG) efficiency was confirmed by Kurtz - Perry powder method. Results are discussed in the paper.

  3. A New Type of Metal-Binding Site in Cobalt- And Zinc-Containing Adenylate Kinases Isolated From Sulfate-Reducers D. Gigas And D. Desulfuricans ATCC 27774

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavel, O.Y.; Bursakov, S.A.; Rocco, G.Di

    2009-05-18

    Adenylate kinase (AK) mediates the reversible transfer of phosphate groups between the adenylate nucleotides and contributes to the maintenance of their constant cellular level, necessary for energy metabolism and nucleic acid synthesis. The AK were purified from crude extracts of two sulfate-reducing bacteria (SRB), Desulfovibrio (D.) gigas NCIB 9332 and Desulfovibrio desulfuricans ATCC 27774, and biochemically and spectroscopically characterized in the native and fully cobalt- or zinc-substituted forms. These are the first reported adenylate kinases that bind either zinc or cobalt and are related to the subgroup of metal-containing AK found, in most cases, in Gram-positive bacteria. The electronic absorptionmore » spectrum is consistent with tetrahedral coordinated cobalt, predominantly via sulfur ligands, and is supported by EPR. The involvement of three cysteines in cobalt or zinc coordination was confirmed by chemical methods. Extended X-ray absorption fine structure (EXAFS) indicate that cobalt or zinc are bound by three cysteine residues and one histidine in the metal-binding site of the 'LID' domain. The sequence {sup 129}Cys-X{sub 5}-His-X{sub 15}-Cys-X{sub 2}-Cys of the AK from D. gigas is involved in metal coordination and represents a new type of binding motif that differs from other known zinc-binding sites of AK. Cobalt and zinc play a structural role in stabilizing the LID domain.« less

  4. Effects of zinc and cholesterol/choleate on serum lipoproteins and the liver in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, C.H.; Chen, S.M.; Ogle, C.W.

    1989-01-01

    The effects of short-term treatment with orally-administered zinc sulfate and/or a mixture of cholesterol/choleate on serum lipoprotein and hepatic enzyme levels were studied. Administration of graded doses of zinc sulfate for 5 days, dose-dependently increased serum and hepatic zinc levels but depressed the serum high-density lipoprotein-cholesterol (HDL-C) concentration and liver cytochrome P-450 activity. However, it did not affect hepatic concentrations of malondialdehyde and free {beta}-glucuronidase. Cholesterol/choleate treatment for 5 days markedly damaged the liver, as reflected by elevations of hepatic concentrations of malondialdehyde (both in the mitochondrial and microsomal fractions) and of free {beta}-glucuronidase; total cholesterol and low-density lipoprotein-cholesterol inmore » the blood were increased, whereas HDL-C was decreased significantly. Concomitant administration of zinc sulfate with cholesterol/choleate further lowered HDL-C levels, but reversed the high hepatic concentrations of both malondialdehyde and free {beta}-glucuronidase. The present study indicates that both zinc ions and cholesterol can decrease circulatory HDL-C levels and that zinc protects against cholesterol-induced hepatic damage by reducing lysosomal enzyme release and preventing lipid peroxidation in the liver.« less

  5. Effective Synthesis of Sulfate Metabolites of Chlorinated Phenols

    PubMed Central

    Lehmler, Hans-Joachim; He, Xianran; Li, Xueshu; Duffel, Michael W.; Parkin, Sean

    2013-01-01

    Chlorophenols are an important class of persistent environmental contaminants and have been implicated in a range of adverse health effects, including cancer. They are readily conjugated and excreted as the corresponding glucuronides and sulfates in the urine of humans and other species. Here we report the synthesis and characterization of a series of ten chlorophenol sulfates by sulfation of the corresponding chlorophenols with 2,2,2-trichloroethyl (TCE) chlorosulfate using N,N-dimethylaminopyridine (DMAP) as base. Deprotection of the chlorophenol diesters with zinc powder/ammonium formate yielded the respective chlorophenol sulfate ammonium salts in good yield. The molecular structure of three TCE-protected chlorophenol sulfate diesters and one chlorophenol sulfate monoester were confirmed by X-ray crystal structure analysis. The chlorophenol sulfates were stable for several months if stored at −20 °C and, thus, are useful for future toxicological, environmental and human biomonitoring studies. PMID:23906814

  6. Biotreatment of zinc-containing wastewater in a sulfidogenic CSTR: Performance and artificial neural network (ANN) modelling studies.

    PubMed

    Sahinkaya, Erkan

    2009-05-15

    Sulfidogenic treatment of sulfate (2-10g/L) and zinc (65-677mg/L) containing simulated wastewater was studied in a mesophilic (35 degrees C) CSTR. Ethanol was supplemented (COD/sulfate=0.67) as carbon and energy source for sulfate-reducing bacteria (SRB). The robustness of the system was studied by increasing Zn, COD and sulfate loadings. Sulfate removal efficiency, which was 70% at 2g/L feed sulfate concentration, steadily decreased with increasing feed sulfate concentration and reached 40% at 10g/L. Over 99% Zn removal was attained due to the formation of zinc-sulfide precipitate. COD removal efficiency at 2g/L feed sulfate concentration was over 94%, whereas, it steadily decreased due to the accumulation of acetate at higher loadings. Alkalinity produced from acetate oxidation increased wastewater pH remarkably when feed sulfate concentration was 5g/L or lower. Electron flow from carbon oxidation to sulfate reduction averaged 83+/-13%. The rest of the electrons were most likely coupled with fermentative reactions as the amount of methane production was insignificant. The developed ANN model was very successful as an excellent to reasonable match was obtained between the measured and the predicted concentrations of sulfate (R=0.998), COD (R=0.993), acetate (R=0.976) and zinc (R=0.827) in the CSTR effluent.

  7. Effects of zinc and magnesium supplements on postpartum depression and anxiety: A randomized controlled clinical trial.

    PubMed

    Fard, Fatemeh Edalati; Mirghafourvand, Mojgan; Mohammad-Alizadeh Charandabi, Sakineh; Farshbaf-Khalili, Azizeh; Javadzadeh, Yousef; Asgharian, Hanieh

    2017-10-01

    Postpartum anxiety and depression are prevalent disorders. The authors of this study aimed to determine the effects of zinc and magnesium supplements on depressive symptoms and anxiety in postpartum women referred to three governmental, educational hospitals in Tabriz, Iran during 2014-2015. In this triple-blind, randomized, controlled clinical trial, the participants were randomly assigned to the zinc sulfate, magnesium sulfate, and placebo groups (n = 33 per group). The intervention groups received a 27-mg zinc sulfate tablet or 320-mg magnesium sulfate tablet per day for 8 weeks, whereas the control group received a placebo tablet each day during the same period. The Edinburgh Postnatal Depression Scale and the Spielberger State-Trait Anxiety Inventory were completed before and 8 weeks after the intervention. Blood samples were drawn from each participant to determine serum levels of zinc and magnesium before intervention at 48 hours after delivery. Also, a 24-hour dietary questionnaire was used during the first and last 3 days of the intervention. Adjusting for baseline scores as well as zinc and magnesium serum levels, no significant difference was observed between groups 8 weeks after delivery in mean scores of depressive symptoms (p = .553), state anxiety (p = .995), and trait anxiety (p = .234). This study concluded magnesium and zinc did not reduce postpartum anxiety and depressive symptoms.

  8. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers.

    PubMed

    Wan, Fang; Zhang, Linlin; Dai, Xi; Wang, Xinyu; Niu, Zhiqiang; Chen, Jun

    2018-04-25

    Rechargeable aqueous zinc-ion batteries are promising energy storage devices due to their high safety and low cost. However, they remain in their infancy because of the limited choice of positive electrodes with high capacity and satisfactory cycling performance. Furthermore, their energy storage mechanisms are not well established yet. Here we report a highly reversible zinc/sodium vanadate system, where sodium vanadate hydrate nanobelts serve as positive electrode and zinc sulfate aqueous solution with sodium sulfate additive is used as electrolyte. Different from conventional energy release/storage in zinc-ion batteries with only zinc-ion insertion/extraction, zinc/sodium vanadate hydrate batteries possess a simultaneous proton, and zinc-ion insertion/extraction process that is mainly responsible for their excellent performance, such as a high reversible capacity of 380 mAh g -1 and capacity retention of 82% over 1000 cycles. Moreover, the quasi-solid-state zinc/sodium vanadate hydrate battery is also a good candidate for flexible energy storage device.

  9. Subchronic inhalation of zinc sulfate induces cardiac changes in healthy rats

    EPA Science Inventory

    Zinc is a common metal in most ambient particulate matter (PM), and has been proposed to be a causative component in PM-induced adverse cardiovascular health effects. Zinc is also an essential metal and has the potential to induce many physiological and nonphysiological changes. ...

  10. SUBCHRONIC INHALATION OF ZINC SULFATE CAUSES CARDIAC CHANGES IN HEALTHY RATS

    EPA Science Inventory

    Zinc is a common metal in most ambient particulate matter (PM), and has been proposed to be a causative component in PM-induced adverse cardiovascular health effects. Zinc is also an essential metal and has the potential to induce many physiological and nonphysiological changes. ...

  11. An Efficient Approach to Sulfate Metabolites of Polychlorinated Biphenyls

    PubMed Central

    Li, Xueshu; Parkin, Sean; Duffel, Michael W.; Robertson, Larry W.; Lehmler, Hans-Joachim

    2009-01-01

    Polychlorinated biphenyls (PCBs), a major class of persistent organic pollutants, are metabolized to hydroxylated PCBs. Several hydroxylated PCBs are substrates of cytosolic phase II enzymes, such as phenol and hydroxysteroid (alcohol) sulfotransferases; however, the corresponding sulfation products have not been isolated and characterized. Here we describe a straightforward synthesis of a series of ten PCB sulfate monoesters from the corresponding hydroxylated PCBs. The hydroxylated PCBs were synthesized by coupling chlorinated benzene boronic acids with appropriate brominated (chloro-)anisoles, followed by demethylation with boron tribromide. The hydroxylated PCBs were sulfated with 2,2,2-trichloroethyl chlorosulfate using DMAP as base. Deprotection with zinc powder/ammonium formate yielded the ammonium salts of the desired PCB sulfate monoesters in good yields when the sulfated phenyl ring contained no or one chlorine substituent. However, no PCB sulfate monoesters were isolated when two chlorines were present ortho to the sulfated hydroxyl group. To aid with future quantitative structure activity relationship studies, the structures of two 2,2,2-trichloroethyl-protected PCB sulfates were verified by X-ray diffraction. PMID:19345419

  12. A method for predicting service life of zinc rich primers on carbon steel

    NASA Technical Reports Server (NTRS)

    Hoppesch, C. W.

    1986-01-01

    The service life of zinc rich primers on carbon steel can be estimated by immersing a primer coated glass slide into an aqueous copper sulfate solution and measuring the amount of zinc that reacts with the copper in 15 minutes. This zinc availability test was used to evaluate eleven primers currently available for which marine beach exposure data was available from previous programs. Results were evaluated and a correlation between zinc availability and ASTM rust grade was shown.

  13. 21 CFR 524.154 - Bacitracin or bacitracin zinc-neomycin sulfate-polymyxin B sulfate ophthalmic ointment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... organisms. (3) Limitations. Laboratory tests should be conducted including in vitro culturing and... sulfate ophthalmic ointment. (a) Sponsor. To firms identified in § 510.600(c) of this chapter as follows...

  14. 21 CFR 524.154 - Bacitracin or bacitracin zinc-neomycin sulfate-polymyxin B sulfate ophthalmic ointment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... organisms. (3) Limitations. Laboratory tests should be conducted including in vitro culturing and... sulfate ophthalmic ointment. (a) Sponsor. To firms identified in § 510.600(c) of this chapter as follows...

  15. Depolymerization of cellulose into high-value chemicals by using synergy of zinc chloride hydrate and sulfate ion promoted titania catalyst.

    PubMed

    Wei, Weiqi; Wu, Shubin

    2017-10-01

    Experiments for cellulose depolymerization by synergy of zinc chloride hydrate (ZnCl 2 ·RH 2 O) and sulfated titania catalyst (SO 4 2- /TiO 2 ) were investigated in this study. The results showed the introduction of sulfate into the TiO 2 significantly enhanced the catalyst acid amount, especially for Brønsted acid site, which is beneficial for subsequent cellulose depolymerization. ZnCl 2 ·RH 2 O hydrate, only a narrow composition range of water, specifically 3.0≤R≤4.0, can dissolve cellulose, which finally resulted the cellulose with low crystallinity and weak intrachain and interchain hydrogen bond network. Coupling of ZnCl 2 ·RH 2 O hydrate and SO 4 2- /TiO 2 catalyst as a mixed reaction system promoted cellulose depolymerization, and the products can be adjusted by the control of reaction conditions, the low temperature (80-100°C) seemed beneficial for glucose formation (maximal yield 50.5%), and the high temperature (120-140°C) favored to produce levulinic acid (maximal yield 43.1%). Besides, the addition of organic co-solvent making HMF as the main product (maximal yield 38.3%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Zinc transport by respiratory epithelial cells and interaction with iron homeostasis.

    PubMed

    Deng, Zhongping; Dailey, Lisa A; Soukup, Joleen; Stonehuerner, Jacqueline; Richards, Judy D; Callaghan, Kimberly D; Yang, Funmei; Ghio, Andrew J

    2009-10-01

    Despite recurrent exposure to zinc through inhalation of ambient air pollution particles, relatively little information is known about the homeostasis of this metal in respiratory epithelial cells. We describe zinc uptake and release by respiratory epithelial cells and test the postulate that Zn(2+) transport interacts with iron homeostasis in these same cells. Zn(2+) uptake after 4 and 8 h of exposure to zinc sulfate was concentration- and time-dependent. A majority of Zn(2+) release occurred in the 4 h immediately following cell exposure to ZnSO(4). Regarding metal importers, mRNA for Zip1 and Zip2 showed no change after respiratory epithelial cell exposure to zinc while mRNA for divalent metal transporter (DMT)1 increased. Western blot assay for DMT1 protein supported an elevated expression of this transport protein following zinc exposure. RT-PCR confirmed mRNA for the metal exporters ZnT1 and ZnT4 with the former increasing after ZnSO(4). Cell concentrations of ferritin increased with zinc exposure while oxidative stress, measured as lipid peroxides, was decreased supporting an anti-oxidant function for Zn(2+). Increased DMT1 expression, following pre-incubations of respiratory epithelial cells with TNF-alpha, IFN-gamma, and endotoxin, was associated with significantly decreased intracellular zinc transport. Finally, incubations of respiratory epithelial cells with both zinc sulfate and ferric ammonium citrate resulted in elevated intracellular concentrations of both metals. We conclude that exposure to zinc increases iron uptake by respiratory epithelial cells. Elevations in cell iron can possibly affect an increased expression of DMT1 and ferritin which function to diminish oxidative stress. Comparable to other metal exposures, changes in iron homeostasis may contribute to the biological effects of zinc in specific cells and tissues.

  17. Effects of Chronic and Acute Zinc Supplementation on Myocardial Ischemia-Reperfusion Injury in Rats.

    PubMed

    Ozyıldırım, Serhan; Baltaci, Abdulkerim Kasim; Sahna, Engin; Mogulkoc, Rasim

    2017-07-01

    The present study aims to explore the effects of chronic and acute zinc sulfate supplementation on myocardial ischemia-reperfusion injury in rats. The study registered 50 adult male rats which were divided into five groups in equal numbers as follows: group 1, normal control; group 2, sham; group 3, myocardial ischemia reperfusion (My/IR): the group which was fed on a normal diet and in which myocardial I/R was induced; group 4, myocardial ischemia reperfusion + chronic zinc: (5 mg/kg i.p. zinc sulfate for 15 days); and group 5, myocardial ischemia reperfusion + acute zinc: the group which was administered 15 mg/kg i.p. zinc sulfate an hour before the operation and in which myocardial I/R was induced. The collected blood and cardiac tissue samples were analyzed using spectrophotometric method to determine levels of MDA, as an indicator of tissue injury, and GSH, as an indicator of antioxidant activity. The highest plasma and heart tissue MDA levels were measured in group 3 (p < 0.05). Group 5 had lower MDA values than group 3, while group 4 had significantly lower MDA values than groups 3 and 5 (p < 0.05). The highest erythrocyte GSH values were found in group 4 (p < 0.05). Erythrocyte GSH values in group 5 were higher than those in group 3 (p < 0.05). The highest GSH values in heart tissue were measured in group 4 (p < 0.05). The results of the study reveal that the antioxidant activity inhibited by elevated oxidative stress in heart ischemia reperfusion in rats is restored partially by acute zinc administration and markedly by chronic zinc supplementation.

  18. Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self-flocculating yeast in continuous ethanol fermentation.

    PubMed

    Zhao, X Q; Xue, C; Ge, X M; Yuan, W J; Wang, J Y; Bai, F W

    2009-01-01

    The effects of zinc supplementation were investigated in the continuous ethanol fermentation using self-flocculating yeast. Zinc sulfate was added at the concentrations of 0.01, 0.05 and 0.1 g l(-1), respectively. Reduced average floc sizes were observed in all the zinc-supplemented cultures. Both the ethanol tolerance and thermal tolerance were significantly improved by zinc supplements, which correlated well with the increased ergosterol and trehalose contents in the yeast flocs. The highest ethanol concentration by 0.05 g l(-1) zinc sulfate supplementation attained 114.5 g l(-1), in contrast to 104.1 g l(-1) in the control culture. Glycerol production was decreased by zinc supplementations, with the lowest level 3.21 g l(-1), about 58% of the control. Zinc content in yeast cells was about 1.4 microMol g(-1) dry cell weight, about sixfold higher than that of control in all the zinc-supplemented cultures, and close correlation of zinc content in yeast cells with the cell viability against ethanol and heat shock treatment was observed. These studies suggest that exogenous zinc addition led to a reprogramming of cellular metabolic network, resulting in enhanced ethanol tolerance and ethanol production.

  19. Selective catalytic reduction system and process for treating NOx emissions using a zinc or titanium promoted palladium-zirconium catalyst

    DOEpatents

    Sobolevskiy, Anatoly [Orlando, FL; Rossin, Joseph A [Columbus, OH; Knapke, Michael J [Columbus, OH

    2011-08-02

    A process and system (18) for reducing NO.sub.x in a gas using hydrogen as a reducing agent is provided. The process comprises contacting the gas stream (29) with a catalyst system (38) comprising sulfated zirconia washcoat particles (41), palladium, a pre-sulfated zirconia binder (44), and a promoter (45) comprising at least one of titanium, zinc, or a mixture thereof. The presence of zinc or titanium increases the resistance of the catalyst system to a sulfur and water-containing gas stream.

  20. USE OF HYDROGEN RESPIROMETRY TO DETERMINE METAL TOXICITY TO SULFATE REDUCING BACTERIA

    EPA Science Inventory

    Acid mine drainage (AMD), an acidic metal-bearing wastewater poses a severe pollution problem attributed to post-mining activities. The metals (metal sulfates) encountered in AMD and considered of concern for risk assessment are: arsenic, cadmium, aluminum, manganese, iron, zinc ...

  1. Effect of soil and foliar application of zinc on grain zinc and cadmium concentration of wheat genotypes differing in Zn-efficiency

    USDA-ARS?s Scientific Manuscript database

    A two-year field experiment was carried out to investigate the effectiveness of soil and foliar applications of zinc sulfate and soil application of waste rubber ash to increase Zn and decrease cadmium (Cd) concentration in grain of 10 wheat genotypes with different Zn-efficiency. Foliar spray of zi...

  2. Associations between intestinal mucosal function and changes in plasma zinc concentration following zinc supplementation1

    PubMed Central

    Wessells, K. Ryan; Hess, Sonja Y.; Rouamba, Noel; Ouédraogo, Zinewendé P.; Kellogg, Mark; Goto, Rie; Duggan, Christopher; Ouédraogo, Jean-Bosco; Brown, Kenneth H.

    2015-01-01

    Objectives Subclinical environmental enteropathy is associated with malabsorption of fats, carbohydrates, and vitamins A, B12 and folate; however, little information is available on mineral absorption. We therefore investigated the relationship between intestinal mucosal function (measured by the lactulose:mannitol permeability test and plasma citrulline concentration), and zinc absorption, as estimated by the change in plasma zinc concentration (PZC) following short-term zinc or placebo supplementation. Methods We conducted a randomized, partially-masked, placebo-controlled trial among 282 apparently healthy children 6–23 mo of age in Burkina Faso. After completing baseline intestinal function tests, participants received either 5 mg zinc, as zinc sulfate, or placebo, daily for 21 d. Results At baseline, mean ± SD PZC was 62.9 ± 11.9 µg/dL; median (IQR) urinary lactulose:mannitol (L:M) recovery ratio and plasma citrulline concentration were 0.04 (0.03 – 0.07) and 11.4 (9.0 – 15.6) µmol/L, respectively. Change in PZC was significantly greater in the zinc supplemented versus placebo group (15.6 ± 13.3 µg/dL vs. 0.02 ± 10.9 µg/dL; P < 0.0001), and was negatively associated with initial urinary L:M recovery ratio (−1.1 µg/dL per 50% increase in urinary L:M recovery ratio; P = 0.014); this latter relationship did not differ between supplementation groups (P = 0.26). Baseline plasma citrulline concentration was not associated with change in PZC. Conclusions Although altered intestinal permeability may reduce dietary zinc absorption, it likely does not undermine the efficacy of zinc supplementation, given the large increases in PZC following short-term zinc supplementation observed in this study, even among those with increased urinary L:M recovery ratios. PMID:23689263

  3. Sulfate-based anionic diblock copolymer nanoparticles for efficient occlusion within zinc oxide

    NASA Astrophysics Data System (ADS)

    Ning, Y.; Fielding, L. A.; Andrews, T. S.; Growney, D. J.; Armes, S. P.

    2015-04-01

    Occlusion of copolymer particles within inorganic crystalline hosts not only provides a model for understanding the crystallisation process, but also may offer a direct route for the preparation of novel nanocomposite materials with emergent properties. In the present paper, a series of new well-defined anionic diblock copolymer nanoparticles are synthesised by polymerisation-induced self-assembly (PISA) via reversible addition-fragmentation chain transfer (RAFT) aqueous emulsion polymerisation and then evaluated as crystal habit modifiers for the in situ formation of ZnO in aqueous solution. Systematic studies indicate that both the chemical nature (i.e. whether sulfate-based or carboxylate-based) and the mean degree of polymerisation (DP) of the anionic stabiliser block play vital roles in determining the crystal morphology. In particular, sulfate-functionalised nanoparticles are efficiently incorporated within the ZnO crystals whereas carboxylate-functionalised nanoparticles are excluded, thus anionic character is a necessary but not sufficient condition for successful occlusion. Moreover, the extent of nanoparticle occlusion within the ZnO phase can be as high as 23% by mass depending on the sulfate-based nanoparticle concentration. The optical properties, chemical composition and crystal structure of the resulting nanocomposite crystals are evaluated and an occlusion mechanism is proposed based on the observed evolution of the ZnO morphology in the presence of sulfate-based anionic nanoparticles. Finally, controlled deposition of a 5 nm gold sol onto porous ZnO particles (produced after calcination of the organic nanoparticles) significantly enhances the rate of photocatalytic decomposition of a model rhodamine B dye on exposure to a relatively weak UV source.Occlusion of copolymer particles within inorganic crystalline hosts not only provides a model for understanding the crystallisation process, but also may offer a direct route for the preparation of novel

  4. Zinc Supplementation in Treatment of Children With Urinary Tract Infection.

    PubMed

    Yousefichaijan, Parsa; Naziri, Mahdyieh; Taherahmadi, Hassan; Kahbazi, Manijeh; Tabaei, Aram

    2016-07-01

    Urinary tract infection (UTI) is very common in children. Precocious diagnosis and appropriate treatment are important because of the permanent disease complications. Zinc increases the response to treatment in many infections. In this study, we explored the effect of zinc in treating UTI. Two hundred children with UTI were divided into 2 groups of 100 who were comparable in terms of age, sex, urine laboratory profiles, and clinical signs and symptoms. The control group received a standard treatment protocol for UTI and the intervention group received oral zinc sulfate syrup plus routine treatment of UTI. A faster recovery was observed in the patients receiving zinc, but abdominal pain was exacerbated by zinc and lasted longer. Three months after the treatment, there was no significant difference between the two groups in the time of fever stop and negative urine culture. In children with UTI, zinc supplementation has a positive effect in ameliorating severe dysuria and urinary frequency while the use of this medication is not recommended in the presence of abdominal pain.

  5. Role of nutritional zinc in the prevention of osteoporosis.

    PubMed

    Yamaguchi, Masayoshi

    2010-05-01

    Zinc is known as an essential nutritional factor in the growth of the human and animals. Bone growth retardation is a common finding in various conditions associated with dietary zinc deficiency. Bone zinc content has been shown to decrease in aging, skeletal unloading, and postmenopausal conditions, suggesting its role in bone disorder. Zinc has been demonstrated to have a stimulatory effect on osteoblastic bone formation and mineralization; the metal directly activates aminoacyl-tRNA synthetase, a rate-limiting enzyme at translational process of protein synthesis, in the cells, and it stimulates cellular protein synthesis. Zinc has been shown to stimulate gene expression of the transcription factors runt-related transcription factor 2 (Runx2) that is related to differentiation into osteoblastic cells. Moreover, zinc has been shown to inhibit osteoclastic bone resorption due to inhibiting osteoclast-like cell formation from bone marrow cells and stimulating apoptotic cell death of mature osteoclasts. Zinc has a suppressive effect on the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-induced osteoclastogenesis. Zinc transporter has been shown to express in osteoblastic and osteoclastic cells. Zinc protein is involved in transcription. The intake of dietary zinc causes an increase in bone mass. beta-Alanyl-L: -histidinato zinc (AHZ) is a zinc compound, in which zinc is chelated to beta-alanyl-L: -histidine. The stimulatory effect of AHZ on bone formation is more intensive than that of zinc sulfate. Zinc acexamate has also been shown to have a potent-anabolic effect on bone. The oral administration of AHZ or zinc acexamate has the restorative effect on bone loss under various pathophysiologic conditions including aging, skeletal unloading, aluminum bone toxicity, calcium- and vitamin D-deficiency, adjuvant arthritis, estrogen deficiency, diabetes, and fracture healing. Zinc compounds may be designed as new supplementation factor in the prevention and

  6. Anglesite and silver recovery from jarosite residues through roasting and sulfidization-flotation in zinc hydrometallurgy.

    PubMed

    Han, Haisheng; Sun, Wei; Hu, Yuehua; Jia, Baoliang; Tang, Honghu

    2014-08-15

    Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new route, roasting combined with sulfidization-flotation, for the recovery of anglesite and silver from jarosite residues of zinc hydrometallurgy. Surface appearance and elemental distribution of jarosite residues was examined by scanning electron microscopy and energy dispersive X-ray spectrometry analysis, respectively. Decomposition and transformation mechanisms of jarosite residues were illustrated by differential thermal analysis. Results showed that after roasting combined with flotation, the grade and recovery of lead were 43.89% and 66.86%, respectively, and those of silver were 1.3 kg/t and 81.60%, respectively. At 600-700 °C, jarosite was decomposed to release encapsulated valuable minerals such as anglesite (PbSO4) and silver mineral; silver jarosite decomposed into silver sulfate (Ag2SO4); and zinc ferrite (ZnO · Fe2O3) decomposed into zinc sulfate (ZnSO4) and hematite (Fe2O3). Bared anglesite and silver minerals were modified by sodium sulfide and easily collected by flotation collectors. This study demonstrates that the combination of roasting and sulfidization-flotation provides a promising process for the recovery of zinc, lead, and silver from jarosite residues of zinc hydrometallurgy. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Coadministration of Atazanavir-Ritonavir and Zinc Sulfate: Impact on Hyperbilirubinemia and Pharmacokinetics

    PubMed Central

    Moyle, Graeme; Else, Laura; Jackson, Akil; Back, David; Yapa, Manisha H.; Seymour, Natalia; Ringner-Nackter, Lisa; Karolia, Zeenat; Gazzard, Brian

    2013-01-01

    Atazanavir (ATV) causes an elevation of unconjugated hyperbilirubinemia (HBR) as a result of UDP glucuronyltransferase (UGT) 1A1 inhibition. Zinc sulfate (ZnSO4) reduces unconjugated hyperbilirubinemia in individuals with Gilbert's syndrome. We assessed the changes in total, conjugated, and unconjugated bilirubin and the effect on ATV pharmacokinetics (PK) after single and 14-day dosing of ZnSO4. HIV patients, stable on ATV/ritonavir (ATV/r)-containing regimens with a total bilirubin level of >25mmol/liter received 125 mg daily of ZnSO4 as Solvazinc tablets for 14 days. ATV/r and bilirubin concentrations were measured pre-ATV/r dose and 2, 4, 6, 8, and 24 h post-ATV/r dose; before ZnSO4 initiation (phase 1), after a single dose (phase 2) and after 14 days (phase 3). Changes in bilirubin and ATV/r concentrations in the absence or presence of ZnSO4 were evaluated by geometric mean ratios (GMRs) and 90% confidence intervals (CIs; we used phase 1 as a reference). Sixteen male patients completed the study maintaining virologic suppression; ZnSO4 was well tolerated. Statistically significant declines in total bilirubin Cmax and AUC0–24 of 16 and 17% were seen in phase2 and 20% in phase 3. Although there were no significant changes in conjugated bilirubin, unconjugated bilirubin Cmax and AUC0–24 of were lower (17 and 19%, phase 2; 20 and 23% during phase 3). The ATV GMRs (90% CI) for Ctrough, Cmax, and AUC0–24 were 0.74 (0.62 to 0.89), 0.82 (0.70 to 0.97), and 0.78 (0.70 to 0.88). Intake of ZnSO4 decreases total and unconjugated bilirubin and causes modest declines in ATV exposure. ZnSO4 supplementation may be useful in management of ATV-related HBR in selected patients. PMID:23689708

  8. Spectroscopic characterization of zinc oxide nanorods synthesized by solid-state reaction

    NASA Astrophysics Data System (ADS)

    Prasad, Virendra; D'Souza, Charlene; Yadav, Deepti; Shaikh, A. J.; Vigneshwaran, Nadanathangam

    2006-09-01

    Well-crystallized zinc oxide nanorods have been fabricated by single step solid-state reaction using zinc acetate and sodium hydroxide, at room temperature. The sodium lauryl sulfate (SLS) stabilized zinc oxide nanorods were characterized by using X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and photoluminescence spectroscopy. The X-ray diffraction revealed the wurtzite structure of zinc oxide. The size estimation by XRD and TEM confirmed that the ZnO nanorods are made of single crystals. The growth of zinc oxide crystals into rod shape was found to be closely related to its hexagonal nature. The mass ratio of SLS:ZnO in the nanorods was found to be 1:10 based on the thermogravimetric analysis. Blue shift of photoluminescence emission was noticed in the ZnO nanorods when compared to that of ZnO bulk. FT-IR analysis confirmed the binding of SLS with ZnO nanorods. Apart from ease of preparation, this method has the advantage of eco-friendliness since the solvent and other harmful chemicals were eliminated in the synthesis protocol.

  9. The effect of zinc on healing of renal damage in rats.

    PubMed

    Salehipour, Mehdi; Monabbati, Ahmad; Ensafdaran, Mohammad Reza; Adib, Ali; Babaei, Amir Hossein

    2017-07-01

    Several studies have previously been performed to promote kidney healing after injuries. Objectives: The aim of this study was to investigate the effect of zinc on renal healing after traumatic injury in rats. Forty healthy female rats were selected and one of their kidneys was incised. Half of the incisions were limited only to the cortex (renal injury type I) and the other ones reached the pelvocalyceal system of the kidney (renal injury type II). All the rats in the zinc treated group (case group) received 36.3 mg zinc sulfate (contained 8.25 mg zinc) orally. After 28 days, the damaged kidneys were removed for histopathological studies. In the rats with type I injury, kidney inflammation of the case group was significantly lower than that of the control group. However, the result was not significant in rats with type II injury. Tissue loss and granulation tissue formation were significantly lower in the case group than the control group in both type I and II kidney injuries. Overall, Zinc can contribute to better healing of the rat's kidneys after a traumatic injury.

  10. Control of Promatrilysin (MMP7) Activation and Substrate-specific Activity by Sulfated Glycosaminoglycans*

    PubMed Central

    Ra, Hyun-Jeong; Harju-Baker, Susanna; Zhang, Fuming; Linhardt, Robert J.; Wilson, Carole L.; Parks, William C.

    2009-01-01

    Matrix metalloproteinases are maintained in an inactive state by a bond between the thiol of a conserved cysteine in the prodomain and a zinc atom in the catalytic domain. Once this bond is disrupted, MMPs become active proteinases and can act on a variety of extracellular protein substrates. In vivo, matrilysin (MMP7) activates pro-α-defensins (procryptdins), but in vitro, processing of these peptides is slow, with about 50% conversion in 8–12 h. Similarly, autolytic activation of promatrilysin in vitro can take up to 12–24 h for 50% conversion. These inefficient reactions suggest that natural cofactors enhance the activation and activity of matrilysin. We determined that highly sulfated glycosaminoglycans (GAG), such as heparin, chondroitin-4,6-sulfate (CS-E), and dermatan sulfate, markedly enhanced (>50-fold) the intermolecular autolytic activation of promatrilysin and the activity of fully active matrilysin to cleave specific physiologic substrates. In contrast, heparan sulfate and less sulfated forms of chondroitin sulfate did not augment matrilysin activation or activity. Chondroitin-2,6-sulfate (CS-D) also did not enhance matrilysin activity, suggesting that the presentation of sulfates is more important than the overall degree of sulfation. Surface plasmon resonance demonstrated that promatrilysin bound heparin (KD, 400 nm) and CS-E (KD, 630 nm). Active matrilysin bound heparin (KD, 150 nm) but less so to CS-E (KD, 60 μm). Neither form bound heparan sulfate. These observations demonstrate that sulfated GAGs regulate matrilysin activation and its activity against specific substrates. PMID:19654318

  11. Effect of Magnesium Ion on the Zinc Electrodeposition from Acidic Sulfate Electrolyte

    NASA Astrophysics Data System (ADS)

    Tian, Lin; Xie, Gang; Yu, Xiao-Hua; Li, Rong-Xing; Zeng, Gui-Sheng

    2012-02-01

    The effects of Mg2+ ion on the zinc electrodeposition were systematically investigated in sulfuric acid solution through the characterizations of current efficiency (CE), power consumption (PC), deposit morphology, cathodic polarization, and cyclic voltammetry. The results demonstrate that there is no significant influence on CE and PC in the Mg2+ concentration range of 1 to 10 g L-1, but with a drastic decrease of the CE and rapid increase of PC at Mg2+ ion concentration above 15 g L-1. Based on the morphology observation and polarization curves, the presence of Mg2+ ions could also induce the coarse surface on the electrodeposited zinc accompanying the enhancement of the cathodic polarization, which becomes more distinct at a high concentration above 15 g L-1. Furthermore, hydrogen evolution could be promoted with the existence of Mg2+ ions according to cyclic voltammograms.

  12. Influence of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) on zinc electrodeposition

    NASA Astrophysics Data System (ADS)

    Lehr, I. L.; Saidman, S. B.

    2012-03-01

    This work is a study of the electrodeposition of zinc onto SAE 4140 steel electrodes using solutions containing zinc sulfate and bis(2-ethylhexyl) sodium sulfosuccinate (AOT). The influence of different parameters such as electrolyte concentration, electrodeposition time and temperature on the morphology of the electrodeposits was analyzed. The deposits were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray diffraction. The variation of open circuit potential over time in chloride solutions was also evaluated. The nucleation-growth process and consequently the morphology of the electrodeposits are modified in the presence of AOT. The surfactant induces the formation of a porous deposit.

  13. Acute toxicity of heavy metals to acetate-utilizing mixed cultures of sulfate-reducing bacteria: EC100 and EC50.

    PubMed

    Utgikar, V P; Chen, B Y; Chaudhary, N; Tabak, H H; Haines, J R; Govind, R

    2001-12-01

    Acid mine drainage from abandoned mines and acid mine pit lakes is an important environmental concern and usually contains appreciable concentrations of heavy metals. Because sulfate-reducing bacteria (SRB) are involved in the treatment of acid mine drainage, knowledge of acute metal toxicity levels for SRB is essential for the proper functioning of the treatment system for acid mine drainage. Quantification of heavy metal toxicity to mixed cultures of SRB is complicated by the confounding effects of metal hydroxide and sulfide precipitation, biosorption, and complexation with the constituents of the reaction matrix. The objective of this paper was to demonstrate that measurements of dissolved metal concentrations could be used to determine the toxicity parameters for mixed cultures of sulfate-reducing bacteria. The effective concentration, 100% (EC100), the lowest initial dissolved metal concentrations at which no sulfate reduction is observed, and the effective concentration, 50% (EC50), the initial dissolved metal concentrations resulting in a 50% decrease in sulfate reduction, for copper and zinc were determined in the present study by means of nondestructive, rapid physical and chemical analytical techniques. The reaction medium used in the experiments was designed specifically (in terms of pH and chemical composition) to provide the nutrients necessary for the sulfidogenic activity of the SRB and to preclude chemical precipitation of the metals under investigation. The toxicity-mitigating effects of biosorption of dissolved metals were also quantified. Anaerobic Hungate tubes were set up (at least in triplicate) and monitored for sulfate-reduction activity. The onset of SRB activity was detected by the blackening of the reaction mixture because of formation of insoluble ferrous sulfide. The EC100 values were found to be 12 mg/L for copper and 20 mg/L for zinc. The dissolved metal concentration measurements were effective as the indicators of the effect of the

  14. Synthesis and characterization of sulfate and dodecylbenzenesulfonate intercalated zinc iron layered double hydroxides by one-step coprecipitation route

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Wen, Xing; Wang, Yingxia

    2007-05-01

    Inorganic sulfate- and organic dodecylbenzenesulfonate (DBS)-intercalated zinc-iron layered double hydroxides (LDHs) materials were prepared by one-step coprecipitation method from a mixed salt solutions containing Zn(II), Fe(II) and Fe(III) salts. The as-prepared samples have been characterized by X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), low-temperature nitrogen adsorption, scanning electron microscopy (SEM), inductively coupled plasma emission spectroscopy (ICP), and Mössbauer spectroscopy (MS). The XRD analyses demonstrate the typical LDH-like layered structural characteristics of both products. The room temperature MS results reveal the characteristics of both the Fe(II) and Fe(III) species for SO 42--containing product, while only the Fe(III) characteristic for DBS-containing one. The combination characterization results and Rietveld analysis illustrate that the SO 42--containing product possesses the Green Rust two (GR2)-like crystal structure with an approximate chemical composition of [Zn 0.435·Fe II0.094·Fe III0.470·(OH) 2]·(SO 42-) 0.235·1.0H 2O, while the DBS-containing one exhibits the common LDH compound-like structure. The contact angle measurement indicates the evident hydrophobic properties of DBS-containing nanocomposite, compared with SO 42--containing product, due to the modification of the internal and external surface of LDHs by the organic hydrophobic chain of DBS.

  15. ZINC PRODUCES A TRANSMURAL VOLTAGE GRADIENT AND DISRUPTION OF INTERCELLULAR COMMUNICATION IN THE HEART

    EPA Science Inventory

    Ambient air pollution particulate matter (PM) exposure contributes to serious arrhythmia in high-risk individuals. We previously showed that non-cytotoxic doses of zinc sulfate (Zn, 50uM), a metal common to PM from many sources, alters the gene expression of several cardiac ion c...

  16. The leaching kinetics of cadmium from hazardous Cu-Cd zinc plant residues.

    PubMed

    Li, Meng; Zheng, Shili; Liu, Biao; Du, Hao; Dreisinger, David Bruce; Tafaghodi, Leili; Zhang, Yi

    2017-07-01

    A large amount of Cu-Cd zinc plant residues (CZPR) are produced from the hydrometallurgical zinc plant operations. Since these residues contain substantial amount of heavy metals including Cd, Zn and Cu, therefore, they are considered as hazardous wastes. In order to realize decontamination treatment and efficient extraction of the valuable metals from the CZPR, a comprehensive recovery process using sulfuric acid as the leaching reagent and air as the oxidizing reagent has been proposed. The effect of temperature, sulfuric acid concentration, particle size, solid/liquid ratio and stirring speed on the cadmium extraction efficiency was investigated. The leaching kinetics of cadmium was also studied. It was concluded that the cadmium leaching process was controlled by the solid film diffusion process. Moreover, the order of the reaction rate constant versus H 2 SO 4 concentration, particle size, solid/liquid ratio and stirring speed was calculated. The XRD and SEM-EDS analysis results showed that the main phases of the secondary sulfuric acid leaching residues were lead sulfate and calcium sulfate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The effect of zinc on healing of renal damage in rats

    PubMed Central

    Salehipour, Mehdi; Monabbati, Ahmad; Ensafdaran, Mohammad Reza; Adib, Ali; Babaei, Amir Hossein

    2017-01-01

    Background: Several studies have previously been performed to promote kidney healing after injuries. Objectives: The aim of this study was to investigate the effect of zinc on renal healing after traumatic injury in rats. Materials and Methods: Forty healthy female rats were selected and one of their kidneys was incised. Half of the incisions were limited only to the cortex (renal injury type I) and the other ones reached the pelvocalyceal system of the kidney (renal injury type II). All the rats in the zinc treated group (case group) received 36.3 mg zinc sulfate (contained 8.25 mg zinc) orally. After 28 days, the damaged kidneys were removed for histopathological studies. Results: In the rats with type I injury, kidney inflammation of the case group was significantly lower than that of the control group. However, the result was not significant in rats with type II injury. Tissue loss and granulation tissue formation were significantly lower in the case group than the control group in both type I and II kidney injuries. Conclusions: Overall, Zinc can contribute to better healing of the rat’s kidneys after a traumatic injury. PMID:28975095

  18. Assessment of water resources in lead-zinc mined areas in Cherokee County, Kansas, and adjacent areas

    USGS Publications Warehouse

    Spruill, Timothy B.

    1984-01-01

    .Mining allowed oxidation of ore deposits which, on saturation with water, resulted in poor-quality water that generally contains large concentrations of sulfate and trace metals. Water from mines in the eastern area contained dissolved-solids concentrations of less than 500 mg/L (milligrams per liter), a median pH of 3.9, sulfate concentrations that ranged between 98 and 290 mg/L, and median concentrations for zinc of 37,600 pg/L (micrograms per liter), for lead of 240 pg/L, for cadmium of 180 ug/L, for iron of 70 pg/L, for manganese of 240 pg/L, and for silica of 15 mg/L. Water from mines in the western area contained dissolved-solids concentrations of generally more than 500 mg/L, a median pH of 6.8, sulfate concentrations that ranged between 170 and 2,150 mg/L, and median concentrations for zinc of 3,200 pg/L, for lead of 0 pg/L (minimum detection limit is 10 pg/L), for cadmium of 6 pg/L, for iron of 840 pg/L, for manganese of 440 ug/L, and for silica of 11 mg/L.No conclusive evidence of lateral migration of water from the mines into domestic well-water supplies in the shallow aquifer was found in the study area in Kansas. Analyses of water from public-supply wells tapping the deep aquifer did not indicate contamination with trace metals, although chemical analyses from four of six wells exhibited increasing trends through time in sulfate concentrations. These increases probably reflect localized leakage of water from the shallow aquifer along corroded or leaky well casings.Effects of abandoned lead and zinc mines on tributaries of the Spring River in the eastern area are most severe in Short Creek. Compared with water samples from three other major streams in the eastern area, a sample collected from Short Creek, 2 miles west of Galena, Kansas, during August 1981, contained the largest concentrations of dissolved sulfate (240 mg/L), zinc (25,000 pg/L), cadmium (170 pg/L), manganese (1,700 ug/L), and the lowest pH (6.0). Concentrations of these constituents are due primarily

  19. Layered zinc hydroxide nanocones: synthesis, facile morphological and structural modification, and properties

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Ma, Renzhi; Liang, Jianbo; Wang, Chengxiang; Liu, Xiaohe; Zhou, Kechao; Sasaki, Takayoshi

    2014-10-01

    Layered zinc hydroxide nanocones intercalated with DS- have been synthesized for the first time via a convenient synthetic approach, using homogeneous precipitation in the presence of urea and sodium dodecyl sulfate (SDS). SDS plays a significant role in controlling the morphologies of as-synthesized samples. Conical samples intercalated with various anions were transformed through an anion-exchange route in ethanol solution, and the original conical structure was perfectly maintained. Additionally, these DS--inserted nanocones can be transformed into square-like nanoplates in aqueous solution at room temperature, fulfilling the need for different morphology-dependent properties. Corresponding ZnO nanocones and nanoplates have been further obtained through the thermal calcination of NO3--intercalating zinc hydroxide nanocones/nanoplates. These ZnO nanostructures with different morphologies exhibit promising photocatalytic properties.Layered zinc hydroxide nanocones intercalated with DS- have been synthesized for the first time via a convenient synthetic approach, using homogeneous precipitation in the presence of urea and sodium dodecyl sulfate (SDS). SDS plays a significant role in controlling the morphologies of as-synthesized samples. Conical samples intercalated with various anions were transformed through an anion-exchange route in ethanol solution, and the original conical structure was perfectly maintained. Additionally, these DS--inserted nanocones can be transformed into square-like nanoplates in aqueous solution at room temperature, fulfilling the need for different morphology-dependent properties. Corresponding ZnO nanocones and nanoplates have been further obtained through the thermal calcination of NO3--intercalating zinc hydroxide nanocones/nanoplates. These ZnO nanostructures with different morphologies exhibit promising photocatalytic properties. Electronic supplementary information (ESI) available: Typical SEM images, TGA curves and XRD patterns of

  20. Glucosamine Sulfate

    MedlinePlus

    ... Glucosamine Sulphate KCl, Glucosamine-6-Phosphate, GS, Mono-Sulfated Saccharide, Poly-(1->3)-N-Acetyl-2-Amino- ... Sulfate de Glucosamine, Sulfate de Glucosamine 2KCl, SG, Sulfated Monosaccharide, Sulfated Saccharide, Sulfato de Glucosamina. Glucosamine Hydrochloride ...

  1. The Effects of Supplemental Zinc and Honey on Wound Healing in Rats

    PubMed Central

    Sazegar, Ghasem; Seyed Reza, Attarzadeh Hosseini; Behravan, Effat

    2011-01-01

    Objective(s) Clinicians have long been searching for ways to obtain "super normal" wound healing. Zinc supplementation improves the healing of open wounds. Honey can improve the wound healing with its antibacterial properties. Giving supplemental zinc to normal rats can increase the wound tensile strength. This work is to study the concurrent effects of zinc and honey in wound healing of normal rats. Materials and Methods One hundred and seventy two young rats were randomly divided into four groups: control, zinc-supplement, applied honey, zinc-supplement and applied honey. Two areas of skin about 4 cm² were excised. The wound area was measured every 2 days. After 3 weeks, all animals were killed and tensile strength of wounds, zinc concentration of blood and histological improvement of wounds were evaluated. The results were analyzed using two-way ANOVA and the mean differences were tested. Results It was found that honey could inhibit the bacterial growth in skin excisions. The tensile strength was increased significantly in the second to fourth groups at 21st day (P< 0.001). Also there was a significant increase in tensile strength at the same time in the fourth group. The results of the histological study showed a considerable increase in the collagen fibers, re-epithelialization and re-vascularization in the second to fourth groups. Conclusion The results of the present study indicate that zinc sulfate could retard re-epithelialization, but when used with natural honey (administered topically) it could have influent wound healing in non-zinc-deficient subjects as well. PMID:23493488

  2. Simultaneous quantification of cholesterol sulfate, androgen sulfates, and progestagen sulfates in human serum by LC-MS/MS.

    PubMed

    Sánchez-Guijo, Alberto; Oji, Vinzenz; Hartmann, Michaela F; Traupe, Heiko; Wudy, Stefan A

    2015-09-01

    Steroids are primarily present in human fluids in their sulfated forms. Profiling of these compounds is important from both diagnostic and physiological points of view. Here, we present a novel method for the quantification of 11 intact steroid sulfates in human serum by LC-MS/MS. The compounds analyzed in our method, some of which are quantified for the first time in blood, include cholesterol sulfate, pregnenolone sulfate, 17-hydroxy-pregnenolone sulfate, 16-α-hydroxy-dehydroepiandrosterone sulfate, dehydroepiandrosterone sulfate, androstenediol sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and dihydrotestosterone sulfate. The assay was conceived to quantify sulfated steroids in a broad range of concentrations, requiring only 300 μl of serum. The method has been validated and its performance was studied at three quality controls, selected for each compound according to its physiological concentration. The assay showed good linearity (R(2) > 0.99) and recovery for all the compounds, with limits of quantification ranging between 1 and 80 ng/ml. Averaged intra-day and between-day precisions (coefficient of variation) and accuracies (relative errors) were below 10%. The method has been successfully applied to study the sulfated steroidome in diseases such as steroid sulfatase deficiency, proving its diagnostic value. This is, to our best knowledge, the most comprehensive method available for the quantification of sulfated steroids in human blood. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  3. Clinical study of the effectiveness of the "water of the 3 sulfates" on balanitis and balanoposthitis.

    PubMed

    Gonzalvo, V; Polo, A; Serrallach, F; Gutiérrez, A; Peyri, E

    2015-03-01

    Despite scientific literature mentions the application of "water of the 3 sulfates" (copper sulphate, zinc sulphate and alum) as a treatment for acute balanitis and balanoposthitis, no clinical trials evaluating its efficacy have been found. In our study we evaluate the efficacy of this solution in acute balanitis and balanoposthitis. A double-blind randomized study was designed to compare the efficacy of "water of the 3 sulfates" (intervention) with saline solution (control) in 50 patients (30 patients and 20 patients, respectively) who suffer from acute balanitis or balanoposthitis. Exudate, erythema, oedema, burning, and itching were the clinical parameters assessed. for all clinical parameters assessed, the outcomes obtained with "water of the 3 sulfates" are higher than control, although significant differences only have been found for exudate. in our study, the "water of the 3 sulfates" is significantly more effective than saline solution for removing exudates in acute balanitis and balanoposthitis. Tolerability was excellent in both treatments. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. 21 CFR 582.80 - Trace minerals added to animal feeds.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Manganese phosphate (dibasic). Manganese sulfate. Manganous oxide. Zinc Zinc acetate. Zinc carbonate. Zinc chloride. Zinc oxide. Zinc sulfate. ... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper...

  5. 21 CFR 582.80 - Trace minerals added to animal feeds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... Manganese phosphate (dibasic). Manganese sulfate. Manganous oxide. Zinc Zinc acetate. Zinc carbonate. Zinc chloride. Zinc oxide. Zinc sulfate. ... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper...

  6. Simultaneous quantification of cholesterol sulfate, androgen sulfates, and progestagen sulfates in human serum by LC-MS/MS[S

    PubMed Central

    Sánchez-Guijo, Alberto; Oji, Vinzenz; Hartmann, Michaela F.; Traupe, Heiko; Wudy, Stefan A.

    2015-01-01

    Steroids are primarily present in human fluids in their sulfated forms. Profiling of these compounds is important from both diagnostic and physiological points of view. Here, we present a novel method for the quantification of 11 intact steroid sulfates in human serum by LC-MS/MS. The compounds analyzed in our method, some of which are quantified for the first time in blood, include cholesterol sulfate, pregnenolone sulfate, 17-hydroxy-pregnenolone sulfate, 16-α-hydroxy-dehydroepiandrosterone sulfate, dehydroepiandrosterone sulfate, androstenediol sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and dihydrotestosterone sulfate. The assay was conceived to quantify sulfated steroids in a broad range of concentrations, requiring only 300 μl of serum. The method has been validated and its performance was studied at three quality controls, selected for each compound according to its physiological concentration. The assay showed good linearity (R2 > 0.99) and recovery for all the compounds, with limits of quantification ranging between 1 and 80 ng/ml. Averaged intra-day and between-day precisions (coefficient of variation) and accuracies (relative errors) were below 10%. The method has been successfully applied to study the sulfated steroidome in diseases such as steroid sulfatase deficiency, proving its diagnostic value. This is, to our best knowledge, the most comprehensive method available for the quantification of sulfated steroids in human blood. PMID:26239050

  7. Effects of zinc and multimineral vitamin supplementation on glycemic and lipid control in adult diabetes.

    PubMed

    Gunasekara, Priyanka; Hettiarachchi, Manjula; Liyanage, Chandrani; Lekamwasam, Sarath

    2011-01-26

    To evaluate the effects of zinc with or without other antioxidants on blood glucose, lipid profile, and serum creatinine in adult diabetics on long-term follow-up. Patients (n = 96) were randomly allocated to three groups: group A (n = 29) was supplemented with oral zinc sulfate (22 mg/day) and multivitamin/mineral (zinc+MVM) preparation; group B (n = 31) was given the same preparation without zinc (MVM); and group C (n = 36) was given a matching placebo for a period of 4 months in a single-blinded study. Blood samples were taken at baseline and after 4 months of supplementation to assess blood glucose (fasting and postprandial) and glycosylated hemoglobin (Hb(A1C)%) and serum levels of zinc, creatinine, and lipids. The zinc+MVM group had a mean change of fasting blood sugar -0.33 mmol/L (standard error of the mean 0.21 mmol/L) and was significant (P = 0.05) when compared with the other two groups (mean change in the MVM group +0.19 (0.31) mmol/L and +0.43 (0.23) mmol/L in the control group, respectively). The Hb(A1C)% level reduced significantly, irrespective of the baseline level, in zinc+MVM-supplemented individuals. In the other two groups, the change of Hb(A1C)% level was not significant. Serum lipid levels reduced significantly in the zinc+MVM and MVM groups. Zinc+MVM supplementation showed beneficial effects in the metabolic control of adult diabetics in addition to elevating their serum zinc level. Zinc supplementation improved glycemic control measured by Hb(A1C)% and fasting and postprandial glucose. Furthermore, zinc supplementation lowered serum cholesterol and cholesterol/high-density lipoprotein ratio.

  8. Bioavailability of zinc in two zinc sulfate by-products of the galvanizing industry.

    PubMed

    Edwards, H M; Boling, S D; Emmert, J L; Baker, D H

    1998-10-01

    Two Zn depletion/repletion assays were conducted with chicks to determine the relative bioavailability (RBV) of Zn from two new by-products of the galvanizing industry. Using a soy concentrate-dextrose diet, slope-ratio methodology was employed to evaluate two different products: Fe-ZnSO4 x H2O with 20.2% Fe and 13.0% Zn, and Zn-FeSO4 x H2O with 14.2% Fe and 20.2% Zn. Feed-grade ZnSO4 x H2O was used as a standard. Weight gain, tibia Zn concentration, and total tibia Zn responded linearly (P < 0.01) to Zn supplementation from all three sources. Slope-ratio calculations based on weight gain established average Zn RBV values of 98% for Fe-ZnSO4 x H2O and 102% for Zn-FeSO4 x H2O, and these values were not different (P > 0.10) from the ZnSO4 standard (100%). Slope-ratio calculations based on total tibia Zn established average Zn RBV values of 126% for Fe-ZnSO4 x H2O and 127% for Zn-FeSO4 x H2O, and these values were greater (P < 0.01) than those of the ZnSO4 standard (100%). It is apparent that both mixed sulfate products of Fe and Zn are excellent sources of bioavailable Zn.

  9. Zinc bioleaching from an iron concentrate using Acidithiobacillus ferrooxidans strain from Hercules Mine of Coahuila, Mexico

    NASA Astrophysics Data System (ADS)

    Núñez-Ramírez, Diola Marina; Solís-Soto, Aquiles; López-Miranda, Javier; Pereyra-Alférez, Benito; Rutiaga-Quiñónes, Miriam; Medina-Torres, Luis; Medrano-Roldán, Hiram

    2011-10-01

    The iron concentrate from Hercules Mine of Coahuila, Mexico, which mainly contained pyrite and pyrrhotite, was treated by the bioleaching process using native strain Acidithiobacillus ferrooxidans ( A. ferrooxidans) to determine the ability of these bacteria on the leaching of zinc. The native bacteria were isolated from the iron concentrate of the mine. The bioleaching experiments were carried out in shake flasks to analyze the effects of pH values, pulp density, and the ferrous sulfate concentration on the bioleaching process. The results obtained by microbial kinetic analyses for the evaluation of some aspects of zinc leaching show that the native bacteria A. ferrooxidans, which is enriched with a 9K Silverman medium under the optimum conditions of pH 2.0, 20 g/L pulp density, and 40 g/L FeSO4, increases the zinc extraction considerably observed by monitoring during15 d, i.e., the zinc concentration has a decrease of about 95% in the iron concentrate.

  10. Iron, copper, and zinc status: response to supplementation with zinc or zinc and iron in adult females.

    PubMed

    Yadrick, M K; Kenney, M A; Winterfeldt, E A

    1989-01-01

    Response of iron, copper, and zinc status to supplementation with Zn or a combination of Zn and Fe was assessed in adult females in a 10-wk study. Group Z received 50 mg Zn/d as Zn gluconate; group F-Z received 50 mg Fe as ferrous sulfate monohydrate in addition to the Zn. For Group Z, serum ferritin, hematocrit, and erythrocyte Cu,Zn-superoxide dismutase (ESOD) were significantly lower (p less than 0.05) after 10 wk supplementation compared with pretreatment levels. Serum Zn increased (p less than 0.01) but no change occurred in serum ceruloplasmin, hemoglobin, or salivary sediment Zn with treatment. For Group F-Z ESOD decreased with treatment as did salivary sediment Zn (p less than 0.05). Serum ferritin and serum Zn increased significantly, but hemoglobin, hematocrit, and ceruloplasmin were not affected by this treatment. Supplementation with Zn poses a risk to Fe and Cu status. Inclusion of Fe with Zn ameliorates the effect on Fe but not on Cu status.

  11. Role of oral zinc supplementation for reduction of neonatal hyperbilirubinemia: a systematic review of current evidence.

    PubMed

    Sharma, Deepak; Farahbakhsh, Nazanin; Sharma, Pradeep; Shastri, Sweta

    2017-08-01

    Neonatal hyperbilirubinemia is frequently seen condition in the NICU. Oral zinc has been tried for the prevention of hyperbilirubinemia. To evaluate the role of oral zinc supplementation for reduction of neonatal hyperbilirubinemia in term and preterm infants. The literature search was done for various randomized control trial (RCT) by searching the Cochrane Central Register of Controlled Trials (CENTRAL), PubMed, EMBASE, Web of Science, Scopus, Index Copernicus, African Index Medicus (AIM), Thomson Reuters (ESCI), Chemical Abstracts Service (CAS) and other data base. This review included six RCT that fulfilled inclusion criteria. One study evaluated the role of zinc in very low birth weight (VLBW) infants and remaining enrolled neonates  ≥35 weeks of gestation. The dose of zinc varied from 5 to 20 mg/day and duration from 5-7 days. All the studies used zinc sulfate, only one study used zinc gluconate. The total neonates enrolled in these different RCT are 749. Role of zinc in the prevention of neonatal hyperbilirubinemia is not supported by the current evidence. Only one study was able to show reduction in the mean TSB level and requirement of phototherapy with zinc, and the remaining studies did not report any positive effect. None of the studies showed any effect on the duration of phototherapy, incidence of phototherapy, age of starting of phototherapy and any serious adverse effect.

  12. Reduced Sulfation of Chondroitin Sulfate but Not Heparan Sulfate in Kidneys of Diabetic db/db Mice

    PubMed Central

    Reine, Trine M.; Grøndahl, Frøy; Jenssen, Trond G.; Hadler-Olsen, Elin; Prydz, Kristian

    2013-01-01

    Heparan sulfate proteoglycans are hypothesized to contribute to the filtration barrier in kidney glomeruli and the glycocalyx of endothelial cells. To investigate potential changes in proteoglycans in diabetic kidney, we isolated glycosaminoglycans from kidney cortex from healthy db/+ and diabetic db/db mice. Disaccharide analysis of chondroitin sulfate revealed a significant decrease in the 4-O-sulfated disaccharides (D0a4) from 65% to 40%, whereas 6-O-sulfated disaccharides (D0a6) were reduced from 11% to 6%, with a corresponding increase in unsulfated disaccharides. In contrast, no structural differences were observed in heparan sulfate. Furthermore, no difference was found in the molar amount of glycosaminoglycans, or in the ratio of hyaluronan/heparan sulfate/chondroitin sulfate. Immunohistochemical staining for the heparan sulfate proteoglycan perlecan was similar in both types of material but reduced staining of 4-O-sulfated chondroitin and dermatan was observed in kidney sections from diabetic mice. In support of this, using qRT-PCR, a 53.5% decrease in the expression level of Chst-11 (chondroitin 4-O sulfotransferase) was demonstrated in diabetic kidney. These results suggest that changes in the sulfation of chondroitin need to be addressed in future studies on proteoglycans and kidney function in diabetes. PMID:23757342

  13. Reduced sulfation of chondroitin sulfate but not heparan sulfate in kidneys of diabetic db/db mice.

    PubMed

    Reine, Trine M; Grøndahl, Frøy; Jenssen, Trond G; Hadler-Olsen, Elin; Prydz, Kristian; Kolset, Svein O

    2013-08-01

    Heparan sulfate proteoglycans are hypothesized to contribute to the filtration barrier in kidney glomeruli and the glycocalyx of endothelial cells. To investigate potential changes in proteoglycans in diabetic kidney, we isolated glycosaminoglycans from kidney cortex from healthy db/+ and diabetic db/db mice. Disaccharide analysis of chondroitin sulfate revealed a significant decrease in the 4-O-sulfated disaccharides (D0a4) from 65% to 40%, whereas 6-O-sulfated disaccharides (D0a6) were reduced from 11% to 6%, with a corresponding increase in unsulfated disaccharides. In contrast, no structural differences were observed in heparan sulfate. Furthermore, no difference was found in the molar amount of glycosaminoglycans, or in the ratio of hyaluronan/heparan sulfate/chondroitin sulfate. Immunohistochemical staining for the heparan sulfate proteoglycan perlecan was similar in both types of material but reduced staining of 4-O-sulfated chondroitin and dermatan was observed in kidney sections from diabetic mice. In support of this, using qRT-PCR, a 53.5% decrease in the expression level of Chst-11 (chondroitin 4-O sulfotransferase) was demonstrated in diabetic kidney. These results suggest that changes in the sulfation of chondroitin need to be addressed in future studies on proteoglycans and kidney function in diabetes.

  14. Preservation of Intestinal Structural Integrity by Zinc Is Independent of Metallothionein in Alcohol-Intoxicated Mice

    PubMed Central

    Lambert, Jason C.; Zhou, Zhanxiang; Wang, Lipeng; Song, Zhenyuan; McClain, Craig J.; Kang, Y. James

    2004-01-01

    Intestinal-derived endotoxins are importantly involved in alcohol-induced liver injury. Disruption of intestinal barrier function and endotoxemia are common features associated with liver inflammation and injury due to acute ethanol exposure. Zinc has been shown to inhibit acute alcohol-induced liver injury. This study was designed to determine the inhibitory effect of zinc on alcohol-induced endotoxemia and whether the inhibition is mediated by metallothionein (MT) or is independent of MT. MT knockout (MT-KO) mice were administered three oral doses of zinc sulfate (2.5 mg zinc ion/kg body weight) every 12 hours before being administered a single dose of ethanol (6 g/kg body weight) by gavage. Ethanol administration caused liver injury as determined by increased serum transaminases, parenchymal fat accumulation, necrotic foci, and an elevation of tumor necrosis factor (TNF-α). Increased plasma endotoxin levels were detected in ethanol-treated animals whose small intestinal structural integrity was compromised as determined by microscopic examination. Zinc supplementation significantly inhibited acute ethanol-induced liver injury and suppressed hepatic TNF-α production in association with decreased circulating endotoxin levels and a significant protection of small intestine structure. As expected, MT levels remained undetectable in the MT-KO mice under the zinc treatment. These results thus demonstrate that zinc preservation of intestinal structural integrity is associated with suppression of endotoxemia and liver injury induced by acute exposure to ethanol and the zinc protection is independent of MT. PMID:15161632

  15. Influence of ultrasound power and frequency upon corrosion kinetics of zinc in saline media.

    PubMed

    Doche, M-L; Hihn, J-Y; Mandroyan, A; Viennet, R; Touyeras, F

    2003-10-01

    This paper is devoted to zinc corrosion and oxidation mechanism in an ultrasonically stirred aerated sodium sulfate electrolyte. It follows a previous study devoted to the influence of 20 kHz ultrasound upon zinc corrosion in NaOH electrolytes [Ultrason. Sonochemis. 8 (2001) 291]. In the present work, various ultrasound regimes were applied by changing the transmitted power and the wave frequency (20 and 40 kHz). Unlike NaOH electrolyte which turns the zinc electrode into a passive state, Na2SO4 saline media induces soft corrosion conditions. This allows a study of the combined effects of ultrasonically modified hydrodynamic and mechanical damage (cavitation) upon the zinc corrosion process. A series of initial experiments were carried out so as to determine the transmitted power and to characterize mass transfer distribution in the electrochemical cell. Zinc corrosion and oxidation process were subsequently studied with respect to the vibrating parameters. When exposed to a 20 kHz ultrasonic field, and provided that the electrode is situated at a maximum mass transfer point, the corrosion rate reaches values six to eight times greater than in silent conditions. The zinc oxidation reaction, in the absence of competitive reduction reactions, is also activated by ultrasound (20 and 40 kHz) but probably through a different process of surface activation.

  16. Seasonal and spatial patterns of metals at a restored copper mine site. I. Stream copper and zinc

    USGS Publications Warehouse

    Bambic, D.G.; Alpers, Charles N.; Green, P.G.; Fanelli, E.; Silk, W.K.

    2006-01-01

    Seasonal and spatial variations in metal concentrations and pH were found in a stream at a restored copper mine site located near a massive sulfide deposit in the Foothill copper-zinc belt of the Sierra Nevada, California. At the mouth of the stream, copper concentrations increased and pH decreased with increased streamflow after the onset of winter rain and, unexpectedly, reached extreme values 1 or 2 months after peaks in the seasonal hydrographs. In contrast, aqueous zinc and sulfate concentrations were highest during low-flow periods. Spatial variation was assessed in 400 m of reach encompassing an acidic, metal-laden seep. At this seep, pH remained low (2-3) throughout the year, and copper concentrations were highest. In contrast, the zinc concentrations increased with downstream distance. These spatial patterns were caused by immobilization of copper by hydrous ferric oxides in benthic sediments, coupled with increasing downstream supply of zinc from groundwater seepage.

  17. Zinc enhances the number of regulatory T cells in allergen-stimulated cells from atopic subjects.

    PubMed

    Rosenkranz, Eva; Hilgers, Ralf-Dieter; Uciechowski, Peter; Petersen, Arnd; Plümäkers, Birgit; Rink, Lothar

    2017-03-01

    The trace element zinc is essential for immune function and its regulation. Since zinc deficiency and allergic hyperresponsive reactions are often accompanied, the influence of zinc on allergen-induced cell growth, CD4+ regulatory T (Treg) cell numbers and cytokine expression during allergic immune reactions was investigated. Peripheral blood mononuclear cells (PBMCs) from non-atopic and atopic subjects were treated with timothy grass allergen pre-incubated with or without zinc. Proliferation was determined by analyzing the incorporation of 3 H-thymidine. Intracellular zinc and Foxp3 levels and cell surface antigens were measured by FACS, cytokine expression by ELISA and real-time PCR. Incubation with 50 μM zinc sulfate (Zn50) enhances cytosolic zinc concentrations in CD3+ T cells. The data also reveal that the combination of Zn50 plus allergen significantly reduces PBMC proliferation of atopic subjects. Additionally, Zn50 plus allergen enhances Th1 cytokine responses shown by increased interferon (IFN)-γ/interleukin (IL)-10 ratios as well as enhanced tumor necrosis factor-α release. In response to allergen, zinc increases Treg cells and upregulates the mRNA expression of cytotoxic T-lymphocyte antigen-4 in atopic subjects. Interestingly, Zn50 alone leads to an increase of CD4+CD25high(hi)+ cells in atopic and non-atopic subjects. Zinc may regulate unwanted hyperresponsive immune reactions by suppressing proliferation through a significant shift from IL-10 to the Th1 cytokine IFN-γ, and enhanced regulatory T cell numbers. Therefore, zinc supplementation may be a promising tool for the therapy of allergies, without negatively affecting the immune system.

  18. Zinc electrode and rechargeable zinc-air battery

    DOEpatents

    Ross, Jr., Philip N.

    1989-01-01

    An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.

  19. Preparation and antibacterial properties of titanium-doped ZnO from different zinc salts

    PubMed Central

    2014-01-01

    To research the relationship of micro-structures and antibacterial properties of the titanium-doped ZnO powders and probe their antibacterial mechanism, titanium-doped ZnO powders with different shapes and sizes were prepared from different zinc salts by alcohothermal method. The ZnO powders were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED), and the antibacterial activities of titanium-doped ZnO powders on Escherichia coli and Staphylococcus aureus were evaluated. Furthermore, the tested strains were characterized by SEM, and the electrical conductance variation trend of the bacterial suspension was characterized. The results indicate that the morphologies of the powders are different due to preparation from different zinc salts. The XRD results manifest that the samples synthesized from zinc acetate, zinc nitrate, and zinc chloride are zincite ZnO, and the sample synthesized from zinc sulfate is the mixture of ZnO, ZnTiO3, and ZnSO4 · 3Zn (OH)2 crystal. UV-vis spectra show that the absorption edges of the titanium-doped ZnO powders are red shifted to more than 400 nm which are prepared from zinc acetate, zinc nitrate, and zinc chloride. The antibacterial activity of titanium-doped ZnO powders synthesized from zinc chloride is optimal, and its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) are lower than 0.25 g L−1. Likewise, when the bacteria are treated by ZnO powders synthesized from zinc chloride, the bacterial cells are damaged most seriously, and the electrical conductance increment of bacterial suspension is slightly high. It can be inferred that the antibacterial properties of the titanium-doped ZnO powders are relevant to the microstructure, particle size, and the crystal. The powders can damage the

  20. Assessment of water resources in lead-zinc mined areas in Cherokee County, Kansas, and adjacent areas

    USGS Publications Warehouse

    Spruill, Timothy B.

    1987-01-01

    allowed oxidation of ore deposits which, on saturation with water, resulted in poor-quality water that generally contains large concentrations of sulfate and trace metals. Water from mines in the eastern area contained dissolved-solids concentrations of less than 500 mg/L (milligrams per liter), a median pH of 3.9, sulfate concentrations that ranged between 98 and 290 mg/L, and median concentrations for zinc of 37,600 micrograms/L (micrograms per liter), for lead of 240 micrograms/L, for cadmium of 180 micrograms/L, for iron of 70 micrograms/L, for manganese of 240 micrograms/L, and for silica of 15 mg/L. Water from mines in the western area contained dissolved-solids concentrations of generally more than 500 mg/L, a median pH of 6.8, sulfate concentrations that ranged between 170 and 2,150 mg/L, and median concentrations for zinc of 3,200 micrograms/L, for lead of 0 micrograms/L (minimum detection limit is 10 micrograms/L), for cadmium of 6 micrograms/L, for iron of 840 micrograms/L, for manganese of 440 micrograms/L, and for silica of 11 mg/L. No conclusive evidence of lateral migration of water from the mines into domestic well-water supplies in the shallow aquifer was found in the study area in Kansas. Analyses of water from public-supply wells tapping the deep aquifer did not indicate contamination with trace metals, although chemical analyses from four of six wells exhibited increasing trends through time in sulfate concentrations. These increases probably reflect localized leakage of water from the shallow aquifer along corroded or leaky well casings. Effects of abandoned lead and zinc mines on tributaries of the Spring River in the eastern area are most severe in Short Creek. Compared with water samples from three other major streams in the eastern area, a sample collected from Short Creek, 2 miles west of Galena, Kansas, during August 1981, contained the largest concentrations of dissolved sulfate (240 mg/L), zinc (25,000 micrograms/L), ca

  1. Effect of zinc supplementation on the status of thyroid hormones and Na, K, And Ca levels in blood following ethanol feeding.

    PubMed

    Pathak, R; Dhawan, D; Pathak, A

    2011-05-01

    The influence of zinc (Zn) on the serum levels of triiodothyronine (T(3)), thyroxine (T(4)), thyroid-stimulating hormone (TSH) and sodium (Na), potassium (K), and calcium (Ca) was evaluated following ethanol toxicity to the rats. To achieve this, male Wistar rats (150-195 g) were given 3 ml of 30% ethanol orally, and zinc was given in the form of zinc sulfate (227 mg/l) in their drinking water daily for 8 weeks. Ethanol feeding resulted in a slight decrease in T(3) and T(4) levels and a significant increase in thyroid-stimulating hormone concentration, which may be due to the direct stimulatory effect of ethanol on thyroid. Interestingly, when zinc was given to these rats, all the above levels were brought quite close to their normal levels, thus indicating the positive role of zinc in thyroid hormone metabolism. Serum Zn and Ca levels were found to be reduced, but Na levels were raised upon ethanol feeding. Restoration of normal levels of these metals upon zinc supplementation to ethanol fed rats confirms that zinc has potential in alleviating some of the altered thyroid functions following ethanol administration.

  2. Investigations into Recycling Zinc from Used Metal Oxide Varistors via pH Selective Leaching: Characterization, Leaching, and Residue Analysis

    PubMed Central

    Gutknecht, Toni; Gustafsson, Anna; Forsgren, Christer; Steenari, Britt-Marie

    2015-01-01

    Metal oxide varistors (MOVs) are a type of resistor with significantly nonlinear current-voltage characteristics commonly used in power lines to protect against overvoltages. If a proper recycling plan is developed MOVs can be an excellent source of secondary zinc because they contain over 90 weight percent zinc oxide. The oxides of antimony, bismuth, and to a lesser degree cobalt, manganese, and nickel are also present in varistors. Characterization of the MOV showed that cobalt, nickel, and manganese were not present in the varistor material at concentrations greater than one weight percent. This investigation determined whether a pH selective dissolution (leaching) process can be utilized as a starting point for hydrometallurgical recycling of the zinc in MOVs. This investigation showed it was possible to selectively leach zinc from the MOV without coleaching of bismuth and antimony by selecting a suitable pH, mainly higher than 3 for acids investigated. It was not possible to leach zinc without coleaching of manganese, cobalt, and nickel. It can be concluded from results obtained with the acids used, acetic, hydrochloric, nitric, and sulfuric, that sulfate leaching produced the most desirable results with respect to zinc leaching and it is also used extensively in industrial zinc production. PMID:26421313

  3. The use of seaweed and sugarcane bagasse for the biological treatment of metal-contaminated waters under sulfate-reducing conditions.

    PubMed

    Gonçalves, Márcia Monteiro Machado; de Oliveira Mello, Luiz Antonio; da Costa, Antonio Carlos Augusto

    2008-03-01

    When wetlands reach maximum treatment capacity to remove heavy metals, removal can still take place through precipitation as sulfide because of the biological reduction of sulfate. To achieve this goal, anaerobic conditions must be attained, a sulfate source must exist, and an adequate substrate for sulfate-reducing bacteria (SRB) is also required. In the present work, two ligneous-cellulosic materials, a brown seaweed and sugarcane bagasse, have been selected as substrates for SRB growth. Experiments were simultaneously conducted in continuous operation in two columns (0.57 L each), one containing the ligneous-cellulosic material plus inoculum and another containing only the ligneous-cellulosic material. In this work, the removal of cadmium and zinc was studied because of their presence in effluents from mining/metallurgy operations. Results obtained indicated that the inoculated reactor was able to treat the effluent more efficiently than the noninoculated reactor considering the time course of the tests.

  4. Zinc lozenges and the common cold: a meta-analysis comparing zinc acetate and zinc gluconate, and the role of zinc dosage.

    PubMed

    Hemilä, Harri

    2017-05-01

    To compare the efficacy of zinc acetate lozenges with zinc gluconate lozenges in common cold treatment and to examine the dose-dependency of the effect. Meta-analysis. Placebo-controlled zinc lozenge trials, in which the zinc dose was > 75 mg/day. The pooled effect of zinc lozenges on common cold duration was calculated by using inverse-variance random-effects method. Seven randomised trials with 575 participants with naturally acquired common colds. Duration of the common cold. The mean common cold duration was 33% (95% CI 21% to 45%) shorter for the zinc groups of the seven included trials. Three trials that used lozenges composed of zinc acetate found that colds were shortened by 40% and four trials that used zinc gluconate by 28%. The difference between the two salts was not significant: 12 percentage points (95% CI: -12 to + 36). Five trials used zinc doses of 80-92 mg/day, common cold duration was reduced by 33%, and two trials used zinc doses of 192-207 mg/day and found an effect of 35%. The difference between the high-dose and low-dose zinc trials was not significant: 2 percentage points (95% CI: -29 to + 32). Properly composed zinc gluconate lozenges may be as effective as zinc acetate lozenges. There is no evidence that zinc doses over 100 mg/day might lead to greater efficacy in the treatment of the common cold. Common cold patients may be encouraged to try zinc lozenges for treating their colds. The optimal lozenge composition and dosage scheme need to be investigated further.

  5. Dietary phytate, zinc and hidden zinc deficiency.

    PubMed

    Sandstead, Harold H; Freeland-Graves, Jeanne H

    2014-10-01

    Epidemiological data suggest at least one in five humans are at risk of zinc deficiency. This is in large part because the phytate in cereals and legumes has not been removed during food preparation. Phytate, a potent indigestible ligand for zinc prevents it's absorption. Without knowledge of the frequency of consumption of foods rich in phytate, and foods rich in bioavailable zinc, the recognition of zinc deficiency early in the illness may be difficult. Plasma zinc is insensitive to early zinc deficiency. Serum ferritin concentration≤20μg/L is a potential indirect biomarker. Early effects of zinc deficiency are chemical, functional and may be "hidden". The clinical problem is illustrated by 2 studies that involved US Mexican-American children, and US premenopausal women. The children were consuming home diets that included traditional foods high in phytate. The premenopausal women were not eating red meat on a regular basis, and their consumption of phytate was mainly from bran breakfast cereals. In both studies the presence of zinc deficiency was proven by functional responses to controlled zinc treatment. In the children lean-mass, reasoning, and immunity were significantly affected. In the women memory, reasoning, and eye-hand coordination were significantly affected. A screening self-administered food frequency questionnaire for office might help caregiver's identify patients at risk of zinc deficiency. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. Therapeutic effects of transdermal systems containing zinc-related materials on thermal burn rats.

    PubMed

    Otsuka, Makoto; Hatakeyama, Haruna; Shikamura, Masayuki; Otsuka, Kuniko; Ito, Atsuo

    2015-01-01

    The aim of the present study is to evaluate the efficacy of slow zinc (Zn) release from β-tricalcium phosphate powder (ZnTCP) containing 10 mol% Zn on rats with thermal burns. The first-aid tapes were contained zinc sulfate (ZnSO4) solution, ZnTCP suspensions or zinc oxide ointment. After thermal burn treatments were performed on Zn-deficient rats, the groups D1, D2 and D3 were treated with tapes containing ZnTCP, ZnSO4 and zinc oxide ointment. The effects of the tapes on wound area, plasma Zn levels and alkaline phosphatase activity (Alp) were investigated. The wound area profiles of all rat groups could be separated into before and after the scab formation at around day 6. The area under the curve (Aw-AUC) for wound area profiles, therefore, was evaluated as an index of therapeutic scores for the thermal wound. The order of Aw-AUC was D3>C>D2>D1. The degree of expansion at the initial stage by thermal burns of group D1 was the lowest and that of group D2 was the highest, and the order was D1

  7. Zinc Enzymes.

    ERIC Educational Resources Information Center

    Bertini, I.; And Others

    1985-01-01

    Discusses the role of zinc in various enzymes concerned with hydration, hydrolysis, and redox reactions. The binding of zinc to protein residues, properties of noncatalytic zinc(II) and catalytic zinc, and the reactions catalyzed by zinc are among the topics considered. (JN)

  8. Raman spectroscopy of efflorescent sulfate salts from Iron Mountain Mine Superfund Site, California.

    PubMed

    Sobron, Pablo; Alpers, Charles N

    2013-03-01

    The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination.

  9. Raman spectroscopy of efflorescent sulfate salts from Iron Mountain Mine Superfund Site, California

    USGS Publications Warehouse

    Sobron, Pablo; Alpers, Charles N.

    2013-01-01

    The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination.

  10. Recovery of valuable metals from waste diamond cutters through ammonia-ammonium sulfate leaching

    NASA Astrophysics Data System (ADS)

    Xue, Ping; Li, Guang-qiang; Yang, Yong-xiang; Qin, Qin-wei; Wei, Ming-xing

    2017-12-01

    Copper and zinc were recovered from waste diamond cutters through leaching with an ammonia-ammonium sulfate system and air as an oxidant. The effects of experimental parameters on the leaching process were investigated, and the potential-pH ( E-pH) diagrams of Cu-NH3-SO4 2--H2O and Zn-NH3-SO4 2--H2O at 25°C were drawn. Results showed that the optimal parameters for the leaching reaction are as follows: reaction temperature, 45°C; leaching duration, 3 h; liquid-to-solid ratio, 50:1 (mL/g); stirring speed, 200 r/min; ammonia concentration, 4.0 mol/L; ammonium sulfate concentration, 1.0 mol/L; and air flow rate, 0.2 L/min. The results of the kinetics study indicated that the leaching is controlled by the surface chemical reaction at temperatures below 35°C, and the leaching is controlled by diffusion through the product layer at temperatures above 35°C.

  11. Effect of inhibitors on Zn-dendrite formation for zinc-polyaniline secondary battery

    NASA Astrophysics Data System (ADS)

    Kan, Jinqing; Xue, Huaiguo; Mu, Shaolin

    The effects of Pb 2+, sodium lauryl sulfate and Triton X-100 on inhibition of Zn-dendrite growth in Zn-polyaniline batteries were studied by scanning electron micrograph and cyclic voltammetry. The results show that Triton X-100 in the region of 0.02-500 ppm in the electrolyte containing 2.5 M ZnCl 2 and 2.0 M NH 4Cl with pH 4.40 can effectively inhibit zinc-dendrite growth during charge-discharge cycles of the battery and yield longer cycles.

  12. Zinc

    MedlinePlus

    ... Using toothpastes containing zinc, with or without an antibacterial agent, appears to prevent plaque and gingivitis. Some ... is some evidence that zinc has some antiviral activity against the herpes virus. Low zinc levels can ...

  13. Zinc supplementation during pregnancy protects against lipopolysaccharide-induced fetal growth restriction and demise through its anti-inflammatory effect.

    PubMed

    Chen, Yuan-Hua; Zhao, Mei; Chen, Xue; Zhang, Ying; Wang, Hua; Huang, Ying-Ying; Wang, Zhen; Zhang, Zhi-Hui; Zhang, Cheng; Xu, De-Xiang

    2012-07-01

    LPS is associated with adverse developmental outcomes, including preterm delivery, fetal death, teratogenicity, and intrauterine growth restriction (IUGR). Previous reports showed that zinc protected against LPS-induced teratogenicity. In the current study, we investigated the effects of zinc supplementation during pregnancy on LPS-induced preterm delivery, fetal death and IUGR. All pregnant mice except controls were i.p. injected with LPS (75 μg/kg) daily from gestational day (GD) 15 to GD17. Some pregnant mice were administered zinc sulfate through drinking water (75 mg elemental Zn per liter) throughout the pregnancy. As expected, an i.p. injection with LPS daily from GD15 to GD17 resulted in 36.4% (4/11) of dams delivered before GD18. In dams that completed the pregnancy, 63.2% of fetuses were dead. Moreover, LPS significantly reduced fetal weight and crown-rump length. Of interest, zinc supplementation during pregnancy protected mice from LPS-induced preterm delivery and fetal death. In addition, zinc supplementation significantly alleviated LPS-induced IUGR and skeletal development retardation. Further experiments showed that zinc supplementation significantly attenuated LPS-induced expression of placental inflammatory cytokines and cyclooxygenase-2. Zinc supplementation also significantly attenuated LPS-induced activation of NF-κB and MAPK signaling in mononuclear sinusoidal trophoblast giant cells of the labyrinth zone. It inhibited LPS-induced placental AKT phosphorylation as well. In conclusion, zinc supplementation during pregnancy protects against LPS-induced fetal growth restriction and demise through its anti-inflammatory effect.

  14. Synthesizing slow-release fertilizers via mechanochemical processing for potentially recycling the waste ferrous sulfate from titanium dioxide production.

    PubMed

    Li, Xuewei; Lei, Zhiwu; Qu, Jun; Li, Zhao; Zhou, Xiaowen; Zhang, Qiwu

    2017-01-15

    The goal of this study is aimed to develop a novel process to recycle the ferrous sulfate, the by-product of titanium dioxide industry. Zinc sulfate was added in the process of milling ferrous sulfate with calcium carbonate (CaCO 3 ). The sulfates were transformed into carbonates to serve as slow-release fertilizers by co-grinding the starting materials of FeSO 4 ·7H 2 O, ZnSO 4 ·7H 2 O, and CaCO 3 with small amounts of water in a planetary ball mill. The prepared samples were characterized by X-ray diffraction (XRD) analysis and quantitative measurements of the soluble ratios in water and 2% citric acid solution. It was found that Fe and Zn ions as sulfates were successfully combined with CaCO 3 to form the corresponding Fe and Zn carbonates respectively. After milling, the release ratios of Fe and Zn nutrients in distilled water could be controlled at 0.1% and 0.7% respectively. Meanwhile, the release ratios of them in 2% citric acid solution were almost 98% and 100%. Milling speed was the critical parameter to facilitate the transformation reaction. The proposed process, as an easy and economical route, exhibits evident advantages, namely allowing the use of widely available and low-cost CaCO 3 as well as industrial wastes of heavy metal sulfates as starting samples to prepare applicable products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The impact of zinc sulfate addition on the dynamic metabolic profiling of Saccharomyces cerevisiae subjected to long term acetic acid stress treatment and identification of key metabolites involved in the antioxidant effect of zinc.

    PubMed

    Wan, Chun; Zhang, Mingming; Fang, Qing; Xiong, Liang; Zhao, Xinqing; Hasunuma, Tomohisa; Bai, Fengwu; Kondo, Akihiko

    2015-02-01

    The mechanisms of how zinc protects the cells against acetic acid toxicity and acts as an antioxidant are still not clear. Here we present results of the metabolic profiling of the eukaryotic model yeast species Saccharomyces cerevisiae subjected to long term high concentration acetic acid stress treatment in the presence and absence of zinc supplementation. Zinc addition decreased the release of reactive oxygen species (ROS) in the presence of chronic acetic acid stress. The dynamic changes in the accumulation of intermediates in central carbon metabolism were observed, and higher contents of intracellular alanine, valine and serine were observed by zinc supplementation. The most significant change was observed in alanine content, which is 3.51-fold of that of the control culture in cells in the stationary phase. Subsequently, it was found that 0.5 g L(-1) alanine addition resulted in faster glucose consumption in the presence of 5 g L(-1) acetic acid, and apparently decreased ROS accumulation in zinc-supplemented cells. This indicates that alanine exerted its antioxidant effect at least partially through the detoxification of acetic acid. In addition, intracellular glutathione (GSH) accumulation was enhanced by zinc addition, which is related to the protection of yeast cells from the oxidative injury caused by acetic acid. Our studies revealed for the first time that zinc modulates cellular amino acid metabolism and redox balance, especially biosynthesis of alanine and glutathione to exert its antioxidant effect.

  16. Purification, crystallization and preliminary X-ray diffraction analysis of adenosine triphosphate sulfurylase (ATPS) from the sulfate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774

    PubMed Central

    Gavel, Olga Yu.; Kladova, Anna V.; Bursakov, Sergey A.; Dias, João M.; Texeira, Susana; Shnyrov, Valery L.; Moura, José J. G.; Moura, Isabel; Romão, Maria J.; Trincão, José

    2008-01-01

    Native zinc/cobalt-containing ATP sulfurylase (ATPS; EC 2.7.7.4; MgATP:sulfate adenylyltransferase) from Desulfovibrio desulfuricans ATCC 27774 was purified to homogeneity and crystallized. The orthorhombic crystals diffracted to beyond 2.5 Å resolution and the X-ray data collected should allow the determination of the structure of the zinc-bound form of this ATPS. Although previous biochemical studies of this protein indicated the presence of a homotrimer in solution, a dimer was found in the asymmetric unit. Elucidation of this structure will permit a better understanding of the role of the metal in the activity and stability of this family of enzymes. PMID:18607083

  17. Comparison of cytotoxicity and expression of metal regulatory genes in zebrafish (Danio rerio) liver cells exposed to cadmium sulfate, zinc sulfate and quantum dots.

    PubMed

    Tang, Song; Allagadda, Vinay; Chibli, Hicham; Nadeau, Jay L; Mayer, Gregory D

    2013-10-01

    Recent advances in the ability to manufacture and manipulate materials at the nanometer scale have led to increased production and use of many types of nanoparticles. Quantum dots (QDs) are small, fluorescent nanoparticles composed of a core of semiconductor material (e.g. cadmium selenide, zinc sulfide) and shells or dopants of other elements. Particle core composition, size, shell, and surface chemistry have all been found to influence toxicity in cells. The aim of this study was to compare the toxicities of ionic cadmium (Cd) and zinc (Zn) and Cd- and Zn-containing QDs in zebrafish liver cells (ZFL). As expected, Cd(2+) was more toxic than Zn(2+), and the general trend of IC50-24 h values of QDs was determined to be CdTe < CdSe/ZnS or InP/ZnS, suggesting that ZnS-shelled CdSe/ZnS QDs were more cytocompatible than bare core CdTe crystals. Smaller QDs showed greater toxicity than larger QDs. Isolated mRNA from these exposures was used to measure the expression of metal response genes including metallothionein (MT), metal response element-binding transcription factor (MTF-1), divalent metal transporter (DMT-1), zrt and irt like protein (ZIP-1) and the zinc transporter, ZnT-1. CdTe exposure induced expression of these genes in a dose dependent manner similar to that of CdSO4 exposure. However, CdSe/ZnS and InP/ZnS altered gene expression of metal homeostasis genes in a manner different from that of the corresponding Cd or Zn salts. This implies that ZnS shells reduce QD toxicity attributed to the release of Cd(2+), but do not eliminate toxic effects caused by the nanoparticles themselves.

  18. Resistance to zinc and cadmium in Staphylococcus aureus of human and animal origin.

    PubMed

    Nair, Rajeshwari; Thapaliya, Dipendra; Su, Yutao; Smith, Tara C

    2014-10-01

    Studies conducted in Europe have observed resistance to trace metals such as zinc chloride and copper sulfate in livestock-associated Staphylococcus aureus. This study was conducted to determine the prevalence of zinc and cadmium resistance in S. aureus isolated in the United States. Cross-sectional study of convenience sample of S. aureus isolates. Three hundred forty-nine S. aureus isolates, including methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) obtained from human, swine, and retail meat were included in the sample set. Polymerase chain reaction was used to test for the presence of genes for zinc and cadmium resistance (czrC), methicillin resistance (mecA), and staphylococcal complement inhibitor (scn). Antibiotic susceptibility of isolates was tested using the broth microdilution method. Data were analyzed using the multivariable logistic regression method. Twenty-nine percent (102/349) of S. aureus isolates were czrC positive. MRSA isolates were more likely to be czrC positive compared to MSSA (MRSA czrC positive: 12/61, 19.6%; MSSA czrC positive: 12/183, 6.6%). After adjustment for oxacillin and clindamycin susceptibility in analysis, multidrug-resistant S. aureus was observed to have low odds of being czrC positive (P = .03). The odds of being czrC positive were observed to be significantly high in tetracycline-resistant S. aureus isolated from noninfection samples (P = .009) and swine (P < .0001). Resistance to zinc and cadmium was observed to be associated with MRSA, a finding consistently observed in European studies. Prolonged exposure to zinc in livestock feeds and fertilizers could propagate resistance to the metal ion, thereby hindering use of zinc-based topical agents in treating S. aureus infections.

  19. [Improvement in zinc nutrition due to zinc transporter-targeting strategy].

    PubMed

    Kambe, Taiho

    2016-07-01

    Adequate intake of zinc from the daily diet is indispensable to maintain health. However, the dietary zinc content often fails to fulfill the recommended daily intake, leading to zinc deficiency and also increases the risk of developing chronic diseases, particularly in elderly individuals. Therefore, increased attention is required to overcome zinc deficiency and it is important to improve zinc nutrition in daily life. In the small intestine, the zinc transporter, ZIP4, functions as a component that is essential for zinc absorption. In this manuscript, we present a brief overview regarding zinc deficiency. Moreover, we review a novel strategy, called "ZIP4-targeting", which has the potential to enable efficient zinc absorption from the diet. ZIP4-targeting strategy is possibly a major step in preventing zinc deficiency and improving human health.

  20. 21 CFR 524.1484e - Neomycin sulfate and polymyxin B sulfate ophthalmic solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Neomycin sulfate and polymyxin B sulfate... DOSAGE FORM NEW ANIMAL DRUGS § 524.1484e Neomycin sulfate and polymyxin B sulfate ophthalmic solution. (a) Specifications. Each milliliter of the ophthalmic preparation contains 5.0 milligrams neomycin sulfate (3.5...

  1. 21 CFR 524.1484e - Neomycin sulfate and polymyxin B sulfate ophthalmic solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Neomycin sulfate and polymyxin B sulfate... DOSAGE FORM NEW ANIMAL DRUGS § 524.1484e Neomycin sulfate and polymyxin B sulfate ophthalmic solution. (a) Specifications. Each milliliter of the ophthalmic preparation contains 5.0 milligrams neomycin sulfate (3.5...

  2. 21 CFR 524.1484e - Neomycin sulfate and polymyxin B sulfate ophthalmic solution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Neomycin sulfate and polymyxin B sulfate... DOSAGE FORM NEW ANIMAL DRUGS § 524.1484e Neomycin sulfate and polymyxin B sulfate ophthalmic solution. (a) Specifications. Each milliliter of the ophthalmic preparation contains 5.0 milligrams neomycin sulfate (3.5...

  3. 21 CFR 524.1484e - Neomycin sulfate and polymyxin B sulfate ophthalmic solution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate and polymyxin B sulfate... DOSAGE FORM NEW ANIMAL DRUGS § 524.1484e Neomycin sulfate and polymyxin B sulfate ophthalmic solution. (a) Specifications. Each milliliter of the ophthalmic preparation contains 5.0 milligrams neomycin sulfate (3.5...

  4. Negative Electron Transfer Dissociation Sequencing of 3-O-Sulfation-Containing Heparan Sulfate Oligosaccharides

    NASA Astrophysics Data System (ADS)

    Wu, Jiandong; Wei, Juan; Hogan, John D.; Chopra, Pradeep; Joshi, Apoorva; Lu, Weigang; Klein, Joshua; Boons, Geert-Jan; Lin, Cheng; Zaia, Joseph

    2018-03-01

    Among dissociation methods, negative electron transfer dissociation (NETD) has been proven the most useful for glycosaminoglycan (GAG) sequencing because it produces informative fragmentation, a low degree of sulfate losses, high sensitivity, and translatability to multiple instrument types. The challenge, however, is to distinguish positional sulfation. In particular, NETD has been reported to fail to differentiate 4-O- versus 6-O-sulfation in chondroitin sulfate decasaccharide. This raised the concern of whether NETD is able to differentiate the rare 3-O-sulfation from predominant 6-O-sulfation in heparan sulfate (HS) oligosaccharides. Here, we report that NETD generates highly informative spectra that differentiate sites of O-sulfation on glucosamine residues, enabling structural characterizations of synthetic HS isomers containing 3-O-sulfation. Further, lyase-resistant 3-O-sulfated tetrasaccharides from natural sources were successfully sequenced. Notably, for all of the oligosaccharides in this study, the successful sequencing is based on NETD tandem mass spectra of commonly observed deprotonated precursor ions without derivatization or metal cation adduction, simplifying the experimental workflow and data interpretation. These results demonstrate the potential of NETD as a sensitive analytical tool for detailed, high-throughput structural analysis of highly sulfated GAGs. [Figure not available: see fulltext.

  5. Effects of Dietary Copper and Zinc Supplementation on Growth Performance, Tissue Mineral Retention, Antioxidant Status, and Fur Quality in Growing-Furring Blue Foxes (Alopex lagopus).

    PubMed

    Liu, Zhi; Wu, Xuezhuang; Zhang, Tietao; Guo, Jungang; Gao, Xiuhua; Yang, Fuhe; Xing, Xiumei

    2015-12-01

    A 4×2 factorial experiment with four supplemental levels of copper (0, 20, 40, or 60 mg copper per kg dry matter) from copper sulfate and two supplemental levels of zinc (40 or 200 mg zinc per kg dry matter) from zinc sulfate was conducted to investigate the effects of dietary copper and zinc supplementation on growth performance, tissue mineral retention, antioxidant status, and fur quality in growing-furring blue foxes. One hundred and twenty healthy 15-week-old male blue foxes were randomly allocated to eight dietary treatments with 15 replicates per treatment for a 70-day trial from mid-September to pelting in December. The average daily gain and feed conversion ratio were increased with copper supplementation in the first 35 days as well as the overall period (P<0.05). In addition, copper supplementation tended to increase feed intake during the first 35 days (P<0.10). Diets supplemented with 200 mg/kg zinc did not affect body gain (P>0.10) and feed intake (P>0.10) but improved feed conversion (P<0.05) compared with those supplemented 40 mg/kg zinc throughout the experiment. No copper×zinc interaction was observed for growth performance except that a tendency (P=0.09) was found for feed intake in the first 35 days. Supplementation of copper or zinc improved crude fat digestibility (P<0.01) but had no effects on the digestibility of other nutrients. Fecal copper was increased with both copper (P<0.01) and zinc addition (P<0.05). However, fecal zinc was affected only by dietary zinc addition (P<0.01). Mineral contents in serum and kidney were not affected by dietary treatments (P>0.05). However, the level of copper in the liver was increased with copper supplementation (P<0.05) and tended to decrease with zinc supplementation (P=0.08). Dietary zinc addition tended to increase the activity of alkaline phosphatase (P=0.07). The activities of copper-zinc superoxide dismutase and catalase tended to increase by copper (P=0.08) and zinc addition (P=0.05). Moreover

  6. Significant role of organic sulfur in supporting sedimentary sulfate reduction in low-sulfate environments

    NASA Astrophysics Data System (ADS)

    Fakhraee, Mojtaba; Li, Jiying; Katsev, Sergei

    2017-09-01

    Dissimilatory sulfate reduction (DSR) is a major carbon mineralization pathway in aquatic sediments, soils, and groundwater, which regulates the production of hydrogen sulfide and the mobilization rates of biologically important elements such as phosphorus and mercury. It has been widely assumed that water-column sulfate is the main sulfur source to fuel this reaction in sediments. While this assumption may be justified in high-sulfate environments such as modern seawater, we argue that in low-sulfate environments mineralization of organic sulfur compounds can be an important source of sulfate. Using a reaction-transport model, we investigate the production of sulfate from sulfur-containing organic matter for a range of environments. The results show that in low sulfate environments (<500 μM) the in-sediment production of sulfate can support a substantial portion (>50%) of sulfate reduction. In well-oxygenated systems, porewater sulfate profiles often exhibit sub-interface peaks so that sulfate fluxes are directed out of the sediment. Our measurements in Lake Superior, the world's largest lake, corroborate this conclusion: offshore sediments act as sources rather than sinks of sulfate for the water column, and sediment DSR is supported entirely by the in-sediment production of sulfate. Sulfate reduction rates are correlated to the depth of oxygen penetration and strongly regulated by the supply of reactive organic matter; rate co-regulation by sulfate availability becomes appreciable below 500 μM level. The results indicate the need to consider the mineralization of organic sulfur in the biogeochemical cycling in low-sulfate environments, including several of the world's largest freshwater bodies, deep subsurface, and possibly the sulfate-poor oceans of the Early Earth.

  7. Determination of trace elements in triglycine sulfate solutions

    NASA Technical Reports Server (NTRS)

    Tadros, Shawky H.

    1993-01-01

    Ten elements were divided into 2 groups. The elements in the first group included iron, nickel, chromium, manganese, copper, and gold. The elements in the second group included zinc, cobalt, lead, cadmium, and gold. Five ppm of each element in each group was spiked in a 1 percent triglycine sulfate (TGS) solution. Glycine was removed with 1-naphthyl isocyanate in ether medium. The glycine derivative 1-naphthyl isocyanate glycine was removed by filtration, and the filtrates were analyzed for the different elements. Analysis of these elements was performed by using the 5100 Perkin-Elmer Atomic Absorption Spectrophotometer. The result of these experiments was the observation that there was a decrease in the concentration of chromium and gold, which was interpreted to be due to the chelation of these elements by the derivative 1-naphthyl isocyanate glycine. Further research is needed to determine the concentration of other elements in triglycine sulfate (TGS) solutions. These elements will include lithium, sodium, rubidium, magnesium, calcium, strontium, barium, aluminum, and silicon. These are the most likely elements to be found in the sulfuric acid used in manufacturing the TGS crystal. Moreover, we will extend our research to investigate the structural formula of the violet colored chelated compounds, which had been formed by interaction of the derivative 1-naphthyl isocyanate glycine with the different elements, such as gold, chromium.

  8. The heparanome--the enigma of encoding and decoding heparan sulfate sulfation.

    PubMed

    Lamanna, William C; Kalus, Ina; Padva, Michael; Baldwin, Rebecca J; Merry, Catherine L R; Dierks, Thomas

    2007-04-30

    Heparan sulfate (HS) is a cell surface carbohydrate polymer modified with sulfate moieties whose highly ordered composition is central to directing specific cell signaling events. The ability of the cell to generate these information rich glycans with such specificity has opened up a new field of "heparanomics" which seeks to understand the systems involved in generating these cell type and developmental stage specific HS sulfation patterns. Unlike other instances where biological information is encrypted as linear sequences in molecules such as DNA, HS sulfation patterns are generated through a non-template driven process. Thus, deciphering the sulfation code and the dynamic nature of its generation has posed a new challenge to system biologists. The recent discovery of two sulfatases, Sulf1 and Sulf2, with the unique ability to edit sulfation patterns at the cell surface, has opened up a new dimension as to how we understand the regulation of HS sulfation patterning and pattern-dependent cell signaling events. This review will focus on the functional relationship between HS sulfation patterning and biological processes. Special attention will be given to Sulf1 and Sulf2 and how these key editing enzymes might act in concert with the HS biosynthetic enzymes to generate and regulate specific HS sulfation patterns in vivo. We will further explore the use of knock out mice as biological models for understanding the dynamic systems involved in generating HS sulfation patterns and their biological relevance. A brief overview of new technologies and innovations summarizes advances in the systems biology field for understanding non-template molecular networks and their influence on the "heparanome".

  9. Effects of zinc sulfate pretreatment on heat tolerance of Bama miniature pig under high ambient temperature.

    PubMed

    Li, Y; Cao, Y; Zhou, X; Wang, F; Shan, T; Li, Z; Xu, W; Li, C

    2015-07-01

    The aim of this study was to evaluate the heat tolerance of Bama miniature pigs under high ambient temperature (40°C) and Zn interactive functions during heat treatment (HT). Bama miniature pigs (male; n = 24; 6-mo old; BW = 10.79 ± 0.06 kg) were randomly allotted to 4 groups and were fed a basal diet or the basal diet supplemented with 1,500 mg of Zn (ZnSO4·H2O)/kg diet for 38 d. At 7 mo of age (d 30), the thermal neutral (TN) groups remained at 25°C, whereas the HT groups were exposed to ambient temperature at 40°C for 5 h daily for 8 consecutive days. Pigs in 4 groups were sacrificed on d 38. Individual rectal temperatures, skin temperatures, and breathing rates were recorded at 3 h after the onset of HT and the blood samples were collected immediately after HT on d 30, 34, and 38. Pigs fed diets with or without Zn doubled their breathing rates (P < 0.05) and increased body surface, scrotal, and rectal temperatures during HT on d 30, 34, and 38, respectively. Zinc supplementation increased BW gain (BWG; P < 0.05) during 38-d experiment period, and HT decreased BWG only from d 30 to 34 (P < 0.05). Heat treatment increased serum testosterone on d 30 (P < 0.05). Zinc supplementation decreased the heat-induced increase of testosterone in HT on d 30 and 34 (P < 0.05). The relative weight of liver increased in HT groups (P < 0.05). Zinc supplementation decreased the relative weights of spleen (P < 0.05) and testis (P < 0.01). The values of abnormal lymphocyte count and large unstained cell count declined approximately 5 times in groups of Zn supplementation, whereas Zn supplementation increased the values of red blood cell count, hemoglobin, hematocrit, mean corpuscular volume, and mean corpuscular hemoglobin. Zinc concentrations increased in serum, liver, kidney, epididymis, longissimus, hair, and feces in groups fed with Zn (P < 0.01). However, additional Zn decreased Zn concentrations in lung, spleen, and testis (P < 0.01). Moreover, HT decreased serum Zn

  10. Improved zinc electrode and rechargeable zinc-air battery

    DOEpatents

    Ross, P.N. Jr.

    1988-06-21

    The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

  11. Roles of Heparan Sulfate Sulfation in Dentinogenesis*

    PubMed Central

    Hayano, Satoru; Kurosaka, Hiroshi; Yanagita, Takeshi; Kalus, Ina; Milz, Fabian; Ishihara, Yoshihito; Islam, Md. Nurul; Kawanabe, Noriaki; Saito, Masahiro; Kamioka, Hiroshi; Adachi, Taiji; Dierks, Thomas; Yamashiro, Takashi

    2012-01-01

    Cell surface heparan sulfate (HS) is an essential regulator of cell signaling and development. HS traps signaling molecules, like Wnt in the glycosaminoglycan side chains of HS proteoglycans (HSPGs), and regulates their functions. Endosulfatases Sulf1 and Sulf2 are secreted at the cell surface to selectively remove 6-O-sulfate groups from HSPGs, thereby modifying the affinity of cell surface HSPGs for its ligands. This study provides molecular evidence for the functional roles of HSPG sulfation and desulfation in dentinogenesis. We show that odontogenic cells are highly sulfated on the cell surface and become desulfated during their differentiation to odontoblasts, which produce tooth dentin. Sulf1/Sulf2 double null mutant mice exhibit a thin dentin matrix and short roots combined with reduced expression of dentin sialophosphoprotein (Dspp) mRNA, encoding a dentin-specific extracellular matrix precursor protein, whereas single Sulf mutants do not show such defective phenotypes. In odontoblast cell lines, Dspp mRNA expression is potentiated by the activation of the Wnt canonical signaling pathway. In addition, pharmacological interference with HS sulfation promotes Dspp mRNA expression through activation of Wnt signaling. On the contrary, the silencing of Sulf suppresses the Wnt signaling pathway and subsequently Dspp mRNA expression. We also show that Wnt10a protein binds to cell surface HSPGs in odontoblasts, and interference with HS sulfation decreases the binding affinity of Wnt10a for HSPGs, which facilitates the binding of Wnt10a to its receptor and potentiates the Wnt signaling pathway, thereby up-regulating Dspp mRNA expression. These results demonstrate that Sulf-mediated desulfation of cellular HSPGs is an important modification that is critical for the activation of the Wnt signaling in odontoblasts and for production of the dentin matrix. PMID:22351753

  12. Sulfate reduction in freshwater wetland soils and the effects of sulfate and substrate loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, J.; Hsieh, Y.P.

    1998-07-01

    Elevated sulfate and organic C loadings in freshwater wetlands could stimulate dissimilatory sulfate reduction that oxidizes organic C, produces hydrogen sulfide and alkalinity, and sequesters trace metals. The authors determined the extent of sulfate reduction in two freshwater wetland soils, that is black gum (Nyssa biflona) swamp soils and titi (Cliftonia monophylla) swamp soils, in northern Florida. They also investigated the potential of sulfate reduction in the wetland soils by adding sulfate, organic substrate, and lime. Sulfate reduction was found to be an active process in both swamp soils without any amendment, where the pore water pH was as lowmore » as 3.6 and sulfate concentration was as low as 5 mg L{sup {minus}1}. Without amendment, 11 to 14% of organic C was oxidized through sulfate reduction in the swamp soils. Sulfate loading, liming, and substrate addition significantly increased sulfate reduction in the black gum swamp soil, but none of those treatments increase sulfate reduction in the titi swamp soil. The limiting factor for sulfate reduction in the titi swamp soil were likely texture and soil aggregate related properties. The results suggested that wastewater loading may increase sulfate reduction in some freshwater wetlands such as the black swamps while it has no stimulating effect on other wetlands such as the titi swamps.« less

  13. Influence of DNA-methylation on zinc homeostasis in myeloid cells: Regulation of zinc transporters and zinc binding proteins.

    PubMed

    Kessels, Jana Elena; Wessels, Inga; Haase, Hajo; Rink, Lothar; Uciechowski, Peter

    2016-09-01

    The distribution of intracellular zinc, predominantly regulated through zinc transporters and zinc binding proteins, is required to support an efficient immune response. Epigenetic mechanisms such as DNA methylation are involved in the expression of these genes. In demethylation experiments using 5-Aza-2'-deoxycytidine (AZA) increased intracellular (after 24 and 48h) and total cellular zinc levels (after 48h) were observed in the myeloid cell line HL-60. To uncover the mechanisms that cause the disturbed zinc homeostasis after DNA demethylation, the expression of human zinc transporters and zinc binding proteins were investigated. Real time PCR analyses of 14 ZIP (solute-linked carrier (SLC) SLC39A; Zrt/IRT-like protein), and 9 ZnT (SLC30A) zinc transporters revealed significantly enhanced mRNA expression of the zinc importer ZIP1 after AZA treatment. Because ZIP1 protein was also enhanced after AZA treatment, ZIP1 up-regulation might be the mediator of enhanced intracellular zinc levels. The mRNA expression of ZIP14 was decreased, whereas zinc exporter ZnT3 mRNA was also significantly increased; which might be a cellular reaction to compensate elevated zinc levels. An enhanced but not significant chromatin accessibility of ZIP1 promoter region I was detected by chromatin accessibility by real-time PCR (CHART) assays after demethylation. Additionally, DNA demethylation resulted in increased mRNA accumulation of zinc binding proteins metallothionein (MT) and S100A8/S100A9 after 48h. MT mRNA was significantly enhanced after 24h of AZA treatment also suggesting a reaction of the cell to restore zinc homeostasis. These data indicate that DNA methylation is an important epigenetic mechanism affecting zinc binding proteins and transporters, and, therefore, regulating zinc homeostasis in myeloid cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Brittlestars contain highly sulfated chondroitin sulfates/dermatan sulfates that promote fibroblast growth factor 2-induced cell signaling.

    PubMed

    Ramachandra, Rashmi; Namburi, Ramesh B; Ortega-Martinez, Olga; Shi, Xiaofeng; Zaia, Joseph; Dupont, Sam T; Thorndyke, Michael C; Lindahl, Ulf; Spillmann, Dorothe

    2014-02-01

    Glycosaminoglycans (GAGs) isolated from brittlestars, Echinodermata class Ophiuroidea, were characterized, as part of attempts to understand the evolutionary development of these polysaccharides. A population of chondroitin sulfate/dermatan sulfate (CS/DS) chains with a high overall degree of sulfation and hexuronate epimerization was the major GAG found, whereas heparan sulfate (HS) was below detection level. Enzymatic digestion with different chondroitin lyases revealed exceptionally high proportions of di- and trisulfated CS/DS disaccharides. The latter unit appears much more abundant in one of four individual species of brittlestars, Amphiura filiformis, than reported earlier in other marine invertebrates. The brittlestar CS/DS was further shown to bind to growth factors such as fibroblast growth factor 2 and to promote FGF-stimulated cell signaling in GAG-deficient cell lines in a manner similar to that of heparin. These findings point to a potential biological role for the highly sulfated invertebrate GAGs, similar to those ascribed to HS in vertebrates.

  15. Method of capturing or trapping zinc using zinc getter materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunyadi Murph, Simona E.; Korinko, Paul S.

    2017-07-11

    A method of trapping or capturing zinc is disclosed. In particular, the method comprises a step of contacting a zinc vapor with a zinc getter material. The zinc getter material comprises nanoparticles and a metal substrate.

  16. 21 CFR 524.960 - Flumethasone, neomycin sulfate, and polymyxin B sulfate ophthalmic solutions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Flumethasone, neomycin sulfate, and polymyxin B sulfate ophthalmic solutions. 524.960 Section 524.960 Food and Drugs FOOD AND DRUG ADMINISTRATION... TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.960 Flumethasone, neomycin sulfate, and polymyxin B sulfate...

  17. 21 CFR 524.960 - Flumethasone, neomycin sulfate, and polymyxin B sulfate ophthalmic solutions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Flumethasone, neomycin sulfate, and polymyxin B sulfate ophthalmic solutions. 524.960 Section 524.960 Food and Drugs FOOD AND DRUG ADMINISTRATION... TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.960 Flumethasone, neomycin sulfate, and polymyxin B sulfate...

  18. Nitrogen implantation into steel wire coated with zinc used as reinforcement in power transmission conductors

    NASA Astrophysics Data System (ADS)

    Castro-Maldonado, J. J.; Dulcé-Moreno, H. J.; V-Niño, E. D.

    2013-11-01

    In tropical environments, diversity of climatic factors such as temperature, relative humidity, deposition of environmental contaminants (such as sulfates and chlorides) affect a large proportion of materials exposed to the weather, and electrochemical corrosion is one of the phenomena that occur in the case of metals and alloys [1, 2]. It is therefore particularly important to study this behavior in the Zinc-coated steel, since this material is used for its economy in the industry specifically in the area of transport of electricity.

  19. USING RESPIROMETRY TO MEASURE HYDROGEN UTILIZATION IN SULFATE REDUCING BACTERIA IN THE PRESENCE OF COPPER AND ZINC

    EPA Science Inventory

    A respirometric method has been developed to measure hydrogen utilization by sulfate reducing bacteria (SRB). One application of this method has been to test inhibitory metals effects on the SRB culture used in a novel acid mine drainage treatment technology. As a control param...

  20. Zinc in human health: effect of zinc on immune cells.

    PubMed

    Prasad, Ananda S

    2008-01-01

    Although the essentiality of zinc for plants and animals has been known for many decades, the essentiality of zinc for humans was recognized only 40 years ago in the Middle East. The zinc-deficient patients had severe immune dysfunctions, inasmuch as they died of intercurrent infections by the time they were 25 years of age. In our studies in an experimental human model of zinc deficiency, we documented decreased serum testosterone level, oligospermia, severe immune dysfunctions mainly affecting T helper cells, hyperammonemia, neurosensory disorders, and decreased lean body mass. It appears that zinc deficiency is prevalent in the developing world and as many as two billion subjects may be growth retarded due to zinc deficiency. Besides growth retardation and immune dysfunctions, cognitive impairment due to zinc deficiency also has been reported recently. Our studies in the cell culture models showed that the activation of many zinc-dependent enzymes and transcription factors were adversely affected due to zinc deficiency. In HUT-78 (T helper 0 [Th(0)] cell line), we showed that a decrease in gene expression of interleukin-2 (IL-2) and IL-2 receptor alpha(IL-2Ralpha) were due to decreased activation of nuclear factor-kappaB (NF-kappaB) in zinc deficient cells. Decreased NF-kappaB activation in HUT-78 due to zinc deficiency was due to decreased binding of NF-kappaB to DNA, decreased level of NF-kappaB p105 (the precursor of NF-kappaB p50) mRNA, decreased kappaB inhibitory protein (IkappaB) phosphorylation, and decreased Ikappa kappa. These effects of zinc were cell specific. Zinc also is an antioxidant and has anti-inflammatory actions. The therapeutic roles of zinc in acute infantile diarrhea, acrodermatitis enteropathica, prevention of blindness in patients with age-related macular degeneration, and treatment of common cold with zinc have been reported. In HL-60 cells (promyelocytic leukemia cell line), zinc enhances the up-regulation of A20 mRNA, which, via TRAF

  1. The sulfated polysaccharide from a marine red microalga as a platform for the incorporation of zinc ions.

    PubMed

    Netanel Liberman, Gal; Ochbaum, Guy; Malis Arad, Shoshana; Bitton, Ronit

    2016-11-05

    The cell-wall sulfated polysaccharide of the marine red microalga Porphyridium sp. is a high molecular weight biopolymer that has potential for use as a platform for metal complexation for various applications. This paper describes the structural and rheological characterization and antibacterial activity of the polysaccharide in combination with Zn(2+) (Zn-PS). SAXS and rheology studies indicate that with the addition of ZnCl2 to the sulfated polysaccharide the only change was the increase in viscosity in the entangled regime. The antibacterial activity of Zn-PS solutions was more potent than that of the native polysaccharide against Gram-negative and Gram-positive bacteria. The synergy between the bioactivities of Zn(2+) (which is a key player in wound healing and is active against variety of pathogens) and the unique bioactivities of the polysaccharide (e.g., anti-inflammatory) indicates promising potential for the development of novel products for the pharmaceutical and cosmetics industries. Copyright © 2016. Published by Elsevier Ltd.

  2. Automotive sulfate emission data.

    PubMed Central

    Somers, J H

    1975-01-01

    This paper discusses automotive sulfate emission results obtained by the Office of Mobile Source Air Pollution Control of EPA, General Motors, Ford, Chrysler, and Esso. This work has been directed towards obtaining sulfate emission factors for cars with and without catalyst. While the EPA and Chrysler investigations have found significant sulfate formation in noncatalyst cars, GM, Ford, and Esso have found only trace levels from noncatalyst cars. All of these investigators agree that much higher quantities of sulfate are emitted from catalyst cars. The work done to date shows pelleted catalysts to have much lower sulfate emissions over the low speed-EPA Federal Test Procedures than monolith catalysts. This is probably due to temporary storage of sulfates on the catalyst due to chemical interaction with the alumina pellets. The sulfate compounds are, to a large degree, emitted later under higher speed conditions which result in higher catalyst temperatures which decompose the alumina salt. Future work will be directed towards further elucidation of this storage mechanism as well as determining in detail how factors such as air injection rate and catalyst location affect sulfate emissions. PMID:50932

  3. The Zinc Transporter Zip5 (Slc39a5) Regulates Intestinal Zinc Excretion and Protects the Pancreas against Zinc Toxicity

    PubMed Central

    Geiser, Jim; De Lisle, Robert C.; Andrews, Glen K.

    2013-01-01

    Background ZIP5 localizes to the baso-lateral membranes of intestinal enterocytes and pancreatic acinar cells and is internalized and degraded coordinately in these cell-types during periods of dietary zinc deficiency. These cell-types are thought to control zinc excretion from the body. The baso-lateral localization and zinc-regulation of ZIP5 in these cells are unique among the 14 members of the Slc39a family and suggest that ZIP5 plays a role in zinc excretion. Methods/Principal Findings We created mice with floxed Zip5 genes and deleted this gene in the entire mouse or specifically in enterocytes or acinar cells and then examined the effects on zinc homeostasis. We found that ZIP5 is not essential for growth and viability but total knockout of ZIP5 led to increased zinc in the liver in mice fed a zinc-adequate (ZnA) diet but impaired accumulation of pancreatic zinc in mice fed a zinc-excess (ZnE) diet. Loss-of-function of enterocyte ZIP5, in contrast, led to increased pancreatic zinc in mice fed a ZnA diet and increased abundance of intestinal Zip4 mRNA. Finally, loss-of-function of acinar cell ZIP5 modestly reduced pancreatic zinc in mice fed a ZnA diet but did not impair zinc uptake as measured by the rapid accumulation of 67zinc. Retention of pancreatic 67zinc was impaired in these mice but the absence of pancreatic ZIP5 sensitized them to zinc-induced pancreatitis and exacerbated the formation of large cytoplasmic vacuoles containing secretory protein in acinar cells. Conclusions These studies demonstrate that ZIP5 participates in the control of zinc excretion in mice. Specifically, they reveal a paramount function of intestinal ZIP5 in zinc excretion but suggest a role for pancreatic ZIP5 in zinc accumulation/retention in acinar cells. ZIP5 functions in acinar cells to protect against zinc-induced acute pancreatitis and attenuate the process of zymophagy. This suggests that it may play a role in autophagy. PMID:24303081

  4. Visible-light-enhanced interactions of hydrogen sulfide with composites of zinc (oxy)hydroxide with graphite oxide and graphene.

    PubMed

    Seredych, Mykola; Mabayoje, Oluwaniyi; Bandosz, Teresa J

    2012-01-17

    Composites of zinc(oxy)hydroxide-graphite oxide and of zinc(oxy)hydroxide-graphene were used as adsorbents of hydrogen sulfide under ambient conditions. The initial and exhausted samples were characterized by XRD, FTIR, potentiometric titration, EDX, thermal analysis, and nitrogen adsorption. An increase in the amount of H(2)S adsorbed/oxidized on their surfaces in comparison with that of pure Zn(OH)(2) is linked to the structure of the composite, the relative number of terminal hydroxyls, and the kind of graphene-based phase used. Although terminal groups are activated by a photochemical process, the graphite oxide component owing to the chemical bonds with the zinc(oxy)hydroxide phase and conductive properties helps in electron transfer, leading to more efficient oxygen activation via the formation of superoxide ions. Elemental sulfur, zinc sulfide, sulfite, and sulfate are formed on the surface. The formation of sulfur compounds on the surface of zinc(oxy)hydroxide during the course of the breakthrough experiments and thus Zn(OH)(2)-ZnS heterojunctions can also contribute to the increased surface activity of our materials. The results show the superiority of graphite oxide in the formation of composites owing to its active surface chemistry and the possibility of interface bond formation, leading to an increase in the number of electron-transfer reactions. © 2011 American Chemical Society

  5. Zinc pharmacokinetic parameters in the determination of body zinc status in children.

    PubMed

    Vale, S H L; Leite, L D; Alves, C X; Dantas, M M G; Costa, J B S; Marchini, J S; França, M C; Brandão-Neto, J

    2014-02-01

    Serum or tissue zinc concentrations are often used to assess body zinc status. However, all of these methods are relatively inaccurate. Thus, we investigated three different kinetic methods for the determination of zinc clearance to establish which of these could detect small changes in the body zinc status of children. Forty apparently healthy children were studied. Renal handling of zinc was investigated during intravenous zinc administration (0.06537 mg Zn/kg of body weight), both before and after oral zinc supplementation (5 mg Zn/day for 3 months). Three kinetic methods were used to determine zinc clearance: CZn-Formula A and CZn-Formula B were both used to calculate systemic clearance; the first is a general formula and the second is used for the specific analysis of a single-compartment model; CZn-Formula C is widely used in medical practices to analyze kinetic routine. Basal serum zinc values, which were within the reference range for healthy children, increased significantly after oral zinc supplementation. The three formulas used gave different results for zinc clearance both before and after oral zinc supplementation. CZn-Formula B showed a positive correlation with basal serum zinc concentration after oral supplementation (R2=0.1172, P=0.0306). In addition, CZn-Formula B (P=0.0002) was more effective than CZn-Formula A (P=0.6028) and CZn-Formula C (P=0.0732) in detecting small variations in body zinc status. All three of the formulas used are suitable for studying zinc kinetics; however, CZn-Formula B is particularly effective at detecting small changes in body zinc status in healthy children.

  6. Morphology control of zinc regeneration for zinc-air fuel cell and battery

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Pei, Pucheng; Ma, Ze; Xu, Huachi; Li, Pengcheng; Wang, Xizhong

    2014-12-01

    Morphology control is crucial both for zinc-air batteries and for zinc-air fuel cells during zinc regeneration. Zinc dendrite should be avoided in zinc-air batteries and zinc pellets are yearned to be formed for zinc-air fuel cells. This paper is mainly to analyze the mechanism of shape change and to control the zinc morphology during charge. A numerical three-dimensional model for zinc regeneration is established with COMSOL software on the basis of ionic transport theory and electrode reaction electrochemistry, and some experiments of zinc regeneration are carried out. The deposition process is qualitatively analyzed by the kinetics Monte Carlo method to study the morphological change from the electrocrystallization point of view. Morphological evolution of deposited zinc under different conditions of direct currents and pulse currents is also investigated by simulation. The simulation shows that parametric variables of the flowing electrolyte, the surface roughness and the structure of the electrode, the charging current and mode affect morphological evolution. The uniform morphology of deposited zinc is attained at low current, pulsating current or hydrodynamic electrolyte, and granular morphology is obtained by means of an electrode of discrete columnar structure in combination with high current and flowing electrolyte.

  7. Novel Alkylsulfatases Required for Biodegradation of the Branched Primary Alkyl Sulfate Surfactant 2-Butyloctyl Sulfate

    PubMed Central

    Ellis, Andrew J.; Hales, Stephen G.; Ur-Rehman, Naheed G. A.; White, Graham F.

    2002-01-01

    Recent reports show that contrary to common perception, branched alkyl sulfate surfactants are readily biodegradable in standard biodegradability tests. We report here the isolation of bacteria capable of biodegrading 2-butyloctyl sulfate and the identification of novel enzymes that initiate the process. Enrichment culturing from activated sewage sludge yielded several strains capable of growth on 2-butyloctyl sulfate. Of these, two were selected for further study and identified as members of the genus Pseudomonas. Strain AE-A was able to utilize either sodium dodecyl sulfate (SDS) or 2-butyloctyl sulfate as a carbon and energy source for growth, but strain AE-D utilized only the latter. Depending on growth conditions, strain AE-A produced up to three alkylsulfatases, as shown by polyacrylamide gel electrophoresis zymography. Growth on either SDS or 2-butyloctyl sulfate or in nutrient broth produced an apparently constitutive, nonspecific primary alkylsulfatase, AP1, weakly active on SDS and on 2-butyloctyl sulfate. Growth on 2-butyloctyl sulfate produced a second enzyme, AP2, active on 2-butyloctyl sulfate but not on SDS, and growth on SDS produced a third enzyme, AP3, active on SDS but not on 2-butyloctyl sulfate. In contrast, strain AE-D, when grown on 2-butyloctyl sulfate (no growth on SDS), produced a single enzyme, DP1, active on 2-butyloctyl sulfate but not on SDS. DP1 was not produced in broth cultures. DP1 was induced when residual 2-butyloctyl sulfate was present in the growth medium, but the enzyme disappeared when the substrate was exhausted. Gas chromatographic analysis of products of incubating 2-butyloctyl sulfate with DP1 in gels revealed the formation of 2-butyloctanol, showing the enzyme to be a true sulfatase. In contrast, Pseudomonas sp. strain C12B, well known for its ability to degrade linear SDS, was unable to grow on 2-butyloctyl sulfate, and its alkylsulfatases responsible for initiating the degradation of SDS by releasing the parent

  8. Zinc and Autophagy

    PubMed Central

    Liuzzi, Juan P.; Guo, Liang; Yoo, Changwon; Stewart, Tiffanie S

    2014-01-01

    Autophagy is a highly conserved degradative process through which cells overcome stressful conditions. Inasmuch as faulty autophagy has been associated with aging, neuronal degeneration disorders, diabetes, and fatty liver, autophagy is regarded as a potential therapeutic target. This review summarizes the present state of knowledge concerning the role of zinc in the regulation of autophagy, the role of autophagy in zinc metabolism, and the potential role of autophagy as a mediator of the protective effects of zinc. Data from in vitro studies consistently support the notion that zinc is critical for early and late autophagy. Studies have shown inhibition of early and late autophagy in cells cultured in medium treated with zinc chelators. Conversely, excess zinc added to the medium has shown to potentiate the stimulation of autophagy by tamoxifen, H2O2, ethanol and dopamine. The potential role of autophagy in zinc homeostasis has just begun to be investigated.Increasing evidence indicates that autophagy dysregulation causes significant changes in cellular zinc homeostasis. Autophagy may mediate the protective effect of zinc against lipid accumulation, apoptosis and inflammation by promoting degradation of lipid droplets, inflammasomes, p62/SQSTM1 and damaged mitochondria.Studies with humans and animal models are necessary to determine whether autophagy is influenced by zinc intake. PMID:25012760

  9. A dynamic model for predicting growth in zinc-deficient stunted infants given supplemental zinc.

    PubMed

    Wastney, Meryl E; McDonald, Christine M; King, Janet C

    2018-05-01

    Zinc deficiency limits infant growth and increases susceptibility to infections, which further compromises growth. Zinc supplementation improves the growth of zinc-deficient stunted infants, but the amount, frequency, and duration of zinc supplementation required to restore growth in an individual child is unknown. A dynamic model of zinc metabolism that predicts changes in weight and length of zinc-deficient, stunted infants with dietary zinc would be useful to define effective zinc supplementation regimens. The aims of this study were to develop a dynamic model for zinc metabolism in stunted, zinc-deficient infants and to use that model to predict the growth response when those infants are given zinc supplements. A model of zinc metabolism was developed using data on zinc kinetics, tissue zinc, and growth requirements for healthy 9-mo-old infants. The kinetic model was converted to a dynamic model by replacing the rate constants for zinc absorption and excretion with functions for these processes that change with zinc intake. Predictions of the dynamic model, parameterized for zinc-deficient, stunted infants, were compared with the results of 5 published zinc intervention trials. The model was then used to predict the results for zinc supplementation regimes that varied in the amount, frequency, and duration of zinc dosing. Model predictions agreed with published changes in plasma zinc after zinc supplementation. Predictions of weight and length agreed with 2 studies, but overpredicted values from a third study in which other nutrient deficiencies may have been growth limiting; the model predicted that zinc absorption was impaired in that study. The model suggests that frequent, smaller doses (5-10 mg Zn/d) are more effective for increasing growth in stunted, zinc-deficient 9-mo-old infants than are larger, less-frequent doses. The dose amount affects the duration of dosing necessary to restore and maintain plasma zinc concentration and growth.

  10. [Regulation of sulfates, hydrogen sulfide and heavy metals in technogenic reservoirs by sulfate-reducing bacteria].

    PubMed

    Hudz', S P; Peretiatko, T B; Moroz, O M; Hnatush, S O; Klym, I R

    2011-01-01

    Sulfate-reducing bacteria Desulfovibrio desulfuricans Ya-11 in the presence of sulfates and organic compounds in the medium reduce sulfates to hydrogen sulfide (dissimilatory sulfate reduction). Heavy metals in concentration over 2 mM inhibit this process. Pb2+, Zn2+, Ni2+, Co2+, Fe2+ and Cd2+ ions in concentration 1-1.5 mM display insignificant inhibiting effect on sulfate reduction process, and metals precipitate in the form of sulfides. At concentrations of heavy metals 2-3 mM one can observe a decrease of sulfates reduction intensity, and a percent of metals binding does not exceed 72%. Obtained results give reason to confirm, that sulfate-reducing bacteria play an important role in regulation of the level of sulfates, hydrogen sulfide and heavy metals in reservoirs and they may be used for purification of water environment from these compounds.

  11. Production of zinc pellets

    DOEpatents

    Cooper, J.F.

    1996-11-26

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries. 6 figs.

  12. Production of zinc pellets

    DOEpatents

    Cooper, John F.

    1996-01-01

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries.

  13. Zinc Signals and Immunity.

    PubMed

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-10-24

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as "zinc waves", and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.

  14. Zinc Signals and Immunity

    PubMed Central

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-01-01

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as “zinc waves”, and late homeostatic zinc signals regarding prolonged changes in intracellular zinc. PMID:29064429

  15. Zinc in Cellular Regulation: The Nature and Significance of "Zinc Signals".

    PubMed

    Maret, Wolfgang

    2017-10-31

    In the last decade, we witnessed discoveries that established Zn 2+ as a second major signalling metal ion in the transmission of information within cells and in communication between cells. Together with Ca 2+ and Mg 2+ , Zn 2+ covers biological regulation with redox-inert metal ions over many orders of magnitude in concentrations. The regulatory functions of zinc ions, together with their functions as a cofactor in about three thousand zinc metalloproteins, impact virtually all aspects of cell biology. This article attempts to define the regulatory functions of zinc ions, and focuses on the nature of zinc signals and zinc signalling in pathways where zinc ions are either extracellular stimuli or intracellular messengers. These pathways interact with Ca 2+ , redox, and phosphorylation signalling. The regulatory functions of zinc require a complex system of precise homeostatic control for transients, subcellular distribution and traffic, organellar homeostasis, and vesicular storage and exocytosis of zinc ions.

  16. Zinc and Wound Healing: A Review of Zinc Physiology and Clinical Applications.

    PubMed

    Kogan, Samuel; Sood, Aditya; Garnick, Mark S

    2017-04-01

    Our understanding of the role of zinc in normal human physiology is constantly expanding, yet there are major gaps in our knowledge with regard to the function of zinc in wound healing. This review aims to provide the clinician with sufficient understanding of zinc biology and an up-to-date perspective on the role of zinc in wound healing. Zinc is an essential ion that is crucial for maintenance of normal physiology, and zinc deficiency has many manifestations ranging from delayed wound healing to immune dysfunction and impairment of multiple sensory systems. While consensus has been reached regarding the detrimental effects of zinc deficiency on wound healing, there is considerable discord in the literature on the optimal methods and true benefits of zinc supplementation.

  17. Zinc

    MedlinePlus

    ... Guidelines for Americans and the U.S. Department of Agriculture's MyPlate . Where can I find out more about ... on food sources of zinc: U.S. Department of Agriculture's (USDA’s) National Nutrient Database Nutrient List for zinc ( ...

  18. The requirement of ammonium or other cations linked with p-cresol sulfate for cross-reactivity with a peptide of myelin basic protein.

    PubMed

    Jackson, Patricia L; Cao, Ligong; Blalock, J Edwin; Whitaker, John N

    2003-10-15

    Urinary myelin basic protein-like material (MBPLM), so designated because of its immunoreactivity with a polyclonal antibody directed against a cryptic epitope located in residues 83-89 of myelin basic protein (MBP), exists in humans normally but increases in concentration in patients with multiple sclerosis who have progressive disease. Given its possible role in reflecting events of neural tissue destruction occurring in multiple sclerosis, urinary MBPLM is a candidate surrogate marker for this phase of the disease. Previously, it has been demonstrated that p-cresol sulfate (PCS) is the dominant component of MBPLM; however, another component(s) was essential in enabling p-cresol sulfate to have molecular mimicry with MBP peptide 83-89 detected by immunoreactivity. In the present investigation, this remaining component(s) was characterized by a combination of high performance size exclusion chromatography followed by nuclear magnetic resonance spectroscopy and shown to be ammonium. The monovalent cation ammonium could be substituted in vitro by several different monovalent and divalent cations, most notably zinc, in restoring to deprotonated p-cresol sulfate its immunoreactivity as MBPLM. These findings indicate the basis for the unexpected molecular mimicry between an epitope of an encephalitogenic protein and a complex containing a small organic molecule, p-cresol sulfate. Furthermore, the reaction of either ammonium or other cations with p-cresol sulfate may represent an in vivo process directly related to damage of axonal membranes.

  19. The role of sulfate in aerobic granular sludge process for emerging sulfate-laden wastewater treatment.

    PubMed

    Xue, Weiqi; Hao, Tianwei; Mackey, Hamish R; Li, Xiling; Chan, Richard C; Chen, Guanghao

    2017-11-01

    Sulfate-rich wastewaters pose a major threat to mainstream wastewater treatment due to the unpreventable production of sulfide and associated shift in functional bacteria. Aerobic granular sludge could mitigate these challenges in view of its high tolerance and resilience against changes in various environmental conditions. This study aims to confirm the feasibility of aerobic granular sludge in the treatment of sulfate containing wastewater, investigate the impact of sulfate on nutrient removal and granulation, and reveal metabolic relationships in the above processes. Experiments were conducted using five sequencing batch reactors with different sulfate concentrations operated under alternating anoxic/aerobic condition. Results showed that effect of sulfate on chemical oxygen demand (COD) removal is negligible, while phosphate removal was enhanced from 12% to 87% with an increase in sulfate from 0 to 200 mg/L. However, a long acclimatization of the biomass (more than 70 days) is needed at a sulfate concentration of 500 mg/L and a total deterioration of phosphate removal at 1000 mg/L. Batch tests revealed that sulfide promoted volatile fatty acids (VFAs) uptake, producing more energy for phosphate uptake when sulfate concentrations were beneath 200 mg/L. However, sulfide detoxification became energy dominating, leaving insufficient energy for Polyhydroxyalkanoate (PHA) synthesis and phosphate uptake when sulfate content was further increased. Granulation accelerated with increasing sulfate levels by enhanced production of N-Acyl homoserine lactones (AHLs), a kind of quorum sensing (QS) auto-inducer, using S-Adenosyl Methionine (SAM) as primer. The current study demonstrates interactions among sulfate metabolism, nutrients removal and granulation, and confirms the feasibility of using the aerobic granular sludge process for sulfate-laden wastewaters treatment with low to medium sulfate content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effects of Zinc Supplementation on Endocrine Outcomes in Women with Polycystic Ovary Syndrome: a Randomized, Double-Blind, Placebo-Controlled Trial.

    PubMed

    Jamilian, Mehri; Foroozanfard, Fatemeh; Bahmani, Fereshteh; Talaee, Rezvan; Monavari, Mahshid; Asemi, Zatollah

    2016-04-01

    The current study was conducted to evaluate the effects of zinc supplementation on endocrine outcomes, biomarkers of inflammation, and oxidative stress in patients with polycystic ovary syndrome (PCOS). This study was a randomized double-blind, placebo-controlled trial. Forty-eight women (18-40 years) with PCOS diagnosed according to Rotterdam criteria were randomly assigned to receive either 220 mg zinc sulfate (containing 50 mg zinc) (group 1; n = 24) and/or placebo (group 2; n = 24) for 8 weeks. Hormonal profiles, biomarkers of inflammation, and oxidative stress were measured at study baseline and after 8-week intervention. After 8 weeks of intervention, alopecia (41.7 vs. 12.5%, P = 0.02) decreased compared with the placebo. Additionally, patients who received zinc supplements had significantly decreased hirsutism (modified Ferriman-Gallwey scores) (-1.71 ± 0.99 vs. -0.29 ± 0.95, P < 0.001) and plasma malondialdehyde (MDA) levels (-0.09 ± 1.31 vs. +2.34 ± 5.53 μmol/L, P = 0.04) compared with the placebo. A trend toward a significant effect of zinc intake on reducing high-sensitivity C-reactive protein (hs-CRP) levels (P = 0.06) was also observed. We did observe no significant changes of zinc supplementation on hormonal profiles, inflammatory cytokines, and other biomarkers of oxidative stress. In conclusion, using 50 mg/day elemental zinc for 8 weeks among PCOS women had beneficial effects on alopecia, hirsutism, and plasma MDA levels; however, it did not affect hormonal profiles, inflammatory cytokines, and other biomarkers of oxidative stress.

  1. Hyperaccumulation of zinc by zinc-depleted Candida utilis grown in chemostat culture.

    PubMed

    Lawford, H G; Pik, J R; Lawford, G R; Williams, T; Kligerman, A

    1980-01-01

    The steady-state levels of zinc in Candida utilis yeast grown in continuous culture under conditions of zinc limitations are <1nmol Zn2+/mg dry weight of cells. Unlike carbon-limited cells, zinc-depleted cells from a zinc-limited chemostat possess the capacity to accumulate and store zinc at levels far in excess of the steady-state level of 4 nmol/mg dry biomass observed in carbon-limited chemostat cultures. Zinc uptake is energy-dependent and apparently undirectional since accumulated 65Zn neither exists from preloaded cells nor exchanges with cold Zn2+. The transport system exhibits a high affinity for Zn2+ (Km =.36micrM) with a Vmaxof 2.2 nmol per minute per milligram dry weight of cells. Growth during the period of the uptake assay is responsible for the apparent plateau level of 35 nmol Zn2+/mg dry weight of cells achieved after 20-30 min in the presence of 65Zn at pH 4.5 and 30 degrees C. Inhibition of growth during the uptake assay by cycloheximide results in a biphasic linear pattern of zinc accumulation where the cellular zinc is about 60 nmol/mg dry weight after 1 h. The enhanced level of accumulated zinc is not inhibtory to growth. Zinc-depleted C. utilis contains elevated amounts of polyphosphate and this anionic evidence does not allow discrimination between possible regulation of zinc homestasis either by inhibitions of zinc efflux through control of the membrane carrier or by control of the synthesis of a cytoplasmic zinc-sequestering macromolecule.

  2. Modeling Reduction of Uranium U(VI) under Variable Sulfate Concentrations by Sulfate-Reducing Bacteria

    PubMed Central

    Spear, John R.; Figueroa, Linda A.; Honeyman, Bruce D.

    2000-01-01

    The kinetics for the reduction of sulfate alone and for concurrent uranium [U(VI)] and sulfate reduction, by mixed and pure cultures of sulfate-reducing bacteria (SRB) at 21 ± 3°C were studied. The mixed culture contained the SRB Desulfovibrio vulgaris along with a Clostridium sp. determined via 16S ribosomal DNA analysis. The pure culture was Desulfovibrio desulfuricans (ATCC 7757). A zero-order model best fit the data for the reduction of sulfate from 0.1 to 10 mM. A lag time occurred below cell concentrations of 0.1 mg (dry weight) of cells/ml. For the mixed culture, average values for the maximum specific reaction rate, Vmax, ranged from 2.4 ± 0.2 μmol of sulfate/mg (dry weight) of SRB · h−1) at 0.25 mM sulfate to 5.0 ± 1.1 μmol of sulfate/mg (dry weight) of SRB · h−1 at 10 mM sulfate (average cell concentration, 0.52 mg [dry weight]/ml). For the pure culture, Vmax was 1.6 ± 0.2 μmol of sulfate/mg (dry weight) of SRB · h−1 at 1 mM sulfate (0.29 mg [dry weight] of cells/ml). When both electron acceptors were present, sulfate reduction remained zero order for both cultures, while uranium reduction was first order, with rate constants of 0.071 ± 0.003 mg (dry weight) of cells/ml · min−1 for the mixed culture and 0.137 ± 0.016 mg (dry weight) of cells/ml · min−1 (U0 = 1 mM) for the D. desulfuricans culture. Both cultures exhibited a faster rate of uranium reduction in the presence of sulfate and no lag time until the onset of U reduction in contrast to U alone. This kinetics information can be used to design an SRB-dominated biotreatment scheme for the removal of U(VI) from an aqueous source. PMID:10966381

  3. Additionally sulfated xylomannan sulfates from Scinaia hatei and their antiviral activities.

    PubMed

    Ray, Sayani; Pujol, Carlos A; Damonte, Elsa B; Ray, Bimalendu

    2015-10-20

    Herpes simplex viruses (HSVs) display affinity for cell-surface heparan sulfate proteoglycans with biological relevance in virus entry. This study demonstrates the potential of chemically engineered sulfated xylomannans from Scinaia hatei as antiHSV drug candidate. Particularly, a dimethylformamide -SO3/pyridine based procedure has been employed for the generation of anionic polysaccharides. This one-step procedure has the power of providing a spectrum of xylomannans with varying molecular masses (<12-74kDa), sulfate content (1-50%) and glycosyl composition. Especially, the sulfated xylomannans S1F1 and S2F1 possessed altered activity against HSV-1 and HSV-2 compared to the parental compound (F1) and that too in the absence of drug-induced cytotoxicity. Regarding methodological facet, the directive decoration of hydroxyl functionality with sulfate group plus changes in the molecular mass and sugar composition during isolation by the used reagent opens a door for the production of new molecular entity with altered biological activity from other natural sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Sulfation degree not origin of chondroitin sulfate derivatives modulates keratinocyte response.

    PubMed

    Corsuto, Luisana; Rother, Sandra; Koehler, Linda; Bedini, Emiliano; Moeller, Stephanie; Schnabelrauch, Matthias; Hintze, Vera; Schiraldi, Chiara; Scharnweber, Dieter

    2018-07-01

    Chondroitin sulfate (CS) sulfation-dependently binds transforming growth factor-β1 (TGF-β1) and chronic wounds often accompany with epidermal hyperproliferation due to downregulated TGF-β signaling. However, the impact of CS on keratinocytes is unknown. Especially biotechnological-chemical strategies are promising to replace animal-derived CS. Thus, this study aims to evaluate the effects of CS derivatives on the interaction with vascular endothelial growth factor-A (VEGF-A) and on keratinocyte response. Over-sulfated CS (sCS3) interacts stronger with VEGF-A than CS. Furthermore, collagen coatings with CS variants are prepared by in vitro fibrillogenesis. Stability analyses demonstrate that collagen is firmly integrated, while the fibril diameters decrease with increasing sulfation degree. CS variants sulfation-dependently decelerate keratinocyte (HaCaT) migration and proliferation in a scratch assay. HaCaT cultured on sCS3-containing coatings produced increased amounts of solute active TGF-β1 which could be translated into biomaterials able to decrease epidermal hyperproliferation in chronic wounds. Overall, semi-synthetic and natural CS yield to comparable responses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Mixtures of Sulfates in Melas Chasma

    NASA Image and Video Library

    2017-09-04

    In this image from NASA's Mars Reconnaissance Orbiter, layering within the light-toned sulfate deposit is the result of different states of hydration. Some of the layers have sulfates with little water (known as monohydrated sulfates) whereas other layers have higher amounts of water (called polyhydrated sulfates). The different amounts of water within the sulfates may reflect changes in the water chemistry during deposition of the sulfates, or may have occurred after the sulfates were laid down when heat or pressure forced the water out of some layers, causing a decrease in the hydration state. Many locations on Mars have sulfates, which are sedimentary rocks formed in water. Within Valles Marineris, the large canyon system that cuts across the planet, there are big and thick sequences of sulfates. The CRISM instrument on MRO is crucial for telling scientists which type of sulfate is associated with each layer, because each hydration state will produce a spectrum with absorptions at specific wavelengths depending upon the amount of water contained within the sulfate. https://photojournal.jpl.nasa.gov/catalog/PIA21935

  6. Update on zinc biology.

    PubMed

    Solomons, Noel W

    2013-01-01

    Zinc has become a prominent nutrient of clinical and public health interest in the new millennium. Functions and actions for zinc emerge as increasingly ubiquitous in mammalian anatomy, physiology and metabolism. There is undoubtedly an underpinning in fundamental biology for all of the aspects of zinc in human health (clinical and epidemiological) in pediatric and public health practice. Unfortunately, basic science research may not have achieved a full understanding as yet. As a complement to the applied themes in the companion articles, a selection of recent advances in the domains homeostatic regulation and transport of zinc is presented; they are integrated, in turn, with findings on genetic expression, intracellular signaling, immunity and host defense, and bone growth. The elements include ionic zinc, zinc transporters, metallothioneins, zinc metalloenzymes and zinc finger proteins. In emerging basic research, we find some plausible mechanistic explanations for delayed linear growth with zinc deficiency and increased infectious disease resistance with zinc supplementation. Copyright © 2013 S. Karger AG, Basel.

  7. Zinc at glutamatergic synapses.

    PubMed

    Paoletti, P; Vergnano, A M; Barbour, B; Casado, M

    2009-01-12

    It has long been known that the mammalian forebrain contains a subset of glutamatergic neurons that sequester zinc in their synaptic vesicles. This zinc may be released into the synaptic cleft upon neuronal activity. Extracellular zinc has the potential to interact with and modulate many different synaptic targets, including glutamate receptors and transporters. Among these targets, NMDA receptors appear particularly interesting because certain NMDA receptor subtypes (those containing the NR2A subunit) contain allosteric sites exquisitely sensitive to extracellular zinc. The existence of these high-affinity zinc binding sites raises the possibility that zinc may act both in a phasic and tonic mode. Changes in zinc concentration and subcellular zinc distribution have also been described in several pathological conditions linked to glutamatergic transmission dysfunctions. However, despite intense investigation, the functional significance of vesicular zinc remains largely a mystery. In this review, we present the anatomy and the physiology of the glutamatergic zinc-containing synapse. Particular emphasis is put on the molecular and cellular mechanisms underlying the putative roles of zinc as a messenger involved in excitatory synaptic transmission and plasticity. We also highlight the many controversial issues and unanswered questions. Finally, we present and compare two widely used zinc chelators, CaEDTA and tricine, and show why tricine should be preferred to CaEDTA when studying fast transient zinc elevations as may occur during synaptic activity.

  8. High rates of sulfate reduction in a low-sulfate hot spring microbial mat are driven by a low level of diversity of sulfate-respiring microorganisms.

    PubMed

    Dillon, Jesse G; Fishbain, Susan; Miller, Scott R; Bebout, Brad M; Habicht, Kirsten S; Webb, Samuel M; Stahl, David A

    2007-08-01

    The importance of sulfate respiration in the microbial mat found in the low-sulfate thermal outflow of Mushroom Spring in Yellowstone National Park was evaluated using a combination of molecular, microelectrode, and radiotracer studies. Despite very low sulfate concentrations, this mat community was shown to sustain a highly active sulfur cycle. The highest rates of sulfate respiration were measured close to the surface of the mat late in the day when photosynthetic oxygen production ceased and were associated with a Thermodesulfovibrio-like population. Reduced activity at greater depths was correlated with novel populations of sulfate-reducing microorganisms, unrelated to characterized species, and most likely due to both sulfate and carbon limitation.

  9. 21 CFR 184.1315 - Ferrous sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ferrous sulfate. 184.1315 Section 184.1315 Food... GRAS § 184.1315 Ferrous sulfate. (a) Ferrous sulfate heptahydrate (iron (II) sulfate heptahydrate, Fe... pale, bluish-green crystals or granules. Progressive heating of ferrous sulfate heptahydrate produces...

  10. Zinc and Zinc Transporters: Novel Regulators of Ventricular Myocardial Development.

    PubMed

    Lin, Wen; Li, Deqiang

    2018-06-01

    Ventricular myocardial development is a well-orchestrated process involving different cardiac structures, multiple signal pathways, and myriad proteins. Dysregulation of this important developmental event can result in cardiomyopathies, such as left ventricle non-compaction, which affect the pediatric population and the adults. Human and mouse studies have shed light upon the etiology of some cardiomyopathy cases and highlighted the contribution of both genetic and environmental factors. However, the regulation of ventricular myocardial development remains incompletely understood. Zinc is an essential trace metal with structural, enzymatic, and signaling function. Perturbation of zinc homeostasis has resulted in developmental and physiological defects including cardiomyopathy. In this review, we summarize several mechanisms by which zinc and zinc transporters can impact the regulation of ventricular myocardial development. Based on our review, we propose that zinc deficiency and mutations of zinc transporters may underlie some cardiomyopathy cases especially those involving ventricular myocardial development defects.

  11. Evaluation of solubility in simulated lung fluid of metals present in the slag from a metallurgical industry to produce metallic zinc.

    PubMed

    Lima, Rosilda M G; Carneiro, Luana G; Afonso, Júlio C; Cunha, Kenya M D

    2013-01-01

    The objective of this study was to determine the solubility parameters (rapid and slow dissolution rates, rapid and slow dissolution fractions) for nickel, cadmium, zinc and manganese compounds present in a pile of slag accumulated under exposure to weathering. This slag was generated by a metallurgical industry that produced zinc and zinc alloys from hemimorphite (Zn(4)(OH)(2)Si(2)O(7).H(2)O) and willemite (Zn(2)SiO(4)) minerals. A static dissolution test in vitro was used to determine the solubility parameters and Gamble's solution was used as the simulated lung fluid (SLF), on a time basis ranging from 10 min to 1 year. The metal concentrations in the slag samples and in the SLF were determined using Particle Induced X-rays Emission (PIXE). There are significant differences in terms of solubility parameters among the metals. The results indicated that the zinc, nickel, cadmium and manganese compounds present in the slag were moderately soluble in the SLF. The rapid dissolution fractions of these metals are associated with their sulfates. In conclusion, this study confirms the harmful effects on the neighboring population of the airborne particles containing these metals that came from the slag.

  12. High Rates of Sulfate Reduction in a Low-Sulfate Hot Spring Microbial Mat Are Driven by a Low Level of Diversity of Sulfate-Respiring Microorganisms▿

    PubMed Central

    Dillon, Jesse G.; Fishbain, Susan; Miller, Scott R.; Bebout, Brad M.; Habicht, Kirsten S.; Webb, Samuel M.; Stahl, David A.

    2007-01-01

    The importance of sulfate respiration in the microbial mat found in the low-sulfate thermal outflow of Mushroom Spring in Yellowstone National Park was evaluated using a combination of molecular, microelectrode, and radiotracer studies. Despite very low sulfate concentrations, this mat community was shown to sustain a highly active sulfur cycle. The highest rates of sulfate respiration were measured close to the surface of the mat late in the day when photosynthetic oxygen production ceased and were associated with a Thermodesulfovibrio-like population. Reduced activity at greater depths was correlated with novel populations of sulfate-reducing microorganisms, unrelated to characterized species, and most likely due to both sulfate and carbon limitation. PMID:17575000

  13. Chondroitin sulfate/dermatan sulfate sulfatases from mammals and bacteria.

    PubMed

    Wang, Shumin; Sugahara, Kazuyuki; Li, Fuchuan

    2016-12-01

    Sulfatases that specifically catalyze the hydrolysis of the sulfate groups on chondroitin sulfate (CS)/dermatan sulfate (DS) poly- and oligosaccharides belong to the formylglycine-dependent family of sulfatases and have been widely found in various mammalian and bacterial organisms. However, only a few types of CS/DS sulfatase have been identified so far. Recently, several novel CS/DS sulfatases have been cloned and characterized. Advanced studies have provided significant insight into the biological function and mechanism of action of CS/DS sulfatases. Moreover, further studies will provide powerful tools for structural and functional studies of CS/DS as well as related applications. This article reviews the recent progress in CS/DS sulfatase research and is expected to initiate further research in this field.

  14. Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.

    1994-01-01

    Sulfate reducers and related organisms which had previously been found to reduce Fe(III) with H2 or organic electron donors oxidized S0 to sulfate when Mn(IV) was provided as an electron acceptor. Organisms catalyzing this reaction in washed cell suspensions included Desulfovibrio desulfuricans, Desulfomicrobium baculatum. Desulfobacterium autotrophicum, Desulfuromonas acetoxidans, and Geobacter metallireducens. These organisms produced little or no sulfate from S0 with Fe(III) as a potential electron acceptor or in the absence of an electron acceptor. In detailed studies with Desulfovibrio desulfuricans, the stoichiometry of sulfate and Mn(II) production was consistent with the reaction S0 + 3 MnO2 + 4H+ ???SO42- + 3Mn(II) + 2H2O. None of the organisms evaluated could be grown with S0 as the sole electron donor and Mn(IV) as the electron acceptor. In contrast to the other sulfate reducers evaluated, Desulfobulbus propionicus produced sulfate from S0 in the absence of an electron acceptor and Fe(III) oxide stimulated sulfate production. Sulfide also accumulated in the absence of Mn(IV) or Fe(III). The stoichiometry of sulfate and sulfide production indicated that Desulfobulbus propionicus disproportionates S0 as follows: 4S0 + 4H2O???SO42- + 3HS- + 5 H+. Growth of Desulfobulbus propionicus with S0 as the electron donor and Fe(III) as a sulfide sink and/or electron acceptor was very slow. The S0 oxidation coupled to Mn(IV) reduction described here provides a potential explanation for the Mn(IV)-dependent sulfate production that previous studies have observed in anoxic marine sediments. Desulfobulbus propionicus is the first example of a pure culture known to disproportionate S0.

  15. Development and optimization of iron- and zinc-containing nanostructured powders for nutritional applications.

    PubMed

    Hilty, F M; Teleki, A; Krumeich, F; Büchel, R; Hurrell, R F; Pratsinis, S E; Zimmermann, M B

    2009-11-25

    Reducing the size of low-solubility iron (Fe)-containing compounds to nanoscale has the potential to improve their bioavailability. Because Fe and zinc (Zn) deficiencies often coexist in populations, combined Fe/Zn-containing nanostructured compounds may be useful for nutritional applications. Such compounds are developed here and their solubility in dilute acid, a reliable indicator of iron bioavailability in humans, and sensory qualities in sensitive food matrices are investigated. Phosphates and oxides of Fe and atomically mixed Fe/Zn-containing (primarily ZnFe2O4) nanostructured powders were produced by flame spray pyrolysis (FSP). Chemical composition and surface area were systematically controlled by varying precursor concentration and feed rate during powder synthesis to increase solubility to the level of ferrous sulfate at maximum Fe and Zn content. Solubility of the nanostructured compounds was dependent on their particle size and crystallinity. The new nanostructured powders produced minimal color changes when added to dairy products containing chocolate or fruit compared to the changes produced when ferrous sulfate or ferrous fumarate were added to these foods. Flame-made Fe- and Fe/Zn-containing nanostructured powders have solubilities comparable to ferrous and Zn sulfate but may produce fewer color changes when added to difficult-to-fortify foods. Thus, these powders are promising for food fortification and other nutritional applications.

  16. Sulfates on Mars: A systematic Raman spectroscopic study of hydration states of magnesium sulfates

    USGS Publications Warehouse

    Wang, A.; Freeman, J.J.; Jolliff, B.L.; Chou, I.-Ming

    2006-01-01

    The martian orbital and landed surface missions, OMEGA on Mar Express and the two Mars Explorations Rovers, respectively, have yielded evidence pointing to the presence of magnesium sulfates on the martian surface. In situ identification of the hydration states of magnesium sulfates, as well as the hydration states of other Ca- and Fe- sulfates, will be crucial in future landed missions on Mars in order to advance our knowledge of the hydrologic history of Mars as well as the potential for hosting life on Mars. Raman spectroscopy is a technique well-suited for landed missions on the martian surface. In this paper, we report a systematic study of the Raman spectra of the hydrates of magnesium sulfate. Characteristic and distinct Raman spectral patterns were observed for each of the 11 distinct hydrates of magnesium sulfates, crystalline and non-crystalline. The unique Raman spectral features along with the general tendency of the shift of the position of the sulfate ??1 band towards higher wavenumbers with a decrease in the degree of hydration allow in situ identification of these hydrated magnesium sulfates from the raw Raman spectra of mixtures. Using these Raman spectral features, we have started the study of the stability field of hydrated magnesium sulfates and the pathways of their transformations at various temperature and relative humidity conditions. In particular we report on the Raman spectrum of an amorphous hydrate of magnesium sulfate (MgSO4??2H2O) that may have specific relevance for the martian surface. ?? 2006 Elsevier Inc. All rights reserved.

  17. Using Terrestrial Sulfate Efflorescences as an Analogue of Hydrated Sulfate Formation in Valles Marineris on Mars

    NASA Astrophysics Data System (ADS)

    Smith, P. C.; Szynkiewicz, A.

    2015-12-01

    Hydrated sulfate minerals provide conclusive evidence that a hydrologic cycle was once active on the surface of Mars. Two classes of hydrated sulfate minerals have been detected by robotic instruments on Mars: monohydrated sulfate minerals comprised of kieserite and gypsum, and various polyhydrated sulfates with Fe-Ca-Na-Mg-rich compositions. These minerals are found in various locations on Mars, including large surface exposures in valley settings of Valles Marineris. However, the sulfate sources and formation mechanisms of these minerals are not yet well understood.Recently, it has been suggested that the sulfate minerals in Valles Marineris might have formed in a manner similar to sulfate efflorescences found in dry environments on Earth. In this study, we use sulfate effloresences from the Rio Puerco Watershed, New Mexico as a terrestrial analogue to assess major factors that might have led to deposition of sulfate minerals in Valles Marineris. In different seasons indicative of dry and wet conditions, we collected field photographs and sediment samples for chemical and stable isotopic analyses (sulfur content, δ34S) to determine major sources of sulfate ions for efflorescences and to assess how the seasonal changes in surface/groundwater activity affect their formation. Preliminary sulfur isotope results suggest that oxidation of bedrock sulfides (0.01-0.05 wt. S %) is a major source of sulfate ion for efflorescences formation because their δ34S varied in negative range (-28 to -20‰) similar to sulfides (average -32‰). Using field photographs collected in Oct 2006, Feb and Nov 2012, May 2013, Mar and Oct 2014, we infer that the highest surface accumulation of sulfate efflorescences in the studied analog site was observed after summer monsoon seasons when more water was available for surface and subsurface transport of solutes from chemical weathering. Conversely, spring snow melt led to enhanced dissolution of sulfate efflorescences.

  18. Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life12

    PubMed Central

    Maret, Wolfgang

    2013-01-01

    The nutritional essentiality of zinc for the growth of living organisms had been recognized long before zinc biochemistry began with the discovery of zinc in carbonic anhydrase in 1939. Painstaking analytical work then demonstrated the presence of zinc as a catalytic and structural cofactor in a few hundred enzymes. In the 1980s, the field again gained momentum with the new principle of “zinc finger” proteins, in which zinc has structural functions in domains that interact with other biomolecules. Advances in structural biology and a rapid increase in the availability of gene/protein databases now made it possible to predict zinc-binding sites from metal-binding motifs detected in sequences. This procedure resulted in the definition of zinc proteomes and the remarkable estimate that the human genome encodes ∼3000 zinc proteins. More recent developments focus on the regulatory functions of zinc(II) ions in intra- and intercellular information transfer and have tantalizing implications for yet additional functions of zinc in signal transduction and cellular control. At least three dozen proteins homeostatically control the vesicular storage and subcellular distribution of zinc and the concentrations of zinc(II) ions. Novel principles emerge from quantitative investigations on how strongly zinc interacts with proteins and how it is buffered to control the remarkably low cellular and subcellular concentrations of free zinc(II) ions. It is fair to conclude that the impact of zinc for health and disease will be at least as far-reaching as that of iron. PMID:23319127

  19. Tracing of Zinc Nanocrystals in the Anterior Pituitary of Zinc-Deficient Wistar Rats.

    PubMed

    Kuldeep, Anjana; Nair, Neena; Bedwal, Ranveer Singh

    2017-06-01

    The aim of this study was to trace zinc nanocrystals in the anterior pituitary of zinc-deficient Wistar rats by using autometallographic technique. Male Wistar rats (30-40 days of age, pre-pubertal period) of 40-50 g body weight were divided into the following: the ZC (zinc control) group-fed with 100 ppm zinc in diet, the ZD (zinc-deficient) group-fed with zinc-deficient (1.00 ppm) diet and the PF (pair-fed) group-received 100 ppm zinc in diet. The experiments were set for 2 and 4 weeks. Pituitary was removed and processed for the autometallographic technique. The control and pair-fed groups retained their normal morphological features. However, male Wistar rats fed on zinc-deficient diet for 2 and 4 weeks displayed a wide range of symptoms such as significant (P < 0.05) decrease in diet consumption, body weight and pituitary weight and decrease in gradation of intensity of zinc nanocrystals in the nuclei. The present findings suggest that the dietary zinc deficiency causes decreased intensity of zinc nanocrystals localization and their distribution in the pituitary thereby contributing to the dysfunction of the pituitary of the male Wistar rats. The severity of zinc deficiency symptoms progressed after the second week of the experiment. Decreased intensity of zinc nanocrystals attenuates the pituitary function which would exert its affect on other endocrine organs impairing their functions indicating that the metabolic regulation of pituitary is mediated to a certain extent by zinc and/or hypothalamus-hypophysial system which also reflects its essentiality during the period of growth.

  20. Intracellular zinc flux causes reactive oxygen species mediated mitochondrial dysfunction leading to cell death in Leishmania donovani.

    PubMed

    Kumari, Anjali; Singh, Krishn Pratap; Mandal, Abhishek; Paswan, Ranjeet Kumar; Sinha, Preeti; Das, Pradeep; Ali, Vahab; Bimal, Sanjiva; Lal, Chandra Shekhar

    2017-01-01

    Leishmaniasis caused by Leishmania parasite is a global threat to public health and one of the most neglected tropical diseases. Therefore, the discovery of novel drug targets and effective drug is a major challenge and an important goal. Leishmania is an obligate intracellular parasite that alternates between sand fly and human host. To survive and establish infections, Leishmania parasites scavenge and internalize nutrients from the host. Nevertheless, host cells presents mechanism like nutrient restriction to inhibit microbial growth and control infection. Zinc is crucial for cellular growth and disruption in its homeostasis hinders growth and survival in many cells. However, little is known about the role of zinc in Leishmania growth and survival. In this study, the effect of zinc on the growth and survival of L.donovani was analyzed by both Zinc-depletion and Zinc-supplementation using Zinc-specific chelator N, N, N', N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) and Zinc Sulfate (ZnSO4). Treatment of parasites with TPEN rather than ZnSO4 had significantly affected the growth in a dose- and time-dependent manner. The pre-treatment of promastigotes with TPEN resulted into reduced host-parasite interaction as indicated by decreased association index. Zn depletion resulted into flux in intracellular labile Zn pool and increased in ROS generation correlated with decreased intracellular total thiol and retention of plasma membrane integrity without phosphatidylserine exposure in TPEN treated promastigotes. We also observed that TPEN-induced Zn depletion resulted into collapse of mitochondrial membrane potential which is associated with increase in cytosolic calcium and cytochrome-c. DNA fragmentation analysis showed increased DNA fragments in Zn-depleted cells. In summary, intracellular Zn depletion in the L. donovani promastigotes led to ROS-mediated caspase-independent mitochondrial dysfunction resulting into apoptosis-like cell death. Therefore, cellular

  1. 21 CFR 184.1307 - Ferric sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ferric sulfate. 184.1307 Section 184.1307 Food and... Substances Affirmed as GRAS § 184.1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS Reg. No. 10028-22-5) is a yellow substance that may be prepared by oxidizing iron (II) sulfate or by...

  2. 21 CFR 184.1307 - Ferric sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferric sulfate. 184.1307 Section 184.1307 Food and... Substances Affirmed as GRAS § 184.1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS Reg. No. 10028-22-5) is a yellow substance that may be prepared by oxidizing iron (II) sulfate or by...

  3. 21 CFR 184.1307 - Ferric sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ferric sulfate. 184.1307 Section 184.1307 Food and... Substances Affirmed as GRAS § 184.1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS Reg. No. 10028-22-5) is a yellow substance that may be prepared by oxidizing iron (II) sulfate or by...

  4. 21 CFR 184.1307 - Ferric sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ferric sulfate. 184.1307 Section 184.1307 Food and....1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS Reg. No. 10028-22-5) is a yellow substance that may be prepared by oxidizing iron (II) sulfate or by treating ferric oxide or...

  5. 21 CFR 184.1307 - Ferric sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ferric sulfate. 184.1307 Section 184.1307 Food and... Substances Affirmed as GRAS § 184.1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS Reg. No. 10028-22-5) is a yellow substance that may be prepared by oxidizing iron (II) sulfate or by...

  6. Contribution of Zinc Solubilizing Bacteria in Growth Promotion and Zinc Content of Wheat.

    PubMed

    Kamran, Sana; Shahid, Izzah; Baig, Deeba N; Rizwan, Muhammad; Malik, Kauser A; Mehnaz, Samina

    2017-01-01

    Zinc is an imperative micronutrient required for optimum plant growth. Zinc solubilizing bacteria are potential alternatives for zinc supplementation and convert applied inorganic zinc to available forms. This study was conducted to screen zinc solubilizing rhizobacteria isolated from wheat and sugarcane, and to analyze their effect on wheat growth and development. Fourteen exo-polysaccharides producing bacterial isolates of wheat were identified and characterized biochemically as well as on the basis of 16S rRNA gene sequences. Along these, 10 identified sugarcane isolates were also screened for zinc solubilizing ability on five different insoluble zinc sources. Out of 24, five strains, i.e., EPS 1 ( Pseudomonas fragi) , EPS 6 ( Pantoea dispersa) , EPS 13 ( Pantoea agglomerans) , PBS 2 ( E. cloacae) and LHRW1 ( Rhizobium sp.) were selected (based on their zinc solubilizing and PGP activities) for pot scale plant experiments. ZnCO 3 was used as zinc source and wheat seedlings were inoculated with these five strains, individually, to assess their effect on plant growth and development. The effect on plants was analyzed based on growth parameters and quantifying zinc content of shoot, root and grains using atomic absorption spectroscopy. Plant experiment was performed in two sets. For first set of plant experiments (harvested after 1 month), maximum shoot and root dry weights and shoot lengths were noted for the plants inoculated with Rhizobium sp. (LHRW1) while E. cloacae (PBS 2) increased both shoot and root lengths. Highest zinc content was found in shoots of E. cloacae (PBS 2) and in roots of P. agglomerans (EPS 13) followed by zinc supplemented control. For second set of plant experiment, when plants were harvested after three months, Pantoea dispersa (EPS 6), P. agglomerans (EPS 13) and E. cloacae (PBS 2) significantly increased shoot dry weights. However, significant increase in root dry weights and maximum zinc content was recorded for Pseudomonas fragi (EPS

  7. Zinc

    USDA-ARS?s Scientific Manuscript database

    Zinc was recognized as an essential trace metal for humans during the studies of Iranian adolescent dwarfs in the early 1960s. Zinc metal existing as Zn2+ is a strong electron acceptor in biological systems without risks of oxidant damage to cells. Zn2+ functions in the structure of proteins and is ...

  8. Zinc and Chlamydia trachomatis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugarman, B.; Epps, L.R.

    1985-07-01

    Zinc was noted to have significant effects upon the infection of McCoy cells by each of two strains of Chlamydia trachomatis. With a high or low Chlamydia inoculant, the number of infected cells increased up to 200% utilizing supplemental zinc (up to 1 x 10/sup -4/ M) in the inoculation media compared with standard Chlamydia cultivation media (8 x 10/sup -6/ M zinc). Ferric chloride and calcium chloride did not effect any such changes. Higher concentrations of zinc, after 2 hr of incubation with Chlamydia, significantly decreased the number of inclusions. This direct effect of zinc on the Chlamydia remainedmore » constant after further repassage of the Chlamydia without supplemental zinc, suggesting a lethal effect of the zinc. Supplemental zinc (up to 10/sup -4/ M) may prove to be a useful addition to inoculation media to increase the yield of culturing for Chlamydia trachomatis. Similarly, topical or oral zinc preparations used by people may alter their susceptibility to Chamydia trachomatis infections.« less

  9. Association between Maternal Zinc Status, Dietary Zinc Intake and Pregnancy Complications: A Systematic Review

    PubMed Central

    Wilson, Rebecca L.; Grieger, Jessica A.; Bianco-Miotto, Tina; Roberts, Claire T.

    2016-01-01

    Adequate zinc stores in the body are extremely important during periods of accelerated growth. However, zinc deficiency is common in developing countries and low maternal circulating zinc concentrations have previously been associated with pregnancy complications. We reviewed current literature assessing circulating zinc and dietary zinc intake during pregnancy and the associations with preeclampsia (PE); spontaneous preterm birth (sPTB); low birthweight (LBW); and gestational diabetes (GDM). Searches of MEDLINE; CINAHL and Scopus databases identified 639 articles and 64 studies were reviewed. In 10 out of 16 studies a difference was reported with respect to circulating zinc between women who gave birth to a LBW infant (≤2500 g) and those who gave birth to an infant of adequate weight (>2500 g), particularly in populations where inadequate zinc intake is prevalent. In 16 of our 33 studies an association was found between hypertensive disorders of pregnancy and circulating zinc; particularly in women with severe PE (blood pressure ≥160/110 mmHg). No association between maternal zinc status and sPTB or GDM was seen; however; direct comparisons between the studies was difficult. Furthermore; only a small number of studies were based on women from populations where there is a high risk of zinc deficiency. Therefore; the link between maternal zinc status and pregnancy success in these populations cannot be established. Future studies should focus on those vulnerable to zinc deficiency and include dietary zinc intake as a measure of zinc status. PMID:27754451

  10. Acetate Production from Oil under Sulfate-Reducing Conditions in Bioreactors Injected with Sulfate and Nitrate

    PubMed Central

    Callbeck, Cameron M.; Agrawal, Akhil

    2013-01-01

    Oil production by water injection can cause souring in which sulfate in the injection water is reduced to sulfide by resident sulfate-reducing bacteria (SRB). Sulfate (2 mM) in medium injected at a rate of 1 pore volume per day into upflow bioreactors containing residual heavy oil from the Medicine Hat Glauconitic C field was nearly completely reduced to sulfide, and this was associated with the generation of 3 to 4 mM acetate. Inclusion of 4 mM nitrate inhibited souring for 60 days, after which complete sulfate reduction and associated acetate production were once again observed. Sulfate reduction was permanently inhibited when 100 mM nitrate was injected by the nitrite formed under these conditions. Pulsed injection of 4 or 100 mM nitrate inhibited sulfate reduction temporarily. Sulfate reduction resumed once nitrate injection was stopped and was associated with the production of acetate in all cases. The stoichiometry of acetate formation (3 to 4 mM formed per 2 mM sulfate reduced) is consistent with a mechanism in which oil alkanes and water are metabolized to acetate and hydrogen by fermentative and syntrophic bacteria (K. Zengler et al., Nature 401:266–269, 1999), with the hydrogen being used by SRB to reduce sulfate to sulfide. In support of this model, microbial community analyses by pyrosequencing indicated SRB of the genus Desulfovibrio, which use hydrogen but not acetate as an electron donor for sulfate reduction, to be a major community component. The model explains the high concentrations of acetate that are sometimes found in waters produced from water-injected oil fields. PMID:23770914

  11. Acetate production from oil under sulfate-reducing conditions in bioreactors injected with sulfate and nitrate.

    PubMed

    Callbeck, Cameron M; Agrawal, Akhil; Voordouw, Gerrit

    2013-08-01

    Oil production by water injection can cause souring in which sulfate in the injection water is reduced to sulfide by resident sulfate-reducing bacteria (SRB). Sulfate (2 mM) in medium injected at a rate of 1 pore volume per day into upflow bioreactors containing residual heavy oil from the Medicine Hat Glauconitic C field was nearly completely reduced to sulfide, and this was associated with the generation of 3 to 4 mM acetate. Inclusion of 4 mM nitrate inhibited souring for 60 days, after which complete sulfate reduction and associated acetate production were once again observed. Sulfate reduction was permanently inhibited when 100 mM nitrate was injected by the nitrite formed under these conditions. Pulsed injection of 4 or 100 mM nitrate inhibited sulfate reduction temporarily. Sulfate reduction resumed once nitrate injection was stopped and was associated with the production of acetate in all cases. The stoichiometry of acetate formation (3 to 4 mM formed per 2 mM sulfate reduced) is consistent with a mechanism in which oil alkanes and water are metabolized to acetate and hydrogen by fermentative and syntrophic bacteria (K. Zengler et al., Nature 401:266-269, 1999), with the hydrogen being used by SRB to reduce sulfate to sulfide. In support of this model, microbial community analyses by pyrosequencing indicated SRB of the genus Desulfovibrio, which use hydrogen but not acetate as an electron donor for sulfate reduction, to be a major community component. The model explains the high concentrations of acetate that are sometimes found in waters produced from water-injected oil fields.

  12. Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide.

    PubMed

    Moezzi, Amir; Cortie, Michael; McDonagh, Andrew

    2016-04-25

    Thermal decomposition of layered zinc hydroxide double salts provides an interesting alternative synthesis for particles of zinc oxide. Here, we examine the sequence of changes occurring as zinc hydroxide chloride monohydrate (Zn5(OH)8Cl2·H2O) is converted to crystalline ZnO by thermal decomposition. The specific surface area of the resultant ZnO measured by BET was 1.3 m(2) g(-1). A complicating and important factor in this process is that the thermal decomposition of zinc hydroxide chloride is also accompanied by the formation of volatile zinc-containing species under certain conditions. We show that this volatile compound is anhydrous ZnCl2 and its formation is moisture dependent. Therefore, control of atmospheric moisture is an important consideration that affects the overall efficiency of ZnO production by this process.

  13. Functional studies of Drosophila zinc transporters reveal the mechanism for dietary zinc absorption and regulation

    PubMed Central

    2013-01-01

    Background Zinc is key to the function of many proteins, but the process of dietary zinc absorption is not well clarified. Current knowledge about dietary zinc absorption is fragmented, and mostly derives from incomplete mammalian studies. To gain a comprehensive picture of this process, we systematically characterized all zinc transporters (that is, the Zip and ZnT family members) for their possible roles in dietary zinc absorption in a genetically amenable model organism, Drosophila melanogaster. Results A set of plasma membrane-resident zinc transporters was identified to be responsible for absorbing zinc from the lumen into the enterocyte and the subsequent exit of zinc to the circulation. dZip1 and dZip2, two functionally overlapping zinc importers, are responsible for absorbing zinc from the lumen into the enterocyte. Exit of zinc to the circulation is mediated through another two functionally overlapping zinc exporters, dZnT1, and its homolog CG5130 (dZnT77C). Somewhat surprisingly, it appears that the array of intracellular ZnT proteins, including the Golgi-resident dZnT7, is not directly involved in dietary zinc absorption. By modulating zinc status in different parts of the body, we found that regulation of dietary zinc absorption, in contrast to that of iron, is unresponsive to bodily needs or zinc status outside the gut. The zinc transporters that are involved in dietary zinc absorption, including the importers dZip1 and dZip2, and the exporter dZnT1, are respectively regulated at the RNA and protein levels by zinc in the enterocyte. Conclusions Our study using the model organism Drosophila thus starts to reveal a comprehensive sketch of dietary zinc absorption and its regulatory control, a process that is still incompletely understood in mammalian organisms. The knowledge gained will act as a reference for future mammalian studies, and also enable an appreciation of this important process from an evolutionary perspective. PMID:24063361

  14. Acute Exacerbations of COPD Are Associated With Increased Expression of Heparan Sulfate and Chondroitin Sulfate in BAL.

    PubMed

    Papakonstantinou, Eleni; Klagas, Ioannis; Roth, Michael; Tamm, Michael; Stolz, Daiana

    2016-03-01

    Acute exacerbations of COPD (AECOPDs) are associated with accelerated aggravation of clinical symptoms and deterioration of pulmonary function. The mechanisms by which exacerbations may contribute to airway remodeling and declined lung function are poorly understood. We investigated whether AECOPDs are associated with differential expression of glycosaminoglycans in BAL in a cohort of 97 patients with COPD. Patients with COPD with either stable disease (n = 53) or AECOPD (n = 44) and undergoing diagnostic bronchoscopy were matched for demographics and lung function parameters. Levels of heparan sulfate, chondroitin sulfate, dermatan sulfate, and matrix metalloproteinases (MMPs) in BAL were measured by enzyme-linked immunosorbent assay. Heparan sulfate and chondroitin sulfate were significantly increased in BAL of patients during exacerbations. Levels of heparan sulfate were higher in the BAL of patients with microbial infections. Chondroitin sulfate was negatively correlated with FEV1 % predicted but not with diffusing capacity of lung for carbon monoxide % predicted, indicating that chondroitin sulfate is associated with airway remodeling, leading to obstruction rather than to emphysema. Furthermore, heparan sulfate and chondroitin sulfate were significantly correlated with MMP-9, MMP-2, and MMP-12 in BAL, indicating that they were cleaved from their respective proteoglycans by MMPs and subsequently washed out in BAL. During AECOPD, there is increased expression of heparan sulfate and chondroitin sulfate in BAL. These molecules are significantly correlated with MMPs in BAL, indicating that they may be associated with airway remodeling and may lead to lung function decline during exacerbations of COPD. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  15. Quantitative analysis of glycosaminoglycans, chondroitin/dermatan sulfate, hyaluronic acid, heparan sulfate, and keratan sulfate by liquid chromatography-electrospray ionization-tandem mass spectrometry.

    PubMed

    Osago, Harumi; Shibata, Tomoko; Hara, Nobumasa; Kuwata, Suguru; Kono, Michihaya; Uchio, Yuji; Tsuchiya, Mikako

    2014-12-15

    We developed a method using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) with a selected reaction monitoring (SRM) mode for simultaneous quantitative analysis of glycosaminoglycans (GAGs). Using one-shot analysis with our MS/MS method, we demonstrated the simultaneous quantification of a total of 23 variously sulfated disaccharides of four GAG classes (8 chondroitin/dermatan sulfates, 1 hyaluronic acid, 12 heparan sulfates, and 2 keratan sulfates) with a sensitivity of less than 0.5 pmol within 20 min. We showed the differences in the composition of GAG classes and the sulfation patterns between porcine articular cartilage and yellow ligament. In addition to the internal disaccharides described above, some saccharides derived from the nonreducing terminal were detected simultaneously. The simultaneous quantification of both internal and nonreducing terminal saccharides could be useful to estimate the chain length of GAGs. This method would help to establish comprehensive "GAGomic" analysis of biological tissues. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. The Importance of Sulfate Adenylyl Transferase in S and O Fractionation by Sulfate Reducing Bacteria

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Johnston, D. T.; Bradley, A. S.

    2016-12-01

    Microbial sulfate reduction (MSR) is critical to the oxidation of organic matter in modern and ancient oceans, and plays an important role in regulating the redox state of the Earth's surface. The sulfur and oxygen isotopic composition of seawater sulfate and of sulfate minerals reflect the biogeochemical processes that cycle sulfur, of which MSR is among the most important. MSR is a multi-enzymatic reaction network that partitions the isotopes of sulfur and oxygen as a consequence of both the flux of sulfate through this biochemical network and the fractionation imposed by each individual enzyme. MSR affects the δ18O of residual, extracellular sulfate mainly by the equilibration of the MSR intermediate sulfite with extracellular water (Antler et al., 2013 GCA, Wankel et al., 2013 Geobiol). A series of oxidative and exchange reactions catalyzed by APS reductase (APSr), sulfate adenylyl transferase (Sat), and sulfate transporters promote the conversion of water-equilibrated intracellular sulfite to extracellular sulfate. The flux of sulfoxy anions via these proteins will be, at least in part, dependent on the activity of these enzymes. To test this, we examined sulfur and oxygen isotope fractionation in genetically engineered mutants of the sulfate reducing bacterium Desulfovibrio vulgaris Hildenborough (DvH). In these mutants, the activity of Sat has been artificially increased by perturbing the (i) transcriptional repressor Rex and (ii) its binding site upstream of the gene encoding Sat (Christensen et al., 2015 J. Bacteriol). It was predicted that this would minimize the back reaction of Sat, enhance the intracellular pool of APS, and minimize the equilibration between sulfite and adenosine monophosphate (AMP). Both mutants, along with the wild type DvH were grown in batch culture made with water enriched in 18O. Samples were collected throughout batch growth, and we report the evolution of the S and O isotopic composition of sulfate, and of the S isotopic

  17. Aerobic sulfate reduction in microbial mats

    NASA Technical Reports Server (NTRS)

    Canfield, Donald E.; Des Marais, David J.

    1991-01-01

    Measurements of bacterial sulfate reduction and dissolved oxygen (O2) in hypersaline bacterial mats from Baja California, Mexico, revealed that sulfate reduction occurred consistently within the well-oxygenated photosynthetic zone of the mats. This evidence that dissimilatory sulfate reduction can occur in the presence of O2 challenges the conventional view that sulfate reduction is a strictly anaerobic process. At constant temperature, the rates of sulfate reduction in oxygenated mats during daytime were similar to rates in anoxic mats at night: thus, during a 24-hour cycle, variations in light and O2 have little effect on rates of sulfate reduction in these mats.

  18. Cloning and occurrence of czrC, a gene conferring cadmium and zinc resistance in methicillin-resistant Staphylococcus aureus CC398 isolates.

    PubMed

    Cavaco, L M; Hasman, H; Stegger, M; Andersen, P S; Skov, R; Fluit, A C; Ito, T; Aarestrup, F M

    2010-09-01

    We recently reported a phenotypic association between reduced susceptibility to zinc and methicillin resistance in Staphylococcus aureus CC398 isolates from Danish swine (F. M. Aarestrup, L. M. Cavaco, and H. Hasman, Vet. Microbiol. 142:455-457, 2009). The aim of this study was to identify the genetic determinant causing zinc resistance in CC398 and examine its prevalence in isolates of animal and human origin. Based on the sequence of the staphylococcal cassette chromosome mec (SCCmec) element from methicillin-resistant S. aureus (MRSA) CC398 strain SO385, a putative metal resistance gene was identified in strain 171 and cloned in S. aureus RN4220. Furthermore, 81 MRSA and 48 methicillin-susceptible S. aureus (MSSA) strains, isolated from pigs (31 and 28) and from humans (50 and 20) in Denmark, were tested for susceptibility to zinc chloride and for the presence of a putative resistance determinant, czrC, by PCR. The cloning of czrC confirmed that the zinc chloride and cadmium acetate MICs for isogenic constructs carrying this gene were increased compared to those for S. aureus RN4220. No difference in susceptibility to sodium arsenate, copper sulfate, or silver nitrate was observed. Seventy-four percent (n = 23) of the animal isolates and 48% (n = 24) of the human MRSA isolates of CC398 were resistant to zinc chloride and positive for czrC. All 48 MSSA strains from both human and pig origins were found to be susceptible to zinc chloride and negative for czrC. Our findings showed that czrC is encoding zinc and cadmium resistance in CC398 MRSA isolates, and that it is widespread both in humans and animals. Thus, resistance to heavy metals such as zinc and cadmium may play a role in the coselection of methicillin resistance in S. aureus.

  19. Zinc triggers microglial activation.

    PubMed

    Kauppinen, Tiina M; Higashi, Youichirou; Suh, Sang Won; Escartin, Carole; Nagasawa, Kazuki; Swanson, Raymond A

    2008-05-28

    Microglia are resident immune cells of the CNS. When stimulated by infection, tissue injury, or other signals, microglia assume an activated, "ameboid" morphology and release matrix metalloproteinases, reactive oxygen species, and other proinflammatory factors. This innate immune response augments host defenses, but it can also contribute to neuronal death. Zinc is released by neurons under several conditions in which microglial activation occurs, and zinc chelators can reduce neuronal death in animal models of cerebral ischemia and neurodegenerative disorders. Here, we show that zinc directly triggers microglial activation. Microglia transfected with a nuclear factor-kappaB (NF-kappaB) reporter gene showed a severalfold increase in NF-kappaB activity in response to 30 microm zinc. Cultured mouse microglia exposed to 15-30 microm zinc increased nitric oxide production, increased F4/80 expression, altered cytokine expression, and assumed the activated morphology. Zinc-induced microglial activation was blocked by inhibiting NADPH oxidase, poly(ADP-ribose) polymerase-1 (PARP-1), or NF-kappaB activation. Zinc injected directly into mouse brain induced microglial activation in wild-type mice, but not in mice genetically lacking PARP-1 or NADPH oxidase activity. Endogenous zinc release, induced by cerebral ischemia-reperfusion, likewise induced a robust microglial reaction, and this reaction was suppressed by the zinc chelator CaEDTA. Together, these results suggest that extracellular zinc triggers microglial activation through the sequential activation of NADPH oxidase, PARP-1, and NF-kappaB. These findings identify a novel trigger for microglial activation and a previously unrecognized mechanism by which zinc may contribute to neurological disorders.

  20. Constraining Δ33S signatures of Archean seawater sulfate with carbonate-associated sulfate

    NASA Astrophysics Data System (ADS)

    Peng, Y.; Bao, H.; Bekker, A.; Hofmann, A.

    2017-12-01

    Non-mass dependent sulfur isotope deviation of S-bearing phases in Archean sedimentary strata, and expressed as Δ33S, has a consistent pattern, i.e., sulfide (pyrite) predominantly bear positive Δ33S values, while Paleoarchean sulfate (barite) has negative Δ33S values. This pattern was later corroborated by observations of negative Δ33S values in Archean volcanogenic massive sulfide deposits and negative Δ33S values in early diagenetic nodular pyrite with a wide range of δ34S values, which is thought to be due to microbial sulfate reduction. These signatures have provided a set of initial conditions for a mechanistic interpretation at physical chemistry level. Unlike the younger geological times when large bodies of seawater evaporite deposits are common, to expand seawater sulfate records, carbonate-associated sulfate (CAS) was utilized as a proxy for ancient seawater sulfate. CAS extracted from the Archean carbonates carries positive Δ33S values. However, CAS could be derived from pyrite oxidation following exposure to modern oxidizing conditions and/or during laboratory extraction procedures. It is, therefore, important for us understanding context of the overall early earth atmospheric condition to empirically confirm whether Archean seawater sulfate was generally characterized by negative Δ33S signatures. Combined δ18O, Δ17O, δ34S, and Δ33S analyses of sequentially extracted water-leachable sulfate (WLS) and acid-leachable sulfate (ALS = CAS) and δ34S and Δ33S analyses of pyrite can help to identify the source of extracted sulfate. We studied drill-core samples of Archean carbonates from the 2.55 Ga Malmani and Campell Rand supgroups, South Africa. Our preliminary results show that 1) neither WLS nor ALS were extracted from samples with extremely low pyrite contents (less than 0.05 wt.%); 2) extractable WLS and ALS is present in samples with relatively high pyrite contents (more than 1 wt.%), and that δ34S and Δ33S values of WLS, ALS, and

  1. Transport of steroid 3-sulfates and steroid 17-sulfates by the sodium-dependent organic anion transporter SOAT (SLC10A6).

    PubMed

    Grosser, Gary; Bennien, Josefine; Sánchez-Guijo, Alberto; Bakhaus, Katharina; Döring, Barbara; Hartmann, Michaela; Wudy, Stefan A; Geyer, Joachim

    2018-05-01

    The sodium-dependent organic anion transporter SOAT/Soat shows highly specific transport activity for sulfated steroids. SOAT substrates identified so far include dehydroepiandrosterone sulfate, 16α-hydroxydehydroepiandrosterone sulfate, estrone-3-sulfate, pregnenolone sulfate, 17β-estradiol-3-sulfate, and androstenediol sulfate. Apart from these compounds, many other sulfated steroids occur in mammals. Therefore, we aimed to expand the substrate spectrum of SOAT and analyzed the SOAT-mediated transport of eight different sulfated steroids by combining in vitro transport experiments in SOAT-transfected HEK293 cells with LC-MS/MS analytics of cell lysates. In addition, we aimed to better understand the structural requirements for SOAT substrates and so selected structural pairs varying only at specific positions: 3α/3β-sulfate, 17α/17β-sulfate, mono-sulfate/di-sulfate, and 17α-hydroxylation. We found significant and sodium-dependent SOAT-mediated transport of 17α-hydroxypregnenolone sulfate, 17β-estradiol-17-sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and 5α-dihydrotestosterone sulfate. However, 17β-estradiol-3,17-disulfate was not transported by SOAT. SOAT substrates from the group of sulfated steroids are characterized by a planar and lipophilic steroid backbone in trans-trans-trans conformation of the rings and a negatively charged mono-sulfate group at positions 3' or 17' with flexibility for α- or β- orientation. Furthermore, 5α-reduction, 16α-hydroxylation, and 17α-hydroxylation are acceptable for SOAT substrate recognition, whereas addition of a second negatively charged sulfate group seems to abolish substrate binding to SOAT, and so 17β-estradiol-3,17-disulfate is not transported by SOAT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. 21 CFR 558.364 - Neomycin sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Neomycin sulfate. 558.364 Section 558.364 Food and... in Animal Feeds § 558.364 Neomycin sulfate. (a) Approvals. Type A medicated article: 325 grams per.... (c) [Reserved] (d) Conditions of use. Neomycin sulfate is used as follows: Neomycin Sulfate...

  3. 21 CFR 558.364 - Neomycin sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Neomycin sulfate. 558.364 Section 558.364 Food and... in Animal Feeds § 558.364 Neomycin sulfate. (a) Approvals. Type A medicated article: 325 grams per.... (c) [Reserved] (d) Conditions of use. Neomycin sulfate is used as follows: Neomycin Sulfate...

  4. 21 CFR 558.364 - Neomycin sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Neomycin sulfate. 558.364 Section 558.364 Food and... in Animal Feeds § 558.364 Neomycin sulfate. (a) Approvals. Type A medicated article: 325 grams per.... (c) [Reserved] (d) Conditions of use. Neomycin sulfate is used as follows: Neomycin Sulfate...

  5. 21 CFR 558.364 - Neomycin sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate. 558.364 Section 558.364 Food and... in Animal Feeds § 558.364 Neomycin sulfate. (a) Approvals. Type A medicated article: 325 grams per.... (c) [Reserved] (d) Conditions of use. Neomycin sulfate is used as follows: Neomycin Sulfate...

  6. 21 CFR 558.364 - Neomycin sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Neomycin sulfate. 558.364 Section 558.364 Food and... in Animal Feeds § 558.364 Neomycin sulfate. (a) Approvals. Type A medicated article: 325 grams per.... (c) [Reserved] (d) Conditions of use. Neomycin sulfate is used as follows: Neomycin Sulfate...

  7. INTRACELLULAR SYNTHESIS OF CHONDROITIN SULFATE

    PubMed Central

    Dziewiatkowski, Dominic D.

    1962-01-01

    In autoradiograms of slices of costal cartilage, incubated for 4 hours in a salt solution containing S35-sulfate and then washed extensively and dehydrated, about 85 per cent of the radioactivity was assignable to the chondrocytes. From alkaline extracts of similarly prepared slices of cartilage, 64 to 83 per cent of the total sulfur-35 in the slices was isolated as chondroitin sulfate by chromatography on an anion-exchange resin. In view of the estimate that only about 15 per cent of the radioactivity was in the matrix, the isolation of 64 to 83 per cent of the total sulfur-35 as chondroitin sulfate is a strong argument that the chondrocytes are the loci in which chondroitin sulfate(s) is synthesized. PMID:13888910

  8. The Potential for Zinc Stable Isotope Techniques and Modelling to Determine Optimal Zinc Supplementation

    PubMed Central

    Tran, Cuong D.; Gopalsamy, Geetha L.; Mortimer, Elissa K.; Young, Graeme P.

    2015-01-01

    It is well recognised that zinc deficiency is a major global public health issue, particularly in young children in low-income countries with diarrhoea and environmental enteropathy. Zinc supplementation is regarded as a powerful tool to correct zinc deficiency as well as to treat a variety of physiologic and pathologic conditions. However, the dose and frequency of its use as well as the choice of zinc salt are not clearly defined regardless of whether it is used to treat a disease or correct a nutritional deficiency. We discuss the application of zinc stable isotope tracer techniques to assess zinc physiology, metabolism and homeostasis and how these can address knowledge gaps in zinc supplementation pharmacokinetics. This may help to resolve optimal dose, frequency, length of administration, timing of delivery to food intake and choice of zinc compound. It appears that long-term preventive supplementation can be administered much less frequently than daily but more research needs to be undertaken to better understand how best to intervene with zinc in children at risk of zinc deficiency. Stable isotope techniques, linked with saturation response and compartmental modelling, also have the potential to assist in the continued search for simple markers of zinc status in health, malnutrition and disease. PMID:26035248

  9. Zinc Information

    MedlinePlus

    ... for Eye Conditions Clinical Digest: Hepatitis C and Dietary Supplements Related Resources From Other Agencies Age-Related Eye Disease Study 2 (AREDS2) ( NEI ) Can Zinc Be Harmful? ( ODS ) Zinc ( ODS ) Follow NCCIH: Read our disclaimer ...

  10. Synthesis of N-oleyl O-sulfate chitosan from methyl oleate with O-sulfate chitosan as edible film material

    NASA Astrophysics Data System (ADS)

    Daniel; Sihaloho, O.; Saleh, C.; Magdaleni, A. R.

    2018-04-01

    The research on the synthesis of N-oleyl O-sulfate chitosan through sulfonation reaction on chitosan with ammonium sulfate and followed by amidation reaction using methyl oleate has been done. In this study, chitosan was chemically modified into N-oleyl O-sulfatechitosan as an edible film making material. N-oleyl O-sulfate chitosan was synthesized by reaction between methyl oleate and O-sulfate chitosan. Wherein the depleted chitosan of O-sulfate chitosan into O-sulfate chitosan was obtained by reaction of sulfonation between ammonium sulfate and chitosan aldimine. While chitosan aldimine was obtained through reaction between chitosan with acetaldehyde. The structure of N-oleyl O-sulfate chitosan was characterized by FT-IR analysis which showed vibration uptake of C-H sp3 group, S=O group, and carbonyl group C=O of the ester. The resulting of N-oleyl O-sulfate chitosan yielded a percentage of 93.52%. Hydrophilic-Lipophilic Balance (HLB) test results gave a value of 6.68. In the toxicity test results of N-oleyl O-sulfate chitosan obtained LC50 value of 3738.4732 ppm. In WVTR (Water Vapor Transmission Rate) test results for chitosan film was 407.625 gram/m2/24 hours and N-oleylO-sulfate chitosan film was 201.125 gram/m2/24 hours.

  11. Zinc starvation induces autophagy in yeast

    PubMed Central

    Kawamata, Tomoko; Horie, Tetsuro; Matsunami, Miou; Sasaki, Michiko; Ohsumi, Yoshinori

    2017-01-01

    Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes. PMID:28264932

  12. Aluminum ammonium sulfate dodecahydrate purified from traditional Chinese medicinal herb Korean monkshood root is a potent matrix metalloproteinase inhibitor.

    PubMed

    Shen, Yehua; Liu, Sen; Jin, Fenghai; Mu, Tianyang; Li, Cong; Jiang, Kun; Tian, Weihua; Yu, Dahai; Zhang, Yingqi; Fang, Xuexun

    2012-06-01

    Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases and key regulators for many physiological and pathological functions. The MMP inhibitors have been shown to modulate diseases such as cancer, inflammation, and cardiovascular diseases. In this paper we tracked the MMP inhibitory activities of the traditional Chinese medicinal herb Korean Monkshood Root. The purified active ingredient was identified by the elemental analysis, infrared spectrum (IR) and X-ray diffraction as aluminum ammonium sulfate dodecahydrate. This inorganic compound showed inhibitory activities toward a number of MMP family members. In particular, it has a strong inhibitory effect toward MMP-2 and MMP-9, with IC50 values of 0.54 and 0.50 μM, respectively. Further analysis suggested that the MMP inhibitory activity is mainly due to Al(3+). Cell viability assays using human fibrosarcoma HT1080 cells showed aluminum ammonium sulfate had minimal cyto-toxicity with a concentration up to 500 μM. However, within 50 μM, it exhibited significant inhibition of cell invasion. To our knowledge, there has been no previous report of inorganic form of the MMP inhibitor with strong inhibitory activity. Our results for the first time showed that aluminum ammonium sulfate is an inorganic form of MMP inhibitor with high potency, and can be used to interfere with MMP related cellular processes.

  13. High-Throughput Screening To Identify Potent and Specific Inhibitors of Microbial Sulfate Reduction.

    PubMed

    Carlson, Hans K; Mullan, Mark R; Mosqueda, Lorraine A; Chen, Steven; Arkin, Michelle R; Coates, John D

    2017-06-20

    The selective perturbation of complex microbial ecosystems to predictably influence outcomes in engineered and industrial environments remains a grand challenge for geomicrobiology. In some industrial ecosystems, such as oil reservoirs, sulfate reducing microorganisms (SRM) produce hydrogen sulfide which is toxic, explosive, and corrosive. Despite the economic cost of sulfidogenesis, there has been minimal exploration of the chemical space of possible inhibitory compounds, and very little work has quantitatively assessed the selectivity of putative souring treatments. We have developed a high-throughput screening strategy to identify potent and selective inhibitors of SRM, quantitatively ranked the selectivity and potency of hundreds of compounds and identified previously unrecognized SRM selective inhibitors and synergistic interactions between inhibitors. Zinc pyrithione is the most potent inhibitor of sulfidogenesis that we identified, and is several orders of magnitude more potent than commonly used industrial biocides. Both zinc and copper pyrithione are also moderately selective against SRM. The high-throughput (HT) approach we present can be readily adapted to target SRM in diverse environments and similar strategies could be used to quantify the potency and selectivity of inhibitors of a variety of microbial metabolisms. Our findings and approach are relevant to efforts to engineer environmental ecosystems and also to understand the role of natural gradients in shaping microbial niche space.

  14. Suppression of zinc dendrites in zinc electrode power cells

    NASA Technical Reports Server (NTRS)

    Damjanovic, A.; Diggle, J. W.

    1970-01-01

    Addition of various tetraalkyl quarternary ammonium salts, to alkaline zincate electrolyte of cell, prevents formation of zinc dendrites during charging of zinc electrode. Electrode capacity is not impaired and elimination of dendrites prolongs cell life.

  15. Changes in zinc speciation with mine tailings acidification in a semiarid weathering environment.

    PubMed

    Hayes, Sarah M; O'Day, Peggy A; Webb, Sam M; Maier, Raina M; Chorover, Jon

    2011-09-01

    High concentrations of residual metal contaminants in mine tailings can be transported easily by wind and water, particularly when tailings remain unvegetated for decades following mining cessation, as is the case in semiarid landscapes. Understanding the speciation and mobility of contaminant metal(loid)s, particularly in surficial tailings, is essential to controlling their phytotoxicities and to revegetating impacted sites. In prior work, we showed that surficial tailings samples from the Klondyke State Superfund Site (AZ, USA), ranging in pH from 5.4 to 2.6, represent a weathering series, with acidification resulting from sulfide mineral oxidation, long-term Fe hydrolysis, and a concurrent decrease in total (6000 to 450 mg kg(-1)) and plant-available (590 to 75 mg kg(-1)) Zn due to leaching losses and changes in Zn speciation. Here, we used bulk and microfocused Zn K-edge X-ray absorption spectroscopy (XAS) data and a six-step sequential extraction procedure to determine tailings solid phase Zn speciation. Bulk sample spectra were fit by linear combination using three references: Zn-rich phyllosilicate (Zn(0.8)talc), Zn sorbed to ferrihydrite (Zn(adsFeOx)), and zinc sulfate (ZnSO(4) · 7H(2)O). Analyses indicate that Zn sorbed in tetrahedral coordination to poorly crystalline Fe and Mn (oxyhydr)oxides decreases with acidification in the weathering sequence, whereas octahedral zinc in sulfate minerals and crystalline Fe oxides undergoes a relative accumulation. Microscale analyses identified hetaerolite (ZnMn(2)O(4)), hemimorphite (Zn(4)Si(2)O(7)(OH)(2) · H(2)O) and sphalerite (ZnS) as minor phases. Bulk and microfocused spectroscopy complement the chemical extraction results and highlight the importance of using a multimethod approach to interrogate complex tailings systems.

  16. Zinc triggers microglial activation

    PubMed Central

    Kauppinen, Tiina M.; Higashi, Youichirou; Suh, Sang Won; Escartin, Carole; Nagasawa, Kazuki; Swanson, Raymond A.

    2009-01-01

    Microglia are resident immune cells of the central nervous system. When stimulated by infection, tissue injury, or other signals, microglia assume an activated, “amoeboid” morphology and release matrix metalloproteinases, reactive oxygen species, and other pro-inflammatory factors. This innate immune response augments host defenses, but it can also contribute to neuronal death. Zinc is released by neurons under several conditions in which microglial activation occurs, and zinc chelators can reduce neuronal death in animal models of cerebral ischemia and neurodegenerative disorders. Here we show that zinc directly triggers microglial activation. Microglia transfected with an NF-kB reporter gene showed a several-fold increase in NF-kB activity in response to 30 μM zinc. Cultured mouse microglia exposed to 15 – 30 μM zinc increased nitric oxide production, increased F4/80 expression, altered cytokine expression, and assumed the activated morphology. Zinc-induced microglial activation was blocked by inhibiting NADPH oxidase, poly(ADP-ribose) polymerase-1 (PARP-1), or NF-κB activation. Zinc injected directly into mouse brain induced microglial activation in wild-type mice, but not in mice genetically lacking PARP-1 or NADPH oxidase activity. Endogenous zinc release, induced by cerebral ischemia-reperfusion, likewise induced a robust microglial reaction, and this reaction was suppressed by the zinc chelator CaEDTA. Together, these results suggest that extracellular zinc triggers microglial activation through the sequential activation of NADPH oxidase, PARP-1, and NF-κB. These findings identify a novel trigger for microglial activation and a previously unrecognized mechanism by which zinc may contribute to neurological disorders. PMID:18509044

  17. Zinc starvation induces autophagy in yeast.

    PubMed

    Kawamata, Tomoko; Horie, Tetsuro; Matsunami, Miou; Sasaki, Michiko; Ohsumi, Yoshinori

    2017-05-19

    Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Effects of sulfate aerosols upon cardiopulmonary function in squirrel monkeys (final report). (Second year final report: effects of nitrate and /or sulfate aerosols upon cardiopulmonary function)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, H.L.; Avol, E.L.; Bailey, R.M.

    1977-06-24

    Squirrel monkeys were exposed to nominal concentrations of 2.5 mg/cu m of the following generated aerosols: zinc ammonium sulfate at both low (40%) and high (85%) nominal relative humidities, histamine diphosphate at low relative humidity, and ammonium bisulfate at low relative humidity. There were few statistically significant changes in oscillatory resistance, however, several trends toward increased resistance were present. Additional studies were performed using two different aerosol nebulizers to produce histamine diphosphate particles in two distinct size distributions, an order of magnitude different in size. These results, supported by data collected during sulfur dioxide exposures of squirrel monkeys, are usedmore » to discuss the suitability of Saimiri sciureus as a sensitive indicator species and oscillatory resistance as a valuable measurement of proximal airway changes. Development of the esophageal balloon technique as a means of measuring compliance and resistance in the unanesthetized squirrel monkey is discussed.« less

  19. Supplemental levels of iron and calcium interfere with repletion of zinc status in zinc-deficient animals.

    PubMed

    Jayalakshmi, S; Platel, Kalpana

    2016-05-18

    Negative interactions between minerals interfering with each other's absorption are of concern when iron and calcium supplements are given to pregnant women and children. We have previously reported that supplemental levels of iron and calcium inhibit the bioaccessibility of zinc, and compromise zinc status in rats fed diets with high levels of these two minerals. The present study examined the effect of supplemental levels of iron and calcium on the recovery of zinc status during a zinc repletion period in rats rendered zinc-deficient. Iron and calcium, both individually and in combination, significantly interfered with the recovery of zinc status in zinc deficient rats during repletion with normal levels of zinc in the diet. Rats maintained on diets containing supplemental levels of these two minerals had significantly lower body weight, and the concentration of zinc in serum and organs was significantly lower than in zinc-deficient rats not receiving the supplements. Iron and calcium supplementation also significantly inhibited the activity of zinc-containing enzymes in the serum as well as liver. Both iron and calcium independently exerted this negative effect on zinc status, while their combination seemed to have a more prominent effect, especially on the activities of zinc containing enzymes. This investigation is probably the first systematic study on the effect of these two minerals on the zinc status of zinc deficient animals and their recovery during repletion with normal amounts of zinc.

  20. 21 CFR 184.1315 - Ferrous sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ferrous sulfate. 184.1315 Section 184.1315 Food... Specific Substances Affirmed as GRAS § 184.1315 Ferrous sulfate. (a) Ferrous sulfate heptahydrate (iron (II) sulfate heptahydrate, FeSO4·7H2O, CAS Reg. No. 7782-63-0) is prepared by the action of sulfuric acid on...

  1. 21 CFR 184.1461 - Manganese sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Manganese sulfate. 184.1461 Section 184.1461 Food... GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O, CAS Reg. No. 7785-0987-097) is a... of pyrolusite (MnO2) ore with solid ferrous sulfate and coal, followed by leaching and...

  2. 21 CFR 184.1315 - Ferrous sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ferrous sulfate. 184.1315 Section 184.1315 Food... Specific Substances Affirmed as GRAS § 184.1315 Ferrous sulfate. (a) Ferrous sulfate heptahydrate (iron (II) sulfate heptahydrate, FeSO4·7H2O, CAS Reg. No. 7782-63-0) is prepared by the action of sulfuric acid on...

  3. 21 CFR 184.1461 - Manganese sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Manganese sulfate. 184.1461 Section 184.1461 Food... Specific Substances Affirmed as GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O, CAS... dioxide in sulfuric acid, and the roasting of pyrolusite (MnO2) ore with solid ferrous sulfate and coal...

  4. 21 CFR 184.1461 - Manganese sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Manganese sulfate. 184.1461 Section 184.1461 Food... Specific Substances Affirmed as GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O, CAS... dioxide in sulfuric acid, and the roasting of pyrolusite (MnO2) ore with solid ferrous sulfate and coal...

  5. 21 CFR 172.822 - Sodium lauryl sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium lauryl sulfate. 172.822 Section 172.822... Sodium lauryl sulfate. The food additive sodium lauryl sulfate may be safely used in food in accordance... of sodium alkyl sulfates consisting chiefly of sodium lauryl sulfate [CH2(CH2)10CH2OSO2Na]. (2) It...

  6. Performance of two differently designed permeable reactive barriers with sulfate and zinc solutions.

    PubMed

    Pérez, Norma; Schwarz, Alex O; Barahona, Esteban; Sanhueza, Pamela; Diaz, Isabel; Urrutia, Homero

    2018-06-18

    For the first time, this laboratory-scale study evaluates the feasibility of incorporating diffusive exchange in permeable reactive barriers. In order to do this, the performance of two permeable reactive barriers (PRB) with different internal substrate arrangements were compared during the administration of a sulfate solution without metals (for 163 days) and with metals (for 60 days), simulating groundwater contaminated with acid mine drainage (AMD). In order to simulate a traditional PRB, a homogeneous distribution was implemented in the first reactor and the other PRB reactor utilized diffusion-active technology (DAPRB). In the DAPRB, the distribution of the reactive material was interspersed with the conductive material. The measurements in the internal ports showed that transverse gradients of sulfide formed in the DAPRB, causing the diffusion of sulfide from the substrate toward the layer interface, which is where the sulfide reacts by forming complexes with the metal. The DAPRB prevents the microorganisms from direct contact with AMD. This protection caused greater activity (sulfide production). Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Methods of producing sulfate salts of cations from heteroatomic compounds and dialkyl sulfates and uses thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2015-09-29

    Methods of preparing sulfate salts of heteroatomic compounds using dialkyl sulfates as a primary reactant are disclosed. Also disclosed are methods of making ionic liquids from the sulfate salts of the heteroatomic compound, and electrochemical cells comprising the ionic liquids.

  8. Purification and sequence characterization of chondroitin sulfate and dermatan sulfate from fishes.

    PubMed

    Lin, Na; Mo, Xiaoli; Yang, Yang; Zhang, Hong

    2017-04-01

    Chondroitin sulfate (CS) and dermatan sulfate (DS) were extracted and purified from skins or bones of salmon (Salmo salar), snakehead (Channa argus), monkfish (Lophius litulon) and skipjack tuna (Katsuwonus pelamis). Size, structural sequences and sulfate groups of oligosaccharides in the purified CS and DS could be characterized and identified using high performance liquid chromatography (HPLC) combined with Orbitrap mass spectrometry. CS and DS chain structure varies depending on origin, but motif structure appears consistent. Structures of CS and DS oligosaccharides with different size and sulfate groups were compared between fishes and other animals, and results showed that some minor differences of special structures could be identified by hydrophilic interaction chromatography-liquid chromatography-fourier transform-mass/mass spectrometry (HILIC-LC-FT-MS/MS). For example, data showed that salmon and skipjack CS had a higher percentage content of high-level sulfated oligosaccharides than that porcine CS. In addition, structural information of different origins of CS and DS was analyzed by principal component analysis (PCA) and results showed that CS and DS samples could be differentiated according to their molecular conformation and oligosaccharide fragments information. Understanding CS and DS structure derived from different origins may lead to the production of CS or DS with unique disaccharides or oligosaccharides sequence composition and biological functions.

  9. [Zinc and chronic enteropathies].

    PubMed

    Giorgi, P L; Catassi, C; Guerrieri, A

    1984-01-01

    In recent years the nutritional importance of zinc has been well established; its deficiency and its symptoms have also been recognized in humans. Furthermore, Acrodermatitis Enteropathica has been isolated, a rare but severe disease, of which skin lesions, chronic diarrhoea and recurring infections are the main symptoms. The disease is related to the malfunctioning of intestinal absorption of zinc and can be treated by administering pharmacological doses of zinc orally. Good dietary sources of zinc are meat, fish and, to a less extent, human milk. The amount of zinc absorbed in the small intestine is influenced by other nutrients: some compounds inhibit this process (dietary fiber, phytate) while others (picolinic acid, citric acid), referred to as Zn-binding ligands (ZnBL) facilitate it. Citric acid is thought to be the ligand which accounts for the high level of bioavailability of zinc in human milk. zinc absorption occurs throughout the small intestine, not only in the prossimal tract (duodenum and jejunum) but also in the distal tract (ileum). Diarrhoea is one of the clinical manifestations of zinc deficiency, thus many illnesses distinguished by chronic diarrhoea entail a bad absorption of zinc. In fact, in some cases of chronic enteropathies in infants, like coeliac disease and seldom cystic fibrosis, a deficiency of zinc has been isolated. Some of the symptoms of Crohn's disease, like retarded growth and hypogonadism, have been related to hypozinchemia which is present in this illness. Finally, it is possible that some of the dietary treatments frequently used for persistent post-enteritis diarrhoea (i.e. cow's milk exclusion, abuse and misuse of dietary fiber like carrot and carub powder, use of soy formula) can constitute a scarce supply of zinc and therefore could promote the persistency of diarrhoea itself.

  10. Contamination of wells completed in the Roubidoux aquifer by abandoned zinc and lead mines, Ottawa County, Oklahoma

    USGS Publications Warehouse

    Christenson, Scott C.

    1995-01-01

    The Roubidoux aquifer in Ottawa County Oklahoma is used extensively as a source of water for public supplies, commerce, industry, and rural water districts. Water in the Roubidoux aquifer in eastern Ottawa County has relatively low dissolved-solids concentrations (less than 200 mg/L) with calcium, magnesium, and bicarbonate as the major ions. The Boone Formation is stratigraphically above the Roubidoux aquifer and is the host rock for zinc and lead sulfide ores, with the richest deposits located in the vicinity of the City of Picher. Mining in what became known as the Picher mining district began in the early 1900's and continued until about 1970. The water in the abandoned zinc and lead mines contains high concentrations of calcium, magnesium, bicarbonate, sulfate, fluoride, cadmium, copper, iron, lead, manganese, nickel, and zinc. Water from the abandoned mines is a potential source of contamination to the Roubidoux aquifer and to wells completed in the Roubidoux aquifer. Water samples were collected from wells completed in the Roubidoux aquifer in the Picher mining district and from wells outside the mining district to determine if 10 public supply wells in the mining district are contaminated. The chemical analyses indicate that at least 7 of the 10 public supply wells in the Picher mining district are contaminated by mine water. Application of the Mann-Whitney test indicated that the concentrations of some chemical constituents that are indicators of mine-water contamination are different in water samples from wells in the mining area as compared to wells outside the mining area. Application of the Wilcoxon signed-rank test showed that the concentrations of some chemical constituents that are indicators of mine-water contamination were higher in current (1992-93) data than in historic (1981-83) data, except for pH, which was lower in current than in historic data. pH and sulfate, alkalinity, bicarbonate, magnesium, iron, and tritium concentrations consistently

  11. Identification of Ftr1 and Zrt1 as iron and zinc micronutrient transceptors for activation of the PKA pathway in Saccharomyces cerevisiae

    PubMed Central

    Schothorst, Joep; Zeebroeck, Griet V.; Thevelein, Johan M.

    2017-01-01

    Multiple types of nutrient transceptors, membrane proteins that combine a transporter and receptor function, have now been established in a variety of organisms. However, so far all established transceptors utilize one of the macronutrients, glucose, amino acids, ammonium, nitrate, phosphate or sulfate, as substrate. This is also true for the Saccharomyces cerevisiae transceptors mediating activation of the PKA pathway upon re-addition of a macronutrient to glucose-repressed cells starved for that nutrient, re-establishing a fermentable growth medium. We now show that the yeast high-affinity iron transporter Ftr1 and high-affinity zinc transporter Zrt1 function as transceptors for the micronutrients iron and zinc. We show that replenishment of iron to iron-starved cells or zinc to zinc-starved cells triggers within 1-2 minutes a rapid surge in trehalase activity, a well-established PKA target. The activation with iron is dependent on Ftr1 and with zinc on Zrt1, and we show that it is independent of intracellular iron and zinc levels. Similar to the transceptors for macronutrients, Ftr1 and Zrt1 are strongly induced upon iron and zinc starvation, respectively, and they are rapidly downregulated by substrate-induced endocytosis. Our results suggest that transceptor-mediated signaling to the PKA pathway may occur in all cases where glucose-repressed yeast cells have been starved first for an essential nutrient, causing arrest of growth and low activity of the PKA pathway, and subsequently replenished with the lacking nutrient to re-establish a fermentable growth medium. The broadness of the phenomenon also makes it likely that nutrient transceptors use a common mechanism for signaling to the PKA pathway. PMID:28357393

  12. Zinc oxyfluoride transparent conductor

    DOEpatents

    Gordon, Roy G.

    1991-02-05

    Transparent, electrically conductive and infrared-reflective films of zinc oxyfluoride are produced by chemical vapor deposition from vapor mixtures of zinc, oxygen and fluorine-containing compounds. The substitution of fluorine for some of the oxygen in zinc oxide results in dramatic increases in the electrical conductivity. For example, diethyl zinc, ethyl alcohol and hexafluoropropene vapors are reacted over a glass surface at 400.degree. C. to form a visibly transparent, electrically conductive, infrared reflective and ultraviolet absorptive film of zinc oxyfluoride. Such films are useful in liquid crystal display devices, solar cells, electrochromic absorbers and reflectors, energy-conserving heat mirrors, and antistatic coatings.

  13. Sulfates on Mars: Indicators of Aqueous Processes

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Lane, Melissa D.; Dyar, M. Darby; Brown, Adrian J.

    2006-01-01

    Recent analyses by MER instruments at Meridiani Planum and Gusev crater and the OMEGA instrument on Mars Express have provided detailed information about the presence of sulfates on Mars [1,2,3]. We are evaluating these recent data in an integrated multi-disciplinary study of visible-near-infrared, mid-IR and Mossbauer spectra of several sulfate minerals and sulfate-rich analog sites. Our analyses suggest that hydrated iron sulfates may account for features observed in Mossbauer and mid-IR spectra of Martian soils [4]. The sulfate minerals kieserite, gypsum and other hydrated sulfates have been identified in OMEGA spectra in the layered terrains in Valles Marineris and Terra Meridiani [2]. These recent discoveries emphasize the importance of studying sulfate minerals as tracers of aqueous processes. The sulfate-rich rock outcrops observed in Meridiani Planum may have formed in an acidic environment similar to acid rock drainage environments on Earth [5]. Because microorganisms typically are involved in the oxidation of sulfides to sulfates in terrestrial sites, sulfate-rich rock outcrops on Mars may be a good location to search for evidence of past life on that planet. Whether or not life evolved on Mars, following the trail of sulfate minerals will lead to a better understanding of aqueous processes and chemical weathering.

  14. Chondroprotective effect of zinc oxide nanoparticles in conjunction with hypoxia on bovine cartilage-matrix synthesis.

    PubMed

    Mirza, Eraj Humayun; Pan-Pan, Chong; Wan Ibrahim, Wan Mohd Azhar Bin; Djordjevic, Ivan; Pingguan-Murphy, Belinda

    2015-11-01

    Articular cartilage is a tissue specifically adapted to a specific niche with a low oxygen tension (hypoxia), and the presence of such conditions is a key factor in regulating growth and survival of chondrocytes. Zinc deficiency has been linked to cartilage-related disease, and presence of Zinc is known to provide antibacterial benefits, which makes its inclusion attractive in an in vitro system to reduce infection. Inclusion of 1% zinc oxide nanoparticles (ZnONP) in poly octanediol citrate (POC) polymer cultured in hypoxia has not been well determined. In this study we investigated the effects of ZnONP on chondrocyte proliferation and matrix synthesis cultured under normoxia (21% O2 ) and hypoxia (5% O2 ). We report an upregulation of chondrocyte proliferation and sulfated glycosaminoglycan (S-GAG) in hypoxic culture. Results demonstrate a synergistic effect of oxygen concentration and 1% ZnONP in up-regulation of anabolic gene expression (Type II collagen and aggrecan), and a down regulation of catabolic (MMP-13) gene expression. Furthermore, production of transcription factor hypoxia-inducible factor 1A (HIF-1A) in response to hypoxic condition to regulate chondrocyte survival under hypoxia is not affected by the presence of 1% ZnONP. Presence of 1% ZnONP appears to act to preserve homeostasis of cartilage in its hypoxic environment. © 2015 Wiley Periodicals, Inc.

  15. Feasibility investigation of oily wastewater treatment by combination of zinc and PAM in coagulation/flocculation.

    PubMed

    Zeng, Yubin; Yang, Changzhu; Zhang, Jingdong; Pu, Wenhong

    2007-08-25

    Poly-zinc silicate (PZSS) is a new type of coagulant with cationic polymer synthesized by polysilicic acid and zinc sulfate. It has been used in several sorts of wastewaters treatment, but not used in oily wastewater treatment. In this study, we investigated the coagulation/flocculation of oil and suspended solids in heavy oil wastewater (HOW) by PZSS and anion polyacrylamide (A-PAM). The properties of PZSS cooperated with A-PAM were compared with PAC and PFS in dosages, PAMs amount, settling time, pH value and flocs morphology. The results showed that PZSS was more efficient than PAC and PFS. Under the optimum experimental conditions of coagulation/flocculation (dosage: 100mg/L, A-PAM dosage: 1.0mg/L, settling time time: 40min and pH 6.5-9.5), more than 99% of oil was removed and suspended solid value less than 5mg/L by using PZSS cooperated with A-PAM, which could satisfy the demands of the pre-treatment process for HOW to be reused in the steam boiler or recycled into the injecting well.

  16. Zinc Extraction from Zinc Plants Residue Using Selective Alkaline Leaching and Electrowinning

    NASA Astrophysics Data System (ADS)

    Ashtari, Pedram; Pourghahramani, Parviz

    2015-10-01

    Annually, a great amount of zinc plants residue is produced in Iran. One of them is hot filter cake (known as HFC) which can be used as a secondary resource of zinc, cobalt and manganese. Unfortunately, despite its heavy metal content, the HFC is not treated. For the first time, zinc was selectively leached from HFC employing alkaline leaching. Secondly, leaching was optimized to achieve maximum recovery using this method. Effects of factors like NaOH concentration (C = 3, 5, 7 and 9 M), temperature (T = 50, 70, 90 and 105 °C), solid/liquid ratio (weight/volume, S/L = 1/10 and 1/5 W/V) and stirring speed (R = 500 and 800 rpm) were studied on HFC leaching. L16 orthogonal array (OA, two factors in four levels and two factors in two levels) was applied to determine the optimum condition and the most significant factor affecting the overall zinc extraction. As a result, maximum zinc extraction was 83.4 %. Afterwards, a rough test was conducted for zinc electrowinning from alkaline solution according to the common condition available in literature by which pure zinc powder (99.96 %) was successfully obtained.

  17. Modulating inhibitors of transthyretin fibrillogenesis via sulfation: polychlorinated biphenyl sulfates as models.

    PubMed

    Grimm, Fabian A; Lehmler, Hans-Joachim; He, Xianran; Robertson, Larry W; Duffel, Michael W

    2015-02-25

    Small molecules that bind with high affinity to thyroxine (T4) binding sites on transthyretin (TTR) kinetically stabilize the protein's tetrameric structure, thereby efficiently decreasing the rate of tetramer dissociation in TTR related amyloidoses. Current research efforts aim to optimize the amyloid inhibiting properties of known inhibitors, such as derivatives of biphenyls, dibenzofurans and benzooxazoles, by chemical modification. In order to test the hypothesis that sulfate group substituents can improve the efficiencies of such inhibitors, we evaluated the potential of six polychlorinated biphenyl sulfates to inhibit TTR amyloid fibril formation in vitro. In addition, we determined their binding orientations and molecular interactions within the T4 binding site by molecular docking simulations. Utilizing this combined experimental and computational approach, we demonstrated that sulfation significantly improves the amyloid inhibiting properties as compared to both parent and hydroxylated PCBs. Importantly, several PCB sulfates were of equal or higher potency than some of the most effective previously described inhibitors. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Effect of resveratrol and zinc on intracellular zinc status in normal human prostate epithelial cells

    USDA-ARS?s Scientific Manuscript database

    To evaluate the influence of resveratrol on cellular zinc status, normal human prostate epithelial (NHPrE) cells were treated with 6 levels of resveratrol (0, 0.5, 1, 2.5, 5 and 10 microM) and 4 levels of zinc [0, 4, 16, and 32 microM for zinc-deficient (ZD), zinc-normal (ZN), zinc-adequate (ZA), an...

  19. Zinc and gastrointestinal disease

    PubMed Central

    Skrovanek, Sonja; DiGuilio, Katherine; Bailey, Robert; Huntington, William; Urbas, Ryan; Mayilvaganan, Barani; Mercogliano, Giancarlo; Mullin, James M

    2014-01-01

    This review is a current summary of the role that both zinc deficiency and zinc supplementation can play in the etiology and therapy of a wide range of gastrointestinal diseases. The recent literature describing zinc action on gastrointestinal epithelial tight junctions and epithelial barrier function is described. Zinc enhancement of gastrointestinal epithelial barrier function may figure prominently in its potential therapeutic action in several gastrointestinal diseases. PMID:25400994

  20. Cellular mechanisms of renal adaptation of sodium dependent sulfate cotransport to altered dietary sulfate in rats.

    PubMed

    Sagawa, K; DuBois, D C; Almon, R R; Murer, H; Morris, M E

    1998-12-01

    The renal transport and fractional reabsorption of inorganic sulfate is altered under conditions of sulfate deficiency or excess. The objective of this study was to examine the cellular mechanisms of adaptation of renal sodium/sulfate cotransport after varying dietary intakes of a sulfur containing amino acid, methionine. Female Lewis rats were divided into four groups and fed diets containing various concentrations of methionine (0, 0.3, 0.82 and 2.46%) for 8 days. Urinary excretion rates and renal clearance of sulfate were significantly decreased in the animals fed a 0% methionine diet or a 0.3% methionine diet, and significantly increased in the animals fed a 2.46% methionine diet when evaluated on days 4 and 7. Serum sulfate concentrations were unchanged by diet treatment in all animals. The fractional reabsorption of sulfate was significantly increased in the animals fed the 0% methionine diet and the 0.3% methionine diets, and decreased in the animals fed the 2.46% methionine diet. Increased mRNA and protein levels for the sodium/sulfate transporter (NaSi-1) were found in the kidney cortex following treatment with the 0 and 0.3% methionine diet groups. Sulfate homeostasis by renal reabsorption is maintained by an up-regulation of steady state levels of NaSi-1 mRNA and protein when the diet is low in methionine.

  1. Properties of Zip4 accumulation during zinc deficiency and its usefulness to evaluate zinc status: a study of the effects of zinc deficiency during lactation.

    PubMed

    Hashimoto, Ayako; Nakagawa, Miki; Tsujimura, Natsuki; Miyazaki, Shiho; Kizu, Kumiko; Goto, Tomoko; Komatsu, Yusuke; Matsunaga, Ayu; Shirakawa, Hitoshi; Narita, Hiroshi; Kambe, Taiho; Komai, Michio

    2016-03-01

    Systemic and cellular zinc homeostasis is elaborately controlled by ZIP and ZnT zinc transporters. Therefore, detailed characterization of their expression properties is of importance. Of these transporter proteins, Zip4 functions as the primarily important transporter to control systemic zinc homeostasis because of its indispensable function of zinc absorption in the small intestine. In this study, we closely investigated Zip4 protein accumulation in the rat small intestine in response to zinc status using an anti-Zip4 monoclonal antibody that we generated and contrasted this with the zinc-responsive activity of the membrane-bound alkaline phosphatase (ALP). We found that Zip4 accumulation is more rapid in response to zinc deficiency than previously thought. Accumulation increased in the jejunum as early as 1 day following a zinc-deficient diet. In the small intestine, Zip4 protein expression was higher in the jejunum than in the duodenum and was accompanied by reduction of ALP activity, suggesting that the jejunum can become zinc deficient more easily. Furthermore, by monitoring Zip4 accumulation levels and ALP activity in the duodenum and jejunum, we reasserted that zinc deficiency during lactation may transiently alter plasma glucose levels in the offspring in a sex-specific manner, without affecting homeostatic control of zinc metabolism. This confirms that zinc nutrition during lactation is extremely important for the health of the offspring. These results reveal that rapid Zip4 accumulation provides a significant conceptual advance in understanding the molecular basis of systemic zinc homeostatic control, and that properties of Zip4 protein accumulation are useful to evaluate zinc status closely. Copyright © 2016 the American Physiological Society.

  2. Interaction Between Yeasts and Zinc

    NASA Astrophysics Data System (ADS)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  3. Divergent Synthesis of Chondroitin Sulfate Disaccharides and Identification of Sulfate Motifs that Inhibit Triple Negative Breast Cancer

    NASA Astrophysics Data System (ADS)

    Wei Poh, Zhong; Heng Gan, Chin; Lee, Eric J.; Guo, Suxian; Yip, George W.; Lam, Yulin

    2015-09-01

    Glycosaminoglycans (GAGs) regulate many important physiological processes. A pertinent issue to address is whether GAGs encode important functional information via introduction of position specific sulfate groups in the GAG structure. However, procurement of pure, homogenous GAG motifs to probe the “sulfation code” is a challenging task due to isolation difficulty and structural complexity. To this end, we devised a versatile synthetic strategy to obtain all the 16 theoretically possible sulfation patterns in the chondroitin sulfate (CS) repeating unit; these include rare but potentially important sulfated motifs which have not been isolated earlier. Biological evaluation indicated that CS sulfation patterns had differing effects for different breast cancer cell types, and the greatest inhibitory effect was observed for the most aggressive, triple negative breast cancer cell line MDA-MB-231.

  4. Enhanced zinc consumption causes memory deficits and increased brain levels of zinc

    USGS Publications Warehouse

    Flinn, J.M.; Hunter, D.; Linkous, D.H.; Lanzirotti, A.; Smith, L.N.; Brightwell, J.; Jones, B.F.

    2005-01-01

    Zinc deficiency has been shown to impair cognitive functioning, but little work has been done on the effects of elevated zinc. This research examined the effect on memory of raising Sprague-Dawley rats on enhanced levels of zinc (10 ppm ZnCO3; 0.153 mM) in the drinking water for periods of 3 or 9 months, both pre- and postnatally. Controls were raised on lab water. Memory was tested in a series of Morris Water Maze (MWM) experiments, and zinc-treated rats were found to have impairments in both reference and working memory. They were significantly slower to find a stationary platform and showed greater thigmotaxicity, a measure of anxiety. On a working memory task, where the platform was moved each day, zinc-treated animals had longer latencies over both trials and days, swam further from the platform, and showed greater thigmotaxicity. On trials using an Atlantis platform, which remained in one place but was lowered on probe trials, the zinc-treated animals had significantly fewer platform crossings, spent less time in the target quadrant, and did not swim as close to the platform position. They had significantly greater latency on nonprobe trials. Microprobe synchrotron X-ray fluorescence (??SXRF) confirmed that brain zinc levels were increased by adding ZnCO 3 to the drinking water. These data show that long-term dietary administration of zinc can lead to impairments in cognitive function. ?? 2004 Elsevier Inc. All rights reserved.

  5. [Advances in the research of zinc deficiency and zinc supplementation treatment in patients with severe burns].

    PubMed

    Wang, X X; Zhang, M J; Li, X B

    2018-01-20

    Zinc is one of the essential trace elements in human body, which plays an important role in regulating acute inflammatory response, glucose metabolism, anti-oxidation, immune and gastrointestinal function of patients with severe burns. Patients with severe burns may suffer from zinc deficiency because of insufficient amount of zinc intake from the diet and a large amount of zinc lose through wounds and urine. Zinc deficiency may affect their wound healing process and prognosis. This article reviews the characteristics of zinc metabolism in patients with severe burns through dynamic monitoring the plasma and urinary concentration of zinc. An adequate dosage of zinc supplemented to patients with severe burns by an appropriate method can increase the level of zinc in plasma and skin tissue and improve wound healing, as well as reduce the infection rates and mortality. At the same time, it is important to observe the symptoms and signs of nausea, dizziness, leukopenia and arrhythmia in patients with severe burns after supplementing excessive zinc.

  6. Changes in zinc speciation with mine tailings acidification in a semi-arid weathering environment

    PubMed Central

    Hayes, Sarah M.; O’Day, Peggy A.; Webb, Sam M.; Maier, Raina M.; Chorover, Jon

    2011-01-01

    High concentrations of residual metal contaminants in mine tailings can be transported easily by wind and water, particularly when tailings remain unvegetated for decades following mining cessation, as is the case in semi-arid landscapes. Understanding the speciation and mobility of contaminant metal(loid)s, particularly in surficial tailings, is essential to controlling their phytotoxicities and to revegetating impacted sites. In prior work, we showed that surficial tailings samples from the Klondyke State Superfund Site (AZ, USA), ranging in pH from 5.4 to 2.6, represent a weathering series, with acidification resulting from sulfide mineral oxidation, long-term Fe hydrolysis, and a concurrent decrease in total (6,000 to 450 mg kg−1) and plant-available (590 to 75 mg kg−1) Zn due to leaching losses and changes in Zn speciation. Here, we used bulk and micro-focused Zn K-edge X-ray absorption spectroscopy (XAS) data and a six-step sequential extraction procedure to determine tailings solid phase Zn speciation. Bulk sample spectra were fit by linear combination using three references: Zn-rich phyllosilicate (Zn0.8talc), Zn sorbed to ferrihydrite (ZnadsFeOx), and zinc sulfate (ZnSO4·7H2O). Analyses indicate that Zn sorbed in tetrahedral coordination to poorly-crystalline Fe and Mn (oxyhydr)oxides decreases with acidification in the weathering sequence, whereas octahedral zinc in sulfate minerals and crystalline Fe oxides undergoes a relative accumulation. Micro-scale analyses identified hetaerolite (ZnMn2O4), hemimorphite (Zn4Si2O7(OH)2·H2O) and sphalerite (ZnS) as minor phases. Bulk and micro-focused spectroscopy complement the chemical extraction results and highlight the importance of using a multi-method approach to interrogate complex tailings systems. PMID:21761897

  7. 99. ZINC ROUGHER CELLS ON LEFT, ZINC CLEANER CELLS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    99. ZINC ROUGHER CELLS ON LEFT, ZINC CLEANER CELLS ON RIGHT, LOOKING NORTH. NOTE ONE STYLE OF DENVER AGITATOR IN LOWER RIGHT CELL. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  8. Serum thymulin in human zinc deficiency.

    PubMed Central

    Prasad, A S; Meftah, S; Abdallah, J; Kaplan, J; Brewer, G J; Bach, J F; Dardenne, M

    1988-01-01

    The activity of thymulin (a thymic hormone) is dependent on the presence of zinc in the molecule. We assayed serum thymulin activity in three models of mildly zinc-deficient (ZD) human subjects before and after zinc supplementation: (a) two human volunteers in whom a specific and mild zinc deficiency was induced by dietary means; (b) six mildly ZD adult sickle cell anemia (SCA) subjects; and (c) six mildly ZD adult non-SCA subjects. Their plasma zinc levels were normal and they showed no overt clinical manifestations of zinc deficiency. The diagnosis of mild zinc deficiency was based on the assay of zinc in lymphocytes, granulocytes, and platelets. Serum thymulin activity was decreased as a result of mild zinc deficiency and was corrected by in vivo and in vitro zinc supplementation, suggesting that this parameter was a sensitive indicator of zinc deficiency in humans. An increase in T101-, sIg-cells, decrease in T4+/T8+ ratio, and decreased IL 2 activity were observed in the experimental human model during the zinc depletion phase, all of which were corrected after repletion with zinc. Similar changes in lymphocyte subpopulation, correctable with zinc supplementation, were also observed in mildly ZD SCA subjects. Inasmuch as thymulin is known to induce intra- and extrathymic T cell differentiation, our studies provide a possible mechanism for the role of zinc on T cell functions. Images PMID:3262625

  9. Zinc supplementation in public health.

    PubMed

    Penny, Mary Edith

    2013-01-01

    Zinc is necessary for physiological processes including defense against infections. Zinc deficiency is responsible for 4% of global child morbidity and mortality. Zinc supplements given for 10-14 days together with low-osmolarity oral rehydration solution (Lo-ORS) are recommended for the treatment of childhood diarrhea. In children aged ≥ 6 months, daily zinc supplements reduce the duration of acute diarrhea episodes by 12 h and persistent diarrhea by 17 h. Zinc supplements could reduce diarrhea mortality in children aged 12-59 months by an estimated 23%; they are very safe but are associated with an increase in vomiting especially with the first dose. Heterogeneity between the results of trials is not understood but may be related to dose and the etiology of the diarrhea infection. Integration of zinc and Lo-ORS into national programs is underway but slowly, procurement problems are being overcome and the greatest challenge is changing health provider and caregiver attitudes to diarrhea management. Fewer trials have been conducted of zinc adjunct therapy in severe respiratory tract infections and there is as yet insufficient evidence to recommend addition of zinc to antibiotic therapy. Daily zinc supplements for all children >12 months of age in zinc deficient populations are estimated to reduce diarrhea incidence by 11-23%. The greatest impact is in reducing multiple episodes of diarrhea. The effect on duration of diarrheal episodes is less clear, but there may be up to 9% reduction. Zinc is also efficacious in reducing dysentery and persistent diarrhea. Zinc supplements may also prevent pneumonia by about 19%, but heterogeneity across studies has not yet been explained. When analyses are restricted to better quality studies using CHERG (Child Health Epidemiology Reference Group) methodology, zinc supplements are estimated to reduce diarrheal deaths by 13% and pneumonia deaths by 20%. National-level programs to combat childhood zinc deficiency should be

  10. Preventive effects of selenium yeast, chromium picolinate, zinc sulfate and their combination on oxidative stress, inflammation, impaired angiogenesis and atherogenesis in myocardial infarction in rats.

    PubMed

    Al-Rasheed, Nouf M; Attia, Hala A; Mohamed, Raessa A; Al-Rasheed, Nawal M; Al-Amin, Maha A

    2013-01-01

    Accumulating evidences suggest a critical role of trace metal dyshemostasis in oxidative stress and cardiac dysfunction after myocardial infarction (MI). This study investigated the cardioprotective effects of selenium yeast (Se), chromium picolinate Cr(pic)3, zinc sulfate (Zn) and their combination on isoproterenol (ISO)-induced MI. Rats were divided into six groups: normal control, ISO control, Se-pretreated (0.1 mg/kg), Cr(pic)3-pretreated (400 µg/kg), Zn-pretreated (30 mg/kg) and metal combination-pretreated groups. All metals were administered for 28 days and at the 27th day, MI was induced by subcutaneous injection of ISO (85 mg/kg) once for two consecutive days. ISO control group showed hyperlipidemia, elevation of cardiac biomarkers and lipid peroxidation and increased immunostaining of p47 phox NADPH oxidase subunit in addition to decreased levels of glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Cardiac levels of tumor necrosis factor-α (TNF-α) were increased, while vascular endothelial growth factor (VEGF, the major angiogenic factor) was decreased. Pretreatment with Se normalized the cardiac enzymes, lipid peroxidation, GSH, SOD, CAT, GPx, TNF-α and VEGF (P<0.001) and reduced the immunostaining of p47 phox subunit. However, Se failed to correct the dyslipidemia. Cr(pic)3 significantly improved lipid profile (P<0.001) and all other biochemical deviations except for VEGF. Zn, but to lesser extent, reduced the oxidative damage and TNF-α levels and improved both dyslipidemia and angiogenesis. Combination therapy exhibited less prominent protection compared to individual metals. Daily supplementation with trace metals is promising for improving myocardial performance via preventing oxidative damage, induction of angiogenesis, anti-inflammatory and/or anti-hyperlipidemic mechanisms.

  11. History of Zinc in Agriculture12

    PubMed Central

    Nielsen, Forrest H.

    2012-01-01

    Zinc was established as essential for green plants in 1926 and for mammals in 1934. However, >20 y would pass before the first descriptions of zinc deficiencies in farm animals appeared. In 1955, it was reported that zinc supplementation would cure parakeratosis in swine. In 1958, it was reported that zinc deficiency induced poor growth, leg abnormalities, poor feathering, and parakeratosis in chicks. In the 1960s, zinc supplementation was found to alleviate parakeratosis in grazing cattle and sheep. Within 35 y, it was established that nearly one half of the soils in the world may be zinc deficient, causing decreased plant zinc content and production that can be prevented by zinc fertilization. In many of these areas, zinc deficiency is prevented in grazing livestock by zinc fertilization of pastures or by providing salt licks. For livestock under more defined conditions, such as poultry, swine, and dairy and finishing cattle, feeds are easily supplemented with zinc salts to prevent deficiency. Today, the causes and consequences of zinc deficiency and methods and effects of overcoming the deficiency are well established for agriculture. The history of zinc in agriculture is an outstanding demonstration of the translation of research into practical application. PMID:23153732

  12. Layered zinc hydroxide salts: delamination, preferred orientation of hydroxide lamellae, and formation of ZnO nanodiscs.

    PubMed

    Demel, Jan; Pleštil, Josef; Bezdička, Petr; Janda, Pavel; Klementová, Mariana; Lang, Kamil

    2011-08-15

    Delamination of layered zinc hydroxide salts (LZH) into hydroxide layers provides nanobuilding blocs of a two-dimensional anisotropy. The methodology, extent of delamination, the size and stability of hydroxide lamellae are described in detail. The ability of lamellae to restack to form oriented hydroxide films depends on the solvent, original LZH salt, and conditions used for delamination. The most interesting results were obtained using LZH intercalated with dodecyl sulfate anions and LZH nitrate delaminated in butanol at 60 °C and in formamide at room temperature, respectively. The former method produces hydroxide lamellae of a lateral size of ca. 10-20 nm. The inner structure of the hydroxide layers is conserved and separated lamellae restack to the original layered structure of LZH dodecyl sulfate. The latter method yields lamellae with a size decreasing from 73.3 nm to 10 nm after a 2-week aging, while their thickness is nearly constant (2.6-3.8 nm). However, the use of formamide is complicated by the formation of Zn(II) formate. The major part of LZH intercalated with dodecyl sulfate anions is transformed during the delamination procedure to anisotropic ZnO nanoparticles, either needle-like particles prolonged in the [0 0 1] direction or disc-like particles flattened along the (0 0 1) plane. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. 21 CFR 172.822 - Sodium lauryl sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium lauryl sulfate. 172.822 Section 172.822... CONSUMPTION Multipurpose Additives § 172.822 Sodium lauryl sulfate. The food additive sodium lauryl sulfate... following specifications: (1) It is a mixture of sodium alkyl sulfates consisting chiefly of sodium lauryl...

  14. [MORPHOFUNCTIONAL ADJUSTMENT VASCULAR AND CELLULAR COMPONENTS OF THE CEREBELLAR CORTEX IN EXPOSURE TO BODY SULFATES OF COPPER, ZINC AND IRON].

    PubMed

    Grintsova, N; Vasko, L; Kiptenko, L; Gortinsky, A; Murenets, N

    2015-09-01

    In order to analyze the morphological and morphometric reconstructions of the vascular bed, and Purkinje cells of the cerebellar cortex of rats in long-term action (for 90 days) on the body of sulphates of copper, zinc and iron, an experiment was conducted on 48 adult white male rats weighing 200-250 g in age 5-7 months. We used anatomical, morphometric, statistical and common methods of microanatomical research. It was found that the combined effect on the body of sulphates of copper and zinc, and iron in the cerebellum has enough expressive toxicity, which affects the condition of the vascular bed, and Purkinje cells. The degree of morphological transformations is in direct proportion to the duration of the experiment. In the pathogenesis of violations leading role played by hypoxia, develop signs of swelling of the cerebellar cortex with signs hemorrhagic infiltration, the severity of which is maximum on the 60th day of the experiment.

  15. Chlorinated Dioxins and Furans from Kelp and Copper Sulfate ...

    EPA Pesticide Factsheets

    In 2002, dioxins were discovered in animal feed ingredients during a random sampling by Irish officials and subsequently traced to particular mineral supplements produced at a Minnesota plant in the United States. These products sold under the names of SQM Mineral Products and Carbosan Mineral Products provide trace minerals complexed to polysaccharides for delivery of trace minerals. The products were voluntarily recalled by the company until the source of the dioxins could be identified and the dioxins eliminated from the supplements. Preliminary investigations by the company and federal agencies indicated that the dioxins were apparently produced during the manufacturing process of supplements containing copper, zinc, manganese, magnesium and iron. Additional studies were initiated to identify the specific ingredients required for dioxin formation and to provide further insight into the conditions necessary for their production. Citation: Ferrario, J.; Byrne, C.; Winters, D.; Boone, T.; Vigo, C.; Dupuy, A.; 2003. Chlorinated Dioxins and Furans from Kelp and Copper Sulfate: Initial Investigations of Dioxin Formation in Mineral Feed Supplements. Organohalogen Compounds 63, 183-186.

  16. Endogenous Zinc in Neurological Diseases

    PubMed Central

    2005-01-01

    The use of zinc in medicinal skin cream was mentioned in Egyptian papyri from 2000 BC (for example, the Smith Papyrus), and zinc has apparently been used fairly steadily throughout Roman and modern times (for example, as the American lotion named for its zinc ore, 'Calamine'). It is, therefore, somewhat ironic that zinc is a relatively late addition to the pantheon of signal ions in biology and medicine. However, the number of biological functions, health implications and pharmacological targets that are emerging for zinc indicate that it might turn out to be 'the calcium of the twenty-first century'. Here neurobiological roles of endogenous zinc is summarized. PMID:20396459

  17. Comparison of magnesium sulfate and sodium sulfate for removal of water from pesticide extracts of foods.

    PubMed

    Schenck, Frank J; Callery, Patrick; Gannett, Peter M; Daft, Jonathan R; Lehotay, Steven J

    2002-01-01

    Water-miscible solvents, such as acetone and acetonitrile, effectively extract both polar and nonpolar pesticide residues from nonfatty foods. The addition of sodium chloride to the resulting acetonitrile-water or acetone-water extract (salting out) results in the separation of the water from the organic solvent. However, the organic solvent layer (pesticide extract) still contains some residual water, which can adversely affect separation procedures that follow, such as solid-phase extraction and/or gas chromatography. Drying agents, such as sodium sulfate or magnesium sulfate, are used to remove the water from the organic extracts. In the present study, we used nuclear magnetic resonance spectroscopy to study the composition of the phases resulting from salting out and to compare the effectiveness of sodium sulfate and magnesium sulfate as drying agents. The study showed that considerable amounts of water remained in the organic phase after phase separation. Sodium sulfate was a relatively ineffective drying agent, removing little or no residual water from the organic solvent. Magnesium sulfate proved to be a much more effective drying agent.

  18. Measurements of zinc absorption: application and interpretation in research designed to improve human zinc nutriture.

    PubMed

    Hambidge, K Michael; Miller, Leland V; Tran, Cuong D; Krebs, Nancy F

    2005-11-01

    The focus of this paper is on the application of measurements of zinc absorption in human research, especially studies designed to assess the efficacy of intervention strategies to prevent and manage zinc deficiency in populations. Emphasis is given to the measurement of quantities of zinc absorbed rather than restricting investigations to measurements of fractional absorption of zinc. This is especially important when determining absorption of zinc from the diet, whether it be the habitual diet or an intervention diet under evaluation. Moreover, measurements should encompass all meals for a minimum of one day with the exception of some pilot studies. Zinc absorption is primarily via an active saturable transport process into the enterocytes of the proximal small intestine. The relationship between quantity of zinc absorbed and the quantity ingested is best characterized by saturable binding models. When applied to human studies that have sufficient data to examine dose-response relationships, efficiency of absorption is high until approximately 50-60% maximal absorption is achieved, even with moderate phytate intakes. This also coincides approximately with the quantity of absorbed zinc necessary to meet physiologic requirements. Efficiency of absorption with intakes that exceed this level is low or very low. These observations have important practical implications for the design and interpretation of intervention studies to prevent zinc deficiency. They also suggest the potential utility of measurements of the quantity of zinc absorbed when evaluating the zinc status of populations.

  19. Interaction of zinc with dental mineral.

    PubMed

    Ingram, G S; Horay, C P; Stead, W J

    1992-01-01

    As some currently available toothpastes contain zinc compounds, the reaction of zinc with dental mineral and its effect on crystal growth rates were studied using three synthetic calcium-deficient hydroxyapatites (HAP) as being representative of dental mineral. Zinc was readily acquired by all HAP samples in the absence of added calcium, the amount adsorbed being proportional to the HAP surface area; about 9 mumol Zn/m2 was adsorbed at high zinc concentrations. As zinc was acquired, calcium was released, consistent with 1:1 Ca:Zn exchange. Soluble calcium reduced zinc uptake and similarly, calcium post-treatment released zinc. Pretreatment of HAP with 0.5 mM zinc reduced its subsequent ability to undergo seeded crystal growth, as did extracts of a toothpaste containing 0.5% zinc citrate, even in the presence of saliva. The reverse reaction, i.e. displacement of adsorbed zinc by salivary levels of calcium, however, indicates the mechanism by which zinc can reduce calculus formation in vivo by inhibiting plaque mineralisation without adversely affecting the anti-caries effects of fluoride.

  20. Monoalkyl sulfates as alkylating agents in water, alkylsulfatase rate enhancements, and the “energy-rich” nature of sulfate half-esters

    PubMed Central

    Wolfenden, Richard; Yuan, Yang

    2007-01-01

    Alkyl sulfate monoesters are involved in cell signaling and structure. Alkyl sulfates are also present in many commercial detergents. Here, we show that monomethyl sulfate acts as an efficient alkylating agent in water, reacting spontaneously with oxygen nucleophiles >100-fold more rapidly than do alkylsulfonium ions, the usual methyl donors in living organisms. These reactions of methyl sulfate, which are much more rapid than its hydrolysis, are insensitive to the nature of the attacking nucleophile, with a Brønsted βnuc value of −0.01. Experiments at elevated temperatures indicate a rate constant of 2 × 10−11 s−1 for the uncatalyzed hydrolysis of methyl sulfate at 25°C (t1/2 = 1,100 y), corresponding to a rate enhancement of ≈1011-fold by a human alkylsulfatase. Equilibria of formation of methyl sulfate from methanol and sodium hydrogen sulfate indicate a group transfer potential (ΔG′pH7) of −8.9 kcal/mol for sulfate ester hydrolysis. The magnitude of that value, involving release of the strong acid HSO4−, helps to explain the need for harnessing the free energy of hydrolysis of two ATP molecules in activating sulfate for the biosynthesis of sulfate monoesters. The “energy-rich” nature of monoalkyl sulfate esters, coupled with their marked resistance to hydrolysis, renders them capable of acting as sulfating or alkylating agents under relatively mild conditions. These findings raise the possibility that, under appropriate circumstances, alkyl groups may undergo transfer from alkyl sulfate monoesters to biological target molecules. PMID:17182738

  1. Rechargeable zinc cell with alkaline electrolyte which inhibits shape change in zinc electrode

    DOEpatents

    Adler, T.C.; McLarnon, F.R.; Cairns, E.J.

    1994-04-12

    An improved rechargeable zinc cell is described comprising a zinc electrode and another electrode such as, for example, a nickel-containing electrode, and having an electrolyte containing KOH and a combination of KF and K[sub 2]CO[sub 3] salts which inhibits shape change in the zinc electrode, i.e., the zinc electrode exhibits low shape change, resulting in an improved capacity retention of the cell over an number of charge-discharge cycles, while still maintaining high discharge rate characteristics. 8 figures.

  2. Rechargeable zinc cell with alkaline electrolyte which inhibits shape change in zinc electrode

    DOEpatents

    Adler, Thomas C.; McLarnon, Frank R.; Cairns, Elton J.

    1994-01-01

    An improved rechargeable zinc cell is described comprising a zinc electrode and another electrode such as, for example, a nickel-containing electrode, and having an electrolyte containing KOH and a combination of KF and K.sub.2 CO.sub.3 salts which inhibits shape change in the zinc electrode, i.e., the zinc electrode exhibits low shape change, resulting in an improved capacity retention of the cell over an number of charge-discharge cycles, while still maintaining high discharge rate characteristics.

  3. The stability of sulfate and hydrated sulfate minerals near ambient conditions and their significance in environmental and planetary sciences

    USGS Publications Warehouse

    Chou, I-Ming; Seal, Robert R.; Wang, Alian

    2013-01-01

    Sulfate and hydrated sulfate minerals are abundant and ubiquitous on the surface of the Earth and also on other planets and their satellites. The humidity-buffer technique has been applied to study the stability of some of these minerals at 0.1MPa in terms of temperature-relative humidity space on the basis of hydration-dehydration reversal experiments. Updated phase relations in the binary system MgSO"4-H"2O are presented, as an example, to show how reliable thermodynamic data for these minerals could be obtained based on these experimental results and thermodynamic principles. This approach has been applied to sulfate and hydrated sulfate minerals of other metals, including Fe (both ferrous and ferric), Zn, Ni, Co, Cd, and Cu. Metal-sulfate salts play important roles in the cycling of metals and sulfate in terrestrial systems, and the number of phases extends well beyond the simple sulfate salts that have thus far been investigated experimentally. The oxidation of sulfide minerals, particularly pyrite, is a common process that initiates the formation of efflorescent metal-sulfate minerals. Also, the overall abundance of iron-bearing sulfate salts in nature reflects the fact that the weathering of pyrite or pyrrhotite is the ultimate source for many of these phases. Many aspects of their environmental significance are reviewed, particularly in acute effects to aquatic ecosystems related to the dissolution of sulfate salts during rain storms or snow-melt events. Hydrous Mg, Ca, and Fe sulfates were identified on Mars, with wide distribution and very large quantities at many locations, on the basis of spectroscopic observations from orbital remote sensing and surface explorations by rovers. However, many of these findings do not reveal the detailed information on the degree of hydration that is essential for rigorous interpretation of the hydrologic history of Mars. Laboratory experiments on stability fields, reactions pathways, and reaction rates of hydrous

  4. The stability of sulfate and hydrated sulfate minerals near ambient conditions and their significance in environmental and planetary sciences

    USGS Publications Warehouse

    Chou, I-Ming; Seal, Robert R.; Wang, Alian

    2013-01-01

    Sulfate and hydrated sulfate minerals are abundant and ubiquitous on the surface of the Earth and also on other planets and their satellites. The humidity-buffer technique has been applied to study the stability of some of these minerals at 0.1 MPa in terms of temperature-relative humidity space on the basis of hydration-dehydration reversal experiments. Updated phase relations in the binary system MgSO4-H2O are presented, as an example, to show how reliable thermodynamic data for these minerals could be obtained based on these experimental results and thermodynamic principles. This approach has been applied to sulfate and hydrated sulfate minerals of other metals, including Fe (both ferrous and ferric), Zn, Ni, Co, Cd, and Cu. Metal-sulfate salts play important roles in the cycling of metals and sulfate in terrestrial systems, and the number of phases extends well beyond the simple sulfate salts that have thus far been investigated experimentally. The oxidation of sulfide minerals, particularly pyrite, is a common process that initiates the formation of efflorescent metal-sulfate minerals. Also, the overall abundance of iron-bearing sulfate salts in nature reflects the fact that the weathering of pyrite or pyrrhotite is the ultimate source for many of these phases. Many aspects of their environmental significance are reviewed, particularly in acute effects to aquatic ecosystems related to the dissolution of sulfate salts during rain storms or snow-melt events. Hydrous Mg, Ca, and Fe sulfates were identified on Mars, with wide distribution and very large quantities at many locations, on the basis of spectroscopic observations from orbital remote sensing and surface explorations by rovers. However, many of these findings do not reveal the detailed information on the degree of hydration that is essential for rigorous interpretation of the hydrologic history of Mars. Laboratory experiments on stability fields, reactions pathways, and reaction rates of hydrous sulfates

  5. Leptin, NPY, Melatonin and Zinc Levels in Experimental Hypothyroidism and Hyperthyroidism: The Relation to Zinc.

    PubMed

    Baltaci, Abdulkerim Kasım; Mogulkoc, Rasim

    2017-06-01

    Since zinc mediates the effects of many hormones or is found in the structure of numerous hormone receptors, zinc deficiency leads to various functional impairments in the hormone balance. And also thyroid hormones have important activity on metabolism and feeding. NPY and leptin are affective on food intake and regulation of appetite. The present study is conducted to determine how zinc supplementation and deficiency affect thyroid hormones (free and total T3 and T4), melatonin, leptin, and NPY levels in thyroid dysfunction in rats. The experiment groups in the study were formed as follows: Control (C); Hypothyroidism (PTU); Hypothyroidism+Zinc (PTU+Zn); Hypothyroidism+Zinc deficient; Hyperthyroidism (H); Hyperthyroidism+Zinc (H+Zn); and Hyperthyroidism+Zinc deficient. Thyroid hormone parameters (FT 3 , FT 4 , TT 3 , and TT 4 ) were found to be reduced in hypothyroidism groups and elevated in the hyperthyroidism groups. Melatonin values increased in hyperthyroidism and decreased in hypothyroidism. Leptin and NPY levels both increased in hypo- and hyperthyroidism. Zinc levels, on the other hand, decreased in hypothyroidism and increased in hyperthyroidism. Zinc supplementation, particularly when thyroid function is impaired, has been demonstrated to markedly prevent these changes.

  6. Inhibition of bacterial biofilms by carboxymethyl chitosan combined with silver, zinc and copper salts.

    PubMed

    Gonçalves, Randys Caldeira; da Silva, Diego Pereira; Signini, Roberta; Naves, Plínio Lázaro Faleiro

    2017-12-01

    Investigation of the antimicrobial action of carboxymethyl chitosan (CMCh) is among the alternative approaches in the control of pathogenic microorganisms. This study aimed to screen the toxicity using the brine shrimp lethality assay and to investigate the inhibitory activity of carboxymethyl in isolation or in combination with silver nitrate, copper sulfate and zinc sulfate on biofilm formation by Staphylococcus aureus ATCC 6538, Staphylococcus epidermidis ATCC 12228, Kocuria rhizophila ATCC 9341, Pseudomonas aeruginosa ATCC 9027, Escherichia coli ATCC 25312, and Burkholderia cepacia ATCC 17759. The CMCh was obtained by reacting chitosan with monochloroacetic acid under alkaline conditions, and the occurrence of carboxymethylation was evidenced by FTIR and 1 H NMR spectroscopy. The CMCh was combined with metallic salts (AgNO 3 , CuSO 4 ·5H 2 O and ZnSO 4 ) to perform the bioassays to screen the toxicity, to determine the minimum inhibitory concentration and the impact of sub-inhibitory concentrations against biofilm formation. Although CMCh did not show inhibitory activity against bacterial growth, it had an interesting level of inhibition of bacterial biofilm. The results suggest that sub-inhibitory concentrations of compounds were effective against biofilm formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Sulfate resistance of high calcium fly ash concrete

    NASA Astrophysics Data System (ADS)

    Dhole, Rajaram

    Sulfate attack is one of the mechanisms which can cause deterioration of concrete. In general, Class C fly ash mixtures are reported to provide poor sulfate resistance. Fly ashes, mainly those belonging to the Class C, were tested as per the ASTM C 1012 procedure to evaluate chemical sulfate resistance. Overall the Class C fly ashes showed poor resistance in the sulfate environment. Different strategies were used in this research work to improve the sulfate resistance of Class C fly ash mixes. The study revealed that some of the strategies such as use of low W/CM (water to cementing materials by mass ratio), silica fume or ultra fine fly ash, high volumes of fly ash and, ternary or quaternary mixes with suitable supplementary cementing materials, can successfully improve the sulfate resistance of the Class C fly ash mixes. Combined sulfate attack, involving physical and chemical action, was studied using sodium sulfate and calcium sulfate solutions. The specimens were subjected to wetting-drying cycles and temperature changes. These conditions were found to accelerate the rate of degradation of concrete placed in a sodium sulfate environment. W/CM was found to be the main governing factor in providing sulfate resistance to mixes. Calcium sulfate did not reveal damage as a result of mainly physical action. Characterization of the selected fly ashes was undertaken by using SEM, XRD and the Rietveld analysis techniques, to determine the relation between the composition of fly ashes and resistance to sulfate attack. The chemical composition of glass represented on the ternary diagram was the main factor which had a significant influence on the sulfate resistance of fly ash mixtures. Mixes prepared with fly ashes containing significant amounts of vulnerable crystalline phases offered poor sulfate resistance. Comparatively, fly ash mixes containing inert crystalline phases such as quartz, mullite and hematite offered good sulfate resistance. The analysis of hydrated lime

  8. Effects of chlorate on the sulfation process of Trypanosoma cruzi glycoconjugates. Implication of parasite sulfates in cellular invasion.

    PubMed

    Ferrero, Maximiliano R; Soprano, Luciana L; Acosta, Diana M; García, Gabriela A; Esteva, Mónica I; Couto, Alicia S; Duschak, Vilma G

    2014-09-01

    Sulfation, a post-translational modification which plays a key role in various biological processes, is inhibited by competition with chlorate. In Trypanosoma cruzi, the agent of Chagas' disease, sulfated structures have been described as part of glycolipids and we have reported sulfated high-mannose type oligosaccharides in the C-T domain of the cruzipain (Cz) glycoprotein. However, sulfation pathways have not been described yet in this parasite. Herein, we studied the effect of chlorate treatment on T. cruzi with the aim to gain some knowledge about sulfation metabolism and the role of sulfated molecules in this parasite. In chlorate-treated epimastigotes, immunoblotting with anti-sulfates enriched Cz IgGs (AS-enriched IgGs) showed Cz undersulfation. Accordingly, a Cz mobility shift toward higher isoelectric points was observed in 2D-PAGE probed with anti-Cz antibodies. Ultrastructural membrane abnormalities and a significant decrease of dark lipid reservosomes were shown by electron microscopy and a significant decrease in sulfatide levels was confirmed by TLC/UV-MALDI-TOF-MS analysis. Altogether, these results suggest T. cruzi sulfation occurs via PAPS. Sulfated epitopes in trypomastigote and amastigote forms were evidenced using AS-enriched IgGs by immunoblotting. Their presence on trypomastigotes surface was demonstrated by flow cytometry and IF with Cz/dCz specific antibodies. Interestingly, the percentage of infected cardiac HL-1 cells decreased 40% when using chlorate-treated trypomastigotes, suggesting sulfates are involved in the invasion process. The same effect was observed when cells were pre-incubated with dCz, dC-T or an anti-high mannose receptor (HMR) antibody, suggesting Cz sulfates and HMR are also involved in the infection process by T. cruzi. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Modulating Inhibitors of Transthyretin Fibrillogenesis via Sulfation: Polychlorinated Biphenyl Sulfates as Models1

    PubMed Central

    Grimm, Fabian A.; Lehmler, Hans-Joachim; He, Xianran; Robertson, Larry W.; Duffel, Michael W.

    2015-01-01

    Small molecules that bind with high affinity to thyroxine (T4) binding sites on transthyretin (TTR) kinetically stabilize the protein’s tetrameric structure, thereby efficiently decreasing the rate of tetramer dissociation in TTR related amyloidoses. Current research efforts aim to optimize the amyloid inhibiting properties of known inhibitors, such as derivatives of biphenyls, dibenzofurans and benzooxazoles, by chemical modification. In order to test the hypothesis that sulfate group substituents can improve the efficiencies of such inhibitors, we evaluated the potential of six polychlorinated biphenyl sulfates to inhibit TTR amyloid fibril formation in vitro. In addition, we determined their binding orientations and molecular interactions within the T4 binding site by molecular docking simulations. Utilizing this combined experimental and computational approach, we demonstrated that sulfation significantly improves the amyloid inhibiting properties as compared to both parent and hydroxylated PCBs. Importantly, several PCB sulfates were of equal or higher potency than some of the most effective previously described inhibitors. PMID:25595224

  10. Synthesis, physicochemical characterization and biological evaluation of chitosan sulfate as heparan sulfate mimics.

    PubMed

    Doncel-Pérez, Ernesto; Aranaz, Inmaculada; Bastida, Agatha; Revuelta, Julia; Camacho, Celia; Acosta, Niuris; Garrido, Leoncio; Civera, Concepción; García-Junceda, Eduardo; Heras, Angeles; Fernández-Mayoralas, Alfonso

    2018-07-01

    Despite the relevant biological functions of heparan sulfate (HS) glycosaminoglycans, their limited availability and the chemical heterogeneity from natural sources hamper their use for biomedical applications. Chitosan sulfates (ChS) exhibit structural similarity to HSs and may mimic their biological functions. We prepared a variety of ChS with different degree of sulfation to evaluate their ability to mimic HS in protein binding and to promote neural cell division and differentiation. The structure of the products was characterized using various spectroscopic and analytical methods. The study of their interaction with different growth factors showed that ChS bound to the proteins similarly or even better than heparin. In cell cultures, a transition effect on cell number was observed as a function of ChS concentration. Differences in promoting the expression of the differentiation markers were also found depending on the degree of sulfation and modification in the chitosan. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Inter vs. intraglycosidic acetal linkages control sulfation pattern in semi-synthetic chondroitin sulfate.

    PubMed

    Laezza, Antonio; De Castro, Cristina; Parrilli, Michelangelo; Bedini, Emiliano

    2014-11-04

    Microbial-sourced unsulfated chondroitin could be converted into chondroitin sulfate (CS) polysaccharide by a multi-step strategy relying upon benzylidenation and acetylation reactions as key-steps for its regioselective protection. By conducting the two reactions one- or two-pots, CSs with different sulfation patterns could be obtained at the end of the semi-synthesis. In particular, a CS polysaccharide possessing sulfate groups randomly distributed between positions 4 and 6 of N-acetyl-galactosamine (GalNAc) units could be obtained through the two-pots route, whereas the one-pot pathway allowed an additional sulfation at position 3 of some glucuronic acid (GlcA) units. This difference was ascribed to the stabilization of a labile interglycosidic benzylidene acetal involving positions O-3 and O-6 of some GlcA and GalNAc, respectively, when the benzylidene-acetylation reactions were conducted in a one-pot fashion. Isolation and characterization of a polysaccharide intermediate showing interglycosidic acetal moieties was accomplished. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. 21 CFR 582.1643 - Potassium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use. This...

  13. 21 CFR 582.1643 - Potassium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use. This...

  14. 21 CFR 582.1643 - Potassium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use. This...

  15. 21 CFR 582.1643 - Potassium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use. This...

  16. 21 CFR 582.1643 - Potassium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use. This...

  17. Zinc as a Gatekeeper of Immune Function

    PubMed Central

    Wessels, Inga; Maywald, Martina; Rink, Lothar

    2017-01-01

    After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc “importers” (ZIP 1–14), zinc “exporters” (ZnT 1–10), and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate “zinc waves”, and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function. PMID:29186856

  18. Uptake and partitioning of zinc in Lemnaceae.

    PubMed

    Lahive, Elma; O'Callaghan, Michael J A; Jansen, Marcel A K; O'Halloran, John

    2011-11-01

    Macrophytes provide food and shelter for aquatic invertebrates and fish, while also acting as reservoirs for nutrients and trace elements. Zinc accumulation has been reported for various Lemnaceae species. However, comparative accumulation across species and the link between zinc accumulation and toxicity are poorly understood. Morphological distribution and cellular storage, in either bound or soluble form, are important for zinc tolerance. This study shows differences in the uptake and accumulation of zinc by three duckweed species. Landoltia punctata and Lemna minor generally accumulated more zinc than Lemna gibba. L. minor, but not L. gibba or L. punctata, accumulated greater concentrations of zinc in roots compared to fronds when exposed to high levels of zinc. The proportion of zinc stored in the bound form relative to the soluble-form was higher in L. minor. L. punctata accumulated greater concentrations of zinc in fronds compared to roots and increased the proportion of zinc it stored in the soluble form, when exposed to high zinc levels. L. gibba is the only species that significantly accumulated zinc at low concentrations, and was zinc-sensitive. Overall, internal zinc concentrations showed no consistent correlation with toxic effect. We conclude that relationships between zinc toxicity and uptake and accumulation are species specific reflecting, among others, zinc distribution and storage. Differences in zinc distribution and storage are also likely to have implications for zinc bioavailability and trophic mobility.

  19. Zinc: an essential but elusive nutrient123

    PubMed Central

    King, Janet C

    2011-01-01

    Zinc is essential for multiple aspects of metabolism. Physiologic signs of zinc depletion are linked with diverse biochemical functions rather than with a specific function, which makes it difficult to identify biomarkers of zinc nutrition. Nutrients, such as zinc, that are required for general metabolism are called type 2 nutrients. Protein and magnesium are examples of other type 2 nutrients. Type 1 nutrients are required for one or more specific functions: examples include iron, vitamin A, iodine, folate, and copper. When dietary zinc is insufficient, a marked reduction in endogenous zinc loss occurs immediately to conserve the nutrient. If zinc balance is not reestablished, other metabolic adjustments occur to mobilize zinc from small body pools. The location of those pools is not known, but all cells probably have a small zinc reserve that includes zinc bound to metallothionein or zinc stored in the Golgi or in other organelles. Plasma zinc is also part of this small zinc pool that is vulnerable to insufficient intakes. Plasma zinc concentrations decline rapidly with severe deficiencies and more moderately with marginal depletion. Unfortunately, plasma zinc concentrations also decrease with a number of conditions (eg, infection, trauma, stress, steroid use, after a meal) due to a metabolic redistribution of zinc from the plasma to the tissues. This redistribution confounds the interpretation of low plasma zinc concentrations. Biomarkers of metabolic zinc redistribution are needed to determine whether this redistribution is the cause of a low plasma zinc rather than poor nutrition. Measures of metallothionein or cellular zinc transporters may fulfill that role. PMID:21715515

  20. Synthesis and characterization of Cd Cr and Zn Cd Cr layered double hydroxides intercalated with dodecyl sulfate

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Zhang, He; Zhao, Lan; Li, Guo-Dong; Chen, Jie-Sheng; Xu, Lin

    2005-06-01

    Cd-Cr and Zn-Cd-Cr layered double hydroxides (CdCr-LDH and ZnCdCr-LDH) containing alkyl sulfate as the interlamellar anion have been prepared through a coprecipitation technique. The resulting compounds were characterized using X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. Magnetic property measurements indicate that antiferromagnetic interactions occur between the chromium ions in the two compounds at low temperatures. The introduction of zinc influences the ligand field of Cr III and the Cr III-Cr III interactions in the LDH compound. It is found that both CdCr-LDH and ZnCdCr-LDH can be delaminated by dispersion in formamide, leading to translucent and stable colloidal solutions.

  1. Tracing sources of streamwater sulfate during snowmelt using S and O isotope ratios of sulfate and 35S activity

    USGS Publications Warehouse

    Shanley, J.B.; Mayer, B.; Mitchell, M.J.; Michel, R.L.; Bailey, S.W.; Kendall, C.

    2005-01-01

    The biogeochemical cycling of sulfur (S) was studied during the 2000 snowmelt at Sleepers River Research Watershed in northeastern Vermont, USA using a hydrochemical and multi-isotope approach. The snowpack and 10 streams of varying size and land use were sampled for analysis of anions, dissolved organic carbon (DOC), 35S activity, and ?? 34S and ?? 18O values of sulfate. At one of the streams, ?? 18O values of water also were measured. Apportionment of sulfur derived from atmospheric and mineral sources based on their distinct ?? 34S values was possible for 7 of the 10 streams. Although mineral S generally dominated, atmospheric-derived S contributions exceeded 50% in several of the streams at peak snowmelt and averaged 41% overall. However, most of this atmospheric sulfur was not from the melting snowpack; the direct contribution of atmospheric sulfate to streamwater sulfate was constrained by 35S mass balance to a maximum of 7%. Rather, the main source of atmospheric sulfur in streamwater was atmospheric sulfate deposited months to years earlier that had microbially cycled through the soil organic sulfur pool. This atmospheric/pedospheric sulfate (pedogenic sulfate formed from atmospheric sulfate) source is revealed by ?? 18O values of streamwater sulfate that remained constant and significantly lower than those of atmospheric sulfate throughout the melt period, as well as streamwater 35S ages of hundreds of days. Our results indicate that the response of streamwater sulfate to changes in atmospheric deposition will be mediated by sulfate retention in the soil. ?? Springer 2005.

  2. Effect of short-term zinc supplementation on zinc and selenium tissue distribution and serum antioxidant enzymes.

    PubMed

    Skalny, Andrey A; Tinkov, Alexey A; Medvedeva, Yulia S; Alchinova, Irina B; Karganov, Mikhail Y; Skalny, Anatoly V; Nikonorov, Alexandr A

    2015-01-01

    A significant association between Zn and Se homeostasis exists. At the same time, data on the influence of zinc supplementation on selenium distribution in organs and tissues seem to be absent. Therefore, the primary objective of the current study is to investigate the influence of zinc asparaginate supplementation on zinc and selenium distribution and serum superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity in Wistar rats. 36 rats were used in the experiment. The duration of the experiment was 7 and 14 days in the first and second series, respectively. The rats in Group I were used as the control ones. Animals in Groups II and III daily obtained zinc asparaginate (ZnA) in the doses of 5 and 15 mg/kg weight, respectively. Zinc and selenium content in liver, kidneys, heart, muscle, serum and hair was assessed using inductively coupled plasma mass spectrometry. Serum SOD and GPx activity was analysed spectrophotometrically using Randox kits. Intragastric administration of zinc asparaginate significantly increased liver, kidney, and serum zinc content without affecting skeletal and cardiac muscle levels. Zinc supplementation also stimulated selenium retention in the rats' organs. Moreover, a significant positive correlation between zinc and selenium content was observed. Finally, zinc asparaginate treatment has been shown to modulate serum GPx but not SOD activity. The obtained data indicate that zinc-induced increase in GPx activity may be mediated through modulation of selenium status. However, future studies are required to estimate the exact mechanisms of zinc and selenium interplay.

  3. 21 CFR 182.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  4. 21 CFR 582.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ammonium sulfate. 582.1143 Section 582.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1143 Ammonium sulfate. (a) Product. Ammonium sulfate. (b) Conditions of use. This substance...

  5. 21 CFR 582.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  6. 21 CFR 582.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ammonium sulfate. 582.1143 Section 582.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1143 Ammonium sulfate. (a) Product. Ammonium sulfate. (b) Conditions of use. This substance...

  7. 21 CFR 182.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  8. 21 CFR 582.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ammonium sulfate. 582.1143 Section 582.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1143 Ammonium sulfate. (a) Product. Ammonium sulfate. (b) Conditions of use. This substance...

  9. 21 CFR 582.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  10. 21 CFR 582.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  11. 21 CFR 582.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  12. 21 CFR 182.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  13. 21 CFR 582.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ammonium sulfate. 582.1143 Section 582.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1143 Ammonium sulfate. (a) Product. Ammonium sulfate. (b) Conditions of use. This substance...

  14. 21 CFR 182.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  15. Purification of Keratan Sulfate-endogalactosidase and its action on keratan sulfates of different origin.

    PubMed

    Nakazawa, K; Suzuki, S

    1975-02-10

    A glycosidase which attacks corneal keratan sulfate was purified from extracts of Pseudomonas sp. IFO-13309. When corneal keratan sulfate was degraded by the purified enzyme, Sephadex G-50 chromatography indicated the presence of a number of oligosaccharides differing in size and sulfate content. The characterization of two major fractions of the oligosaccharides indicated that the point of enzyme attack is limited to the endo-beta-D-galactoside bonds in which nonsulfated D-galactose residues participate. The enzyme, unlike ordinary exo-beta-D-galactosidases, did not catalyze the hydrolysis of phenyl beta-D-galactoside. Moreover, beta-D-galactosyl-(1 leads to 3)-2-acetamido-2-deoxy-beta-D-glucosyl-(1 leads to 3)-beta-D-galactosyl-(1 leads to 4)-D-glucose ("lacto-N-tetraose") was completely refractory to the action of this enzyme, suggesting that a structure of the type, X-(1 leads to 3)-beta-D-galactosyl-(1 leads to 4)-Y, is not the only specificity-determining factor, i.e. neighboring sugars, X and Y, or even larger portions of substrate molecule must have an important effect. Compared with corneal keratan sulfate, keratan sulfates from human nucleus pulposus and shark cartilage were attacked at lower rates with a resultant production of oligosaccharides of relatively large size. The result is in agreement with the view that considerable variations exist in the structure of keratan sulfates of different origin, and further suggests that the enzyme may serve as a useful reagent in studying these variations.

  16. Sulfation pattern of fucose branches affects the anti-hyperlipidemic activities of fucosylated chondroitin sulfate.

    PubMed

    Wu, Nian; Zhang, Yu; Ye, Xingqian; Hu, Yaqin; Ding, Tian; Chen, Shiguo

    2016-08-20

    Fucosylated chondroitin sulfates (fCSs) are glycosaminoglycans extracted from sea cucumbers, consisting of chondroitin sulfate E (CSE) backbones and sulfated fucose branches. The biological properties of fCSs could be affected by the sulfation pattern of their fucose branches. In the present study, two fCSs were isolated from sea cucumbers Isostichopus badionotus (fCS-Ib) and Pearsonothuria graeffei (fCS-Pg). Their monosaccharide compositions of glucuronic acid (GlcA), N-acetylgalactosamine (GalNAc), fucose (Fuc) and sulfate were at similar molar ratio with 1.0/0.7/0.9/3.1 for fCS-Ib and 1.0/0.8/1.5/2.6 for fCS-Pg. The two fCSs have different sulfation patterns on their fucose branches, fCS-Pg with 3,4-O-disulfation while fCS-Ib with 2,4-O-disulfation. Their antihyperlipidemic effects were compared using a high-fat high-fructose diet (HFFD)-fed C57BL/6J mice model. Both fCS-Ib and fCS-Pg had significant effects on lipid profile improvement, liver protection, blood glucose diminution and hepatic glycogen synthesis. Specifically, fCS-Pg with 3,4-O-disulfation fucose branches was more effective in reduction of blood cholesterol (TC), low density lipoprotein (LDL) and atherogenic index (AI). Our results indicate that both fCSs, especially fCS-Pg, could be used as a potential anti-hyperlipidemic drug. Copyright © 2016. Published by Elsevier Ltd.

  17. Zinc oxide overdose

    MedlinePlus

    Zinc oxide is an ingredient in many products. Some of these are certain creams and ointments used ... prevent or treat minor skin burns and irritation. Zinc oxide overdose occurs when someone eats one of ...

  18. Selective Acidic Leaching of Spent Zinc-Carbon Batteries Followed by Zinc Electrowinning

    NASA Astrophysics Data System (ADS)

    Shalchian, Hossein; Rafsanjani-Abbasi, Ali; Vahdati-Khaki, Jalil; Babakhani, Abolfazl

    2015-02-01

    In this work, a selective acidic leaching procedure was employed for recycling zinc from spent zinc-carbon batteries. Leaching experiments were carried out in order to maximize zinc recovery and minimize manganese recovery in diluted sulfuric acid media. Response surface methodology and analysis of variance were employed for experimental design, data analysis, and leaching optimization. The experimental design has 28 experiments that include 24 main runs and four replicate in center point. The optimal conditions obtained from the selective acidic leaching experiments, were sulfuric acid concentration of 1 pct v/v, leaching temperature of 343 K (70 °C), pulp density of 8 pct w/v, and stirring speed of 300 rpm. The results show that the zinc and manganese recoveries after staged selective leaching are about 92 and 15 pct, respectively. Finally, metallic zinc with purity of 99.9 pct and electrolytic manganese dioxide were obtained by electrowinning.

  19. Multiple stable oxygen isotopic studies of atmospheric sulfate: A new quantitative way to understand sulfate formation processes in the atmosphere

    NASA Astrophysics Data System (ADS)

    Lee, Charles Chi-Woo

    2000-11-01

    Sulfate is an important trace species in the Earth's atmosphere because of its roles in numerous atmospheric processes. In addition to its inherent light-scattering properties, sulfate can serve as cloud condensation nucleus (CCN), affecting cloud formation as well as microphysical properties of clouds. Consequently, atmospheric sulfate species influence the global radiative energy balance. Sulfate is known to increase acidity of rainwater with negative consequences in both natural and urban environments. In addition, aerosol sulfate (<=2.5 μm) is respirable and poses a threat to human health as a potential carrier of toxic pollutants through the respiratory tract. Despite intense investigative effort, uncertainty regarding the relative significance of gas and aqueous phase oxidation pathways still remains. Acquisition of such information is important because the lifetime and transport of S(IV) species and sulfate aerosols are influenced by the oxidative pathways. In addition, sulfate formation processes affect the aerosol size distribution, which ultimately influences radiative properties of atmospheric aerosols. Therefore, the budgetary information of the sulfur cycle, as well as the radiative effects of sulfate on global climate variation, can be attained from better quantitative understanding of in situ sulfate formation processes in the atmosphere. Multiple stable oxygen isotopic studies of atmospheric sulfate are presented as a new tool to better comprehend the atmospheric sulfate formation processes. Coupled with isotopic studies, 35S radioactivity measurements have been utilized to assess contribution of sulfate from high altitude air masses. Atmospheric sulfate (aerosols and rainwater) samples have been collected from diverse environments. Laboratory experiments of gas and aqueous phase S(IV) oxidation by various oxidants, as well as biomass burning experiments, have also been conducted. The main isotopic results from these studies are as follows: (1

  20. Bioavailability of Zinc in Wistar Rats Fed with Rice Fortified with Zinc Oxide

    PubMed Central

    Della Lucia, Ceres Mattos; Santos, Laura Luiza Menezes; Rodrigues, Kellen Cristina da Cruz; Rodrigues, Vivian Cristina da Cruz; Martino, Hércia Stampini Duarte; Pinheiro Sant’Ana, Helena Maria

    2014-01-01

    The study of zinc bioavailability in foods is important because this mineral intake does not meet the recommended doses for some population groups. Also, the presence of dietary factors that reduce zinc absorption contributes to its deficiency. Rice fortified with micronutrients (Ultra Rice®) is a viable alternative for fortification since this cereal is already inserted into the population habit. The aim of this study was to evaluate the bioavailability of zinc (Zn) in rice fortified with zinc oxide. During 42 days, rats were divided into four groups and fed with diets containing two different sources of Zn (test diet: UR® fortified with zinc oxide, or control diet: zinc carbonate (ZnCO3)), supplying 50% or 100%, respectively, of the recommendations of this mineral for animals. Weight gain, food intake, feed efficiency ratio, weight, thickness and length of femur; retention of zinc, calcium (Ca) and magnesium (Mg) in the femur and the concentrations of Zn in femur, plasma and erythrocytes were evaluated. Control diet showed higher weight gain, feed efficiency ratio, retention of Zn and Zn concentration in the femur (p < 0.05). However, no differences were observed (p > 0.05) for dietary intake, length and thickness of the femur, erythrocyte and plasmatic Zn between groups. Although rice fortified with zinc oxide showed a lower bioavailability compared to ZnCO3, this food can be a viable alternative to be used as a vehicle for fortification. PMID:24932657

  1. 21 CFR 182.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Aluminum sulfate. 182.1125 Section 182.1125 Food... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance is generally recognized as safe when used in...

  2. Zinc finger proteins in cancer progression.

    PubMed

    Jen, Jayu; Wang, Yi-Ching

    2016-07-13

    Zinc finger proteins are the largest transcription factor family in human genome. The diverse combinations and functions of zinc finger motifs make zinc finger proteins versatile in biological processes, including development, differentiation, metabolism and autophagy. Over the last few decades, increasing evidence reveals the potential roles of zinc finger proteins in cancer progression. However, the underlying mechanisms of zinc finger proteins in cancer progression vary in different cancer types and even in the same cancer type under different types of stress. Here, we discuss general mechanisms of zinc finger proteins in transcription regulation and summarize recent studies on zinc finger proteins in cancer progression. In this review, we also emphasize the importance of further investigations in elucidating the underlying mechanisms of zinc finger proteins in cancer progression.

  3. Dietary zinc deficiency reduced growth performance, intestinal immune and physical barrier functions related to NF-κB, TOR, Nrf2, JNK and MLCK signaling pathway of young grass carp (Ctenopharyngodon idella).

    PubMed

    Song, Zheng-Xing; Jiang, Wei-Dan; Liu, Yang; Wu, Pei; Jiang, Jun; Zhou, Xiao-Qiu; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Feng, Lin

    2017-07-01

    Our study investigated the effects of dietary zinc (Zn) deficiency on growth performance, intestinal immune and physical barrier functions of young grass carp (Ctenopharyngodon idella). A total of 630 grass carp (244.14 ± 0.40 g) were fed graded levels of zinc lactate (10.71, 30.21, 49.84, 72.31, 92.56, 110.78 mg Zn/kg diet) and one zinc sulfate group (56.9 mg Zn/kg diet) for 60 days. At the end of the feeding trial, fish were challenged with Aeromonas hydrophila for 14 days. These results indicated that compared with optimal dietary Zn level, dietary Zn deficiency (10.71 mg/kg diet) decreased the production of antibacterial compounds, up-regulated pro-inflammatory cytokines related to nuclear factor kappa B (NF-κB) and down-regulated anti-inflammatory cytokines related to target of rapamycin (TOR) in three intestinal segments of young grass carp (P < 0.05), suggesting that dietary Zn deficiency could impair intestinal immune barrier of fish; decreased the activities and mRNA levels of antioxidant enzymes related to NF-E2-related factor 2 (Nrf2), up-regulated the mRNA levels of caspase-3, -7, -8, -9 related to p38 mitogen activated protein (p38 MAPK) and c-Jun N-terminal protein kinase (JNK), down-regulated the mRNA levels of tight junction complexes (TJs) related to myosin light chain kinase (MLCK) in three intestinal segments of young grass carp (P < 0.05), demonstrating that dietary Zn deficiency could injury intestinal physical barrier of fish. Besides, the Zn requirements (zinc lactate as Zn source) based on percent weight gain (PWG), against enteritis morbidity, acid phosphatase (ACP) activity in the proximal intestine (PI) and malondialdehyde (MDA) content in the PI of young grass carp was estimated to be 61.2, 61.4, 69.2 and 69.5 mg/kg diet, respectively. Finally, based on specific growth rate (SGR), feed efficiency (FE) and against enteritis morbidity of young grass carp, the efficacy of zinc lactate relative to zinc sulfate were 132.59%, 135

  4. Heterogeneous Production of Sulfate Aerosol over China.

    NASA Astrophysics Data System (ADS)

    Shao, J.; Alexander, B.; Chen, Q.; Zhang, L.; Wang, Y.; Xie, Z.; He, P.

    2017-12-01

    Sulfate is thought to be the main contributor to the growth of PM2.5 during the severe haze pollution over China, but most studies have shown that traditional gas- and aqueous-phase chemistry cannot explain the rapid sulfate production during haze events, suggesting a missing heterogeneous oxidation mechanism. In this work, we implement heterogeneous sulfate formation into a 3-D global chemical transport model (GEOS-Chem) to evaluate the different pathways for global and regional sulfate production, including SO2 oxidation by NO2, O3, H2O2, and TMI+O2. Heterogeneous sulfate production rates and the dominant heterogeneous sulfate formation mechanism depends on calculations of aerosol pH, which is in turn is dependent upon thermodynamic state assumptions. We evaluate the influence of aerosol pH and potential impacts of aerosol ionic strength on sulfate production rates and mechanisms in the model, and its implications for PM2.5 in Chinese haze events.

  5. 21 CFR 184.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ammonium sulfate. 184.1143 Section 184.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT... GRAS § 184.1143 Ammonium sulfate. (a) Ammonium sulfate ((NH4)2SO4, CAS Reg. No. 7783-20-2) occurs...

  6. 21 CFR 184.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ammonium sulfate. 184.1143 Section 184.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1143 Ammonium sulfate. (a) Ammonium sulfate ((NH4)2SO4, CAS Reg...

  7. 21 CFR 184.1230 - Calcium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium sulfate. 184.1230 Section 184.1230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1230 Calcium sulfate. (a) Calcium sulfate (CaSO4, CAS Reg. No...

  8. 21 CFR 184.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ammonium sulfate. 184.1143 Section 184.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1143 Ammonium sulfate. (a) Ammonium sulfate ((NH4)2SO4, CAS Reg...

  9. 21 CFR 556.300 - Gentamicin sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Gentamicin sulfate. 556.300 Section 556.300 Food... Tolerances for Residues of New Animal Drugs § 556.300 Gentamicin sulfate. (a) A tolerance of 0.1 part per million is established for negligible residues of gentamicin sulfate in the uncooked edible tissues of...

  10. 21 CFR 184.1230 - Calcium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium sulfate. 184.1230 Section 184.1230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1230 Calcium sulfate. (a) Calcium sulfate (CaSO4, CAS Reg. No...

  11. 21 CFR 556.300 - Gentamicin sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Gentamicin sulfate. 556.300 Section 556.300 Food... Tolerances for Residues of New Animal Drugs § 556.300 Gentamicin sulfate. (a) A tolerance of 0.1 part per million is established for negligible residues of gentamicin sulfate in the uncooked edible tissues of...

  12. 21 CFR 556.300 - Gentamicin sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Gentamicin sulfate. 556.300 Section 556.300 Food... Tolerances for Residues of New Animal Drugs § 556.300 Gentamicin sulfate. (a) A tolerance of 0.1 part per million is established for negligible residues of gentamicin sulfate in the uncooked edible tissues of...

  13. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with potassium...

  14. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with potassium...

  15. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with potassium...

  16. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg. No. 7778-80-5) occurs.... It is prepared by the neutralization of sulfuric acid with potassium hydroxide or potassium carbonate...

  17. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with potassium...

  18. Divergent Synthesis of Heparan Sulfate Oligosaccharides

    PubMed Central

    2015-01-01

    Heparan sulfates are implicated in a wide range of biological processes. A major challenge in deciphering their structure and activity relationship is the synthetic difficulties to access diverse heparan sulfate oligosaccharides with well-defined sulfation patterns. In order to expedite the synthesis, a divergent synthetic strategy was developed. By integrating chemical synthesis and two types of O-sulfo transferases, seven different hexasaccharides were obtained from a single hexasaccharide precursor. This approach combined the flexibility of chemical synthesis with the selectivity of enzyme-catalyzed sulfations, thus simplifying the overall synthetic operations. In an attempt to establish structure activity relationships of heparan sulfate binding with its receptor, the synthesized oligosaccharides were incorporated onto a glycan microarray, and their bindings with a growth factor FGF-2 were examined. The unique combination of chemical and enzymatic approaches expanded the capability of oligosaccharide synthesis. In addition, the well-defined heparan sulfate structures helped shine light on the fine substrate specificities of biosynthetic enzymes and confirm the potential sequence of enzymatic reactions in biosynthesis. PMID:26574650

  19. Effect of zinc gluconate, sage oil on inflammatory patterns and hyperglycemia in zinc deficient diabetic rats.

    PubMed

    Elseweidy, Mohamed M; Ali, Abdel-Moniem A; Elabidine, Nabila Zein; Mursey, Nada M

    2017-11-01

    The relationship between zinc homeostasis and pancreatic function had been established. In this study we aimed firstly to configure the inflammatory pattern and hyperglycemia in zinc deficient diabetic rats. Secondly to illustrate the effect of two selected agents namely Zinc gluconate and sage oil (Salvia Officinalis, family Lamiaceae). Rats were fed on Zinc deficient diet, deionized water for 28days along with Zinc level check up at intervals to achieve zinc deficient state then rats were rendered diabetic through receiving one dose of alloxan monohydrate (120mg/kg) body weight, classified later into 5 subgroups. Treatment with sage oil (0.042mg/kg IP) and Zinc gluconate orally (150mg/kg) body weight daily for 8 weeks significantly reduced serum glucose, C-reactive protein (CRP), Tumor necrosis factor alpha (TNF- α), interleukins-6 1 β, inflammatory8 (IFN ȣ), pancreatic 1L1-β along with an increase in serum Zinc and pancreatic Zinc transporter 8 (ZNT8). Histopathological results of pancreatic tissues showed a good correlation with the biochemical findings. Both sage oil and zinc gluconate induced an improvement in the glycemic and inflammatory states. This may be of value like the therapeutic agent for diabetes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Chemoenzymatic synthesis and structural characterization of 2-O-sulfated glucuronic acid-containing heparan sulfate hexasaccharides

    PubMed Central

    Hsieh, Po-Hung; Xu, Yongmei; Keire, David A; Liu, Jian

    2014-01-01

    Heparan sulfate and heparin are highly sulfated polysaccharides that consist of a repeating disaccharide unit of glucosamine and glucuronic or iduronic acid. The 2-O-sulfated iduronic acid (IdoA2S) residue is commonly found in heparan sulfate and heparin; however, 2-O-sulfated glucuronic acid (GlcA2S) is a less abundant monosaccharide (∼<5% of total saccharides). Here, we report the synthesis of three GlcA2S-containing hexasaccharides using a chemoenzymatic approach. For comparison purposes, additional IdoA2S-containing hexasaccharides were synthesized. Nuclear magnetic resonance analyses were performed to obtain full chemical shift assignments for the GlcA2S- and IdoA2S-hexasaccharides. These data show that GlcA2S is a more structurally rigid saccharide residue than IdoA2S. The antithrombin (AT) binding affinities of a GlcA2S- and an IdoA2S-hexasaccharide were determined by affinity co-electrophoresis. In contrast to IdoA2S-hexasaccharides, the GlcA2S-hexasaccharide does not bind to AT, confirming that the presence of IdoA2S is critically important for the anticoagulant activity. The availability of pure synthetic GlcA2S-containing oligosaccharides will allow the investigation of the structure and activity relationships of individual sites in heparin or heparan sulfate. PMID:24770491

  1. 21 CFR 184.1443 - Magnesium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium sulfate. 184.1443 Section 184.1443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS...

  2. 21 CFR 184.1443 - Magnesium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium sulfate. 184.1443 Section 184.1443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT... GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS Reg. No. 10034-99-8) occurs...

  3. 21 CFR 184.1443 - Magnesium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to crystallization... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS...

  4. 21 CFR 184.1443 - Magnesium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to crystallization... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS...

  5. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and....1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6), also known as Glauber's salt... by the neutralization of sulfuric acid with sodium hydroxide. (b) The ingredient is used as a...

  6. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b) The...

  7. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b) The...

  8. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b) The...

  9. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b) The...

  10. Complex Sulfate Deposits in Coprates Chasma

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image of layered sulfate-containing deposits in the Coprates Chasma region of Mars was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 1827UTC (1:27 p.m. EST) on December 12, 2006 near 10.2 degrees south latitude, 68.8 degrees west longitude. The image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 40 meters (132 feet) across. The image is about 11 kilometers (6.8 miles) wide at its narrowest point.

    Coprates Chasma forms part of the backbone of the Valles Marineris canyon system. It extends approximately east-west for roughly 966 kilometers (600 miles), and is one of the larger chasmata in the Valles Marineris system.

    The top panel in the montage above shows the location of the CRISM image on a mosaic taken by the Mars Odyssey spacecraft's Thermal Emission Imaging System (THEMIS). The CRISM data covers an area centered on a knob near the chasma's northern wall.

    The center left image, an infrared false color image, shows the knob's layered morphology. The center right image unveils the mineralogical signatures of some of those layers, with yellow representing monohydrated sulfates (sulfates with one water molecule incorporated into each molecule of the mineral) and purple representing polyhydrated sulfates (sulfates with multiple waters per mineral molecule).

    The lower two images are renderings of data draped over topography with 3 times vertical exaggeration. These images provide a view of the topography and reveal how the sulfate deposits relate to that topography. Darker polyhydrated sulfates (purple) lie along the knob's western flank. Brighter, monohydrated sulfates (yellow) appear to be superimposed on polyhydrated sulfate deposits in the southwest corner of the image. These coarsely banded deposits continue along the southeast side of the knob.

    There are two possible explanations for the compositional banding of these sulfates. The first is deposition of

  11. hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer

    PubMed Central

    Franklin, Renty B; Feng, Pei; Milon, B; Desouki, Mohamed M; Singh, Keshav K; Kajdacsy-Balla, André; Bagasra, Omar; Costello, Leslie C

    2005-01-01

    Background The genetic and molecular mechanisms responsible for and associated with the development and progression of prostate malignancy are largely unidentified. The peripheral zone is the major region of the human prostate gland where malignancy develops. The normal peripheral zone glandular epithelium has the unique function of accumulating high levels of zinc. In contrast, the ability to accumulate zinc is lost in the malignant cells. The lost ability of the neoplastic epithelial cells to accumulate zinc is a consistent factor in their development of malignancy. Recent studies identified ZIP1 (SLC39A1) as an important zinc transporter involved in zinc accumulation in prostate cells. Therefore, we investigated the possibility that down-regulation of hZIP1 gene expression might be involved in the inability of malignant prostate cells to accumulate zinc. To address this issue, the expression of hZIP1 and the depletion of zinc in malignant versus non-malignant prostate glands of prostate cancer tissue sections were analyzed. hZIP1 expression was also determined in malignant prostate cell lines. Results hZIP1 gene expression, ZIP1 transporter protein, and cellular zinc were prominent in normal peripheral zone glandular epithelium and in benign hyperplastic glands (also zinc accumulating glands). In contrast, hZIP1 gene expression and transporter protein were markedly down-regulated and zinc was depleted in adenocarcinomatous glands and in prostate intra-epithelial neoplastic foci (PIN). These changes occur early in malignancy and are sustained during its progression in the peripheral zone. hZIP1 is also expressed in the malignant cell lines LNCaP, PC-3, DU-145; and in the nonmalignant cell lines HPr-1 and BPH-1. Conclusion The studies clearly establish that hZIP1 gene expression is down regulated and zinc is depleted in adenocarcinomatous glands. The fact that all the malignant cell lines express hZIP1 indicates that the down-regulation in adenocarcinomatous

  12. Efficacy of zinc compounds in controlling Fusarium head blight and deoxynivalenol formation in wheat (Triticum aestivum L.).

    PubMed

    Savi, Geovana D; Piacentini, Karim C; de Souza, Stephany Ramos; Costa, Maíra E B; Santos, Cristina M R; Scussel, Vildes M

    2015-07-16

    The efficiency of zinc compounds (zinc sulfate, ZnSO4 and zinc oxide, ZnO in regular and nanosize, respectively) on wheat plants was evaluated against growth of Fusarium graminearum and DON formation. In addition, any possible effects on the grain microstructures were observed by scanning electron microscopy (SEM), and the remaining residue of Zn on wheat plants was analyzed. The plants were inoculated with F. graminearum and treated with Zn compounds (100mM) onto spikelets at the anthesis stage. When wheat plants reached maturation, grains were harvested and evaluated for Fusarium (number of colonies, CFU/g), DON formation, and SEM observation, followed by determination of possible remaining Zn residue. The groups treated with ZnSO4 and ZnO-NP showed a reduction in number of CFU of F. graminearum when compared to the control. Similarly for DON formation, i.e. the toxin was reduced to non-detected levels in the treated group. ZnO-NP efficiently reduced F. graminearum and DON formation in the grains at low concentration. Zn remained within the international recommended level for consumption and the treatment did not cause any damage to wheat grains. New strategies of control using Zn compounds in addition to conventional treatments could increase the efficiency against FBH and DON formation. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Regeneration of sulfated metal oxides and carbonates

    DOEpatents

    Hubble, Bill R.; Siegel, Stanley; Cunningham, Paul T.

    1978-03-28

    Alkali metal or alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate found in dolomite or limestone are employed for removal of sulfur dioxide from combustion exhaust gases. The sulfated carbonates are regenerated to oxides through use of a solid-solid reaction, particularly calcium sulfide with calcium sulfate to form calcium oxide and sulfur dioxide gas. The regeneration is performed by contacting the sulfated material with a reductant gas such as hydrogen within an inert diluent to produce calcium sulfide in mixture with the sulfate under process conditions selected to permit the sulfide-sulfate, solid-state reaction to occur.

  14. Designing Hydrolytic Zinc Metalloenzymes

    PubMed Central

    2015-01-01

    Zinc is an essential element required for the function of more than 300 enzymes spanning all classes. Despite years of dedicated study, questions regarding the connections between primary and secondary metal ligands and protein structure and function remain unanswered, despite numerous mechanistic, structural, biochemical, and synthetic model studies. Protein design is a powerful strategy for reproducing native metal sites that may be applied to answering some of these questions and subsequently generating novel zinc enzymes. From examination of the earliest design studies introducing simple Zn(II)-binding sites into de novo and natural protein scaffolds to current studies involving the preparation of efficient hydrolytic zinc sites, it is increasingly likely that protein design will achieve reaction rates previously thought possible only for native enzymes. This Current Topic will review the design and redesign of Zn(II)-binding sites in de novo-designed proteins and native protein scaffolds toward the preparation of catalytic hydrolytic sites. After discussing the preparation of Zn(II)-binding sites in various scaffolds, we will describe relevant examples for reengineering existing zinc sites to generate new or altered catalytic activities. Then, we will describe our work on the preparation of a de novo-designed hydrolytic zinc site in detail and present comparisons to related designed zinc sites. Collectively, these studies demonstrate the significant progress being made toward building zinc metalloenzymes from the bottom up. PMID:24506795

  15. Effects of chloride, sulfate and natural organic matter (NOM) on the accumulation and release of trace-level inorganic contaminants from corroding iron.

    PubMed

    Peng, Ching-Yu; Ferguson, John F; Korshin, Gregory V

    2013-09-15

    This study examined effects of varying levels of anions (chloride and sulfate) and natural organic matter (NOM) on iron release from and accumulation of inorganic contaminants in corrosion scales formed on iron coupons exposed to drinking water. Changes of concentrations of sulfate and chloride were observed to affect iron release and, in lesser extent, the retention of representative inorganic contaminants (vanadium, chromium, nickel, copper, zinc, arsenic, cadmium, lead and uranium); but, effects of NOM were more pronounced. DOC concentration of 1 mg/L caused iron release to increase, with average soluble and total iron concentrations being four and two times, respectively, higher than those in the absence of NOM. In the presence of NOM, the retention of inorganic contaminants by corrosion scales was reduced. This was especially prominent for lead, vanadium, chromium and copper whose retention by the scales decreased from >80% in the absence of NOM to <30% in its presence. Some of the contaminants, notably copper, chromium, zinc and nickel retained on the surface of iron coupons in the presence of DOC largely retained their mobility and were released readily when ambient water chemistry changed. Vanadium, arsenic, cadmium, lead and uranium retained by the scales were largely unsusceptible to changes of NOM and chloride levels. Modeling indicated that the observed effects were associated with the formation of metal-NOM complexes and effects of NOM on the sorption of the inorganic contaminants on solid phases that are typical for iron corrosion in drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. The fate of sulfate in chronic heart failure

    PubMed Central

    Koning, Anne M.; Meijers, Wouter C.; Minović, Isidor; Post, Adrian; Feelisch, Martin; Pasch, Andreas; Leuvenink, Henri G. D.; de Boer, Rudolf A.; Bakker, Stephan J. L.

    2017-01-01

    New leads to advance our understanding of heart failure (HF) pathophysiology are urgently needed. Previous studies have linked urinary sulfate excretion to a favorable cardiovascular risk profile. Sulfate is not only the end product of hydrogen sulfide metabolism but is also directly involved in various (patho)physiological processes, provoking scientific interest in its renal handling. This study investigates sulfate clearance in chronic HF (CHF) patients and healthy individuals and considers its relationship with disease outcome. Parameters related to renal sulfate handling were determined in and compared between 96 previously characterized CHF patients and sex-matched healthy individuals. Among patients, sulfate clearance was analyzed for associations with clinical and outcome parameters. In CHF patients, plasma sulfate concentrations are significantly higher, whereas 24-h urinary excretion, fractional excretion, and clearance of sulfate are significantly lower, compared with healthy individuals. Among patients, sulfate clearance is independently associated with diuretics use, creatinine clearance and 24-h urinary sodium excretion. Sulfate clearance is associated with favorable disease outcome [hazard ratio per SD increase 0.38 (95% confidence interval 0.23–0.63), P < 0.001]. Although significance was lost after adjustment for creatinine clearance, the decrease of sulfate clearance in patients is independent of this parameter, indicating that sulfate clearance is not merely a reflection of renal function. This exploratory study reveals aberrant sulfate clearance as a potential contributor to CHF pathophysiology, with reduced levels in patients and a positive association with favorable disease outcome. Further research is needed to unravel the nature of its involvement and to determine its potential as a biomarker and target for therapy. NEW & NOTEWORTHY Sulfate clearance is decreased in chronic heart failure patients compared with healthy individuals. Among

  17. Engineering and Development Support of General Decon Technology for the DARCOM Installation Restoration Program. Task 4. General Technology Literature Searches (II) Solidification Techniques for Lagoon Waters

    DTIC Science & Technology

    1980-12-01

    40.8 Sodium 70.1 Zinc 0.01 37 The process includes the following steps (Pichat et al., 1979): - neutralization precipitation (silicates, borates...Compressive Strength of Polyester - Encapsulated Sodium Sulfate Waste Composite ....... .............. 64 9. Deep Chemical Mixer Mounted on a Barge...zinc, copper, lead, manganese and tin; sodium salts of arsenate, borate, phosphate, iodate, and sulfide; and sulfate salts. Sulfate salts form calcium

  18. Suppressive Effect of Zinc on the Formation of Colonic Preneoplastic Lesions in the Mouse Fed High Levels of Dietary Iron

    PubMed Central

    Park, Hyunji; Kang, Bong Su; Kim, Dang Young; Yoon, Ja Seon; Jeong, Jae-Hwang; Nam, Sang Yoon; Yun, Young Won

    2012-01-01

    We investigated the effect of zinc on the formation of colonic aberrant crypt foci induced by azoxymethane (AOM) followed by dextran sodium sulfate (DSS) in mice with high iron diet (HFe; 450 ppm iron). Sixweek old ICR mice were fed on high iron diets with combination of three different levels of zinc in diets, low-zinc (LZn; 0.01 ppm), medium-zinc (MZn; 0.1 ppm), and high-zinc (HZn; 1 ppm) for 12 weeks. Animals were received weekly intraperitoneal injections of AOM (10 mg/kg B.W. in saline) for 3 weeks followed by 2% DSS (molecular weight 36,000~50,000) in the drinking water for a week. To confirm the iron storage in the body, the hepatic iron concentration has been determine chemically and compared with histological assessment visualized by Prussian blue reaction. Aberrant crypt (AC) and aberrant crypt foci (ACF) were analyzed in the colonic mucosa of mouse fed high dietary iron. Superoxide dismutase (SOD) activity and thiobarbituric acid-reactive substances (TBARS) level were also investigated. Apoptosis in the preneoplastic lesion was determined by terminal deoxynucleotidyl transferase-mediated dUTP nickend labeling (TUNEL). In addition, immunohistochemistry of β-catenin was also performed on the mucous membrane of colon. The number of large ACF (≥ 4 AC/ACF), which possess greater tumorigenic potential, was significantly lower in MZn and HZn groups compared with LZn group. Cytosolic SOD activity in the liver was significantly higher in HZn group compared with LZn group. Hepatic MDA level was decreased significantly in HZn group compared with MZn and LZn groups. Apoptotic index was significantly higher in HZn group. Taken together, these findings indicate that dietary zinc might exert a protective effect against colonic preneoplastic lesion induced by AOM/DSS in ICR mice with high iron status, and suggest that dietary supplement of zinc might play a role in suppressing colon carcinogenesis in mice. PMID:24278588

  19. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.

    2014-12-15

    Fertilization of a mammalian egg initiates a series of 'zinc sparks' that are necessary to induce the egg-to-embryo transition. Despite the importance of these zinc-efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches that resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy-dispersive spectroscopy, X-ray fluorescence microscopy and three-dimensional elemental tomography for high-resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each ofmore » which contains, on average, 10(6) zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes« less

  20. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks.

    PubMed

    Que, Emily L; Bleher, Reiner; Duncan, Francesca E; Kong, Betty Y; Gleber, Sophie C; Vogt, Stefan; Chen, Si; Garwin, Seth A; Bayer, Amanda R; Dravid, Vinayak P; Woodruff, Teresa K; O'Halloran, Thomas V

    2015-02-01

    Fertilization of a mammalian egg initiates a series of 'zinc sparks' that are necessary to induce the egg-to-embryo transition. Despite the importance of these zinc-efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches that resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy-dispersive spectroscopy, X-ray fluorescence microscopy and three-dimensional elemental tomography for high-resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each of which contains, on average, 10(6) zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes.

  1. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

    DOE PAGES

    Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.; ...

    2014-12-15

    Fertilization of a mammalian egg induces a series of ‘zinc sparks’ that are necessary for inducing the egg-to-embryo transition. Despite the importance of these zinc efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches to resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy dispersive spectroscopy, X-ray fluorescence microscopy, and 3D elemental tomography for high resolution elemental mapping. Here we show that the zinc spark arises from a system of thousands ofmore » zinc-loaded vesicles, each of which contains, on average, 106 zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. We conclude that the discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes.« less

  2. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

    PubMed Central

    Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.; Kong, Betty Y.; Gleber, Sophie C.; Vogt, Stefan; Chen, Si; Garwin, Seth A.; Bayer, Amanda R.; Dravid, Vinayak; Woodruff, Teresa K.; O’Halloran, Thomas V.

    2015-01-01

    Fertilization of a mammalian egg induces a series of ‘zinc sparks’ that are necessary for inducing the egg-to-embryo transition. Despite the importance of these zinc efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches to resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy dispersive spectroscopy, X-ray fluorescence microscopy, and 3D elemental tomography for high resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each of which contains, on average, 106 zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes. PMID:25615666

  3. 21 CFR 184.1230 - Calcium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium sulfate. 184.1230 Section 184.1230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT... GRAS § 184.1230 Calcium sulfate. (a) Calcium sulfate (CaSO4, CAS Reg. No. 7778-18-9 or CaSO4·2H2O, CAS...

  4. Effects of surfactants on low-molecular-weight organic acids to wash soil zinc.

    PubMed

    Chen, Yue; Zhang, Shirong; Xu, Xiaoxun; Yao, Ping; Li, Ting; Wang, Guiyin; Gong, Guoshu; Li, Yun; Deng, Ouping

    2016-03-01

    Soil washing is an effective approach to the removal of heavy metals from contaminated soil. In this study, the effects of the surfactants sodium dodecyl sulfate, Triton X-100, and non-ionic polyacrylamide (NPAM) on oxalic acid, tartaric acid, and citric acid used to remove zinc from contaminated soils were investigated. The Zn removal efficiencies of all washing solutions showed a logarithmic increase with acid concentrations from 0.5 to 10.0 g/L, while they decreased as pH increased from 4 to 9. Increasing the reaction time enhanced the effects of surfactants on Zn removal efficiencies by the acids during washing and significantly (P < 0.05) improved the removal under some mixed cases. Oxalic acid suffered antagonistic effects from the three surfactants and seriously damaged soil nutrients during the removal of soil Zn. Notably, the three surfactants caused synergistic effects on tartaric and citric acid during washing, with NPAM leading to an increase in Zn removal by 5.0 g/L citric acid of 10.60 % (P < 0.05) within 2 h. NPAM also alleviated the loss of cation exchange capacity of washed soils and obviously improved soil nitrogen concentrations. Overall, combining citric acid with NPAM offers a promising approach to the removal of zinc from contaminated soil.

  5. Sulfation in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Catherino, Henry A.; Feres, Fred F.; Trinidad, Francisco

    Virtually, all military land vehicle systems use a lead-acid battery to initiate an engine start. The maintainability of these batteries and as a consequence, system readiness, has suffered from a lack of understanding of the reasons for battery failure. Often, the term most commonly heard for explaining the performance degradation of lead-acid batteries is the word, sulfation. Sulfation is a residual term that came into existence during the early days of lead-acid battery development. The usage is part of the legend that persists as a means for interpreting and justifying the eventual performance deterioration and failure of lead-acid batteries. The usage of this term is confined to the greater user community and, over time, has encouraged a myriad of remedies for solving sulfation problems. One can avoid the connotations associated with the all-inclusive word, sulfation by visualizing the general "sulfation" effect in terms of specific mechanistic models. Also, the mechanistic models are essential for properly understanding the operation and making proper use this battery system. It is evident that the better the model, the better the level of understanding.

  6. Integrated Spectroscopic Studies of Anhydrous Sulfate Minerals

    NASA Technical Reports Server (NTRS)

    Lane, M. D.; Bishop, J. L.; Dyar, M. D.; Cloutis, E.; Forray, F. L.; Hiroi, T.

    2005-01-01

    Sulfates have been identified in Martian soils and bedrock and are emerging as an important indicator for aqueous activity on Mars. Sulfate minerals can form in a variety of low-temperature (evaporitic; chemical-weathering) and high-temperature (volcanic/fumarolic; hydrothermal) environments and their formational environments can range from alkaline to acidic. Although sulfates generally form in the presence of water, not all sulfates are hydrous or contain water in their structures. Many of these anhydrous sulfates (Dana group 28; Strunz class 67A) are minerals that form as accompanying phases to the main minerals in ore deposits or as replacement deposits in sedimentary rocks. However, some form from thermal decomposition of OH or H2O-bearing sulfates, such as from the reaction [1]: jarosite = yavapaiite + Fe2O3 + H2O. Where known, the stability fields of these minerals all suggest that they would be stable under martian surface conditions [2]. Thus, anhydrous sulfate minerals may contribute to martian surface mineralogy, so they must be well-represented in spectral libraries used for interpretation of the Martian surface. We present here the preliminary results of an integrated study of emittance, reflectance, and Mossbauer spectroscopy of a suite of wel-lcharacterized anhydrous sulfates.

  7. Zinc in Infection and Inflammation.

    PubMed

    Gammoh, Nour Zahi; Rink, Lothar

    2017-06-17

    Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli.

  8. The zinc paradigm for metalloneurochemistry.

    PubMed

    Barr, Chelsea A; Burdette, Shawn C

    2017-05-09

    Neurotransmission and sensory perception are shaped through metal ion-protein interactions in various brain regions. The term "metalloneurochemistry" defines the unique field of bioinorganic chemistry focusing on these processes, and zinc has been the leading target of metalloneurochemists in the almost 15 years since the definition was introduced. Zinc in the hippocampus interacts with receptors that dictate ion flow and neurotransmitter release. Understanding the intricacies of these interactions is crucial to uncovering the role that zinc plays in learning and memory. Based on receptor similarities and zinc-enriched neurons (ZENs) in areas of the brain responsible for sensory perception, such as the olfactory bulb (OB), and dorsal cochlear nucleus (DCN), zinc participates in odor and sound perception. Development and improvement of methods which allow for precise detection and immediate manipulation of zinc ions in neuronal cells and in brain slices will be critical in uncovering the synaptic action of zinc and, more broadly, the bioinorganic chemistry of cognition. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  9. Mineral resource of the month: zinc

    USGS Publications Warehouse

    Tolcin, Amy C.

    2009-01-01

    The article provides information on zinc, the fourth most-widely consumed metal. It traces the first use of zinc with the Romans' production of brass. It describes the presence of zinc in Earth's crust and the importance of sphalerite as a source of zinc and other some minor metal production. The production and consumption of zinc as well as the commercial and industrial uses of this metal are also discussed.

  10. Zinc Therapy in Dermatology: A Review

    PubMed Central

    Mahajan, Vikram K.; Mehta, Karaninder S.; Chauhan, Pushpinder S.

    2014-01-01

    Zinc, both in elemental or in its salt forms, has been used as a therapeutic modality for centuries. Topical preparations like zinc oxide, calamine, or zinc pyrithione have been in use as photoprotecting, soothing agents or as active ingredient of antidandruff shampoos. Its use has expanded manifold over the years for a number of dermatological conditions including infections (leishmaniasis, warts), inflammatory dermatoses (acne vulgaris, rosacea), pigmentary disorders (melasma), and neoplasias (basal cell carcinoma). Although the role of oral zinc is well-established in human zinc deficiency syndromes including acrodermatitis enteropathica, it is only in recent years that importance of zinc as a micronutrient essential for infant growth and development has been recognized. The paper reviews various dermatological uses of zinc. PMID:25120566

  11. Interdependence of free zinc changes and protein complex assembly - insights into zinc signal regulation.

    PubMed

    Kocyła, Anna; Adamczyk, Justyna; Krężel, Artur

    2018-01-24

    Cellular zinc (Zn(ii)) is bound with proteins that are part of the proteomes of all domains of life. It is mostly utilized as a catalytic or structural protein cofactor, which results in a vast number of binding architectures. The Zn(ii) ion is also important for the formation of transient protein complexes with a Zn(ii)-dependent quaternary structure that is formed upon cellular zinc signals. The mechanisms by which proteins associate with and dissociate from Zn(ii) and the connection with cellular Zn(ii) changes remain incompletely understood. In this study, we aimed to examine how zinc protein domains with various Zn(ii)-binding architectures are formed under free Zn(ii) concentration changes and how formation of the Zn(ii)-dependent assemblies is related to the protein concentration and reactivity. To accomplish these goals we chose four zinc domains with different Zn(ii)-to-protein binding stoichiometries: classical zinc finger (ZnP), LIM domain (Zn 2 P), zinc hook (ZnP 2 ) and zinc clasp (ZnP 1 P 2 ) folds. Our research demonstrated a lack of changes in the saturation level of intraprotein zinc binding sites, despite various peptide concentrations, while homo- and heterodimers indicated a concentration-dependent tendency. In other words, at a certain free Zn(ii) concentration, the fraction of a formed dimeric complex increases or decreases with subunit concentration changes. Secondly, even small or local changes in free Zn(ii) may significantly affect protein saturation depending on its architecture, function and subcellular concentration. In our paper, we indicate the importance of interdependence of free Zn(ii) availability and protein subunit concentrations for cellular zinc signal regulation.

  12. Setting constraints on the nature and origin of the two major hydrous sulfates on Mars: Monohydrated and polyhydrated sulfates

    NASA Astrophysics Data System (ADS)

    Wang, Alian; Jolliff, Bradley L.; Liu, Yang; Connor, Kathryn

    2016-04-01

    Monohydrated Mg sulfate (MgSO4·H2O) and polyhydrated sulfate are the most common and abundant hydrous sulfates observed thus far on Mars. They are widely distributed and coexist in many locations. On the basis of results from two new sets of experiments, in combination with past experimental studies and the subsurface salt mineralogy observed at a saline playa (Dalangtan, DLT) in a terrestrial analogue hyperarid region on the Tibet Plateau, we can now set new constraints on the nature and origin of these two major Martian sulfates. Starkeyite (MgSO4·4H2O) is the best candidate for polyhydrated sulfate. MgSO4·H2O in the form of "LH-1w," generated from dehydration of Mg sulfates with high degrees of hydration, is the most likely mineral form for the majority of Martian monohydrated Mg sulfate. Two critical properties of Mg sulfates are responsible for the coexistence of these two phases that have very different degrees of hydration: (1) the metastability of a substructural unit in starkeyite at relatively low temperatures, and (2) catalytic effects attributed to coprecipitated species (sulfates, chlorides, oxides, and hydroxides) from chemically complex brines that help overcome the metastability of starkeyite. The combination of these two properties controls the coexistence of the LH-1w layer and starkeyite layers at many locations on Mars, which sometimes occur in an interbedded stratigraphy. The structural H2O held by these two broadly distributed sulfates represents a large H2O reservoir at the surface and in the shallow subsurface on current Mars.

  13. Formulation and Evaluation of Antibacterial Creams and Gels Containing Metal Ions for Topical Application

    PubMed Central

    Chen, Mei X.; Alexander, Kenneth S.

    2016-01-01

    Background. Skin infections occur commonly and often present therapeutic challenges to practitioners due to the growing concerns regarding multidrug-resistant bacterial, viral, and fungal strains. The antimicrobial properties of zinc sulfate and copper sulfate are well known and have been investigated for many years. However, the synergistic activity between these two metal ions as antimicrobial ingredients has not been evaluated in topical formulations. Objective. The aims of the present study were to (1) formulate topical creams and gels containing zinc and copper alone or in combination and (2) evaluate the in vitro antibacterial activity of these metal ions in the formulations. Method. Formulation of the gels and creams was followed by evaluating their organoleptic characteristics, physicochemical properties, and in vitro antibacterial activity against Escherichia coli and Staphylococcus aureus. Results. Zinc sulfate and copper sulfate had a strong synergistic antibacterial activity in the creams and gels. The minimum effective concentration was found to be 3 w/w% for both active ingredients against the two tested microorganisms. Conclusions. This study evaluated and confirmed the synergistic in vitro antibacterial effect of copper sulfate and zinc sulfate in a cream and two gels. PMID:27885352

  14. Possible role of zinc in diminishing lead-related occupational stress-a zinc nutrition concern.

    PubMed

    Wani, Ab Latif; Ahmad, Ajaz; Shadab, G G H A; Usmani, Jawed Ahmad

    2017-03-01

    Lead and zinc are mostly present at the same occupational source and usually found as co-contaminants. Lead is known to associate with detrimental effects to humans. Zinc however is an essential nutrient and its deficiency causes debilitating effects on growth and development. Besides, it acts as core ion of important enzymes and proteins. The purpose of this study was to examine if zinc concentrations are associated with blood lead levels and if zinc may prevent lead-induced DNA damage. Blood samples were collected from 92 workers as participants occupationally exposed to lead or lead and zinc and 38 comparison participants having no history of such exposure. Lead and zinc levels were determined from blood by atomic absorption spectrophotometry and genetic damage was assessed by comet assay. Correlation was calculated by Spearman's rho. Lead concentrations were observed to increase among workers with increase in years of exposure. There was a significant difference (p < 0.001) in blood lead levels between workers and controls. In addition, significant difference (p < 0.001) in the genetic damage was observed among workers and controls. A clear effect of increased occupational exposure was visible among workers. Multiple regression analysis further reveals the positive effect of lead, while as the inverse effect of zinc on DNA damage. The results suggest that zinc may influence body lead absorption and may have a role in preventing the genetic damage caused by lead.

  15. 21 CFR 522.650 - Dihydrostreptomycin sulfate injection.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Dihydrostreptomycin sulfate injection. 522.650... § 522.650 Dihydrostreptomycin sulfate injection. (a) Specifications. Each milliliter contains dihydrostreptomycin sulfate equivalent to 500 milligrams of dihydrostreptomycin. (b) Sponsors. See Nos. 054771 and...

  16. Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: a combined targeted and proteomic approach.

    PubMed

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Gerdil, Adèle; Diemer, Hélène; Proamer, Fabienne; Collin-Faure, Véronique; Habert, Aurélie; Strub, Jean-Marc; Hanau, Daniel; Herlin, Nathalie; Carrière, Marie; Van Dorsselaer, Alain; Rabilloud, Thierry

    2014-06-07

    Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate catabolism and proteasome are critical determinants of sensitivity to zinc, which also induces DNA damage. Conversely, glutathione levels and phagocytosis appear unaffected at moderately toxic zinc concentrations.

  17. Benzene oxidation coupled to sulfate reduction

    USGS Publications Warehouse

    Lovley, D.R.; Coates, J.D.; Woodward, J.C.; Phillips, E.J.P.

    1995-01-01

    Highly reduced sediments from San Diego Bay, Calif., that were incubated under strictly anaerobic conditions metabolized benzene within 55 days when they were exposed initially to I ??M benzene. The rate of benzene metabolism increased as benzene was added back to the benzene-adapted sediments. When a [14C]benzene tracer was included with the benzene added to benzene-adapted sediments, 92% of the added radioactivity was recovered as 14CO2. Molybdate, an inhibitor of sulfate reduction, inhibited benzene uptake and production of 14CO2 from [14C]benzene. Benzene metabolism stopped when the sediments became sulfate depleted, and benzene uptake resumed when sulfate was added again. The stoichiometry of benzene uptake and sulfate reduction was consistent with the hypothesis that sulfate was the principal electron acceptor for benzene oxidation. Isotope trapping experiments performed with [14C]benzene revealed that there was no production of such potential extracellular intermediates of benzene oxidation as phenol, benzoate, p-hydroxybenzoate, cyclohexane, catechol, and acetate. The results demonstrate that benzene can be oxidized in the absence of O2, with sulfate serving as the electron acceptor, and suggest that some sulfate reducers are capable of completely oxidizing benzene to carbon dioxide without the production of extracellular intermediates. Although anaerobic benzene oxidation coupled to chelated Fe(III) has been documented previously, the study reported here provides the first example of a natural sediment compound that can serve as an electron acceptor for anaerobic benzene oxidation.

  18. Sulfation and Cation Effects on the Conformational Properties of the Glycan Backbone of Chondroitin Sulfate Disaccharides

    PubMed Central

    Faller, Christina E.; Guvench, Olgun

    2015-01-01

    Chondroitin sulfate (CS) is one of several glycosaminoglycans that are major components of proteoglycans. A linear polymer consisting of repeats of the disaccharide -4GlcAβ1-3GalNAcβ1-, CS undergoes differential sulfation resulting in five unique sulfation patterns. Because of the dimer repeat, the CS glycosidic “backbone” has two distinct sets of conformational degrees of freedom defined by pairs of dihedral angles: (ϕ1, ψ1) about the β1-3 glycosidic linkage and (ϕ2, ψ2) about the β1-4 glycosidic linkage. Differential sulfation and the possibility of cation binding, combined with the conformational flexibility and biological diversity of CS, complicate experimental efforts to understand CS three-dimensional structures at atomic resolution. Therefore, all-atom explicit-solvent molecular dynamics simulations with Adaptive Biasing Force sampling of the CS backbone were applied to obtain high resolution, high precision free energies of CS disaccharides as a function of all possible backbone geometries. All ten disaccharides (β1-3 vs. β1-4 linkage x five different sulfation patterns) were studied; additionally, ion effects were investigated by considering each disaccharide in the presence of either neutralizing sodium or calcium cations. GlcAβ1-3GalNAc disaccharides have a single, broad, thermodynamically important free-energy minimum whereas GalNAcβ1-4GlcA disaccharides have two such minima. Calcium cations but not sodium cations bind to the disaccharides, and binding is primarily to the GlcA –COO− moiety as opposed to sulfate groups. This binding alters the glycan backbone thermodynamics in instances where a calcium cation bound to –COO− can act to bridge and stabilize an interaction with an adjacent sulfate group, whereas, in the absence of this cation, the proximity of a sulfate group to –COO− results in two like charges being both desolvated and placed adjacent to each other and is found to be destabilizing. In addition to providing

  19. Sulfation and cation effects on the conformational properties of the glycan backbone of chondroitin sulfate disaccharides.

    PubMed

    Faller, Christina E; Guvench, Olgun

    2015-05-21

    Chondroitin sulfate (CS) is one of several glycosaminoglycans that are major components of proteoglycans. A linear polymer consisting of repeats of the disaccharide -4GlcAβ1-3GalNAcβ1-, CS undergoes differential sulfation resulting in five unique sulfation patterns. Because of the dimer repeat, the CS glycosidic "backbone" has two distinct sets of conformational degrees of freedom defined by pairs of dihedral angles: (ϕ1, ψ1) about the β1-3 glycosidic linkage and (ϕ2, ψ2) about the β1-4 glycosidic linkage. Differential sulfation and the possibility of cation binding, combined with the conformational flexibility and biological diversity of CS, complicate experimental efforts to understand CS three-dimensional structures at atomic resolution. Therefore, all-atom explicit-solvent molecular dynamics simulations with Adaptive Biasing Force sampling of the CS backbone were applied to obtain high-resolution, high-precision free energies of CS disaccharides as a function of all possible backbone geometries. All 10 disaccharides (β1-3 vs β1-4 linkage × five different sulfation patterns) were studied; additionally, ion effects were investigated by considering each disaccharide in the presence of either neutralizing sodium or calcium cations. GlcAβ1-3GalNAc disaccharides have a single, broad, thermodynamically important free-energy minimum, whereas GalNAcβ1-4GlcA disaccharides have two such minima. Calcium cations but not sodium cations bind to the disaccharides, and binding is primarily to the GlcA -COO(-) moiety as opposed to sulfate groups. This binding alters the glycan backbone thermodynamics in instances where a calcium cation bound to -COO(-) can act to bridge and stabilize an interaction with an adjacent sulfate group, whereas, in the absence of this cation, the proximity of a sulfate group to -COO(-) results in two like charges being both desolvated and placed adjacent to each other and is found to be destabilizing. In addition to providing information

  20. Tyrosine sulfation in precursors of collagen V.

    PubMed

    Fessler, L I; Brosh, S; Chapin, S; Fessler, J H

    1986-04-15

    Radioactive labeling of p-collagens V, collagens V, and, to a small extent, of procollagen V occurred when [35S]sulfate was incubated with tendons or primary tendon cell cultures, or blood vessels and crops of 17- to 19-day-old chick embryos, or with lung slices from neonatal rats. Most or all of this label is in the form of 1 or more sulfated tyrosine residues/chain of p alpha 1(V), alpha 1(V), p alpha 1'(V), alpha 1'(V), p alpha 2(V), and alpha 2(V), and it remains attached through purification by dialysis, ammonium sulfate precipitation, CsCl-GdnCl2 equilibrium buoyant density and velocity sedimentations, ion-exchange chromatography, and sodium dodecyl sulfate gel electrophoresis. Radioactive tyrosine sulfate was identified in alkaline hydrolysates of these collagen V chains, after labeling the tissues with either [35S]sulfate or [3H]tyrosine, by electrophoretic and chromatographic comigration with a tyrosine sulfate standard. Tunicamycin A1, which inhibits the attachment of N-linked complex carbohydrate, did not interfere with the sulfation process. The tyrosine sulfate is located in a noncollagenous domain, which is probably adjacent to the amino end of the collagen helix, and is retained throughout the physiological proteolytic processing of procollagens V. After digestion with Staphylococcus aureus V8 protease, 35S-labeled p alpha 1(V) and alpha 1(V) chains gave the same map of labeled peptides, and this differed from the map given by p alpha 1'(V) and alpha 1'(V) chains. Little sulfation of p alpha 2(V) and alpha 2(V) chains occurs. The implications of these observations for the structure and properties of procollagens V and their derivatives are considered.

  1. Zinc Signal in Brain Diseases.

    PubMed

    Portbury, Stuart D; Adlard, Paul A

    2017-11-23

    The divalent cation zinc is an integral requirement for optimal cellular processes, whereby it contributes to the function of over 300 enzymes, regulates intracellular signal transduction, and contributes to efficient synaptic transmission in the central nervous system. Given the critical role of zinc in a breadth of cellular processes, its cellular distribution and local tissue level concentrations remain tightly regulated via a series of proteins, primarily including zinc transporter and zinc import proteins. A loss of function of these regulatory pathways, or dietary alterations that result in a change in zinc homeostasis in the brain, can all lead to a myriad of pathological conditions with both acute and chronic effects on function. This review aims to highlight the role of zinc signaling in the central nervous system, where it may precipitate or potentiate diverse issues such as age-related cognitive decline, depression, Alzheimer's disease or negative outcomes following brain injury.

  2. Zinc in Entamoeba invadens.

    NASA Technical Reports Server (NTRS)

    Morgan, R. S.; Sattilaro, R. F.

    1972-01-01

    Atomic absorption spectroscopy, electron microprobe analysis, and dithizone staining of trophozoites and cysts of Entamoeba invadens demonstrate that these cells have a high concentration of zinc (approximately one picogram per cell or 1% of their dry weight). In the cysts of this organism, the zinc is confined to the chromatoid bodies, which previous work has shown to contain crystals of ribosomes. The chemical state and function of this zinc are unknown.

  3. Influence of nutrients on biomass evolution in an upflow anaerobic sludge blanket reactor degrading sulfate-laden organics.

    PubMed

    Patidar, S K; Tare, Vinod

    2004-01-01

    This paper describes the effect of the nutrients iron (Fe), nickel (Ni), zinc (Zn), cobalt (Co), and molybdenum (Mo) on biomass evolution in an upflow anaerobic sludge blanket (UASB) reactor metabolizing synthetic sulfate-laden organics at varying operating conditions during a period of 540 days. A bench-scale model of a UASB reactor was operated at a temperature of 35 degrees C for a chemical oxygen demand-to-sulfate (COD/SO4(2-)) ratio of 8.59 to 2.0, a sulfate loading rate of 0.54 to 1.88 kg SO4(2-)/m3 x d, and an organic loading rate of 1.9 to 5.75 kg COD/m3 x d. Biomass was characterized in terms of total methanogenic activity, acetate-utilizing methanogenic activity, total sulfidogenic activity, acetate-utilizing sulfidogenic activity, and scanning electron microscopy (SEM). Nickel and cobalt limitation appears to affect the activity of hydrogen-utilizing methane-producing bacteria (HMPB) significantly without having an appreciable effect on the activity of acetate-utilizing methane-producing bacteria (AMPB). Nickel and cobalt supplementation resulted in increased availability and, consequently, restoration of biomass activity and process performance. Iron limitation and sulfidogenic conditions resulted in the growth of low-density, hollow, fragile granules that washed out, causing process instability and performance deterioration. Iron and cobalt supplementation indicated significant stimulation of AMPB with slight inhibition of HMPB. Examination of biomass through SEM indicated a population shift with dominance of sarcina-type organisms and the formation of hollow granules. Granule disintegration was observed toward the end of the study.

  4. A Photoluminescence Study of the Changes Induced in the Zinc White Pigment by Formation of Zinc Complexes

    PubMed Central

    Artesani, Alessia; Gherardi, Francesca; Nevin, Austin; Valentini, Gianluca; Comelli, Daniela

    2017-01-01

    It is known that oil paintings containing zinc white are subject to rapid degradation. This is caused by the interaction between the active groups of binder and the metal ions of the pigment, which gives rise to the formation of new zinc complexes (metal soaps). Ongoing studies on zinc white paints have been limited to the chemical mechanisms that lead to the formation of zinc complexes. On the contrary, little is known of the photo-physical changes induced in the zinc oxide crystal structure following this interaction. Time-resolved photoluminescence spectroscopy has been applied to follow modifications in the luminescent zinc white pigment when mixed with binder. Significant changes in trap state photoluminescence emissions have been detected: the enhancement of a blue emission combined with a change of the decay kinetic of the well-known green emission. Complementary data from molecular analysis of paints using Fourier transform infrared spectroscopy confirms the formation of zinc carboxylates and corroborates the mechanism for zinc complexes formation. We support the hypothesis that zinc ions migrate into binder creating novel vacancies, affecting the photoluminescence intensity and lifetime properties of zinc oxide. Here, we further demonstrate the advantages of a time-resolved photoluminescence approach for studying defects in semiconductor pigments. PMID:28772700

  5. Zinc in Infection and Inflammation

    PubMed Central

    Gammoh, Nour Zahi; Rink, Lothar

    2017-01-01

    Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli. PMID:28629136

  6. 21 CFR 520.1044c - Gentamicin sulfate powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Gentamicin sulfate powder. 520.1044c Section 520... sulfate powder. (a) Specifications. Each gram of powder contains gentamicin sulfate equivalent to: (1) 16... colibacillosis: Gentamicin sulfate equivalent to 25 mg of gentamicin per gallon of drinking water to provide 0.5...

  7. 21 CFR 520.1044c - Gentamicin sulfate powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Gentamicin sulfate powder. 520.1044c Section 520... sulfate powder. (a) Specifications. Each gram of powder contains gentamicin sulfate equivalent to: (1) 16... colibacillosis: Gentamicin sulfate equivalent to 25 mg of gentamicin per gallon of drinking water to provide 0.5...

  8. The combined therapy with chondroitin sulfate plus glucosamine sulfate or chondroitin sulfate plus glucosamine hydrochloride does not improve joint damage in an experimental model of knee osteoarthritis in rabbits.

    PubMed

    Roman-Blas, Jorge A; Mediero, Aránzazu; Tardío, Lidia; Portal-Nuñez, Sergio; Gratal, Paula; Herrero-Beaumont, Gabriel; Largo, Raquel

    2017-01-05

    Osteoarthritis is the most common chronic joint disorder especially during aging. Although with controversies, glucosamine, both in its forms of sulfate and hydrochloride, and chondroitin sulfate are commonly employed to treat osteoarthritis. Due to the modest improve in the symptoms observed in patients treated with these drugs alone, a formulation combining both agents has been considered. The discrepant results achieved for pain control or structural improvement in osteoarthritis patients has been attributed to the quality of chemical formulations or different bias in clinical studies. The current study has been designed to test the effects of two different combined formulations with adequate pharmaceutical grade of these drugs in osteoarthritic joints, and to explore the underlying mechanisms modulated by both formulations in different osteoarthritis target tissues. Knee osteoarthritis was surgically induced in experimental rabbits. Some animals received the combined therapy (CT)1, (chondroitin sulfate 1200mg/day + glucosamine sulfate 1500mg/day), or the CT2 ((chondroitin sulfate 1200mg/day + glucosamine hydrochloride 1500mg/day). Neither CT1 nor CT2 significantly modified the cartilage damage or the synovial inflammation observed in osteoarthritic animals. Treatments were also unable to modify the presence of pro-inflammatory mediators, and the synthesis of metalloproteinases in the cartilage or in the synovium of osteoarthritic animals. Combined therapies did not modify the decrease in the subchondral bone mineral density observed in osteoarthritic rabbits. Therapies of chondroitin sulfate plus glucosamine sulfate or chondroitin sulfate plus glucosamine hydrochloride failed to improve structural damage or to ameliorate the inflammatory profile of joint tissues during experimental osteoarthritis. Published by Elsevier B.V.

  9. Highly sulfated hexasaccharide sequences isolated from chondroitin sulfate of shark fin cartilage: insights into the sugar sequences with bioactivities.

    PubMed

    Mizumoto, Shuji; Murakoshi, Saori; Kalayanamitra, Kittiwan; Deepa, Sarama Sathyaseelan; Fukui, Shigeyuki; Kongtawelert, Prachya; Yamada, Shuhei; Sugahara, Kazuyuki

    2013-02-01

    Chondroitin sulfate (CS) chains regulate the development of the central nervous system in vertebrates and are linear polysaccharides consisting of variously sulfated repeating disaccharides, [-4GlcUAβ1-3GalNAcβ1-](n), where GlcUA and GalNAc represent D-glucuronic acid and N-acetyl-D-galactosamine, respectively. CS chains containing D-disaccharide units [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)] are involved in the development of cerebellar Purkinje cells and neurite outgrowth-promoting activity through interaction with a neurotrophic factor, pleiotrophin, resulting in the regulation of signaling. In this study, to obtain further structural information on the CS chains containing d-disaccharide units involved in brain development, oligosaccharides containing D-units were isolated from a shark fin cartilage. Seven novel hexasaccharide sequences, ΔO-D-D, ΔA-D-D, ΔC-D-D, ΔE-A-D, ΔD-D-C, ΔE-D-D and ΔA-B-D, in addition to three previously reported sequences, ΔC-A-D, ΔC-D-C and ΔA-D-A, were isolated from a CS preparation of shark fin cartilage after exhaustive digestion with chondroitinase AC-I, which cannot act on the galactosaminidic linkages bound to D-units. The symbol Δ stands for a 4,5-unsaturated bond of uronic acids, whereas A, B, C, D, E and O represent [GlcUA-GalNAc(4-O-sulfate)], [GlcUA(2-O-sulfate)-GalNAc(4-O-sulfate)], [GlcUA-GalNAc(6-O-sulfate)], [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)], [GlcUA-GalNAc(4-O-, 6-O-sulfate)] and [GlcUA-GalNAc], respectively. In binding studies using an anti-CS monoclonal antibody, MO-225, the epitopes of which are involved in cerebellar development in mammals, novel epitope structures, ΔA-D-A, ΔA-D-D and ΔA-B-D, were revealed. Hexasaccharides containing two consecutive D-units or a B-unit will be useful for the structural and functional analyses of CS chains particularly in the neuroglycobiological fields.

  10. Protein Precipitation Using Ammonium Sulfate.

    PubMed

    2016-04-01

    The basic theory of protein precipitation by addition of ammonium sulfate is presented, and the most common applications are listed. Tables are provided for calculating the appropriate amount of ammonium sulfate to add to a particular protein solution. Copyright © 2016 John Wiley & Sons, Inc.

  11. A modified sulfate process to lunar oxygen

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A.

    1992-01-01

    A modified sulfate process which produces oxygen from iron oxide-bearing minerals in lunar soil is under development. Reaction rates of ilmenite in varying strength sulfuric acid have been determined. Quantitative conversion of ilmenite to ferrous sulfate was observed over a range of temperatures and concentrations. Data has also been developed on the calcination of by-product sulfates. System engineering for overall operability and simplicity has begun, suggesting that a process separating the digestion and sulfate dissolution steps may offer an optimum process.

  12. A concentrated electrolyte for zinc hexacyanoferrate electrodes in aqueous rechargeable zinc-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, D.; Lee, C.; Jeong, S.

    2018-01-01

    In this study, a concentrated electrolyte was applied in an aqueous rechargeable zinc-ion battery system with a zinc hexacyanoferrate (ZnHCF) electrode to improve the electrochemical performance by changing the hydration number of the zinc ions. To optimize the active material, ZnHCF was synthesized using aqueous solutions of zinc nitrate with three different concentrations. The synthesized materials exhibited some differences in structure, crystallinity, and particle size, as observed by X-ray diffraction and scanning electron microscopy. Subsequently, these well-structured materials were applied in electrochemical tests. A more than two-fold improvement in the charge/discharge capacities was observed when the concentrated electrolyte was used instead of the dilute electrolyte. Additionally, the cycling performance observed in the concentrated electrolyte was superior to that in the dilute electrolyte. This improvement in the electrochemical performance may result from a decrease in the hydration number of the zinc ions in the concentrated electrolyte.

  13. 21 CFR 522.1204 - Kanamycin sulfate injection.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Kanamycin sulfate injection. 522.1204 Section 522.1204 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....1204 Kanamycin sulfate injection. (a) Specifications. Each milliliter of kanamycin sulfate injection...

  14. 21 CFR 522.1204 - Kanamycin sulfate injection.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Kanamycin sulfate injection. 522.1204 Section 522.1204 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....1204 Kanamycin sulfate injection. (a) Specifications. Each milliliter of kanamycin sulfate injection...

  15. 21 CFR 522.1204 - Kanamycin sulfate injection.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Kanamycin sulfate injection. 522.1204 Section 522.1204 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....1204 Kanamycin sulfate injection. (a) Specifications. Each milliliter of kanamycin sulfate injection...

  16. 21 CFR 522.1204 - Kanamycin sulfate injection.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Kanamycin sulfate injection. 522.1204 Section 522.1204 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....1204 Kanamycin sulfate injection. (a) Specifications. Each milliliter of kanamycin sulfate injection...

  17. Crystalline perfection, optical and piezoelectric properties of a novel semi-organic single crystal: Zinc guanidinium sulphate

    NASA Astrophysics Data System (ADS)

    Nandhini, S.; Murugakoothan, P.

    2018-04-01

    Zinc Guanidinium Sulfate (ZGuS), a semi-organic single crystal, was synthesized using slow evaporation solution growth technique. It is a non-centrosymmetric crystal with space group I4 ¯2d . The crystalline nature of the crystal and the strain were determined using powder X-ray diffraction analysis. The crystalline perfection of the grown crystal was revealed using HR-XRD analysis. The UV-vis-NIR transmittance spectrum depicts 60% transparency with lower-cut off wavelength of 210 nm. The emission spectrum of the crystal was determined using photoluminescence study. Piezoelectricity was confirmed by determining the piezoelectric charge coefficient (d33). These findings shows that the title compound can be employed for photonic and transducer applications.

  18. New Insights into the Role of Zinc Acquisition and Zinc Tolerance in Group A Streptococcal Infection.

    PubMed

    Ong, Cheryl-Lynn Y; Berking, Olga; Walker, Mark J; McEwan, Alastair G

    2018-06-01

    Zinc plays an important role in host innate immune function. However, the innate immune system also utilizes zinc starvation ("nutritional immunity") to combat infections. Here, we investigate the role of zinc import and export in the protection of Streptococcus pyogenes (group A Streptococcus ; GAS), a Gram-positive bacterial pathogen responsible for a wide spectrum of human diseases, against challenge from host innate immune defense. In order to determine the role of GAS zinc import and export during infection, we utilized zinc import (Δ adcA Δ adcAII ) and export (Δ czcD ) deletion mutants in competition with the wild type in both in vitro and in vivo virulence models. We demonstrate that nutritional immunity is deployed extracellularly, while zinc toxicity is utilized upon phagocytosis of GAS by neutrophils. We also show that lysosomes and azurophilic granules in neutrophils contain zinc stores for use against intracellular pathogens. Copyright © 2018 American Society for Microbiology.

  19. Particulate nanocomposite from oyster (Crassostrea rivularis) hydrolysates via zinc chelation improves zinc solubility and peptide activity.

    PubMed

    Zhang, Ziran; Zhou, Feibai; Liu, Xiaoling; Zhao, Mouming

    2018-08-30

    An oyster protein hydrolysates-zinc complex (OPH-Zn) was prepared and investigated to improve zinc bioaccessibility. Zinc ions chelating with oyster protein hydrolysates (OPH) cause intramolecular and intermolecular folding and aggregation, homogeneously forming the OPH-Zn complex as nanoclusters with a Z-average at 89.28 nm (PDI: 0.16 ± 0.02). The primary sites of zinc-binding in OPH were carboxyl groups, carbonyl groups, and amino groups, and they were related to the high number of charged amino acid residues. Furthermore, formation of the OPH-Zn complex could significantly enhance zinc solubility both under specific pH conditions as well as during simulated gastrointestinal digestion, compared to the commonly used ZnSO 4 . Additionally, after digestion, either preserved or enhanced antioxidant activity of OPH was found when chelated with zinc. These results indicated that the OPH-Zn complex could be a potential functional ingredient with improved antioxidant bioactivity and zinc bioaccessibility. Copyright © 2018. Published by Elsevier Ltd.

  20. Zinc-mediated Allosteric Inhibition of Caspase-6*

    PubMed Central

    Velázquez-Delgado, Elih M.; Hardy, Jeanne A.

    2012-01-01

    Zinc and caspase-6 have independently been implicated in several neurodegenerative disorders. Depletion of zinc intracellularly leads to apoptosis by an unknown mechanism. Zinc inhibits cysteine proteases, including the apoptotic caspases, leading to the hypothesis that zinc-mediated inhibition of caspase-6 might contribute to its regulation in a neurodegenerative context. Using inductively coupled plasma optical emission spectroscopy, we observed that caspase-6 binds one zinc per monomer, under the same conditions where the zinc leads to complete loss of enzymatic activity. To understand the molecular details of zinc binding and inhibition, we performed an anomalous diffraction experiment above the zinc edge. The anomalous difference maps showed strong 5σ peaks, indicating the presence of one zinc/monomer bound at an exosite distal from the active site. Zinc was not observed bound to the active site. The zinc in the exosite was liganded by Lys-36, Glu-244, and His-287 with a water molecule serving as the fourth ligand, forming a distorted tetrahedral ligation sphere. This exosite appears to be unique to caspase-6, as the residues involved in zinc binding were not conserved across the caspase family. Our data suggest that binding of zinc at the exosite is the primary route of inhibition, potentially locking caspase-6 into the inactive helical conformation. PMID:22891250

  1. The biological inorganic chemistry of zinc ions.

    PubMed

    Krężel, Artur; Maret, Wolfgang

    2016-12-01

    The solution and complexation chemistry of zinc ions is the basis for zinc biology. In living organisms, zinc is redox-inert and has only one valence state: Zn(II). Its coordination environment in proteins is limited by oxygen, nitrogen, and sulfur donors from the side chains of a few amino acids. In an estimated 10% of all human proteins, zinc has a catalytic or structural function and remains bound during the lifetime of the protein. However, in other proteins zinc ions bind reversibly with dissociation and association rates commensurate with the requirements in regulation, transport, transfer, sensing, signalling, and storage. In contrast to the extensive knowledge about zinc proteins, the coordination chemistry of the "mobile" zinc ions in these processes, i.e. when not bound to proteins, is virtually unexplored and the mechanisms of ligand exchange are poorly understood. Knowledge of the biological inorganic chemistry of zinc ions is essential for understanding its cellular biology and for designing complexes that deliver zinc to proteins and chelating agents that remove zinc from proteins, for detecting zinc ion species by qualitative and quantitative analysis, and for proper planning and execution of experiments involving zinc ions and nanoparticles such as zinc oxide (ZnO). In most investigations, reference is made to zinc or Zn 2+ without full appreciation of how biological zinc ions are buffered and how the d-block cation Zn 2+ differs from s-block cations such as Ca 2+ with regard to significantly higher affinity for ligands, preference for the donor atoms of ligands, and coordination dynamics. Zinc needs to be tightly controlled. The interaction with low molecular weight ligands such as water and inorganic and organic anions is highly relevant to its biology but in contrast to its coordination in proteins has not been discussed in the biochemical literature. From the discussion in this article, it is becoming evident that zinc ion speciation is

  2. 21 CFR 522.2690 - Zinc gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Zinc gluconate. 522.2690 Section 522.2690 Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.2690 Zinc gluconate. (a) Specifications. Each milliliter of solution contains 13.1 milligrams zinc as zinc gluconate...

  3. 21 CFR 522.2690 - Zinc gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc gluconate. 522.2690 Section 522.2690 Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.2690 Zinc gluconate. (a) Specifications. Each milliliter of solution contains 13.1 milligrams zinc as zinc gluconate...

  4. Process for removing sulfate anions from waste water

    DOEpatents

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  5. Longitudinal changes in zinc transport kinetics, metallothionein, and zinc transporter expression in a blood-brain barrier model in response to a moderately excessive zinc environment$

    PubMed Central

    Gauthier, Nicole A.; Karki, Shakun; Olley, Bryony J.; Thomas, W. Kelly

    2008-01-01

    A blood-brain barrier (BBB) model composed of porcine brain capillary endothelial cells (BCEC) was exposed to a moderately excessive zinc environment (50 µmol Zn/L) in cell culture and longitudinal measurements were made of zinc transport kinetics, ZnT-1 (SLC30A1) expression, and changes in the protein concentration of metallothionein (MT), ZnT-1, ZnT-2 (SLC30A2), and Zip1 (SLC39A1). Zinc release by cells of the BBB model was significantly increased after 12–24 h of exposure, but decreased back to control levels after 48–96 h, as indicated by transport across the BBB from both the ablumenal (brain) and lumenal (blood) directions. Expression of ZnT-1, the zinc export protein, increased 169% within 12 h, but was no longer different from controls after 24 h. Likewise, ZnT-1 protein content increased transiently after 12 h of exposure but returned to control levels by 24 h. Capacity for zinc uptake and retention increased from both the lumenal and ablumenal directions within 12–24 h of exposure and remained elevated. MT and ZnT-2 were elevated within 12 h and remained elevated throughout the study. Zip1 was unchanged by the treatment. The BBB’s response to a moderately high zinc environment was dynamic and involved multiple mechanisms. The initial response was to increase the cell’s capacity to sequester zinc with additional MT and increase zinc export with the ZnT-1 protein. But, the longer term strategy involved increasing ZnT-2 transporters, presumably to sequester zinc into intracellular vesicles as a mechanism to protect the brain and maintain brain zinc homeostasis. PMID:18061429

  6. Zinc-The key to preventing corrosion

    USGS Publications Warehouse

    Kropschot, S.J.; Doebrich, Jeff L.

    2011-01-01

    Centuries before it was identified as an element, zinc was used to make brass (an alloy of zinc and copper) and for medicinal purposes. Metallic zinc and zinc oxide were produced in India sometime between the 11th and 14th centuries and in China in the 17th century, although the discovery of pure metallic zinc is credited to the German chemist Andreas Marggraf, who isolated the element in 1746. Refined zinc metal is bluish-white when freshly cast; it is hard and brittle at most temperatures and has relatively low melting and boiling points. Zinc alloys readily with other metals and is chemically active. On exposure to air, it develops a thin gray oxide film (patina), which inhibits deeper oxidation (corrosion) of the metal. The metal's resistance to corrosion is an important characteristic in its use.

  7. Rechargeable zinc cell with alkaline electrolyte which inhibits shape change in zinc electrode

    DOEpatents

    Adler, Thomas C.; McLarnon, Frank R.; Cairns, Elton J.

    1995-01-01

    An improved rechargeable zinc cell is described comprising a zinc electrode and another electrode such as, for example, a nickel-containing electrode, and having an electrolyte containing one or more hydroxides having the formula M(OH), one or more fluorides having the formula MF, and one or more carbonates having the formula M.sub.2 CO.sub.3, where M is a metal selected from the group consisting of alkali metals. The electrolyte inhibits shape change in the zinc electrode, i.e., the zinc electrode exhibits low shape change, resulting in an improved capacity retention of the cell over an number of charge-discharge cycles, while still maintaining high discharge rate characteristics.

  8. A role for the Drosophila zinc transporter Zip88E in protecting against dietary zinc toxicity.

    PubMed

    Richards, Christopher D; Warr, Coral G; Burke, Richard

    2017-01-01

    Zinc absorption in animals is thought to be regulated in a local, cell autonomous manner with intestinal cells responding to dietary zinc content. The Drosophila zinc transporter Zip88E shows strong sequence similarity to Zips 42C.1, 42C.2 and 89B as well as mammalian Zips 1, 2 and 3, suggesting that it may act in concert with the apically-localised Drosophila zinc uptake transporters to facilitate dietary zinc absorption by importing ions into the midgut enterocytes. However, the functional characterisation of Zip88E presented here indicates that Zip88E may instead play a role in detecting and responding to zinc toxicity. Larvae homozygous for a null Zip88E allele are viable yet display heightened sensitivity to elevated levels of dietary zinc. This decreased zinc tolerance is accompanied by an overall decrease in Metallothionein B transcription throughout the larval midgut. A Zip88E reporter gene is expressed only in the salivary glands, a handful of enteroendocrine cells at the boundary between the anterior and middle midgut regions, and in two parallel strips of sensory cell projections connecting to the larval ventral ganglion. Zip88E expression solely in this restricted subset of cells is sufficient to rescue the Zip88E mutant phenotype. Together, our data suggest that Zip88E may be functioning in a small subset of cells to detect excessive zinc levels and induce a systemic response to reduce dietary zinc absorption and hence protect against toxicity.

  9. Zinc Fortification Decreases ZIP1 Gene Expression of Some Adolescent Females with Appropriate Plasma Zinc Levels

    PubMed Central

    Méndez, Rosa O.; Santiago, Alejandra; Yepiz-Plascencia, Gloria; Peregrino-Uriarte, Alma B.; de la Barca, Ana M. Calderón; García, Hugo S.

    2014-01-01

    Zinc homeostasis is achieved after intake variation by changes in the expression levels of zinc transporters. The aim of this study was to evaluate dietary intake (by 24-h recall), absorption, plasma zinc (by absorption spectrophotometry) and the expression levels (by quantitative PCR), of the transporters ZIP1 (zinc importer) and ZnT1 (zinc exporter) in peripheral white blood cells from 24 adolescent girls before and after drinking zinc-fortified milk for 27 day. Zinc intake increased (p < 0.001) from 10.5 ± 3.9 mg/day to 17.6 ± 4.4 mg/day, and its estimated absorption from 3.1 ± 1.2 to 5.3 ± 1.3 mg/day. Mean plasma zinc concentration remained unchanged (p > 0.05) near 150 µg/dL, but increased by 31 µg/dL (p < 0.05) for 6/24 adolescents (group A) and decreased by 25 µg/dL (p < 0.05) for other 6/24 adolescents (group B). Expression of ZIP1 in blood leukocytes was reduced 1.4-fold (p < 0.006) in group A, while for the expression of ZnT1 there was no difference after intervention (p = 0.39). An increase of dietary zinc after 27-days consumption of fortified-milk did not increase (p > 0.05) the plasma level of adolescent girls but for 6/24 participants from group A in spite of the formerly appropriation, which cellular zinc uptake decreased as assessed by reduction of the expression of ZIP1. PMID:24922175

  10. Characterization of the interaction of interleukin-8 with hyaluronan, chondroitin sulfate, dermatan sulfate and their sulfated derivatives by spectroscopy and molecular modeling.

    PubMed

    Pichert, Annelie; Samsonov, Sergey A; Theisgen, Stephan; Thomas, Lars; Baumann, Lars; Schiller, Jürgen; Beck-Sickinger, Annette G; Huster, Daniel; Pisabarro, M Teresa

    2012-01-01

    The interactions between glycosaminoglycans (GAGs), important components of the extracellular matrix, and proteins such as growth factors and chemokines play critical roles in cellular regulation processes. Therefore, the design of GAG derivatives for the development of innovative materials with bio-like properties in terms of their interaction with regulatory proteins is of great interest for tissue engineering and regenerative medicine. Previous work on the chemokine interleukin-8 (IL-8) has focused on its interaction with heparin and heparan sulfate, which regulate chemokine function. However, the extracellular matrix contains other GAGs, such as hyaluronic acid (HA), dermatan sulfate (DS) and chondroitin sulfate (CS), which have so far not been characterized in terms of their distinct molecular recognition properties towards IL-8 in relation to their length and sulfation patterns. NMR and molecular modeling have been in great part the methods of choice to study the structural and recognition properties of GAGs and their protein complexes. However, separately these methods have challenges to cope with the high degree of similarity and flexibility that GAGs exhibit. In this work, we combine fluorescence spectroscopy, NMR experiments, docking and molecular dynamics simulations to study the configurational and recognition properties of IL-8 towards a series of HA and CS derivatives and DS. We analyze the effects of GAG length and sulfation patterns in binding strength and specificity, and the influence of GAG binding on IL-8 dimer formation. Our results highlight the importance of combining experimental and theoretical approaches to obtain a better understanding of the molecular recognition properties of GAG-protein systems.

  11. 21 CFR 182.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aluminum ammonium sulfate. 182.1127 Section 182.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b...

  12. 21 CFR 582.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aluminum ammonium sulfate. 582.1127 Section 582.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b) Conditions of...

  13. 21 CFR 182.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aluminum ammonium sulfate. 182.1127 Section 182.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b...

  14. 21 CFR 182.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Aluminum ammonium sulfate. 182.1127 Section 182.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b...

  15. 21 CFR 182.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Aluminum ammonium sulfate. 182.1127 Section 182.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... sulfate. (a) Product. Aluminum ammonium sulfate. (b) Conditions of use. This substance is generally...

  16. 21 CFR 582.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aluminum ammonium sulfate. 582.1127 Section 582.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b) Conditions of...

  17. 21 CFR 582.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aluminum ammonium sulfate. 582.1127 Section 582.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b) Conditions of...

  18. 21 CFR 582.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aluminum ammonium sulfate. 582.1127 Section 582.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b) Conditions of...

  19. 21 CFR 182.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum ammonium sulfate. 182.1127 Section 182.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b...

  20. 21 CFR 182.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum potassium sulfate. 182.1129 Section 182.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b...

  1. 21 CFR 582.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aluminum potassium sulfate. 582.1129 Section 582.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b) Conditions of...

  2. 21 CFR 582.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aluminum potassium sulfate. 582.1129 Section 582.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b) Conditions of...

  3. 21 CFR 182.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aluminum potassium sulfate. 182.1129 Section 182.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b...

  4. 21 CFR 582.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aluminum potassium sulfate. 582.1129 Section 582.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b) Conditions of...

  5. 21 CFR 182.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Aluminum sodium sulfate. 182.1131 Section 182.1131...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of use. This substance is generally...

  6. 21 CFR 182.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Aluminum potassium sulfate. 182.1129 Section 182.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b...

  7. 21 CFR 182.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aluminum potassium sulfate. 182.1129 Section 182.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b...

  8. 21 CFR 582.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aluminum potassium sulfate. 582.1129 Section 582.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b) Conditions of...

  9. 21 CFR 182.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Aluminum potassium sulfate. 182.1129 Section 182...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b) Conditions of use. This substance is generally...

  10. A potential role for chondroitin sulfate/dermatan sulfate in arm regeneration in Amphiura filiformis.

    PubMed

    Ramachandra, Rashmi; Namburi, Ramesh B; Dupont, Sam T; Ortega-Martinez, Olga; van Kuppevelt, Toin H; Lindahl, Ulf; Spillmann, Dorothe

    2017-05-01

    Glycosaminoglycans (GAGs), such as chondroitin sulfate (CS) and dermatan sulfate (DS) from various vertebrate and invertebrate sources are known to be involved in diverse cellular mechanisms during repair and regenerative processes. Recently, we have identified CS/DS as the major GAG in the brittlestar Amphiura filiformis, with high proportions of di- and tri-O-sulfated disaccharide units. As this echinoderm is known for its exceptional regeneration capacity, we aimed to explore the role of these GAG chains during A. filiformis arm regeneration. Analysis of CS/DS chains during the regeneration process revealed an increase in the proportion of the tri-O-sulfated disaccharides. Conversely, treatment of A. filiformis with sodium chlorate, a potent inhibitor of sulfation reactions in GAG biosynthesis, resulted in a significant reduction in arm growth rates with total inhibition at concentrations higher than 5 mM. Differentiation was less impacted by sodium chlorate exposure or even slightly increased at 1-2 mM. Based on the structural changes observed during arm regeneration we identified chondroitin synthase, chondroitin-4-O-sulfotransferase 2 and dermatan-4-O-sulfotransferase as candidate genes and sought to correlate their expression with the expression of the A. filiformis orthologue of bone morphogenetic factors, AfBMP2/4. Quantitative amplification by real-time PCR indicated increased expression of chondroitin synthase and chondroitin-4-O-sulfotransferase 2, with a corresponding increase in AfBMP2/4 during regeneration relative to nonregenerating controls. Our findings suggest that proper sulfation of GAGs is important for A. filiformis arm regeneration and that these molecules may participate in mechanisms controlling cell proliferation. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Regeneration of zinc chloride hydrocracking catalyst

    DOEpatents

    Zielke, Clyde W.

    1979-01-01

    Improved rate of recovery of zinc values from the solids which are carried over by the effluent vapors from the oxidative vapor phase regeneration of spent zinc chloride catalyst is achieved by treatment of the solids with both hydrogen chloride and calcium chloride to selectively and rapidly recover the zinc values as zinc chloride.

  12. Phyllosilicate and Hydrated Sulfate Deposits in Meridiani

    NASA Technical Reports Server (NTRS)

    Wiseman, S. M.; Avidson, R. E.; Murchie, S.; Poulet, F.; Andrews-Hanna, J. C.; Morris, R. V.; Seelos, F. P.

    2008-01-01

    Several phyllosilicate and hydrated sulfate deposits in Meridiani have been mapped in detail with high resolution MRO CRISM [1] data. Previous studies have documented extensive exposures of outcrop in Meridiani (fig 1), or etched terrain (ET), that has been interpreted to be sedimentary in origin [e.g., 2,3]. These deposits have been mapped at a regional scale with OMEGA data and show enhanced hydration (1.9 m absorption) in several areas [4]. However, hydrated sulfate detections were restricted to valley exposures in northern Meridiani ET [5]. New high resolution CRISM images show that hydrated sulfates are present in several spatially isolated exposures throughout the ET (fig 1). The hydrated sulfate deposits in the valley are vertically heterogeneous with layers of mono and polyhydrated sulfates and are morphologically distinct from other areas of the ET. We are currently mapping the detailed spatial distribution of sulfates and searching for distinct geochemical horizons that may be traced back to differential ground water recharge and/or evaporative loss rates. The high resolution CRISM data has allowed us to map out several phyllosilicate deposits within the fluvially dissected Noachian cratered terrain (DCT) to the south and west of the hematite-bearing plains (Ph) and ET (fig 1). In Miyamoto crater, phyllosilicates are located within 30km of the edge of Ph, which is presumably underlain by acid sulfate deposits similar to those explored by Opportunity. The deposits within this crater may record the transition from fluvial conditions which produced and/or preserved phyllosilicates deposits to a progressively acid sulfate dominated groundwater system in which large accumulations of sulfate-rich evaporites were deposited .

  13. Sulfate was a trace constituent of Archean seawater.

    PubMed

    Crowe, Sean A; Paris, Guillaume; Katsev, Sergei; Jones, CarriAyne; Kim, Sang-Tae; Zerkle, Aubrey L; Nomosatryo, Sulung; Fowle, David A; Adkins, Jess F; Sessions, Alex L; Farquhar, James; Canfield, Donald E

    2014-11-07

    In the low-oxygen Archean world (>2400 million years ago), seawater sulfate concentrations were much lower than today, yet open questions frustrate the translation of modern measurements of sulfur isotope fractionations into estimates of Archean seawater sulfate concentrations. In the water column of Lake Matano, Indonesia, a low-sulfate analog for the Archean ocean, we find large (>20 per mil) sulfur isotope fractionations between sulfate and sulfide, but the underlying sediment sulfides preserve a muted range of δ(34)S values. Using models informed by sulfur cycling in Lake Matano, we infer Archean seawater sulfate concentrations of less than 2.5 micromolar. At these low concentrations, marine sulfate residence times were likely 10(3) to 10(4) years, and sulfate scarcity would have shaped early global biogeochemical cycles, possibly restricting biological productivity in Archean oceans. Copyright © 2014, American Association for the Advancement of Science.

  14. Medicago truncatula Zinc-Iron Permease6 provides zinc to rhizobia-infected nodule cells.

    PubMed

    Abreu, Isidro; Saéz, Ángela; Castro-Rodríguez, Rosario; Escudero, Viviana; Rodríguez-Haas, Benjamín; Senovilla, Marta; Larue, Camille; Grolimund, Daniel; Tejada-Jiménez, Manuel; Imperial, Juan; González-Guerrero, Manuel

    2017-11-01

    Zinc is a micronutrient required for symbiotic nitrogen fixation. It has been proposed that in model legume Medicago truncatula, zinc is delivered by the root vasculature into the nodule and released in the infection/differentiation zone. There, transporters must introduce this element into rhizobia-infected cells to metallate the apoproteins that use zinc as a cofactor. MtZIP6 (Medtr4g083570) is an M. truncatula Zinc-Iron Permease (ZIP) that is expressed only in roots and nodules, with the highest expression levels in the infection/differentiation zone. Immunolocalization studies indicate that it is located in the plasma membrane of nodule rhizobia-infected cells. Down-regulating MtZIP6 expression levels with RNAi does not result in any strong phenotype when plants are fed mineral nitrogen. However, these plants displayed severe growth defects when they depended on nitrogen fixed by their nodules, losing of 80% of their nitrogenase activity. The reduction of this activity was likely an indirect effect of zinc being retained in the infection/differentiation zone and not reaching the cytosol of rhizobia-infected cells. These data are consistent with a model in which MtZIP6 would be responsible for zinc uptake by rhizobia-infected nodule cells in the infection/differentiation zone. © 2017 John Wiley & Sons Ltd.

  15. Total Zinc Intake May Modify the Glucose-Raising Effect of a Zinc Transporter (SLC30A8) Variant

    PubMed Central

    Kanoni, Stavroula; Nettleton, Jennifer A.; Hivert, Marie-France; Ye, Zheng; van Rooij, Frank J.A.; Shungin, Dmitry; Sonestedt, Emily; Ngwa, Julius S.; Wojczynski, Mary K.; Lemaitre, Rozenn N.; Gustafsson, Stefan; Anderson, Jennifer S.; Tanaka, Toshiko; Hindy, George; Saylor, Georgia; Renstrom, Frida; Bennett, Amanda J.; van Duijn, Cornelia M.; Florez, Jose C.; Fox, Caroline S.; Hofman, Albert; Hoogeveen, Ron C.; Houston, Denise K.; Hu, Frank B.; Jacques, Paul F.; Johansson, Ingegerd; Lind, Lars; Liu, Yongmei; McKeown, Nicola; Ordovas, Jose; Pankow, James S.; Sijbrands, Eric J.G.; Syvänen, Ann-Christine; Uitterlinden, André G.; Yannakoulia, Mary; Zillikens, M. Carola; Wareham, Nick J.; Prokopenko, Inga; Bandinelli, Stefania; Forouhi, Nita G.; Cupples, L. Adrienne; Loos, Ruth J.; Hallmans, Goran; Dupuis, Josée; Langenberg, Claudia; Ferrucci, Luigi; Kritchevsky, Stephen B.; McCarthy, Mark I.; Ingelsson, Erik; Borecki, Ingrid B.; Witteman, Jacqueline C.M.; Orho-Melander, Marju; Siscovick, David S.; Meigs, James B.; Franks, Paul W.; Dedoussis, George V.

    2011-01-01

    OBJECTIVE Many genetic variants have been associated with glucose homeostasis and type 2 diabetes in genome-wide association studies. Zinc is an essential micronutrient that is important for β-cell function and glucose homeostasis. We tested the hypothesis that zinc intake could influence the glucose-raising effect of specific variants. RESEARCH DESIGN AND METHODS We conducted a 14-cohort meta-analysis to assess the interaction of 20 genetic variants known to be related to glycemic traits and zinc metabolism with dietary zinc intake (food sources) and a 5-cohort meta-analysis to assess the interaction with total zinc intake (food sources and supplements) on fasting glucose levels among individuals of European ancestry without diabetes. RESULTS We observed a significant association of total zinc intake with lower fasting glucose levels (β-coefficient ± SE per 1 mg/day of zinc intake: −0.0012 ± 0.0003 mmol/L, summary P value = 0.0003), while the association of dietary zinc intake was not significant. We identified a nominally significant interaction between total zinc intake and the SLC30A8 rs11558471 variant on fasting glucose levels (β-coefficient ± SE per A allele for 1 mg/day of greater total zinc intake: −0.0017 ± 0.0006 mmol/L, summary interaction P value = 0.005); this result suggests a stronger inverse association between total zinc intake and fasting glucose in individuals carrying the glucose-raising A allele compared with individuals who do not carry it. None of the other interaction tests were statistically significant. CONCLUSIONS Our results suggest that higher total zinc intake may attenuate the glucose-raising effect of the rs11558471 SLC30A8 (zinc transporter) variant. Our findings also support evidence for the association of higher total zinc intake with lower fasting glucose levels. PMID:21810599

  16. The preparation and antioxidant activity of glucosamine sulfate

    NASA Astrophysics Data System (ADS)

    Xing, Ronge; Liu, Song; Wang, Lin; Cai, Shengbao; Yu, Huahua; Feng, Jinhua; Li, Pengcheng

    2009-05-01

    Glucosamine sulfate was prepared from glucosamine hydrochloride that was produced by acidic hydrolysis of chitin by ion-exchange method. Optical rotation and elemental analysis characterized the degree of its purity. In addition, the antioxidant potency of chitosan derivative-glucosamine sulfate was investigated in various established in vitro systems, such as superoxide (O{2/-})/hydroxyl (·OH) radicals scavenging, reducing power, iron ion chelating. The following results are obtained: first, glucosamine sulfate had pronounced scavenging effect on superoxide radical. For example the O{2/-} scavenging activity of glucosamine sulfate was 92.11% at 0.8 mg/mL. Second, the ·OH scavenging activity of glucosamine sulfate was also strong, and was about 50% at 3.2 mg/mL. Third, the reducing power of glucosamine sulfate was more pronounced. The reducing power of glucosamine sulfate was 0.643 at 0.75 mg/mL. However, its potency for ferrous ion chelating was weak. Furthermore, except for ferrous ion chelating potency, the scavenging rate of radical and reducing power of glucosamine sulfate were concentration-dependent and increased with their increasing concentrations, but its ferrous ion chelating potency decreased with the increasing concentration. The multiple antioxidant activities of glucosamine sulfate were evidents of reducing power and superoxide/hydroxyl radicals scavenging ability. These in vitro results suggest the possibility that glucosamine sulfate could be used effectively as an ingredient in health or functional food, to alleviate oxidative stress.

  17. Electrochemical behavior of zinc particles with silica based coatings as anode material for zinc air batteries with improved discharge capacity

    NASA Astrophysics Data System (ADS)

    Schmid, M.; Willert-Porada, M.

    2017-05-01

    Silica coatings on zinc particles as anode material for alkaline zinc air batteries are expected to reduce early formation of irreversible ZnO passivation layers during discharge by controlling zinc dissolution and precipitation of supersaturated zincates, Zn(OH)42-. Zinc particles were coated with SiO2 (thickness: 15 nm) by chemical solution deposition and with Zn2SiO4 (thickness: 20 nm) by chemical vapor deposition. These coatings formed a Si(OH)4 gel in aqueous KOH and retarded hydrogen evolution by 40%. By treatment in aqueous KOH and drying afterwards, the silica coatings were changed into ZnO-K2O·SiO2 layers. In this work, the electrochemical performance of such coated zinc particles is investigated by different electrochemical methods in order to gain a deeper understanding of the mechanisms of the coatings, which reduce zinc passivation. In particular, zinc utilization and changes in internal resistance are investigated. Moreover, methods for determination of diffusion coefficients, charge carrier numbers and activation energies for electrochemical oxidation are determined. SiO2-coated zinc particles show improved discharge capacity (CVD-coated zinc: 69% zinc utilization, CSD-coated zinc: 62% zinc utilization) as compared to as-received zinc (57% zinc utilization) at C/20 rate, by reducing supersaturation of zincates. Additionally, KOH-modified SiO2-coated zinc particles enhance rechargeability after 100% depth-of-discharge.

  18. Zinc Levels in Left Ventricular Hypertrophy.

    PubMed

    Huang, Lei; Teng, Tianming; Bian, Bo; Yao, Wei; Yu, Xuefang; Wang, Zhuoqun; Xu, Zhelong; Sun, Yuemin

    2017-03-01

    Zinc is one of the most important trace elements in the body and zinc homeostasis plays a critical role in maintaining cellular structure and function. Zinc dyshomeostasis can lead to many diseases, such as cardiovascular disease. Our aim was to investigate whether there is a relationship between zinc and left ventricular hypertrophy (LVH). A total of 519 patients was enrolled and their serum zinc levels were measured in this study. We performed analyses on the relationship between zinc levels and LVH and the four LV geometry pattern patients: normal LV geometry, concentric remodeling, eccentric LVH, and concentric LVH. We performed further linear and multiple regression analyses to confirm the relationship between zinc and left ventricular mass (LVM), left ventricular mass index (LVMI), and relative wall thickness (RWT). Our data showed that zinc levels were 710.2 ± 243.0 μg/L in the control group and were 641.9 ± 215.2 μg/L in LVH patients. We observed that zinc levels were 715 ± 243.5 μg/L, 694.2 ± 242.7 μg/L, 643.7 ± 225.0 μg/L, and 638.7 ± 197.0 μg/L in normal LV geometry, concentric remodeling, eccentric LVH, and concentric LVH patients, respectively. We further found that there was a significant inverse linear relationship between zinc and LVM (p = 0.001) and LVMI (p = 0.000) but did not show a significant relationship with RWT (p = 0.561). Multiple regression analyses confirmed that the linear relationship between zinc and LVM and LVMI remained inversely significant. The present study revealed that serum zinc levels were significantly decreased in the LVH patients, especially in the eccentric LVH and concentric LVH patients. Furthermore, zinc levels were significantly inversely correlated with LVM and LVMI.

  19. Biological Sulfate Reduction Rates in Hydrothermal Recharge Zones

    NASA Astrophysics Data System (ADS)

    Crowell, B.; Lowell, R. P.

    2007-12-01

    We develop a model to determine the rate of removal of seawater sulfate in the recharge regions of deep-sea hydrothermal systems as a result of biogenic sulfate reduction. The rate of sulfate reduction as a function of temperature derived from laboratory measurements on cores from the Guaymas Basin in Mexico [Jorgensen et al., 1992] is incorporated into a steady state 1-D advection-diffusion temperature equation, and a 1-D, steady- state, advection dominated conservation of solute equation. The diffusivity of sulfate in seawater is on the order of ~ 10-10 m2/s, and unless the flow speeds are < 10-12 m/s, the effects of diffusion are negligible, except within thin diffusive boundary layers. This model is then compared with a model that utilizes Gibbs free energy to quantify biogenic sulfate reduction [Bach and Edwards, 2003] in the upper oceanic crust of aging lithosphere. Using the high rates determined by Jorgensen et al. [1992], our model indicates that biological activity would reduce all seawater sulfate transported into the system within the upper 10 meters or less of the crust, which is inconsistent with the estimates of Bach and Edwards [2003]. Sulfate concentrations from ODP borehole Legs 64 and 168, at the sedimented Guaymas Basin and Juan de Fuca Ridge, respectively, show that most of the seawater sulfate is removed in the upper 100 meters. If the sulfate is assumed to all be reduced biogenically, the sulfate reduction rates at the ODP sites are at least 2 orders of magnitude less than the laboratory estimates of Jorgenson et al. [1992]. Finally, we compare the rate of seawater sulfate removal as a result of the precipitation of anhydrite, with the rate of biogenic sulfate reduction. We find that if hydrothermal recharge occurs rapidly through highly permeable faults, that biogenic sulfate reduction is negligible and that anhydrite precipitation would rapidly clog the recharge zone [Lowell and Yao, 2002]. If recharge occurs through broad zones of slow

  20. 21 CFR 582.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aluminum sodium sulfate. 582.1131 Section 582.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of use...

  1. 21 CFR 582.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aluminum sodium sulfate. 582.1131 Section 582.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of use...

  2. 21 CFR 582.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aluminum sodium sulfate. 582.1131 Section 582.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of use...

  3. 21 CFR 182.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Aluminum sodium sulfate. 182.1131 Section 182.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of use...

  4. 21 CFR 182.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aluminum sodium sulfate. 182.1131 Section 182.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of use...

  5. 21 CFR 582.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aluminum sodium sulfate. 582.1131 Section 582.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of use...

  6. 21 CFR 182.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sodium sulfate. 182.1131 Section 182.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of use...

  7. 21 CFR 182.1131 - Aluminum sodium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aluminum sodium sulfate. 182.1131 Section 182.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of use...

  8. Preparation, characterization and bioactivities of Athelia rolfsii exopolysaccharide-zinc complex (AEPS-zinc).

    PubMed

    Dong, Jinman; Li, Hongmei; Min, Weihong

    2018-07-01

    A new Athelia rolfsii exopolysaccharides (AEPS) were purified by Sephacryl S-300 and S-200. The physicochemical characteristics of AEPS fractions were assayed by HPGPC and GC methods. The structures of AEPS and AEPS‑zinc complex were characterized by SEM, FTIR and NMR. Moreover, the bioactivities of complex were also evaluated by experiments in vitro and in vivo. AEPSI consisted of glucose, galacturonic acid, talose, galactose, mannose and xylose, the relative contents of them were 24.74, 19.60, 33.65, 8.77, 7.97 and 5.28%, respectively. AEPSII consisted of glucose, inositol, galacturonic acid, ribitol, gluconic acid, talose and xylose, whose relative contents were 36.06, 21.21, 12.78, 11.07, 6.58, 5.45 and 6.82%, respectively. The Mw and Mn of AEPSI were 6.1324×10 4 and 1.4218×10 4 Da, those of AEPSII were 517 and 248Da. SEM observations showed that microstructures of AEPS and AEPS‑zinc complex were obviously different both in size and shape. FTIR and NMR analysis indicated that AEPS might chelate with zinc ion through hydroxy and carboxy group. In vitro experiments showed that AEPS‑zinc complex had a good bioavailability, in vivo experiments showed that it had good effect on improving zinc deficiency and antioxidant activities, which suggested that it could be used as zinc supplementation with high antioxidant activities. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. History of zinc in agriculture

    USDA-ARS?s Scientific Manuscript database

    Zinc was established as essential for green plants in 1926 and for mammals in 1934. However, over 20 years would past before the first descriptions of zinc deficiencies in farm animals appeared. In 1955, it was reported that zinc supplementation would cure a parakeratosis in swine. In 1958, it wa...

  10. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use. This...

  11. 21 CFR 582.5443 - Magnesium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use. This...

  12. 21 CFR 582.5443 - Magnesium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use. This...

  13. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use. This...

  14. 21 CFR 582.5443 - Magnesium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use. This...

  15. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use. This...

  16. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use. This...

  17. 21 CFR 582.5443 - Magnesium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use. This...

  18. 21 CFR 582.5443 - Magnesium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use. This...

  19. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use. This...

  20. Sulfate Metabolites of 4-Monochlorobiphenyl in Whole Poplar Plants

    PubMed Central

    Zhai, Guangshu; Lehmler, Hans-Joachim; Schnoor, Jerald L.

    2013-01-01

    4-Monochlorobiphenyl (PCB3) has been proven to be transformed into hydroxylated metabolites of PCB3 (OH-PCB3s) in whole poplar plants in our previous work. However, hydroxylated metabolites of PCBs, including OH-PCB3s, as the substrates of sulfotransferases have not been studied in many organisms including plants in vivo. Poplar (Populus deltoides × nigra, DN34) was used to investigate the further metabolism from OH-PCB3s to PCB3 sulfates because it is a model plant and one that is frequently utilized in phytoremediation. Results showed poplar plants could metabolize PCB3 into PCB3 sulfates during 25 day exposures. Three sulfate metabolites, including 2′-PCB3 sulfate, 3′-PCB3 sulfate and 4′-PCB3 sulfate, were identified in poplar roots and their concentrations increased in the roots from day 10 to day 25. The major products were 2′-PCB3 sulfate and 4′-PCB3 sulfate. However, the concentrations of PCB3 sulfates were much lower than those of OH-PCB3s in the roots, suggesting the sequential transformation of these hydroxylated PCB3 metabolites into PCB3 sulfates in whole poplars. In addition, 2′-PCB3 sulfate or 4′-PCB3 sulfate was also found in the bottom wood samples indicating some translocation or metabolism in woody tissue. Results suggested that OH-PCB3s were the substrates of sulfotransferases which catalyzed the formation of PCB3 sulfates in the metabolic pathway of PCB3. PMID:23215248

  1. Genetic causes and gene–nutrient interactions in mammalian zinc deficiencies: acrodermatitis enteropathica and transient neonatal zinc deficiency as examples.

    PubMed

    Kasana, Shakhenabat; Din, Jamila; Maret, Wolfgang

    2015-01-01

    Discovering genetic causes of zinc deficiency has been a remarkable scientific journey. It started with the description of a rare skin disease, its treatment with various agents, the successful therapy with zinc, and the identification of mutations in a zinc transporter causing the disease. The journey continues with defining the molecular and cellular pathways that lead to the symptoms caused by zinc deficiency. Remarkably, at least two zinc transporters from separate protein families are now known to be involved in the genetics of zinc deficiency. One is ZIP4, which is involved in intestinal zinc uptake. Its mutations can cause acrodermatitis enteropathica (AE) with autosomal recessive inheritance. The other one is ZnT2, the transporter responsible for supplying human milk with zinc. Mutations in this transporter cause transient neonatal zinc deficiency (TNZD) with symptoms similar to AE but with autosomal dominant inheritance. The two diseases can be distinguished in affected infants. AE is fatal if zinc is not supplied to the infant after weaning, whereas TNZD is a genetic defect of the mother limiting the supply of zinc in the milk, and therefore the infant usually will obtain enough zinc once weaned. Although these diseases are relatively rare, the full functional consequences of the numerous mutations in ZIP4 and ZnT2 and their interactions with dietary zinc are not known. In particular, it remains unexplored whether some mutations cause milder disease phenotypes or increase the risk for other diseases if dietary zinc requirements are not met or exceeded. Thus, it is not known whether widespread zinc deficiency in human populations is based primarily on a nutritional deficiency or determined by genetic factors as well. This consideration becomes even more significant with regard to mutations in the other 22 human zinc transporters, where associations with a range of diseases, including diabetes, heart disease, and mental illnesses have been observed

  2. Laboratory Simulated Acid-Sulfate Weathering of Basaltic Materials: Implications for Formation of Sulfates at Meridiani Planum and Gusev Crater, Mars

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, Douglas W.; Morris, Richard V.; Mertzman, A.

    2006-01-01

    Acid-sulfate weathering of basaltic materials is a candidate formation process for the sulfate-rich outcrops and rocks at the MER rover Opportunity and Spirit landing sites. To determine the style of acid-sulfate weathering on Mars, we weathered basaltic materials (olivine-rich glassy basaltic sand and plagioclase feldspar-rich basaltic tephra) in the laboratory under different oxidative, acid-sulfate conditions and characterized the alteration products. We investigated alteration by (1) sulfuric-acid vapor (acid fog), (2) three-step hydrothermal leaching treatment approximating an open system and (3) single-step hydrothermal batch treatment approximating a "closed system." In acid fog experiments, Al, Fe, and Ca sulfates and amorphous silica formed from plagioclase-rich tephra, and Mg and Ca sulfates and amorphous silica formed from the olivine-rich sands. In three-step leaching experiments, only amorphous Si formed from the plagioclase-rich basaltic tephra, and jarosite, Mg and Ca sulfates and amorphous silica formed from olivine-rich basaltic sand. Amorphous silica formed under single-step experiments for both starting materials. Based upon our experiments, jarosite formation in Meridiani outcrop is potential evidence for an open system acid-sulfate weathering regime. Waters rich in sulfuric acid percolated through basaltic sediment, dissolving basaltic phases (e.g., olivine) and forming jarosite, other sulfates, and iron oxides. Aqueous alteration of outcrops and rocks on the West Spur of the Columbia Hills may have occurred when vapors rich in SO2 from volcanic sources reacted with basaltic materials. Soluble ions from the host rock (e.g., olivine) reacted with S to form Ca-, Mg-, and other sulfates along with iron oxides and oxyhydroxides.

  3. 21 CFR 173.385 - Sodium methyl sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium methyl sulfate. 173.385 Section 173.385 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... CONSUMPTION Specific Usage Additives § 173.385 Sodium methyl sulfate. Sodium methyl sulfate may be present in...

  4. 21 CFR 173.385 - Sodium methyl sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium methyl sulfate. 173.385 Section 173.385 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... CONSUMPTION Specific Usage Additives § 173.385 Sodium methyl sulfate. Sodium methyl sulfate may be present in...

  5. 21 CFR 173.385 - Sodium methyl sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium methyl sulfate. 173.385 Section 173.385... CONSUMPTION Specific Usage Additives § 173.385 Sodium methyl sulfate. Sodium methyl sulfate may be present in... pectin by sulfuric acid and methyl alcohol and subsequent treatment with sodium bicarbonate. (b) It does...

  6. The structural role of the zinc ion can be dispensable in prokaryotic zinc-finger domains

    PubMed Central

    Baglivo, Ilaria; Russo, Luigi; Esposito, Sabrina; Malgieri, Gaetano; Renda, Mario; Salluzzo, Antonio; Di Blasio, Benedetto; Isernia, Carla; Fattorusso, Roberto; Pedone, Paolo V.

    2009-01-01

    The recent characterization of the prokaryotic Cys2His2 zinc-finger domain, identified in Ros protein from Agrobacterium tumefaciens, has demonstrated that, although possessing a similar zinc coordination sphere, this domain is structurally very different from its eukaryotic counterpart. A search in the databases has identified ≈300 homologues with a high sequence identity to the Ros protein, including the amino acids that form the extensive hydrophobic core in Ros. Surprisingly, the Cys2His2 zinc coordination sphere is generally poorly conserved in the Ros homologues, raising the question of whether the zinc ion is always preserved in these proteins. Here, we present a functional and structural study of a point mutant of Ros protein, Ros56–142C82D, in which the second coordinating cysteine is replaced by an aspartate, 5 previously-uncharacterized representative Ros homologues from Mesorhizobium loti, and 2 mutants of the homologues. Our results indicate that the prokaryotic zinc-finger domain, which in Ros protein tetrahedrally coordinates Zn(II) through the typical Cys2His2 coordination, in Ros homologues can either exploit a CysAspHis2 coordination sphere, previously never described in DNA binding zinc finger domains to our knowledge, or lose the metal, while still preserving the DNA-binding activity. We demonstrate that this class of prokaryotic zinc-finger domains is structurally very adaptable, and surprisingly single mutations can transform a zinc-binding domain into a nonzinc-binding domain and vice versa, without affecting the DNA-binding ability. In light of our findings an evolutionary link between the prokaryotic and eukaryotic zinc-finger domains, based on bacteria-to-eukaryota horizontal gene transfer, is discussed. PMID:19369210

  7. Improved colorimetric determination of serum zinc.

    PubMed

    Johnson, D J; Djuh, Y Y; Bruton, J; Williams, H L

    1977-07-01

    We show how zinc may easily be quantified in serum by first using an optimum concentration of guanidine hydrochloride to cause release of zinc from proteins, followed by complexation of released metals with cyanide. The cyanide complex of zinc is preferentially demasked with chloral hydrate, followed by a colorimetric reaction between zinc and 4-(2-pyridylazo)resorcinol. This is a sensitive water-soluble ligand; its complex with zinc has an absorption maximum at 497 nm. Values found by this technique compare favorably with those obtained by atomic absorption spectroscopy.

  8. 21 CFR 582.5230 - Calcium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5230 Calcium sulfate. (a) Product. Calcium sulfate. (b) Conditions of use. This substance...

  9. 21 CFR 582.5230 - Calcium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5230 Calcium sulfate. (a) Product. Calcium sulfate. (b) Conditions of use. This substance...

  10. 21 CFR 582.5230 - Calcium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5230 Calcium sulfate. (a) Product. Calcium sulfate. (b) Conditions of use. This substance...

  11. 21 CFR 582.5315 - Ferrous sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5315 Ferrous sulfate. (a) Product. Ferrous sulfate. (b) Conditions of use. This substance...

  12. 21 CFR 582.5315 - Ferrous sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5315 Ferrous sulfate. (a) Product. Ferrous sulfate. (b) Conditions of use. This substance...

  13. 21 CFR 582.5315 - Ferrous sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5315 Ferrous sulfate. (a) Product. Ferrous sulfate. (b) Conditions of use. This substance...

  14. 21 CFR 582.5230 - Calcium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5230 Calcium sulfate. (a) Product. Calcium sulfate. (b) Conditions of use. This substance...

  15. 21 CFR 582.5315 - Ferrous sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5315 Ferrous sulfate. (a) Product. Ferrous sulfate. (b) Conditions of use. This substance...

  16. 21 CFR 582.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  17. 21 CFR 582.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Additives § 582.1143 Ammonium sulfate. (a) Product. Ammonium sulfate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  18. 21 CFR 582.5230 - Calcium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5230 Calcium sulfate. (a) Product. Calcium sulfate. (b) Conditions of use. This substance...

  19. 21 CFR 582.5315 - Ferrous sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5315 Ferrous sulfate. (a) Product. Ferrous sulfate. (b) Conditions of use. This substance...

  20. Acid Sulfate Alteration on Mars

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Morris, R. V.

    2016-01-01

    A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Acid sulfate alteration has been identified at all three landing sites visited by NASA rover missions (Spirit, Opportunity, and Curiosity). Spirit landed in Gusev crater in 2004 and discovered Fe-sulfates and materials that have been extensively leached by acid sulfate solutions. Opportunity landing on the plains of Meridiani Planum also in 2004 where the rover encountered large abundances of jarosite and hematite in sedimentary rocks. Curiosity landed in Gale crater in 2012 and has characterized fluvial, deltaic, and lacustrine sediments. Jarosite and hematite were discovered in some of the lacustrine sediments. The high elemental abundance of sulfur in surface materials is obvious evidence that sulfate has played a major role in aqueous processes at all landing sites on Mars. The sulfate-rich outcrop at Meridiani Planum has an SO3 content of up to 25 wt.%. The interiors of rocks and outcrops on the Columbia Hills within Gusev crater have up to 8 wt.% SO3. Soils at both sites generally have between 5 to 14 wt.% SO3, and several soils in Gusev crater contain around 30 wt.% SO3. After normalization of major element compositions to a SO3-free basis, the bulk compositions of these materials are basaltic, with a few exceptions in Gusev crater and in lacustrine mudstones in Gale crater. These observations suggest that materials encountered by the rovers were derived from basaltic precursors by acid sulfate alteration under nearly isochemical conditions (i.e., minimal leaching). There are several cases, however, where acid sulfate alteration minerals (jarosite and hematite) formed in open hydrologic systems, e.g., in Gale crater lacustrine mudstones. Several hypotheses have been suggested for the

  1. Tandem Mass Spectrometry of Heparan Sulfate Negative Ions: Sulfate Loss Patterns and Chemical Modification Methods for Improvement of Product Ion Profiles

    NASA Astrophysics Data System (ADS)

    Shi, Xiaofeng; Huang, Yu; Mao, Yang; Naimy, Hicham; Zaia, Joseph

    2012-09-01

    Heparan sulfate (HS) is a polysaccharide modified with sulfation, acetylation, and epimerization that enable its binding with protein ligands and regulation of important biological processes. Tandem mass spectrometry has been employed to sequence linear biomolecules e.g., proteins and peptides. However, its application in structural characterization of HS is limited due to the neutral loss of sulfate (SO3) during collisional induced dissociation (CID). In this report, we studied the dissociation patterns of HS disaccharides and demonstrate that the N-sulfate (N-S) bond is especially facile during CID. We identified factors that influence the propensities of such losses from precursor ions and proposed a Free Proton Index (FPI) to help select ions that are able to produce meaningful backbone dissociations. We then investigated the thermodynamics and kinetics of SO3 loss from sulfates that are protonated, deprotonated, and metal-adducted using density functional theory computations. The calculations showed that sulfate loss from a protonated site was much more facile than that from a deprotonated or metal-adducted site. Further, the loss of SO3 from N-sulfate was energetically favored by 3-8 kcal/mol in transition states relative to O-sulfates, making it more prone to this process by a substantial factor. In order to reduce the FPI, representing the number of labile sulfates in HS native chains and oligosaccharides, we developed a series of chemical modifications to selectively replace the N-sulfates of the glucosamine with deuterated acetyl group. These modifications effectively reduced the sulfate density on the HS oligosaccharides and generated considerably more backbone dissociation using on-line LC/tandem MS.

  2. Photovoltaic cells employing zinc phosphide

    DOEpatents

    Barnett, Allen M.; Catalano, Anthony W.; Dalal, Vikram L.; Masi, James V.; Meakin, John D.; Hall, Robert B.

    1984-01-01

    A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.

  3. Modeling the temporal variability of zinc concentrations in zinc roof runoff-experimental study and uncertainty analysis.

    PubMed

    Sage, Jérémie; El Oreibi, Elissar; Saad, Mohamed; Gromaire, Marie-Christine

    2016-08-01

    This study investigates the temporal variability of zinc concentrations from zinc roof runoff. The influence of rainfall characteristics and dry period duration is evaluated by combining laboratory experiment on small zinc sheets and in situ measurements under real weather conditions from a 1.6-m(2) zinc panel. A reformulation of a commonly used conceptual runoff quality model is introduced and its ability to simulate the evolution of zinc concentrations is evaluated. A systematic and sharp decrease from initially high to relatively low and stable zinc concentrations after 0.5 to 2 mm of rainfall is observed for both experiments, suggesting that highly soluble corrosion products are removed at early stages of runoff. A moderate dependence between antecedent dry period duration and the magnitude of zinc concentrations at the beginning of a rain event is evidenced. Contrariwise, results indicate that concentrations are not significantly influenced by rainfall intensities. Simulated rainfall experiment nonetheless suggests that a slight effect of rainfall intensities may be expected after the initial decrease of concentrations. Finally, this study shows that relatively simple conceptual runoff quality models may be adopted to simulate the variability of zinc concentrations during a rain event and from a rain event to another.

  4. The ammonium sulfate inhibition of human angiogenin.

    PubMed

    Chatzileontiadou, Demetra S M; Tsirkone, Vicky G; Dossi, Kyriaki; Kassouni, Aikaterini G; Liggri, Panagiota G V; Kantsadi, Anastassia L; Stravodimos, George A; Balatsos, Nikolaos A A; Skamnaki, Vassiliki T; Leonidas, Demetres D

    2016-09-01

    In this study, we investigate the inhibition of human angiogenin by ammonium sulfate. The inhibitory potency of ammonium sulfate for human angiogenin (IC50 = 123.5 ± 14.9 mm) is comparable to that previously reported for RNase A (119.0 ± 6.5 mm) and RNase 2 (95.7 ± 9.3 mm). However, analysis of two X-ray crystal structures of human angiogenin in complex with sulfate anions (in acidic and basic pH environments, respectively) indicates an entirely distinct mechanism of inhibition. While ammonium sulfate inhibits the ribonucleolytic activity of RNase A and RNase 2 by binding to the active site of these enzymes, sulfate anions bind only to peripheral substrate anion-binding subsites of human angiogenin, and not to the active site. © 2016 Federation of European Biochemical Societies.

  5. Short-Term Subclinical Zinc Deficiency in Weaned Piglets Affects Cardiac Redox Metabolism and Zinc Concentration.

    PubMed

    Brugger, Daniel; Windisch, Wilhelm M

    2017-04-01

    Background: Subclinical zinc deficiency (SZD) represents the common zinc malnutrition phenotype. However, its association with oxidative stress is not well understood. The heart muscle may be a promising target for studying early changes in redox metabolism. Objective: We investigated the effects of short-term SZD on cardiac redox metabolism in weaned piglets. Methods: Forty-eight weaned German Large White × Landrace × Piétrain piglets (50% castrated males and 50% females; body weight of 8.5 kg) were fed diets with different zinc concentrations for 8 d. Measurements included cardiac parameters of antioxidative capacity, stress-associated gene expression, and tissue zinc status. Analyses comprised (linear, broken-line) regression models and Pearson correlation coefficients. Results: Glutathione and α-tocopherol concentrations as well as catalase, glutathione reductase, B-cell lymphoma 2-associated X protein, and caspase 9 gene expression plateaued in response to reduction in dietary zinc from 88.0 to 57.6, 36.0, 36.5, 41.3, 55.3, and 33.8 mg/kg, respectively ( P < 0.0001). Further reduction in dietary zinc promoted a linear decrease of glutathione and α-tocopherol (30 and 0.6 nmol/mg dietary Zn, respectively; P < 0.05) and a linear increase of gene expression [0.02, 0.01, 0.003, and 0.02 Log 10 (2 -ΔΔCt )/mg dietary Zn, respectively; P < 0.05)]. Tissue zinc declined linearly with reduction in dietary zinc (0.21 mg tissue Zn/mg dietary Zn; P = 0.004) from 88.0 to 42.7 mg/kg ( P < 0.0001), below which it linearly increased inversely to further reduction in dietary zinc (0.57 mg tissue Zn/mg dietary Zn; P = 0.006). H 2 O 2 -detoxification activity and metallothionein 1A gene expression decreased linearly with reduction in dietary zinc from 88.0 to 28.1 mg/kg [0.02 mU and 0.008 Log 10 (2 -ΔΔCt )/mg dietary Zn, respectively; P < 0.05]. Fas cell-surface death receptor, etoposide-induced 2.4 and cyclin-dependent kinase inhibitor 1A gene expression correlated

  6. Zinc titanate sorbents

    DOEpatents

    Gupta, R.P.; Gangwal, S.K.; Jain, S.C.

    1998-02-03

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750 to about 950 C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 microns, and about 1 part titanium dioxide having a median particle size of less than about 1 micron. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  7. Zinc titanate sorbents

    DOEpatents

    Gupta, Raghubir P.; Gangwal, Santosh K.; Jain, Suresh C.

    1998-01-01

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750.degree. C. to about 950.degree. C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 .mu., and about 1 part titanium dioxide having a median particle size of less than about 1 .mu.. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  8. 21 CFR 173.385 - Sodium methyl sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium methyl sulfate. 173.385 Section 173.385... Sodium methyl sulfate. Sodium methyl sulfate may be present in pectin in accordance with the following... subsequent treatment with sodium bicarbonate. (b) It does not exceed 0.1 percent by weight of the pectin. ...

  9. Zinc in innate and adaptive tumor immunity

    PubMed Central

    2010-01-01

    Zinc is important. It is the second most abundant trace metal with 2-4 grams in humans. It is an essential trace element, critical for cell growth, development and differentiation, DNA synthesis, RNA transcription, cell division, and cell activation. Zinc deficiency has adverse consequences during embryogenesis and early childhood development, particularly on immune functioning. It is essential in members of all enzyme classes, including over 300 signaling molecules and transcription factors. Free zinc in immune and tumor cells is regulated by 14 distinct zinc importers (ZIP) and transporters (ZNT1-8). Zinc depletion induces cell death via apoptosis (or necrosis if apoptotic pathways are blocked) while sufficient zinc levels allows maintenance of autophagy. Cancer cells have upregulated zinc importers, and frequently increased zinc levels, which allow them to survive. Based on this novel synthesis, approaches which locally regulate zinc levels to promote survival of immune cells and/or induce tumor apoptosis are in order. PMID:21087493

  10. Effects of Different Zinc Species on Cellar Zinc Distribution, Cell Cycle, Apoptosis and Viability in MDAMB231 Cells.

    PubMed

    Wang, Yan-hong; Zhao, Wen-jie; Zheng, Wei-juan; Mao, Li; Lian, Hong-zhen; Hu, Xin; Hua, Zi-chun

    2016-03-01

    Intracellular metal elements exist in mammalian cells with the concentration range from picomoles per litre to micromoles per litre and play a considerable role in various biological procedures. Element provided by different species can influence the availability and distribution of the element in a cell and could lead to different biological effects on the cell's growth and function. Zinc as an abundant and widely distributed essential trace element, is involved in numerous and relevant physiological functions. Zinc homeostasis in cells, which is regulated by metallothioneins, zinc transporter/SLC30A, Zrt-/Irt-like proteins/SLC39A and metal-response element-binding transcription factor-1 (MTF-1), is crucial for normal cellular functioning. In this study, we investigated the influences of different zinc species, zinc sulphate, zinc gluconate and bacitracin zinc, which represented inorganic, organic and biological zinc species, respectively, on cell cycle, viability and apoptosis in MDAMB231 cells. It was found that the responses of cell cycle, apoptosis and death to different zinc species in MDAMB231 cells are different. Western blot analysis of the expression of several key proteins in regulating zinc-related transcription, cell cycle, apoptosis, including MTF-1, cyclin B1, cyclin D1, caspase-8 and caspase-9 in treated cells further confirmed the observed results on cell level.

  11. Status of zinc injection in PWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergmann, C.A.

    1995-03-01

    Based on laboratory and other studies, it was concluded that zinc addition in a PWR primary coolant should result in reduced Alloy 600 PWSCC and general corrosion rates of the materials of construction. Because of these positive results, a Westinghouse Owner`s Subgroup, EPRI, and Westinghouse provided funds to continue the development and application of zinc in an operating plant. As part of the program, Southern Operating Nuclear Company agreed to operate the Farley 2 plant with zinc addition as a demonstration test of the effectiveness of zinc. Since zinc is incorporated in the corrosion oxide film on the primary systemmore » surfaces and Farley 2 is a mature plant, it was estimated that about 10 kgs of zinc would be needed to condition the plant before an equilibrium value in the coolant would be reached. The engineered aspects of a Zinc Addition and Monitoring System (ZAMS) considered such items as the constitutents, location, sizing and water supply of the ZAMS. Baseline data such as the PWSCC history of the Alloy 600 steam generator tubing, fuel oxide thickness, fuel crud deposits, radiation levels, and RCP seal leak-off rates were obtained before zinc addition is initiated. This presentation summarizes some of the work performed under the program, and the status of zinc injection in the Farley 2 plant.« less

  12. Effects of cadmium and zinc on solar-simulated light-irradiated cells: potential role of zinc-metallothionein in zinc-induced genoprotection.

    PubMed

    Jourdan, Eric; Emonet-Piccardi, Nathalie; Didier, Christine; Beani, Jean-Claude; Favier, Alain; Richard, Marie-Jeanne

    2002-09-15

    Zinc is an essential oligoelement for cell growth and cell survival and has been demonstrated to protect cells from oxidative stress induced by UVA or from genotoxic stress due to UVB. In a recent work we demonstrated that the antioxidant role of zinc could be related to its ability to induce metallothioneins (MTs). In this study we identified the mechanism of zinc protection against solar-simulated light (SSL) injury. Cultured human keratinocytes (HaCaT) were used to examine MTs expression and localization in response to solar-simulated radiation. We found translocation to the nucleus, with overexpression of MTs in irradiated cells, a novel observation. The genoprotective effect of zinc was dependent on time and protein synthesis. DNA damage was significantly decreased after 48 h of ZnCl(2) (100 microM) treatment and is inhibited by actinomycin D. ZnCl(2) treatment (100 microM) led to an intense induction, redistribution, and accumulation of MT in the nucleus of irradiated cells. MT expression correlated with the time period of ZnCl(2) treatment. CdCl(2), a potent MT inducer, did not show any genoprotection, although the MTs were expressed in the nucleus. Overall our findings demonstrate that MTs could be a good candidate for explaining the genoprotection mediated by zinc on irradiated cells.

  13. Recalibrating the concentration of Precambrian seawater sulfate

    NASA Astrophysics Data System (ADS)

    Johnston, D. T.; Bradley, A. S.; Hoarfrost, A.; Girguis, P. R.

    2010-12-01

    The isotopic offset between sulfate sulfur and sulfide sulfur (δ34Ssulfate-sulfide) is widely used in the Precambrian as a paleo-indicator of seawater sulfate concentrations. Popularized by experimental work proposing an increase in seawater sulfate at the Archean - Proterozoic boundary, the concept of using a calibrated physiological process (dissimilatory sulfate reduction) to extract environmental information holds the potential to unlock numerous geological questions. To that end, the interpretability of sulfur isotope records relies on the degree to which strict quantitative constraints have been placed on the relationship between sulfate concentrations and sulfate reducing bacteria. Our work serves to extend those constraints. Here we present data from a series of replicate quasi-chemostat microbial reactors, inoculated with marine sediment from Monterey Bay and incubated with artificial seawater ([SO42-]< 5 mM). Our experimental design continuously removes sulfide and allows for systematic tracking of the dependence of δ34Ssulfate-sulfide on seawater sulfate concentration. In addition to expanding the existing δ34S context, we target high-precision multiple sulfur isotope data, which allows for a greater interpretability of both the overall result and its mapping onto environmental records. Further, we use natural abundance and δ18O spiked water within our experiments to assay rates of cellular re-oxidation (within the sulfate reduction pathway) and to constrain natural δ18O effects within these systems. Finally, we use modern molecular biological techniques to track community structure as a function of time and environmental conditions. Together, these data provide an integrated metric with which to interpret complex natural sulfur isotope records.

  14. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil.

    PubMed

    Sitte, Jana; Akob, Denise M; Kaufmann, Christian; Finster, Kai; Banerjee, Dipanjan; Burkhardt, Eva-Maria; Kostka, Joel E; Scheinost, Andreas C; Büchel, Georg; Küsel, Kirsten

    2010-05-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the (35)SO(4)(2-) radiotracer method, was restricted to reduced soil horizons with rates of < or =142 +/- 20 nmol cm(-3) day(-1). Concentrations of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that approximately 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [(13)C]acetate- and [(13)C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined < or =100% during anoxic soil incubations. In contrast to results in other studies, soluble uranium increased in carbon-amended treatments, reaching < or =1,407 nM in solution. Our results suggest that (i) ongoing sulfate reduction in contaminated soil resulted in in situ metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems.

  15. Microbial Links between Sulfate Reduction and Metal Retention in Uranium- and Heavy Metal-Contaminated Soil▿

    PubMed Central

    Sitte, Jana; Akob, Denise M.; Kaufmann, Christian; Finster, Kai; Banerjee, Dipanjan; Burkhardt, Eva-Maria; Kostka, Joel E.; Scheinost, Andreas C.; Büchel, Georg; Küsel, Kirsten

    2010-01-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the 35SO42− radiotracer method, was restricted to reduced soil horizons with rates of ≤142 ± 20 nmol cm−3 day−1. Concentrations of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that ∼80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [13C]acetate- and [13C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined ≤100% during anoxic soil incubations. In contrast to results in other studies, soluble uranium increased in carbon-amended treatments, reaching ≤1,407 nM in solution. Our results suggest that (i) ongoing sulfate reduction in contaminated soil resulted in in situ metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems. PMID:20363796

  16. Systematic review of zinc fortification trials.

    PubMed

    Das, Jai K; Kumar, Rohail; Salam, Rehana A; Bhutta, Zulfiqar A

    2013-01-01

    Zinc is one of the essential trace elements required by the human body as it is present in more than a hundred specific enzymes and serves as an important structural ion in transcription factors. Around one third of the world population lives in countries with a high prevalence of zinc deficiency. Food fortification with zinc seems to be an attractive public health strategy and a number of programs have been initiated, especially in developing countries. We conducted a systematic review to assess the efficacy of zinc fortification. A total of 11 studies with 771 participants were included in our analysis. Zinc fortification was associated with significant improvements in plasma zinc concentrations [standard mean difference (SMD) 1.28, 95% CI 0.56, 2.01] which is a functional indicator of zinc status. Significant improvement was observed for height velocity (SMD 0.52, 95% CI 0.01, 1.04); however, this finding was weak and based on a restricted analysis. Further subgroup analysis showed significant improvement in height velocity among very-low-birth-weight infants (SMD 0.70, 95% CI 0.02, 1.37), while for healthy newborns, the impact was insignificant. Zinc fortification had insignificant impacts on serum alkaline levels, serum copper levels, hemoglobin and weight gain. Although the findings highlight that zinc fortification is associated with an increased serum concentration of the micronutrient, overall evidence of the effectiveness of this approach is limited. Data on pregnant and lactating women is scarce. Large-scale fortification programs with robust impact assessment should be initiated to cover larger populations in all age groups. Mass fortification of zinc may be a cost-effective strategy to overcome zinc deficiency. Copyright © 2013 S. Karger AG, Basel.

  17. The Relationship between Zinc Intake and Serum/Plasma Zinc Concentration in Children: A Systematic Review and Dose-Response Meta-Analysis

    PubMed Central

    Moran, Victoria Hall; Stammers, Anna-Louise; Medina, Marisol Warthon; Patel, Sujata; Dykes, Fiona; Souverein, Olga W.; Dullemeijer, Carla; Pérez-Rodrigo, Carmen; Serra-Majem, Lluis; Nissensohn, Mariela; Lowe, Nicola M.

    2012-01-01

    Recommendations for zinc intake during childhood vary widely across Europe. The EURRECA project attempts to consolidate the basis for the definition of micronutrient requirements, taking into account relationships among intake, status and health outcomes, in order to harmonise these recommendations. Data on zinc intake and biomarkers of zinc status reported in randomised controlled trials (RCTs) can provide estimates of dose-response relationships which may be used for underpinning zinc reference values. This systematic review included all RCTs of apparently healthy children aged 1–17 years published by February 2010 which provided data on zinc intake and biomarkers of zinc status. An intake-status regression coefficient () was calculated for each individual study and calculated the overall pooled and SE () using random effects meta-analysis on a double log scale. The pooled dose-response relationship between zinc intake and zinc status indicated that a doubling of the zinc intake increased the serum/plasma zinc status by 9%. This evidence can be utilised, together with currently used balance studies and repletion/depletion studies, when setting zinc recommendations as a basis for nutrition policies. PMID:23016120

  18. A moderate increase in dietary zinc reduces DNA strand breaks in leukocytes and alters plasma proteins without changing plasma zinc concentrations123

    PubMed Central

    Zyba, Sarah J; Killilea, David W; Holland, Tai C; Kim, Elijah; Moy, Adrian; Sutherland, Barbara; Shigenaga, Mark K

    2017-01-01

    Background: Food fortification has been recommended to improve a population’s micronutrient status. Biofortification techniques modestly elevate the zinc content of cereals, but few studies have reported a positive impact on functional indicators of zinc status. Objective: We determined the impact of a modest increase in dietary zinc that was similar to that provided by biofortification programs on whole-body and cellular indicators of zinc status. Design: Eighteen men participated in a 6-wk controlled consumption study of a low-zinc, rice-based diet. The diet contained 6 mg Zn/d for 2 wk and was followed by 10 mg Zn/d for 4 wk. To reduce zinc absorption, phytate was added to the diet during the initial period. Indicators of zinc homeostasis, including total absorbed zinc (TAZ), the exchangeable zinc pool (EZP), plasma and cellular zinc concentrations, zinc transporter gene expression, and other metabolic indicators (i.e., DNA damage, inflammation, and oxidative stress), were measured before and after each dietary-zinc period. Results: TAZ increased with increased dietary zinc, but plasma zinc concentrations and EZP size were unchanged. Erythrocyte and leukocyte zinc concentrations and zinc transporter expressions were not altered. However, leukocyte DNA strand breaks decreased with increased dietary zinc, and the level of proteins involved in DNA repair and antioxidant and immune functions were restored after the dietary-zinc increase. Conclusions: A moderate 4-mg/d increase in dietary zinc, similar to that which would be expected from zinc-biofortified crops, improves zinc absorption but does not alter plasma zinc. The repair of DNA strand breaks improves, as do serum protein concentrations that are associated with the DNA repair process. This trial was registered at clinicaltrials.gov as NCT02861352. PMID:28003206

  19. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  20. Evaluation of a hollow fiber supported liquid membrane device as a chemical surrogate for the measurements of zinc (II) bioavailability using two microalgae strains as biological references.

    PubMed

    Rodríguez-Morales, Erik A; Rodríguez de San Miguel, Eduardo; de Gyves, Josefina

    2017-03-01

    The environmental bioavailability of zinc (II), i.e., the uptake of the element by an organism, was determined using two microalgae species, Scenedesmus acutus and Pseudokirchneriella subcapitata, and estimated using hollow fiber supported liquid membrane (HF-SLM) device as the chemical surrogate. Several experimental conditions were studied including the presence of organic matter, inorganic anions and concomitant cations and pH. The results show strong positive correlation coefficients between the responses given by the HF-SLM and the microalgae species (r = 0.900 for S. acutus and r = 0.876 for P. subcapitata) in multivariate environments (changes in pH, calcium, humic and citrate concentrations). The maximum amount of zinc (II) retained by the HF-SLM (4.7 × 10 -8  mol/cm 2 ) was higher than those for P. subcapitata and S. acutus (9.4 × 10 -11  mol/cm 2 and 6.2 × 10 -11  mol/cm 2 , respectively). The variation in pH (pH 5.5-9) was the variable with the greatest effect on zinc internalization in all systems, increasing approximately 2.5 times for P. subcapitata and 5.5 times for S. acutus respect to pH = 5.5, while the presence of humic acids did not affect the response. The species' concentration analysis of the experimental design at pH = 5.5 indicated that the amount of internalized zinc (II) by the HF-SLM and both microalgae species is strongly dependent on the free zinc concentration (r = 0.910 for the HF-SLM, r = 0.922 for S. acutus and r = 0.954 for P. subcapitata); however, at pH = 9.0, the amount of internalized zinc (II) is strongly dependent on the sum of free zinc and labile species (r = 0.912 for the HF-SLM, r = 0.947 for S. acutus and r = 0.900 for P. subcapitata). The presence of inorganic ligands (chloride, sulfate, phosphate, carbonate, and nitrate) and metal ions (cobalt (II), copper (II), nickel (II), chromium (VI), lead (II) and cadmium (II)) produced different behaviors both in the chemical surrogate and the