Sample records for zinc treatment effects

  1. Zinc Supplementation in Treatment of Children With Urinary Tract Infection.

    PubMed

    Yousefichaijan, Parsa; Naziri, Mahdyieh; Taherahmadi, Hassan; Kahbazi, Manijeh; Tabaei, Aram

    2016-07-01

    Urinary tract infection (UTI) is very common in children. Precocious diagnosis and appropriate treatment are important because of the permanent disease complications. Zinc increases the response to treatment in many infections. In this study, we explored the effect of zinc in treating UTI. Two hundred children with UTI were divided into 2 groups of 100 who were comparable in terms of age, sex, urine laboratory profiles, and clinical signs and symptoms. The control group received a standard treatment protocol for UTI and the intervention group received oral zinc sulfate syrup plus routine treatment of UTI. A faster recovery was observed in the patients receiving zinc, but abdominal pain was exacerbated by zinc and lasted longer. Three months after the treatment, there was no significant difference between the two groups in the time of fever stop and negative urine culture. In children with UTI, zinc supplementation has a positive effect in ameliorating severe dysuria and urinary frequency while the use of this medication is not recommended in the presence of abdominal pain.

  2. HYPOTHESIS: ZINC CAN BE EFFECTIVE IN TREATMENT OF VITILIGO

    PubMed Central

    Bagherani, Nooshin; Yaghoobi, Reza; Omidian, Mohammad

    2011-01-01

    Vitiligo is a common depigmenting skin disorder (prevalence 0.1-2%), still represents a cause of stigmatization and quality of life impairment in a large population. Several theories on vitiligo etiopathogenesis have been suggested including in trauma, stress, and autoimmune and genetic predisposition, accumulation of toxic compounds, altered cellular environment, imbalance in the oxidant-antioxidant system, impaired melanocyte migration and/or proliferation, infection, and psychological factors. Zinc, as a trace element, has many vital functions in human. It is antiapoptotic factor and needed as a cofactor for antioxidant defense system. It plays an important role in the process of melanogenesis. It may be effective in prevention and treatment of vitiligo via some mechanism. Herein, we suggested some probable protective mechanism for zinc in association with vitiligo. PMID:22121258

  3. Chloride effect on TNT degradation by zerovalent iron or zinc during water treatment.

    PubMed

    Hernandez, Rafael; Zappi, Mark; Kuo, Chiang-Hai

    2004-10-01

    Addition of corrosion promoters, such as sodium and potassium chloride, accelerated TNT degradation during water treatment using zerovalent zinc and iron. It was theorized that corrosion promoters could be used to accelerate electron generation from metallic species, create new reactive sites on the surface of metals during contaminated water treatment, and minimize passivating effects. The surface area normalized pseudo-first-order rate constant for the reaction of zerovalent zinc with TNT in the absence of KCl was 1.364 L x m(-2) x h(-1). In the presence of 0.3 mM and 3 mM KCI, the rate constant increased to 10.5 L x m(-2) x h(-1) and 51.0 L x m(-2) x h(-1), respectively. For the reaction with zerovalent iron and TNT, the rate constant increased from 6.5 (L/m2 x h) in the absence of KCl to 37 L x m(-2) x h(-1) using 3 mM KCl. The results demonstrate that chloride based corrosion promoters enhance the rate of TNT degradation. The in-situ breakage of the oxide layer using corrosion promoters was applied as a treatment to maintain the long-term activity of the metallic species. Zinc maintained a high reactivity toward TNT, and the reactivity of iron increased after 5 treatment cycles using 3 mM KCI. Zinc and iron scanning electron micrographs indicate that TNT degradation rate enhancement is caused by the pitting corrosion mechanism.

  4. Does zinc moderate essential fatty acid and amphetamine treatment of attention-deficit/hyperactivity disorder?

    PubMed

    Arnold, L E; Pinkham, S M; Votolato, N

    2000-01-01

    Zinc is an important co-factor for metabolism relevant to neurotransmitters, fatty acids, prostaglandins, and melatonin, and indirectly affects dopamine metabolism, believed intimately involved in attention-deficit/hyperactivity disorder (ADHD). To explore the relationship of zinc nutrition to essential fatty acid supplement and stimulant effects in treatment of ADHD, we re-analyzed data from an 18-subject double-blind, placebo-controlled crossover treatment comparison of d-amphetamine and Efamol (evening primrose oil, rich in gamma-linolenic acid). Subjects were categorized as zinc-adequate (n = 5), borderline zinc (n = 5), and zinc-deficient (n = 8) by hair, red cell, and urine zinc levels; for each category, placebo-active difference means were calculated on teachers' ratings. Placebo-controlled d-amphetamine response appeared linear with zinc nutrition, but the relationship of Efamol response to zinc appeared U-shaped; Efamol benefit was evident only with borderline zinc. Placebo-controlled effect size (Cohen's d) for both treatments ranged up to 1.5 for borderline zinc and dropped to 0.3-0.7 with mild zinc deficiency. If upheld by prospective research, this post-hoc exploration suggests that zinc nutrition may be important for treatment of ADHD even by pharmacotherapy, and if Efamol benefits ADHD, it likely does so by improving or compensating for borderline zinc nutrition.

  5. Use of zinc as a treatment for traumatic brain injury in the rat: effects on cognitive and behavioral outcomes.

    PubMed

    Cope, Elise C; Morris, Deborah R; Scrimgeour, Angus G; Levenson, Cathy W

    2012-09-01

    While treatments for the behavioral deficits associated with traumatic brain injury (TBI) are currently limited, animal models suggest that zinc supplementation may increase resilience to TBI. This work tests the hypothesis that zinc supplementation after TBI can be used as treatment to improve behavioral outcomes such as anxiety, depression, and learning and memory. TBI was induced by controlled cortical impact to the medial frontal cortex. After TBI, rats were fed either a zinc adequate (ZA, 30 ppm) or zinc supplemented (ZS, 180 ppm) diet. Additional rats in each dietary group (ZA or ZS) were given a single intraperitoneal (ip) injection of zinc (30 mg/kg) 1 hour following injury. Brain injury resulted in significant increases in anxiety-like and depression-like behaviors as well as impairments in learning and memory. None of the zinc treatments (dietary or ip zinc) improved TBI-induced anxiety. The 2-bottle saccharin preference test for anhedonia revealed that dietary ZS also did not improve depression-like behaviors. However, dietary ZS combined with an early ip zinc injection significantly reduced anhedonia (P < .001). Dietary supplementation after injury, but not zinc injection, significantly improved (P < .05) cognitive behavior as measured by the time spent finding the hidden platform in the Morris water maze test compared with injured rats fed a ZA diet. These data suggest that zinc supplementation may be an effective treatment option for improving behavioral deficits such as cognitive impairment and depression following TBI.

  6. [Zinc and treatment of diarrhoea].

    PubMed

    Fontaine, O

    2006-06-01

    Recently WHO and UNICEF issued a joint statement revising guidelines for clinical management of diarrhoea. These updated recommendations take into account new research findings showing the beneficial effects of oral rehydration salts (ORS) containing lower concentrations of glucose and salts and of zinc supplementation. In combination with prevention and treatment of dehydration with appropriate fluids, breastfeeding, continued feeding and selective use of antibiotics, these two advances can drastically diminish the number of child deaths by reducing the duration and severity of diarrhoeal episodes and lowering their incidence. The purpose of this report is to present the research findings that demonstrated the efficacy of zinc supplementation in the management of diarrhoea and led to revision of WHO/UNCEF guidelines.

  7. Topical zinc oxide vs. salicylic acid-lactic acid combination in the treatment of warts.

    PubMed

    Khattar, Joe A; Musharrafieh, Umayya M; Tamim, Hala; Hamadeh, Ghassan N

    2007-04-01

    Warts are a common dermatologic problem. Treatment is painful, prolonged, and can cause scarring. To evaluate topical zinc oxide for the treatment of warts. This was a randomized, double-blind controlled trial of 44 patients. Twenty-two patients were given topical zinc oxide 20% ointment, and the other 22 received salicylic acid 15% + lactic acid 15% ointment twice daily. All patients were followed up for 3 months or until cure, whichever occurred first. All patients were observed for side-effects. Sixteen patients in the zinc group and 19 in the salicylic acid-lactic acid group completed the study. In the zinc oxide-treated group, 50% of the patients showed complete cure and 18.7% failed to respond, compared with 42% and 26%, respectively, in the salicylic acid-lactic acid-treated group. No patients developed serious side-effects. Topical zinc oxide is an efficacious, painless, and safe therapeutic option for wart treatment.

  8. Effects of cadmium and zinc on solar-simulated light-irradiated cells: potential role of zinc-metallothionein in zinc-induced genoprotection.

    PubMed

    Jourdan, Eric; Emonet-Piccardi, Nathalie; Didier, Christine; Beani, Jean-Claude; Favier, Alain; Richard, Marie-Jeanne

    2002-09-15

    Zinc is an essential oligoelement for cell growth and cell survival and has been demonstrated to protect cells from oxidative stress induced by UVA or from genotoxic stress due to UVB. In a recent work we demonstrated that the antioxidant role of zinc could be related to its ability to induce metallothioneins (MTs). In this study we identified the mechanism of zinc protection against solar-simulated light (SSL) injury. Cultured human keratinocytes (HaCaT) were used to examine MTs expression and localization in response to solar-simulated radiation. We found translocation to the nucleus, with overexpression of MTs in irradiated cells, a novel observation. The genoprotective effect of zinc was dependent on time and protein synthesis. DNA damage was significantly decreased after 48 h of ZnCl(2) (100 microM) treatment and is inhibited by actinomycin D. ZnCl(2) treatment (100 microM) led to an intense induction, redistribution, and accumulation of MT in the nucleus of irradiated cells. MT expression correlated with the time period of ZnCl(2) treatment. CdCl(2), a potent MT inducer, did not show any genoprotection, although the MTs were expressed in the nucleus. Overall our findings demonstrate that MTs could be a good candidate for explaining the genoprotection mediated by zinc on irradiated cells.

  9. A systematic review on zinc for the prevention and treatment of age-related macular degeneration.

    PubMed

    Vishwanathan, Rohini; Chung, Mei; Johnson, Elizabeth J

    2013-06-12

    The objective of this systematic review was to examine the evidence on zinc intake from foods and supplements in the primary prevention and treatment of AMD. Randomized controlled trials (RCTs), prospective cohort, retrospective cohort, and case-control studies that investigated zinc intake from foods and/or supplements, and AMD in men and women with a mean age of 50 years or older were included. Medline and Cochrane Central were searched from inception to February 2012 and November 2012, respectively. Data extraction and quality appraisal were done on all eligible studies. TEN STUDIES WERE INCLUDED: four RCTs, four prospective cohort, and two retrospective cohort studies. Age-related Eye Disease Study (AREDS) showed zinc treatment to significantly reduce the risk of progression to advanced AMD. The risk of visual acuity loss was of similar magnitude, but not statistically significant. Two RCTs reported statistically significant increases in visual acuity in early AMD patients and one RCT showed no effect of zinc treatment on visual acuity in advanced AMD patients. Results from six cohort studies on associations between zinc intake and incidence of AMD were inconsistent. Current evidence on zinc intake for the prevention of AMD is inconclusive. Based on the strength of AREDS, we can conclude that zinc treatment may be effective in preventing progression to advanced AMD. Zinc supplementation alone may not be sufficient to produce clinically meaningful changes in visual acuity.

  10. Zinc lozenges and the common cold: a meta-analysis comparing zinc acetate and zinc gluconate, and the role of zinc dosage.

    PubMed

    Hemilä, Harri

    2017-05-01

    To compare the efficacy of zinc acetate lozenges with zinc gluconate lozenges in common cold treatment and to examine the dose-dependency of the effect. Meta-analysis. Placebo-controlled zinc lozenge trials, in which the zinc dose was > 75 mg/day. The pooled effect of zinc lozenges on common cold duration was calculated by using inverse-variance random-effects method. Seven randomised trials with 575 participants with naturally acquired common colds. Duration of the common cold. The mean common cold duration was 33% (95% CI 21% to 45%) shorter for the zinc groups of the seven included trials. Three trials that used lozenges composed of zinc acetate found that colds were shortened by 40% and four trials that used zinc gluconate by 28%. The difference between the two salts was not significant: 12 percentage points (95% CI: -12 to + 36). Five trials used zinc doses of 80-92 mg/day, common cold duration was reduced by 33%, and two trials used zinc doses of 192-207 mg/day and found an effect of 35%. The difference between the high-dose and low-dose zinc trials was not significant: 2 percentage points (95% CI: -29 to + 32). Properly composed zinc gluconate lozenges may be as effective as zinc acetate lozenges. There is no evidence that zinc doses over 100 mg/day might lead to greater efficacy in the treatment of the common cold. Common cold patients may be encouraged to try zinc lozenges for treating their colds. The optimal lozenge composition and dosage scheme need to be investigated further.

  11. Zinc in human health: effect of zinc on immune cells.

    PubMed

    Prasad, Ananda S

    2008-01-01

    Although the essentiality of zinc for plants and animals has been known for many decades, the essentiality of zinc for humans was recognized only 40 years ago in the Middle East. The zinc-deficient patients had severe immune dysfunctions, inasmuch as they died of intercurrent infections by the time they were 25 years of age. In our studies in an experimental human model of zinc deficiency, we documented decreased serum testosterone level, oligospermia, severe immune dysfunctions mainly affecting T helper cells, hyperammonemia, neurosensory disorders, and decreased lean body mass. It appears that zinc deficiency is prevalent in the developing world and as many as two billion subjects may be growth retarded due to zinc deficiency. Besides growth retardation and immune dysfunctions, cognitive impairment due to zinc deficiency also has been reported recently. Our studies in the cell culture models showed that the activation of many zinc-dependent enzymes and transcription factors were adversely affected due to zinc deficiency. In HUT-78 (T helper 0 [Th(0)] cell line), we showed that a decrease in gene expression of interleukin-2 (IL-2) and IL-2 receptor alpha(IL-2Ralpha) were due to decreased activation of nuclear factor-kappaB (NF-kappaB) in zinc deficient cells. Decreased NF-kappaB activation in HUT-78 due to zinc deficiency was due to decreased binding of NF-kappaB to DNA, decreased level of NF-kappaB p105 (the precursor of NF-kappaB p50) mRNA, decreased kappaB inhibitory protein (IkappaB) phosphorylation, and decreased Ikappa kappa. These effects of zinc were cell specific. Zinc also is an antioxidant and has anti-inflammatory actions. The therapeutic roles of zinc in acute infantile diarrhea, acrodermatitis enteropathica, prevention of blindness in patients with age-related macular degeneration, and treatment of common cold with zinc have been reported. In HL-60 cells (promyelocytic leukemia cell line), zinc enhances the up-regulation of A20 mRNA, which, via TRAF

  12. Effect of zinc chelate and valnemulin for the treatment of swine dysentery in an experimental challenge study.

    PubMed

    Šperling, Daniel; Čížek, Alois; Smola, Jiří

    2014-02-01

    The aim of study was to determine the influence of zinc chelate, valnemulin and it's combination on Brachyspira hyodysenteriae shedding and morphological changes of colonic mucosa in an experimental model of swine dysentery (SD). The study was performed on pigs coming from a dysentery-free herd. Animals were inoculated by B. hyodysenteriae strain B204. When the clinical signs of SD and B. hyodysenteriae shedding developed, the pigs were divided into four treatment groups. The first group was treated with zinc chelate (250 ml/1000 L in water), second group was given valnemulin in feed at 75 ppm; the third group was given a combination of both and the fourth group was control. The results demonstrated therapeutic effect of valnemulin in pigs with serious SD and did not show therapeutic effect of chelated zinc. Copyright © 2013. Published by Elsevier Ltd.

  13. Zinc-Containing Hydroxyapatite Enhances Cold-Light-Activated Tooth Bleaching Treatment In Vitro

    PubMed Central

    Shi, Xinchang

    2017-01-01

    Cold-light bleaching treatment has grown to be a popular tooth whitening procedure in recent years, but its side effect of dental enamel demineralization is a widespread problem. The aim of this study was to synthesize zinc-substituted hydroxyapatite as an effective biomaterial to inhibit demineralization or increase remineralization. We synthesized zinc-substituted hydroxyapatite containing different zinc concentrations and analysed the product using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and energy dispersive spectrometer (EDS). The biological assessment of Zn-HA was conducted by CCK-8 assay and bacterial inhibition tests. pH cycling was performed to estimate the effect of Zn-HA on the enamel surface after cold-light bleaching treatment. The XRD, FTIR, and EDS results illustrated that zinc ions and hydroxyapatite combined in two forms: (1) Zn2+ absorbed on the surface of HA crystal and (2) Zn2+ incorporated into the lattice of HA. The results indicated that 2% Zn-HA, 4% Zn-HA, and 8% Zn-HA effectively inhibited the growth of bacteria yet showed poor biocompatibility, whereas 1% Zn-HA positively affected osteoblast proliferation. The XRD and scanning electron microscopy (SEM) results showed that the use of Zn-HA in pH cycling is obviously beneficial for enamel remineralization. Zinc-substituted hydroxyapatite could be a promising biomaterial for use in cold-light bleaching to prevent enamel demineralization. PMID:29159178

  14. Zinc supplementation for the treatment of measles in children.

    PubMed

    Awotiwon, Ajibola A; Oduwole, Olabisi; Sinha, Anju; Okwundu, Charles I

    2017-06-20

    absence of fever between children who received zinc supplements and those who did not (HR 1.08, 95% CI 0.67 to 1.74). No treatment-related side effects were reported in either group. We assessed the overall quality of the evidence as very low. We could not draw any definitive conclusions from this review about the effects of zinc supplementation on clinical outcomes of children with measles due to the very low quality of the evidence available. There is insufficient evidence to confirm or refute the effect of zinc supplementation in children with measles.

  15. Zinc supplementation for the treatment of measles in children.

    PubMed

    Awotiwon, Ajibola A; Oduwole, Olabisi; Sinha, Anju; Okwundu, Charles I

    2015-03-20

    Measles is still an important cause of childhood morbidity and mortality globally, despite increasing vaccine coverage. Zinc plays a significant role in the maintenance of normal immunological functions, therefore supplements given to zinc-deficient children will increase the availability of zinc and could reduce measles-related morbidity and mortality. To assess the effects of zinc supplementation in reducing morbidity and mortality in children with measles. We searched CENTRAL (2014, Issue 5), MEDLINE (1946 to June week 3, 2014), EMBASE (1974 to June 2014), CINAHL (1981 to June 2014), LILACS (1982 to June 2014), Web of Science (1985 to June 2014) and BIOSIS Previews (1985 to June 2014). We also searched ClinicalTrials.gov and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) to identify unpublished and ongoing studies. Randomised controlled trials (RCTs) and quasi-RCTs evaluating the effects of zinc in reducing morbidity and mortality in children with measles. Two review authors independently assessed the studies for inclusion and extracted data on outcomes, details of the interventions and other study characteristics using a standardised data extraction form. We used the risk ratio (RR) and hazard ratio as measures of effect with 95% confidence intervals (CI). We included only one study and we did not conduct any meta-analysis. One RCT met our inclusion criteria. The study was conducted in India and included 85 children diagnosed with measles and pneumonia. The trial showed that there was no significant difference in mortality between the two groups (risk ratio (RR) 0.34, 95% confidence interval (CI) 0.01 to 8.14). Also, there was no significant difference in time to absence of fever between the two groups (hazard ratio (HR) 1.08, 95% CI 0.67 to 1.74). No treatment-related side effects were reported in either group. The overall quality of the evidence can be described as very low. We cannot draw any definite conclusions

  16. A double-blind block randomized clinical trial on the effect of zinc as a treatment for diarrhea in neonatal Holstein calves under natural challenge conditions.

    PubMed

    Glover, A D; Puschner, B; Rossow, H A; Lehenbauer, T W; Champagne, J D; Blanchard, P C; Aly, S S

    2013-11-01

    Diarrhea is the leading cause of death in neonatal calves and contributes to major economic losses. The objective of this double-blind randomized clinical trial was to evaluate the effect of oral inorganic or organic zinc supplementation as a treatment for neonatal diarrhea in calves. Seventy nine 1 to 8 day old male Holstein calves on a California calf ranch were block randomized to one of 3 treatments within 24h from their first onset of diarrhea. Calves received a daily dose of either a placebo composed of 80 mg of zinc-free powder, 381.54 mg of zinc methionine (Met) (equivalent to 80 mg of zinc), or 99.69 mg of zinc oxide (ZO) (equivalent to 80 mg of zinc) in 2L of a zinc-free oral rehydration solution (ORS). Calves were treated once daily until normal fecal consistency or for a maximum of 14 days. Upon enrollment and exit, calves were weighed, and blood, feces, and liver biopsies were collected for trace mineral analysis. Fecal samples at enrollment and exit were tested for E. coli K99, Cryptosporidium spp., rotavirus and coronavirus. Pre-treatment liver zinc concentrations for the 71 calves in the placebo, zinc Met, and ZO treatment groups were 710.6 (SEM=147.7), 852.3 (SEM=129.6), and 750.7 (SEM=202.9)mg/kg dry weight (DW), respectively. Exit liver zinc concentrations for the calves in the placebo, zinc Met, and ZO treatment groups were 728.9 (SEM=182.9), 1141.0 (SEM=423.8), and 636.8 (SEM=81.5)mg/kg dry weight, respectively. Although statistically non-significant, there were clinically important findings identified for each of zinc Met and ZO treatments. Calves treated with zinc Met gained on average 40 g/day during a diarrhea episode compared to a weight loss of 67 g/day on average in the placebo-treated calves (Power 19.9%). Calves treated with ZO had 1.4 times higher hazard of clinical cure compared to calves in the placebo group (Power 5.3%). Calves that were fecal positive to cryptosporidium spp. at enrollment and treated with zinc Met had higher odds

  17. Anti-inflammatory effects of zinc in PMA-treated human gingival fibroblast cells

    PubMed Central

    Kim, Sangwoo; Jeon, Sangmi; Hui, Zheng; Kim, Young; Im, Yeonggwan; Lim, Wonbong; Kim, Changsu; Choi, Hongran; Kim, Okjoon

    2015-01-01

    Objectives: Abnormal cellular immune response has been considered to be responsible for oral lesions in recurrent aphthous stomatitis. Zinc has been known to be an essential nutrient metal that is necessary for a broad range of biological activities including antioxidant, immune mediator, and anti-inflammatory drugs in oral mucosal disease. The objective of this study was to investigate the effects of zinc in a phorbol-12-myristate-13-acetate (PMA)-treated inflammatory model on human gingival fibroblast cells (hGFs). Study Design: Cells were pre-treated with zinc chloride, followed by PMA in hGFs. The effects were assessed on cell viability, cyclooxygenease-1,2(COX-1/2) protein expression, PGE2 release, ROS production and cytokine release, Results: The effects were assessed on cell viability, COX1/2 protein expression, PGE2 release, ROS production, cytokine release. The results showed that, in the presence of PMA, zinc treatment leads to reduce the production of ROS, which results in decrease of COX-2 expression and PGE2 release. Conclusions: Thus, we suggest that zinc treatment leads to the mitigation of oral inflammation and may prove to be an alternative treatment for recurrent aphthous stomatitis. Key words:Zinc, inflammatory response, cytokines, phorbol-12-myristate-13-acetate, gingival fibroblasts cells. PMID:25662537

  18. Effect of zinc gluconate, sage oil on inflammatory patterns and hyperglycemia in zinc deficient diabetic rats.

    PubMed

    Elseweidy, Mohamed M; Ali, Abdel-Moniem A; Elabidine, Nabila Zein; Mursey, Nada M

    2017-11-01

    The relationship between zinc homeostasis and pancreatic function had been established. In this study we aimed firstly to configure the inflammatory pattern and hyperglycemia in zinc deficient diabetic rats. Secondly to illustrate the effect of two selected agents namely Zinc gluconate and sage oil (Salvia Officinalis, family Lamiaceae). Rats were fed on Zinc deficient diet, deionized water for 28days along with Zinc level check up at intervals to achieve zinc deficient state then rats were rendered diabetic through receiving one dose of alloxan monohydrate (120mg/kg) body weight, classified later into 5 subgroups. Treatment with sage oil (0.042mg/kg IP) and Zinc gluconate orally (150mg/kg) body weight daily for 8 weeks significantly reduced serum glucose, C-reactive protein (CRP), Tumor necrosis factor alpha (TNF- α), interleukins-6 1 β, inflammatory8 (IFN ȣ), pancreatic 1L1-β along with an increase in serum Zinc and pancreatic Zinc transporter 8 (ZNT8). Histopathological results of pancreatic tissues showed a good correlation with the biochemical findings. Both sage oil and zinc gluconate induced an improvement in the glycemic and inflammatory states. This may be of value like the therapeutic agent for diabetes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. The zinc pool is involved in the immune-reconstituting effect of melatonin in pinealectomized mice.

    PubMed

    Mocchegiani, E; Bulian, D; Santarelli, L; Tibaldi, A; Muzzioli, M; Lesnikov, V; Pierpaoli, W; Fabris, N

    1996-06-01

    Melatonin (MEL) affects the immune system by direct or indirect mechanisms. An involvement of the zinc pool in the immune-reconstituting effect of MEL in old mice has recently been documented. An altered zinc turnover and impaired immune functions are also evident in pinealectomized (px) mice. The present work investigates further the effect of "physiological" doses of MEL on the zinc pool and on thymic and peripheral immune functions in px mice. Daily injections of MEL (100 micrograms/mouse) for 1 month in px mice restored the crude zinc balance from negative to positive values. Thymic and peripheral immune functions, including plasma levels of interleukin-2, also recovered. The nontoxic effect of MEL on immune functions was observed in sham-operated mice. Because the half-life of MEL is very short (12 min), interruption of MEL treatment in px mice resulted, after 1 month, in a renewed negative crude zinc balance and a regression of immune functions. Both the zinc pool and immunological parameters were restored by 30 further days of MEL treatment. The existence of a significant correlation between zinc and thymic hormone after both cycles of MEL treatment clearly shows an involvement of the zinc pool in the immunoenhancing effects of MEL and thus suggests an inter-relationship between zinc and MEL in px mice. Moreover, the existence of significant positive correlations between zinc or thymulin and interleukin-2 suggests that interleukin-2 may participate in the action of MEL, via zinc, on thymic functions in px MEL-treated mice.

  20. The impact of tertiary wastewater treatment on copper and zinc complexation.

    PubMed

    Constantino, C; Gardner, M; Comber, S D W; Scrimshaw, M D; Ellor, B

    2015-01-01

    Tightening quality standards for European waters has seen a move towards enhanced wastewater treatment technologies such as granulated organic carbon treatment and ozonation. Although these technologies are likely to be successful in degrading certain micro-organic contaminants, these may also destroy compounds which would otherwise complex and render metals significantly less toxic. This study examined the impact of enhanced tertiary treatment on the capacity of organic compounds within sewage effluents to complex copper and zinc. The data show that granulated organic carbon treatment removes a dissolved organic carbon (DOC) fraction that is unimportant to complexation such that no detrimental impact on complexation or metal bioavailability is likely to occur from this treatment type. High concentrations of ozone (>1 mg O3/mg DOC) are, however, likely to impact the complexation capacity for copper although this is unlikely to be important at the concentrations of copper typically found in effluent discharges or in rivers. Ozone treatment did not affect zinc complexation capacity. The complexation profiles of the sewage effluents show these to contain a category of non-humic ligand that appears unaffected by tertiary treatment and which displays a high affinity for zinc, suggesting these may substantially reduce the bioavailability of zinc in effluent discharges. The implication is that traditional metal bioavailability assessment approaches such as the biotic ligand model may overestimate zinc bioavailability in sewage effluents and effluent-impacted waters.

  1. Effects of dietary supplementation with tribasic zinc sulfate or zinc sulfate on growth performance, zinc content and expression of zinc transporters in young pigs.

    PubMed

    Deng, Bo; Zhou, Xihong; Wu, Jie; Long, Ciming; Yao, Yajun; Peng, Hongxing; Wan, Dan; Wu, Xin

    2017-10-01

    An experiment was conducted to compare the effects of zinc sulfate (ZS) and tribasic zinc sulfate (TBZ) as sources of supplemental zinc on growth performance, serum zinc (Zn) content and messenger RNA (mRNA) expression of Zn transporters (ZnT1/ZnT2/ZnT5/ZIP4/DMT1) of young growing pigs. A total of 96 Duroc × Landrace × Yorkshire pigs were randomly allotted to two treatments and were fed a basal diet supplemented with 100 mg/kg Zn from either ZS or TBZ for 28 days. Feed : gain ratio in pigs fed TBZ were lower (P < 0.05) than pigs fed ZS, and average daily weight gain tended to increase (0.05 ≤ P ≤ 0.10) in pigs fed TBZ. Compared with pigs fed ZS, pigs fed TBZ had a higher CuZn-superoxide dismutase and Zn content in serum (P < 0.05) while they had a lower Zn content in feces (P < 0.05). In addition, ZIP4 mRNA expression of zinc transporter in either duodenum or jejunum of pigs fed TBZ were higher (P < 0.05) than pigs fed ZS. These results indicate that TBZ is more effective in serum Zn accumulation and intestinal Zn absorption, and might be a potential substitute for ZS in young growing pigs. © 2017 Japanese Society of Animal Science.

  2. Fate of zinc in an electroplating sludge during electrokinetic treatments.

    PubMed

    Liu, Shou-Heng; Wang, H Paul

    2008-08-01

    Chemical structure of zinc in the electrokinetic treatments of an electroplating sludge has been studied by in situ extended X-ray absorption fine structural (EXAFS) and X-ray absorption near edge structural (XANES) spectroscopies in the present work. The least-square fitted XANES spectra indicate that the main zinc compounds in the sludge were ZnCO(3) (75%), ZnOSiO(2) (17%) and Zn(OH)(2) (7%). Zinc in the sludge possessed a Zn-O bond distance of 2.07 A with a coordination number (CN) of 5. In the second shells, the bond distance of Zn-(O)-Si was 3.05 A (CN=2). An increase of Zn-(O)-Si (0.05 A) with a decrease of its CN (from 5 to <1) was found in the early stage of the electrokinetic treatment. Prolong the electrokinetic treatment time to 180 min, about 34% of Zn(II) was dissolved into the aqueous phase and about 68% of Zn(II) in the sludge (or 23% of total zinc) was migrated to the cathode under the electric field (5 V cm(-1)). The dissolution and electromigration rates of Zn(II) in the sludge were 1.0 and 0.6 mmol h(-1)g(-1) sludge, respectively during the electrokinetic treatment. This work also exemplifies the utilization of in situ EXAFS and XANES for revealing speciation and possible reaction pathways during the course of zinc recycling from the sludge by electrokinetic treatments.

  3. Zinc Transport Differs in Rat Spermatogenic Cell Types and Is Affected by Treatment with Cyclophosphamide1

    PubMed Central

    Downey, Anne Marie; Hales, Barbara F.; Robaire, Bernard

    2016-01-01

    Adequate zinc levels are required for proper cellular functions and for male germ cell development. Zinc transport is accomplished by two families of zinc transporters, the ZIPs and the ZnTs, that increase and decrease cytosolic zinc levels, respectively. However, very little is known about zinc transport in the testis. Furthermore, whether cytotoxic agents such as cyclophosphamide (CPA), a known male germ cell toxicant, can affect zinc transport and homeostasis is unknown. We examined zinc transporter expression and zinc transport in pachytene spermatocytes (PS) and round spermatids (RS) in a normal state and after exposure to CPA. We observed differences in the expression of members of the ZnT and ZIP families in purified populations of PS and RS. We also observed that RS accumulate more zinc over time than PS. The expression of many zinc binding genes was altered after CPA treatment. Interestingly, we found that the expression levels of ZIP5 and ZIP14 were increased in PS from animals treated daily with 6 mg/kg CPA for 4 wk but not in RS. This up-regulation led to an increase in zinc uptake in PS but not in RS from treated animals compared to controls. These data suggest that CPA treatment may alter zinc homeostasis in male germ cells leading to an increased need for zinc. Altered zinc homeostasis may disrupt proper germ cell development and contribute to infertility and effects on progeny. PMID:27281708

  4. Effects of Zinc Chelators on Aflatoxin Production in Aspergillus parasiticus

    PubMed Central

    Wee, Josephine; Day, Devin M.; Linz, John E.

    2016-01-01

    Zinc concentrations strongly influence aflatoxin accumulation in laboratory media and in food and feed crops. The presence of zinc stimulates aflatoxin production, and the absence of zinc impedes toxin production. Initial studies that suggested a link between zinc and aflatoxin biosynthesis were presented in the 1970s. In the present study, we utilized two zinc chelators, N,N,N′,N′-tetrakis (2-pyridylmethyl) ethane-1,2-diamine (TPEN) and 2,3-dimercapto-1-propanesulfonic acid (DMPS) to explore the effect of zinc limitation on aflatoxin synthesis in Aspergillus parasiticus. TPEN but not DMPS decreased aflatoxin biosynthesis up to six-fold depending on whether A. parasiticus was grown on rich or minimal medium. Although we observed significant inhibition of aflatoxin production by TPEN, no detectable changes were observed in expression levels of the aflatoxin pathway gene ver-1 and the zinc binuclear cluster transcription factor, AflR. Treatment of growing A. parasiticus solid culture with a fluorescent zinc probe demonstrated an increase in intracellular zinc levels assessed by increases in fluorescent intensity of cultures treated with TPEN compared to controls. These data suggest that TPEN binds to cytoplasmic zinc therefore limiting fungal access to zinc. To investigate the efficacy of TPEN on food and feed crops, we found that TPEN effectively decreases aflatoxin accumulation on peanut medium but not in a sunflower seeds-derived medium. From an application perspective, these data provide the basis for biological differences that exist in the efficacy of different zinc chelators in various food and feed crops frequently contaminated by aflatoxin. PMID:27271668

  5. The effect of vitamin A and zinc supplementation on treatment outcomes in pulmonary tuberculosis: a randomized controlled trial.

    PubMed

    Visser, Marianne E; Grewal, Harleen Ms; Swart, Elizabeth C; Dhansay, Muhammad A; Walzl, Gerhard; Swanevelder, Sonja; Lombard, Carl; Maartens, Gary

    2011-01-01

    Low serum concentrations of vitamin A and zinc are common in tuberculosis and may have an adverse effect on host cell-mediated responses. The role of adjunctive micronutrient supplementation on treatment outcomes is uncertain. The objective was to assess the efficacy of vitamin A and zinc supplementation on sputum smear and culture conversion and time to culture detection in adults with sputum smear-positive pulmonary tuberculosis. Participants attending a primary care tuberculosis clinic in Cape Town, South Africa, were randomly assigned to receive micronutrients (single dose of 200,000 IU retinyl palmitate plus 15 mg Zn/d for 8 wk) or matching placebo. Sputum was collected weekly for 8 wk for auramine staining and culture on liquid media (BACTEC MGIT 960; Becton Dickinson, Sparks, MD). Performance status, chest radiographs, and anthropometric measures were assessed at baseline and again at 8 wk. The participants (n = 154) were randomly assigned to the micronutrient (n = 77) or placebo (n = 77) group. Twenty participants were HIV infected (13%), and 12 participants had an unknown HIV status (8%). No differences in time to smear or culture conversion were observed between the treatment groups by Kaplan-Meier analysis (P = 0.15 and P = 0.38, respectively; log-rank test). Log-logistic regression analysis found no significant group interaction effect in time to culture detection over the 8-wk period (P = 0.32). No significant differences in weight gain (2.3 ± 3.5 compared with 2.2 ± 2.4 kg, P = 0.68) or radiologic resolution were observed between the treatment groups. Supplementation with vitamin A and zinc did not affect treatment outcomes in participants with pulmonary tuberculosis at 8 wk. This trial was registered at controlled-trials.com as ISRCTN80852505.

  6. Zinc treatment increases the titre of 'Candidatus Liberibacter asiaticus' in huanglongbing-affected citrus plants while affecting the bacterial microbiomes.

    PubMed

    Zhang, M Q; Guo, Y; Powell, C A; Doud, M S; Yang, C Y; Zhou, H; Duan, Y P

    2016-06-01

    Huanglongbing (HLB)-affected citrus often display zinc deficiency symptoms. In this study, supplemental zinc was applied to citrus to determine its effect on Candidatus Liberibacter asiaticus (Las) titre, HLB symptoms, and leaf microbiome. HLB-affected citrus were treated with various amounts of zinc. The treatments promoted Las growth and affected microbiomes in citrus leaves. Phylochip(™) -based results indicated that 5475 of over 50 000 known Operational Taxonomic Units (OTUs) in 52 phyla were detected in the midribs of HLB-affected citrus, of which Proteobacteria was the most abundant, followed by Firmicutes and Actinobacteria. In comparison, the microbiomes of zinc-treated diseased plants had overall more OTUs with higher amounts of Proteobacteria, but decreased percentages of Firmicutes and Actinobacteria. In addition, more OTUs of siderophore-producing bacteria were present. Only zinc-sensitive Staphylococcaceae had higher OTU's in the diseased plants without zinc treatments. Although HLB-affected citrus appear zinc deficient, zinc amendments increased the pathogen levels and shifted the microbiome. HLB is currently the most devastating disease of citrus worldwide. Zinc is often applied to HLB-affected citrus due to zinc deficiency symptoms. This study provided new insights into the potential effects of zinc on HLB and the microbial ecology of citrus. © 2016 The Society for Applied Microbiology.

  7. Fishy Business: Effect of Omega-3 Fatty Acids on Zinc Transporters and Free Zinc Availability in Human Neuronal Cells

    PubMed Central

    De Mel, Damitha; Suphioglu, Cenk

    2014-01-01

    Omega-3 (ω-3) fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA). The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA deficiency may be the cause of many disorders such as depression, inability to concentrate, excessive mood swings, anxiety, cardiovascular disease, type 2 diabetes, dry skin and so on. On the other hand, zinc is the most abundant trace metal in the human brain. There are many scientific studies linking zinc, especially excess amounts of free zinc, to cellular death. Neurodegenerative diseases, such as Alzheimer’s disease, are characterized by altered zinc metabolism. Both animal model studies and human cell culture studies have shown a possible link between omega-3 fatty acids, zinc transporter levels and free zinc availability at cellular levels. Many other studies have also suggested a possible omega-3 and zinc effect on neurodegeneration and cellular death. Therefore, in this review, we will examine the effect of omega-3 fatty acids on zinc transporters and the importance of free zinc for human neuronal cells. Moreover, we will evaluate the collective understanding of mechanism(s) for the interaction of these elements in neuronal research and their significance for the diagnosis and treatment of neurodegeneration. PMID:25195602

  8. Fishy business: effect of omega-3 fatty acids on zinc transporters and free zinc availability in human neuronal cells.

    PubMed

    De Mel, Damitha; Suphioglu, Cenk

    2014-08-15

    Omega-3 (ω-3) fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA). The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA deficiency may be the cause of many disorders such as depression, inability to concentrate, excessive mood swings, anxiety, cardiovascular disease, type 2 diabetes, dry skin and so on. On the other hand, zinc is the most abundant trace metal in the human brain. There are many scientific studies linking zinc, especially excess amounts of free zinc, to cellular death. Neurodegenerative diseases, such as Alzheimer's disease, are characterized by altered zinc metabolism. Both animal model studies and human cell culture studies have shown a possible link between omega-3 fatty acids, zinc transporter levels and free zinc availability at cellular levels. Many other studies have also suggested a possible omega-3 and zinc effect on neurodegeneration and cellular death. Therefore, in this review, we will examine the effect of omega-3 fatty acids on zinc transporters and the importance of free zinc for human neuronal cells. Moreover, we will evaluate the collective understanding of mechanism(s) for the interaction of these elements in neuronal research and their significance for the diagnosis and treatment of neurodegeneration.

  9. Impact Monitoring of the National Scale Up of Zinc Treatment for Childhood Diarrhea in Bangladesh: Repeat Ecologic Surveys

    PubMed Central

    Larson, Charles P.; Saha, Unnati Rani; Nazrul, Hazera

    2009-01-01

    Background Zinc treatment of childhood diarrhea has the potential to save 400,000 under-five lives per year in lesser developed countries. In 2004 the World Health Organization (WHO)/UNICEF revised their clinical management of childhood diarrhea guidelines to include zinc. The aim of this study was to monitor the impact of the first national campaign to scale up zinc treatment of childhood diarrhea in Bangladesh. Methods/Findings Between September 2006 to October 2008 seven repeated ecologic surveys were carried out in four representative population strata: mega-city urban slum and urban nonslum, municipal, and rural. Households of approximately 3,200 children with an active or recent case of diarrhea were enrolled in each survey round. Caretaker awareness of zinc as a treatment for childhood diarrhea by 10 mo following the mass media launch was attained in 90%, 74%, 66%, and 50% of urban nonslum, municipal, urban slum, and rural populations, respectively. By 23 mo into the campaign, approximately 25% of urban nonslum, 20% of municipal and urban slum, and 10% of rural under-five children were receiving zinc for the treatment of diarrhea. The scale-up campaign had no adverse effect on the use of oral rehydration salt (ORS). Conclusions Long-term monitoring of scale-up programs identifies important gaps in coverage and provides the information necessary to document that intended outcomes are being attained and unintended consequences avoided. The scale-up of zinc treatment of childhood diarrhea rapidly attained widespread awareness, but actual use has lagged behind. Disparities in zinc coverage favoring higher income, urban households were identified, but these were gradually diminished over the two years of follow-up monitoring. The scale up campaign has not had any adverse effect on the use of ORS. Please see later in the article for the Editors' Summary PMID:19888335

  10. Double blind study of the effects of zinc sulfate on taste and smell dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henkin, R.I.; Schecter, P.J.; Friedewald, W.T.

    1976-01-01

    A randomized, double blind crossover study of the effects of zinc sulfate and placebo was carried out in 106 patients with taste and smell dysfunction secondary to a variety of etiological factors. In the patient group prior to treatment, mean serum zinc concentration and leukocyte alkaline phosphatase activity were significantly lower than normal. Results indicate that zinc sulfate was effectively equivalent to placebo in the treatment of these disorders. Although these results demonstrate abnormalities of zinc metabolism in some patients with taste and smell dysfunction they fail to provide evidence for a single, therapeutic approach to the many disorders whichmore » are associated with abnormalities of taste and smell. However, the methods and procedures developed in this study demonstrate that taste and smell dysfunction can be studied in a quantitative, systematic manner.« less

  11. The impact of zinc sulfate addition on the dynamic metabolic profiling of Saccharomyces cerevisiae subjected to long term acetic acid stress treatment and identification of key metabolites involved in the antioxidant effect of zinc.

    PubMed

    Wan, Chun; Zhang, Mingming; Fang, Qing; Xiong, Liang; Zhao, Xinqing; Hasunuma, Tomohisa; Bai, Fengwu; Kondo, Akihiko

    2015-02-01

    The mechanisms of how zinc protects the cells against acetic acid toxicity and acts as an antioxidant are still not clear. Here we present results of the metabolic profiling of the eukaryotic model yeast species Saccharomyces cerevisiae subjected to long term high concentration acetic acid stress treatment in the presence and absence of zinc supplementation. Zinc addition decreased the release of reactive oxygen species (ROS) in the presence of chronic acetic acid stress. The dynamic changes in the accumulation of intermediates in central carbon metabolism were observed, and higher contents of intracellular alanine, valine and serine were observed by zinc supplementation. The most significant change was observed in alanine content, which is 3.51-fold of that of the control culture in cells in the stationary phase. Subsequently, it was found that 0.5 g L(-1) alanine addition resulted in faster glucose consumption in the presence of 5 g L(-1) acetic acid, and apparently decreased ROS accumulation in zinc-supplemented cells. This indicates that alanine exerted its antioxidant effect at least partially through the detoxification of acetic acid. In addition, intracellular glutathione (GSH) accumulation was enhanced by zinc addition, which is related to the protection of yeast cells from the oxidative injury caused by acetic acid. Our studies revealed for the first time that zinc modulates cellular amino acid metabolism and redox balance, especially biosynthesis of alanine and glutathione to exert its antioxidant effect.

  12. Targeted Zinc Delivery: A Novel Treatment for Prostate Cancer

    DTIC Science & Technology

    2010-06-01

    aconitase, which normally functions to oxidize citrate during the Krebs cycle . Because citrate is a principle component of seminal fluid, prostate...tissue, likely due to the metabolic effects of zinc in the Krebs cycle . That is, because zinc inhibits m- aconitase, loss of zinc allows for greater...secretory cells do not complete the oxidation of citrate in the mitochondria and the zinc-mediated inhibition of m-aconitase is crucial for the

  13. Effect of zinc intake on hepatic autophagy during acute alcohol intoxication.

    PubMed

    Liuzzi, Juan P; Narayanan, Vijaya; Doan, Huong; Yoo, Changwon

    2018-04-01

    Autophagy is a conserved mechanism that plays a housekeeping role by eliminating protein aggregates and damaged organelles. Recent studies have demonstrated that acute ethanol intoxication induces hepatic autophagy in mice. The effect of dietary zinc intake on hepatic autophagic flux during ethanol intoxication has not been evaluated using animal models. Herein, we investigated whether zinc deficiency and excess can affect autophagic flux in the liver in mice and in human hepatoma cells acutely exposed to ethanol. A mouse model of binge ethanol feeding was utilized to analyze the effect of low, adequate, and high zinc intake on hepatic autophagic flux during ethanol intoxication. Autophagic flux was inferred by analyzing LC3II/LC3I ratio, protein levels of p62/SQSTM1, Beclin1 and Atg7, and phosphorylation of 4EBP1. In addition, the degradation of the fusion protein LC3-GFP and the formation of autophagosomes and autolysosomes were evaluated in cells. Ethanol treatment stimulated autophagy in mice and cells. High zinc intake resulted in enhanced autophagy in mice exposed to ethanol. Conversely, zinc deficiency was consistently associated with impaired ethanol-induced autophagy in mice and cells. Zinc-deficient mice exhibited a high degree of ethanol-driven steatosis. Furthermore, zinc depletion increased apoptosis in cells exposed to ethanol. The results of this study suggest that adequate zinc intake is necessary for proper stimulation of autophagy by ethanol. Poor zinc status is commonly found among alcoholics and could likely contribute to faulty autophagy.

  14. Effects of Zinc Gluconate and 2 Other Divalent Cationic Compounds on Olfactory Function in Mice

    PubMed Central

    Duncan-Lewis, Christopher A; Lukman, Roy L; Banks, Robert K

    2011-01-01

    Intranasal application of zinc gluconate has commonly been used to treat the common cold. The safety of this treatment, however, has come into question recently. In addition to a United States recall of a homeopathic product that contains zinc gluconate, abundant literature reports cytotoxic effects of zinc on the olfactory epithelium. Additional research suggests that divalent cations (such as zinc) can block ion channels that facilitate the transduction of odors into electrical signals on the olfactory epithelium. The purpose of the current study was 2-fold: to confirm whether zinc gluconate causes anosmia and to reveal whether any other divalent cationic compounds produce a similar effect. Groups of mice underwent a buried food-pellet test to gauge olfactory function and then were nasally irrigated with 1 of 3 divalent cationic compounds. When tested after treatment, mice irrigated with zinc gluconate and copper gluconate experienced a marked increase in food-finding time, indicating that they had lost their ability to smell a hidden food source. Control mice irrigated with saline had a significantly lower increase in times. These results confirm that zinc gluconate can cause anosmia and reveal that multiple divalent cations can negatively affect olfaction. PMID:22330252

  15. Effect of subchronic zinc toxicity on rat salivary glands and serum composition.

    PubMed

    Mizari, Nazer; Hirbod-Mobarakeh, Armin; Shahinpour, Shervin; Ghalichi-Tabriz, Mostafa; Beigy, Maani; Yamini, Ali; Dehpour, Ahmad Reza

    2012-11-01

    Zinc plays an important role in a wide variety of metabolic processes in animal systems. The role of zinc in preservative treatment, fungicidal action and medicine, and addition of supplementary zinc have increased the probability of zinc toxicity, specially the chronic type. It is known that the composition and quantity of saliva influence the oral health. Regarding people's exposure to zinc in routine life and the importance of saliva, our purpose was to investigate the effects of oral zinc intoxication on secretory function in rat salivary glands and also on serum composition. In this study, there were five groups of female rats. Four groups received zinc acetate dehydrate through their drinking water. After 3 months of experiment, the chemical characteristics and flow rate of saliva and weight of salivary glands were determined. The effects of zinc on hematological and chemical factors of plasma were assessed too. Flow rate of submandibular glands was significantly lower in experimental groups and there were significant changes in Na(+), Ca(2+) and K(+) concentration both in saliva and in plasma. The serum glutamate oxaloacetate transaminase, serum glutamate pyruvate transaminase, glucose levels in the plasma and urine creatinine levels were also altered in experimental groups in comparison with the control group. Our results show that zinc toxicity will affect the quantity and quality of saliva probably through changes in the various neurologic pathways to the salivary glands or effects on acinar cells of the salivary glands. Furthermore, our results showed that zinc toxicity will affect the liver and renal function.

  16. Low Stress Mechanical Properties of Plasma-Treated Cotton Fabric Subjected to Zinc Oxide-Anti-Microbial Treatment.

    PubMed

    Kan, Chi-Wai; Lam, Yin-Ling

    2013-01-22

    Cotton fabrics are highly popular because of their excellent properties such as regeneration, bio-degradation, softness, affinity to skin and hygroscopic properties. When in contact with the human body, cotton fabrics offer an ideal environment for microbial growth due to their ability to retain oxygen, moisture and warmth, as well as nutrients from spillages and body sweat. Therefore, an anti-microbial coating formulation (Microfresh and Microban together with zinc oxide as catalyst) was developed for cotton fabrics to improve treatment effectiveness. In addition, plasma technology was employed in the study which roughened the surface of the materials, improving the loading of zinc oxides on the surface. In this study, the low stress mechanical properties of plasma pre-treated and/or anti-microbial-treated cotton fabric were studied. The overall results show that the specimens had improved bending properties when zinc oxides were added in the anti-microbial coating recipe. Also, without plasma pre-treatment, anti-microbial-treatment of cotton fabric had a positive effect only on tensile resilience, shear stress at 0.5° and compressional energy, while plasma-treated specimens had better overall tensile properties even after anti-microbial treatment.

  17. Low Stress Mechanical Properties of Plasma-Treated Cotton Fabric Subjected to Zinc Oxide-Anti-Microbial Treatment

    PubMed Central

    Kan, Chi-Wai; Lam, Yin-Ling

    2013-01-01

    Cotton fabrics are highly popular because of their excellent properties such as regeneration, bio-degradation, softness, affinity to skin and hygroscopic properties. When in contact with the human body, cotton fabrics offer an ideal environment for microbial growth due to their ability to retain oxygen, moisture and warmth, as well as nutrients from spillages and body sweat. Therefore, an anti-microbial coating formulation (Microfresh and Microban together with zinc oxide as catalyst) was developed for cotton fabrics to improve treatment effectiveness. In addition, plasma technology was employed in the study which roughened the surface of the materials, improving the loading of zinc oxides on the surface. In this study, the low stress mechanical properties of plasma pre-treated and/or anti-microbial-treated cotton fabric were studied. The overall results show that the specimens had improved bending properties when zinc oxides were added in the anti-microbial coating recipe. Also, without plasma pre-treatment, anti-microbial-treatment of cotton fabric had a positive effect only on tensile resilience, shear stress at 0.5° and compressional energy, while plasma-treated specimens had better overall tensile properties even after anti-microbial treatment. PMID:28809311

  18. Dietary phytate, zinc and hidden zinc deficiency.

    PubMed

    Sandstead, Harold H; Freeland-Graves, Jeanne H

    2014-10-01

    Epidemiological data suggest at least one in five humans are at risk of zinc deficiency. This is in large part because the phytate in cereals and legumes has not been removed during food preparation. Phytate, a potent indigestible ligand for zinc prevents it's absorption. Without knowledge of the frequency of consumption of foods rich in phytate, and foods rich in bioavailable zinc, the recognition of zinc deficiency early in the illness may be difficult. Plasma zinc is insensitive to early zinc deficiency. Serum ferritin concentration≤20μg/L is a potential indirect biomarker. Early effects of zinc deficiency are chemical, functional and may be "hidden". The clinical problem is illustrated by 2 studies that involved US Mexican-American children, and US premenopausal women. The children were consuming home diets that included traditional foods high in phytate. The premenopausal women were not eating red meat on a regular basis, and their consumption of phytate was mainly from bran breakfast cereals. In both studies the presence of zinc deficiency was proven by functional responses to controlled zinc treatment. In the children lean-mass, reasoning, and immunity were significantly affected. In the women memory, reasoning, and eye-hand coordination were significantly affected. A screening self-administered food frequency questionnaire for office might help caregiver's identify patients at risk of zinc deficiency. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. [Effects of zinc deficiency in pregnancy on the mother and the newborn infant].

    PubMed

    Favier, A; Favier, M

    1990-01-01

    There seems to be a zinc deficiency during pregnancy in view of the low serum zinc levels, but especially low zinc levels in hair and leucocytes. The need for zinc supplements is still ill-defined but represents at least 5 mg per day which are not covered by the diet and taken from the maternal reserves. Therefore the risk of deficiency is real and its manifestations are numerous. There is a risk of spontaneous abortion, gravidic toxemia, treatment-resistant anemia, abnormally prolonged gestation and difficult delivery for the mother. As for the fetus, with zinc deficiency there is a risk of hypotrophism and malformations with potentialization of the teratogenic effect of alcohol and many medications. Besides, in animals, zinc deficiency during pregnancy results in late effects several months after birth: decrease immunity, learning or memory disorders. In view of all these consequences, administration of supplements is imperative and must be evaluated providing that it does not exceed 50 mg of zinc per day. Besides, it seems preferable to provide balanced multisupplements in minerals and vitamins, since supplement in iron alone results in zinc deficiency.

  20. Plasma zinc and its relationship to clinical symptoms and drug treatment in rheumatoid arthritis.

    PubMed Central

    Balogh, Z; El-Ghobarey, A F; Fell, G S; Brown, D H; Dunlop, J; Dick, W C

    1980-01-01

    Total plasma zinc levels in patients with rheumatoid arthritis on different therapeutic treatments were determined in conjunction with total serum proteins, serum albumin and globulin, and articular index of joint tenderness, erythrocyte sedimentation rate, rheumatoid factor, serum copper, and serum iron. There were significantly lower zinc levels in patients with rheumatoid arthritis on nonsteroidal anti-inflammatory drugs than in patients on levamisole and penicillamine. Zinc levels correlated positively with serum albumin, and there was an inverse correlation between zinc levels and both ESR and globulin concentration in all rheumatoid patients. However, the correlation coefficient varied in the different treatment groups. The results of this study support the hypothesis that low plasma zinc level in rheumatoid arthritis is one of the nonspecific features of inflammation. PMID:7436558

  1. Promoting effect of foliage sprayed zinc sulfate on accumulation of sugar and phenolics in berries of Vitis vinifera cv. Merlot growing on zinc deficient soil.

    PubMed

    Song, Chang-Zheng; Liu, Mei-Ying; Meng, Jiang-Fei; Chi, Ming; Xi, Zhu-Mei; Zhang, Zhen-Wen

    2015-02-02

    The effect of foliage sprayed zinc sulfate on berry development of Vitis vinifera cv. Merlot growing on arid zone Zn-deficient soils was investigated over two consecutive seasons, 2013 and 2014. Initial zinc concentration in soil and vines, photosynthesis at three berry developmental stages, berry weight, content of total soluble solids, titratable acidity, phenolics and expression of phenolics biosynthetic pathway genes throughout the stages were measured. Foliage sprayed zinc sulfate showed promoting effects on photosynthesis and berry development of vines and the promotion mainly occurred from veraison to maturation. Zn treatments enhanced the accumulation of total soluble solids, total phenols, flavonoids, flavanols, tannins and anthocyanins in berry skin, decreasing the concentration of titratable acidity. Furthermore, foliage sprayed zinc sulfate could significantly influence the expression of phenolics biosynthetic pathway genes throughout berry development, and the results of expression analysis supported the promotion of Zn treatments on phenolics accumulation. This research is the first comprehensive and detailed study about the effect of foliage sprayed Zn fertilizer on grape berry development, phenolics accumulation and gene expression in berry skin, providing a basis for improving the quality of grape and wine in Zn-deficient areas.

  2. [The effect of zinc therapy on common cold--a survey of a Cochrane review].

    PubMed

    Valentiner-Branth, Palle

    2012-01-09

    The Cochrane review "Zinc and the common cold" included 15 randomized controlled double-blind trials. It was concluded, that zinc would shorten the duration of the episode of common cold and also could be used as a prevention so that the risk of developing an episode of common cold would be decreased. It is too early to give general recommendations for the use of zinc as we do not have sufficient knowledge about the optimal dose, formulation and duration of treatment. Further research should focus on the effect of zinc in patients who are at increased risk of developing complications after common cold.

  3. Effect of short-term zinc supplementation on zinc and selenium tissue distribution and serum antioxidant enzymes.

    PubMed

    Skalny, Andrey A; Tinkov, Alexey A; Medvedeva, Yulia S; Alchinova, Irina B; Karganov, Mikhail Y; Skalny, Anatoly V; Nikonorov, Alexandr A

    2015-01-01

    A significant association between Zn and Se homeostasis exists. At the same time, data on the influence of zinc supplementation on selenium distribution in organs and tissues seem to be absent. Therefore, the primary objective of the current study is to investigate the influence of zinc asparaginate supplementation on zinc and selenium distribution and serum superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity in Wistar rats. 36 rats were used in the experiment. The duration of the experiment was 7 and 14 days in the first and second series, respectively. The rats in Group I were used as the control ones. Animals in Groups II and III daily obtained zinc asparaginate (ZnA) in the doses of 5 and 15 mg/kg weight, respectively. Zinc and selenium content in liver, kidneys, heart, muscle, serum and hair was assessed using inductively coupled plasma mass spectrometry. Serum SOD and GPx activity was analysed spectrophotometrically using Randox kits. Intragastric administration of zinc asparaginate significantly increased liver, kidney, and serum zinc content without affecting skeletal and cardiac muscle levels. Zinc supplementation also stimulated selenium retention in the rats' organs. Moreover, a significant positive correlation between zinc and selenium content was observed. Finally, zinc asparaginate treatment has been shown to modulate serum GPx but not SOD activity. The obtained data indicate that zinc-induced increase in GPx activity may be mediated through modulation of selenium status. However, future studies are required to estimate the exact mechanisms of zinc and selenium interplay.

  4. The effectiveness of high dose zinc acetate lozenges on various common cold symptoms: a meta-analysis.

    PubMed

    Hemilä, Harri; Chalker, Elizabeth

    2015-02-25

    A previous meta-analysis found that high dose zinc acetate lozenges reduced the duration of common colds by 42%, whereas low zinc doses had no effect. Lozenges are dissolved in the pharyngeal region, thus there might be some difference in the effect of zinc lozenges on the duration of respiratory symptoms in the pharyngeal region compared with the nasal region. The objective of this study was to determine whether zinc acetate lozenges have different effects on the duration of common cold symptoms originating from different anatomical regions. We analyzed three randomized trials on zinc acetate lozenges for the common cold administering zinc in doses of 80-92 mg/day. All three trials reported the effect of zinc on seven respiratory symptoms, and three systemic symptoms. We pooled the effects of zinc lozenges for each symptom and calculated point estimates and 95% confidence intervals (95% CI). Zinc acetate lozenges shortened the duration of nasal discharge by 34% (95% CI: 17% to 51%), nasal congestion by 37% (15% to 58%), sneezing by 22% (-1% to 45%), scratchy throat by 33% (8% to 59%), sore throat by 18% (-10% to 46%), hoarseness by 43% (3% to 83%), and cough by 46% (28% to 64%). Zinc lozenges shortened the duration of muscle ache by 54% (18% to 89%), but there was no difference in the duration of headache and fever. The effect of zinc acetate lozenges on cold symptoms may be associated with the local availability of zinc from the lozenges, with the levels being highest in the pharyngeal region. However our findings indicate that the effects of zinc ions are not limited to the pharyngeal region. There is no indication that the effect of zinc lozenges on nasal symptoms is less than the effect on the symptoms of the pharyngeal region, which is more exposed to released zinc ions. Given that the adverse effects of zinc in the three trials were minor, zinc acetate lozenges releasing zinc ions at doses of about 80 mg/day may be a useful treatment for the common cold

  5. Metallothionein provides zinc-mediated protective effects against methamphetamine toxicity in SK-N-SH cells.

    PubMed

    Ajjimaporn, Amornpan; Swinscoe, John; Shavali, Shaik; Govitrapong, Piyarat; Ebadi, Manuchair

    2005-11-30

    Methamphetamine (METH) is a drug of abuse and neurotoxin that induces Parkinson's-like pathology after chronic usage by targeting dopaminergic neurons. Elucidation of the intracellular mechanisms that underlie METH-induced dopaminergic neuron toxicity may help in understanding the mechanism by which neurons die in Parkinson's disease. In the present study, we examined the role of reactive oxygen species (ROS) in the METH-induced death of human dopaminergic SK-N-SH cells and further assessed the neuroprotective effects of zinc and metallothionein (MT) against METH-induced toxicity in culture. METH significantly increased the production of reactive oxygen species, decreased intracellular ATP levels and reduced the cell viability. Pre-treatment with zinc markedly prevented the loss of cell viability caused by METH treatment. Zinc pre-treatment mainly increased the expression of metallothionein and prevented the generation of reactive oxygen species and ATP depletion caused by METH. Chelation of zinc by CaEDTA caused a significant decrease in MT expression and loss of protective effects of MT against METH toxicity. These results suggest that zinc-induced MT expression protects dopaminergic neurons via preventing the accumulation of toxic reactive oxygen species and halting the decrease in ATP levels. Furthermore, MT may prevent the loss of mitochondrial functions caused by neurotoxins. In conclusion, our study suggests that MT, a potent scavenger of free radicals is neuroprotective against dopaminergic toxicity in conditions such as drug of abuse and in Parkinson's disease.

  6. Effects of zinc and cholesterol/choleate on serum lipoproteins and the liver in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, C.H.; Chen, S.M.; Ogle, C.W.

    1989-01-01

    The effects of short-term treatment with orally-administered zinc sulfate and/or a mixture of cholesterol/choleate on serum lipoprotein and hepatic enzyme levels were studied. Administration of graded doses of zinc sulfate for 5 days, dose-dependently increased serum and hepatic zinc levels but depressed the serum high-density lipoprotein-cholesterol (HDL-C) concentration and liver cytochrome P-450 activity. However, it did not affect hepatic concentrations of malondialdehyde and free {beta}-glucuronidase. Cholesterol/choleate treatment for 5 days markedly damaged the liver, as reflected by elevations of hepatic concentrations of malondialdehyde (both in the mitochondrial and microsomal fractions) and of free {beta}-glucuronidase; total cholesterol and low-density lipoprotein-cholesterol inmore » the blood were increased, whereas HDL-C was decreased significantly. Concomitant administration of zinc sulfate with cholesterol/choleate further lowered HDL-C levels, but reversed the high hepatic concentrations of both malondialdehyde and free {beta}-glucuronidase. The present study indicates that both zinc ions and cholesterol can decrease circulatory HDL-C levels and that zinc protects against cholesterol-induced hepatic damage by reducing lysosomal enzyme release and preventing lipid peroxidation in the liver.« less

  7. Effects of zinc supplementation on obesity: study protocol for a randomized controlled clinical trial.

    PubMed

    Rathnayake, Kumari M; Silva, Kdrr; Jayawardena, Ranil

    2016-11-04

    The prevalence of obesity is escalating alarmingly worldwide, and it is now becoming a rapidly growing epidemic in developing countries. Recent studies have reported that zinc has been implicated in altered lipid markers, insulin resistance and some obesity markers. There is a lack of evidence on zinc as a potential therapeutic agent to reduce weight and improve metabolic parameters in obese adults. The present study is designed to evaluate the effects of zinc supplementation on obese adults in Sri Lanka. Furthermore, we aim to evaluate the effects of zinc supplementation on metabolic parameters in this population. This study will be conducted as a randomized, double-blind, placebo-controlled clinical trial for a period of 3 months at the clinical laboratory, Department of Applied Nutrition, Wayamba University of Sri Lanka to assess the efficacy of daily zinc 20 mg supplementation in obese subjects. There will be a total of 80 subjects, aged between 18-60 years, of both genders, who are obese (body mass index (BMI) ≥25). Subjects will be stratified according to age, gender and BMI and randomly assigned into the test and placebo groups in a 1:1 ratio. The treatment drug is a capsule containing elemental zinc 20 mg as the active ingredient (as zinc sulphate). The placebo capsule will contain lactose monohydrate. The subjects will receive either zinc capsules or placebo daily for 3 months. The study treatments will be double blinded to both investigator and subject. The visits and the evaluations will be as follows: screening (visit 0), baseline (visit 1) and 3 month (visit 2). The primary outcome will be weight reduction among the obese subjects. Secondary outcome measures include glycaemic status (fasting blood glucose), lipid parameters (total cholesterol, triglyceride levels, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol) and blood pressure. The trial protocol will aim to establish the effects of zinc supplementation on weight

  8. Effects of zinc and DHA on the epigenetic regulation of human neuronal cells.

    PubMed

    Sadli, Nadia; Ackland, M Leigh; De Mel, Damitha; Sinclair, Andrew J; Suphioglu, Cenk

    2012-01-01

    Dietary intake of zinc and omega-3 fatty acids (DHA) have health benefits for a number of human diseases. However, the molecular basis of these health benefits remains unclear. Recently, we reported that zinc and DHA affect expression levels of histones H3 and H4 in human neuronal M17 cells. Here, using immunoblotting and densitometric analysis, we aimed to investigate the effect of zinc and DHA on post-translational modifications of histone H3 in M17 cells. In response to increase in zinc concentration, we observed increase in deacetylation, methylation and phosphorylation of H3 and decrease in acetylation. We also investigated the role of zinc in apoptosis, and found that zinc reduced the levels of the anti-apoptotic marker Bcl-2 while increasing the apoptotic marker caspase-3 levels, correlating with cell viability assays. Conversely, DHA treatment resulted in increase in acetylation of H3 and Bcl-2 levels and decrease in deacetylation, methylation, phosphorylation of H3 and caspase-3 levels, suggesting that DHA promotes gene expression and neuroprotection. Our novel findings show the opposing effects of zinc and DHA on the epigenetic regulation of human neuronal cells and highlight the potential benefit of dietary intake of DHA for management of neurodegenerative diseases. Copyright © 2012 S. Karger AG, Basel.

  9. Oxidative stress in newly-hatched Chorthippus brunneus--the effects of zinc treatment during diapause, depending on the female's age and its origins.

    PubMed

    Augustyniak, Maria; Babczyńska, Agnieszka; Augustyniak, Michał

    2011-09-01

    The responses of glutathione, glutathione S-transferases (GSTs), and catalase (CAT) were determined in 1-day-old larvae of Chorthippus brunneus Thunberg, 1815, a grasshopper exposed to zinc during diapause, from unpolluted (Pilica) or polluted (Olkusz, Szopienice) sites. The aim of the work was to search for differences among populations of the insects as a result of various multistress pressures in their habitats. The question of zinc toxicity in the context of energy allocation was also considered. Zinc caused a decrease in glutathione concentration in the body of zinc-treated larvae. Significant differences between control and zinc-treated groups were confirmed for young females' progeny from Pilica and Olkusz as well as old females' progeny from Olkusz. GSTs activity was generally not influenced by zinc. It is possible that GSTs were not the most important target of zinc action. On the contrary, the influence of zinc on CAT activity was found. The increase in CAT activity after zinc treatment was similar for all studied populations. An increase in CAT activity after zinc exposure seems to be the most universal reaction. CAT activity in zinc-treated grasshoppers may explain the mechanism of zinc toxicity based on reactive oxygen forms generation. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Effect of long-term zinc pollution on soil microbial community resistance to repeated contamination.

    PubMed

    Klimek, Beata

    2012-04-01

    The aim of the study was to compare the effects of stress (contamination trials) on the microorganisms in zinc-polluted soil (5,018 mg Zn kg(-1) soil dry weight) and unpolluted soil (141 mg Zn kg(-1) soil dw), measured as soil respiration rate. In the laboratory, soils were subjected to copper contamination (0, 500, 1,500 and 4,500 mg kg(-1) soil dw), and then a bactericide (oxytetracycline) combined with a fungicide (captan) along with glucose (10 mg g(-1) soil dw each) were added. There was a highly significant effect of soil type, copper treatment and oxytetracycline/captan treatment. The initial respiration rate of chronically zinc-polluted soil was higher than that of unpolluted soil, but in the copper treatment it showed a greater decline. Microorganisms in copper-treated soil were more susceptible to oxytetracycline/captan contamination. After the successive soil contamination trials the decline of soil respiration was greater in zinc-polluted soil than in unpolluted soil.

  11. Zinc: health effects and research priorities for the 1990s.

    PubMed Central

    Walsh, C T; Sandstead, H H; Prasad, A S; Newberne, P M; Fraker, P J

    1994-01-01

    This review critically summarizes the literature on the spectrum of health effects of zinc status, ranging from symptoms of zinc deficiency to excess exposure. Studies on zinc intake are reviewed in relation to optimum requirements as a function of age and sex. Current knowledge on the biochemical properties of zinc which are critical to the essential role of this metal in biological systems is summarized. Dietary and physiological factors influencing the bioavailability and utilization of zinc are considered with special attention to interactions with iron and copper status. The effects of zinc deficiency and toxicity are reviewed with respect to specific organs, immunological and reproductive function, and genotoxicity and carcinogenicity. Finally, key questions are identified where research is needed, such as the risks to human health of altered environmental distribution of zinc, assessment of zinc status in humans, effects of zinc status in relation to other essential metals on immune function, reproduction, neurological function, and the cardiovascular system, and mechanistic studies to further elucidate the biological effects of zinc at the molecular level. PMID:7925188

  12. Village-randomized clinical trial of home distribution of zinc for treatment of childhood diarrhea in rural Western kenya.

    PubMed

    Feikin, Daniel R; Bigogo, Godfrey; Audi, Allan; Pals, Sherri L; Aol, George; Mbakaya, Charles; Williamson, John; Breiman, Robert F; Larson, Charles P

    2014-01-01

    Zinc treatment shortens diarrhea episodes and can prevent future episodes. In rural Africa, most children with diarrhea are not brought to health facilities. In a village-randomized trial in rural Kenya, we assessed if zinc treatment might have a community-level preventive effect on diarrhea incidence if available at home versus only at health facilities. We randomized 16 Kenyan villages (1,903 eligible children) to receive a 10-day course of zinc and two oral rehydration solution (ORS) sachets every two months at home and 17 villages (2,241 eligible children) to receive ORS at home, but zinc at the health-facility only. Children's caretakers were educated in zinc/ORS use by village workers, both unblinded to intervention arm. We evaluated whether incidence of diarrhea and acute lower respiratory illness (ALRI) reported at biweekly home visits and presenting to clinic were lower in zinc villages, using poisson regression adjusting for baseline disease rates, distance to clinic, and children's age. There were no differences between village groups in diarrhea incidence either reported at the home or presenting to clinic. In zinc villages (1,440 children analyzed), 61.2% of diarrheal episodes were treated with zinc, compared to 5.4% in comparison villages (1,584 children analyzed, p<0.0001). There were no differences in ORS use between zinc (59.6%) and comparison villages (58.8%). Among children with fever or cough without diarrhea, zinc use was low (<0.5%). There was a lower incidence of reported ALRI in zinc villages (adjusted RR 0.68, 95% CI 0.46-0.99), but not presenting at clinic. In this study, home zinc use to treat diarrhea did not decrease disease rates in the community. However, with proper training, availability of zinc at home could lead to more episodes of pediatric diarrhea being treated with zinc in parts of rural Africa where healthcare utilization is low. ClinicalTrials.gov NCT00530829.

  13. Interaction of zinc with dental mineral.

    PubMed

    Ingram, G S; Horay, C P; Stead, W J

    1992-01-01

    As some currently available toothpastes contain zinc compounds, the reaction of zinc with dental mineral and its effect on crystal growth rates were studied using three synthetic calcium-deficient hydroxyapatites (HAP) as being representative of dental mineral. Zinc was readily acquired by all HAP samples in the absence of added calcium, the amount adsorbed being proportional to the HAP surface area; about 9 mumol Zn/m2 was adsorbed at high zinc concentrations. As zinc was acquired, calcium was released, consistent with 1:1 Ca:Zn exchange. Soluble calcium reduced zinc uptake and similarly, calcium post-treatment released zinc. Pretreatment of HAP with 0.5 mM zinc reduced its subsequent ability to undergo seeded crystal growth, as did extracts of a toothpaste containing 0.5% zinc citrate, even in the presence of saliva. The reverse reaction, i.e. displacement of adsorbed zinc by salivary levels of calcium, however, indicates the mechanism by which zinc can reduce calculus formation in vivo by inhibiting plaque mineralisation without adversely affecting the anti-caries effects of fluoride.

  14. Effective enhancement of hydrophilicity of solution indium zinc oxide-based thin-film transistors by oxygen plasma treatment of deposition layer surface

    NASA Astrophysics Data System (ADS)

    You, Hsin-Chiang; Wang, Yu-Chih

    2016-06-01

    In this paper, we describe the use of a simple and efficient sol-gel solution method for synthesizing indium zinc oxide (IZO) films for use as semiconductor channel layers in thin-film transistors (TFTs) on p-type silicon substrates. The performance of IZO-based TFTs was investigated, and the effect of oxygen plasma treatment on the surface of dielectric SiN x was observed. Oxygen plasma treatment effectively enhanced the electron mobility in IZO-based TFT devices from 0.005 to 1.56 cm2 V-1 s-1, an increase of more than 312 times, and effectively enhanced device performance. X-ray photoelectron spectroscopy analysis of the IZO film was performed to clarify element bonding.

  15. Effects of separate delivery of zinc or zinc and vitamin A on hemoglobin response, growth, and diarrhea in young Peruvian children receiving iron therapy for anemia.

    PubMed

    Alarcon, Karl; Kolsteren, Patrick W; Prada, Ana M; Chian, Ana M; Velarde, Ruth E; Pecho, Iris L; Hoeree, Tom F

    2004-11-01

    Anemia is the most prevalent nutritional deficiency in the world. Attempts to improve iron indexes are affected by deficiency of and interaction between other micronutrients. Our goal was to assess whether zinc added to iron treatment alone or with vitamin A improves iron indexes and affects diarrheal episodes. This was a randomized, placebo-controlled, double-blind trial conducted in Peru. Anemic children aged 6-35 mo were assigned to 3 treatment groups: ferrous sulfate (FS; n = 104), ferrous sulfate and zinc sulfate (FSZn; n = 109), and ferrous sulfate, zinc sulfate, and vitamin A (FSZnA; n = 110). Vitamin A or its placebo was supplied only once; iron and zinc were provided under supervision >/=1 h apart 6 d/wk for 18 wk. The prevalence of anemia was 42.97%. The increase in hemoglobin in the FS group (19.5 g/L) was significantly less than that in the other 2 groups (24.0 and 23.8 g/L in the FSZn and FSZnA groups, respectively). The increase in serum ferritin in the FS group (24.5 mug/L) was significantly less than that in the other 2 groups (33.0 and 30.8 mug/L in the FSZn and FSZnA groups, respectively). The median duration of diarrhea and the mean number of stools per day was significantly higher in the FS group than in other 2 groups (P < 0.005). Adding zinc to iron treatment increases hemoglobin response, improves iron indexes, and has positive effects on diarrhea. No additional effect of vitamin A was found.

  16. Synergic effect of salinity and zinc stress on growth and photosynthetic responses of the cordgrass, Spartina densiflora

    PubMed Central

    Redondo-Gómez, Susana; Andrades-Moreno, Luis; Mateos-Naranjo, Enrique; Parra, Raquel; Valera-Burgos, Javier; Aroca, Ricardo

    2011-01-01

    Spartina densiflora is a C4 halophytic species that has proved to have a high invasive potential which derives from its physiological plasticity to environmental factors, such as salinity. It is found in coastal marshes of south-west Spain, growing over sediments with between 1 mmol l−1 and 70 mmol l−1 zinc. A glasshouse experiment was designed to investigate the synergic effect of zinc from 0 mmol l−1 to 60 mmol l−1 at 0, 1, and 3% NaCl on the growth and the photosynthetic apparatus of S. densiflora by measuring chlorophyll fluorescence parameters and gas exchange, and its recovery after removing zinc. Antioxidant enzyme activities and total zinc, sodium, calcium, iron, magnesium, manganese, phosphorus, potassium, and nitrogen concentrations were also determined. Spartina densiflora showed the highest growth at 1 mmol l−1 zinc and 1% NaCl after 90 d of treatment; this enhanced growth was supported by the measurements of net photosynthetic rate (A). Furthermore, there was a stimulatory effect of salinity on accumulation of zinc in tillers of this species. Zinc concentrations >1 mmol l−1 reduced growth of S. densiflora, regardless of salinity treatments. This declining growth may be attributed to a decrease in A caused by diffusional limitation of photosynthesis, owing to the modification of the potassium/calcium ratio. Also, zinc and salinity had a marked overall effect on the photochemical (photosystem II) apparatus, partially mediated by the accumulation of H2O2 and subsequent oxidative damage. However, salinity favoured the recovery of the photosynthetic apparatus to the toxic action of zinc, and enhanced the nutrient uptake. PMID:21841175

  17. Beneficial effects of zinc supplementation on head circumference of Nepalese infants and toddlers: a randomized controlled trial.

    PubMed

    Surkan, P J; Shankar, M; Katz, J; Siegel, E H; Leclerq, S C; Khatry, S K; Stoltzfus, R J; Tielsch, J M

    2012-07-01

    To assess the effects of micronutrient supplementation on head circumference of rural Nepali infants and children. We used a randomized controlled trial to assess the effects of micronutrient supplementation on head circumference in 569 rural Nepali infants and children aged 4-17 months. Children were randomized to: (1) zinc, (2) iron-folic acid, (3) zinc plus iron-folic acid or (4) a placebo group. Data on head circumference were collected during five visits at ∼3 month intervals over the course of a year. We calculated change in head circumference in treatment groups receiving zinc and iron comparing the first and fifth visits as well as used generalized estimating equations (GEE) to take advantage of data from all points in time. Models were adjusted for covariates unbalanced in the randomization and for baseline head circumference. Estimating differences in head circumference between baseline and visit 5, children in the zinc treatment group showed smaller decreases in head circumference z-score compared with placebo (adjusted β=0.13, 95% confidence interval (CI): 0.03 to 0.23). Using GEE, zinc treatment was associated with 0.11 (95% CI: 0.05 to 0.17) decrease in the rate of decline in head circumference z-score across visits as compared with placebo. Iron-folic acid supplementation was not associated with head circumference z-scores when comparing visits 1 with 5 or including data across all visits in adjusted models. Our results suggest that zinc supplementation confers a beneficial effect on the rate of head growth in Nepali infants.

  18. Influence of DNA-methylation on zinc homeostasis in myeloid cells: Regulation of zinc transporters and zinc binding proteins.

    PubMed

    Kessels, Jana Elena; Wessels, Inga; Haase, Hajo; Rink, Lothar; Uciechowski, Peter

    2016-09-01

    The distribution of intracellular zinc, predominantly regulated through zinc transporters and zinc binding proteins, is required to support an efficient immune response. Epigenetic mechanisms such as DNA methylation are involved in the expression of these genes. In demethylation experiments using 5-Aza-2'-deoxycytidine (AZA) increased intracellular (after 24 and 48h) and total cellular zinc levels (after 48h) were observed in the myeloid cell line HL-60. To uncover the mechanisms that cause the disturbed zinc homeostasis after DNA demethylation, the expression of human zinc transporters and zinc binding proteins were investigated. Real time PCR analyses of 14 ZIP (solute-linked carrier (SLC) SLC39A; Zrt/IRT-like protein), and 9 ZnT (SLC30A) zinc transporters revealed significantly enhanced mRNA expression of the zinc importer ZIP1 after AZA treatment. Because ZIP1 protein was also enhanced after AZA treatment, ZIP1 up-regulation might be the mediator of enhanced intracellular zinc levels. The mRNA expression of ZIP14 was decreased, whereas zinc exporter ZnT3 mRNA was also significantly increased; which might be a cellular reaction to compensate elevated zinc levels. An enhanced but not significant chromatin accessibility of ZIP1 promoter region I was detected by chromatin accessibility by real-time PCR (CHART) assays after demethylation. Additionally, DNA demethylation resulted in increased mRNA accumulation of zinc binding proteins metallothionein (MT) and S100A8/S100A9 after 48h. MT mRNA was significantly enhanced after 24h of AZA treatment also suggesting a reaction of the cell to restore zinc homeostasis. These data indicate that DNA methylation is an important epigenetic mechanism affecting zinc binding proteins and transporters, and, therefore, regulating zinc homeostasis in myeloid cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Study on the pre-treatment of oxidized zinc ore prior to flotation

    NASA Astrophysics Data System (ADS)

    He, Dong-sheng; Chen, Yun; Xiang, Ping; Yu, Zheng-jun; Potgieter, J. H.

    2018-02-01

    The pre-treatment of zinc oxide bearing ores with high slime content is important to ensure that resources are utilized optimally. This paper reports an improved process using hydrocyclone de-sliming, dispersion reagents, and magnetic removal of iron minerals for the pre-treatment of zinc oxide ore with a high slime and iron content, and the benefits compared to traditional technologies are shown. In addition, this paper investigates the damage related to fine slime and iron during zinc oxide flotation, the necessity of using hydrocyclone de-sliming together with dispersion reagents to alleviate the influence of slime, and interactions among hydrocyclone de-sliming, reagent dispersion, and magnetic iron removal. Results show that under optimized operating conditions the entire beneficiation technology results in a flotation concentrate with a Zn grade of 34.66% and a recovery of 73.41%.

  20. Involvement of l-arginine-nitric oxide pathway in anxiolytic-like effects of zinc chloride in rats.

    PubMed

    Navabi, Seyedeh Parisa; Eshagh Harooni, Hooman; Moazedi, Ahmad Ali; Khajepour, Lotfolah; Fathinia, Kosar

    2016-10-01

    Zinc is crucial for normal development of the brain, and Zinc deficiency has been shown to associate with neurological disorders (e.g. anxiety) through interactions with several neurotransmitter systems such as nitric oxide (NO). In this regard, our study aimed to evaluate the possible involvement of l-arginine NO pathway on anxiolytic effects of zinc in adult male rats. Zinc chloride at doses of 2.5 and 10mg/kg (intraperitoneal or ip) or saline (1ml/kg, ip) were injected 30min before the anxiety test. Zinc administrated rats (10mg/kg) were pre-treated with intra-CA1 microinjection of l-arginine in sub-effective dose of 1μg/rat (dorsal hippocampus, vehicle: saline1μl/rat). In addition, zinc chloride and NG-nitro-l-arginine methyl ester (l-NAME) were intraperitoneally co-administrated in sub-effective doses of 2.5mg/kg and 80mg/kg, respectively. The percentage of open arm time (OAT%), percentage of open arm entry (OAE%), as measures of anxiety, and total number of arm entries, as measures of locomotor activity, were recorded. Treatment with zinc (10mg/kg) markedly produced an increase in OAT% and OAE% in the Elevated plus maze test (EPM). A decrease of OAT% and OAE% was shown in groups which received zinc (10mg/kg) and l-arginine (1μg/rat) concomitantly as compared to the control group. Moreover, an increase of OAE% was revealed in the group exposed to Zinc (2.5mg/kg) and l-NAME (80mg/kg) co-administration. Although, Two-way ANOVA showed no significant differences of anxiety indices in rats received drug+zinc chloride in compare to the zinc pretreated with saline group. Anxiolytic- like effect of zinc reversed by nitric oxide precursor l-arginine. Additionally, the synergistic effects of l-NAME and ZnCl 2 were shown in the EPM. Thus our findings suggest that at least in part the anxiolytic effects of zinc can be mediated through the nitric oxide system. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Protective effects of a zinc-hydroxyapatite toothpaste on enamel erosion: SEM study

    PubMed Central

    Colombo, Marco; Beltrami, Riccardo; Rattalino, Davide; Mirando, Maria; Chiesa, Marco; Poggio, Claudio

    2016-01-01

    Summary Aim The aim of the present in vitro study was to evaluate the protective effects of a zinc-hydroxyapatite toothpaste against an erosive challenge produced by a soft drink (Coca-Cola) using Scanning Electron Microscopy (SEM). Methods Forty specimens were assigned to 4 groups of 10 specimens each (group 1: no erosive challenge, no toothpaste treatment, group 2: erosive challenge, no toothpaste treatment, group 3: erosive challenge, fluoride toothpaste treatment, group 4: erosive challenge, zinc-hydroxyapatite toothpaste treatment). The surface of each specimen was imaged by SEM. A visual rating system was used to evaluate the condition of the enamel surface; results were analyzed by nonparametric statistical methods. Results Statistically significant differences were found between the samples untreated and those immersed in Coca-Cola (group 1, 2); the highest grade of damage was found in group 2, while the lowest grade was recorded in the samples of group 4. Comparing the groups, the two analyzed toothpaste tended to protect in different extend. Conclusions In this study treatment of erosively challenged enamel with Zn-Hap toothpaste showed a clear protective effect. This was greater than the effect observed for a normal fluoride toothpaste and confirmed the potential benefit the Zn-HAP technology can provide in protecting enamel from erosive acid challenges. PMID:28149449

  2. Protective effects of a zinc-hydroxyapatite toothpaste on enamel erosion: SEM study.

    PubMed

    Colombo, Marco; Beltrami, Riccardo; Rattalino, Davide; Mirando, Maria; Chiesa, Marco; Poggio, Claudio

    2016-01-01

    The aim of the present in vitro study was to evaluate the protective effects of a zinc-hydroxyapatite toothpaste against an erosive challenge produced by a soft drink (Coca-Cola) using Scanning Electron Microscopy (SEM). Forty specimens were assigned to 4 groups of 10 specimens each (group 1: no erosive challenge, no toothpaste treatment, group 2: erosive challenge, no toothpaste treatment, group 3: erosive challenge, fluoride toothpaste treatment, group 4: erosive challenge, zinc-hydroxyapatite toothpaste treatment). The surface of each specimen was imaged by SEM. A visual rating system was used to evaluate the condition of the enamel surface; results were analyzed by nonparametric statistical methods. Statistically significant differences were found between the samples untreated and those immersed in Coca-Cola (group 1, 2); the highest grade of damage was found in group 2, while the lowest grade was recorded in the samples of group 4. Comparing the groups, the two analyzed toothpaste tended to protect in different extend. In this study treatment of erosively challenged enamel with Zn-Hap toothpaste showed a clear protective effect. This was greater than the effect observed for a normal fluoride toothpaste and confirmed the potential benefit the Zn-HAP technology can provide in protecting enamel from erosive acid challenges.

  3. Effects of zinc-deficient diets on the cardiovascular system in rabbits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, J.W.; Koo, S.I.

    1986-03-05

    The authors used male New Zealand white rabbits to study the effects of zinc-deficient diets on the cardiovascular system. These 10 week-old rabbits were fed semi-purified diets containing either 50 ppm or less than 1 ppm zinc for 12 weeks. Serum samples were analyzed at 3,6,9 and 12 weeks. Body weight and food consumption were measured weekly. At necropsy the liver and heart were removed and weighed. Then the heart was perfused at 100 mm Hg with 10% buffered formalin via the ascending aorta. Coronary arteries were block-dissected and processed for light microscopy. Food consumption and body weights were notmore » significantly altered throughout the study. Relative heart weights were not different; however, the relative liver weight of the zinc-deficient group was elevated by 11%. Neither total serum cholesterol or HDL-cholesterol were changed at any time. After 6 weeks treatment, serum zinc levels were depressed by 29% in the zinc-deficient group; no changes were observed for serum copper or calcium. Morphometric analysis of coronary arteries revealed a decreased combined thickness of the tunica intima and tunica media and a decreased area per unit length in the left coronary circumflex arteries of zinc-deficient rabbits. Significant changes reported here are probably related to possible alterations in lipoproteins metabolism and will be investigated in future studies.« less

  4. Ketamine-induced behavioural and brain oxidative changes in mice: an assessment of possible beneficial effects of zinc as mono- or adjunct therapy.

    PubMed

    Onaolapo, Olakunle James; Ademakinwa, Olayemi Quyyom; Olalekan, Temitayo Opeyemi; Onaolapo, Adejoke Yetunde

    2017-09-01

    We studied the influence of zinc, haloperidol or olanzapine on neurobehaviour (open-field, radial arm maze and elevated plus maze) and brain antioxidant status in vehicle- or ketamine-treated mice, with the aim of ascertaining the potentials of zinc in counteracting ketamine's effects. Experiment 1 assessed the effects of zinc in healthy animals and the relative degrees of modulation of ketamine's effects by zinc, haloperidol or olanzapine, respectively. Experiment 2 assessed the modulation of ketamine's effects following co-administration of zinc with haloperidol or olanzapine. Male mice weighing 18-20 g each were used. Animals were pretreated with ketamine (except vehicle, zinc, haloperidol and olanzapine controls) for 10 days before commencement of 14-day treatment (day 11-24) with vehicle, zinc, haloperidol or olanzapine (alone or in combination). Ketamine injection also continued alongside zinc and/or standard drugs in the ketamine-treated groups. Zinc, haloperidol and olanzapine were administered by gavage. Treatments were given daily and behaviours assessed on days 11 and 24. On day 24, animals were sacrificed and whole brain homogenates used for estimation of glutathione, nitric oxide and malondialdehyde (MDA) levels. Ketamine increased open-field behaviours, nitric oxide and MDA levels, while it decreased working memory, social interaction and glutathione. Administration of zinc alone or in combination with haloperidol or olanzapine was associated with variable degrees of reversal of these effects. Zinc may have the potential of a possible therapeutic agent and/or adjunct in the reversal of schizophrenia-like changes in behaviour and brain oxidative status.

  5. Randomized controlled trial of zinc and vitamin A as co-adjuvants for the treatment of pulmonary tuberculosis.

    PubMed

    Lawson, Lovett; Thacher, Tom D; Yassin, Mohammed A; Onuoha, Ndubusi A; Usman, Auwal; Emenyonu, Nnamdi E; Shenkin, Alan; Davies, Peter D O; Cuevas, Luis E

    2010-12-01

    To assess the efficacy of weekly zinc or zinc plus retinol as adjuncts for the treatment of pulmonary tuberculosis.   Double-blind, randomized, placebo-controlled trial in 350 patients >15 years old with smear-positive tuberculosis in Nigeria (ISRCTN36636609). In addition to antituberculous treatment, patients were randomly allocated to weekly supplements of zinc (90 mg), zinc plus retinol (5000 IU) or placebos for 6 months. Primary outcomes were time to sputum smear conversion and resolution of radiographic abnormalities. After 8 weeks of treatment, 68% had achieved sputum smear conversion, and the median conversion time was 6.5 weeks. Hazard ratios (HR, 95%CI) for sputum conversion relative to the placebo group were not significant for zinc (1.07, 0.92-1.29) or zinc plus retinol (0.89, 0.76-1.07). Significant predictors of time to sputum conversion were lung abnormality score, sputum smear grade, age and serum C-reactive protein. HIV co-infection and gender were not independent predictors of time to sputum conversion. There were no significant differences between supplement groups in clinical, radiological or laboratory outcomes at 2 months or 6 months. There were 9, 9 and 2 deaths in patients receiving zinc, zinc plus retinol or placebos, respectively. Mortality in those who received zinc (HR 1.71, 0.88-3.58) or zinc plus retinol (HR 1.54, 0.78-3.26) did not differ significantly from those who received placebos. Most deaths occurred in patients co-infected with HIV.   Supplementation with zinc or zinc plus retinol did not lead to better outcomes than placebos, and caution is warranted regarding routine micronutrient supplementation, particularly in patients co-infected with HIV. © 2010 Blackwell Publishing Ltd.

  6. Efficacy and tolerability of nitric-zinc complex in the treatment of external genital warts and "difficult-to-treat" warts: a "proof of concept", prospective, multicentre, open study.

    PubMed

    Cusini, M; Micali, G; Lacarrubba, F; Puviani, M; Barcella, A; Milani, M

    2015-12-01

    Treatment of plantar and periungueal warts (so called "difficult-to-treat" warts, DTW) and external genital warts (EGW) remains unsatisfactory. Medical or invasive procedures are partially effective and/or painful. Furthermore recurrences rates after treatments are still a relevant problem for all the available therapies. Nitric-zinc complex is a solution for topical application containing nitric acid, zinc, copper and organic acids able to induce a caustic effect of the wart trough mummification and proteins denaturation/coagulation action. Nitric-zinc complex has been shown to be an effective and well tolerated treatment of common warts. We evaluated in a prospective open label 4-centre trial, the efficacy and local tolerability of nitric-zinc complex in the treatment of EGW and DTW. A total of 37 immunocompetent subjects (20 men and 17 women; mean age: 45 years) with single or multiple lesions, were enrolled, after their informed consent. A total of 30 subjects had EGW, 2 subjects had plantar warts, 2 warts of the hand and 3 periungueal lesions. Nitric-zinc aqueous solution was applied topically using a 30 mL capillary tube over the lesions until a whitening/yellowish reaction appeared. A second (or more, if needed) application was performed at two-week interval until a complete clinical cure rate was observed. Primary outcome of the study was the clinical evaluation with picture documentation of the evolution of lesions classified as total cure, partial disappearance or no effect. Topical tolerability was evaluated through patient's reported adverse events. All subjects completed the study. A complete cure of lesions was observed in 31 subjects (90%) after one and up to four applications. Three patients with EGW (8%) showed a partial disappearance of lesions and one (2%) subject was no responder to four nitric-zinc complex applications. The product was well tolerated. No serious adverse events were observed or recorded. Nitric-zinc complex topical solution has

  7. Effects of serum zinc level on tinnitus.

    PubMed

    Berkiten, Güler; Kumral, Tolgar Lütfi; Yıldırım, Güven; Salturk, Ziya; Uyar, Yavuz; Atar, Yavuz

    2015-01-01

    The aim of this study was to assess zinc levels in tinnitus patients, and to evaluate the effects of zinc deficiency on tinnitus and hearing loss. One-hundred patients, who presented to an outpatient clinic with tinnitus between June 2009 and 2014, were included in the study. Patients were divided into three groups according to age: Group I (patients between 18 and 30years of age); Group II (patients between 31 and 60years of age); and Group III (patients between 61 and 78years of age). Following a complete ear, nose and throat examination, serum zinc levels were measured and the severity of tinnitus was quantified using the Tinnitus Severity Index Questionnaire (TSIQ). Patients were subsequently asked to provide a subjective judgment regarding the loudness of their tinnitus. The hearing status of patients was evaluated by audiometry and high-frequency audiometry. An average hearing sensitivity was calculated as the mean value of hearing thresholds between 250 and 20,000Hz. Serum zinc levels between 70 and 120μg/dl were considered normal. The severity and loudness of tinnitus, and the hearing thresholds of the normal zinc level and zinc-deficient groups, were compared. Twelve of 100 (12%) patients exhibited low zinc levels. The mean age of the zinc-deficient group was 65.41±12.77years. Serum zinc levels were significantly lower in group III (p<0.01). The severity and loudness of tinnitus were greater in zinc-deficient patients (p=0.011 and p=0.015, respectively). Moreover, the mean thresholds of air conduction were significantly higher in zinc-deficient patients (p=0.000). We observed that zinc levels decrease as age increases. In addition, there was a significant correlation between zinc level and the severity and loudness of tinnitus. Zinc deficiency was also associated with impairments in hearing thresholds. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Effects of rutin supplementation on antioxidant status and iron, copper, and zinc contents in mouse liver and brain.

    PubMed

    Gao, Zhonghong; Xu, Huibi; Huang, Kaixun

    2002-09-01

    The effect of rutin on total antioxidant status as well as on trace elements such as iron, copper, and zinc in mouse liver and brain were studied. Mice were administrated with 0.75 g/kg or 2.25 g/kg P. O. of rutin for 30 d consecutively. Following the treatment, the activity of total antioxidant status, catalase, Cu,Zn-superoxide dismutase, Mn-superoxide dismutase, zinc, copper, and iron were measured in mouse liver and brain. The results showed that rutin significantly increased the antioxidant status and Mn-superoxide dismutase activities in mouse liver, but it had no effect on these variables in the brain. Treatment with a higher concentration of rutin significantly decreased catalase activity and iron, zinc, and copper contents in mouse liver; it also resulted in a slower weight gain for the first 20 d. These results indicate that rutin taken in proper amount can effectively improve antioxidant status, whereas at an increased dosage, it may cause trace element (such as iron, zinc, and copper) deficiencies and a decrease in the activities of related metal-containing enzymes.

  9. Nutritional status in patients with cutaneous leishmaniasis and a study of the effects of zinc supplementation together with antimony treatment.

    PubMed

    Guzman-Rivero, Miguel; Rojas, Ernesto; Verduguez-Orellana, Aleida; Pardo, Henry; Torrico, Mary Cruz; Cloetens, Lieselotte; Akesson, Björn; Sejas, Edgar

    2014-01-01

    The role of micronutrient status for the incidence and clinical course of cutaneous leishmaniasis is not much studied. Still zinc supplementation in leishmaniasis has shown some effect on the clinical recovery, but the evidence in humans is limited. To compare biochemical nutritional status in cutaneous leishmaniasis patients with that in controls and to study the effects of zinc supplementation for 60 days. Twenty-nine patients with cutaneous leishmaniasis were treated with antimony for 20 days. Fourteen of them got 45 mg zinc daily and 15 of them got placebo. Biomarkers of nutritional and inflammatory status and changes in size and characteristics of skin lesions were measured. The level of transferrin receptor was higher in patients than in controls but otherwise no differences in nutritional status were found between patients and controls. No significant effects of zinc supplementation on the clinical recovery were observed as assessed by lesion area reduction and characteristics or on biochemical parameters. It is concluded that nutritional status was essentially unaffected in cutaneous leishmaniasis and that oral zinc supplementation administered together with intramuscular injection of antimony had no additional clinical benefit.

  10. Effect of dietary proteins on zinc bioavailability in pregnant rats.

    PubMed

    Uenishi, K; Horio, H; Manabe, S; Sakamoto, S

    1993-12-01

    In order to clarify the effects of dietary proteins on zinc bioavailability during pregnancy, two experiments were carried out. In Experiment 1, changes in zinc retention due to pregnancy (difference in retention between pregnant and nonpregnant animals) during early-mid and late pregnancy were examined in rats fed 10 and 20% egg white diets. Total amounts of retained zinc due to pregnancy were about 1000 micrograms or slightly more, equal to the zinc content in the products of conception at term. However, extra zinc retention during late pregnancy ranged between only 20 to 40% of overall retention, suggesting that almost all zinc retained during early-mid pregnancy moved from the mothers to the fetuses near term. Zinc retention in early-mid and late periods of pregnancy was higher in pregnant than nonpregnant rats, due mainly to increases in intake and bioavailability. In Experiment 2, to examine the effects of quality and quantity of dietary proteins, pregnant rats were fed either 10 or 20% egg white (EW), whole egg (WE), casein (C) and soy protein isolate with or without methionine (SM and S, respectively) diets. Total zinc retention during pregnancy was affected by both zinc and nitrogen intakes, though the former effect was greater than the latter. Because rats fed the EW diets retained dietary zinc efficiently, a relationship between zinc retention (Y, microgram/100 g BW/21 d.) and zinc intake (X, microgram/100 g BW/21 d.) was also examined in the non-EW protein groups, resulting in the following regression equation: Y = 0.471X-1790 (n: 51, r = 0.81, p < 0.001). Dietary protein quality affected the food intake resulting in different zinc intake and retention during pregnancy. Zinc from EW diets was more available than from the other four protein diets, because similar plots for rats fed the 10 and 20% EW diets fell above this line. Reasons for efficient bioavailability of zinc in EW were discussed in connection with the forms of zinc in diets and the

  11. Effects of antioxidant components of AREDS vitamins and zinc ions on endothelial cell activation: implications for macular degeneration.

    PubMed

    Zeng, Shemin; Hernández, Jasmine; Mullins, Robert F

    2012-02-01

    To investigate whether the benefit of Age-Related Eye Disease Study (AREDS) formula multivitamins and zinc in the progression of age-related macular degeneration (AMD) may occur through inhibiting inflammatory events in the choroid. Mouse C166 endothelial cells (ECs) and, for some experiments, human retinal pigment epithelium (RPE)-choroid organ cultures were treated with AREDS multivitamin solution (MVS) or ZnCl(2). The cytotoxicity of MVS was evaluated using a lactate dehydrogenase colorimetric assay. Cell motility was assessed using a scratch assay. Macrophage adhesion to EC monolayers or ICAM-1 protein was determined after MVS and zinc treatment and with or without lipopolysaccharide (LPS). Quantitative reverse transcription PCR and Western blot analysis were used to determine the effects of MVS on the expression of proinflammatory molecules in treated and untreated cells. AREDS MVS and zinc did not affect C166 EC viability until the 56th hour after treatment. Scratch assays showed partial inhibition of MVS and zinc on EC migration. In cell adhesion assays, MVS and zinc decreased the number of macrophages bound to EC and to ICAM-1 protein. Quantitative PCR showed that LPS increased the expression of ICAM-1 in both C166 and human RPE-choroid cultures, which was partially offset by MVS and zinc. MVS and zinc also mitigated LPS-induced ICAM-1 protein expression on Western blot analysis. Treatment with AREDS MVS and zinc may affect both angiogenesis and endothelial-macrophage interactions. These results suggest that AREDS vitamins and zinc ions may slow the progression of AMD, in part through the attenuation of EC activation.

  12. Zinc treatment ameliorates diarrhea and intestinal inflammation in undernourished rats

    PubMed Central

    2014-01-01

    Background WHO guidelines recommend zinc supplementation as a key adjunct therapy for childhood diarrhea in developing countries, however zinc’s anti-diarrheal effects remain only partially understood. Recently, it has been recognized that low-grade inflammation may influence stunting. In this study, we examined whether oral zinc supplementation could improve weight, intestinal inflammation, and diarrhea in undernourished weanling rats. Methods Rats were undernourished using a northeastern Brazil regional diet (RBD) for two weeks, followed by oral gavage with a saturated lactose solution (30 g/kg) in the last 7 days to induce osmotic diarrhea. Animals were checked for diarrhea daily after lactose intake. Blood was drawn in order to measure serum zinc levels by atomic absorption spectroscopy. Rats were euthanized to harvest jejunal tissue for histology and cytokine profiles by ELISA. In a subset of animals, spleen samples were harvested under aseptic conditions to quantify bacterial translocation. Results Oral zinc supplementation increased serum zinc levels following lactose-induced osmotic diarrhea. In undernourished rats, zinc improved weight gain following osmotic diarrhea and significantly reduced diarrheal scores by the third day of lactose intake (p < 0.05), with improved jejunum histology (p < 0.0001). Zinc supplementation diminished bacterial translocation only in lactose-challenged undernourished rats (p = 0.03) compared with the untreated challenged controls and reduced intestinal IL-1β and TNF-α cytokines to control levels. Conclusion Altogether our findings provide novel mechanisms of zinc action in the setting of diarrhea and undernutrition and support the use of zinc to prevent the vicious cycle of malnutrition and diarrhea. PMID:25095704

  13. Total Zinc Intake May Modify the Glucose-Raising Effect of a Zinc Transporter (SLC30A8) Variant

    PubMed Central

    Kanoni, Stavroula; Nettleton, Jennifer A.; Hivert, Marie-France; Ye, Zheng; van Rooij, Frank J.A.; Shungin, Dmitry; Sonestedt, Emily; Ngwa, Julius S.; Wojczynski, Mary K.; Lemaitre, Rozenn N.; Gustafsson, Stefan; Anderson, Jennifer S.; Tanaka, Toshiko; Hindy, George; Saylor, Georgia; Renstrom, Frida; Bennett, Amanda J.; van Duijn, Cornelia M.; Florez, Jose C.; Fox, Caroline S.; Hofman, Albert; Hoogeveen, Ron C.; Houston, Denise K.; Hu, Frank B.; Jacques, Paul F.; Johansson, Ingegerd; Lind, Lars; Liu, Yongmei; McKeown, Nicola; Ordovas, Jose; Pankow, James S.; Sijbrands, Eric J.G.; Syvänen, Ann-Christine; Uitterlinden, André G.; Yannakoulia, Mary; Zillikens, M. Carola; Wareham, Nick J.; Prokopenko, Inga; Bandinelli, Stefania; Forouhi, Nita G.; Cupples, L. Adrienne; Loos, Ruth J.; Hallmans, Goran; Dupuis, Josée; Langenberg, Claudia; Ferrucci, Luigi; Kritchevsky, Stephen B.; McCarthy, Mark I.; Ingelsson, Erik; Borecki, Ingrid B.; Witteman, Jacqueline C.M.; Orho-Melander, Marju; Siscovick, David S.; Meigs, James B.; Franks, Paul W.; Dedoussis, George V.

    2011-01-01

    OBJECTIVE Many genetic variants have been associated with glucose homeostasis and type 2 diabetes in genome-wide association studies. Zinc is an essential micronutrient that is important for β-cell function and glucose homeostasis. We tested the hypothesis that zinc intake could influence the glucose-raising effect of specific variants. RESEARCH DESIGN AND METHODS We conducted a 14-cohort meta-analysis to assess the interaction of 20 genetic variants known to be related to glycemic traits and zinc metabolism with dietary zinc intake (food sources) and a 5-cohort meta-analysis to assess the interaction with total zinc intake (food sources and supplements) on fasting glucose levels among individuals of European ancestry without diabetes. RESULTS We observed a significant association of total zinc intake with lower fasting glucose levels (β-coefficient ± SE per 1 mg/day of zinc intake: −0.0012 ± 0.0003 mmol/L, summary P value = 0.0003), while the association of dietary zinc intake was not significant. We identified a nominally significant interaction between total zinc intake and the SLC30A8 rs11558471 variant on fasting glucose levels (β-coefficient ± SE per A allele for 1 mg/day of greater total zinc intake: −0.0017 ± 0.0006 mmol/L, summary interaction P value = 0.005); this result suggests a stronger inverse association between total zinc intake and fasting glucose in individuals carrying the glucose-raising A allele compared with individuals who do not carry it. None of the other interaction tests were statistically significant. CONCLUSIONS Our results suggest that higher total zinc intake may attenuate the glucose-raising effect of the rs11558471 SLC30A8 (zinc transporter) variant. Our findings also support evidence for the association of higher total zinc intake with lower fasting glucose levels. PMID:21810599

  14. Effects of phytase, cellulase, and dehulling treatments on iron and zinc in vitro solubility in faba bean (Vicia faba L.) Flour and Legume Fractions.

    PubMed

    Luo, Yu-Wei; Xie, Wei-Hua; Cui, Qun-Xiang

    2010-02-24

    Simulations of gastrointestinal digestion were used to try to identify the nature of the complexes between antinutritional factors and iron and zinc in faba bean and legume fractions. In digestible residue of raw faba bean flour, simultaneous action of cellulase and phytases made it possible to release about 28% units more iron than that released with the treatment without enzymes. About 49.8% of iron in raw faba bean flour was solubilized after in vitro digestion and simultaneous action of cellulase and phytase. In the hull fraction, the action of phytases and the simultaneous action of cellulase and phytase allowed about 7 and 35% units of additional zinc to be solubilized, respectively. Single enzymatic degradation of phytates from dehulled faba bean allowed solubilization from 65 to 93% of zinc, depending upon the treatment. In dehulled faba bean, iron was chelated by phytates and by fibers, whereas zinc was almost exclusively chelated by phytates. In the hull of faba bean, a high proportion of iron was chelated by iron-tannins, while the rest of iron as well as the majority of zinc were chelated in complexes between phytates and fibers.

  15. Therapeutic effects of transdermal systems containing zinc-related materials on thermal burn rats.

    PubMed

    Otsuka, Makoto; Hatakeyama, Haruna; Shikamura, Masayuki; Otsuka, Kuniko; Ito, Atsuo

    2015-01-01

    The aim of the present study is to evaluate the efficacy of slow zinc (Zn) release from β-tricalcium phosphate powder (ZnTCP) containing 10 mol% Zn on rats with thermal burns. The first-aid tapes were contained zinc sulfate (ZnSO4) solution, ZnTCP suspensions or zinc oxide ointment. After thermal burn treatments were performed on Zn-deficient rats, the groups D1, D2 and D3 were treated with tapes containing ZnTCP, ZnSO4 and zinc oxide ointment. The effects of the tapes on wound area, plasma Zn levels and alkaline phosphatase activity (Alp) were investigated. The wound area profiles of all rat groups could be separated into before and after the scab formation at around day 6. The area under the curve (Aw-AUC) for wound area profiles, therefore, was evaluated as an index of therapeutic scores for the thermal wound. The order of Aw-AUC was D3>C>D2>D1. The degree of expansion at the initial stage by thermal burns of group D1 was the lowest and that of group D2 was the highest, and the order was D1treatment could control the initial inflammation caused by thermal burns.

  16. Infantile zinc deficiency: Association with autism spectrum disorders

    PubMed Central

    Yasuda, Hiroshi; Yoshida, Kazuya; Yasuda, Yuichi; Tsutsui, Toyoharu

    2011-01-01

    Elucidation of the pathogenesis and effective treatment of autism spectrum disorders is one of the challenges today. In this study, we examine hair zinc concentrations for 1,967 children with autistic disorders (1,553 males and 414 females), and show considerable association with zinc deficiency. Histogram of hair zinc concentration was non-symmetric with tailing in lower range, and 584 subjects were found to have lower zinc concentrations than −2 standard deviation level of its reference range (86.3–193ppm). The incidence rate of zinc deficiency in infant group aged 0–3 year-old was estimated 43.5 % in male and 52.5 % in female. The lowest zinc concentration of 10.7 ppm was detected in a 2-year-old boy, corresponding to about 1/12 of the control mean level. These findings suggest that infantile zinc deficiency may epigenetically contribute to the pathogenesis of autism and nutritional approach may yield a novel hope for its treatment and prevention. PMID:22355646

  17. [Advances in the research of zinc deficiency and zinc supplementation treatment in patients with severe burns].

    PubMed

    Wang, X X; Zhang, M J; Li, X B

    2018-01-20

    Zinc is one of the essential trace elements in human body, which plays an important role in regulating acute inflammatory response, glucose metabolism, anti-oxidation, immune and gastrointestinal function of patients with severe burns. Patients with severe burns may suffer from zinc deficiency because of insufficient amount of zinc intake from the diet and a large amount of zinc lose through wounds and urine. Zinc deficiency may affect their wound healing process and prognosis. This article reviews the characteristics of zinc metabolism in patients with severe burns through dynamic monitoring the plasma and urinary concentration of zinc. An adequate dosage of zinc supplemented to patients with severe burns by an appropriate method can increase the level of zinc in plasma and skin tissue and improve wound healing, as well as reduce the infection rates and mortality. At the same time, it is important to observe the symptoms and signs of nausea, dizziness, leukopenia and arrhythmia in patients with severe burns after supplementing excessive zinc.

  18. The significance of the source of zinc and its anti-VSC effect.

    PubMed

    Rölla, G; Jonski, G; Young, A

    2002-06-01

    The anti-VSC (volatile sulphur compounds) effect of zinc is known to be associated with free zinc ions. To examine whether zinc salts with low stability constants were more suitable as sources of zinc in zinc lozenges than zinc salts with high stability constants. The former provide free zinc ions upon dissolution in water, whereas the latter provide few such ions. Identical lozenges were produced which contained either zinc acetate, zinc gluconate (low stability constants), zinc citrate or amino-acid chelated zinc (extremely high stability constants). All the lozenges contained 0.1 per cent of zinc. A test panel of 10 volunteers used the different lozenges randomly. VSC were measured by GC. The lozenge with the highest stability constant was as effective as those with very low stability constants. The anti-VSC effect was thus not related to this constant. These findings may be explained by the possibility that alternative ligands with stronger affinity for zinc than the original ligands in the lozenges may be present in the oral cavity. An in vitro experiment indicated that the sulphide ion (S2-) may be such a ligand.

  19. Supplementation of Diabetic Rats with Leucine, Zinc, and Chromium: Effects on Function and Histological Structure of Testes.

    PubMed

    Kolahian, Saeed; Sadri, Hassan; Larijani, Amir; Hamidian, Gholamreza; Davasaz, Afshin

    2015-12-01

    The objective was to study whether leucine, zinc, and chromium supplementations influence function and histological structure of testes in a rat model of type 2 diabetes. Seventy seven adult male rats were categorized into 11 groups of 7 animals each: (1) nondiabetic (negative control); (2) non-treated (positive control); (3) treated with insulin; (4) treated with glibenclamide; (5) treated with leucine; (6) treated with zinc; (7) treated with chromium; (8) treated with leucine + zinc; (9) treated with leucine + chromium; (10) treated with zinc + chromium; (11) treated with leucine + zinc + chromium. In the non-treated group, hyperglycemia severely damaged testes morphology as well as the spermatogenic process. Diabetes induction decreased testicular length, height, width, volume, total number of epididymal sperm, and number of live sperm. Seminiferous tubules of diabetic rats showed a decrease in diameter of tubules and height of epithelium. Diabetes induction decreased the number of cells (spermatogonia, spermatocyte, spermatid, and Sertoli) in cross sections of seminiferous tubules. Administration of nutritional supplements to the diabetic rats improved testes morphology and reversed, although not completely, impairment of spermatogenesis. Treatment with nutritional supplements increased testicular length, height, width, and volume. All treatments increased the number of live sperm and the total number of epididymal sperm. Furthermore, nutritional supplements increased diameter of tubules, height of epithelium, and the number of cells in seminiferous tubules. These alleviating effects were more pronounced in animals treated with the leucine-zinc-chromium combination. The present results demonstrate beneficial effects of zinc, leucine, and chromium supplements to improve testes morphology and to restore spermatogenesis in type 2 diabetic rats.

  20. Decreased zinc in the development and progression of malignancy: an important common relationship and potential for prevention and treatment of carcinomas

    PubMed Central

    Costello, Leslie C.; Franklin, Renty B.

    2016-01-01

    Introduction Efficacious chemotherapy does not exist for treatment or prevention of prostate, liver, and pancreatic carcinomas, and some other cancers that exhibit decreased zinc in malignancy. Zinc treatment offers a potential solution; but its support has been deterred by adverse bias. Areas covered 1. The clinical and experimental evidence for the common ZIP transporter/Zn down regulation in these cancers. 2. The evidence for a zinc approach to prevent and/or treat these carcinomas. 3. The issues that introduce bias against support for the zinc approach. Expert opinion ZIP/Zn downregulation is a clinically established common event in prostate, hepatocellular and pancreatic cancers. 2. Compelling evidence supports the plausibility that a zinc treatment regimen will prevent development of malignancy and termination of progressing malignancy in these cancers; and likely other carcinomas that exhibit decreased zinc. 3. Scientifically-unfounded issues that oppose this ZIP/Zn relationship have introduced bias against support for research and funding of a zinc treatment approach. 4. The clinically-established and supporting experimental evidence provide the scientific credibility that should dictate the support for research and funding of a zinc approach for the treatment and possible prevention of these cancers. 5. This is in the best interest of the medical community and the public-at-large. PMID:27885880

  1. Effects of Antioxidant Components of AREDS Vitamins and Zinc Ions on Endothelial Cell Activation: Implications for Macular Degeneration

    PubMed Central

    Zeng, Shemin; Hernández, Jasmine

    2012-01-01

    Purpose. To investigate whether the benefit of Age-Related Eye Disease Study (AREDS) formula multivitamins and zinc in the progression of age-related macular degeneration (AMD) may occur through inhibiting inflammatory events in the choroid. Methods. Mouse C166 endothelial cells (ECs) and, for some experiments, human retinal pigment epithelium (RPE)–choroid organ cultures were treated with AREDS multivitamin solution (MVS) or ZnCl2. The cytotoxicity of MVS was evaluated using a lactate dehydrogenase colorimetric assay. Cell motility was assessed using a scratch assay. Macrophage adhesion to EC monolayers or ICAM-1 protein was determined after MVS and zinc treatment and with or without lipopolysaccharide (LPS). Quantitative reverse transcription PCR and Western blot analysis were used to determine the effects of MVS on the expression of proinflammatory molecules in treated and untreated cells. Results. AREDS MVS and zinc did not affect C166 EC viability until the 56th hour after treatment. Scratch assays showed partial inhibition of MVS and zinc on EC migration. In cell adhesion assays, MVS and zinc decreased the number of macrophages bound to EC and to ICAM-1 protein. Quantitative PCR showed that LPS increased the expression of ICAM-1 in both C166 and human RPE-choroid cultures, which was partially offset by MVS and zinc. MVS and zinc also mitigated LPS-induced ICAM-1 protein expression on Western blot analysis. Conclusions. Treatment with AREDS MVS and zinc may affect both angiogenesis and endothelial-macrophage interactions. These results suggest that AREDS vitamins and zinc ions may slow the progression of AMD, in part through the attenuation of EC activation. PMID:22247465

  2. Immobilization Effect of Morphological, Thermal and Optical Properties in Biotemplate on Zinc Oxide Nanocomposite from Chitosan

    NASA Astrophysics Data System (ADS)

    Karpuraranjith, M.; Thambidurai, S.

    Biotemplate-based zinc oxide nanocomposite was effectively prepared via simple chemical precipitation route. The functional groups of amino (-NH2), hydroxyl (-OH) and O-Zn-O were confirmed and characterized by FTIR spectroscopy. The structural and morphological properties were confirmed by XRD, UV-Vis DRS, HR-SEM and TEM analyses. The elemental composition of carbon, nitrogen, zinc and oxygen was confirmed by energy-dispersive X-ray analysis (EDAX) and Brunauer-Emmett-Teller high surface area of materials was estimated to be 52.49m2/g, respectively. Thermogravimetric analysis (TGA) shows that biotemplate on zinc oxide nanocomposite has higher thermal stability than chitosan matrix. The results demonstrate that biotemplate on zinc oxide matrix causes immobilization effect among the two components. Therefore, chitosan-ZnO nanocomposite has a microcrystalline morphological structure and also good thermal stability, so it can be a promising material for sensors, medical, tissue engineering and wastewater treatment applications.

  3. Suppressive effect of zinc ion on iNOS expression induced by interferon-gamma or tumor necrosis factor-alpha in murine keratinocytes.

    PubMed

    Yamaoka, J; Kume, T; Akaike, A; Miyachi, Y

    2000-05-01

    Zinc, an essential metal, is a critical component of zinc binding proteins such as zinc fingers, zinc enzymes and metallothioneins. Recently, evidence for its anti-inflammatory property in skin has been accumulating, as shown in the treatment of acne, alopecia and zinc deficiency. In cutaneous inflammations, a large amount of nitric oxide (NO) is produced through induction of inducible nitric oxide synthase (iNOS) under the influence of proinflammatory cytokines, resulting in tissue damages in skin, as clarified in other organs. Therefore, we asked if the effect of zinc on NO production and/or on iNOS expression in keratinocytes may explain the anti-inflammatory property of zinc in skin. Accordingly, we sought to determine in this study whether zinc ion may have effect on IFN-gamma or TNF-alpha induced NO production and iNOS expression in cultured murine keratinocytes. Ten microM of zinc ion remarkably suppressed cytokine-induced NO production in keratinocytes. Furthermore, zinc ion also suppressed cytokine-induced iNOS expression in the protein level as well as in the messenger RNA level. These results suggest the possibility that the suppressive effect of zinc ion on cytokine-induced NO production in keratinocytes may be in part implicated in the anti-inflammatory property of zinc in some of skin disorders.

  4. Effects of zinc complexes on the distribution of zinc in calcareous soil and zinc uptake by maize.

    PubMed

    Alvarez, José M; Rico, María I

    2003-09-10

    The movement and availability of Zn from six organic Zn sources in a Typic Xerorthent (calcareous) soil were compared by incubation, column assay, and in a greenhouse study with maize (Zea mays L.). Zinc soil behavior was studied by sequential, diethylenetriaminepentaacetate, and Mehlich-3 extractions. In the incubation experiment, the differences in Zn concentration observed in the water soluble plus exchangeable fraction strongly correlated with Zn uptake by plants in the greenhouse experiment. Zinc applied to the surface of soil columns scarcely moved into deeper layers except for Zn-ethylenediaminetetraacetate (EDTA) that showed the greatest distribution of labile Zn throughout the soil and the highest proportion of leaching of the applied Zn. In the upper part of the column, changes in the chemical forms of all treatments occurred and an increase in organically complexed and amorphous Fe oxide-bound fractions was detected. However, the water soluble plus exchangeable fraction was not detected. The same results were obtained at the end of the greenhouse experiment. Significant increases were found in plant dry matter yield and Zn concentration as compared with the control treatment without Zn addition. Increasing Zn rate in the soil increased dry matter yield in all cases but Zn concentration in the plant increased only with Zn-EDTA and Zn-ethylenediaminedi-o-hydroxyphenyl-acetate (EDDHA) fertilizers. Higher Zn concentration in plants (50.9 mg kg(-)(1)) occurred when 20 mg Zn kg(-)(1) was added to the soil as Zn-EDTA. The relative effectiveness of the different Zn carriers in increasing Zn uptake was in the order: Zn-EDTA > Zn-EDDHA > Zn-heptagluconate >/= Zn-phenolate approximately Zn-polyflavonoid approximately Zn-lignosulfonate.

  5. Acute changes in cellular zinc alters zinc uptake rates prior to zinc transporter gene expression in Jurkat cells.

    PubMed

    Holland, Tai C; Killilea, David W; Shenvi, Swapna V; King, Janet C

    2015-12-01

    A coordinated network of zinc transporters and binding proteins tightly regulate cellular zinc levels. Canonical responses to zinc availability are thought to be mediated by changes in gene expression of key zinc transporters. We investigated the temporal relationships of actual zinc uptake with patterns of gene expression in membrane-bound zinc transporters in the human immortalized T lymphocyte Jurkat cell line. Cellular zinc levels were elevated or reduced with exogenous zinc sulfate or N,N,N',N-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), respectively. Excess zinc resulted in a rapid 44 % decrease in the rate of zinc uptake within 10 min. After 120 min, the expression of metallothionein (positive control) increased, as well as the zinc exporter, ZnT1; however, the expression of zinc importers did not change during this time period. Zinc chelation with TPEN resulted in a rapid twofold increase in the rate of zinc uptake within 10 min. After 120 min, the expression of ZnT1 decreased, while again the expression of zinc importers did not change. Overall, zinc transporter gene expression kinetics did not match actual changes in cellular zinc uptake with exogenous zinc or TPEN treatments. This suggests zinc transporter regulation may be the initial response to changes in zinc within Jurkat cells.

  6. Beneficial effect of zinc chloride and zinc ionophore pyrithione on attenuated cardioprotective potential of preconditioning phenomenon in STZ-induced diabetic rat heart.

    PubMed

    Jamwal, Sumit; Kumar, Kushal; Reddy, B V Krishna

    2016-05-01

    Ischemic preconditioning (IPC) is well demonstrated to produce cardioprotection by phosphorylation and subsequent inactivation of glycogen synthase kinase-3β (GSk-3β) in the normal rat heart, but its effect is attenuated in the diabetic rat heart. This study was designed to investigate the effect of zinc chloride and zinc ionophore pyrithione (ZIP) on the attenuated cardioprotective potential of IPC in the diabetic rat heart. Diabetes mellitus (DM) was induced by a single intraperitoneal administration of streptozotocin (STZ) (50 mg/kg; i.p). The isolated perfused rat heart was subjected to 30 minutes of ischemia followed by 120 minutes of reperfusion. Myocardial infarct size was estimated by triphenyltetrazolium chloride (TTC) staining and cardiac injury was measured by estimating lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) in the coronary effluent. Also, GSK-3β was measured and neutrophil accumulation was measured by estimating myeloperoxidase (MPO) levels. IPC significantly decreased the myocardial infarct size, the release of LDH and CK-MB, the GSK-3β levels and the MPO levels in the normal rat heart. Pre- and post-ischemic treatment with zinc chloride and zinc ionophore pyrithione (ZIP) in the normal and diabetic rat hearts significantly decreased the myocardial infarct size, the level of CK-MB and LDH in the coronary effluent and GSK-3β and MPO levels. Our results suggest that pharmacological preconditioning with zinc chloride and ZIP significantly restored the attenuated cardioprotective potential of IPC in the diabetic rat heart. © The Author(s) 2015.

  7. Effect of microstructure on the zinc phosphate conversion coatings on magnesium alloy AZ91

    NASA Astrophysics Data System (ADS)

    Van Phuong, Nguyen; Moon, Sungmo; Chang, Doyon; Lee, Kyu Hwan

    2013-01-01

    The effect of the microstructure, particularly of β-Mg17Al12 phase, on the formation and growth of zinc phosphate conversion coatings on magnesium alloy AZ91 (AZ91) was studied. The zinc phosphate coatings were formed on AZ91 with different microstructures produced by heat treatment. The effect of the microstructure on the zinc phosphate coatings were examined using optical microscope (OM), X-ray diffraction (XRD), coatings weight and etching weight balances, scanning electron microscopy (SEM) and salt immersion test. Results showed that as-cast AZ91 contained a high volume fraction of the β-Mg17Al12 phase and it was dissolved into α-Mg phase during heat treatment at 400 °C. The β-phase became center for hydrogen evolution during phosphating reaction (cathodic sites). The decreased volume fraction of the β-phase caused decreasing both coatings weight and etching weight of the phosphating process. However, it increased the crystal size of the coatings and improved corrosion resistance of AZ91 by immersing in 0.5 M NaCl solution. Results also showed that the structure of the zinc phosphate conversion on AZ91 consisted of two layers: an outer crystal Zn3(PO4)2·4H2O (hopeite) and an inner which was mainly composed of MgZn2(PO4)2 and Mg3(PO4)2. A mechanism for the formation of two layers of the coatings was also proposed in this study.

  8. Evaluation of the effect of zinc acetate on the stratum corneum penetration kinetics of erythromycin in healthy male volunteers.

    PubMed

    van Hoogdalem, E J; Terpstra, I J; Baven, A L

    1996-01-01

    Erythromycin with or without additional zinc acetate is used topically in the treatment of acne vulgaris. A potential effect of zinc on the stratum corneum penetration of erythromycin was investigated in human volunteers. Skin surface washings and tape strippings from the skin of the back were collected after drug applications in 12 subjects for quantification of erythromycin levels. Zinc acetate increased the amount remaining on the back skin at 6 h after application from 40 +/- 19 to 56 +/- 15% of the dose and, vice versa, reduced the amount in stratum corneum strips from 22 +/- 7 to 18 +/- 7%, both with statistical significance. The effect varied with body region. Zinc acetate thus provided to prolong the residence time of erythromycin on the skin.

  9. Preventive effects of supplemental dietary zinc on heat-induced damage in the epididymis of boars.

    PubMed

    Li, Zhaojian; Li, Yansen; Zhou, Xin; Cao, Yun; Li, Chunmei

    2017-02-01

    Hyperthermia in boars reduces growth performance and sperm production. Zinc is an essential trace element in animal nutrition. Here we investigate the effects of dietary zinc on epididymal structure and function in Bama miniature pigs treated with heat exposure and investigate approaches to improve the reproductive performance in summer. Male Bama miniature pigs (n=18; aged 6 months; bodyweight=10.79±0.06kg) were randomly allocated to 3 groups: control group (Control), heat treatment group (HT), and the diet-supplemented and heat treatment group (H+Zn). The Control and HT groups were fed with basal diet and the H+Zn group were fed with basal diet plus 1500mg/kg zinc daily. After being fed with these 2 different diets for 30 days, pigs in the HT and H+Zn groups were exposed to 5h of 40°C heat treatment for 8 days. Rectal temperature and jugular venous blood were collected 3h after onset of heat exposure on days 1, 4 and 8. Pigs were sacrificed after the termination of heat exposure. Heat treatment increased serum testosterone concentration on day 1 and 4 (P<0.01). In addition, the HT group displayed an increase in the clear cell count and a decrease in epithelium thickness in the caput epithelium (P<0.01, P<0.05), and dietary zinc protected the boars from these impairments (P<0.01, P=0.29). Evaluation of oxidative states showed that heat exposure increased the levels of malondialdehyde (MDA) and glutathione (GSH) in the epididymis (P<0.01, P<0.05), while dietary zinc reduced this elevation (P<0.01, P<0.01). Heat exposure enhanced the glucocorticoid receptor (GR) expression in the nuclei of principal and basal cells (P<0.01, P<0.01) while dietary zinc attenuated the GR immunoreactivity intensity (P<0.01, P<0.01). These results demonstrate that dietary zinc protects the epididymis from high temperature-induced impairment, alleviates oxidative stress, restores the integrity of the caput epithelium and decreases the stress response. Copyright © 2017 Elsevier Ltd. All

  10. The effectiveness of zinc supplementation in men with isolated hypogonadotropic hypogonadism.

    PubMed

    Liu, Yan-Ling; Zhang, Man-Na; Tong, Guo-Yu; Sun, Shou-Yue; Zhu, Yan-Hua; Cao, Ying; Zhang, Jie; Huang, Hong; Niu, Ben; Li, Hong; Guo, Qing-Hua; Gao, Yan; Zhu, Da-Long; Li, Xiao-Ying

    2017-01-01

    A multicenter, open-label, randomized, controlled superiority trial with 18 months of follow-up was conducted to investigate whether oral zinc supplementation could further promote spermatogenesis in males with isolated hypogonadotropic hypogonadism (IHH) receiving sequential purified urinary follicular-stimulating hormone/human chorionic gonadotropin (uFSH/hCG) replacement. Sixty-seven Chinese male IHH patients were recruited from the Departments of Endocrinology in eight tertiary hospitals and randomly allocated into the sequential uFSH/hCG group (Group A, n = 34) or the sequential uFSH plus zinc supplementation group (Group B, n = 33). In Group A, patients received sequential uFSH (75 U, three times a week every other 3 months) and hCG (2000 U, twice a week) treatments. In Group B, patients received oral zinc supplementation (40 mg day-1 ) in addition to the sequential uFSH/hCG treatment given to patients in Group A. The primary outcome was the proportion of patients with a sperm concentration ≥1.0 × 106 ml-1 during the 18 months. The comparison of efficacy between Groups A and B was analyzed. Nineteen of 34 (55.9%) patients receiving sequential uFSH/hCG and 20 of 33 (60.6%) patients receiving sequential uFSH/hCG plus zinc supplementation achieved sperm concentrations ≥1.0 × 106 ml-1 by intention to treat analyses. No differences between Group A and Group B were observed as far as the efficacy of inducing spermatogenesis (P = 0.69). We concluded that the sequential uFSH/hCG plus zinc supplementation regimen had a similar efficacy to the sequential uFSH/hCG treatment alone. The additional improvement of 40 mg day-1 oral zinc supplementation on spermatogenesis and masculinization in male IHH patients is very subtle.

  11. Zinc for the common cold.

    PubMed

    Singh, Meenu; Das, Rashmi R

    2011-02-16

    The common cold is one of the most widespread illnesses and is a leading cause of visits to the doctor and absenteeism from school and work. Trials conducted since 1984 investigating the role of zinc for the common cold symptoms have had mixed results. Inadequate treatment masking and reduced bioavailability of zinc from some formulations have been cited as influencing results. To assess the effect of zinc on common cold symptoms. We searched CENTRAL (2010, Issue 2) which contains the Acute Respiratory Infections Group's Specialised Register, MEDLINE (1966 to May week 3, 2010) and EMBASE (1974 to June 2010). Randomised, double-blind, placebo-controlled trials using zinc for at least five consecutive days to treat, or for at least five months to prevent the common cold. Two review authors independently extracted data and assessed trial quality. We included 13 therapeutic trials (966 participants) and two preventive trials (394 participants). Intake of zinc is associated with a significant reduction in the duration (standardized mean difference (SMD) -0.97; 95% confidence interval (CI) -1.56 to -0.38) (P = 0.001), and severity of common cold symptoms (SMD -0.39; 95% CI -0.77 to -0.02) (P = 0.04). There was a significant difference between the zinc and control group for the proportion of participants symptomatic after seven days of treatment (OR 0.45; 95% CI 0.2 to 1.00) (P = 0.05). The incidence rate ratio (IRR) of developing a cold (IRR 0.64; 95% CI 0.47 to 0.88) (P = 0.006), school absence (P = 0.0003) and prescription of antibiotics (P < 0.00001) was lower in the zinc group. Overall adverse events (OR 1.59; 95% CI 0.97 to 2.58) (P = 0.06), bad taste (OR 2.64; 95% CI 1.91 to 3.64) (P < 0.00001) and nausea (OR 2.15; 95% CI 1.44 to 3.23) (P = 0.002) were higher in the zinc group. Zinc administered within 24 hours of onset of symptoms reduces the duration and severity of the common cold in healthy people. When supplemented for at least five months, it reduces cold

  12. Effects of Different Zinc Species on Cellar Zinc Distribution, Cell Cycle, Apoptosis and Viability in MDAMB231 Cells.

    PubMed

    Wang, Yan-hong; Zhao, Wen-jie; Zheng, Wei-juan; Mao, Li; Lian, Hong-zhen; Hu, Xin; Hua, Zi-chun

    2016-03-01

    Intracellular metal elements exist in mammalian cells with the concentration range from picomoles per litre to micromoles per litre and play a considerable role in various biological procedures. Element provided by different species can influence the availability and distribution of the element in a cell and could lead to different biological effects on the cell's growth and function. Zinc as an abundant and widely distributed essential trace element, is involved in numerous and relevant physiological functions. Zinc homeostasis in cells, which is regulated by metallothioneins, zinc transporter/SLC30A, Zrt-/Irt-like proteins/SLC39A and metal-response element-binding transcription factor-1 (MTF-1), is crucial for normal cellular functioning. In this study, we investigated the influences of different zinc species, zinc sulphate, zinc gluconate and bacitracin zinc, which represented inorganic, organic and biological zinc species, respectively, on cell cycle, viability and apoptosis in MDAMB231 cells. It was found that the responses of cell cycle, apoptosis and death to different zinc species in MDAMB231 cells are different. Western blot analysis of the expression of several key proteins in regulating zinc-related transcription, cell cycle, apoptosis, including MTF-1, cyclin B1, cyclin D1, caspase-8 and caspase-9 in treated cells further confirmed the observed results on cell level.

  13. Effect of Zinc in Enteropathogenic Escherichia coli Infection▿ †

    PubMed Central

    Crane, John K.; Naeher, Tonniele M.; Shulgina, Irina; Zhu, Chengru; Boedeker, Edgar C.

    2007-01-01

    Enteropathogenic Escherichia coli (EPEC) infection triggers the release of ATP from host intestinal cells, and the ATP is broken down to ADP, AMP, and adenosine in the lumen of the intestine. Ecto-5′-nucleotidase (CD73) is the main enzyme responsible for the conversion of 5′-AMP to adenosine, which triggers fluid secretion from host intestinal cells and also has growth-promoting effects on EPEC bacteria. In a recent study, we examined the role of the host enzyme CD73 in EPEC infection by testing the effect of ecto-5′-nucleotidase inhibitors. Zinc was a less potent inhibitor of ecto-5′-nucleotidase in vitro than the nucleotide analog α,β-methylene-ADP, but in vivo, zinc was much more efficacious in preventing EPEC-induced fluid secretion in rabbit ileal loops than α,β-methylene-ADP. This discrepancy between the in vitro and in vivo potencies of the two inhibitors prompted us to search for potential targets of zinc other than ecto-5′-nucleotidase. Zinc, at concentrations that produced little or no inhibition of EPEC growth, caused a decrease in the expression of EPEC protein virulence factors, such as bundle-forming pilus (BFP), EPEC secreted protein A, and other EPEC secreted proteins, and reduced EPEC adherence to cells in tissue culture. The effects of zinc were not mimicked by other transition metals, such as manganese, iron, copper, or nickel, and the effects were not reversed by an excess of iron. Quantitative real-time PCR showed that zinc reduced the abundance of the RNAs encoded by the bfp gene, by the plasmid-encoded regulator (per) gene, by the locus for the enterocyte effacement (LEE)-encoded regulator (ler) gene, and by several of the esp genes. In vivo, zinc reduced EPEC-induced fluid secretion into ligated rabbit ileal loops, decreased the adherence of EPEC to rabbit ileum, and reduced histopathological damage such as villus blunting. Some of the beneficial effects of zinc on EPEC infection appear to be due to the action of the metal on

  14. Effect of hypotensive therapy combined with modified diet or zinc supplementation on biochemical parameters and mineral status in hypertensive patients.

    PubMed

    Suliburska, Joanna; Skrypnik, Katarzyna; Szulińska, Monika; Kupsz, Justyna; Bogdański, Paweł

    2018-05-01

    Hypotensive therapy leads to a number of trace elements metabolism disturbances. Zinc balance is frequently affected by antihypertensive treatment. To evaluate the effect of a hypotensive treatment, modified diet and zinc supplementation on mineral status and selected biochemical parameters in newly diagnosed hypertensive patients on monotherapy. In the first stage, arterial hypertension in ninety-eight human subjects was diagnosed. In the second stage, antihypertensive monopharmacotherapy was implemented. In the third stage, patients were randomized into three groups and continued antihypertensive monotherapy: group D received an optimal-mineral-content diet, group S received zinc supplementation, and group C had no changes in diet or zinc supplementation. Iron, zinc, and copper concentrations in serum, erythrocytes, urine, and hair were determined. Lipids, glucose, ceruloplasmin, ferritin, albumin, C-reactive protein (CRP), tumor necrosis factor α (TNF-α), nitric oxide (NO), superoxide dismutase (SOD) and catalase (CAT) were assayed in serum. Antihypertensive monotherapy decreased zinc concentration in serum and erythrocytes and increased the level of zinc in urine, decreased CAT and SOD activity, TNF-α concentration in serum, and increased the level of NO in the serum. Zinc supply led to an increase in zinc concentration in serum, erythrocytes, and hair (in group S only). In the groups with higher zinc intake, decreased glucose concentration in the serum was observed. Significant correlation was seen between the zinc and glucose serum concentrations. Hypotensive drugs disturb zinc status in newly diagnosed hypertensive patients. Antihypertensive monotherapy combined with increased zinc supply in the diet or supplementation favorably modify zinc homeostasis and regulate glucose status without blood pressure affecting in patients with hypertension. Copyright © 2018 Elsevier GmbH. All rights reserved.

  15. Effects of zinc supplementation on diabetes mellitus: a systematic review and meta-analysis

    PubMed Central

    2012-01-01

    The number of people with diabetes and pre-diabetes are exponentially increasing. Studies on humans have shown the beneficial effects of Zinc supplementation in patients with diabetes. The present study aims to systematically evaluate the literature and meta-analyze the effects of Zinc supplementation on diabetes. A systematic review of published studies reporting the effects of Zinc supplementations on diabetes mellitus was undertaken. The literature search was conducted in the following databases; PubMed, Web of Science and SciVerse Scopus. A meta-analysis of studies examining the effects of Zinc supplementation on clinical and biochemical parameters in patients with diabetes was performed. The total number of articles included in the present review is 25, which included 3 studies on type-1 diabetes and 22 studies on type-2 diabetes. There were 12 studies comparing the effects of Zinc supplementation on fasting blood glucose in patients with type-2 diabetes. The pooled mean difference in fasting blood glucose between Zinc supplemented and placebo groups was 18.13mg/dl (95%CI:33.85,2.41; p<0.05). 2-h post-prandial blood sugar also shows a similar distinct reduction in (34.87mg/dl [95%CI:75.44; 5.69]) the Zinc treated group. The reduction in HbA1c was 0.54% (95%CI:0.86;0.21) in the Zinc treated group. There were 8 studies comparing the effects of Zinc supplementation on lipid parameters in patients with type-2 diabetes. The pooled mean difference for total cholesterol between Zinc supplemented and placebo groups was 32.37mg/dl (95%CI:57.39,7.35; p<0.05). Low-density lipoprotein cholesterol also showed a similar distinct reduction in the Zinc treated group, the pooled mean difference from random effects analysis was 11.19mg/dl (95%CI:21.14,1.25; p<0.05). Studies have also shown a significant reduction in systolic and diastolic blood pressures after Zinc supplementation. This first comprehensive systematic review and meta-analysis on the effects of Zinc

  16. Remineralizing effect of a zinc-hydroxyapatite toothpaste on enamel erosion caused by soft drinks: Ultrastructural analysis.

    PubMed

    Colombo, Marco; Mirando, Maria; Rattalino, Davide; Beltrami, Riccardo; Chiesa, Marco; Poggio, Claudio

    2017-07-01

    The aim of the present in vitro study was to evaluate the protective effects of a zinc-hydroxyapatite toothpaste on repairing enamel erosion produced by a soft drink (Coca-Cola) compared to toothpastes with and without fluoride using Scanning Electron Microscopy (SEM). Fifty specimens were assigned to 5 groups of 10 specimens each. (Group 1: no erosive challenge, no toothpaste treatment, group 2: erosive challenge, no toothpaste treatment, 3: erosive challenge, toothpaste without fluoride, group 4: erosive challenge, fluoride toothpaste treatment, group 5: erosive challenge, zinc-hydroxyapatite toothpaste treatment). Repeated erosive challenges were provided by immersing bovine enamel specimens (10 per group) in a soft drink for 2 min (6mL, room temperature) at 0, 8, 24 and 32 h. After each erosive challenge, the toothpastes were applied neat onto the surface of specimens for 3 min without brushing and removed with distilled water. Between treatments the specimens were kept in artificial saliva. The surface of each specimen was imaged by SEM. Statistically significant differences were found between the samples used as control and those immersed in Coca-Cola (group 1 and 2): indeed among all groups the highest grade of damage was found in group 2. Instead the lowest grade was recorded in the samples of group 5 (Zinc hydroxyapatite toothpaste). The results of this study confirmed the potential benefit the Zn-HAP technology could provide in protecting enamel from erosive acid challenges. The treatment of erosively challenged enamel with Zn-Hap toothpaste showed a clear protective effect. Key words: Dental erosion, enamel, SEM, toothpaste.

  17. The Effect of Adjuvant Zinc Therapy on Recovery from Pneumonia in Hospitalized Children: A Double-Blind Randomized Controlled Trial

    PubMed Central

    Qasemzadeh, Mohammad Javad; Fathi, Mahdi; Tashvighi, Maryam; Gharehbeglou, Mohammad; Yadollah-Damavandi, Soheila; Parsa, Yekta; Rahimi, Ebrahim

    2014-01-01

    Objectives. Pneumonia is one of the common mortality causes in young children. Some studies have shown beneficial effect of zinc supplements on treatment of pneumonia. The present study aimed to investigate the effects of short courses of zinc administration on recovery from this disease in hospitalized children. Methods. In a parallel Double-Blind Randomized Controlled Trial at Ayatollah Golpaygani Hospital in Qom, 120 children aged 3–60 months with pneumonia were randomly assigned 1 : 1 to receive zinc or placebo (5 mL every 12 hours) along with the common antibiotic treatments until discharge. Primary outcome was recovery from pneumonia which included the incidence and resolving clinical symptoms and duration of hospitalization. Results. The difference between two groups in all clinical symptoms at admittance and the variables affecting the disease such as age and sex were not statistically significant (P < 0.05) at baseline. Compared to the placebo group, the treatment group showed a statistically significant decrease in duration of clinical symptoms (P = 0.044) and hospitalization (P = 0.004). Conclusions. Supplemental administration of zinc can expedite the healing process and results in faster resolution of clinical symptoms in children with pneumonia. In general, zinc administration, along with common antibiotic treatments, is recommended in this group of children. It can also reduce the drug resistance caused by multiple antibiotic therapies. This trial is approved by Medical Ethic Committee of Islamic Azad University in Iran (ID Number: 8579622-Q). This study is also registered in AEARCTR (The American Economic Association's Registry for Randomized Controlled Trials). This trial is registered with RCT ID: AEARCTR-0000187. PMID:24955282

  18. Effect of modifying agents on the hydrophobicity and yield of zinc borate synthesized by zinc oxide

    NASA Astrophysics Data System (ADS)

    Acarali, Nil Baran; Bardakci, Melek; Tugrul, Nurcan; Derun, Emek Moroydor; Piskin, Sabriye

    2013-06-01

    The aim of this study was to synthesize zinc borate using zinc oxide, reference boric acid, and reference zinc borate (reference ZB) as the seed, and to investigate the effects of modifying agents and reaction parameters on the hydrophobicity and yield, respectively. The reaction parameters include reaction time (1-5 h), reactant ratio (H3BO3/ZnO by mass: 2-5), seed ratio (seed crystal/(H3BO3+ZnO) by mass: 0-2wt%), reaction temperature (50-120°C), cooling temperature (10-80°C), and stirring rate (400-700 r/min); the modifying agents involve propylene glycol (PG, 0-6wt%), kerosene (1wt%-6wt%), and oleic acid (OA, 1wt%-6wt%) with solvents (isopropyl alcohol (IPA), ethanol, and methanol). The results of reaction yield obtained from either magnetically or mechanically stirred systems were compared. Zinc borate produced was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and contact angle tests to identify the hydrophobicity. In conclusion, zinc borate is synthesized successfully under the optimized reaction conditions, and the different modifying agents with various solvents affect the hydrophobicity of zinc borate.

  19. Effect of a zinc L-carnosine compound on acid-induced injury in canine gastric mucosa ex vivo.

    PubMed

    Hill, Tracy L; Blikslager, Anthony T

    2012-05-01

    To examine whether a zinc L-carnosine compound used for treatment of suspected gastric ulcers in dogs ameliorates acid-induced injury in canine gastric mucosa. Gastric mucosa from 6 healthy dogs. Mucosa from the gastric antrum was harvested from 6 unadoptable shelter dogs immediately after euthanasia and mounted on Ussing chambers. The tissues were equilibrated for 30 minutes in neutral Ringer's solution prior to incubation with acidic Ringer's solution (HCl plus Ringer's solution [final pH, 1.5 to 2.5]), acidic Ringer's solution plus zinc L-carnosine compound, or zinc L-carnosine compound alone. Tissues were maintained for 180 minutes in Ussing chambers, during which permeability was assessed by measurement of transepithelial electrical resistance. After the 180-minute treatment period, tissues were removed from Ussing chambers and labeled with immunofluorescent anti-active caspase-3 antibody as an indicator of apoptosis. Permeability of the gastric mucosa was significantly increased in a time-dependent manner by addition of HCl, whereas control tissues maintained viability for the study period. Change in permeability was detected within the first 15 minutes after acid application and progressed over the subsequent 150 minutes. The zinc L-carnosine compound had no significant effect on this increase in permeability. Apoptosis was evident in acid-treated tissues but not in control tissues. The zinc L-carnosine compound did not protect against development of apoptosis. Addition of HCl caused a dose-dependent increase in gastric permeability over time and apparent induction of apoptosis as determined on the basis of immunofluorescence. However, there was no significant protective effect of a zinc L-carnosine compound. Nonetheless, results suggested the utility of this method for further studies of canine gastric injury.

  20. Zinc enhances temozolomide cytotoxicity in glioblastoma multiforme model systems

    PubMed Central

    Toren, Amos; Pismenyuk, Tatyana; Yalon, Michal; Freedman, Shani; Simon, Amos J.; Fisher, Tamar; Moshe, Itai; Reichardt, Juergen K.V.; Constantini, Shlomi; Mardor, Yael; Last, David; Guez, David; Daniels, Dianne; Assoulin, Moria; Mehrian-Shai, Ruty

    2016-01-01

    Temozolomide (TMZ) is an alkylating agent that has become the mainstay treatment of the most malignant brain cancer, glioblastoma multiforme (GBM). Unfortunately only a limited number of patients positively respond to it. It has been shown that zinc metal reestablishes chemosensitivity but this effect has not been tested with TMZ. Using both in vitro and in vivo experimental approaches, we investigated whether addition of zinc to TMZ enhances its cytotoxicity against GBM. In vitro cell viability analysis showed that the cytotoxic activity of TMZ was substantially increased with addition of zinc and this response was accompanied by an elevation of p21, PUMA, BAX and Caspase-3 expression and a decrease in growth fraction as manifested by low ki67 and lower colony formation. Analysis of GBM as intracranial xenografts in athymic mice and administration of concurrent TMZ and zinc yielded results consistent with those of the in vitro analyses. The co-treatment resulted in significant reduction in tumor volume in TMZ/zinc treated mice relative to treatment with TMZ alone. Our results suggest that zinc may serve as a potentiator of TMZ therapy in GBM patients. PMID:27556862

  1. Zinc enhances temozolomide cytotoxicity in glioblastoma multiforme model systems.

    PubMed

    Toren, Amos; Pismenyuk, Tatyana; Yalon, Michal; Freedman, Shani; Simon, Amos J; Fisher, Tamar; Moshe, Itai; Reichardt, Juergen K V; Constantini, Shlomi; Mardor, Yael; Last, David; Guez, David; Daniels, Dianne; Assoulin, Moria; Mehrian-Shai, Ruty

    2016-11-15

    Temozolomide (TMZ) is an alkylating agent that has become the mainstay treatment of the most malignant brain cancer, glioblastoma multiforme (GBM). Unfortunately only a limited number of patients positively respond to it. It has been shown that zinc metal reestablishes chemosensitivity but this effect has not been tested with TMZ. Using both in vitro and in vivo experimental approaches, we investigated whether addition of zinc to TMZ enhances its cytotoxicity against GBM. In vitro cell viability analysis showed that the cytotoxic activity of TMZ was substantially increased with addition of zinc and this response was accompanied by an elevation of p21, PUMA, BAX and Caspase-3 expression and a decrease in growth fraction as manifested by low ki67 and lower colony formation. Analysis of GBM as intracranial xenografts in athymic mice and administration of concurrent TMZ and zinc yielded results consistent with those of the in vitro analyses. The co-treatment resulted in significant reduction in tumor volume in TMZ/zinc treated mice relative to treatment with TMZ alone. Our results suggest that zinc may serve as a potentiator of TMZ therapy in GBM patients.

  2. Effect of zinc supplementation on serum zinc concentration and T cell proliferation in nursing home elderly:A randomized double-blind placebo-controlled trial

    USDA-ARS?s Scientific Manuscript database

    Background: Zinc is essential for the regulation of immune response. T cell function declines with age. Zinc supplementation has the potential to improve serum zinc concentrations and immunity of nursing home elderly with low serum zinc concentration. Objective: We aimed to determine the effect of ...

  3. Microcirculatory effects of zinc on fructose-fed hamsters.

    PubMed

    Castiglione, R C; Barros, C M M R; Boa, B C S; Bouskela, E

    2016-04-01

    Fructose is a major dietary component directly related to vascular dysfunction and diseases such as obesity, diabetes, and hypertension. Zinc is considered a non-pharmacological alternative for treating diabetes due to its antioxidant and hyperglycemia-lowering effects in diabetic animals. Therefore, the aim of this study was to evaluate the effects of dietary zinc supplementation on the microcirculatory parameters of fructose-fed hamsters. Male hamsters (Mesocricetus auratus) were fed drinking water substituted by 10% fructose solution for 60 days, whereas control animals were fed drinking water alone. Their microcirculatory function was evaluated using cheek pouch preparation, as well as their blood glucose and serum insulin levels. Their microcirculatory responses to acetylcholine (ACh, an endothelium-dependent vasodilator) and to sodium nitroprusside (SNP, an endothelium-independent vasodilator) as well as the increase in macromolecular permeability induced by 30 min of ischemia/reperfusion (I/R) were noted. Endothelium-dependent vasodilation was significantly increased in control animals with high zinc supplementation compared to the groups without zinc supplementation. Zinc was able to protect against plasma leakage induced by I/R in all control and fructose-fed groups, although the microvascular permeability was higher in animals fed drinking water substituted by 10% fructose solution compared to those fed filtered drinking water alone. Our results indicate that dietary zinc supplementation can improve microvascular dysfunction by increasing endothelial-dependent dilatation and reducing the increase in macromolecular permeability induced by I/R in fructose-fed animals. Copyright © 2015 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  4. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xi; Zhou, Xixi; Du, Libo

    2014-01-15

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects ofmore » arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of

  5. A multilateral investigation of the effects of zinc level on pregnancy.

    PubMed

    Özgan Çelikel, Özgül; Doğan, Özlem; Aksoy, Nurkan

    2018-06-01

    The relationship between maternal zinc level and birth weight, birth week, delivery type, garvida, maternal age, etc., contribute to diagnosis and clinical follow-up. Multivariate investigated for data of 275 patients were obtained during their pregnancy periods until birth. 3 cc blood samples were centrifuged for 15 minutes at 2500 g within a period of 30 minutes and were stored at -80°C until the time of analysis. The zinc levels of the patients were found to be within the range of 49-129 μg/dL. Patients were divided into 8 groups according to their zinc levels (49-59, 60-69, …, 120-129) and the relationships of zinc level with the parameters related to the mode of delivery, week of delivery, birth weight, age, early membrane rupture, live-stillbirth, and gravid were statistically analyzed to determine differences between the groups. There was a significant difference between the live births and stillbirths with a 95% confidence level regarding the zinc level. The zinc level affected the live-stillbirth status; patients with a zinc level of 49-59 μg/dL had stillbirths, the live birth rate for 59-69 μg/dL was approximately 50%, whereas it was approximately 88% for in the patients with a zinc level of 109-119 μg/dL. All patients with a zinc level of 119 μg/dL and above had live births. Based on the results of this study, it is suggested that zinc supplementation may be an appropriate treatment for the pregnant women with low zinc levels to provide the realization of live births. © 2018 Wiley Periodicals, Inc.

  6. Zinc supplementation augments TGF-β1-dependent regulatory T cell induction.

    PubMed

    Maywald, Martina; Meurer, Steffen K; Weiskirchen, Ralf; Rink, Lothar

    2017-03-01

    Regulatory T cells (Treg) play a pivotal role in immune regulation. For proper immune function, also trace elements such as zinc, and anti-inflammatory cytokines, including transforming growth factor beta 1 (TGF-β1) and interleukin (IL)-10 are indispensable. Hence, in this study the influence of TGF-β1, IL-10, and zinc supplementation on Treg cells differentiation was investigated. A synergistic effect of a combined zinc and TGF-β1 treatment on Foxp3 expression in peripheral blood mononuclear cells and mixed lymphocyte cultures (MLC) was found by performing Western blot analysis. Additionally, combined treatment causes elevated Smad 2/3 phosphorylation, which plays an important role in Foxp3 expression. This is due to a TGF-β1-mediated increase of intracellular-free zinc measured by zinc probes Fluozin3-AM and ZinPyr-1. Moreover, zinc as well as TGF-β1 treatment caused significantly reduced interferon (IFN)-γ secretion in MLC. Combined zinc and TGF-β1 treatment provoked an increased Treg cell induction due to a triggered intracellular zinc signal, which in association with an increased Smad 2/3 activation leads to a boosted Foxp3 expression and resulting in an ameliorated allogeneic reaction in MLC. Thus, zinc can be used as a favorable additive to elevate the induction of Treg cells in adverse immune reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Remineralizing effect of a zinc-hydroxyapatite toothpaste on enamel erosion caused by soft drinks: Ultrastructural analysis

    PubMed Central

    Colombo, Marco; Mirando, Maria; Rattalino, Davide; Beltrami, Riccardo; Chiesa, Marco

    2017-01-01

    Background The aim of the present in vitro study was to evaluate the protective effects of a zinc-hydroxyapatite toothpaste on repairing enamel erosion produced by a soft drink (Coca-Cola) compared to toothpastes with and without fluoride using Scanning Electron Microscopy (SEM). Material and Methods Fifty specimens were assigned to 5 groups of 10 specimens each. (Group 1: no erosive challenge, no toothpaste treatment, group 2: erosive challenge, no toothpaste treatment, 3: erosive challenge, toothpaste without fluoride, group 4: erosive challenge, fluoride toothpaste treatment, group 5: erosive challenge, zinc-hydroxyapatite toothpaste treatment). Repeated erosive challenges were provided by immersing bovine enamel specimens (10 per group) in a soft drink for 2 min (6mL, room temperature) at 0, 8, 24 and 32 h. After each erosive challenge, the toothpastes were applied neat onto the surface of specimens for 3 min without brushing and removed with distilled water. Between treatments the specimens were kept in artificial saliva. The surface of each specimen was imaged by SEM. Results Statistically significant differences were found between the samples used as control and those immersed in Coca-Cola (group 1 and 2): indeed among all groups the highest grade of damage was found in group 2. Instead the lowest grade was recorded in the samples of group 5 (Zinc hydroxyapatite toothpaste). Conclusions The results of this study confirmed the potential benefit the Zn-HAP technology could provide in protecting enamel from erosive acid challenges. The treatment of erosively challenged enamel with Zn-Hap toothpaste showed a clear protective effect. Key words:Dental erosion, enamel, SEM, toothpaste. PMID:28828151

  8. The effects of minoxidil, 1% pyrithione zinc and a combination of both on hair density: a randomized controlled trial.

    PubMed

    Berger, R S; Fu, J L; Smiles, K A; Turner, C B; Schnell, B M; Werchowski, K M; Lammers, K M

    2003-08-01

    Recent studies of antidandruff shampoos or tonics containing antifungal or antibacterial agents produced effects suggestive of a potential hair growth benefit. The purpose of this 6-month, 200-patient, randomized, investigator-blinded, parallel-group clinical study was to assess the hair growth benefits of a 1% pyrithione zinc shampoo. The efficacy of a 1% pyrithione zinc shampoo (used daily), was compared with that of a 5% minoxidil topical solution (applied twice daily), a placebo shampoo and a combination of the 1% pyrithione zinc shampoo and the 5% minoxidil topical solution. Two hundred healthy men between the ages of 18 and 49 years (inclusive) exhibiting Hamilton-Norwood type III vertex or type IV baldness were enrolled. Total hair counts, the primary efficacy measure, were obtained using fibre-optic microscopy and a computer-assisted, manual hair count method. Secondary measures of efficacy included assessments of hair diameter, as well as patient and investigator global assessments of improvement in hair growth. These were based on photographs of the scalp using both midline and vertex views. Hair count results showed a significant (P < 0.05) net increase in total visible hair counts for the 1% pyrithione zinc shampoo, the 5% minoxidil topical solution, and the combination treatment groups relative to the placebo shampoo after 9 weeks of treatment. The relative increase in hair count for the 1% pyrithione zinc shampoo was slightly less than half that for the minoxidil topical solution and was essentially maintained throughout the 26-week treatment period. No advantage was seen in using both the 5% minoxidil topical solution and the 1% pyrithione zinc shampoo. A small increase in hair diameter was observed for the minoxidil-containing treatment groups at week 17. Assessments of global improvements by the patients and investigator generally showed the benefit of 5% minoxidil. The benefit of the 1% pyrithione zinc shampoo used alone tended (P < 0.1) to be

  9. Zinc and linoleic acid pre-treatment attenuates biochemical and histological changes in the midbrain of rats with rotenone-induced Parkinsonism.

    PubMed

    Mbiydzenyuy, Ngala Elvis; Ninsiima, Herbert Izo; Valladares, Miriela Betancourt; Pieme, Constant Anatole

    2018-05-09

    Studies have suggested the supplementation of Zinc and Linoleic acid in the management of neurodegenerative disorders but none has investigated the combined effects. Little is known about the neuroprotective effects of either Zinc or Linoleic acid or their combination against development of Parkinsonism. This study was designed to investigate the neuroprotective effects of Zinc and Linoleic acid in rotenone-induced Parkinsonism in rats. Thirty-six young adult female rats weighing 100-150 g divided into six groups were used. Rats were induced with Parkinsonism by subcutaneous administration of rotenone (2.5 mg/kg) once a day for seven consecutive days. The rats received dimethyl sulfoxide (DMSO)/Olive oil or rotenone dissolved in DMSO/Olive oil. Groups III and IV received Zinc (30 mg/kg) or Linoleic acid (150 µl/kg) while group V received a combination of both, 2 weeks prior to rotenone injection. Groups II and VI served as negative (rotenone group) and positive (Levodopa groups) controls respectively. Oxidative stress levels were assessed by estimating Lipid peroxidation (MDA), total antioxidant capacity, Superoxide dismutase, reduced Glutathione (GSH), glutathione peroxidase and catalase in the midbrain. Histological examination was done to assess structural changes in the midbrain. There was a significant prevention in lipid peroxidation and decrease in the antioxidant status in intervention-treated groups as compared to the rotenone treated group. In addition, histological examination revealed that Parkinsonian rat brains exhibited neuronal damage. Cell death and reduction in neuron size induced by rotenone was prevented by treatment with zinc, linoleic acid and their combination. These results suggest that zinc and linoleic acid and their combination showed significant neuroprotective activity most likely due to the antioxidant effect.

  10. Disruption of zinc neuromodulation by Aß oligomers: therapeutic implications.

    PubMed

    Vogler, Emily C; Busciglio, Jorge

    2014-01-01

    So far, therapeutics focusing on reducing levels of amyloid beta for treatment of Alzheimer's disease have not been successful in completing clinical trials to come to market, suggesting the need of a wider perspective and the consideration of novel targets of intervention to slow or halt the progression of this disease. One such target is soluble amyloid beta in oligomeric forms, which have been demonstrated to bind with high affinity to zinc released during synaptic activity. This review considers the interaction of AβO and zinc and the role of zinc in neurotransmission along with possible neurotoxic effects of this interaction. Finally, it also discusses recent experimental data in animal models that have translated into potential treatments for AD based on the modulation of hyperexcitability and zinc homeostasis.

  11. Effects of surface hydroxylation on adhesion at zinc/silica interfaces.

    PubMed

    Le, Ha-Linh Thi; Goniakowski, Jacek; Noguera, Claudine; Koltsov, Alexey; Mataigne, Jean-Michel

    2018-06-06

    The weak interaction between zinc and silica is responsible for the poor performance of anti-corrosive galvanic zinc coatings on modern advanced high-strength steels, which are fundamental in the automotive industry, and important for rail transport, shipbuilding, and aerospace. With the goal of identifying possible methods for its improvement, we report an ab initio study of the effect of surface hydroxylation on the adhesion characteristics of model zinc/β-cristobalite interfaces, representative of various surface hydroxylation/hydrogenation conditions. We show that surface silanols resulting from dissociative water adsorption at the most stable stoichiometric (001) and (111) surfaces prevent strong zinc-silica interactions. However, dehydrogenation of such interfaces produces oxygen-rich zinc/silica contacts with excellent adhesion characteristics. These are due to partial zinc oxidation and the formation of strong iono-covalent Zn-O bonds between zinc atoms and the under-coordinated excess anions, remnant of the hydroxylation layer. Interestingly, these interfaces appear as the most thermodynamically stable in a wide range of realistic oxygen-rich and hydrogen-lean environments. We also point out that the partial oxidation of zinc atoms in direct contact with the oxide substrate may somewhat weaken the cohesion in the zinc deposit itself. This fundamental analysis of the microscopic mechanisms responsible for the improved zinc wetting on pre-hydroxylated silica substrates provides useful guidelines towards practical attempts to improve adhesion.

  12. Randomized trial of the effect of zinc supplementation on the mental health of school-age children in Guatemala123

    PubMed Central

    DiGirolamo, Ann M; Ramirez-Zea, Manuel; Wang, Meng; Flores-Ayala, Rafael; Martorell, Reynaldo; Neufeld, Lynnette M; Ramakrishnan, Usha; Sellen, Daniel; Black, Maureen M; Stein, Aryeh D

    2010-01-01

    Background: Rates of mental illness in children are increasing throughout the world. Observational studies of depression, anxiety, and attention-deficit hyperactivity disorder suggest that zinc is an alternative treatment. Objective: We examined the effect of zinc supplementation on the mental health of school-age children in Guatemala. Design: From January to October 2006, we conducted a 6-mo randomized, double-blind, controlled trial comparing zinc supplementation (10 mg ZnO/d for 5 d/wk) with a placebo (10 mg glucose) in 674 Guatemalan children in grades 1–4. Outcome measures included internalizing (ie, depression and anxiety) and externalizing (ie, hyperactivity and conduct disorder) problem behaviors, positive behaviors (ie, socialization and leadership), and serum zinc concentrations. Results: Zinc and placebo groups did not differ significantly in any behavioral measures at baseline or at follow-up. At baseline, 21.4% of children had serum zinc concentrations <65 μg/dL. At follow-up, both groups improved significantly, and zinc concentrations were higher in the zinc group. Increases in serum zinc concentrations were inversely associated with decreases in depressive symptoms (estimate: −0.01 points per μg Zn/dL; P = 0.01), anxiety (estimate: −0.012 points per μg Zn/dL; P = 0.02), internalizing symptoms (estimate: −0.021 points per μg Zn/dL; P = 0.02), and social skills (estimate: −0.019 points per μg Zn/dL; P = 0.01) in adjusted models that were controlled for child age, sex, socioeconomic status, household, and treatment group. Conclusions: Six months of zinc supplementation did not induce differences in mental health outcomes between zinc and placebo groups. However, increases in serum zinc concentrations were associated with decreases in internalizing symptoms (ie, depression and anxiety) in a community-based sample of children at risk of zinc deficiency. This trial was registered at clinicaltrials.gov as NCT00283660. PMID:20881069

  13. Effects of Nano-zinc on Biochemical Parameters in Cadmium-Exposed Rats.

    PubMed

    Hejazy, Marzie; Koohi, Mohammad Kazem

    2017-12-01

    Cadmium (Cd) is a toxic environmental and occupational pollutant with reported toxic effects on the kidneys, liver, lungs, bones, and the immunity system. Based on its physicochemical similarity to cadmium, zinc (Zn) shows protective effects against cadmium toxicity and cadmium accumulation in the body. Nano-zinc and nano-zinc oxide (ZnO), recently used in foods and pharmaceutical products, can release a great amount of Zn 2+ in their environment. This research was carried out to investigate the more potent properties of the metal zinc among sub-acute cadmium intoxicated rats. Seventy-five male Wistar rats were caged in 15 groups. Cadmium chloride (CdCl 2 ) was used in drinking water to induce cadmium toxicity. Different sizes (15, 20, and 30 nm) and doses of nano-zinc particles (3, 10, 100 mg/kg body weight [bw]) were administered solely and simultaneously with CdCl 2 (2-5 mg/kg bw) for 28 days. The experimental animals were decapitated, and the biochemical biomarkers (enzymatic and non-enzymatic) were determined in their serum after oral exposure to nano-zinc and cadmium. Statistical analysis was carried out with a one-way ANOVA and t test. P < 0.05 was considered as statistically significant. The haematocrit (HCT) significantly increased and blood coagulation time significantly reduced in the nano-zinc-treated rats. AST, ALT, triglyceride, total cholesterol, LDL, and free fatty acids increased significantly in the cadmium- and nano-zinc-treated rats compared with the controls. However, albumin, total protein, and HDLc significantly decreased in the cadmium- and nano-zinc-treated rats compared with the controls (P < 0.05). It seems that in the oral administration of nano-zinc, the smaller sizes with low doses and the larger sizes with high doses are more toxic than metallic zinc. In a few cases, an inverse dose-dependent relationship was seen as well. This research showed that in spite of larger sizes of zinc, smaller sizes of nano-zinc particles are not

  14. Influence of extracellular zinc on M1 microglial activation.

    PubMed

    Higashi, Youichirou; Aratake, Takaaki; Shimizu, Shogo; Shimizu, Takahiro; Nakamura, Kumiko; Tsuda, Masayuki; Yawata, Toshio; Ueba, Tetuya; Saito, Motoaki

    2017-02-27

    Extracellular zinc, which is released from hippocampal neurons in response to brain ischaemia, triggers morphological changes in microglia. Under ischaemic conditions, microglia exhibit two opposite activation states (M1 and M2 activation), which may be further regulated by the microenvironment. We examined the role of extracellular zinc on M1 activation of microglia. Pre-treatment of microglia with 30-60 μM ZnCl 2 resulted in dose-dependent increases in interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumour necrosis factor-alpha (TNFα) secretion when M1 activation was induced by lipopolysaccharide administration. In contrast, the cell-permeable zinc chelator TPEN, the radical scavenger Trolox, and the P2X7 receptor antagonist A438079 suppressed the effects of zinc pre-treatment on microglia. Furthermore, endogenous zinc release was induced by cerebral ischaemia-reperfusion, resulting in increased expression of IL-1β, IL-6, TNFα, and the microglial M1 surface marker CD16/32, without hippocampal neuronal cell loss, in addition to impairments in object recognition memory. However, these effects were suppressed by the zinc chelator CaEDTA. These findings suggest that extracellular zinc may prime microglia to enhance production of pro-inflammatory cytokines via P2X7 receptor activation followed by reactive oxygen species generation in response to stimuli that trigger M1 activation, and that these inflammatory processes may result in deficits in object recognition memory.

  15. Influence of extracellular zinc on M1 microglial activation

    PubMed Central

    Higashi, Youichirou; Aratake, Takaaki; Shimizu, Shogo; Shimizu, Takahiro; Nakamura, Kumiko; Tsuda, Masayuki; Yawata, Toshio; Ueba, Tetuya; Saito, Motoaki

    2017-01-01

    Extracellular zinc, which is released from hippocampal neurons in response to brain ischaemia, triggers morphological changes in microglia. Under ischaemic conditions, microglia exhibit two opposite activation states (M1 and M2 activation), which may be further regulated by the microenvironment. We examined the role of extracellular zinc on M1 activation of microglia. Pre-treatment of microglia with 30–60 μM ZnCl2 resulted in dose-dependent increases in interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumour necrosis factor-alpha (TNFα) secretion when M1 activation was induced by lipopolysaccharide administration. In contrast, the cell-permeable zinc chelator TPEN, the radical scavenger Trolox, and the P2X7 receptor antagonist A438079 suppressed the effects of zinc pre-treatment on microglia. Furthermore, endogenous zinc release was induced by cerebral ischaemia–reperfusion, resulting in increased expression of IL-1β, IL-6, TNFα, and the microglial M1 surface marker CD16/32, without hippocampal neuronal cell loss, in addition to impairments in object recognition memory. However, these effects were suppressed by the zinc chelator CaEDTA. These findings suggest that extracellular zinc may prime microglia to enhance production of pro-inflammatory cytokines via P2X7 receptor activation followed by reactive oxygen species generation in response to stimuli that trigger M1 activation, and that these inflammatory processes may result in deficits in object recognition memory. PMID:28240322

  16. An external evaluation of the Diarrhea Alleviation through Zinc and ORS Treatment (DAZT) program in Gujarat and Uttar Pradesh, India.

    PubMed

    Lamberti, Laura M; Taneja, Sunita; Mazumder, Sarmila; LeFevre, Amnesty; Black, Robert E; Walker, Christa L Fischer

    2015-12-01

    To address inadequate coverage of oral rehydration salts (ORS) and zinc supplements for the treatment of diarrhea among children under-five, the Diarrhea Alleviation through Zinc and ORS Treatment (DAZT) program was carried out from 2011-2013 in Gujarat and from 2011-2014 in Uttar Pradesh (UP), India. The program focused on improving the diarrhea treatment practices of public and private sector providers. We conducted cross-sectional household surveys in program districts at baseline and endline and constructed state-specific logistic regression models with generalized estimating equations to assess changes in ORS and zinc treatment during the program period. Between baseline and endline, zinc coverage increased from 2.5% to 22.4% in Gujarat and from 3.1% to 7.0% in UP; ORS coverage increased from 15.3% to 39.6% in Gujarat but did not change in UP. In comparison to baseline, children with diarrhea in the two-weeks preceding the endline survey had higher odds of receiving zinc treatment in both Gujarat (odds ratio, OR = 11.2; 95% confidence interval (CI) 6.4-19.3) and UP (OR = 2.4; 95% CI 1.4-3.9), but the odds of receiving ORS only increased in Gujarat (OR = 3.6; 95% CI 2.7-4.8; UP OR = 0.9; 95% CI 0.7-1.2). Seeking care outside the home, especially from a public sector source, was associated with higher odds of receiving ORS and zinc. During the duration of the DAZT program, there were modest improvements in the treatment of diarrhea among young children. Future programs should build upon and accelerate this trend with continued investment in public and private sector provider training and supply chain sustainability, in addition to targeted caregiver demand generation activities.

  17. Teratogenic effect of calcium edetate (CaEDTA) in rats and the protective effect of zinc.

    PubMed

    Brownie, C F; Brownie, C; Noden, D; Krook, L; Haluska, M; Aronson, A L

    1986-03-15

    The calcium chelate of EDTA (CaEDTA) currently is the drug of choice in the treatment of lead intoxication. This study investigated the teratogenic potential of CaEDTA, administered parenterally during periods of organogenesis and determined if incorporating zinc into EDTA would protect against teratogenic effects. Four doses (2, 4, 6, and 8 mmol/m2/day) of CaEDTA, two concentrations (8 and 20 mmol/m2/day) of ZnEDTA and ZnCaEDTA (molar ratio 0.5:0.5:1) were used, and a saline control (0.9% NaCl). Timed-pregnant Long-Evans rats were assigned at random to the treatment groups, 20 per dose for each chelate and 30 to the saline control. Rats were injected with the chelate or saline solution sc, twice daily during the 11th through 15th days of gestation. Pups removed by cesarean section on the 21st day were processed for osseous and visceral examination. Additional animals per treatment group were used for maternal plasma and liver and fetal zinc determinations. Results showed increases in several abnormalities (submucous cleft, cleft palate, adactyly-syndactyly, curly tail, abnormal rib and vertebrae) with increasing amounts of CaEDTA. No malformations were seen with ZnEDTA at either dose or with ZnCaEDTA at 8 mmol/m2/day. However, submucous cleft was seen in 6 of 20 litters from the dams receiving the higher dose of ZnCaEDTA. It was concluded that CaEDTA is teratogenic in rats at concentrations which, except for decreased weight gain, produce no discernible toxicity to the dam, and which are comparable to the recommended therapeutic dosage in humans (1500 mg/m2/day corresponding to 4 mmol/m2/day). Protection is afforded by incorporating zinc in the chelate.

  18. Role of zinc in maternal and child mental health1234

    PubMed Central

    Ramirez-Zea, Manuel

    2009-01-01

    Mental health problems in women, children, and adolescents are a significant public health issue. Given current barriers to the effective treatment of these problems, researchers are looking to the field of nutrition for potential alternatives to better understand and address mental health issues. The purpose of this article was to review current evidence on the relation between zinc and mental health disorders with a focus on 2 mental health problems that commonly affect women and children: depression and attention-deficit hyperactivity disorder (ADHD). A literature search of the databases Medline and PsychInfo was conducted with the use of key terms. The review included articles from 1975 to May 2008, but focused on articles published in recent years. Relations between zinc concentrations and behavior in animals; the relation between zinc deficiency, depression, and ADHD in patient and community samples; and the potential biological mechanisms for these relations were explored. The data support a relation between low concentrations of zinc and mental health problems, especially in at-risk populations. Evidence for the potential use of zinc in treating mental health problems comes mainly from patient populations and is strongest when zinc is given in combination with pharmacologic treatment. Less conclusive evidence exists for the effectiveness of zinc alone or in general community samples. Recommendations for further research in this area are provided. PMID:19176735

  19. Zinc and Chlamydia trachomatis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugarman, B.; Epps, L.R.

    1985-07-01

    Zinc was noted to have significant effects upon the infection of McCoy cells by each of two strains of Chlamydia trachomatis. With a high or low Chlamydia inoculant, the number of infected cells increased up to 200% utilizing supplemental zinc (up to 1 x 10/sup -4/ M) in the inoculation media compared with standard Chlamydia cultivation media (8 x 10/sup -6/ M zinc). Ferric chloride and calcium chloride did not effect any such changes. Higher concentrations of zinc, after 2 hr of incubation with Chlamydia, significantly decreased the number of inclusions. This direct effect of zinc on the Chlamydia remainedmore » constant after further repassage of the Chlamydia without supplemental zinc, suggesting a lethal effect of the zinc. Supplemental zinc (up to 10/sup -4/ M) may prove to be a useful addition to inoculation media to increase the yield of culturing for Chlamydia trachomatis. Similarly, topical or oral zinc preparations used by people may alter their susceptibility to Chamydia trachomatis infections.« less

  20. Zinc supplementation in public health.

    PubMed

    Penny, Mary Edith

    2013-01-01

    Zinc is necessary for physiological processes including defense against infections. Zinc deficiency is responsible for 4% of global child morbidity and mortality. Zinc supplements given for 10-14 days together with low-osmolarity oral rehydration solution (Lo-ORS) are recommended for the treatment of childhood diarrhea. In children aged ≥ 6 months, daily zinc supplements reduce the duration of acute diarrhea episodes by 12 h and persistent diarrhea by 17 h. Zinc supplements could reduce diarrhea mortality in children aged 12-59 months by an estimated 23%; they are very safe but are associated with an increase in vomiting especially with the first dose. Heterogeneity between the results of trials is not understood but may be related to dose and the etiology of the diarrhea infection. Integration of zinc and Lo-ORS into national programs is underway but slowly, procurement problems are being overcome and the greatest challenge is changing health provider and caregiver attitudes to diarrhea management. Fewer trials have been conducted of zinc adjunct therapy in severe respiratory tract infections and there is as yet insufficient evidence to recommend addition of zinc to antibiotic therapy. Daily zinc supplements for all children >12 months of age in zinc deficient populations are estimated to reduce diarrhea incidence by 11-23%. The greatest impact is in reducing multiple episodes of diarrhea. The effect on duration of diarrheal episodes is less clear, but there may be up to 9% reduction. Zinc is also efficacious in reducing dysentery and persistent diarrhea. Zinc supplements may also prevent pneumonia by about 19%, but heterogeneity across studies has not yet been explained. When analyses are restricted to better quality studies using CHERG (Child Health Epidemiology Reference Group) methodology, zinc supplements are estimated to reduce diarrheal deaths by 13% and pneumonia deaths by 20%. National-level programs to combat childhood zinc deficiency should be

  1. Effects of Dietary Zinc Manipulation on Growth Performance, Zinc Status and Immune Response during Giardia lamblia Infection: A Study in CD-1 Mice

    PubMed Central

    Iñigo-Figueroa, Gemma; Méndez-Estrada, Rosa O.; Quihui-Cota, Luis; Velásquez-Contreras, Carlos A.; Garibay-Escobar, Adriana; Canett-Romero, Rafael; Astiazarán-García, Humberto

    2013-01-01

    Associations between Giardia lamblia infection and low serum concentrations of zinc have been reported in young children. Interestingly, relatively few studies have examined the effects of different dietary zinc levels on the parasite-infected host. The aims of this study were to compare the growth performance and zinc status in response to varying levels of dietary zinc and to measure the antibody-mediated response of mice during G. lamblia infection. Male CD-1 mice were fed using 1 of 4 experimental diets: adequate-zinc (ZnA), low-zinc (ZnL), high-zinc (ZnH) and supplemented-zinc (ZnS) diet containing 30, 10, 223 and 1383 mg Zn/kg respectively. After a 10 days feeding period, mice were inoculated orally with 5 × 106 G. lamblia trophozoites and were maintained on the assigned diet during the course of infection (30 days). Giardia-free mice fed ZnL diets were able to attain normal growth and antibody-mediated response. Giardia-infected mice fed ZnL and ZnA diets presented a significant growth retardation compared to non-infected controls. Zinc supplementation avoided this weight loss during G. lamblia infection and up-regulated the host’s humoral immune response by improving the production of specific antibodies. Clinical outcomes of zinc supplementation during giardiasis included significant weight gain, higher anti-G. lamblia IgG antibodies and improved serum zinc levels despite the ongoing infection. A maximum growth rate and antibody-mediated response were attained in mice fed ZnH diet. No further increases in body weight, zinc status and humoral immune capacity were noted by feeding higher zinc levels (ZnS) than the ZnH diet. These findings probably reflect biological effect of zinc that could be of public health importance in endemic areas of infection. PMID:24002196

  2. Effect of resveratrol and zinc on intracellular zinc status in normal human prostate epithelial cells

    USDA-ARS?s Scientific Manuscript database

    To evaluate the influence of resveratrol on cellular zinc status, normal human prostate epithelial (NHPrE) cells were treated with 6 levels of resveratrol (0, 0.5, 1, 2.5, 5 and 10 microM) and 4 levels of zinc [0, 4, 16, and 32 microM for zinc-deficient (ZD), zinc-normal (ZN), zinc-adequate (ZA), an...

  3. Effect of Zinc Supplementation on Pregnancy and Infant Outcomes: A Systematic Review

    PubMed Central

    Chaffee, Benjamin W.; King, Janet C.

    2013-01-01

    Poor maternal zinc status has been associated with foetal loss, congenital malformations, intrauterine growth retardation, reduced birth weight, prolonged labour and preterm or post-term deliveries. A meta-analysis completed in 2007 showed that maternal zinc supplementation resulted in a small but significant reduction in preterm birth. The purposes of this analysis are to update that previous review and expand the scope of assessment to include maternal, infant and child health outcomes. Electronic searches were carried out to identify peer-reviewed, randomised controlled trials where daily zinc supplementation was given for at least one trimester of pregnancy. The co-authors applied the study selection criteria, assessed trial quality and abstracted data. A total of 20 independent intervention trials involving more than 11 000 births were identified. The 20 trials took place across five continents between 1977 and 2008. Most studies assessed the zinc effect against a background of other micronutrient supplements, but five were placebo-controlled trials of zinc alone. The provided dose of supplemental zinc ranged from 5 to 50 mg/day. Only the risk of preterm birth reached statistical significance (summary relative risk 0.86 [95% confidence interval 0.75, 0.99]). There was no evidence that supplemental zinc affected any parameter of foetal growth (risk of low birth weight, birth weight, length at birth or head circumference at birth). Six of the 20 trials were graded as high quality. The evidence that maternal zinc supplementation lowers the risk of preterm birth was graded low; evidence for a positive effect on other foetal outcomes was graded as very low. The effect of zinc supplementation on preterm birth, if causal, might reflect a reduction in maternal infection, a primary cause of prematurity. While further study would be needed to explore this possibility in detail, the overall public health benefit of zinc supplementation in pregnancy appears limited. PMID

  4. Bioavailability of zinc oxide added to corn tortilla is similar to that of zinc sulfate and is not affected by simultaneous addition of iron

    PubMed Central

    Rosado, Jorge L.; Díaz, Margarita; Muñoz, Elsa; Westcott, Jamie L.; González, Karla E.; Krebs, Nancy F.; Caamaño, María C.; Hambidge, Michael

    2013-01-01

    Background Corn tortilla is the staple food of Mexico and its fortification with zinc, iron, and other micronutrients is intended to reduce micronutrient deficiencies. However, no studies have been performed to determine the relative amount of zinc absorbed from the fortified product and whether zinc absorption is affected by the simultaneous addition of iron. Objective To compare zinc absorption from corn tortilla fortified with zinc oxide versus zinc sulfate and to determine the effect of simultaneous addition of two doses of iron on zinc bioavailability. Methods A randomized, double-blind, crossover design was carried out in two phases. In the first phase, 10 adult women received corn tortillas with either 20 mg/kg of zinc oxide added, 20 mg/kg of zinc sulfate added, or no zinc added. In the second phase, 10 adult women received corn tortilla with 20 mg/kg of zinc oxide added and either with no iron added or with iron added at one of two different levels. Zinc absorption was measured by the stable isotope method. Results The mean (± SEM) fractional zinc absorption from unfortified tortilla, tortilla fortified with zinc oxide, and tortilla fortified with zinc sulfate did not differ among treatments: 0.35 ± 0.07, 0.36 ± 0.05, and 0.37 ± 0.07, respectively. The three treatment groups with 0, 30, and 60 mg/kg of added iron had similar fractional zinc absorption (0.32 ± 0.04, 0.33 ± 0.02, and 0.32 ± 0.05, respectively) and similar amounts of zinc absorbed (4.8 ± 0.7, 4.5 ± 0.3, and 4.8 ± 0.7 mg/day, respectively). Conclusions Since zinc oxide is more stable and less expensive and was absorbed equally as well as zinc sulfate, we suggest its use for corn tortilla fortification. Simultaneous addition of zinc and iron to corn tortilla does not modify zinc bioavailability at iron doses of 30 and 60 mg/kg of corn flour. PMID:23424892

  5. Regeneration of zinc chloride hydrocracking catalyst

    DOEpatents

    Zielke, Clyde W.

    1979-01-01

    Improved rate of recovery of zinc values from the solids which are carried over by the effluent vapors from the oxidative vapor phase regeneration of spent zinc chloride catalyst is achieved by treatment of the solids with both hydrogen chloride and calcium chloride to selectively and rapidly recover the zinc values as zinc chloride.

  6. Comparison of proteome response to saline and zinc stress in lettuce

    PubMed Central

    Lucini, Luigi; Bernardo, Letizia

    2015-01-01

    Zinc salts occurring in soils can exert an osmotic stress toward plants. However, being zinc a heavy metal, some more specific effects on plant metabolisms can be forecast. In this work, lettuce has been used as a model to investigate salt and zinc stresses at proteome level through a shotgun tandem MS proteomic approach. The effect of zinc stress in lettuce, in comparison with NaCl stress, was evaluated to dissect between osmotic/oxidative stress related effects, from those changes specifically related to zinc. The analysis of proteins exhibiting a fold change of 3 as minimum (on log 2 normalized abundances), revealed the involvement of photosynthesis (via stimulation of chlorophyll synthesis and enhanced role of photosystem I) as well as stimulation of photophosphorylation. Increased glycolytic supply of energy substrates and ammonium assimilation [through formation of glutamine synthetase (GS)] were also induced by zinc in soil. Similarly, protein metabolism (at both transcriptional and ribosomal level), heat shock proteins, and proteolysis were affected. According to their biosynthetic enzymes, hormones appear to be altered by both the treatment and the time point considered: ethylene biosynthesis was enhanced, while production of abscisic acid was up-regulated at the earlier time point to decrease markedly and gibberellins were decreased at the later one. Besides aquaporin PIP2 synthesis, other osmotic/oxidative stress related compounds were enhanced under zinc stress, i.e., proline, hydroxycinnamic acids, ascorbate, sesquiterpene lactones, and terpenoids biosynthesis. Although the proteins involved in the response to zinc stress and to salinity were substantially the same, their abundance changed between the two treatments. Lettuce response to zinc was more prominent at the first sampling point, yet showing a faster adaptation than under NaCl stress. Indeed, lettuce plants showed an adaptation after 30 days of stress, in a more pronounced way in the case of

  7. Soil pH effects on the interactions between dissolved zinc, non-nano- and nano-ZnO with soil bacterial communities.

    PubMed

    Read, Daniel S; Matzke, Marianne; Gweon, Hyun S; Newbold, Lindsay K; Heggelund, Laura; Ortiz, Maria Diez; Lahive, Elma; Spurgeon, David; Svendsen, Claus

    2016-03-01

    Zinc oxide nanoparticles (ZnO NPs) are used in an array of products and processes, ranging from personal care products to antifouling paints, textiles, food additives, antibacterial agents and environmental remediation processes. Soils are an environment likely to be exposed to manmade nanoparticles due to the practice of applying sewage sludge as a fertiliser or as an organic soil improver. However, understanding on the interactions between soil properties, nanoparticles and the organisms that live within soil is lacking, especially with regards to soil bacterial communities. We studied the effects of nanoparticulate, non-nanoparticulate and ionic zinc (in the form of zinc chloride) on the composition of bacterial communities in soil with a modified pH range (from pH 4.5 to pH 7.2). We observed strong pH-dependent effects on the interaction between bacterial communities and all forms of zinc, with the largest changes in bacterial community composition occurring in soils with low and medium pH levels (pH 4.8 and 5.9). The high pH soil (pH 7.2) was less susceptible to the effects of zinc exposure. At the highest doses of zinc (2500 mg/kg dw soil), both nano and non-nano particulate zinc applications elicited a similar response in the soil bacterial community, and this differed significantly to the ionic zinc salt treatment. The results highlight the importance of considering soil pH in nanotoxicology studies, although further work is needed to determine the exact mechanisms controlling the toxicity and fate and interactions of nanoparticles with soil microbial communities.

  8. Comparative analysis of salivary zinc level in recurrent herpes labialis

    PubMed Central

    Khozeimeh, Faezeh; Jafari, Nasim; Attar, Ahmad Movahedian; Jafari, Shahram; Ataie, Masoud

    2012-01-01

    Background: Recurrent Herpes Labialis (RHL) is one of most common infective vesiculoulcerative lesions. According to some studies administration of topical and/or systemic zinc compositions has been effective in treatment and prevention. This article aims to comparison of zinc level in healthy subjects and RHL patients in acute and convalescent phases. Materials and Methods: This was a retrospective case – control study, carried on 80 individuals (40 normal and 40 RHL patients) mean age=34.5 and 34.4, respectively. Saliva samples were taken in patients in acute phase once and after healing of lesions in convalescent phase (averagely 21 days later) and in normal individuals. Salivary zinc level concentration was measured by flame atomic absorption spectrophotometer by dry digestion method. The results were statistically analyzed with SPSS software by t-test (α=0.05). Results: Results showed that salivary zinc level in case group in acute and convalescent phases were 160.8 ngr/mland 205.7 ngr/ml respectivly and significant differences between them were existed (P <0.05). Also significant differences were existed between zinc concentration in healthy subjects and patient groups (in both phases) (P=.001 and .002 for acute and convalescent phases respectively). Conclusion: According to the results, zinc level is significantly lower in acute phase than in convalescent phase and significantly lower in both phases compared to healthy individuals,so determination of serum zinc level and prescribing zinc complement in low serum status has both treatmental and preventive effects in RHL patients. PMID:22363358

  9. Effects of Dietary Copper and Zinc Supplementation on Growth Performance, Tissue Mineral Retention, Antioxidant Status, and Fur Quality in Growing-Furring Blue Foxes (Alopex lagopus).

    PubMed

    Liu, Zhi; Wu, Xuezhuang; Zhang, Tietao; Guo, Jungang; Gao, Xiuhua; Yang, Fuhe; Xing, Xiumei

    2015-12-01

    A 4×2 factorial experiment with four supplemental levels of copper (0, 20, 40, or 60 mg copper per kg dry matter) from copper sulfate and two supplemental levels of zinc (40 or 200 mg zinc per kg dry matter) from zinc sulfate was conducted to investigate the effects of dietary copper and zinc supplementation on growth performance, tissue mineral retention, antioxidant status, and fur quality in growing-furring blue foxes. One hundred and twenty healthy 15-week-old male blue foxes were randomly allocated to eight dietary treatments with 15 replicates per treatment for a 70-day trial from mid-September to pelting in December. The average daily gain and feed conversion ratio were increased with copper supplementation in the first 35 days as well as the overall period (P<0.05). In addition, copper supplementation tended to increase feed intake during the first 35 days (P<0.10). Diets supplemented with 200 mg/kg zinc did not affect body gain (P>0.10) and feed intake (P>0.10) but improved feed conversion (P<0.05) compared with those supplemented 40 mg/kg zinc throughout the experiment. No copper×zinc interaction was observed for growth performance except that a tendency (P=0.09) was found for feed intake in the first 35 days. Supplementation of copper or zinc improved crude fat digestibility (P<0.01) but had no effects on the digestibility of other nutrients. Fecal copper was increased with both copper (P<0.01) and zinc addition (P<0.05). However, fecal zinc was affected only by dietary zinc addition (P<0.01). Mineral contents in serum and kidney were not affected by dietary treatments (P>0.05). However, the level of copper in the liver was increased with copper supplementation (P<0.05) and tended to decrease with zinc supplementation (P=0.08). Dietary zinc addition tended to increase the activity of alkaline phosphatase (P=0.07). The activities of copper-zinc superoxide dismutase and catalase tended to increase by copper (P=0.08) and zinc addition (P=0.05). Moreover

  10. Effect of additional vitamin E and zinc supplementation on immunological changes in peripartum Sahiwal cows.

    PubMed

    Chandra, G; Aggarwal, A; Kumar, M; Singh, A K; Sharma, V K; Upadhyay, R C

    2014-12-01

    This study was conducted to exploit ameliorative effect of additional vitamin E and/or zinc supplementation on immune response of peripartum Sahiwal cows. Thirty-two pregnant dry Sahiwal cows were blocked into four treatment groups (n = 8), namely control, zinc (Zn), vitamin E (Vit E) and zinc + vitamin E (Zn + Vit E). Feeding regimen was same in all the groups except that the Sahiwal cows in the zinc-, vitamin E- and zinc + vitamin E-fed groups were additionally supplemented with 60 mg Zn/kg DM, 1000 IU vitamin E and 60 mg/kg + 1000 IU Zn + vitamin E, respectively, from day 60 pre-partum to day 90 post-partum. Blood samples were collected on days -60, -45, -30, -15, -7, -3, 0, 3, 7, 15, 30, 45, 60, 90 and 120 with respect to day of parturition and analysed for total immunoglobulin (TIG), immunoglobulin G (IgG), interleukin-2 (IL-2), vitamin E (Vit E) and zinc (Zn) status. Before calving, cows showed a decrease in plasma TIG, IgG, IL-2, Vit E and Zn levels. However, increased levels of plasma TIG, IgG, IL-2, Vit E and Zn were observed after calving. After calving, Sahiwal cows supplemented with Zn + Vit E had higher plasma TIG, IgG and IL-2 in comparison with cows of control and Zn + Vit E-fed groups. In the present study, plasma vitamin E level was higher in Vit E-fed and Zn + Vit E-fed cows; however, zinc level was higher in Zn- and Zn + Vit E-supplemented cows. In conclusion, a reduced immune response during peripartum period in Sahiwal cows was ameliorated by dietary vitamin E and zinc supplementation. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  11. Zinc and Autophagy

    PubMed Central

    Liuzzi, Juan P.; Guo, Liang; Yoo, Changwon; Stewart, Tiffanie S

    2014-01-01

    Autophagy is a highly conserved degradative process through which cells overcome stressful conditions. Inasmuch as faulty autophagy has been associated with aging, neuronal degeneration disorders, diabetes, and fatty liver, autophagy is regarded as a potential therapeutic target. This review summarizes the present state of knowledge concerning the role of zinc in the regulation of autophagy, the role of autophagy in zinc metabolism, and the potential role of autophagy as a mediator of the protective effects of zinc. Data from in vitro studies consistently support the notion that zinc is critical for early and late autophagy. Studies have shown inhibition of early and late autophagy in cells cultured in medium treated with zinc chelators. Conversely, excess zinc added to the medium has shown to potentiate the stimulation of autophagy by tamoxifen, H2O2, ethanol and dopamine. The potential role of autophagy in zinc homeostasis has just begun to be investigated.Increasing evidence indicates that autophagy dysregulation causes significant changes in cellular zinc homeostasis. Autophagy may mediate the protective effect of zinc against lipid accumulation, apoptosis and inflammation by promoting degradation of lipid droplets, inflammasomes, p62/SQSTM1 and damaged mitochondria.Studies with humans and animal models are necessary to determine whether autophagy is influenced by zinc intake. PMID:25012760

  12. Zinc treatment of the digestive gland of the slug Arion after L. 2. Sublethal effects at the histological level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Recio, A.; Marigomez, J.A.; Angulo, E.

    1988-12-01

    Several authors have pointed out the necessity when measuring the level of pollution within a biological system on an assessment of the biological effects of pollutants. Within this field, histological parameters for the indication of environmentally induced stress response (i.e., destabilization of the lysosomal systems, reduction of the mean epithelia thickness of digestive gland cells-MET) could offer an initial approach to determine the impact of a pollutant on the biota. The present work is the completion of the histochemical study on cellular distribution of zinc in the digestive gland of the slug Arion ater. Thus, the histochemical and planimetric studymore » of the effects of zinc-exposure on A. ater is presented as the other aspect in which histology is concerned in pollution research.« less

  13. The influence of inflammation on plasma zinc concentration in apparently healthy, HIV+ Kenyan adults and zinc responses after a multi-micronutrient supplement.

    PubMed

    Mburu, A S W; Thurnham, D I; Mwaniki, D L; Muniu, E M; Alumasa, F M

    2010-05-01

    Plasma zinc is an important biomarker of zinc status, but the concentration is depressed by inflammation. Apparently healthy adults, who tested positive twice for human immunodeficiency virus (HIV) but who had not reached stage IV or clinical AIDS, were randomly allocated to receive a food supplement (n=17 and 21) or the food plus a micronutrient capsule (MN; n=10 men and n=33 women) containing 15 mg zinc/day. We used the inflammation biomarkers, C-reactive protein (CRP) and alpha1-acid glycoprotein (AGP), to identify subjects with and without inflammation and determine the effect of inflammation on the response of plasma zinc concentrations to the MN and food supplements. There were no differences between men and women either in plasma zinc or in the responses to the supplements and their data were combined. Plasma zinc was lower in those with inflammation than without. Repeated measures analysis of variance (ANOVA) showed that inflammation blocked increases in plasma zinc, and there was an approximate 10% increase in plasma zinc concentration in response to the MN supplement (P=0.023) in those without inflammation. Subgroup analysis showed mean changes in plasma zinc of 0.95 and -0.83 micromol/l (P=0.031) in response to the MN and food treatments, respectively, in those without inflammation at both time points. Inflammation seems to block any increase in plasma zinc after MN supplement and it is important to identify those without inflammation to determine the effectiveness of a zinc supplementation program.

  14. Electron spectroscopy imaging and surface defect configuration of zinc oxide nanostructures under different annealing ambient

    NASA Astrophysics Data System (ADS)

    Ann, Ling Chuo; Mahmud, Shahrom; Bakhori, Siti Khadijah Mohd

    2013-01-01

    In this study, electron spectroscopy imaging was used to visualize the elemental distribution of zinc oxide nanopowder. Surface modification in zinc oxide was done through annealing treatment and type of surface defect was also inferred from the electron spectroscopy imaging investigation. The micrographs revealed the non-stoichiometric distribution of the elements in the unannealed samples. Annealing the samples in nitrogen and oxygen ambient at 700 °C would alter the density of the elements in the samples as a result of removal or absorption of oxygen. The electrical measurement showed that nitrogen annealing treatment improved surface electrical conductivity, whereas oxygen treatment showed an adverse effect. Observed change in the photoluminescence green emission suggested that oxygen vacancies play a significant role as surface defects. Structural investigation carried out through X-ray diffraction revealed the polycrystalline nature of both zinc oxide samples with hexagonal phase whereby annealing process increased the crystallinity of both zinc oxide specimens. Due to the different morphologies of the two types of zinc oxide nanopowders, X-ray diffraction results showed different stress levels in their structures and the annealing treatment give significant effect to the structural stress. Electron spectroscopy imaging was a useful technique to identify the elemental distribution as well as oxygen defect in zinc oxide nanopowder.

  15. Hemimorphite Ores: A Review of Processing Technologies for Zinc Extraction

    NASA Astrophysics Data System (ADS)

    Chen, Ailiang; Li, Mengchun; Qian, Zhen; Ma, Yutian; Che, Jianyong; Ma, Yalin

    2016-10-01

    With the gradual depletion of zinc sulfide ores, exploration of zinc oxide ores is becoming more and more important. Hemimorphite is a major zinc oxide ore, attracting much attention in the field of zinc metallurgy although it is not the major zinc mineral. This paper presents a critical review of the treatment for extraction of zinc with emphasis on flotation, pyrometallurgical and hydrometallurgical methods based on the properties of hemimorphite. The three-dimensional framework structure of hemimorphite with complex linkage of its structural units lead to difficult desilicification before extracting zinc in the many metallurgical technologies. It is found that the flotation method is generally effective in enriching zinc minerals from hemimorphite ores into a high-grade concentrate for recovery of zinc. Pure zinc can be produced from hemimorphite or/and willemite with a reducing reagent, like methane or carbon. Leaching reagents, such as acid and alkali, can break the complex structure of hemimorphite to release zinc in the leached solution without generation of silica gel in the hydrometallurgical process. For optimal zinc extraction, combing flotation with pyrometallurgical or hydrometallurgical methods may be required.

  16. Mechanistic studies of the toxicity of zinc gluconate in the olfactory neuronal cell line Odora

    PubMed Central

    Hsieh, Heidi; Vignesh, Kavitha Subramanian; Deepe, George S.; Choubey, Divaker; Shertzer, Howard G.; Genter, Mary Beth

    2016-01-01

    Zinc is both an essential and potentially toxic metal. It is widely believed that oral zinc supplementation can reduce the effects of the common cold; however, there is strong clinical evidence that intranasal (IN) zinc gluconate (ZG) gel treatment for this purpose causes anosmia, or the loss of the sense of smell, in humans. Using the rat olfactory neuron cell line, Odora, we investigated the molecular mechanism by which zinc exposure exerts its toxic effects on olfactory neurons. Following treatment of Odora cells with 100 and 200 μM ZG for 0-24 h, RNA-seq and in silico analyses revealed up-regulation of pathways associated with zinc metal response, oxidative stress, and ATP production. We observed that Odora cells recovered from zinc-induced oxidative stress, but ATP depletion persisted with longer exposure to ZG. ZG exposure increased levels of NLRP3 and IL-1β protein levels in a time-dependent manner, suggesting that zinc exposure may cause an inflammasome-mediated cell death, pyroptosis, in olfactory neurons. PMID:27179668

  17. Mechanistic studies of the toxicity of zinc gluconate in the olfactory neuronal cell line Odora.

    PubMed

    Hsieh, Heidi; Vignesh, Kavitha Subramanian; Deepe, George S; Choubey, Divaker; Shertzer, Howard G; Genter, Mary Beth

    2016-09-01

    Zinc is both an essential and potentially toxic metal. It is widely believed that oral zinc supplementation can reduce the effects of the common cold; however, there is strong clinical evidence that intranasal (IN) zinc gluconate (ZG) gel treatment for this purpose causes anosmia, or the loss of the sense of smell, in humans. Using the rat olfactory neuron cell line, Odora, we investigated the molecular mechanism by which zinc exposure exerts its toxic effects on olfactory neurons. Following treatment of Odora cells with 100 and 200μM ZG for 0-24h, RNA-seq and in silico analyses revealed up-regulation of pathways associated with zinc metal response, oxidative stress, and ATP production. We observed that Odora cells recovered from zinc-induced oxidative stress, but ATP depletion persisted with longer exposure to ZG. ZG exposure increased levels of NLRP3 and IL-1β protein levels in a time-dependent manner, suggesting that zinc exposure may cause an inflammasome-mediated cell death, pyroptosis, in olfactory neurons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Long-range ordering effect in electrodeposition of zinc and zinc oxide.

    PubMed

    Liu, Tao; Wang, Sheng; Shi, Zi-Liang; Ma, Guo-Bin; Wang, Mu; Peng, Ru-Wen; Hao, Xi-Ping; Ming, Nai-Ben

    2007-05-01

    In this paper, we report the long-range ordering effect observed in the electro-crystallization of Zn and ZnO from an ultrathin aqueous electrolyte layer of ZnSO4 . The deposition branches are regularly angled, covered with random-looking, scalelike crystalline platelets of ZnO. Although the orientation of each crystalline platelet of ZnO appears random, transmission electron microscopy shows that they essentially possess the same crystallographic orientation as the single-crystalline zinc electrodeposit underneath. Based on the experimental observations, we suggest that this unique long-range ordering effect results from an epitaxial nucleation effect in electrocrystallization.

  19. Zinc pharmacokinetic parameters in the determination of body zinc status in children.

    PubMed

    Vale, S H L; Leite, L D; Alves, C X; Dantas, M M G; Costa, J B S; Marchini, J S; França, M C; Brandão-Neto, J

    2014-02-01

    Serum or tissue zinc concentrations are often used to assess body zinc status. However, all of these methods are relatively inaccurate. Thus, we investigated three different kinetic methods for the determination of zinc clearance to establish which of these could detect small changes in the body zinc status of children. Forty apparently healthy children were studied. Renal handling of zinc was investigated during intravenous zinc administration (0.06537 mg Zn/kg of body weight), both before and after oral zinc supplementation (5 mg Zn/day for 3 months). Three kinetic methods were used to determine zinc clearance: CZn-Formula A and CZn-Formula B were both used to calculate systemic clearance; the first is a general formula and the second is used for the specific analysis of a single-compartment model; CZn-Formula C is widely used in medical practices to analyze kinetic routine. Basal serum zinc values, which were within the reference range for healthy children, increased significantly after oral zinc supplementation. The three formulas used gave different results for zinc clearance both before and after oral zinc supplementation. CZn-Formula B showed a positive correlation with basal serum zinc concentration after oral supplementation (R2=0.1172, P=0.0306). In addition, CZn-Formula B (P=0.0002) was more effective than CZn-Formula A (P=0.6028) and CZn-Formula C (P=0.0732) in detecting small variations in body zinc status. All three of the formulas used are suitable for studying zinc kinetics; however, CZn-Formula B is particularly effective at detecting small changes in body zinc status in healthy children.

  20. Supplemental levels of iron and calcium interfere with repletion of zinc status in zinc-deficient animals.

    PubMed

    Jayalakshmi, S; Platel, Kalpana

    2016-05-18

    Negative interactions between minerals interfering with each other's absorption are of concern when iron and calcium supplements are given to pregnant women and children. We have previously reported that supplemental levels of iron and calcium inhibit the bioaccessibility of zinc, and compromise zinc status in rats fed diets with high levels of these two minerals. The present study examined the effect of supplemental levels of iron and calcium on the recovery of zinc status during a zinc repletion period in rats rendered zinc-deficient. Iron and calcium, both individually and in combination, significantly interfered with the recovery of zinc status in zinc deficient rats during repletion with normal levels of zinc in the diet. Rats maintained on diets containing supplemental levels of these two minerals had significantly lower body weight, and the concentration of zinc in serum and organs was significantly lower than in zinc-deficient rats not receiving the supplements. Iron and calcium supplementation also significantly inhibited the activity of zinc-containing enzymes in the serum as well as liver. Both iron and calcium independently exerted this negative effect on zinc status, while their combination seemed to have a more prominent effect, especially on the activities of zinc containing enzymes. This investigation is probably the first systematic study on the effect of these two minerals on the zinc status of zinc deficient animals and their recovery during repletion with normal amounts of zinc.

  1. Effects of zinc supplementation on Shiga toxin 2e-producing Escherichia coli in vitro.

    PubMed

    Uemura, Ryoko; Katsuge, Tomoko; Sasaki, Yosuke; Goto, Shinya; Sueyoshi, Masuo

    2017-10-07

    Swine edema disease is caused by Shiga toxin (Stx) 2e-producing Escherichia coli (STEC). Addition of highly concentrated zinc formulations to feed has been used to treat and prevent the disease, but the mechanism of the beneficial effect is unknown. The purpose of the present study was to investigate the effects of highly concentrated zinc formulations on bacterial growth, hemolysin production, and an Stx2e release by STEC in vitro. STEC strain MVH269 isolated from a piglet with edema disease was cultured with zinc oxide (ZnO) or with zinc carbonate (ZnCO 3 ), each at up to 3,000 ppm. There was no effect of zinc addition on bacterial growth. Nonetheless, the cytotoxic activity of Stx2e released into the supernatant was significantly attenuated in the zinc-supplemented media compared to that in the control, with the 50% cytotoxic dose values of 163.2 ± 12.7, 211.6 ± 33.1 and 659.9 ± 84.2 after 24 hr of growth in the presence of ZnO, ZnCO 3 , or no supplemental zinc, respectively. The hemolytic zones around colonies grown on sheep blood agar supplemented with zinc were significantly smaller than those of colonies grown on control agar. Similarly, hemoglobin absorbance after exposure to the supernatants of STEC cultures incubated in sheep blood broth supplemented with zinc was significantly lower than that resulting from exposure to the control supernatant. These in vitro findings indicated that zinc formulations directly impair the factors associated with the virulence of STEC, suggesting a mechanism by which zinc supplementation prevents swine edema disease.

  2. Physical chemical effects of zinc on in vitro enamel demineralization.

    PubMed

    Mohammed, N R; Mneimne, M; Hill, R G; Al-Jawad, M; Lynch, R J M; Anderson, P

    2014-09-01

    Zinc salts are formulated into oral health products as antibacterial agents, yet their interaction with enamel is not clearly understood. The aim was to investigate the effect of zinc concentration [Zn(2+)] on the in vitro demineralization of enamel during exposure to caries-simulating conditions. Furthermore, the possible mechanism of zinc's action for reducing demineralization was determined. Enamel blocks and synthetic hydroxyapatite (HAp) were demineralized in a range of zinc-containing acidic solutions (0-3565ppm [Zn(2+)]) at pH 4.0 and 37°C. Inductively coupled-plasma optical emission spectroscopy (ICP-OES) was used to measure ion release into solution. Enamel blocks were analysed by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), and HAp by X-ray diffraction (XRD) and neutron diffraction (ND). ICP-OES analysis of the acidic solutions showed a decrease in [Ca(2+)] and [PO4(3-)] release with increasing [Zn(2+)]. FTIR revealed a α-hopeite (α-Zn3(PO4)2.4H2O)-like phase on the enamel surfaces at >107ppm [Zn(2+)]. XRD and ND analysis confirmed a zinc-phosphate phase present alongside the HAp. This study confirms that zinc reduces enamel demineralization. Under the conditions studied, zinc acts predominantly on enamel surfaces at PO4(3-) sites in the HAp lattice to possibly form an α-hopeite-like phase. These results have a significant implication on the understanding of the fundamental chemistry of zinc in toothpastes and demonstrate its therapeutic potential in preventing tooth mineral loss. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Single and combined effects of organic selenium and zinc on egg fertility, hatchability, and embryonic mortality of exotic cochin hens

    USDA-ARS?s Scientific Manuscript database

    A study was conducted to examine the effects of three diets supplemented with organic selenium (Se) and zinc (Zn) on the performance of Cochin exotic breeder hens. Cochin hens (n=120) and males (n=12) at 42 wks of age were separated into four treatment groups with three replications per treatment. ...

  4. Cost-effectiveness of anti-oxidant vitamins plus zinc treatment to prevent the progression of intermediate age-related macular degeneration. A Singapore perspective.

    PubMed

    Saxena, Nakul; George, Pradeep Paul; Heng, Bee Hoon; Lim, Tock Han; Yong, Shao Onn

    2015-06-01

    To determine if providing high dose anti-oxidant vitamins and zinc treatment age-related eye disease study (AREDS formulation) to patients with intermediate age-related macular degeneration (AMD) aged 40-79 years from Singapore is cost-effective in preventing progression to wet AMD. A hypothetical cohort of category 3 and 4 AMD patients from Singapore was followed for 5 calendar years to determine the number of patients who would progress to wet AMD given the following treatment scenarios: (a) AREDS formulation or placebo followed by ranibizumab (as needed) for wet AMD. (b) AREDS formulation or placebo followed by bevacizumab (monthly) for wet AMD. (c) AREDS formulation or placebo followed by aflibercept (VIEW I and II trial treatment regimen). Costs were estimated for the above scenarios from the providers' perspective, and cost-effectiveness was measured by cost per disability-adjusted life year (DALY) averted with a disability weight of 0.22 for wet AMD. The costs were discounted at an annual rate of 3%. Over 5400 patients could be prevented from progressing to wet AMD cumulatively if AREDS formulation were prescribed. AREDS formulation followed by ranibizumab was cost-effective compared to placebo-ranibizumab or placebo-aflibercept combinations (cost per DALY averted: SGD$23,662.3 and SGD$21,138.8, respectively). However, bevacizumab (monthly injections) alone was more cost-effective compared to AREDS formulation followed by bevacizumab. Prophylactic treatment with AREDS formulation for intermediate AMD patients followed by ranibizumab or for patients who progressed to wet AMD was found to be cost-effective. These findings have implications for intermediate AMD screening, treatment and healthcare planning in Singapore.

  5. A dynamic model for predicting growth in zinc-deficient stunted infants given supplemental zinc.

    PubMed

    Wastney, Meryl E; McDonald, Christine M; King, Janet C

    2018-05-01

    Zinc deficiency limits infant growth and increases susceptibility to infections, which further compromises growth. Zinc supplementation improves the growth of zinc-deficient stunted infants, but the amount, frequency, and duration of zinc supplementation required to restore growth in an individual child is unknown. A dynamic model of zinc metabolism that predicts changes in weight and length of zinc-deficient, stunted infants with dietary zinc would be useful to define effective zinc supplementation regimens. The aims of this study were to develop a dynamic model for zinc metabolism in stunted, zinc-deficient infants and to use that model to predict the growth response when those infants are given zinc supplements. A model of zinc metabolism was developed using data on zinc kinetics, tissue zinc, and growth requirements for healthy 9-mo-old infants. The kinetic model was converted to a dynamic model by replacing the rate constants for zinc absorption and excretion with functions for these processes that change with zinc intake. Predictions of the dynamic model, parameterized for zinc-deficient, stunted infants, were compared with the results of 5 published zinc intervention trials. The model was then used to predict the results for zinc supplementation regimes that varied in the amount, frequency, and duration of zinc dosing. Model predictions agreed with published changes in plasma zinc after zinc supplementation. Predictions of weight and length agreed with 2 studies, but overpredicted values from a third study in which other nutrient deficiencies may have been growth limiting; the model predicted that zinc absorption was impaired in that study. The model suggests that frequent, smaller doses (5-10 mg Zn/d) are more effective for increasing growth in stunted, zinc-deficient 9-mo-old infants than are larger, less-frequent doses. The dose amount affects the duration of dosing necessary to restore and maintain plasma zinc concentration and growth.

  6. Organ-specific effects of low-dose zinc pre-exposure on high-dose zinc induced mitochondrial dysfunction in large yellow croaker Pseudosciaena crocea.

    PubMed

    Zheng, Jia-Lang; Yuan, Shuang-Shuang; Shen, Bin; Wu, Chang-Wen

    2017-04-01

    The study was carried out to evaluate the effects of low-dose zinc (Zn) pre-exposure on survival rate, new Zn accumulation, and mitochondrial bioenergetics in the liver and spleen of large yellow croaker exposed to high-dose Zn. To the end, fish were pre-exposed to 0 and 2 mg L -1 Zn for 48 h and post-exposed to 0 and 12 mg L -1 Zn for 48 h. Twelve milligrams Zn per liter exposure alone reduced survival rate, but the effect did not appear in the 2 mg L -1 Zn pre-exposure groups. Two milligrams per liter Zn pre-exposure also ameliorated 12 mg Zn L -1 induced new Zn accumulation, reactive oxygen species (ROS) levels, and mitochondrial swelling in the liver. However, these effects did not appear in the spleen. In the liver, 2 mg L -1 Zn pre-exposure apparently relieved 12 mg L -1 Zn induced down-regulation of activities of ATP synthase (F-ATPase), succinate dehydrogenase (SDH), and malate dehydrogenase (MDH). The mRNA levels of these genes remained relatively stable in fish exposed to 12 mg L -1 Zn alone, but increased in fish exposed to 12 mg L -1 Zn with 2 mg L -1 Zn pre-treatment. In the spleen, 2 mg Zn L -1 pre-exposure did not mitigate the down-regulation of mRNA levels of genes and activities of relative enzymes induced by 12 mg L -1 Zn. In conclusion, our study demonstrated low-dose zinc pre-exposure ameliorated high-dose zinc induced mitochondrial dysfunction in the liver but not in the spleen of large yellow croaker, indicating an organ-specific effect.

  7. Effect of zinc supplementation started during diarrhoea on morbidity and mortality in Bangladeshi children: community randomised trial

    PubMed Central

    Baqui, Abdullah H; Black, Robert E; Arifeen, Shams El; Yunus, Mohammad; Chakraborty, Joysnamoy; Ahmed, Saifuddin; Vaughan, J Patrick

    2002-01-01

    Objective To evaluate the effect on morbidity and mortality of providing daily zinc for 14 days to children with diarrhoea. Design Cluster randomised comparison. Setting Matlab field site of International Center for Diarrhoeal Disease Research, Bangladesh. Participants 8070 children aged 3-59 months contributed 11 881 child years of observation during a two year period. Intervention Children with diarrhoea in the intervention clusters were treated with zinc (20 mg per day for 14 days); all children with diarrhoea were treated with oral rehydration therapy. Main outcome measures Duration of episode of diarrhoea, incidence of diarrhoea and acute lower respiratory infections, admission to hospital for diarrhoea or acute lower respiratory infections, and child mortality. Results About 40% (399/1007) of diarrhoeal episodes were treated with zinc in the first four months of the trial; the rate rose to 67% (350/526) in month 5 and to >80% (364/434) in month 7 and was sustained at that level. Children from the intervention cluster received zinc for about seven days on average during each episode of diarrhoea. They had a shorter duration (hazard ratio 0.76, 95% confidence interval 0.65 to 0.90) and lower incidence of diarrhoea (rate ratio 0.85, 0.76 to 0.96) than children in the comparison group. Incidence of acute lower respiratory infection was reduced in the intervention group but not in the comparison group. Admission to hospital of children with diarrhoea was lower in the intervention group than in the comparison group (0.76, 0.59 to 0.98). Admission for acute lower respiratory infection was lower in the intervention group, but this was not statistically significant (0.81, 0.53 to 1.23). The rate of non-injury deaths in the intervention clusters was considerably lower (0.49, 0.25 to 0.94). Conclusions The lower rates of child morbidity and mortality with zinc treatment represent substantial benefits from a simple and inexpensive intervention that can be incorporated

  8. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  9. Efficient reductive elimination of bromate in water using zero-valent zinc prepared by acid-washing treatments.

    PubMed

    Lin, Kun-Yi Andrew; Lin, Chu-Hung; Lin, Jia-Yin

    2017-10-15

    Although zero valent zinc (ZVZ) is a strong reductant, studies using ZVZ for bromate reduction are rare. In this study, ZVZ is prepared by acid-washing zinc powder with HCl and used to reduce bromate. The effect of acid-washing on the morphology of zinc powder is also examined. Zinc powder inefficiently reduces bromate, but ZVZ obtained by acid-washing zinc powder eliminates bromate and converts it to bromide. A higher dose of ZVZ enhances elimination efficiency perhaps because the formation of a passivation layer of zinc oxide could be scattered on the large surface of ZVZ. Elevated temperature also substantially improves both elimination efficiency and kinetics. The effect of pH is shown to have the most significant impact on the bromate elimination; elimination efficiency and kinetics are tremendously bolstered at pH = 3, whereas the elimination of bromate is completely suppressed under alkaline conditions. ZVZ can reduce bromate to bromide even in the presence of other anions and also be reused multiple times. Thus, ZVZ can be easily prepared and used to efficiently reduce bromate to bromide. The findings presented here are essential to the design and implementation of bromate elimination in water using zero-valent metals. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Protective effect of zinc against ischemic neuronal injury in a middle cerebral artery occlusion model.

    PubMed

    Kitamura, Youji; Iida, Yasuhiko; Abe, Jun; Ueda, Masashi; Mifune, Masaki; Kasuya, Fumiyo; Ohta, Masayuki; Igarashi, Kazuo; Saito, Yutaka; Saji, Hideo

    2006-02-01

    In this study, we investigated the effect of vesicular zinc on ischemic neuronal injury. In cultured neurons, addition of a low concentration (under 100 microM) of zinc inhibited both glutamate-induced calcium influx and neuronal death. In contrast, a higher concentration (over 150 microM) of zinc decreased neuronal viability, although calcium influx was inhibited. These results indicate that zinc exhibits biphasic effects depending on its concentration. Furthermore, in cultured neurons, co-addition of glutamate and CaEDTA, which binds extra-cellular zinc, increased glutamate-induced calcium influx and aggravated the neurotoxicity of glutamate. In a rat transient middle cerebral artery occlusion (MCAO) model, the infarction volume, which is related to the neurotoxicity of glutamate, increased rapidly on the intracerebral ventricular injection of CaEDTA 30 min prior to occlusion. These results suggest that zinc released from synaptic vesicles may provide a protective effect against ischemic neuronal injury.

  11. Potential reproduction and response of selenium and zinc mineral supplementation on quality of goat samosir semen

    NASA Astrophysics Data System (ADS)

    Siswoyo, P.; Tafsin, M.; Handarini, R.

    2018-02-01

    The present study was conducted to investigate the effect of suppllementattion of selenium and zinc on semen quality and growth of samosir goat. The experimental design used latin square design (4x4). The treatment supplementation mineral on multi nutrient block (MNB) composed of without sipplementation (p0), +10ppm selenium (p1), +10ppm zinc (p2), +10ppm selenium and +10ppm zinc (p3). The result showed that supplementation mineral selenium and zinc increased significantly (p<0.05) average daily growth, feed consumtion, and lower feed convertion ratio. Semen quality of goat were supplemented by selenium and zinc influenced motility, viability, volume concentration, and responding hypo osmotic swelling (HOS). Combination supplementation selenium and zinc significanly had higher semen quality than ither treatment. It is concluded that supplementation selenium and zinc improve growth and semen quality of samosir goat.

  12. Activation of sputter-processed indium-gallium-zinc oxide films by simultaneous ultraviolet and thermal treatments.

    PubMed

    Tak, Young Jun; Ahn, Byung Du; Park, Sung Pyo; Kim, Si Joon; Song, Ae Ran; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-02-23

    Indium-gallium-zinc oxide (IGZO) films, deposited by sputtering at room temperature, still require activation to achieve satisfactory semiconductor characteristics. Thermal treatment is typically carried out at temperatures above 300 °C. Here, we propose activating sputter- processed IGZO films using simultaneous ultraviolet and thermal (SUT) treatments to decrease the required temperature and enhance their electrical characteristics and stability. SUT treatment effectively decreased the amount of carbon residues and the number of defect sites related to oxygen vacancies and increased the number of metal oxide (M-O) bonds through the decomposition-rearrangement of M-O bonds and oxygen radicals. Activation of IGZO TFTs using the SUT treatment reduced the processing temperature to 150 °C and improved various electrical performance metrics including mobility, on-off ratio, and threshold voltage shift (positive bias stress for 10,000 s) from 3.23 to 15.81 cm(2)/Vs, 3.96 × 10(7) to 1.03 × 10(8), and 11.2 to 7.2 V, respectively.

  13. Zinc and Wound Healing: A Review of Zinc Physiology and Clinical Applications.

    PubMed

    Kogan, Samuel; Sood, Aditya; Garnick, Mark S

    2017-04-01

    Our understanding of the role of zinc in normal human physiology is constantly expanding, yet there are major gaps in our knowledge with regard to the function of zinc in wound healing. This review aims to provide the clinician with sufficient understanding of zinc biology and an up-to-date perspective on the role of zinc in wound healing. Zinc is an essential ion that is crucial for maintenance of normal physiology, and zinc deficiency has many manifestations ranging from delayed wound healing to immune dysfunction and impairment of multiple sensory systems. While consensus has been reached regarding the detrimental effects of zinc deficiency on wound healing, there is considerable discord in the literature on the optimal methods and true benefits of zinc supplementation.

  14. Cost-effectiveness analysis of the diarrhea alleviation through zinc and oral rehydration therapy (DAZT) program in rural Gujarat India: an application of the net-benefit regression framework.

    PubMed

    Shillcutt, Samuel D; LeFevre, Amnesty E; Fischer-Walker, Christa L; Taneja, Sunita; Black, Robert E; Mazumder, Sarmila

    2017-01-01

    This study evaluates the cost-effectiveness of the DAZT program for scaling up treatment of acute child diarrhea in Gujarat India using a net-benefit regression framework. Costs were calculated from societal and caregivers' perspectives and effectiveness was assessed in terms of coverage of zinc and both zinc and Oral Rehydration Salt. Regression models were tested in simple linear regression, with a specified set of covariates, and with a specified set of covariates and interaction terms using linear regression with endogenous treatment effects was used as the reference case. The DAZT program was cost-effective with over 95% certainty above $5.50 and $7.50 per appropriately treated child in the unadjusted and adjusted models respectively, with specifications including interaction terms being cost-effective with 85-97% certainty. Findings from this study should be combined with other evidence when considering decisions to scale up programs such as the DAZT program to promote the use of ORS and zinc to treat child diarrhea.

  15. Contribution of Zinc Solubilizing Bacteria in Growth Promotion and Zinc Content of Wheat.

    PubMed

    Kamran, Sana; Shahid, Izzah; Baig, Deeba N; Rizwan, Muhammad; Malik, Kauser A; Mehnaz, Samina

    2017-01-01

    Zinc is an imperative micronutrient required for optimum plant growth. Zinc solubilizing bacteria are potential alternatives for zinc supplementation and convert applied inorganic zinc to available forms. This study was conducted to screen zinc solubilizing rhizobacteria isolated from wheat and sugarcane, and to analyze their effect on wheat growth and development. Fourteen exo-polysaccharides producing bacterial isolates of wheat were identified and characterized biochemically as well as on the basis of 16S rRNA gene sequences. Along these, 10 identified sugarcane isolates were also screened for zinc solubilizing ability on five different insoluble zinc sources. Out of 24, five strains, i.e., EPS 1 ( Pseudomonas fragi) , EPS 6 ( Pantoea dispersa) , EPS 13 ( Pantoea agglomerans) , PBS 2 ( E. cloacae) and LHRW1 ( Rhizobium sp.) were selected (based on their zinc solubilizing and PGP activities) for pot scale plant experiments. ZnCO 3 was used as zinc source and wheat seedlings were inoculated with these five strains, individually, to assess their effect on plant growth and development. The effect on plants was analyzed based on growth parameters and quantifying zinc content of shoot, root and grains using atomic absorption spectroscopy. Plant experiment was performed in two sets. For first set of plant experiments (harvested after 1 month), maximum shoot and root dry weights and shoot lengths were noted for the plants inoculated with Rhizobium sp. (LHRW1) while E. cloacae (PBS 2) increased both shoot and root lengths. Highest zinc content was found in shoots of E. cloacae (PBS 2) and in roots of P. agglomerans (EPS 13) followed by zinc supplemented control. For second set of plant experiment, when plants were harvested after three months, Pantoea dispersa (EPS 6), P. agglomerans (EPS 13) and E. cloacae (PBS 2) significantly increased shoot dry weights. However, significant increase in root dry weights and maximum zinc content was recorded for Pseudomonas fragi (EPS

  16. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  17. Subchronic treatment of rats with aurothioglucose; effects on plasma, hepatic, renal and urinary zinc, copper and metallothionein.

    PubMed

    McVety, K J; Shaikh, Z A

    1987-11-01

    Administration of sodium aurothioglucose (10 mg/kg per day) to female rats for up to 8 weeks resulted in no apparent effects on the kidney. Gold accumulated in kidney, liver, spleen, pancreas, skin and blood. Although plasma and hepatic gold levels increased with time, no remarkable change in either copper, zinc or metallothionein (MT) levels was observed. Gel filtration chromatography of plasma showed binding of gold to albumin, whereas copper was associated with albumin, ceruloplasmin and a protein eluting in the void volume of the Sephadex G-150 column. Almost all of the hepatic gold was bound to proteins other than MT. In the kidney, not only gold but also copper and MT increased rapidly, reached a maximum between 2 and 4 weeks and exhibited insignificant change thereafter. Gold-treated animals showed an increase in binding of copper to the very high molecular weight plasma protein, which may be involved in transport of copper to the kidneys. Urinary gold and MT followed a pattern similar to that in the kidney. Renal zinc also increased but returned to normal by week 8. In renal cytosol 57% and 54% of the gold and copper, respectively, were associated with MT. It appears that the elevated levels of copper and zinc, rather than gold, are responsible for the induction of MT synthesis. This then provides a mechanism by which gold and the inducing metals are retained by the kidney.

  18. Effect of morphology and solvent on two-photon absorption of nano zinc oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavitha, M.K.; Haripadmam, P.C.; Gopinath, Pramod

    Highlights: ► ZnO nanospheres and triangular structures synthesis by novel precipitation technique. ► The effect of precursor concentration on the size and shape of nano ZnO. ► Open aperture Z-scan measurements of the ZnO nanoparticle dispersions. ► Nanospheres exhibit higher two photon absorption coefficient than triangular nanostructures. ► Nanospheres dispersed in water exhibit higher two photon absorption coefficient than its dispersion in 2-propanol. - Abstract: In this paper, we report the effect of morphology and solvent on the two-photon absorption of nano zinc oxide. Zinc oxide nanoparticles in two different morphologies like nanospheres and triangular nanostructures are synthesized by novelmore » precipitation technique and their two-photon absorption coefficient is measured using open aperture Z-scan technique. Experimental results show that the zinc oxide nanospheres exhibit higher two-photon absorption coefficient than the zinc oxide triangular nanostructures. The zinc oxide nanospheres dispersed in water exhibit higher two-photon absorption coefficient than that of its dispersion in 2-propanol. The zinc oxide nanospheres dispersed in water shows a decrease in two-photon absorption coefficient with an increase in on-axis irradiance. The result confirms the dependence of shape and solvent on the two-photon absorption of nano zinc oxide.« less

  19. Zinc sulfate therapy of vocal process granuloma.

    PubMed

    Sun, Guang-Bin; Sun, Na; Tang, Hai-Hong; Zhu, Qiu-Bei; Wen, Wu; Zheng, Hong-Liang

    2012-09-01

    Vocal process granuloma is a benign lesion that occurs on the arytenoid cartilage. It tends to recur locally, and there is a great diversity of methods to treat it. Here, we reviewed the effects of zinc sulfate therapy program in 16 patients with vocal process granulomas. Eleven patients had a history of trauma or laryngeal intubation and five patients had unknown origin. Eleven had recurrence after one to three failed surgeries, and the others had no prior treatment. Symptoms included hoarseness, sore throat, lump sensation in the throat and cough that apparently improved. The granulomas did not recur for at least 1 year. No complications occurred. For vocal process granuloma, zinc sulfate therapy is good either as an initial or compensatory treatment.

  20. Zinc and selenium accumulation and their effect on iron bioavailability in common bean seeds.

    PubMed

    de Figueiredo, Marislaine A; Boldrin, Paulo F; Hart, Jonathan J; de Andrade, Messias J B; Guilherme, Luiz R G; Glahn, Raymond P; Li, Li

    2017-02-01

    Common beans (Phaseolus vulgaris) are the most important legume crops. They represent a major source of micronutrients and a target for essential trace mineral enhancement (i.e. biofortification). To investigate mineral accumulation during seed maturation and to examine whether it is possible to biofortify seeds with multi-micronutrients without affecting mineral bioavailability, three common bean cultivars were treated independently with zinc (Zn) and selenium (Se), the two critical micronutrients that can be effectively enhanced via fertilization. The seed mineral concentrations during seed maturation and the seed Fe bioavailability were analyzed. Common bean seeds were found to respond positively to Zn and Se treatments in accumulating these micronutrients. While the seed pods showed a decrease in Zn and Se along with Fe content during pod development, the seeds maintained relatively constant mineral concentrations during seed maturation. Selenium treatment had minimal effect on the seed accumulation of phytic acid and polyphenols, the compounds affecting Fe bioavailability. Zinc treatment reduced phytic acid level, but did not dramatically affect the concentrations of total polyphenols. Iron bioavailability was found not to be greatly affected in seeds biofortified with Se and Zn. In contrast, the inhibitory polyphenol compounds in the black bean profoundly reduced Fe bioavailability. These results provide valuable information for Se and Zn enhancement in common bean seeds and suggest the possibility to biofortify with these essential nutrients without greatly affecting mineral bioavailability to increase the food quality of common bean seeds. Published by Elsevier Masson SAS.

  1. Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivatives in treatment of bacterial skin infection

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Zhang, Yaxin; Wang, Dong; Li, Linsen; Zhou, Shanyong; Huang, Joy H.; Chen, Jincan; Hu, Ping; Huang, Mingdong

    2016-01-01

    Photodynamic antimicrobial chemotherapy (PACT) is an effective method for killing bacterial cells in view of the increasing problem of multiantibiotic resistance. We herein reported the PACT effect on bacteria involved in skin infections using a zinc phthalocyanine derivative, pentalysine β-carbonylphthalocyanine zinc (ZnPc-Lys). Compared with its anionic ZnPc counterpart, ZnPc-Lys showed an enhanced antibacterial efficacy in vitro and in an animal model of localized infection. Meanwhile, ZnPc-Lys was observed to significantly reduce the wound skin blood flow during wound healing, indicating an anti-inflammation activity. This study provides new insight on the mechanisms of PACT in bacterial skin infection.

  2. Effect of dietary phytate on zinc homeostasis in young and elderly Korean women.

    PubMed

    Kim, Jihye; Paik, Hee Young; Joung, Hyojee; Woodhouse, Leslie R; Li, Shanji; King, Janet C

    2007-02-01

    Previous studies suggest that consumption of predominantly plant-based diets with high phytate content contribute to zinc deficiency by inhibiting zinc absorption. Age of the individual may also affect the ability to maintain zinc homeostasis. This study was designed to determine the effect of dietary phytate on zinc homeostasis and to evaluate the effect of age on the capacity to maintain the zinc homeostasis with changes in dietary phytate in young and elderly Korean women. Seven healthy young women (22-24 yr) and 10 healthy elderly women (66-75 yr) were studied consecutively for 3 months in 2 metabolic periods (MP) in two different metabolic units. During MP1 the women consumed a high phytate (HP) diet (P:Zn molar ratio = 23) for 9 days. After a 10 d wash-out period at home eating their usual diets, a lower phytate diet (LP) (P:Zn molar ratio = 10) was fed in MP2 for 9 d. Phytase was added to selected foods in the high phytate diet to reduce the phytate content of the meals in the LP period. The zinc content of both diets was about 6.5 mg/d. Stable isotopes of Zn ((70)Zn) were administered intravenously on d 5 of MP 1 and 2 for measuring endogenous fecal zinc excretion. Plasma samples were also collected on d 5 for measuring plasma zinc concentrations by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). 24 hr urine samples were collected for 5 d and complete fecal samples were collected for 9 d after isotope administration. Fractional zinc absorption (FZA) was calculated from mass balance corrected for endogenous fecal zinc (EFZ) excretion and EFZ was determined by using an isotopic dilution technique. Isotopic ratios for FZA and EFZ were measured by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Statistical analyses were done using ANOVA. Both the young and elderly women were in negative zinc balance during the HP period. This was due to a significant decrease in FZA and total absorbed zinc (TAZ) with a HP diet (43 vs 22% in young women

  3. Feasibility investigation of oily wastewater treatment by combination of zinc and PAM in coagulation/flocculation.

    PubMed

    Zeng, Yubin; Yang, Changzhu; Zhang, Jingdong; Pu, Wenhong

    2007-08-25

    Poly-zinc silicate (PZSS) is a new type of coagulant with cationic polymer synthesized by polysilicic acid and zinc sulfate. It has been used in several sorts of wastewaters treatment, but not used in oily wastewater treatment. In this study, we investigated the coagulation/flocculation of oil and suspended solids in heavy oil wastewater (HOW) by PZSS and anion polyacrylamide (A-PAM). The properties of PZSS cooperated with A-PAM were compared with PAC and PFS in dosages, PAMs amount, settling time, pH value and flocs morphology. The results showed that PZSS was more efficient than PAC and PFS. Under the optimum experimental conditions of coagulation/flocculation (dosage: 100mg/L, A-PAM dosage: 1.0mg/L, settling time time: 40min and pH 6.5-9.5), more than 99% of oil was removed and suspended solid value less than 5mg/L by using PZSS cooperated with A-PAM, which could satisfy the demands of the pre-treatment process for HOW to be reused in the steam boiler or recycled into the injecting well.

  4. Zinc Signals and Immunity.

    PubMed

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-10-24

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as "zinc waves", and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.

  5. Zinc Signals and Immunity

    PubMed Central

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-01-01

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as “zinc waves”, and late homeostatic zinc signals regarding prolonged changes in intracellular zinc. PMID:29064429

  6. Properties of Zip4 accumulation during zinc deficiency and its usefulness to evaluate zinc status: a study of the effects of zinc deficiency during lactation.

    PubMed

    Hashimoto, Ayako; Nakagawa, Miki; Tsujimura, Natsuki; Miyazaki, Shiho; Kizu, Kumiko; Goto, Tomoko; Komatsu, Yusuke; Matsunaga, Ayu; Shirakawa, Hitoshi; Narita, Hiroshi; Kambe, Taiho; Komai, Michio

    2016-03-01

    Systemic and cellular zinc homeostasis is elaborately controlled by ZIP and ZnT zinc transporters. Therefore, detailed characterization of their expression properties is of importance. Of these transporter proteins, Zip4 functions as the primarily important transporter to control systemic zinc homeostasis because of its indispensable function of zinc absorption in the small intestine. In this study, we closely investigated Zip4 protein accumulation in the rat small intestine in response to zinc status using an anti-Zip4 monoclonal antibody that we generated and contrasted this with the zinc-responsive activity of the membrane-bound alkaline phosphatase (ALP). We found that Zip4 accumulation is more rapid in response to zinc deficiency than previously thought. Accumulation increased in the jejunum as early as 1 day following a zinc-deficient diet. In the small intestine, Zip4 protein expression was higher in the jejunum than in the duodenum and was accompanied by reduction of ALP activity, suggesting that the jejunum can become zinc deficient more easily. Furthermore, by monitoring Zip4 accumulation levels and ALP activity in the duodenum and jejunum, we reasserted that zinc deficiency during lactation may transiently alter plasma glucose levels in the offspring in a sex-specific manner, without affecting homeostatic control of zinc metabolism. This confirms that zinc nutrition during lactation is extremely important for the health of the offspring. These results reveal that rapid Zip4 accumulation provides a significant conceptual advance in understanding the molecular basis of systemic zinc homeostatic control, and that properties of Zip4 protein accumulation are useful to evaluate zinc status closely. Copyright © 2016 the American Physiological Society.

  7. Combinatorial effects of zinc deficiency and arsenic exposure on zebrafish (Danio rerio) development

    PubMed Central

    Truong, Lisa; Barton, Carrie L.; Chase, Tyler T.; Gonnerman, Greg D.; Wong, Carmen P.; Tanguay, Robert L.; Ho, Emily

    2017-01-01

    Zinc deficiency and chronic low level exposures to inorganic arsenic in drinking water are both significant public health concerns that affect millions of people including pregnant women. These two conditions can co-exist in the human population but little is known about their interaction, and in particular, whether zinc deficiency sensitizes individuals to arsenic exposure and toxicity, especially during critical windows of development. To address this, we utilized the Danio rerio (zebrafish) model to test the hypothesis that parental zinc deficiency sensitizes the developing embryo to low-concentration arsenic toxicity, leading to altered developmental outcomes. Adult zebrafish were fed defined zinc deficient and zinc adequate diets and were spawned resulting in zinc adequate and zinc deficient embryos. The embryos were treated with environmentally relevant concentrations of 0, 50, and 500 ppb arsenic. Arsenic exposure significantly reduced the amount of zinc in the developing embryo by ~7%. The combination of zinc deficiency and low-level arsenic exposures did not sensitize the developing embryo to increased developmental malformations or mortality. The combination did cause a 40% decline in physical activity of the embryos, and this decline was significantly greater than what was observed with zinc deficiency or arsenic exposure alone. Significant changes in RNA expression of genes that regulate zinc homeostasis, response to oxidative stress and insulin production (including zip1, znt7, nrf2, ogg1, pax4, and insa) were found in zinc deficient, or zinc deficiency and arsenic exposed embryos. Overall, the data suggests that the combination of zinc deficiency and arsenic exposure has harmful effects on the developing embryo and may increase the risk for developing chronic diseases like diabetes. PMID:28837703

  8. The in vitro antifungal activity of ketoconazole, zinc pyrithione, and selenium sulfide against Pityrosporum and their efficacy as a shampoo in the treatment of experimental pityrosporosis in guinea pigs.

    PubMed

    Van Cutsem, J; Van Gerven, F; Fransen, J; Schrooten, P; Janssen, P A

    1990-06-01

    The fungistatic and fungicidal activity of ketoconazole, zinc pyrithione, and selenium sulfide against Pityrosporum, a yeast thought to play a pathogenic role in seborrheic dermatitis and dandruff, was assessed in Dixon broth for Pityrosporum ovale and Sabouraud broth for Pityrosporum pachydermatis. Ketoconazole inhibited growth at concentrations ranging from 0.001 to 1 micrograms/ml. For zinc pyrithione and selenium sulfide higher concentrations were needed. In a guinea pig model the efficacy of treatment with four shampoos (Nizoral [Jansen], EDS Zinc [Schering], Zinkan [Lederle], and Selsun [Abbott]) was compared. The animals were inoculated for 7 consecutive days on intact skin. The lesions were scored for erythema, folliculitis, and hyperkeratosis 24 hours after the last inoculation and after treatment. Final evaluations were made 13 days after infection (10 days after last shampoo application). Treatment with undiluted and diluted (1:10) shampoos showed consistently superior clinical and mycologic results for Nizoral shampoo. None of the shampoos produced side effects.

  9. Chelation of neurotoxic zinc levels does not improve neurobehavioral outcome after traumatic brain injury

    PubMed Central

    Hellmich, Helen L.; Eidson, Kristine; Cowart, Jeremy; Crookshanks, Jeanna; Boone, Deborah K.; Shah, Syed; Uchida, Tatsuo; DeWitt, Douglas S.; Prough, Donald S.

    2008-01-01

    Increases of synaptically released zinc and intracellular accumulation of zinc in hippocampal neurons after traumatic or ischemic brain injury is neurotoxic and chelation of zinc has been shown to reduce neurodegeneration. Although our previous studies showed that zinc chelation in traumatically brain-injured rats correlated with an increase in whole-brain expression of several neuroprotective genes and reduced numbers of apoptotic neurons, the effect on functional outcome has not been determined, and the question of whether this treatment may actually be clinically relevant has not been answered. In the present study, we show that treatment of TBI rats with the zinc chelator calcium EDTA reduces the numbers of injured, Fluoro-Jade- positive neurons in the rat hippocampus 24 hours after injury but does not improve neurobehavioral outcome (spatial memory deficits) two weeks post-injury. Our data suggest that zinc chelation, despite providing short-term histological neuroprotection, fails to improve long-term functional outcome, perhaps because long-term disruptions in homeostatic levels of zinc adversely influence hippocampus-dependent spatial memory. PMID:18556117

  10. Effects of zinc oxide nanoparticles on the egg quality, immune response, zinc retention, and blood parameters of laying hens in the late phase of production.

    PubMed

    Abedini, M; Shariatmadari, F; Karimi Torshizi, M A; Ahmadi, H

    2018-06-01

    The objective of this study was to evaluate the effects of dietary supplementation with zinc oxide nanoparticles (ZnO-NPs) on the performance, egg quality, Zn retention, immunity responses, superoxide dismutase activity (SOD), egg malondialdehyde (MDA) content, and serum parameters in laying hens in the late phase of production. A total of 288 laying hens at 64 weeks of age were randomly assigned to 4 treatments with 6 replicates, and 12 birds within each group. Experimental diets included a corn-soybean meal-based diet (without Zn supplementation) and a basal diet supplemented with 80 mg/kg of Zn-oxide, ZnO-NPs, and Zn-methionine. The results indicated that egg production and egg mass were significantly higher in the Zn-methionine and ZnO-NPs groups (p < .05). Also, eggshell thickness and shell strength increased in the ZnO-NPs group as compared with the other groups (p < .05). Moreover, Zn supplementation decreased egg loss (p < .05). There were significant differences among treatments in Zn deposition in tibiotarsus, liver, pancreas, eggs, and excreta (p < .01). Antibody titre, heterophil (%(, and phytohemagglutinin (PHA) were significantly higher in birds fed with Zn-supplemented diets (p < .05). In treatments supplemented with ZnO-NPs and Zn-methionine, the SOD activity in the liver, pancreas, and plasma was greater as compared with the other treatments (p < .05). The MDA content in eggs was significantly reduced in groups supplemented with Zn (p < .01). Moreover, dietary Zn supplementation significantly affected serum total protein, albumin, glucose, alkaline phosphatase activity, carbonic anhydrase activity, and Zn level (p < .05). In conclusion, this study demonstrated that dietary supplementation with ZnO-NPs can improve the performance of laying hens. Therefore, ZnO-NPs can enhance zinc absorption in the intestine of aged layers and can be a more suitable source of zinc than regular Zn-oxide in diets. © 2018 Blackwell Verlag GmbH.

  11. Electrophoretic deposition of zinc-substituted hydroxyapatite coatings.

    PubMed

    Sun, Guangfei; Ma, Jun; Zhang, Shengmin

    2014-06-01

    Zinc-substituted hydroxyapatite nanoparticles synthesized by the co-precipitation method were used to coat stainless steel plates by electrophoretic deposition in n-butanol with triethanolamine as a dispersant. The effect of zinc concentration in the synthesis on the morphology and microstructure of coatings was investigated. It is found that the deposition current densities significantly increase with the increasing zinc concentration. The zinc-substituted hydroxyapatite coatings were analyzed by X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. It is inferred that hydroxyapatite and triethanolamine predominate in the chemical composition of coatings. With the increasing Zn/Ca ratios, the contents of triethanolamine decrease in the final products. The triethanolamine can be burnt out by heat treatment. The tests of adhesive strength have confirmed good adhesion between the coatings and substrates. The formation of new apatite layer on the coatings has been observed after 7days of immersion in a simulated body fluid. In summary, the results show that dense, uniform zinc-substituted hydroxyapatite coatings are obtained by electrophoretic deposition when the Zn/Ca ratio reaches 5%. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Possible role of zinc in diminishing lead-related occupational stress-a zinc nutrition concern.

    PubMed

    Wani, Ab Latif; Ahmad, Ajaz; Shadab, G G H A; Usmani, Jawed Ahmad

    2017-03-01

    Lead and zinc are mostly present at the same occupational source and usually found as co-contaminants. Lead is known to associate with detrimental effects to humans. Zinc however is an essential nutrient and its deficiency causes debilitating effects on growth and development. Besides, it acts as core ion of important enzymes and proteins. The purpose of this study was to examine if zinc concentrations are associated with blood lead levels and if zinc may prevent lead-induced DNA damage. Blood samples were collected from 92 workers as participants occupationally exposed to lead or lead and zinc and 38 comparison participants having no history of such exposure. Lead and zinc levels were determined from blood by atomic absorption spectrophotometry and genetic damage was assessed by comet assay. Correlation was calculated by Spearman's rho. Lead concentrations were observed to increase among workers with increase in years of exposure. There was a significant difference (p < 0.001) in blood lead levels between workers and controls. In addition, significant difference (p < 0.001) in the genetic damage was observed among workers and controls. A clear effect of increased occupational exposure was visible among workers. Multiple regression analysis further reveals the positive effect of lead, while as the inverse effect of zinc on DNA damage. The results suggest that zinc may influence body lead absorption and may have a role in preventing the genetic damage caused by lead.

  13. The effect of zinc injection on the increasing of Inconel 600 TT corrosion resistances

    NASA Astrophysics Data System (ADS)

    Febrianto; Sriyono; Widodo, Surip; Sunaryo, Geni Rina

    2018-02-01

    Many failures were found in reactor pressure vessel head penetration (RPV) head material. Those failures caused by boric acid corrosion, and from visual examination were found a big hole and white deposit crystal of boric acid during shutdown maintenance at David Besse reactor. Zinc Oxide addition in BWR reactor known as Zinc Injection that has purposed to reduce radiation exposure cause of Hydrogen addition. Beside reducing the radiation exposure, Zinc injection also has an effect in reducing material corrosion. The purpose of study is to determine the effect of zinc addition, boric acid, temperature also the effects of Cobalt Nitrate and Zinc Oxide addition to Inconel 600 TT as RPV head penetration material. The result in the BWR reactor experience will be implementated at PWR reactor, weather zinc oxide addition also has an effect in reducing the corrosion of Inconel 600. The method that used in this research is to observe the corrosion rates for Inconel 600 material using Potentiostat. Examination were conducted in 30, 40, 60, 70, 80 and 80 °C using 1000, 1500, 2000, 2500 and 3000 ppm boric acid concentration. The results showed that the corrosion rate for the material were very small, but the highest corrosion rate occurred in 3000 ppm boric acid concentration at 90 °C with Cobalt Nitrate addition, around 5.210 x 10-1 mpy. In the same condition at 3000 ppm boric acid concentration for temperature at 90 °C, Inconel 600 TT corrosion rate is smaller with Zinc oxide addition, around 4.631 x 10-1 mpy.

  14. The effect of zinc on healing of renal damage in rats.

    PubMed

    Salehipour, Mehdi; Monabbati, Ahmad; Ensafdaran, Mohammad Reza; Adib, Ali; Babaei, Amir Hossein

    2017-07-01

    Several studies have previously been performed to promote kidney healing after injuries. Objectives: The aim of this study was to investigate the effect of zinc on renal healing after traumatic injury in rats. Forty healthy female rats were selected and one of their kidneys was incised. Half of the incisions were limited only to the cortex (renal injury type I) and the other ones reached the pelvocalyceal system of the kidney (renal injury type II). All the rats in the zinc treated group (case group) received 36.3 mg zinc sulfate (contained 8.25 mg zinc) orally. After 28 days, the damaged kidneys were removed for histopathological studies. In the rats with type I injury, kidney inflammation of the case group was significantly lower than that of the control group. However, the result was not significant in rats with type II injury. Tissue loss and granulation tissue formation were significantly lower in the case group than the control group in both type I and II kidney injuries. Overall, Zinc can contribute to better healing of the rat's kidneys after a traumatic injury.

  15. Zinc Modulates Nanosilver-Induced Toxicity in Primary Neuronal Cultures.

    PubMed

    Ziemińska, Elżbieta; Strużyńska, Lidia

    2016-02-01

    Silver nanoparticles (NAg) have recently become one of the most commonly used nanomaterials. Since the ability of nanosilver to enter the brain has been confirmed, there has been a need to investigate mechanisms of its neurotoxicity. We previously showed that primary neuronal cultures treated with nanosilver undergo destabilization of calcium homeostasis via a mechanism involving glutamatergic NMDA receptors. Considering the fact that zinc interacts with these receptors, the aim of the present study was to examine the role of zinc in mechanisms of neuronal cell death in primary cultures. In cells treated with nanosilver, we noted an imbalance between extracellular and intracellular zinc levels. Thus, the influence of zinc deficiency and supplementation on nanosilver-evoked cytotoxicity was investigated by treatment with TPEN (a chelator of zinc ions), or ZnCl(2), respectively. Elimination of zinc leads to complete death of nanosilver-treated CGCs. In contrast, supplementation with ZnCl(2) increases viability of CGCs in a dose-dependent manner. Addition of zinc provided protection against the extra/intracellular calcium imbalance in a manner similar to MK-801, an antagonist of NMDA receptors. Zinc chelation by TPEN decreases the mitochondrial potential and dramatically increases the rate of production of reactive oxygen species. Our results indicate that zinc supplementation positively influences nanosilver-evoked changes in CGCs. This is presumed to be due to an inhibitory effect on NMDA-sensitive calcium channels.

  16. Effects of zinc and multimineral vitamin supplementation on glycemic and lipid control in adult diabetes.

    PubMed

    Gunasekara, Priyanka; Hettiarachchi, Manjula; Liyanage, Chandrani; Lekamwasam, Sarath

    2011-01-26

    To evaluate the effects of zinc with or without other antioxidants on blood glucose, lipid profile, and serum creatinine in adult diabetics on long-term follow-up. Patients (n = 96) were randomly allocated to three groups: group A (n = 29) was supplemented with oral zinc sulfate (22 mg/day) and multivitamin/mineral (zinc+MVM) preparation; group B (n = 31) was given the same preparation without zinc (MVM); and group C (n = 36) was given a matching placebo for a period of 4 months in a single-blinded study. Blood samples were taken at baseline and after 4 months of supplementation to assess blood glucose (fasting and postprandial) and glycosylated hemoglobin (Hb(A1C)%) and serum levels of zinc, creatinine, and lipids. The zinc+MVM group had a mean change of fasting blood sugar -0.33 mmol/L (standard error of the mean 0.21 mmol/L) and was significant (P = 0.05) when compared with the other two groups (mean change in the MVM group +0.19 (0.31) mmol/L and +0.43 (0.23) mmol/L in the control group, respectively). The Hb(A1C)% level reduced significantly, irrespective of the baseline level, in zinc+MVM-supplemented individuals. In the other two groups, the change of Hb(A1C)% level was not significant. Serum lipid levels reduced significantly in the zinc+MVM and MVM groups. Zinc+MVM supplementation showed beneficial effects in the metabolic control of adult diabetics in addition to elevating their serum zinc level. Zinc supplementation improved glycemic control measured by Hb(A1C)% and fasting and postprandial glucose. Furthermore, zinc supplementation lowered serum cholesterol and cholesterol/high-density lipoprotein ratio.

  17. Galvanic zinc-copper microparticles inhibit melanogenesis via multiple pigmentary pathways.

    PubMed

    Won, Yen-Kim; Lin, Connie B; Seiberg, Miri; Chen, Nannan; Hu, Yaping; Rossetti, Dianne; Saliou, Claude; Loy, Chong-Jin

    2014-01-01

    The endogenous electrical field of human skin plays an important role in many skin functions. However, the biological effects and mechanism of action of externally applied electrical stimulation on skin remain unclear. Recent study showed that galvanic zinc-copper microparticles produce electrical stimulation and reduce inflammatory and immune responses in intact skin, suggesting the important role of electrical stimulation in non-wounded skin. The objective of this study is to investigate the biological effect of galvanic zinc-copper microparticles on skin pigmentation. Our findings showed that galvanic zinc-copper microparticles inhibited melanogenesis in a human melanoma cell line (MNT-1), human keratinocytes and melanoma cells co-cultures, and in pigmented epidermal equivalents. Treatment of galvanic zinc-copper microparticles inhibited melanogenesis by reducing the promoter transactivation of tyrosinase and tyrosinase-related protein-1 in human melanoma cells. In a co-culture Transwell system of keratinocytes and melanoma cells, galvanic zinc-copper microparticles reduced melanin production via downregulation of endothelin-1 secretion from keratinocytes and reduced tyrosinase gene expression in melanoma cells. In addition, exposure of pigmented epidermal equivalents to galvanic zinc-copper microparticles resulted in reduced melanin deposition. In conclusion, our data demonstrated for the first time that galvanic zinc-copper microparticles reduced melanogenesis in melanoma cells and melanin deposition in pigmented epidermal equivalents by affecting multiple pigmentary pathways.

  18. Effect of oral zinc supplementation upon Taenia crassiceps murine cysticercosis.

    PubMed

    Fragoso, G; Lastra, M D; Aguilar, A E; Pastelin, R; Rosas, G; Meneses, G; Sciutto, E; Lamoyi, E

    2001-10-01

    The effect of zinc supplementation on Taenia crassiceps murine cysticercosis was studied in susceptible BALB/cAnN mice. Female offspring of mice supplemented with high zinc throughout gestation and lactation were intraperitoneally infected with T. crassiceps cysticerci. Offspring from nonsupplemented mothers were used as controls. Significantly fewer parasites were recovered from zinc-supplemented mice (Zsm) 30 days after infection. Increased resistance was not related to the IgG antibody response. At early stages of infection, T cells from Zsm proliferated to T. crassiceps antigens, whereas cells from control mice did not respond. Infection caused in both groups a decrease in CD3+ cell percentages, which was more pronounced in the controls, and paralleled by a decrease in CD8+ cells; CD3+ and CD8+ percentages returned to normal levels at later stages of infection. In contrast, the CD4+ subpopulation only decreased in control mice. Intracellular cytokine determinations indicate that zinc supplementation favored a stronger and persistent type-1 T cell response in cysticerci-infected mice, which probably participates in the observed increased resistance.

  19. Effect of the linkers between the zinc fingers in zinc finger protein 809 on gene silencing and nuclear localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichida, Yu, E-mail: ichida-y@ncchd.go.jp; Utsunomiya, Yuko; Onodera, Masafumi

    2016-03-18

    Zinc finger protein 809 (ZFP809) belongs to the Kruppel-associated box-containing zinc finger protein (KRAB-ZFP) family and functions in repressing the expression of Moloney murine leukemia virus (MoMLV). ZFP809 binds to the primer-binding site (PBS)located downstream of the MoMLV-long terminal repeat (LTR) and induces epigenetic modifications at integration sites, such as repressive histone modifications and de novo DNA methylation. KRAB-ZFPs contain consensus TGEKP linkers between C2H2 zinc fingers. The phosphorylation of threonine residues within linkers leads to the inactivation of zinc finger binding to target sequences. ZFP809 also contains consensus linkers between zinc fingers. However, the function of ZFP809 linkers remainsmore » unknown. In the present study, we constructed ZFP809 proteins containing mutated linkers and examined their ability to silence transgene expression driven by MLV, binding ability to MLV PBS, and cellular localization. The results of the present study revealed that the linkers affected the ability of ZFP809 to silence transgene expression. Furthermore, this effect could be partly attributed to changes in the localization of ZFP809 proteins containing mutated linkers. Further characterization of ZFP809 linkers is required for understanding the functions and features of KRAB-ZFP-containing linkers. - Highlights: • ZFP809 has three consensus linkers between the zinc fingers. • Linkers are required for ZFP809 to silence transgene expression driven by MLV-LTR. • Linkers affect the precise nuclear localization of ZFP809.« less

  20. Activation of sputter-processed indium–gallium–zinc oxide films by simultaneous ultraviolet and thermal treatments

    PubMed Central

    Tak, Young Jun; Du Ahn, Byung; Park, Sung Pyo; Kim, Si Joon; Song, Ae Ran; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-01-01

    Indium–gallium–zinc oxide (IGZO) films, deposited by sputtering at room temperature, still require activation to achieve satisfactory semiconductor characteristics. Thermal treatment is typically carried out at temperatures above 300 °C. Here, we propose activating sputter- processed IGZO films using simultaneous ultraviolet and thermal (SUT) treatments to decrease the required temperature and enhance their electrical characteristics and stability. SUT treatment effectively decreased the amount of carbon residues and the number of defect sites related to oxygen vacancies and increased the number of metal oxide (M–O) bonds through the decomposition-rearrangement of M–O bonds and oxygen radicals. Activation of IGZO TFTs using the SUT treatment reduced the processing temperature to 150 °C and improved various electrical performance metrics including mobility, on-off ratio, and threshold voltage shift (positive bias stress for 10,000 s) from 3.23 to 15.81 cm2/Vs, 3.96 × 107 to 1.03 × 108, and 11.2 to 7.2 V, respectively. PMID:26902863

  1. [Zinc and chronic enteropathies].

    PubMed

    Giorgi, P L; Catassi, C; Guerrieri, A

    1984-01-01

    In recent years the nutritional importance of zinc has been well established; its deficiency and its symptoms have also been recognized in humans. Furthermore, Acrodermatitis Enteropathica has been isolated, a rare but severe disease, of which skin lesions, chronic diarrhoea and recurring infections are the main symptoms. The disease is related to the malfunctioning of intestinal absorption of zinc and can be treated by administering pharmacological doses of zinc orally. Good dietary sources of zinc are meat, fish and, to a less extent, human milk. The amount of zinc absorbed in the small intestine is influenced by other nutrients: some compounds inhibit this process (dietary fiber, phytate) while others (picolinic acid, citric acid), referred to as Zn-binding ligands (ZnBL) facilitate it. Citric acid is thought to be the ligand which accounts for the high level of bioavailability of zinc in human milk. zinc absorption occurs throughout the small intestine, not only in the prossimal tract (duodenum and jejunum) but also in the distal tract (ileum). Diarrhoea is one of the clinical manifestations of zinc deficiency, thus many illnesses distinguished by chronic diarrhoea entail a bad absorption of zinc. In fact, in some cases of chronic enteropathies in infants, like coeliac disease and seldom cystic fibrosis, a deficiency of zinc has been isolated. Some of the symptoms of Crohn's disease, like retarded growth and hypogonadism, have been related to hypozinchemia which is present in this illness. Finally, it is possible that some of the dietary treatments frequently used for persistent post-enteritis diarrhoea (i.e. cow's milk exclusion, abuse and misuse of dietary fiber like carrot and carub powder, use of soy formula) can constitute a scarce supply of zinc and therefore could promote the persistency of diarrhoea itself.

  2. Mercury removal from aqueous solutions by zinc cementation.

    PubMed

    Ku, Young; Wu, Ming-Huan; Shen, Yung-Shen

    2002-01-01

    The main purpose of this research is to study the addition effect of the surfactant and other operating factors on the treatment of wastewater containing mercury ions in aqueous solution by cementation with sacrificing metal, zinc. The removal of mercury ions from aqueous solutions by cementation of zinc powder was found to be a function of solution pH and temperature, amount of zinc, concentration of mercury ion, contact time and the addition of several organic surfactants. Cementation of mercury was shown to be a feasible process to achieve a very high degree of mercury removal over a broad operational range within a fairly reasonable contact time. The reaction rate is approximately first order with respect to the concentration of mercury ion in aqueous solution. Among the surfactants used in this study, only the presence of SDS, an anionic surfactant, slightly enhanced the cementation rate of mercury. The presence of CTAB and Triton-X100 retarded the cementation of mercury by zinc.

  3. A systematic review on zinc for the prevention and treatment of age-related macular degeneration

    USDA-ARS?s Scientific Manuscript database

    Zinc is a potential candidate for the prevention and treatment of age-related macular degeneration (AMD) due to its high concentration in the retina and role as a cofactor for antioxidant enzymes. The objective of this work was to conduct a systematic review of studies that investigated dietary inta...

  4. Zinc for the common cold.

    PubMed

    Singh, Meenu; Das, Rashmi R

    2013-06-18

    The common cold is one of the most widespread illnesses and is a leading cause of visits to the doctor and absenteeism from school and work. Trials conducted in high-income countries since 1984 investigating the role of zinc for the common cold symptoms have had mixed results. Inadequate treatment masking and reduced bioavailability of zinc from some formulations have been cited as influencing results. To assess whether zinc (irrespective of the zinc salt or formulation used) is efficacious in reducing the incidence, severity and duration of common cold symptoms. In addition, we aimed to identify potential sources of heterogeneity in results obtained and to assess their clinical significance. In this updated review, we searched CENTRAL (2012, Issue 12), MEDLINE (1966 to January week 2, 2013), EMBASE (1974 to January 2013), CINAHL (1981 to January 2013), Web of Science (1985 to January 2013), LILACS (1982 to January 2013), WHO ICTRP and clinicaltrials.gov. Randomised, double-blind, placebo-controlled trials using zinc for at least five consecutive days to treat, or for at least five months to prevent the common cold. Two review authors independently extracted data and assessed trial quality. Five trials were identified in the updated searches in January 2013 and two of them did not meet our inclusion criteria. We included 16 therapeutic trials (1387 participants) and two preventive trials (394 participants). Intake of zinc was associated with a significant reduction in the duration (days) (mean difference (MD) -1.03, 95% confidence interval (CI) -1.72 to -0.34) (P = 0.003) (I(2) statistic = 89%) but not the severity of common cold symptoms (MD -1.06, 95% CI -2.36 to 0.23) (P = 0.11) (I(2) statistic = 84%). The proportion of participants who were symptomatic after seven days of treatment was significantly smaller (odds ratio (OR) 0.45, 95% CI 0.20 to 1.00) (P = 0.05) than those in the control, (I(2 )statistic = 75%). The incidence rate ratio (IRR) of developing a

  5. Comparison of dexpanthenol and zinc oxide ointment with ointment base in the treatment of irritant diaper dermatitis from diarrhea: a multicenter study.

    PubMed

    Wananukul, Siriwan; Limpongsanuruk, Wanida; Singalavanija, Srisupalak; Wisuthsarewong, Wanee

    2006-10-01

    Severity of irritant diaper dermatitis (IDD) from diarrhea varies from patient to patient depending on the nature of feces and the number of bowel movements. The purpose of the present study was to compare the effectiveness of dexpanthenol and zinc oxide ointment with ointment base in the treatment of irritant diaper dermatitis from acute diarrhea in children by measuring transepidermal water loss (TEWL). Forty-six children with diarrhea were prospectively, block randomized, investigator-blinded to receive dexpanthenol and zinc oxide ointment on one side and ointment base on the other side. TEWL was measured before and on days 1, 3, and 7 of treatment together with the assessment of severity score. The efficacy of treatment was defined by complete clearance of the lesion. TEWL in the treated and control side was not different before the application of the topical medication. In the present study, the efficacy of 5% dexpanthenol and zinc oxide ointment on D3 was 39% (18from 46 patients) compared to 32% in the ointment base side. On D7, the efficacy of the treated side was 58.7% and the ointment base side was 56%. The patients who still had skin lesions were those who had prolonged diarrhea. On the treated side, the mean of TEWL was lower than the control side on DI (p = 0.18) and had significant improvement on D3 (p = 0. 002). At the end of the present study, TEWL on the treated side was less than TEWL of the control side but it did not have statistical significance (p = 0.07). There was no rash or sign of abnormality on the treated side at the end of D7. In the treatment of lDD from acute diarrhea, 5% dexpanthenol and zinc oxide ointment significantly decreased TEWL in the treated side more than the ointment base on day 3 but the severity score was not significantly different on days 1, 3 and 7.

  6. Preparation of superhydrophobic coatings on zinc as effective corrosion barriers.

    PubMed

    Liu, Hongqin; Szunerits, Sabine; Xu, Wenguo; Boukherroub, Rabah

    2009-06-01

    Stable superhydrophobic films with a contact angle of 151 +/- 2 degrees were prepared on zinc substrates by a simple immersion technique into a methanol solution of hydrolyzed 1H,1H,2H,2H-perfluorooctyltrichlorosilane [CF3(CF2)5(CH2)2SiCl3, PFTS] for 5 days at room temperature followed by a short annealing at 130 degrees C in air for 1 h. The superhydrophobic film provides an effective corrosion-resistant coating for the zinc interface when immersed in an aqueous solution of sodium chloride (3% NaCl) for up to 29 days. The corrosion process was investigated by following the change of the water contact angle over time and by electrochemical means. The results are compared to those of unprotected zinc interfaces.

  7. Promotion of zinc tablets with ORS through child health weeks improves caregiver knowledge, attitudes, and practice on treatment of diarrhoea in Nigeria.

    PubMed

    Kung'u, Jacqueline K; Owolabi, Olumuyiwa; Essien, Grace; Aminu, Francis T; Ngnie-Teta, Ismael; Neufeld, Lynnette M

    2015-03-01

    We examined whether the Maternal, Newborn and Child Health Weeks (MNCHW) in Nigeria would present an opportunity to raise awareness of and demand for the use of zinc and ORS in the treatment for diarrhoea, guided by a conceptual framework designed to assess three theoretical underpinnings (characteristics and performance standard of the health workers, potential reach, and intensity of the intervention), along the impact pathway. Zinc and ORS with education for their appropriate use during the next diarrhoeal episode were delivered as part of the November 2010 and May 2011 MNCHW. On the day of but before participating in MNCHW activities, semi-structured interviews were used for collecting information on knowledge, attitudes, and practice (KAP) relating to diarrhoea from 602 caregivers with children aged less than five years. Forty-eight health workers were also interviewed. Nearly all health workers (98%) correctly mentioned the dosage of zinc while only 58% correctly stated the preparation of ORS. The proportion of caregivers with knowledge on the treatment for diarrhoea increased from 46.4% in November 2010 pre-MNCHW to 71.3% in May 2011 pre-MNCHW interviews (p<0.001). More caregivers correctly mentioned the dosage of zinc (80.9%) and stated the preparation of ORS (88.8%) in the November 2010 exit interview immediately after the MNCHW encounter compared to the levels a few months later in the home follow-up visit (53.1% and 37.4% respectively). After attending both rounds of November 2010 and May 2011 MNCHW, caregivers' knowledge on the treatment of diarrhoea increased seven times compared to the caregivers who attended the May 2011 MNCHW only (OR=7.0, p<0.001). Additionally, caregivers were 40% less likely to seek advice outside the home in the treatment for diarrhoea if they had attended both the MNCHWs than if they had attended the May 2011 MNCHW only (OR=0.6, p<0.029). We conclude that providing opportunities for caregivers to receive a sample of zinc and

  8. Prenatal zinc prevents communication impairments and BDNF disturbance in a rat model of autism induced by prenatal lipopolysaccharide exposure.

    PubMed

    Kirsten, Thiago B; Queiroz-Hazarbassanov, Nicolle; Bernardi, Maria M; Felicio, Luciano F

    2015-06-01

    Aims: Previous investigations by our group have shown that prenatal exposure to lipopolysaccharide (LPS),which mimics infections by Gram-negative bacteria, induced autistic-like behavior. No effective treatment yet exists for autism. Therefore, we used our rat model to test a possible treatment for autism.We selected zinc as the prenatal treatment to prevent or ease the impairments induced by LPS because LPS induces hypozincaemia.Materials and methods:We evaluated the effects of LPS and zinc on female reproductive performance. Communication,which is impaired in autism,was tested in pups by ultrasonic vocalizations. Plasma levels of brain-derived neurotrophic factor (BDNF) were determined because it has been considered an autism important biomarker.Key findings: Prenatal LPS exposure reduced offspring number and treatment with zinc prevented this reduction.Moreover, pups that were prenatally exposed to LPS spent longer periods without calling their mothers, and posttreatment with zinc prevented this impairment induced by LPS to the same levels as controls. Prenatal LPS also increased BDNF levels in adult offspring, and posttreatment with zinc reduced the elevation of BDNF to the same levels as controls.Significance: BDNF hyperactivity was also found in several studies of autistic patients. Together with our previous studies, our model of prenatal LPS induced autistic-like behavioral, brain, and immune disturbances. This suggests that it is a valid rat model of autism. Prenatal zinc prevented reproductive, communication, and BDNF impairments.The present study revealed a potential beneficial effect of prenatal zinc administration for the prevention of autism with regard to the BDNF pathway.

  9. Effect of Dietary Zinc Oxide on Morphological Characteristics, Mucin Composition and Gene Expression in the Colon of Weaned Piglets

    PubMed Central

    Liu, Ping; Pieper, Robert; Rieger, Juliane; Vahjen, Wilfried; Davin, Roger; Plendl, Johanna; Meyer, Wilfried; Zentek, Jürgen

    2014-01-01

    The trace element zinc is often used in the diet of weaned piglets, as high doses have resulted in positive effects on intestinal health. However, the majority of previous studies evaluated zinc supplementations for a short period only and focused on the small intestine. The hypothesis of the present study was that low, medium and high levels of dietary zinc (57, 164 and 2,425 mg Zn/kg from zinc oxide) would affect colonic morphology and innate host defense mechanisms across 4 weeks post-weaning. Histological examinations were conducted regarding the colonic morphology and neutral, acidic, sialylated and sulphated mucins. The mRNA expression levels of mucin (MUC) 1, 2, 13, 20, toll-like receptor (TLR) 2, 4, interleukin (IL)-1β, 8, 10, interferon-γ (IFN-γ) and transforming growth factor-β (TGF-β) were also measured. The colonic crypt area increased in an age-depending manner, and the greatest area was found with medium concentration of dietary zinc. With the high concentration of dietary zinc, the number of goblet cells containing mixed neutral-acidic mucins and total mucins increased. Sialomucin containing goblet cells increased age-dependently. The expression of MUC2 increased with age and reached the highest level at 47 days of age. The expression levels of TLR2 and 4 decreased with age. The mRNA expression of TLR4 and the pro-inflammatory cytokine IL-8 were down-regulated with high dietary zinc treatment, while piglets fed with medium dietary zinc had the highest expression. It is concluded that dietary zinc level had a clear impact on colonic morphology, mucin profiles and immunological traits in piglets after weaning. Those changes might support local defense mechanisms and affect colonic physiology and contribute to the reported reduction of post-weaning diarrhea. PMID:24609095

  10. Subacute Zinc Administration and L-NAME Caused an Increase of NO, Zinc, Lipoperoxidation, and Caspase-3 during a Cerebral Hypoxia-Ischemia Process in the Rat

    PubMed Central

    Blanco-Alvarez, Victor Manuel; Lopez-Moreno, Patricia; Soto-Rodriguez, Guadalupe; Martinez-Fong, Daniel; Rubio, Hector; Gonzalez-Barrios, Juan Antonio; Piña-Leyva, Celia; Torres-Soto, Maricela; Gomez-Villalobos, María de Jesus; Hernandez-Baltazar, Daniel; Eguibar, José Ramon; Ugarte, Araceli; Cebada, Jorge

    2013-01-01

    Zinc or L-NAME administration has been shown to be protector agents, decreasing oxidative stress and cell death. However, the treatment with zinc and L-NAME by intraperitoneal injection has not been studied. The aim of our work was to study the effect of zinc and L-NAME administration on nitrosative stress and cell death. Male Wistar rats were treated with ZnCl2 (2.5 mg/kg each 24 h, for 4 days) and N-ω-nitro-L-arginine-methyl ester (L-NAME, 10 mg/kg) on the day 5 (1 hour before a common carotid-artery occlusion (CCAO)). The temporoparietal cortex and hippocampus were dissected, and zinc, nitrites, and lipoperoxidation were assayed at different times. Cell death was assayed by histopathology using hematoxylin-eosin staining and caspase-3 active by immunostaining. The subacute administration of zinc before CCAO decreases the levels of zinc, nitrites, lipoperoxidation, and cell death in the late phase of the ischemia. L-NAME administration in the rats treated with zinc showed an increase of zinc levels in the early phase and increase of zinc, nitrites, and lipoperoxidation levels, cell death by necrosis, and the apoptosis in the late phase. These results suggest that the use of these two therapeutic strategies increased the injury caused by the CCAO, unlike the alone administration of zinc. PMID:23997853

  11. The Zinc Transporter Zip5 (Slc39a5) Regulates Intestinal Zinc Excretion and Protects the Pancreas against Zinc Toxicity

    PubMed Central

    Geiser, Jim; De Lisle, Robert C.; Andrews, Glen K.

    2013-01-01

    Background ZIP5 localizes to the baso-lateral membranes of intestinal enterocytes and pancreatic acinar cells and is internalized and degraded coordinately in these cell-types during periods of dietary zinc deficiency. These cell-types are thought to control zinc excretion from the body. The baso-lateral localization and zinc-regulation of ZIP5 in these cells are unique among the 14 members of the Slc39a family and suggest that ZIP5 plays a role in zinc excretion. Methods/Principal Findings We created mice with floxed Zip5 genes and deleted this gene in the entire mouse or specifically in enterocytes or acinar cells and then examined the effects on zinc homeostasis. We found that ZIP5 is not essential for growth and viability but total knockout of ZIP5 led to increased zinc in the liver in mice fed a zinc-adequate (ZnA) diet but impaired accumulation of pancreatic zinc in mice fed a zinc-excess (ZnE) diet. Loss-of-function of enterocyte ZIP5, in contrast, led to increased pancreatic zinc in mice fed a ZnA diet and increased abundance of intestinal Zip4 mRNA. Finally, loss-of-function of acinar cell ZIP5 modestly reduced pancreatic zinc in mice fed a ZnA diet but did not impair zinc uptake as measured by the rapid accumulation of 67zinc. Retention of pancreatic 67zinc was impaired in these mice but the absence of pancreatic ZIP5 sensitized them to zinc-induced pancreatitis and exacerbated the formation of large cytoplasmic vacuoles containing secretory protein in acinar cells. Conclusions These studies demonstrate that ZIP5 participates in the control of zinc excretion in mice. Specifically, they reveal a paramount function of intestinal ZIP5 in zinc excretion but suggest a role for pancreatic ZIP5 in zinc accumulation/retention in acinar cells. ZIP5 functions in acinar cells to protect against zinc-induced acute pancreatitis and attenuate the process of zymophagy. This suggests that it may play a role in autophagy. PMID:24303081

  12. The effect of zinc on healing of renal damage in rats

    PubMed Central

    Salehipour, Mehdi; Monabbati, Ahmad; Ensafdaran, Mohammad Reza; Adib, Ali; Babaei, Amir Hossein

    2017-01-01

    Background: Several studies have previously been performed to promote kidney healing after injuries. Objectives: The aim of this study was to investigate the effect of zinc on renal healing after traumatic injury in rats. Materials and Methods: Forty healthy female rats were selected and one of their kidneys was incised. Half of the incisions were limited only to the cortex (renal injury type I) and the other ones reached the pelvocalyceal system of the kidney (renal injury type II). All the rats in the zinc treated group (case group) received 36.3 mg zinc sulfate (contained 8.25 mg zinc) orally. After 28 days, the damaged kidneys were removed for histopathological studies. Results: In the rats with type I injury, kidney inflammation of the case group was significantly lower than that of the control group. However, the result was not significant in rats with type II injury. Tissue loss and granulation tissue formation were significantly lower in the case group than the control group in both type I and II kidney injuries. Conclusions: Overall, Zinc can contribute to better healing of the rat’s kidneys after a traumatic injury. PMID:28975095

  13. Diarrhea no more: does zinc help the poor? Evidence on the effectiveness of programmatic efforts to reach poorest in delivering zinc and ORS at scale in UP and Gujarat, India.

    PubMed

    LeFevre, Amnesty E; Mohan, Diwakar; Mazumder, Sarmila; Lamberti, Laura L; Taneja, Sunita; Black, Robert E; Fischer-Walker, Christa L

    2016-12-01

    India has the greatest burden of diarrhea in children under 5 years globally. The Diarrhea Alleviation through zinc and oral rehydration salts (ORS) Therapy program (2010-2014) sought to improve access to and utilization of zinc and ORS among children 2-59 months in Gujarat and Uttar Pradesh (UP), India, through public and private sector delivery channels. In this analysis, we present findings on program's effect in reducing child-health inequities. Data from cross-sectional baseline and endline surveys were used to assess disparities in key outcomes across six dimensions: socioeconomic strata, gender, caregiver education, ethnicity and geography. Careseeking outside the home for children under 5 years with diarrhea did not increase significantly in UP or Gujarat across socioeconomic strata. Declines in private sector careseeking were observed in both sites along with concurrent increases in public sector careseeking. Zinc, ORS, zinc+ORS use did not increase significantly in UP across socioeconomic strata. In Gujarat, increases in zinc use (20% overall; 33% in the Quintile 5 (Q5) strata) and zinc+ORS (18% overall; 30% in the Q5 strata) were disproportionately observed in the high income strata, among members of the most advantaged caste, and among children whose mothers had ≥1 year of schooling. ORS use increased significantly across all socioeconomic strata for children in Gujarat with diarrhea (23% overall; 33% in Q5 strata) and those with dehydration + diarrhea (33% overall; 38% in Q5 strata). The magnitude of increase in ORS receipt from the public sector was nearly twice that observed in the private sector. In Gujarat, while out of pocket spending for diarrhea was significantly higher for male children, overall costs to users declined by a mean of US$ 2; largely due to significant reductions in wages lost (-US$ 0.79; P  < 0.003), and transportation costs (-US$ 0.44; P  < 0.00). While significant improvements in diarrhea treatment were achieved in

  14. A Novel Polyaminocarboxylate Compound To Treat Murine Pulmonary Aspergillosis by Interfering with Zinc Metabolism.

    PubMed

    Laskaris, Paris; Vicentefranqueira, Rocío; Helynck, Olivier; Jouvion, Grégory; Calera, José Antonio; du Merle, Laurence; Suzenet, Franck; Buron, Frédéric; de Sousa, Rodolphe Alves; Mansuy, Daniel; Cavaillon, Jean-Marc; Latgé, Jean-Paul; Munier-Lehmann, Hélène; Ibrahim-Granet, Oumaima

    2018-06-01

    Aspergillus fumigatus can cause pulmonary aspergillosis in immunocompromised patients and is associated with a high mortality rate due to a lack of reliable treatment options. This opportunistic pathogen requires zinc in order to grow and cause disease. Novel compounds that interfere with fungal zinc metabolism may therefore be of therapeutic interest. We screened chemical libraries containing 59,223 small molecules using a resazurin assay that compared their effects on an A. fumigatus wild-type strain grown under zinc-limiting conditions and on a zinc transporter knockout strain grown under zinc-replete conditions to identify compounds affecting zinc metabolism. After a first screen, 116 molecules were selected whose inhibitory effects on fungal growth were further tested by using luminescence assays and hyphal length measurements to confirm their activity, as well as by toxicity assays on HeLa cells and mice. Six compounds were selected following a rescreening, of which two were pyrazolones, two were porphyrins, and two were polyaminocarboxylates. All three groups showed good in vitro activity, but only one of the polyaminocarboxylates was able to significantly improve the survival of immunosuppressed mice suffering from pulmonary aspergillosis. This two-tier screening approach led us to the identification of a novel small molecule with in vivo fungicidal effects and low murine toxicity that may lead to the development of new treatment options for fungal infections by administration of this compound either as a monotherapy or as part of a combination therapy. Copyright © 2018 American Society for Microbiology.

  15. Effect of zinc supplementation on neuronal precursor proliferation in the rat hippocampus after traumatic brain injury.

    PubMed

    Cope, Elise C; Morris, Deborah R; Gower-Winter, Shannon D; Brownstein, Naomi C; Levenson, Cathy W

    2016-05-01

    There is great deal of debate about the possible role of adult-born hippocampal cells in the prevention of depression and related mood disorders. We first showed that zinc supplementation prevents the development of the depression-like behavior anhedonia associated with an animal model of traumatic brain injury (TBI). This work then examined the effect of zinc supplementation on the proliferation of new cells in the hippocampus that have the potential to participate in neurogenesis. Rats were fed a zinc adequate (ZA, 30ppm) or zinc supplemented (ZS, 180ppm) diet for 4wk followed by TBI using controlled cortical impact. Stereological counts of EdU-positive cells showed that TBI doubled the density of proliferating cells 24h post-injury (p<0.05), and supplemental zinc significantly increased this by an additional 2-fold (p<0.0001). While the survival of these proliferating cells decreased at the same rate in ZA and in ZS rats after injury, the total density of newly born cells was approximately 60% higher in supplemented rats 1wk after TBI. Furthermore, chronic zinc supplementation resulted in significant increases in the density of new doublecortin-positive neurons one week post-TBI that were maintained for 4wk after injury (p<0.01). While the effect of zinc supplementation on neuronal precursor cells in the hippocampus was robust, use of targeted irradiation to eliminate these cells after zinc supplementation and TBI revealed that these cells are not the sole mechanism through which zinc acts to prevent depression associated with brain injury, and suggest that other zinc dependent mechanisms are needed for the anti-depressant effect of zinc in this model of TBI. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Enhanced zinc consumption causes memory deficits and increased brain levels of zinc

    USGS Publications Warehouse

    Flinn, J.M.; Hunter, D.; Linkous, D.H.; Lanzirotti, A.; Smith, L.N.; Brightwell, J.; Jones, B.F.

    2005-01-01

    Zinc deficiency has been shown to impair cognitive functioning, but little work has been done on the effects of elevated zinc. This research examined the effect on memory of raising Sprague-Dawley rats on enhanced levels of zinc (10 ppm ZnCO3; 0.153 mM) in the drinking water for periods of 3 or 9 months, both pre- and postnatally. Controls were raised on lab water. Memory was tested in a series of Morris Water Maze (MWM) experiments, and zinc-treated rats were found to have impairments in both reference and working memory. They were significantly slower to find a stationary platform and showed greater thigmotaxicity, a measure of anxiety. On a working memory task, where the platform was moved each day, zinc-treated animals had longer latencies over both trials and days, swam further from the platform, and showed greater thigmotaxicity. On trials using an Atlantis platform, which remained in one place but was lowered on probe trials, the zinc-treated animals had significantly fewer platform crossings, spent less time in the target quadrant, and did not swim as close to the platform position. They had significantly greater latency on nonprobe trials. Microprobe synchrotron X-ray fluorescence (??SXRF) confirmed that brain zinc levels were increased by adding ZnCO 3 to the drinking water. These data show that long-term dietary administration of zinc can lead to impairments in cognitive function. ?? 2004 Elsevier Inc. All rights reserved.

  17. Determination of organo-zinc based fungicides in timber treatments employing gas chromatographic analysis with mass selective detection and/or inductively coupled plasma atomic emission spectroscopy.

    PubMed

    Rimmer, D A; Johnson, P D; Bradley, S D

    2001-09-14

    A method for the determination of zinc octoate (zinc 2-ethylhexanoate) and acypetacs zinc in occupational hygiene samples and wood treatments formulations is described. The zinc carboxylates are liquid-liquid partitioned between toluene and 1 M HCl, with the liberated acids being extracted into the toluene and zinc (chloride) into the acid. The carboxylic acids are then methylated using trimethylsilyldiazomethane-methanol and the resultant methyl esters are selectively and sensitively analysed by gas chromatography with mass selective detection (GC-MS). Alternatively, the zinc content of the acid extract can be analysed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). GC-MS is the preferred method of analysis for zinc octoate, where a single analyte (methyl-2-ethylhexanoate) is produced for analysis. Because acypetacs zinc contains a complex mixture of carboxylates, quantitative GC-MS analysis of the methyl esters produced is impractical and ICP-AES is the preferred method for quantitation. In this case, GC-MS can be used to confirm the identity of the product used. The analysis of occupational hygiene samples (cotton pads, gloves and socks as well as Tenax tubes and GF/A filters) spiked with metal carboxylates is demonstrated. Recoveries around 70-90% and reproducibilities of 5-23% (n=6-8) were typically achieved for the determination of tin octoate (a surrogate for zinc octoate) at spiking levels ranging from 4 to 190 microg per sampling device. Recoveries around 102-106% and reproducibilities of 10-12% (n=5-6) were typically achieved for acypetacs zinc at spiking levels ranging from 100 mg per sampling device. Reaction yields for the octoate methylation reaction were in the region of 85-87%. The method was used to monitor for occupational exposure to zinc octoate and acypetacs zinc during the application of wood treatments to fences.

  18. The Effects of Supplemental Zinc and Honey on Wound Healing in Rats

    PubMed Central

    Sazegar, Ghasem; Seyed Reza, Attarzadeh Hosseini; Behravan, Effat

    2011-01-01

    Objective(s) Clinicians have long been searching for ways to obtain "super normal" wound healing. Zinc supplementation improves the healing of open wounds. Honey can improve the wound healing with its antibacterial properties. Giving supplemental zinc to normal rats can increase the wound tensile strength. This work is to study the concurrent effects of zinc and honey in wound healing of normal rats. Materials and Methods One hundred and seventy two young rats were randomly divided into four groups: control, zinc-supplement, applied honey, zinc-supplement and applied honey. Two areas of skin about 4 cm² were excised. The wound area was measured every 2 days. After 3 weeks, all animals were killed and tensile strength of wounds, zinc concentration of blood and histological improvement of wounds were evaluated. The results were analyzed using two-way ANOVA and the mean differences were tested. Results It was found that honey could inhibit the bacterial growth in skin excisions. The tensile strength was increased significantly in the second to fourth groups at 21st day (P< 0.001). Also there was a significant increase in tensile strength at the same time in the fourth group. The results of the histological study showed a considerable increase in the collagen fibers, re-epithelialization and re-vascularization in the second to fourth groups. Conclusion The results of the present study indicate that zinc sulfate could retard re-epithelialization, but when used with natural honey (administered topically) it could have influent wound healing in non-zinc-deficient subjects as well. PMID:23493488

  19. The effect of zinc limitation on the transcriptome of Pseudomonas protegens Pf-5

    USDA-ARS?s Scientific Manuscript database

    Zinc is an important nutrient but can be lacking in some soil environments, influencing the physiology of soil-dwelling bacteria. Hence, we studied the global effect of zinc limitation on the transcriptome of the rhizosphere biocontrol strain Pseudomonas protegens Pf-5. We observed that the expressi...

  20. The zinc-loss effect and mobility enhancement of DUV-patterned sol-gel IGZO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Wang, Kuan-Hsun; Zan, Hsiao-Wen; Soppera, Olivier

    2018-03-01

    We investigate the composition of the DUV-patterned sol-gel indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) and observe a significant zinc loss effect during developing when the DUV exposure is insufficient. The zinc loss, however, is beneficial for increasing the mobility. Reducing zinc to indium composition ratio from 0.5 to 0.02 can effectively increase mobility from 0.27 to 7.30 cm2 V-1 s-1 when the gallium to indium ratio is fixed as 0.25 and the post annealing process is fixed as 300 °C for 2 h. On the other hand, an IGO TFT fails to deliver a uniform film and a reproducible TFT performance, revealing the critical role of zinc in forming homogeneous IGZO TFTs.

  1. Effects of Long-Term Exposure to Zinc Oxide Nanoparticles on Development, Zinc Metabolism and Biodistribution of Minerals (Zn, Fe, Cu, Mn) in Mice

    PubMed Central

    Wang, Chao; Lu, Jianjun; Zhou, Le; Li, Jun; Xu, Jiaman; Li, Weijian; Zhang, Lili; Zhong, Xiang; Wang, Tian

    2016-01-01

    Zinc oxide nanoparticles (nano-ZnOs) are widely used and possess great potentials in agriculture and biomedicine. It is inevitable for human exposure to these nanoparticles. However, no study had been conducted to investigate the long term effects of nano-ZnOs. This study aimed at investigating effects of nano-ZnOs on development, zinc metabolism and biodistribution of minerals (Zn, Fe, Cu, and Mn) in mice from week 3 to 35. After the characteristics of nano-ZnOs were determined, they were added into the basal diet at 0, 50, 500 and 5000 mg/kg. Results indicated that added 50 and 500 mg/kg nano-ZnOs showed minimal toxicity. However, 5000 mg/kg nano-ZnOs significantly decreased body weight (from week 4 to 16) and increased the relative weights of the pancreas, brain and lung. Added 5000 mg/kg nano-ZnOs significantly increased the serum glutamic-pyruvic transaminase activity and zinc content, and significantly enhanced mRNA expression of zinc metabolism-related genes, including metallothionein 1(32.66 folds), metallothionein 2 (31.42 folds), ZIP8 (2.21folds), ZIP14 (2.45 folds), ZnT1 (4.76 folds), ZnT2 (6.19 folds) and ZnT4 (1.82 folds). The biodistribution determination showed that there was a significant accumulation of zinc in the liver, pancreas, kidney, and bones (tibia and fibula) after receiving 5000 mg/kg nano-ZnO diet, while no significant effects on Cu, Fe, and Mn levels, except for liver Fe content and pancreas Mn level. Our results demonstrated that long term exposure to 50 and 500 mg/kg nano-ZnO diets showed minimal toxicity. However, high dose of nano-ZnOs (5000 mg/kg) caused toxicity on development, and altered the zinc metabolism and biodistribution in mice. PMID:27732669

  2. Effects of Long-Term Exposure to Zinc Oxide Nanoparticles on Development, Zinc Metabolism and Biodistribution of Minerals (Zn, Fe, Cu, Mn) in Mice.

    PubMed

    Wang, Chao; Lu, Jianjun; Zhou, Le; Li, Jun; Xu, Jiaman; Li, Weijian; Zhang, Lili; Zhong, Xiang; Wang, Tian

    2016-01-01

    Zinc oxide nanoparticles (nano-ZnOs) are widely used and possess great potentials in agriculture and biomedicine. It is inevitable for human exposure to these nanoparticles. However, no study had been conducted to investigate the long term effects of nano-ZnOs. This study aimed at investigating effects of nano-ZnOs on development, zinc metabolism and biodistribution of minerals (Zn, Fe, Cu, and Mn) in mice from week 3 to 35. After the characteristics of nano-ZnOs were determined, they were added into the basal diet at 0, 50, 500 and 5000 mg/kg. Results indicated that added 50 and 500 mg/kg nano-ZnOs showed minimal toxicity. However, 5000 mg/kg nano-ZnOs significantly decreased body weight (from week 4 to 16) and increased the relative weights of the pancreas, brain and lung. Added 5000 mg/kg nano-ZnOs significantly increased the serum glutamic-pyruvic transaminase activity and zinc content, and significantly enhanced mRNA expression of zinc metabolism-related genes, including metallothionein 1(32.66 folds), metallothionein 2 (31.42 folds), ZIP8 (2.21folds), ZIP14 (2.45 folds), ZnT1 (4.76 folds), ZnT2 (6.19 folds) and ZnT4 (1.82 folds). The biodistribution determination showed that there was a significant accumulation of zinc in the liver, pancreas, kidney, and bones (tibia and fibula) after receiving 5000 mg/kg nano-ZnO diet, while no significant effects on Cu, Fe, and Mn levels, except for liver Fe content and pancreas Mn level. Our results demonstrated that long term exposure to 50 and 500 mg/kg nano-ZnO diets showed minimal toxicity. However, high dose of nano-ZnOs (5000 mg/kg) caused toxicity on development, and altered the zinc metabolism and biodistribution in mice.

  3. Supplementation with zinc in rats enhances memory and reverses an age-dependent increase in plasma copper.

    PubMed

    Sandusky-Beltran, Leslie A; Manchester, Bryce L; McNay, Ewan C

    2017-08-30

    Zinc and copper are essential trace elements. Dyshomeostasis in these two metals has been observed in Alzheimer's disease, which causes profound cognitive impairment. Insulin therapy has been shown to enhance cognitive performance; however, recent data suggest that this effect may be at least in part due to the inclusion of zinc in the insulin formulation used. Zinc plays a key role in regulation of neuronal glutamate signaling, suggesting a possible link between zinc and memory processes. Consistent with this, zinc deficiency causes cognitive impairments in children. The effect of zinc supplementation on short- and long-term recognition memory, and on spatial working memory, was explored in young and adult male Sprague Dawley rats. After behavioral testing, hippocampal and plasma zinc and copper were measured. Age increased hippocampal zinc and copper, as well as plasma copper, and decreased plasma zinc. An interaction between age and treatment affecting plasma copper was also found, with zinc supplementation reversing elevated plasma copper concentration in adult rats. Zinc supplementation enhanced cognitive performance across tasks. These data support zinc as a plausible therapeutic intervention to ameliorate cognitive impairment in disorders characterized by alterations in zinc and copper, such as Alzheimer's disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The Hypolipidemic and Pleiotropic Effects of Rosuvastatin Are Not Enhanced by Its Association with Zinc and Selenium Supplementation in Coronary Artery Disease Patients: A Double Blind Randomized Controlled Study

    PubMed Central

    Sena-Evangelista, Karine Cavalcanti Maurício; Pedrosa, Lucia Fatima Campos; Paiva, Maria Sanali Moura Oliveira; Dias, Paula Cristina Silveira; Ferreira, Diana Quitéria Cabral; Cozzolino, Sílvia Maria Franciscato; Faulin, Tanize Espírito Santo; Abdalla, Dulcinéia Saes Parra

    2015-01-01

    Objective Statins treatment may modify the levels of zinc and selenium, minerals that can improve vascular function and reduce oxidative damage and inflammation in atherosclerotic patients. This study aimed to evaluate the effects of rosuvastatin, alone or associated with zinc and selenium supplementation, on lipid profile, antioxidant enzymes and mineral status in coronary artery disease patients. Material and Methods A double-blind randomized clinical trial was performed in which patients (n = 76) were treated with 10 mg rosuvastatin over 4 months associated or not with zinc (30 mg/d) and selenium (150 μg/d) supplementation. The following parameters were analyzed before and after the intervention: anthropometric measurements, lipid profile, high sensitivity C-reactive protein (hs-CRP), electronegative low density lipoprotein (LDL(-)) concentrations, activities of glutathione peroxidase (GPx), superoxide dismutase (SOD), zinc and selenium concentrations in blood plasma and erythocytes. Significance was determined using an α of 5% (two-tailed). Results We found that rosuvastatin therapy was efficient in reducing total cholesterol, LDL-cholesterol, non-HDL cholesterol, triglycerides, and hs-CRP independently of mineral supplementation. Neither treatment was associated with significant changes in LDL(-). Similarly, the antioxidant enzymes GPx and SOD activity were unchanged by treatments. Neither treatment was associated with significant differences in concentrations of zinc or selenium in blood plasma and erythocytes of studied groups. Conclusion Rosuvastatin treatment did not affect zinc and selenium levels in coronary artery disease patients. The zinc and selenium supplementation at doses used in this study did not change lipid profile or SOD and GPx activity in patients receiving rosuvastatin. Further studies should be focused on testing alternative doses and supplements in different populations to contribute for a consensus on the ideal choice of antioxidants

  5. Zinc as a Gatekeeper of Immune Function

    PubMed Central

    Wessels, Inga; Maywald, Martina; Rink, Lothar

    2017-01-01

    After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc “importers” (ZIP 1–14), zinc “exporters” (ZnT 1–10), and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate “zinc waves”, and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function. PMID:29186856

  6. Effects of Zinc on Particulate Methane Monooxygenase Activity and Structure*

    PubMed Central

    Sirajuddin, Sarah; Barupala, Dulmini; Helling, Stefan; Marcus, Katrin; Stemmler, Timothy L.; Rosenzweig, Amy C.

    2014-01-01

    Particulate methane monooxygenase (pMMO) is a membrane-bound metalloenzyme that oxidizes methane to methanol in methanotrophic bacteria. Zinc is a known inhibitor of pMMO, but the details of zinc binding and the mechanism of inhibition are not understood. Metal binding and activity assays on membrane-bound pMMO from Methylococcus capsulatus (Bath) reveal that zinc inhibits pMMO at two sites that are distinct from the copper active site. The 2.6 Å resolution crystal structure of Methylocystis species strain Rockwell pMMO reveals two previously undetected bound lipids, and metal soaking experiments identify likely locations for the two zinc inhibition sites. The first is the crystallographic zinc site in the pmoC subunit, and zinc binding here leads to the ordering of 10 previously unobserved residues. A second zinc site is present on the cytoplasmic side of the pmoC subunit. Parallels between these results and zinc inhibition studies of several respiratory complexes suggest that zinc might inhibit proton transfer in pMMO. PMID:24942740

  7. Fluoxetine coupled with zinc in a chronic mild stress model of depression: Providing a reservoir for optimum zinc signaling and neuronal remodeling.

    PubMed

    Omar, Nesreen Nabil; Tash, Reham Fathy

    2017-09-01

    Recently, depression has been envisioned as more than an alteration in neurotransmitters centered around receptor signaling pathways. Consequently, the precise mechanisms of selective serotonin reuptake inhibitor (SSRI) antidepressant drugs such as fluoxetine are being revisited. Zinc is a trace element that has been long implicated in the psychopathology and therapy of depression. Zinc has been found to be sequestered and dispensed during stress and inflammation through a family of proteins called metallothioneins (MTs). In addition, MTs are well known for their antioxidant and therefore cytoprotective action. Changes in MTs, their upstream regulators and downstream effectors in response to fluoxetine have not been yet studied. The aim of the present study is to examine whether depression-induced changes in protein levels and mRNA levels of nuclear factor-erythroid 2-related factor 2 (Nrf2), MTs, antioxidant defensive enzyme heme oxygenase (HO-1), zinc-specific receptor GPR39 and brain derived neurotrophic factor (BDNF) in the hippocampus can be reversed by fluoxetine treatment, zinc supplementation or a combination of the two. The present study investigated the effect of chronic (4weeks) combined treatment with zinc hydroaspartate (15mg/kg) and fluoxetine (10mg/kg) on a chronic mild stress model (CMS) in male Sprague-Dawley rats. Hippocampal mRNA and protein levels of Nrf2, HO-1, MTs, GPR39 (protein level only) and BDNF were significantly higher in response to a combined therapy of fluoxetine and zinc than to either monotherapy. Additionally, HO-1 and MTs gene expression was correlated with that of Nrf2 in the FLX-only group. Fluoxetine therapy activated the expression of MTs and HO-1 through an Nrf2-dependent pathway. When FLX was escorted by zinc, activated MTs had a positive impact on BDNF through the zinc signaling receptor GPR39, resulting in general improvement in neuronal plasticity as well as reduction of neuronal atrophy and neuronal cell loss. Copyright

  8. A novel mechanism for the pyruvate protection against zinc-induced cytotoxicity: mediation by the chelating effect of citrate and isocitrate.

    PubMed

    Sul, Jee-Won; Kim, Tae-Youn; Yoo, Hyun Ju; Kim, Jean; Suh, Young-Ah; Hwang, Jung Jin; Koh, Jae-Young

    2016-08-01

    Intracellular accumulation of free zinc contributes to neuronal death in brain injuries such as ischemia and epilepsy. Pyruvate, a glucose metabolite, has been shown to block zinc neurotoxicity. However, it is largely unknown how pyruvate shows such a selective and remarkable protective effect. In this study, we sought to find a plausible mechanism of pyruvate protection against zinc toxicity. Pyruvate almost completely blocked cortical neuronal death induced by zinc, yet showed no protective effects against death induced by calcium (ionomycin, NMDA) or ferrous iron. Of the TCA cycle intermediates, citrate, isocitrate, and to a lesser extent oxaloacetate, protected against zinc toxicity. We then noted with LC-MS/MS assay that exposure to pyruvate, and to a lesser degree oxaloacetate, increased levels of citrate and isocitrate, which are known zinc chelators. While pyruvate added only during zinc exposure did not reduce zinc toxicity, citrate and isocitrate added only during zinc exposure, as did extracellular zinc chelator CaEDTA, completely blocked it. Furthermore, addition of pyruvate after zinc exposure substantially reduced intracellular zinc levels. Our results suggest that the remarkable protective effect of pyruvate against zinc cytotoxicity may be mediated indirectly by the accumulation of intracellular citrate and isocitrate, which act as intracellular zinc chelators.

  9. Effects of nanoparticle zinc oxide on emotional behavior and trace elements homeostasis in rat brain.

    PubMed

    Amara, Salem; Slama, Imen Ben; Omri, Karim; El Ghoul, Jaber; El Mir, Lassaad; Rhouma, Khemais Ben; Abdelmelek, Hafedh; Sakly, Mohsen

    2015-12-01

    Over recent years, nanotoxicology and the potential effects on human body have grown in significance, the potential influences of nanosized materials on the central nervous system have received more attention. The aim of this study was to determine whether zinc oxide (ZnO) nanoparticles (NPs) exposure cause alterations in emotional behavior and trace elements homeostasis in rat brain. Rats were treated by intraperitoneal injection of ZnO NPs (20-30 nm) at a dose of 25 mg/kg body weight. Sub -: acute ZnO NPs treatment induced no significant increase in the zinc content in the homogenate brain. Statistically significant decreases in iron and calcium concentrations were found in rat brain tissue compared to control. However, sodium and potassium contents remained unchanged. Also, there were no significant changes in the body weight and the coefficient of brain. In the present study, the anxiety-related behavior was evaluated using the plus-maze test. ZnO NPs treatment modulates slightly the exploratory behaviors of rats. However, no significant differences were observed in the anxious index between ZnO NP-treated rats and the control group (p > 0.05). Interestingly, our results demonstrated minimal effects of ZnO NPs on emotional behavior of animals, but there was a possible alteration in trace elements homeostasis in rat brain. © The Author(s) 2012.

  10. Effect of zinc compounds on Fusarium verticillioides growth, hyphae alterations, conidia, and fumonisin production.

    PubMed

    Savi, Geovana D; Vitorino, Vinícius; Bortoluzzi, Adailton J; Scussel, Vildes M

    2013-10-01

    Several strategies are used to eliminate toxigenic fungi that produce fumonisins in grains. Fusarium verticillioides can be controlled by the application of synthetic fungicides in the field or during storage. However, there may also be residuals, which may remain in the foods. Inorganic compounds such as zinc are cheap, stable and could present strong antifungal activity. Some Zn compounds can be utilized as dietary supplements and are authorized for the fortification of foods. Knowing the advantages and that low concentrations of Zn can have antimicrobial activity, our objective was to evaluate the effects of Zn compounds on the growth of F. verticillioides and the production of fumonisin and conidia. In addition, we aimed to verify that Zn compounds cause morphological alterations of the hyphae, mortality and production of reactive oxygen species. Zn compounds efficiently reduced fungal growth and fumonisin production. Treatment using zinc perchlorate gave the best results. All treatments inhibited conidia production and caused morphological alterations of the hyphae. It was possible to observe cell death and production of reactive oxygen species. Zn compounds have advantages compared to other antifungal compounds. In particular, they are non-toxic for the organism in appropriate amounts. They could be studied further as potential fungicides in agriculture. © 2013 Society of Chemical Industry.

  11. Effects Of Moisture On Zinc Orthotitanate Paint

    NASA Technical Reports Server (NTRS)

    Mon, Gordon R.; Gonzalez, Charles C.; Ross, JR., Ronald g.; Wen, Liang C.; O'Donnell, Timothy

    1991-01-01

    Report presents results of tests of electrical conductivity and resistance to corrosion of zinc orthotitanate (ZOT) paint. Measured effects of temperature, humidity, and vacuum on ceramic paint. Used as temperature-control coating designed to have low and stable ratio of absorptance to emittance for heat radiation. Helps to prevent buildup of static electric charge and helps to protect electronic circuitry from potentially damaging static discharges.

  12. Thyroid hormone upregulates zinc-α2-glycoprotein production in the liver but not in adipose tissue.

    PubMed

    Simó, Rafael; Hernández, Cristina; Sáez-López, Cristina; Soldevila, Berta; Puig-Domingo, Manel; Selva, David M

    2014-01-01

    Overproduction of zinc-α2-glycoprotein by adipose tissue is crucial in accounting for the lipolysis occurring in cancer cachexia of certain malignant tumors. The main aim of this study was to explore whether thyroid hormone could enhance zinc-α2-glycoprotein production in adipose tissue. In addition, the regulation of zinc-α2-glycoprotein by thyroid hormone in the liver was investigated. We performed in vitro (HepG2 cells and primary human adipocytes) and in vivo (C57BL6/mice) experiments addressed to examine the effect of thyroid hormone on zinc-α2-glycoprotein production (mRNA and protein levels) in liver and visceral adipose tissue. We also measured the zinc-α2-glycoprotein serum levels in a cohort of patients before and after controlling their hyperthyroidism. Our results showed that thyroid hormone up-regulates zinc-α2-glycoprotein production in HepG2 cells in a dose-dependent manner. In addition, the zinc-α2-glycoprotein proximal promoter contains functional thyroid hormone receptor binding sites that respond to thyroid hormone treatment in luciferase reporter gene assays in HepG2 cells. Furthermore, zinc-α2-glycoprotein induced lipolysis in HepG2 in a dose-dependent manner. Our in vivo experiments in mice confirmed the up-regulation of zinc-α2-glycoprotein induced by thyroid hormone in the liver, thus leading to a significant increase in zinc-α2-glycoprotein circulating levels. However, thyroid hormone did not regulate zinc-α2-glycoprotein production in either human or mouse adipocytes. Finally, in patients with hyperthyroidism a significant reduction of zinc-α2-glycoprotein serum levels was detected after treatment but was unrelated to body weight changes. We conclude that thyroid hormone up-regulates the production of zinc-α2-glycoprotein in the liver but not in the adipose tissue. The neutral effect of thyroid hormones on zinc-α2-glycoprotein expression in adipose tissue could be the reason why zinc-α2-glycoprotein is not related to weight

  13. Thyroid Hormone Upregulates Zinc-α2-glycoprotein Production in the Liver but Not in Adipose Tissue

    PubMed Central

    Simó, Rafael; Hernández, Cristina; Sáez-López, Cristina; Soldevila, Berta; Puig-Domingo, Manel; Selva, David M.

    2014-01-01

    Overproduction of zinc-α2-glycoprotein by adipose tissue is crucial in accounting for the lipolysis occurring in cancer cachexia of certain malignant tumors. The main aim of this study was to explore whether thyroid hormone could enhance zinc-α2-glycoprotein production in adipose tissue. In addition, the regulation of zinc-α2-glycoprotein by thyroid hormone in the liver was investigated. We performed in vitro (HepG2 cells and primary human adipocytes) and in vivo (C57BL6/mice) experiments addressed to examine the effect of thyroid hormone on zinc-α2-glycoprotein production (mRNA and protein levels) in liver and visceral adipose tissue. We also measured the zinc-α2-glycoprotein serum levels in a cohort of patients before and after controlling their hyperthyroidism. Our results showed that thyroid hormone up-regulates zinc-α2-glycoprotein production in HepG2 cells in a dose-dependent manner. In addition, the zinc-α2-glycoprotein proximal promoter contains functional thyroid hormone receptor binding sites that respond to thyroid hormone treatment in luciferase reporter gene assays in HepG2 cells. Furthermore, zinc-α2-glycoprotein induced lipolysis in HepG2 in a dose-dependent manner. Our in vivo experiments in mice confirmed the up-regulation of zinc-α2-glycoprotein induced by thyroid hormone in the liver, thus leading to a significant increase in zinc-α2-glycoprotein circulating levels. However, thyroid hormone did not regulate zinc-α2-glycoprotein production in either human or mouse adipocytes. Finally, in patients with hyperthyroidism a significant reduction of zinc-α2-glycoprotein serum levels was detected after treatment but was unrelated to body weight changes. We conclude that thyroid hormone up-regulates the production of zinc-α2-glycoprotein in the liver but not in the adipose tissue. The neutral effect of thyroid hormones on zinc-α2-glycoprotein expression in adipose tissue could be the reason why zinc-α2-glycoprotein is not related to weight

  14. Zinc and redox signaling: perturbations associated with cardiovascular disease and diabetes mellitus.

    PubMed

    Foster, Meika; Samman, Samir

    2010-11-15

    Cellular signal transduction pathways are influenced by the zinc and redox status of the cell. Numerous chronic diseases, including cardiovascular disease (CVD) and diabetes mellitus (DM), have been associated with impaired zinc utilization and increased oxidative stress. In humans, mutations in the MT-1A and ZnT8 genes, both of which are involved in the maintenance of zinc homeostasis, have been linked with DM development. Changes in levels of intracellular free zinc may exacerbate oxidative stress in CVD and DM by impacting glutathione homeostasis, nitric oxide signaling, and nuclear factor-kappa B-dependent cellular processes. Zinc ions have been shown to influence insulin and leptin signaling via the phosphoinositide 3′-kinase/Akt pathway, potentially linking an imbalance of zinc at the cellular level to insulin resistance and dyslipidemia. The oxidative modification of cysteine residues in zinc coordination sites in proteins has been implicated in cellular signaling and regulatory pathways. Despite the many interactions between zinc and cellular stress responses, studies investigating the potential therapeutic benefit of zinc supplementation in the prevention and treatment of oxidative stress-related chronic disease in humans are few and inconsistent. Further well-designed randomized controlled trials are needed to determine the effects of zinc supplementation in populations at various stages of CVD and DM progression.

  15. Selective UV–O3 treatment for indium zinc oxide thin film transistors with solution-based multiple active layer

    NASA Astrophysics Data System (ADS)

    Kim, Yu-Jung; Jeong, Jun-Kyo; Park, Jung-Hyun; Jeong, Byung-Jun; Lee, Hi-Deok; Lee, Ga-Won

    2018-06-01

    In this study, a method to control the electrical performance of solution-based indium zinc oxide (IZO) thin film transistors (TFTs) is proposed by ultraviolet–ozone (UV–O3) treatment on the selective layer during multiple IZO active layer depositions. The IZO film is composed of triple layers formed by spin coating and UV–O3 treatment only on the first layer or last layer. The IZO films are compared by X-ray photoelectron spectroscopy, and the results show that the atomic ratio of oxygen vacancy (VO) increases in the UV–O3 treatment on the first layer, while it decreases on last layer. The device characteristics of the bottom gated structure are also improved in the UV–O3 treatment on the first layer. This indicates that the selective UV–O3 treatment in a multi-stacking active layer is an effective method to optimize TFT properties by controlling the amount of VO in the IZO interface and surface independently.

  16. Effect of zinc supplementation on insulin resistance, energy and macronutrients intakes in pregnant women with impaired glucose tolerance.

    PubMed

    Roshanravan, Neda; Alizadeh, Mohammad; Hedayati, Mehdi; Asghari-Jafarabadi, Mohammad; Mesri Alamdari, Naimeh; Anari, Farideh; Tarighat-Esfanjani, Ali

    2015-02-01

    Hyperglycemia and gestational diabetes mellitus are complications of pregnancy. Both mothers and newborns are typically at increased risk for complications. This study sought to determine effect of zinc supplementation on serum glucose levels, insulin resistance, energy and macronutrients intakes in pregnant women with impaired glucose tolerance. In this clinical trial 44 pregnant women with impaired glucose tolerance, from December 2012 -April 2013 were randomly divided into zinc (n=22) and placebo (n=22) groups and recived 30mg/day zinc gluconate and (n=22), and placebo for eight consecutive weeks respectively. Dietary food intake was estimated from 3-days diet records. Serum levels of zinc, fasting blood sugar, and insulin were measured by conventional methods. Also homeostatic model assessment of insulin resistance was calculated. Serumlevels of fasting blood sugar, insulin and homeostatic model assessment of insulin resistance slightly decreased in zinc group, but these changes were not statistically significant. Serum zinc levels (P =0.012), energy (P=0.037), protein (P=0.019) and fat (P=0.017) intakes increased statistically significant in the zinc group after intervention but not in the placebo group. Oral supplementation with zinc could be effective in increasing serum zinc levels and energy intake with no effects on fasting blood sugar, homeostatic model assessment of insulin resistance and insulin levels.

  17. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc

    PubMed Central

    Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G.

    2013-01-01

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. PMID:23523584

  18. Zinc electrode and rechargeable zinc-air battery

    DOEpatents

    Ross, Jr., Philip N.

    1989-01-01

    An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.

  19. A question mark on zinc deficiency in 185 million people in Pakistan--possible way out.

    PubMed

    Khalid, Nauman; Ahmed, Anwaar; Bhatti, Muhammad Shahbaz; Randhawa, Muhammad Atif; Ahmad, Asif; Rafaqat, Rabab

    2014-01-01

    This paper reviews research published in recent years concerning the effects of zinc deficiency, its consequences, and possible solutions. Zinc is an essential trace element necessary for over 300 zinc metalloenzymes and required for normal nucleic acid, protein, and membrane metabolism. Zinc deficiency is one of the ten biggest factors contributing to burden of disease in developing countries. Populations in South Asia, South East Asia, and sub-Saharan Africa are at greatest risk of zinc deficiency. Zinc intakes are inadequate for about a third of the population and stunting affects 40% of preschool children. In Pakistan, zinc deficiency is an emerging health problem as about 20.6% children are found in the levels of zinc, below 60 μg/dL. Signs and symptoms caused by zinc deficiency are poor appetite, weight loss, and poor growth in childhood, delayed healing of wounds, taste abnormalities, and mental lethargy. As body stores of zinc decline, these symptoms worsen and are accompanied by diarrhea, recurrent infection, and dermatitis. Daily zinc requirements for an adult are 12-16 mg/day. Iron, calcium and phytates inhibit the absorption of zinc therefore simultaneous administration should not be prescribed. Zinc deficiency and its effects are well known but the ways it can help in treatment of different diseases is yet to be discovered. Improving zinc intakes through dietary improvements is a complex task that requires considerable time and effort. The use of zinc supplements, dietary modification, and fortifying foods with zinc are the best techniques to combat its deficiency.

  20. Electrochemical behavior of zinc particles with silica based coatings as anode material for zinc air batteries with improved discharge capacity

    NASA Astrophysics Data System (ADS)

    Schmid, M.; Willert-Porada, M.

    2017-05-01

    Silica coatings on zinc particles as anode material for alkaline zinc air batteries are expected to reduce early formation of irreversible ZnO passivation layers during discharge by controlling zinc dissolution and precipitation of supersaturated zincates, Zn(OH)42-. Zinc particles were coated with SiO2 (thickness: 15 nm) by chemical solution deposition and with Zn2SiO4 (thickness: 20 nm) by chemical vapor deposition. These coatings formed a Si(OH)4 gel in aqueous KOH and retarded hydrogen evolution by 40%. By treatment in aqueous KOH and drying afterwards, the silica coatings were changed into ZnO-K2O·SiO2 layers. In this work, the electrochemical performance of such coated zinc particles is investigated by different electrochemical methods in order to gain a deeper understanding of the mechanisms of the coatings, which reduce zinc passivation. In particular, zinc utilization and changes in internal resistance are investigated. Moreover, methods for determination of diffusion coefficients, charge carrier numbers and activation energies for electrochemical oxidation are determined. SiO2-coated zinc particles show improved discharge capacity (CVD-coated zinc: 69% zinc utilization, CSD-coated zinc: 62% zinc utilization) as compared to as-received zinc (57% zinc utilization) at C/20 rate, by reducing supersaturation of zincates. Additionally, KOH-modified SiO2-coated zinc particles enhance rechargeability after 100% depth-of-discharge.

  1. 40 CFR 471.80 - Applicability; description of the zinc forming subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the zinc... CATEGORY Zinc Forming Subcategory § 471.80 Applicability; description of the zinc forming subcategory. This... pollutants into publicly owned treatment works from the process operations of the zinc forming subcategory. ...

  2. 40 CFR 471.80 - Applicability; description of the zinc forming subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Applicability; description of the zinc... CATEGORY Zinc Forming Subcategory § 471.80 Applicability; description of the zinc forming subcategory. This... pollutants into publicly owned treatment works from the process operations of the zinc forming subcategory. ...

  3. Effect of Zinc Supplementation on Growth Outcomes in Children under 5 Years of Age.

    PubMed

    Liu, Enju; Pimpin, Laura; Shulkin, Masha; Kranz, Sarah; Duggan, Christopher P; Mozaffarian, Dariush; Fawzi, Wafaie W

    2018-03-20

    (1) Background: The effects of zinc supplementation on child growth, and prior reviews of these studies, have shown mixed results. We aim to systematically review and meta-analyze randomized controlled trials evaluating effects of preventive zinc supplementation for 3 months or longer during pregnancy or in children up to age 5 years on pregnancy outcomes and child growth; (2) Methods: We searched PubMed, EMBASE, Cochrane Library, Web of Science, and trial registries for eligible trials up to October 10, 2017. Inclusion selection and data extractions were performed independently and in duplicate. Study quality was evaluated by the Cochrane Risk of Bias tool. Findings were pooled using random effects meta-analysis, with heterogeneity assessed by I ² and τ² statistic, stratified analyses, and meta-regression, and publication bias by Egger's and Begg's tests; (3) Results: Seventy-eight trials with 34,352 unique participants were identified, including 24 during pregnancy and 54 in infancy/childhood. Maternal zinc supplementation did not significantly increase birth weight (weighted mean difference (WMD) = 0.08 kg, 95%CI: -0.05, 0.22) or decrease the risk of low birth weight (RR = 0.76, 95%CI: 0.52-1.11). Zinc supplementation after birth increased height (WMD = 0.23 cm, 95%CI: 0.09-0.38), weight (WMD = 0.14 kg, 95%CI: 0.07-0.21), and weight-for-age Z -score (WMD = 0.04, 95%CI: 0.001-0.087), but not height-for-age Z -score (WMD = 0.02, 95%CI: -0.01-0.06) or weight-for-height Z score (WMD = 0.02, 95%CI: -0.03-0.06). Child age at zinc supplementation appeared to modify the effects on height ( P -interaction = 0.002) and HAZ ( P -interaction = 0.06), with larger effects of supplementation starting at age ≥2 years (WMD for height = 1.37 cm, 95%CI: 0.50-2.25; WMD for HAZ = 0.12, 95%CI: 0.05-0.19). No significant effects of supplementation were found on the risk of stunting, underweight or wasting; (4) Conclusion: Although the possibility of publication bias and small

  4. Adverse effects of parental zinc deficiency on metal homeostasis and embryonic development in a zebrafish model.

    PubMed

    Beaver, Laura M; Nkrumah-Elie, Yasmeen M; Truong, Lisa; Barton, Carrie L; Knecht, Andrea L; Gonnerman, Greg D; Wong, Carmen P; Tanguay, Robert L; Ho, Emily

    2017-05-01

    The high prevalence of zinc deficiency is a global public health concern, and suboptimal maternal zinc consumption has been associated with adverse effects ranging from impaired glucose tolerance to low birthweights. The mechanisms that contribute to altered development and poor health in zinc deficient offspring are not completely understood. To address this gap, we utilized the Danio rerio model and investigated the impact of dietary zinc deficiency on adults and their developing progeny. Zinc deficient adult fish were significantly smaller in size, and had decreases in learning and fitness. We hypothesized that parental zinc deficiency would have an impact on their offspring's mineral homeostasis and embryonic development. Results from mineral analysis showed that parental zinc deficiency caused their progeny to be zinc deficient. Furthermore, parental dietary zinc deficiency had adverse consequences for their offspring including a significant increase in mortality and decreased physical activity. Zinc deficient embryos had altered expression of genes that regulate metal homeostasis including several zinc transporters (ZnT8, ZnT9) and the metal-regulatory transcription factor 1 (MTF-1). Zinc deficiency was also associated with decreased expression of genes related to diabetes and pancreatic development in the embryo (Insa, Pax4, Pdx1). Decreased expression of DNA methyltransferases (Dnmt4, Dnmt6) was also found in zinc deficient offspring, which suggests that zinc deficiency in parents may cause altered epigenetic profiles for their progeny. These data should inform future studies regarding zinc deficiency and pregnancy and suggest that supplementation of zinc deficient mothers prior to pregnancy may be beneficial. Published by Elsevier Inc.

  5. Adverse effects of parental zinc deficiency on metal homeostasis and embryonic development in a zebrafish model

    PubMed Central

    Beaver, Laura M.; Nkrumah-Elie, Yasmeen M.; Truong, Lisa; Barton, Carrie L.; Knecht, Andrea L.; Gonnerman, Greg D.; Wong, Carmen P.; Tanguay, Robert L.; Ho, Emily

    2017-01-01

    The high prevalence of zinc deficiency is a global public health concern, and suboptimal maternal zinc consumption has been associated with adverse effects ranging from impaired glucose tolerance to low birthweights. The mechanisms that contribute to altered development and poor health in zinc deficient offspring are not completely understood. To address this gap, we utilized the Danio rerio model and investigated the impact of dietary zinc deficiency on adults and their developing progeny. Zinc deficient adult fish were significantly smaller in size, and had decreases in learning and fitness. We hypothesized that parental zinc deficiency would have an impact on their offspring’s mineral homeostasis and embryonic development. Results from mineral analysis showed that parental zinc deficiency caused their progeny to be zinc deficient. Furthermore, parental dietary zinc deficiency had adverse consequences for their offspring including a significant increase in mortality and decreased physical activity. Zinc deficient embryos had altered expression of genes that regulate metal homeostasis including several zinc transporters (ZnT8, ZnT9) and the metal-regulatory transcription factor 1 (MTF-1). Zinc deficiency was also associated with decreased expression of genes related to diabetes and pancreatic development in the embryo (Insa, Pax4, Pdx1). Decreased expression of DNA methyltransferases (Dnmt4, Dnmt6) was also found in zinc deficient offspring, which suggests that zinc deficiency in parents may cause altered epigenetic profiles for their progeny. These data should inform future studies regarding zinc deficiency and pregnancy and suggest that supplementation of zinc deficient mothers prior to pregnancy may be beneficial. PMID:28268202

  6. Effects of intraocular injection of a low concentration of zinc on the rat retina.

    PubMed

    Nakamichi, N; Chidlow, G; Osborne, N N

    2003-10-01

    The main aim of this study was to investigate whether intraocular injection of low concentrations of zinc (no greater than 10 microM) aid the survival of ganglion cells in the rat retina after excitotoxic (NMDA) and ischemia/reperfusion injuries. We also determined whether low amounts of zinc cause any detectable retinal toxicity. Intraocular injection of NMDA caused substantial reductions in the mRNA levels of the ganglion cell-specific markers Thy-1 and neurofilament light (NF-L). Co-injection of 0.1 or 1 nmol zinc neither diminished nor exacerbated the effect of NMDA on the levels of these mRNAs. Likewise, ischemia/reperfusion caused significant decreases in the levels of Thy-1 and NF-L mRNAs and in the b-wave amplitude of the electroretinogram. These effects were not counteracted by injection of zinc. Intraocular injection of NMDA caused marked toxicological effects in retinal glial cells, including upregulations of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), glial fibrial acidic protein (GFAP), basic fibroblast growth factor (FGF-2) and ciliary neurotrophic factor (CNTF). Interestingly, injection of 1 nmol zinc caused no changes in the levels of COX-2 and iNOS, yet produced similar, although quantitatively less pronounced, changes in FGF-2, GFAP and CNTF. The upregulations of FGF-2 and CNTF suggest that increasing zinc intake may benefit injured retinal neurons. However, this was not found to be the case in the present studies, perhaps due to the acute nature of the injury paradigms utilised.

  7. Efficacy of highly bioavailable zinc from fortified water: a randomized controlled trial in rural Beninese children.

    PubMed

    Galetti, Valeria; Kujinga, Prosper; Mitchikpè, Comlan Evariste S; Zeder, Christophe; Tay, Fabian; Tossou, Félicien; Hounhouigan, Joseph D; Zimmermann, Michael B; Moretti, Diego

    2015-11-01

    Zinc deficiency and contaminated water are major contributors to diarrhea in developing countries. Food fortification with zinc has not shown clear benefits, possibly because of low zinc absorption from inhibitory food matrices. We used a novel point-of-use water ultrafiltration device configured with glass zinc plates to produce zinc-fortified, potable water. The objective was to determine zinc bioavailability from filtered water and the efficacy of zinc-fortified water in improving zinc status. In a crossover balanced study, we measured fractional zinc absorption (FAZ) from the zinc-fortified water in 18 healthy Swiss adults using zinc stable isotopes and compared it with zinc-fortified maize porridge. We conducted a 20-wk double-blind randomized controlled trial (RCT) in 277 Beninese school children from rural settings who were randomly assigned to receive a daily portion of zinc-fortified filtered water delivering 2.8 mg Zn (Zn+filter), nonfortified filtered water (Filter), or nonfortified nonfiltered water (Pump) from the local improved supply, acting as the control group. The main outcome was plasma zinc concentration (PZn), and the 3 groups were compared by using mixed-effects models. Secondary outcomes were prevalence of zinc deficiency, diarrhea prevalence, and growth. Geometric mean (-SD, +SD) FAZ was 7-fold higher from fortified water (65.9%; 42.2, 102.4) than from fortified maize (9.1%; 6.0, 13.7; P < 0.001). In the RCT, a significant time-by-treatment effect on PZn (P = 0.026) and on zinc deficiency (P = 0.032) was found; PZn in the Zn+filter group was significantly higher than in the Filter (P = 0.006) and Pump (P = 0.025) groups. We detected no effect on diarrhea or growth, but our study did not have the duration and power to detect such effects. Consumption of filtered water fortified with a low dose of highly bioavailable zinc is an effective intervention in children from rural African settings. Large community-based trials are needed to assess the

  8. Studies on the bioavailability of zinc in humans: intestinal interaction of tin and zinc.

    PubMed

    Solomons, N W; Marchini, J S; Duarte-Favaro, R M; Vannuchi, H; Dutra de Oliveira, J E

    1983-04-01

    Mineral/mineral interactions at the intestinal level are important in animal nutrition and toxicology, but only limited understanding of their extent or importance in humans has been developed. An inhibitory interaction of dietary tin on zinc retention has been recently described from human metabolic studies. We have explored the tin/zinc interaction using the change-in-plasma-zinc-concentration method with a standard dosage of 12.5 mg of zinc as zinc sulfate in 100 ml of Coca-Cola. Sn/Zn ratios of 2:1, 4:1, and 8:1, constituted by addition of 25, 50, and 100 mg of tin as stannous chloride, had no significant overall effect on zinc uptake. The 100-mg dose of tin produced noxious gastrointestinal symptoms. Addition of iron as ferrous sulfate to form ratios of Sn/Fe/Zn of 1:1:1 and 2:2:1 with the standard zinc solution and the appropriate doses of tin produced a reduction of zinc absorption not dissimilar from that seen previously with zinc and iron alone, and addition of picolinic acid did not influence the uptake of zinc from the solution with the 2:2:1 Sn/Fe/Zn ratio.

  9. High Mobility Thin Film Transistors Based on Amorphous Indium Zinc Tin Oxide

    PubMed Central

    Noviyana, Imas; Lestari, Annisa Dwi; Putri, Maryane; Won, Mi-Sook; Bae, Jong-Seong; Heo, Young-Woo; Lee, Hee Young

    2017-01-01

    Top-contact bottom-gate thin film transistors (TFTs) with zinc-rich indium zinc tin oxide (IZTO) active layer were prepared at room temperature by radio frequency magnetron sputtering. Sintered ceramic target was prepared and used for deposition from oxide powder mixture having the molar ratio of In2O3:ZnO:SnO2 = 2:5:1. Annealing treatment was carried out for as-deposited films at various temperatures to investigate its effect on TFT performances. It was found that annealing treatment at 350 °C for 30 min in air atmosphere yielded the best result, with the high field effect mobility value of 34 cm2/Vs and the minimum subthreshold swing value of 0.12 V/dec. All IZTO thin films were amorphous, even after annealing treatment of up to 350 °C. PMID:28773058

  10. Dietary catechins and procyanidins modulate zinc homeostasis in human HepG2 cells.

    PubMed

    Quesada, Isabel M; Bustos, Mario; Blay, Mayte; Pujadas, Gerard; Ardèvol, Anna; Salvadó, M Josepa; Bladé, Cinta; Arola, Lluís; Fernández-Larrea, Juan

    2011-02-01

    Catechins and their polymers procyanidins are health-promoting flavonoids found in edible vegetables and fruits. They act as antioxidants by scavenging reactive oxygen species and by chelating the redox-active metals iron and copper. They also behave as signaling molecules, modulating multiple cell signalling pathways and gene expression, including that of antioxidant enzymes. This study aimed at determining whether catechins and procyanidins interact with the redox-inactive metal zinc and at assessing their effect on cellular zinc homeostasis. We found that a grape-seed procyanidin extract (GSPE) and the green tea flavonoid (-)-epigallocatechin-3-gallate (EGCG) bind zinc cations in solution with higher affinity than the zinc-specific chelator Zinquin, and dose-dependently prevent zinc-induced toxicity in the human hepatocarcinoma cell line HepG2, evaluated by the lactate dehydrogenase test. GSPE and EGCG hinder intracellular accumulation of total zinc, measured by atomic flame absorption spectrometry, concomitantly increasing the level of cytoplasmic labile zinc detectable by Zinquin fluorescence. Concurrently, GSPE and EGCG inhibit the expression, evaluated at the mRNA level by quantitative reverse transcriptase-polymerase chain reaction, of zinc-binding metallothioneins and of plasma membrane zinc exporter ZnT1 (SLC30A1), while enhancing the expression of cellular zinc importers ZIP1 (SLC39A1) and ZIP4 (SLC39A4). GSPE and EGCG also produce all these effects when HepG2 cells are stimulated to import zinc by treatment with supplemental zinc or the proinflammatory cytokine interleukin-6. We suggest that extracellular complexation of zinc cations and the elevation of cytoplasmic labile zinc may be relevant mechanisms underlying the modulation of diverse cell signaling and metabolic pathways by catechins and procyanidins. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. The application of crystal soaking technique to study the effect of zinc and cresol on insulinotropin crystals grown from a saline solution.

    PubMed

    Kim, Y; Haren, A M

    1995-11-01

    The purpose of this study is to investigate the effect of zinc and cresol on the structure of insulinotropin crystals. Insulinotropin crystals grown from a saline solution were treated with zinc and/or m-cresol using a crystal soaking technique. The effects of these additives on the crystal structure were investigated with powder X-ray diffraction, photomicrography, and differential scanning calorimetry. The molecular interaction between insulinotropin and m-trifluorocresol in solution was also studied by 19F NMR: The data suggest that the original crystals grown from a saline solution have relatively weak lattice forces. After the addition of m-cresol to the suspension of the insulinotropin crystals, the crystals were immediately rendered amorphous. The m-cresol molecules which diffused into the crystals through solvent channels may have disturbed the lattice interactions that maintain the integrity of the crystal. In contrast, the zinc added to the suspension stabilized the crystal lattice so that the subsequent addition of m-cresol did not alter the integrity of the crystals. A marked increase in melting point (206 degrees versus 184 degrees) and heat of fusion (24.6 J/g versus 1.4 J/g) of the crystals was observed after the treatment with zinc. The solubility of the zinc treated crystals in a pH 7.1 phosphate buffered saline was 1/20 of that of the original crystals. When the insulinotropin crystals were treated with the additives using a crystal soaking method, the crystals underwent structural changes. Zinc stabilized the crystal lattice, and reduced the solubility of the peptide.

  12. Zinc oxide nanoparticles as a substitute for zinc oxide or colistin sulfate: Effects on growth, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets

    PubMed Central

    Zhang, Ligen; Su, Weipeng; Ying, Zhixiong; He, Jintian; Zhang, Lili; Zhong, Xiang; Wang, Tian

    2017-01-01

    The objective of this study was to evaluate effects of zinc oxide nanoparticles (nano-ZnOs) as a substitute for colistin sulfate (CS) and/or zinc oxide (ZnO) on growth performance, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets. A total of 216 crossbred Duroc×(Landrace×Yorkshire) piglets weaned at 23 days were randomly assigned into 3 groups, which were fed with basal diets supplemented with 20 mg/kg CS (CS group), 20mg/kg CS+3000 mg/kg ZnO (CS+ZnO group), and 1200 mg/kg nano-ZnOs (nano-ZnO group) for 14 days. Results indicated that compared to CS group, supplementation of 1200 mg/kg nano-ZnOs (about 30 nm) significantly increased final body weight and average daily gain, and 3000 mg/kg ZnO plus colistin sulfate significantly increased average daily gain and decreased diarrhea rate in weaned piglets. There was no significant difference in growth performance and diarrhea rate between nano-ZnO and CS+ZnO groups. Supplementation of nano-ZnOs did not affect serum enzymes (glutamic oxalacetic transaminase, glutamic-pyruvic transaminase, and lactate dehydrogenase), but significantly increased plasma and tissue zinc concentrations (liver, tibia), improved intestinal morphology (increased duodenal and ileal villus length, crypt depth, and villus surface), enhanced mRNA expression of ZO-1 in ileal mucosa, and significantly decreased diamine oxidase activity in plasma, total aerobic bacterial population in MLN as compared to CS group. Effects of nano-ZnOs on serum enzymes, intestinal morphology, and mRNA expressions of tight junction were similar to those of high dietary ZnO plus colistin sulfate, while nano-ZnOs significantly reduced zinc concentrations of liver, tibia, and feces, and decreased total aerobic bacterial population in MLN as compared to CS+ZnO group. These results suggested that nano-ZnOs (1200 mg/kg) might be used as a substitute for colistin sulfate and high dietary ZnO in weaned piglets. PMID:28704517

  13. Zinc oxide nanoparticles as a substitute for zinc oxide or colistin sulfate: Effects on growth, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets.

    PubMed

    Wang, Chao; Zhang, Ligen; Su, Weipeng; Ying, Zhixiong; He, Jintian; Zhang, Lili; Zhong, Xiang; Wang, Tian

    2017-01-01

    The objective of this study was to evaluate effects of zinc oxide nanoparticles (nano-ZnOs) as a substitute for colistin sulfate (CS) and/or zinc oxide (ZnO) on growth performance, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets. A total of 216 crossbred Duroc×(Landrace×Yorkshire) piglets weaned at 23 days were randomly assigned into 3 groups, which were fed with basal diets supplemented with 20 mg/kg CS (CS group), 20mg/kg CS+3000 mg/kg ZnO (CS+ZnO group), and 1200 mg/kg nano-ZnOs (nano-ZnO group) for 14 days. Results indicated that compared to CS group, supplementation of 1200 mg/kg nano-ZnOs (about 30 nm) significantly increased final body weight and average daily gain, and 3000 mg/kg ZnO plus colistin sulfate significantly increased average daily gain and decreased diarrhea rate in weaned piglets. There was no significant difference in growth performance and diarrhea rate between nano-ZnO and CS+ZnO groups. Supplementation of nano-ZnOs did not affect serum enzymes (glutamic oxalacetic transaminase, glutamic-pyruvic transaminase, and lactate dehydrogenase), but significantly increased plasma and tissue zinc concentrations (liver, tibia), improved intestinal morphology (increased duodenal and ileal villus length, crypt depth, and villus surface), enhanced mRNA expression of ZO-1 in ileal mucosa, and significantly decreased diamine oxidase activity in plasma, total aerobic bacterial population in MLN as compared to CS group. Effects of nano-ZnOs on serum enzymes, intestinal morphology, and mRNA expressions of tight junction were similar to those of high dietary ZnO plus colistin sulfate, while nano-ZnOs significantly reduced zinc concentrations of liver, tibia, and feces, and decreased total aerobic bacterial population in MLN as compared to CS+ZnO group. These results suggested that nano-ZnOs (1200 mg/kg) might be used as a substitute for colistin sulfate and high dietary ZnO in weaned piglets.

  14. The effect of zinc on the aluminum anode of the aluminum-air battery

    NASA Astrophysics Data System (ADS)

    Tang, Yougen; Lu, Lingbin; Roesky, Herbert W.; Wang, Laiwen; Huang, Baiyun

    Aluminum is an ideal material for batteries, due to its excellent electrochemical performance. Herein, the effect of zinc on the aluminum anode of the aluminum-air battery, as an additive for aluminum alloy and electrolytes, has been studied. The results show that zinc can decrease the anodic polarization, restrain the hydrogen evolution and increase the anodic utilization rate.

  15. Maternal Zinc Intakes and Homeostatic Adjustments during Pregnancy and Lactation

    PubMed Central

    Donangelo, Carmen Marino; King, Janet C.

    2012-01-01

    Zinc plays critical roles during embryogenesis, fetal growth, and milk secretion, which increase the zinc need for pregnancy and lactation. Increased needs can be met by increasing the dietary zinc intake, along with making homeostatic adjustments in zinc utilization. Potential homeostatic adjustments include changes in circulating zinc, increased zinc absorption, decreased zinc losses, and changes in whole body zinc kinetics. Although severe zinc deficiency during pregnancy has devastating effects, systematic reviews and meta-analysis of the effect of maternal zinc supplementation on pregnancy outcomes have consistently shown a limited benefit. We hypothesize, therefore, that zinc homeostatic adjustments during pregnancy and lactation improve zinc utilization sufficiently to provide the increased zinc needs in these stages and, therefore, mitigate immediate detrimental effects due to a low zinc intake. The specific questions addressed are the following: How is zinc utilization altered during pregnancy and lactation? Are those homeostatic adjustments influenced by maternal zinc status, dietary zinc, or zinc supplementation? These questions are addressed by critically reviewing results from published human studies on zinc homeostasis during pregnancy and lactation carried out in different populations worldwide. PMID:22852063

  16. Iron, copper, and zinc status: response to supplementation with zinc or zinc and iron in adult females.

    PubMed

    Yadrick, M K; Kenney, M A; Winterfeldt, E A

    1989-01-01

    Response of iron, copper, and zinc status to supplementation with Zn or a combination of Zn and Fe was assessed in adult females in a 10-wk study. Group Z received 50 mg Zn/d as Zn gluconate; group F-Z received 50 mg Fe as ferrous sulfate monohydrate in addition to the Zn. For Group Z, serum ferritin, hematocrit, and erythrocyte Cu,Zn-superoxide dismutase (ESOD) were significantly lower (p less than 0.05) after 10 wk supplementation compared with pretreatment levels. Serum Zn increased (p less than 0.01) but no change occurred in serum ceruloplasmin, hemoglobin, or salivary sediment Zn with treatment. For Group F-Z ESOD decreased with treatment as did salivary sediment Zn (p less than 0.05). Serum ferritin and serum Zn increased significantly, but hemoglobin, hematocrit, and ceruloplasmin were not affected by this treatment. Supplementation with Zn poses a risk to Fe and Cu status. Inclusion of Fe with Zn ameliorates the effect on Fe but not on Cu status.

  17. Effect of red maca (Lepidium meyenii) on prostate zinc levels in rats with testosterone-induced prostatic hyperplasia.

    PubMed

    Gonzales, C; Leiva-Revilla, J; Rubio, J; Gasco, M; Gonzales, G F

    2012-05-01

    Lepidium meyenii (maca) is a plant that grows exclusively above 4000 m in the Peruvian central Andes. Red maca (RM) extract significantly reduced prostate size in rats with benign prostatic hyperplasia (BPH) induced by testosterone enanthate (TE). Zinc is an important regulator of prostate function. This study aimed to determine the effect of RM on prostate zinc levels in rats with BPH induced by TE. Also, the study attempted to determine the best marker for the effect of RM on sex accessory glands. Rats treated with RM extract from day 1 to day 14 reversed the effect of TE administration on prostate weight and zinc levels. However, RM administered from day 7 to day 14 did not reduce the effect of TE on all studied variables. Finasteride (FN) reduced prostate, seminal vesicle and preputial gland weights in rats treated with TE. Although RM and FN reduced prostate zinc levels, the greatest effect was observed in TE-treated rats with RM from day 1 to day 14. In addition, prostate weight and zinc levels showed the higher diagnosis values than preputial and seminal vesicle weights. In conclusion, RM administered from day 1 to day 14 reduced prostate size and zinc levels in rats where prostatic hyperplasia was induced with TE. Also, this experimental model could be used as accurately assay to determine the effect of maca obtained under different conditions and/or the effect of different products based on maca. © 2011 Blackwell Verlag GmbH.

  18. Effects of soil type, prepercolation, and ageing on bioaccumulation and toxicity of zinc for the springtail Folsomia candida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smit, C.E.; Van Gestel, C.A.M.

    1998-06-01

    Soil properties are a major influence on the bioavailability and toxicity of metals and represent one of the important factors that complicate the extrapolation of results from laboratory tests to field situations. The influence of soil characteristics and way of contamination on the bioaccumulation and toxicity of zinc was investigated for the springtail Folsomia candida, and the applicability of chemical extraction techniques for the prediction of zinc uptake and toxicity was evaluated. Bioaccumulation of zinc in F. candida was related to water-soluble zinc concentrations, and uptake was dependent on the test soil used. Effects of zinc for F. candida couldmore » not be fully explained by bioaccumulation. This indicates that the existence of a fixed internal threshold concentration of zinc above which physiological functions are impaired is not likely for F. candida. In freshly contaminated soils, zinc toxicity was related to organic matter and clay content of the soil; however, the use of these soils overestimated the effects of zinc for F. candida by a factor of 5 to 8 compared to a test soil that was subjected to ageing under field conditions for 1.5 years. Equilibration of the zinc contamination by percolating the soils with water before use in the toxicity experiment strongly reduced the difference in zinc toxicity between laboratory-treated and aged soils. Water-soluble concentrations are most appropriate to predict effects of zinc on reproduction of F. candida in soils with unknown contamination histories. For laboratory toxicity tests, it is recommended to percolate soils with water after contamination and to include an equilibration period prior to use to achieve a more realistic exposure situation.« less

  19. Zinc Extraction from Zinc Plants Residue Using Selective Alkaline Leaching and Electrowinning

    NASA Astrophysics Data System (ADS)

    Ashtari, Pedram; Pourghahramani, Parviz

    2015-10-01

    Annually, a great amount of zinc plants residue is produced in Iran. One of them is hot filter cake (known as HFC) which can be used as a secondary resource of zinc, cobalt and manganese. Unfortunately, despite its heavy metal content, the HFC is not treated. For the first time, zinc was selectively leached from HFC employing alkaline leaching. Secondly, leaching was optimized to achieve maximum recovery using this method. Effects of factors like NaOH concentration (C = 3, 5, 7 and 9 M), temperature (T = 50, 70, 90 and 105 °C), solid/liquid ratio (weight/volume, S/L = 1/10 and 1/5 W/V) and stirring speed (R = 500 and 800 rpm) were studied on HFC leaching. L16 orthogonal array (OA, two factors in four levels and two factors in two levels) was applied to determine the optimum condition and the most significant factor affecting the overall zinc extraction. As a result, maximum zinc extraction was 83.4 %. Afterwards, a rough test was conducted for zinc electrowinning from alkaline solution according to the common condition available in literature by which pure zinc powder (99.96 %) was successfully obtained.

  20. The permissive effect of zinc deficiency on uroguanylin and inducible nitric oxide synthase gene upregulation in rat intestine induced by interleukin 1alpha is rapidly reversed by zinc repletion.

    PubMed

    Cui, Li; Blanchard, Raymond K; Cousins, Robert J

    2003-01-01

    Deficient intake of zinc from the diet upregulates both uroguanylin (UG) and inducible nitric oxide synthase (iNOS) expression in rats. Because these changes influence intestinal fluid secretion and intestinal cell pathophysiology, they relate to the incidence of diarrheal disease and its reversal by zinc as well as intestinal inflammation in general. A model of moderate zinc deficiency in rats, which changes molecular indices of zinc deficiency, was used to further explore the effects of the proinflammatory cytokine interleukin (IL)-1alpha and zinc repletion on these changes. IL-1alpha has been shown to have a role in the intestinal inflammation that occurs with bacterial infection. Our results showed a permissive effect of zinc deficiency on both UG and iNOS expression. Specifically, UG expression was responsive to zinc deficiency and IL-1alpha challenge, which were additive when combined, whereas iNOS expression was upregulated by IL-1alpha only during the deficiency. Immunohistochemistry showed that the increase in UG was limited to enterocytes of the upper villus but, in contrast, the increase in iNOS was principally in cells of the lamina propria of IL-1alpha-treated rats. Cells exhibiting UG upregulation did not co-express serotonin. Repletion with zinc reversed upregulation of the iNOS gene within 1 d, whereas UG upregulation required 3-4 d to return to normal. This differential response to repletion suggests that mechanisms of UG and iNOS dysregulation are different. Dysregulation of both genes may contribute to the severity of zinc-responsive diarrheal disease and intestinal inflammatory disease.

  1. Zinc as an adjunct treatment for reducing case fatality due to clinical severe infection in young infants: study protocol for a randomized controlled trial.

    PubMed

    Wadhwa, Nitya; Basnet, Sudha; Natchu, Uma Chandra Mouli; Shrestha, Laxman P; Bhatnagar, Shinjini; Sommerfelt, Halvor; Strand, Tor A; Ramji, Siddarth; Aggarwal, K C; Chellani, Harish; Govil, Anuradha; Jajoo, Mamta; Mathur, N B; Bhatt, Meenakshi; Mohta, Anup; Ansari, Imran; Basnet, Srijana; Chapagain, Ram H; Shah, Ganesh P; Shrestha, Binod M

    2017-07-10

    An estimated 2.7 of the 5.9 million deaths in children under 5 years of age occur in the neonatal period. Severe infections contribute to almost a quarter of these deaths. Mortality due to severe infections in developing country settings is substantial despite antibiotic therapy. Effective interventions that can be added to standard therapy for severe infections are required to reduce case fatality. This is a double-blind randomized placebo-controlled parallel group superiority trial to investigate the effect of zinc administered orally as an adjunct to standard therapy to infants aged 3 days up to 2 months (59 days) hospitalized with clinical severe infection, that will be undertaken in seven hospitals in Delhi, India and Kathmandu, Nepal. In a 1:1 ratio, we will randomly assign young infants to receive 10 mg of elemental zinc or placebo orally in addition to the standard therapy for a total of 14 days. The primary outcomes hospital case fatality, which is death due to any cause and at any time after enrolment while hospitalized for the illness episode, and extended case fatality, which encompasses the period until 12 weeks after enrolment. A previous study showed a beneficial effect of zinc in reducing the risk of treatment failure, as well as a non-significant effect on case fatality. This study was not powered to detect an effect on case fatality, which this current study is. If the results are consistent with this earlier trial, we would have provided strong evidence for recommending zinc as an adjunct to standard therapy for clinical severe infection in young infants. Universal Trial Number: U1111-1187-6479, Clinical Trials Registry - India: CTRI/2017/02/007966 : Registered on February 27, 2017.

  2. Effect of in ovo supplementation of nano forms of zinc, copper, and selenium on post-hatch performance of broiler chicken.

    PubMed

    Joshua, P Patric; Valli, C; Balakrishnan, V

    2016-03-01

    Nanoparticles can bypass conventional physiological ways of nutrient distribution and transport across tissue and cell membranes, as well as protect compounds against destruction prior to reaching their targets. In ovo administration of nanoparticles, may be seen as a new method of nano-nutrition, providing embryos with an additional quantity of nutrients. The aim of the study is to examine the effect of in ovo supplementation of nano forms of zinc, copper and selenium on the hatchability and post hatch performance of broiler chicken. Nano form of zinc at 20, 40, 60 and 80 µg/egg, nano form of copper at 4, 8, 12 and 16 µg/egg and nano form of selenium at 0.075, 0.15, 0.225 and 0.3 µg/egg were in ovo supplemented (18(th) day incubation, amniotic route) in fertile broiler eggs. Control group in ovo fed with normal saline alone was also maintained. Each treatment had thirty replicates. Parameters such as hatchability, hatch weight and post hatch performance were studied. In ovo feeding of nano minerals were not harmful to the developing embryo and did not influence the hatchability. Significantly (p<0.05) best feed efficiency for nano forms of zinc (2.16), copper (2.46) and selenium (2.51) were observed, when 40, 4 and 0.225 µg/egg respectively were in ovo supplemented. Except in nano form of copper at 12 µg per egg which had significantly (p<0.05) highest breast muscle percentage there was no distinct trend to indicate that dressing percentage or breast muscle yield was influenced in other treatments. Nano forms of zinc, copper and selenium can be prepared at laboratory conditions. In ovo feeding of nano forms of zinc, copper and selenium at 18(th) day of incubation through amniotic route does not harm the developing embryo, does not affect hatchability.

  3. Sulfur dioxide leaching of spent zinc-carbon-battery scrap

    NASA Astrophysics Data System (ADS)

    Avraamides, J.; Senanayake, G.; Clegg, R.

    Zinc-carbon batteries, which contain around 20% zinc, 35% manganese oxides and 10% steel, are currently disposed after use as land fill or reprocessed to recover metals or oxides. Crushed material is subjected to magnetic separation followed by hydrometallurgical treatment of the non-magnetic material to recover zinc metal and manganese oxides. The leaching with 2 M sulfuric acid in the presence of hydrogen peroxide recovers 93% Zn and 82% Mn at 25 °C. Alkaline leaching with 6 M NaOH recovers 80% zinc. The present study shows that over 90% zinc and manganese can be leached in 20-30 min at 30 °C using 0.1-1.0 M sulfuric acid in the presence of sulfur dioxide. The iron extraction is sensitive to both acid concentration and sulfur dioxide flow rate. The effect of reagent concentration and particle size on the extraction of zinc, manganese and iron are reported. It is shown that the iron and manganese leaching follow a shrinking core kinetic model due to the formation of insoluble metal salts/oxides on the solid surface. This is supported by (i) the decrease in iron and manganese extraction from synthetic Fe(III)-Mn(IV)-Zn(II) oxide mixtures with increase in acid concentration from 1 M to 2 M, and (ii) the low iron dissolution and re-precipitation of dissolved manganese and zinc during prolonged leaching of battery scrap with low sulfur dioxide.

  4. Interaction Between Yeasts and Zinc

    NASA Astrophysics Data System (ADS)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  5. Role of nutritional zinc in the prevention of osteoporosis.

    PubMed

    Yamaguchi, Masayoshi

    2010-05-01

    Zinc is known as an essential nutritional factor in the growth of the human and animals. Bone growth retardation is a common finding in various conditions associated with dietary zinc deficiency. Bone zinc content has been shown to decrease in aging, skeletal unloading, and postmenopausal conditions, suggesting its role in bone disorder. Zinc has been demonstrated to have a stimulatory effect on osteoblastic bone formation and mineralization; the metal directly activates aminoacyl-tRNA synthetase, a rate-limiting enzyme at translational process of protein synthesis, in the cells, and it stimulates cellular protein synthesis. Zinc has been shown to stimulate gene expression of the transcription factors runt-related transcription factor 2 (Runx2) that is related to differentiation into osteoblastic cells. Moreover, zinc has been shown to inhibit osteoclastic bone resorption due to inhibiting osteoclast-like cell formation from bone marrow cells and stimulating apoptotic cell death of mature osteoclasts. Zinc has a suppressive effect on the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-induced osteoclastogenesis. Zinc transporter has been shown to express in osteoblastic and osteoclastic cells. Zinc protein is involved in transcription. The intake of dietary zinc causes an increase in bone mass. beta-Alanyl-L: -histidinato zinc (AHZ) is a zinc compound, in which zinc is chelated to beta-alanyl-L: -histidine. The stimulatory effect of AHZ on bone formation is more intensive than that of zinc sulfate. Zinc acexamate has also been shown to have a potent-anabolic effect on bone. The oral administration of AHZ or zinc acexamate has the restorative effect on bone loss under various pathophysiologic conditions including aging, skeletal unloading, aluminum bone toxicity, calcium- and vitamin D-deficiency, adjuvant arthritis, estrogen deficiency, diabetes, and fracture healing. Zinc compounds may be designed as new supplementation factor in the prevention and

  6. Effect of iron and zinc deficiency on short term memory in children.

    PubMed

    Umamaheswari, K; Bhaskaran, Mythily; Krishnamurthy, Gautham; Vasudevan, Hemamalini; Vasudevan, Kavita

    2011-04-01

    To evaluate the effect of iron and zinc deficiency on short term memory of children in the age group of 6-11 years and to assess the response to supplementation therapy. Interventional study. 100 children in the age group of 6-11 years (subdivided into 6-8 yr and 9-11 yr groups) from an urban corporation school. After collection of demographic data, the study children underwent hematological assessment which included serum iron, serum zinc, and hemoglobin estimation. Based on the results, they were divided into Iron deficient, Zinc deficient, and Combined deficiency groups. Verbal and nonverbal memory assessment was done in all the children. Iron (2mg/kg bodyweight in two divided doses) and zinc (5mg once-a-day) supplementation for a period of 3 months for children in the deficient group. All children with iron and zinc deficiency in both the age groups had memory deficits. Combined deficiency in 9-11 years group showed severe degree of affectation in verbal (P<0.01) and non-verbal memory (P<0.01), and improved after supplementation (P = 0.05 and P< 0.01, respectively). In 6-8 years group, only non-verbal form of memory (P =0.02) was affected, which improved after supplementation. Iron and zinc deficiency is associated with memory deficits in children. There is a marked improvement in memory after supplementation. Post supplementation IQ scores do not show significant improvement in deficient groups in 6-8 year olds.

  7. Zinc Absorption by Young Adults from Supplemental Zinc Citrate Is Comparable with That from Zinc Gluconate and Higher than from Zinc Oxide123

    PubMed Central

    Wegmüller, Rita; Tay, Fabian; Zeder, Christophe; Brnić, Marica; Hurrell, Richard F.

    2014-01-01

    The water-soluble zinc salts gluconate, sulfate, and acetate are commonly used as supplements in tablet or syrup form to prevent zinc deficiency and to treat diarrhea in children in combination with oral rehydration. Zinc citrate is an alternative compound with high zinc content, slightly soluble in water, which has better sensory properties in syrups but no absorption data in humans. We used the double-isotope tracer method with 67Zn and 70Zn to measure zinc absorption from zinc citrate given as supplements containing 10 mg of zinc to 15 healthy adults without food and compared absorption with that from zinc gluconate and zinc oxide (insoluble in water) using a randomized, double-masked, 3-way crossover design. Median (IQR) fractional absorption of zinc from zinc citrate was 61.3% (56.6–71.0) and was not different from that from zinc gluconate with 60.9% (50.6–71.7). Absorption from zinc oxide at 49.9% (40.9–57.7) was significantly lower than from both other supplements (P < 0.01). Three participants had little or no absorption from zinc oxide. We conclude that zinc citrate, given as a supplement without food, is as well absorbed by healthy adults as zinc gluconate and may thus be a useful alternative for preventing zinc deficiency and treating diarrhea. The more insoluble zinc oxide is less well absorbed when given as a supplement without food and may be minimally absorbed by some individuals. This trial was registered at clinicaltrials.gov as NCT01576627. PMID:24259556

  8. Effects of zinc deficiency on the vallate papillae and taste buds in rats.

    PubMed

    Chou, H C; Chien, C L; Huang, H L; Lu, K S

    2001-05-01

    Zinc deficiency is associated with multiple clinical complications, including taste disturbance, anorexia, growth retardation, skin changes, and hypogonadism. We investigated the zinc-deficiency-induced morphologic changes in the vallate taste buds of weanling and young adult male Wistar rats. A total of 24 weanling and 30 young adult rats were used. Each age group was further divided into a control group fed a zinc-adequate (50 ppm) diet, a zinc-deficient (< 1 ppm) diet group, and a zinc-adequate pair-fed group who were fed the same amount of food as that taken by the zinc-deficient group. Weanling rats were fed for 4 weeks and young adult rats were fed for 6 weeks. The morphometry and morphologic changes of vallate taste buds were analyzed using light and transmission electron microscopy. Light microscopy revealed no significant difference in papilla size and morphology among the various groups. In both weanling and young adult rats in the zinc-deficient diet and pair-fed groups, the number of taste buds per papilla (per animal) and the average profile area of the taste bud were significantly smaller than those of the corresponding controls (p < 0.05). Ultrastructural changes were seen only in the taste buds of weanling rats fed the zinc-deficient diet, with derangement of the architecture of the taste bud and widening of the intercellular space between taste bud cells. The proportion of type I taste bud cells in the taste buds of weanling rats fed the zinc-deficient diet decreased from 59% to 39%, and that of type II taste bud cells decreased from 25% to 12%. No obvious changes in the ultrastructure of type III taste bud cells were observed. The main effects of zinc deficiency in weanling and young adult rats and in adequate diet pair-fed rats were changes in the number and size of taste buds, and fine structure changes in the taste bud cells, especially during the accelerated growth stage after weaning.

  9. Effect of Zinc-Deficient Diet on Oral Tissues and Periodontal Indices in Rats

    PubMed Central

    Seyedmajidi, Seyed Ali; Seyedmajidi, Maryam; Moghadamnia, Aliakbar; Khani, Zohreh; Zahedpasha, Samir; Jenabian, Niloofar; Jorsaraei, Gholamali; Halalkhor, Sohrab; Motallebnejad, Mina

    2014-01-01

    Zinc (Zn) as a nutritional factor affects the health of the oral tissues. This study was done for the evaluation of the effects of zinc deficiency on the oral tissues of rats. The study was carried out on 14 male Wistar rats, cessation of lactation on the 24th day after birth. The rats were randomly divided into two groups. Zinc deficient (ZD) diet was used for one group and another group was fed with a zinc-containing (ZC) diet. The alterations of the oral tissues in both groups were evaluated clinically after four weeks. Also the gingival index and periodontal pocket depth were recorded. The measurement of serum zinc level was done by atomic absorption spectrophotometry. The microscopic slides of oral tissue specimen were evaluated quantitatively. The serum zinc level of the ZD rats was lower than the ZC group (p< 0.001). According clinical findings, the gingival index was lower in ZC rat (p=0.001), but there was no significant difference regarding the periodontal pocket depth between two groups (p=0.07). Aphthous ulcer was observed in ZD rats on the floor of the mouth. There was no significant difference regarding the epithelial and keratin thickening between two groups. This study indicated that oral and periodontal health was better in ZC rats than in ZD rats. Aphthous lesions were more prominent in ZD rats. This study confirmed that zinc deficiency may endanger oral and periodo ntal structures. PMID:25035857

  10. Profiling of zinc altered gene expression in human prostate normal versus cancer cells: a time course study

    PubMed Central

    Lin, Shu-fei; Wei, Hua; Maeder, Dennis; Franklin, Renty B.; Feng, Pei

    2010-01-01

    We have demonstrated that zinc exposure induces apoptosis in human prostate cancer cells (PC-3) and benign hyperplasia cells (BPH), but not in normal prostate cells (HPR-1). However, the mechanisms underlying the effects of zinc on prostate cancer cell growth and zinc homeostasis remain unclear. To explore the zinc effect on gene expression profiles in normal (HPR-1) and malignant prostate cells (PC-3), we conducted a time course study of Zn treatment with microarray analysis. Microarray data were evaluated and profiled using computational approach for the primary and secondary data analyses. Final analyses were focused on the genes: 1. highly sensitive to zinc, 2. associated with zinc homeostasis, i.e. metallothioneins (MTs), solute zinc carriers (ZIPs) and zinc exporters (ZnTs), 3. relevant to several oncogenic pathways. Zinc-mediated mRNA levels of MT isotypes were further validated by semi-quantitative RT-PCR. Results showed that zinc effect on genome-wide expression patterns was cell type specific, and zinc appeared to have mainly down-regulatory effects on thousands of genes (1,953 in HPR-1; 3,534 in PC-3) with a threshold of ±2.5-fold, while fewer genes were up-regulated (872 in HPR-1; 571 in PC-3). The patterns of zinc effect on functional MT genes’ expression provided evidence for the cell-type dependent zinc accumulation and zinc-induced apoptosis in prostate cells. In PC-3 cells, zinc significantly up-regulated the expression of MT-1 isotypes -J and -M, denoted previously as “non-functional” MT genes, and now a depictive molecular structure of MT-1J was proposed. Examination of genes involved in oncogenic pathways indicated that certain genes, e.g. Fos, Akt1, Jak3 and PI3K were highly regulated by zinc with cell type specificity. This work provided an extensive database on zinc related prostate cancer research. The strategy of data analysis was devoted to find genes highly sensitive to Zn, and the genes associated with zinc accumulation and zinc

  11. Longitudinal changes in zinc transport kinetics, metallothionein, and zinc transporter expression in a blood-brain barrier model in response to a moderately excessive zinc environment$

    PubMed Central

    Gauthier, Nicole A.; Karki, Shakun; Olley, Bryony J.; Thomas, W. Kelly

    2008-01-01

    A blood-brain barrier (BBB) model composed of porcine brain capillary endothelial cells (BCEC) was exposed to a moderately excessive zinc environment (50 µmol Zn/L) in cell culture and longitudinal measurements were made of zinc transport kinetics, ZnT-1 (SLC30A1) expression, and changes in the protein concentration of metallothionein (MT), ZnT-1, ZnT-2 (SLC30A2), and Zip1 (SLC39A1). Zinc release by cells of the BBB model was significantly increased after 12–24 h of exposure, but decreased back to control levels after 48–96 h, as indicated by transport across the BBB from both the ablumenal (brain) and lumenal (blood) directions. Expression of ZnT-1, the zinc export protein, increased 169% within 12 h, but was no longer different from controls after 24 h. Likewise, ZnT-1 protein content increased transiently after 12 h of exposure but returned to control levels by 24 h. Capacity for zinc uptake and retention increased from both the lumenal and ablumenal directions within 12–24 h of exposure and remained elevated. MT and ZnT-2 were elevated within 12 h and remained elevated throughout the study. Zip1 was unchanged by the treatment. The BBB’s response to a moderately high zinc environment was dynamic and involved multiple mechanisms. The initial response was to increase the cell’s capacity to sequester zinc with additional MT and increase zinc export with the ZnT-1 protein. But, the longer term strategy involved increasing ZnT-2 transporters, presumably to sequester zinc into intracellular vesicles as a mechanism to protect the brain and maintain brain zinc homeostasis. PMID:18061429

  12. 40 CFR 415.670 - Applicability; description of the zinc chloride production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the zinc... CATEGORY Zinc Chloride Production Subcategory § 415.670 Applicability; description of the zinc chloride... of pollutants into treatment works which are publicly owned resulting from the production of zinc...

  13. In vitro and in vivo effects of zinc on cytokine signalling in human T cells.

    PubMed

    Varin, Audrey; Larbi, Anis; Dedoussis, George V; Kanoni, Stavroula; Jajte, Jolanta; Rink, Lothar; Monti, Daniela; Malavolta, Marco; Marcellini, Fiorella; Mocchegiani, Eugenio; Herbein, Georges; Fulop, Tamas

    2008-05-01

    Aging is associated with changes in the immune response which are collectively called immunosenescence. The changes mainly affect the adaptive immune response and especially the T cell-mediated cellular immune response. There are a few data indicating that the cytokine signalling in T cells is altered with aging. Zinc has been specifically shown to have potent immunomodulatory effects. The aim of the present work was to study the IL-2 and IL-6 cytokine signalling and activation induced cell death (AICD) in T cells of elderly subjects of various ages and from various European countries. These experiments were performed in the frame of European Community financed project called ZINCAGE "Nutritional zinc, oxidative stress and immunosenescence: biochemical, genetic and lifestyle implications for healthy ageing", assembling 17 laboratories from 8 countries through Europe. The study was carried out in a total of 312 French and a group of 201 (26 from Italy, 63 from France, 57 from Greece, 24 from Poland and 30 from Germany) healthy non-institutionalized men and women older than 60 years of age, with available dietary data. Human peripheral blood mononuclear cells (PBMC) were obtained from heparinized blood and were stimulated in vitro by IL-2 or IL-6 for various periods and the phosphorylation of STAT3 and STAT5 was measured by FACScan. The activation induced cell death (AICD) was measured after anti-CD3 and CD28 restimulation for 48h by using the Annexin:FITC Apoptosis Kit. We found that there is an IL-2 signalling defect with aging up to 90 years of age which cannot be modulated by zinc. In contrast at 90 years and over the zinc could reverse the negative signalling effect of IL-2. There is also a signalling defect for STAT3 and STAT5 activation in T cells under IL-6 stimulation with aging and the zinc supplementation could potentiate only the STAT5 activation in the age-group 90 years and over. Studying signalling in PBL from different countries we detected less

  14. Antimicrobial property of zinc based nanoparticles

    NASA Astrophysics Data System (ADS)

    Chiriac, V.; Stratulat, D. N.; Calin, G.; Nichitus, S.; Burlui, V.; Stadoleanu, C.; Popa, M.; Popa, I. M.

    2016-06-01

    Pathogen bacteria strains with wide spectrum can cause serious infections with drastic damages on humans. There are studies reflecting antibacterial effect of nanoparticles type metal or metal oxides as an alternative or concurrent treatment to the diseases caused by infectious agents. Synthesised nanoparticles using different methods like sol-gel, hydrothermal or plant extraction were tested following well-established protocols with the regard to their antimicrobial activity. It was found that zinc based nanoparticles possess strong synergistic effect with commonly used antibiotics on infection tratment.

  15. The effect of dietary zinc - and polyphenols intake on DMBA-induced mammary tumorigenesis in rats

    PubMed Central

    2012-01-01

    Background The aim of the study was to investigate the effect of dietary supplementation with zinc and polyphenol compounds, i.e. resveratrol and genistein, on the effectiveness of chemically induced mammary cancer and the changes in the content of selected elements (Zn, Cu, Mg, Fe, Ca) in tumors as compared with normal tissue of the mammary gland. Methods Female Sprague-Dawley rats were divided into study groups which, apart from the standard diet and DMBA (7,12-dimethyl-1,2- benz[a]anthracene), were treated with zinc ions (Zn) or zinc ions + resveratrol (Zn + resveratrol) or zinc ions + genistein (Zn + genistein) via gavage for a period from 40 days until 20 weeks of age. The ICP-OES (inductively coupled plasma optical emission spectrometry) technique was used to analyze the following elements: magnesium, iron, zinc and calcium. Copper content in samples was estimated in an atomic absorption spectrophotometer. Results Regardless of the diet (standard; Zn; Zn + resveratrol; Zn + genistein), DMBA-induced breast carcinogenesis was not inhibited. On the contrary, in the Zn + resveratrol supplemented group, tumorigenesis developed at a considerably faster rate. On the basis of quantitative analysis of selected elements we found - irrespectively of the diet applied - great accumulation of copper and iron, which are strongly prooxidative, with a simultaneous considerable decrease of the magnesium content in DMBA-induced mammary tumors. The combination of zinc supplementation with resveratrol resulted in particularly large differences in the amount of the investigated elements in tumors as compared with their content in normal tissue. Conclusions Diet supplementation with zinc and polyphenol compounds, i.e. resveratrol and genistein had no effect on the decreased copper level in tumor tissue and inhibited mammary carcinogenesis in the rat. Irrespectively of the applied diet, the development of the neoplastic process in rats resulted in changes of the iron and magnesium

  16. Zinc Enzymes.

    ERIC Educational Resources Information Center

    Bertini, I.; And Others

    1985-01-01

    Discusses the role of zinc in various enzymes concerned with hydration, hydrolysis, and redox reactions. The binding of zinc to protein residues, properties of noncatalytic zinc(II) and catalytic zinc, and the reactions catalyzed by zinc are among the topics considered. (JN)

  17. Different roles of glutathione in copper and zinc chelation in Brassica napus roots.

    PubMed

    Zlobin, Ilya E; Kartashov, Alexander V; Shpakovski, George V

    2017-09-01

    We investigated the specific features of copper and zinc excess action on the roots of canola (Brassica napus L.) plants. Copper rapidly accumulated in canola root cells and reached saturation during several hours of treatment, whereas the root zinc content increased relatively slowly. Excessive copper and zinc entry inside the cell resulted in significant cell damage, as evidenced by alterations in plasmalemma permeability and decreases in cellular enzymatic activity. Zinc excess specifically damaged root hair cells, which correlated with a pronounced elevation of their labile zinc level. In vitro, we showed that reduced glutathione (GSH) readily reacted with copper ions to form complexes with blocked sulfhydryl groups. In contrast, zinc ions were ineffective as glutathione blockers, and glutathione molecules did not lose their specific chemical activity in the presence of Zn 2+ ions. The effect of copper and zinc excess on the glutathione pool in canola root cells was analysed by a combination of biochemical determination of total and oxidized glutathione contents and fluorescent staining of free reduced glutathione with monochlorobimane dye. Excess copper led to dose-dependent diminution of free reduced glutathione contents in the root cells, which could not be explained by the loss of total cellular glutathione or its oxidation. In contrast, we observed little effect of much higher intracellular zinc concentrations on the free reduced glutathione content. We concluded that GSH plays an important role in copper excess, but not zinc excess chelation, in canola root cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Zinc

    MedlinePlus

    ... Using toothpastes containing zinc, with or without an antibacterial agent, appears to prevent plaque and gingivitis. Some ... is some evidence that zinc has some antiviral activity against the herpes virus. Low zinc levels can ...

  19. Effect of Supplementation with Zinc and Other Micronutrients on Malaria in Tanzanian Children: A Randomised Trial

    PubMed Central

    Veenemans, Jacobien; Milligan, Paul; Prentice, Andrew M.; Schouten, Laura R. A.; Inja, Nienke; van der Heijden, Aafke C.; de Boer, Linsey C. C.; Jansen, Esther J. S.; Koopmans, Anna E.; Enthoven, Wendy T. M.; Kraaijenhagen, Rob J.; Demir, Ayse Y.; Uges, Donald R. A.; Mbugi, Erasto V.; Savelkoul, Huub F. J.; Verhoef, Hans

    2011-01-01

    Background It is uncertain to what extent oral supplementation with zinc can reduce episodes of malaria in endemic areas. Protection may depend on other nutrients. We measured the effect of supplementation with zinc and other nutrients on malaria rates. Methods and Findings In a 2×2 factorial trial, 612 rural Tanzanian children aged 6–60 months in an area with intense malaria transmission and with height-for-age z-score≤−1.5 SD were randomized to receive daily oral supplementation with either zinc alone (10 mg), multi-nutrients without zinc, multi-nutrients with zinc, or placebo. Intervention group was indicated by colour code, but neither participants, researchers, nor field staff knew who received what intervention. Those with Plasmodium infection at baseline were treated with artemether-lumefantrine. The primary outcome, an episode of malaria, was assessed among children reported sick at a primary care clinic, and pre-defined as current Plasmodium infection with an inflammatory response, shown by axillary temperature ≥37.5°C or whole blood C-reactive protein concentration ≥8 mg/L. Nutritional indicators were assessed at baseline and at 251 days (median; 95% reference range: 191–296 days). In the primary intention-to-treat analysis, we adjusted for pre-specified baseline factors, using Cox regression models that accounted for multiple episodes per child. 592 children completed the study. The primary analysis included 1,572 malaria episodes during 526 child-years of observation (median follow-up: 331 days). Malaria incidence in groups receiving zinc, multi-nutrients without zinc, multi-nutrients with zinc and placebo was 2.89/child-year, 2.95/child-year, 3.26/child-year, and 2.87/child-year, respectively. There was no evidence that multi-nutrients influenced the effect of zinc (or vice versa). Neither zinc nor multi-nutrients influenced malaria rates (marginal analysis; adjusted HR, 95% CI: 1.04, 0.93–1.18 and 1.10, 0.97–1.24 respectively). The

  20. Zinc supplementation for tinnitus.

    PubMed

    Person, Osmar C; Puga, Maria Es; da Silva, Edina Mk; Torloni, Maria R

    2016-11-23

    Tinnitus is the perception of sound without external acoustic stimuli. Patients with severe tinnitus may have physical and psychological complaints and their tinnitus can cause deterioration in their quality of life. At present no specific therapy for tinnitus has been found to be satisfactory in all patients. In recent decades, a number of reports have suggested that oral zinc supplementation may be effective in the management of tinnitus. Since zinc has a role in cochlear physiology and in the synapses of the auditory system, there is a plausible mechanism of action for this treatment. To evaluate the effectiveness and safety of oral zinc supplementation in the management of patients with tinnitus. The Cochrane ENT Information Specialist searched the ENT Trials Register; Central Register of Controlled Trials (CENTRAL 2016, Issue 6); PubMed; EMBASE; CINAHL; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the search was 14 July 2016. Randomised controlled trials comparing zinc supplementation versus placebo in adults (18 years and over) with tinnitus. We used the standard methodological procedures recommended by Cochrane. Our primary outcome measures were improvement in tinnitus severity and disability, measured by a validated tinnitus-specific questionnaire, and adverse effects. Secondary outcomes were quality of life, change in socioeconomic impact associated with work, change in anxiety and depression disorders, change in psychoacoustic parameters, change in tinnitus loudness, change in overall severity of tinnitus and change in thresholds on pure tone audiometry. We used GRADE to assess the quality of the evidence for each outcome; this is indicated in italics. We included three trials involving a total of 209 participants. The studies were at moderate to high risk of bias. All included studies had differences in participant selection criteria, length of follow-up and outcome measurement

  1. History of Zinc in Agriculture12

    PubMed Central

    Nielsen, Forrest H.

    2012-01-01

    Zinc was established as essential for green plants in 1926 and for mammals in 1934. However, >20 y would pass before the first descriptions of zinc deficiencies in farm animals appeared. In 1955, it was reported that zinc supplementation would cure parakeratosis in swine. In 1958, it was reported that zinc deficiency induced poor growth, leg abnormalities, poor feathering, and parakeratosis in chicks. In the 1960s, zinc supplementation was found to alleviate parakeratosis in grazing cattle and sheep. Within 35 y, it was established that nearly one half of the soils in the world may be zinc deficient, causing decreased plant zinc content and production that can be prevented by zinc fertilization. In many of these areas, zinc deficiency is prevented in grazing livestock by zinc fertilization of pastures or by providing salt licks. For livestock under more defined conditions, such as poultry, swine, and dairy and finishing cattle, feeds are easily supplemented with zinc salts to prevent deficiency. Today, the causes and consequences of zinc deficiency and methods and effects of overcoming the deficiency are well established for agriculture. The history of zinc in agriculture is an outstanding demonstration of the translation of research into practical application. PMID:23153732

  2. Nutrition intervention strategies to combat zinc deficiency in developing countries.

    PubMed

    Gibson, R S; Ferguson, E L

    1998-06-01

    Widespread zinc deficiency is likely to exist in developing countries where staple diets are predominantly plant based and intakes of animal tissues are low. The severe negative consequences of zinc deficiency on human health in developing countries, however, have only recently been recognized. An integrated approach employing targeted supplementation, fortification and dietary strategies must be used to maximize the likelihood of eliminating zinc deficiency at a national level in developing countries. Supplementation is appropriate only for populations whose zinc status must be improved over a relatively short time period, and when requirements cannot be met from habitual dietary sources. As well, the health system must be capable of providing consistent supply, distribution, delivery and consumption of the zinc supplement to the targeted groups. Uncertainties still exist about the type, frequency, and level of supplemental zinc required for prevention and treatment of zinc deficiency. Salts that are readily absorbed and at levels that will not induce antagonistic nutrient interactions must be used. At a national level, fortification with multiple micronutrients could be a cost effective method for improving micronutrient status, including zinc, provided that a suitable food vehicle which is centrally processed is available. Alternatively, fortification could be targeted for certain high risk groups (e.g. complementary foods for infants). Efforts should be made to develop protected fortificants for zinc, so that potent inhibitors of zinc absorption (e.g. phytate) present either in the food vehicle and/or indigenous meals do not compromise zinc absorption. Fortification does not require any changes in the existing food beliefs and practices for the consumer and, unlike supplementation, does not impose a burden on the health sector. A quality assurance programme is required, however, to ensure the quality of the fortified food product from production to consumption

  3. Leptin, NPY, Melatonin and Zinc Levels in Experimental Hypothyroidism and Hyperthyroidism: The Relation to Zinc.

    PubMed

    Baltaci, Abdulkerim Kasım; Mogulkoc, Rasim

    2017-06-01

    Since zinc mediates the effects of many hormones or is found in the structure of numerous hormone receptors, zinc deficiency leads to various functional impairments in the hormone balance. And also thyroid hormones have important activity on metabolism and feeding. NPY and leptin are affective on food intake and regulation of appetite. The present study is conducted to determine how zinc supplementation and deficiency affect thyroid hormones (free and total T3 and T4), melatonin, leptin, and NPY levels in thyroid dysfunction in rats. The experiment groups in the study were formed as follows: Control (C); Hypothyroidism (PTU); Hypothyroidism+Zinc (PTU+Zn); Hypothyroidism+Zinc deficient; Hyperthyroidism (H); Hyperthyroidism+Zinc (H+Zn); and Hyperthyroidism+Zinc deficient. Thyroid hormone parameters (FT 3 , FT 4 , TT 3 , and TT 4 ) were found to be reduced in hypothyroidism groups and elevated in the hyperthyroidism groups. Melatonin values increased in hyperthyroidism and decreased in hypothyroidism. Leptin and NPY levels both increased in hypo- and hyperthyroidism. Zinc levels, on the other hand, decreased in hypothyroidism and increased in hyperthyroidism. Zinc supplementation, particularly when thyroid function is impaired, has been demonstrated to markedly prevent these changes.

  4. Effects of Zinc Supplementation on DNA Damage in Rats with Experimental Kidney Deficiency.

    PubMed

    Yegin, Sevim Çiftçi; Dede, Semiha; Mis, Leyla; Yur, Fatmagül

    2017-04-01

    This study was carried out to determine the effect of zinc on oxidative DNA damage in rats with experimental acute and chronic kidney deficiency. Six groups of five Wistar-Albino rats each were assigned as controls (C), acute kidney deficiency (AKD), zinc-supplemented (+Zn), acute kidney deficiency, zinc-supplemented (AKD + Zn), chronic kidney deficiency (CKD) and zinc-supplemented chronic kidney deficiency (CKD + Zn). The levels of 8-Oxo-2'-deoxyguanosine (8-OHdG) were determined, being the lowest in the CKD group (p < 0.05), higher in the C group than those of rats with CKD but lower than that of all the other groups (p < 0.05). There were no significant differences between the controls and the CKD + Zn group, or between the AKD and the +Zn groups. Among all groups, the highest 8-OHdG level was found in the AKD + Zn group (p < 0.05). DNA damage was greater in acute renal failure than in rats with chronic renal failure. The DNA damage in the zinc group was significantly higher than in the controls.

  5. The National Shipbuilding Research Program. Analysis of Wash Water Treatment Efficiency for Copper and Zinc

    DTIC Science & Technology

    2000-12-15

    per trillion for tributyltin (“ TBT ”). This regulatory action lead to an intensive research effort to develop a treatment method for ship’s wash water...antifoulant coating systems, including tributyltin , copper and zinc. In 1997 The Commonwealth of Virginia established an effluent discharge limit of 50 parts...waste stream that could consistently remove TBT to levels below this discharge standard. This work is currently being performed by the Center for

  6. The Effect of Zinc Lozenge on Postoperative Sore Throat: A Prospective Randomized, Double-Blinded, Placebo-Controlled Study.

    PubMed

    Farhang, Borzoo; Grondin, Lydia

    2018-01-01

    Postoperative sore throat (POST) is commonly seen after endotracheal intubation, and oral zinc prevents oral mucositis associated with chemotherapy. This study is designed to evaluate the effects of administration of zinc lozenges on POST. Seventy-nine patients undergoing low- or moderate-risk surgery with endotracheal intubation were randomly assigned into 2 groups: Control group received placebo and zinc group received 40-mg zinc lozenges 30 minutes preoperatively. Patients were assessed for incidence and severity (4-point scale, 0-3) of POST at 0, 2, 4, and 24 hours postoperatively. The primary outcome was incidence of POST at 4 hours after surgery. The secondary outcomes were the incidence of POST at 0, 2, and 24 hours and the severity of POST. At 4 hours, there was a significantly lower incidence of POST in the zinc group, 7%, than the control group, 29% (P = .046). The incidence of POST at 0 hour was 0% in zinc group and 24% in control group (P = .004). The highest incidence of POST occurred at the second hour after surgery, with the rate of 10% in the zinc group and 34% in the control group (P = .0495). The incidence of POST at 24 hours was 13% in zinc group and 24% in control group (not significant). The severity of POST was significantly lower in the zinc group for mild (P = .003) and moderate (P = .004) POST. The administration of a single dose of 40-mg zinc lozenge 30 minutes preoperatively is effective to reduce both incidence of POST in the first 4 hours and severity of mild and moderate POST in the immediate postoperative period.

  7. Low-temperature solution-processed zinc oxide field effect transistor by blending zinc hydroxide and zinc oxide nanoparticle in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Shin, Hyeonwoo; Kang, Chan-mo; Baek, Kyu-Ha; Kim, Jun Young; Do, Lee-Mi; Lee, Changhee

    2018-05-01

    We present a novel methods of fabricating low-temperature (180 °C), solution-processed zinc oxide (ZnO) transistors using a ZnO precursor that is blended with zinc hydroxide [Zn(OH)2] and zinc oxide hydrate (ZnO • H2O) in an ammonium solution. By using the proposed method, we successfully improved the electrical performance of the transistor in terms of the mobility (μ), on/off current ratio (I on/I off), sub-threshold swing (SS), and operational stability. Our new approach to forming a ZnO film was systematically compared with previously proposed methods. An atomic forced microscopic (AFM) image and an X-ray photoelectron spectroscopy (XPS) analysis showed that our method increases the ZnO crystallite size with less OH‑ impurities. Thus, we attribute the improved electrical performance to the better ZnO film formation using the blending methods.

  8. Effect of zinc on nectar secretion of Hibiscus rosa -sinensis L.

    PubMed

    Sawidis, Thomas; Papadopoulou, Alexandra; Voulgaropoulou, Maria

    2014-05-01

    Zinc toxicity in secretory cells caused a range of effects, mainly depending on metal concentration. Low concentrations activated nectary function increasing nectar secretion but secretion was greatly inhibited or stopped entirely by ongoing concentration. Water loss rate of zinc treated flower parts was significantly reduced whereas green sepals were dehydrated more rapidly in comparison to colored petals. The content of zinc, calcium, magnesium and manganese increased mainly in sepals under excess of zinc, but in the secreted nectar this metal was not evident. Morphological changes were observed in mucilage cells concerning the mucilage structure and appearance. The parenchymatic, subglandular cells displayed an early vacuolarization and cytoplasm condensation. Secretory hairs appeared to be thinner, the apical cell folded inwards and plasmolytic shrinkage became severe in all cells. The waxy cuticula showed an increased electron density. A plasmalemma detachment from the external cell walls was observed creating a gap between cell wall and plasmalemma. ER cisterns of all treated nectary hairs dominated the cytoplasm and electron dense deposits were seen within its profiles. A great number of other organelles were also present, showing electron dense deposits in their membranes as well. The vacuome was drastically reduced in all cells, except in the subglandular ones and electron dense membrane remnants were observed.

  9. The beneficial effects of zinc on diabetes-induced kidney damage in murine rodent model of type 1 diabetes mellitus.

    PubMed

    Yang, Fan; Li, Bing; Dong, Xiaoming; Cui, Wenpeng; Luo, Ping

    2017-07-01

    Diabetes mellitus is a chronic multi-factorial metabolic disorder resulting from impaired glucose homeostasis. Zinc is a key co-factor for the correct functioning of anti-oxidant enzymes. Zinc deficiency therefore, impairs their synthesis, leading to increased oxidative stress within cells. Zinc deficiency occurs commonly in diabetic patients. The aim of this study is to investigate the effects of varying concentrations of zinc on diabetic nephropathy (DN) and the underlying mechanisms involved. FVB male mice aged 8 weeks were injected intraperitoneally with multiple low-dose streptozotocin at a concentration of 50mg/kg body weight daily for 5 days. Diabetic and age-matched control mice were treated with special diets supplemented with zinc at varying concentrations (0.85mg/kg, 30mg/kg, 150mg/kg) for 3 months. The mice were fed with zinc diets to mimic the process of oral administration of zinc in human. Zinc deficiency to some extent aggravated the damage of diabetic kidney. Feeding with normal (30mg/kg zinc/kg diet) and especially high (150mg/kg zinc/kg diet) concentration zinc could protect the kidney against diabetes-induced damage. The beneficial effects of zinc on DN are achieved most likely due to the upregulation of Nrf2 and its downstream factors NQO1, SOD1, SOD2. Zinc upregulated the expression of Akt phosphorylation and GSK-3β phosphorylation, resulting in a reduction in Fyn nuclear translocation and export of Nrf2 to the cytosol. Thus, regular monitoring and maintaining of adequate levels of zinc are recommended in diabetic individuals in order to delay the development of DN. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Genetic causes and gene–nutrient interactions in mammalian zinc deficiencies: acrodermatitis enteropathica and transient neonatal zinc deficiency as examples.

    PubMed

    Kasana, Shakhenabat; Din, Jamila; Maret, Wolfgang

    2015-01-01

    Discovering genetic causes of zinc deficiency has been a remarkable scientific journey. It started with the description of a rare skin disease, its treatment with various agents, the successful therapy with zinc, and the identification of mutations in a zinc transporter causing the disease. The journey continues with defining the molecular and cellular pathways that lead to the symptoms caused by zinc deficiency. Remarkably, at least two zinc transporters from separate protein families are now known to be involved in the genetics of zinc deficiency. One is ZIP4, which is involved in intestinal zinc uptake. Its mutations can cause acrodermatitis enteropathica (AE) with autosomal recessive inheritance. The other one is ZnT2, the transporter responsible for supplying human milk with zinc. Mutations in this transporter cause transient neonatal zinc deficiency (TNZD) with symptoms similar to AE but with autosomal dominant inheritance. The two diseases can be distinguished in affected infants. AE is fatal if zinc is not supplied to the infant after weaning, whereas TNZD is a genetic defect of the mother limiting the supply of zinc in the milk, and therefore the infant usually will obtain enough zinc once weaned. Although these diseases are relatively rare, the full functional consequences of the numerous mutations in ZIP4 and ZnT2 and their interactions with dietary zinc are not known. In particular, it remains unexplored whether some mutations cause milder disease phenotypes or increase the risk for other diseases if dietary zinc requirements are not met or exceeded. Thus, it is not known whether widespread zinc deficiency in human populations is based primarily on a nutritional deficiency or determined by genetic factors as well. This consideration becomes even more significant with regard to mutations in the other 22 human zinc transporters, where associations with a range of diseases, including diabetes, heart disease, and mental illnesses have been observed

  11. A review of zinc oxide mineral beneficiation using flotation method.

    PubMed

    Ejtemaei, Majid; Gharabaghi, Mahdi; Irannajad, Mehdi

    2014-04-01

    In recent years, extraction of zinc from low-grade mining tailings of oxidized zinc has been a matter of discussion. This is a material which can be processed by flotation and acid-leaching methods. Owing to the similarities in the physicochemical and surface chemistry of the constituent minerals, separation of zinc oxide minerals from their gangues by flotation is an extremely complex process. It appears that selective leaching is a promising method for the beneficiation of this type of ore. However, with the high consumption of leaching acid, the treatment of low-grade oxidized zinc ores by hydrometallurgical methods is expensive and complex. Hence, it is best to pre-concentrate low-grade oxidized zinc by flotation and then to employ hydrometallurgical methods. This paper presents a critical review on the zinc oxide mineral flotation technique. In this paper, the various flotation methods of zinc oxide minerals which have been proposed in the literature have been detailed with the aim of identifying the important factors involved in the flotation process. The various aspects of recovery of zinc from these minerals are also dealt with here. The literature indicates that the collector type, sulfidizing agent, pH regulator, depressants and dispersants types, temperature, solid pulp concentration, and desliming are important parameters in the process. The range and optimum values of these parameters, as also the adsorption mechanism, together with the resultant flotation of the zinc oxide minerals reported in the literature are summarized and highlighted in the paper. This review presents a comprehensive scientific guide to the effectiveness of flotation strategy. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Zinc activates damage-sensing TRPA1 ion channels.

    PubMed

    Hu, Hongzhen; Bandell, Michael; Petrus, Matt J; Zhu, Michael X; Patapoutian, Ardem

    2009-03-01

    Zinc is an essential biological trace element. It is required for the structure or function of over 300 proteins, and it is increasingly recognized for its role in cell signaling. However, high concentrations of zinc have cytotoxic effects, and overexposure to zinc can cause pain and inflammation through unknown mechanisms. Here we show that zinc excites nociceptive somatosensory neurons and causes nociception in mice through TRPA1, a cation channel previously shown to mediate the pungency of wasabi and cinnamon through cysteine modification. Zinc activates TRPA1 through a unique mechanism that requires zinc influx through TRPA1 channels and subsequent activation via specific intracellular cysteine and histidine residues. TRPA1 is highly sensitive to intracellular zinc, as low nanomolar concentrations activate TRPA1 and modulate its sensitivity. These findings identify TRPA1 as an important target for the sensory effects of zinc and support an emerging role for zinc as a signaling molecule that can modulate sensory transmission.

  13. Effects of sulfur, zinc, iron, copper, manganese, and boron applications on sunflower yield and plant nutrient concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilton, B.R.; Zubriski, J.C.

    1985-01-01

    Sulfur, zinc, iron, copper, manganese, and boron application did not affect the seed yield or oil percentage of sunflower (Helianthus annuus L.) on both dryland and irrigated soils in North Dakota in 1981. Field averages indicated significant Zn, Mn, and B uptake by sunflower at the 12-leaf stage as a result of fertilization with these elements. Increased Zn uptake was also observed in the uppermost mature leaf at anthesis from zinc fertilization. Although sunflower yield from boron fertilization was not significantly different from the check, a trend was observed in which boron fertilization seemed to decrease sunflower yield. Sunflower yieldsmore » from the boron treatment were the lowest out of seven treatments in three out of four fields. Also, sunflower yield from the boron treatment was significantly lower than both iron and sulfur treatments when all fields were combined.« less

  14. Zinc treatment increases the titre of ‘Candidatus Liberibacter asiaticus’ in Huanglongbing-affected citrus plants while affecting the bacterial microbiomes

    USDA-ARS?s Scientific Manuscript database

    Huanglongbing (HLB)-affected citrus often display zinc deficiency symptoms. In this study, supplemental zinc was applied to citrus to determine its effect on Candidatus Liberibacter asiaticus (Las) titer, HLB symptoms, and leaf microbiome. HLB-affected citrus were treated with various amounts of zi...

  15. Comparative effects of zinc oxide nanoparticles and dissolved zinc on zebrafish embryos and eleuthero-embryos: importance of zinc ions.

    PubMed

    Brun, Nadja Rebecca; Lenz, Markus; Wehrli, Bernhard; Fent, Karl

    2014-04-01

    The increasing use of zinc oxide nanoparticles (nZnO) and their associated environmental occurrence make it necessary to assess their potential effects on aquatic organisms. Upon water contact, nZnO dissolve partially to zinc (Zn(II)). To date it is not yet completely understood, whether effects of nZnO are solely or partly due to dissolved Zn(II). Here we compare potential effects of 0.2, 1 and 5mg/L nZnO and corresponding concentrations of released Zn(II) by water soluble ZnCl2 to two development stages of zebrafish, embryos and eleuthero-embryos, by analysing expressional changes by RT-qPCR. Another objective was to assess uptake and tissue distribution of Zn(II). Laser ablation-ICP-MS analysis demonstrated that uptake and tissue distribution of Zn(II) were identical for nZnO and ZnCl2 in eleuthero-embryos. Zn(II) was found particularly in the retina/pigment layer of eyes and brain. Both nZnO and dissolved Zn(II) derived from ZnCl2 had similar inhibiting effects on hatching, and they induced similar expressional changes of target genes. At 72hours post fertilization (hpf), both nZnO and Zn(II) delayed hatching at all doses, and inhibited hatching at 1 and 5 mg/L at 96 hpf. Both nZnO and Zn(II) lead to induction of metallothionein (mt2) in both embryos and eleuthero-embryos at all concentrations. Transcripts of oxidative stress related genes cat and Cu/Zn sod were also altered. Moreover, we show for the first time that nZnO exposure results in transcriptional changes of pro-inflammatory cytokines IL-1β and TNFα. Overall, transcriptional alterations were higher in embryos than eleuthero-embryos. The similarities of the effects lead to the conclusion that effects of nZnO are mainly related to the release of Zn(II). Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Effects of organic selenium and zinc on the aging process of laying hens

    USDA-ARS?s Scientific Manuscript database

    The objective of the study was to determine whether supplementing the diets of post-molted hens with organic selenium (Se) (Sel-Plex®) and/or organic Zinc (Zn) (Bio-Plex®) could improve laying hen performance. Prior to molting, 120-78 wk old laying hens were separated into four treatment groups of ...

  17. Regeneration of zinc halide catalyst used in the hydrocracking of polynuclear hydrocarbons

    DOEpatents

    Gorin, Everett

    1978-01-01

    Improved recovery of spent molten zinc halide hydro-cracking catalyst is achieved in the oxidative vapor phase regeneration thereof by selective treatment of the zinc oxide carried over by the effluent vapors from the regeneration zone with hydrogen halide gas under conditions favoring the reaction of the zinc oxide with the hydrogen halide, whereby regenerated zinc halide is recovered in a solids-free state with little loss of zinc values.

  18. [Effect of cultivation in zinc media on the growth of and the degree of zinc in organic form in transgenic metallothionein mushroom].

    PubMed

    Sheng, Ji-Ping; Shen, Lin; Ru, Bing-Gen

    2009-03-01

    Metallothioneins (MTs) are a family of low molecular weight, cysteine-rich and metal-binding functional proteins. Transgenic MT mushroom can be used as functional food additives, but its zinc-enriching ability has not been studied systemically until now. The zinc contents in mycelia of transgenic MT mushroom (Pleurotus ostreatus) and wild type mushroom mycelia cultivated in different zinc concentration media were analyzed by ICP-OES. The growth status, zinc-enriching ability and degree of zinc in organic form (DZOF) were also analyzed. Results showed that MT mushroom mycelia grew rapidly, but the growth was inhibited when the zinc content in solid media was higher than 1.6 mmol x L(-1). MT mushroom mycelia could enrich more zinc than that of wild type, and the zinc content in MT mushroom mycelia could be 2.56-27.49 mg x kg(-1) when it was cultivated in a liquid media with 0.6-1.2 mmol x L(-1) zinc. DZOF of MT mushroom mycelia in a liquid media with 0.6 mmol x L(-1) zinc at 7 d was significantly higher (88.7%) than that in the wild type (82.1%, alpha = 0.05), but there was no significant difference in DZOF when the MT mushroom mycelia was cultivated in a liquid media with different zinc content at 7 d.

  19. The Effects of Leucine, Zinc, and Chromium Supplements on Inflammatory Events of the Respiratory System in Type 2 Diabetic Rats

    PubMed Central

    Kolahian, Saeed; Sadri, Hassan; Shahbazfar, Amir Ali; Amani, Morvarid; Mazadeh, Anis; Mirani, Mehdi

    2015-01-01

    , myeloperoxidase, and superoxide dismutase in the diabetic rats. The present results demonstrate beneficial effects and amelioration of inflammation in the respiratory system of type 2 diabetic rats by leucine, zinc, and chromium supplements, probably due to their hypoglycaemic and antioxidant properties. Using safe and effective nutritional supplements, such as leucine, chromium and zinc, to replace proven conventional medical treatments may help to control diabetes and/or its complications. PMID:26185997

  20. Zinc Ameliorate Oxidative Stress and Hormonal Disturbance Induced by Methomyl, Abamectin, and Their Mixture in Male Rats

    PubMed Central

    Mansour, Sameeh A.; Abbassy, Mostafa A.; Shaldam, Hassan A.

    2017-01-01

    Exposure to mixtures of toxicants (e.g., pesticides) is common in real life and a subject of current concern. The present investigation was undertaken to assess some toxicological effects in male rats following exposure to methomyl (MET), abamectin (ABM), and their combination (MET+ABM), and to evaluate the ameliorative effect of zinc co-administration. Three groups of rats were designated for MET, ABM, and the mixture treatments. Three other groups were designated for zinc in conjunction with the pesticides. Additionally, one group received water only (control), and the other represented a positive zinc treatment. The obtained results revealed that MET was acutely more toxic than ABM. The tested pesticides induced significant elevation in lipid peroxidation and catalase levels, while declined the levels of the other tested parameters e.g., Superoxide dismutase (SOD), Glutathione-S-transferase (GST), Glutathione peroxidase (GPx), Glutathione reductase (GR), Cytochrome P450 (CYP450), testosterone, and thyroxine). Biochemical alterations induced by the mixture were greater than those recorded for each of the individual insecticides. The joint action analysis, based on the obtained biochemical data, revealed the dominance of antagonistic action among MET and ABM. Zinc supplementation achieved noticeable ameliorative effects. It was concluded that zinc may act as a powerful antioxidant, especially in individuals who are occupationally exposed daily to low doses of such pesticides. PMID:29207507

  1. The Emerging Role of Zinc in the Pathogenesis of Multiple Sclerosis.

    PubMed

    Choi, Bo Young; Jung, Jong Won; Suh, Sang Won

    2017-09-28

    Our lab has previously demonstrated that multiple sclerosis-induced spinal cord white matter damage and motor deficits are mediated by the pathological disruption of zinc homeostasis. Abnormal vesicular zinc release and intracellular zinc accumulation may mediate several steps in the pathophysiological processes of multiple sclerosis (MS), such as matrix metallopeptidase 9 (MMP-9) activation, blood-brain barrier (BBB) disruption, and subsequent immune cell infiltration from peripheral systems. Oral administration of a zinc chelator decreased BBB disruption, immune cell infiltration, and spinal white matter myelin destruction. Therefore, we hypothesized that zinc released into the extracellular space during MS progression is involved in destruction of the myelin sheath in spinal cord white mater and in generation of motor deficits. To confirm our previous study, we employed zinc transporter 3 ( ZnT3 ) knockout mice to test whether vesicular zinc depletion shows protective effects on multiple sclerosis-induced white matter damage and motor deficits. ZnT3 gene deletion profoundly reduced the daily clinical score of experimental autoimmune encephalomyelitis (EAE) by suppression of inflammation and demyelination in the spinal cord. ZnT3 gene deletion also remarkably inhibited formation of multiple sclerosis-associated aberrant synaptic zinc patches, MMP-9 activation, and BBB disruption. These two studies strongly support our hypothesis that zinc release from presynaptic terminals may be involved in multiple sclerosis pathogenesis. Further studies will no doubt continue to add mechanistic detail to this process and with luck, clarify how these observations may lead to development of novel therapeutic approaches for the treatment of multiple sclerosis.

  2. Uptake and partitioning of zinc in Lemnaceae.

    PubMed

    Lahive, Elma; O'Callaghan, Michael J A; Jansen, Marcel A K; O'Halloran, John

    2011-11-01

    Macrophytes provide food and shelter for aquatic invertebrates and fish, while also acting as reservoirs for nutrients and trace elements. Zinc accumulation has been reported for various Lemnaceae species. However, comparative accumulation across species and the link between zinc accumulation and toxicity are poorly understood. Morphological distribution and cellular storage, in either bound or soluble form, are important for zinc tolerance. This study shows differences in the uptake and accumulation of zinc by three duckweed species. Landoltia punctata and Lemna minor generally accumulated more zinc than Lemna gibba. L. minor, but not L. gibba or L. punctata, accumulated greater concentrations of zinc in roots compared to fronds when exposed to high levels of zinc. The proportion of zinc stored in the bound form relative to the soluble-form was higher in L. minor. L. punctata accumulated greater concentrations of zinc in fronds compared to roots and increased the proportion of zinc it stored in the soluble form, when exposed to high zinc levels. L. gibba is the only species that significantly accumulated zinc at low concentrations, and was zinc-sensitive. Overall, internal zinc concentrations showed no consistent correlation with toxic effect. We conclude that relationships between zinc toxicity and uptake and accumulation are species specific reflecting, among others, zinc distribution and storage. Differences in zinc distribution and storage are also likely to have implications for zinc bioavailability and trophic mobility.

  3. Zinc Signal in Brain Diseases.

    PubMed

    Portbury, Stuart D; Adlard, Paul A

    2017-11-23

    The divalent cation zinc is an integral requirement for optimal cellular processes, whereby it contributes to the function of over 300 enzymes, regulates intracellular signal transduction, and contributes to efficient synaptic transmission in the central nervous system. Given the critical role of zinc in a breadth of cellular processes, its cellular distribution and local tissue level concentrations remain tightly regulated via a series of proteins, primarily including zinc transporter and zinc import proteins. A loss of function of these regulatory pathways, or dietary alterations that result in a change in zinc homeostasis in the brain, can all lead to a myriad of pathological conditions with both acute and chronic effects on function. This review aims to highlight the role of zinc signaling in the central nervous system, where it may precipitate or potentiate diverse issues such as age-related cognitive decline, depression, Alzheimer's disease or negative outcomes following brain injury.

  4. [Improvement in zinc nutrition due to zinc transporter-targeting strategy].

    PubMed

    Kambe, Taiho

    2016-07-01

    Adequate intake of zinc from the daily diet is indispensable to maintain health. However, the dietary zinc content often fails to fulfill the recommended daily intake, leading to zinc deficiency and also increases the risk of developing chronic diseases, particularly in elderly individuals. Therefore, increased attention is required to overcome zinc deficiency and it is important to improve zinc nutrition in daily life. In the small intestine, the zinc transporter, ZIP4, functions as a component that is essential for zinc absorption. In this manuscript, we present a brief overview regarding zinc deficiency. Moreover, we review a novel strategy, called "ZIP4-targeting", which has the potential to enable efficient zinc absorption from the diet. ZIP4-targeting strategy is possibly a major step in preventing zinc deficiency and improving human health.

  5. Zinc Improves Cognitive and Neuronal Dysfunction During Aluminium-Induced Neurodegeneration.

    PubMed

    Singla, Neha; Dhawan, D K

    2017-01-01

    Metals are considered as important components of a physiologically active cell, and imbalance in their levels can lead to various diseased conditions. Aluminium (Al) is an environmental neurotoxicant, which is etiologically related to several neurodegenerative disorders like Alzheimer's, whereas zinc (Zn) is an essential trace element that regulates a large number of metabolic processes in the brain. The objective of the present study was to understand whether Zn provides any physiological protection during Al-induced neurodegeneration. Male Sprague Dawley rats weighing 140-160 g received either aluminium chloride (AlCl 3 ) orally (100 mg/kg b.wt./day), zinc sulphate (ZnSO 4 ) in drinking water (227 mg/L) or combined treatment of aluminium and zinc for 8 weeks. Al treatment resulted in a significant decline in the cognitive behaviour of rats, whereas zinc supplementation caused an improvement in various neurobehavior parameters. Further, Al exposure decreased (p ≤ 0.001) the levels of neurotransmitters, acetylcholinesterase activity, but increased (p ≤ 0.001) the levels of L-citrulline as well as activities of nitric oxide and monoamine oxidase in the brain. However, zinc administration to Al-treated animals increased the levels of neurotransmitters and regulated the altered activities of brain markers. Western blot of tau, amyloid precursor protein (APP), glial fibrillary acidic protein (GFAP), ubiquitin, α-synuclein and Hsp 70 were also found to be elevated after Al exposure, which however were reversed following Zn treatment. Al treatment also revealed alterations in neurohistoarchitecture in the form of loss of pyramidal and Purkinje cells, which were improved upon zinc co-administration. Therefore, the present study demonstrates that zinc improves cognitive functions by regulating α-synuclein and APP-mediated molecular pathways during aluminium-induced neurodegeneration.

  6. Plasma zinc's alter ego is a low-molecular-weight humoral factor.

    PubMed

    Ou, Ou; Allen-Redpath, Keith; Urgast, Dagmar; Gordon, Margaret-Jane; Campbell, Gill; Feldmann, Jörg; Nixon, Graeme F; Mayer, Claus-Dieter; Kwun, In-Sook; Beattie, John H

    2013-09-01

    Mild dietary zinc deprivation in humans and rodents has little effect on blood plasma zinc levels, and yet cellular consequences of zinc depletion can be detected in vascular and other tissues. We proposed that a zinc-regulated humoral factor might mediate the effects of zinc deprivation. Using a novel approach, primary rat vascular smooth muscle cells (VSMCs) were treated with plasma from zinc-deficient (<1 mg Zn/kg) or zinc-adequate (35 mg Zn/kg, pair-fed) adult male rats, and zinc levels were manipulated to distinguish direct and indirect effects of plasma zinc. Gene expression changes were analyzed by microarray and qPCR, and incubation of VSMCs with blood plasma from zinc-deficient rats strongly changed the expression of >2500 genes, compared to incubation of cells with zinc-adequate rat plasma. We demonstrated that this effect was caused by a low-molecular-weight (∼2-kDa) zinc-regulated humoral factor but that changes in gene expression were mostly reversed by adding zinc back to zinc-deficient plasma. Strongly regulated genes were overrepresented in pathways associated with immune function and development. We conclude that zinc deficiency induces the production of a low-molecular-weight humoral factor whose influence on VSMC gene expression is blocked by plasma zinc. This factor is therefore under dual control by zinc.

  7. Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: a combined targeted and proteomic approach.

    PubMed

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Gerdil, Adèle; Diemer, Hélène; Proamer, Fabienne; Collin-Faure, Véronique; Habert, Aurélie; Strub, Jean-Marc; Hanau, Daniel; Herlin, Nathalie; Carrière, Marie; Van Dorsselaer, Alain; Rabilloud, Thierry

    2014-06-07

    Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate catabolism and proteasome are critical determinants of sensitivity to zinc, which also induces DNA damage. Conversely, glutathione levels and phagocytosis appear unaffected at moderately toxic zinc concentrations.

  8. Effect of supplementary zinc on orthodontic tooth movement in a rat model

    PubMed Central

    Sadegh, Ahmad Akhoundi Mohammad; Rezvaneh, Ghazanfari; Shahroo, Etemad-Moghadam; Mojgan, Alaeddini; Azam, Khorshidian; Shahram, Rabbani; Reza, Shamshiri Ahmad; Nafiseh, Momeni

    2016-01-01

    ABSTRACT Introduction: Osteoclasts and osteoblasts are responsible for regulating bone homeostasis during which the trace element zinc has been shown to exert a cumulative effect on bone mass by stimulating osteoblastic bone formation and inhibiting osteoclastic bone resorption. Objective: The aim of the present study was to investigate the effects of zinc (Zn) on orthodontic tooth movement (OTM) in a rat model. Material and Methods: A total of 44 male Wistar rats were divided into four groups of 11 animals each and received 0, 1.5, 20 and 50 ppm Zn in distilled water for 60 days. In the last 21 days of the study, nickel-titanium closed coil springs were ligated between maxillary right incisors and first molars of all rats, and tooth movement was measured at the end of this period. Histological analysis of hematoxylin/eosin slides was performed to assess root resorption lacunae, osteoclast number and periodontal ligament (PDL) width. Results: Mean OTM was calculated as 51.8, 49.1, 35.5 and 45 µm in the 0, 1.5, 20 and 50 ppm zinc-receiving groups, respectively. There were no significant differences in neither OTM nor histological parameters among the study groups (p > 0.05). Conclusion: According to the results obtained in the current investigation, increase in supplementary zinc up to 50 ppm does not affect the rate of OTM neither bone and root resorption in rats. PMID:27275614

  9. Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivative for bacterial skin infection

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Zhang, Yaxin; Li, Linsen; Zhou, Shanyong; Chen, Jincan; Hu, Ping; Huang, Mingdong

    2014-09-01

    Folliculitis, furunculosis and acne vulgaris are very common skin disorders of the hair follicles and are associated with large grease-producing (sebaceous) glands. Although the detailed mechanisms involved these skin disorders are not fully understood, it is believed that the bacteria Propionibacterium acnes and Staphylococcus aureus are the key pathogenic factors involved. Conventional treatments targeting the pathogenic factors include a variety of topical and oral medications such as antibiotics. The wide use of antibiotics leads to bacterial resistance, and hence there is a need for new alternatives in above bacterial skin treatment. Photodynamic antimicrobial chemotherapy (PACT) is based on an initial photosensitization of the infected area, followed by irradiation with visible light, producing singlet oxygen which is cytotoxic to bacteria. Herein we reported a zinc phthalocyanine derivative, pentalysine β-carbonylphthalocyanine zinc (ZnPc-(Lys)5) and its PACT effect for the bacteria involved in these skin infections. Our results demonstrated strong bactericidal effects of this photosensitizer on both strains of the bacteria, suggesting ZnPc-(Lys)5 as a promising antimicrobial photosensitizer for the treatment of infectious diseases caused by these bacteria.

  10. Systematic review of zinc fortification trials.

    PubMed

    Das, Jai K; Kumar, Rohail; Salam, Rehana A; Bhutta, Zulfiqar A

    2013-01-01

    Zinc is one of the essential trace elements required by the human body as it is present in more than a hundred specific enzymes and serves as an important structural ion in transcription factors. Around one third of the world population lives in countries with a high prevalence of zinc deficiency. Food fortification with zinc seems to be an attractive public health strategy and a number of programs have been initiated, especially in developing countries. We conducted a systematic review to assess the efficacy of zinc fortification. A total of 11 studies with 771 participants were included in our analysis. Zinc fortification was associated with significant improvements in plasma zinc concentrations [standard mean difference (SMD) 1.28, 95% CI 0.56, 2.01] which is a functional indicator of zinc status. Significant improvement was observed for height velocity (SMD 0.52, 95% CI 0.01, 1.04); however, this finding was weak and based on a restricted analysis. Further subgroup analysis showed significant improvement in height velocity among very-low-birth-weight infants (SMD 0.70, 95% CI 0.02, 1.37), while for healthy newborns, the impact was insignificant. Zinc fortification had insignificant impacts on serum alkaline levels, serum copper levels, hemoglobin and weight gain. Although the findings highlight that zinc fortification is associated with an increased serum concentration of the micronutrient, overall evidence of the effectiveness of this approach is limited. Data on pregnant and lactating women is scarce. Large-scale fortification programs with robust impact assessment should be initiated to cover larger populations in all age groups. Mass fortification of zinc may be a cost-effective strategy to overcome zinc deficiency. Copyright © 2013 S. Karger AG, Basel.

  11. Zinc attenuates forskolin-stimulated electrolyte secretion without involvement of the enteric nervous system in small intestinal epithelium from weaned piglets.

    PubMed

    Feng, Zike; Carlson, Dorthe; Poulsen, Hanne Damgaard

    2006-11-01

    In a previous study, we found that secretagogue-stimulated electrolyte secretion was attenuated by dietary and serosal zinc in piglet small intestinal epithelium in Ussing chambers. Several studies show that the enteric nervous system (ENS) is involved in regulation of electrolyte and/or fluid transport in intestinal epithelium from many species. The aim of the present study is to examine the mechanisms behind the attenuating effect of zinc on electrolyte secretion and to study whether the ENS is involved in this effect of zinc in vitro. Twenty-four piglets (six litters of four piglets) were allocated randomly to one of two dietary treatments consisting of a basic diet supplemented with 100 mg zinc/kg (Zn(100)) or 2500 mg zinc/kg (Zn(2500)), as ZnO. All the piglets were killed at 5-6 days after weaning and in vitro experiments with small intestinal epithelium in Ussing chambers were carried out. Furthermore, zinc, copper, alkaline phosphatase (AP) and metallothionein (MT) in mucosa, liver, and plasma were measured. These measurements showed that zinc status was increased in the Zn(2500) compared to the Zn(100) fed piglets. The in vitro studies did not confirm previous findings of attenuating effects of dietary zinc and zinc in vitro on the 5-HT induced secretion. But it showed that the addition of zinc at the serosal side attenuated the forskolin (FSK) (cAMP-dependent) induced ion secretion in epithelium from piglets fed with Zn(100) diet. Blocking the ENS with lidocaine or hexamethonium apparently slightly reduced this effect of zinc in vitro, but did not remove the effect of zinc. Consequently, it is suggested that zinc attenuates the cAMP dependent ion secretion mainly due to an effect on epithelial cells rather than affecting the mucosal neuronal pathway.

  12. Inhibition effects of protein-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth

    NASA Astrophysics Data System (ADS)

    Cao, Ying; Wang, Hua-Jie; Cao, Cui; Sun, Yuan-Yuan; Yang, Lin; Wang, Bao-Qing; Zhou, Jian-Guo

    2011-07-01

    In this article, a facile and environmentally friendly method was applied to fabricate BSA-conjugated amorphous zinc sulfide (ZnS) nanoparticles using bovine serum albumin (BSA) as the matrix. Transmission electron microscopy analysis indicated that the stable and well-dispersed nanoparticles with the diameter of 15.9 ± 2.1 nm were successfully prepared. The energy dispersive X-ray, X-ray powder diffraction, Fourier transform infrared spectrograph, high resolution transmission electron microscope, and selected area electron diffraction measurements showed that the obtained nanoparticles had the amorphous structure and the coordination occurred between zinc sulfide surfaces and BSA in the nanoparticles. In addition, the inhibition effects of BSA-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth were described in detail by cell viability analysis, optical and electron microscopy methods. The results showed that BSA-conjugated amorphous zinc sulfide nanoparticles could inhibit the metabolism and proliferation of human hepatocellular carcinoma cells, and the inhibition was dose dependent. The half maximal inhibitory concentration (IC50) was 0.36 mg/mL. Overall, this study suggested that BSA-conjugated amorphous zinc sulfide nanoparticles had the application potential as cytostatic agents and BSA in the nanoparticles could provide the modifiable site for the nanoparticles to improve their bioactivity or to endow them with the target function.

  13. Intracellular zinc activates KCNQ channels by reducing their dependence on phosphatidylinositol 4,5-bisphosphate

    PubMed Central

    Gao, Haixia; Boillat, Aurélien; Huang, Dongyang; Liang, Ce; Peers, Chris

    2017-01-01

    M-type (Kv7, KCNQ) potassium channels are proteins that control the excitability of neurons and muscle cells. Many physiological and pathological mechanisms of excitation operate via the suppression of M channel activity or expression. Conversely, pharmacological augmentation of M channel activity is a recognized strategy for the treatment of hyperexcitability disorders such as pain and epilepsy. However, physiological mechanisms resulting in M channel potentiation are rare. Here we report that intracellular free zinc directly and reversibly augments the activity of recombinant and native M channels. This effect is mechanistically distinct from the known redox-dependent KCNQ channel potentiation. Interestingly, the effect of zinc cannot be attributed to a single histidine- or cysteine-containing zinc-binding site within KCNQ channels. Instead, zinc dramatically reduces KCNQ channel dependence on its obligatory physiological activator, phosphatidylinositol 4,5-bisphosphate (PIP2). We hypothesize that zinc facilitates interactions of the lipid-facing interface of a KCNQ protein with the inner leaflet of the plasma membrane in a way similar to that promoted by PIP2. Because zinc is increasingly recognized as a ubiquitous intracellular second messenger, this discovery might represent a hitherto unknown native pathway of M channel modulation and provide a fresh strategy for the design of M channel activators for therapeutic purposes. PMID:28716904

  14. Intracellular zinc activates KCNQ channels by reducing their dependence on phosphatidylinositol 4,5-bisphosphate.

    PubMed

    Gao, Haixia; Boillat, Aurélien; Huang, Dongyang; Liang, Ce; Peers, Chris; Gamper, Nikita

    2017-08-01

    M-type (Kv7, KCNQ) potassium channels are proteins that control the excitability of neurons and muscle cells. Many physiological and pathological mechanisms of excitation operate via the suppression of M channel activity or expression. Conversely, pharmacological augmentation of M channel activity is a recognized strategy for the treatment of hyperexcitability disorders such as pain and epilepsy. However, physiological mechanisms resulting in M channel potentiation are rare. Here we report that intracellular free zinc directly and reversibly augments the activity of recombinant and native M channels. This effect is mechanistically distinct from the known redox-dependent KCNQ channel potentiation. Interestingly, the effect of zinc cannot be attributed to a single histidine- or cysteine-containing zinc-binding site within KCNQ channels. Instead, zinc dramatically reduces KCNQ channel dependence on its obligatory physiological activator, phosphatidylinositol 4,5-bisphosphate (PIP 2 ). We hypothesize that zinc facilitates interactions of the lipid-facing interface of a KCNQ protein with the inner leaflet of the plasma membrane in a way similar to that promoted by PIP 2 Because zinc is increasingly recognized as a ubiquitous intracellular second messenger, this discovery might represent a hitherto unknown native pathway of M channel modulation and provide a fresh strategy for the design of M channel activators for therapeutic purposes.

  15. Estimating the Global Prevalence of Inadequate Zinc Intake from National Food Balance Sheets: Effects of Methodological Assumptions

    PubMed Central

    Wessells, K. Ryan; Singh, Gitanjali M.; Brown, Kenneth H.

    2012-01-01

    Background The prevalence of inadequate zinc intake in a population can be estimated by comparing the zinc content of the food supply with the population’s theoretical requirement for zinc. However, assumptions regarding the nutrient composition of foods, zinc requirements, and zinc absorption may affect prevalence estimates. These analyses were conducted to: (1) evaluate the effect of varying methodological assumptions on country-specific estimates of the prevalence of dietary zinc inadequacy and (2) generate a model considered to provide the best estimates. Methodology and Principal Findings National food balance data were obtained from the Food and Agriculture Organization of the United Nations. Zinc and phytate contents of these foods were estimated from three nutrient composition databases. Zinc absorption was predicted using a mathematical model (Miller equation). Theoretical mean daily per capita physiological and dietary requirements for zinc were calculated using recommendations from the Food and Nutrition Board of the Institute of Medicine and the International Zinc Nutrition Consultative Group. The estimated global prevalence of inadequate zinc intake varied between 12–66%, depending on which methodological assumptions were applied. However, country-specific rank order of the estimated prevalence of inadequate intake was conserved across all models (r = 0.57–0.99, P<0.01). A “best-estimate” model, comprised of zinc and phytate data from a composite nutrient database and IZiNCG physiological requirements for absorbed zinc, estimated the global prevalence of inadequate zinc intake to be 17.3%. Conclusions and Significance Given the multiple sources of uncertainty in this method, caution must be taken in the interpretation of the estimated prevalence figures. However, the results of all models indicate that inadequate zinc intake may be fairly common globally. Inferences regarding the relative likelihood of zinc deficiency as a public health

  16. Effect of in ovo supplementation of nano forms of zinc, copper, and selenium on post-hatch performance of broiler chicken

    PubMed Central

    Joshua, P. Patric; Valli, C.; Balakrishnan, V.

    2016-01-01

    Background and Aim: Nanoparticles can bypass conventional physiological ways of nutrient distribution and transport across tissue and cell membranes, as well as protect compounds against destruction prior to reaching their targets. In ovo administration of nanoparticles, may be seen as a new method of nano-nutrition, providing embryos with an additional quantity of nutrients. The aim of the study is to examine the effect of in ovo supplementation of nano forms of zinc, copper and selenium on the hatchability and post hatch performance of broiler chicken. Materials and Methods: Nano form of zinc at 20, 40, 60 and 80 µg/egg, nano form of copper at 4, 8, 12 and 16 µg/egg and nano form of selenium at 0.075, 0.15, 0.225 and 0.3 µg/egg were in ovo supplemented (18th day incubation, amniotic route) in fertile broiler eggs. Control group in ovo fed with normal saline alone was also maintained. Each treatment had thirty replicates. Parameters such as hatchability, hatch weight and post hatch performance were studied. Results: In ovo feeding of nano minerals were not harmful to the developing embryo and did not influence the hatchability. Significantly (p<0.05) best feed efficiency for nano forms of zinc (2.16), copper (2.46) and selenium (2.51) were observed, when 40, 4 and 0.225 µg/egg respectively were in ovo supplemented. Except in nano form of copper at 12 µg per egg which had significantly (p<0.05) highest breast muscle percentage there was no distinct trend to indicate that dressing percentage or breast muscle yield was influenced in other treatments. Conclusion: Nano forms of zinc, copper and selenium can be prepared at laboratory conditions. In ovo feeding of nano forms of zinc, copper and selenium at 18th day of incubation through amniotic route does not harm the developing embryo, does not affect hatchability. PMID:27057113

  17. Effects of zinc supplementation on subscales of anorexia in children: A randomized controlled trial.

    PubMed

    Khademian, Majid; Farhangpajouh, Neda; Shahsanaee, Armindokht; Bahreynian, Maryam; Mirshamsi, Mehran; Kelishadi, Roya

    2014-01-01

    This study aims to assess the effects of zinc supplementation on improving the appetite and its subscales in children. This study was conducted in 2013 in Isfahan, Iran. It had two phases. At the first step, after validation of the Child Eating Behaviour Questionaire (CEBQ), it was completed for 300 preschool children, who were randomly selected. The second phase was conducted as a randomized controlled trial. Eighty of these children were randomly selected, and were randomly assigned to two groups of equal number receiving zinc (10 mg/day) or placebo for 12 weeks. Overall 77 children completed the trial (39 in the case and 3 in the control group).The results showed that zinc supplement can improve calorie intake in children by affecting some CEBQ subscales like Emotional over Eating and Food Responsible. Zinc supplementation had positive impact in promoting the calorie intake and some subscales of anorexia.

  18. Transient symptomatic zinc deficiency in a preterm exclusively breast-fed infant.

    PubMed

    Laureano, André; Brás, Susana; Carvalho, Rodrigo; Amaro, Cristina; Cardoso, Jorge

    2014-02-18

    A 5-month-old female infant, preterm, exclusively breast-fed, presented with a 2-month history of erythematous, erosive, and crusted patches and plaques in a peri-oral, scalp, genital, and peri-anal distribution. A clinical diagnosis of zinc deficiency was confirmed by a low serum zinc level in the infant and decreased maternal breast milk zinc. Complete resolution occurred within two weeks of oral zinc supplementation. Acquired zinc deficiency is a rare nutritional disorder of infants. Early diagnosis and adequate treatment will prevent associated morbidity and complications.

  19. Effect of zinc imprinting and replacing inorganic zinc with organic zinc on early performance of broiler chicks.

    PubMed

    Mwangi, S; Timmons, J; Ao, T; Paul, M; Macalintal, L; Pescatore, A; Cantor, A; Ford, M; Dawson, K A

    2017-04-01

    The goal of this study was to determine the effects of feeding a zinc (Zn) deficient diet to broiler chicks for 96 h post-hatch followed by feeding diets with different Zn sources and supplemental levels (5 to 21 d) on the growth performance, tissue, and excreta Zn content. At the start of the study, four hundred 20-day-old male broiler chicks were divided into two groups. One group was fed a corn soybean meal based diet containing 25 mg of Zn/kg (imprinting diet, ID). The second group was fed the basal diet supplemented with 40 mg of Zn/kg from Zn oxide (ZnO) (non-imprinting diet, NID). Both groups were fed these diets for 96 h. At d 5, chicks from each group were randomly assigned to the dietary treatments consisting of the basal diet alone or the basal diet supplemented with 8 or 40 mg/kg Zn as ZnO or Zn proteinate. Main effects of post-hatch Zn ID were observed on feed intake and G:F. ID decreased (P < 0.05) feed intake and improved (P < 0.05) the gain to feed ratio (G:F) of 14 and 21 d old chicks compared to G:F of chicks fed NID. Additionally, G:F for 14 and 21 d was improved (P < 0.05) by interaction of Zn source × level. Furthermore, at d 21 chicks fed the ID had a lower (P < 0.05) Zn content in the tibia ash and excreta, and a higher (P < 0.05) Zn content in the pancreas tissue compared to chicks fed NID. These results suggest that Zn imprinting can affect body Zn stores and early performance. © The Author 2016. Published by Oxford University Press on behalf of Poultry Science Association.

  20. Effect of zinc imprinting and replacing inorganic zinc with organic zinc on early performance of broiler chicks

    PubMed Central

    Timmons, J.; Ao, T.; Paul, M.; Macalintal, L.; Pescatore, A.; Cantor, A.; Ford, M.; Dawson, K. A.

    2017-01-01

    Abstract The goal of this study was to determine the effects of feeding a zinc (Zn) deficient diet to broiler chicks for 96 h post-hatch followed by feeding diets with different Zn sources and supplemental levels (5 to 21 d) on the growth performance, tissue, and excreta Zn content. At the start of the study, four hundred 20-day-old male broiler chicks were divided into two groups. One group was fed a corn soybean meal based diet containing 25 mg of Zn/kg (imprinting diet, ID). The second group was fed the basal diet supplemented with 40 mg of Zn/kg from Zn oxide (ZnO) (non-imprinting diet, NID). Both groups were fed these diets for 96 h. At d 5, chicks from each group were randomly assigned to the dietary treatments consisting of the basal diet alone or the basal diet supplemented with 8 or 40 mg/kg Zn as ZnO or Zn proteinate. Main effects of post-hatch Zn ID were observed on feed intake and G:F. ID decreased (P < 0.05) feed intake and improved (P < 0.05) the gain to feed ratio (G:F) of 14 and 21 d old chicks compared to G:F of chicks fed NID. Additionally, G:F for 14 and 21 d was improved (P < 0.05) by interaction of Zn source × level. Furthermore, at d 21 chicks fed the ID had a lower (P < 0.05) Zn content in the tibia ash and excreta, and a higher (P < 0.05) Zn content in the pancreas tissue compared to chicks fed NID. These results suggest that Zn imprinting can affect body Zn stores and early performance. PMID:27664197

  1. The effects of enhanced zinc on spatial memory and plaque formation in transgenic mice

    USGS Publications Warehouse

    Linkous, D.H.; Adlard, P.A.; Wanschura, P.B.; Conko, K.M.; Flinn, J.M.

    2009-01-01

    There is considerable evidence suggesting that metals play a central role in the pathogenesis of Alzheimer's disease. Reports suggest that elevated dietary metals may both precipitate and potentiate an Alzheimer's disease phenotype. Despite this, there remain few studies that have examined the behavioral consequences of elevated dietary metals in wild type and Alzheimer's disease animals. To further investigate this in the current study, two separate transgenic models of AD (Tg2576 and TgCRND8), together with wild type littermates were administered 10 ppm (0.153 mM) Zn. Tg2576 animals were maintained on a zinc-enriched diet both pre- and postnatally until 11 months of age, while TgCRND8 animals were treated for five months following weaning. Behavioral testing, consisting of "Atlantis" and "moving" platform versions of the Morris water maze, were conducted at the end of the study, and tissues were collected for immunohistochemical analysis of amyloid-β burden. Our data demonstrate that the provision of a zinc-enriched diet potentiated Alzheimer-like spatial memory impairments in the transgenic animals and was associated with reduced hippocampal amyloid-β plaque deposits. Zinc-related behavioral deficits were also demonstrated in wild type mice, which were sometimes as great as those present in the transgenic animals. However, zinc-related cognitive impairments in transgenic mice were greater than the summation of zinc effects in the wild type mice and the transgene effects.

  2. Does tachyphylaxis occur in long-term management of scalp seborrheic dermatitis with pyrithione zinc-based treatments?

    PubMed

    Schwartz, James R; Rocchetta, Heather; Asawanonda, Pravit; Luo, Fangyi; Thomas, Jennifer H

    2009-01-01

    Scalp seborrheic dermatitis and dandruff (SD/D) are chronic conditions requiring long-term treatment. There is a common belief that patients frequently experience decreasing benefits over time when using a single product. This physiologic accommodation is termed tachyphylaxis. To systematically investigate the anecdotal belief that tachyphylaxis occurs in long-term treatment of SD/D using quantitative clinical assessments. An international questionnaire completed by 722 dermatologists assessed the belief of tachyphylaxis incidence with pyrithione zinc (PTZ)-based shampoos, time course, occurrence relative to active ingredients, and effect of switching products. Two double-blind, randomized, clinical evaluations were conducted, 24- and 48-week studies, whereby a 1% PTZ shampoo, a 2% PTZ shampoo, or a matched placebo control shampoo was used by each subject for the duration of the study. Dermatologists assessed the adherent scalp flaking (scale of 0-10) at baseline and at specified intervals. Sixty-four per cent of responding dermatologists believed tachyphylaxis occurred with PTZ products, and most felt that tachyphylaxis occurred within 3 months of use. Evaluation of mean treatment responses vs. placebo and individual responses as a function of study duration showed a consistent benefit for all products at all time points; therefore, no evidence for tachyphylaxis was found (within 48 weeks of treatment). No evidence for tachyphylaxis in SD/D treatment by PTZ-based shampoos was found. Compliance could explain the decreasing response rate seen over time; the solution is to choose an affordable therapeutic product that is effective long term without cosmetic trade-offs.

  3. Effect of supplementary zinc on body mass index, pulmonary function and hospitalization in children with cystic fibrosis.

    PubMed

    Ataee, Pedram; Najafi, Mehri; Gharagozlou, Mohammad; Aflatounian, Majid; Mahmoudi, Maryam; Khodadad, Ahmad; Farahmand, Fatemeh; Motamed, Farzaneh; Fallahi, Glolam Hossein; Kalantari, Najmoddin; Soheili, Habib; Modarresi, Vajiheh; Modarresi, Mozhgan Sabbaghian; Rezaei, Nima

    2014-01-01

    Zinc deficiency, which is common in patients with cystic fibrosis (CF), can lead to several complications that may increase the number of hospital admissions in this group of patients. As supplementary zinc can prevent such complications, this study was performed to evaluate the effect of supplementary zinc on body mass index (BMI), forced expiratory volume in one second (FEV1) and number of hospitalizations in CF patients. In this study, 30 children with CF, who were referred to the Digestive Diseases Clinic of the Children's Medical Center in Tehran, were enrolled. Supplementary zinc of 2 mg/kg per day was administered to all patients. Serum level of zinc, alkaline phosphatase, and albumin as well as BMI, FEV1, and number of hospitalizations were compared before and after zinc administration. Height (p<0.001), weight (p<0.001) and BMI (p=0.001) were significantly increased after zinc, while the number of hospitalizations was significantly decreased (p=0.023). In contrast to patients with normal pulmonary function tests who received supplement therapy, BMI was not increased in those with abnormal pulmonary function after supplementary zinc. Supplementary zinc can increase BMI in CF patients, mostly in those with normal pulmonary function. While supplementary zinc may decrease the number of hospitalizations, other factors can also influence the hospitalization number.

  4. Zinc supplements for treating thalassaemia and sickle cell disease.

    PubMed

    Swe, Kye Mon Min; Abas, Adinegara B L; Bhardwaj, Amit; Barua, Ankur; Nair, N S

    2013-06-28

    Haemoglobinopathies, inherited disorders of haemoglobin synthesis (thalassaemia) or structure (sickle cell disease), are responsible for significant morbidity and mortality throughout the world. The WHO estimates that, globally, 5% of adults are carriers of a haemoglobin condition, 2.9% are carriers of thalassaemia and 2.3% are carriers of sickle cell disease. Carriers are found worldwide as a result of migration of various ethnic groups to different regions of the world. Zinc is an easily available supplement and intervention programs have been carried out to prevent deficiency in people with thalassaemia or sickle cell anaemia. It is important to evaluate the role of zinc supplementation in the treatment of thalassaemia and sickle cell anaemia to reduce deaths due to complications. To assess the effect of zinc supplementation in the treatment of thalassaemia and sickle cell disease. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings.Date of most recent search: 01 February 2013. Randomised, placebo-controlled trials of zinc supplements for treating thalassaemia or sickle cell disease administered at least once a week for at least a month. Two review authors assessed the eligibility and risk of bias of the included trials, extracted and analysed data and wrote the review. We summarised results using risk ratios or rate ratios for dichotomous data and mean differences for continuous data. We combined trial results where appropriate. We identified nine trials for inclusion with all nine contributing outcome data. Two trials reported on people with thalassaemia (n = 152) and seven on sickle cell anaemia (n = 307).In people with thalassaemia, in one trial, the serum zinc level value showed no difference between the zinc supplemented group and the

  5. Effect of maternal zinc supplementation on the cardiometabolic profile of Peruvian children: results from a randomized clinical trial

    PubMed Central

    Mispireta, ML; Caulfield, LE; Zavaleta, N; Merialdi, M; Putnick, DL; Bornstein, MH; DiPietro, JA

    2018-01-01

    Zinc is an essential micronutrient for the development of the fetal renal, cardiovascular, and metabolic systems; however, there is limited evidence of its effects on the postnatal cardiometabolic function. In this study, we evaluated the effect of maternal zinc supplementation during pregnancy on the cardiometabolic profile of the offspring in childhood. A total of 242 pregnant women were randomly assigned to receive a daily supplement containing iron + folic acid with or without zinc. A follow-up study was conducted when children of participating mothers were 4.5 years of age to evaluate their cardiometabolic profile, including anthropometric measures of body size and composition, blood pressure, lipid profile, and insulin resistance. No difference in measures of child cardiometabolic risk depending on whether mothers received supplemental zinc during pregnancy. Our results do not support the hypothesis that maternal zinc supplementation reduces the risk of offspring cardiometabolic disease. PMID:27748235

  6. Improved zinc electrode and rechargeable zinc-air battery

    DOEpatents

    Ross, P.N. Jr.

    1988-06-21

    The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

  7. The effect of zinc thickness on corrosion film breakdown of Colombian galvanized steel

    NASA Astrophysics Data System (ADS)

    Sandoval-Amador, A.; E Torres Ramirez, J.; Cabrales-Villamizar, P. A.; Laverde Cataño, D.; Y Peña-Ballesteros, D.

    2017-12-01

    This work studies the corrosion behaviour of Colombian galvanized steel in solutions of chloride and sulphate ions. The effect of the thickness and exposure time on the film’s breakdown susceptibility and protectiveness of the corrosion products were studied using potentiodynamic polarization curves and electrochemical impedance spectroscopy. The corrosion products were analysed using SEM-EDS and XRD. The samples with a higher thickness level in the zinc film (Z180) have the lowest corrosion rate. In this case, one of the products that was formed by the chemical reactions that occurred was Zinc hydroxide, which exhibits a passive behaviour as observed in the Pourbaix curves of the obtained potentials and in how the different Ph levels of the solutions worked. The sheets with the highest thickness (Z180) had the best performance, since at the end of the study they showed the least amount of damage on the surface of the zinc layer. This is because the thickness of the zinc layer favours the formation of simonkolleite, which is the corrosion product that protects the material under the conditions of the study.

  8. The effect of feed supplementation with zinc chelate and zinc sulphate on selected humoral and cell-mediated immune parameters and cytokine concentration in broiler chickens.

    PubMed

    Jarosz, Łukasz; Marek, Agnieszka; Grądzki, Zbigniew; Kwiecień, Małgorzata; Kalinowski, Marcin

    2017-06-01

    The ability of poultry to withstand infectious disease caused by bacteria, viruses or protozoa depends upon the integrity of the immune system. Zinc is important for proper functioning of heterophils, mononuclear phagocytes and T lymphocytes. Numerous data indicate that the demand for zinc in poultry is not met in Poland due to its low content in feeds of vegetable origin. The aim of the study was to determine the effect of supplementation of inorganic (ZnSO 4 and ZnSO 4 + phytase enzyme), and organic forms of zinc (Zn with glycine and Zn with glycine and phytase enzyme) on selected parameters of the cellular and humoral immune response in broiler chickens by evaluating the percentage of CD3 + CD4 + , CD3 + CD8 + , CD25 + , MHC Class II, and BU-1 + lymphocytes, the phagocytic activity of monocytes and heterophils, and the concentration of IL-2, IL-10 and TNF-α in the peripheral blood. Flow cytometry was used to determine selected cell-mediated immune response parameters. Phagocytic activity in whole blood was performed using the commercial Phagotest kit (ORPEGEN-Pharma, Immuniq, Poland). The results showed that supplementation with zinc chelates causes activation of the cellular and humoral immune response in poultry, helping to maintain the balance between the Th1 and Th2 response and enhancing resistance to infections. In contrast with chelates, the use of zinc in the form of sulphates has no immunomodulatory effect and may contribute to the development of local inflammatory processes in the digestive tract, increasing susceptibility to infection. Copyright © 2016. Published by Elsevier Ltd.

  9. Effect of increased concentrations of atmospheric carbon dioxide on the global threat of zinc deficiency: a modelling study.

    PubMed

    Myers, Samuel S; Wessells, K Ryan; Kloog, Itai; Zanobetti, Antonella; Schwartz, Joel

    2015-10-01

    Increasing concentrations of atmospheric carbon dioxide (CO2) lower the content of zinc and other nutrients in important food crops. Zinc deficiency is currently responsible for large burdens of disease globally, and the populations who are at highest risk of zinc deficiency also receive most of their dietary zinc from crops. By modelling dietary intake of bioavailable zinc for the populations of 188 countries under both an ambient CO2 and elevated CO2 scenario, we sought to estimate the effect of anthropogenic CO2 emissions on the global risk of zinc deficiency. We estimated per capita per day bioavailable intake of zinc for the populations of 188 countries at ambient CO2 concentrations (375-384 ppm) using food balance sheet data for 2003-07 from the Food and Agriculture Organization. We then used previously published data from free air CO2 enrichment and open-top chamber experiments to model zinc intake at elevated CO2 concentrations (550 ppm, which is the concentration expected by 2050). Estimates developed by the International Zinc Nutrition Consultative Group were used for country-specific theoretical mean daily per-capita physiological requirements for zinc. Finally, we used these data on zinc bioavailability and population-weighted estimated average zinc requirements to estimate the risk of inadequate zinc intake among the populations of the different nations under the two scenarios (ambient and elevated CO2). The difference between the population at risk at elevated and ambient CO2 concentrations (ie, population at new risk of zinc deficiency) was our measure of impact. The total number of people estimated to be placed at new risk of zinc deficiency by 2050 was 138 million (95% CI 120-156). The people likely to be most affected live in Africa and South Asia, with nearly 48 million (32-63) residing in India alone. Global maps of increased risk show significant heterogeneity. Our results indicate that one heretofore unquantified human health effect associated

  10. Effects of Dietary Zinc Pectin Oligosaccharides Chelate Supplementation on Growth Performance, Nutrient Digestibility and Tissue Zinc Concentrations of Broilers.

    PubMed

    Wang, Zhongcheng; Yu, Huimin; Wu, Xuezhuang; Zhang, Tietao; Cui, Hu; Wan, Chunmeng; Gao, Xiuhua

    2016-10-01

    The experiment was conducted to investigate the effects of zinc pectin oligosaccharides (Zn-POS) chelate on growth performance, nutrient digestibility, and tissue zinc concentrations of Arbor Acre broilers aged from 1 to 42 days. A total of 576 1-day-old broilers were randomly assigned into 4 groups with 9 replicates per group and 16 chicks per replicate. Chicks were fed either a basal diet (control) or basal diet supplemented with Zn-POS at 300 (Zn-POS-300), 600 (Zn-POS-600), or 900 mg/kg (Zn-POS-900), respectively, for 42 days. A 3-day metabolism trial was conducted during the last week of the experiment feeding. The average daily gain and the average daily feed intake of Zn-POS-600 were significantly higher (P < 0.05) than those of either the control, Zn-POS-300, or Zn-POS-900. Zn-POS-600 had the highest apparent digestibility of dry matter, crude protein, and metabolic energy among all groups. The control group had the lowest apparent digestibility of dry matter (P < 0.05), whereas the apparent digestibility of dry matter in Zn-POS-600 was higher (P < 0.05) than that of Zn-POS-300. The apparent digestibility of crude protein in Zn-POS-600 or Zn-POS-900 was higher (P < 0.05) compared to Zn-POS-300 or the control. The apparent digestibility of metabolic energy in Zn-POS-600 or Zn-POS-900 was higher (P < 0.05) than that of Zn-POS-300. Zn-POS-600 had the highest liver zinc concentrations (P < 0.05), while Zn-POS-900 had the highest pancreatic zinc concentrations (P < 0.05). Our data suggest that the supplementation of 600 mg/kg Zn-POS is optimal in improving the average daily gain and the average daily feed intake, utilization of dietary dry matter and crude protein, and increasing tissue zinc concentrations in liver and pancreas of broilers.

  11. The Role of Zinc Layer During Wetting of Aluminium on Zinc-coated Steel in Laser Brazing and Welding

    NASA Astrophysics Data System (ADS)

    Gatzen, M.; Radel, T.; Thomy, C.; Vollertsen, F.

    The zinc layer of zinc-coated steel is known to be a crucial factor for the spreading of liquid aluminium on the coated surface. For industrial brazing and welding processes these zinc-coatings enable a fluxless joining between aluminium and steel in many cases. Yet, the reason for the beneficial effect of the zinc to the wetting process is not completely understood. Fundamental investigations on the wetting behaviour of single aluminium droplets on different zinc-coated steel surfaces have revealed a distinct difference between coated surfaces at room temperature and at elevated temperature regarding the influence of different coating thicknesses. In this paper the case of continuous laser brazing and welding processes of aluminium and commercial galvanized zinc-coated steel sheets are presented. It is shown that in the case of bead-on-plate laser beam brazing, the coating thickness has a measureable effect on the resulting wetting angle and length but does not have a significant impact in case of overlap laser beam welding. This might be linked to different heat transfer conditions. The results also strongly indicate that proper initialbreakup of oxide layers is still required to accomplish good wetting on zinc-coated surfaces.

  12. Zinc Levels Modulate Lifespan through Multiple Longevity Pathways in Caenorhabditis elegans

    PubMed Central

    Kumar, Jitendra; Barhydt, Tracy; Awasthi, Anjali; Lithgow, Gordon J.; Killilea, David W.; Kapahi, Pankaj

    2016-01-01

    Zinc is an essential trace metal that has integral roles in numerous biological processes, including enzymatic function, protein structure, and cell signaling pathways. Both excess and deficiency of zinc can lead to detrimental effects on development and metabolism, resulting in abnormalities and disease. We altered the zinc balance within Caenorhabditis elegans to examine how changes in zinc burden affect longevity and healthspan in an invertebrate animal model. We found that increasing zinc levels in vivo with excess dietary zinc supplementation decreased the mean and maximum lifespan, whereas reducing zinc levels in vivo with a zinc-selective chelator increased the mean and maximum lifespan in C. elegans. We determined that the lifespan shortening effects of excess zinc required expression of DAF-16, HSF-1 and SKN-1 proteins, whereas the lifespan lengthening effects of the reduced zinc may be partially dependent upon this set of proteins. Furthermore, reducing zinc levels led to greater nuclear localization of DAF-16 and enhanced dauer formation compared to controls, suggesting that the lifespan effects of zinc are mediated in part by the insulin/IGF-1 pathway. Additionally, zinc status correlated with several markers of healthspan in worms, including proteostasis, locomotion and thermotolerance, with reduced zinc levels always associated with improvements in function. Taken together, these data support a role for zinc in regulating both development and lifespan in C. elegans, and that suggest that regulation of zinc homeostasis in the worm may be an example of antagonistic pleiotropy. PMID:27078872

  13. Effect of zinc impurity on silicon solar-cell efficiency

    NASA Technical Reports Server (NTRS)

    Sah, C.-T.; Chan, P. C. H.; Wang, C.-K.; Yamakawa, K. A.; Lutwack, R.; Sah, R. L.-Y.

    1981-01-01

    Zinc is a major residue impurity in the preparation of solar-grade silicon material by the zinc vapor reduction of silicon tetrachloride. This paper projects that in order to get a 17-percent AM1 cell efficiency for the Block IV module of the Low-Cost Solar Array Project, the concentration of the zinc recombination centers in the base region of silicon solar cells must be less than 4 x 10 to the 11th Zn/cu cm in the p-base n+/p/p+ cell and 7 x 10 to the 11th Zn/cu cm in the n-base p+/n/n+ cell for a base dopant impurity concentration of 5 x 10 to the 14 atoms/cu cm. If the base dopant impurity concentration is increased by a factor of 10 to 5 x 10 to the 15th atoms/cu cm, then the maximum allowable zinc concentration is increased by a factor of about two for a 17-percent AM1 efficiency. The thermal equilibrium electron and hole recombination and generation rates at the double-acceptor zinc centers are obtained from previous high-field measurements as well as new measurements at zero field described in this paper. These rates are used in the exact dc-circuit model to compute the projections.

  14. Selective metallization of amorphous-indium-gallium-zinc-oxide thin-film transistor by using helium plasma treatment

    NASA Astrophysics Data System (ADS)

    Jang, Hun; Lee, Su Jeong; Porte, Yoann; Myoung, Jae-Min

    2018-03-01

    In this study, the effects of helium (He) plasma treatment on amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) have been investigated. The He plasma treatment induced a dramatic decrease of the resistivity in a-IGZO thin films from 1.25 × 106 to 5.93 mΩ cm. After 5 min He plasma treatment, the a-IGZO films showed an increase in carrier concentration to 6.70 × 1019 cm-3 combined with a high hall mobility of 15.7 cm2 V-1 s-1. The conductivity improvement was linked to the formation of oxygen vacancies during the He plasma treatment, which was observed by x-ray photoelectron spectroscopy analysis. The a-IGZO films did not appear to be damaged on the surface following the plasma treatment and showed a high transmittance of about 88.3% at a wavelength of 550 nm. The He plasma-treated a-IGZO films were used as source/drain (S/D) electrodes in a-IGZO TFTs. The devices demonstrated promising characteristics, on pair with TFTs using Al electrodes, with a threshold voltage (V T) of -1.97 V, sub-threshold slope (SS) of 0.52 V/decade, saturation mobility (μ sat) of 8.75 cm2 V-1 s-1, and on/off current ratio (I on/I off) of 2.66 × 108.

  15. Effect of pulsed electric fields upon accumulation of zinc in Saccharomyces cerevisiae.

    PubMed

    Pankiewicz, Urszula; Jamroz, Jerzy

    2011-06-01

    Cultures of Saccharomyces cerevisiae were treated with pulsed electric fields to improve accumulation of zinc in the biomass. Under optimized conditions, that is, on 15 min exposure of the 20 h grown culture to PEFs of 1500 V and 10 microns pulse width, accumulation of zinc in the yeast biomass reached a maximum of 15.57 mg/g d.m. Under optimum zinc concentration (100 microgram/ml nutrient medium), its accumulation in the cells was higher by 63% in comparison with the control (without PEFs). That accumulation significantly correlated against zinc concentration in the medium. Neither multiple exposure of the cultures to PEFs nor intermittent supplementation of the cultures with zinc increased the zinc accumulation. The intermittent supplementation of the cultures with zinc and multiple exposures on PEFs could even reduce the accumulation efficiency, respectively, by 57% and 47%.

  16. Temperature effect on the structure and conformational fluctuations in two zinc knuckles from the mouse mammary tumor virus.

    PubMed

    Nedjoua, Drici; Krallafa, Abdelghani Mohamed

    2018-06-01

    Zinc fingers are small protein domains in which zinc plays a structural role, contributing to the stability of the zinc-peptide complex. Zinc fingers are structurally diverse and are present in proteins that perform a broad range of functions in various cellular processes, such as replication and repair, transcription and translation, metabolism and signaling, cell proliferation, and apoptosis. Zinc fingers typically function as interaction modules and bind to a wide variety of compounds, such as nucleic acids, proteins, and small molecules. In this study, we investigated the structural properties, in solution, of the proximal and distal zinc knuckles of the nucleocapsid (NC) protein from the mouse mammary tumor virus (MMTV) (MMTV NC). For this purpose, we performed a series of molecular dynamics simulations in aqueous solution at 300 K, 333 K, and 348 K. The temperature effect was evaluated in terms of root mean square deviation of the backbone atoms and root mean square fluctuation of the coordinating residue atoms. The stability of the zinc coordination sphere was analyzed based upon the time profile of the interatomic distances between the zinc ions and the chelator atoms. The results indicate that the hydrophobic character of the proximal zinc finger is dominant at 333 K. The low mobility of the coordinating residues suggests that the strong electrostatic effect exerted by the zinc ion on its coordinating residues is not influenced by the increase in temperature. The evolution of the structural parameters of the coordination sphere of the distal zinc finger at 300 K gives us a reasonable picture of the unfolding pathway, as proposed by Bombarda and coworkers (Bombarda et al., 2005), which can predict the binding order of the four conserved ligand-binding residues. Our results support the conclusion that the structural features can vary significantly between the two zinc knuckles of MMTV NC. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Zinc treatment increases the titre of 'Candidatus Liberibacter asiaticus' in huanglongbing-affected citrus plants while affecting the bacterial microbiomes

    USDA-ARS?s Scientific Manuscript database

    The bacterial microbiomes of citrus plants in response to ‘Candidatus Liberibacter asiaticus’ (Las)-infection and zinc treatments were deciphered by Phylochip-based metagenomics. The results indicated that 5,475 of over 50,000 known Operational Taxonomic Units (OTUs) in 52 phyla were detected in cit...

  18. Zinc Regulation of Aminopeptidase B Involved in Neuropeptide Production

    PubMed Central

    Hwang, Shin-Rong; Hook, Vivian

    2009-01-01

    Aminopeptidase B (AP-B) is a metallopeptidase that removes basic residues from the N-termini of neuropeptide substrates in secretory vesicles. This study assessed zinc regulation of AP-B activity, since secretory vesicles contain endogenous zinc. AP-B was inhibited by zinc at concentrations typically present in secretory vesicles. Zinc effects were dependent on concentration, incubation time, and the molar ratio of zinc to enzyme. AP-B activity was recovered upon removal of zinc. AP-B with zinc became susceptible to degradation by trypsin, suggesting that zinc alters enzyme conformation. Zinc regulation demonstrates the metallopeptidase property of AP-B. PMID:18571504

  19. Oral zinc for treating diarrhoea in children

    PubMed Central

    Lazzerini, Marzia; Wanzira, Humphrey

    2016-01-01

    Background In developing countries, diarrhoea causes around 500,000 child deaths annually. Zinc supplementation during acute diarrhoea is currently recommended by the World Health Organization (WHO) and the United Nations Children's Fund (UNICEF). Objectives To evaluate oral zinc supplementation for treating children with acute or persistent diarrhoea. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (the Cochrane Library 2016, Issue 5), MEDLINE, Embase, LILACS, CINAHL, mRCT, and reference lists up to 30 September 2016. We also contacted researchers. Selection criteria Randomized controlled trials (RCTs) that compared oral zinc supplementation with placebo in children aged one month to five years with acute or persistent diarrhoea, including dysentery. Data collection and analysis Both review authors assessed trial eligibility and risk of bias, extracted and analysed data, and drafted the review. The primary outcomes were diarrhoea duration and severity. We summarized dichotomous outcomes using risk ratios (RR) and continuous outcomes using mean differences (MD) with 95% confidence intervals (CI). Where appropriate, we combined data in meta-analyses (using either a fixed-effect or random-effects model) and assessed heterogeneity. We assessed the certainty of the evidence using the GRADE approach. Main results Thirty-three trials that included 10,841 children met our inclusion criteria. Most included trials were conducted in Asian countries that were at high risk of zinc deficiency. Acute diarrhoea There is currently not enough evidence from well-conducted RCTs to be able to say whether zinc supplementation during acute diarrhoea reduces death or number of children hospitalized (very low certainty evidence). In children older than six months of age, zinc supplementation may shorten the average duration of diarrhoea by around half a day (MD −11.46 hours, 95% CI −19.72 to −3.19; 2581 children, 9 trials, low

  20. Coadministration of puerarin (low dose) and zinc attenuates bone loss and suppresses bone marrow adiposity in ovariectomized rats.

    PubMed

    Liu, Hao; Li, Wei; Ge, Xiyuan; Jia, Shengnan; Li, Binbin

    2016-12-01

    Puerarin is a phytoestrogen that shows osteogenic effects. Meanwhile, zinc stimulates bone formation and inhibits bone resorption. The study aims to investigate the effects of coadministration of puerarin (low dose) and zinc on bone formation in ovariectomized rats. Co-administration or use alone of puerarin (low dose) and/or zinc were gavaged in OVX rats. The estrogen-like effects were detected by the uterus weight, the histologic observation and the IGF-1 protein expression. The osteogenic effects were determined by bone histomorphometric and mechanical parameters, osteogenic and adipogenic blood markers, and so on. The results showed that oral administration of puerarin (low dose) plus zinc didn't significantly increase uterus weight. The glandular epithelial of endometrium had no proliferation and no protein expression of IGF-1. Moreover, co-administration attenuated bone loss and biomechanical decrease more than single use of puerarin or zinc (p<0.05). Next, combined administration of puerarin and zinc promoted the serological level of osteocalcin, bone marrow stromal cell (BMSC) proliferation, and the expression of alkaline phosphatase (ALP), and suppressed the serological level of adiponectin and adiposity in bone marrow (BM). In conclusion, co-administrated puerarin (low dose) and zinc can partially reverse OVX-induced bone loss and suppress the adiposity of BM in rats, which shed light on the potential use of puerarin and zinc in the treatment of osteoporosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Zinc Bioavailability from Phytate-Rich Foods and Zinc Supplements. Modeling the Effects of Food Components with Oxygen, Nitrogen, and Sulfur Donor Ligands.

    PubMed

    Tang, Ning; Skibsted, Leif H

    2017-10-04

    Aqueous solubility of zinc phytate (K sp = (2.6 ± 0.2) × 10 -47 mol 7 /L 7 ), essential for zinc bioavailability from plant foods, was found to decrease with increasing temperature corresponding to ΔH dis of -301 ± 22 kJ/mol and ΔS dis of -1901 ± 72 J/(mol K). Binding of zinc to phytate was found to be exothermic for the stronger binding site and endothermic for the weaker binding site. The solubility of the slightly soluble zinc citrate and insoluble zinc phytate was found to be considerably enhanced by the food components with oxygen donor, nitrogen donor, and sulfur donor ligands. The driving force for the enhanced solubility is mainly due to the complex formation between zinc and the investigated food components rather than ligand exchange and ternary complex formation as revealed by quantum mechanical calculations and isothermal titration calorimetry. Histidine and citrate are promising ligands for improving zinc absorption from phytate-rich foods.

  2. Zinc Salts Block Hepatitis E Virus Replication by Inhibiting the Activity of Viral RNA-Dependent RNA Polymerase.

    PubMed

    Kaushik, Nidhi; Subramani, Chandru; Anang, Saumya; Muthumohan, Rajagopalan; Shalimar; Nayak, Baibaswata; Ranjith-Kumar, C T; Surjit, Milan

    2017-11-01

    to treat HEV cases, there are known side effects and limitations of such therapy. Our discovery of the ability of zinc salts to block HEV replication by virtue of their ability to inhibit the activity of viral RdRp is important because these findings pave the way to test the efficacy of zinc supplementation therapy in HEV-infected patients. Since zinc supplementation therapy is known to be safe in healthy individuals and since high-dose zinc is used in the treatment of Wilson's disease, it may be possible to control HEV-associated health problems following a similar treatment regimen. Copyright © 2017 American Society for Microbiology.

  3. Short-Term Subclinical Zinc Deficiency in Weaned Piglets Affects Cardiac Redox Metabolism and Zinc Concentration.

    PubMed

    Brugger, Daniel; Windisch, Wilhelm M

    2017-04-01

    Background: Subclinical zinc deficiency (SZD) represents the common zinc malnutrition phenotype. However, its association with oxidative stress is not well understood. The heart muscle may be a promising target for studying early changes in redox metabolism. Objective: We investigated the effects of short-term SZD on cardiac redox metabolism in weaned piglets. Methods: Forty-eight weaned German Large White × Landrace × Piétrain piglets (50% castrated males and 50% females; body weight of 8.5 kg) were fed diets with different zinc concentrations for 8 d. Measurements included cardiac parameters of antioxidative capacity, stress-associated gene expression, and tissue zinc status. Analyses comprised (linear, broken-line) regression models and Pearson correlation coefficients. Results: Glutathione and α-tocopherol concentrations as well as catalase, glutathione reductase, B-cell lymphoma 2-associated X protein, and caspase 9 gene expression plateaued in response to reduction in dietary zinc from 88.0 to 57.6, 36.0, 36.5, 41.3, 55.3, and 33.8 mg/kg, respectively ( P < 0.0001). Further reduction in dietary zinc promoted a linear decrease of glutathione and α-tocopherol (30 and 0.6 nmol/mg dietary Zn, respectively; P < 0.05) and a linear increase of gene expression [0.02, 0.01, 0.003, and 0.02 Log 10 (2 -ΔΔCt )/mg dietary Zn, respectively; P < 0.05)]. Tissue zinc declined linearly with reduction in dietary zinc (0.21 mg tissue Zn/mg dietary Zn; P = 0.004) from 88.0 to 42.7 mg/kg ( P < 0.0001), below which it linearly increased inversely to further reduction in dietary zinc (0.57 mg tissue Zn/mg dietary Zn; P = 0.006). H 2 O 2 -detoxification activity and metallothionein 1A gene expression decreased linearly with reduction in dietary zinc from 88.0 to 28.1 mg/kg [0.02 mU and 0.008 Log 10 (2 -ΔΔCt )/mg dietary Zn, respectively; P < 0.05]. Fas cell-surface death receptor, etoposide-induced 2.4 and cyclin-dependent kinase inhibitor 1A gene expression correlated

  4. Crosstalk between Zinc Status and Giardia Infection: A New Approach

    PubMed Central

    Astiazarán-García, Humberto; Iñigo-Figueroa, Gemma; Quihui-Cota, Luis; Anduro-Corona, Iván

    2015-01-01

    Zinc supplementation has been shown to reduce the incidence and prevalence of diarrhea; however, its anti-diarrheal effect remains only partially understood. There is now growing evidence that zinc can have pathogen-specific protective effects. Giardiasis is a common yet neglected cause of acute-chronic diarrheal illness worldwide which causes disturbances in zinc metabolism of infected children, representing a risk factor for zinc deficiency. How zinc metabolism is compromised by Giardia is not well understood; zinc status could be altered by intestinal malabsorption, organ redistribution or host-pathogen competition. The potential metal-binding properties of Giardia suggest unusual ways that the parasite may interact with its host. Zinc supplementation was recently found to reduce the rate of diarrhea caused by Giardia in children and to upregulate humoral immune response in Giardia-infected mice; in vitro and in vivo, zinc-salts enhanced the activity of bacitracin in a zinc-dose-dependent way, and this was not due to zinc toxicity. These findings reflect biological effect of zinc that may impact significantly public health in endemic areas of infection. In this paper, we shall explore one direction of this complex interaction, discussing recent information regarding zinc status and its possible contribution to the outcome of the encounter between the host and Giardia. PMID:26046395

  5. Effects of zinc supplementation on subscales of anorexia in children: A randomized controlled trial

    PubMed Central

    Khademian, Majid; Farhangpajouh, Neda; Shahsanaee, Armindokht; Bahreynian, Maryam; Mirshamsi, Mehran; Kelishadi, Roya

    2014-01-01

    Objectives: This study aims to assess the effects of zinc supplementation on improving the appetite and its subscales in children. Methods: This study was conducted in 2013 in Isfahan, Iran. It had two phases. At the first step, after validation of the Child Eating Behaviour Questionaire (CEBQ), it was completed for 300 preschool children, who were randomly selected. The second phase was conducted as a randomized controlled trial. Eighty of these children were randomly selected, and were randomly assigned to two groups of equal number receiving zinc (10 mg/day) or placebo for 12 weeks. Results: Overall 77 children completed the trial (39 in the case and 3 in the control group).The results showed that zinc supplement can improve calorie intake in children by affecting some CEBQ subscales like Emotional over Eating and Food Responsible. Conclusion: Zinc supplementation had positive impact in promoting the calorie intake and some subscales of anorexia. PMID:25674110

  6. Transfers and transformations of zinc in flow-through wetland microcosms.

    PubMed

    Gillespie, W B; Hawkins, W B; Rodgers, J H; Cano, M L; Dorn, P B

    1999-06-01

    Two microcosm-scale wetlands (570-liter containers) were integratively designed and constructed to investigate transfers and transformations of zinc associated with an aqueous matrix, and to provide future design parameters for pilot-scale constructed wetlands. The fundamental design of these wetland microcosms was based on biogeochemical principles regulating fate and transformations of zinc (pH, redox, etc.). Each wetland consisted of a 45-cm hydrosoil depth inundated with 25 cm of water, and planted with Scirpus californicus. Zinc ( approximately 2 mg/liter) as ZnCl2 was amended to each wetland for 62 days. Individual wetland hydraulic retention times (HRT) were approximately 24 h. Total recoverable zinc was measured daily in microcosm inflow and outflows, and zinc concentrations in hydrosoil and S. californicus tissue were measured pre- and post-treatment. Ceriodaphnia dubia and Pimephales promelas7-day aqueous toxicity tests were performed on wetland inflows and outflows, and Hyalella azteca whole sediment toxicity tests (10-day) were performed pre- and post-treatment. Approximately 75% of total recoverable zinc was transferred from the water column. Toxicity decreased from inflow to outflow based on 7-day C. dubia tests, and survival of H. azteca in hydrosoil was >80%. Data illustrate the ability of integratively designed wetlands to transfer and sequester zinc from the water column while concomitantly decreasing associated toxicity. Copyright 1999 Academic Press.

  7. Zinc supplementation during pregnancy protects against lipopolysaccharide-induced fetal growth restriction and demise through its anti-inflammatory effect.

    PubMed

    Chen, Yuan-Hua; Zhao, Mei; Chen, Xue; Zhang, Ying; Wang, Hua; Huang, Ying-Ying; Wang, Zhen; Zhang, Zhi-Hui; Zhang, Cheng; Xu, De-Xiang

    2012-07-01

    LPS is associated with adverse developmental outcomes, including preterm delivery, fetal death, teratogenicity, and intrauterine growth restriction (IUGR). Previous reports showed that zinc protected against LPS-induced teratogenicity. In the current study, we investigated the effects of zinc supplementation during pregnancy on LPS-induced preterm delivery, fetal death and IUGR. All pregnant mice except controls were i.p. injected with LPS (75 μg/kg) daily from gestational day (GD) 15 to GD17. Some pregnant mice were administered zinc sulfate through drinking water (75 mg elemental Zn per liter) throughout the pregnancy. As expected, an i.p. injection with LPS daily from GD15 to GD17 resulted in 36.4% (4/11) of dams delivered before GD18. In dams that completed the pregnancy, 63.2% of fetuses were dead. Moreover, LPS significantly reduced fetal weight and crown-rump length. Of interest, zinc supplementation during pregnancy protected mice from LPS-induced preterm delivery and fetal death. In addition, zinc supplementation significantly alleviated LPS-induced IUGR and skeletal development retardation. Further experiments showed that zinc supplementation significantly attenuated LPS-induced expression of placental inflammatory cytokines and cyclooxygenase-2. Zinc supplementation also significantly attenuated LPS-induced activation of NF-κB and MAPK signaling in mononuclear sinusoidal trophoblast giant cells of the labyrinth zone. It inhibited LPS-induced placental AKT phosphorylation as well. In conclusion, zinc supplementation during pregnancy protects against LPS-induced fetal growth restriction and demise through its anti-inflammatory effect.

  8. Inhibition of orally produced volatile sulfur compounds by zinc, chlorhexidine or cetylpyridinium chloride--effect of concentration.

    PubMed

    Young, Alix; Jonski, Grazyna; Rölla, Gunnar

    2003-10-01

    Zinc ions, chlorhexidine (CHX) and cetylpyridinium chloride (CPC) are all known to inhibit production of volatile sulfur compounds (VSCs). The objective was to examine the anti-VSC dose-response effects of each of the above agents. Oral malodor was induced in 13 test subjects using the cysteine challenge method. The oral VSC response to rinses with 6 mm l-cysteine (pH 7.2) before and 1, 2 and 3 h after rinsing with zinc ions (Zn2+: 0.1, 0.3 and 1.0%), CHX and CPC (0.025 and 0.2%) was measured. Mouth air was analysed for VSC by gas chromatography (GC) according to current methodology. Zinc had a marked dose- and time-dependent anti-VSC effect. Zinc at 1% concentration had a somewhat unpleasant taste, whereas the lowest concentration was found acceptable. Chlorhexidine maintained a moderate anti-VSC effect over time. At 3 h, 0.2% CHX was the most effective agent but tasted relatively unpleasant. Cetylpyridinium at a concentration of 0.2% was only marginally more effective than 0.025% CHX over the 3 h, while 0.025% CPC had no better anti-VSC effect than water at both 2 h and 3 h. It was concluded that the three test agents demonstrated different anti-VSC kinetics. Although Zn had the best anti-VSC effect at 1 h, 0.2% CHX was at least as effective as 1% Zn at 3 h, most likely as a result of its unique substantivity.

  9. Anaerobic Digestion Alters Copper and Zinc Speciation.

    PubMed

    Legros, Samuel; Levard, Clément; Marcato-Romain, Claire-Emmanuelle; Guiresse, Maritxu; Doelsch, Emmanuel

    2017-09-19

    Anaerobic digestion is a widely used organic waste treatment process. However, little is known on how it could alter the speciation of contaminants in organic waste. This study was focused on determining the influence of anaerobic digestion on the speciation of copper and zinc, two metals that generally occur at high concentration in organic waste. Copper and zinc speciation was investigated by X-ray absorption spectroscopy in four different raw organic wastes (predigestion) and their digested counterparts (postdigestion, i.e., digestates). The results highlighted an increase in the digestates of the proportion of amorphous or nanostructured copper sulfides as well as amorphous or nanostructured zinc sulfides and zinc phosphate as compared to raw waste. We therefore suggest that the environmental fate of these elements would be different when spreading either digestates or raw waste on cropland.

  10. Synthesis of hydrophobic zinc borate nanoflakes and its effect on flame retardant properties of polyethylene

    NASA Astrophysics Data System (ADS)

    Li, Shengli; Long, Beihong; Wang, Zichen; Tian, Yumei; Zheng, Yunhui; Zhang, Qian

    2010-04-01

    Zinc borate (2ZnO·3B 2O 3·3.5H 2O) has relatively high dehydration on-set temperature which property permits processing in a wide range of polymer system. But zinc borate particles are hardly dispersed in a polymer matrix so that they prevent their using in industry. To address this problem, we synthesized hydrophobic zinc borate (2ZnO·3B 2O 3·3.5H 2O) nanoflakes by employing solid-liquid reaction of zinc oxide (ZnO) and boric acid (H 3BO 3) in the presence of oleic acid. This method does not bring pollution. By conducting morphological and microscopic analyses, we found that this compound displayed nanoflake morphology with particle size of around 100-200 nm, thickness less than 100 nm and there were uniform mesopores with the diameter about 10 nm within the particles. Furthermore, our products had an effect on flame retardant of polyethylene, especially when the zinc borate was modified by oleic acid.

  11. The effect of zinc on cellular immunity in chronic uremia.

    PubMed

    Antoniou, L D; Shalhoub, R J; Schechter, G P

    1981-09-01

    Delayed hypersensitivity to mumps was examined in 25 apparently well-nourished men receiving regular hemodialysis, each of whom had a history of mumps. A positive reaction was observed in eight of nine patients already under therapy with zinc added to the dialysis bath. In contrast, 11 of 16 untreated patients were anergic. Four of the anergic patients were subsequently treated with zinc resulting in restoration of sensitivity in three patients. There were no significant differences in lymphocyte, monocyte, or T-cell counts between the two groups of patients. Consequently, zinc probably acts by improving the function of one or more of these cell types. Protracted zinc deficiency may be a major cause of impaired cellular immunity in chronic renal failure.

  12. Method of capturing or trapping zinc using zinc getter materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunyadi Murph, Simona E.; Korinko, Paul S.

    2017-07-11

    A method of trapping or capturing zinc is disclosed. In particular, the method comprises a step of contacting a zinc vapor with a zinc getter material. The zinc getter material comprises nanoparticles and a metal substrate.

  13. LONG-TERM EFFECTS OF ZINC EXPOSURES ON BROOK TROUT ('SALVELINUS FONTINALIS')

    EPA Science Inventory

    Exposure of three generations of brook trout (Salvelinus fontinalis) to zinc concentrations ranging from 2.6 to 534 micrograms/liter produced no significant harmful effects. During a separate exposure of embryos and larvae, 1,368 micrograms Zn/liter significantly reduced (P = 0.0...

  14. Effect of pulsed electric fields (PEF) on accumulation of selenium and zinc ions in Saccharomyces cerevisiae cells.

    PubMed

    Pankiewicz, Urszula; Sujka, Monika; Kowalski, Radosław; Mazurek, Artur; Włodarczyk-Stasiak, Marzena; Jamroz, Jerzy

    2017-04-15

    The cultures of Saccharomyces cerevisiae were treated with pulsed electric fields (PEF) in order to obtain a maximum accumulation of selenium and zinc ions (simultaneously) in the biomass. The following concentrations: 100μgSe/ml and 150μgZn/ml medium were assumed to be optimal for the maximum accumulation of these ions, that is 43.07mg/gd.m. for selenium and 14.48mg/gd.m. for zinc, in the cultures treated with PEF. At optimal PEF parameters: electric field strength of 3kV/cm and pulse width of 10μs after the treatment of 20-h culture for 10min, the maximum accumulation of both ions in the yeast cells was observed. Application of PEF caused the increase of ions accumulation by 65% for selenium and 100% for zinc. Optimization of PEF parameters led to the further rise in the both ions accumulation resulting in over 2-fold and 2.5-fold higher concentration of selenium and zinc. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Human skin penetration and local effects of topical nano zinc oxide after occlusion and barrier impairment.

    PubMed

    Leite-Silva, V R; Sanchez, W Y; Studier, H; Liu, D C; Mohammed, Y H; Holmes, A M; Ryan, E M; Haridass, I N; Chandrasekaran, N C; Becker, W; Grice, J E; Benson, H A E; Roberts, M S

    2016-07-01

    Public health concerns continue to exist over the safety of zinc oxide nanoparticles that are commonly used in sunscreen formulations. In this work, we assessed the effects of two conditions which may be encountered in everyday sunscreen use, occlusion and a compromised skin barrier, on the penetration and local toxicity of two topically applied zinc oxide nanoparticle products. Caprylic/capric triglyceride (CCT) suspensions of commercially used zinc oxide nanoparticles, either uncoated or with a silane coating, were applied to intact and barrier impaired skin of volunteers, without and with occlusion for a period of six hours. The exposure time was chosen to simulate normal in-use conditions. Multiphoton tomography with fluorescence lifetime imaging was used to noninvasively assess zinc oxide penetration and cellular metabolic changes that could be indicative of toxicity. We found that zinc oxide nanoparticles did not penetrate into the viable epidermis of intact or barrier impaired skin of volunteers, without or with occlusion. We also observed no apparent toxicity in the viable epidermis below the application sites. These findings were validated by ex vivo human skin studies in which zinc penetration was assessed by multiphoton tomography with fluorescence lifetime imaging as well as Zinpyr-1 staining and toxicity was assessed by MTS assays in zinc oxide treated skin cryosections. In conclusion, applications of zinc oxide nanoparticles under occlusive in-use conditions to volunteers are not associated with any measurable zinc oxide penetration into, or local toxicity in the viable epidermis below the application site. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Zinc supplementation reduces the incidence of persistent diarrhea and dysentery among low socioeconomic children in India.

    PubMed

    Sazawal, S; Black, R E; Bhan, M K; Jalla, S; Bhandari, N; Sinha, A; Majumdar, S

    1996-02-01

    Persistent diarrhea (PD) and dysentery (DD) account for most diarrhea-associated deaths among children in developing countries. Zinc deficiency can cause stunting and impaired immune function, both of which are risk factors for these diarrheal illnesses. We investigated the effect of zinc supplementation on the incidence of PD and DD in a community-based, double-blind randomized trial in children 6-35 mo of age. Increase over baseline in plasma zinc concentrations in the supplemented group compared with a control group (3.61 vs. 0.009 mumol.L-1), indicated successful supplementation. The overall reductions in the zinc supplemented group of 21% in the incidence of PD (95% CI -6 to 42%) and 14% in the incidence of dysentery (95% CI -15 to 36%) were not significant. There was a significant interaction of treatment effect with baseline plasma zinc concentration and age for PD and with gender for DD. In the zinc-supplemented group compared with the control group, the incidence of PD was reduced by 73% (P < 0.05; 95% CI 34 to 91%) in children with a baseline zinc < 7.65 mumol.L-1 and by 49% (P < 0.05; 95%CI 24 to 66%) in children > 11 mo of age. Zinc supplementation resulted in a 38% (P < 0.05 95%CI 8 to 59%) reduction in the incidence of DD in boys. There was no effect on PD among children 6-11 mo old or on DD in girls. In conclusion, zinc supplementation had a significant impact on the incidence of persistent diarrhea in children > 1 y old and in children with low plasma zinc, as well as on dysentery in boys. These findings may have important implications for reducing diarrhea-related morbidity and mortality.

  17. Maternal dietary zinc supplementation enhances the epigenetic-activated antioxidant ability of chick embryos from maternal normal and high temperatures.

    PubMed

    Zhu, Yongwen; Liao, Xiudong; Lu, Lin; Li, Wenxiang; Zhang, Liyang; Ji, Cheng; Lin, Xi; Liu, Hsiao-Ching; Odle, Jack; Luo, Xugang

    2017-03-21

    The role of maternal dietary zinc supplementation in protecting the embryos from maternal hyperthermia-induced negative effects via epigenetic mechanisms was examined using an avian model (Gallus gallus). Broiler breeder hens were exposed to two maternal temperatures (21°C and 32°C) × three maternal dietary zinc treatments (zinc-unsupplemented control diet, the control diet + 110 mg zinc/kg inorganic or organic zinc) for 8 weeks. Maternal hyperthermia increased the embryonic mortality and induced oxidative damage evidenced by the elevated mRNA expressions of heat shock protein genes. Maternal dietary zinc deficiency damaged the embryonic development associated with the global DNA hypomethylation and histone 3 lysine 9 hyperacetylation in the embryonic liver. Supplementation of zinc in maternal diets effectively eliminated the embryonic mortality induced by maternal hyperthermia and enhanced antioxidant ability with the increased mRNA and protein expressions of metallothionein IV in the embryonic liver. The increased metallothionein IV mRNA expression was due to the reduced DNA methylation and increased histone 3 lysine 9 acetylation of the metallothionein IV promoter regardless of zinc source. These data demonstrate that maternal dietary zinc addition as an epigenetic modifier could protect the offspring embryonic development against maternal heat stress via enhancing the epigenetic-activated antioxidant ability.

  18. A comprehensive review of the role of zinc in normal prostate function and metabolism; and its implications in prostate cancer☆

    PubMed Central

    Costello, Leslie C.; Franklin, Renty B.

    2016-01-01

    The human prostate gland contains extremely high zinc levels; which is due to the specialized zinc-accumulating acinar epithelial of the peripheral zone. These cells evolved for their unique capability to produce and secrete extremely levels of citrate, which is achieved by the high cellular zinc level effects on the cell metabolism. This review highlights the specific functional and metabolic alterations that result from the accumulation of the high zinc levels, especially its effects on mitochondrial citrate metabolism and terminal oxidation. The implications of zinc in the development and progression of prostate cancer are described, which is the most consistent hallmark characteristic of prostate cancer. The requirement for decreased zinc resulting from down regulation of ZIP1 to prevent zinc cytotoxicity in the malignant cells is described as an essential early event in prostate oncogenesis. This provides the basis for the concept that an agent (such as the zinc ionophore, clioquinol) that facilitates zinc uptake and accumulation in ZIP1-deficient prostate tumors cells will markedly inhibit tumor growth. In the current absence of an efficacious chemotherapy for advanced prostate cancer, and for prevention of early development of malignancy; a zinc treatment regimen is a plausible approach that should be pursued. PMID:27132038

  19. Medicago truncatula Zinc-Iron Permease6 provides zinc to rhizobia-infected nodule cells.

    PubMed

    Abreu, Isidro; Saéz, Ángela; Castro-Rodríguez, Rosario; Escudero, Viviana; Rodríguez-Haas, Benjamín; Senovilla, Marta; Larue, Camille; Grolimund, Daniel; Tejada-Jiménez, Manuel; Imperial, Juan; González-Guerrero, Manuel

    2017-11-01

    Zinc is a micronutrient required for symbiotic nitrogen fixation. It has been proposed that in model legume Medicago truncatula, zinc is delivered by the root vasculature into the nodule and released in the infection/differentiation zone. There, transporters must introduce this element into rhizobia-infected cells to metallate the apoproteins that use zinc as a cofactor. MtZIP6 (Medtr4g083570) is an M. truncatula Zinc-Iron Permease (ZIP) that is expressed only in roots and nodules, with the highest expression levels in the infection/differentiation zone. Immunolocalization studies indicate that it is located in the plasma membrane of nodule rhizobia-infected cells. Down-regulating MtZIP6 expression levels with RNAi does not result in any strong phenotype when plants are fed mineral nitrogen. However, these plants displayed severe growth defects when they depended on nitrogen fixed by their nodules, losing of 80% of their nitrogenase activity. The reduction of this activity was likely an indirect effect of zinc being retained in the infection/differentiation zone and not reaching the cytosol of rhizobia-infected cells. These data are consistent with a model in which MtZIP6 would be responsible for zinc uptake by rhizobia-infected nodule cells in the infection/differentiation zone. © 2017 John Wiley & Sons Ltd.

  20. Release of iron, zinc, and lead from common iron construction bars and zinc metallic bars in water solutions and meals.

    PubMed

    Lechtig, Aarón; Lòpez de Romaña, Daniel; Boy, Erick; Vargas, Alejandro; Rosas del Portal, Mauricio; Huaylinos, María Luisa

    2007-12-01

    The use of iron pots has decreased the prevalence of anemia. To investigate the release of iron, zinc, and lead from metallic iron and zinc bars incubated in water and in meals. Iron, zinc, and lead concentrations were measured at different incubation conditions in water and in meals. The iron concentration in water was 1.26 mg/L after incubation with one iron bar at pH 7 and 100 degrees C for 20 minutes and in meals was 0.97 mg per 100 g of wet meals, rich in phytate, cooking at 100 degrees C during 20 minutes. The maximum contents were 7720 mg/L of iron and 1826 mg/L of zinc in vinegar at pH 3 and 20 degrees C after 90 and 32 days, respectively. Lead was released from the bars, but at concentrations well below the upper tolerable limits. In outreach populations, the use of iron and zinc metallic bars in water and meals could contribute to sustainable, very low-cost prevention of iron and zinc deficiencies, and home-fortified vinegar could be used for treatment of both deficiencies. Field trials should be performed to determine the impact that the use of iron and zinc metallic bars in water and meals might have on the iron and zinc status of population groups.

  1. The effect of chronic prostatitis on zinc concentration of prostatic fluid and seminal plasma: a systematic review and meta-analysis.

    PubMed

    Cui, Dong; Han, GuangWei; Shang, YongGang; Mu, LiJun; Long, QingZhi; Du, YueFeng

    2015-01-01

    Prostatitis is a common disease in urology departments. Prostatic zinc accumulation is connected with the secretory function of the prostate, and zinc concentrations present in prostatic diseases differ greatly from the normal level. Studies have investigated the effect of chronic prostatitis on zinc concentration of prostatic fluid and seminal plasma, but have shown inconsistent results. Hence, we performed a systematic literature review and meta-analysis to assess the effect of chronic prostatitis on the zinc concentration of prostatic fluid and seminal plasma. Systematic literature searches were conducted with PubMed, Embase, Science Direct/Elsevier, CNKI and the Cochrane Library up to March 2015 for case-control studies that involved the relationship between chronic prostatitis and zinc concentration of prostatic fluid and seminal plasma. Meta-analysis was performed with Review Manager and Stata software. Standard mean differences (SMDs) of zinc concentration were identified with 95% confidence intervals (95% CIs) in a random- or fixed-effects model. Our results illustrated that the zinc concentrations in prostatic fluid and seminal plasma from chronic prostatitis patients were significantly lower than normal controls (SMD [95% CI] -246.71 [-347.97, -145.44], -20.74 [-35.11, -6.37], respectively). The sample size of each study was relatively small, and a total of 731 chronic prostatitis patients and 574 normal controls were investigated in all fourteen studies. Several studies related to the subject were excluded due to lack of control data or means and standard deviations. The present study illustrates that there was a significant negative effect of chronic prostatitis on zinc concentrations of prostatic fluid and seminal plasma. Further studies with larger sample sizes are needed to better illuminate the negative impact of chronic prostatitis on zinc concentrations.

  2. Effect of glycation on human serum albumin-zinc interaction: a biophysical study.

    PubMed

    Iqbal, Sarah; Qais, Faizan Abul; Alam, Md Maroof; Naseem, Imrana

    2018-05-01

    Zinc deficiency is common in diabetes. However, the cause of this phenomenon is largely unknown. 80% of the absorbed zinc is transported through the blood in association with human serum albumin (HSA). Under persistent hyperglycemia, HSA frequently undergoes non-enzymatic glycation which can affect its structure and metal-binding function. Hence, in this study, we have examined the interaction of zinc with native and glycated HSA. The protein samples were incubated either in the presence or in the absence of physiologically elevated glucose concentration for 21 days. The samples were then analyzed for structural changes and zinc-binding ability using various spectrometric and calorimetric approaches. The study reveals changes in the three-dimensional structure of the protein upon glycation that cause local unfolding of the molecule. Most such regions are localized in subdomain IIA of HSA which plays a key role in zinc binding. This affects zinc interaction with HSA and could in part explain the perturbed zinc distribution in patients with hyperglycemia. The varying degree of HSA glycation in blood could explain the observed heterogeneity pertaining to zinc deficiency among people suffering from diabetes.

  3. Hydrogen plasma treatment for improved conductivity in amorphous aluminum doped zinc tin oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales-Masis, M., E-mail: monica.moralesmasis@epfl.ch; Ding, L.; Dauzou, F.

    2014-09-01

    Improving the conductivity of earth-abundant transparent conductive oxides (TCOs) remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H{sub 2})-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H{sub 2}-plasma treatment performed at a substrate temperature of 50 °C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitivemore » substrates.« less

  4. The Relationship between Zinc Intake and Serum/Plasma Zinc Concentration in Children: A Systematic Review and Dose-Response Meta-Analysis

    PubMed Central

    Moran, Victoria Hall; Stammers, Anna-Louise; Medina, Marisol Warthon; Patel, Sujata; Dykes, Fiona; Souverein, Olga W.; Dullemeijer, Carla; Pérez-Rodrigo, Carmen; Serra-Majem, Lluis; Nissensohn, Mariela; Lowe, Nicola M.

    2012-01-01

    Recommendations for zinc intake during childhood vary widely across Europe. The EURRECA project attempts to consolidate the basis for the definition of micronutrient requirements, taking into account relationships among intake, status and health outcomes, in order to harmonise these recommendations. Data on zinc intake and biomarkers of zinc status reported in randomised controlled trials (RCTs) can provide estimates of dose-response relationships which may be used for underpinning zinc reference values. This systematic review included all RCTs of apparently healthy children aged 1–17 years published by February 2010 which provided data on zinc intake and biomarkers of zinc status. An intake-status regression coefficient () was calculated for each individual study and calculated the overall pooled and SE () using random effects meta-analysis on a double log scale. The pooled dose-response relationship between zinc intake and zinc status indicated that a doubling of the zinc intake increased the serum/plasma zinc status by 9%. This evidence can be utilised, together with currently used balance studies and repletion/depletion studies, when setting zinc recommendations as a basis for nutrition policies. PMID:23016120

  5. Recovery of zinc and manganese from alkaline and zinc-carbon spent batteries

    NASA Astrophysics Data System (ADS)

    De Michelis, I.; Ferella, F.; Karakaya, E.; Beolchini, F.; Vegliò, F.

    This paper concerns the recovery of zinc and manganese from alkaline and zinc-carbon spent batteries. The metals were dissolved by a reductive-acid leaching with sulphuric acid in the presence of oxalic acid as reductant. Leaching tests were realised according to a full factorial design, then simple regression equations for Mn, Zn and Fe extraction were determined from the experimental data as a function of pulp density, sulphuric acid concentration, temperature and oxalic acid concentration. The main effects and interactions were investigated by the analysis of variance (ANOVA). This analysis evidenced the best operating conditions of the reductive acid leaching: 70% of manganese and 100% of zinc were extracted after 5 h, at 80 °C with 20% of pulp density, 1.8 M sulphuric acid concentration and 59.4 g L -1 of oxalic acid. Both manganese and zinc extraction yields higher than 96% were obtained by using two sequential leaching steps.

  6. On The Effect Of Zinc Melt Composition On The Structure Of Hot-Dip Galvanized Coatings

    NASA Astrophysics Data System (ADS)

    Konidaris, S.; Pistofidis, N.; Vourlias, G.; Pavlidou, E.; Stergiou, A.; Stergioudis, G.; Polychroniadis, E. K.

    2007-04-01

    Zinc hot-dip galvanizing is an effective method for the corrosion protection of ferrous materials. A way of improving the results is through the addition of various elements in the zinc melt. In the present work the effect of Ni, Bi, Cr, Mn, Se and Si at concentration of 0.5 or 1.5 wt.% was examined. Coupons of carbon steel St-37 were coated with zinc containing the above-mentioned elements and were exposed in a Salt Spray Chamber (SSC). The micro structure of these coatings was examined with SEM and XRD. In every case the usual morphology was observed, while differences at the thickness and the crystal size of each layer were induced. However the alloying elements were present in the coating affecting its reactivity and, at least in the case of Mn and Cr, improving corrosion resistance.

  7. Effects of the essential metals copper and zinc in two freshwater detritivores species: Biochemical approach.

    PubMed

    Quintaneiro, C; Ranville, J; Nogueira, A J A

    2015-08-01

    The input of metals into freshwater ecosystems from natural and anthropogenic sources impairs water quality and can lead to biological alterations in organisms and plants, compromising the structure and the function of these ecosystems. Biochemical biomarkers may provide early detection of exposure to contaminants and indicate potential effects at higher levels of biological organisation. The effects of 48h exposures to copper and zinc on Atyaephyra desmarestii and Echinogammarus meridionalis were evaluated with a battery of biomarkers of oxidative stress and the determination of ingestion rates. The results showed different responses of biomarkers between species and each metal. Copper inhibited the enzymatic defence system of both species without signs of oxidative damage. Zinc induced the defence system in E. meriodionalis with no evidence of oxidative damage. However, in A. desmarestii exposed to zinc was observed oxidative damage. In addition, only zinc had significantly reduced the ingestion rate and just for E. meridionalis. The value of the integrated biomarkers response increased with concentration of both metals, which indicates that might be a valuable tool to interpretation of data as a whole, as different parameters have different weight according to type of exposure. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Effect of Zinc Phosphate on the Corrosion Behavior of Waterborne Acrylic Coating/Metal Interface

    PubMed Central

    Wan, Hongxia; Song, Dongdong; Li, Xiaogang; Zhang, Dawei; Gao, Jin; Du, Cuiwei

    2017-01-01

    Waterborne coating has recently been paid much attention. However, it cannot be used widely due to its performance limitations. Under the specified conditions of the selected resin, selecting the function pigment is key to improving the anticorrosive properties of the coating. Zinc phosphate is an environmentally protective and efficient anticorrosion pigment. In this work, zinc phosphate was used in modifying waterborne acrylic coatings. Moreover, the disbonding resistance of the coating was studied. Results showed that adding zinc phosphate can effectively inhibit the anode process of metal corrosion and enhance the wet adhesion of the coating, and consequently prevent the horizontal diffusion of the corrosive medium into the coating/metal interface and slow down the disbonding of the coating. PMID:28773013

  9. The effect of zinc deficiency on salt taste acuity, preference, and dietary sodium intake in hemodialysis patients.

    PubMed

    Kim, So Mi; Kim, Miyeon; Lee, Eun Kyoung; Kim, Soon Bae; Chang, Jai Won; Kim, Hyun Woo

    2016-07-01

    Introduction High sodium intake is the main cause of fluid overload in hemodialysis (HD) patients, leading to increased cardiovascular mortality. High sodium intake is known to be associated with low salt taste acuity and/or high preference. As the zinc status could influence taste acuity, we analyzed the effect of zinc deficiency on salt taste acuity, preference, and dietary sodium intake in HD patients. Methods A total of 77 HD patients was enrolled in this cross-sectional study. Zinc deficiency was defined as serum zinc level with below 70 µg/mL. The patients were divided into two groups based on serum zinc level. Salt taste acuity and preference were determined by a sensory test using varying concentrations of NaCl solution, and dietary sodium intake was estimated using 3-day dietary recall surveys. Findings The mean salt recognition threshold and salt taste preference were significantly higher in the zinc deficient group than in the non-zinc deficient group. And there was significant positive correlation between salt taste preference and dietary sodium intake in zinc deficient group (r = 0.43, P = 0.002). Although, the dietary sodium intake showed a high tendency with no significance (P = 0.052), interdialytic weight gain was significantly higher in the zinc deficient group than in the non-zinc deficient group (2.68 ± 1.02 kg vs. 3.18 ± 1.02 kg; P = 0.047). Discussion Zinc deficiency may be related to low salt taste acuity and high salt preference, leading to high dietary sodium intake in HD patients. © 2016 International Society for Hemodialysis.

  10. Serum zinc, copper, retinol-binding protein, prealbumin, and ceruloplasmin concentrations in infants receiving intravenous zinc and copper supplementation.

    PubMed

    Lockitch, G; Godolphin, W; Pendray, M R; Riddell, D; Quigley, G

    1983-02-01

    One hundred twenty-seven newborn infants requiring parenteral nutrition were randomly assigned to receive differing amounts of zinc (40 to 400 micrograms/kg/day) and copper (20 or 40 micrograms/kg/day) supplementation within five birth weight groups (600 to 2,500 gm). The serum zinc concentration remained relatively constant in the group receiving the most zinc supplementation after two weeks of therapy, but declined sharply in the groups receiving less supplementation. No effect of increased copper intake was noted on ceruloplasmin values, but a difference in serum copper concentrations was noted at two weeks. No correlation was noted between serum zinc and copper values or among those for serum zinc, retinol-binding protein, and prealbumin. Reference ranges were defined for serum zinc, copper, retinol-binding protein, prealbumin, and ceruloplasmin in the preterm infant.

  11. Modeling the temporal variability of zinc concentrations in zinc roof runoff-experimental study and uncertainty analysis.

    PubMed

    Sage, Jérémie; El Oreibi, Elissar; Saad, Mohamed; Gromaire, Marie-Christine

    2016-08-01

    This study investigates the temporal variability of zinc concentrations from zinc roof runoff. The influence of rainfall characteristics and dry period duration is evaluated by combining laboratory experiment on small zinc sheets and in situ measurements under real weather conditions from a 1.6-m(2) zinc panel. A reformulation of a commonly used conceptual runoff quality model is introduced and its ability to simulate the evolution of zinc concentrations is evaluated. A systematic and sharp decrease from initially high to relatively low and stable zinc concentrations after 0.5 to 2 mm of rainfall is observed for both experiments, suggesting that highly soluble corrosion products are removed at early stages of runoff. A moderate dependence between antecedent dry period duration and the magnitude of zinc concentrations at the beginning of a rain event is evidenced. Contrariwise, results indicate that concentrations are not significantly influenced by rainfall intensities. Simulated rainfall experiment nonetheless suggests that a slight effect of rainfall intensities may be expected after the initial decrease of concentrations. Finally, this study shows that relatively simple conceptual runoff quality models may be adopted to simulate the variability of zinc concentrations during a rain event and from a rain event to another.

  12. Dietary zinc deficiency effects dorso-lateral and ventral prostate of Wistar rats: histological, biochemical and trace element study.

    PubMed

    Joshi, Sangeeta; Nair, Neena; Bedwal, R S

    2014-10-01

    Zinc deficiency has become a global problem affecting the developed and developing countries due to inhibitors in the diet which prevents its absorption or due to a very low concentration of bioavailable zinc in the diet. Being present in high concentration in the prostate and having diverse biological function, we investigated the effects of dietary zinc deficiency for 2 and 4 weeks on dorso-lateral and ventral prostate. Sixty prepubertal rats were divided into three groups: zinc control (ZC), pair fed (PF) and zinc deficient (ZD) and fed on 100 μg/g (zinc control and pair fed groups) and 1 μg/g (zinc deficient) diet. Zinc deficiency was associated with degenerative changes in dorso-lateral and ventral prostate as made evident by karyolysis, karyorhexis, cytoplasmolysis, loss of cellularisation, decreased intraluminar secretion and degeneration of fibromuscular stroma. In response, protein carbonyl, nitric oxide, acid phosphatase, 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase increased, exhibiting variable level of significance. Total protein and total zinc concentration in dorso-lateral and ventral prostate as well as in serum decreased (P < 0.001). Decrease (P < 0.001) was recorded in serum FSH and testosterone after 2 and 4 weeks of zinc deficiency. The changes were more prominent after 4 weeks of synthetic zinc deficient diet. The results indicate that zinc deficiency during prepubertal period affects the prostate structure, total protein concentration, enhanced protein carbonyl concentration, nitric oxide as well as acid phosphatase activities and impaired hydroxysteroid dehydrogenase activities. Evidently these changes could be attributed to dysfunction of dorso-lateral and ventral prostate after dietary zinc deficiency as well as impairment of metabolic and secretory activity, reduced gonadotropin levels by hypothalamus -hypophysial system which is indicative of a critical role of zinc in maintaining the prostate integrity.

  13. Anticancer activity of fungal L-asparaginase conjugated with zinc oxide nanoparticles.

    PubMed

    Baskar, G; Chandhuru, J; Sheraz Fahad, K; Praveen, A S; Chamundeeswari, M; Muthukumar, T

    2015-01-01

    Demand for developing novel delivery system for cancer treatment has increased due to the side effects present in intravenous injection of L-asparaginase. Nanoparticles are used for delivering the drugs to its destination in cancer cure. Nanobiocomposite of zinc oxide nanoparticles conjugated with L-asparaginase was produced by Aspergillus terreus and was confirmed using maximum UV-Vis absorption at 340 nm in the present work. The presence of functional groups like OH, C-H, -C=N and C=O on the surface of nanobiocomposite was found from Fourier transform infrared spectrum analysis. Size of the produced nanocomposite was found in the range of 28-63 nm using scanning electron microscope. The crystalline nature of the synthesized nanobiocomposites was confirmed by X-ray diffraction analysis. The presence of zinc oxide on synthesized nanobiocomposite was confirmed by energy dispersive spectrum analysis. The anti-cancerous nature of the synthesized zinc oxide conjugated L-asparaginase nanobiocomposite on MCF-7 cell line was studied using MTT assay. The viability of the MCF-7 cells was decreased to 35.02 % when it was treated with L-asparaginase conjugated zinc oxide nanobiocomposite. Hence it is proved that the synthesized nanobiocomposites of zinc oxide conjugated L-asparaginase has good anti-cancerous activity.

  14. The relevance of the colon to zinc nutrition

    USDA-ARS?s Scientific Manuscript database

    Globally, zinc deficiency is widespread, despite decades of research highlighting its negative effects on health, and in particular upon child health in low-income countries. Apart from inadequate dietary intake of bioavailable zinc, other significant contributors to zinc deficiency include the exce...

  15. Comparison of the effects and distribution of zinc oxide nanoparticles and zinc ions in activated sludge reactors.

    PubMed

    Zhang, Dongqing; Trzcinski, Antoine P; Oh, Hyun-Suk; Chew, Evelyn; Liu, Yu; Tan, Soon Keat; Ng, Wun Jern

    2017-09-19

    Zinc Oxide nanoparticles (ZnO NPs) are being increasingly applied in the industry, which results inevitably in the release of these materials into the hydrosphere. In this study, simulated waste-activated sludge experiments were conducted to investigate the effects of Zinc Oxide NPs and to compare it with its ionic counterpart (as ZnSO 4 ). It was found that even 1 mg/L of ZnO NPs could have a small impact on COD and ammonia removal. Under 1, 10 and 50 mg/L of ZnO NP exposure, the Chemical Oxygen Demand (COD) removal efficiencies decreased from 79.8% to 78.9%, 72.7% and 65.7%, respectively. The corresponding ammonium (NH 4 + N) concentration in the effluent significantly (P < 0.05) increased from 11.9 mg/L (control) to 15.3, 20.9 and 28.5 mg/L, respectively. Under equal Zn concentration, zinc ions were more toxic towards microorganisms compared to ZnO NPs. Under 50 mg/L exposure, the effluent Zn level was 5.69 mg/L, implying that ZnO NPs have a strong affinity for activated sludge. The capacity for adsorption of ZnO NPs onto activated sludge was found to be 2.3, 6.3, and 13.9 mg/g MLSS at influent ZnO NP concentrations of 1.0, 10 and 50 mg/L respectively, which were 1.74-, 2.13- and 2.05-fold more than under Zn ion exposure.

  16. The effect of zinc supplementation on linear growth, body composition, and growth factors in preterm infants.

    PubMed

    Díaz-Gómez, N Marta; Doménech, Eduardo; Barroso, Flora; Castells, Silvia; Cortabarria, Carmen; Jiménez, Alejandro

    2003-05-01

    The aim of our study was to evaluate the effect of zinc supplementation on linear growth, body composition, and growth factors in premature infants. Thirty-six preterm infants (gestational age: 32.0 +/- 2.1 weeks, birth weight: 1704 +/- 364 g) participated in a longitudinal double-blind, randomized clinical trial. They were randomly allocated either to the supplemental (S) group fed with a standard term formula supplemented with zinc (final content 10 mg/L) and a small quantity of copper (final content 0.6 mg/L), or to the placebo group fed with the same formula without supplementation (final content of zinc: 5 mg/L and copper: 0.4 mg/L), from 36 weeks postconceptional age until 6 months corrected postnatal age. At each evaluation, anthropometric variables and bioelectrical impedance were measured, a 3-day dietary record was collected, and a blood sample was taken. We analyzed serum levels of total alkaline phosphatase, skeletal alkaline phosphatase (sALP), insulin growth factor (IGF)-I, IGF binding protein-3, IGF binding protein-1, zinc and copper, and the concentrations of zinc in erythrocytes. The S group had significantly higher zinc levels in serum and erythrocytes and lower serum copper levels with respect to the placebo group. We found that the S group had a greater linear growth (from baseline to 3 months corrected age: Delta score deviation standard length: 1.32 +/-.8 vs.38 +/-.8). The increase in total body water and in serum levels of sALP was also significantly higher in the S group (total body water: 3 months; corrected age: 3.8 +/-.5 vs 3.5 +/-.4 kg, 6 months; corrected age: 4.5 +/-.5 vs 4.2 +/-.4 kg; sALP: 3 months; corrected age: 140.2 +/- 28.7 vs 118.7 +/- 18.8 micro g/L). Zinc supplementation has a positive effect on linear growth in premature infants.

  17. Influence of heat processing on the bioaccessibility of zinc and iron from cereals and pulses consumed in India.

    PubMed

    Hemalatha, Sreeramaiah; Platel, Kalpana; Srinivasan, Krishnapura

    2007-01-01

    Influence of heat processing on the bioaccessibility of zinc and iron from food grains consumed in India was evaluated. Cereals - rice (Oryza sativa), finger millet (Eleusine coracana), sorghum (Sorghum vulgare), wheat (Triticum aestivum), and maize (Zea mays), and pulses - chickpea (Cicer arietinum) - whole and decorticated, green gram (Phaseolus aureus) - whole and decorticated, decorticated black gram (Phaseolus mungo), decorticated red gram (Cajanus cajan), cowpea (Vigna catjang), and French bean (Phaseolus vulgaris) were examined for zinc and iron bioaccessibility by employing an in vitro dialysability procedure. Both pressure-cooking and microwave heating were tested for their influence on mineral bioaccessibility. Zinc bioaccessibility from food grains was considerably reduced upon pressure-cooking, especially in pulses. Among cereals, pressure-cooking decreased zinc bioaccessibility by 63% and 57% in finger millet and rice, respectively. All the pressure-cooked cereals showed similar percent zinc bioaccessibility with the exception of finger millet. Bioaccessibility of zinc from pulses was generally lower as a result of pressure-cooking or microwave heating. The decrease in bioaccessibility of zinc caused by microwave heating ranged from 11.4% in chickpea (whole) to 63% in cowpea. Decrease in zinc bioaccessibility was 48% in pressure-cooked whole chickpea, 45% and 55% in pressure-cooked or microwave-heated whole green gram, 32% and 22% in pressure-cooked or microwave-heated decorticated green gram, and 45% in microwave-heated black gram. Iron bioaccessibility, on the other hand, was significantly enhanced generally from all the food grains studied upon heat treatment. Thus, heat treatment of grains produced contrasting effect on zinc and iron bioaccessibility.

  18. Preparation, characterization and bioactivities of Athelia rolfsii exopolysaccharide-zinc complex (AEPS-zinc).

    PubMed

    Dong, Jinman; Li, Hongmei; Min, Weihong

    2018-07-01

    A new Athelia rolfsii exopolysaccharides (AEPS) were purified by Sephacryl S-300 and S-200. The physicochemical characteristics of AEPS fractions were assayed by HPGPC and GC methods. The structures of AEPS and AEPS‑zinc complex were characterized by SEM, FTIR and NMR. Moreover, the bioactivities of complex were also evaluated by experiments in vitro and in vivo. AEPSI consisted of glucose, galacturonic acid, talose, galactose, mannose and xylose, the relative contents of them were 24.74, 19.60, 33.65, 8.77, 7.97 and 5.28%, respectively. AEPSII consisted of glucose, inositol, galacturonic acid, ribitol, gluconic acid, talose and xylose, whose relative contents were 36.06, 21.21, 12.78, 11.07, 6.58, 5.45 and 6.82%, respectively. The Mw and Mn of AEPSI were 6.1324×10 4 and 1.4218×10 4 Da, those of AEPSII were 517 and 248Da. SEM observations showed that microstructures of AEPS and AEPS‑zinc complex were obviously different both in size and shape. FTIR and NMR analysis indicated that AEPS might chelate with zinc ion through hydroxy and carboxy group. In vitro experiments showed that AEPS‑zinc complex had a good bioavailability, in vivo experiments showed that it had good effect on improving zinc deficiency and antioxidant activities, which suggested that it could be used as zinc supplementation with high antioxidant activities. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Zinc supplementation in rats impairs hippocampal-dependent memory consolidation and dampens post-traumatic recollection of stressful event.

    PubMed

    Contestabile, Antonio; Peña-Altamira, Emiliano; Virgili, Marco; Monti, Barbara

    2016-06-01

    Zinc is a trace element important for synaptic plasticity, learning and memory. Zinc deficiency, both during pregnancy and after birth, impairs cognitive performance and, in addition to memory deficits, also results in alterations of attention, activity, neuropsychological behavior and motor development. The effects of zinc supplementation on cognition, particularly in the adult, are less clear. We demonstrate here in adult rats, that 4 week-long zinc supplementation given by drinking water, and approximately doubling normal daily intake, strongly impairs consolidation of hippocampal-dependent memory, tested through contextual fear conditioning and inhibitory avoidance. Furthermore, the same treatment started after memory consolidation of training for the same behavioral tests, substantially dampens the recall of the stressful event occurred 4 weeks before. A molecular correlate of the amnesic effect of zinc supplementation is represented by a dysregulated function of GSK-3ß in the hippocampus, a kinase that participates in memory processes. The possible relevance of these data for humans, in particular regarding post-traumatic stress disorders, is discussed in view of future investigation. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  20. Effects of Chronic and Acute Zinc Supplementation on Myocardial Ischemia-Reperfusion Injury in Rats.

    PubMed

    Ozyıldırım, Serhan; Baltaci, Abdulkerim Kasim; Sahna, Engin; Mogulkoc, Rasim

    2017-07-01

    The present study aims to explore the effects of chronic and acute zinc sulfate supplementation on myocardial ischemia-reperfusion injury in rats. The study registered 50 adult male rats which were divided into five groups in equal numbers as follows: group 1, normal control; group 2, sham; group 3, myocardial ischemia reperfusion (My/IR): the group which was fed on a normal diet and in which myocardial I/R was induced; group 4, myocardial ischemia reperfusion + chronic zinc: (5 mg/kg i.p. zinc sulfate for 15 days); and group 5, myocardial ischemia reperfusion + acute zinc: the group which was administered 15 mg/kg i.p. zinc sulfate an hour before the operation and in which myocardial I/R was induced. The collected blood and cardiac tissue samples were analyzed using spectrophotometric method to determine levels of MDA, as an indicator of tissue injury, and GSH, as an indicator of antioxidant activity. The highest plasma and heart tissue MDA levels were measured in group 3 (p < 0.05). Group 5 had lower MDA values than group 3, while group 4 had significantly lower MDA values than groups 3 and 5 (p < 0.05). The highest erythrocyte GSH values were found in group 4 (p < 0.05). Erythrocyte GSH values in group 5 were higher than those in group 3 (p < 0.05). The highest GSH values in heart tissue were measured in group 4 (p < 0.05). The results of the study reveal that the antioxidant activity inhibited by elevated oxidative stress in heart ischemia reperfusion in rats is restored partially by acute zinc administration and markedly by chronic zinc supplementation.

  1. Fuel additives and heat treatment effects on nanocrystalline zinc ferrite phase composition

    NASA Astrophysics Data System (ADS)

    Hu, Ping; Pan, De-an; Wang, Xin-feng; Tian, Jian-jun; Wang, Jian; Zhang, Shen-gen; Volinsky, Alex A.

    2011-03-01

    Nanocrystalline ZnFe 2O 4 powder was prepared by the auto-combustion method using citric acid, acetic acid, carbamide and acrylic acid as fuel additives. Pure spinel zinc ferrite with the crystallite size of about 15 nm can be obtained by using acrylic acid as fuel additive. Samples prepared using other fuel additives contain ZnO impurities. In order to eliminate ZnO impurities, the sample prepared with citric acid as fuel additive was annealed at different temperatures up to 1000 °C in air and in argon. Annealed powders have pure ZnFe 2O 4 phase when annealing temperature is higher than 650 °C in air. Sample annealed at 650 °C in air is paramagnetic. However, annealed powders become a mixture of Fe 3O 4 and FeO after annealing at 1000 °C in argon atmosphere due to Zn volatility and the reduction reaction.

  2. Status of zinc injection in PWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergmann, C.A.

    1995-03-01

    Based on laboratory and other studies, it was concluded that zinc addition in a PWR primary coolant should result in reduced Alloy 600 PWSCC and general corrosion rates of the materials of construction. Because of these positive results, a Westinghouse Owner`s Subgroup, EPRI, and Westinghouse provided funds to continue the development and application of zinc in an operating plant. As part of the program, Southern Operating Nuclear Company agreed to operate the Farley 2 plant with zinc addition as a demonstration test of the effectiveness of zinc. Since zinc is incorporated in the corrosion oxide film on the primary systemmore » surfaces and Farley 2 is a mature plant, it was estimated that about 10 kgs of zinc would be needed to condition the plant before an equilibrium value in the coolant would be reached. The engineered aspects of a Zinc Addition and Monitoring System (ZAMS) considered such items as the constitutents, location, sizing and water supply of the ZAMS. Baseline data such as the PWSCC history of the Alloy 600 steam generator tubing, fuel oxide thickness, fuel crud deposits, radiation levels, and RCP seal leak-off rates were obtained before zinc addition is initiated. This presentation summarizes some of the work performed under the program, and the status of zinc injection in the Farley 2 plant.« less

  3. Yacon effects in immune response and nutritional status of iron and zinc in preschool children.

    PubMed

    Vaz-Tostes, Maria das Graças; Viana, Mirelle Lomar; Grancieri, Mariana; Luz, Tereza Cecília dos Santos; Paula, Heberth de; Pedrosa, Rogério Graça; Costa, Neuza Maria Brunoro

    2014-06-01

    The aim of this study was to evaluate the effect of yacon flour on iron and zinc nutritional status and immune response biomarkers in preschool children. Preschool children ages 2 to 5 y were selected from two nurseries and were placed into a control group (n = 58) or a yacon group (n = 59). The yacon group received yacon flour in preparations for 18 wk at a quantity to provide 0.14 g of fructooligosaccharides/kg of body weight daily. Anthropometric parameters were measured before and after the intervention and dietary intake was measured during the intervention. To assess iron and zinc status, erythrograms, serum iron, ferritin, and plasma, and erythrocyte zinc were evaluated. Systemic immune response was assessed by the biomarkers interleukin IL-4, IL-10, IL-6, and tumor necrosis factor-alfa (TNF-α). Intestinal immune response was analyzed by secretory IgA (sIgA) levels before and after the intervention. Statistical significance was evaluated using the paired t test (α = 5%). Before and after the study, the children presented a high prevalence of overweight and an inadequate dietary intake of zinc and fiber. The yacon group presented with lower hemoglobin, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration at the end of the study (P < 0.05). Erythrocyte zinc was reduced in both groups at the end of the study (P < 0.05). Yacon intake increased the serum levels of IL-4 and fecal sIgA (P < 0.05). The control group had lower serum TNF-α after the study period (P < 0.05). Yacon improved intestinal immune response but demonstrated no effect on the nutritional status of iron and zinc in preschool children. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. The role of zinc plus octenidine in the regulation of gene expression: an in vitro study.

    PubMed

    Lauritano, D; Candotto, V; Bignozzi, C A; Pazzi, D; Carinci, F; Cura, F; Tagliabue, A; Tettamanti, L

    2018-01-01

    Zinc was known in ancient times, and is diffused in the environment. The potential benefits offered by zinc supplementary therapy have been demonstrated in numerous clinical trials using oral or topical zinc products. The benefit of zinc can be in principle increased through association with other actives. The aim of this study is to evaluate the effect on primary human gingival fibroblast cell of a new formulation containing zinc and octenidine cations. Human gingival fibroblast cells were obtained from three healthy patients (14-year-old man, 15-year-old woman and 20-year-old man) during extraction of teeth. The gene expression of 14 genes (ELANE, FN1, FBN, ITGA1, HAS1, ELN, DSP, ITGB1, HYAL1,TGFB1, TGFB2, TGFB3, TGFBR1 and TGFBR2) was investigated in HGF cell culture treated with 80μm of Octenidine, 1000μm of Zinc, 80μm Octenidine + Zinc solution and the medium alone at 30 min. Prestoblue™ data showed that as the active concentration increases (Octenidine, Zinc and Octenidine + Zinc) the percentage of cell vitality compared to that of untreated cells decrease. In this study, no statistically significant gene expression was observed between cells, treated with difference substances, and control cells. Our results points out that zinc plus octenidine shows a positive potential in periodontal disease treatment.

  5. Acute and long-term in vitro effects of zinc oxide nanoparticles.

    PubMed

    Annangi, Balasubramanyam; Rubio, Laura; Alaraby, Mohamed; Bach, Jordi; Marcos, Ricard; Hernández, Alba

    2016-09-01

    Since most of the toxic studies of zinc oxide nanoparticles (ZnO NPs) focused on acute and high-dose exposure conditions, the aim of the present study was to fill the existing knowledge gap of long-term effects of ZnO NPs at sub-toxic doses. To overcome this point, we have evaluated the toxic, genotoxic, and carcinogenic effects of ZnO NPs under long-term treatments (12 weeks), using a sub-toxic dose (1 µg/mL) according to acute 48-h exposure. Preliminarily, oxidative stress and genotoxic/oxidative DNA damage were determined under acute exposure and high-dose conditions. To determine the role of oxidative DNA damage, a wild-type mouse embryonic fibroblast (MEF Ogg1 (+/+)) and its isogenic 8-oxo-guanine DNA glycosylase 1 (Ogg1) knockout partner (MEF Ogg1 (-/-)) cell lines were used. Although short-term exposure (24-h) experiments demonstrated that ZnO NPs were able to induce ROS, genotoxicity, and oxidative DNA damage in both cell lines, no effects were obtained under long-term exposure scenario. Thus, 1 µg/mL exposure over 12 weeks was unable to induce genotoxicity as well as cellular transformation in both cell types, as indicated by the lack of observed morphological cell changes, variations in the secretion of matrix metalloproteinases, and anchorage-independent cell growth ability, regarded as cancer-like phenotypic hallmarks. Our results indicate that short-term effects of ZnO NP exposure are not replicated under long-term and sub-toxic dose conditions. All together, the lack of genotoxic/carcinogenic effects after chronic treatments seem to indicate a reduced risk associated with ZnO NP exposure.

  6. Incorporation of zinc oxide nanoparticles into chitosan-collagen 3D porous scaffolds: Effect on morphology, mechanical properties and cytocompatibility of 3D porous scaffolds.

    PubMed

    Ullah, Saleem; Zainol, Ismail; Idrus, Ruszymah Hj

    2017-11-01

    The zinc oxide nanoparticles (particles size <50nm) incorporated into chitosan-collagen 3D porous scaffolds and investigated the effect of zinc oxide nanoparticles incorporation on microstructure, mechanical properties, biodegradation and cytocompatibility of 3D porous scaffolds. The 0.5%, 1.0%, 2.0% and 4.0% zinc oxide nanoparticles chitosan-collagen 3D porous scaffolds were fabricated via freeze-drying technique. The zinc oxide nanoparticles incorporation effects consisting in chitosan-collagen 3D porous scaffolds were investigated by mechanical and swelling tests, and effect on the morphology of scaffolds examined microscopically. The biodegradation and cytocompatibility tests were used to investigate the effects of zinc oxide nanoparticles incorporation on the ability of scaffolds to use for tissue engineering application. The mean pore size and swelling ratio of scaffolds were decreased upon incorporation of zinc oxide nanoparticles however, the porosity, tensile modulus and biodegradation rate were increased upon incorporation of zinc oxide nanoparticles. In vitro culture of human fibroblasts and keratinocytes showed that the zinc oxide nanoparticles facilitated cell adhesion, proliferation and infiltration of chitosan-collagen 3D porous scaffolds. It was found that the zinc oxide nanoparticles incorporation enhanced porosity, tensile modulus and cytocompatibility of chitosan-collagen 3D porous scaffolds. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Zinc Finger-Containing Cellular Transcription Corepressor ZBTB25 Promotes Influenza Virus RNA Transcription and Is a Target for Zinc Ejector Drugs.

    PubMed

    Chen, Shu-Chuan; Jeng, King-Song; Lai, Michael M C

    2017-10-15

    viral replication is its dual transcription functions, namely, promoting viral RNA transcription through binding to the U-rich region of vRNA and suppressing cellular interferon production. ZBTB25 contains a zinc finger domain that is required for RNA-inhibitory activity by chelating zinc ions. Disulfiram treatment disrupts the zinc finger functions, effectively repressing IAV replication. Based on our findings, we demonstrate that ZBTB25 regulates IAV RNA transcription and replication and serves as a promising antiviral target for IAV treatment. Copyright © 2017 American Society for Microbiology.

  8. Zinc Finger-Containing Cellular Transcription Corepressor ZBTB25 Promotes Influenza Virus RNA Transcription and Is a Target for Zinc Ejector Drugs

    PubMed Central

    Chen, Shu-Chuan; Jeng, King-Song

    2017-01-01

    regulation of viral replication is its dual transcription functions, namely, promoting viral RNA transcription through binding to the U-rich region of vRNA and suppressing cellular interferon production. ZBTB25 contains a zinc finger domain that is required for RNA-inhibitory activity by chelating zinc ions. Disulfiram treatment disrupts the zinc finger functions, effectively repressing IAV replication. Based on our findings, we demonstrate that ZBTB25 regulates IAV RNA transcription and replication and serves as a promising antiviral target for IAV treatment. PMID:28768860

  9. Analysis of the effects of natural organic matter in zinc beneficiation

    USDA-ARS?s Scientific Manuscript database

    In this study, we present the analysis of the effects of Natural Organic Matter (NOM) in zinc beneficiation from abandoned mine tailings using bioleaching technologies. We used standardized Suwannee River Humic Acid (SRHA) as the NOM source to analyze the importance of the quality of the process wat...

  10. Effect of surface treatment and type of cement on push-out bond strength of zirconium oxide posts.

    PubMed

    Almufleh, Balqees S; Aleisa, Khalil I; Morgano, Steven M

    2014-10-01

    The effect of the surface treatment of zirconium oxide posts on their push-out bond strength is controversial. The purpose of this study was to compare the effects of 2 surface treatments on the bond strength of zirconium oxide posts cemented with different cements and to assess the failure mode. Seventy extracted human teeth were divided into 7 groups (n=10). Custom zirconium oxide posts (Cercon; Degudent) were fabricated for 6 groups. Posts in 3 groups were airborne-particle abraded (A). Posts in the other 3 groups were tribochemical silica coated (T). Three cements were used. Zinc phosphate cement was used to cement the zirconium oxide posts in groups AZ and TZ, RelyX ARC cement was used in groups ARA and TRA, and RelyX Unicem cement was used in groups ARU and TRU. Group C contained custom metal posts cemented with zinc phosphate cement. Specimens were horizontally sectioned into 3 sections and subjected to a push-out test. A mixed model analysis of variance, 1-way ANOVA, and the Tukey multiple comparison tests were used for statistical analysis. The highest push-out bond strength was recorded for Group ARU (21.03 MPa), and the lowest was recorded for Group ARA (7.57 MPa). No significant difference in push-out bond strength was found among the different surface treatments and root regions (P>.05). The type of cement had a significant effect on the push-out bond strength of zirconium oxide posts (P=.049). RelyX Unicem cement recorded (19.57 ±8.83 MPa) significantly higher push-out bond strength compared with zinc phosphate (9.95 ±6.31 MPa) and RelyX ARC cements (9.39 ±5.45 MPa). Adhesive failure at the post-cement interface was recorded for 75% of the posts cemented with zinc phosphate and RelyX ARC cements, while mixed failure was recorded for 75% of the posts cemented with RelyX Unicem cement. The type of cement used resulted in a statistically significant difference in the push-out bond strength of zirconium oxide posts, while both the surface treatment

  11. The effect of zinc supplementation of lactating rats on short-term and long-term memory of their male offspring.

    PubMed

    Karami, Mohammad; Ehsanivostacolaee, Simin; Moazedi, Ali Ahmad; Nosrati, Anahita

    2013-01-01

    In this study the effect of zinc chloride (ZnCl2) administration on the short-term and long-term memory of rats were assessed. We enrolled six groups of adult female and control group of eight Wistar rats in each group. One group was control group with free access to food and water, and five groups drunk zinc chloride in different doses (20, 30, 50, 70 and 100 mg/kg/day) in drinking water for two weeks during lactation .One month after birth, a shuttle box used to short- term and long-term memory and the latency in entering the dark chamber as well. This experiment showed that maternal 70 mg/kg dietary zinc during lactation influenced the working memory of rats' offspring in all groups. Rats received 100 mg/kg/day zinc during lactation so they had significant impairment in working memory (short-term) of their offspring (P<0.05). There was no significant difference in reference (long-term) memory of all groups. Drug consumption below70 mg/kg/day zinc chloride during lactation had no effect. While enhanced 100 mg/ kg/ day zinc in lactating rats could cause short-term memory impairment.

  12. Effects of enhanced zinc and copper in drinking water on spatial memory and fear conditioning

    USGS Publications Warehouse

    Chrosniak, L.D.; Smith, L.N.; McDonald, C.G.; Jones, B.F.; Flinn, J.M.

    2006-01-01

    Ingestion of enhanced zinc can cause memory impairments and copper deficiencies. This study examined the effect of zinc supplementation, with and without copper, on two types of memory. Rats raised pre- and post-natally on 10 mg/kg ZnCO3 or ZnSO4 in the drinking water were tested in a fear-conditioning experiment at 11 months of age. Both zinc groups showed a maladaptive retention of fearful memories compared to controls raised on tap water. Rats raised on 10 mg/kg ZnCO3, 10 mg/kg ZnCO3 + 0.25 mg/kg CuCl2, or tap water, were tested for spatial memory ability at 3 months of age. Significant improvements in performance were found in the ZnCO3 + CuCl2 group compared to the ZnCO3 group, suggesting that some of the cognitive deficits associated with zinc supplementation may be remediated by addition of copper. ?? 2005 Elsevier B.V. All rights reserved.

  13. Morphology control of zinc regeneration for zinc-air fuel cell and battery

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Pei, Pucheng; Ma, Ze; Xu, Huachi; Li, Pengcheng; Wang, Xizhong

    2014-12-01

    Morphology control is crucial both for zinc-air batteries and for zinc-air fuel cells during zinc regeneration. Zinc dendrite should be avoided in zinc-air batteries and zinc pellets are yearned to be formed for zinc-air fuel cells. This paper is mainly to analyze the mechanism of shape change and to control the zinc morphology during charge. A numerical three-dimensional model for zinc regeneration is established with COMSOL software on the basis of ionic transport theory and electrode reaction electrochemistry, and some experiments of zinc regeneration are carried out. The deposition process is qualitatively analyzed by the kinetics Monte Carlo method to study the morphological change from the electrocrystallization point of view. Morphological evolution of deposited zinc under different conditions of direct currents and pulse currents is also investigated by simulation. The simulation shows that parametric variables of the flowing electrolyte, the surface roughness and the structure of the electrode, the charging current and mode affect morphological evolution. The uniform morphology of deposited zinc is attained at low current, pulsating current or hydrodynamic electrolyte, and granular morphology is obtained by means of an electrode of discrete columnar structure in combination with high current and flowing electrolyte.

  14. Effect of zinc and benzalkonium chloride on Nitrosomonas communis and potential nitrification in soil.

    PubMed

    Frühling, W; Rönnpagel, K; Ahlf, W

    2001-10-01

    A bacterial contact assay is described which uses a chemoautotrophic microorganism, Nitrosomonas communis (strain Nm2) to evaluate the biological effect of contaminated soils. The effects of two toxicants on the ammonium oxidation activity of the autochthonous microbial population in the soil are compared with inhibition of the same biological response in the new monospecies bioassay. Experiments were performed using soil samples dosed with organic and inorganic contaminants (benzalkonium chloride and zinc) to demonstrate the mode of operation and the sensitivity of the bioassay. The EC50 values of zinc and benzalkonium chloride were calculated to be 171 and 221 mg kg-1 soil, respectively. The toxic response provided by the bioassay can thus predict the effect of soil pollutants on the autochthonous nitrifying bacteria.

  15. Utilization of automotive shredder residues in a thermal process for recovery of manganese and zinc from zinc-carbon and alkaline spent batteries.

    PubMed

    Ippolito, N M; Belardi, G; Medici, F; Piga, L

    2016-05-01

    The aim of the study is the recovery by thermal treatment of manganese and zinc from a mixture of zinc-carbon and alkaline spent batteries, on the basis of the different phase change temperatures of the two metal-bearing phases. ASR (Automotive Shredder Residue), containing 68% of carbon, was added to the mixture to act as a reductant to metallic Zn of the zinc-bearing phases. The mixture was subsequently heated in different atmospheres (air, CO2 and N2) and at different temperatures (900°C, 1000°C and 1200°C) and stoichiometric excess of ASR (300%, 600% and 900%). Characterization of the mixture and of the residues of thermal treatment was carried out by chemical analysis, TGA/DTA, SEM and XRD. The results show that recovery of 99% of zinc (grade 97%) is achieved at 1000°C in N2 with a stoichiometric excess of car-fluff of 900%. This product could be suitable for production of new batteries after refining by hydrometallurgical way. Recovery of Mn around 98% in the residue of the treatment is achieved at any temperature and atmosphere tested with a grade of 57% at 900% excess of car-fluff. This residue is enriched in manganese oxide and could be used in the production of iron-manganese alloys. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Effect of in vitro zinc supplementation on HSPs expression and Interleukin 10 production in heat treated peripheral blood mononuclear cells of transition Sahiwal and Karan Fries cows.

    PubMed

    Sheikh, Aasif Ahmad; Aggarwal, Anjali; Aarif, Ovais

    2016-02-01

    The changing climatic scenario with apprehended rise in global temperature is likely to affect the livestock adversely vis-à-vis production and reproduction. This has prompted more focus in addressing the unfavorable effects of thermal stress in livestock system. Presuming that the trace element zinc is indispensible for cellular antioxidant system and immune function, the present study was designed to investigate the effect of zinc treatment on heat stress alleviation and immune modulation in peripheral blood mononuclear cells (PBMC) of indigenous and crossbred transition cows. Twelve cows, six each of Sahiwal and Karan Fries (KF) in their second parity with confirmed pregnancy were selected for the experiment. The blood samples were collected at -21, 0 and +21 days in relation to expected date of calving. The experiment was carried out in vitro after isolating PBMC from whole blood. The 48h cultured PBMC were subjected to assorted levels of exposures viz. 37°C, 42°C to impose heat stress and 42°C+zinc to alleviate heat stress and modulate immunity. The PBMC viability was 86%, 69% and 78%, respectively. The mRNA expression of heat shock proteins (HSP 40, 70 and 90α) and Interleukin-10 (IL-10) production varied between the two breeds vis-à-vis days and levels of exposure. The mRNA expression of HSP40 and HSP70 was significantly (P<0.05) higher in Karan Fries than the Sahiwal cows. Both the breeds showed maximum expression of HSP on the day of parturition, more so in KF than Sahiwal. There was a significant (P<0.05) difference in the HSP mRNA expression at different levels of exposure. Zinc treatment to heat stressed PBMC caused a significant (P<0.05) down regulation of HSP. For immune status, anti-inflammatory cytokine, IL-10 in the culture supernatant was accessed. The IL-10 was significantly (P<0.05) higher in Karan Fries (168.18±14.09pg/ml) than the Sahiwal cows (147.24±11.82pg/ml). The IL-10 concentration was highest on the day of calving. Zinc

  17. Zinc as an adjunct therapy in the management of severe pneumonia among Gambian children: randomized controlled trial.

    PubMed

    Howie, Stephen; Bottomley, Christian; Chimah, Osaretin; Ideh, Readon; Ebruke, Bernard; Okomo, Uduak; Onyeama, Charles; Donkor, Simon; Rodrigues, Onike; Tapgun, Mary; Janneh, Marie; Oluwalana, Claire; Kuti, Bankole; Enwere, Godwin; Esangbedo, Pamela; Doherty, Conor; Mackenzie, Grant; Greenwood, Brian; Corrah, Tumani; Prentice, Andrew; Adegbola, Richard; Zaman, Syed

    2018-06-01

    The benefit of zinc as an adjunct therapy for severe pneumonia is not established. We assessed the benefit of adjunct zinc therapy for severe pneumonia in children and determined whether the study children were zinc deficient. This was a randomized, parallel group, double-blind, placebo-controlled trial with an allocation ratio of 1:1 conducted in children with severe pneumonia to evaluate the efficacy of daily zinc as an adjunct treatment in preventing 'treatment failure' (presence of any sign of severe pneumonia) on day-5 and day-10 and in reducing the time to resolution of signs of severe pneumonia. Six hundred and four children 2-59 months of age presenting with severe pneumonia at six urban and rural health care facilities in The Gambia were individually randomised to receive placebo (n = 301) or zinc (n = 303) for seven days. To determine if the study children were zinc deficient, supplementation was continued in a randomly selected subgroup of 121 children from each arm for six months post-enrolment, and height-gain, nutritional status, plasma zinc concentrations, and immune competence were compared. Percentage of treatment failure were similar in placebo and zinc arms both on day 5 (14.0% vs 14.1%) and day 10 (5.2% vs 5.9%). The time to recovery from lower chest wall indrawing and sternal retraction was longer in the placebo compared to zinc arm (24.4 vs 23.0 hours; P  = 0.011 and 18.7 vs 11.0 hours; P  = 0.006 respectively). The time to resolution for all respiratory symptoms of severity was not significantly different between placebo and zinc arms (42.3 vs 30.9 hours respectively; P  = 0.242). In the six months follow-up sub-group, there was no significant difference in height gain, height-for-age and weight-for-height Z-scores, mid upper arm circumference, plasma zinc concentrations, and anergy at six months post-enrolment. In this population, zinc given as an adjunct treatment for severe pneumonia showed no benefit in treatment

  18. Synthesis and characterization of transparent conductive zinc oxide thin films by sol-gel spin coating method

    NASA Astrophysics Data System (ADS)

    Winarski, David

    Zinc oxide has been given much attention recently as it is promising for various semiconductor device applications. ZnO has a direct band gap of 3.3 eV, high exciton binding energy of 60 meV and can exist in various bulk powder and thin film forms for different applications. ZnO is naturally n-type with various structural defects, which sparks further investigation into the material properties. Although there are many potential applications for this ZnO, an overall lack of understand and control of intrinsic defects has proven difficult to obtain consistent, repeatable results. This work studies both synthesis and characterization of zinc oxide in an effort to produce high quality transparent conductive oxides. The sol-gel spin coating method was used to obtain highly transparent ZnO thin films with high UV absorbance. This research develops a new more consistent method for synthesis of these thin films, providing insight for maintaining quality control for each step in the procedure. A sol-gel spin coating technique is optimized, yielding highly transparent polycrystalline ZnO thin films with tunable electrical properties. Annealing treatment in hydrogen and zinc atmospheres is researched in an effort to increase electrical conductivity and better understand intrinsic properties of the material. These treatment have shown significant effects on the properties of ZnO. Characterization of doped and undoped ZnO synthesized by the sol-gel spin coating method was carried out using scanning electron microscopy, UV-Visible range absorbance, X-ray diffraction, and the Hall Effect. Treatment in hydrogen shows an overall decrease in the number of crystal phases and visible absorbance while zinc seems to have the opposite effect. The Hall Effect has shown that both annealing environments increase the n-type conductivity, yielding a ZnO thin film with a carrier concentration as high as 3.001 x 1021 cm-3.

  19. Effect of soil and foliar application of zinc on grain zinc and cadmium concentration of wheat genotypes differing in Zn-efficiency

    USDA-ARS?s Scientific Manuscript database

    A two-year field experiment was carried out to investigate the effectiveness of soil and foliar applications of zinc sulfate and soil application of waste rubber ash to increase Zn and decrease cadmium (Cd) concentration in grain of 10 wheat genotypes with different Zn-efficiency. Foliar spray of zi...

  20. Pseudomonas aeruginosa Trent and zinc homeostasis.

    PubMed

    Davies, Corey B; Harrison, Mark D; Huygens, Flavia

    2017-09-01

    Pseudomonas aeruginosa is a Gram-negative pathogen and the major cause of mortality in patients with cystic fibrosis. The mechanisms that P. aeruginosa strains use to regulate intracellular zinc have an effect on infection, antibiotic resistance and the propensity to form biofilms. However, zinc homeostasis in P. aeruginosa strains of variable infectivity has not been compared. In this study, zinc homeostasis in P. aeruginosa Trent, a highly infectious clinical strain, was compared to that of a laboratory P. aeruginosa strain, ATCC27853. Trent was able to tolerate higher concentrations of additional zinc in rich media than ATCC27853. Further, pre-adaptation to additional zinc enhanced the growth of Trent at non-inhibitory concentrations but the impact of pre-adaption on the growth of ATCC27853 under the same conditions was minimal. The results establish clear differences in zinc-induced responses in Trent and ATCC27853, and how zinc homeostasis can be a promising target for the development of novel antimicrobial strategies for P. aeruginosa infection in cystic fibrosis patients. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Recent advances in zinc-air batteries.

    PubMed

    Li, Yanguang; Dai, Hongjie

    2014-08-07

    Zinc-air is a century-old battery technology but has attracted revived interest recently. With larger storage capacity at a fraction of the cost compared to lithium-ion, zinc-air batteries clearly represent one of the most viable future options to powering electric vehicles. However, some technical problems associated with them have yet to be resolved. In this review, we present the fundamentals, challenges and latest exciting advances related to zinc-air research. Detailed discussion will be organized around the individual components of the system - from zinc electrodes, electrolytes, and separators to air electrodes and oxygen electrocatalysts in sequential order for both primary and electrically/mechanically rechargeable types. The detrimental effect of CO2 on battery performance is also emphasized, and possible solutions summarized. Finally, other metal-air batteries are briefly overviewed and compared in favor of zinc-air.

  2. The effects of PPARδ agonist and zinc on ovariectomized rats' vagina.

    PubMed

    Takacs, Peter; Jaramillo, Sindy; Zhang, Yanping; Datar, Ram; Williams, Anthony; Olczyk, Joseph; Candiotti, Keith; Medina, Carlos A

    2013-01-01

    This study aimed to measure the effects of peroxisome proliferator-activated receptor-δ (PPARδ) agonist GW501516 (GW) and zinc sulfate (ZS) on ovariectomized rats' vaginal histomorphology and collagen expression. Two weeks after ovariectomy, rats received daily treatment with vaginal suppositories containing placebo, ZS, GW, ZS with GW, or estradiol for 2 weeks. Macroscopic measurements were taken and the midsection of the vagina was used for histology. Immunofluorescence was performed with antibodies against collagen I, III, and anti-actin or collagen I and V and anti-actin. Gene expression analysis of 3 collagen genes was performed by qRT-PCR. Macroscopic measurements revealed that the genital hiatus was narrower in the ZS and ZS with GW groups, and the vagina was significantly longer in the animals treated with GW, ZS with GW, and estradiol compared to the placebo group. Microscopic measurements of the vaginal layers showed that the lamina propria and the vaginal muscularis were significantly thicker in the ZS and ZS with GW group compared to the placebo.The ratio of vaginal Col1a1/Col3a1 mRNA expression was significantly up-regulated by ZS with GW compared to placebo, whereas the ratio of vaginal Col1a1/Col5a1 expression was significantly up-regulated by ZS, GW, and ZS with GW. The ratio of vaginal collagen I/III protein expression was significantly up-regulated by ZS and ZS with GW, whereas the ratio of vaginal collagen I/V expression was significantly up-regulated by estradiol, ZS, and ZS with GW compared to control. Vaginal suppositories containing zinc and PPARδ agonist significantly altered the vagina of ovariectomized rats.

  3. Zinc interstitial threshold in Al-doped ZnO film: Effect on microstructure and optoelectronic properties

    NASA Astrophysics Data System (ADS)

    Singh, Chetan C.; Panda, Emila

    2018-04-01

    In order to know the threshold quantity of the zinc interstitials that contributes to an increase in carrier concentration in the Al-doped ZnO (AZO) films and their effect on the overall microstructure and optoelectronic properties of these films, in this work, Zn-rich-AZO and ZnO thin films are fabricated by adding excess zinc (from a zinc metallic target) during their deposition in RF magnetron sputtering and are then investigated using a wide range of experimental techniques. All these films are found to grow in a ZnO hexagonal wurtzite crystal structure with strong (002) orientation of the crystallites, with no indication of Al2O3, metallic Zn, and Al. The excessively introduced zinc in these AZO and/or ZnO films is found to increase the shallow donor level defects (i.e., zinc interstitials and oxygen-related electronic defect states), which is found to significantly increase the carrier concentration in these films. Additionally, aluminum is seen to enhance the creation of these electronic defect states in these films, thereby contributing more to the overall carrier concentration of these films. However, carrier mobility is found to decrease when the carrier concentration values are higher than 4 × 1020 cm-3, because of the electron-electron scattering. Whereas the optical band gap of the ZnO films is found to increase with increasing carrier concentration because of the Burstein-Moss shift, these decrease for the AZO films due to the band gap narrowing effect caused by excess carrier concentration.

  4. Effects of Zinc Glycinate on Productive and Reproductive Performance, Zinc Concentration and Antioxidant Status in Broiler Breeders.

    PubMed

    Zhang, Ling; Wang, Yong-Xia; Xiao, Xue; Wang, Jiang-Shui; Wang, Qian; Li, Kai-Xuan; Guo, Tian-Yu; Zhan, Xiu-An

    2017-08-01

    An experiment was conducted to investigate the effects of zinc glycinate (Zn-Gly) supplementation as an alternative for zinc sulphate (ZnSO 4 ) on productive and reproductive performance, zinc (Zn) concentration and antioxidant status in broiler breeders. Six hundred 39-week-old Lingnan Yellow broiler breeders were randomly assigned to 6 groups consisting of 4 replicates with 25 birds each. Breeders were fed a basal diet (control group, 24 mg Zn/kg diet), basal diet supplemented with 80 mg Zn/kg diet from ZnSO 4 or basal diet supplemented with 20, 40, 60 and 80 mg Zn/kg diet from Zn-Gly. The experiment lasted for 8 weeks after a 4-week pre-test with the basal diet, respectively. Results showed that Zn supplementation, regardless of sources, improved (P < 0.05) the feed conversion ratio (kilogram of feed/kilogram of egg) and decreased broken egg rate, and elevated (P < 0.05) the qualified chick rate. Compared with the ZnSO 4 group, the 80 mg Zn/kg Zn-Gly group significantly increased (P < 0.05) average egg weight, fertility, hatchability and qualified chick rate, whereas it decreased (P < 0.05) broken egg rate. The Zn concentrations in liver and muscle were significantly higher (P < 0.05) in 80 mg Zn/kg Zn-Gly group than that in ZnSO 4 group. Compared with ZnSO 4 group, 80 mg Zn/kg Zn-Gly group significantly elevated (P < 0.05) the mRNA abundances of metallothionein (MT) and copper-zinc superoxide (Cu-Zn SOD), as well as the Cu-Zn SOD activity and MT concentration in liver. Moreover, the 80 mg Zn/kg Zn-Gly group had higher (P < 0.05) serum T-SOD and Cu-Zn SOD activities than that in the ZnSO 4 group. This study indicated that supplementation of Zn in basal diet improved productive and reproductive performance, Zn concentration and antioxidant status in broiler breeders, and the 80 mg Zn/kg from Zn-Gly was the optimum choice for broiler breeders compared with other levels of Zn from Zn-Gly and 80 mg/kg Zn from ZnSO 4 .

  5. Maternal and fetal plasma zinc in pre-eclampsia.

    PubMed

    Bassiouni, B A; Foda, A I; Rafei, A A

    1979-04-01

    Zinc is important for fetal growth and is involved in several important enzyme systems. Maternal and umbilical plasma zinc concentrations were determined in 52 parturient women with mild and severe pre-eclampsia, and were compared with those obtained from 20 women in labor whose pregnancies had progressed normally. A decrease in maternal as well as umbilical plasma zinc concentrations was observed in pre-eclamptic women, and this decrease was statistically significant in severe pre-eclampsia. The causes of these changes in plasma zinc concentrations in pre-eclampsia were discussed, and the possible adverse effects of zinc deficiency on the mother and fetus were mentioned. Low plasma zinc concentrations in pre-eclampsia may be a sign of zinc deficiency, implying possible risks to the mother and her fetus. It is recommended that maintenance of adequate dietary zinc nutrition during pregnancy, and particularly in pre-eclampsia, is important.

  6. Production of zinc pellets

    DOEpatents

    Cooper, J.F.

    1996-11-26

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries. 6 figs.

  7. Production of zinc pellets

    DOEpatents

    Cooper, John F.

    1996-01-01

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries.

  8. Transcriptome sequencing and analysis of zinc-uptake-related genes in Trichophyton mentagrophytes.

    PubMed

    Zhang, Xinke; Dai, Pengxiu; Gao, Yongping; Gong, Xiaowen; Cui, Hao; Jin, Yipeng; Zhang, Yihua

    2017-11-21

    Trichophyton mentagrophytes is an important zoonotic dermatophytic (ringworm) pathogen; causing severe skin infection in humans and other animals worldwide. Fortunately, commonly used fungal skin disease prevention and treatment measures are relatively simple. However, T. mentagrophytes is primarily studied at the epidemiology and drug efficacy research levels, yet current study has been unable to meet the needs of clinical medicine. Zinc is a crucial trace element for the growth and reproduction of fungi and other microorganisms. The metal ions coordinate within a variety of proteins to form zinc finger proteins, which perform many vital biological functions. Zinc transport regulatory networks have not been resolved in T. mentagrophytes. The T. mentagrophytes transcriptome will allow us to discover new genes, particularly those genes involved in zinc uptake. We found T. mentagrophytes growth to be restricted by zinc deficiency; natural T. mentagrophytes growth requires zinc ions. T. Mentagrophytes must acquire zinc ions for growth and development. The transcriptome of T. mentagrophytes was sequenced by using Illumina HiSeq™ 2000 technology and the de novo assembly of the transcriptome was performed by using the Trinity method, and functional annotation was analyzed. We got 10,751 unigenes. The growth of T. mentagrophytes is severely inhibited and there were many genes showing significant up regulation and down regulation respectively in T. mentagrophytes when zinc deficiency. Zinc deficiency can affect the expression of multiple genes of T. mentagrophytes. The effect of the zinc deficiency could be recovered in the normal medium. And we finally found the zinc-responsive activating factor (ZafA) and speculated that 4 unigenes are zinc transporters. We knocked ZafA gene by ATMT transformation in T. mentagrophytes, the result showed that ZafA gene is very important for the growth and the generation of conidia in T. mentagrophytes. The expression of 4 zinc

  9. Iron, zinc, and copper in retinal physiology and disease.

    PubMed

    Ugarte, Marta; Osborne, Neville N; Brown, Laurence A; Bishop, Paul N

    2013-01-01

    The essential trace metals iron, zinc, and copper play important roles both in retinal physiology and disease. They are involved in various retinal functions such as phototransduction, the visual cycle, and the process of neurotransmission, being tightly bound to proteins and other molecules to regulate their structure and/or function or as unbound free metal ions. Elevated levels of "free" or loosely bound metal ions can exert toxic effects, and in order to maintain homeostatic levels to protect retinal cells from their toxicity, appropriate mechanisms exist such as metal transporters, chaperones, and the presence of certain storage molecules that tightly bind metals to form nontoxic products. The pathways to maintain homeostatic levels of metals are closely interlinked, with various metabolic pathways directly and/or indirectly affecting their concentrations, compartmentalization, and oxidation/reduction states. Retinal deficiency or excess of these metals can result from systemic depletion and/or overload or from mutations in genes involved in maintaining retinal metal homeostasis, and this is associated with retinal dysfunction and pathology. Iron accumulation in the retina, a characteristic of aging, may be involved in the pathogenesis of retinal diseases such as age-related macular degeneration (AMD). Zinc deficiency is associated with poor dark adaptation. Zinc levels in the human retina and RPE decrease with age in AMD. Copper deficiency is associated with optic neuropathy, but retinal function is maintained. The changes in iron and zinc homeostasis in AMD have led to the speculation that iron chelation and/or zinc supplements may help in its treatment. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Intracellular zinc flux causes reactive oxygen species mediated mitochondrial dysfunction leading to cell death in Leishmania donovani.

    PubMed

    Kumari, Anjali; Singh, Krishn Pratap; Mandal, Abhishek; Paswan, Ranjeet Kumar; Sinha, Preeti; Das, Pradeep; Ali, Vahab; Bimal, Sanjiva; Lal, Chandra Shekhar

    2017-01-01

    Leishmaniasis caused by Leishmania parasite is a global threat to public health and one of the most neglected tropical diseases. Therefore, the discovery of novel drug targets and effective drug is a major challenge and an important goal. Leishmania is an obligate intracellular parasite that alternates between sand fly and human host. To survive and establish infections, Leishmania parasites scavenge and internalize nutrients from the host. Nevertheless, host cells presents mechanism like nutrient restriction to inhibit microbial growth and control infection. Zinc is crucial for cellular growth and disruption in its homeostasis hinders growth and survival in many cells. However, little is known about the role of zinc in Leishmania growth and survival. In this study, the effect of zinc on the growth and survival of L.donovani was analyzed by both Zinc-depletion and Zinc-supplementation using Zinc-specific chelator N, N, N', N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) and Zinc Sulfate (ZnSO4). Treatment of parasites with TPEN rather than ZnSO4 had significantly affected the growth in a dose- and time-dependent manner. The pre-treatment of promastigotes with TPEN resulted into reduced host-parasite interaction as indicated by decreased association index. Zn depletion resulted into flux in intracellular labile Zn pool and increased in ROS generation correlated with decreased intracellular total thiol and retention of plasma membrane integrity without phosphatidylserine exposure in TPEN treated promastigotes. We also observed that TPEN-induced Zn depletion resulted into collapse of mitochondrial membrane potential which is associated with increase in cytosolic calcium and cytochrome-c. DNA fragmentation analysis showed increased DNA fragments in Zn-depleted cells. In summary, intracellular Zn depletion in the L. donovani promastigotes led to ROS-mediated caspase-independent mitochondrial dysfunction resulting into apoptosis-like cell death. Therefore, cellular

  11. Zinc in Cellular Regulation: The Nature and Significance of "Zinc Signals".

    PubMed

    Maret, Wolfgang

    2017-10-31

    In the last decade, we witnessed discoveries that established Zn 2+ as a second major signalling metal ion in the transmission of information within cells and in communication between cells. Together with Ca 2+ and Mg 2+ , Zn 2+ covers biological regulation with redox-inert metal ions over many orders of magnitude in concentrations. The regulatory functions of zinc ions, together with their functions as a cofactor in about three thousand zinc metalloproteins, impact virtually all aspects of cell biology. This article attempts to define the regulatory functions of zinc ions, and focuses on the nature of zinc signals and zinc signalling in pathways where zinc ions are either extracellular stimuli or intracellular messengers. These pathways interact with Ca 2+ , redox, and phosphorylation signalling. The regulatory functions of zinc require a complex system of precise homeostatic control for transients, subcellular distribution and traffic, organellar homeostasis, and vesicular storage and exocytosis of zinc ions.

  12. Nanoparticles of Titanium and Zinc Oxides as Novel Agents in Tumor Treatment: a Review

    NASA Astrophysics Data System (ADS)

    Bogdan, Janusz; Pławińska-Czarnak, Joanna; Zarzyńska, Joanna

    2017-03-01

    Cancer has become a global problem. On all continents, a great number of people are diagnosed with this disease. In spite of the progress in medical care, cancer still ends fatal for a great number of the ill, either as a result of a late diagnosis or due to inefficiency of therapies. The majority of the tumors are resistant to drugs. Thus, the search for new, more effective therapy methods continues. Recently, nanotechnology has been attributed with big expectations in respect of the cancer fight. That interdisciplinary field of science creates nanomaterials (NMs) and nanoparticles (NPs) that can be applied, e.g., in nanomedicine. NMs and NPs are perceived as very promising in cancer therapy since they can perform as drug carriers, as well as photo- or sonosensitizers (compounds that generate the formation of reactive oxygen species as a result of either electromagnetic radiation excitation with an adequate wavelength or ultrasound activation, respectively). Consequently, two new treatment modalities, the photodynamic therapy (PDT) and the sonodynamic therapy (SDT) have been created. The attachment of ligands or antibodies to NMs or to NPs improve their selective distribution into the targeted organ or cell; hence, the therapy effectiveness can be improved. An important advantage of the targeted tumor treatment is lowering the cyto- and genotoxicity of active substance towards healthy cells. Therefore, both PDT and SDT constitute a valuable alternative to chemo- or radiotherapy. The vital role in cancer eradication is attributed to two inorganic sensitizers in their nanosized scale: titanium dioxide and zinc oxide.

  13. Zinc Supplementation Does Not Alter Indicators of Insulin Secretion and Sensitivity in Black and White Female Adolescents.

    PubMed

    Lobene, Andrea J; Kindler, Joseph M; Jenkins, Nathan T; Pollock, Norman K; Laing, Emma M; Grider, Arthur; Lewis, Richard D

    2017-07-01

    Background: Zinc is a micronutrient involved in the production of, and peripheral sensitivity to, pancreatic β cell-derived insulin. To our knowledge, the effect of zinc supplementation on insulin outcomes, and potential risk of diabetes, in otherwise healthy children in the United States has not been investigated. Objective: The objective of this study was to determine the influence of zinc supplementation on insulin outcomes in black and white girls in the early stages of adolescence. A secondary objective was to determine relations between baseline zinc concentrations and insulin outcomes. Methods: Healthy black and white girls aged 9-11 y were randomly assigned to daily supplementation of zinc (9 mg elemental Zn/d; n = 75; blacks: n = 35) or placebo ( n = 72; blacks: n = 32) for 4 wk. Fasting serum insulin, glucose, and C-peptide were assessed at baseline and at 4 wk. C-peptide and glucose values were used to calculate the computer model-derived homeostatic model assessment of insulin resistance (HOMA2-IR). Changes in outcome measures were compared by using repeated-measures, mixed-model ANOVA. Results: Baseline plasma zinc was not correlated with C-peptide ( r = -0.07), insulin ( r = -0.06), or HOMA2-IR ( r = -0.09) (all P > 0.05) after controlling for race and age. Treatment × time interactions for C-peptide and HOMA2-IR were not significant (both P > 0.05). Although the treatment × race × time interactions for C-peptide and HOMA2-IR were not significant (both P = 0.08), black girls who received the placebo experienced slight increases in C-peptide (15.7%) and HOMA2-IR (17.7%) ( P = 0.06). Conclusions: Four weeks of zinc supplementation had no effect on insulin outcomes in healthy black and white early-adolescent girls, although C-peptide and HOMA2-IR tended to increase in black girls who received placebo. Additional trials that are appropriately powered should further explore the effect of zinc on markers of diabetes risk, and whether race affects this

  14. Preventive effects of zinc against psychological stress-induced iron dyshomeostasis, erythropoiesis inhibition, and oxidative stress status in rats.

    PubMed

    Li, Yingjie; Zheng, Yuanyuan; Qian, Jianxin; Chen, Xinmin; Shen, Zhilei; Tao, Liping; Li, Hongxia; Qin, Haihong; Li, Min; Shen, Hui

    2012-06-01

    Psychological stress (PS) could cause decreased iron absorption and iron redistribution in body resulting in low iron concentration in the bone marrow and inhibition of erythropoiesis. In the present study, we investigated the effect of zinc supplementation on the iron metabolism, erythropoiesis, and oxidative stress status in PS-induced rats. Thirty-two rats were divided into two groups randomly: control group and zinc supplementation group. Each group was subdivided into two subgroups: control group and PS group. Rats received zinc supplementation before PS exposure established by a communication box. We investigated the serum corticosterone (CORT) level; iron apparent absorption; iron contents in liver, spleen, cortex, hippocampus, striatum, and serum; hematological parameters; malondialdehyde (MDA); reduced glutathione (GSH); and superoxide dismutase (SOD). Compared to PS-treated rats with normal diet, the PS-treated rats with zinc supplementation showed increased iron apparent absorption, serum iron, hemoglobin, red blood cell, GSH, and SOD activities; while the serum CORT; iron contents in liver, spleen, and regional brain; and MDA decreased. These results indicated that dietary zinc supplementation had preventive effects against PS-induced iron dyshomeostasis, erythropoiesis inhibition, and oxidative stress status in rats.

  15. Zinc

    MedlinePlus

    ... Guidelines for Americans and the U.S. Department of Agriculture's MyPlate . Where can I find out more about ... on food sources of zinc: U.S. Department of Agriculture's (USDA’s) National Nutrient Database Nutrient List for zinc ( ...

  16. Properties of ice-cream fortified with zinc and Lactobacillus casei.

    PubMed

    Gheisari, Hamid R; Ahadi, Leila; Khezli, Sanaz; Dehnavi, Tayebeh

    2016-01-01

    In this study, the possible effects of zinc on physicochemical properties of ice cream and the survival of Lactobacillus casei during a 90 days storage at -18°C was investigated. Samples were divided into four experimental groups as follows: control, zinc fortified ice cream, probiotic ice cream, zinc fortified and probiotic ice cream. The physicochemical, texture, organoleptic properties and the survival of probiotics, were investigated. Results showed that the addition of zinc did not affect the textural properties of ice creams. Viscosity and pH were independently decreased in all groups in the presence of zinc. A significant increase in the lipid oxidation rate especially in the zinc fortified group was also observed. The probiotic counts were maintained above the least advised quantities (106 cfu/g) which were subsequently reduced following the three months of storage. In the zinc fortified samples, the counts were higher compared to the other groups with no zinc addition. The addition of probiotics and zinc had no significant effect on the sensory properties of ice cream. As a final conclusion, the commercial production of zinc fortified ice cream is recommended.

  17. Zinc in the Monoaminergic Theory of Depression: Its Relationship to Neural Plasticity

    PubMed Central

    Doboszewska, Urszula; Wlaź, Piotr; Nowak, Gabriel; Radziwoń-Zaleska, Maria

    2017-01-01

    Preclinical and clinical studies have demonstrated that zinc possesses antidepressant properties and that it may augment the therapy with conventional, that is, monoamine-based, antidepressants. In this review we aim to discuss the role of zinc in the pathophysiology and treatment of depression with regard to the monoamine hypothesis of the disease. Particular attention will be paid to the recently described zinc-sensing GPR39 receptor as well as aspects of zinc deficiency. Furthermore, an attempt will be made to give a possible explanation of the mechanisms by which zinc interacts with the monoamine system in the context of depression and neural plasticity. PMID:28299207

  18. Zinc-catalyzed allenylations of aldehydes and ketones.

    PubMed

    Fandrick, Daniel R; Saha, Jaideep; Fandrick, Keith R; Sanyal, Sanjit; Ogikubo, Junichi; Lee, Heewon; Roschangar, Frank; Song, Jinhua J; Senanayake, Chris H

    2011-10-21

    The general zinc-catalyzed allenylation of aldehydes and ketones with an allenyl boronate is presented. Preliminary mechanistic studies support a kinetically controlled process wherein, after a site-selective B/Zn exchange to generate a propargyl zinc intermediate, the addition to the electrophile effectively competes with propargyl-allenyl zinc equilibration. The utility of the methodology was demonstrated by application to a rhodium-catalyzed [4+2] cycloaddition. © 2011 American Chemical Society

  19. Effects of In Vitro Zinc Sulphate Additive to The Semen Extender on Water Buffalo (Bubalusbubalis) Spermatozoa before and after Freezing

    PubMed Central

    Dorostkar, Kamran; Alavi Shoushtari, Sayed Mortaza; Khaki, Amir

    2014-01-01

    Background The objective of the study was to investigate the effects of in vitro zinc sulphate additive to semen extender on sperm parameters (progressive motility, viability, membrane integrity and DNA stability) after cryopreservation. Materials and Methods In this Prospective longitudinal laboratory study, semen samples of 5 buffalo bulls of 3-5 years old were collected at 5 different occasions from Iran, Urmia during summer and autumn 2011, 25 samples were used in each treatment. Sperm progressive motility, viability and abnormal morphology were measured before and at 0.5 (T0), 1(T1) and 2(T2) hours after diluting semen(1:10 v/v) in Tris-citric acid based extender (without egg yolk and glycerol) at 37˚C containing none (control group), 0.072, 0.144, 0.288, 0.576 and 1.152 mg/L zinc sulphate to investigate dose and time effects. Next, a Tris-citric acid-egg yolk-glycerol extender (20% egg yolk and 7% glycerol) containing the same amount of zinc sulphate was prepared, diluted semen (1:10 v/v) was cooled and kept into a refrigerated chamber (4˚C) for 4 hours to equilibrate. Sperm progressive motility, viability, abnormal morphology, membrane integrity and DNA damage were estimated.The equilibrated semen was loaded in 0.5 ml French straws and frozen in liquid nitrogen. Later, the frozen semen was thawed and the same parameters as well as total antioxidant capacity (TAC) of the frozen-thawed semen were determined. Results The results showed that zinc sulphate additive at the rate of 0.288 mg/L gave a higher protection of sperm progressive motility (53.7 ± 1.8% vs. 40.5 ± 1.7%), viability (70.8 ± 1.8% vs. 60.1 ± 1.5%), membrane integrity (67.3 ± 1.6% vs. 56.6 ± 1.7%), DNA stability (10.1 ± 0.47% vs. 11.8 ± 0.33% damaged DNA) through the process of dilution, equilibration and freeze-thawing and caused a higher TAC level (81 ± 3.3% vs. 63 ± 3.2 µmol/L) after freez-thawing compared to the control group. Adding 0.576 and 1.152 mg/L zinc sulphate, however

  20. Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self-flocculating yeast in continuous ethanol fermentation.

    PubMed

    Zhao, X Q; Xue, C; Ge, X M; Yuan, W J; Wang, J Y; Bai, F W

    2009-01-01

    The effects of zinc supplementation were investigated in the continuous ethanol fermentation using self-flocculating yeast. Zinc sulfate was added at the concentrations of 0.01, 0.05 and 0.1 g l(-1), respectively. Reduced average floc sizes were observed in all the zinc-supplemented cultures. Both the ethanol tolerance and thermal tolerance were significantly improved by zinc supplements, which correlated well with the increased ergosterol and trehalose contents in the yeast flocs. The highest ethanol concentration by 0.05 g l(-1) zinc sulfate supplementation attained 114.5 g l(-1), in contrast to 104.1 g l(-1) in the control culture. Glycerol production was decreased by zinc supplementations, with the lowest level 3.21 g l(-1), about 58% of the control. Zinc content in yeast cells was about 1.4 microMol g(-1) dry cell weight, about sixfold higher than that of control in all the zinc-supplemented cultures, and close correlation of zinc content in yeast cells with the cell viability against ethanol and heat shock treatment was observed. These studies suggest that exogenous zinc addition led to a reprogramming of cellular metabolic network, resulting in enhanced ethanol tolerance and ethanol production.

  1. Hyperaccumulation of zinc by zinc-depleted Candida utilis grown in chemostat culture.

    PubMed

    Lawford, H G; Pik, J R; Lawford, G R; Williams, T; Kligerman, A

    1980-01-01

    The steady-state levels of zinc in Candida utilis yeast grown in continuous culture under conditions of zinc limitations are <1nmol Zn2+/mg dry weight of cells. Unlike carbon-limited cells, zinc-depleted cells from a zinc-limited chemostat possess the capacity to accumulate and store zinc at levels far in excess of the steady-state level of 4 nmol/mg dry biomass observed in carbon-limited chemostat cultures. Zinc uptake is energy-dependent and apparently undirectional since accumulated 65Zn neither exists from preloaded cells nor exchanges with cold Zn2+. The transport system exhibits a high affinity for Zn2+ (Km =.36micrM) with a Vmaxof 2.2 nmol per minute per milligram dry weight of cells. Growth during the period of the uptake assay is responsible for the apparent plateau level of 35 nmol Zn2+/mg dry weight of cells achieved after 20-30 min in the presence of 65Zn at pH 4.5 and 30 degrees C. Inhibition of growth during the uptake assay by cycloheximide results in a biphasic linear pattern of zinc accumulation where the cellular zinc is about 60 nmol/mg dry weight after 1 h. The enhanced level of accumulated zinc is not inhibtory to growth. Zinc-depleted C. utilis contains elevated amounts of polyphosphate and this anionic evidence does not allow discrimination between possible regulation of zinc homestasis either by inhibitions of zinc efflux through control of the membrane carrier or by control of the synthesis of a cytoplasmic zinc-sequestering macromolecule.

  2. Zinc oxide tetrapods inhibit herpes simplex virus infection of cultured corneas

    PubMed Central

    Duggal, Neil; Jaishankar, Dinesh; Yadavalli, Tejabhiram; Hadigal, Satvik; Mishra, Yogendra Kumar; Adelung, Rainer

    2017-01-01

    Purpose Infection of the human cornea by herpes simplex virus type-1 (HSV-1) can cause significant vision loss. The purpose of this study was to develop an ex vivo model to visualize viral growth and spread in the cornea. The model was also used to analyze cytokine production and study the antiviral effects of zinc oxide tetrapods. Methods A β-galactosidase-expressing recombinant virus, HSV-1(KOS)tk12, was used to demonstrate the ability of the virus to enter and develop blue plaques on human corneal epithelial (HCE) cells and corneal tissues. Freshly obtained porcine corneas were cultured and then scratched before infection with HSV-1(KOS)tk12. The blue plaques on the corneas were imaged using a stereomicroscope. Western blot analysis for HSV-1 proteins was performed to verify HSV-1 infection of the cornea. Using the ex vivo model, zinc oxide tetrapods were tested for their anti-HSV-1 potential, and a cytokine profile was developed to assess the effects of the treatment. Results Cultured corneas and the use of β-galactosidase-expressing HSV-1(KOS)tk12 virus can provide an attractive ex vivo model to visualize and study HSV-1 entry and spread of the infection in tissues. We found that unlike cultured HCE cells, which demonstrated nearly 100% infectivity, HSV-1 infection of the cultured cornea was more restrictive and took longer to develop. We also found that the zinc oxide tetrapod–shaped nano- and microstructures inhibited HSV infection of the cultured cells, as well as the cultured corneas. The cytokine profile of the infected samples was consistent with previous studies of HSV-1 corneal infection. Conclusions The ability to visualize HSV-1 growth and spread in corneal tissues can provide new details about HSV-1 infection of the cornea and the efficacy of new cornea-specific antiviral drug candidates. The ex vivo model also demonstrates antiviral effects of zinc oxide tetrapods and adequately portrays the drug delivery issues that cornea-specific treatments

  3. Electrodeposition of zinc hydroxysulfate nanosheets and reduction to zinc metal microdendrites on polypyrrole films.

    PubMed

    Andreoli, Enrico; Rooney, Denise A; Redington, Wynette; Gunning, Robert; Breslin, Carmel B

    2012-01-01

    Nanothin sheets made of zinc sulfate hydroxide hydrate, ZnSO4[Zn(OH)2]3 x 5H2O, are easily and quickly prepared using an innovative electrochemical route onto polypyrrole-polystyrene sulfonate (PPy-PSS) films. The sheets are characterized using a range of experimental techniques. The deposits are formed on the film surface with instantaneous nucleation to grow into a network of entangled nanosheets. The effect of the experimental conditions on the deposition is reported. Interestingly, the formation of the nanosheets is observed on PPy-PSS films only, and not on films doped with other sulfate/sulfonate dopants. The zinc nanosheets can be easily electrochemically reduced to metallic zinc microdentrites.

  4. Update on zinc biology.

    PubMed

    Solomons, Noel W

    2013-01-01

    Zinc has become a prominent nutrient of clinical and public health interest in the new millennium. Functions and actions for zinc emerge as increasingly ubiquitous in mammalian anatomy, physiology and metabolism. There is undoubtedly an underpinning in fundamental biology for all of the aspects of zinc in human health (clinical and epidemiological) in pediatric and public health practice. Unfortunately, basic science research may not have achieved a full understanding as yet. As a complement to the applied themes in the companion articles, a selection of recent advances in the domains homeostatic regulation and transport of zinc is presented; they are integrated, in turn, with findings on genetic expression, intracellular signaling, immunity and host defense, and bone growth. The elements include ionic zinc, zinc transporters, metallothioneins, zinc metalloenzymes and zinc finger proteins. In emerging basic research, we find some plausible mechanistic explanations for delayed linear growth with zinc deficiency and increased infectious disease resistance with zinc supplementation. Copyright © 2013 S. Karger AG, Basel.

  5. Zinc at glutamatergic synapses.

    PubMed

    Paoletti, P; Vergnano, A M; Barbour, B; Casado, M

    2009-01-12

    It has long been known that the mammalian forebrain contains a subset of glutamatergic neurons that sequester zinc in their synaptic vesicles. This zinc may be released into the synaptic cleft upon neuronal activity. Extracellular zinc has the potential to interact with and modulate many different synaptic targets, including glutamate receptors and transporters. Among these targets, NMDA receptors appear particularly interesting because certain NMDA receptor subtypes (those containing the NR2A subunit) contain allosteric sites exquisitely sensitive to extracellular zinc. The existence of these high-affinity zinc binding sites raises the possibility that zinc may act both in a phasic and tonic mode. Changes in zinc concentration and subcellular zinc distribution have also been described in several pathological conditions linked to glutamatergic transmission dysfunctions. However, despite intense investigation, the functional significance of vesicular zinc remains largely a mystery. In this review, we present the anatomy and the physiology of the glutamatergic zinc-containing synapse. Particular emphasis is put on the molecular and cellular mechanisms underlying the putative roles of zinc as a messenger involved in excitatory synaptic transmission and plasticity. We also highlight the many controversial issues and unanswered questions. Finally, we present and compare two widely used zinc chelators, CaEDTA and tricine, and show why tricine should be preferred to CaEDTA when studying fast transient zinc elevations as may occur during synaptic activity.

  6. Effects of zinc and magnesium supplements on postpartum depression and anxiety: A randomized controlled clinical trial.

    PubMed

    Fard, Fatemeh Edalati; Mirghafourvand, Mojgan; Mohammad-Alizadeh Charandabi, Sakineh; Farshbaf-Khalili, Azizeh; Javadzadeh, Yousef; Asgharian, Hanieh

    2017-10-01

    Postpartum anxiety and depression are prevalent disorders. The authors of this study aimed to determine the effects of zinc and magnesium supplements on depressive symptoms and anxiety in postpartum women referred to three governmental, educational hospitals in Tabriz, Iran during 2014-2015. In this triple-blind, randomized, controlled clinical trial, the participants were randomly assigned to the zinc sulfate, magnesium sulfate, and placebo groups (n = 33 per group). The intervention groups received a 27-mg zinc sulfate tablet or 320-mg magnesium sulfate tablet per day for 8 weeks, whereas the control group received a placebo tablet each day during the same period. The Edinburgh Postnatal Depression Scale and the Spielberger State-Trait Anxiety Inventory were completed before and 8 weeks after the intervention. Blood samples were drawn from each participant to determine serum levels of zinc and magnesium before intervention at 48 hours after delivery. Also, a 24-hour dietary questionnaire was used during the first and last 3 days of the intervention. Adjusting for baseline scores as well as zinc and magnesium serum levels, no significant difference was observed between groups 8 weeks after delivery in mean scores of depressive symptoms (p = .553), state anxiety (p = .995), and trait anxiety (p = .234). This study concluded magnesium and zinc did not reduce postpartum anxiety and depressive symptoms.

  7. Lipopolysaccharide Exposure Induces Maternal Hypozincemia, and Prenatal Zinc Treatment Prevents Autistic-Like Behaviors and Disturbances in the Striatal Dopaminergic and mTOR Systems of Offspring

    PubMed Central

    Kirsten, Thiago Berti; Chaves-Kirsten, Gabriela P.; Bernardes, Suene; Scavone, Cristoforo; Sarkis, Jorge E.; Bernardi, Maria Martha; Felicio, Luciano F.

    2015-01-01

    Autism is characterized by social deficits, repetitive behaviors, and cognitive inflexibility. The risk factors appear to include genetic and environmental conditions, such as prenatal infections and maternal dietary factors. Previous investigations by our group have demonstrated that prenatal exposure to lipopolysaccharide (LPS), which mimics infection by gram-negative bacteria, induces autistic-like behaviors. To understand the causes of autistic-like behaviors, we evaluated maternal serum metal concentrations, which are involved in intrauterine development and infection/inflammation. We identified reduced maternal levels of zinc, magnesium, selenium and manganese after LPS exposure. Because LPS induced maternal hypozincemia, we treated dams with zinc in an attempt to prevent or ease the impairments in the offspring. We evaluated the social and cognitive autistic-like behaviors and brain tissues of the offspring to identify the central mechanism that triggers the development of autism. Prenatal LPS exposure impaired play behaviors and T-maze spontaneous alternations, i.e., it induced autistic-like behaviors. Prenatal LPS also decreased tyrosine hydroxylase levels and increased the levels of mammalian target of rapamycin (mTOR) in the striatum. Thus, striatal dopaminergic impairments may be related to autism. Moreover, excessive signaling through the mTOR pathway has been considered a biomarker of autism, corroborating our rat model of autism. Prenatal zinc treatment prevented these autistic-like behaviors and striatal dopaminergic and mTOR disturbances in the offspring induced by LPS exposure. The present findings revealed a possible relation between maternal hypozincemia during gestation and the onset of autism. Furthermore, prenatal zinc administration appears to have a beneficial effect on the prevention of autism. PMID:26218250

  8. Lipopolysaccharide Exposure Induces Maternal Hypozincemia, and Prenatal Zinc Treatment Prevents Autistic-Like Behaviors and Disturbances in the Striatal Dopaminergic and mTOR Systems of Offspring.

    PubMed

    Kirsten, Thiago Berti; Chaves-Kirsten, Gabriela P; Bernardes, Suene; Scavone, Cristoforo; Sarkis, Jorge E; Bernardi, Maria Martha; Felicio, Luciano F

    2015-01-01

    Autism is characterized by social deficits, repetitive behaviors, and cognitive inflexibility. The risk factors appear to include genetic and environmental conditions, such as prenatal infections and maternal dietary factors. Previous investigations by our group have demonstrated that prenatal exposure to lipopolysaccharide (LPS), which mimics infection by gram-negative bacteria, induces autistic-like behaviors. To understand the causes of autistic-like behaviors, we evaluated maternal serum metal concentrations, which are involved in intrauterine development and infection/inflammation. We identified reduced maternal levels of zinc, magnesium, selenium and manganese after LPS exposure. Because LPS induced maternal hypozincemia, we treated dams with zinc in an attempt to prevent or ease the impairments in the offspring. We evaluated the social and cognitive autistic-like behaviors and brain tissues of the offspring to identify the central mechanism that triggers the development of autism. Prenatal LPS exposure impaired play behaviors and T-maze spontaneous alternations, i.e., it induced autistic-like behaviors. Prenatal LPS also decreased tyrosine hydroxylase levels and increased the levels of mammalian target of rapamycin (mTOR) in the striatum. Thus, striatal dopaminergic impairments may be related to autism. Moreover, excessive signaling through the mTOR pathway has been considered a biomarker of autism, corroborating our rat model of autism. Prenatal zinc treatment prevented these autistic-like behaviors and striatal dopaminergic and mTOR disturbances in the offspring induced by LPS exposure. The present findings revealed a possible relation between maternal hypozincemia during gestation and the onset of autism. Furthermore, prenatal zinc administration appears to have a beneficial effect on the prevention of autism.

  9. Zinc impregnated cellulose nanocomposites: Synthesis, characterization and applications

    NASA Astrophysics Data System (ADS)

    Ali, Attarad; Ambreen, Sidra; Maqbool, Qaisar; Naz, Sania; Shams, Muhammad Fahad; Ahmad, Madiha; Phull, Abdul Rehman; Zia, Muhammad

    2016-11-01

    Nanocomposite materials have broad applicability due to synergistic effect of combined components. In present investigation, cellulose isolated from citrus peel waste is used as a supporting material; impregnation of zinc oxide nanoparticles via co-precipitation method. The characterization of nano composite is carried out through Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and Thermo-gravimetric analysis (TGA) resulting less than 10 μm cellulose fiber and approx. 50 nm ZnO NPs. Zinc oxide impregnated cellulose (ZnO-Cel) exhibited significant bacterial devastation property when compared to ZnO NPs or Cellulose via disc diffusion and colony forming unit methods. In addition, the ZnO-Cel exhibited significant total antioxidant, and minor DPPH free radical scavenging and total reducing power activities. The nano composite also showed time dependent increase in photocatalytic by effectively degrading methylene blue dye up to 69.5% under sunlight irradiation within 90 min. The results suggest effective utilization of cellulose obtained from citrus waste and synthesis of pharmacologically important nano-composites that can be exploited in wound dressing; defence against microbial attack and healing due to antioxidative property, furthermore can also be used for waste water treatment.

  10. Effects of sublethal exposure to zinc chloride on the reproduction of the water flea, Moina irrasa (cladocera)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, E.

    1997-03-01

    As a result of industrial activities, aquatic ecosystems have been contaminated increasingly by metals. Such occurrences pose a threat to aquatic organisms in particular and to the whole ecosystem in general. Because of their importance as part of the food chains in the freshwater ecosystem, as well as their high vulnerability to metal contaminants, the cladoceran crustaceans have attracted attention by toxicologists. The acute toxicity of metals to cladocerans has been well documented by. However, most of the investigations in chronic toxicity deal with metals not essential for life such as mercury and cadmium. It is well known that exposuremore » to mercury and cadmium can generally render inhibitory effects. However, the effects of sublethal exposure of cladocerans to metals such as zinc and selenium, which are essential for life at trace level, are not as well known. As one of the major metal contaminants in freshwater ecosystems, zinc is of ecotoxicological interest. The effects of sublethal zinc exposure, especially at low concentrations, on the reproduction of cladocerans are poorly understood. The objective of this study was to investigate the effects of exposure to a wide range of sublethal concentrations of zinc chloride on the reproduction of Moina irrasa, a cladoceran commonly found in the freshwaters of the Yangtze delta of China. 11 refs., 1 tab.« less

  11. Effects of Zinc Supplementation on Endocrine Outcomes in Women with Polycystic Ovary Syndrome: a Randomized, Double-Blind, Placebo-Controlled Trial.

    PubMed

    Jamilian, Mehri; Foroozanfard, Fatemeh; Bahmani, Fereshteh; Talaee, Rezvan; Monavari, Mahshid; Asemi, Zatollah

    2016-04-01

    The current study was conducted to evaluate the effects of zinc supplementation on endocrine outcomes, biomarkers of inflammation, and oxidative stress in patients with polycystic ovary syndrome (PCOS). This study was a randomized double-blind, placebo-controlled trial. Forty-eight women (18-40 years) with PCOS diagnosed according to Rotterdam criteria were randomly assigned to receive either 220 mg zinc sulfate (containing 50 mg zinc) (group 1; n = 24) and/or placebo (group 2; n = 24) for 8 weeks. Hormonal profiles, biomarkers of inflammation, and oxidative stress were measured at study baseline and after 8-week intervention. After 8 weeks of intervention, alopecia (41.7 vs. 12.5%, P = 0.02) decreased compared with the placebo. Additionally, patients who received zinc supplements had significantly decreased hirsutism (modified Ferriman-Gallwey scores) (-1.71 ± 0.99 vs. -0.29 ± 0.95, P < 0.001) and plasma malondialdehyde (MDA) levels (-0.09 ± 1.31 vs. +2.34 ± 5.53 μmol/L, P = 0.04) compared with the placebo. A trend toward a significant effect of zinc intake on reducing high-sensitivity C-reactive protein (hs-CRP) levels (P = 0.06) was also observed. We did observe no significant changes of zinc supplementation on hormonal profiles, inflammatory cytokines, and other biomarkers of oxidative stress. In conclusion, using 50 mg/day elemental zinc for 8 weeks among PCOS women had beneficial effects on alopecia, hirsutism, and plasma MDA levels; however, it did not affect hormonal profiles, inflammatory cytokines, and other biomarkers of oxidative stress.

  12. Effects of cadmium and zinc on ozone-induced phytotoxicity in cress and lettuce

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czuba, M.; Ormrod, D.P.

    1973-01-01

    Cadmium or zinc solutions were applied to the foliage or roots of lettuce (Lactuca sativa L. cv. Grand Rapids) and cress (Lepidium sativum L. cv. Fine Curled) at concentrations of 100 parts per million (ppm) every four days for several weeks. Four weeks after sowing, plants were fumigated with 35 parts per hundred million (pphm) ozone, for 6 hours. Cress plants which had received root application of cadmium showed markedly increased ozone-induced phytotoxicity in terms of visible leaf damage and pigment degradation; in lettuce only pigment degradation was evident. There was less effect of zinc or foliar-applied cadmium on ozonemore » phytotoxicity.« less

  13. Comparative evaluation of zinc oxide eugenol versus gelatin sponge soaked in plasma rich in growth factor in the treatment of dry socket: An initial study

    PubMed Central

    Pal, U. S.; Singh, Balendra Pratap; Verma, Vikas

    2013-01-01

    Purpose: The aim of this study was to report a comparison between the zinc oxide eugenol dressing and plasma rich in growth factor (PRGF) with gelatin sponge in the treatment of dry socket. Materials and Methods: This study comprised of 45 patients of dry socket in the span of one year. The patients were randomly divided into three groups on the basis of treatments: Group A (PRGF with gelatin sponge), group B (zinc oxide eugenol group), and group C (irrigation with sterile saline only). The clinical progress was noted at 1st, 2nd, 3rd, 7th, and 15th day after the treatment. Results: Patient's healing was better in group A than in group B but symptomatic pain relief was faster in group B. Group C fared worst in both aspects. Conclusion: We conclude that PRGF with gelatin sponge might be a treatment of choice in the management of dry socket. PMID:23853450

  14. Decrease of non-point zinc runoff using porous concrete.

    PubMed

    Harada, Shigeki; Komuro, Yoshinori

    2010-01-01

    The use of porous concrete columns to decrease the amount of zinc in stormwater runoff is examined. The concentration of zinc in a simulated stormwater fluid (zinc acetate solution), fed through concrete columns (slashed circle10x10cm) decreased by 50-81%, suggesting physical adsorption of zinc by the porous concrete. We propose the use of porous concrete columns (slashed circle50x10cm) as the base of sewage traps. Longer-term, high-zinc concentration monitoring revealed that porous concrete blocks adsorb 38.6mgcm(-3) of zinc. A period of no significant zinc runoff (with an acceptable concentration of zinc in runoff of 0.03mgL(-1), a zinc concentration equal to the Japanese Environmental Standard) is estimated for 41years using a 1-ha catchment area with 20 porous concrete sewage traps. Scanning electron microscopy of the porous concrete used in this study indicates that the needle-like particles formed by hydration action significantly increase zinc adsorption. Evidence suggests that the hydrant is ettringite and has an important role in zinc adsorption, the resulting immobilization of zinc and the subsequent effects on groundwater quality. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Cytoprotection by Endogenous Zinc in the Vertebrate Retina

    PubMed Central

    Anastassov, Ivan; Ripps, Harris; Chappell, Richard L.

    2014-01-01

    Our recent studies have shown that endogenous zinc, co-released with glutamate from the synaptic terminals of vertebrate retinal photoreceptors, provides a feedback mechanism that reduces calcium entry and the concomitant vesicular release of glutamate. We hypothesized that zinc feedback may serve to protect the retina from glutamate excitotoxicity, and conducted in vivo experiments on the retina of the skate (Raja erinacea) to determine the effects of removing endogenous zinc by chelation. These studies showed that removal of zinc by injecting the zinc chelator histidine results in inner retinal damage similar to that induced by the glutamate receptor agonist kainic acid. In contrast, when an equimolar quantity of zinc followed the injection of histidine, the retinal cells were unaffected. Our results are a good indication that zinc, co-released with glutamate by photoreceptors, provides an auto-feedback system that plays an important cytoprotective role in the retina. PMID:24286124

  16. Zinc and Zinc Transporters: Novel Regulators of Ventricular Myocardial Development.

    PubMed

    Lin, Wen; Li, Deqiang

    2018-06-01

    Ventricular myocardial development is a well-orchestrated process involving different cardiac structures, multiple signal pathways, and myriad proteins. Dysregulation of this important developmental event can result in cardiomyopathies, such as left ventricle non-compaction, which affect the pediatric population and the adults. Human and mouse studies have shed light upon the etiology of some cardiomyopathy cases and highlighted the contribution of both genetic and environmental factors. However, the regulation of ventricular myocardial development remains incompletely understood. Zinc is an essential trace metal with structural, enzymatic, and signaling function. Perturbation of zinc homeostasis has resulted in developmental and physiological defects including cardiomyopathy. In this review, we summarize several mechanisms by which zinc and zinc transporters can impact the regulation of ventricular myocardial development. Based on our review, we propose that zinc deficiency and mutations of zinc transporters may underlie some cardiomyopathy cases especially those involving ventricular myocardial development defects.

  17. UV-A induced oxidative stress is more prominent in naturally pigmented aged human RPE cells compared to non-pigmented human RPE cells independent of zinc treatment.

    PubMed

    Biesemeier, Antje; Kokkinou, Despina; Julien, Sylvie; Heiduschka, Peter; Berneburg, Mark; Bartz-Schmidt, Karl Ulrich; Schraermeyer, Ulrich

    2008-02-27

    To investigate the effects of zinc supplementation on human amelanotic (ARPE-19) and native pigmented retinal pigment epithelial cells (hRPE) under normal light conditions and after ultraviolet A light exposure. hRPE cells, containing both melanin and lipofuscin granules, were prepared from human donor eyes of 60-70 year old patients. Cells of the amelanotic ARPE-19 cell line and pigmented hRPE cells were treated with zinc chloride and subjected to oxidative stress by UV-A irradiation. Intracellular H(2)O(2) formation was measured using a fluorescence oxidation assay. Additionally, apoptosis and viability assays were performed. Control cells were treated identically except for irradiation and zinc supplementation. Under normal light conditions, zinc treated hRPE cells produced less H(2)O(2) than unsupplemented hRPE cells. Viability and apoptosis events did not change. After UV-A irradiation, ARPE and hRPE cells were greatly impaired in all tests performed compared to the non-irradiated controls. No differences were found after zinc supplementation. hRPE cells showed a higher apoptosis and mortality rate than non-pigmented cells when stressed by UV-A light. ARPE cells never showed any zinc related effects. In contrast, without irradiation, zinc supplementation reduced H(2)O(2) production in pigmented hRPE cells slightly. We did not find any zinc effect in irradiated hRPE cells. After UV light exposure, pigmented cells showed a higher apoptosis and mortality than cells lacking any pigmentation. We conclude that cells with pigmentation consisting of melanin and lipofuscin granules have more prooxidative than antioxidative capacity when stressed by UV light exposure compared to cells lacking any pigmentation.

  18. Main and interaction effects of iron, zinc, lead, and parenting on children's cognitive outcomes.

    PubMed

    Hubbs-Tait, Laura; Mulugeta, Afework; Bogale, Alemtsehay; Kennedy, Tay S; Baker, Eric R; Stoecker, Barbara J

    2009-01-01

    This study examined relations of blood lead < 10 microg/dL, iron, zinc, and parenting to Head Start children's (N = 112) scores on Peabody Picture Vocabulary Test-III (PPVT-III) and McCarthy Scales of Children's Abilities (MSCA). Venous whole blood and plasma samples were analyzed for lead and zinc by ICP-MS and iron status was assessed by serum transferrin receptors. Hierarchical regressions revealed significant effects of lead on MSCA perceptual scores and iron on PPVT-III and MSCA verbal scores. Children with lead > 2.5 microg/dL had significantly lower MSCA perceptual scores than children < 2.5 microg/dL. Permissive parenting significantly exacerbated negative effects of higher lead or lower iron on children's perceptual or verbal scores, respectively.

  19. Finger millet (Eleucine coracana) flour as a vehicle for fortification with zinc.

    PubMed

    Tripathi, Bhumika; Platel, Kalpana

    2010-01-01

    Millets, being less expensive compared to cereals and the staple for the poorer sections of population, could be the choice for fortification with micronutrients such as zinc. In view of this, finger millet, widely grown and commonly consumed in southern India, was explored as a vehicle for fortification with zinc in this investigation. Finger millet flour fortified with either zinc oxide or zinc stearate so as to provide 50mg zinc per kg flour, was specifically examined for the bioaccessibility of the fortified mineral, as measured by in vitro simulated gastrointestinal digestion procedure and storage stability. Addition of the zinc salts increased the bioaccessible zinc content by 1.5-3 times that of the unfortified flour. Inclusion of EDTA along with the fortified salt significantly enhanced the bioaccessibility of zinc from the fortified flours, the increase being three-fold. Inclusion of citric acid along with the zinc salt and EDTA during fortification did not have any additional beneficial effect on zinc bioaccessiblity. Moisture and free fatty acid contents of the stored fortified flours indicated the keeping quality of the same, up to 60 days. Both zinc oxide and zinc stearate were equally effective as fortificants, when used in combination with EDTA as a co-fortificant. The preparation of either roti or dumpling from the fortified flours stored up to 60 days did not result in any significant compromise in the bioaccessible zinc content. Thus, the present study has revealed that finger millet flour can effectively be used as a vehicle for zinc fortification to derive additional amounts of bioaccessible zinc, with reasonably good storage stability, to combat zinc deficiency. Copyright 2009 Elsevier GmbH. All rights reserved.

  20. [Interaction between fluorine and zinc after long-term oral administration into the digestive system of rats].

    PubMed

    Mazurek-Mochol, Małgorzata

    2002-01-01

    Drug interactions are the side effect of administration of two or more drugs or a drug-food combination. Although some drug interactions are intentional and beneficial to the patient, the majority are unintentional and associated with a potentially harmful effect. The aim of this study was to search for interactions in rats between fluoride and zinc administered orally for 12 weeks and to elucidate any potential toxicological and therapeutic consequences. 60 male Wistar rats were divided into six groups of ten rats each and exposed to: 1. controls (distilled water); 2. sodium fluoride (NaF); 3. low-dose zinc (Zn); 4. high-dose zinc; 5. NaF + low-dose Zn; 6. NaF + high-dose Zn. At the end of the experiment the content of F- and Zn+ in serum, urine, incisors, femur and mandible was measured and densitometry of femoral bones was performed. Serum alkaline phosphatase, alanine and aspartate aminotransferase activities, as well as bilirubin and creatinine concentrations were determined to confirm non-toxicity of fluoride dose. Animals receiving NaF only demonstrated higher content of fluorine in serum, urine bones and teeth. Zinc concentrations in serum, urine, bones and teeth were elevated in rats receiving zinc with or without NaF. Fluorine accumulation in bones and teeth was reduced by Zn, but in general the effect lacked statistical significance. Zinc slightly reduced the concentrations of fluorine in serum and urine. Sodium fluoride slightly reduced the concentration of zinc in serum and urine. Bone mineral content (BMC) was significantly increased by NaF and was not further increased by co-administration of zinc. No changes in serum alkaline phosphatase, alanine and aspartate aminotransferase activities, bilirubin and creatinine concentrations were detected. In conclusion, simultaneous administration of fluorine and zinc may be beneficial for prevention and treatment of pathologic conditions in bones and teeth and is not accompanied by an increase in fluorine

  1. The Effect of Tear Supplementation with 0.15% Preservative-Free Zinc-Hyaluronate on Ocular Surface Sensations in Patients with Dry Eye.

    PubMed

    Perényi, Kristóf; Dienes, Lóránt; Kornafeld, Anna; Kovács, Balázs; Kiss, Huba J; Szepessy, Zsuzsanna; Nagy, Zoltán Z; Barsi, Árpád; Acosta, M Carmen; Gallar, Juana; Kovács, Illés

    To evaluate the effect of tear supplementation with preservative free 0.15% zinc-hyaluronate on ocular surface sensations and corneal sensitivity in dry eye patients. Ocular surface sensations were assessed using the ocular surface disease index (OSDI) questionnaire and by recording ocular sensations during forced blinking in parallel with noninvasive tear film breakup time measurement in 20 eyes of 20 dry eye patients. Corneal sensitivity thresholds to selective stimulation of corneal mechano-, thermal- and chemical receptors were measured using the Belmonte gas esthesiometer. All baseline measurements were repeated after 1 month of treatment with 0.15% zinc-hyaluronate. After 1 month, a significant decrease in mean OSDI score (from 35.66 ± 12.36 to 15.03 ± 11.22; P < 0.001) and a significant improvement in tear film breakup time (from 3.83 ± 0.80 to 8.67 ± 4.50 s; P < 0.001) was observed compared to baseline. Sensory responses during the interblink period also significantly decreased after 1 month (P < 0.004). Corneal sensitivity thresholds to mechanical stimulation (90.61 ± 20.35 vs. 103.92 ± 17.97 mL/min; P < 0.025) and chemical stimulation (33.21 ± 0.51 vs. 33.58% ± 0.44% CO 2 ; P < 0.025) significantly increased after 1 month, however sensitivity thresholds to thermal stimulation remained unchanged compared to baseline (P > 0.05). Prolonged use of 0.15% zinc-hyaluronate results in an improvement of tear film stability and a decrease of dry eye complaints. The decrease in corneal mechano-and polymodal receptor excitability suggests that zinc-hyaluronate helps to recover normal corneal sensitivity, and thus might have a beneficial additional effect on reducing ocular surface complaints in dry eye patients.

  2. Behavioral impairments in animal models for zinc deficiency

    PubMed Central

    Hagmeyer, Simone; Haderspeck, Jasmin Carmen; Grabrucker, Andreas Martin

    2015-01-01

    Apart from teratogenic and pathological effects of zinc deficiency such as the occurrence of skin lesions, anorexia, growth retardation, depressed wound healing, altered immune function, impaired night vision, and alterations in taste and smell acuity, characteristic behavioral changes in animal models and human patients suffering from zinc deficiency have been observed. Given that it is estimated that about 17% of the worldwide population are at risk for zinc deficiency and that zinc deficiency is associated with a variety of brain disorders and disease states in humans, it is of major interest to investigate, how these behavioral changes will affect the individual and a putative course of a disease. Thus, here, we provide a state of the art overview about the behavioral phenotypes observed in various models of zinc deficiency, among them environmentally produced zinc deficient animals as well as animal models based on a genetic alteration of a particular zinc homeostasis gene. Finally, we compare the behavioral phenotypes to the human condition of mild to severe zinc deficiency and provide a model, how zinc deficiency that is associated with many neurodegenerative and neuropsychological disorders might modify the disease pathologies. PMID:25610379

  3. Zinc stress induces copper depletion in Acinetobacter baumannii.

    PubMed

    Hassan, Karl A; Pederick, Victoria G; Elbourne, Liam D H; Paulsen, Ian T; Paton, James C; McDevitt, Christopher A; Eijkelkamp, Bart A

    2017-03-11

    The first row transition metal ions zinc and copper are essential to the survival of many organisms, although in excess these ions are associated with significant toxicity. Here, we examined the impact of zinc and copper stress on Acinetobacter baumannii, a common opportunistic pathogen. We show that extracellular zinc stress induces a copper-specific depletion phenotype in A. baumannii ATCC 17978. Supplementation with copper not only fails to rescue this phenotype, but further exacerbates the copper depletion. Extensive analysis of the A. baumannii ATCC 17978 genome identified 13 putative zinc/copper resistance efflux pumps. Transcriptional analyses show that four of these transporters are responsive to zinc stress, five to copper stress and seven to the combination of zinc and copper stress, thereby revealing a likely foundation for the zinc-induced copper starvation in A. baumannii. In addition, we show that zinc and copper play crucial roles in management of oxidative stress and the membrane composition of A. baumannii. Further, we reveal that zinc and copper play distinct roles in macrophage-mediated killing of this pathogen. Collectively, this study supports the targeting of metal ion homeostatic mechanisms as an effective antimicrobial strategy against multi-drug resistant bacterial pathogens.

  4. Local anesthetic lidocaine inhibits TRPM7 current and TRPM7-mediated zinc toxicity.

    PubMed

    Leng, Tian-Dong; Lin, Jun; Sun, Hua-Wei; Zeng, Zhao; O'Bryant, Zaven; Inoue, Koichi; Xiong, Zhi-Gang

    2015-01-01

    Previous study demonstrated that overstimulation of TRPM7 substantially contributes to zinc-mediated neuronal toxicity. Inhibition of TRPM7 activity and TRPM7-mediated intracellular Zn(2+) accumulation may represent a promising strategy in the treatment of stroke. To investigate whether local anesthetics lidocaine could inhibit TRPM7 channel and TRPM7-mediated zinc toxicity. Whole-cell patch-clamp technique was used to investigate the effect of local anesthetics on TRPM7 currents in cultured mouse cortical neurons and TRPM7-overexpressed HEK293 cells. Fluorescent Zn(2+) imaging technique was used to study the effect of lidocaine on TRPM7-mediated intracellular Zn(2+) accumulation. TRPM7-mediated zinc toxicity in neurons was used to evaluate the neuroprotective effect of lidocaine. (1) Lidocaine dose dependently inhibits TRPM7-like currents, with an IC50 of 11.55 and 11.06 mM in cultured mouse cortical neurons and TRPM7-overexpressed HEK293 cells, respectively; (2) Lidocaine inhibits TRPM7 currents in a use/frequency-dependent manner; (3) Lidocaine inhibits TRPM7-mediated intracellular Zn(2+) accumulation in both cortical neurons and TRPM7-overexpressed HEK293 cells; (4) TRPM7-mediated Zn(2+) toxicity is ameliorated by lidocaine in cortical neurons; (5) QX-314 has a similar inhibitory effect as lidocaine on TRPM7 currents when applied extracellularly; (6) Procaine also shows potent inhibitory effect on the TRPM7 currents in cortical neurons. Our data provide the first evidence that local anesthetic lidocaine inhibits TRPM7 channel and TRPM7-mediated zinc toxicity. © 2014 John Wiley & Sons Ltd.

  5. Preservation of Intestinal Structural Integrity by Zinc Is Independent of Metallothionein in Alcohol-Intoxicated Mice

    PubMed Central

    Lambert, Jason C.; Zhou, Zhanxiang; Wang, Lipeng; Song, Zhenyuan; McClain, Craig J.; Kang, Y. James

    2004-01-01

    Intestinal-derived endotoxins are importantly involved in alcohol-induced liver injury. Disruption of intestinal barrier function and endotoxemia are common features associated with liver inflammation and injury due to acute ethanol exposure. Zinc has been shown to inhibit acute alcohol-induced liver injury. This study was designed to determine the inhibitory effect of zinc on alcohol-induced endotoxemia and whether the inhibition is mediated by metallothionein (MT) or is independent of MT. MT knockout (MT-KO) mice were administered three oral doses of zinc sulfate (2.5 mg zinc ion/kg body weight) every 12 hours before being administered a single dose of ethanol (6 g/kg body weight) by gavage. Ethanol administration caused liver injury as determined by increased serum transaminases, parenchymal fat accumulation, necrotic foci, and an elevation of tumor necrosis factor (TNF-α). Increased plasma endotoxin levels were detected in ethanol-treated animals whose small intestinal structural integrity was compromised as determined by microscopic examination. Zinc supplementation significantly inhibited acute ethanol-induced liver injury and suppressed hepatic TNF-α production in association with decreased circulating endotoxin levels and a significant protection of small intestine structure. As expected, MT levels remained undetectable in the MT-KO mice under the zinc treatment. These results thus demonstrate that zinc preservation of intestinal structural integrity is associated with suppression of endotoxemia and liver injury induced by acute exposure to ethanol and the zinc protection is independent of MT. PMID:15161632

  6. Dysregulation of hepatic zinc transporters in a mouse model of alcoholic liver disease

    PubMed Central

    Sun, Qian; Li, Qiong; Zhong, Wei; Zhang, Jiayang; Sun, Xiuhua; Tan, Xiaobing; Yin, Xinmin; Sun, Xinguo; Zhang, Xiang

    2014-01-01

    Zinc deficiency is a consistent phenomenon observed in patients with alcoholic liver disease, but the mechanisms have not been well defined. The objective of this study was to determine if alcohol alters hepatic zinc transporters in association with reduction of hepatic zinc levels and if oxidative stress mediates the alterations of zinc transporters. C57BL/6 mice were pair-fed with the Lieber-DeCarli control or ethanol diets for 2, 4, or 8 wk. Chronic alcohol exposure reduced hepatic zinc levels, but increased plasma and urine zinc levels, at all time points. Hepatic zinc finger proteins, peroxisome proliferator-activated receptor-α (PPAR-α) and hepatocyte nuclear factor 4α (HNF-4α), were downregulated in ethanol-fed mice. Four hepatic zinc transporter proteins showed significant alterations in ethanol-fed mice compared with the controls. ZIP5 and ZIP14 proteins were downregulated, while ZIP7 and ZnT7 proteins were upregulated, by ethanol exposure at all time points. Immunohistochemical staining demonstrated that chronic ethanol exposure upregulated cytochrome P-450 2E1 and caused 4-hydroxynonenal accumulation in the liver. For the in vitro study, murine FL-83B hepatocytes were treated with 5 μM 4-hydroxynonenal or 100 μM hydrogen peroxide for 72 h. The results from in vitro studies demonstrated that 4-hydroxynonenal treatment altered ZIP5 and ZIP7 protein abundance, and hydrogen peroxide treatment changed ZIP7, ZIP14, and ZnT7 protein abundance. These results suggest that chronic ethanol exposure alters hepatic zinc transporters via oxidative stress, which might account for ethanol-induced hepatic zinc deficiency. PMID:24924749

  7. LiZIP3 is a cellular zinc transporter that mediates the tightly regulated import of zinc in Leishmania infantum parasites

    PubMed Central

    Carvalho, Sandra; da Silva, Rosa Barreira; Shawki, Ali; Castro, Helena; Lamy, Márcia; Eide, David; Costa, Vítor; Mackenzie, Bryan; Tomás, Ana M.

    2016-01-01

    Summary Cellular zinc homeostasis ensures that the intracellular concentration of this element is kept within limits that enable its participation in critical physiological processes without exerting toxic effects. We report here the identification and characterization of the first mediator of zinc homeostasis in Leishmania infantum, LiZIP3, a member of the ZIP family of divalent metal-ion transporters. The zinc transporter activity of LiZIP3 was first disclosed by its capacity to rescue the growth of Saccharomyces cerevisiae strains deficient in zinc acquisition. Subsequent expression of LiZIP3 in Xenopus laevis oocytes was shown to stimulate the uptake of a broad range of metal ions, among which Zn2+ was the preferred LiZIP3 substrate (K0.5 ≈ 0.1 μM). Evidence that LiZIP3 functions as a zinc importer in L. infantum came from the observations that the protein locates to the cell membrane and that its overexpression leads to augmented zinc internalization. Importantly, expression and cell-surface location of LiZIP3 are lost when parasites face high zinc bioavailability. LiZIP3 decline in response to zinc is regulated at the mRNA level in a process involving (a) short-lived protein(s). Collectively, our data reveal that LiZIP3 enables L. infantum to acquire zinc in a highly regulated manner, hence contributing to zinc homeostasis. PMID:25644708

  8. The effect of red cell and plasma transfusion on serum zinc and copper levels in the neonate.

    PubMed

    Lockitch, G; Godolphin, W J; Pendray, M R; Quigley, G

    1983-11-01

    Transfusion of packed red cells (15 to 20 ml/kg) in 11 preterm infants resulted in a slight increase in mean serum zinc levels on the 3rd post transfusion day but no effect was noted on serum copper levels. No significant difference was found between the changes in serum zinc in 141 paired specimens collected a week apart when zero, one, two or three packed cell transfusions were given in the intervening week. A slight decrease in the mean copper level was noted when one transfusion was given. Transfusion of fresh frozen plasma in six newborns with abdominal wall defects resulted in initial serum copper levels two to three times greater than the reference mean for newborns. No effect was noted on zinc levels. Serum copper results should be interpreted with caution in infants who have been transfused with plasma.

  9. Ultrasonic measurements of thin zinc layers on concrete

    NASA Astrophysics Data System (ADS)

    Jansen, Henri; Brooks, Bill; Nguyen, Vinh; Koretsky, Milo

    2008-05-01

    In order to protect bridges at the coast from corrosion, a thin layer (approximately 0.5 mm) of zinc is sprayed on the concrete of the bridge. When this zinc layer is electrically connected to the reinforcing steel (rebar) and placed at a positive potential with respect to the rebar, oxidation is favored at the zinc layer and reduced at the rebar. The resulting protection of the rebar fails when the zinc layer delaminates from the concrete or when the zinc oxidation product layer becomes too thick. We have used ultrasonic detection to investigate the properties of the zinc layer. This method has been applied very successfully in the semiconductor industry. We present the details of the method and the expected response. Unfortunately, we are not able to measure changes in the zinc layer, because either the frequency we use (10-20 MHz) is too low, or scattering in the concrete is a dominant effect.

  10. Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life12

    PubMed Central

    Maret, Wolfgang

    2013-01-01

    The nutritional essentiality of zinc for the growth of living organisms had been recognized long before zinc biochemistry began with the discovery of zinc in carbonic anhydrase in 1939. Painstaking analytical work then demonstrated the presence of zinc as a catalytic and structural cofactor in a few hundred enzymes. In the 1980s, the field again gained momentum with the new principle of “zinc finger” proteins, in which zinc has structural functions in domains that interact with other biomolecules. Advances in structural biology and a rapid increase in the availability of gene/protein databases now made it possible to predict zinc-binding sites from metal-binding motifs detected in sequences. This procedure resulted in the definition of zinc proteomes and the remarkable estimate that the human genome encodes ∼3000 zinc proteins. More recent developments focus on the regulatory functions of zinc(II) ions in intra- and intercellular information transfer and have tantalizing implications for yet additional functions of zinc in signal transduction and cellular control. At least three dozen proteins homeostatically control the vesicular storage and subcellular distribution of zinc and the concentrations of zinc(II) ions. Novel principles emerge from quantitative investigations on how strongly zinc interacts with proteins and how it is buffered to control the remarkably low cellular and subcellular concentrations of free zinc(II) ions. It is fair to conclude that the impact of zinc for health and disease will be at least as far-reaching as that of iron. PMID:23319127

  11. Zinc toxicology following particulate inhalation

    PubMed Central

    Cooper, Ross G.

    2008-01-01

    The current mini-review describes the toxic effects of zinc inhalation principally in the workplace and associated complications with breathing and respiration. The International Classification of Functioning, Disability and Health Criteria were used to specifically select articles. Most of the commercial production of zinc involves the galvanizing of iron and the manufacture of brass. The recommended daily allowance for adults is 15 mg zinc/day. Metal fume fever associated with inhalation of fumes of ZnO is characterized by fatigue, chills, fever, myalgias, cough, dyspnea, leukocytosis, thirst, metallic taste and salivation. ZnCl2 inhalation results in edema in the alveolar surface and the protein therein the lavage fluid is elevated. Particular pathological changes associated with zinc intoxication include: pale mucous membranes; jaundice; numerous Heinz bodies; and marked anemia. Adequate ambient air monitors for permissible exposure limits, excellent ventilation and extraction systems, and approved respirators are all important in providing adequate protection. PMID:20040991

  12. Tracing of Zinc Nanocrystals in the Anterior Pituitary of Zinc-Deficient Wistar Rats.

    PubMed

    Kuldeep, Anjana; Nair, Neena; Bedwal, Ranveer Singh

    2017-06-01

    The aim of this study was to trace zinc nanocrystals in the anterior pituitary of zinc-deficient Wistar rats by using autometallographic technique. Male Wistar rats (30-40 days of age, pre-pubertal period) of 40-50 g body weight were divided into the following: the ZC (zinc control) group-fed with 100 ppm zinc in diet, the ZD (zinc-deficient) group-fed with zinc-deficient (1.00 ppm) diet and the PF (pair-fed) group-received 100 ppm zinc in diet. The experiments were set for 2 and 4 weeks. Pituitary was removed and processed for the autometallographic technique. The control and pair-fed groups retained their normal morphological features. However, male Wistar rats fed on zinc-deficient diet for 2 and 4 weeks displayed a wide range of symptoms such as significant (P < 0.05) decrease in diet consumption, body weight and pituitary weight and decrease in gradation of intensity of zinc nanocrystals in the nuclei. The present findings suggest that the dietary zinc deficiency causes decreased intensity of zinc nanocrystals localization and their distribution in the pituitary thereby contributing to the dysfunction of the pituitary of the male Wistar rats. The severity of zinc deficiency symptoms progressed after the second week of the experiment. Decreased intensity of zinc nanocrystals attenuates the pituitary function which would exert its affect on other endocrine organs impairing their functions indicating that the metabolic regulation of pituitary is mediated to a certain extent by zinc and/or hypothalamus-hypophysial system which also reflects its essentiality during the period of growth.

  13. Effect of zinc supplementation on E-ADA activity, seric zinc, and cytokines levels of Trypanosoma evansi infected Wistar rats.

    PubMed

    Bottari, Nathieli B; Baldissera, Matheus D; Oliveira, Camila B; Duarte, Thiago; Duarte, Marta M M F; Leal, Marta L R; Thomé, Gustavo R; Zanini, Daniela; Schetinger, Maria Rosa C; Nunes, Matheus A G; Dressler, Valderi L; Monteiro, Silvia G; Tonin, Alexandre A; Da Silva, Aleksandro S

    2014-09-01

    The aim of this study was to evaluate the effect of zinc supplementation on the ecto-adenosine deaminase activity (E-ADA), zinc seric levels and cytokines (TNF-α, IL-1, IL-6, and IL -10) on rats experimentally infected by Trypanosoma evansi. Four groups with 10 rats each were used as negative controls (groups A and B), while the animals from the groups C and D were infected intraperitoneally with 0.1 mL of cryopreserved blood containing 1.4 × 10(4) of trypanosomes. Animals of groups B and D received two doses of Zinc (Zn) at 5 mg kg(-1), subcutaneously, on the 2nd and 7th day post-infection (PI). Blood samples were collected on days 5 (n = 5) and 15 PI (n = 5). Zn supplementation was able to increase the rat's longevity and to reduce their parasitemia. It was observed that seric Zn levels were increased on infected animals under Zn supplementation. Animals that were infected and supplemented with Zn showed changes in E-ADA activity and in cytokine levels (P < 0.05). Zn supplementation of healthy animals (Group B), increased the E-ADA activity, as well as reduced the concentration of cytokines. Infected animals from groups C and D showed increased levels of cytokines. Finally, we observed that Zn supplementation led to a modulation on cytokine's level in rats infected by T. evansi, as well as in E-ADA activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Effect of micronutrient supplementation on treatment outcomes in children with intrathoracic tuberculosis: a randomized controlled trial.

    PubMed

    Lodha, Rakesh; Mukherjee, Aparna; Singh, Varinder; Singh, Sarman; Friis, Henrik; Faurholt-Jepsen, Daniel; Bhatnagar, Shinjini; Saini, Savita; Kabra, Sushil K; Grewal, Harleen M S

    2014-11-01

    Micronutrients play an important role in immune function. To our knowledge, there have been no comprehensive studies on the role of micronutrient supplementation in children with tuberculosis. We assessed the effect of micronutrient supplementation in children treated with antituberculosis therapy (ATT). A randomized, double-blind, placebo-controlled trial that used a 2 × 2 factorial design was undertaken at 2 teaching hospitals in Delhi. Children with newly diagnosed intrathoracic tuberculosis were enrolled, and they received ATT together with daily supplementation for 6 mo with either zinc alone, micronutrients without zinc, micronutrients in combination with zinc, or a placebo. Main outcomes were weight gain and an improvement in a chest X-ray (CXR) lesion assessed at 6 mo of treatment. A total of 403 children were enrolled and randomly assigned. A microbiological diagnosis of tuberculosis was confirmed in 179 children (44.4%). The median (95% CI) increase in weight-for-age z score at 6 mo was not significantly different between subjects who received micronutrients [0.75 (0.66, 0.84)] and those who did not receive micronutrients [0.76 (0.67, 0.85)] and between subjects who received zinc [0.76 (0.68, 0.85)] and those who did not receive zinc [0.75 (0.66, 0.83)]. An improvement in CXR was observed in 285 children, but there was no difference between those receiving zinc and no zinc or between those receiving micronutrients and no micronutrients after 6 mo of ATT. However, children who received micronutrients had a faster gain in height over 6 mo than did those who did not receive micronutrients (height-for-age z score Δ = 0.08; P = 0.014). Micronutrient supplementation did not modify the weight gain or clearance of lesions on CXR in children with intrathoracic tuberculosis. However, micronutrient supplementation during treatment may improve height gain in children with intrathoracic tuberculosis. This trial was registered at clinicaltrials.gov as NCT00801606.

  15. Efficacy of zinc sulfate supplement on febrile seizure recurrence prevention in children with normal serum zinc level: A randomised clinical trial.

    PubMed

    Fallah, Razieh; Sabbaghzadegan, Saeideh; Karbasi, Sedighah Akhavan; Binesh, Fariba

    2015-01-01

    Serum zinc level might be related to pathogenesis of febrile seizure (FS). The purpose of this study was to evaluate efficacy and safety of oral zinc supplementation on FS recurrence prevention in non-zinc-deficient children. In a randomized clinical study, one hundred 18 to 60 mo old children with normal zinc level with first simple FS were referred to Shahid Sadoughi Hospital, Yazd, Iran from May 2012 to June 2013, were randomly assigned to two groups to receive 2 mg/kg/d zinc sulfate for six consecutive months or placebo as control group and were followed up for 1 y for FS recurrence. 41 girls and 59 boys with mean age of 2.47 ± 1.01 y were evaluated. Race, mean weight, height and body fat were similar in both groups. FS recurrence occurred in 19 children (38%) in the control group [95% confidence interval (CI): 19.45%-53.95%] and in 11 children (22%) in the zinc sulfate (95% CI: 57.47%-89.13%) groups, respectively; and the zinc group had lower FS recurrence (P = 0.03). The mean serum zinc level before intervention was lower in children with FS recurrence (72.43 ± 14.58 μg/dL versus 96.33 ± 12.69 μg/dL, P = 0.04). Gastrointestinal side effects (vomiting in five children, heartburn in two children and abdominal pain in one child) were seen in 16% of the zinc group and vomiting occurred in two children (4%) in control group and frequency of adverse events was similar in the two groups (P = 0.1). Zinc supplementation should be considered as effective and safe in prevention of FS recurrence. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Characterising urban zinc generation to identify surface pollutant hotspots in a low intensity rainfall climate.

    PubMed

    Charters, F J; Cochrane, T A; O'Sullivan, A D

    2017-09-01

    Characterising stormwater runoff quality provides useful insights into the dynamics of pollutant generation and wash off rates. These can be used to prioritise stormwater management strategies. This study examined the effects of a low intensity rainfall climate on zinc contributions from different impermeable urban surface types. First flush (FF) and steady state samples were collected from seven different surfaces for characterisation, and the data were also used to calibrate an event-based pollutant load model to predict individual 'hotspot' surfaces across the catchment. Unpainted galvanised roofs generated very high concentrations of zinc, primarily in the more biologically available dissolved form. An older, unpainted galvanised roof had FF concentrations averaging 32,338 μg/L, while the new unpainted roof averaged 4,782 μg/L. Roads and carparks also had elevated zinc, but FF concentrations averaged only 822-1,584 μg/L. Modelling and mapping expected zinc loads from individual impermeable surfaces across the catchment identified specific commercial roof surfaces to be targeted for zinc management. The results validate a policy strategy to replace old galvanised roof materials and avoid unpainted galvanised roofing in future urban development for better urban water quality outcomes. In the interim, readily-implemented treatment options are required to help mitigate chronic zinc impacts on receiving waterways.

  17. Effects of Sodium Citrate on the Ammonium Sulfate Recycled Leaching of Low-Grade Zinc Oxide Ores

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Li, Shi-wei; Zhang, Li-bo; Peng, Jin-hui; Ma, Ai-yuan; Wang, Bao-bao

    2016-03-01

    The effects of sodium citrate on ammonium sulfate recycled leaching of low-grade zinc oxide ores were studied. By applying various kinds of detection and analysis techniques such as chemical composition analysis, chemical phase method, scanning electron microscopy and energy dispersive spectrum (SEM/EDS), X-ray diffraction (XRD) and Fourier-transforming infrared spectrum (FT-IR), zinc raw ore, its leaching slag and the functional mechanism of sodium citrate were investigated. Based on a comprehensive analysis, it can be concluded that in contrast to hemimorphite (Zn4Si2O7(OH)2 · H2O), amorphous smithsonite (ZnCO3) and zinc silicate (Zn2SiO4) prove to be refractory phases under ammonium sulfate leaching, while sodium citrate has a better chelating action with the refractory phases, resulting in a higher zinc leaching rate. Under conditions of [NH3]/[NH3]T molar ratio being 0.5, [NH3]T being 7.5 mol/L, [Na3C6H5O7] being 0.2 mol/L, S/L ratio being 1:5, temperature being 303 K, holding time being 1 h in each of the two stages, and stirring rate being 300 rpm, the leaching rate of zinc reached 93.4%. In this article, sulfate ammonium recycled technology also reveals its unique advantage in processing low-grade zinc oxide ores accompanied by high silicon and high alkaline gangue.

  18. Effect of short term zinc supplementation on iron status of children with acute diarrhea.

    PubMed

    Zaka-ur-Rab, Zeeba; Ahmad, Syed Moiz; Naim, Mohammed; Alam, Seema; Adnan, Mohammad

    2015-05-01

    To study the effect of short term (2 wk) zinc supplementation on hemoglobin and iron status of children with acute diarrhea. This study was a prospective, open label, single arm interventional trial conducted from June 2008 through October 2009 in a teaching hospital of North India. Three to sixty months old children presenting with acute diarrhea participated in the study. Subjects were supplemented with recommended doses of oral zinc gluconate for 2 wk. Changes in levels of hemoglobin, serum iron, total iron binding capacity, and serum ferritin were the main outcome measures. Sixty-two patients completed the study successfully. The prevalence of anemia before and after 2 wk of zinc supplementation remained unchanged. However, a small decline (p > 0.05) was observed in mean hemoglobin (from 8.95 ± 1.4 to 8.73 ± 1.43 g/dL), serum iron (79.56 ± 45.81 to 78.61 ± 44.41 μg/dL) and ferritin (84.77 ± 45.35 to 83.55 ± 44.10 ng/mL) levels. Total iron binding capacity increased from 331.60 ± 109.72 to 341.30 ± 119.90 μg/dL post supplementation (p > 0.05). Even though statistically insignificant, the small change observed in the levels of hemoglobin, and indicators of iron status following short term zinc supplementation might assume significance in some settings in developing countries where children receive short courses of zinc repeatedly for frequent diarrheal episodes.

  19. Effect of phytate and zinc ions on fluoride toothpaste efficacy using an in situ caries model.

    PubMed

    Parkinson, Charles R; Burnett, Gary R; Creeth, Jonathan E; Lynch, Richard J M; Budhawant, Chandrashekhar; Lippert, Frank; Hara, Anderson T; Zero, Domenick T

    2018-06-01

    To compare and explore the dose-response of phytate-containing 1150 ppm fluoride toothpastes on model caries lesions and to determine the impact of zinc ions. This was a single-centre, randomised, blinded (examiner/laboratory analyst), six-treatment, four-period crossover, in situ study in adults with a removable bilateral maxillary partial denture. Study treatments were toothpastes containing: 0.425% phytate/F; 0.85% phytate/F; 0.85% phytate/Zn/F; F-only; Zn/F and a 0% F placebo. Where present, F was 1150 ppm as NaF; Zn was 0.3% as ZnCl 2 . Human enamel specimens containing early-stage, surface-softened (A-lesions) or more advanced, subsurface (B-lesions) caries lesions were placed into the buccal flanges of participants' modified partial denture (one of each lesion type per side). A-lesions were removed after 14 days of twice-daily treatment use; B-lesions were removed after a further 14 days. A-lesions were analysed for surface microhardness recovery. Both lesion types were analysed by transverse microradiography and for enamel fluoride uptake, with B-lesions additionally analysed by quantitative light-induced fluorescence. Comparison was carried out using an analysis of covariance model. Statistically significant differences between 1150 ppm F and the placebo toothpastes (p < 0.05) were shown for all measures, validating the model. No differences between fluoride toothpastes were observed for any measure with little evidence of a dose-response for phytate. Study treatments were generally well-tolerated. Results suggest phytate has little impact on fluoride's ability to promote early-stage lesion remineralisation or prevent more advanced lesion demineralisation in this in situ caries model. Similarly, results suggest zinc ions do not impair fluoride efficacy. Toothpastes may contain therapeutic or cosmetic agents that could interfere with fluoride's caries prevention efficacy. The present in situ caries study has demonstrated that phytate, added to

  20. Effect of Preventive Supplementation with Zinc and Other Micronutrients on Non-Malarial Morbidity in Tanzanian Pre-School Children: A Randomized Trial

    PubMed Central

    Veenemans, Jacobien; Schouten, Laura R. A.; Ottenhof, Maarten J.; Mank, Theo G.; Uges, Donald R. A.; Mbugi, Erasto V.; Demir, Ayşe Y.; Kraaijenhagen, Rob J.; Savelkoul, Huub F. J.; Verhoef, Hans

    2012-01-01

    Background The efficacy of preventive zinc supplementation against diarrhea and respiratory illness may depend on simultaneous supplementation with other micronutrients. We aimed to assess the effect of supplementation with zinc and multiple micronutrients on diarrhea and other causes of non-malarial morbidity. Methods and Findings Rural Tanzanian children (n = 612) aged 6–60 months and with height-for-age z-score < –1.5 SD were randomized to daily supplementation with zinc (10 mg) alone, multi-nutrients without zinc, multi-nutrients with zinc, or placebo. Children were followed for an average of 45 weeks. During follow-up, we recorded morbidity episodes. We found no evidence that concurrent supplementation with multi-nutrients influenced the magnitude of the effect of zinc on rates of diarrhea, respiratory illness, fever without localizing signs, or other illness (guardian-reported illness with symptoms involving skin, ears, eyes and abscesses, but excluding trauma or burns). Zinc supplementation reduced the hazard rate of diarrhea by 24% (4%–40%). By contrast, multi-nutrients seemed to increase this rate (HR; 95% CI: 1.19; 0.94–1.50), particularly in children with asymptomatic Giardia infection at baseline (2.03; 1.24–3.32). Zinc also protected against episodes of fever without localizing signs (0.75; 0.57–0.96), but we found no evidence that it reduced the overall number of clinic visits. Conclusions We found no evidence that the efficacy of zinc supplements in reducing diarrhea rates is enhanced by concurrent supplementation with other micronutrients. By reducing rates of fever without localizing signs, supplementation with zinc may reduce inappropriate drug use with anti-malarial medications and antibiotics. Trial Registration ClinicalTrials.gov NCT00623857 PMID:22870238

  1. Zinc

    USDA-ARS?s Scientific Manuscript database

    Zinc was recognized as an essential trace metal for humans during the studies of Iranian adolescent dwarfs in the early 1960s. Zinc metal existing as Zn2+ is a strong electron acceptor in biological systems without risks of oxidant damage to cells. Zn2+ functions in the structure of proteins and is ...

  2. Synthesis, characterization and evaluation of effect of phytogenic zinc nanoparticles on soil exo-enzymes

    NASA Astrophysics Data System (ADS)

    Sri Sindhura, K.; Prasad, T. N. V. K. V.; Panner Selvam, P.; Hussain, O. M.

    2014-10-01

    Nanobiotechnology, the bio-branch of nanotechnology is considered to be one of the fastest emerging research fields. Biosynthesis of metallic nanoparticles is currently under exploitation. Use of plant and plant materials for the synthesis of Zinc nanoparticles is relatively new and exciting research field. The biogenic zinc nanoparticles were synthesized using the leaves of Parthenium hysterophorous by green synthesis route. UV-VIS absorption spectroscopy was used to monitor the quantitative formation of zinc nanoparticles. The characteristics of the synthesized zinc nanoparticles were studied using scanning electron microscopy and nanoparticle analyzer. Zinc nanoparticles were observed to be spherical in shape with size range of 16 to 108.5 nm. The measured zeta potentials varied from 100.4 to 117.20 mV indicate high dispersion of the zinc nanoparticles. The synthesized zinc nanoparticles showed good enzymatic activity and microbial activity. The physiological parameters increased from 30 to 60 days of sowing when compared to control.

  3. Prenatal zinc supplementation of zinc-adequate rats adversely affects immunity in offspring

    USDA-ARS?s Scientific Manuscript database

    We previously showed that zinc (Zn) supplementation of Zn-adequate dams induced immunosuppressive effects that persist in the offspring after weaning. We investigated whether the immunosuppressive effects were due to in utero exposure and/or mediated via milk using a cross-fostering design. Pregnant...

  4. Impact of glutathione metabolism on zinc homeostasis in Saccharomyces cerevisiae.

    PubMed

    Steiger, Matthias G; Patzschke, Anett; Holz, Caterina; Lang, Christine; Causon, Tim; Hann, Stephan; Mattanovich, Diethard; Sauer, Michael

    2017-06-01

    Zinc is a crucial mineral for all organisms as it is an essential cofactor for the proper function of a plethora of proteins and depletion of zinc causes oxidative stress. Glutathione is the major redox buffering agent in the cell and therefore important for mitigation of the adverse effects of oxidative stress. In mammalian cells, zinc deficiency is accompanied by a glutathione depletion. In the yeast Saccharomyces cerevisiae, the opposite effect is observed: under low zinc conditions, an elevated glutathione concentration is found. The main regulator to overcome zinc deficiency is Zap1p. However, we show that Zap1p is not involved in this glutathione accumulation phenotype. Furthermore, we found that in glutathione-accumulating strains also the metal ion-binding phytochelatin-2, which is an oligomer of glutathione, is accumulated. This increased phytochelatin concentration correlates with a lower free zinc level in the vacuole. These results suggest that phytochelatin is important for zinc buffering in S. cerevisiae and thus explains how zinc homeostasis is connected with glutathione metabolism. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Association between Maternal Zinc Status, Dietary Zinc Intake and Pregnancy Complications: A Systematic Review

    PubMed Central

    Wilson, Rebecca L.; Grieger, Jessica A.; Bianco-Miotto, Tina; Roberts, Claire T.

    2016-01-01

    Adequate zinc stores in the body are extremely important during periods of accelerated growth. However, zinc deficiency is common in developing countries and low maternal circulating zinc concentrations have previously been associated with pregnancy complications. We reviewed current literature assessing circulating zinc and dietary zinc intake during pregnancy and the associations with preeclampsia (PE); spontaneous preterm birth (sPTB); low birthweight (LBW); and gestational diabetes (GDM). Searches of MEDLINE; CINAHL and Scopus databases identified 639 articles and 64 studies were reviewed. In 10 out of 16 studies a difference was reported with respect to circulating zinc between women who gave birth to a LBW infant (≤2500 g) and those who gave birth to an infant of adequate weight (>2500 g), particularly in populations where inadequate zinc intake is prevalent. In 16 of our 33 studies an association was found between hypertensive disorders of pregnancy and circulating zinc; particularly in women with severe PE (blood pressure ≥160/110 mmHg). No association between maternal zinc status and sPTB or GDM was seen; however; direct comparisons between the studies was difficult. Furthermore; only a small number of studies were based on women from populations where there is a high risk of zinc deficiency. Therefore; the link between maternal zinc status and pregnancy success in these populations cannot be established. Future studies should focus on those vulnerable to zinc deficiency and include dietary zinc intake as a measure of zinc status. PMID:27754451

  6. Protective effect of zinc on N-methyl-N-nitrosourea and testosterone-induced prostatic intraepithelial neoplasia in the dorsolateral prostate of Sprague Dawley rats.

    PubMed

    Banudevi, Sivanantham; Elumalai, Perumal; Sharmila, Govindaraj; Arunkumar, Ramachandran; Senthilkumar, Kalimuthu; Arunakaran, Jagadeesan

    2011-09-01

    Previous studies have suggested that zinc exerts anticarcinogenic and antiproliferative effects against prostate cancer both in vitro and in rat ventral prostate. Zinc accumulation diminishes early in the course of prostate malignancy and it inhibits the growth of several carcinoma cells through induction of cell cycle arrest and apoptosis. In this study, we have investigated the influence of zinc on N-methyl-N-nitrosourea (MNU) and testosterone (T)-induced prostatic intraepithelial neoplasia in the dorsolateral prostate of Sprague Dawley (SD) rats. The results indicate that zinc plays an important role in prostate carcinogenesis. Increased tumor incidence was accompanied by a decrease in prostatic acid phosphatase activity, citrate, zinc, glutathione-S-transferase, reduced glutathione, p53, B-cell lymphoma protein (Bcl-2)-associated X protein and caspase-3 levels in MNU + T-treated rats. On the contrary, significantly increased phase I drug metabolizing enzyme activities, lipid peroxide, hydrogen peroxide, proliferating cell nuclear antigen, Bcl-2 and Bcl-X(L) protein levels were observed in the dorsolateral prostate of MNU + T-treated rats. Simultaneous zinc supplementation significantly reversed these effects in MNU + T-treated rats. Signs of dysplasia, a characteristic of prostatic intraepithelial neoplasia, were evident in the dorsolateral prostatic tissue sections by MNU + T administration. However, zinc supplementation has reversed these effects in the dorsolateral prostatic histoarchitecture. These results suggest that zinc may act as an essential trace element against MNU and testosterone-induced prostatic preneoplastic progression in SD rats.

  7. Effects of selenium and zinc supplementation on nutritional status in patients with cancer of digestive tract.

    PubMed

    Federico, A; Iodice, P; Federico, P; Del Rio, A; Mellone, M C; Catalano, G; Federico, P

    2001-04-01

    To evaluate the effect of oral administration of selenium and zinc tablets in patients with cancer of the digestive tract during chemotherapy. A case-control, randomized study. Medical Oncology, II University of Naples, Naples, Italy. A total of 60 patients (median age 55 y, range 46-61 y) with diagnosis of gut cancer were randomized in 1999. Patients were treated for 60 days with chemotherapy. Trace elements were measured by atomic absorption spectroscopy. The nutritional status of the patients was assessed by biochemical and bio-impedance analysis (BIA) parameters in basal condition and after 60 days of treatment. Oral administration of selenium and zinc in oral tablet form for 50 days was Se 200 microg/day (50 microg/tablet) and Zn 21 mg/day (7 mg/tablet). Both in the basal condition and at 60 days all patients were malnourished. Selenium and zinc concentrations were significantly lower (P < 0.01) whereas copper concentration was significantly higher (P < 0.01) in cancer patients than in control subjects. However, 21/30 (70%) of those treated with Se and Zn did not showed a further worsening of nutritional status and experienced a significant decrease of asthenia with an increase of appetite. On the other hand, 24/30 (80%) untreated patients had a significant decline of all parameters studied after 60 days (prealbumin, cholesterol, transferrin, P < 0.05 vs 0 time; total proteins, albumin/globulin ratio, P < 0.01 vs 0 time; fat-free mass, fat mass, Na+/K+ ratio, body mass index P < 0.05 vs 0 time; fat free mass/fat mass, total body water, extra cellular/intra cellular water, basal metabolic rate: P < 0.01 vs 0 time). Data indicate that Se and Zn supplementation may improve the clinical course of general conditions in patients with gut cancer. These effects of Se and Zn require confirmation in an independent trial of appropriate design before new public health recommendations regarding Se and Zn supplementation can be made.

  8. The lack of effects of zinc and nitric oxide in initial state of pilocarpine-induced seizures.

    PubMed

    Noyan, Behzat; Jensen, Morten Skovgaard; Danscher, Gorm

    2007-07-01

    In this study we investigated whether intracerebroventricular (i.c.v.) injection of L-NAME (a nitric oxide synthase inhibitor) or CaEDTA (an extracellular zinc chelator) or the combination of the two could affect the initial phase of pilocarpine induced (2 h) seizures. Two groups of rats were used. Animals from both groups were given with i.c.v. injections of either saline (10 microl), L-NAME (150 microg/10 microl), CaEDTA (100 mM/10 microl) or L-NAME and CaEDTA. One group received pilocarpine HCl (380 mg/kg i.p.) the other served as control. Pilocarpine HCl was injected intraperitoneally 10 min later. The behavior of the animals was observed for 2h and the intensity of their seizures was scored. The rats were then sacrificed and their brains were removed and analyzed for zinc ions by using the immersion autometallography and the TSQ fluorescence staining. All the animals which received pilocarpine HCl developed seizures. Despite treatment with L-NAME and/or CaEDTA we found that the latency and the intensity of seizures were similar in both groups investigated. The distribution of stainable zinc ions and the intensity of staining in hippocampus were not affected by pilocarpine and found unchanged after L-NAME and/or CaEDTA injections in both the control animals and the pilocarpine treated animals. The data suggest that the nitric oxide system and zinc ions do not affect pilocarpine-induced seizures in their initial state.

  9. Effects of Serum Zinc Supplementation on Pica Behavior of Persons with Mental Retardation.

    ERIC Educational Resources Information Center

    Lofts, Ronald H.; And Others

    1990-01-01

    Of 806 institutionalized adults with mental retardation, 15.5 percent exhibited pica. Fifty-four percent of the pica group had serum zinc levels below normal range, whereas 7 percent of a control group had serum zinc levels below the normal range. After supplementation with chelated zinc, residents had significant reductions in pica. (Author/JDD)

  10. Removal of lead and zinc ions from water by low cost adsorbents.

    PubMed

    Mishra, P C; Patel, R K

    2009-08-30

    In this study, activated carbon, kaolin, bentonite, blast furnace slag and fly ash were used as adsorbent with a particle size between 100 mesh and 200 mesh to remove the lead and zinc ions from water. The concentration of the solutions prepared was in the range of 50-100 mg/L for lead and zinc for single and binary systems which are diluted as required for batch experiments. The effect of contact time, pH and adsorbent dosage on removal of lead and zinc by adsorption was investigated. The equilibrium time was found to be 30 min for activated carbon and 3h for kaolin, bentonite, blast furnace slag and fly ash. The most effective pH value for lead and zinc removal was 6 for activated carbon. pH value did not effect lead and zinc removal significantly for other adsorbents. Adsorbent doses were varied from 5 g/L to 20 g/L for both lead and zinc solutions. An increase in adsorbent doses increases the percent removal of lead and zinc. A series of isotherm studies was undertaken and the data evaluated for compliance was found to match with the Langmuir and Freundlich isotherm models. To investigate the adsorption mechanism, the kinetic models were tested, and it follows second order kinetics. Kinetic studies reveals that blast furnace slag was not effective for lead and zinc removal. The bentonite and fly ash were effective for lead and zinc removal.

  11. Reduction of zinc emissions from buildings; the policy of Amsterdam.

    PubMed

    Gouman, E

    2004-01-01

    In Amsterdam zinc coming from the roofs and gutters of the buildings accounts for about 50% of the zinc emissions into the surface water (i.e. canals and rivers). This causes water and sediment pollution. Dumping strongly polluted sediment costs ten times more then dumping less polluted mud. Therefore the City of Amsterdam has developed a policy for reducing the zinc emissions from buildings based on the current environmental legislation and the current national targets for surface water quality. Zinc roofs on new and renovated buildings are not permitted. Run off water from zinc roofs of existing buildings is allowed to contain a maximum of 200 microg/l zinc. For the zinc gutters of houses, Amsterdam will promote measures to reduce zinc emissions. To investigate the feasibility of measures, research has been carried out on the zinc emissions of gutters and the effect of covering gutters with an impermeable foil. This research shows clearly that covering zinc gutters with EPDM foil reduces the zinc emissions by 90% from 8.5 to 0.88 gram per square metre per year including the atmospheric deposition.

  12. The effects of chronological age and size on toxicity of zinc to juvenile brown trout.

    PubMed

    Diedrich, Daniel J; Sofield, Ruth M; Ranville, James F; Hoff, Dale J; Wall, V Dan; Brinkman, Stephen F

    2015-07-01

    A series of toxicity tests were conducted to investigate the role of chronological age on zinc tolerance in juvenile brown trout (Salmo trutta). Four different incubation temperatures were used to control the maturation of the juveniles before zinc exposures. These 96-h exposures used flow-through conditions and four chronological ages of fish with weights ranging from 0.148 to 1.432 g. Time-to-death (TTD) data were collected throughout the exposure along with the final mortality. The results indicate that chronological age does not play a predictable role in zinc tolerance for juvenile brown trout. However, a relationship between zinc tolerance and fish size was observed in all chronological age populations, which prompted us to conduct additional exploratory data analysis to quantify how much of an effect size had during this stage of development. The smallest fish (0.148-0.423 g) were shown to be less sensitive than the largest fish (0.639-1.432 g) with LC50 values of 868 and 354 µg Zn/L, respectively. The Kaplan-Meier product estimation method was used to determine survival functions from the TTD data and supports the LC50 results with a greater median TTD for smaller fish than larger juvenile fish. These results indicate that fish size or a related characteristic may be a significant determinant of susceptibility and should be considered in acute zinc toxicity tests with specific attention paid to the expected exposure scenario in the field.

  13. Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide.

    PubMed

    Moezzi, Amir; Cortie, Michael; McDonagh, Andrew

    2016-04-25

    Thermal decomposition of layered zinc hydroxide double salts provides an interesting alternative synthesis for particles of zinc oxide. Here, we examine the sequence of changes occurring as zinc hydroxide chloride monohydrate (Zn5(OH)8Cl2·H2O) is converted to crystalline ZnO by thermal decomposition. The specific surface area of the resultant ZnO measured by BET was 1.3 m(2) g(-1). A complicating and important factor in this process is that the thermal decomposition of zinc hydroxide chloride is also accompanied by the formation of volatile zinc-containing species under certain conditions. We show that this volatile compound is anhydrous ZnCl2 and its formation is moisture dependent. Therefore, control of atmospheric moisture is an important consideration that affects the overall efficiency of ZnO production by this process.

  14. Clinical efficacy of a new ciclopiroxolamine/zinc pyrithione shampoo in scalp seborrheic dermatitis treatment.

    PubMed

    Lorette, Gérard; Ermosilla, Valérie

    2006-01-01

    Ciclopiroxolamine (CPO) and Zinc Pirythione (ZP) antifungals are efficient at treating scalp seborrheic dermatitis. This multicentre, single-blind, clinical study was conducted to evaluate the efficacy of a shampoo containing the 1.5% CPO/1% ZP association compared to the vehicle shampoo and to 2% ketoconazole foaming gel in the treatment of seborrheic dermatitis. In 189 patients randomised to apply 1 of the 3 products twice a week for 28 days, the global lesional score, erythema, pruritus, global efficacy, quality of life (SF12 and DLQI questionnaires) and tolerance were measured at 0, 7, 14 and 28 days. The 3 products reduced lesional score, erythema and pruritus from day 7 (p < 0.0001). The 2 antifungal treatments were significantly more efficient than the vehicle in reducing lesional score, erythema and pruritus at day 14 (p < 0.0001). At day 7, the CPO/ZP shampoo was more efficient in reducing pruritus than ketoconazole gel and vehicle (p = 0.032 and p < 0.001, respectively). The global efficacy of the 2 antifungal treatments assessed at day 28 by both investigator and patient was significantly better than that of the vehicle. Only the CPO/ZP shampoo improved all DLQI questionnaire dimensions. The CPO/ZP shampoo was as rapid and efficient as ketoconazole gel in SD treatment.

  15. Functional studies of Drosophila zinc transporters reveal the mechanism for dietary zinc absorption and regulation

    PubMed Central

    2013-01-01

    Background Zinc is key to the function of many proteins, but the process of dietary zinc absorption is not well clarified. Current knowledge about dietary zinc absorption is fragmented, and mostly derives from incomplete mammalian studies. To gain a comprehensive picture of this process, we systematically characterized all zinc transporters (that is, the Zip and ZnT family members) for their possible roles in dietary zinc absorption in a genetically amenable model organism, Drosophila melanogaster. Results A set of plasma membrane-resident zinc transporters was identified to be responsible for absorbing zinc from the lumen into the enterocyte and the subsequent exit of zinc to the circulation. dZip1 and dZip2, two functionally overlapping zinc importers, are responsible for absorbing zinc from the lumen into the enterocyte. Exit of zinc to the circulation is mediated through another two functionally overlapping zinc exporters, dZnT1, and its homolog CG5130 (dZnT77C). Somewhat surprisingly, it appears that the array of intracellular ZnT proteins, including the Golgi-resident dZnT7, is not directly involved in dietary zinc absorption. By modulating zinc status in different parts of the body, we found that regulation of dietary zinc absorption, in contrast to that of iron, is unresponsive to bodily needs or zinc status outside the gut. The zinc transporters that are involved in dietary zinc absorption, including the importers dZip1 and dZip2, and the exporter dZnT1, are respectively regulated at the RNA and protein levels by zinc in the enterocyte. Conclusions Our study using the model organism Drosophila thus starts to reveal a comprehensive sketch of dietary zinc absorption and its regulatory control, a process that is still incompletely understood in mammalian organisms. The knowledge gained will act as a reference for future mammalian studies, and also enable an appreciation of this important process from an evolutionary perspective. PMID:24063361

  16. Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: a potential implication of zinc as an atheroprotective agent123

    PubMed Central

    Bao, Bin; Prasad, Ananda S; Beck, Frances WJ; Fitzgerald, James T; Snell, Diane; Bao, Ginny W; Singh, Tapinder; Cardozo, Lavoisier J

    2010-01-01

    Background: Chronic inflammation and oxidative stress are common risk factors for atherosclerosis. Zinc is an essential micronutrient that can function as an antiinflammatory and antioxidative agent, and as such, it may have atheroprotective properties. Objective: We hypothesized that zinc down-regulates the production of atherosclerosis-related cytokines/molecules in humans. Design: To examine these effects, we conducted a randomized, double-blinded, placebo trial of zinc supplementation in elderly subjects. We recruited 40 healthy elderly subjects (aged 56–83 y) and randomly assigned them to 2 groups. One group was given an oral dose of 45 mg zinc/d as a gluconate for 6 mo. The other group was given a placebo. Cell culture models were conducted to study the mechanism of zinc as an atheroprotective agent. Results: After 6 mo of supplementation, the intake of zinc, compared with intake of placebo, increased the concentrations of plasma zinc and decreased the concentrations of plasma high-sensitivity C-reactive protein (hsCRP), interleukin (IL)-6, macrophage chemoattractant protein 1 (MCP-1), vascular cell adhesion molecule 1 (VCAM-1), secretory phospholipase A2, and malondialdehyde and hydroxyalkenals (MDA+HAE) in elderly subjects. Regression analysis showed that changes in concentrations of plasma zinc were inversely associated with changes in concentrations of plasma hsCRP, MCP-1, VCAM-1, and MDA+HAE after 6 mo of supplementation. In cell culture studies, we showed that zinc decreased the generation of tumor necrosis factor-α, IL-1β, VCAM-1, and MDA+HAE and the activation of nuclear transcription factor κB and increased antiinflammatory proteins A20 and peroxisome proliferator–activated receptor-α in human monocytic leukemia THP-1 cells and human aortic endothelial cells compared with zinc-deficient cells. Conclusion: These findings suggest that zinc may have a protective effect in atherosclerosis because of its antiinflammatory and antioxidant functions

  17. Electrical Performance and Reliability Improvement of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors with HfO₂ Gate Dielectrics by CF₄ Plasma Treatment.

    PubMed

    Fan, Ching-Lin; Tseng, Fan-Ping; Tseng, Chiao-Yuan

    2018-05-17

    In this work, amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs) with a HfO₂ gate insulator and CF₄ plasma treatment was demonstrated for the first time. Through the plasma treatment, both the electrical performance and reliability of the a-IGZO TFT with HfO₂ gate dielectric were improved. The carrier mobility significantly increased by 80.8%, from 30.2 cm²/V∙s (without treatment) to 54.6 cm²/V∙s (with CF₄ plasma treatment), which is due to the incorporated fluorine not only providing an extra electron to the IGZO, but also passivating the interface trap density. In addition, the reliability of the a-IGZO TFT with HfO₂ gate dielectric has also been improved by the CF₄ plasma treatment. By applying the CF₄ plasma treatment to the a-IGZO TFT, the hysteresis effect of the device has been improved and the device's immunity against moisture from the ambient atmosphere has been enhanced. It is believed that the CF₄ plasma treatment not only significantly improves the electrical performance of a-IGZO TFT with HfO₂ gate dielectric, but also enhances the device's reliability.

  18. Improved electrolyte for zinc-bromine flow batteries

    NASA Astrophysics Data System (ADS)

    Wu, M. C.; Zhao, T. S.; Wei, L.; Jiang, H. R.; Zhang, R. H.

    2018-04-01

    Conventional zinc bromide electrolytes offer low ionic conductivity and often trigger severe zinc dendrite growth in zinc-bromine flow batteries. Here we report an improved electrolyte modified with methanesulfonic acid, which not only improves the electrolyte conductivity but also ameliorates zinc dendrite. Experimental results also reveal that the kinetics and reversibility of Zn2+/Zn and Br2/Br- are improved in this modified electrolyte. Moreover, the battery's internal resistance is significantly reduced from 4.9 to 2.0 Ω cm2 after adding 1 M methanesulfonic acid, thus leading to an improved energy efficiency from 64% to 75% at a current density of 40 mA cm-2. More impressively, the battery is capable of delivering an energy efficiency of about 78% at a current density of as high as 80 mA cm-2 when the electrode is replaced by a thermally treated one. Additionally, zinc dendrite growth is found to be effectively suppressed in methanesulfonic acid supported media, which, as a result, enables the battery to be operated for 50 cycles without degradation, whereas the one without methanesulfonic acid suffers from significant decay after only 40 cycles, primarily due to severe zinc dendrite growth. These superior results indicate methanesulfonic acid is a promising supporting electrolyte for zinc-bromine flow batteries.

  19. Effects of sulphamethazine and zinc on the functional diversity of microbial communities during composting.

    PubMed

    Duan, Manli; Yang, Jiu; Gu, Jie; Qian, Xun; Sun, Wei; Gao, Hua; Wang, Xiaojuan

    2016-01-01

    The changes in the functional diversity of the microbial community in a compost matrix with a single or compound addition of zinc (Zn; 0, 600, and 1800 mg/kg) and sulphamethazine (SM2; 0, 1, and 25 mg/kg) were studied with the Biolog method during composting. The microbial community was extracted from the compost matrix comprising swine manure and wheat straw at day 6 (themophilic period) and day 25 (mature period) of composting. Results proved that the Shannon index, average well-colour development, and substrate utilization significantly decreased as the concentrations of SM2 and Zn increased on day 6. The negative effect of the combined addition of SM2 and Zn was lower than that of the individual addition of SM2 and Zn. On day 25, the inhibition effect disappeared, and microbial metabolic activities were higher than those on day 6. The effects of SM2 and Zn could be further differentiated via the principal component analysis (PCA) and cluster analysis. On day 6, the treatments were divided into three groups by PC1 and PC2. The separation of the different treatments in the PCA plots became increasingly apparent on day 25. In conclusion, the effects of SM2 and Zn on the microbial community during composting became evident in the themophilic period and that the microbial activity recovered in the mature period. The combination of SM2 and Zn decreased the inhibition with the addition of individual additive.

  20. Foliar zinc biofortification effects in Lolium rigidum and Trifolium subterraneum grown in cadmium-contaminated soil

    PubMed Central

    Damon, Paul; Rengel, Zed

    2017-01-01

    Zinc (Zn) is an important micronutrient that can alleviate cadmium (Cd) toxicity to plants and limit Cd entry into the food chain. However, little is known about the Zn-Cd interactions in pasture plants. We characterized the effects of foliar Zn application and Cd uptake by ryegrass (Lolium rigidum L.) and clover (Trifolium subterraneum L.) grown on Cd-contaminated soils; all combinations of foliar Zn applications (0, 0.25 and 0.5% (w/v) ZnSO4·7H2O) and soil Cd concentrations (0, 2.5 and 5 mg Cd kg-1) were tested. For both plant species, soil concentrations of DTPA-extractable Cd and Zn increased with an increase in the Cd and Zn treatments, respectively. Compared with L. rigidum, T. subterraneum accumulated, respectively, 3.3- and 4.1-fold more Cd in the 2.5-Cd and 5-Cd treatments and about 1.3-, 2.3- and 2.8-fold more Zn in the No-Zn, 0.25-Zn and 0.5-Zn treatments. Also, DTPA-Zn concentration was higher in soil after T. subterraneum than L. rigidum growth regardless of Zn applications. Foliar application of 0.25% (w/v) Zn significantly decreased the total Cd concentration in shoots of both species grown in the Cd-contaminated soil and ameliorated the adverse effects of Cd exposure on root growth, particularly in T. subterraneum. PMID:28950025

  1. Zinc triggers microglial activation.

    PubMed

    Kauppinen, Tiina M; Higashi, Youichirou; Suh, Sang Won; Escartin, Carole; Nagasawa, Kazuki; Swanson, Raymond A

    2008-05-28

    Microglia are resident immune cells of the CNS. When stimulated by infection, tissue injury, or other signals, microglia assume an activated, "ameboid" morphology and release matrix metalloproteinases, reactive oxygen species, and other proinflammatory factors. This innate immune response augments host defenses, but it can also contribute to neuronal death. Zinc is released by neurons under several conditions in which microglial activation occurs, and zinc chelators can reduce neuronal death in animal models of cerebral ischemia and neurodegenerative disorders. Here, we show that zinc directly triggers microglial activation. Microglia transfected with a nuclear factor-kappaB (NF-kappaB) reporter gene showed a severalfold increase in NF-kappaB activity in response to 30 microm zinc. Cultured mouse microglia exposed to 15-30 microm zinc increased nitric oxide production, increased F4/80 expression, altered cytokine expression, and assumed the activated morphology. Zinc-induced microglial activation was blocked by inhibiting NADPH oxidase, poly(ADP-ribose) polymerase-1 (PARP-1), or NF-kappaB activation. Zinc injected directly into mouse brain induced microglial activation in wild-type mice, but not in mice genetically lacking PARP-1 or NADPH oxidase activity. Endogenous zinc release, induced by cerebral ischemia-reperfusion, likewise induced a robust microglial reaction, and this reaction was suppressed by the zinc chelator CaEDTA. Together, these results suggest that extracellular zinc triggers microglial activation through the sequential activation of NADPH oxidase, PARP-1, and NF-kappaB. These findings identify a novel trigger for microglial activation and a previously unrecognized mechanism by which zinc may contribute to neurological disorders.

  2. Effects of nanorod structure and conformation of fatty acid self-assembled layers on superhydrophobicity of zinc oxide surface.

    PubMed

    Badre, Chantal; Dubot, P; Lincot, Daniel; Pauporte, Thierry; Turmine, Mireille

    2007-12-15

    Superhydrophobic surfaces have been prepared from nanostructured zinc oxide layers by a treatment with fatty acid molecules. The layers are electrochemically deposited from an oxygenated aqueous zinc chloride solution. The effects of the layer's structure, from a dense film to that of a nanorod array, as well as that of the properties of the fatty acid molecules based on C18 chains are described. A contact angle (CA) as high as 167 degrees is obtained with the nanorod structure and the linear saturated molecule (stearic acid). Lower values are found with molecules having an unsaturated bond on C9, in particular with a cis conformation (140 degrees ). These results, supplemented by infrared spectroscopy, indicate an enhancement of the sensitivity to the properties of the fatty acid molecules (conformation, flexibility, saturated or not) when moving from the flat surface to the nanostructured surface. This is attributed to a specific influence of the structure of the tops of the rods and lateral wall properties on the adsorption and organization of the molecules. CA measurements show a very good stability of the surface in time if stored in an environment protected from UV radiations.

  3. Membrane androgen receptor characteristics of human ZIP9 (SLC39A) zinc transporter in prostate cancer cells: Androgen-specific activation and involvement of an inhibitory G protein in zinc and MAP kinase signaling.

    PubMed

    Thomas, Peter; Pang, Yefei; Dong, Jing

    2017-05-15

    Characteristics of novel human membrane androgen receptor (mAR), ZIP9 (SLC39A9), were investigated in ZIP9-transfected PC-3 cells (PC3-ZIP9). Ligand blot analysis showed plasma membrane [ 3 H]-T binding corresponds to the position of ZIP9 on Western blots which suggests ZIP9 can bind [ 3 H]-T alone, without a protein partner. Progesterone antagonized testosterone actions, blocking increases in zinc, Erk phosphorylation and apoptosis, further evidence that ZIP9 is specifically activated by androgens. Pre-treatment with GTPγS and pertussis toxin decreased plasma membrane [ 3 H]-T binding and blocked testosterone-induced increases in Erk phosphorylation and intracellular zinc, indicating ZIP9 is coupled to an inhibitory G protein (Gi) that mediates both MAP kinase and zinc signaling. Testosterone treatment of nuclei and mitochondria which express ZIP9 decreased their zinc contents, suggesting ZIP9 also regulates free zinc through releasing it from these intracellular organelles. The results show ZIP9 is a specific Gi coupled-mAR mediating testosterone-induced MAP kinase and zinc signaling in PC3-ZIP9 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Bioavailability of Iron, Zinc, Phytate and Phytase Activity during Soaking and Germination of White Sorghum Varieties

    PubMed Central

    Afify, Abd El-Moneim M. R.; El-Beltagi, Hossam S.; Abd El-Salam, Samiha M.; Omran, Azza A.

    2011-01-01

    The changes in phytate, phytase activity and in vitro bioavailability of iron and zinc during soaking and germination of three white sorghum varieties (Sorghum bicolor L. Moench), named Dorado, Shandweel-6, and Giza-15 were investigated. Sorghum varieties were soaked for 20 h and germinated for 72 h after soaking for 20 h to reduce phytate content and increase iron and zinc in vitro bioavailability. The results revealed that iron and zinc content was significantly reduced from 28.16 to 32.16% and 13.78 to 26.69% for soaking treatment and 38.43 to 39.18% and 21.80 to 31.27% for germination treatments, respectively. Phytate content was significantly reduced from 23.59 to 32.40% for soaking treatment and 24.92 to 35.27% for germination treatments, respectively. Phytase enzymes will be activated during drying in equal form in all varieties. The results proved that the main distinct point is the change of phytase activity as well as specific activity during different treatment which showed no significant differences between the varieties used. The in vitro bioavailability of iron and zinc were significantly improved as a result of soaking and germination treatments. PMID:22003395

  5. Total antioxidant status and lipid peroxidation with and without in vitro zinc supplementation in infertile men.

    PubMed

    Ajina, T; Sallem, A; Haouas, Z; Mehdi, M

    2017-09-01

    The aim of this study was to assess the total antioxidant capacity (TAC) and malondialdehyde (MDA) level in infertile men with asthenozoospermia and asthenoteratozoospermia compared to fertile donors, and to examine the effect of zinc on sperm lipid peroxidation and antioxidant status in infertile and fertile men. Semen samples provided by infertile men (n = 38) and fertile donors (controls; n = 12) were exposed to 6 mmol/L of zinc for 2 hr at 37°C. After semen analysis, lipid peroxidation was detected by MDA assay and seminal TAC was assessed by colorimetric method using TAS (total antioxidant status) Kit. TAC was significantly lower in infertile group compared to controls (p = .037). However, lipid peroxidation did not alter in infertile patients compared to controls (p > .05). After in vitro incubation of samples with zinc, a significant increase in TAC level was found only in infertile men (p < .001). Meanwhile, zinc had no effect on sperm lipid peroxidation in both fertile and infertile men (p > .05). Our data indicate that antioxidant treatment based on zinc in vitro supplementation may be helpful to enhance the rate of seminal antioxidant status in infertile men; however, it does not prevent sperm lipid peroxidation. © 2016 Blackwell Verlag GmbH.

  6. The Potential for Zinc Stable Isotope Techniques and Modelling to Determine Optimal Zinc Supplementation

    PubMed Central

    Tran, Cuong D.; Gopalsamy, Geetha L.; Mortimer, Elissa K.; Young, Graeme P.

    2015-01-01

    It is well recognised that zinc deficiency is a major global public health issue, particularly in young children in low-income countries with diarrhoea and environmental enteropathy. Zinc supplementation is regarded as a powerful tool to correct zinc deficiency as well as to treat a variety of physiologic and pathologic conditions. However, the dose and frequency of its use as well as the choice of zinc salt are not clearly defined regardless of whether it is used to treat a disease or correct a nutritional deficiency. We discuss the application of zinc stable isotope tracer techniques to assess zinc physiology, metabolism and homeostasis and how these can address knowledge gaps in zinc supplementation pharmacokinetics. This may help to resolve optimal dose, frequency, length of administration, timing of delivery to food intake and choice of zinc compound. It appears that long-term preventive supplementation can be administered much less frequently than daily but more research needs to be undertaken to better understand how best to intervene with zinc in children at risk of zinc deficiency. Stable isotope techniques, linked with saturation response and compartmental modelling, also have the potential to assist in the continued search for simple markers of zinc status in health, malnutrition and disease. PMID:26035248

  7. Zinc Information

    MedlinePlus

    ... for Eye Conditions Clinical Digest: Hepatitis C and Dietary Supplements Related Resources From Other Agencies Age-Related Eye Disease Study 2 (AREDS2) ( NEI ) Can Zinc Be Harmful? ( ODS ) Zinc ( ODS ) Follow NCCIH: Read our disclaimer ...

  8. Zinc starvation induces autophagy in yeast

    PubMed Central

    Kawamata, Tomoko; Horie, Tetsuro; Matsunami, Miou; Sasaki, Michiko; Ohsumi, Yoshinori

    2017-01-01

    Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes. PMID:28264932

  9. RECYCLING ZINC IN VISCOSE RAYON PLANTS BY TWO STAGE PRECIPITATION

    EPA Science Inventory

    In an EPA demonstration grant, a process for precipitating a dense sludge of high zinc assay was proven. The zinc in the sludge was recovered and recycled to the rayon manufacturing plant. This recycling of zinc was shown to have no ill effects on rayon yarn. This process greatly...

  10. Neurotoxicity of dental amalgam is mediated by zinc.

    PubMed

    Lobner, D; Asrari, M

    2003-03-01

    The use of dental amalgam is controversial largely because it contains mercury. We tested whether amalgam caused toxicity in neuronal cultures and whether that toxicity was caused by mercury. In this study, we used cortical cell cultures to show for the first time that amalgam causes nerve cell toxicity in culture. However, the toxicity was not blocked by the mercury chelator, 2,3-dimercaptopropane-1-sulphonate (DMPS), but was blocked by the metal chelator, calcium disodium ethylenediaminetetraacetate (CaEDTA). DMPS was an effective mercury chelator in this system, since it blocked mercury toxicity. Of the components that comprise amalgam (mercury, zinc, tin, copper, and silver), only zinc neurotoxicity was blocked by CaEDTA. These results indicate that amalgam is toxic to nerve cells in culture by releasing zinc. While zinc is known to be neurotoxic, ingestion of zinc is not a major concern because zinc levels in the body are tightly regulated.

  11. Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohashi, Kazuya, E-mail: asuno10k@yahoo.co.jp; Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp; Wada, Eiji, E-mail: gacchu1@yahoo.co.jp

    2015-05-01

    Skeletal muscle stem cells named muscle satellite cells are normally quiescent but are activated in response to various stimuli, such as injury and overload. Activated satellite cells enter the cell cycle and proliferate to produce a large number of myogenic progenitor cells, and these cells then differentiate and fuse to form myofibers. Zinc is one of the essential elements in the human body, and has multiple roles, including cell growth and DNA synthesis. However, the role of zinc in myogenic cells is not well understood, and is the focus of this study. We first examined the effects of zinc onmore » differentiation of murine C2C12 myoblasts and found that zinc promoted proliferation, with an increased number of cells incorporating EdU, but inhibited differentiation with reduced myogenin expression and myotube formation. Furthermore, we used the C2C12 reserve cell model of myogenic quiescence to investigate the role of zinc on activation of myogenic cells. The number of reserve cells incorporating BrdU was increased by zinc in a dose dependent manner, with the number dramatically further increased using a combination of zinc and insulin. Akt and extracellular signal-regulated kinase (ERK) are downstream of insulin signaling, and both were phosphorylated after zinc treatment. The zinc/insulin combination-induced activation involved the phosphoinositide 3-kinase (PI3K)/Akt and ERK cascade. We conclude that zinc promotes activation and proliferation of myogenic cells, and this activation requires phosphorylation of PI3K/Akt and ERK as part of the signaling cascade. - Highlights: • Zinc has roles for promoting proliferation and inhibition differentiation of C2C12. • Zinc promotes activation of reserve cells. • Insulin and zinc synergize activation of reserve cells. • PI3K/Akt and ERK cascade affect zinc/insulin-mediated activation of reserve cells.« less

  12. Serum zinc, copper and iron status of children with coeliac disease on three months of gluten-free diet with or without four weeks of zinc supplements: a randomised controlled trial.

    PubMed

    Negi, K; Kumar, R; Sharma, L; Datta, S P; Choudhury, M; Kumar, P

    2018-04-01

    Data about the effect of zinc supplementation with gluten-free diet on normalisation of plasma zinc, copper and iron in patients with coeliac disease are scanty. We evaluated the effect of zinc supplementation on serum zinc, copper and iron levels in patients with coeliac disease, by randomising 71 children newly diagnosed with coeliac disease into two groups: Group A = gluten-free diet (GFD); and Group B = gluten-free diet with zinc supplements (GFD +Zn). The rise in iron and zinc was significantly higher in the latter, but the mean rise of copper levels was slightly higher in the former, but the difference was not significant.

  13. Evaluation of serum vitamins A and E and zinc levels according to the severity of acne vulgaris.

    PubMed

    Ozuguz, Pinar; Dogruk Kacar, Seval; Ekiz, Ozlem; Takci, Zennure; Balta, Ilknur; Kalkan, Göknur

    2014-06-01

    Although hyperseborrhea, follicular hyperkeratinization, Propionibacterium acnes colonization and inflammation are found to be responsible in the pathogenesis of acne, the exact mechanisms are unknown. Vitamin A and E are basic antioxidants vital for health. Zinc is also an essential element for human. But these parameters of the effects on skin are not fully understood. We aimed to evaluate plasma levels of vitamin A, E and zinc in acne patients in relation to the severity of the disease. There were 94 acne patients who were referred to our clinic, all new diagnosed, and 56 age and sex matched healthy volunteers as control group. All patients are assessed according to Global Acne Grading System and grouped as mild, moderate, severe and very severe. Acne patients further grouped as group 1 consist of patients with mild to moderate disease; and group 2 consist of patients with severe to very severe acne. The patients with the controls and group 1 with group 2 was compared. The level of vitamin E, vitamin A and zinc were significantly lower than the control group (Table 1,p < 0.001). When the patient group is compared among each other there was no statistically significant difference for plasma vitamin A levels between group 1 and 2 whereas vitamin E and zinc levels were significantly low in group 2 than group 1. Thus there was a negative correlation between acne severity and vitamin E and zinc levels. Our study marks the importance of diet in patients with acne. We offer supportive dietary measures with foods rich in vitamin A and E and zinc in the acne prophylaxis and treatment. Supportive treatment with these vitamins and zinc in severe acne may lead to satisfactory results.

  14. Comparative studies on acid leaching of zinc waste materials

    NASA Astrophysics Data System (ADS)

    Rudnik, Ewa; Włoch, Grzegorz; Szatan, Leszek

    2017-11-01

    Three industrial waste materials were characterized in terms of their elemental and phase compositions, leaching behaviour in 10% sulfuric acid solution as well as leaching thermal effects. Slag from melting of mixed metallic scrap contained about 50% Zn and 10% Pb. It consisted mainly of various oxides and oxy-chlorides of metals. Zinc spray metallizing dust contained about 77% Zn in form of zinc and/or zinc-iron oxides, zinc metal and Zn-Fe intermetallic. Zinc ash from hot dip galvanizing was a mixture of zinc oxide, metallic zinc and zinc hydroxide chloride and contained about 80% Zn. Dissolution efficiency of zinc from the first material was 80% (independently on the solid to liquid ratio, 50-150 kg/m3), while decrease of the efficacy from 80% to 60% with increased solid to liquid ratio for the two remaining materials was observed. Both increase in the temperature (20 °C to 35 °C) and agitation rate (300 rpm to 900 rpm) did not improve seriously the leaching results. In all cases, transfer of zinc ions to the leachate was accompanied by different levels of solution contamination, depending on the type of the waste. Leaching of the materials was exothermic with the similar reaction heats for two high oxide-type products (slag, zinc ash) and higher values for the spray metallizing dust.

  15. Metallic Zinc Exhibits Optimal Biocompatibility for Bioabsorbable Endovascular Stents

    PubMed Central

    Bowen, Patrick K.; Guillory, Roger J.; Shearier, Emily R.; Seitz, Jan-Marten; Drelich, Jaroslaw; Bocks, Martin; Zhao, Feng; Goldman, Jeremy

    2015-01-01

    Although corrosion resistant bare metal stents are considered generally effective, their permanent presence in a diseased artery is an increasingly recognized limitation due to the potential for long-term complications. We previously reported that metallic zinc exhibited an ideal biocorrosion rate within murine aortas, thus raising the possibility of zinc as a candidate base material for endovascular stenting applications. This study was undertaken to further assess the arterial biocompatibility of metallic zinc. Metallic zinc wires were punctured and advanced into the rat abdominal aorta lumen for up to 6.5 months. This study demonstrated that metallic zinc did not provoke responses that often contribute to restenosis. Low cell densities and neointimal tissue thickness, along with tissue regeneration within the corroding implant, point to optimal biocompatibility of corroding zinc. Furthermore, the lack of progression in neointimal tissue thickness over 6.5 months or the presence of smooth muscle cells near the zinc implant suggest that the products of zinc corrosion may suppress the activities of inflammatory and smooth muscle cells. PMID:26249616

  16. Effect of long-term intraperitoneal zinc administration on liver glycogen levels in diabetic rats subjected to acute forced swimming.

    PubMed

    Bicer, Mursel; Gunay, Mehmet; Akil, Mustafa; Avunduk, Mustafa Cihat; Mogulkoc, Rasim; Baltaci, Abdulkerim Kasim

    2011-03-01

    This study aims to examine the effect of zinc administration on liver glycogen levels of rats in which diabetes was induced with streptozotocin and which were subjected to acute swimming exercise. The study was conducted on 80 adult Sprague-Dawley male rats, which were equally allocated to eight groups: group 1, general control; group 2, zinc-administrated control; group 3, zinc-administrated diabetic control; group 4, swimming control; group 5, zinc-administrated swimming; group 6, zinc-administrated diabetic swimming; group 7, diabetic swimming; group 8, diabetic control group. In order to induce diabetes, animals were injected with 40 mg/kg intraperitoneal (ip) streptozotocin. The injections were repeated in the same dose after 24 h. Animals which had blood glucose at or above 300 mg/dl 6 days after the last injections were accepted as diabetic. Zinc was administrated ip for 4 weeks as 6 mg/kg/day per rat. Hepatic tissue samples taken from the animals at the end of the study were fixed in 95% ethyl alcohol. Cross sections of 5 µm thickness, taken by the help of a microtome from the tissue samples buried in paraffin, were placed on a microscope slide and stained with periodic acid-Schiff and evaluated by light microscope. All microscopic images were transferred to a PC and assessed with the help of Clemex PE3.5 image analysis software. The lowest liver glycogen levels in the study were obtained in groups 3, 4, 6, 7, and 8. Liver glycogen levels in group 5 were higher than groups 3, 4, 6, 7, and 8, but lower than groups 1 and 2 (p < 0.05). Groups 1 and 2 had the highest liver glycogen levels. The results obtained from the study indicate that liver glycogen levels which dropped in acute swimming exercise were restored by zinc administration and that diabetes induced in rats prevented the protective effect of zinc.

  17. Suppression of zinc dendrites in zinc electrode power cells

    NASA Technical Reports Server (NTRS)

    Damjanovic, A.; Diggle, J. W.

    1970-01-01

    Addition of various tetraalkyl quarternary ammonium salts, to alkaline zincate electrolyte of cell, prevents formation of zinc dendrites during charging of zinc electrode. Electrode capacity is not impaired and elimination of dendrites prolongs cell life.

  18. Zinc triggers microglial activation

    PubMed Central

    Kauppinen, Tiina M.; Higashi, Youichirou; Suh, Sang Won; Escartin, Carole; Nagasawa, Kazuki; Swanson, Raymond A.

    2009-01-01

    Microglia are resident immune cells of the central nervous system. When stimulated by infection, tissue injury, or other signals, microglia assume an activated, “amoeboid” morphology and release matrix metalloproteinases, reactive oxygen species, and other pro-inflammatory factors. This innate immune response augments host defenses, but it can also contribute to neuronal death. Zinc is released by neurons under several conditions in which microglial activation occurs, and zinc chelators can reduce neuronal death in animal models of cerebral ischemia and neurodegenerative disorders. Here we show that zinc directly triggers microglial activation. Microglia transfected with an NF-kB reporter gene showed a several-fold increase in NF-kB activity in response to 30 μM zinc. Cultured mouse microglia exposed to 15 – 30 μM zinc increased nitric oxide production, increased F4/80 expression, altered cytokine expression, and assumed the activated morphology. Zinc-induced microglial activation was blocked by inhibiting NADPH oxidase, poly(ADP-ribose) polymerase-1 (PARP-1), or NF-κB activation. Zinc injected directly into mouse brain induced microglial activation in wild-type mice, but not in mice genetically lacking PARP-1 or NADPH oxidase activity. Endogenous zinc release, induced by cerebral ischemia-reperfusion, likewise induced a robust microglial reaction, and this reaction was suppressed by the zinc chelator CaEDTA. Together, these results suggest that extracellular zinc triggers microglial activation through the sequential activation of NADPH oxidase, PARP-1, and NF-κB. These findings identify a novel trigger for microglial activation and a previously unrecognized mechanism by which zinc may contribute to neurological disorders. PMID:18509044

  19. Zinc starvation induces autophagy in yeast.

    PubMed

    Kawamata, Tomoko; Horie, Tetsuro; Matsunami, Miou; Sasaki, Michiko; Ohsumi, Yoshinori

    2017-05-19

    Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Calcium, Iron, and Zinc Bioaccessibilities of Australian Sweet Lupin (Lupinus angustifolius L.) Cultivars.

    PubMed

    Karnpanit, Weeraya; Coorey, Ranil; Clements, Jon; Benjapong, Wenika; Jayasena, Vijay

    2017-06-14

    In this study, we aimed to determine the effect of the cultivar and dehulling on calcium, iron, and zinc bioaccessibilities of Australian sweet lupin (ASL). Ten ASL cultivars grown in 2011, 2012, and 2013 in Western Australia were used for the study. The bioaccessibilities of calcium, iron, and zinc in whole seed and dehulled lupin samples were determined using a dialysability method. The cultivar had significant effects on calcium, iron, and zinc contents and their bioaccessibilities. Average bioaccessibilities of 6% for calcium, 17% for iron, and 9% for zinc were found for whole seeds. Dehulled ASL had average calcium, iron, and zinc bioaccessibilities of 11%, 21%, and 12%, respectively. Compared to some other pulses, ASL had better iron bioaccessibility and poorer calcium and zinc bioaccessibilities. Dehulling increased calcium bioaccessibilities of almost all lupin cultivars. The effect of dehulling on iron and zinc bioaccessibilities depends on the ASL cultivar.

  1. Effects of cadmium and zinc toxicity on orientation behaviour of Echinoparyphium recurvatum (Digenea: Echinostomatidae) cercariae.

    PubMed

    Morley, N J; Crane, M; Lewis, J W

    2003-08-15

    The effects of cadmium and zinc toxicity on orientation behaviour (photo- and geo-taxis) of Echinoparyphium recurvatum cercariae was investigated at concentrations ranging from 10 to 1000 microg l(-1). Exposure to the toxicants at all metal concentrations caused a change in orientation to negative phototaxis and positive geotaxis during the submaximal dispersal phase (0.5 h cercarial age). Autometallography staining of cercariae exposed to 1000 microg l(-1) cadmium or zinc showed selective binding of heavy metals to tegumental surface sites associated with sensory receptors. The significance to parasite transmission of changes in cercarial orientation behaviour in metal polluted environments is discussed.

  2. Chemical sterilisation of animals: A review of the use of zinc- and CaCl2 based solutions in male and female animals and factors likely to improve responses to treatment.

    PubMed

    Cavalieri, John

    2017-06-01

    Chemical sterilisation can be used as an alternative to surgical castration in some circumstances. This review focuses on responses to treatment with zinc- or CaCl 2 -based chemosterilants, factors that have affected treatments and their potential use to sterilise female cattle. Successful treatment with a low incidence of adverse side effects in male animals has occurred with the use of zinc gluconate (ZG), neutralised in arginine and a 20% solution of CaCl 2 in ethanol. Injection technique plays an important role in success. Less satisfactory results appear to occur following use in animals with relatively larger testes. In animals with relatively small testes adjustment of the dose according to testicular size appears to optimise results. The techniques appear to be most suited to population control strategies in companion animals where low cost treatment of animals in environments where surgical facilities and specialised aftercare are lacking. The need for careful administration and likely slower speed of administration compared to surgical castration are likely to hamper application within the cattle industries. Recently transvaginal, intraovarian administration of CaCl 2 in ethanol has been shown to cause complete ovarian atrophy without apparent pain in some heifers, although variable responses were found. Chemical sterilisation can play a role in the sterilisation of animals but careful attention to dose, volume, chemical composition, administration technique are needed to avoid adverse side effects and variability in responses associated with some treatments. Application in female animals requires further study but CaCl 2 in ethanol can potentially cause complete ovarian atrophy when administered to heifers. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The Corrosion Behavior of Cold Sprayed Zinc Coatings on Mild Steel Substrate

    NASA Astrophysics Data System (ADS)

    Chavan, Naveen Manhar; Kiran, B.; Jyothirmayi, A.; Phani, P. Sudharshan; Sundararajan, G.

    2013-04-01

    Zinc and its alloy coatings have been used extensively for the cathodic protection of steel. Zinc coating corrodes in preference to the steel substrate due to its negative corrosion potential. Numerous studies have been conducted on the corrosion behavior of zinc and its alloy coatings deposited using several techniques viz., hot dip galvanizing, electrodeposition, metalizing or thermal spray etc. Cold spray is an emerging low temperature variant of thermal spray family which enables deposition of thick, dense, and pure coatings at a rapid rate with an added advantage of on-site coating of steel structures. In the present study, the corrosion characteristics of cold sprayed zinc coatings have been investigated for the first time. In addition, the influence of heat treatment of zinc coating at a temperature of 150 °C on its corrosion behavior has also been addressed.

  4. The effect of polymers onto the size of zinc layered hydroxide salt and its calcined product

    NASA Astrophysics Data System (ADS)

    Hussein, Mohd Zobir bin; Ghotbi, Mohammad Yeganeh; Yahaya, Asmah Hj; Abd Rahman, Mohd Zaki

    2009-02-01

    Zinc hydroxide nitrate, a brucite-like layered material was synthesized using pH control method. Poly(vinyl alcohol) and poly(ethylene glycol) were used at various percentages as size decreasing agents during the synthesis of zinc hydroxide nitrate. SEM and PXRD showed the decrease of size and thickness of the resultant zinc hydroxide nitrates. TG and surface area data confirmed the decrease of the particle sizes, too. When zinc hydroxide nitrates were heat treated at 500 °C, the physical properties of nano zinc oxides obtained depended on the parent material, zinc hydroxide nitrate.

  5. Sequestration of zinc from zinc oxide nanoparticles and life cycle effects in the sediment dweller amphipod Corophium volutator.

    PubMed

    Fabrega, Julia; Tantra, Ratna; Amer, Aisha; Stolpe, Bjorn; Tomkins, Jordan; Fry, Tony; Lead, Jamie R; Tyler, Charles R; Galloway, Tamara S

    2012-01-17

    We studied the effects of ZnO nanoparticles [ZnO NPs, primary particle size 35 ± 10 nm (circular diameter, TEM)], bulk [160 ± 81 nm (circular diameter, TEM)], and Zn ions (from ZnCl(2)) on mortality, growth, and reproductive endpoints in the sediment dwelling marine amphipod Corophium volutator over a complete lifecycle (100 days). ZnO NPs were characterized by size, aggregation, morphology, dissolution, and surface properties. ZnO NPs underwent aggregation and partial dissolution in the seawater exposure medium, resulting in a size distribution that ranged in size from discrete nanoparticles to the largest aggregate of several micrometers. Exposure via water to all forms of zinc in the range of 0.2-1.0 mg L(-1) delayed growth and affected the reproductive outcome of the exposed populations. STEM-EDX analysis was used to characterize insoluble zinc precipitates (sphaerites) of high sulfur content, which accumulated in the hepatopancreas following exposures. The elemental composition of the sphaerites did not differ for ZnO NP, Zn(2+), and bulk ZnO exposed organisms. These results provide an illustration of the comparable toxicity of Zn in bulk, soluble, and nanoscale forms on critical lifecycle parameters in a sediment dwelling organism.

  6. Zinc treatment of the digestive gland of the slug Arion ater L. 1. Cellular distribution of zinc and calcium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Recio, A.; Marigomez, J.A.; Angulo, E.

    1988-12-01

    Extensive literature has been published on the molluscan capability for metal bioaccumulation. As a consequence, a variety of species have been proposed for environmental pollution biomonitoring. The knowledge of biological mechanisms of accumulation and elimination of environmental pollutants is essential to get a proper use of bioindicator species. Histological procedures may indicate (a) the events involved in the metabolic regulation of pollutant bioavailability and release and (b) their specific toxic effects. The relevance of the digestive gland as a major site for Zn accumulation has been reported. The Zn distribution in this organ might indicate the level of environmental bioavailablemore » Zn. The present study is a histochemical investigation of the distribution and release of zinc by the different cell types of the digestive gland of A. ater.« less

  7. Scale-up synthesis of zinc borate from the reaction of zinc oxide and boric acid in aqueous medium

    NASA Astrophysics Data System (ADS)

    Kılınç, Mert; Çakal, Gaye Ö.; Yeşil, Sertan; Bayram, Göknur; Eroğlu, İnci; Özkar, Saim

    2010-11-01

    Synthesis of zinc borate was conducted in a laboratory and a pilot scale batch reactor to see the influence of process variables on the reaction parameters and the final product, 2ZnO·3B 2O 3·3.5H 2O. Effects of stirring speed, presence of baffles, amount of seed, particle size and purity of zinc oxide, and mole ratio of H 3BO 3:ZnO on the zinc borate formation reaction were examined at a constant temperature of 85 °C in a laboratory (4 L) and a pilot scale (85 L) reactor. Products obtained from the reaction in both reactors were characterized by chemical analysis, X-ray diffraction, particle size distribution analysis, thermal gravimetric analysis and scanning electron microscopy. The kinetic data for the zinc borate production reaction was fit by using the logistic model. The results revealed that the specific reaction rate, a model parameter, decreases with increase in particle size of zinc oxide and the presence of baffles, but increases with increase in stirring speed and purity of zinc oxide; however, it is unaffected with the changes in the amount of seed and reactants ratio. The reaction completion time is unaffected by scaling-up.

  8. Effects of surfactants on low-molecular-weight organic acids to wash soil zinc.

    PubMed

    Chen, Yue; Zhang, Shirong; Xu, Xiaoxun; Yao, Ping; Li, Ting; Wang, Guiyin; Gong, Guoshu; Li, Yun; Deng, Ouping

    2016-03-01

    Soil washing is an effective approach to the removal of heavy metals from contaminated soil. In this study, the effects of the surfactants sodium dodecyl sulfate, Triton X-100, and non-ionic polyacrylamide (NPAM) on oxalic acid, tartaric acid, and citric acid used to remove zinc from contaminated soils were investigated. The Zn removal efficiencies of all washing solutions showed a logarithmic increase with acid concentrations from 0.5 to 10.0 g/L, while they decreased as pH increased from 4 to 9. Increasing the reaction time enhanced the effects of surfactants on Zn removal efficiencies by the acids during washing and significantly (P < 0.05) improved the removal under some mixed cases. Oxalic acid suffered antagonistic effects from the three surfactants and seriously damaged soil nutrients during the removal of soil Zn. Notably, the three surfactants caused synergistic effects on tartaric and citric acid during washing, with NPAM leading to an increase in Zn removal by 5.0 g/L citric acid of 10.60 % (P < 0.05) within 2 h. NPAM also alleviated the loss of cation exchange capacity of washed soils and obviously improved soil nitrogen concentrations. Overall, combining citric acid with NPAM offers a promising approach to the removal of zinc from contaminated soil.

  9. [Health hazards resulting from exposure to zinc and its inorganic compounds in industry].

    PubMed

    Pakulska, Daria; Czerczak, Sławomir

    2017-10-17

    This article deals with health risks resulting from exposure to zinc and its inorganic compounds in industry. The main source of zinc exposure are fumes generated during thermal and chemical processes, mainly zinc oxide fume formed by immediate oxidation of metallic zinc vapor formed during high-temperature processes, as well as dust generated during the mechanical processing of zinc-containing materials. It is recognized that zinc ions are responsible for health effects of exposure to dust/fumes of the majority of zinc compounds, and the final effect of exposure depends on the degree of dispersion of dusts/fumes suspended in the air. Since the effects of exposure depends on the particle size, occupational exposure limits have began to be established separately for respirable and inhalable fractions. A critical effect of acute exposure to respirable fraction is a "fume fever" which in chronic exposure occurs as an effect associated with recurrent symptoms of acute poisoning. Impaired lung function and asthma symptoms are considered to be the main effects of exposure to inhalable fraction. Due to the limited number of the available data it is not possible to assess carcinogenicity, reproductive toxicity and teratogenicity of zinc and its compounds. The aim of the study was to analyze the major health hazards resulting from occupational exposure to zinc and its inorganic compounds in the context of their physico-chemical properties, a wide range of applications and occupational exposure data. Med Pr 2017;68(6):779-794. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  10. Zinc oxyfluoride transparent conductor

    DOEpatents

    Gordon, Roy G.

    1991-02-05

    Transparent, electrically conductive and infrared-reflective films of zinc oxyfluoride are produced by chemical vapor deposition from vapor mixtures of zinc, oxygen and fluorine-containing compounds. The substitution of fluorine for some of the oxygen in zinc oxide results in dramatic increases in the electrical conductivity. For example, diethyl zinc, ethyl alcohol and hexafluoropropene vapors are reacted over a glass surface at 400.degree. C. to form a visibly transparent, electrically conductive, infrared reflective and ultraviolet absorptive film of zinc oxyfluoride. Such films are useful in liquid crystal display devices, solar cells, electrochromic absorbers and reflectors, energy-conserving heat mirrors, and antistatic coatings.

  11. Effect of Magnesium Ion on the Zinc Electrodeposition from Acidic Sulfate Electrolyte

    NASA Astrophysics Data System (ADS)

    Tian, Lin; Xie, Gang; Yu, Xiao-Hua; Li, Rong-Xing; Zeng, Gui-Sheng

    2012-02-01

    The effects of Mg2+ ion on the zinc electrodeposition were systematically investigated in sulfuric acid solution through the characterizations of current efficiency (CE), power consumption (PC), deposit morphology, cathodic polarization, and cyclic voltammetry. The results demonstrate that there is no significant influence on CE and PC in the Mg2+ concentration range of 1 to 10 g L-1, but with a drastic decrease of the CE and rapid increase of PC at Mg2+ ion concentration above 15 g L-1. Based on the morphology observation and polarization curves, the presence of Mg2+ ions could also induce the coarse surface on the electrodeposited zinc accompanying the enhancement of the cathodic polarization, which becomes more distinct at a high concentration above 15 g L-1. Furthermore, hydrogen evolution could be promoted with the existence of Mg2+ ions according to cyclic voltammograms.

  12. Bioaccumulation and toxicity of zinc in the green alga, Cladophora glomerata.

    PubMed

    McHardy, B M; George, J J

    1990-01-01

    The bioaccumulation and toxicity of zinc in Cladophora glomerata from two populations in the River Roding, Essex, UK, were examined in experimental laboratory flowing-water channels. Plants were subjected to zinc concentrations ranging from 0 to 4.0 mg litre(-1) at current velocities of 20-33 cm s(-1) for up to 3 h. Zinc in algal tissue was then quantified and toxicity was assessed by the ability of the alga to grow in a recovery medium after the experimental treatment. There was little difference in zinc bioaccumulation between Cladophora from the site showing mild organic pollution and that from the site subjected to considerable inputs from urban and motorway runoff. Uptake of zinc increased with increasing concentration in the test solution and was linear and proportional up to 0.4 mg litre(-1). Three stages of uptake were identified with the most dramatic accumulation occurring in the first 10 min. Experimental concentration factors ranged from 1.9-5.2 x 10(3), which were in agreement with those previously obtained in the field. Cellular damage was evident in Cladophora subjected to 0.4 mg litre(-1) zinc, and this increased with increasing zinc concentration, thus leading to the conclusion that, at times, the levels of zinc found in the river could be potentially damaging.

  13. Feeding Low or Pharmacological Concentrations of Zinc Oxide Changes the Hepatic Proteome Profiles in Weaned Piglets

    PubMed Central

    Bondzio, Angelika; Pieper, Robert; Gabler, Christoph; Weise, Christoph; Schulze, Petra; Zentek, Juergen; Einspanier, Ralf

    2013-01-01

    Pharmacological levels of zinc oxide can promote growth and health of weaning piglets, but the underlying molecular mechanisms are yet not fully understood. The aim of this study was to determine changes in the global hepatic protein expression in response to dietary zinc oxide in weaned piglets. Nine half-sib piglets were allocated to three dietary zinc treatment groups (50, 150, 2500 mg/kg dry matter). After 14 d, pigs were euthanized and liver samples taken. The increase in hepatic zinc concentration following dietary supplementation of zinc was accompanied by up-regulation of metallothionein mRNA and protein expression. Global hepatic protein profiles were obtained by two-dimensional difference gel electrophoresis following matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. A total of 15 proteins were differentially (P<0.05) expressed between groups receiving control (150 mg/kg) or pharmacological levels of zinc (2500 mg/kg) with 7 down- (e.g. arginase1, thiosulfate sulfurtransferase, HSP70) and 8 up-regulated (e.g. apolipoprotein AI, transferrin, C1-tetrahydrofolate synthase) proteins. Additionally, three proteins were differentially expressed with low zinc supply (50 mg/kg Zn) in comparison to the control diet. The identified proteins were mainly associated with functions related to cellular stress, transport, metabolism, and signal transduction. The differential regulation was evaluated at the mRNA level and a subset of three proteins of different functional groups was selected for confirmation by western blotting. The results of this proteomic study suggest that zinc affects important liver functions such as blood protein secretion, protein metabolism, detoxification and redox homeostasis, thus supporting the hypothesis of intermediary effects of pharmacological levels of zinc oxide fed to pigs. PMID:24282572

  14. Evaluation of the serum zinc level in adult patients with melasma: Is there a relationship with serum zinc deficiency and melasma?

    PubMed

    Rostami Mogaddam, Majid; Safavi Ardabili, Nastaran; Iranparvar Alamdari, Manouchehr; Maleki, Nasrollah; Aghabalaei Danesh, Maryam

    2017-11-12

    Melasma is a common acquired hypermelanosis of sun-exposed skin, particularly on the face, which presents as symmetric, light- to gray-brown-colored macules and patches. There are several studies of serum zinc levels in cutaneous disorders. So far, no studies have been carried out to assess the serum zinc level in patients with melasma. The aim of this study is to determine the serum zinc level in patients with melasma compared to healthy subjects. A total of 118 patients with melasma and 118 healthy controls were enrolled in this prospective cross-sectional study. The two groups were matched for age and sex. Atomic absorption spectrophotometry was used to measure serum zinc levels. The statistical analysis was performed using SPSS software. The mean serum level of zinc in melasma patients and controls was 77.4±23.2 μg/dL and 82.2±23.9 μg/dL, respectively (P-value=.0001). Serum zinc deficiency was found in 45.8% and 23.7% of melasma patients and control subjects, respectively. A positive family history of melasma in first-degree relatives was present in 46 (39%) of the cases, and a history of taking oral contraceptive pill was found in 95 (81%) of women with melasma. The aggravating factors for melasma were stated as: sun exposure (11.1%), pregnancy (15.3%), nutrition (2.5%), oral contraceptive pills (18.6%), and emotional stress (5.9%). The malar and centrofacial patterns were seen in 3.4% and 72% of cases, respectively, whereas 24.6% of the patients had both centrofacial distribution and malar distribution, and there was no patient with mandibular pattern. Among patients with melasma, 20.3% had thyroid dysfunction, while in the control subjects, 8.4% had thyroid dysfunction (P=.001). There is a significant relationship between low levels of zinc and melasma. Zinc deficiency may be involved in the pathogenesis of melasma. Also, treatment with oral zinc supplements can be tried in these patients to see the outcome. However, to make recommendations on

  15. Effects of zinc and female aging on nymphal life history in a grasshopper from polluted sites.

    PubMed

    Augustyniak, Maria; Babczyńska, Agnieszka; Kozłowski, Michał; Sawczyn, Tomasz; Augustyniak, Michał

    2008-01-01

    Insect reproduction is influenced by various factors, including food quality and quantity, temperature, population density and female age. Contamination, including heavy metals, may disturb reproductive processes. The aim of this work was to assess interactions between effects of aging in female Chorthippus brunneus and environmental pollution on their reproduction measured in number of laid eggs. We also compared basic developmental parameters (number of hatchlings, body mass, embryonic developmental rate) in grasshopper nymphs additionally exposed to zinc during diapause. Aging grasshoppers from heavily polluted areas (Olkusz and Szopienice) lay significantly fewer eggs than insects from the reference site (Pilica). Zinc application caused the decrease in hatching success and duration of embryogenesis in insects from each site. This suggests a cumulative effect of female age, pollutants and additional stressing factors. The intensity of this process differed between populations. In insects from the reference site, it was shown in a moderate degree. In insects from Szopienice, an additional stressor exerted a weaker effect than in insects from Pilica. In grasshoppers from Olkusz, we found the strongest decrease of hatching percentage and increase in duration of embryogenesis after zinc intoxication. This may indicate that the population from Olkusz exists at the limit of its energetic abilities.

  16. Dynamic energy budget as a basis to model population-level effects of zinc-spiked sediments in the gastropod Valvata piscinalis.

    PubMed

    Ducrot, Virginie; Péry, Alexandre R R; Mons, Raphaël; Quéau, Hervé; Charles, Sandrine; Garric, Jeanne

    2007-08-01

    This paper presents original toxicity test designs and mathematical models that may be used to assess the deleterious effects of toxicants on Valvata piscinalis (Mollusca, Gastropoda). Results obtained for zinc, used as a reference toxicant, are presented. The feeding behavior, juvenile survival, growth, age at puberty, onset of reproduction, number of breedings during the life cycle, and fecundity were significantly altered when the snails were exposed to zinc-spiked sediments. Dynamic energy budget models (DEBtox) adequately predicted the effects of zinc on the V. piscinalis life cycle. They also provided estimates for lifecycle parameters that were used to parameterize a demographic model, based on a Z-transformed life-cycle graph. The effect threshold for the population growth rate (lambda) was estimated at 259 mg/kg dry sediment of zinc, showing that significant changes in abundance may occur at environmental concentrations. Significant effects occurring just above this threshold value were mainly caused by the severe impairment of reproductive endpoints. Sensitivity analysis showed that the value of lambda depended mainly on the juvenile survival rate. The impairment of this latter parameter may result in extinction of V. piscinalis. Finally, the present study highlights advantages of the proposed modeling approach in V. piscinalis and possible transfer to other test species and contaminants.

  17. Scientific skepticism and new discoveries: an analysis of a report of zinc/phytase supplementation and the efficacy of botulinum toxins in treating cosmetic facial rhytides, hemifacial spasm and benign essential blepharospasm.

    PubMed

    Cohen, Joel L

    2014-10-01

    A recent paper in the Journal of Drugs in Dermatology by Koshy and colleagues (2012, 11( 4 ):507-512) report on "Effect of Dietary Zinc and Phytase Supplementation on Botulinum Toxin Treatments" and conclude by claiming the discovery of "a potentially meaningful role for zinc and/or phytase supplementation in increasing the degree and duration of botulinum toxin effect in the treatment of cosmetic facial rhytids, benign essential blepharospasm, and hemifacial spasm". The purpose of this paper is to examine these published claims for possible methodological and design errors and potential sources of bias. The authors evaluated the published results in comparison to the published literature on zinc deficiency, the role of phytase, prior reports of an effect of zinc on activity of botulinum toxin, issues of study design and execution and if the reported results of the study supported the study's conclusions. Multiple issues are present in the reported study, which appear to invalidate its conclusions. These areas include lack of direct evidence for the presence of clinical or subclinical zinc deficiency in the study population or for the level of phytate in the study population sufficient to interfere with zinc absorption in these subjects. Additionally, there is ambiguity as to the actual dose of zinc used as well as in the study design itself. Also there is a failure of the study through the "unmasking" of the crossover design. There is potential financial conflict of interest in the study execution that may have biased the reported results. Finally there is inadequate data presented to evaluate the claims made of a "new discovery" as to the three disease entities reported on and the various botulinum toxins used in each of the three treatment arms of the study. Based on this evaluation, it appears that a high level of clinical and scientific skepticism is warranted concerning any claim of a beneficial effect of zinc and phytase supplementation on the efficacy or

  18. Zinc oxide nanorod clusters deposited seaweed cellulose sheet for antimicrobial activity.

    PubMed

    Bhutiya, Priyank L; Mahajan, Mayur S; Abdul Rasheed, M; Pandey, Manoj; Zaheer Hasan, S; Misra, Nirendra

    2018-06-01

    Seaweed cellulose was isolated from green seaweed Ulva fasciata using a common bleaching agent. Sheet containing porous mesh was prepared from the extracted seaweed crystalline cellulose along with zinc oxide (ZnO) nanorod clusters grown over the sheet by single step hydrothermal method. Seaweed cellulose and zinc oxide nanorod clusters deposited seaweed cellulose sheet was characterized by FT-IR, XRD, TGA, and SEM-EDX. Morphology showed that the diameter of zinc oxide nanorods were around 70nm. Zinc oxide nanorod clusters deposited on seaweed cellulose sheet gave remarkable antibacterial activity towards gram-positive (Staphylococcus aureus, Bacillus ceresus, Streptococcus thermophilis) and gram-negative (Escherichia coli, Pseudomonas aeruginous) microbes. Such deposited sheet has potential applications in pharmaceutical, biomedical, food packaging, water treatment and biotechnological industries. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Cell death caused by the synergistic effects of zinc and dopamine is mediated by a stress sensor gene Gadd45b - implication in the pathogenesis of Parkinson's disease.

    PubMed

    Yang, Tien-Chun; Wu, Pei-Chun; Chung, I-Fang; Jiang, Jhih-Hang; Fann, Ming-Ji; Kao, Lung-Sen

    2016-10-01

    The pathogenesis of Parkinson's disease (PD) is not completely understood, Zinc (Zn(2+) ) and dopamine (DA) have been shown to involve in the degeneration of dopaminergic cells. By microarray analysis, we identified Gadd45b as a candidate molecule that mediates Zn(2+) and DA-induced cell death; the mRNA and protein levels of Gadd45b are increased by Zn(2+) treatment and raised to an even higher level by Zn(2+) plus DA treatment. Zn(2+) plus DA treatment-induced PC12 cell death was enhanced when there was over-expression of Gadd45b and was decreased by knock down of Gadd45b. MAPK p38 and JNK signaling was able to cross-talk with Gadd45b during Zn(2+) and DA treatment. The synergistic effects of Zn(2+) and DA on PC12 cell death can be accounted for by an activation of the Gadd45b-induced cell death pathway and an inhibition of p38/JNK survival pathway. Furthermore, the in vivo results show that the levels of Gadd45b protein expression and phosphorylation of p38 were increased in the substantia nigra by the infusion of Zn(2+) /DA in the mouse brain and the level of Gadd45b mRNA is significantly higher in the substantia nigra of male PD patients than normal controls. The novel role of Gadd45b and its interactions with JNK and p38 will help our understanding of the pathogenesis of PD and help the development of future treatments for PD. Zinc and dopamine are implicated in the degeneration of dopaminergic neurons. We previously demonstrated that zinc and dopamine induced synergistic effects on PC12 cell death. Results from this study show that these synergistic effects can be accounted for by activation of the Gadd45b-induced cell death pathway and inhibition of the p38/JNK survival pathway. We provide in vitro and in vivo evidence to support a novel role for Gadd45b in the pathogenesis of Parkinson's disease. © 2016 International Society for Neurochemistry.

  20. Zinc and gastrointestinal disease

    PubMed Central

    Skrovanek, Sonja; DiGuilio, Katherine; Bailey, Robert; Huntington, William; Urbas, Ryan; Mayilvaganan, Barani; Mercogliano, Giancarlo; Mullin, James M

    2014-01-01

    This review is a current summary of the role that both zinc deficiency and zinc supplementation can play in the etiology and therapy of a wide range of gastrointestinal diseases. The recent literature describing zinc action on gastrointestinal epithelial tight junctions and epithelial barrier function is described. Zinc enhancement of gastrointestinal epithelial barrier function may figure prominently in its potential therapeutic action in several gastrointestinal diseases. PMID:25400994