Skalny, Andrey A; Tinkov, Alexey A; Medvedeva, Yulia S; Alchinova, Irina B; Karganov, Mikhail Y; Skalny, Anatoly V; Nikonorov, Alexandr A
2015-01-01
A significant association between Zn and Se homeostasis exists. At the same time, data on the influence of zinc supplementation on selenium distribution in organs and tissues seem to be absent. Therefore, the primary objective of the current study is to investigate the influence of zinc asparaginate supplementation on zinc and selenium distribution and serum superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity in Wistar rats. 36 rats were used in the experiment. The duration of the experiment was 7 and 14 days in the first and second series, respectively. The rats in Group I were used as the control ones. Animals in Groups II and III daily obtained zinc asparaginate (ZnA) in the doses of 5 and 15 mg/kg weight, respectively. Zinc and selenium content in liver, kidneys, heart, muscle, serum and hair was assessed using inductively coupled plasma mass spectrometry. Serum SOD and GPx activity was analysed spectrophotometrically using Randox kits. Intragastric administration of zinc asparaginate significantly increased liver, kidney, and serum zinc content without affecting skeletal and cardiac muscle levels. Zinc supplementation also stimulated selenium retention in the rats' organs. Moreover, a significant positive correlation between zinc and selenium content was observed. Finally, zinc asparaginate treatment has been shown to modulate serum GPx but not SOD activity. The obtained data indicate that zinc-induced increase in GPx activity may be mediated through modulation of selenium status. However, future studies are required to estimate the exact mechanisms of zinc and selenium interplay.
Trace element supplementation in hemodialysis patients: a randomized controlled trial.
Tonelli, Marcello; Wiebe, Natasha; Thompson, Stephanie; Kinniburgh, David; Klarenbach, Scott W; Walsh, Michael; Bello, Aminu K; Faruque, Labib; Field, Catherine; Manns, Braden J; Hemmelgarn, Brenda R
2015-04-11
People with kidney failure are often deficient in zinc and selenium, but little is known about the optimal way to correct such deficiency. We did a double-blind randomized trial evaluating the effects of zinc (Zn), selenium (Se) and vitamin E added to the standard oral renal vitamin supplement (B and C vitamins) among hemodialysis patients in Alberta, Canada. We evaluated the effect of two daily doses of the new supplement (medium dose: 50 mg Zn, 75 mcg Se, 250 IU vitamin E; low dose: 25 mg Zn, 50 mcg Se, 250 IU vitamin E) compared to the standard supplement on blood concentrations of Se and Zn at 90 days (primary outcome) and 180 days (secondary outcome) as well as safety outcomes. We enrolled 150 participants. The proportion of participants with low zinc status (blood level <815 ug/L) did not differ between the control group and the two intervention groups at 90 days (control 23.9% vs combined intervention groups 23.9%, P > 0.99) or 180 days (18.6% vs 28.2%, P = 0.24). The proportion with low selenium status (blood level <121 ug/L) was similar for controls and the combined intervention groups at 90 days (32.6 vs 19.6%, P = 0.09) and 180 days (34.9% vs 23.5%, P = 0.17). There were no significant differences in the risk of adverse events between the groups. Supplementation with low or medium doses of zinc and selenium did not correct low zinc or selenium status in hemodialysis patients. Future studies should consider higher doses of zinc (≥75 mg/d) and selenium (≥100 mcg/d) with the standard supplement. Registered with ClinicalTrials.gov (NCT01473914).
Fedor, Monika; Socha, Katarzyna; Urban, Beata; Soroczyńska, Jolanta; Matyskiela, Monika; Borawska, Maria H; Bakunowicz-Łazarczyk, Alina
2017-03-01
The purpose of the present study was the assessment of the serum concentration of antioxidant microelements-zinc, copper, selenium, manganese, and Cu/Zn ratio in children and adolescents with myopia. Eighty-three children were examined (mean age 14.36 ± 2.49 years) with myopia. The control group was 38 persons (mean age 12.89 ± 3.84 years). Each patient had complete eye examination. The serum concentration of zinc, copper, manganese, and selenium was determined by atomic absorption spectrometry. Cu/Zn ratio, which is the indicator of the oxidative stress, was also calculated. The average serum concentration of zinc in myopic patients was significantly lower (0.865 ± 0.221 mg L -1 ) in comparison to the control group (1.054 ± 0.174 mg L -1 ). There was significantly higher Cu/Zn ratio in myopic patients (1.196 ± 0.452) in comparison to that in the control group (0.992 ± 0.203). The average serum concentration of selenium in the study group was significantly lower (40.23 ± 12.07 μg L -1 ) compared with that in the control group (46.00 ± 12.25 μg L -1 ). There were no essential differences between serum concentration of copper and manganese in the study group and the control group. Low serum concentration of zinc and selenium in myopic children may imply an association between insufficiency of these antioxidant microelements and the development of the myopia and could be the indication for zinc and selenium supplementation in the prevention of myopia. Significantly, higher Cu/Zn ratio in the study group can suggest the relationship between myopia and oxidative stress.
USDA-ARS?s Scientific Manuscript database
Micronutrient malnutrition, especially selenium (Se), iron (Fe), and zinc (Zn) deficiency, is a major global health problem. Previous attempts to prevent micronutrient malnutrition through food fortification, supplementation, and enrichment of staple crops has had limited success. Canadian grown len...
Effects of organic selenium and zinc on the aging process of laying hens
USDA-ARS?s Scientific Manuscript database
The objective of the study was to determine whether supplementing the diets of post-molted hens with organic selenium (Se) (Sel-Plex®) and/or organic Zinc (Zn) (Bio-Plex®) could improve laying hen performance. Prior to molting, 120-78 wk old laying hens were separated into four treatment groups of ...
Barros-Neto, João Araújo; Souza-Machado, Adelmir; Kraychete, Durval Campos; de Jesus, Rosangela Passos; Cortes, Matheus Lopes; Lima, Michele dos Santos; Freitas, Mariana Carvalho; Santos, Tascya Morganna de Morais; Viana, Gustavo Freitas de Sousa; Menezes-Filho, José Antonio
2016-01-01
Introduction Nutritional disorders have been reported to be important causal factors that can intensify or cause a painful response in individuals with chronic musculoskeletal pain. Aim To assess the habitual intake of and the serum and erythrocyte levels of selenium and zinc in patients with chronic myofascial pain. Materials and Methods A case-control study of 31 patients with chronic myofascial pain (group I) and 31 subjects without pain (group II). Dietary record in five days for assessing food intake were used. The serum and erythrocyte concentrations of selenium and zinc were analyzed using an atomic absorption spectrophotometry. Pain intensity was assessed using a visual analog scale. Results The group of patients with chronic myofascial pain, compared with the control group, showed a lower erythrocyte concentration of selenium (79.46 ± 19.79 μg/L vs. 90.80 ± 23.12 μg/L; p = 0.041) and zinc (30.56 ± 7.74 μgZn/gHb vs. 38.48 ± 14.86 μgZn/gHb, respectively; p = 0.004). In this study, a compromised food intake of zinc was observed in the majority of the subjects in both groups. The selenium intake was considered to be safe in 80% of the subjects in both groups; however, the likelihood of inadequate intake of this mineral was twice as high in group I (49.5% vs. 24.4%, respectively). In the logistic regression analysis, the erythrocyte concentration of zinc was associated with the presence of pain. In each additional 1 mg of Zn2+ per gram of hemoglobin, a reduction of 12.5% was observed in the risk of the individual having chronic myofascial pain (B = -0.133; adjusted OR = 0.875, 95% CI = 0.803 to 0.954, Wald = 9.187, standard error = 0.044, p = 0.002). Physical inactivity and obesity were noted more commonly in group I compared with the control group. Conclusion In this study, patients with chronic myofascial pain showed lower intracellular stores of zinc and selenium and inadequate food intake of these nutrients. PMID:27755562
USDA-ARS?s Scientific Manuscript database
A study was conducted to examine the effects of three diets supplemented with organic selenium (Se) and zinc (Zn) on the performance of Cochin exotic breeder hens. Cochin hens (n=120) and males (n=12) at 42 wks of age were separated into four treatment groups with three replications per treatment. ...
NASA Astrophysics Data System (ADS)
Beguin, Y.; Bours, V.; Delbrouck, J.-M.; Robaye, G.; Roelandts, I.; Fillet, G.; Weber, G.
1990-04-01
The use of PIXE allowed for a simultaneous determination of serum copper (Cu), zinc (Zn), selenium (Se) and bromine (Br), in various groups of patients with hematologic malignancies. In 78 patients with acute nonlymphocytic leukemia, it was observed that (1) serum Se was significantly lower than in healthy controls and correlated inversely with the tumor burden; (2) serum bromine was normal at diagnosis but dropped dramatically after intensive chemotherapy, before recovering progressively over a period of months; and (3) pretreatment serum copper and zinc were significant prognostic factors of the chance to achieve a complete remission. In 50 patients with chronic lymphocytic leukemia, it was observed that (1) serum Cu and Cu/Zn ratio were useful indices of the disease activity, which were independent of a nonspecific acute phase reaction; and (2) Zn deficiency could contribute to immune dysfunction. In 119 patients with myeloproliferative disorders or myelodysplasic syndromes, serum Cu and Zn levels were mostly dependent on nonspecific factors, such as age and inflammation.
Pankiewicz, Urszula; Sujka, Monika; Kowalski, Radosław; Mazurek, Artur; Włodarczyk-Stasiak, Marzena; Jamroz, Jerzy
2017-04-15
The cultures of Saccharomyces cerevisiae were treated with pulsed electric fields (PEF) in order to obtain a maximum accumulation of selenium and zinc ions (simultaneously) in the biomass. The following concentrations: 100μgSe/ml and 150μgZn/ml medium were assumed to be optimal for the maximum accumulation of these ions, that is 43.07mg/gd.m. for selenium and 14.48mg/gd.m. for zinc, in the cultures treated with PEF. At optimal PEF parameters: electric field strength of 3kV/cm and pulse width of 10μs after the treatment of 20-h culture for 10min, the maximum accumulation of both ions in the yeast cells was observed. Application of PEF caused the increase of ions accumulation by 65% for selenium and 100% for zinc. Optimization of PEF parameters led to the further rise in the both ions accumulation resulting in over 2-fold and 2.5-fold higher concentration of selenium and zinc. Copyright © 2016 Elsevier Ltd. All rights reserved.
Federico, A; Iodice, P; Federico, P; Del Rio, A; Mellone, M C; Catalano, G; Federico, P
2001-04-01
To evaluate the effect of oral administration of selenium and zinc tablets in patients with cancer of the digestive tract during chemotherapy. A case-control, randomized study. Medical Oncology, II University of Naples, Naples, Italy. A total of 60 patients (median age 55 y, range 46-61 y) with diagnosis of gut cancer were randomized in 1999. Patients were treated for 60 days with chemotherapy. Trace elements were measured by atomic absorption spectroscopy. The nutritional status of the patients was assessed by biochemical and bio-impedance analysis (BIA) parameters in basal condition and after 60 days of treatment. Oral administration of selenium and zinc in oral tablet form for 50 days was Se 200 microg/day (50 microg/tablet) and Zn 21 mg/day (7 mg/tablet). Both in the basal condition and at 60 days all patients were malnourished. Selenium and zinc concentrations were significantly lower (P < 0.01) whereas copper concentration was significantly higher (P < 0.01) in cancer patients than in control subjects. However, 21/30 (70%) of those treated with Se and Zn did not showed a further worsening of nutritional status and experienced a significant decrease of asthenia with an increase of appetite. On the other hand, 24/30 (80%) untreated patients had a significant decline of all parameters studied after 60 days (prealbumin, cholesterol, transferrin, P < 0.05 vs 0 time; total proteins, albumin/globulin ratio, P < 0.01 vs 0 time; fat-free mass, fat mass, Na+/K+ ratio, body mass index P < 0.05 vs 0 time; fat free mass/fat mass, total body water, extra cellular/intra cellular water, basal metabolic rate: P < 0.01 vs 0 time). Data indicate that Se and Zn supplementation may improve the clinical course of general conditions in patients with gut cancer. These effects of Se and Zn require confirmation in an independent trial of appropriate design before new public health recommendations regarding Se and Zn supplementation can be made.
Zinc and selenium accumulation and their effect on iron bioavailability in common bean seeds.
de Figueiredo, Marislaine A; Boldrin, Paulo F; Hart, Jonathan J; de Andrade, Messias J B; Guilherme, Luiz R G; Glahn, Raymond P; Li, Li
2017-02-01
Common beans (Phaseolus vulgaris) are the most important legume crops. They represent a major source of micronutrients and a target for essential trace mineral enhancement (i.e. biofortification). To investigate mineral accumulation during seed maturation and to examine whether it is possible to biofortify seeds with multi-micronutrients without affecting mineral bioavailability, three common bean cultivars were treated independently with zinc (Zn) and selenium (Se), the two critical micronutrients that can be effectively enhanced via fertilization. The seed mineral concentrations during seed maturation and the seed Fe bioavailability were analyzed. Common bean seeds were found to respond positively to Zn and Se treatments in accumulating these micronutrients. While the seed pods showed a decrease in Zn and Se along with Fe content during pod development, the seeds maintained relatively constant mineral concentrations during seed maturation. Selenium treatment had minimal effect on the seed accumulation of phytic acid and polyphenols, the compounds affecting Fe bioavailability. Zinc treatment reduced phytic acid level, but did not dramatically affect the concentrations of total polyphenols. Iron bioavailability was found not to be greatly affected in seeds biofortified with Se and Zn. In contrast, the inhibitory polyphenol compounds in the black bean profoundly reduced Fe bioavailability. These results provide valuable information for Se and Zn enhancement in common bean seeds and suggest the possibility to biofortify with these essential nutrients without greatly affecting mineral bioavailability to increase the food quality of common bean seeds. Published by Elsevier Masson SAS.
Aflatoxin B1 Induced Systemic Toxicity in Poultry and Rescue Effects of Selenium and Zinc.
Mughal, Muhammad Jameel; Peng, Xi; Kamboh, Asghar Ali; Zhou, Yi; Fang, Jing
2017-08-01
Among many challenges, exposure to aflatoxins, particularly aflatoxin B 1 (AFB 1 ), is one of the major concerns in poultry industry. AFB 1 intoxication results in decreased meat/egg production, hepatotoxicity, nephrotoxicity, disturbance in gastrointestinal tract (GIT) and reproduction, immune suppression, and increased disease susceptibility. Selenium (Se) and zinc (Zn), in dietary supplementation, offer easy, cost-effective, and efficient ways to neutralize the toxic effect of AFB 1 . In the current review, we discussed the impact of AFB 1 on poultry industry, its biotransformation, and organ-specific noxious effects, along with the action mechanism of AFB 1 -induced toxicity. Moreover, we explained the biological and detoxifying roles of Se and Zn in avian species as well as the protection mechanism of these two trace elements. Ultimately, we discussed the use of Se and Zn supplementation against AFB 1 -induced toxicity in poultry birds.
Guo, Chih-Hung; Chen, Pei-Chung; Hsu, Guoo-Shyng W.; Wang, Chia-Liang
2013-01-01
End stage renal disease patients undergoing long-term dialysis are at risk for abnormal concentrations of certain essential and non-essential trace metals and high oxidative stress. We evaluated the effects of zinc (Zn) supplementation on plasma aluminum (Al) and selenium (Se) concentrations and oxidative stress in chronic dialysis patients. Zn-deficient patients receiving continuous ambulatory peritoneal dialysis or hemodialysis were divided into two groups according to plasma Al concentrations (HA group, Al > 50 μg/L; and MA group, Al > 30 to ≤ 50 μg/L). All patients received daily oral Zn supplements for two months. Age- and gender-matched healthy individuals did not receive Zn supplement. Clinical variables were assessed before, at one month, and after the supplementation period. Compared with healthy subjects, patients had significantly lower baseline plasma Se concentrations and higher oxidative stress status. After two-month Zn treatment, these patients had higher plasma Zn and Se concentrations, reduced plasma Al concentrations and oxidative stress. Furthermore, increased plasma Zn concentrations were related to the concentrations of Al, Se, oxidative product malondialdehyde (MDA), and antioxidant enzyme superoxide dismutase activities. In conclusion, Zn supplementation ameliorates abnormally high plasma Al concentrations and oxidative stress and improves Se status in long-term dialysis patients. PMID:23609777
Wacewicz, Marta; Socha, Katarzyna; Soroczyńska, Jolanta; Niczyporuk, Marek; Aleksiejczuk, Piotr; Ostrowska, Jolanta; Borawska, Maria H
2018-03-01
Vitiligo is a chronic, depigmenting skin disorder, whose pathogenesis is still unknown. Narrow band ultraviolet-B (NB-UVB) is now one of the most widely used treatment of vitiligo. It was suggested that trace elements may play a role in pathogenesis of vitiligo. The aim of this study was to estimate the concentration of selenium (Se), zinc (Zn), copper (Cu) and Cu/Zn ratio as well as total antioxidant status (TAS) in the serum of patients with vitiligo. We assessed 50 patients with vitiligo and 58 healthy controls. Serum levels of Se, Zn and Cu were determined by the atomic absorption spectrometry method, and the Cu/Zn ratio was also calculated. TAS in serum was measured spectrophotometrically. Serum concentration of Se in patients with vitiligo before and after phototherapy was significantly lower as compared to the control group. Zn level in the serum of patients decreased significantly after phototherapy. We observed higher Cu/Zn ratio (p < .05) in examined patients than in the control group and after NB-UVB. We have found decrease in TAS in the serum of vitiligo patients after NB-UVB. The current study showed some disturbances in the serum levels of trace elements and total antioxidant status in vitiligo patients.
Formation and Characterization of Gold Nanoparticles
2013-09-01
nanowires are useful because they can be grown almost dislocation free, due to their nano dimension. The quality of crystalline materials is diminished by...real substrate temperature was obtained from the calibration based on the melting points of indium (In), selenium (Se), cadmium (Cd), and zinc (Zn...hydrogen fluoride In indium MBE molecular beam epitaxy NH3OH ammonium hydroxide RHEED reflection high-energy electron diffraction Se selenium SEM
Calcium biofortification of crops
USDA-ARS?s Scientific Manuscript database
More than half of the world's population is deficient in calcium (Ca), iron (Fe), iodine (I), magnesium (Mg), selenium (Se), or zinc (Zn). The consumption of plants, directly or via livestock, containing inadequate concentrations of particular minerals causes these deficiencies. Agronomic and geneti...
COMPARING THE RECOMMENDED DIETARY ALLOWANCE TO TOXICITY VALUES FOR ZN, SE, MN, AND MB
Certain essential nutrients can be toxic when ingested at dosages higher than the daily nutritional requirement. Research data for the essential trace elements, zinc, selenium, manganese and molybdenum have been reviewed by various government agencies for both their nutritional n...
Low concentrations of selenium and zinc in nails are associated with childhood asthma.
Carneiro, Maria Fernanda Hornos; Rhoden, Claudia Ramos; Amantéa, Sérgio Luis; Barbosa, Fernando
2011-12-01
The purpose of this study was to investigate possible associations between Zn, Se, Cu, Mn, and Co concentrations in nails and asthma in a young population from a Southern Brazil city. Additionally, correlations between these chemical elements among asthmatic and non-asthmatic children were evaluated. Before nail collection (n = 165), children were asked to complete the International Study of Asthma and Allergies in Childhood questionnaire. The concentrations of trace elements were determined by inductively coupled plasma mass spectrometry. The chi-square test was used to evaluate the association between element concentrations in nails and the respiratory outcome. To evaluate correlations between the elements, we used the Spearman correlation test. For all tests, the significance level was set at 95% (P ≤ 0.05). Children included in the highest quartile of nail Se and Zn concentration presented a fivefold decrease in the prevalence ratio of asthma while children in the lowest Se range presented an almost 2.5-fold increase in the asthma prevalence ratio. There were weak to strong correlations between Cu vs. Zn, Cu vs. Co, Cu vs. Se, Zn vs. Se, Zn vs. Mn, and Mn vs. Co in both asthmatic and non-asthmatic children. Interestingly, non-asthmatics also presented correlations between Co vs. Se and Zn. Taken together, our results clearly demonstrated an association between concentrations of selenium and zinc and childhood asthma and the usefulness of nail as a noninvasive matrix to detect minerals imbalance in asthma patients.
Arikan, Deniz Cemgil; Coskun, Ayhan; Ozer, Ali; Kilinc, Metin; Atalay, Filiz; Arikan, Tugba
2011-12-01
It has been shown that the trace elements and lipids play role in the growth, development and maintenance of bones. We aimed to investigate serum selenium (Se), zinc (Zn), copper (Cu) and lipid (total cholesterol, triglyceride (TG), high density lipoprotein-cholesterol, low-density lipoprotein-cholesterol) levels in postmenopausal women with osteoporosis, osteopenia and in healthy controls, and to determine the relationship between Se, Zn, Cu and lipid parameters and bone mineral density (BMD). The study included 107 postmenopausal women; 35 healthy (group 1), 37 osteopenic (group 2) and 35 osteoporotic (group 3). The women in all three groups were carefully matched for body mass index (BMI). Serum concentrations of Se, Zn and Cu were measured by atomic absorption spectrophotometry. Plasma Se, Cu, Zn and lipid levels were similar in all groups (p > 0.05). When we combined the women in each of the three groups, and considered them as one group (n = 107) we found a positive correlation between BMI and lumbar vertebra BMD, femur neck BMD, femur total BMD; a positive correlation between TG and femur neck BMD, femur total BMD; a positive correlation between Zn and lumbar vertebra BMD (total T score) (p < 0.05). There was no correlation between Se, Cu, Zn, P and lipid parameters (p > 0.05). Although BMI has a positive effect on BMD, trace elements and lipids, except Zn and TG, did not directly and correlatively influence BMD. Further studies are needed to clarify the role and relationship of trace elements and lipid parameters in postmenopausal osteoporosis.
Pizarro, I; Rivera, L; Ávila, J; Cortés, P
2016-01-01
Objectives To evaluate the short-term 24 h urinary excretion of platinum, arsenic, selenium, magnesium and zinc in patients with lung cancer and with cancer other than lungs treated with cisplatin or/and carboplatin from Antofagasta, Chile. Design Urine measurements of Pt and Se were made by inductively coupled plasma optical emission spectrometry, As by hydride-generation atomic absorption spectrometry and Mg and Zn by means of flame furnace atomic absorption spectrometry. Setting All samples were provided by the Oncological Centre of Antofagasta Regional Hospital (Region of Antofagasta, Chile). Participants Ninety 24-h urine samples from cancer patients after the infusion of Pt-base drugs and 10 24-h urine samples from cancer patients not treated with metal-base drugs. Main outcome measures Concentrations of Pt, Se, As, Zn and Mg coming from 24-h urine samples. Results Pt excreted was not significantly different between patients with lung and other cancers treated with cisplatin. The excretion of Mg, Zn and Se was greater than As. Then, Pt favours the excretion of essential elements. For lung and other types of cancers treated with drugs without Pt, excretion of Mg, Zn and Se was also greater than that of As, suggesting antagonism Mg-Zn-Se–anti-cancer drug relationship. Conclusions The amounts of Mg, Zn and Se excreted were greater than for As either with or without Pt-containing drugs, suggesting antagonist Mg-Zn-Se–anti-cancer drug relationships. The excretion of As, Mg, Zn and Se is induced by Pt. Knowledge obtained can contribute to understanding the arsenic cancer mechanism and the As-Mg-Zn-Se-Pt inter-element association for lung cancer and other types of cancer. PMID:27757244
[Dietary reference intakes of trace elements for Japanese and problems in clinical fields].
Inoue, Yoshifumi
2016-07-01
In the dietary reference intakes, EAR(estimated average requirement), RDA(recommended dietary allowance), AL(adequate intake), DG(tentative dietary goal for preventing life style related diseases) and UL(tolerable upper intake level) of eight types of trace elements (iron: Fe, zinc: Zn, copper: Cu, manganese: Mn, iodine: I, selenium: Se, chromium: Cr, molybdenum: Mo) have been set. However, in the meals of hospitals, only iron of which has been taken into account. The content of these trace elements in the enteral nutrient released after 2000 was determined by considering the content of dietary reference intakes of trace elements for Japanese and considered so not fall into deficiency. However, enteral nutrient must be used considering the content of Zn, Cu and the Zn/Cu ratio, the selenium content, and the route of administration, in order to avoid falling into deficiency.
Wacewicz, Marta; Socha, Katarzyna; Soroczyńska, Jolanta; Niczyporuk, Marek; Aleksiejczuk, Piotr; Ostrowska, Jolanta; Borawska, Maria H
2017-12-01
Psoriasis is a common, an inflammatory skin disease. Trace elements may play an active role in the pathogenesis of psoriasis. The aim of this study was to estimate the concentration of selenium (Se), zinc (Zn), copper (Cu) and Cu/Zn ratio as well as total antioxidant status (TAS) and c-reactive protein (CRP) in the serum of patients with psoriasis. In this case-control study sixty patients with psoriasis and fifty-eight healthy people were examined. Serum levels of Se, Zn and Cu were determined by atomic absorption spectrometry. Cu/Zn ratio was calculated. TAS was measured spectrophotometrically. CRP was analyzed by immunoturbidimetric method. Clinical activity of psoriasis was evaluated using Psoriasis Area and Severity Index (PASI). Serum concentration of Se in patients with psoriasis (71.89±16.90μg/L) was lower as compared to the control group (79.42±18.97μg/L) and after NB-UVB. Cu level of patients was higher (1.151±0.320mg/L) as compared to controls (1.038±0.336mg/L), but Zn level did not differ. We observed higher Cu/Zn ratio (p<0.05) in examined patients than in the control group and after NB-UVB. We found decrease TAS before and after NB-UVB. CRP levels was found to be normal range. A significant correlation coefficient between CRP and Cu/Zn was observed. The study showed some disturbances in the serum levels of trace elements and TAS in psoriatic patients. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.
Seventeen trace elements - arsenic (As), barium (Ba), boron (B), cadmium (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickle (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and zinc (Zn) - were measured in human sca...
THE USE OF A PRB TO TREAT GROUNDWATER IMPACTED BY COAL-COMBUSTION BY-PRODUCTS
The burning of coal for the production of electricity generates combustion by-products such as boiler bottom ash and fly ash. These ashes have the potential to release arsenic (As), boron (B), chromium (Cr), molybdenum (Mo), selenium (Se), vanadium (V), and zinc (Zn) to the envi...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinnov, E.; Boody, F.; Cohen, S.
1986-10-01
Measured wavelengths of a number of highly ionized atoms are reported. These include the 3s/sup 2/3p--3s3p/sup 2/ and 3s/sup 2/3p--3s/sup 2/3d transitions in the aluminum isoelectronic sequence of Zn XVIII, Ge XX, Se XXII, Zr XXVIII, Mo XXX, and Ag XXXV; several transitions in the n = 2 shell of Zn XXII, Zn XXIII, and Zn XXIV; and the resonance and intercombination lines of Ag XXXVI--Ag XXXVII and of Ge XXIX--Ge XXX.
NASA Astrophysics Data System (ADS)
Siswoyo, P.; Tafsin, M.; Handarini, R.
2018-02-01
The present study was conducted to investigate the effect of suppllementattion of selenium and zinc on semen quality and growth of samosir goat. The experimental design used latin square design (4x4). The treatment supplementation mineral on multi nutrient block (MNB) composed of without sipplementation (p0), +10ppm selenium (p1), +10ppm zinc (p2), +10ppm selenium and +10ppm zinc (p3). The result showed that supplementation mineral selenium and zinc increased significantly (p<0.05) average daily growth, feed consumtion, and lower feed convertion ratio. Semen quality of goat were supplemented by selenium and zinc influenced motility, viability, volume concentration, and responding hypo osmotic swelling (HOS). Combination supplementation selenium and zinc significanly had higher semen quality than ither treatment. It is concluded that supplementation selenium and zinc improve growth and semen quality of samosir goat.
Larabee, Jason L; Hocker, James R; Hanas, Jay S
2009-03-01
The anti-inflammatory selenium compounds, ebselen (2-phenyl-1,2-benzisoselenazol-3[2H]-one) and selenite, were found to alter the DNA binding mechanisms and structures of cysteine-rich zinc-finger transcription factors. As assayed by DNase I protection, DNA binding by TFIIIA (transcription factor IIIA, prototypical Cys(2)His(2) zinc finger protein), was inhibited by micromolar amounts of ebselen. In a gel shift assay, ebselen inhibited the Cys(2)His(2) zinc finger-containing DNA binding domain (DBD) of the NF-kappaB mediated transcription factor Sp1. Ebselen also inhibited DNA binding by the p50 subunit of the pro-inflammatory Cys-containing NF-kappaB transcription factor. Electrospray ionization mass spectrometry (ESI-MS) was utilized to elucidate mechanisms of chemical interaction between ebselen and a zinc-bound Cys(2)His(2) zinc finger polypeptide modeled after the third finger of Sp1 (Sp1-3). Exposing Sp1-3 to micromolar amounts of ebselen resulted in Zn(2+) release from this peptide and the formation of a disulfide bond by oxidation of zinc finger SH groups, the likely mechanism for DNA binding inhibition. Selenite was shown by ESI-MS to also eject zinc from Sp1-3 as well as induce disulfide bond formation through SH oxidation. The selenite-dependent inhibition/oxidation mechanism differed from that of ebselen by inducing the formation of a stable selenotrisulfide bond. Selenite-induced selenotrisulfide formation was dependent upon the structure of the Cys(2)His(2) zinc finger as alteration in the finger structure enhanced this reaction as well as selenite-dependent zinc release. Ebselen and selenite-dependent inhibition/oxidation of Cys-rich zinc finger proteins, with concomitant release of zinc and finger structural changes, points to mechanisms at the atomic and protein level for selenium-induced alterations in Cys-rich proteins, and possible amelioration of certain inflammatory, neurodegenerative, and oncogenic responses.
Seventeen trace elements - arsenic (As), barium (Ba), boron, (B), cadmium, (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickel (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and Zinc (Zn) - were measured in human s...
Tariba, Blanka; Živković, Tanja; Gajski, Goran; Gerić, Marko; Gluščić, Valentina; Garaj-Vrhovac, Vera; Peraica, Maja; Pizent, Alica
2017-04-01
Circulating platinum (Pt) is detectable in the blood of Pt-treated cancer patients for over a decade after the treatment. Prolonged exposure to Pt, in combination with adverse compounds from nutrition and lifestyle, such as cadmium (Cd), could increase the risk from second cancers. The aim of this study was to investigate the effects of simultaneous exposure to Cd- and Pt-compounds on oxidative and DNA damage and the possible protective effects of zinc (Zn) and selenium (Se). The aqueous solutions of PtCl 4 , CdCl 2 × H 2 O, ZnCl 2 and Na 2 SeO 3 were added, alone or in combination, to whole blood and isolated erythrocytes to produce the final concentrations of 2000 μg/L of Pt, 8 μg/L of Cd, 100 μg/L of Se, and 1000 μg/L of Zn. The activity of copper, zinc-superoxide dismutase, glutathione peroxidase and glutathione in whole blood was determined after 1 h exposure in in vitro conditions. The induction of DNA strand-breaks in human peripheral blood leukocytes was determined with the alkaline comet assay after 24 h exposure. Exposure to Pt and/or Cd decreased the activities of antioxidant enzymes and elevated DNA damage compared to control. A statistically significant change in the activity of both enzymes and in the induction of DNA strand-breaks was observed in the cells treated with Pt + Cd combination, while the addition of Se and/or Zn resulted in partial recovery of these effects. The results indicate that combined exposure to Pt and Cd could disrupt antioxidant protection of the organism and increase DNA damage, whereas Se and Zn could partially ameliorate these harmful effects.
USDA-ARS?s Scientific Manuscript database
Canadian grown Lentil is a rich source of micronutrients. It has high levels of selenium (Se), iron (Fe), zinc (Zn), folic acid and carotenes (Thavarajah, et al., 2007; 2008, 2009, Wilmot et al., 2009). In addition, our latest finding shows that Canadian lentil has naturally low levels of antinutri...
Mainzer, Barbara; Lahrssen-Wiederholt, Monika; Schafft, Helmut; Palavinskas, Richard; Breithaupt, Angele; Zentek, Jürgen
2015-01-01
This study was conducted to measure the concentrations of strontium (Sr), barium (Ba), cadmium (Cd), copper (Cu), zinc (Zn), manganese (Mn), chromium (Cr), antimony (Sb), selenium (Se), and lead (Pb) in canine liver, renal cortex, and renal medulla, and the association of these concentrations with age, gender, and occurrence of chronic kidney disease (CKD). Tissues from 50 dogs were analyzed using inductively coupled plasma mass spectrometry. Cu, Zn, and Mn levels were highest in the liver followed by the renal cortex and renal medulla. The highest Sr, Cd, and Se concentrations were measured in the renal cortex while lower levels were found in the renal medulla and liver. Female dogs had higher tissue concentrations of Sr (liver and renal medulla), Cd (liver), Zn (liver and renal cortex), Cr (liver, renal cortex, and renal medulla), and Pb (liver) than male animals. Except for Mn and Sb, age-dependent variations were observed for all element concentrations in the canine tissues. Hepatic Cd and Cr concentrations were higher in dogs with CKD. In conclusion, the present results provide new knowledge about the storage of specific elements in canine liver and kidneys, and can be considered important reference data for diagnostic methods and further investigations. PMID:25234328
Luminescence study of ZnSe/PVA (polyvinyl alcohol) composite film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lahariya, Vikas
The ZnSe nanocrystals have been prepared into poly vinyl alcohol(PVA) polymer matrix on glass using ZnCl2 and Na2SeSO3 as zinc and selenium source respectively. Poly vinyl Alcohol (PVA) used as polymer matrix cum capping agent due to their high viscosity and water solubility. It is transparent for visible region and prevents Se- ions to photo oxidation. The ZnSe/PVA composite film was deposited on glass substrate. The film was characterized by X Ray Diffraction (XRD) and UV-Visible absorption Spectroscopy and Photoluminescence. The X Ray Diffraction (XRD) study confirms the nanometer size (10 nm) particle formation within PVA matrix with cubic zinc blendmore » crystal structure. The UV-Visible Absorption spectrum of ZnSe/PVA composite film shown blue shift in absorption edge indicating increased band gap due to quantum confinement. The calculated energy band gap from the absorption edge using Tauc relation is 3.4 eV. From the Photoluminescence study a broad peak at 435 nm has been observed in violet blue region due to recombination of surface states.« less
Longchamp, M; Angeli, N; Castrec-Rouelle, M
2016-01-01
The addition of selenate or selenite to common fertilizers for crop production could be an effective way of producing selenium-rich food and feed. However, this would be feasible only if the increase in plant selenium (Se) content did not negatively influence the uptake of other essential elements. We therefore need to understand the interactions between Se and other major and trace elements during uptake by the plant. This study aimed to evaluate the influence of inorganic forms of Se on the accumulation of selected macronutrients (Ca and Mg) and micronutrients (Fe, Zn, Mn and Cu). Those essential elements are involved in the oxidative balance of cells. Zea mays seedlings were grown hydroponically in growth chambers in nutrient solutions to which we added 10, 50 or 1000 μg.L(-1) of selenate and/or selenite. Cation accumulation was significantly affected by the addition of 50 μg.L(-1) or 1000 μg.L(-1) Se, but not by the presence of 10 μg.L(-1) of Se in the nutrient solution. The highest concentration (1000 μg.L(-1)) of Se in the nutrient solution affected the accumulation of essential cations in Zea mays: selenate tended to increase the accumulation of Mg, Zn and Mn, whereas a selenate/selenite mixture tended to decrease the accumulation of Ca, Mg, Zn and Mn. Only Fe accumulation was unaffected by Se whatever its form or concentration. Selenium may also affect the distribution of cations on Zea mays. For example, levels of Mg and Zn translocation to the shoots were lower in the presence of selenite. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Ozturk, Perihan; Belge Kurutas, Ergul; Ataseven, Arzu
2013-10-01
Recurrent aphthous stomatitis (RAS) is a common oral mucosal disorder characterized by recurrent, painful oral aphthae, and oxidative stress presumably contributes to its pathogenesis. The aim of this study is to scrutinize the relationship between oxidative stress and serum trace elements (copper, Cu; zinc, Zn; selenium, Se), and to evaluate the ratios of Cu/Zn and Cu/Se in this disorder. Patients with RAS (n = 33) and age- and sex-matched healthy control subjects (n = 30) were enrolled in this study. Malondialdehyde (MDA) concentrations in plasma and the activities of superoxide dismutase (SOD1; CuZnSOD), glutathione peroxidase (GPx) and catalase (CAT) in erythrocyte were determined as spectrophotometric. Also, the levels of Se, Zn and Cu in serum were determined on flame and furnace atomic absorption spectrophotometer using Zeeman background correction. Oxidative stress was confirmed by the significant elevation in plasma MDA, and by the significant decrease in CAT, SOD1, and GPx (p < 0.05). When compared to controls, Zn and Se levels were significantly lower in patients, whereas Cu levels was higher in RAS patients than those in controls (p < 0.05). In addition, the correlation results of this study were firstly shown that there were significant and positive correlations between Se-CAT, Se-GPx, and Cu-MDA parameters, but negative correlations between Se-Cu, Se-MDA, Cu-CAT, Cu-SOD1 and Cu-GPx parameters in RAS patients. Furthermore, the ratios of Cu/Zn and Cu/Se were significantly higher in the patients than the control subjects (p < 0.05). Our results indicated that lipid peroxidation associated with the imbalance of the trace elements seems to play a crucial role in the pathogenesis of RAS. Furthermore, the serum Cu/Zn and Cu/Se ratios may be used as biochemical markers in these patients. Crown Copyright © 2013. Published by Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peplow, Dan
1999-05-28
The Alder Mine, an abandoned gold, silver, copper, and zinc mine in Okanogan County, Washington, produces heavy metal-laden effluent that affects the quality of water in a tributary of the Methow River. The annual mass loading of heavy metals from two audits at the Alder Mine was estimated to exceed 11,000 kg per year. In this study, water samples from stations along Alder Creek were assayed for heavy metals by ICP-AES and were found to exceed Washington State's acute freshwater criteria for cadmium (Cd), copper (Cu), selenium (Se), and zinc (Zn).
Meglia, GE; Holtenius, K; Petersson, L; Öhagen, P; Waller, K Persson
2004-01-01
Vitamins A and E, and the trace elements selenium (Se) and zinc (Zn) are essential for the health and performance of dairy cows. Their concentrations often decrease around calving and extra supplementation is sometimes recommended at that time. However, the need for this varies, for example depending on quantity and quality of feedstuffs in the diet. The aim of this study was to measure the concentrations of serum vitamin A (S-vit A) and vitamin E (S-vit E), plasma Se (P-Se) and serum Zn (S-Zn) in blood samples taken at several time points from one month before to one month after calving, and to evaluate if a blood sample taken during the mid dry period can accurately predict the blood concentration at calving and early lactation. Dairy cows on 3 different feeding regimens during the dry period were included in the study. A significant decrease in the concentrations of S-vit A and S-vit E, and S-Zn, was observed at calving, and P-Se was significantly lower during the dry period and at calving than in early lactation. The blood concentrations of S-vit E and P-Se in the mid dry period significantly predicted the occurrence of values considered marginal or deficient at the time of calving. The data indicate that a mid dry period concentration of ≥5.4 mg/l of S-vit E and ≥0.09 mg/l of P-Se will result in a 90% chance that the cow stays above marginal levels at calving given that a feed of the same quality is offered. PMID:15535092
[Effect of fluorine, selenium and cadmium on anti-oxidase and microelements in rat's body].
Mou, Suhua; Qin, Si; Hu, Qituo; Duan, Xianyu
2004-03-01
To study the effect of fluorine, selenium and cadmium on lipid peroxide(LPO), the activity of glutathione peroxidase (GSH-Px) and microelements such as cadmium, selenium and zinc in rats. Measurement of the contents of LPO, GSH-Px and microelements such as cadmium, selenium and zinc in SD rats after killing that have drunk water containing fluorine, selenium and cadmium eight-week ago. The contents of GSH-Px in the serum, liver and kidney of rats that were contaminated with fluorine, selenium and cadmium respectively remarkably reduced and the content of LPO noticeably increased in comparison with those of rats without being contaminated. The contents of GSH-Px noticeably increased and LPO remarkably reduced in those contaminated with the combination of any two of the three elements when compared with those in the rats contaminated with any one element of them, while the contents of GSH-Px in those contaminated with the combination of the three elements increased even more. Excessive selenium or cadmium led to the increase of selenium content in kidney and cadmium content in liver by several times. Excessive fluorine or cadmium gave rise to the lack of selenium and zinc. Selenium brought out universal increase of zinc in liver and kidney. The combination of fluorine and selenium or the combination of cadmium and selenium or that of fluorine, selenium and cadmium produced remarkable decrease of the accumulation of selenium in kidney and cadmium in liver. They also lowed the loss of zinc caused by fluorine or cadmium. Excessive fluorine, selenium or cadmium could inhabit the activity of GSH-Px in rats, which could diminish the antioxidation ability of the body. But when two or three of the chemical elements coexisted, they reduced the inhabitation of each of them on the activity of GSH-Px and in the meantime decreased the accumulation of cadmium and selenium and diminished the loss of zinc caused by fluorine and cadmium.
Siyame, Edwin W P; Hurst, Rachel; Wawer, Anna A; Young, Scott D; Broadley, Martin R; Chilimba, Allan D C; Ander, Louise E; Watts, Michael J; Chilima, Benson; Gondwe, Jellita; Kang'ombe, Dalitso; Kalimbira, Alexander; Fairweather-Tait, Susan J; Bailey, Karl B; Gibson, Rosalind S
2013-01-01
Zinc deficiency is often associated with nutritional iron deficiency (ID), and may be exacerbated by low selenium status. To investigate risk of iron and zinc deficiency in women with contrasting selenium status. In a cross-sectional study, 1-day diet composites and blood samples were collected from self-selected Malawian women aged 18-50 years from low- (Zombwe) (n=60) and high-plant-available soil selenium (Mikalango) (n=60) districts. Diets were analyzed for trace elements and blood for biomarkers. Zinc deficiency (>90 %) was greater than ID anemia (6 %), or ID (5 %), attributed to diets low in zinc (median 5.7 mg/day) with high phytate:zinc molar ratios (20.0), but high in iron (21.0 mg/day) from soil contaminant iron. Zombwe compared to Mikalango women had lower (p<0.05) intakes of selenium (6.5 vs. 55.3 µg/day), zinc (4.8 vs. 6.4 mg/day), iron (16.6 vs. 29.6 mg/day), lower plasma selenium (0.72 vs. 1.60 µmol/L), and higher body iron (5.3 vs. 3.8 mg/kg), although plasma zinc was similar (8.60 vs. 8.87 µmol/L). Body iron and plasma zinc were positive determinants of hemoglobin. Risk of zinc deficiency was higher than ID and was shown not to be associated with selenium status. Plasma zinc was almost as important as body iron as a hemoglobin determinant.
Dastych, Milan; Šenkyřík, Michal; Dastych, Milan; Novák, František; Wohl, Petr; Maňák, Jan; Kohout, Pavel
2016-01-01
The objective of the present study was to determine concentrations of zinc (Zn), copper (Cu), iron (Fe), selenium (Se) in blood plasma and manganese (Mn) in the whole blood in patients with long-term home parenteral nutrition (HPN) in comparison to the control group. We examined 68 patients (16 men and 52 women) aged from 28 to 68 years on a long-term HPN lasting from 4 to 96 months. The short bowel syndrome was an indication for HPN. The daily doses of Zn, Cu, Fe, Se and Mn in the last 3 months were determined. No significant differences in blood plasma were found for Zn, Cu and Fe in patients with HPN and in the control group (p > 0.05). The concentration of Mn in whole blood was significantly increased in HPN patients (p < 0.0001), while Se concentration in these patients was significantly decreased (p < 0.005). The concentration of Mn in the whole blood of 16 patients with cholestasis was significantly increased compared to the patients without cholestasis (p < 0.001). The Cu concentration was increased with no statistical significance. In long-term HPN, the status of trace elements in the patients has to be continually monitored and the daily substitution doses of these elements have to be flexibly adjusted. Dosing schedule needs to be adjusted especially in cases of cholestatic hepatopathy. A discussion about the optimal daily dose of Mn in patients on HPN is appropriate. For clinical practice, the availability of a substitution mixture of trace elements lacking Mn would be advantageous. © 2016 S. Karger AG, Basel.
Energetic Materials and Metals Contamination at CFB/ASU Wainwirght, Alberta Phase 1
2008-11-01
Edmonton, Alberta). Metals analyzed for this study were silver (Ag), aluminium (Al), arsenic (As), boron (B), barium (Ba), beryllium (Be), bismuth 4...selenium (Se), antimony (Sb), tin (Sn), strontium (Sr), tellurium (Te), titanium (Ti), thallium (Tl), uranium (U), vanadium (V), zinc (Zn), and...mg/kg mg/kg mg/kg Aluminium - 9070 1040 Antimony 40 2 1 Arsenic 12 7 13.6 Barium 2000 177 73.4 Beryllium 8 40 40 Bismuth - 20 20 Boron - 10
Rao, S V Rama; Prakash, B; Raju, M V L N; Panda, A K; Kumari, R K; Reddy, E Pradeep Kumar
2016-08-01
Two experiments were conducted to study the effect of supplementing organic forms of zinc (Zn), selenium (Se) and chromium (Cr) on performance, anti-oxidant activities and immune responses in broiler chickens from 1 to 21 days of age, which were reared in cyclic heat-stressed condition under tropical summer in open-sided poultry house. A total of 200 (experiment I) and 450-day-old (experiment II) broiler male chicks (Cobb 400) were randomly distributed in stainless steel battery brooders (610 mm × 762 mm × 475 mm) at the rate of five birds per pen. A maize-soybean meal-based control diet (CD) containing recommended (Vencobb 400, Broiler Management Guide) concentrations of inorganic trace minerals and other nutrients was prepared. The CD was supplemented individually with organic form of selenium (Se, 0.30 mg/kg), chromium (Cr, 2 mg/kg) and zinc (Zn, 40 mg/kg) in experiment I. In experiment II, two concentrations of each Zn (20 and 40 mg/kg), Se (0.15 and 0.30 mg/kg) and Cr (1 and 2 mg/kg) were supplemented to the basal diet in 2 × 2 × 2 factorial design. A group without supplementing inorganic trace minerals was maintained as control group in both experiments. Each diet was allotted randomly to ten replicates in both experiments and fed ad libitum from 1 to 21 days of age. At 19th day of age, blood samples were collected for estimation of anti-oxidant and immune responses. Supplementation of Se, Cr and Zn increased (P < 0.05) body mass gain (BMG) and feed intake compared to those fed the CD in experiment I. The feed efficiency (FE) in Cr-fed group was higher (P < 0.05) compared to the CD-fed group. Se or Cr supplementation reduced lipid peroxidation (LP) compared to broilers fed the CD. In experiment II, BMG was not affected (P > 0.05) by the interaction between levels of Zn, Se and Cr in broiler diet. The FE improved (P < 0.05) with supplementation of the trace minerals tested at both concentrations except in group fed 40 mg Zn, 0.5 mg Se and 1 mg Cr/kg. Reduction in lipid peroxidation (LP, P < 0.05) and increased (P < 0.05) activity of superoxide dismutase were observed in broiler fed organic Zn, Se and Cr compared to the CD-fed group. The dietary concentrations of Zn, Se and Cr did not influence (P > 0.05) the immune responses (Newcastle disease titre and cell-mediated immune response to phytohaemagglutinin-P) in both the experiments. Based on the results, it is concluded that supplementation of organic form of Se, Cr and Zn (0.30, 2 and 40 mg/kg, respectively) either alone or in combination significantly improved performance and anti-oxidant responses (reduced LP and increased superoxide dismutase) in commercial broiler chicks (21 days of age) reared in cyclic heat stress conditions in open-sided poultry house during summer.
Serum concentrations of trace elements in patients with Crohn's disease receiving enteral nutrition.
Johtatsu, Tomoko; Andoh, Akira; Kurihara, Mika; Iwakawa, Hiromi; Tsujikawa, Tomoyuki; Kashiwagi, Atsunori; Fujiyama, Yoshihide; Sasaki, Masaya
2007-11-01
We investigated the trace element status in Crohn's disease (CD) patients receiving enteral nutrition, and evaluated the effects of trace element-rich supplementation. Thirty-one patients with CD were enrolled in this study. All patients were placed on an enteral nutrition regimen with Elental(R) (Ajinomoto pharmaceutical. Ltd., Tokyo, Japan). Serum selenium, zinc and copper concentrations were determined by atomic absorption spectroscopy. Serum selenoprotein P levels were determined by an ELISA system. Average serum levels of albumin, selenium, zinc and copper were 4.1 +/- 0.4 g/dl, 11.2 +/- 2.8 microg/dl, 71.0 +/- 14.8 microg/dl, and 112.0 +/- 25.6 microg/dl, respectively. In 9 patients of 31 CD patients, serum albumin levels were lower than the lower limit of the normal range. Serum selenium, zinc and copper levels were lower than lower limits in 12 patients, 9 patients and 1 patient, respectively. Serum selenium levels significantly correlated with both serum selenoprotein P levels and glutathione peroxidase activity. Supplementation of selenium (100 microg/day) and zinc (10 mg/day) for 2 months significantly improved the trace element status in CD patients. In conclusion, serum selenium and zinc levels are lower in many CD patients on long-term enteral nutrition. In these patients, supplementation of selenium and zinc was effective in improving the trace element status.
NASA Astrophysics Data System (ADS)
Motevich, I. G.; Strekal, N. D.; Papko, N. M.; Glebovich, M. I.; Shulha, A. V.; Maskevich, S. A.
2015-03-01
We present the results of x-ray fluorescence analysis of tissues from healthy ovaries and from ovaries with different pathologies: benign and borderline tumors, mucinous and endometrioid cancers, serous carcinomas. We determine the average copper, zinc, calcium, selenium, cadmium, lead, and mercury levels. We observed that in the benign ovarian tumors, we see a significant decrease in the cadmium, mercury, and lead levels compared with healthy tissues. In the borderline neoplasms, the copper level is reduced relative to zinc (Cu/Zn), cadmium, mercury, and lead, and also the zinc concentration is increased. In the ovarian carcinomas, we observed changes in the ratio of the chemical elements in the tumor tissues, depending on the histologic type. The results obtained can be used for differentiation, diagnosis, and adjustment of treatment for different ovarian neoplasms.
Ley-Quiñónez, C; Zavala-Norzagaray, A A; Espinosa-Carreón, T L; Peckham, H; Marquez-Herrera, C; Campos-Villegas, L; Aguirre, A A
2011-09-01
Environmental pollution due to heavy metals is having an increased impact on marine wildlife accentuated by anthropogenic changes in the planet including overfishing, agricultural runoff and marine emerging infectious diseases. Sea turtles are considered sentinels of ecological health in marine ecosystems. The objective of this study was to determine baseline concentrations of zinc, cadmium, copper, nickel, selenium, manganese, mercury and lead in blood of 22 clinically healthy, loggerhead turtles (Caretta caretta), captured for several reasons in Puerto López Mateos, Baja California Sur, Mexico. Zinc was the most prevalent metal in blood (41.89 μg g⁻¹), followed by Selenium (10.92 μg g⁻¹). The mean concentration of toxic metal Cadmium was 6.12 μg g⁻¹ and 1.01μg g⁻¹ respectively. Mean concentrations of metals followed this pattern: Zn>Se>Ni>Cu>Mn>Cd>Pb and Hg. We can conclude that blood is an excellent tissue to measure in relatively non-invasive way baseline values of heavy metals in Caretta caretta. Copyright © 2011 Elsevier Ltd. All rights reserved.
Al-Rasheed, Nouf M; Attia, Hala A; Mohamed, Raessa A; Al-Rasheed, Nawal M; Al-Amin, Maha A
2013-01-01
Accumulating evidences suggest a critical role of trace metal dyshemostasis in oxidative stress and cardiac dysfunction after myocardial infarction (MI). This study investigated the cardioprotective effects of selenium yeast (Se), chromium picolinate Cr(pic)3, zinc sulfate (Zn) and their combination on isoproterenol (ISO)-induced MI. Rats were divided into six groups: normal control, ISO control, Se-pretreated (0.1 mg/kg), Cr(pic)3-pretreated (400 µg/kg), Zn-pretreated (30 mg/kg) and metal combination-pretreated groups. All metals were administered for 28 days and at the 27th day, MI was induced by subcutaneous injection of ISO (85 mg/kg) once for two consecutive days. ISO control group showed hyperlipidemia, elevation of cardiac biomarkers and lipid peroxidation and increased immunostaining of p47 phox NADPH oxidase subunit in addition to decreased levels of glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Cardiac levels of tumor necrosis factor-α (TNF-α) were increased, while vascular endothelial growth factor (VEGF, the major angiogenic factor) was decreased. Pretreatment with Se normalized the cardiac enzymes, lipid peroxidation, GSH, SOD, CAT, GPx, TNF-α and VEGF (P<0.001) and reduced the immunostaining of p47 phox subunit. However, Se failed to correct the dyslipidemia. Cr(pic)3 significantly improved lipid profile (P<0.001) and all other biochemical deviations except for VEGF. Zn, but to lesser extent, reduced the oxidative damage and TNF-α levels and improved both dyslipidemia and angiogenesis. Combination therapy exhibited less prominent protection compared to individual metals. Daily supplementation with trace metals is promising for improving myocardial performance via preventing oxidative damage, induction of angiogenesis, anti-inflammatory and/or anti-hyperlipidemic mechanisms.
The Effect of Helicobacter pylori Eradication on the Levels of Essential Trace Elements
Wu, Meng-Chieh; Huang, Chun-Yi; Kuo, Fu-Chen; Hsu, Wen-Hung; Wang, Sophie S. W.; Shih, Hsiang-Yao; Liu, Chung-Jung; Chen, Yen-Hsu; Wu, Deng-Chyang; Huang, Yeou-Lih; Lu, Chien-Yu
2014-01-01
Objective. This study was designed to compare the effect of Helicobacter pylori (H. pylori) infection treatment on serum zinc, copper, and selenium levels. Patients and Methods. We measured the serum zinc, copper, and selenium levels in H. pylori-positive and H. pylori-negative patients. We also evaluated the serum levels of these trace elements after H. pylori eradication. These serum copper, zinc, and selenium levels were determined by inductively coupled plasma mass spectrometry. Results. Sixty-three H. pylori-positive patients and thirty H. pylori-negative patients were studied. Serum copper, zinc, and selenium levels had no significant difference between H. pylori-positive and H. pylori-negative groups. There were 49 patients with successful H. pylori eradication. The serum selenium levels were lower after successful H. pylori eradication, but not significantly (P = 0.06). There were 14 patients with failed H. pylori eradication. In this failed group, the serum selenium level after H. pylori eradication therapy was significantly lower than that before H. pylori eradication therapy (P < 0.05). The serum zinc and copper levels had no significant difference between before and after H. pylori eradication therapies. Conclusion. H pylori eradication regimen appears to influence the serum selenium concentration (IRB number: KMUH-IRB-20120327). PMID:25548772
Sena-Evangelista, Karine Cavalcanti Maurício; Pedrosa, Lucia Fatima Campos; Paiva, Maria Sanali Moura Oliveira; Dias, Paula Cristina Silveira; Ferreira, Diana Quitéria Cabral; Cozzolino, Sílvia Maria Franciscato; Faulin, Tanize Espírito Santo; Abdalla, Dulcinéia Saes Parra
2015-01-01
Objective Statins treatment may modify the levels of zinc and selenium, minerals that can improve vascular function and reduce oxidative damage and inflammation in atherosclerotic patients. This study aimed to evaluate the effects of rosuvastatin, alone or associated with zinc and selenium supplementation, on lipid profile, antioxidant enzymes and mineral status in coronary artery disease patients. Material and Methods A double-blind randomized clinical trial was performed in which patients (n = 76) were treated with 10 mg rosuvastatin over 4 months associated or not with zinc (30 mg/d) and selenium (150 μg/d) supplementation. The following parameters were analyzed before and after the intervention: anthropometric measurements, lipid profile, high sensitivity C-reactive protein (hs-CRP), electronegative low density lipoprotein (LDL(-)) concentrations, activities of glutathione peroxidase (GPx), superoxide dismutase (SOD), zinc and selenium concentrations in blood plasma and erythocytes. Significance was determined using an α of 5% (two-tailed). Results We found that rosuvastatin therapy was efficient in reducing total cholesterol, LDL-cholesterol, non-HDL cholesterol, triglycerides, and hs-CRP independently of mineral supplementation. Neither treatment was associated with significant changes in LDL(-). Similarly, the antioxidant enzymes GPx and SOD activity were unchanged by treatments. Neither treatment was associated with significant differences in concentrations of zinc or selenium in blood plasma and erythocytes of studied groups. Conclusion Rosuvastatin treatment did not affect zinc and selenium levels in coronary artery disease patients. The zinc and selenium supplementation at doses used in this study did not change lipid profile or SOD and GPx activity in patients receiving rosuvastatin. Further studies should be focused on testing alternative doses and supplements in different populations to contribute for a consensus on the ideal choice of antioxidants to be used as possible complementary therapies in atherosclerotic patients. Trial Registration ClinicalTrials.gov NCT01547377 PMID:25785441
Anomalous antibacterial activity and dye degradation by selenium doped ZnO nanoparticles.
Dutta, Raj Kumar; Nenavathu, Bhavani Prasad; Talukdar, Soumita
2014-02-01
Selenium doped ZnO nanoparticles synthesized by mechanochemical method were spherically shaped of size distribution of 10.2±3.4 nm measured by transmission electron microscopy. Diffused reflectance spectroscopy revealed increase in the band gap, ranging between 3.47 eV and 3.63 eV due to Se doping in ZnO nanoparticles. The antibacterial activity of pristine and Se doped ZnO nanoparticles was attributed to ROS (reactive oxygen species) generation in culture media confirmed by TBARS assay. Compared to complete inhibition of growth by 0.45 mg/mL of pristine ZnO nanoparticles, the batches of 0.45 mg/mL of selenium doped ZnO nanoparticles exhibited only 51% inhibition of growth of Escherichia coli. The reduced antibacterial activity of selenium doped ZnO nanoparticles was attributed to two opposing factors, e.g., ROS generation for inhibition of growth, countered by sustaining growth of E. coli due to availability of Se micronutrients in culture media, confirmed by inductively coupled plasma mass spectrometer measurement. Higher ROS generation by selenium doped ZnO nanoparticles was attributed to creation of oxygen vacancies, confirmed from green emission peak observed at 565 nm. The impact of higher ROS generation by selenium doped ZnO nanoparticles was evident from enhanced photocatalytic degradation of trypan blue dye, than pristine ZnO nanoparticles. Copyright © 2013 Elsevier B.V. All rights reserved.
Male infertility: decreased levels of selenium, zinc and antioxidants.
Türk, Silver; Mändar, Reet; Mahlapuu, Riina; Viitak, Anu; Punab, Margus; Kullisaar, Tiiu
2014-04-01
In this study, we aimed to compare the level of zinc, selenium, glutathione peroxidase activity and antioxidant status in following populations of men: severe inflammation in prostate (>10(6) white blood cells in prostate secretion; n=29), severe leukocytospermia, (>10(6) white blood cells in semen; n=31), mild inflammation, (0.2-1M white blood cells in semen or prostate secretion; n=24), non-inflammatory oligozoospermia (n=32) and healthy controls (n=27). Male partners of infertile couples had reduced level of antioxidative activity, selenium and zinc in their seminal plasma. Most importantly, reduced selenium levels were evident in all patient groups regardless of inflammation status. Therefore, these patients might gain some benefit from selenium supplementation. Copyright © 2014. Published by Elsevier GmbH.
The effect of the systemic inflammatory response on plasma zinc and selenium adjusted for albumin.
Ghashut, Rawia A; McMillan, Donald C; Kinsella, John; Vasilaki, Aikaterini T; Talwar, Dinesh; Duncan, Andrew
2016-04-01
The magnitude of systemic inflammatory response, as evidenced by C-reactive protein (CRP), is a major factor associated with lower zinc and selenium. They may also be influenced by their binding proteins, such as albumin. The aim of the present study was to examine the relationships between plasma zinc, selenium and the systemic inflammatory response in a large cohort of patients referred for nutritional screen and also to examine these relationships in patients with critical illness. Patients referred for nutritional assessment of zinc (n = 743) and selenium (n = 833) and 114 patients with critical illness were examined. Intra-assay imprecision was <10% for these analytes. In the nutritional screen cohort, plasma zinc was significantly associated with CRP (rs = -0.404, p < 0.001) and albumin (rs = 0.588, p < 0.001). For each CRP category (≤10, 11-80, >80 mg/l) the zinc/albumin ratio x100 was similar (31, 33 and 32 respectively, p = 0.029). Plasma selenium was significantly associated with CRP (rs = -0.489, p < 0.001) and albumin (rs = 0.600, p < 0.001). With increasing CRP category (≤10, 11-80, >80 mg/l) the selenium/albumin ratio ×100 was lower (2.3, 2.1 and 1.8 respectively, p < 0.001). Similar relationships were also observed in the cohort of patients with critical illness. Plasma zinc was associated with both CRP and albumin. The impact of the systemic inflammatory response could be largely adjusted by albumin concentrations. Plasma selenium was associated with both CRP and albumin. The impact of the systemic inflammatory response on plasma selenium concentrations could not be reasonably adjusted by albumin concentrations. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Influence of Te and Se doping on ZnO films growth by SILAR method
NASA Astrophysics Data System (ADS)
Güney, Harun; Duman, Ćaǧlar
2016-04-01
The AIP Successive ionic layer adsorption and reaction (SILAR) is an economic and simple method to growth thin films. In this study, SILAR method is used to growth Selenium (Se) and Tellurium (Te) doped zinc oxide (ZnO) thin films with different doping rates. For characterization of the films X-ray diffraction (XRD), absorbance and scanning electron microscopy (SEM) are used. XRD results are showed well-defined strongly (002) oriented crystal structure for all samples. Also, absorbance measurements show, Te and Se concentration are proportional and inversely proportional with band gap energy, respectively. SEM measurements show that the surface morphology and thickness of the material varied with Se and/or Te and varying concentrations.
Influence of Te and Se doping on ZnO films growth by SILAR method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Güney, Harun, E-mail: harunguney25@hotmail.com; Duman, Çağlar, E-mail: caglarduman@erzurum.edu.tr
2016-04-18
The AIP Successive ionic layer adsorption and reaction (SILAR) is an economic and simple method to growth thin films. In this study, SILAR method is used to growth Selenium (Se) and Tellurium (Te) doped zinc oxide (ZnO) thin films with different doping rates. For characterization of the films X-ray diffraction (XRD), absorbance and scanning electron microscopy (SEM) are used. XRD results are showed well-defined strongly (002) oriented crystal structure for all samples. Also, absorbance measurements show, Te and Se concentration are proportional and inversely proportional with band gap energy, respectively. SEM measurements show that the surface morphology and thickness ofmore » the material varied with Se and/or Te and varying concentrations.« less
Zheng, Lan; Hao, Long; Ma, Hua; Tian, Chengye; Li, Tong; Sun, Xinyi; Jia, Mengshi; Jia, Le
2014-09-01
Cordyceps sinensis, a traditionally edible and medicinal fungus in China, cannot be artificially solid-cultured. Zinc (Zn), germanium (Ge), and selenium (Se) are the essential trace elements for human body. In this work, C. sinensis SU-01 was cultivated in liquid medium simultaneously containing Zn, Ge, and Se. The bioactive ingredients and in vivo antioxidant activities of Zn, Ge, Se-enriched mycelia (ZGSM) of C. sinensis SU-01 were investigated. Under the determined conditions, the Zn, Ge, and Se contents of ZGSM were 2543.16 ± 158.92, 1873.85 ± 81.82, and 1260.16 ± 107.12 μg/g, respectively. The optimal concentrations of Zn, Ge, and Se had a positive effect on biosynthesis of protein, polysaccharide, cordycepic acid, and amino acids. The activities of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) of mice blood were 3.72 ± 0.15 and 28.74 ± 2.53 % higher than that of control, respectively, and the content of malondialdehyde (MDA) was 41.01 ± 3.66 % lower than that of control.
Maouche, Naima; Meskine, Djamila; Alamir, Barkahoum; Koceir, Elhadj-Ahmed
2015-10-01
The relationship between dysthyroidism and antioxidant trace elements (ATE) status is very subtle during oxidative stress (OS). This relationship is mediated by thyroid hormone (TH) disorder, insulin resistance syndrome (IRS) and inflammation. The aim of this study was to investigate ATE such as selenium (Se), manganese (Mn), zinc (Zn) and copper (Cu) status on thyroid dysfunction, and their interaction with antioxidant enzyme activities, mainly, superoxide dismutase (SOD) and glutathione peroxidase (GPx), TH profile (TSH, T(3), T(4)) and IRS clusters. The study was undertaken on 220 Algerian adults (30-50 years), including 157 women and 63 men who were divided to 4 groups: subclinical hypothyroidism (n = 50), overt hypothyroidism (n = 60), Graves's disease hyperthyroidism (n = 60) and euthyroid controls (n = 50). The IRS was confirmed according to NCEP (National Cholesterol Education Program). Insulin resistance was evaluated by HOMA-IR model. Trace elements were determined by the Flame Atomic Absorption Spectrometry (Flame-AAS) technique. The antioxidant enzymes activity and metabolic parameters were determined by biochemical methods. The TH profile and anti-Thyroperoxidase Antibodies (anti-TPO-Ab) were evaluated by radioimmunoassay. Results showed that the plasma manganese levels were significantly increased in all dysthyroidism groups (p ≤ 0.01). However, the plasma copper and zinc concentrations were maintained normal or not very disturbed vs control group. In contrast, the plasma selenium levels were highly decreased (p ≤ 0.001) and positively correlated with depletion of glutathione peroxidase activity; and associated both with anti-TPO-Ab overexpression and fulminant HS-CRP levels. This study confirms the oxidative stress-inflammation relationship in the dysthyroidism. The thyroid follicles antioxidant protection appears preserved in the cytosol (Cu/Zn-SOD), while it is altered in the mitochondria (Mn-SOD), which gives this cell organelle, a status of real target therapy in thyroid dysfunction. The publisher would like to apologise for any inconvenience caused. [corrected].
Trace Mineral Micronutrients and Chronic Periodontitis-a Review.
Gaur, Sumit; Agnihotri, Rupali
2017-04-01
Trace mineral micronutrients are imperative for optimum host response. Populations worldwide are prone to their insufficiency owing to lifestyle changes or poor nutritional intake. Balanced levels of trace minerals like iron (Fe), zinc (Zn), selenium (Se) and copper (Cu) are essential to prevent progression of chronic conditions like periodontitis. Their excess as well as deficiency is detrimental to periodontal health. This is specifically true in relation to Fe. Furthermore, some trace elements, e.g. Se, Zn and Cu are integral components of antioxidant enzymes and prevent reactive oxygen species induced destruction of tissues. Their deficiency can worsen periodontitis associated with systemic conditions like diabetes mellitus. With this background, the present review first focusses on the role of four trace minerals, namely, Fe, Zn, Se and Cu in periodontal health followed by an appraisal of the data from case control studies related to their association with chronic periodontitis.
On the potential increase of the oxidative stress status in patients with abdominal aortic aneurysm.
Pincemail, J; Defraigne, J O; Cheramy-Bien, J P; Dardenne, N; Donneau, A F; Albert, A; Labropoulos, N; Sakalihasan, N
2012-01-01
Abdominal aortic aneurysm (AAA) is a major cause of preventable deaths in older patients. Oxidative stress has been suggested to play a key role in the pathogenesis of AAA. However, only few studies have been conducted to evaluate the blood oxidative stress status of AAA patients. Twenty seven AAA patients (mean age of 70 years) divided into two groups according to AAA size (≤ 50 or > 50 mm) were compared with an age-matched group of 18 healthy subjects. Antioxidants (vitamins C and E, β-carotene, glutathione, thiols, and ubiquinone), trace elements (selenium, copper, zinc, and copper/zinc ratio) and markers of oxidative damage to lipids (lipid peroxides, antibodies against oxidized patients, and isoprostanes) were measured in each subject. The comparison of the three groups by ordinal logistic regression showed a significant decrease of the plasma levels of vitamin C (P = 0.011), α-tocopherol (P = 0.016) but not when corrected for cholesterol values, β-carotene (P = 0.0096), ubiquinone (P = 0.014), zinc (P = 0.0035), and of selenium (P = 0.0038), as AAA size increased. By contrast, specific markers of lipid peroxidation such as the Cu/Zn ratio (P = 0.046) and to a lesser extent isoprostanes (P = 0.052) increased. The present study emphasizes the potential role of the oxidative stress in AAA disease and suggests that an antioxidant therapy could be of interest to delay AAA progression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimamay, Mariel; Laboratoire de Chimie des Polymères Organiques, CNRS, Université de Bordeaux, UMR 5629-16 Avenue Pey-Berland, 33607 Pessac; Mayer, Thomas
Luminescent organic phases embedded in conductive inorganic matrices are proposed for hybrid organic-inorganic light-emitting diodes. In this configuration, the organic dye acts as the radiative recombination site for charge carriers injected into the inorganic matrix. Our investigation is aimed at finding a material combination where the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the organic dye are situated in between the valence and conduction bands of the inorganic matrix in order to promote electron and hole transfer from the matrix to the dye. Bilayer and composite thin films of zinc selenide (ZnSe) and a redmore » iridium complex (Ir(BPA)) organic light emitter were prepared in situ via UHV thermal evaporation technique. The electronic and atomic structures were studied applying X-ray and ultraviolet photoelectron spectroscopies. The measured energy band alignments for the ZnSe/Ir(BPA) bilayer and ZnSe+Ir(BPA) composite reveal that the HOMO and LUMO of the organic dye are positioned in the ZnSe bandgap. For the initial steps of ZnSe deposition on a dye film to form Ir(BPA)/ZnSe bilayers, zinc atoms intercalate into the dye film leaving behind an excess of selenium at the interface that partly reacts with dye molecules. Photoelectron spectroscopy of the composites shows the same species suggesting a similar mechanism. This mechanism leads to composite films with increased content of amorphous phases in the inorganic matrix, thereby affecting its conductivity, as well as to the presence of nonradiative recombination sites provided by the intercalated Zn atoms.« less
Bakaeva, E A; Eremeyshvili, A V
2016-01-01
With the use of the method of inversion voltammetry there was analyzed the content of movableforms of trace elements: (selenium, zinc, copper lead, cadmium) in soils in the Yaroslavl district of the Yaroslavl region, and also content of zinc, copper lead, cadmium in soils and snow cover in the city of Yaroslavl. According to values of concentrations of movable compounds in soils determined trace elements can be ranked into the following row: zinc > lead > copper > selenium > cadmium. There was revealed insufficient if compared with literature data concentrations, content of movable compounds of selenium, copper and zinc in examined explored soils. The maximal concentrations of lead are revealed in the close proximity to both the city of Yaroslavl and large highways of the city. It indicates to the anthropogenic pollution of soils by this element.
Al-Mohanna, S Y; Subrahmanyam, M N
2001-10-01
The metal levels of arsenic, chromium, copper, lead, magnesium, manganese, selenium, vanadium, and zinc concentrations were determined in various body organs, viz., hepatopancreas, gills, gonad, gastric stomach, and muscle of the blue crab, Portunus pelagicus (Crustacea: Decapoda) to assess the bioaccumulation of metals associated with petroleum input a decade after the 1991 Gulf War oil spillage. Sample solutions prepared were analyzed using an atomic absorption spectrophotometry. High concentrations of Zn and Cu in the muscle and hepatopancreas tissues were a strong indicative of high exposure of P. pelagicus to these metals. However, muscle tissue had been found to accumulate the highest values for all metal speciations analyzed. Copper, zinc, and chromium in samples collected from Station II covering the Kuwait City area were often in excess of those present in Station I and III. Arsenic, lead, magnesium, manganese, selenium, and vanadium were greater in individuals obtained from Station I. A significant correlation was found to exist between Se and V in crab muscle with a surge in Se metal concentration, which was found to be inversely proportional to that of V metal concentration irrespective of the sex of the crab. The difference in patterns of metal occurrence and the significant increase in the Cu and Zn concentrations in various organs of the crab were largely associated with the 1991 Gulf War oil spill. Such results could be used as a baseline for the monitoring of the level of metals in marine organisms of future studies.
Hassan, Ammar Ali; Sandanger, Torkjel M; Brustad, Magritt
2012-07-01
Meat samples (n = 100) were collected from semi-domesticated reindeer originating from 10 grazing districts in Norway. We aimed at studying concentrations, correlations, geographical variations and the effect of animal population density on vitamins A, B3, B7, B12 and E, and calcium, iron, zinc, selenium, chromium and cobalt. Mean concentrations of vitamins A, B3, B7; B12 and E were <5 µg, 6.6 mg, <0.5 µg, 4.7 µg and 0.5 mg/100 g wet weight, respectively. Concentrations of calcium, iron, zinc, selenium, chromium and cobalt were 4.7 mg, 2.8 mg, 6.4 mg, 19.4 µg, 1.7 µg and 0.5 µg/100 g wet weight, respectively. Vitamin E and selenium were the nutrients that exhibited the largest geographical variations (p < 0.05), although no geographical gradient was observed for any of the studied nutrients. Age had a significant effect on zinc and selenium concentrations. Iron was significantly positive correlated with calcium (r = 0.3416, p < 0.01) and vitamin B12 with zinc (r = 0.35, p < 0.05). Reindeer from districts with low animal population density had significantly higher selenium concentration than those from districts with medium and high population densities (p < 0.01). Reindeer meat contained higher vitamin B12, iron, zinc and selenium concentrations when compared to Norwegian beef, lamb, mutton, pork and chicken meat.
Hassan, Ammar Ali; Sandanger, Torkjel M.; Brustad, Magritt
2012-01-01
Meat samples (n = 100) were collected from semi-domesticated reindeer originating from 10 grazing districts in Norway. We aimed at studying concentrations, correlations, geographical variations and the effect of animal population density on vitamins A, B3, B7, B12 and E, and calcium, iron, zinc, selenium, chromium and cobalt. Mean concentrations of vitamins A, B3, B7; B12 and E were <5 µg, 6.6 mg, <0.5 µg, 4.7 µg and 0.5 mg/100 g wet weight, respectively. Concentrations of calcium, iron, zinc, selenium, chromium and cobalt were 4.7 mg, 2.8 mg, 6.4 mg, 19.4 µg, 1.7 µg and 0.5 µg/100 g wet weight, respectively. Vitamin E and selenium were the nutrients that exhibited the largest geographical variations (p < 0.05), although no geographical gradient was observed for any of the studied nutrients. Age had a significant effect on zinc and selenium concentrations. Iron was significantly positive correlated with calcium (r = 0.3416, p < 0.01) and vitamin B12 with zinc (r = 0.35, p < 0.05). Reindeer from districts with low animal population density had significantly higher selenium concentration than those from districts with medium and high population densities (p < 0.01). Reindeer meat contained higher vitamin B12, iron, zinc and selenium concentrations when compared to Norwegian beef, lamb, mutton, pork and chicken meat. PMID:22852060
40 CFR 415.646 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2010 CFR
2010-07-01
...), selenium (T), and zinc (T), are the same as specified in § 415.644(a). (b) Except as provided in 40 CFR 403... pretreatment standards for new sources (PSNS): The limitations for cadmium (T), selenium (T), and zinc (T) are...
Humann-Ziehank, Esther; Menzel, Anne; Roehrig, Petra; Schwert, Barbara; Ganter, Martin; Hennig-Pauka, Isabel
2014-10-01
This study was performed to characterise the response of iron (Fe), zinc (Zn), copper (Cu) and selenium (Se) in bacterial-induced porcine acute phase reaction (APR). Twenty piglets were challenged by aerosolic infection with Actinobacillus pleuropneumoniae (A.pp.) serotype 2, ten piglets serving as controls. Blood sampling was done initially and at day 4 and 21 after infection, collection of liver tissue was done at day 21 (autopsy). A.pp.-infection caused fever and respiratory symptoms. APR at day 4 after infection was marked by an increase in total white blood cells, granulocytes and monocytes in whole blood samples and an increase in globulin/albumin ratio (G/A), α2-globulins, C-reactive protein, haptoglobin, ceruloplasmin (Cp), Cu and Se in serum. Concurrently, there was a decrease in haemoglobin (Hb) and packed cell volume (PCV) in whole blood as well as a decrease in albumin, transferrin, total iron binding capacity and Fe in serum and Zn in plasma. The subacute stage at day 21 was characterised by progressively increased concentrations of G/A, β-globulins and γ-globulins reflecting the specific immune reaction. Hb and PCV showed further decreases, all other parameters returned to the initial concentrations. Glutathione peroxidase activity in plasma and liver tissue remained unaffected by A.pp.-infection. The liver concentration (day 21) of Zn was found to be higher, that of Se was lower in the A.pp.-group, whereas hepatic concentrations of Cu and Fe were not affected by A.pp.-infection. In summary, the acute and subacute stages of A.pp.-infection were accurately characterised by the APR-related parameters. Se was only marginally affected by the A.pp.-infection. The elevated plasma Cu concentration may be a side effect of the transient hepatic induction of Cp synthesis. Zn responded, being distinctly reduced in plasma and probably having been sequestered in the liver tissue. Reduction in serum Fe can be regarded as an unspecific defence mechanism in A.pp.-infection to withdraw Fe from bacterial acquisition systems.
Endocrine disruptor & nutritional effects of heavy metals in ovarian hyperstimulation.
Dickerson, E H; Sathyapalan, T; Knight, R; Maguiness, S M; Killick, S R; Robinson, J; Atkin, S L
2011-12-01
There is increasing concern that environmental chemicals have a direct effect on fertility. Heavy metals such as mercury have been shown to affect various organ systems in humans including nervous system and skin, however they could also act as endocrine disrupting chemicals adversely affecting fertility. Metals such as zinc and selenium are essential micronutrients with diverse functions that may be important for reproductive outcomes. We measured mercury, zinc and selenium levels in the hair, a reliable reflection of long term environmental exposure and dietary status, to correlate with the outcome of ovarian hyperstimulation for in vitro fertilisation (IVF) treatment. We analysed the hair of 30 subfertile women for mercury, zinc and selenium using inductively coupled mass spectrometry. Each woman underwent one cycle of IVF treatment. Correlation between the levels of these trace metals and treatment outcomes was investigated. Thirty women were recruited with mean (±SD) age of 32.7(4.4) years and BMI of 25.4(5.0)kg/m(2). Hair mercury concentration showed a negative correlation with oocyte yield (p < 0.05,βcoefficient 0.38) and follicle number (p = 0.03,β coefficient0.19) after ovarian stimulation. Zinc and selenium levels in hair correlated positively with oocyte yield after ovarian stimulation (p < 0.05,β coefficient0.15) and (p = 0.03,β coefficient0.21) respectively. Selenium levels in hair correlated significantly with follicle number following stimulation (p = 0.04, βcoefficient0.22). There was no correlation between mercury, zinc and selenium in hair and their corresponding serum levels. These data suggest that mercury had a deleterious effect whilst there was a positive effect for zinc and selenium in the ovarian response to gonadotrophin therapy for IVF. Hair analysis offers a novel method of investigating the impact of long-term exposure to endocrine disruptors and nutritional status on reproductive outcomes.
Shaheen, Sabry M; Frohne, Tina; White, John R; DeLaune, Ron D; Rinklebe, Jörg
2017-01-15
Studies about the mobilization of potentially toxic elements (PTEs) in deltaic soils can be challenging, provide critical information on assessing the potential risk and fate of these elements and for sustainable management of these soils. The impact of redox potential (E H ), pH, iron (Fe), manganese (Mn), sulfate (SO 4 2- ), chloride (Cl - ), aliphatic dissolved organic carbon (DOC), and aromatic dissolved organic carbon (DAC) on the mobilization of copper (Cu), selenium (Se), and zinc (Zn) was studied in two soils collected from the Nile and Mississippi Rivers deltaic plains focused on increasing our understanding of the fate of these toxic elements. Soils were exposed to a range of redox conditions stepwise from reducing to oxidizing soil conditions using an automated biogeochemical microcosm apparatus. Concentrations of DOC and Fe were high under reducing conditions as compared to oxidizing conditions in both soils. The proportion of DAC in relation to DOC in solution (aromaticity) was high in the Nile Delta soil (NDS) and low in the Mississippi Delta soil (MDS) under oxidizing conditions. Mobilization of Cu was low under reducing conditions in both soils which was likely caused by sulfide precipitation and as a result of reduction of Cu 2+ to Cu 1+ . Mobilization of Se was high under low E H in both soils. Release of Se was positively correlated with DOC, Fe, Mn, and SO 4 2- in the NDS, and with Fe in the MDS. Mobilization of Zn showed negative correlations with E H and pH in the NDS while these correlations were non-significant in the MDS. The release dynamics of dissolved Zn could be governed mainly by the chemistry of Fe and Mn in the NDS and by the chemistry of Mn in the MDS. Our findings suggest that a release of Se and Zn occurs under anaerobic conditions, while aerobic conditions favor the release of Cu in both soils. In conclusion, the release of Cu, Se, and Zn under different reducing and oxidizing conditions in deltaic wetland soils should be taken into account due to increased mobilization and the potential environmental risks associated with food security in utilizing these soils for flooded agricultural and fisheries systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Prostate cancer outcome and tissue levels of metal ions
Sarafanov, A.G.; Todorov, T.I.; Centeno, J.A.; MacIas, V.; Gao, W.; Liang, W.-M.; Beam, C.; Gray, Marion A.; Kajdacsy-Balla, A.
2011-01-01
BACKGROUNDThere are several studies examining prostate cancer and exposure to cadmium, iron, selenium, and zinc. Less data are available on the possible influence of these metal ions on prostate cancer outcome. This study measured levels of these ions in prostatectomy samples in order to examine possible associations between metal concentrations and disease outcome.METHODSWe obtained formalin fixed paraffin embedded tissue blocks of prostatectomy samples of 40 patients with PSA recurrence, matched 1:1 (for year of surgery, race, age, Gleason grading, and pathology TNM classification) with tissue blocks from 40 patients without recurrence (n = 80). Case–control pairs were compared for the levels of metals in areas adjacent to tumors. Inductively coupled plasma-mass spectrometry (ICP-MS) was used for quantification of Cd, Fe, Zn, and Se.RESULTSPatients with biochemical (PSA) recurrence of disease had 12% lower median iron (95 µg/g vs. 111 µg/g; P = 0.04) and 21% lower zinc (279 µg/g vs. 346 µg/g; P = 0.04) concentrations in the normal-appearing tissue immediately adjacent to cancer areas. Differences in cadmium (0.489 µg/g vs. 0.439 µg/g; 4% higher) and selenium (1.68 µg/g vs. 1.58 µg/g; 5% higher) levels were not statistically significant in recurrence cases, when compared to non-recurrences (P = 0.40 and 0.21, respectively).CONCLUSIONSThere is an association between low zinc and low iron prostate tissue levels and biochemical recurrence in prostate cancer. Whether these novel findings are a cause or effect of more aggressive tumors, or whether low zinc and iron prostatic levels raise implications for therapy, remains to be investigated.
Han, Yoo Min; Yoon, Hyuk; Lim, Soo; Sung, Mi-Kyung; Shin, Cheol Min; Park, Young Soo; Kim, Nayoung; Lee, Dong Ho; Kim, Joo Sung
2017-05-15
Studies on the micronutrient status of Asian patients with inflammatory bowel disease (IBD) are scarce. We evaluated the prevalence of micronutrient deficiency and verified the risk factors for micronutrient deficiency in Korean patients with IBD. We measured the serum levels of 25-hydroxyvitamin D3 [25-(OH)D], zinc, and selenium to analyze the clinical risk factors for micronutrient levels below the reference values. In addition, we compared the 25-(OH)D levels of patients with IBD to those of age- and sex-matched healthy controls. Among the 83 patients, 74 (89.2%) had suboptimal serum 25-(OH)D levels. The mean plasma 25-(OH)D level in patients with IBD was significantly reduced compared to that of the healthy controls (12.3±6.2 ng/mL vs 20.0±6.7 ng/mL; p<0.001). The proportions of patients with lower serum zinc and selenium levels were 39.0% and 30.9%, respectively. Female sex (p=0.012) and Crohn's disease (p=0.012) were associated with vitamin D deficiency. Patients younger than 40 years were at increased risk for zinc deficiency (p=0.045). Female sex (p=0.015) and low serum albumin level (<3.3 g/dL) (p=0.047) were risk factors for selenium deficiency. Many Korean patients with IBD have vitamin D, zinc, and selenium deficiencies, suggesting the necessity for monitoring levels of these micronutrients.
Yadav, Charu; Manjrekar, Poornima A; Agarwal, Ashish; Ahmad, Afzal; Hegde, Anupama; Srikantiah, Rukmini Mysore
2017-01-01
A growing understanding of antioxidant mechanisms and insulin-like actions of trace elements selenium and zinc has rekindled researchers' interest towards their role in diabetes mellitus, nutritional management of which concentrates predominantly on macronutrient intake. However, selenium studies limiting largely to diabetes have yielded inconsistent results with sparse knowledge in the pre-diabetes population. This hospital-based cross-sectional study screened 300 people who came to the institutional hospital laboratory with fasting plasma glucose and glycosylated haemoglobin requisition over a period of 6 months. Thirty-five pre-diabetes subjects aged 25-45 years and 35 age-matched healthy controls were selected as per inclusion criteria and clinical history. Serum selenium was estimated by inductively coupled plasma-mass spectrometry, zinc and magnesium by colorimetric end-point methods and insulin by enzyme-linked immunosorbent assay, and insulin resistance was calculated using a homeostasis model assessment (HOMA) 2 calculator. Data analysis was done using SPSS ver. 16 employing an independent sample t test for intergroup comparison of means and Pearson's correlation for correlation analysis. Serum mineral levels in the pre-diabetes group (selenium 63.01 ± 17.6 μg/L, zinc 55.78 ± 13.49 μg/dL, magnesium 1.37 ± 0.38 mg/dL) were significantly reduced (p < 0.05) in comparison to the healthy controls (selenium 90.98 ± 15.81 μg/L, zinc 94.53 ± 15.41 μg/dL, magnesium 2.12 ± 0.22 mg/dL). A significant negative correlation was seen with glycaemic indices and insulin resistance. This study conducted in pre-diabetes subjects highlights a considerable deficiency of serum selenium, zinc and magnesium observed at a much earlier pre-clinical phase. This coupled with the evidence of a strong inverse association with glycaemic indices and insulin resistance postulates the role of mineral alterations in the pathophysiology of hyperglycaemia and insulin resistance.
Joshua, P Patric; Valli, C; Balakrishnan, V
2016-03-01
Nanoparticles can bypass conventional physiological ways of nutrient distribution and transport across tissue and cell membranes, as well as protect compounds against destruction prior to reaching their targets. In ovo administration of nanoparticles, may be seen as a new method of nano-nutrition, providing embryos with an additional quantity of nutrients. The aim of the study is to examine the effect of in ovo supplementation of nano forms of zinc, copper and selenium on the hatchability and post hatch performance of broiler chicken. Nano form of zinc at 20, 40, 60 and 80 µg/egg, nano form of copper at 4, 8, 12 and 16 µg/egg and nano form of selenium at 0.075, 0.15, 0.225 and 0.3 µg/egg were in ovo supplemented (18(th) day incubation, amniotic route) in fertile broiler eggs. Control group in ovo fed with normal saline alone was also maintained. Each treatment had thirty replicates. Parameters such as hatchability, hatch weight and post hatch performance were studied. In ovo feeding of nano minerals were not harmful to the developing embryo and did not influence the hatchability. Significantly (p<0.05) best feed efficiency for nano forms of zinc (2.16), copper (2.46) and selenium (2.51) were observed, when 40, 4 and 0.225 µg/egg respectively were in ovo supplemented. Except in nano form of copper at 12 µg per egg which had significantly (p<0.05) highest breast muscle percentage there was no distinct trend to indicate that dressing percentage or breast muscle yield was influenced in other treatments. Nano forms of zinc, copper and selenium can be prepared at laboratory conditions. In ovo feeding of nano forms of zinc, copper and selenium at 18(th) day of incubation through amniotic route does not harm the developing embryo, does not affect hatchability.
Joshua, P. Patric; Valli, C.; Balakrishnan, V.
2016-01-01
Background and Aim: Nanoparticles can bypass conventional physiological ways of nutrient distribution and transport across tissue and cell membranes, as well as protect compounds against destruction prior to reaching their targets. In ovo administration of nanoparticles, may be seen as a new method of nano-nutrition, providing embryos with an additional quantity of nutrients. The aim of the study is to examine the effect of in ovo supplementation of nano forms of zinc, copper and selenium on the hatchability and post hatch performance of broiler chicken. Materials and Methods: Nano form of zinc at 20, 40, 60 and 80 µg/egg, nano form of copper at 4, 8, 12 and 16 µg/egg and nano form of selenium at 0.075, 0.15, 0.225 and 0.3 µg/egg were in ovo supplemented (18th day incubation, amniotic route) in fertile broiler eggs. Control group in ovo fed with normal saline alone was also maintained. Each treatment had thirty replicates. Parameters such as hatchability, hatch weight and post hatch performance were studied. Results: In ovo feeding of nano minerals were not harmful to the developing embryo and did not influence the hatchability. Significantly (p<0.05) best feed efficiency for nano forms of zinc (2.16), copper (2.46) and selenium (2.51) were observed, when 40, 4 and 0.225 µg/egg respectively were in ovo supplemented. Except in nano form of copper at 12 µg per egg which had significantly (p<0.05) highest breast muscle percentage there was no distinct trend to indicate that dressing percentage or breast muscle yield was influenced in other treatments. Conclusion: Nano forms of zinc, copper and selenium can be prepared at laboratory conditions. In ovo feeding of nano forms of zinc, copper and selenium at 18th day of incubation through amniotic route does not harm the developing embryo, does not affect hatchability. PMID:27057113
NASA Astrophysics Data System (ADS)
Vikentev, I.
2016-04-01
During processing the most of Au, Ag, Se, Te, Pb, Bi, Sb, Hg as well as notable part of Cu, Zn and Cd fail for tailings and became heavy metal pollutants. Modes of occurrence of Au, Ag, Te and Se covers two giant VMS deposits: Uchaly (intensively deformed) and Uzelginsk (altered by late hydrothermal processes) as well as middle-sized Molodezn and West Ozern deposits (nondeformed) have been studied. Mineral forms of these elements as well as their presence in disperse mode in common ore minerals (pyrite, chalcopyrite, sphalerite) have been studied using SEM, EPMA, INAA, ICP-MS and LA-ICP-MS.
Ayoglu, Hilal; Sezer, Ustun; Akin, Mehmet; Okyay, Dilek; Ayoglu, Ferruh; Can, Murat; Kucukosman, Gamze; Piskin, Ozcan; Aydin, Bengu; Cimencan, Murat; Gur, Abdullah; Turan, Isil
2016-04-01
To evaluate the changing levels of selenium, copper, zinc and iron in patients with sepsis and systemic inflammatory response syndrome and their influence on mortality. The prospective study was conducted at a tertiary care university hospital in Zonguldak city in the western Black Sea region of Turkey from January 2012 to December 2013, and comprised patients with sepsis and systemic inflammatory response syndrome. Blood samples were taken on 1st, 3rd, 5th and 7th days to measure serum selenium, copper, zinc and iron levels. Patients' demographic data, presence of additional diseases and mortality were recorded. Of the 57 patients, 28(49.1%) were female and 29(50.9%) were male, with an overall mean age of 60.3±19.4 years, mean height of 166.1±11.4cm, mean weight of 76.5±17.5kg. Copper and zinc levels were in the normal range, while selenium and iron levels were lower than the limit values at all measuring periods. There was no significant difference between first and other days in accordance with element levels (p>0.05). Baseline copper levels in patients with malignancy were lower than patients without malignancy (p< 0.05). In hypertensive patients, baseline copper levels were higher and 7th day levels were lower than non-hypertensive (p< 0.05). Baseline selenium levels of those who died were lower than the other patients (p< 0.05). Selenium and iron levels were decreased in patients with sepsis-systemic inflammatory response syndrome and copper levels were lower in patients with malignancy, hypertension and chronic obstructive pulmonary disease (p< 0.05). There was no change in zinc levels of the patients. Reduced basal selenium levels of patients with sepsis and systemic inflammatory response syndrome were associated with mortality.
Comparison of trace element concentrations in tissue of common carp and implications for monitoring
Goldstein, R.M.; DeWeese, L.R.
1999-01-01
Common carp (Cyprinus carpio) collected from four sites in the Red River of the North in 1994 were analyzed for arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), selenium (So), and zinc (Zn). Concentrations differed among liver, muscle, and whole body. Generally, trace element concentrations were the greatest in livers while concentrations in whole bodies were greater than those in muscle for Cd, Cu, Ni, Pb, and Zn, and concentrations in muscle were similar to whole body for As and Se. Concentrations of Cr were lower in liver than either muscle or whole body. Correlations between liver and whole body concentrations were stronger than those between liver and muscle concentrations, but the strongest correlations were between muscle and whole body concentrations. Examination of tissue concentrations by collection sites suggested that, for a general survey, the whole body may be the most effective matrix to analyze.
Donatello, S; Tyrer, M; Cheeseman, C R
2010-01-01
A hazardous waste assessment has been completed on ash samples obtained from seven sewage sludge incinerators operating in the UK, using the methods recommended in the EU Hazardous Waste Directive. Using these methods, the assumed speciation of zinc (Zn) ultimately determines if the samples are hazardous due to ecotoxicity hazard. Leaching test results showed that two of the seven sewage sludge ash samples would require disposal in a hazardous waste landfill because they exceed EU landfill waste acceptance criteria for stabilised non-reactive hazardous waste cells for soluble selenium (Se). Because Zn cannot be proven to exist predominantly as a phosphate or oxide in the ashes, it is recommended they be considered as non-hazardous waste. However leaching test results demonstrate that these ashes cannot be considered as inert waste, and this has significant implications for the management, disposal and re-use of sewage sludge ash.
Bjørklund, Geir; Aaseth, Jan; Skalny, Anatoly V; Suliburska, Joanna; Skalnaya, Margarita G; Nikonorov, Alexandr A; Tinkov, Alexey A
2017-05-01
Iron (Fe) deficiency is considered as the most common nutritional deficiency. Iron deficiency is usually associated with low Fe intake, blood loss, diseases, poor absorption, gastrointestinal parasites, or increased physiological demands as in pregnancy. Nutritional Fe deficiency is usually treated with Fe tablets, sometimes with Fe-containing multimineral tablets. Trace element interactions may have a significant impact on Fe status. Existing data demonstrate a tight interaction between manganese (Mn) and Fe, especially in Fe-deficient state. The influence of Mn on Fe homeostasis may be mediated through its influence on Fe absorption, circulating transporters like transferrin, and regulatory proteins. The existing data demonstrate that the influence of zinc (Zn) on Fe status may be related to their competition for metal transporters. Moreover, Zn may be involved in regulation of hepcidin production. At the same time, human data on the interplay between Fe and Zn especially in terms of Fe-deficiency and supplementation are contradictory, demonstrating both positive and negative influence of Zn on Fe status. Numerous data also demonstrate the possibility of competition between Fe and chromium (Cr) for transferrin binding. At the same time, human data on the interaction between these metals are contradictory. Therefore, while managing hypoferremia and Fe-deficiency anemia, it is recommended to assess the level of other trace elements in parallel with indices of Fe homeostasis. It is supposed that simultaneous correction of trace element status in Fe deficiency may help to decrease possible antagonistic or increase synergistic interactions. Copyright © 2017 Elsevier GmbH. All rights reserved.
Guo, Liang; Lichten, Louis A.; Ryu, Moon-Suhn; Liuzzi, Juan P.; Wang, Fudi; Cousins, Robert J.
2010-01-01
The exocrine pancreas plays an important role in endogenous zinc loss by regulating excretion into the intestinal tract and hence influences the dietary zinc requirement. The present experiments show that the zinc transporter ZnT2 (Slc30a2) is localized to the zymogen granules and that dietary zinc restriction in mice decreased the zinc concentration of zymogen granules and ZnT2 expression. Excess zinc given orally increased ZnT2 expression and was associated with increased pancreatic zinc accumulation. Rat AR42J acinar cells when induced into a secretory phenotype, using the glucocorticoid analog dexamethasone (DEX), exhibited increased ZnT2 expression and labile zinc as measured with a fluorophore. DEX administrated to mice also induced ZnT2 expression that accompanied a reduction of the pancreatic zinc content. ZnT2 promoter analyses identified elements required for responsiveness to zinc and DEX. Zinc regulation was traced to a MRE located downstream from the ZnT2 transcription start site. Responsiveness to DEX is produced by two upstream STAT5 binding sites that require the glucocorticoid receptor for activation. ZnT2 knockdown in the AR42J cells using siRNA resulted in increased cytoplasmic zinc and decreased zymogen granule zinc that further demonstrated that ZnT2 may mediate the sequestration of zinc into zymogen granules. We conclude, based upon experiments with intact mice and pancreatic acinar cells in culture, that ZnT2 participates in zinc transport into pancreatic zymogen granules through a glucocorticoid pathway requiring glucocorticoid receptor and STAT5, and zinc-regulated signaling pathways requiring MTF-1. The ZnT2 transporter appears to function in a physiologically responsive manner involving entero-pancreatic zinc trafficking. PMID:20133611
Franson, J.C.
1999-01-01
Selenium is a naturally occurring element that is present in some soils. Unlike mercury and lead, which also are natural environmental components, selenium is an essential nutrient in living systems. The amount of dietary selenium required by animals depends upon many factors, including the availability of certain other metals such as zinc and copper, as well as vitamin E and other nutrients. Muscle damage results if dietary selenium is deficient, but dietary excess can be toxic.
NASA Astrophysics Data System (ADS)
Chadel, Meriem; Chadel, Asma; Moustafa Bouzaki, Mohammed; Aillerie, Michel; Benyoucef, Boumediene; Charles, Jean-Pierre
2017-11-01
Performances of ZnO/ZnS/CZTSSe polycrystalline thin film solar cells (Copper Zinc Tin Sulphur Selenium-solar cell) were simulated for different thicknesses of the absorber and ZnS buffer layers. Simulations were performed with SCAPS (Solar Cell Capacitance Simulator) software, starting with actual parameters available from industrial data for commercial cells processing. The influences of the thickness of the various layers in the structure of the solar cell and the gap profile of the CZTSSe absorber layer on the performance of the solar cell were studied in detail. Through considerations of recent works, we discuss possible routes to enhance the performance of CZTSSe solar cells towards a higher efficiency level. Thus, we found that for one specific thickness of the absorber layer, the efficiency of the CZTSSe solar cell can be increased when a ZnS layer replaces the usual CdS buffer layer. On the other hand, the efficiency of the solar cell can be also improved when the absorber layer presents a grad-gap. In this case, the maximum efficiency for the CZTSSe cell was found equal to 13.73%.
Srichandan, Suchismita; Panigrahy, R C; Baliarsingh, S K; Rao B, Srinivasa; Pati, Premalata; Sahu, Biraja K; Sahu, K C
2016-10-15
Concentrations of trace metals such as iron (Fe), copper (Cu), zinc (Zn), cobalt (Co), nickel (Ni), manganese (Mn), lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), vanadium (V), and selenium (Se) were determined in seawater and zooplankton from the surface waters off Rushikulya estuary, north-western Bay of Bengal. During the study period, the concentration of trace metals in seawater and zooplankton showed significant spatio-temporal variation. Cu and Co levels in seawater mostly remained non-detectable. Other elements were found at higher concentrations and exhibited marked variations. The rank order distribution of trace metals in terms of their average concentration in seawater was observed as Fe>Ni>Mn>Pb>As>Zn>Cr>V>Se>Cd while in zooplankton it was Fe>Mn>Cd>As>Pb>Ni>Cr>Zn>V>Se. The bioaccumulation factor (BAF) of Fe was highest followed by Zn and the lowest value was observed with Ni. Results of correlation analysis discerned positive affinity and good relationship among the majority of the trace metals, both in seawater and zooplankton suggesting their strong affinity and coexistence. Copyright © 2016 Elsevier Ltd. All rights reserved.
The association of oxidant-antioxidant status in patients with chronic renal failure.
Aziz, Manal A; Majeed, Ghanim H; Diab, Kareem S; Al-Tamimi, Raid J
2016-01-01
Oxidative stress has been linked to disease progression, including chronic renal failure (CRF). The aim of the present study was to determine malondialdehyde (MDA) as a sign of lipid peroxidation, and to investigate the association between antioxidant activities and three trace elements, in 49 patients with CRF. The erythrocyte and plasma trace elements [selenium (Se), zinc (Zn), and copper (Cu)] and antioxidant defense levels were determined: glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), vitamins E and C. The obtained values were compared with 42 age- and sex-matched healthy controls. There were significantly lower mean values of plasma Se, GPx, vitamins E and C, erythrocyte Se, SOD and CAT levels in the patient group compared to the control group (p < 0.001). Plasma MDA showed a significant increase in all CRF patients in comparison with controls. No significant difference was found in plasma Cu, Zn, and erythrocyte GPx, Cu and Zn levels between patient and control groups. These findings indicate oxidative stress is present in patients of CRF, and may serve to establish a simple protocol for evaluation of renal function.
Kocyła, Anna; Adamczyk, Justyna; Krężel, Artur
2018-01-24
Cellular zinc (Zn(ii)) is bound with proteins that are part of the proteomes of all domains of life. It is mostly utilized as a catalytic or structural protein cofactor, which results in a vast number of binding architectures. The Zn(ii) ion is also important for the formation of transient protein complexes with a Zn(ii)-dependent quaternary structure that is formed upon cellular zinc signals. The mechanisms by which proteins associate with and dissociate from Zn(ii) and the connection with cellular Zn(ii) changes remain incompletely understood. In this study, we aimed to examine how zinc protein domains with various Zn(ii)-binding architectures are formed under free Zn(ii) concentration changes and how formation of the Zn(ii)-dependent assemblies is related to the protein concentration and reactivity. To accomplish these goals we chose four zinc domains with different Zn(ii)-to-protein binding stoichiometries: classical zinc finger (ZnP), LIM domain (Zn 2 P), zinc hook (ZnP 2 ) and zinc clasp (ZnP 1 P 2 ) folds. Our research demonstrated a lack of changes in the saturation level of intraprotein zinc binding sites, despite various peptide concentrations, while homo- and heterodimers indicated a concentration-dependent tendency. In other words, at a certain free Zn(ii) concentration, the fraction of a formed dimeric complex increases or decreases with subunit concentration changes. Secondly, even small or local changes in free Zn(ii) may significantly affect protein saturation depending on its architecture, function and subcellular concentration. In our paper, we indicate the importance of interdependence of free Zn(ii) availability and protein subunit concentrations for cellular zinc signal regulation.
Olza, Josune; Aranceta-Bartrina, Javier; González-Gross, Marcela; Ortega, Rosa M; Serra-Majem, Lluis; Varela-Moreiras, Gregorio; Gil, Ángel
2017-07-06
Zinc, selenium, and the vitamins A, E and C, all have specific biological functions that are involved mainly in the antioxidant defence system, which has important implications for the development of chronic diseases. We aimed to assess the reported intake of those six nutrients, as well as the food that contributes to their sources of intakes. Data were obtained from the Spanish ANIBES ("Anthropometry, Intake and Energy Balance in Spain") study, n = 2009 (9-75 years old). The analyses were performed in the whole population and in the plausible energy reporters after a misreporting analysis according to the European Food and Safety Authority (EFSA) protocol. A validated, photo-based three-day food record was used to collect the data. Mean (max-min) reported intake for the whole population of zinc was 8.1 ± 0.1 mg/day, (2.3-27.3 mg/day), selenium 75 ± 1 µg/day, (14-265 µg/day), vitamin A 668 µg RE/day (2-11,017 µg RE/day), retinol 364 ± 18 µg/day (0-10,881 µg/day), carotenes 1735 ± 35 µg/day (13-13,962 µg/day), vitamin E 7.0 ± 0.1 mg α-TE/day (0.7-55.2 mg α-TE/day) and vitamin C 84.4 ± 1.4 mg/day (5.0-802.7 mg/day). The main source intakes for zinc were meat and meat products, for selenium cereals and grains, for vitamin E oils and fat, and for vitamin A and C vegetables. There is an elevated percentage of the Spanish ANIBES population not meeting the EFSA recommended intakes for all analysed micronutrients: zinc (83%), vitamin A (60%), vitamin E (80%), vitamin C (36%) and selenium (25%).
Mousavi, Seyedeh Neda; Faghihi, Amirhosein; Motaghinejad, Majid; Shiasi, Maryam; Imanparast, Fatemeh; Amiri, Hamid Lorvand; Shidfar, Farzad
2018-02-01
Studies have shown that non-alcoholic fatty liver disease (NAFLD) patients are more prone to cardiovascular disease (CVD). Zinc and selenium deficiency are common in NAFLD. But the effects of zinc and selenium co-supplementation before and/or after disease progression on CVD markers are not clear in NAFLD patients. This study aimed to compare the effects of zinc and selenium co-supplementation before and/or after disease progression on some of the CVD markers in an experimental model of NAFLD. Forty male Sprague Dawley rats (197 ± 4 g) were randomly assigned into four dietary groups: control group (C; received 9% of calorie as fat), model group (M; received 82% of calorie as fat), and supplementation before (BS) or after (AS) disease progression. Animals were fed diets for 20 weeks in all groups. Fasting plasma glucose (FPG), insulin, HOMA-IR, ALT, AST, lipid profile, malondialdehyde (MDA) and vascular endothelial growth factor (VEGF) levels were measured as CVD indices. Serum ALT, AST, FPG, insulin, MDA, VEGF and HOMA-IR were significantly higher in the M than C group. Co-supplementation reduced serum ALT and AST levels in the BS and AS groups compared with the M group. FPG, insulin, HOMA-IR, VEGF, MDA, LDL/HDL-c and TC/HDL-c ratio were significantly reduced in the AS compared with the M group. TG/HDL-c ratio was significantly reduced in the BS and AS compared with the M group. Serum MDA, VEGF, Insulin and HOMA-IR were significantly lowered in the AS than BS group (p < 0.05). Zinc and selenium co-supplementation after NAFLD progression reduced CVD risk indices in an experimental model.
Shidfar, Farzad; Faghihi, Amirhosein; Amiri, Hamid Lorvand; Mousavi, Seyedeh Neda
2018-01-01
Studies have shown that zinc and selenium deficiency is common in nonalcoholic fatty liver disease (NAFLD). However, the effects of zinc and selenium co-supplementation before and/or after disease progression on NAFLD are not clear enough. The aim of this study was to compare the effects of zinc and selenium co-supplementation before and/or after disease progression on NAFLD prognosis. Forty male Sprague-Dawley rats (197±4 g) were randomly assigned to 4 dietary groups: normal-fat diet (NFD; receiving 9% of calories as fat), high-fat diet (HFD; receiving 82% of calories as fat), supplementation before disease progression (S+HFD), and supplementation after disease progression (HFD+S). The diets were implemented over a 20-week period in all the groups. Biochemical and histologic parameters were compared between the 4 groups, and between-group comparisons were also carried out. There were significant differences in the average food dietary intake (P<0.001), weight (P<0.001), fasting blood sugar (P=0.005), triglyceride (P<0.001), total cholesterol (P<0.001), low-density lipoprotein cholesterol (P=0.002), high-density lipoprotein cholesterol (P=0.001), alanine aminotransferase (P<0.001), and aspartate aminotransferase (P<0.001) between the 4 dietary groups. Serum triglyceride and total cholesterol were significantly lower in the HFD+S Group than in the S+HFD Group (P<0.001 and P=0.003, respectively). Fat accumulation was significantly reduced in the HFD+S Group (P<0.001). Zinc and selenium co-supplementation after disease progression improved biochemical and histologic parameters in an experimental model of NAFLD.
Clinical relevance of trace element measurement in patients on initiation of parenteral nutrition.
Salota, Rashim; Omar, Sohail; Sherwood, Roy A; Raja, Kishor; Vincent, Royce P
2016-11-01
Background and Aims Serum zinc, copper and selenium are measured in patients prior to commencing on parenteral nutrition; however, their interpretation can be difficult due to acute phase reactions. We assessed (i) the relationship of raised C-reactive protein with trace elements and albumin (ii) benefits of measuring trace elements when C-reactive protein is raised in patients requiring short-term parenteral nutrition. Methods Samples were collected for zinc, copper, selenium and albumin at baseline and then every two weeks and correlated with C-reactive protein results in patients on parenteral nutrition. Results were categorized into four groups based on the C-reactive protein concentrations: (i) <20 mg/L, (ii) 20-39 mg/L, (iii) 40-79 mg/L and (iv) ≥80 mg/L. Results In 166 patients, zinc, selenium and albumin correlated (Spearman's) negatively with C-reactive protein; r = -0.26, P < 0.001 (95% CI -0.40 to -0.11), r = -0.44, P < 0.001 (-0.56 to -0.29) and r = -0.22 P = 0.005 (-0.36 to -0.07), respectively. Copper did not correlate with C-reactive protein (r = 0.09, P = 0.25 [-0.07 to 0.25]). Comparison of trace elements between the four groups showed no difference in zinc and copper (both P > 0.05), whereas selenium and albumin were lower in the group with C-reactive protein > 40 mg/L ( P < 0.05). Conclusion In patients on short-term parenteral nutrition, measurement of C-reactive protein is essential when interpreting zinc and selenium but not copper results. Routine measurement of trace elements prior to commencing parenteral nutrition has to be considered on an individual basis in patients with inflammation.
Barwick, M; Maher, W
2003-10-01
In this study the biotransference of selenium copper, cadmium, zinc, arsenic and lead was measured in a contaminated seagrass ecosystem in Lake Macquarie, NSW, Australia, to determine if biomagnification of these trace metals is occurring and if they reach concentrations that pose a threat to the resident organisms or human consumers. Selenium was found to biomagnify, exceeding maximum permitted concentrations for human consumption within carnivorous fish tissue, the highest trophic level examined. Selenium concentrations measured within carnivorous fish were also above those shown to elicit sub-lethal effects in freshwater fish. As comparisons are made to selenium concentrations known to effect freshwater fish, inferences must be made with caution. There was no evidence of copper, cadmium, zinc or lead biomagnification within the food web examined. Copper, cadmium, zinc and lead concentrations were below concentrations shown to elicit adverse responses in biota. Copper concentrations within crustaceans M. bennettae and P. palagicus were found to exceed maximum permitted concentrations for human consumption. It is likely that copper concentrations within these species were accumulated due to the essential nature of this trace metal for many species of molluscs and crustaceans. Arsenic showed some evidence of biomagnification. Total arsenic concentrations are similar to those found in other uncontaminated marine ecosystems, thus arsenic concentrations are unlikely to cause adverse effects to aquatic organisms. Inorganic arsenic concentrations are below maximum permitted concentrations for human consumption.
Trace elements in patients on continuous renal replacement therapy.
Broman, M; Bryland, A; Carlsson, O
2017-07-01
Intensive care patients with acute kidney injury (AKI), treated with continuous renal replacement therapy (CRRT) are at great risk for disturbances in plasma levels of trace elements due to the underlying illness, AKI, and dialysis. This study was performed to increase our knowledge regarding eight different trace elements during CRRT. Thirty one stable patients with AKI, treated with CRRT, were included in the study. Blood, plasma and effluent samples were taken at the start of the study and 36 ± 12 h later. A group of 48 healthy volunteers were included as controls and exposed to one fasting blood sample. Samples were analysed for trace elements (Cr, Cu, Mn, Co, Zn, Rb, Mo, Se) and standard blood chemistry. Blood and plasma levels of selenium and rubidium were significantly reduced while the levels of chromium, cobalt, and molybdenum were significantly increased in the study group vs. healthy volunteers. There was an uptake of chromium, manganese, and zinc. Molybdenum mass balance was around zero. For selenium, copper, and rubidium there were a marked loss. The low levels of selenium and rubidium in blood and plasma from CRRT patients, together with the loss via CRRT effluent, raises the possibility of the need for selenium supplementation in this group of patients, despite the unchanged levels during the short study period. Further investigations on the effect of additional administration of trace elements to CRRT patients would be of interest. © 2017 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Nabatov, Alexey A; Troegubova, Natalya A; Gilmutdinov, Ruslan R; Sereda, Andrey P; Samoilov, Alexander S; Rylova, Natalya V
2017-09-01
Active physical exercises and growth are associated with mineral imbalances in young athletes. The purpose of this study was to examine the impact of sport-related factors on tissue mineral status in adolescent female athletes. Saliva and hair samples were used for the analysis of immediate and more permanent tissue mineral status, respectively. Samples taken from a control non-athletic female group and two groups of female athletes (field hockey and fencing) were analyzed for seven essential minerals: calcium, chromium, iron, potassium, magnesium, selenium and zinc. Inductively-coupled plasma mass spectrometry was used for the quantification of elements having very low concentration range in samples (Se, Cr and Zn) whereas inductively coupled plasma optical emission spectrometry was used for quantification of more ubiquitous elements (Mg, К, Са, Fe). The obtained results for athletic groups were compared with control. Female athletes had increased levels of selenium in both saliva and hair as well as chromium in saliva. Field hockey players had the higher level of zinc in hair whereas fencers had the lower levels of salivary calcium. Strong negative correlation between potassium levels in saliva and hair was identified. Iron and magnesium did not differ between the studied groups. In conclusion, novel sport-specific features of chromium tissue levels in female athletes were found. The studied sport disciplines have different impact on the distribution of osteoporosis-related minerals (calcium and zinc). Our finding can help in the development of osteoporosis preventive trainings and in the proper nutrient supplementation to correct mineral imbalances in female athletes. Copyright © 2016 Elsevier GmbH. All rights reserved.
Goel, Akshat; Bhanja, Subrat K; Mehra, Manish; Mandal, Asitbaran; Pande, Veena
2016-06-01
Differential expression of growth- and immunity-related genes and post-hatch performances were evaluated in in ovo zinc (Zn), iodine (I) or selenium (Se) supplemented chicken embryos. There was about 9-18% reduction in hatchability of Zn, I or Se supplemented eggs. In ovo trace element supplementation did not improve post-hatch growth. Two-way analysis of data revealed significant effect (P > 0.01) of period, trace elements and their interactions. Expression of hepatic somatotropin, insulin-like growth factor-II and mucin gene was highest at 20(th) embryonic day but decreased during post-hatch periods. In ovo Zn or I supplemented embryos had higher expression of growth-related genes compared to the Se or un-injected control group. Expression of interleukin-6 was higher (P < 0.01) in in ovo I supplemented chicks (2.5-fold) but lower in the Zn and Se groups than in the un-injected control group. However, Zn and Se supplemented chicks had higher cellular immune gene expression. In vivo response to mitogen phytohaemaglutinin was also higher (P < 0.01) in Zn or Se supplemented chicks In ovo supplementation of Zn, I and Se did not improve the post-hatch growth, but increased growth-related gene expression. Iodine improved humoral immune gene expression whereas Zn and Se enhanced cell-mediated immune gene expression in broiler chickens. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Cadmium, Zinc, and Selenium Levels in Carcinoma of the Human Prostate
2007-04-01
tissue (4-6). Cadmium (Cd) possesses carcinogenic effect that is hormonally mediated (7, 8), and is recognized as a risk factor in development of...in prostatic cells [28], and that the carcinogenic effect of Cd can be hormonally mediated [13, 29]. Protective Factors - Selenium and Zinc Se...studies have shown that this generation of Pacific Islands people have traditional diets, eating more taro, shellfish and fresh vegetables, and
Iñigo-Figueroa, Gemma; Méndez-Estrada, Rosa O.; Quihui-Cota, Luis; Velásquez-Contreras, Carlos A.; Garibay-Escobar, Adriana; Canett-Romero, Rafael; Astiazarán-García, Humberto
2013-01-01
Associations between Giardia lamblia infection and low serum concentrations of zinc have been reported in young children. Interestingly, relatively few studies have examined the effects of different dietary zinc levels on the parasite-infected host. The aims of this study were to compare the growth performance and zinc status in response to varying levels of dietary zinc and to measure the antibody-mediated response of mice during G. lamblia infection. Male CD-1 mice were fed using 1 of 4 experimental diets: adequate-zinc (ZnA), low-zinc (ZnL), high-zinc (ZnH) and supplemented-zinc (ZnS) diet containing 30, 10, 223 and 1383 mg Zn/kg respectively. After a 10 days feeding period, mice were inoculated orally with 5 × 106 G. lamblia trophozoites and were maintained on the assigned diet during the course of infection (30 days). Giardia-free mice fed ZnL diets were able to attain normal growth and antibody-mediated response. Giardia-infected mice fed ZnL and ZnA diets presented a significant growth retardation compared to non-infected controls. Zinc supplementation avoided this weight loss during G. lamblia infection and up-regulated the host’s humoral immune response by improving the production of specific antibodies. Clinical outcomes of zinc supplementation during giardiasis included significant weight gain, higher anti-G. lamblia IgG antibodies and improved serum zinc levels despite the ongoing infection. A maximum growth rate and antibody-mediated response were attained in mice fed ZnH diet. No further increases in body weight, zinc status and humoral immune capacity were noted by feeding higher zinc levels (ZnS) than the ZnH diet. These findings probably reflect biological effect of zinc that could be of public health importance in endemic areas of infection. PMID:24002196
Preparation and antibacterial properties of titanium-doped ZnO from different zinc salts
2014-01-01
To research the relationship of micro-structures and antibacterial properties of the titanium-doped ZnO powders and probe their antibacterial mechanism, titanium-doped ZnO powders with different shapes and sizes were prepared from different zinc salts by alcohothermal method. The ZnO powders were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED), and the antibacterial activities of titanium-doped ZnO powders on Escherichia coli and Staphylococcus aureus were evaluated. Furthermore, the tested strains were characterized by SEM, and the electrical conductance variation trend of the bacterial suspension was characterized. The results indicate that the morphologies of the powders are different due to preparation from different zinc salts. The XRD results manifest that the samples synthesized from zinc acetate, zinc nitrate, and zinc chloride are zincite ZnO, and the sample synthesized from zinc sulfate is the mixture of ZnO, ZnTiO3, and ZnSO4 · 3Zn (OH)2 crystal. UV-vis spectra show that the absorption edges of the titanium-doped ZnO powders are red shifted to more than 400 nm which are prepared from zinc acetate, zinc nitrate, and zinc chloride. The antibacterial activity of titanium-doped ZnO powders synthesized from zinc chloride is optimal, and its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) are lower than 0.25 g L−1. Likewise, when the bacteria are treated by ZnO powders synthesized from zinc chloride, the bacterial cells are damaged most seriously, and the electrical conductance increment of bacterial suspension is slightly high. It can be inferred that the antibacterial properties of the titanium-doped ZnO powders are relevant to the microstructure, particle size, and the crystal. The powders can damage the cell walls; thus, the electrolyte is leaked from cells. PMID:24572014
In situ Zn/ZnO mapping elucidating for "shape change" of zinc electrode
NASA Astrophysics Data System (ADS)
Nakata, Akiyoshi; Arai, Hajime; Murayama, Haruno; Fukuda, Katsutoshi; Yamane, Tomokazu; Hirai, Toshiro; Uchimoto, Yoshiharu; Yamaki, Jun-ichi; Ogumi, Zempachi
2018-04-01
For the use of the zinc anode in secondary batteries, it is necessary to solve the "shape change" deterioration issue in that zinc species agglomerate in the center of the electrode to fade the available capacity. The local chemical compositions of the zinc electrodes during "shape change" were precisely analyzed using the synchrotron X-ray diffraction mapping analysis of practical zinc-nickel cells in a non-destructive manner. The in situ Zn/ZnO mapping shows that metallic Zn deposition chiefly occurs in the periphery of ZnO while ZnO are left in the center of electrode like a hill on charging. On discharging, the ZnO hill grows to the perpendicular direction on the electrode while metallic zinc is oxidized and dissolved. These findings allow us to propose a mechanism for the shape change; thus dissolved zincate species are decomposed on the ZnO hill during discharging to be accumulated in the center of the electrode. It is suggested that suppressing zincate dissolution and non-uniform zinc deposition slow the growth rate of the ZnO hill to enhance the cyclability of zinc-based secondary batteries.
USDA-ARS?s Scientific Manuscript database
Selenium (Se) is an essential element for mammals but has not been considered as an essential element for higher plants. Lentil (Lens culinaris Medik.) is a cool season food legume rich in protein and a range of micronutrients including minerals (iron and zinc), folates, and carotenoids. The objecti...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gavaleshko, N.P.; Khomyak, V.V.; Makogonenko, V.N.
1985-12-01
In order to determine the predominant intrinsic point defects in Cd /SUB x/ Hg /SUB 1-x/ Se and Zn /SUB x/ Hg /SUB 1-x/ Se solid solutions, the authors study the influence of annealing in mercury and selenium vapor on the carrier concentration and mobility. When the specimens are annealed in selenium vapor the electron concentration at first increases and then becomes constant. A theoretical analysis of the results obtained indicate that selenium vacancies are the predominant point defects in the solutions, and that the process of defect formation itself is quasiepitaxial.
Stephens, D.W.; Waddell, Bruce; Miller, J.B.
1988-01-01
Reconnaissance of wildlife areas in the middle Green River basin of Utah was conducted during 1986 and 1987 to determine whether irrigation drainage has caused, or has the potential to cause significant harmful effects on human health, fish, and wildlife, or may adversely affect the suitability of water for beneficial uses. Studies at Stewart Lake Waterfowl Management Area and Ouray National Wildlife Refuge indicated that concentrations of boron, selenium, and zinc in water, bottom sediment, and biological tissue were sufficiently large to be harmful to fish and wildlife, and to adversely affect beneficial uses of water. Selenium is the principal element of concern in both areas. Concentrations of dissolved selenium in irrigation drain water entering Stewart Lake Waterfowl Management Area ranged from 14-140 micrograms/L (ug/L) and consistently exceeded Utah standards for wildlife protection in water in two of the four drains. Concentrations of boron and zinc exceeded Utah standards only occasionally in the drain waters. Concentrations of total selenium in sediments collected where the drains discharge into the lake were 10-85 ug/gm. Liver tissue collected from American coots at Stewart Lake Waterfowl Management Area contained concentrations of selenium from 4.9-26 ug/gm (dry weight), and whole body samples of carp contained as much as 31 ug/gm (dry weight). Concentrations of selenium in Potamogeton and blue-green algae ranged from 2.1-27 ug/gm. Concentrations of boron, selenium, and zinc were also measured in water from Ouray National Wildlife Refuge. Liver tissue of American coots from the North Roadside Pond, which receives irrigation tailwater, contained a geometric-mean concentration of selenium of 32 ug/gm (dry weight). Five water-bird eggs collected from the North and South Roadside Ponds contained selenium concentrations of 63-120 ug/gm (dry weight). (Lantz-PTT)
Kang-Sheng, Liu; Xiao-Dong, Mao; Juan, Shi; Chun-Fan, Dai; Pingqing, Gu
2015-06-01
Minerals such as zinc, copper, selenium, calcium, and magnesium are essential for normal human development and functioning of the body. They have been found to play important roles in immuno-physiologic functions. The study is to evaluate the distribution and correlation of nonessential (lead) and essential elements in whole blood from 1- to 72-month old children. The cross-sectional study was performed in 1551 children. Six element concentrations, including copper (Cu), zinc (Zn), calcium (Ca), magnesium (Mg), iron (Fe) and lead (Pb) in the blood were determined by atomic absorption spectrometry. Distributions and correlations of trace elements in different age groups were analyzed and compared. A Pearson correlation controlled for age and gender was used to assess the relationship of non essential (lead) and essential elements. Levels of copper and magnesium were 18.09 ± 4.42 µmol/L and 1.42 ± 0.12 mmol/L, respectively. 6.04% of all children showed copper levels below the normal threshold, the levels of Magnesium were stable in different age groups. Though the overall mean blood zinc and iron concentrations (61.19 ± 11.30 µmol/L and 8.24 ± 0.59 mmol/L, respectively) gradually increased with age and the overall deficiency levels (24.1% and 36.0%, respectively) decreased with age, zinc and iron deficiencies were still very stable. Controlling for gender and age, significant positive correlations were found when comparing copper to zinc, calcium, magnesium, and iron ((r = 0.333, 0.241, 0.417, 0.314 ,p < 0.01); zinc to magnesium and iron (r = 0.440, 0.497p < 0.01); and magnesium to Calcium and iron (r = 0.349, 0.645, p < 0.01). The overall mean blood lead levels (41.16 ± 16.10) were relatively unstable among different age groups. The prevalence of lead intoxication in all children was 1.3% .Calcium levels decreased gradually with age, with an overall concentration of 1.78 ± 0.13 mmol/L. Significant negative correlations were also noted between Pb and Zn, Fe (r = -0.179, -0.124.p < 0.01) .The importance of calcium deficiency and supplementation is well realized, but the severity of iron and zinc deficiency is not well recorded. The degree of lead intoxication in all the children studied was low; The established reference intervals for Cu, Zn, Ca and Mg provide an important guidance for the reasonable supplementation of essential elements during different age groups.
NASA Astrophysics Data System (ADS)
Heisterkamp, F.; Greilich, A.; Zhukov, E. A.; Kirstein, E.; Kazimierczuk, T.; Korenev, V. L.; Yugova, I. A.; Yakovlev, D. R.; Pawlis, A.; Bayer, M.
2015-12-01
Optically induced nuclear spin polarization in a fluorine-doped ZnSe epilayer is studied by time-resolved Kerr rotation using resonant excitation of donor-bound excitons. Excitation with helicity-modulated laser pulses results in a transverse nuclear spin polarization, which is detected as a change of the Larmor precession frequency of the donor-bound electron spins. The frequency shift in dependence on the transverse magnetic field exhibits a pronounced dispersion-like shape with resonances at the fields of nuclear magnetic resonance of the constituent zinc and selenium isotopes. It is studied as a function of external parameters, particularly of constant and radio frequency external magnetic fields. The width of the resonance and its shape indicate a strong spatial inhomogeneity of the nuclear spin polarization in the vicinity of a fluorine donor. A mechanism of optically induced nuclear spin polarization is suggested based on the concept of resonant nuclear spin cooling driven by the inhomogeneous Knight field of the donor-bound electron.
Reed, Spenser; Qin, Xia; Ran-Ressler, Rinat; Brenna, James Thomas; Glahn, Raymond P.; Tako, Elad
2014-01-01
Zinc is a vital micronutrient used for over 300 enzymatic reactions and multiple biochemical and structural processes in the body. To date, sensitive and specific biological markers of zinc status are still needed. The aim of this study was to evaluate Gallus gallus as an in vivo model in the context of assessing the sensitivity of a previously unexplored potential zinc biomarker, the erythrocyte linoleic acid: dihomo-γ-linolenic acid (LA:DGLA) ratio. Diets identical in composition were formulated and two groups of birds (n = 12) were randomly separated upon hatching into two diets, Zn(+) (zinc adequate control, 42.3 μg/g zinc), and Zn(−) (zinc deficient, 2.5 μg/g zinc). Dietary zinc intake, body weight, serum zinc, and the erythrocyte fatty acid profile were measured weekly. At the conclusion of the study, tissues were collected for gene expression analysis. Body weight, feed consumption, zinc intake, and serum zinc were higher in the Zn(+) control versus Zn(−) group (p < 0.05). Hepatic TNF-α, IL-1β, and IL-6 gene expression were higher in the Zn(+) control group (p < 0.05), and hepatic Δ6 desaturase was significantly higher in the Zn(+) group (p < 0.001). The LA:DGLA ratio was significantly elevated in the Zn(−) group compared to the Zn(+) group (22.6 ± 0.5 and 18.5 ± 0.5, % w/w, respectively, p < 0.001). This study suggests erythrocyte LA:DGLA is able to differentiate zinc status between zinc adequate and zinc deficient birds, and may be a sensitive biomarker to assess dietary zinc manipulation. PMID:24658588
Van Cutsem, J; Van Gerven, F; Fransen, J; Schrooten, P; Janssen, P A
1990-06-01
The fungistatic and fungicidal activity of ketoconazole, zinc pyrithione, and selenium sulfide against Pityrosporum, a yeast thought to play a pathogenic role in seborrheic dermatitis and dandruff, was assessed in Dixon broth for Pityrosporum ovale and Sabouraud broth for Pityrosporum pachydermatis. Ketoconazole inhibited growth at concentrations ranging from 0.001 to 1 micrograms/ml. For zinc pyrithione and selenium sulfide higher concentrations were needed. In a guinea pig model the efficacy of treatment with four shampoos (Nizoral [Jansen], EDS Zinc [Schering], Zinkan [Lederle], and Selsun [Abbott]) was compared. The animals were inoculated for 7 consecutive days on intact skin. The lesions were scored for erythema, folliculitis, and hyperkeratosis 24 hours after the last inoculation and after treatment. Final evaluations were made 13 days after infection (10 days after last shampoo application). Treatment with undiluted and diluted (1:10) shampoos showed consistently superior clinical and mycologic results for Nizoral shampoo. None of the shampoos produced side effects.
Impact of low level radiation on concentrations of some trace elements in radiation workers.
Rostampour, Nima; Almasi, Tinoosh; Rostampour, Masoumeh; Sadeghi, Hamid Reza; Khodamoradi, Ehsan; Razi, Reyhaneh; Derakhsh, Zahra
2018-05-01
Small variations in trace element levels may cause important physiological changes in the human body. This study aims to evaluate five important trace elements in radiation workers. In this study, 44 radiation workers and an equal number of non-radiation workers were selected as the case and control group, respectively. The concentrations of iron, magnesium, zinc, copper, and selenium in the serum of the participants were measured using an Atomic Absorption Spectrometry (AAS). The mean concentrations of iron, magnesium, zinc, copper, and selenium for the case group were 107.3 µg/dl, 2.3 mg/dl, 80.9 µg/dl, 112.6 µg/dl and 216.7 ng/ml, respectively. The results for the control group were 121.9 µg/dl, 2.3 mg/dl, 82.3 µg/dl, 112.8 µg/dl and 225.2 ng/ml, respectively. The mean concentration of iron in the case group was significantly lower than the control group (p-value = 0.012), while the concentrations of other elements in both of the groups were not significantly different. In the case group, except magnesium (p-value = 0.021), no significant relationship was found between age and the elemental concentrations. According to Spearman's test, there was a meaningful statistical correlation between the sex and concentration of iron, Mg, Zn, and Se. Also, the correlation between the concentration of magnesium and the weights of radiation workers was significant (p-value =0.044). © 2018 Old City Publishing, Inc.
The contribution of dairy products to micronutrient intake in the Netherlands.
Vissers, Pauline A J; Streppel, Martinette T; Feskens, Edith J M; de Groot, Lisette C P G M
2011-10-01
To assess the contribution of dairy products to the intake of various vitamins and minerals in several life stages in the Dutch population. Data from 3 Dutch Food Consumption Surveys and the Leiden Longevity Study were used to estimate the contribution of dairy products--as percentage of total intake--to the intake of iron, copper, selenium, zinc, calcium, folic acid, vitamin D, vitamin C, and vitamin B(12). In young children, dairy products contributed substantially to the intake of calcium (73%), selenium (21%), iron (8%), zinc (39%), copper (12%), folic acid (24%), vitamin C (18%), vitamin D (16%), and vitamin B(12) (58%). Of all dairy products, milk contributed the most to the intake of these nutrients. In adults and elderly subjects, the contribution of dairy products to total micronutrient intake was 65%-68% for calcium, 18%-19% for selenium, 3%-4% for iron, 28%-31% for zinc, 6%-7% for copper, 17%-19% for folic acid, 10%-14% for vitamin C, 11%-16% for vitamin D, and 44%-46% for vitamin B(12). Milk as well as cheese contributed the most to the intake of these nutrients. Dairy products are an important source of vitamins and minerals in the Dutch population. Dairy products, especially milk and cheese, contribute substantially to the intake of calcium, selenium, zinc, and vitamin B(12).
Global supply and demand of metals in the future.
Backman, Carl-Magnus
2008-01-01
This article is a short review on the subject of diminishing mineral resources in a world with increasing population. The concepts of reserves, resources, and life index are described. A forecast is made on the global consumption in the year 2050 of the metals iron (Fe), aluminum (Al), copper (Cu), zinc (Zn), nickel (Ni), and lead (Pb). Evidence indicates that a physical depletion of metals does not occur (fixed stock paradigm) but certain metals will become too expensive to extract (opportunity cost paradigm). The future demand for cadmium (Cd), mercury (Hg), arsenic (As), and selenium (Se) is presented. Finally, some metals presently of great interest for mineral prospectors that may have an important role in the future society are presented.
Deng, Bo; Zhou, Xihong; Wu, Jie; Long, Ciming; Yao, Yajun; Peng, Hongxing; Wan, Dan; Wu, Xin
2017-10-01
An experiment was conducted to compare the effects of zinc sulfate (ZS) and tribasic zinc sulfate (TBZ) as sources of supplemental zinc on growth performance, serum zinc (Zn) content and messenger RNA (mRNA) expression of Zn transporters (ZnT1/ZnT2/ZnT5/ZIP4/DMT1) of young growing pigs. A total of 96 Duroc × Landrace × Yorkshire pigs were randomly allotted to two treatments and were fed a basal diet supplemented with 100 mg/kg Zn from either ZS or TBZ for 28 days. Feed : gain ratio in pigs fed TBZ were lower (P < 0.05) than pigs fed ZS, and average daily weight gain tended to increase (0.05 ≤ P ≤ 0.10) in pigs fed TBZ. Compared with pigs fed ZS, pigs fed TBZ had a higher CuZn-superoxide dismutase and Zn content in serum (P < 0.05) while they had a lower Zn content in feces (P < 0.05). In addition, ZIP4 mRNA expression of zinc transporter in either duodenum or jejunum of pigs fed TBZ were higher (P < 0.05) than pigs fed ZS. These results indicate that TBZ is more effective in serum Zn accumulation and intestinal Zn absorption, and might be a potential substitute for ZS in young growing pigs. © 2017 Japanese Society of Animal Science.
Gauthier, Nicole A.; Karki, Shakun; Olley, Bryony J.; Thomas, W. Kelly
2008-01-01
A blood-brain barrier (BBB) model composed of porcine brain capillary endothelial cells (BCEC) was exposed to a moderately excessive zinc environment (50 µmol Zn/L) in cell culture and longitudinal measurements were made of zinc transport kinetics, ZnT-1 (SLC30A1) expression, and changes in the protein concentration of metallothionein (MT), ZnT-1, ZnT-2 (SLC30A2), and Zip1 (SLC39A1). Zinc release by cells of the BBB model was significantly increased after 12–24 h of exposure, but decreased back to control levels after 48–96 h, as indicated by transport across the BBB from both the ablumenal (brain) and lumenal (blood) directions. Expression of ZnT-1, the zinc export protein, increased 169% within 12 h, but was no longer different from controls after 24 h. Likewise, ZnT-1 protein content increased transiently after 12 h of exposure but returned to control levels by 24 h. Capacity for zinc uptake and retention increased from both the lumenal and ablumenal directions within 12–24 h of exposure and remained elevated. MT and ZnT-2 were elevated within 12 h and remained elevated throughout the study. Zip1 was unchanged by the treatment. The BBB’s response to a moderately high zinc environment was dynamic and involved multiple mechanisms. The initial response was to increase the cell’s capacity to sequester zinc with additional MT and increase zinc export with the ZnT-1 protein. But, the longer term strategy involved increasing ZnT-2 transporters, presumably to sequester zinc into intracellular vesicles as a mechanism to protect the brain and maintain brain zinc homeostasis. PMID:18061429
Smidt, Kamille; Jessen, Niels; Petersen, Andreas Brønden; Larsen, Agnete; Magnusson, Nils; Jeppesen, Johanne Bruun; Stoltenberg, Meredin; Culvenor, Janetta G.; Tsatsanis, Andrew; Brock, Birgitte; Schmitz, Ole; Wogensen, Lise; Bush, Ashley I.; Rungby, Jørgen
2009-01-01
Background Ion transporters of the Slc30A- (ZnT-) family regulate zinc fluxes into sub-cellular compartments. β-cells depend on zinc for both insulin crystallization and regulation of cell mass. Methodology/Principal Findings This study examined: the effect of glucose and zinc chelation on ZnT gene and protein levels and apoptosis in β-cells and pancreatic islets, the effects of ZnT-3 knock-down on insulin secretion in a β-cell line and ZnT-3 knock-out on glucose metabolism in mice during streptozotocin-induced β-cell stress. In INS-1E cells 2 mM glucose down-regulated ZnT-3 and up-regulated ZnT-5 expression relative to 5 mM. 16 mM glucose increased ZnT-3 and decreased ZnT-8 expression. Zinc chelation by DEDTC lowered INS-1E insulin content and insulin expression. Furthermore, zinc depletion increased ZnT-3- and decreased ZnT-8 gene expression whereas the amount of ZnT-3 protein in the cells was decreased. Zinc depletion and high glucose induced apoptosis and necrosis in INS-1E cells. The most responsive zinc transporter, ZnT-3, was investigated further; by immunohistochemistry and western blotting ZnT-3 was demonstrated in INS-1E cells. 44% knock-down of ZnT-3 by siRNA transfection in INS-1E cells decreased insulin expression and secretion. Streptozotocin-treated mice had higher glucose levels after ZnT-3 knock-out, particularly in overt diabetic animals. Conclusion/Significance Zinc transporting proteins in β-cells respond to variations in glucose and zinc levels. ZnT-3, which is pivotal in the development of cellular changes as also seen in type 2 diabetes (e.g. amyloidosis in Alzheimer's disease) but not previously described in β-cells, is present in this cell type, up-regulated by glucose in a concentration dependent manner and up-regulated by zinc depletion which by contrast decreased ZnT-3 protein levels. Knock-down of the ZnT-3 gene lowers insulin secretion in vitro and affects in vivo glucose metabolism after streptozotocin treatment. PMID:19492079
Concentrations of Trace Elements in Hemodialysis Patients: A Prospective Cohort Study.
Tonelli, Marcello; Wiebe, Natasha; Bello, Aminu; Field, Catherine J; Gill, John S; Hemmelgarn, Brenda R; Holmes, Daniel T; Jindal, Kailash; Klarenbach, Scott W; Manns, Braden J; Thadhani, Ravi; Kinniburgh, David
2017-11-01
Low concentrations and excessive concentrations of trace elements have been commonly reported in hemodialysis patients, but available studies have several important limitations. Random sample of patients drawn from a prospective cohort. 198 incident hemodialysis patients treated in 3 Canadian centers. We used mass spectrometry to measure plasma concentrations of the 25 elements at baseline, 6 months, 1 year, and 2 years following enrollment in the cohort. We focused on low concentrations of zinc, selenium, and manganese and excessive concentrations of lead, arsenic, and mercury; low and excessive concentrations of the other 19 trace elements were treated as exploratory analyses. Low and excessive concentrations were based on the 5th and 95th percentile plasma concentrations from healthy reference populations. At all 4 occasions, low zinc, selenium, and manganese concentrations were uncommon in study participants (≤5.1%, ≤1.8%, and ≤0.9% for zinc, selenium, and manganese, respectively) and a substantial proportion of participants had concentrations that exceeded the 95th percentile (≥65.2%, ≥74.2%, and ≥19.7%, respectively). Almost all participants had plasma lead concentrations above the 95th percentile at all time points. The proportion of participants with plasma arsenic concentrations exceeding the 95th percentile was relatively constant over time (9.1%-9.8%); the proportion with plasma mercury concentrations that exceeded the 95th percentile varied between 15.2% and 29.3%. Low arsenic, platinum, tungsten, and beryllium concentrations were common (>50%), as were excessive cobalt, manganese, zinc, vanadium, cadmium, selenium, barium, antimony, nickel, molybdenum, lead, and chromium concentrations. There was no evidence that low zinc, selenium, or manganese concentrations exist in most contemporary Canadian hemodialysis patients. Some patients have excessive plasma arsenic and mercury concentrations, and excessive lead concentrations were common. These findings require further investigation. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Prystupa, Andrzej; Kiciński, Paweł; Luchowska-Kocot, Dorota; Błażewicz, Anna; Kurys-Denis, Ewa; Niedziałek, Jarosław; Sak, Jarosław; Panasiuk, Lech
2017-09-21
Liver cirrhosis is a disease involving the liver parenchyma, which is characterised by fibrosis and impaired architectonics of the parenchyma with regenerative nodules. The aim of the study was to determine the relationship between stage of alcoholic liver cirrhosis, concentrations of selenium, zinc and profibrotic and proangiogenic cytokines (FGF-19, ENG). The study included 99 patients with alcoholic cirrhosis and 20 healthy subjects. Ion chromatography with UV/VIS detection was used for determination of zinc ions in the previously mineralized serum samples. The measurements of selenium were performed with the ContrAA700 high-resolution continuum source graphite tube atomic absorption spectrometer. ELISA was used to determine concentration of FGF-19 and ENG in serum samples. Concentrations of zinc and selenium were significantly decreased in cirrhotic patients (p<0.001 for both). The highest concentration of FGF-19 was found in Child-Pugh stage C liver cirrhosis patients (806.9±650.3 pg/ml), and was significantly higher than observed in controls (p=0.005) and stage A patients (compensated cirrhosis) (p=0.02). The highest concentration of ENG was demonstrated in the control group (3.24±148 ng/ml) while the lowest in patients with decompensated cirrhosis (7.32±5.39 ng/ml and 7.92±4.18 ng/ml for stage B and C; p=0.03 and p=0.02, respectively). The use of the multiple-variable model demonstrated that the independent factors affecting the concentration of ENG were the concentration of bilirubin (p=0.02), INR (p=0.01) and duration of alcohol abuse (p=0.02). The independent determinants of FGF-19 concentrations were found to be the stage (severity) of liver cirrhosis (p=0.04) and INR (p=0.03). Concentrations of zinc and selenium in serum of patients with alcoholic liver cirrhosis are not independently related to concentrations of FGF-19 and ENG.
Sulfur-Doped Zinc Oxide (ZnO) Nanostars: Synthesis and Simulation of Growth Mechanism
2011-10-01
Zinc Oxide ( ZnO ) Nanostars: Synthesis and Simulation of Growth Mechanism Jinhyun Cho1, Qiubao Lin2,3, Sungwoo...characterization, and ab initio simulations of star-shaped hexagonal zinc oxide ( ZnO ) nanowires. The ZnO nanostructures were synthesized by a low...Introduction Zinc oxide ( ZnO ) is a wide bandgap (3.37 eV), Ⅱ–Ⅵ semiconductor of great interest for optoelectronic applications [1–3]. Its
Saiki, Michael K.; Palawski, Donald U.
1990-01-01
Concentrations of selenium and other trace elements were determined in 55 whole body samples of juvenile anadromous striped bass (Morone saxatilis) from the San Joaquin Valley and San Francisco Estuary, California. The fish (≤1 yr old—the predominant life stage in the San Joaquin Valley) were collected in September–December 1986 from 19 sites in the Valley and 3 sites in the Estuary, and analyzed for the following elements: aluminum (Al), arsenic (As), boron (B), barium (Ba), beryllium (Be), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), magnesium (Mg), molybdenum (Mo), nickel (Ni), lead (Pb), selenium (Se), strontium (Sr), vanadium (V), and zinc (Zn). When compared to concentrations in whole freshwater fish measured by surveys from other waters, a few samples contained higher levels, of As, Cd, Cu, Pb, and Se. The median concentrations of Al, As, Cu, Fe, Mg, Se, and Sr also differed significantly (P⩽0.05) among sites. However, only Se concentrations were highest (up to 7.9 μg/g dry weight) in samples from Valley sites exposed to agricultural subsurface (tile) drainwater; concentrations were lower in samples collected elsewhere. Water quality variables—especially those strongly influenced by tile drainwater (conductivity, total dissolved solids, total alkalinity, and total hardness)—were also significantly correlated (P⩽0.05) with Se concentrations in fish. Selenium concentrations in striped bass from the Estuary were only one-fourth to one-half the concentrations measured in the most contaminated fish from the San Joaquin River.
40 CFR 415.645 - New source performance standards (NSPS).
Code of Federal Regulations, 2010 CFR
2010-07-01
...): The limitations for pH, TSS, cadmium (T), selenium (T), and zinc (T), are the same as specified in... following new source performance standards (NSPS): The limitations for pH, TSS, cadmium (T), selenium (T...
Han, Zhi-zhong; Ren, Li-li; Pan, Hai-bo; Li, Chun-yan; Chen, Jing-hua; Chen, Jian-zhong
2015-11-01
In this work, cadmium nitrate hexahydrate [Cd(NO₃)₂ · 6H₂O] is as a source of cadmium, zinc nitrate [Zn(NO₃)₂] as a source of zinc source, and NaHSe as a source of selenium which was prepared through reducing the elemental selenium with sodium borohydride (NaBH₄). Then water-soluble Cd₁₋xZnxSe ternary quantum dots with different component were prepared by colloid chemistry. The as-prepared Cd₁₋xZnx Se ternary quantum dots exhibit stable fluorescent property in aqueous solution, and can still maintain good dispersivity at room temperature for four months. Powder X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM) were used to analyze crystal structure and morphology of the prepared Cd₁₋xZnxSe. It is found that the as-prepared ternary quantum dots are cubic phase, show as sphere, and the average of particle size is approximate 4 nm. The spectral properties and energy band structure of the as-prepared ternary quantum dots were modulated through changing the atom ratio of elements Zn and Cd. Compared with binary quantum dots CdSe and ZnSe, the ultraviolet-visible (UV-Visible) absorption spectrum and fluorescence (FL) emission spectrum of ternary quantum dots are both red-shift. The composites (Cd₀.₅ Zn₀.₅ Se@TNTs) of Cd₀.₅ Zn₀.₅ Se ternary quantum dots and TiO₂ nanotubes (TNTs) were prepared by directly immerging TNTs into quantum dots dispersive solution for 5 hours. TEM image shows that the Cd₀.₅ Zn₀.₅ Se ternary quantum dots were closely combined to nanotube surface. The infrared spectra show that the Ti-Se bond was formed between Cd₀.₅ Zn₀.₅ Se ternary quantum dots and TiO₂ nanotubes, which improve the stability of the composite. Compared to pristine TNTs, UV-Visible absorption spectrum of the composites is significantly enhanced in the visible region of light. And the absorption band edge of Cd₀.₅Zn₀.₅ Se@TNTs red-shift from 400 to 700 nm. The recombination of the photogenerated electron-hole pairs was restrained with the as-prepared ternary quantum dots. Therefore, the visible-light photocatalytic efficiency was greatly improved. After visible-light irradiation for 60 min, the degradation of Cd₀.₅ Zn₀.₅ Se@TNTs photocatalysts for RhB is nearly 100%, which is about 3. 3 times of that of pristine TNTs and 2. 5 times of that of pure Cd₀.₅ Zn₀.₅ Se ternary quantum dots, respectively.
Determination of zinc availability in foods by the extrinsic label technique.
Evans, G W; Johnson, P E
1977-06-01
The absorption of intrinsic 65Zn and extrinsic 65Zn from corn and liver was measured in rats. No significant difference between the absorption of intrinsic- and extrinsic-label was observed. These results indicate that endogenous zinc and exogenous 65Zn enter a common pool prior to being absorbed from the intestine. Since extrinsic 65Zn enters a common pool with intrinsic zinc, whole-body absorption of extrinsic 65Zn can be used to obtain an accurate estimate of the availability of zinc in food. The availability of zinc in human breast milk, in cow's milk, in infant formulas, and in reconstituted dry milk was analyzed by use of the extrinsic label. The zinc in human breast milk was most available (59%) while the zinc in the infant formulas was the least available (26 to 37%). Zinc from both raw and cooked corn was more available than zinc from either cooked or uncooked rat liver.
NASA Technical Reports Server (NTRS)
Rietmeijer, Frans J. M.
1995-01-01
Some fraction of Zn, Cu, Se, Ga and Ge in chondritic interplanetary dust particles (IDPs) collected in the lower stratosphere between 1981 May and 1984 June has a volcanic origin. I present a method to evaluate the extent of this unavoidable type of stratospheric contamination for individual particles. The mass-normalized abundances for Cu and Ge as a function of mass-normalized stratospheric residence time show their time-integrated stratospheric aerosol abundances. The Zn, Se and Ga abundances show a subdivision into two groups that span approximately two-year periods following the eruptions of the Mount St. Helens (1980 May) and El Chichon (1982 April) volcanoes. Elemental abundances in particles collected at the end of each two-year period indicate low, but not necessarily ambient, volcanic stratospheric abundances. Using this time-integrated baseline, I calculate the straospheric contaminant fractions in nine IDPs and show that Zn, SE and Ga abundances in chondritic IDPs derive in part from stratospheric aerosol contaminants. Post-entry elemental abundances (i.e., the amount that survived atmospheric entry heating of the IDP) show enrichments relative to the CI abundances but in a smaller number of particles than previously suggested.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Selenium (T) 0.11 0.037 Zinc (T) 0.017 0.0092 pH (1) (1) 1 Within the range 6.0 to 9.0. (b) Except as....001 Cadmium (T) 4.87×10−5 1.62×10−5 Selenium (T) 7.0×10−5 2.3×10−5 Zinc (T) 1.04×10−5 5.8×10−6 pH (1...
Zinc transporter-1 concentrates at the postsynaptic density of hippocampal synapses.
Sindreu, Carlos; Bayés, Álex; Altafaj, Xavier; Pérez-Clausell, Jeús
2014-03-07
Zinc concentrates at excitatory synapses, both at the postsynaptic density and in a subset of glutamatergic boutons. Zinc can modulate synaptic plasticity, memory formation and nociception by regulating transmitter receptors and signal transduction pathways. Also, intracellular zinc accumulation is a hallmark of degenerating neurons in several neurological disorders. To date, no single zinc extrusion mechanism has been directly localized to synapses. Based on the presence of a canonical PDZ I motif in the Zinc Transporter-1 protein (ZnT1), we hypothesized that ZnT1 may be targeted to synaptic compartments for local control of cytosolic zinc. Using our previously developed protocol for the co-localization of reactive zinc and synaptic proteins, we further asked if ZnT1 expression correlates with presynaptic zinc content in individual synapses. Here we demonstrate that ZnT1 is a plasma membrane protein that is enriched in dendritic spines and in biochemically isolated synaptic membranes. Hippocampal CA1 synapses labelled by postembedding immunogold showed over a 5-fold increase in ZnT1 concentration at synaptic junctions compared with extrasynaptic membranes. Subsynaptic analysis revealed a peak ZnT1 density on the postsynaptic side of the synapse, < 10 nm away from the postsynaptic membrane. ZnT1 was found in the vast majority of excitatory synapses regardless of the presence of vesicular zinc in presynaptic boutons. Our study has identified ZnT1 as a novel postsynaptic density protein, and it may help elucidate the role of zinc homeostasis in synaptic function and disease.
Cs promoted oxidation of Zn and CuZn surfaces: a combined experimental and theoretical study
NASA Astrophysics Data System (ADS)
Chaturvedi, Sanjay; Rodriguez, JoséA.; Hrbek, Jan
1997-07-01
The interaction of O 2 with Zn, {Cs}/{Zn} and {Cs}/{CuZn} surfaces was investigated using photoemission and ab initio self-consistent-field (SCF) calculations. On zinc films, the sticking probability of O 2 is extremely low (10 -3-10 -2), and O 2 exposures in the range of 10 3 to 10 4 langmuirs are necessary to produce a significant adsorption of oxygen and the transformation of metallic zinc into zinc oxide. The presence of sub monolayer coverages of cesium enhances the oxidation rate of zinc by 2-3 orders of magnitude. In the {Cs}/{Zn} system, the alkali atom donates electrons to zinc. This charge transfer facilitates the formation of Zn→O 2 dative bonds and breaking of the OO bond. For the coadsorption of Cs and O 2 on Zn(001), the larger the electron transfer from Zn into the O 2 (1 πg) orbitals, the bigger the adsorption energy of the molecule and the elongation of the OO bond. In general, cesium does not promote the oxidation of copper. In the {Cs}/{CuZn} system, copper withdraws electrons from zinc. The presence of copper in the {Cs}/{CuZn} system inhibits the oxidation of the Zn component compared with the {Cs}/{Zn} system by lowering the electron density on the Zn atoms. After exposing the {Cs}/{CuZn} system to O 2, zinc is oxidized at a rate that is larger than that found for clean CuZn surfaces and smaller than seen in {Cs}/{Zn} surfaces. Molecular hydrogen is found to have no effect on oxidized Cu, Zn and CuZn films. However, atomic hydrogen reduces ZnO to metallic zinc and CuO to Cu 2O. In the oxidized CuZn alloy, CuO is reduced first followed by the reduction of ZnO. A comparison of the behavior of O 2/Cs/Zn and H 2O/Cs/Zn systems shows that while O 2 causes severe oxidation of Cs promoted Zn surfaces, H 2O has little or no effect.
Evidence for a zinc/proton antiporter in rat brain.
Colvin, R A; Davis, N; Nipper, R W; Carter, P A
2000-05-01
The data presented in this paper are consistent with the existence of a plasma membrane zinc/proton antiport activity in rat brain. Experiments were performed using purified plasma membrane vesicles isolated from whole rat brain. Incubating vesicles in the presence of various concentrations of 65Zn2+ resulted in a rapid accumulation of 65Zn2+. Hill plot analysis demonstrated a lack of cooperativity in zinc activation of 65Zn2+ uptake. Zinc uptake was inhibited in the presence of 1 mM Ni2+, Cd2+, or CO2+. Calcium (1 mM) was less effective at inhibiting 65Zn2+ uptake and Mg2+ and Mn2+ had no effect. The initial rate of vesicular 65Zn2+ uptake was inhibited by increasing extravesicular H+ concentration. Vesicles preloaded with 65Zn2+ could be induced to release 65Zn2+ by increasing extravesicular H+ or addition of 1 mM nonradioactive Zn2+. Hill plot analysis showed a lack of cooperativity in H+ activation of 65Zn2+ release. Based on the Hill analyses, the stoichiometry of transport may include Zn2+/Zn2+ exchange and Zn2+/H+ antiport, the latter being potentially electrogenic. Zinc/proton antiport may be an important mode of zinc uptake into neurons and contribute to the reuptake of zinc to replenish presynaptic vesicle stores after stimulation.
NASA Astrophysics Data System (ADS)
Shin, Hyeonwoo; Kang, Chan-mo; Baek, Kyu-Ha; Kim, Jun Young; Do, Lee-Mi; Lee, Changhee
2018-05-01
We present a novel methods of fabricating low-temperature (180 °C), solution-processed zinc oxide (ZnO) transistors using a ZnO precursor that is blended with zinc hydroxide [Zn(OH)2] and zinc oxide hydrate (ZnO • H2O) in an ammonium solution. By using the proposed method, we successfully improved the electrical performance of the transistor in terms of the mobility (μ), on/off current ratio (I on/I off), sub-threshold swing (SS), and operational stability. Our new approach to forming a ZnO film was systematically compared with previously proposed methods. An atomic forced microscopic (AFM) image and an X-ray photoelectron spectroscopy (XPS) analysis showed that our method increases the ZnO crystallite size with less OH‑ impurities. Thus, we attribute the improved electrical performance to the better ZnO film formation using the blending methods.
Chandra, G; Aggarwal, A; Kumar, M; Singh, A K; Sharma, V K; Upadhyay, R C
2014-12-01
This study was conducted to exploit ameliorative effect of additional vitamin E and/or zinc supplementation on immune response of peripartum Sahiwal cows. Thirty-two pregnant dry Sahiwal cows were blocked into four treatment groups (n = 8), namely control, zinc (Zn), vitamin E (Vit E) and zinc + vitamin E (Zn + Vit E). Feeding regimen was same in all the groups except that the Sahiwal cows in the zinc-, vitamin E- and zinc + vitamin E-fed groups were additionally supplemented with 60 mg Zn/kg DM, 1000 IU vitamin E and 60 mg/kg + 1000 IU Zn + vitamin E, respectively, from day 60 pre-partum to day 90 post-partum. Blood samples were collected on days -60, -45, -30, -15, -7, -3, 0, 3, 7, 15, 30, 45, 60, 90 and 120 with respect to day of parturition and analysed for total immunoglobulin (TIG), immunoglobulin G (IgG), interleukin-2 (IL-2), vitamin E (Vit E) and zinc (Zn) status. Before calving, cows showed a decrease in plasma TIG, IgG, IL-2, Vit E and Zn levels. However, increased levels of plasma TIG, IgG, IL-2, Vit E and Zn were observed after calving. After calving, Sahiwal cows supplemented with Zn + Vit E had higher plasma TIG, IgG and IL-2 in comparison with cows of control and Zn + Vit E-fed groups. In the present study, plasma vitamin E level was higher in Vit E-fed and Zn + Vit E-fed cows; however, zinc level was higher in Zn- and Zn + Vit E-supplemented cows. In conclusion, a reduced immune response during peripartum period in Sahiwal cows was ameliorated by dietary vitamin E and zinc supplementation. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.
Cultivation of Agaricus bisporus enriched with selenium, zinc and copper.
Rzymski, Piotr; Mleczek, Mirosław; Niedzielski, Przemysław; Siwulski, Marek; Gąsecka, Monika
2017-02-01
Agaricus bisporus (white button mushroom) is an important culinary and medicinal species of worldwide importance. The present study investigated for the first time whether it may be grown on substrates supplemented with Se alone or in combination with Cu and/or Zn (0.1-0.8 mmol L -1 ) to produce fruiting bodies of increased nutritional value. As found, substrate supplementation did not affect yielded biomass up to 0.6 mmol L -1 element concentrations regardless of the cultivation model. At 0.8 mmol L -1 Se + Cu and Se + Zn supplementation biomass comparable with controls still developed. The accumulation of trace elements in the fruiting bodies generally increased over the concentration gradient reaching its maximum at 0.6 mmol L -1 (for Se + Zn and Se + Cu + Zn) and 0.8 mmol L -1 (for Se and Se + Cu). The organic Se constituted the greatest share in total Se quota. As calculated, each 10 g of dried fruiting bodies of A. bisporus obtained from 0.6 or 0.8 mmol L -1 supplementation would represent 342-469% of the Recommended Daily Allowance (RDA) for Se, 43.4-48.5% for Cu and 5.2-5.8% for Zn. Considering inexpensive methods of A. bisporus cultivation, global popularity and use of this mushroom, its biofortification with Se, Cu and Zn could have a practical application in deficiency prevention and assisted treatment. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Hackl, Laura; Zimmermann, Michael B; Zeder, Christophe; Parker, Megan; Johns, Paul W; Hurrell, Richard F; Moretti, Diego
2017-03-01
Background: Extruded rice grains are often cofortified with iron and zinc. However, it is uncertain if the addition of zinc to iron-fortified rice affects iron absorption and whether this is zinc-compound specific. Objective: We investigated whether zinc, added as zinc oxide (ZnO) or zinc sulfate (ZnSO 4 ), affects human iron absorption from extruded rice fortified with ferric pyrophosphate (FePP). Methods: In 19 iron-depleted Swiss women (plasma ferritin ≤16.5 μ/L) aged between 20 and 39 y with a normal body mass index (in kg/m 2 ; 18.7-24.8), we compared iron absorption from 4 meals containing fortified extruded rice with 4 mg Fe and 3 mg Zn. Three of the meals contained extruded rice labeled with FePP ( 57 FePP): 1 ) 1 meal without added zinc ( 57 FePP-Zn), 2 ) 1 cofortified with ZnO ( 57 FePP+ZnO), and 3 ) 1 cofortified with ZnSO 4 ( 57 FePP+ZnSO 4 ). The fourth meal contained extruded rice without iron or zinc, extrinsically labeled with ferrous sulfate ( 58 FeSO 4 ) added as a solution after cooking. All 4 meals contained citric acid. Iron bioavailability was measured by isotopic iron ratios in red blood cells. We also measured relative in vitro iron solubility from 57 FePP-Zn, 57 FePP+ZnO, and 57 FePP+ZnSO 4 expressed as a fraction of FeSO 4 solubility. Results: Geometric mean fractional iron absorption (95% CI) from 57 FePP+ZnSO 4 was 4.5% (3.4%, 5.8%) and differed from 57 FePP+ZnO (2.7%; 1.8%, 4.1%) ( P < 0.03); both did not differ from 57 FePP-Zn: 4.0% (2.8%, 5.6%). Relative iron bioavailabilities compared with 58 FeSO 4 were 62%, 57%, and 38% from 57 FePP+ZnSO 4 , 57 FePP-Zn, and 57 FePP+ZnO, respectively. In vitro solubility from 57 FePP+ZnSO 4 differed from that of 57 FePP-Zn (14.3%; P < 0.02) but not from that of 57 FePP+ZnO (10.2% compared with 13.1%; P = 0.08). Conclusions: In iron-depleted women, iron absorption from FePP-fortified extruded rice cofortified with ZnSO 4 was 1.6-fold (95% CI: 1.4-, 1.9-fold) that of rice cofortified with ZnO. These findings suggest that ZnSO 4 may be the preferable zinc cofortificant for optimal iron bioavailability of iron-fortified extruded rice. This trial was registered at clinicaltrials.gov as NCT02255942. © 2017 American Society for Nutrition.
Cabrera, M C; Ramos, A; Saadoun, A; Brito, G
2010-03-01
Tenderloin (T), eye of rump (E), striploin (S), eye round (ER), tri-tip (TT), rib-eye roll (RR) and three rib plate-flank on (RP) meat cuts were evaluated. Selenium contents ranged between 0.42 and 1.20 mg/kg wet tissue (wt) in Hereford (H) breed and between 0.49 and 1.3 mg/kg wt in Braford (B) breed. In H and B breeds, T, TT and RP, and TT and RP were the richest cuts in selenium, respectively. Copper contents ranged between 0.25 and 1.04 mg/kg wt in H, and between 0.19 and 1.09 mg/kg wt in B. In H breed, RP had significantly more Cu than ER, TT, and RR. In B breed, ER and RR show a significant lower Cu level in comparison to the other meat cuts. Zinc contents ranged between 23 and 72.7 mg/kg wt in H, and between 23 and 63.9 mg/kg wt in B. RP is the richest cut in Zn compared to the other cuts in the two breeds. Iron contents ranged between 16.4 and 48.2 mg/kg wt in H, and between 14.2 and 47.9 mg/kg wt in B. In H breed, RR shows a lower content compared to the other cuts, except RP and S. In B breed, RR had the lowest level of Fe compared to the other cuts, except RP and T. Manganese contents ranged between 0.05 and 0.17 mg/kg wt in H, and between 0.04 and 0.48 mg/kg wt in B. In H no differences were detected between cuts. In B breed, ER cut shows the highest level of Mn. Copyright 2009 Elsevier Ltd. All rights reserved.
Role of Trace Elements for Oxidative Status and Quality of Human Sperm.
Nenkova, Galina; Petrov, Lubomir; Alexandrova, Albena
2017-08-04
Oxidative stress affects sperm quality negatively. To maintain the pro/antioxidant balance, some metal ions (e.g. copper, zink, iron, selenium), which are co-factors of the antioxidant enzymes, are essential. However, iron and copper could act as prooxidants inducing oxidative damage of spermatozoa. To reveal a possible correlation between the concentrations of some metal ions (iron, copper, zinc, and selenium) in human seminal plasma, oxidative stress, assessed by malondialdehyde and total glutathione levels, and semen quality, assessed by the parameters count, motility, and morphology. Descriptive study. The semen analysis for volume, count, and motility was performed according to World Health Organization (2010) guidelines, using computer-assisted semen analysis. For the determination of spermatozoa morphology, a SpermBlue staining method was applied. Depending on their parameters, the sperm samples were categorized into normozoospermic, teratozoospermic, asthenoteratozoospermic, and oligoteratozoospermic. The seminal plasma content of iron, copper, zinc, and selenium was estimated by atomic absorption spectroscopy. The malondialdehyde and total glutathione levels were quantified spectrophotometrically. In the groups with poor sperm quality, the levels of Fe were higher, whereas those of Zn and Se were significantly lower than in the normozoospermic group. In all groups with poor sperm quality, increased levels of malondialdehyde and decreased glutathione levels were detected as evidence of oxidative stress occurrence. All these differences are most pronounced in the asthenoteratozoospermic group where values differ nearly twice as much compared to the normozoospermic group. The Fe concentration correlated positively with the malondialdehyde (r=0.666, p=0.018), whereas it showed a negative correlation with the level of total glutathione (r=-0.689, p=0.013). The total glutathione level correlated positively with the sperm motility (r=0.589, p=0.044). The elevated levels of Fe and the reduced Se levels are associated with sperm damage. The changes in the concentrations of the trace elements in human seminal plasma may be related to sperm quality since they are involved in the maintenance of the pro-/antioxidative balance in ejaculate.
SIMS depth profiling of rubber-tyre cord bonding layers prepared using 64Zn depleted ZnO
NASA Astrophysics Data System (ADS)
Fulton, W. S.; Sykes, D. E.; Smith, G. C.
2006-07-01
Zinc oxide and copper/zinc sulphide layers are formed during vulcanisation and moulding of rubber to brass-coated steel tyre reinforcing cords. Previous studies have described how zinc diffuses through the rubber-brass interface to form zinc sulphide, and combines with oxygen to create zinc oxide during dezincification. The zinc is usually assumed to originate in the brass of the tyre cord, however, zinc oxide is also present in the rubber formulation. We reveal how zinc from these sources is distributed within the interfacial bonding layers, before and after heat and humidity ageing. Zinc oxide produced using 64Zn-isotope depleted zinc was mixed in the rubber formulation in place of the natural ZnO and the zinc isotope ratios within the interfacial layers were followed by secondary ion mass spectroscopy (SIMS) depth profiling. Variations in the relative ratios of the zinc isotopes during depth profiling were measured for unaged, heat-aged and humidity-aged wire samples and in each case a relatively large proportion of the zinc incorporated into the interfacial layer as zinc sulphide was shown to have originated from ZnO in the rubber compound.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoadley, J.E.; Leinart, A.S.; Cousins, R.J.
1988-04-01
Intestinal 65Zn transport and metallothionein levels were examined in rats fed zinc-adequate and zinc-deficient diets and in rats subjected to an overnight fast. 65Zn uptake by intestines perfused with 1.5 microM 65Zn was greater in both zinc-deficient and fasted groups than in the control group. Mucosal retention of 65Zn was also greater in the zinc-deficient group but not in the fasted group. The greater 65Zn uptake in the fasted group was associated with a compartment that readily released 65Zn back into the lumen. Kinetic analysis of the rate of 65Zn transfer to the vascular space (absorption) showed that 65Zn absorptionmore » involved approximately 3% of mucosal 65Zn in a 40-min perfusion period. The half-life (t1/2) of this mucosal 65Zn rapid transport pool corresponded directly to changes in intestinal metallothionein levels. Both metallothionein and t1/2 were higher in the fasted group and lower in the zinc-deficient group than in controls. While the rate of 65Zn transport from this rapid transport pool decreased with increasing metallothionein level, the predicted pool size increased when the metallothionein level was elevated by fasting. These results indicate that the rate of zinc absorption is inversely related to intestinal metallothionein levels, but the portion of mucosal 65Zn available for absorption is directly related to intestinal metallothionein.« less
USDA-ARS?s Scientific Manuscript database
We have isolated two cDNA clones encoding Zinc Finger proteins, designated as ZmZnF1 and ZmZnF2, from water-stressed maize kernels. Sequence analyses indicates that ZmZnF1 is homologous to the A20/AN1-type zinc finger protein and contains the zinc finger motif of Cx2–Cx10–CxCx4Cx2Hx5HxC. Whereas ZmZ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theisen, Rebekah F., E-mail: rtheisen@asu.edu; Huang, Liang; Fleetham, Tyler
2015-03-07
The electronic structure of eight zinc-centered porphyrin macrocyclic molecules are investigated using density functional theory for ground-state properties, time-dependent density functional theory (TDDFT) for excited states, and Franck-Condon (FC) analysis for further characterization of the UV-vis spectrum. Symmetry breaking was utilized to find the lowest energy of the excited states for many states in the spectra. To confirm the theoretical modeling, the spectroscopic result from zinc phthalocyanine (ZnPc) is used to compare to the TDDFT and FC result. After confirmation of the modeling, five more planar molecules are investigated: zinc tetrabenzoporphyrin (ZnTBP), zinc tetrabenzomonoazaporphyrin (ZnTBMAP), zinc tetrabenzocisdiazaporphyrin (ZnTBcisDAP), zinc tetrabenzotransdiazaporphyrinmore » (ZnTBtransDAP), and zinc tetrabenzotriazaporphyrin (ZnTBTrAP). The two latter molecules are then compared to their phenylated sister molecules: zinc monophenyltetrabenzotriazaporphyrin (ZnMPTBTrAP) and zinc diphenyltetrabenzotransdiazaporphyrin (ZnDPTBtransDAP). The spectroscopic results from the synthesis of ZnMPTBTrAP and ZnDPTBtransDAP are then compared to their theoretical models and non-phenylated pairs. While the Franck-Condon results were not as illuminating for every B-band, the Q-band results were successful in all eight molecules, with a considerable amount of spectral analysis in the range of interest between 300 and 750 nm. The π-π{sup ∗} transitions are evident in the results for all of the Q bands, while satellite vibrations are also visible in the spectra. In particular, this investigation finds that, while ZnPc has a D{sub 4h} symmetry at ground state, a C{sub 4v} symmetry is predicted in the excited-state Q band region. The theoretical results for ZnPc found an excitation energy at the Q-band 0-0 transition of 1.88 eV in vacuum, which is in remarkable agreement with published gas-phase spectroscopy, as well as our own results of ZnPc in solution with Tetrahydrofuran that are provided in this paper.« less
[The relevance of the trace elements zinc and iron in the milk fever disease of cattle].
Heilig, M; Bäuml, D; Fürll, M
2014-01-01
The aim of this study was to analyse the concentrations of Zn and Fe as well as their relationships to metabolic parameters in milk fever cows. A total of 195 Simmental cows, downer cows and clinically healthy control animals were divided into five groups: a) control group (CG, n = 21), b) all cows with milk fever (MF) (n = 174), c) MF cows without additional diseases (n = 145), d) cows with MF and mastitis (n = 10) and e) cows with retained placenta or endometritis (n = 19). Selenium (Se), zinc (Zn), iron (Fe), calcium (Ca), inorganic phosphorus (Pi), tumour necrosis factor α (TNFα), haptoglobin (Hp), antioxidants (Trolox Equivalent Antioxidative Capacity: TEAC), non-esterified fatty acids (NEFA), beta-hydroxybutyrate (BHB), bilirubin, urea, creatinine, glucose, cholesterol, gamma-glutamyl transferase (GGT) and alkaline phosphatase (AP) were analysed in the blood serum. The concentrations of Zn, Fe, Ca, Pi and TEAC were lower in groups b) to e) whereas Hp was higher than in the CG (p ≤ 0.05). In group c), lower Ca and Pi concentrations were found when compared to groups d) and e) (p ≤ 0.05). In group e), Zn concentrations were significantly lower than in group c) (p ≤ 0.05). Zn was negatively correlated with K (CG) and positively correlated with TEAC, Cu, Mn and Fe (groups b and c) and with Mn (group e) (p ≤ 0.05). Fe was positively correlated with Ca (group c), Pi (group c), K (groups b and c) and Mg (groups b-d) as well as with Zn, Cu and Se (groups b and c) (p ≤ 0.05). In groups b) and c), TNFα was increased and negatively correlated with Fe (p ≤ 0.05). AP activity in groups b) and e) was lower than in the CG (p ≤ 0.05). These results and literature data support the hypothesis that Zn and Fe could be engaged in bone metabolism and be involved in the pathogenesis of MF. The concentrations of Hp and TEAC support this interpretation. Control of the Zn and Fe status of cows and Zn supplementation should be included in the prevention and advanced therapy of MF.
Expression of zinc transporter ZnT7 in mouse superior cervical ganglion
USDA-ARS?s Scientific Manuscript database
The superior cervical ganglion (SCG) neurons contain a considerable amount of zinc ions, but little is known about zinc homeostasis in the SCG. It is known that zinc transporter 7 (ZnT7, Slc30a7), a member of the Slc30 ZnT family, is involved in mobilizing zinc ions from the cytoplasm into the Golgi...
Synthesis and interface structures of zinc sulfide sheathed zinc-cadmium nanowire heterojunctions.
Shen, Guozhen; Bando, Yoshio; Gao, Yihua; Golberg, Dmitri
2006-07-27
Zinc sulfide (ZnS) sheathed zinc (Zn)-cadmium (Cd) nanowire heterojunctions have been prepared by thermal evaporating of ZnS and CdS powders in a vertical induction furnace at 1200 degrees C. Studies found that both the Zn and Cd subnanowires, within a single nanoheterojunction, are single-crystallines with the growth directions perpendicular to the [210] plane, whereas the sheathed ZnS is polycrystalline with a thickness of ca. 5 nm. The Zn/Cd interface structure in the ZnS sheathed Zn-Cd nanowire heterojunctions was thoroughly experimentally studied by high-resolution transmission electron microscopy and theoretically studied using a near-coincidence site lattice (NCSL) concept. The results show that the Cd and Zn have a crystalline orientation relationship as [0001]Zn//[0001]Cd, (10(-)10)Zn//(10(-)10)Cd, (01(-)10)Zn//(01(-)10)Cd, and ((-)1100)Zn//((-)1100)Cd.
Zinc allocation and re-allocation in rice.
Stomph, Tjeerd Jan; Jiang, Wen; Van Der Putten, Peter E L; Struik, Paul C
2014-01-01
Agronomy and breeding actively search for options to enhance cereal grain Zn density. Quantifying internal (re-)allocation of Zn as affected by soil and crop management or genotype is crucial. We present experiments supporting the development of a conceptual model of whole plant Zn allocation and re-allocation in rice. Two solution culture experiments using (70)Zn applications at different times during crop development and an experiment on within-grain distribution of Zn are reported. In addition, results from two earlier published experiments are re-analyzed and re-interpreted. A budget analysis showed that plant zinc accumulation during grain filling was larger than zinc allocation to the grains. Isotope data showed that zinc taken up during grain filling was only partly transported directly to the grains and partly allocated to the leaves. Zinc taken up during grain filling and allocated to the leaves replaced zinc re-allocated from leaves to grains. Within the grains, no major transport barrier was observed between vascular tissue and endosperm. At low tissue Zn concentrations, rice plants maintained concentrations of about 20 mg Zn kg(-1) dry matter in leaf blades and reproductive tissues, but let Zn concentrations in stems, sheath, and roots drop below this level. When plant zinc concentrations increased, Zn levels in leaf blades and reproductive tissues only showed a moderate increase while Zn levels in stems, roots, and sheaths increased much more and in that order. In rice, the major barrier to enhanced zinc allocation towards grains is between stem and reproductive tissues. Enhancing root to shoot transfer will not contribute proportionally to grain zinc enhancement.
Kirchgessner, M; Schwarz, F J; Roth, H P; Schwarz, W A
1978-12-01
Imbalances in the supply with trace elements may be caused by the excessive administration of one or several elements or the insufficient administration in relation to other trace elements. This article deals with the interactions between the trace elements zinc and copper resp. zinc and iron under the conditions of the insufficient supply with Zn (6 mg per kg dry matter of the fodder) and the supply according to the demand with other trace elements (14 mg copper resp. 83 mg iron per dry matter of the fodder). For this purpose we investigated the copper, iron and zinc content of the milk and the serum of cows that were first depleted of zinc through a semi-synthetic zinc deficiency diet and then repleted with extra allowances of zinc. The closest connections exist between the copper and zinc content of the milk. Thus extreme Zn-deficiency feeding conditions the decreased Zn-content on the one hand and increased Cu-content on the other. In contrast to this, the cows' Zn-excretion in the milk increases after Zn-repletion whereas the Cu-content decreases. This shows a distinctly negative correlation. A loose connection could only be detected for the Cu- and Zn-content of the serum. Though the Zn-content changed considerably in dependence on the Zn-supply, the Cu-content remained largely uninfluenced. The Fe-content of both milk and serum shows no interaction with the nutritive Zn-supply. Only after 19 test weeks of extreme Zn-deficiency could a slight increase of the Fe-concentration be indicated.
Zinc allocation and re-allocation in rice
Stomph, Tjeerd Jan; Jiang, Wen; Van Der Putten, Peter E. L.; Struik, Paul C.
2014-01-01
Aims: Agronomy and breeding actively search for options to enhance cereal grain Zn density. Quantifying internal (re-)allocation of Zn as affected by soil and crop management or genotype is crucial. We present experiments supporting the development of a conceptual model of whole plant Zn allocation and re-allocation in rice. Methods: Two solution culture experiments using 70Zn applications at different times during crop development and an experiment on within-grain distribution of Zn are reported. In addition, results from two earlier published experiments are re-analyzed and re-interpreted. Results: A budget analysis showed that plant zinc accumulation during grain filling was larger than zinc allocation to the grains. Isotope data showed that zinc taken up during grain filling was only partly transported directly to the grains and partly allocated to the leaves. Zinc taken up during grain filling and allocated to the leaves replaced zinc re-allocated from leaves to grains. Within the grains, no major transport barrier was observed between vascular tissue and endosperm. At low tissue Zn concentrations, rice plants maintained concentrations of about 20 mg Zn kg−1 dry matter in leaf blades and reproductive tissues, but let Zn concentrations in stems, sheath, and roots drop below this level. When plant zinc concentrations increased, Zn levels in leaf blades and reproductive tissues only showed a moderate increase while Zn levels in stems, roots, and sheaths increased much more and in that order. Conclusions: In rice, the major barrier to enhanced zinc allocation towards grains is between stem and reproductive tissues. Enhancing root to shoot transfer will not contribute proportionally to grain zinc enhancement. PMID:24478788
A Prospective Study of Serum Trace Elements in Healthy Korean Pregnant Women
Choi, Rihwa; Sun, Jiyu; Yoo, Heejin; Kim, Seonwoo; Cho, Yoon Young; Kim, Hye Jeong; Kim, Sun Wook; Chung, Jae Hoon; Oh, Soo-young; Lee, Soo-Youn
2016-01-01
This prospective study sought to investigate serum levels of trace elements (cobalt, copper, zinc, and selenium) and to assess their effects on pregnancy and neonatal outcomes. Serum levels of trace elements in 245 Korean pregnant women (median gestational age at delivery was 39 + 4 weeks and interquartile range was 38 + 4–40 + 1 weeks) were compared with those of 527 general adults and those of previous studies in other ethnic groups. Pregnancy and neonatal outcomes including gestational diabetes, preeclampsia, neonatal birth weight, and congenital abnormalities were assessed. The median serum trace element concentrations of all pregnant women were: cobalt: 0.39 μg/L (interquartile range, IQR 0.29–0.53), copper: 165.0 μg/dL (IQR 144.0–187.0), zinc: 57.0 μg/dL (IQR 50.0–64.0), and selenium: 94.0 μg/L (IQR 87.0–101.0). Serum cobalt and copper concentrations were higher in pregnant women than in the general population, whereas zinc and selenium levels were lower (p < 0.01). Concentrations of all four trace elements varied significantly during the three trimesters (p < 0.05), and seasonal variation was found in copper, zinc, and selenium, but was not observed for cobalt. The prevalence of preeclampsia was significantly lower with high copper (p = 0.03). Trace element levels varied by pregnancy trimester and season, and alteration in copper status during pregnancy might influence pregnancy outcomes such as preeclampsia. PMID:27886083
A Prospective Study of Serum Trace Elements in Healthy Korean Pregnant Women.
Choi, Rihwa; Sun, Jiyu; Yoo, Heejin; Kim, Seonwoo; Cho, Yoon Young; Kim, Hye Jeong; Kim, Sun Wook; Chung, Jae Hoon; Oh, Soo-Young; Lee, Soo-Youn
2016-11-23
This prospective study sought to investigate serum levels of trace elements (cobalt, copper, zinc, and selenium) and to assess their effects on pregnancy and neonatal outcomes. Serum levels of trace elements in 245 Korean pregnant women (median gestational age at delivery was 39 + 4 weeks and interquartile range was 38 + 4-40 + 1 weeks) were compared with those of 527 general adults and those of previous studies in other ethnic groups. Pregnancy and neonatal outcomes including gestational diabetes, preeclampsia, neonatal birth weight, and congenital abnormalities were assessed. The median serum trace element concentrations of all pregnant women were: cobalt: 0.39 μg/L (interquartile range, IQR 0.29-0.53), copper: 165.0 μg/dL (IQR 144.0-187.0), zinc: 57.0 μg/dL (IQR 50.0-64.0), and selenium: 94.0 μg/L (IQR 87.0-101.0). Serum cobalt and copper concentrations were higher in pregnant women than in the general population, whereas zinc and selenium levels were lower ( p < 0.01). Concentrations of all four trace elements varied significantly during the three trimesters ( p < 0.05), and seasonal variation was found in copper, zinc, and selenium, but was not observed for cobalt. The prevalence of preeclampsia was significantly lower with high copper ( p = 0.03). Trace element levels varied by pregnancy trimester and season, and alteration in copper status during pregnancy might influence pregnancy outcomes such as preeclampsia.
Bioavailability of Zinc in Wistar Rats Fed with Rice Fortified with Zinc Oxide
Della Lucia, Ceres Mattos; Santos, Laura Luiza Menezes; Rodrigues, Kellen Cristina da Cruz; Rodrigues, Vivian Cristina da Cruz; Martino, Hércia Stampini Duarte; Pinheiro Sant’Ana, Helena Maria
2014-01-01
The study of zinc bioavailability in foods is important because this mineral intake does not meet the recommended doses for some population groups. Also, the presence of dietary factors that reduce zinc absorption contributes to its deficiency. Rice fortified with micronutrients (Ultra Rice®) is a viable alternative for fortification since this cereal is already inserted into the population habit. The aim of this study was to evaluate the bioavailability of zinc (Zn) in rice fortified with zinc oxide. During 42 days, rats were divided into four groups and fed with diets containing two different sources of Zn (test diet: UR® fortified with zinc oxide, or control diet: zinc carbonate (ZnCO3)), supplying 50% or 100%, respectively, of the recommendations of this mineral for animals. Weight gain, food intake, feed efficiency ratio, weight, thickness and length of femur; retention of zinc, calcium (Ca) and magnesium (Mg) in the femur and the concentrations of Zn in femur, plasma and erythrocytes were evaluated. Control diet showed higher weight gain, feed efficiency ratio, retention of Zn and Zn concentration in the femur (p < 0.05). However, no differences were observed (p > 0.05) for dietary intake, length and thickness of the femur, erythrocyte and plasmatic Zn between groups. Although rice fortified with zinc oxide showed a lower bioavailability compared to ZnCO3, this food can be a viable alternative to be used as a vehicle for fortification. PMID:24932657
Solubility of nano-zinc oxide in environmentally and biologically important matrices
Reed, Robert B.; Ladner, David A.; Higgins, Christopher P.; Westerhoff, Paul; Ranville, James F.
2011-01-01
Increasing manufacture and use of engineered nanoparticles (NPs) is leading to a greater probability for release of ENPs into the environment and exposure to organisms. In particular, zinc oxide (ZnO) is toxic, although it is unclear whether this toxicity is due to the zinc oxide nanoparticles (ZnO), dissolution to Zn2+, or some combination thereof. The goal of this study was to determine the relative solubilites of both commercially available and in-house synthesized ZnO in matrices used for environmental fate and transport or biological toxicity studies. Dissolution of ZnO was observed in nanopure water (7.18– 7.40 mg/L dissolved Zn, as measured by filtration) and Roswell Park Memorial Institute medium (RPMI-1640) (~5 mg/L), but much more dissolution was observed in Dulbecco’s Modified Eagle’s Medium (DMEM), where the dissolved Zn concentration exceeded 34 mg/L. Moderately hard water exhibited low zinc solubility, likely due to precipitation of a zinc carbonate solid phase. Precipitation of a zinc-containing solid phase in RPMI also appeared to limit zinc solubility. Equilibrium conditions with respect to ZnO solubility were not apparent in these matrices, even after more than 1,000 h of dissolution. These results suggest that solution chemistry exerts a strong influence on ZnO dissolution and can result in limits on zinc solubility due to precipitation of less soluble solid phases. PMID:21994124
Zinc transporter-1 concentrates at the postsynaptic density of hippocampal synapses
2014-01-01
Background Zinc concentrates at excitatory synapses, both at the postsynaptic density and in a subset of glutamatergic boutons. Zinc can modulate synaptic plasticity, memory formation and nociception by regulating transmitter receptors and signal transduction pathways. Also, intracellular zinc accumulation is a hallmark of degenerating neurons in several neurological disorders. To date, no single zinc extrusion mechanism has been directly localized to synapses. Based on the presence of a canonical PDZ I motif in the Zinc Transporter-1 protein (ZnT1), we hypothesized that ZnT1 may be targeted to synaptic compartments for local control of cytosolic zinc. Using our previously developed protocol for the co-localization of reactive zinc and synaptic proteins, we further asked if ZnT1 expression correlates with presynaptic zinc content in individual synapses. Findings Here we demonstrate that ZnT1 is a plasma membrane protein that is enriched in dendritic spines and in biochemically isolated synaptic membranes. Hippocampal CA1 synapses labelled by postembedding immunogold showed over a 5-fold increase in ZnT1 concentration at synaptic junctions compared with extrasynaptic membranes. Subsynaptic analysis revealed a peak ZnT1 density on the postsynaptic side of the synapse, < 10 nm away from the postsynaptic membrane. ZnT1 was found in the vast majority of excitatory synapses regardless of the presence of vesicular zinc in presynaptic boutons. Conclusions Our study has identified ZnT1 as a novel postsynaptic density protein, and it may help elucidate the role of zinc homeostasis in synaptic function and disease. PMID:24602382
Investigation of ZnO Nanowire Interfaces for Multi-Scale Composites
2012-03-06
growth of zinc oxide ( ZnO ) nanowires on the surface of the...through the growth of zinc oxide ( ZnO ) nanowires on the surface of the reinforcing fibers. The nanowires functionally grade the interface, improve bonding...bulk composite. This has been accomplished through the growth of zinc oxide ( ZnO ) nanowires on the surface of the reinforcing fibers. ZnO
Zhang, Ziran; Zhou, Feibai; Liu, Xiaoling; Zhao, Mouming
2018-08-30
An oyster protein hydrolysates-zinc complex (OPH-Zn) was prepared and investigated to improve zinc bioaccessibility. Zinc ions chelating with oyster protein hydrolysates (OPH) cause intramolecular and intermolecular folding and aggregation, homogeneously forming the OPH-Zn complex as nanoclusters with a Z-average at 89.28 nm (PDI: 0.16 ± 0.02). The primary sites of zinc-binding in OPH were carboxyl groups, carbonyl groups, and amino groups, and they were related to the high number of charged amino acid residues. Furthermore, formation of the OPH-Zn complex could significantly enhance zinc solubility both under specific pH conditions as well as during simulated gastrointestinal digestion, compared to the commonly used ZnSO 4 . Additionally, after digestion, either preserved or enhanced antioxidant activity of OPH was found when chelated with zinc. These results indicated that the OPH-Zn complex could be a potential functional ingredient with improved antioxidant bioactivity and zinc bioaccessibility. Copyright © 2018. Published by Elsevier Ltd.
Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide.
Moezzi, Amir; Cortie, Michael; McDonagh, Andrew
2016-04-25
Thermal decomposition of layered zinc hydroxide double salts provides an interesting alternative synthesis for particles of zinc oxide. Here, we examine the sequence of changes occurring as zinc hydroxide chloride monohydrate (Zn5(OH)8Cl2·H2O) is converted to crystalline ZnO by thermal decomposition. The specific surface area of the resultant ZnO measured by BET was 1.3 m(2) g(-1). A complicating and important factor in this process is that the thermal decomposition of zinc hydroxide chloride is also accompanied by the formation of volatile zinc-containing species under certain conditions. We show that this volatile compound is anhydrous ZnCl2 and its formation is moisture dependent. Therefore, control of atmospheric moisture is an important consideration that affects the overall efficiency of ZnO production by this process.
Zinc transporter ZnT-3 regulates presynaptic Erk1/2 signaling and hippocampus-dependent memory.
Sindreu, Carlos; Palmiter, Richard D; Storm, Daniel R
2011-02-22
The physiological role of vesicular zinc at central glutamatergic synapses remains poorly understood. Here we show that mice lacking the synapse-specific vesicular zinc transporter ZnT3 (ZnT3KO mice) have reduced activation of the Erk1/2 MAPK in hippocampal mossy fiber terminals, disinhibition of zinc-sensitive MAPK tyrosine phosphatase activity, and impaired MAPK signaling during hippocampus-dependent learning. Activity-dependent exocytosis is required for the effect of zinc on presynaptic MAPK and phosphatase activity. ZnT3KO mice have complete deficits in contextual discrimination and spatial working memory. Local blockade of zinc or MAPK in the mossy fiber pathway of wild-type mice impairs contextual discrimination. We conclude that ZnT3 is important for zinc homeostasis modulating presynaptic MAPK signaling and is required for hippocampus-dependent memory.
Zinc transporter ZnT-3 regulates presynaptic Erk1/2 signaling and hippocampus-dependent memory
Sindreu, Carlos; Palmiter, Richard D.; Storm, Daniel R.
2011-01-01
The physiological role of vesicular zinc at central glutamatergic synapses remains poorly understood. Here we show that mice lacking the synapse-specific vesicular zinc transporter ZnT3 (ZnT3KO mice) have reduced activation of the Erk1/2 MAPK in hippocampal mossy fiber terminals, disinhibition of zinc-sensitive MAPK tyrosine phosphatase activity, and impaired MAPK signaling during hippocampus-dependent learning. Activity-dependent exocytosis is required for the effect of zinc on presynaptic MAPK and phosphatase activity. ZnT3KO mice have complete deficits in contextual discrimination and spatial working memory. Local blockade of zinc or MAPK in the mossy fiber pathway of wild-type mice impairs contextual discrimination. We conclude that ZnT3 is important for zinc homeostasis modulating presynaptic MAPK signaling and is required for hippocampus-dependent memory. PMID:21245308
Rzymski, Piotr; Mleczek, Mirosław; Niedzielski, Przemysław; Siwulski, Marek; Gąsecka, Monika
2016-03-01
Ganoderma lucidum is an important medicinal mushroom species and there is continuous interest in its bioactive properties. This study evaluated whether it may additionally serve as a nutritional supplement for the trace elements: selenium (Se), copper (Cu), and zinc (Zn). Mushrooms were cultivated on substrates enriched with 0.1 to 0.8 mM of inorganic Se alone or in combination with Zn and/or Cu. Supplementation increased accumulation of the elements in fruiting bodies regardless of the applied cultivation model. G. lucidum demonstrated the ability to accumulate significant amounts of organic Se, maximally amounting to (i) over 44 mg/kg when the substrate was supplemented only with Se, (ii) over 20 mg/kg in the Se+Cu model, (iii) over 25 mg/kg in the Se+Zn model, and (iv) 15 mg/kg in the Se+Cu+Zn model. The accumulation of Cu and Zn steadily increased with their initial substrate concentrations. Maximum concentrations found after supplementation with 0.8 mM amounted to over 55 mg/kg (Se+Zn) and 52 mg/kg (Se+Cu+Zn) of Zn, and 29 mg/kg (Se+Cu) and over 31 mg/kg (Se+Cu+Zn) of Cu. The greater the supplemented concentration and number of supplemented elements, the lower the biomass of G. lucidum fruiting bodies. Nevertheless, it still remained high when the substrate was supplemented up to 0.4 mM with each element. These results highlight that G. lucidum can easily incorporate elements from the substrate and that, when biofortified, its dried fruiting bodies may serve as a nutritional source of these essential elements. © 2016 Institute of Food Technologists®
Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis.
Hara, Takafumi; Takeda, Taka-Aki; Takagishi, Teruhisa; Fukue, Kazuhisa; Kambe, Taiho; Fukada, Toshiyuki
2017-03-01
Zinc (Zn) is an essential trace mineral that regulates the expression and activation of biological molecules such as transcription factors, enzymes, adapters, channels, and growth factors, along with their receptors. Zn deficiency or excessive Zn absorption disrupts Zn homeostasis and affects growth, morphogenesis, and immune response, as well as neurosensory and endocrine functions. Zn levels must be adjusted properly to maintain the cellular processes and biological responses necessary for life. Zn transporters regulate Zn levels by controlling Zn influx and efflux between extracellular and intracellular compartments, thus, modulating the Zn concentration and distribution. Although the physiological functions of the Zn transporters remain to be clarified, there is growing evidence that Zn transporters are related to human diseases, and that Zn transporter-mediated Zn ion acts as a signaling factor, called "Zinc signal". Here we describe critical roles of Zn transporters in the body and their contribution at the molecular, biochemical, and genetic levels, and review recently reported disease-related mutations in the Zn transporter genes.
Incorporation of zinc into the coccoliths of the microalga Emiliania huxleyi.
Santomauro, Giulia; Sun, Wei-Lin; Brümmer, Franz; Bill, Joachim
2016-04-01
The coccolithophore Emiliania huxleyi is covered with elaborated calcite plates, the so-called coccoliths, which are produced inside the cells. We investigated the incorporation of zinc into the coccoliths of E. huxleyi by applying different zinc and calcium amounts via the culture media and subsequently analyzing the zinc content in the cells and the Zn/Ca ratio of the coccoliths. To investigate the Zn/Ca ratio of coccoliths built in the manipulated media, the algae have first to be decalcified, i.e. coccolith free. We used a newly developed decalcification method to obtain 'naked' cells for cultivation. E. huxleyi proliferated and produced new coccoliths in all media with manipulated Zn/Ca ratios. The cells and the newly built coccoliths were investigated regarding their zinc content and their Zn/Ca ratio, respectively. High zinc amounts were taken up by the algae. The Zn/Ca ratio of the coccoliths was positively correlated to the Zn/Ca ratio of the applied media. The unique feature of the coccoliths was maintained also at high Zn/Ca ratios. We suggest the following pathway of the zinc ions into the coccoliths: first, the zinc ions are bound to the cell surface, followed by their transportation into the cytoplasm. Obviously, the zinc ions are removed afterwards into the coccolith vesicle, where the zinc is incorporated into the calcite coccoliths which are then extruded. The incorporation of toxic zinc ions into the coccoliths possibly due to a new function of the coccoliths as detoxification sites is discussed.
Wang, Chao; Lu, Jianjun; Zhou, Le; Li, Jun; Xu, Jiaman; Li, Weijian; Zhang, Lili; Zhong, Xiang; Wang, Tian
2016-01-01
Zinc oxide nanoparticles (nano-ZnOs) are widely used and possess great potentials in agriculture and biomedicine. It is inevitable for human exposure to these nanoparticles. However, no study had been conducted to investigate the long term effects of nano-ZnOs. This study aimed at investigating effects of nano-ZnOs on development, zinc metabolism and biodistribution of minerals (Zn, Fe, Cu, and Mn) in mice from week 3 to 35. After the characteristics of nano-ZnOs were determined, they were added into the basal diet at 0, 50, 500 and 5000 mg/kg. Results indicated that added 50 and 500 mg/kg nano-ZnOs showed minimal toxicity. However, 5000 mg/kg nano-ZnOs significantly decreased body weight (from week 4 to 16) and increased the relative weights of the pancreas, brain and lung. Added 5000 mg/kg nano-ZnOs significantly increased the serum glutamic-pyruvic transaminase activity and zinc content, and significantly enhanced mRNA expression of zinc metabolism-related genes, including metallothionein 1(32.66 folds), metallothionein 2 (31.42 folds), ZIP8 (2.21folds), ZIP14 (2.45 folds), ZnT1 (4.76 folds), ZnT2 (6.19 folds) and ZnT4 (1.82 folds). The biodistribution determination showed that there was a significant accumulation of zinc in the liver, pancreas, kidney, and bones (tibia and fibula) after receiving 5000 mg/kg nano-ZnO diet, while no significant effects on Cu, Fe, and Mn levels, except for liver Fe content and pancreas Mn level. Our results demonstrated that long term exposure to 50 and 500 mg/kg nano-ZnO diets showed minimal toxicity. However, high dose of nano-ZnOs (5000 mg/kg) caused toxicity on development, and altered the zinc metabolism and biodistribution in mice. PMID:27732669
Wang, Chao; Lu, Jianjun; Zhou, Le; Li, Jun; Xu, Jiaman; Li, Weijian; Zhang, Lili; Zhong, Xiang; Wang, Tian
2016-01-01
Zinc oxide nanoparticles (nano-ZnOs) are widely used and possess great potentials in agriculture and biomedicine. It is inevitable for human exposure to these nanoparticles. However, no study had been conducted to investigate the long term effects of nano-ZnOs. This study aimed at investigating effects of nano-ZnOs on development, zinc metabolism and biodistribution of minerals (Zn, Fe, Cu, and Mn) in mice from week 3 to 35. After the characteristics of nano-ZnOs were determined, they were added into the basal diet at 0, 50, 500 and 5000 mg/kg. Results indicated that added 50 and 500 mg/kg nano-ZnOs showed minimal toxicity. However, 5000 mg/kg nano-ZnOs significantly decreased body weight (from week 4 to 16) and increased the relative weights of the pancreas, brain and lung. Added 5000 mg/kg nano-ZnOs significantly increased the serum glutamic-pyruvic transaminase activity and zinc content, and significantly enhanced mRNA expression of zinc metabolism-related genes, including metallothionein 1(32.66 folds), metallothionein 2 (31.42 folds), ZIP8 (2.21folds), ZIP14 (2.45 folds), ZnT1 (4.76 folds), ZnT2 (6.19 folds) and ZnT4 (1.82 folds). The biodistribution determination showed that there was a significant accumulation of zinc in the liver, pancreas, kidney, and bones (tibia and fibula) after receiving 5000 mg/kg nano-ZnO diet, while no significant effects on Cu, Fe, and Mn levels, except for liver Fe content and pancreas Mn level. Our results demonstrated that long term exposure to 50 and 500 mg/kg nano-ZnO diets showed minimal toxicity. However, high dose of nano-ZnOs (5000 mg/kg) caused toxicity on development, and altered the zinc metabolism and biodistribution in mice.
Synthesis of zinc chlorophyll materials for dye-sensitized solar cell applications
NASA Astrophysics Data System (ADS)
Erten-Ela, Sule; Vakuliuk, Olena; Tarnowska, Anna; Ocakoglu, Kasim; Gryko, Daniel T.
2015-01-01
To design sensitizers for dye sensitized solar cells (DSSCs), a series of zinc chlorins with different substituents were synthesized. Novel zinc methyl 3-devinyl-3-hydroxymethyl-20-phenylacetylenylpyropheophorbide-a (ZnChl-1), zinc methyl 20-bromo-3-devinyl-3-hydroxymethylpyropheophorbide-a (ZnChl-2), zinc methyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-a (ZnChl-3), zinc propyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-a (ZnChl-4) were synthesized and their photovoltaic performances were evaluated in dye-sensitized solar cells. Photoelectrodes with a 7 μm thick nanoporous layer and a 5 μm thick light-scattering layer were used to fabricate dye sensitized solar cells. The best efficiency was obtained with ZnChl-2 sensitizer. ZnChl-2 gave a Jsc of 3.5 mA/cm2, Voc of 412 mV, FF of 0.56 and an overall conversion efficiency of 0.81 at full sun (1000 W m-2).
The Mediterranean diet and micronutrient levels in depressive patients.
Ibarra, Olga; Gili, Margalida; Roca, Miguel; Vives, Margalida; Serrano, María Jesús; Pareja, Antonio; García-Campayo, Javier; Gómez-Juanes, Rocío; García-Toro, Mauro
2014-10-03
An inverse association between depression and some serum micronutrient levels (selenium, zinc, iron, magnesium, vitamin B and folic acid) has been reported. In addition, other studies reported that this micronutrient supplementation may improve depressed mood. The Mediterranean diet contains a sufficient amount of the micronutrients mentioned, although no study has reported an association between diet prescription and increased levels of them in depressive patients. To examine the impact of dietary patterns recommendations on micronutrient levels in depressive patients. 77 outpatients were randomly assigned either to the active (hygienic-dietary recommendations on diet, exercise, sleep, and sun exposure) or control group. Outcome measures were assessed before and after the six month intervention period. Serum selenium and zinc levels were slightly low at basal point and serum selenium was inversely correlated with severity of depression (r=-0.233; p=0.041). A better outcome of depressive symptoms was found in the active group. Nevertheless, no significant differences in micronutrient levels were observed after the Mediterranean diet pattern prescription, probably due to an insufficient adherence. Selenium, zinc, iron, magnesium, vitamin B12 and folic acid serum levels didn`t increase in depressed patients after six months of the Mediterranean diet pattern prescription. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Hyperaccumulation of zinc by zinc-depleted Candida utilis grown in chemostat culture.
Lawford, H G; Pik, J R; Lawford, G R; Williams, T; Kligerman, A
1980-01-01
The steady-state levels of zinc in Candida utilis yeast grown in continuous culture under conditions of zinc limitations are <1nmol Zn2+/mg dry weight of cells. Unlike carbon-limited cells, zinc-depleted cells from a zinc-limited chemostat possess the capacity to accumulate and store zinc at levels far in excess of the steady-state level of 4 nmol/mg dry biomass observed in carbon-limited chemostat cultures. Zinc uptake is energy-dependent and apparently undirectional since accumulated 65Zn neither exists from preloaded cells nor exchanges with cold Zn2+. The transport system exhibits a high affinity for Zn2+ (Km =.36micrM) with a Vmaxof 2.2 nmol per minute per milligram dry weight of cells. Growth during the period of the uptake assay is responsible for the apparent plateau level of 35 nmol Zn2+/mg dry weight of cells achieved after 20-30 min in the presence of 65Zn at pH 4.5 and 30 degrees C. Inhibition of growth during the uptake assay by cycloheximide results in a biphasic linear pattern of zinc accumulation where the cellular zinc is about 60 nmol/mg dry weight after 1 h. The enhanced level of accumulated zinc is not inhibtory to growth. Zinc-depleted C. utilis contains elevated amounts of polyphosphate and this anionic evidence does not allow discrimination between possible regulation of zinc homestasis either by inhibitions of zinc efflux through control of the membrane carrier or by control of the synthesis of a cytoplasmic zinc-sequestering macromolecule.
Zinc transport by respiratory epithelial cells and interaction with iron homeostasis.
Deng, Zhongping; Dailey, Lisa A; Soukup, Joleen; Stonehuerner, Jacqueline; Richards, Judy D; Callaghan, Kimberly D; Yang, Funmei; Ghio, Andrew J
2009-10-01
Despite recurrent exposure to zinc through inhalation of ambient air pollution particles, relatively little information is known about the homeostasis of this metal in respiratory epithelial cells. We describe zinc uptake and release by respiratory epithelial cells and test the postulate that Zn(2+) transport interacts with iron homeostasis in these same cells. Zn(2+) uptake after 4 and 8 h of exposure to zinc sulfate was concentration- and time-dependent. A majority of Zn(2+) release occurred in the 4 h immediately following cell exposure to ZnSO(4). Regarding metal importers, mRNA for Zip1 and Zip2 showed no change after respiratory epithelial cell exposure to zinc while mRNA for divalent metal transporter (DMT)1 increased. Western blot assay for DMT1 protein supported an elevated expression of this transport protein following zinc exposure. RT-PCR confirmed mRNA for the metal exporters ZnT1 and ZnT4 with the former increasing after ZnSO(4). Cell concentrations of ferritin increased with zinc exposure while oxidative stress, measured as lipid peroxides, was decreased supporting an anti-oxidant function for Zn(2+). Increased DMT1 expression, following pre-incubations of respiratory epithelial cells with TNF-alpha, IFN-gamma, and endotoxin, was associated with significantly decreased intracellular zinc transport. Finally, incubations of respiratory epithelial cells with both zinc sulfate and ferric ammonium citrate resulted in elevated intracellular concentrations of both metals. We conclude that exposure to zinc increases iron uptake by respiratory epithelial cells. Elevations in cell iron can possibly affect an increased expression of DMT1 and ferritin which function to diminish oxidative stress. Comparable to other metal exposures, changes in iron homeostasis may contribute to the biological effects of zinc in specific cells and tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoadley, J.E.; Leinart, A.S.; Cousins, R.J.
Intestinal 65Zn transport and metallothionein levels were examined in rats fed zinc-adequate and zinc-deficient diets and in rats subjected to an overnight fast. 65Zn uptake by intestines perfused with 1.5 microM 65Zn was greater in both zinc-deficient and fasted groups than in the control group. Mucosal retention of 65Zn was also greater in the zinc-deficient group but not in the fasted group. The greater 65Zn uptake in the fasted group was associated with a compartment that readily released 65Zn back into the lumen. Kinetic analysis of the rate of 65Zn transfer to the vascular space (absorption) showed that 65Zn absorptionmore » involved approximately 3% of mucosal 65Zn in a 40-min perfusion period. The half-life (t1/2) of this mucosal 65Zn rapid transport pool corresponded directly to changes in intestinal metallothionein levels. Both metallothionein and t1/2 were higher in the fasted group and lower in the zinc-deficient group than in controls. While the rate of 65Zn transport from this rapid transport pool decreased with increasing metallothionein level, the predicted pool size increased when the metallothionein level was elevated by fasting. These results indicate that the rate of zinc absorption is inversely related to intestinal metallothionein levels, but the portion of mucosal 65Zn available for absorption is directly related to intestinal metallothionein.« less
Influence of zinc deficiency on cell-membrane fluidity in Jurkat, 3T3 and IMR-32 cells.
Verstraeten, Sandra V; Zago, M Paola; MacKenzie, Gerardo G; Keen, Carl L; Oteiza, Patricia I
2004-01-01
We investigated whether zinc deficiency can affect plasma membrane rheology. Three cell lines, human leukaemia T-cells (Jurkat), rat fibroblasts (3T3) and human neuroblastoma cells (IMR-32), were cultured for 48 h in control medium, in zinc-deficient medium (1.5 microM zinc; 1.5 Zn), or in the zinc-deficient medium supplemented with 15 microM zinc (15 Zn). The number of viable cells was lower in the 1.5 Zn group than in the control and 15 Zn groups. The frequency of apoptosis was higher in the 1.5 Zn group than in the control and 15 Zn groups. Membrane fluidity was evaluated using the 6-(9-anthroyloxy)stearic acid and 16-(9-anthroyloxy)palmitic acid probes. Membrane fluidity was higher in 1.5 Zn cells than in the control cells; no differences were observed between control cells and 15 Zn cells. The effect of zinc deficiency on membrane fluidity at the water/lipid interface was associated with a higher phosphatidylserine externalization. The higher membrane fluidity in the hydrophobic region of the bilayer was correlated with a lower content of arachidonic acid. We suggest that the increased fluidity of the membrane secondary to zinc deficiency is in part due to a decrease in arachidonic acid content and the apoptosis-related changes in phosphatidylserine distribution. PMID:14629198
2013-01-01
Background Zinc is key to the function of many proteins, but the process of dietary zinc absorption is not well clarified. Current knowledge about dietary zinc absorption is fragmented, and mostly derives from incomplete mammalian studies. To gain a comprehensive picture of this process, we systematically characterized all zinc transporters (that is, the Zip and ZnT family members) for their possible roles in dietary zinc absorption in a genetically amenable model organism, Drosophila melanogaster. Results A set of plasma membrane-resident zinc transporters was identified to be responsible for absorbing zinc from the lumen into the enterocyte and the subsequent exit of zinc to the circulation. dZip1 and dZip2, two functionally overlapping zinc importers, are responsible for absorbing zinc from the lumen into the enterocyte. Exit of zinc to the circulation is mediated through another two functionally overlapping zinc exporters, dZnT1, and its homolog CG5130 (dZnT77C). Somewhat surprisingly, it appears that the array of intracellular ZnT proteins, including the Golgi-resident dZnT7, is not directly involved in dietary zinc absorption. By modulating zinc status in different parts of the body, we found that regulation of dietary zinc absorption, in contrast to that of iron, is unresponsive to bodily needs or zinc status outside the gut. The zinc transporters that are involved in dietary zinc absorption, including the importers dZip1 and dZip2, and the exporter dZnT1, are respectively regulated at the RNA and protein levels by zinc in the enterocyte. Conclusions Our study using the model organism Drosophila thus starts to reveal a comprehensive sketch of dietary zinc absorption and its regulatory control, a process that is still incompletely understood in mammalian organisms. The knowledge gained will act as a reference for future mammalian studies, and also enable an appreciation of this important process from an evolutionary perspective. PMID:24063361
Saravanan, V S; Kalaiarasan, P; Madhaiyan, M; Thangaraju, M
2007-03-01
To examine the zinc (Zn) solubilization potential and nematicidal properties of Gluconacetobacter diazotrophicus. Atomic Absorption Spectrophotometer, Differential Pulse Polarography and Gas Chromatography Coupled Mass Spectrometry were used to estimate the total Zn and Zn(2+) ions and identify the organic acids present in the culture supernatants. The effect of culture filtrate of Zn-amended G. diazotrophicus PAl5 on Meloidogyne incognita in tomato was examined under gnotobiotic conditions. Gluconacetobacter diazotrophicus PAl5 effectively solubilized the Zn compounds tested and 5-ketogluconic acid was identified as the major organic acid aiding the solubilization of zinc oxide. The presence of Zn compounds in the culture filtrates of G. diazotrophicus enhanced the mortality and reduced the root penetration of M. incognita under in vitro conditions. 5-ketogluconic acid produced by G. diazotrophicus mediated the solubilization process and the available Zn(2+) ions enhanced the nematicidal activity of G. diazotrophicus against M. incognita. Zn solubilization and enhanced nematicidal activity of Zn-amended G. diazotrophicus provides the possibility of exploiting it as a plant growth promoting bacteria.
Bubach, D F; Macchi, P J; Pérez Catán, S
2015-11-01
The elemental contents in salmonid muscle and liver tissues from different lakes around the world were investigated. Fish from pristine areas were compared with those fishes from impacted environments, both by volcanic and anthropogenic activities. Within the data, special attention was given to fishes from the Andean Patagonian lakes in two contexts: local and global. The local evaluation includes geological and limnological parameters and diet composition which were obtained through a data search from published works. The volcanic influence in Andean Patagonian lakes was mainly observed by an increase of cesium (Cs) and rubidium (Rb) concentrations in fishes, influenced by calcium (Ca) and potassium (K) water contents. Zinc (Zn), selenium (Se), iron (Fe), silver (Ag), and mercury (Hg) contents in fishes showed the effect of the geological substratum, and some limnological parameters. The diet composition was another factor which affects the elemental concentration in fishes. The analyzed data showed that the fishes from Andean Patagonian lakes had elemental content patterns corresponding to those of pristine regions with volcanic influence. Selenium and Ag contents from Andean Patagonian fishes were the highest reported.
Zhang, Ligen; Su, Weipeng; Ying, Zhixiong; He, Jintian; Zhang, Lili; Zhong, Xiang; Wang, Tian
2017-01-01
The objective of this study was to evaluate effects of zinc oxide nanoparticles (nano-ZnOs) as a substitute for colistin sulfate (CS) and/or zinc oxide (ZnO) on growth performance, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets. A total of 216 crossbred Duroc×(Landrace×Yorkshire) piglets weaned at 23 days were randomly assigned into 3 groups, which were fed with basal diets supplemented with 20 mg/kg CS (CS group), 20mg/kg CS+3000 mg/kg ZnO (CS+ZnO group), and 1200 mg/kg nano-ZnOs (nano-ZnO group) for 14 days. Results indicated that compared to CS group, supplementation of 1200 mg/kg nano-ZnOs (about 30 nm) significantly increased final body weight and average daily gain, and 3000 mg/kg ZnO plus colistin sulfate significantly increased average daily gain and decreased diarrhea rate in weaned piglets. There was no significant difference in growth performance and diarrhea rate between nano-ZnO and CS+ZnO groups. Supplementation of nano-ZnOs did not affect serum enzymes (glutamic oxalacetic transaminase, glutamic-pyruvic transaminase, and lactate dehydrogenase), but significantly increased plasma and tissue zinc concentrations (liver, tibia), improved intestinal morphology (increased duodenal and ileal villus length, crypt depth, and villus surface), enhanced mRNA expression of ZO-1 in ileal mucosa, and significantly decreased diamine oxidase activity in plasma, total aerobic bacterial population in MLN as compared to CS group. Effects of nano-ZnOs on serum enzymes, intestinal morphology, and mRNA expressions of tight junction were similar to those of high dietary ZnO plus colistin sulfate, while nano-ZnOs significantly reduced zinc concentrations of liver, tibia, and feces, and decreased total aerobic bacterial population in MLN as compared to CS+ZnO group. These results suggested that nano-ZnOs (1200 mg/kg) might be used as a substitute for colistin sulfate and high dietary ZnO in weaned piglets. PMID:28704517
Wang, Chao; Zhang, Ligen; Su, Weipeng; Ying, Zhixiong; He, Jintian; Zhang, Lili; Zhong, Xiang; Wang, Tian
2017-01-01
The objective of this study was to evaluate effects of zinc oxide nanoparticles (nano-ZnOs) as a substitute for colistin sulfate (CS) and/or zinc oxide (ZnO) on growth performance, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets. A total of 216 crossbred Duroc×(Landrace×Yorkshire) piglets weaned at 23 days were randomly assigned into 3 groups, which were fed with basal diets supplemented with 20 mg/kg CS (CS group), 20mg/kg CS+3000 mg/kg ZnO (CS+ZnO group), and 1200 mg/kg nano-ZnOs (nano-ZnO group) for 14 days. Results indicated that compared to CS group, supplementation of 1200 mg/kg nano-ZnOs (about 30 nm) significantly increased final body weight and average daily gain, and 3000 mg/kg ZnO plus colistin sulfate significantly increased average daily gain and decreased diarrhea rate in weaned piglets. There was no significant difference in growth performance and diarrhea rate between nano-ZnO and CS+ZnO groups. Supplementation of nano-ZnOs did not affect serum enzymes (glutamic oxalacetic transaminase, glutamic-pyruvic transaminase, and lactate dehydrogenase), but significantly increased plasma and tissue zinc concentrations (liver, tibia), improved intestinal morphology (increased duodenal and ileal villus length, crypt depth, and villus surface), enhanced mRNA expression of ZO-1 in ileal mucosa, and significantly decreased diamine oxidase activity in plasma, total aerobic bacterial population in MLN as compared to CS group. Effects of nano-ZnOs on serum enzymes, intestinal morphology, and mRNA expressions of tight junction were similar to those of high dietary ZnO plus colistin sulfate, while nano-ZnOs significantly reduced zinc concentrations of liver, tibia, and feces, and decreased total aerobic bacterial population in MLN as compared to CS+ZnO group. These results suggested that nano-ZnOs (1200 mg/kg) might be used as a substitute for colistin sulfate and high dietary ZnO in weaned piglets.
Saghazadeh, Amene; Mahmoudi, Maryam; Dehghani Ashkezari, Atefeh; Oliaie Rezaie, Nooshin; Rezaei, Nima
2017-01-01
Different metabolic profiles as well as comorbidities are common in people with Down Syndrome (DS). Therefore it is relevant to know whether micronutrient levels in people with DS are also different. This systematic review was designed to review the literature on micronutrient levels in people with DS compared to age and sex-matched controls without DS. We identified sixty nine studies from January 1967 to April 2016 through main electronic medical databases PubMed, Scopus, and Web of knowledge. We carried out meta-analysis of the data on four essential trace elements (Cu, Fe, Se, and Zn), six minerals (Ca, Cl, K, Mg, Na, and P), and five vitamins (vitamin A, B9, B12, D, and E). People with DS showed lower blood levels of Ca (standard mean difference (SMD) = −0.63; 95% confidence interval (CI): −1.16 to −0.09), Se (SMD = -0.99; 95% CI: -1.55 to -0.43), and Zn (SMD = -1.30; 95% CI: -1.75 to -0.84), while red cell levels of Zn (SMD = 1.88; 95% CI: 0.48 to 3.28) and Cu (SMD = 2.77; 95% CI: 1.96 to 3.57) were higher. They had also higher salivary levels of Ca (SMD = 0.85; 95% CI: 0.38 to 1.33) and Na (SMD = 1.04; 95% CI: 0.39 to 1.69). Our findings that micronutrient levels are different in people with DS raise the question whether these differences are related to the different metabolic profiles, the common comorbidities or merely reflect DS. PMID:28422987
Pituitary gland levels of mercury, selenium, iron, and zinc in an Alzheimer`s disease study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cornett, C.R.; Markesbery, W.R.; Wekstein, D.R.
1996-12-31
Mercury, iron, selenium, and zinc imbalances have been observed in comparisons between Alzheimer`s disease (AD) and control subject brains. Analyses of the pituitary gland have demonstrated that this organ retains relatively high concentrations of trace elements, including mercury, iron, and zinc. Our previous work has shown that the pituitary glands of AD and control subjects are typically higher in these trace elements than brain samples from the same subject. Instrumental neutron activation analysis (INAA) was used to compare the pituitary trace element levels of AD and control subjects. This study also describes the intrasubject relationships of brain trace element levelsmore » to those in the pituitary gland of AD and control subjects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popescu, B.F.Gh.; Belak, Z.R.; Ignatyev, K.
2009-06-04
The asymmetric distribution of many components of the Xenopus oocyte, including RNA, proteins, and pigment, provides a framework for cellular specialization during development. During maturation, Xenopus oocytes also acquire metals needed for development, but apart from zinc, little is known about their distribution. Synchrotron X-ray fluorescence microprobe was used to map iron, copper, and zinc and the metalloid selenium in a whole oocyte. Iron, zinc, and copper were asymmetrically distributed in the cytoplasm, while selenium and copper were more abundant in the nucleus. A zone of high copper and zinc was seen in the animal pole cytoplasm. Iron was alsomore » concentrated in the animal pole but did not colocalize with zinc, copper, or pigment accumulations. This asymmetry of metal deposition may be important for normal development. Synchrotron X-ray fluorescence microprobe will be a useful tool to examine how metals accumulate and redistribute during fertilization and embryonic development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popescu, B.F.G.; Belak, Z.R.; Ignatyev, K.
2009-04-29
The asymmetric distribution of many components of the Xenopus oocyte, including RNA, proteins, and pigment, provides a framework for cellular specialization during development. During maturation, Xenopus oocytes also acquire metals needed for development, but apart from zinc, little is known about their distribution. Synchrotron X-ray fluorescence microprobe was used to map iron, copper, and zinc and the metalloid selenium in a whole oocyte. Iron, zinc, and copper were asymmetrically distributed in the cytoplasm, while selenium and copper were more abundant in the nucleus. A zone of high copper and zinc was seen in the animal pole cytoplasm. Iron was alsomore » concentrated in the animal pole but did not colocalize with zinc, copper, or pigment accumulations. This asymmetry of metal deposition may be important for normal development. Synchrotron X-ray fluorescence microprobe will be a useful tool to examine how metals accumulate and redistribute during fertilization and embryonic development.« less
Nazarizadeh, Ali; Asri-Rezaie, Siamak
2016-08-01
In the current study, antidiabetic activity and toxic effects of zinc oxide nanoparticles (ZnO) were investigated in diabetic rats compared to zinc sulfate (ZnSO4) with particular emphasis on oxidative stress parameters. One hundred and twenty male Wistar rats were divided into two healthy and diabetic groups, randomly. Each major group was further subdivided into five subgroups and then orally supplemented with various doses of ZnO (1, 3, and 10 mg/kg) and ZnSO4 (30 mg/kg) for 56 consecutive days. ZnO showed greater antidiabetic activity compared to ZnSO4 evidenced by improved glucose disposal, insulin levels, and zinc status. The altered activities of erythrocyte antioxidant enzymes as well as raised levels of lipid peroxidation and a marked reduction of total antioxidant capacity were observed in rats receiving ZnO. ZnO nanoparticles acted as a potent antidiabetic agent, however, severely elicited oxidative stress particularly at higher doses.
The Critical Roles of Zinc: Beyond Impact on Myocardial Signaling
Lee, Sung Ryul; Noh, Su Jin; Pronto, Julius Ryan; Jeong, Yu Jeong; Kim, Hyoung Kyu; Song, In Sung; Xu, Zhelong; Kwon, Hyog Young; Kang, Se Chan; Sohn, Eun-Hwa; Ko, Kyung Soo; Rhee, Byoung Doo; Kim, Nari
2015-01-01
Zinc has been considered as a vital constituent of proteins, including enzymes. Mobile reactive zinc (Zn2+) is the key form of zinc involved in signal transductions, which are mainly driven by its binding to proteins or the release of zinc from proteins, possibly via a redox switch. There has been growing evidence of zinc's critical role in cell signaling, due to its flexible coordination geometry and rapid shifts in protein conformation to perform biological reactions. The importance and complexity of Zn2+ activity has been presumed to parallel the degree of calcium's participation in cellular processes. Whole body and cellular Zn2+ levels are largely regulated by metallothioneins (MTs), Zn2+ importers (ZIPs), and Zn2+ transporters (ZnTs). Numerous proteins involved in signaling pathways, mitochondrial metabolism, and ion channels that play a pivotal role in controlling cardiac contractility are common targets of Zn2+. However, these regulatory actions of Zn2+ are not limited to the function of the heart, but also extend to numerous other organ systems, such as the central nervous system, immune system, cardiovascular tissue, and secretory glands, such as the pancreas, prostate, and mammary glands. In this review, the regulation of cellular Zn2+ levels, Zn2+-mediated signal transduction, impacts of Zn2+ on ion channels and mitochondrial metabolism, and finally, the implications of Zn2+ in health and disease development were outlined to help widen the current understanding of the versatile and complex roles of Zn2+. PMID:26330751
Li, Chun-Ting; Chang, Hung-Yu; Li, Yu-Yan; Huang, Yi-June; Tsai, Yu-Lin; Vittal, R; Sheng, Yu-Jane; Ho, Kuo-Chuan
2015-12-30
Highly efficient zinc compounds (Zn3N2, ZnO, ZnS, and ZnSe) have been investigated as low-cost electrocatalysts for the counter electrodes (CE) of dye-sensitized solar cells (DSSCs). Among them, Zn3N2 and ZnSe are introduced for the first time in DSSCs. The zinc compounds were separately mixed with a conducting binder, poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate) ( PSS), and thereby four composite films of Zn3N2/PEDOT:PSS, ZnO/PEDOT:PSS, ZnS/PEDOT:PSS, and ZnSe/ PSS were coated on the tin-doped indium oxide (ITO) substrates through a simple drop-coating process. In the composite film, nanoparticles of the zinc compound form active sites for the electrocatalytic reduction of triiodide ions, and PSS provides a continuous conductive matrix for fast electron transfer. By varying the weight percentage (5-20 wt %) of a zinc compound with respect to the weight of the PSS, the optimized concentration of a zinc compound was found to be 10 wt % in all four cases, based on the photovoltaic performances of the corresponding DSSCs. At this concentration (10 wt %), the composites films with Zn3N2 (Zn3N2-10), ZnO (ZnO-10), ZnS (ZnS-10), and ZnSe (ZnSe-10) rendered, for their DSSCs, power conversion efficiencies (η) of 8.73%, 7.54%, 7.40%, and 8.13%, respectively. The difference in the power conversion efficiency is explained based on the electrocatalytic abilities of those composite films as determined by cyclic voltammetry (CV), Tafel polarization plots, and electrochemical impedance spectroscopy (EIS) techniques. The energy band gaps of the zinc compounds, obtained by density functional theory (DFT) calculations, were used to explain the electrocatalytic behaviors of the compounds. Among all the zinc-based composites, the one with Zn3N2-10 showed the best electrocatalytic ability and thereby rendered for its DSSC the highest η of 8.73%, which is even higher than that of the cell with the traditional Pt CE (8.50%). Therefore, Zn3N2 can be considered as a promising inexpensive electrocatalyst to replace the rare and expensive Pt.
da Silva, Flávia R M; Grassi, Tony F; Zapaterini, Joyce R; Bidinotto, Lucas T; Barbisan, Luis F
2017-06-01
Zinc deficiency during pregnancy and postnatal life can adversely increase risk of developing human diseases at adulthood. The present study was designed to evaluate whether dietary zinc deficiency or supplementation during the pregnancy, lactation and juvenile stages interferes in the development of mammary tumors induced by 7,12-dimethylbenzanthracene (DMBA) in female Sprague-Dawley (SD) rats. Pregnant female SD rats were allocated into three groups: zinc-adequate diet (ZnA - 35-mg/kg chow), zinc-deficient diet (ZnD - 3-mg/kg chow) or zinc-supplemented diet (ZnS - 180-mg/kg chow) during gestational day 10 (GD 10) until the litters' weaning. Female offspring received the same diets as their dams until postnatal day (PND) 51. At PND 51, the animals received a single dose of DMBA (50 mg/kg, ig) and zinc-adequate diets. At PND 180, female were euthanized, and tumor samples were processed for histological evaluation and gene expression microarray analysis. The ZnD induced a significant reduction in female offspring body weight evolution and in mammary gland development. At late in life, the ZnD or ZnS did not alter the latency, incidence, multiplicity, volume or histological types of mammary tumors in relation to the ZnA group. However, the total tumor number in ZnS group was higher than in ZnA group, accompanied by distinct expression of 4 genes up- and 15 genes down-regulated. The present findings indicate that early-in-life dietary zinc supplementation, differently to zinc deficiency, has a potential to modify the susceptibility to the development of mammary tumors induced by DMBA. Copyright © 2017 Elsevier Inc. All rights reserved.
Zinc use efficiency is enhanced in wheat through nanofertilization.
Dapkekar, Ashwin; Deshpande, Paresh; Oak, Manoj D; Paknikar, Kishore M; Rajwade, Jyutika M
2018-05-01
Ferti-fortification of wheat with zinc, an essential micronutrient is one of the strategies for combating 'hidden hunger' in a large proportion of people all over the world. During fertilization, application of large quantities of micronutrients often results in nutrient wastage and subsequent environmental pollution. Here, we report zinc complexed chitosan nanoparticles (Zn-CNP) for ferti-fortification of durum wheat in field-scale experiments. The efficacy of Zn-CNP was assessed vis-à-vis conventionally applied ZnSO 4 (0.2%; 400 mgL -1 zinc) in two durum wheat genotypes (MACS 3125, an indigenous high yielding genotype and UC 1114, a genotype containing the Gpc-B1gene). The observed grain zinc enrichment using Zn-CNP nanocarrier (~36%) and conventional ZnSO 4 (~50%) were comparable, despite 10 folds less zinc (40 mgL -1 ) used in the former. Nanofertilizer application increased grain zinc content without affecting grain yield, protein content, spikelets per spike, thousand kernel weight, etc. Grain zinc enrichment observed in the four-year field trials on plots with varying soil zinc content was consistent, proving the utility of Zn-CNP as a novel nanofertilizer which enhanced fertilizer use efficiency. Our work describes a new paradigm in micronutrient fortification, viz. 'use nanofertilizers at the right place, right time and in right doses'.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Samreen Heena, E-mail: samreen.heena.khan@gmail.com; Suriyaprabha, R.; Pathak, Bhawana, E-mail: bhawana.pathak@cug.ac.in
With the miniaturization of crystal size, the fraction of under-coordinated surface atoms becomes dominant, and hence, materials in the nano-regime behave very differently from the similar material in a bulk. Zinc oxide (ZnO), particularly, exhibits extraordinary properties such as a wide direct band gap (3.37 eV), large excitation binding energy (60 meV), low refractive index (1.9), stability to intense ultraviolet (UV) illumination, resistance to high-energy irradiation, and lower toxicity as compared to other semiconductors. This very property makes Zinc Oxide a potential candidate in many application fields, particularly as a prominent semiconductor. Zinc Oxide plays a significant role in manymore » technological advances with its application in semiconductor mediated photocatalytic processes and sensor, solar cells and others. In present study, Zinc Oxide (ZnO) has been synthesized using three different precursors by sonochemical method. Zinc Acetate Dihydrate, Zinc Nitrate Hexahydrate and Zinc Sulphate Heptahydrate used as a precursor for the synthesis process. The synthesized ZnO nanoparticle has been found under the range of ∼50 nm. Zinc oxide nanoparticles were characterized using different characterizing tools. The as-synthesized ZnO was characterized by Fourier Transform-Infrared Spectroscopy (FT-IR) for the determination of functional group; Scanning Electron Microscopy equipped with Energy Dispersive Spectroscopy (SEM-EDS) for Morphology and elemental detection respectively, Transmission Electron Microscopy for Particle size distribution and morphology and X-Ray Diffraction (XRD) for the confirmation of crystal structure of the nanomaterial. The optical properties of the ZnO were examined by UV-VIS spectroscopy equipped with Diffuse Reflectance spectroscopy (DRS) confirmed the optical band gap of ZnO-3 around 3.23 eV resembles with the band gap of bulk ZnO (3.37eV). The TEM micrograph of the as-synthesized material showed perfectly spherical shaped nanoparticle under the size range of 50nm. The XRD data showed that the ZnO-3 which was synthesized using Zinc Nitrate Hexahydrate as precursor showed the hexagonal wurtzite crystal structure. The XRD data obtained were compared with the JCPDS standard data. The precursor Zinc Nitrate Hexahydrate (ZnO-3) showed the good yield, monodispersity and size of nanoparticle under the range of 50 nm. The ZnO nanoparticles synthesize using different precursor was found effective in order of ZnO-3, followed by ZnO-1 & ZnO-2. The Synthesized ZnO has wider application in environmental remediation and clean-up as a potential nano-catalyst.« less
Zinc and volatile element loss during planetary magma ocean phases
NASA Astrophysics Data System (ADS)
Dhaliwal, Jasmeet K.; Day, James M. D.; Moynier, Frédéric
2016-10-01
Zinc is a moderately volatile element and a key tracer of volatile depletion on planetary bodies due to lack of significant isotopic fractionation under high-temperature processes. Terrestrial basalts have δ66Zn values similar to some chondrites (+ 0.15 to 0.3‰ where [{66Zn/64Znsample/66Zn/64ZnJMC-Lyon-1} × 1000]) and elevated Zn concentrations (100 ppm). Lunar mare basalts yield a mean δ66Zn value of +1.4 ± 0.5‰ and have low Zn concentrations (~2 ppm). Late-stage lunar magmatic products, such as ferroan anorthosite, Mg-suite and Alkali suite rocks exhibit heavier δ66Zn values (+3 to +6‰). The heavy δ66Zn lunar signature is thought to reflect evaporative loss and fractionation of zinc, either during a giant impact or in a magma ocean phase.We explore conditions of volatile element loss within a lunar magma ocean (LMO) using models of Zn isotopic fractionation that are widely applicable to planetary magma oceans. For the Moon, our objective was to identify conditions that would yield a δ66Zn signature of ~ +1.4‰ within the mantle, assuming a terrestrial mantle zinc starting composition.We examine two cases of zinc evaporative fractionation: (1) lunar surface zinc fractionation that was completed prior to LMO crystallization and (2) lunar surface zinc fractionation that was concurrent with LMO crystallization. The first case resulted in a homogeneous lunar mantle and the second case yielded a stratified lunar mantle, with the greatest zinc isotopic enrichment in late-stage crystallization products. This latter case reproduces the distribution of zinc isotope compositions in lunar materials quite well.We find that hydrodynamic escape was not a dominant process in losing Zn, but that erosion of a nascent lunar atmosphere, or separation of condensates into a proto-lunar crust are possible. While lunar volatile depletion is still possible as a consequence of the giant impact, this process cannot reproduce the variable δ66Zn found in the Moon. Outgassing during magma ocean phases would have led to volatile-depleted planetesimal feed-stocks that would have profoundly affected the ultimate volatile inventories of larger planetary bodies.
Erkekoglu, Pinar; Arnaud, Josiane; Rachidi, Walid; Kocer-Gumusel, Belma; Favier, Alain; Hincal, Filiz
2015-01-01
Di(2-ethylhexyl)phthalate (DEHP), a widely used plasticizer for synthetic polymers, is known to have endocrine disruptive potential, reproductive toxicity, and induces hepatic carcinogenesis in rodents. Selenium (Se) is a component of several selenoenzymes which are essential for cellular antioxidant defense and for the functions of mammalian reproductive system. The present study was designed to investigate the effects of DEHP exposure on trace element distribution in liver, testis, and kidney tissues and plasma of Se-deficient and Se-supplemented rats. Se deficiency was produced by feeding 3-week old Sprague-Dawley rats with ≤0.05mg Se/kg diet for 5 weeks, and supplementation group were on 1mg Se/kg diet. DEHP treated groups received 1000mg/kg dose by gavage during the last 10 days of feeding period. Se, zinc (Zn), copper (Cu), iron (Fe) and manganese (Mn) levels were measured by inductively coupled plasma mass spectrometry (ICP-MS). Se supplementation caused significant increases in hepatic, renal, and testicular Se levels. With DEHP exposure, plasma Se and Zn, kidney Se, Cu and Mn levels were significantly decreased. Besides, liver Fe decreased markedly in all the DEHP-treated groups. Liver and kidney Mn levels decreased significantly in DEHP/SeD group compared to both DEHP and SeD groups. These results showed the potential of DEHP exposure and/or different Se status to modify the distribution pattern of essential trace elements in various tissues, the importance of which needs to be further evaluated. Copyright © 2014. Published by Elsevier GmbH.
Abd-Rabou, Ahmed A; Shalby, Aziza B; Ahmed, Hanaa H
2018-05-11
Drug resistance is a major challenge of breast and colon cancer therapies leading to treatment failure. The main objective of the current study is to investigate whether selenium nanoparticles (nano-Se) can induce the chemo-sensitivity of 5-fluorouracil (FU)-encapsulated poly (D, L-lactide-co-glycolide) nanoparticles (nano-FU) in breast and colon cancer cell lines. Nano-Se and nano-FU were synthesized and characterized, then applied individually or in combination upon MCF7, MDA-MB-231, HCT 116, and Caco-2 cancerous cell lines. Cytotoxicity, cellular glucose uptake, and apoptosis, as well as malondialdehyde (MDA), nitric oxide (NO), and zinc (Zn) levels, were investigated upon the different treatments. We have resulted that nano-FU induced cell death in MCF7 and Caco-2 more effectively than MDA-MB-231 and HCT 116 cell lines. Moreover, nano-FU plus nano-Se potentiate MCF7 and Caco-2 chemo-sensitivity were higher than MDA-MB-231 and HCT 116 cancerous cell lines. It is relevant to note that Se and FU nano-formulations inhibited cancer cell bioenergetics via glucose uptake slight blockage. Furthermore, nano-FU increased the levels of NO and MDA in media over cancer cells, while their combinations with nano-Se rebalance the redox status with Zn increment. We noticed that MCF7 cell line is sensitive, while MDA-MB-231 cell line is resistant to Se and nano-Se. This novel approach could be of great potential to enhance the chemo-sensitivity in breast and colon cancer cells.
Serum trace elements in obese Egyptian children: a case–control study
2014-01-01
Background To date, only a few studies on child obesity concerned Trace Elements (TE). TE is involved in the pathogenesis of obesity and obesity related diseases. We tried to assess trace elements status [zinc (Zn), copper (Cu), selenium (Se), iron (Fe), and chromium (Cr)] in obese Egyptian children and their relationships with serum leptin and metabolic risk factors of obesity. Methods This was a case–control study performed with 80 obese children (BMI ≥ 95thcentile for age and gender) and 80 healthy non-obese children with comparable age and gender as the control group. For all subjects, serum Zn, Cu, Se, Fe, ferritin and Cr as well as biochemical parameters including lipid profile, serum glucose and homeostasis model assessment of insulin resistance (HOMA-IR) were assessed. Levels of serum leptin were measured by (enzyme-linked immunosorbent assay [ELISA] method), and serum insulin was measured by an electrochemiluminesce immunoassay. Results Compared to the control group, serum Zn, Se, and Fe levels were significantly lower (all P < 0.01) and serum Cu level was significantly higher (P < 0.01) in the obese children. Meanwhile, no significant differences were observed in serum ferritin or Cr levels (P > 0.05). A significant negative correlation was found between serum leptin and zinc levels in the obese children (r = −0.746; P < 0.01). Further, serum Zn showed significant negative correlations with total cholesterol TC levels (P < 0.05) and were positively correlated with high density lipoprotein- cholesterol HDL-C levels (P < 0.01) in the obese children. In addition, serum Se levels showed significant positive correlations with HOMA-IR values in the obese children (P < 0.01). Conclusion The obese children may be at a greater risk of developing imbalance (mainly deficiency) of trace elements which may be playing an important role in the pathogenesis of obesity and related metabolic risk factors. PMID:24555483
Wang, Zhongcheng; Yu, Huimin; Wu, Xuezhuang; Zhang, Tietao; Cui, Hu; Wan, Chunmeng; Gao, Xiuhua
2016-10-01
The experiment was conducted to investigate the effects of zinc pectin oligosaccharides (Zn-POS) chelate on growth performance, nutrient digestibility, and tissue zinc concentrations of Arbor Acre broilers aged from 1 to 42 days. A total of 576 1-day-old broilers were randomly assigned into 4 groups with 9 replicates per group and 16 chicks per replicate. Chicks were fed either a basal diet (control) or basal diet supplemented with Zn-POS at 300 (Zn-POS-300), 600 (Zn-POS-600), or 900 mg/kg (Zn-POS-900), respectively, for 42 days. A 3-day metabolism trial was conducted during the last week of the experiment feeding. The average daily gain and the average daily feed intake of Zn-POS-600 were significantly higher (P < 0.05) than those of either the control, Zn-POS-300, or Zn-POS-900. Zn-POS-600 had the highest apparent digestibility of dry matter, crude protein, and metabolic energy among all groups. The control group had the lowest apparent digestibility of dry matter (P < 0.05), whereas the apparent digestibility of dry matter in Zn-POS-600 was higher (P < 0.05) than that of Zn-POS-300. The apparent digestibility of crude protein in Zn-POS-600 or Zn-POS-900 was higher (P < 0.05) compared to Zn-POS-300 or the control. The apparent digestibility of metabolic energy in Zn-POS-600 or Zn-POS-900 was higher (P < 0.05) than that of Zn-POS-300. Zn-POS-600 had the highest liver zinc concentrations (P < 0.05), while Zn-POS-900 had the highest pancreatic zinc concentrations (P < 0.05). Our data suggest that the supplementation of 600 mg/kg Zn-POS is optimal in improving the average daily gain and the average daily feed intake, utilization of dietary dry matter and crude protein, and increasing tissue zinc concentrations in liver and pancreas of broilers.
Schmitt, Christopher J.
2004-01-01
Fish were collected in late 1995 from 34 National Contaminant Biomonitoring Program (NCBP) stations and 12 National Water Quality Assessment Program (NAWQA) stations in the Mississippi River basin (MRB), and in late 1996 from a reference site in West Virginia. The NCBP sites represented key points (dams, tributaries, etc.) in the largest rivers of the MRB. The NAWQA sites were typically on smaller rivers and were selected to represent dominant land uses in their watersheds. The West Virginia site, which is in an Eastern U.S. watershed adjacent to the MRB, was selected to document elemental concentrations in fish used for other aspects of a larger study and to provide additional contemporaneous data on background elemental concentrations. At each site four samples, each comprising (nominally) 10 adult common carp (Cyprinus carpio, `carp') or black bass (Micropterus spp., `bass') of the same sex, were collected. The whole fish were composited by station, species, and gender for analysis of arsenic (As), lead (Pb), and selenium (Se) by atomic absorption spectroscopy and for cadmium (Cd), copper (Cu), and zinc (Zn) by inductively-coupled plasma emission spectroscopy. Concentrations of most of the elements examined were lower in both carpand bass from the reference site, a small impoundment located in a rural area, than from the NCBP and NAWQA sites on rivers and larger impoundments. In contrast, there were few overall differences between NCBP sites NAWQA sites. The 1995 results generally confirmed the continued weathering and re-distribution of these elemental contaminants in the MRB; concentrations declined or were unchanged from 1984–1986 to 1995 at most NCBP sites, thus continuing two-decade trends. Exceptions were Se at Station 77 (Arkansas R. at John Martin Reservoir, CO), where concentrations have been elevated historically and increased slightly (to 3.8–4.7 μg g-1 in bass and carp); and Pb, Cd, and Zn at Station 67 (Allegheny R. at Natrona, PA), where levels of these metals were high in the past and increased from 1986 to 1995.
Trace Element Levels in Congenital Hypogonadotrophic Hypogonadism.
Aydogdu, A; Haymana, C; Soykut, B; Erdem, O; Basaran, Y; Baskoy, K; Dinc, M; Taslipinar, A; Sonmez, A; Bolu, E; Azal, O
2016-05-01
Cardiometabolic diseases are prevalent in hypogonadism. The pathophysiologic mechanism of increased cardiometabolic risk in hypogonadal patients is not clear. Recently, trace elements have been linked to the development of chronic disease especially cardiovascular disease. We investigated the trace element levels in an unconfounded population of congenital hypogonadotrophic hypogonadism (CHH) and also searched for the relationship with metabolic risk factors. A total of 89 patients with CHH (mean age 21.8 ± 2.0 years) and 80 healthy control subjects (mean age 21.3 ± 1.1 years) were enrolled. The demographic parameters, homeostatic model assessment of insulin resistance (HOMA-IR) levels and plasma zinc, copper, and selenium levels, were measured in patients and healthy controls. The patients had higher waist circumferences (p = 0.014), triglyceride (p = 0.04), insulin (p = 0.004), HOMA-IR levels (p = 0.001), and lower selenium (p = 0.049), zinc (p = 0.004), and copper (p = 0.012) levels when compared to the healthy controls. There was a significant relationship between zinc levels and HOMA-IR levels (p = 0.015). In the regression analysis, zinc levels were independently associated with the calculated HOMA-IR levels (p = 0.015). The results of the present study show that plasma selenium, zinc, and copper levels are decreased in patients with CHH. Also, plasma zinc levels are independently associated with insulin resistance in patients with hypogonadism. Long-term follow-up studies are warranted to investigate the effect of trace elements on the increased cardiometabolic risk in hypogonadism.
Zinc and its transporters, pancreatic beta cells, and insulin metabolism
USDA-ARS?s Scientific Manuscript database
Zinc is an essential trace metal for life. Two families of zinc transporters, SLC30A (ZnT) and SLC39A (ZIP) are required for maintaining cellular zinc homeostasis. ZnTs function to decrease cytoplasmic zinc concentrations whereas ZIPs do the opposite. Expression of zinc transporters can be tissue/ce...
Lai, Tung-Yuan; Kuo, Hsien-Wen
2015-01-01
Sha Shen Mai Men Dong Tang (SMD-2; 沙參麥冬湯 shā shēn mài dōng tāng) is a Chinese medicinal herb (CMH; 中草藥 zhōng cǎo yào) used to treat symptoms associated with cancer therapy. The objective of this study was to assess the effect of SMD-2 on the levels of urinary copper (Cu), zinc (Zn), and selenium (Se) in lung cancer patients and head and neck cancer patients receiving chemoradiotherapy. Forty-two head and neck cancer patients and 10 lung cancer patients participated in our clinical trial. Each patient received chemoradiotherapy for 4 weeks. In addition, each patient was treated with SMD-2 for 8 weeks, including 2 weeks prior to and after the chemoradiotherapy treatment. Comparison of urinary Cu, Zn, and Se levels and the ratios of Zn to Cu and Se to Cu at three time points in the two types of cancer were assessed using the generalized estimating equations (GEEs). After the patients received chemoradiotherapy for 4 weeks, SMD-2 treatment was found to be associated with a significant decrease in urinary Cu levels, whereas urinary Zn and Se levels increased significantly. In addition, the ratios of Zn to Cu and Se to Cu in the urine samples of these patients also increased significantly. Both the urinary Zn levels and the ratio of Zn to Cu in head and neck cancer patients were significantly higher than in lung cancer patients. Urinary Zn and Se levels and the ratios of Zn to Cu and Se to Cu, but not urinary Cu levels, increased significantly during and after treatment when assessed using the GEE model. The SMD-2 treatments significantly increased Zn and Se levels in the urine of head and neck cancer patients. Increased Zn and Se levels in urine strengthened immune system. PMID:27114935
Zinc Transporter 3 Is Involved in Learned Fear and Extinction, but Not in Innate Fear
ERIC Educational Resources Information Center
Martel, Guillaume; Hevi, Charles; Friebely, Olivia; Baybutt, Trevor; Shumyatsky, Gleb P.
2010-01-01
Synaptically released Zn[superscript 2+] is a potential modulator of neurotransmission and synaptic plasticity in fear-conditioning pathways. Zinc transporter 3 (ZnT3) knock-out (KO) mice are well suited to test the role of zinc in learned fear, because ZnT3 is colocalized with synaptic zinc, responsible for its transport to synaptic vesicles,…
Sharif, Razinah; Thomas, Philip; Zalewski, Peter; Fenech, Michael
2015-06-01
An increased intake of Zinc (Zn) may reduce the risk of degenerative diseases but may prove to be toxic if taken in excess. This study aimed to investigate whether zinc carnosine supplement can improve Zn status, genome stability events, and Zn transporter gene expression in an elderly (65-85 years) South Australian cohort with low plasma Zn levels. A 12-week placebo-controlled intervention trial was performed with 84 volunteers completing the study, (placebo, n = 42) and (Zn group, n = 42). Plasma Zn was significantly increased (p < 0.05) by 5.69% in the Zn supplemented group after 12 weeks. A significant (p < 0.05) decrease in the micronucleus frequency (-24.18%) was observed for the Zn supplemented cohort relative to baseline compared to the placebo group. Reductions of -7.09% for tail moment and -8.76% for tail intensity were observed for the Zn group (relative to baseline) (p < 0.05). Telomere base damage was found to be also significantly decreased in the Zn group (p < 0.05). Both MT1A and ZIP1 expression showed a significant increase in the Zn supplemented group (p < 0.05). Zn supplementation may have a beneficial effect in an elderly population with low Zn levels by improving Zn status, antioxidant profile, and lowering DNA damage. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Suganya, Panneer S R; Kalva, Sukesh; Saleena, Lilly M
2014-01-01
Zinc plays a vital role in structural organization, regulation of function and stabilization of the folded protein, which ultimately activates or inactivates the binding sites of the protein. Its transition makes a major change in the protein and its binding affinity. The ligand binding aggrecanases can be influenced by Zn2+ ions; therefore the study focuses on checking the binding mode in the presence and absence of zinc using Docking and Molecular dynamics simulation. The crystal structure with zinc was considered as wild type (ADAMTS-4-1Zn2+, ADAMTS-5-1Zn2+) and the crystal structure without zinc was considered as the mutant type (ADAMTS-4-0Zn2+, ADAMTS-5-0Zn2+). Mutations were made manually by deleting the zinc atom. ADAMTS-4-1Zn2+ had the best Glide score of -12.66 kcal·mol−1, whereas ADAMTS-4-0Zn2+ had -11.69 kcal·mol−1. ADAMTS-4-1Zn2+ had the best glide energy of -72.29 kcal·mol−1, whereas ADAMTS-4-0Zn2+ had-68.44 kcal·mol−1. ADAMTS-4-1Zn2+ had the best glide e-model of -116.34, whereas ADAMTS-4-0Zn2+ had -104.264. The RMSD value for ADAMTS-4-1Zn2+ and ADAMTS-4-0Zn2+ was 1.9. These results suggested that the absence of zinc decreases the binding affinity of ADAMTS-4 with its inhibitor. ADAMTS-5-1Zn2+ had the best Glide score of -8.32 kcal·mol−1, whereas ADAMTS-5-0Zn2+ had -6.62 kcal·mol−1. ADAMTS-5-1Zn2+ had the best glide energy of -70.28 kcal·mol−1, whereas ADAMTS-5-0Zn2+ had -66.02 kcal·mol−1. ADAMTS-5-1Zn2+ had the best glide e-model of-108.484, whereas ADAMTS-5-0Zn2+ had -93.81. The RMSD value for ADAMTS-5-1Zn2+ and ADAMTS-5-0Zn2+ was 0.48Å. These results confirmed that the absence of zinc decreased the binding affinity of ADAMTS-5 with its inhibitor whereas the presence extended the docking energy range and strengthened the binding affinity. Per-residue interaction study, MM-GBSA and Molecular Dynamics showed that all the four complexes underwent extensive structural changes whereas the complex with zinc was stable throughout the simulation period.
40 CFR 503.13 - Pollutant limits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... kilogram) 1 Arsenic 75 Cadmium 85 Copper 4300 Lead 840 Mercury 57 Molybdenum 75 Nickel 420 Selenium 100... Pollutant Loading Rates Pollutant Cumulative pollutant loading rate (kilograms per hectare) Arsenic 41... kilogram) 1 Arsenic 41 Cadmium 39 Copper 1500 Lead 300 Mercury 17 Nickel 420 Selenium 100 Zinc 2800 1 Dry...
40 CFR 503.13 - Pollutant limits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... kilogram) 1 Arsenic 75 Cadmium 85 Copper 4300 Lead 840 Mercury 57 Molybdenum 75 Nickel 420 Selenium 100... Pollutant Loading Rates Pollutant Cumulative pollutant loading rate (kilograms per hectare) Arsenic 41... kilogram) 1 Arsenic 41 Cadmium 39 Copper 1500 Lead 300 Mercury 17 Nickel 420 Selenium 100 Zinc 2800 1 Dry...
DeGrado, Timothy R; Kemp, Bradley J; Pandey, Mukesh K; Jiang, Huailei; Gunderson, Tina M; Linscheid, Logan R; Woodwick, Allison R; McConnell, Daniel M; Fletcher, Joel G; Johnson, Geoffrey B; Petersen, Ronald C; Knopman, David S; Lowe, Val J
2016-01-01
Abnormalities in zinc homeostasis are indicated in many human diseases, including Alzheimer disease (AD). 63 Zn-zinc citrate was developed as a positron emission tomography (PET) imaging probe of zinc transport and used in a first-in-human study in 6 healthy elderly individuals and 6 patients with clinically confirmed AD. Dynamic PET imaging of the brain was performed for 30 minutes following intravenous administration of 63 Zn-zinc citrate (∼330 MBq). Subsequently, body PET images were acquired. Urine and venous blood were analyzed to give information on urinary excretion and pharmacokinetics. Regional cerebral 63 Zn clearances were compared with 11 C-Pittsburgh Compound B ( 11 C-PiB) and 18 F-fluorodeoxyglucose ( 18 F-FDG) imaging data. 63 Zn-zinc citrate was well tolerated in human participants with no adverse events monitored. Tissues of highest uptake were liver, pancreas, and kidney, with moderate uptake being seen in intestines, prostate (in males), thyroid, spleen, stomach, pituitary, and salivary glands. Moderate brain uptake was observed, and regional dependencies were observed in 63 Zn clearance kinetics in relationship with regions of high amyloid-β plaque burden ( 11 C-PiB) and 18 F-FDG hypometabolism. In conclusion, zinc transport was successfully imaged in human participants using the PET probe 63 Zn-zinc citrate. Primary sites of uptake in the digestive system accent the role of zinc in gastrointestinal function. Preliminary information on zinc kinetics in patients with AD evidenced regional differences in clearance rates in correspondence with regional amyloid-β pathology, warranting further imaging studies of zinc homeostasis in patients with AD. © The Author(s) 2016.
DeGrado, Timothy R.; Kemp, Bradley J.; Pandey, Mukesh K.; ...
2016-01-01
Abnormalities in zinc homeostasis are indicated in many human diseases, including Alzheimer disease (AD). 63Zn-zinc citrate was developed as a positron emission tomography (PET) imaging probe of zinc transport and used in a first-in-human study in 6 healthy elderly individuals and 6 patients with clinically confirmed AD. A dynamic PET imaging of the brain was performed for 30 minutes following intravenous administration of 63Zn-zinc citrate (~330 MBq). Subsequently, body PET images were acquired. Urine and venous blood were analyzed to give information on urinary excretion and pharmacokinetics. Regional cerebral 63Zn clearances were compared with 11C-Pittsburgh Compound B ( 11C-PiB) andmore » 18F-fluorodeoxyglucose ( 18F-FDG) imaging data. 63Zn-zinc citrate was well tolerated in human participants with no adverse events monitored. Tissues of highest uptake were liver, pancreas, and kidney, with moderate uptake being seen in intestines, prostate (in males), thyroid, spleen, stomach, pituitary, and salivary glands. Moderate brain uptake was observed, and regional dependencies were observed in 63Zn clearance kinetics in relationship with regions of high amyloid-β plaque burden ( 11C-PiB) and 18F-FDG hypometabolism. In conclusion, zinc transport was successfully imaged in human participants using the PET probe 63Zn-zinc citrate. Primary sites of uptake in the digestive system accent the role of zinc in gastrointestinal function. Preliminary information on zinc kinetics in patients with AD evidenced regional differences in clearance rates in correspondence with regional amyloid-β pathology, warranting further imaging studies of zinc homeostasis in patients with AD.« less
Zinc deficiency in field-grown pecan trees: changes in leaf nutrient concentrations and structure.
Ojeda-Barrios, Dámaris; Abadía, Javier; Lombardini, Leonardo; Abadía, Anunciación; Vázquez, Saúl
2012-06-01
Zinc (Zn) deficiency is a typical nutritional disorder in pecan trees [Carya illinoinensis (Wangenh.) C. Koch] grown under field conditions in calcareous soils in North America, including northern Mexico and south-western United States. The aim of this study was to assess the morphological and nutritional changes in pecan leaves affected by Zn deficiency as well as the Zn distribution within leaves. Zinc deficiency led to decreases in leaf chlorophyll concentrations, leaf area and trunk cross-sectional area. Zinc deficiency increased significantly the leaf concentrations of K and Ca, and decreased the leaf concentrations of Zn, Fe, Mn and Cu. All nutrient values found in Zn-deficient leaves were within the sufficiency ranges, with the only exception of Zn, which was approximately 44, 11 and 9 µg g(-1) dry weight in Zn-sufficient, moderately and markedly Zn-deficient leaves, respectively. Zinc deficiency led to decreases in leaf thickness, mainly due to a reduction in the thickness of the palisade parenchyma, as well as to increases in stomatal density and size. The localisation of Zn was determined using the fluorophore Zinpyr-1 and ratio-imaging technique. Zinc was mainly localised in the palisade mesophyll area in Zn-sufficient leaves, whereas no signal could be obtained in Zn-deficient leaves. The effects of Zn deficiency on the leaf characteristics of pecan trees include not only decreases in leaf chlorophyll and Zn concentrations, but also a reduction in the thickness of the palisade parenchyma, an increase in stomatal density and pore size and the practical disappearance of Zn leaf pools. These characteristics must be taken into account to design strategies to correct Zn deficiency in pecan tree in the field. Copyright © 2012 Society of Chemical Industry.
Effects of zinc complexes on the distribution of zinc in calcareous soil and zinc uptake by maize.
Alvarez, José M; Rico, María I
2003-09-10
The movement and availability of Zn from six organic Zn sources in a Typic Xerorthent (calcareous) soil were compared by incubation, column assay, and in a greenhouse study with maize (Zea mays L.). Zinc soil behavior was studied by sequential, diethylenetriaminepentaacetate, and Mehlich-3 extractions. In the incubation experiment, the differences in Zn concentration observed in the water soluble plus exchangeable fraction strongly correlated with Zn uptake by plants in the greenhouse experiment. Zinc applied to the surface of soil columns scarcely moved into deeper layers except for Zn-ethylenediaminetetraacetate (EDTA) that showed the greatest distribution of labile Zn throughout the soil and the highest proportion of leaching of the applied Zn. In the upper part of the column, changes in the chemical forms of all treatments occurred and an increase in organically complexed and amorphous Fe oxide-bound fractions was detected. However, the water soluble plus exchangeable fraction was not detected. The same results were obtained at the end of the greenhouse experiment. Significant increases were found in plant dry matter yield and Zn concentration as compared with the control treatment without Zn addition. Increasing Zn rate in the soil increased dry matter yield in all cases but Zn concentration in the plant increased only with Zn-EDTA and Zn-ethylenediaminedi-o-hydroxyphenyl-acetate (EDDHA) fertilizers. Higher Zn concentration in plants (50.9 mg kg(-)(1)) occurred when 20 mg Zn kg(-)(1) was added to the soil as Zn-EDTA. The relative effectiveness of the different Zn carriers in increasing Zn uptake was in the order: Zn-EDTA > Zn-EDDHA > Zn-heptagluconate >/= Zn-phenolate approximately Zn-polyflavonoid approximately Zn-lignosulfonate.
Wadhwa, Sham Kumar; Kazi, Tasneem Gul; Afridi, Hassan Imran; Talpur, Farah Naz; Naeemullah
2015-01-15
It was investigated that carcinogenic processes are linked with the imbalances of essential trace and toxic elements in body fluid and tissues of human. In this study, the relationship between carcinogenic elements, arsenic (As), cadmium (Cd), and nickel (Ni), and anti-carcinogenic elements, selenium (Se) and zinc (Zn), in the scalp hair of different female cancer patients (breast, cervix, mouth and ovarian) was studied. The scalp hair samples were collected from cancer patients and referent female subjects of the same age group and socioeconomic status. The scalp hair samples were oxidized by 65% nitric acid and 30% hydrogen peroxide by microwave oven and analyzed by atomic absorption spectrometry. The validity and accuracy of the methodology were checked using certified reference material of human hair (BCR 397). The mean concentrations of As, Cd, and Ni were found to be significantly higher in the scalp hair samples of cancerous patients as compared to referents, while reverse results were obtained in the case of Zn and Se (p<0.01). The study revealed that low level of trace elements (Se, Zn) and high level of heavy elements (As, Cd, and Ni) were associated with increased risk of cancer. Copyright © 2014 Elsevier B.V. All rights reserved.
Trace elements and antioxidant enzymes in Behçet's disease.
Saglam, K; Serce, A F; Yilmaz, M I; Bulucu, F; Aydin, A; Akay, C; Sayal, A
2002-07-01
Free oxygen radicals and insufficiency of antioxidant enzymes have been implicated in the pathogenesis of Behçet's disease (BD). Trace elements function as cofactors to antioxidant enzymes. The antioxidant system and trace elements were investigated in many different studies, including BD, but these subjects have not been investigated as a whole in these patients. The aim of the present study was to investigate the antioxidative system and trace elements in BD to contribute to the knowledge of pathogenesis and treatment of this disease. We examined glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities together with selenium (Se), copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe) levels in plasma and erythrocytes of 50 patients with BD and 30 healthy controls. It was found that in patients with BD, erythrocyte GSH-Px and SOD activities and erythrocyte Se, plasma Fe, Mn, and Zn levels were significantly lower than those of controls and that plasma Cu, erythrocyte Zn, and Mn levels were significantly higher in patients with BD. Insufficient antioxidant enzyme activities were observed in patients with BD. The mechanism(s) of this phenomenon is not clear. Therefore, supplementation with trace elements involved in the antioxidative processes may increase scavenger enzyme activities, and consequently, an improvement in clinical symptoms may be expected.
Effect of Supplemental Trace Minerals on Hsp-70 mRNA Expression in Commercial Broiler Chicken.
Rajkumar, U; Vinoth, A; Reddy, E Pradeep Kumar; Shanmugam, M; Rao, S V Rama
2018-01-02
The effects of supplementing the organic forms of selenium (Se), chromium (Cr), and zinc (Zn) on Hsp-70 mRNA expression and body weight in broiler chickens were evaluated. 200 chicks were equally distributed into stainless steel battery brooders at the rate of 5 birds per pen and reared under heat stress condition up to 42 nd day. The chicks were fed with three experimental diets supplemented with organic forms of Se (0.30 mg/kg), Cr (2 mg/kg), and Zn (40 mg/kg) during the starter and finisher phases and a control diet without any supplementation. On the 21st and 42nd day, 20 birds from each period were sacrificed and samples were collected for analysis. Organic Se, Cr, and Zn supplementation significantly (P < 0.05) reduced the expression of Hsp-70 mRNA levels. The Hsp-70 mRNA expression levels were significantly (P < 0.05) different between the tissues studied with spleen having the lowest expression level. Hsp-70 mRNA expression level was not affected by age of the birds. The study concluded that organic trace mineral (oTM) supplementation resulted in low Hsp-70 mRNA expression, indicating reduced heat stress in broilers.
Mibe, Kenji; Chou, I-Ming; Anderson, Alan J.; Mayanovic, Robert A.; Bassett, William A.
2009-01-01
A Raman spectral study was carried out on 3 solutions of varying concentration and bromide/zinc ratios. Spectra were collected at 11 different temperature-pressure conditions ranging from ambient to 500????C-0.9??GPa. Raman band assignments for zinc(II) bromide species reported in previous studies were used to determine the relative concentrations of ZnBr42-, ZnBr3-, ZnBr2, and ZnBr+ species at various temperatures and pressures. Our results are in close agreement with X-ray absorption spectroscopic (XAS) data, and confirm that the tetrabromo zinc(II) complex, ZnBr42-, is the predominant species up to 500????C in solutions having high Zn concentrations (1??m) and high bromide/zinc molar ratios ([Br]/[Zn] = 8). In agreement with previous solubility and Raman spectroscopic experiments, our measurements indicate that species with a lower number of halide ligands and charge are favored with increasing temperature in dilute solutions, and solutions with low bromide/zinc ratios ([Br]/[Zn] < 2.5). The Raman technique provides an independent experimental means of evaluating the quality of XAS analyses of data obtained from high temperature disordered systems. The combination of these two techniques provides complementary data on speciation and the structure of zinc(II) bromide complexes. The preponderance of the ZnBr42- species in highly saline brines at high temperature is consistent with the predominance of ZnCl42- in chloride-rich brines reported in previous XAS studies. Knowledge of Zn complexing in metal-rich highly saline brines is important for numerical models of ore deposition in high temperature systems such as skarns and porphyry-type deposits. ?? 2008 Elsevier B.V.
Tovar, Luis Raul; Olivos, Manuel; Gutierrez, Ma Eugenia
2008-12-01
Pulque is made by fermenting the agave sap or aguamiel of Agave atrovirens with a whole array of microorganisms present in the environment including several lactic acid bacteria and yeasts such as Saccharomyces cerevisiae. Ascorbic acid was determined in pulque and aguamiel, respectively. Phytase activity in lees, liquid and freeze-dried pulque was assayed by measuring the appearance of phosphate from phytate by a colorimetric method likewise phosphate from phytate present in fresh corn tortilla was measured after in vitro incubation with pulque. Iron, zinc, calcium, magnesium and selenium contents were measured in pulque and corn tortilla as well as in nixtamalized corn flour (NCF), the latter is used to make instant tortilla, since corn provides most of the energy as well as most of the phytate in the Mexican rural diet. Pulque showed phytase activity but much less ascorbic acid and iron than previously reported; additionally, phytase in pulque hydrolyzed most of phytate's corn tortilla. Lees, which is mostly made of pulque's microbiota, significantly accumulated iron and zinc but no selenium. NCF was fortified with iron by the manufacturers but poorly blended. There were significant differences on selenium content between tortillas samples, apparently some soils in central Mexico are selenium deficient. Moderate pulque intake appears to increase the bioavailability of iron and zinc bound by phytate in corn.
Yadrick, M K; Kenney, M A; Winterfeldt, E A
1989-01-01
Response of iron, copper, and zinc status to supplementation with Zn or a combination of Zn and Fe was assessed in adult females in a 10-wk study. Group Z received 50 mg Zn/d as Zn gluconate; group F-Z received 50 mg Fe as ferrous sulfate monohydrate in addition to the Zn. For Group Z, serum ferritin, hematocrit, and erythrocyte Cu,Zn-superoxide dismutase (ESOD) were significantly lower (p less than 0.05) after 10 wk supplementation compared with pretreatment levels. Serum Zn increased (p less than 0.01) but no change occurred in serum ceruloplasmin, hemoglobin, or salivary sediment Zn with treatment. For Group F-Z ESOD decreased with treatment as did salivary sediment Zn (p less than 0.05). Serum ferritin and serum Zn increased significantly, but hemoglobin, hematocrit, and ceruloplasmin were not affected by this treatment. Supplementation with Zn poses a risk to Fe and Cu status. Inclusion of Fe with Zn ameliorates the effect on Fe but not on Cu status.
Itsumura, Naoya; Inamo, Yasuji; Okazaki, Fumiko; Teranishi, Fumie; Narita, Hiroshi; Kambe, Taiho; Kodama, Hiroko
2013-01-01
Zinc concentrations in breast milk are considerably higher than those of the maternal serum, to meet the infant's requirements for normal growth and development. Thus, effective mechanisms ensuring secretion of large amounts of zinc into the milk operate in mammary epithelial cells during lactation. ZnT2 was recently found to play an essential role in the secretion of zinc into milk. Heterozygous mutations of human ZnT2 (hZnT2), including H54R and G87R, in mothers result in low (>75% reduction) secretion of zinc into the breast milk, and infants fed on the milk develop transient neonatal zinc deficiency. We identified two novel missense mutations in the SLC30A2/ZnT2 gene in a Japanese mother with low milk zinc concentrations (>90% reduction) whose infant developed severe zinc deficiency; a T to C transition (c.454T>C) at exon 4, which substitutes a tryptophan residue with an arginine residue (W152R), and a C to T transition (c.887C>T) at exon 7, which substitutes a serine residue with a leucine residue (S296L). Biochemical characterization using zinc-sensitive DT40 cells indicated that the W152R mutation abolished the abilities to transport zinc and to form a dimer complex, indicating a loss-of-function mutation. The S296L mutation retained both abilities but was extremely destabilized. The two mutations were found on different alleles, indicating that the genotype of the mother with low milk zinc was compound heterozygous. These results show novel compound heterozygous mutations in the SLC30A2/ZnT2 gene causing zinc deficiency in a breast-fed infant.
Itsumura, Naoya; Inamo, Yasuji; Okazaki, Fumiko; Teranishi, Fumie; Narita, Hiroshi; Kambe, Taiho; Kodama, Hiroko
2013-01-01
Zinc concentrations in breast milk are considerably higher than those of the maternal serum, to meet the infant's requirements for normal growth and development. Thus, effective mechanisms ensuring secretion of large amounts of zinc into the milk operate in mammary epithelial cells during lactation. ZnT2 was recently found to play an essential role in the secretion of zinc into milk. Heterozygous mutations of human ZnT2 (hZnT2), including H54R and G87R, in mothers result in low (>75% reduction) secretion of zinc into the breast milk, and infants fed on the milk develop transient neonatal zinc deficiency. We identified two novel missense mutations in the SLC30A2/ZnT2 gene in a Japanese mother with low milk zinc concentrations (>90% reduction) whose infant developed severe zinc deficiency; a T to C transition (c.454T>C) at exon 4, which substitutes a tryptophan residue with an arginine residue (W152R), and a C to T transition (c.887C>T) at exon 7, which substitutes a serine residue with a leucine residue (S296L). Biochemical characterization using zinc-sensitive DT40 cells indicated that the W152R mutation abolished the abilities to transport zinc and to form a dimer complex, indicating a loss-of-function mutation. The S296L mutation retained both abilities but was extremely destabilized. The two mutations were found on different alleles, indicating that the genotype of the mother with low milk zinc was compound heterozygous. These results show novel compound heterozygous mutations in the SLC30A2/ZnT2 gene causing zinc deficiency in a breast-fed infant. PMID:23741301
Deshpande, Paresh; Dapkekar, Ashwin; Oak, Manoj; Paknikar, Kishore; Rajwade, Jyutika
2018-01-01
Wheat is the staple food for most of the world's population; however, it is a poor source of zinc. Foliar fertilization of zinc via zinc loaded chitosan nanocarriers (Zn-CNP) post-anthesis has proved to be a promising approach for grain zinc enhancement in durum wheat as evidenced in our earlier study. However, the molecular mechanism of uptake of zinc via Zn-CNP remains unclear. Foliar application of Zn-CNP was performed at post anthesis stages in two durum wheat cultivars (MACS 3125 and UC1114, containing the Gpc-B1 gene), and expression levels of several metal-related genes were analyzed during early senescence. Zn-CNP application indeed caused changes in gene expression as revealed by qPCR data on representative genes involved in metal homeostasis, phloem transporters, and leaf senescence. Furthermore, zinc-regulated transporters and iron (Fe)-regulated transporter-like protein (ZIP) family [ZIP1, ZIP7, ZIP15], CA (carbonic anhydrase), and DMAS (2'-deoxymugineic acid synthase) in flag leaves exhibited significant correlation with zinc content in the seeds. The analysis of grain endosperm proteins showed enhancement of gamma gliadins while other gluten subunits decreased. Gene expression within ZIP family members varied with the type of cultivar mostly attributed to the Gpc-B1, concentration of external zinc ions as well as the type of tissue analyzed. Correlation analysis revealed the involvement of the selected genes in zinc enhancement. At the molecular level, uptake of zinc via Zn-CNP nanocarrier was comparable to the uptake of zinc via common zinc fertilizers i.e. ZnSO4.
Hierarchical Carbon Fibers with ZnO Nanowires for Volatile Sensing in Composite Curing (Postprint)
2014-07-01
needed to demonstrate the use of Zinc Oxide (ZnO) nanowire coated carbon fibers as a volatile sensor. ZnO nanowires are demonstrated to function as...processing. For this work, we report on the foundational study needed to demonstrate the use of Zinc Oxide (ZnO) nanowire coated carbon fibers as a...array of ZnO nanowires. Zinc oxide nanowires become more conductive in the presence of ethanol – as analyte sorbs to the surface, electron density
Zhang, Ling; Wang, Yong-Xia; Xiao, Xue; Wang, Jiang-Shui; Wang, Qian; Li, Kai-Xuan; Guo, Tian-Yu; Zhan, Xiu-An
2017-08-01
An experiment was conducted to investigate the effects of zinc glycinate (Zn-Gly) supplementation as an alternative for zinc sulphate (ZnSO 4 ) on productive and reproductive performance, zinc (Zn) concentration and antioxidant status in broiler breeders. Six hundred 39-week-old Lingnan Yellow broiler breeders were randomly assigned to 6 groups consisting of 4 replicates with 25 birds each. Breeders were fed a basal diet (control group, 24 mg Zn/kg diet), basal diet supplemented with 80 mg Zn/kg diet from ZnSO 4 or basal diet supplemented with 20, 40, 60 and 80 mg Zn/kg diet from Zn-Gly. The experiment lasted for 8 weeks after a 4-week pre-test with the basal diet, respectively. Results showed that Zn supplementation, regardless of sources, improved (P < 0.05) the feed conversion ratio (kilogram of feed/kilogram of egg) and decreased broken egg rate, and elevated (P < 0.05) the qualified chick rate. Compared with the ZnSO 4 group, the 80 mg Zn/kg Zn-Gly group significantly increased (P < 0.05) average egg weight, fertility, hatchability and qualified chick rate, whereas it decreased (P < 0.05) broken egg rate. The Zn concentrations in liver and muscle were significantly higher (P < 0.05) in 80 mg Zn/kg Zn-Gly group than that in ZnSO 4 group. Compared with ZnSO 4 group, 80 mg Zn/kg Zn-Gly group significantly elevated (P < 0.05) the mRNA abundances of metallothionein (MT) and copper-zinc superoxide (Cu-Zn SOD), as well as the Cu-Zn SOD activity and MT concentration in liver. Moreover, the 80 mg Zn/kg Zn-Gly group had higher (P < 0.05) serum T-SOD and Cu-Zn SOD activities than that in the ZnSO 4 group. This study indicated that supplementation of Zn in basal diet improved productive and reproductive performance, Zn concentration and antioxidant status in broiler breeders, and the 80 mg Zn/kg from Zn-Gly was the optimum choice for broiler breeders compared with other levels of Zn from Zn-Gly and 80 mg/kg Zn from ZnSO 4 .
Follana-Berná, Jorge; Seetharaman, Sairaman; Martín-Gomis, Luis; Charalambidis, Georgios; Trapali, Adelais; Karr, Paul A; Coutsolelos, Athanassios G; Fernández-Lázaro, Fernando; D'Souza, Francis; Sastre-Santos, Ángela
2018-03-14
A new zinc phthalocyanine-zinc porphyrin dyad (ZnPc-ZnP) fused through a pyrazine ring has been synthesized as a receptor for imidazole-substituted C 60 (C 60 Im) electron acceptor. Self-assembly via metal-ligand axial coordination and the pertinent association constants in solution were determined by 1 H-NMR, UV-Vis and fluorescence titration experiments at room temperature. The designed host was able to bind up to two C 60 Im electron acceptor guest molecules to yield C 60 Im:ZnPc-ZnP:ImC 60 donor-acceptor supramolecular complex. The spectral data showed that the two binding sites behave independently with binding constants similar in magnitude. Steady-state fluorescence studies were indicative of an efficient singlet-singlet energy transfer from zinc porphyrin to zinc phthalocyanine within the fused dyad. Accordingly, the transient absorption studies covering a wide timescale of femto-to-milli seconds revealed ultrafast energy transfer from 1 ZnP* to ZnPc (k EnT ∼ 10 12 s -1 ) in the fused dyad. Further, a photo induced electron transfer was observed in the supramolecularly assembled C 60 Im:ZnPc-ZnP:ImC 60 donor-acceptor complex leading to charge separated states, which persisted for about 200 ns.
NASA Astrophysics Data System (ADS)
Song, Lu; Wang, Yafei; Ma, Jing; Zhang, Qinghua; Shen, Zhijian
2018-06-01
Zinc oxide (ZnO) is a competitive candidate in semiconductor photocatalysts, only if the efficiency could be fully optimized especially by tailored nanostructures. Here we report a kind of core/shell structured Zn/ZnO nanoparticles with enhanced photocatalysis efficiency, which were synthesized by a highly-productive gaseous laser ablation method. The nanodroplets generated by laser ablation would be reduced to zinc in the protective atmosphere, and further be oxidized at surface to form a specific core/shell structured Zn/ZnO nanoparticles within seconds. Thanks to the formation of this Zn-ZnO Schottky junction, the photocatalysis degradation efficiency of such core/shell Zn/ZnO nanostructure is significantly improved owing to the enhanced visible light absorption and inhibited carrier recombination by introducing the metallic zinc.
Zinc-Containing Hydroxyapatite Enhances Cold-Light-Activated Tooth Bleaching Treatment In Vitro
Shi, Xinchang
2017-01-01
Cold-light bleaching treatment has grown to be a popular tooth whitening procedure in recent years, but its side effect of dental enamel demineralization is a widespread problem. The aim of this study was to synthesize zinc-substituted hydroxyapatite as an effective biomaterial to inhibit demineralization or increase remineralization. We synthesized zinc-substituted hydroxyapatite containing different zinc concentrations and analysed the product using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and energy dispersive spectrometer (EDS). The biological assessment of Zn-HA was conducted by CCK-8 assay and bacterial inhibition tests. pH cycling was performed to estimate the effect of Zn-HA on the enamel surface after cold-light bleaching treatment. The XRD, FTIR, and EDS results illustrated that zinc ions and hydroxyapatite combined in two forms: (1) Zn2+ absorbed on the surface of HA crystal and (2) Zn2+ incorporated into the lattice of HA. The results indicated that 2% Zn-HA, 4% Zn-HA, and 8% Zn-HA effectively inhibited the growth of bacteria yet showed poor biocompatibility, whereas 1% Zn-HA positively affected osteoblast proliferation. The XRD and scanning electron microscopy (SEM) results showed that the use of Zn-HA in pH cycling is obviously beneficial for enamel remineralization. Zinc-substituted hydroxyapatite could be a promising biomaterial for use in cold-light bleaching to prevent enamel demineralization. PMID:29159178
Long Life, High Energy Silver-Zinc Batteries
NASA Technical Reports Server (NTRS)
Kainthla, Ramesh; Coffey, Brendan
2003-01-01
This viewgraph presentation includes: 1) an introduction to RBC Technologies; 2) Rechargeable Zinc Alkaline (RZA(tm)) Systems which include MnO2/Zn, Ni/Zn, Ag/Zn, and Zn/Air; and 3) RZA Silver/Zinc Battery Developments. Conclusions include the following: 1)Issues with long term wet life and cycle life of the silver/zinc battery system are being overcome through the use of new anode formulations and separator designs; 2) Performance may exceed 200 cycles to 80% of initial capacity and ultimate wet-life of > 36 months; and 3) Rechargeable silver/zinc batteries available in prismatic and cylindrical formats may provide a high energy, high power alternative to lithium-ion in military/aerospace applications.
Yoo, Min Heui; Kim, Tae-Youn; Yoon, Young Hee; Koh, Jae-Young
2016-01-01
To investigate the role of synaptic zinc in the ASD pathogenesis, we examined zinc transporter 3 (ZnT3) null mice. At 4–5 weeks of age, male but not female ZnT3 null mice exhibited autistic-like behaviors. Cortical volume and neurite density were significantly greater in male ZnT3 null mice than in WT mice. In male ZnT3 null mice, consistent with enhanced neurotrophic stimuli, the level of BDNF as well as activity of MMP-9 was increased. Consistent with known roles for MMPs in BDNF upregulation, 2.5-week treatment with minocycline, an MMP inhibitor, significantly attenuated BDNF levels as well as megalencephaly and autistic-like behaviors. Although the ZnT3 null state removed synaptic zinc, it rather increased free zinc in the cytosol of brain cells, which appeared to increase MMP-9 activity and BDNF levels. The present results suggest that zinc dyshomeostasis during the critical period of brain development may be a possible contributing mechanism for ASD. PMID:27352957
Yoo, Min Heui; Kim, Tae-Youn; Yoon, Young Hee; Koh, Jae-Young
2016-06-29
To investigate the role of synaptic zinc in the ASD pathogenesis, we examined zinc transporter 3 (ZnT3) null mice. At 4-5 weeks of age, male but not female ZnT3 null mice exhibited autistic-like behaviors. Cortical volume and neurite density were significantly greater in male ZnT3 null mice than in WT mice. In male ZnT3 null mice, consistent with enhanced neurotrophic stimuli, the level of BDNF as well as activity of MMP-9 was increased. Consistent with known roles for MMPs in BDNF upregulation, 2.5-week treatment with minocycline, an MMP inhibitor, significantly attenuated BDNF levels as well as megalencephaly and autistic-like behaviors. Although the ZnT3 null state removed synaptic zinc, it rather increased free zinc in the cytosol of brain cells, which appeared to increase MMP-9 activity and BDNF levels. The present results suggest that zinc dyshomeostasis during the critical period of brain development may be a possible contributing mechanism for ASD.
Shakeel, Muhammad; Rais, Afroz; Hassan, Muhammad Nadeem; Hafeez, Fauzia Yusuf
2015-01-01
Plant associated rhizobacteria prevailing in different agro-ecosystems exhibit multiple traits which could be utilized in various aspect of sustainable agriculture. Two hundred thirty four isolates were obtained from the roots of basmati-385 and basmati super rice varieties growing in clay loam and saline soil at different locations of Punjab (Pakistan). Out of 234 isolates, 27 were able to solubilize zinc (Zn) from different Zn ores like zinc phosphate [Zn3 (PO4)2], zinc carbonate (ZnCO3) and zinc oxide (ZnO). The strain SH-10 with maximum Zn solubilization zone of 24 mm on Zn3 (PO4)2ore and strain SH-17 with maximum Zn solubilization zone of 14–15 mm on ZnO and ZnCO3ores were selected for further studies. These two strains solubilized phosphorous (P) and potassium (K) in vitro with a solubilization zone of 38–46 mm and 47–55 mm respectively. The strains also suppressed economically important rice pathogens Pyricularia oryzae and Fusarium moniliforme by 22–29% and produced various biocontrol determinants in vitro. The strains enhanced Zn translocation toward grains and increased yield of basmati-385 and super basmati rice varieties by 22–49% and 18–47% respectively. The Zn solubilizing strains were identified as Bacillus sp. and Bacillus cereus by 16S rRNA gene analysis. PMID:26635754
Zinc transporter 3 is involved in learned fear and extinction, but not in innate fear.
Martel, Guillaume; Hevi, Charles; Friebely, Olivia; Baybutt, Trevor; Shumyatsky, Gleb P
2010-11-01
Synaptically released Zn²+ is a potential modulator of neurotransmission and synaptic plasticity in fear-conditioning pathways. Zinc transporter 3 (ZnT3) knock-out (KO) mice are well suited to test the role of zinc in learned fear, because ZnT3 is colocalized with synaptic zinc, responsible for its transport to synaptic vesicles, highly enriched in the amygdala-associated neural circuitry, and ZnT3 KO mice lack Zn²+ in synaptic vesicles. However, earlier work reported no deficiency in fear memory in ZnT3 KO mice, which is surprising based on the effects of Zn²+ on amygdala synaptic plasticity. We therefore reexamined ZnT3 KO mice in various tasks for learned and innate fear. The mutants were deficient in a weak fear-conditioning protocol using single tone-shock pairing but showed normal memory when a stronger, five-pairing protocol was used. ZnT3 KO mice were deficient in memory when a tone was presented as complex auditory information in a discontinuous fashion. Moreover, ZnT3 KO mice showed abnormality in trace fear conditioning and in fear extinction. By contrast, ZnT3 KO mice had normal anxiety. Thus, ZnT3 is involved in associative fear memory and extinction, but not in innate fear, consistent with the role of synaptic zinc in amygdala synaptic plasticity.
Supersaturation of aqueous species and hydrothermal crystal growth of ZnO
NASA Astrophysics Data System (ADS)
Gelabert, M. C.
2015-05-01
Synthesis of ZnO crystals prepared with zinc acetate or chloride, disodium dihydrogen ethylenediaminetetraacetate (EDTA), potassium hydroxide and sodium triflate at 200 °C and variable pH 8-12 is reported. Crystals were imaged and size-analyzed with optical microscopy. Using aqueous speciation modeling software, supersaturation dependence on pH was calculated for five zinc species-Zn2+, Zn(OH)+, Zn(OH)2, Zn(OH)3- and Zn(OH)42- -to investigate connections between predominate crystal habits at different pH and dominant aqueous species. For zinc acetate and chloride systems, the zinc species with highest supersaturation was Zn(OH)42- throughout the pH 8-12 range, and the second highest was Zn2+ or Zn(OH)3-, with a crossover pH of 10.2-10.4 depending on counterion. The prominence of the tetrahydroxyl zinc species in ZnO crystal growth is supported by these calculations, and total supersaturation is inversely proportional to average crystal sizes, as expected. Optical microscopy and size analysis on products revealed crystals with a needle or prismatic habit throughout the studied pH range, and the change in aspect ratio correlates with supersaturation changes for the Zn2+ in this pH range, thus suggesting that growth rates along the [001] crystallographic direction are affected by small concentration changes of this ion.
Liu, Dunyi; Liu, Yumin; Zhang, Wei; Chen, Xinping; Zou, Chunqin
2017-01-01
Zinc (Zn) deficiency is a common disorder of humans in developing countries. The effect of Zn biofortification (via application of six rates of Zn fertilizer to soil) on Zn bioavailability in wheat grain and flour and its impacts on human health was evaluated. Zn bioavailability was estimated with a trivariate model that included Zn homeostasis in the human intestine. As the rate of Zn fertilization increased, the Zn concentration increased in all flour fractions, but the percentages of Zn in standard flour (25%) and bran (75%) relative to total grain Zn were constant. Phytic acid (PA) concentrations in grain and flours were unaffected by Zn biofortification. Zn bioavailability and the health impact, as indicated by disability-adjusted life years (DALYs) saved, increased with the Zn application rate and were greater in standard and refined flour than in whole grain and coarse flour. The biofortified standard and refined flour obtained with application of 50 kg/ha ZnSO4·7H2O met the health requirement (3 mg of Zn obtained from 300 g of wheat flour) and reduced DALYs by >20%. Although Zn biofortification increased Zn bioavailability in standard and refined flour, it did not reduce the bioavailability of iron, manganese, or copper in wheat flour. PMID:28481273
Liu, Dunyi; Liu, Yumin; Zhang, Wei; Chen, Xinping; Zou, Chunqin
2017-05-06
Zinc (Zn) deficiency is a common disorder of humans in developing countries. The effect of Zn biofortification (via application of six rates of Zn fertilizer to soil) on Zn bioavailability in wheat grain and flour and its impacts on human health was evaluated. Zn bioavailability was estimated with a trivariate model that included Zn homeostasis in the human intestine. As the rate of Zn fertilization increased, the Zn concentration increased in all flour fractions, but the percentages of Zn in standard flour (25%) and bran (75%) relative to total grain Zn were constant. Phytic acid (PA) concentrations in grain and flours were unaffected by Zn biofortification. Zn bioavailability and the health impact, as indicated by disability-adjusted life years (DALYs) saved, increased with the Zn application rate and were greater in standard and refined flour than in whole grain and coarse flour. The biofortified standard and refined flour obtained with application of 50 kg/ha ZnSO₄·7H₂O met the health requirement (3 mg of Zn obtained from 300 g of wheat flour) and reduced DALYs by >20%. Although Zn biofortification increased Zn bioavailability in standard and refined flour, it did not reduce the bioavailability of iron, manganese, or copper in wheat flour.
NASA Astrophysics Data System (ADS)
Schmid, M.; Willert-Porada, M.
2017-05-01
Silica coatings on zinc particles as anode material for alkaline zinc air batteries are expected to reduce early formation of irreversible ZnO passivation layers during discharge by controlling zinc dissolution and precipitation of supersaturated zincates, Zn(OH)42-. Zinc particles were coated with SiO2 (thickness: 15 nm) by chemical solution deposition and with Zn2SiO4 (thickness: 20 nm) by chemical vapor deposition. These coatings formed a Si(OH)4 gel in aqueous KOH and retarded hydrogen evolution by 40%. By treatment in aqueous KOH and drying afterwards, the silica coatings were changed into ZnO-K2O·SiO2 layers. In this work, the electrochemical performance of such coated zinc particles is investigated by different electrochemical methods in order to gain a deeper understanding of the mechanisms of the coatings, which reduce zinc passivation. In particular, zinc utilization and changes in internal resistance are investigated. Moreover, methods for determination of diffusion coefficients, charge carrier numbers and activation energies for electrochemical oxidation are determined. SiO2-coated zinc particles show improved discharge capacity (CVD-coated zinc: 69% zinc utilization, CSD-coated zinc: 62% zinc utilization) as compared to as-received zinc (57% zinc utilization) at C/20 rate, by reducing supersaturation of zincates. Additionally, KOH-modified SiO2-coated zinc particles enhance rechargeability after 100% depth-of-discharge.
Puchau, Blanca; Zulet, María A; Urtiaga, Goizane; Navarro-Blasco, Iñigo; Martínez, J Alfredo
2009-10-01
The purpose of this study was to evaluate the potential associations between serum asymmetric dimethylarginine (ADMA) and several anthropometric, biochemical, and lifestyle features in healthy young adults, emphasizing on the putative effects of the antioxidant intake on ADMA concentrations. Anthropometric and blood pressure measurements as well as lifestyle features and antioxidant intake were analyzed in 93 healthy young adults aged 18 to 34 years. Fasting blood samples were collected for the measurement of glucose, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triacylglycerols, and ADMA concentrations, as well as erythrocyte glutathione peroxidase activity. Nail samples were collected for the analysis of selenium and zinc concentrations. Values of body mass index (P = .004), waist circumference (P = .008), waist-to-height ratio (P = .046), systolic blood pressure (P < .001), serum glucose (P < .001), and nail selenium (P = .004) and zinc (P = .018) were significantly different between subjects with serum ADMA higher and lower than the median (cutoff, 458 nmol/L). Furthermore, ADMA showed a positive association with several adiposity markers such as body weight (P < .001), body mass index (P < .001), waist circumference (P = .006), waist-to-height ratio (P = .020), body fat mass (P = .001), systolic blood pressure (P = .001), and serum glucose (P < .001), whereas erythrocyte glutathione peroxidase activity (P = .021) and nail selenium (P = .040) and zinc values (P = .013) were statistically significant negative predictors of ADMA concentrations. In conclusion, ADMA seems to be related with selenium and zinc status and several anthropometric and biochemical measurements linked to metabolic syndrome in apparently healthy young adults. These findings support a role for antioxidant/trace element intake in the modulation of ADMA, whose assessment may be a marker of metabolic syndrome manifestations.
Therapeutic effects of transdermal systems containing zinc-related materials on thermal burn rats.
Otsuka, Makoto; Hatakeyama, Haruna; Shikamura, Masayuki; Otsuka, Kuniko; Ito, Atsuo
2015-01-01
The aim of the present study is to evaluate the efficacy of slow zinc (Zn) release from β-tricalcium phosphate powder (ZnTCP) containing 10 mol% Zn on rats with thermal burns. The first-aid tapes were contained zinc sulfate (ZnSO4) solution, ZnTCP suspensions or zinc oxide ointment. After thermal burn treatments were performed on Zn-deficient rats, the groups D1, D2 and D3 were treated with tapes containing ZnTCP, ZnSO4 and zinc oxide ointment. The effects of the tapes on wound area, plasma Zn levels and alkaline phosphatase activity (Alp) were investigated. The wound area profiles of all rat groups could be separated into before and after the scab formation at around day 6. The area under the curve (Aw-AUC) for wound area profiles, therefore, was evaluated as an index of therapeutic scores for the thermal wound. The order of Aw-AUC was D3>C>D2>D1. The degree of expansion at the initial stage by thermal burns of group D1 was the lowest and that of group D2 was the highest, and the order was D1
Unravelling the origin of the giant Zn deficiency in wurtzite type ZnO nanoparticles
Renaud, Adèle; Cario, Laurent; Rocquelfelte, Xavier; Deniard, Philippe; Gautron, Eric; Faulques, Eric; Das, Tilak; Cheviré, François; Tessier, Franck; Jobic, Stéphane
2015-01-01
Owing to its high technological importance for optoelectronics, zinc oxide received much attention. In particular, the role of defects on its physical properties has been extensively studied as well as their thermodynamical stability. In particular, a large concentration of Zn vacancies in ZnO bulk materials is so far considered highly unstable. Here we report that the thermal decomposition of zinc peroxide produces wurtzite-type ZnO nanoparticles with an extraordinary large amount of zinc vacancies (>15%). These Zn vacancies segregate at the surface of the nanoparticles, as confirmed by ab initio calculations, to form a pseudo core-shell structure made of a dense ZnO sphere coated by a Zn free oxo-hydroxide mono layer. In others terms, oxygen terminated surfaces are privileged over zinc-terminated surfaces for passivation reasons what accounts for the Zn off-stoichiometry observed in ultra-fine powdered samples. Such Zn-deficient Zn1-xO nanoparticles exhibit an unprecedented photoluminescence signature suggesting that the core-shell-like edifice drastically influences the electronic structure of ZnO. This nanostructuration could be at the origin of the recent stabilisation of p-type charge carriers in nitrogen-doped ZnO nanoparticles. PMID:26333510
Chemical bath deposited ZnS buffer layer for Cu(In,Ga)Se2 thin film solar cell
NASA Astrophysics Data System (ADS)
Hong, Jiyeon; Lim, Donghwan; Eo, Young-Joo; Choi, Changhwan
2018-02-01
The dependence of Zn precursors using zinc sulfate (ZnSO4), zinc acetate (Zn(CH3COO)2), and zinc chloride (ZnCl2) on the characteristics of the chemical bath deposited ZnS thin film used as a buffer layer of Cu(In,Ga)Se2 (CIGS) thin film solar cell was studied. It is found that the ZnS film deposition rate increases with higher stability constant during decomplexation reaction of zinc ligands, which affects the crack formation and the amount of sulfur and oxygen contents within the film. The band gap energies of all deposited films are in the range of 3.40-3.49 eV, which is lower than that of the bulk ZnS film due to oxygen contents within the films. Among the CIGS solar cells having ZnS buffer layers prepared by different Zn precursors, the best cell efficiency with 9.4% was attained using Zn(CH3COO)2 precursor due to increased Voc mainly. This result suggests that [Zn(NH3)4]2+ complex formation should be well controlled to attain the high quality ZnS thin films.
Crystal structures of ZnCl2·2.5H2O, ZnCl2·3H2O and ZnCl2·4.5H2O
Hennings, Erik; Schmidt, Horst; Voigt, Wolfgang
2014-01-01
The formation of different complexes in aqueous solutions is an important step in understanding the behavior of zinc chloride in water. The structure of concentrated ZnCl2 solutions is governed by coordination competition of Cl− and H2O around Zn2+. According to the solid–liquid phase diagram, the title compounds were crystallized below room temperature. The structure of ZnCl2·2.5H2O contains Zn2+ both in a tetrahedral coordination with Cl− and in an octahedral environment defined by five water molecules and one Cl− shared with the [ZnCl4]2− unit. Thus, these two different types of Zn2+ cations form isolated units with composition [Zn2Cl4(H2O)5] (pentaaqua-μ-chlorido-trichloridodizinc). The trihydrate {hexaaquazinc tetrachloridozinc, [Zn(H2O)6][ZnCl4]}, consists of three different Zn2+ cations, one of which is tetrahedrally coordinated by four Cl− anions. The two other Zn2+ cations are each located on an inversion centre and are octahedrally surrounded by water molecules. The [ZnCl4] tetrahedra and [Zn(H2O)6] octahedra are arranged in alternating rows parallel to [001]. The structure of the 4.5-hydrate {hexaaquazinc tetrachloridozinc trihydrate, [Zn(H2O)6][ZnCl4]·3H2O}, consists of isolated octahedral [Zn(H2O)6] and tetrahedral [ZnCl4] units, as well as additional lattice water molecules. O—H⋯O hydrogen bonds between the water molecules as donor and ZnCl4 tetrahedra and water molecules as acceptor groups leads to the formation of a three-dimensional network in each of the three structures. PMID:25552980
Wolf, R.E.; Todd, A.S.; Brinkman, S.; Lamothe, P.J.; Smith, K.S.; Ranville, J.F.
2009-01-01
This study evaluates the potential use of stable zinc isotopes in toxicity studies measuring zinc uptake by the gills of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). The use of stable isotopes in such studies has several advantages over the use of radioisotopes, including cost, ease of handling, elimination of permit requirements, and waste disposal. A pilot study using brown trout was performed to evaluate sample preparation methods and the ability of a quadrupole inductively coupled plasma mass spectrometer (ICP-MS) system to successfully measure changes in the 67Zn/66Zn ratios for planned exposure levels and duration. After completion of the pilot study, a full-scale zinc exposure study using rainbow trout was performed. The results of these studies indicate that there are several factors that affect the precision of the measured 67Zn/66Zn ratios in the sample digests, including variations in sample size, endogenous zinc levels, and zinc uptake rates by individual fish. However, since these factors were incorporated in the calculation of the total zinc accumulated by the gills during the exposures, the data obtained were adequate for their intended use in calculating zinc binding and evaluating the influences of differences in water quality parameters.
NASA Astrophysics Data System (ADS)
Suresh, Joghee; Pradheesh, Ganeshan; Alexramani, Vincent; Sundrarajan, Mahalingam; Hong, Sun Ig
2018-03-01
In this work we aim to synthesize biocompatible ZnO nanoparticles from the zinc nitrate via green process using leaf extracts of the Costus pictus D. Don medicinal plant. FTIR studies confirm the presence of biomolecules and metal oxides. X-ray diffraction (XRD) structural analysis reveals the formation of pure hexagonal phase structures of ZnO nanoparticles. The surface morphologies of ZnO nanoparticles observed under a scanning electron microscope (SEM) suggest that most ZnO crystallites are hexagonal. EDX analysis confirms the presence of primarily zinc and oxygen. TEM images show that biosynthesized zinc oxide nanoparticles are hexagonal and spherical. The plausible formation mechanisms of zinc oxide nanoparticles are also predicted. The biosynthesized zinc oxide nanoparticles exhibit strong antimicrobial behavior against bacterial and fungal species when employing the agar diffusion method. Synthesized ZnO nanoparticles exhibit anticancer activity against Daltons lymphoma ascites (DLA) cells as well as antimicrobial activity against some bacterial and fungal strains.
Klauke, Karsten; Zaitsau, Dzmitry H; Bülow, Mark; He, Li; Klopotowski, Maximilian; Knedel, Tim-Oliver; Barthel, Juri; Held, Christoph; Verevkin, Sergey P; Janiak, Christoph
2018-04-03
Three selenoether-functionalized ionic liquids (ILs) of N-[(phenylseleno)methylene]pyridinium (1), N-(methyl)- (2) and N-(butyl)-N'-[(phenylseleno)methylene]imidazolium (3) with bis(trifluoromethanesulfonyl)imide anions ([NTf2]) were prepared from pyridine, N-methylimidazole and N-butylimidazole with in situ obtained phenylselenomethyl chloride, followed by ion exchange to give the desired compounds. The crystal structures of the bromide and tetraphenylborate salts of the above cations (1-Br, 2-BPh4 and 3-BPh4) confirm the formation of the desired cations and indicate a multitude of different supramolecular interactions besides the dominating Coulomb interactions between the cations and anions. The vaporization enthalpies of the synthesized [NTf2]-containing ILs were determined by means of a quartz-crystal microbalance method (QCM) and their densities were measured with an oscillating U-tube. These thermodynamic data have been used to develop a method for assessment of miscibility of conventional solvents in the selenium-containing ILs by using Hildebrandt solubility parameters, as well as for modeling with the electrolyte perturbed-chain statistical associating fluid theory (ePC-SAFT) method. Furthermore, structure-property relations between selenoether-functionalized and similarly shaped corresponding aryl-substituted imidazolium- and pyridinium-based ILs were analyzed and showed that the contribution of the selenium moiety to the enthalpy of vaporization of an IL is equal to the contribution of a methylene (CH2) group. An incremental approach to predict vaporization enthalpies of ILs by a group contribution method has been developed. The reaction of these ILs with zinc acetate dihydrate under microwave irradiation led to ZnSe nanoparticles of an average diameter between 4 and 10 nm, depending on the reaction conditions.
NASA Astrophysics Data System (ADS)
Chernomordik, Boris David
Significant reduction in greenhouse gas emission and pollution associated with the global power demand can be accomplished by supplying tens-of-terawatts of power with solar cell technologies. No one solar cell material currently on the market is poised to meet this challenge due to issues such as manufacturing cost, material shortage, or material toxicity. For this reason, there is increasing interest in efficient light-absorbing materials that are comprised of abundant and non-toxic elements for thin film solar cell. Among these materials are copper zinc tin sulfide (Cu2ZnSnS4, or CZTS), copper zinc tin selenide (Cu2ZnSnSe4, or CZTSe), and copper zinc tin sulfoselenide alloys [Cu2ZnSn(SxSe1-x )4, or CZTSSe]. Laboratory power conversion efficiencies of CZTSSe-based solar cells have risen to almost 13% in less than three decades of research. Meeting the terawatt challenge will also require low cost fabrication. CZTSSe thin films from annealed colloidal nanocrystal coatings is an example of solution-based methods that can reduce manufacturing costs through advantages such as high throughput, high material utilization, and low capital expenses. The film microstructure and grain size affects the solar cell performance. To realize low cost commercial production and high efficiencies of CZTSSe-based solar cells, it is necessary to understand the fundamental factors that affect crystal growth and microstructure evolution during CZTSSe annealing. Cu2ZnSnS4 (CZTS) nanocrystals were synthesized via thermolysis of single-source cation and sulfur precursors copper, zinc and tin diethyldithiocarbamates. The average nanocrystal size could be tuned between 2 nm and 40 nm, by varying the synthesis temperature between 150 °C and 340 °C. The synthesis is rapid and is completed in less than 10 minutes. Characterization by X-ray diffraction, Raman spectroscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy confirm that the nanocrystals are nominally stoichiometric kesterite CZTS. The ~2 nm nanocrystals synthesized at 150 °C exhibit quantum confinement, with a band gap of 1.67 eV. Larger nanocrystals have the expected bulk CZTS band gap of 1.5 eV. Several micron thick films deposited by drop casting colloidal dispersions of ~40 nm CZTS nanocrystals were crack-free, while those cast using 5 nm nanocrystals had micron-scale cracks. We showed the applicability of these nanocrystal coatings for thin film solar cells by demonstrating a CZTS thin film solar cell using coatings annealed in a sulfur atmosphere. We conducted a systematic study of the factors controlling crystal growth and microstructure development during sulfidation annealing of films cast from colloidal dispersions of CZTS nanocrystals. The film microstructure is controlled by concurrent normal and abnormal grain growth. At 600 °C to 800 °C and low sulfur pressures (50 Torr), abnormal CZTS grains up to 10 microm in size grow on the surface of the CZTS nanocrystal film via transport of material from the nanocrystals to the abnormal grains. Meanwhile, the nanocrystals coarsen, sinter, and undergo normal grain growth. The driving force for abnormal grain growth is the reduction in total energy associated with the high surface area nanocrystals. The eventual coarsening of the CZTS nanocrystals reduces the driving force for abnormal crystal growth. Increasing the sulfur pressure by an order of magnitude to 500 Torr accelerates both normal and abnormal crystal growth though sufficient acceleration of the former eventually reduces the latter by reducing the driving force for abnormal grain growth. For example, at high temperatures (700-800 oC) and sulfur pressures (500 Torr) normal grains quickly grow to ~500 nm which significantly reduces abnormal grain growth. The use of soda lime glass as the substrate, instead of quartz, accelerates normal grain growth. Normal grains grow to ~500 nm at lower temperatures and sulfur pressures (i.e., 600 °C and 50 Torr) than those required to grow the same size grains on quartz (700 °C and 500 Torr). Moreover, carbon is removed by volatilization from films where normal crystal growth is fast. There are significant differences in the chemistry and in the thermodynamics involved during selenization and sulfidation of CZTS colloidal nanocrystal coatings to form CZTSSe or CZTS thin films, respectively. To understand these differences, the roles of vapor pressure, annealing temperature, and heating rate in the formation of different microstructures of CZTSSe films were investigated. Selenization produced a bi-layer microstructure where a large CZTSSe-crystal layer grew on top of a nanocrystalline carbon-rich bottom layer. Differences in the chemistry of carbon and selenium and that of carbon and sulfur account for this segregation of carbon during selenization. For example, CSe 2 and CS2, both volatile species, may form as a result of chalcogen interactions with carbon during annealing. Unlike CS2, however, CSe2 may readily polymerize at room temperature and one atmosphere. Carbon segregation may be occurring only during selenization due to the formation of a Cu-Se polymer [i.e., (CSe 2-x)] within the nanocrystal film. The (CSe2-x) inhibits sintering of nanocrystals in the bottom layer. Additionally, a fast heating rate results in temperature variations that lead to transient condensation of selenium on the film. This is observed only during selenization because the equilibrium vapor pressure of selenium is lower than that of sulfur. The presence of liquid selenium during sintering accelerates coarsening and densification of the normal crystal layer (no abnormal crystal layer) by liquid phase sintering. Carbon segregation does not occur where liquid selenium was present.
Effects of enhanced zinc and copper in drinking water on spatial memory and fear conditioning
Chrosniak, L.D.; Smith, L.N.; McDonald, C.G.; Jones, B.F.; Flinn, J.M.
2006-01-01
Ingestion of enhanced zinc can cause memory impairments and copper deficiencies. This study examined the effect of zinc supplementation, with and without copper, on two types of memory. Rats raised pre- and post-natally on 10 mg/kg ZnCO3 or ZnSO4 in the drinking water were tested in a fear-conditioning experiment at 11 months of age. Both zinc groups showed a maladaptive retention of fearful memories compared to controls raised on tap water. Rats raised on 10 mg/kg ZnCO3, 10 mg/kg ZnCO3 + 0.25 mg/kg CuCl2, or tap water, were tested for spatial memory ability at 3 months of age. Significant improvements in performance were found in the ZnCO3 + CuCl2 group compared to the ZnCO3 group, suggesting that some of the cognitive deficits associated with zinc supplementation may be remediated by addition of copper. ?? 2005 Elsevier B.V. All rights reserved.
Structural Characterization and Antifungal Studies of Zinc-Doped Hydroxyapatite Coatings.
Iconaru, Simona Liliana; Prodan, Alina Mihaela; Buton, Nicolas; Predoi, Daniela
2017-04-09
The present study is focused on the synthesis, characterization and antifungal evaluation of zinc-doped hydroxyapatite (Zn:HAp) coatings. The Zn:HAp coatings were deposited on a pure Si (Zn:HAp_Si) and Ti (Zn:HAp_Ti) substrate by a sol-gel dip coating method using a zinc-doped hydroxyapatite nanogel. The nature of the crystal phase was determined by X-ray diffraction (XRD). The crystalline phase of the prepared Zn:HAp composite was assigned to hexagonal hydroxyapatite in the P6 3/m space group. The colloidal properties of the resulting Zn:HAp (x Zn = 0.1) nanogel were analyzed by Dynamic Light Scattering (DLS) and zeta potential. Scanning Electron Microscopy (SEM) was used to investigate the morphology of the zinc-doped hydroxyapatite (Zn:HAp) nanogel composite and Zn:HAp coatings. The elements Ca, P, O and Zn were found in the Zn:HAp composite. According to the EDX results, the degree of Zn substitution in the structure of Zn:HAp composite was 1.67 wt%. Moreover, the antifungal activity of Zn:HAp_Si and Zn:HAp_Ti against Candida albicans ( C. albicans ) was evaluated. A decrease in the number of surviving cells was not observed under dark conditions, whereas under daylight and UV light illumination a major decrease in the number of surviving cells was observed.
González-Estecha, Montserrat; Palazón-Bru, Irene; Bodas-Pinedo, Andrés; Trasobares, Elena; Palazón-Bru, Antonio; Fuentes, Manuel; Cuadrado-Cenzual, M Ángeles; Calvo-Manuel, Elpidio
2017-09-01
Several studies have shown an inverse relationship between selenium status and cardiovascular health, although epidemiologic evidence yielded by the randomized trials did not find a beneficial effect of selenium administration. The aim of this study was to analyze the association between serum selenium levels and lipid profile adjusted by age, sex and other associated factors among a general adult population in Spain. We recruited 372 hospital employee volunteers (60 men and 312 women) with a mean age of 47 (SD: 10.9), whom were given a standardized questionnaire. Serum selenium concentration was measured by electrothermal atomization atomic absorption spectrometry. Serum copper and zinc concentrations were measured using flame atomic absorption spectrometry. The mean of serum selenium was 79.5μg/L (SD: 11.7) with no sex-dependent differences. In the multivariate linear regression analysis, the associated factors with the mean levels of selenium were: age (β=0.223; CI 95%: 0.101-0.345), p<0.001; widowhood (β=-9.668; CI 95%: -17.234 to -2.102), p=0.012; calcium supplements (β=3.949; CI 95%: 0.059-7.838), p=0.047; zinc (β=0.126; CI 95%: 0.013-0.238), p=0.028 and glucose (β=0.172; CI 95%: 0.062- 0.281), p=0.002; Participants with serum selenium≥79.5μg/L were 1.98 (OR=1.98; CI 95% 1.17-3.35; p=0.011) and 2.04 times (OR=2.04; CI 95% 1.06-3.97; p=0.034) more likely to have cholesterol ≥200mg/dL and LDL-c ≥100mg/dL respectively than those with serum selenium <79.5μg/L. Higher selenium was positively associated with increased total and LDL cholesterol but not with HDL-c and triglycerides. More studies are needed in order to confirm the lower serum selenium findings in widows. Copyright © 2016 Elsevier GmbH. All rights reserved.
Sulfidation Roasting of Hemimorphite with Pyrite for the Enrichment of Zn and Pb
NASA Astrophysics Data System (ADS)
Min, Xiao-Bo; Xue, Ke; Ke, Yong; Zhou, Bo-Sheng; Li, Yang-Wen-Jun; Wang, Qing-Wei
2016-09-01
With the increasing consumption of zinc and the depletion of zinc sulfide ores, the exploitation of low-grade zinc oxide ores may be important for the sustainability of the zinc industry. Hemimorphite, a zinc hydroxyl silicate hydrate, is a significant source of Zn and Pb. It is difficult to obtain Zn and Pb from the hemimorphite using traditional technology. In this work, for the first time, sulfidation roasting of hemimorphite with pyrite was studied for the enrichment of Zn and Pb by a flotation process. Four stages of sulfidation roasting were determined based on x-ray diffraction and thermogravimetry analysis. Then, the effects of sulfidation temperature, pyrite dosage and reaction time on the sulfidation percentages were investigated at the laboratory scale. The experimental results showed that the sulfidation percentages of Pb and Zn were as high as 98.08% and 90.55% under optimum conditions, respectively. Finally, a flotation test was performed to enrich Zn and Pb in the sulfidation product. A flotation concentrate with 8.78% Zn and 9.25% Pb was obtained, and the recovery of Zn and Pb reached 56.14% and 75.94%, respectively.
Guo, Jian; Wang, Zhi-hua; Tao, Dong-liang; Guo, Guang-sheng
2007-05-01
Zinc titanate powders were prepared from Ti(SO4)2, Zn(NO3)2 x (6)H2O and (NH4)2CO3 by the method of direct precipitation. The effects of reaction conditions on the structure of zinc titanate were studied. The sample was analyzed by means of XRD and TG-DTA. The structure of zinc titanate was affected by the reaction subsequence of the formation of titanic acid and zinc carbonate. In the reaction system where titanic acid was generated earlier, collision reaction occurred between the generated zinc carbonate molecule and the surrounding titanic acid molecule. When titanic acid was generated earlier and precipitant (NH4)2CO3 was sufficient, Zn2Ti3O8 was obtained because of the sufficient collision reaction and superfluous titanic acid. In the reaction system where zinc carbonate was generated earlier, collision reaction occurred between the generated titanic acid molecule and the surrounding zinc carbonate molecule. When zinc carbonate was generated earlier and precipitant (NH4)2CO3 was sufficient, Zn2TiO4 was obtained because of the sufficient collision reaction and superfluous zinc carbonate. In addition, the kinds and structure of the production were affected by the dosage of precipitant and the reaction temperature. Zn2Ti3O8 or Zn2TiO4 could be obtained easier when using more precipitant or higher reaction temperature which could cause more sufficient collision reaction. ZnTiO3 could be obtained under the conditions of less precipitant and lower reaction temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeGrado, Timothy R.; Kemp, Bradley J.; Pandey, Mukesh K.
Abnormalities in zinc homeostasis are indicated in many human diseases, including Alzheimer disease (AD). 63Zn-zinc citrate was developed as a positron emission tomography (PET) imaging probe of zinc transport and used in a first-in-human study in 6 healthy elderly individuals and 6 patients with clinically confirmed AD. A dynamic PET imaging of the brain was performed for 30 minutes following intravenous administration of 63Zn-zinc citrate (~330 MBq). Subsequently, body PET images were acquired. Urine and venous blood were analyzed to give information on urinary excretion and pharmacokinetics. Regional cerebral 63Zn clearances were compared with 11C-Pittsburgh Compound B ( 11C-PiB) andmore » 18F-fluorodeoxyglucose ( 18F-FDG) imaging data. 63Zn-zinc citrate was well tolerated in human participants with no adverse events monitored. Tissues of highest uptake were liver, pancreas, and kidney, with moderate uptake being seen in intestines, prostate (in males), thyroid, spleen, stomach, pituitary, and salivary glands. Moderate brain uptake was observed, and regional dependencies were observed in 63Zn clearance kinetics in relationship with regions of high amyloid-β plaque burden ( 11C-PiB) and 18F-FDG hypometabolism. In conclusion, zinc transport was successfully imaged in human participants using the PET probe 63Zn-zinc citrate. Primary sites of uptake in the digestive system accent the role of zinc in gastrointestinal function. Preliminary information on zinc kinetics in patients with AD evidenced regional differences in clearance rates in correspondence with regional amyloid-β pathology, warranting further imaging studies of zinc homeostasis in patients with AD.« less
Feng, Zike; Carlson, Dorthe; Poulsen, Hanne Damgaard
2006-11-01
In a previous study, we found that secretagogue-stimulated electrolyte secretion was attenuated by dietary and serosal zinc in piglet small intestinal epithelium in Ussing chambers. Several studies show that the enteric nervous system (ENS) is involved in regulation of electrolyte and/or fluid transport in intestinal epithelium from many species. The aim of the present study is to examine the mechanisms behind the attenuating effect of zinc on electrolyte secretion and to study whether the ENS is involved in this effect of zinc in vitro. Twenty-four piglets (six litters of four piglets) were allocated randomly to one of two dietary treatments consisting of a basic diet supplemented with 100 mg zinc/kg (Zn(100)) or 2500 mg zinc/kg (Zn(2500)), as ZnO. All the piglets were killed at 5-6 days after weaning and in vitro experiments with small intestinal epithelium in Ussing chambers were carried out. Furthermore, zinc, copper, alkaline phosphatase (AP) and metallothionein (MT) in mucosa, liver, and plasma were measured. These measurements showed that zinc status was increased in the Zn(2500) compared to the Zn(100) fed piglets. The in vitro studies did not confirm previous findings of attenuating effects of dietary zinc and zinc in vitro on the 5-HT induced secretion. But it showed that the addition of zinc at the serosal side attenuated the forskolin (FSK) (cAMP-dependent) induced ion secretion in epithelium from piglets fed with Zn(100) diet. Blocking the ENS with lidocaine or hexamethonium apparently slightly reduced this effect of zinc in vitro, but did not remove the effect of zinc. Consequently, it is suggested that zinc attenuates the cAMP dependent ion secretion mainly due to an effect on epithelial cells rather than affecting the mucosal neuronal pathway.
Brun, Nadja Rebecca; Lenz, Markus; Wehrli, Bernhard; Fent, Karl
2014-04-01
The increasing use of zinc oxide nanoparticles (nZnO) and their associated environmental occurrence make it necessary to assess their potential effects on aquatic organisms. Upon water contact, nZnO dissolve partially to zinc (Zn(II)). To date it is not yet completely understood, whether effects of nZnO are solely or partly due to dissolved Zn(II). Here we compare potential effects of 0.2, 1 and 5mg/L nZnO and corresponding concentrations of released Zn(II) by water soluble ZnCl2 to two development stages of zebrafish, embryos and eleuthero-embryos, by analysing expressional changes by RT-qPCR. Another objective was to assess uptake and tissue distribution of Zn(II). Laser ablation-ICP-MS analysis demonstrated that uptake and tissue distribution of Zn(II) were identical for nZnO and ZnCl2 in eleuthero-embryos. Zn(II) was found particularly in the retina/pigment layer of eyes and brain. Both nZnO and dissolved Zn(II) derived from ZnCl2 had similar inhibiting effects on hatching, and they induced similar expressional changes of target genes. At 72hours post fertilization (hpf), both nZnO and Zn(II) delayed hatching at all doses, and inhibited hatching at 1 and 5 mg/L at 96 hpf. Both nZnO and Zn(II) lead to induction of metallothionein (mt2) in both embryos and eleuthero-embryos at all concentrations. Transcripts of oxidative stress related genes cat and Cu/Zn sod were also altered. Moreover, we show for the first time that nZnO exposure results in transcriptional changes of pro-inflammatory cytokines IL-1β and TNFα. Overall, transcriptional alterations were higher in embryos than eleuthero-embryos. The similarities of the effects lead to the conclusion that effects of nZnO are mainly related to the release of Zn(II). Copyright © 2014 Elsevier B.V. All rights reserved.
Jain, Kinnri; Dhawan, Devinder K
2014-10-01
This study was conducted to investigate the role of curcumin and zinc on the biokinetics and biodistribution of (65)Zn during colon carcinogenesis. Male wistar rats were divided into five groups, namely normal control, 1,2-dimethylhydrazine (DMH) treated, DMH + curcumin treated, DMH + zinc treated, and DMH + curcumin + zinc treated. Weekly subcutaneous injections of DMH (30 mg/kg body weight) for 16 weeks initiated colon carcinogenesis. Curcumin (100 mg/kg body weight orally) and ZnSO4 (227 mg/L in drinking water) were supplemented for 16 weeks. This study revealed a significant depression in the fast (Tb1) and slow component (Tb2) of biological half-life of (65)Zn in the whole body of DMH-treated rats, whereas liver showed a significant elevation in these components. Further, DMH treatment showed a significant increase in the uptake values of (65)Zn in colon, small intestine, and kidneys. Subcellular distribution depicted a significant increase in (65)Zn uptake values in mitochondrial, microsomal, and postmicrosomal fractions of colon. However, curcumin and zinc supplementation when given separately or in combination reversed the trends and restored the uptake values close to normal range. Our study concludes that curcumin and zinc supplementation during colon carcinogenesis shall prove to be efficacious in regulating the altered zinc metabolism.
NASA Astrophysics Data System (ADS)
D'Urso, Luisa; Spadaro, Salvatore; Bonsignore, Martina; Santangelo, Saveria; Compagnini, Giuseppe; Neri, Fortunato; Fazio, Enza
2018-01-01
Zinc oxide with wide direct band gap and high exciton binding energy is one of the most promising materials for ultraviolet (UV) light-emitting devices. It further exhibits good performance in the degradation of non-biodegradable pollutants under UV irradiation. In this work, zinc oxide (ZnO) and zinc oxide/gold (ZnO/Au) nanocolloids are prepared by picosecond pulsed laser ablation (ps-PLA), using a Zn and Au metallic targets in water media at room temperature (RT) and 80°C. ZnO and Au nanoparticles (NPs) with size in the 10-50 nm range are obtained at RT, while ZnO nanorods (NRs) are formed when water is maintained at 80°C during the ps-PLA process. Au NPs, added to ZnO colloids after the ablation process, decorate ZnO NRs. The crystalline phase of all ZnO nanocolloids is wurtzite. Methylene blue dye is used to investigate the photo-catalytic activity of all the synthesised nanocolloids, under UV light irradiation.
Distinctive Pattern of Serum Elements During the Progression of Alzheimer’s Disease
Paglia, Giuseppe; Miedico, Oto; Cristofano, Adriana; Vitale, Michela; Angiolillo, Antonella; Chiaravalle, Antonio Eugenio; Corso, Gaetano; Di Costanzo, Alfonso
2016-01-01
Element profiling is an interesting approach for understanding neurodegenerative processes, considering that compelling evidences show that element toxicity might play a crucial role in the onset and progression of Alzheimer’s disease (AD). Aim of this study was to profile 22 serum elements in subjects with or at risk of AD. Thirtyfour patients with probable AD, 20 with mild cognitive impairment (MCI), 24 with subjective memory complaint (SMC) and 40 healthy subjects (HS) were included in the study. Manganese, iron, copper, zinc, selenium, thallium, antimony, mercury, vanadium and molybdenum changed significantly among the 4 groups. Several essential elements, such as manganese, selenium, zinc and iron tended to increase in SMC and then progressively to decrease in MCI and AD. Toxic elements show a variable behavior, since some elements tended to increase, while others tended to decrease in AD. A multivariate model, built using a panel of six essential elements (manganese, iron, copper, zinc, selenium and calcium) and their ratios, discriminated AD patients from HS with over 90% accuracy. These findings suggest that essential and toxic elements contribute to generate a distinctive signature during the progression of AD, and their monitoring in elderly might help to detect preclinical stages of AD. PMID:26957294
Distinctive Pattern of Serum Elements During the Progression of Alzheimer's Disease.
Paglia, Giuseppe; Miedico, Oto; Cristofano, Adriana; Vitale, Michela; Angiolillo, Antonella; Chiaravalle, Antonio Eugenio; Corso, Gaetano; Di Costanzo, Alfonso
2016-03-09
Element profiling is an interesting approach for understanding neurodegenerative processes, considering that compelling evidences show that element toxicity might play a crucial role in the onset and progression of Alzheimer's disease (AD). Aim of this study was to profile 22 serum elements in subjects with or at risk of AD. Thirtyfour patients with probable AD, 20 with mild cognitive impairment (MCI), 24 with subjective memory complaint (SMC) and 40 healthy subjects (HS) were included in the study. Manganese, iron, copper, zinc, selenium, thallium, antimony, mercury, vanadium and molybdenum changed significantly among the 4 groups. Several essential elements, such as manganese, selenium, zinc and iron tended to increase in SMC and then progressively to decrease in MCI and AD. Toxic elements show a variable behavior, since some elements tended to increase, while others tended to decrease in AD. A multivariate model, built using a panel of six essential elements (manganese, iron, copper, zinc, selenium and calcium) and their ratios, discriminated AD patients from HS with over 90% accuracy. These findings suggest that essential and toxic elements contribute to generate a distinctive signature during the progression of AD, and their monitoring in elderly might help to detect preclinical stages of AD.
Sarafanov, A.G.; Todorov, T.I.; Kajdacsy-Balla, A.; Gray, Michael A.; MacIas, V.; Centeno, J.A.
2008-01-01
Formalin-fixed paraffin-embedded (FFPE) tissue specimens represent a valuable and abundant resource of pathologic material for various biomedical studies. In the present study, we report the application of high-resolution inductively coupled mass-spectrometry (ICP-MS) for quantification of Fe, Zn, Se and Cd in FFPE prostate tissue. These elements have a possible role in the development of prostate diseases: while Zn and Se are needed for a healthy prostate, Cd shows multiple toxic and carcinogenic effects. Excessive accumulation of Fe induces the production of highly reactive hydroxyl radical species, which may play a role in cancer etiopathogenesis. To assess whether the levels of these metals in the FFPE prostate tissue represent their original content, we compared their levels with those in the fresh tissue (on dry weight basis) in samples obtained from 15 patients. We found that in FFPE tissue, the recoveries of Se, Fe, Cd and Zn were progressively decreased, 97??11% (r=0.88), 82??22% (r=0.86), 59??23% (r=0.69) and 24??11% (r=0.38), respectively. Thus, the use of correction factors, determined as k=0.16 for Se, k=0.20 for Fe, k=0.27 for Cd and k=0.67 for Zn, is required to estimate the retrospective levels of these elements in the parental non-processed fresh (wet) prostate tissue. The technique used in this study enables the analysis of archival FFPE prostate tissue for the concentrations of Fe, Zn, Se and Cd to study association between the levels of these metals and prostate disease. ?? 2008.
Wildeus, S; McDowell, L R; Fugle, J R
1992-11-01
Serum and liver concentrations of selected macro- and trace minerals were determined in Senepol cattle at 8 sites (4 each in a high and low rainfall region) during the dry and wet season on St Croix. At each site an average of 15 mature, lactating cows, grazing native grass/legume pastures without supplementation were blood sampled each season. Liver samples were collected (n = 51) at slaughter from mature animals originating from the same sites. A preliminary analysis indicated no differences in serum mineral concentrations between mature lactating cows and growing heifers. There were differences between sites for serum magnesium (Mg) (P < 0.001), copper (Cu) (P < 0.05) selenium (Se) (P < 0.001) and zinc (Zn) (P < 0.01) in the dry season, and for Cu (P < 0.01), iron (Fe) (P < 0.001) and Zn (P < 0.01) in the wet season. Higher (P < 0.001) serum concentrations of Mg, Cu, Fe and Zn were observed in the dry season, while Se was higher (P < 0.01) in the wet season. Liver concentrations of Cu and Fe were lower (P < 0.01) and liver molybdenum (Mo) (P < 0.001) and Se (P < 0.05) higher during the dry season. The seasonal differences in serum Cu, Se and Zn concentrations have not been observed in other studies in the Central American region. More than 50% of serum samples were deficient in phosphorus (P) regardless of season, and in Cu and Zn during the wet season. Mineral supplementation should be considered.
Yang, Jie; Yang, Ping
2012-09-01
CdSe/Cd(1-x) Zn(x)S core/shell quantum dots (QDs) were fabricated in 1-octadecene via a two step synthesis. CdSe cores were first prepared using CdO, trioctylphosphine (TOP) selenium, and stearic acid. Subsquently, a Cd(1-x) Zn(x)S shell coating was carried out using zinc acetate dihydrate, cadmium acetate dihydrate, TOPS, and hexadecylamine (HDA) starting materials in the friendly organic system under relatively low temperature. The absorption and photoluminescence (PL) spectra have a significant red shift after the coverage of Cd(1-x)Zn(x)S shell on CdSe cores. The X-ray diffraction analysis of samples confirmed the formation of core/shell structure. The PL quantum yields (QYs) of CdSe/Cd(1-x)Zn(x)S QDs were improved gradually with time at room temperature. This is ascribed to the surface passivation of HDA to the QDs during store. This phenomenon was confirmed by the Fourier transform infrared spectrum of samples. Namely, HDA does not capped on the surface of as-prepared QDs, in which a low PL QYs was observed (less than 10%). Being storing for certain time, HDA attached to the surface of the QDs, in which the PL QYs increased (up to 31%) and the full width at half maximum of PL spectra decreased. Moreover, the fluorescence decay curve of the core/shell QDs is closer to a biexponential decay profile and has a longer average PL lifetime. The variation of average PL lifetime also indicated the influence of HDA during store.
Fate of zinc in an electroplating sludge during electrokinetic treatments.
Liu, Shou-Heng; Wang, H Paul
2008-08-01
Chemical structure of zinc in the electrokinetic treatments of an electroplating sludge has been studied by in situ extended X-ray absorption fine structural (EXAFS) and X-ray absorption near edge structural (XANES) spectroscopies in the present work. The least-square fitted XANES spectra indicate that the main zinc compounds in the sludge were ZnCO(3) (75%), ZnOSiO(2) (17%) and Zn(OH)(2) (7%). Zinc in the sludge possessed a Zn-O bond distance of 2.07 A with a coordination number (CN) of 5. In the second shells, the bond distance of Zn-(O)-Si was 3.05 A (CN=2). An increase of Zn-(O)-Si (0.05 A) with a decrease of its CN (from 5 to <1) was found in the early stage of the electrokinetic treatment. Prolong the electrokinetic treatment time to 180 min, about 34% of Zn(II) was dissolved into the aqueous phase and about 68% of Zn(II) in the sludge (or 23% of total zinc) was migrated to the cathode under the electric field (5 V cm(-1)). The dissolution and electromigration rates of Zn(II) in the sludge were 1.0 and 0.6 mmol h(-1)g(-1) sludge, respectively during the electrokinetic treatment. This work also exemplifies the utilization of in situ EXAFS and XANES for revealing speciation and possible reaction pathways during the course of zinc recycling from the sludge by electrokinetic treatments.
Zinc-mediated attenuation of hippocampal mossy fiber long-term potentiation induced by forskolin.
Ando, Masaki; Oku, Naoto; Takeda, Atsushi
2010-11-01
The rise in presynaptic calcium induced by high-frequency stimulation activates the calcium-calmodulin-sensitive adenylyl cyclase (AC) 1 followed by the induction of long-term potentiation (LTP) at the hippocampal mossy fiber-CA3 synapse. Zinc is released with glutamate from mossy fiber terminals. However, the role of the zinc in mossy fiber LTP is controversial. In the present study, the mechanism of zinc-mediated attenuation of mossy fiber LTP was examined in that induced by forskolin, an AC activator. Mossy fiber LTP induced by tetanic stimulation (100 Hz for 1 s) was attenuated in the presence of 5 microM ZnCl(2), whereas that induced by forskolin under test stimulation (0.1 Hz) was not attenuated. Forskolin-induced mossy fiber LTP was attenuated by perfusion with 100 microM ZnCl(2) prior to the induction. However, the zinc (100 microM) pre-perfusion did not attenuate mossy fiber LTP induced by Sp-cAMPS, an activator of protein kinase A, under test stimulation. Zinc is necessary to be taken up into mossy fiber boutons for effectively inhibiting AC activity. In hippocampal slices labeled with ZnAF-2 DA, a membrane-permeable zinc indicator, intracellular ZnAF-2 signal was increased during tetanic stimulation in the presence of 5 microM ZnCl(2), but not under test stimulation. Intracellular ZnAF-2 signal was increased under test stimulation in the presence of 100 microM ZnCl(2). These results suggest that zinc taken up into mossy fibers attenuates forskolin-induced mossy fiber LTP via inhibition of AC activity. The significance of endogenous zinc uptake by mossy fibers is discussed focused on tetanus-induced mossy fiber LTP. Copyright 2010 Elsevier Ltd. All rights reserved.
The Fate of ZnO Nanoparticles Administered to Human Bronchial Epithelial Cells
Gilbert, Benjamin; Fakra, Sirine C.; Xia, Tian; Pokhrel, Suman; Mädler, Lutz; Nel, André E.
2014-01-01
A particular challenge for nanotoxicology is the evaluation of the biological fate and toxicity of nanomaterials that dissolve in aqueous fluids. Zinc oxide nanomaterials are of particular concern because dissolution leads to release of the toxic divalent zinc ion. Although dissolved zinc ions have been implicated in ZnO cytotoxicity, direct identification of the chemical form of zinc taken up by cells exposed to ZnO nanoparticles, and its intracellular fate, has not yet been achieved. We combined high resolution X-ray spectromicroscopy and high elemental sensitivity X-ray microprobe analyses to determine the fate of ZnO and less soluble iron-doped ZnO nanoparticles following exposure to cultures of human bronchial epithelial cells, BEAS-2B. We complemented two-dimensional X-ray imaging methods with atomic force microscopy of cell surfaces to distinguish between nanoparticles that were transported inside the cells from those that adhered to the cell exterior. The data suggest cellular uptake of ZnO nanoparticles is a mechanism of zinc accumulation in cells. Following uptake, ZnO nanoparticles dissolved completely generating intracellular Zn2+ complexed by molecular ligands. These results corroborate a model for ZnO nanoparticle toxicity that is based on nanoparticle uptake followed by intracellular dissolution. PMID:22646753
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machovsky, Michal, E-mail: machovsky@ft.utb.cz; Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, Nam. T.G. Masaryka 275, 762 72 Zlin; Kuritka, Ivo, E-mail: ivo@kuritka.net
2013-10-15
Graphical abstract: - Highlights: • Zinc hydroxy sulphate was synthesized in 3 min via microwave hydrothermal route. • Zinc hydroxy sulphate was converted into mesh like porous ZnO by calcining at 900°. • The process of transformation is topotactic. - Abstract: Layered zinc hydroxide sulphate (ZHS) was prepared by microwave-assisted hydrothermal precipitation of zinc sulphate monohydrate with hexamethylenetetramine. Under ambient conditions, the structure of ZHS determined by X-ray diffraction (XRD) was found to be a mixture of zinc hydroxide sulphate pentahydrate Zn{sub 4}SO{sub 4}(OH){sub 6}·5H{sub 2}O and tetrahydrate Zn{sub 4}SO{sub 4}(OH){sub 6}·4H{sub 2}O. Fourier transform infrared (FTIR) spectroscopy was usedmore » for characterization of the prepared materials. Based on the interpretation of ZHS's thermal decomposition profile obtained by thermogravimetric analysis, ZnO of high purity was prepared by calcination at 900 °C for 2 h. The structure of the resulting ZnO was confirmed by the XRD. The morphology examination by scanning electron microscopy revealed a porous mesh-like ZnO structure developed from the ZHS precursor at the expense of mass removal due to the release of water and sulphate during the calcination.« less
Selenium toxicity in plants and its detoxification by phosphorus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, M.; Singh, N.
1978-11-01
A study was undertaken to determine selenium toxicity and the effect of phosphorus application on selenium in wheat (Triticum aestivum). Selenium in a compound was applied at 0, 2.5, 5, and 10 ppm to wheat in a greenhouse using sandy soil. Phosphorus in a compound was applied at 0, 50, and 100 ppm to the experimental plants. Sunflower (Helianthus annuus) was grown after wheat to determine the residual effect of selenium and phosphorus. Results indicated that high amounts (2.5 ppm and above) of added and residual selenium in soil decreased the growth of wheat and sunflower, decreased the absorption ofmore » zinc, copper, iron, manganese, sulfur, and nitrogen, and decreased the synthesis of nucleic acids, chlorophyll, and protein. The application of phosphorus decreased the harmful effects of selenium and increased all the above parameters. (3 graphs, 21 references, 4 tables)« less
Trace elements in sera of patients with hepatitis B: Determination and analysis
NASA Astrophysics Data System (ADS)
Saod, Wahran M.; Darwish, Nadiya T.; Zaidan, Tahseen A.; Alfalujie, Abdul Wahab A.
2018-04-01
Chronic Hepatitis B (HBV) is the leading cause of morbidity and mortality worldwide with about 248 million people having HBV infection. Trace elements e.g. copper (Cu), zinc (Zn), selenium (Se) and iron (Fe) are constituent components of many metal proteins and metalloenzymes in human sera. Therefore, the ratios of these trace elements in human sera are often stated to be a good marker for diagnosing various diseases including HBV. The aims of this study are: to compare the level of trace elements in sera of patients infected with HBV and healthy participants, and to evaluate the efficiency of analytical techniques (e.g. Inductively Coupled Plasma-Mass spectrometry (ICP-MS), Atomic Absorption Spectroscopy (hydride generation) (AAS) and Graphite Furnace Atomic Absorption Spectroscopy (GFAAS) that are currently used to detect Fe and Se elements in Patients' human sera. The findings of this study show that the concentration range of copper element between (132.80±28.64 µg/dl) to (105.66±23.20 µg/dl) was significantly higher in HBV infected patients as compared to those in healthy controls (91.27±9.20 µg/dl). Iron concentration range between (206.64±61.60 µg/l) to (170.00±36.71 µg/l) was significantly higher in HBV infected patients as compared to those in healthy controls (158.00±15.13 µg/l). However, patients with HBV had significantly lower serum concentrations of zinc with a concentration range between (111.64±20.90 µg/dl) to (99.25±24.06 µg/dl) as compared to those in healthy controls (113.44±16.38 µg/dl). While selenium concentration range between (64.39±7.39 µg/l) to (51.10±4.96 µg/l) was significantly lower in HBV infected patients as compared to those in healthy controls (67.68±7.60) (μg/l). Moreover, the results of this study suggest that (AAS) technique was the most accurate method to measure the concentration of selenium element, while (UV and ICP-MS) analytical techniques have the same efficiency in measuring the iron concentration.
Cai, Lei; Chen, Tianlu; Yang, Jinglei; Zhou, Kejun; Yan, Xiaomei; Chen, Wenzhong; Sun, Liya; Li, Linlin; Qin, Shengying; Wang, Peng; Yang, Ping; Cui, Donghong; Burmeister, Margit; He, Lin; Jia, Wei; Wan, Chunling
2015-10-12
Little is known about the trace element profile differences between Schizophrenia patients and healthy controls; previous studies about the association of certain elements with Schizophrenia have obtained conflicting results. To identify these differences in the Han Chinese population, inductively coupled plasma-mass spectrometry was used to quantify the levels of 35 elements in the sera of 111 Schizophrenia patients and 110 healthy participants, which consisted of a training (61/61 for cases/controls included) and a test group including remaining participants. An orthogonal projection to latent structures model was constructed from the training group (R(2)Y = 0.465, Q(2)cum = 0.343) had a sensitivity of 76.0% and a specificity of 71.4% in the test group. Single element analysis indicated that the concentrations of cesium, zinc, and selenium were significantly reduced in patients with Schizophrenia in both the training and test groups. The meta-analysis including 522 cases and 360 controls supported that Zinc was significantly associated with Schizophrenia (standardized mean difference [SMD], -0.81; 95% confidence intervals [CI], -1.46 to -0.16, P = 0.01) in the random-effect model. Information theory analysis indicated that Zinc could play roles independently in Schizophrenia. These results suggest clear element profile differences between patients with Schizophrenia and healthy controls, and reduced Zn level is confirmed in the Schizophrenia patients.
Comparative studies on acid leaching of zinc waste materials
NASA Astrophysics Data System (ADS)
Rudnik, Ewa; Włoch, Grzegorz; Szatan, Leszek
2017-11-01
Three industrial waste materials were characterized in terms of their elemental and phase compositions, leaching behaviour in 10% sulfuric acid solution as well as leaching thermal effects. Slag from melting of mixed metallic scrap contained about 50% Zn and 10% Pb. It consisted mainly of various oxides and oxy-chlorides of metals. Zinc spray metallizing dust contained about 77% Zn in form of zinc and/or zinc-iron oxides, zinc metal and Zn-Fe intermetallic. Zinc ash from hot dip galvanizing was a mixture of zinc oxide, metallic zinc and zinc hydroxide chloride and contained about 80% Zn. Dissolution efficiency of zinc from the first material was 80% (independently on the solid to liquid ratio, 50-150 kg/m3), while decrease of the efficacy from 80% to 60% with increased solid to liquid ratio for the two remaining materials was observed. Both increase in the temperature (20 °C to 35 °C) and agitation rate (300 rpm to 900 rpm) did not improve seriously the leaching results. In all cases, transfer of zinc ions to the leachate was accompanied by different levels of solution contamination, depending on the type of the waste. Leaching of the materials was exothermic with the similar reaction heats for two high oxide-type products (slag, zinc ash) and higher values for the spray metallizing dust.
Dietary mineral supplies in Africa
Joy, Edward J M; Ander, E Louise; Young, Scott D; Black, Colin R; Watts, Michael J; Chilimba, Allan D C; Chilima, Benson; Siyame, Edwin W P; Kalimbira, Alexander A; Hurst, Rachel; Fairweather-Tait, Susan J; Stein, Alexander J; Gibson, Rosalind S; White, Philip J; Broadley, Martin R
2014-01-01
Dietary micronutrient deficiencies (MNDs) are widespread, yet their prevalence can be difficult to assess. Here, we estimate MND risks due to inadequate intakes for seven minerals in Africa using food supply and composition data, and consider the potential of food-based and agricultural interventions. Food Balance Sheets (FBSs) for 46 countries were integrated with food composition data to estimate per capita supply of calcium (Ca), copper (Cu), iron (Fe), iodine (I), magnesium (Mg), selenium (Se) and zinc (Zn), and also phytate. Deficiency risks were quantified using an estimated average requirement (EAR) ‘cut-point’ approach. Deficiency risks are highest for Ca (54% of the population), followed by Zn (40%), Se (28%) and I (19%, after accounting for iodized salt consumption). The risk of Cu (1%) and Mg (<1%) deficiency are low. Deficiency risks are generally lower in the north and west of Africa. Multiple MND risks are high in many countries. The population-weighted mean phytate supply is 2770 mg capita−1 day−1. Deficiency risks for Fe are lower than expected (5%). However, ‘cut-point’ approaches for Fe are sensitive to assumptions regarding requirements; e.g. estimates of Fe deficiency risks are 43% under very low bioavailability scenarios consistent with high-phytate, low-animal protein diets. Fertilization and breeding strategies could greatly reduce certain MNDs. For example, meeting harvestplus breeding targets for Zn would reduce dietary Zn deficiency risk by 90% based on supply data. Dietary diversification or direct fortification is likely to be needed to address Ca deficiency risks. PMID:24524331
Allender, Matthew C; Dreslik, Michael J; Patel, Bishap; Luber, Elizabeth L; Byrd, John; Phillips, Christopher A; Scott, John W
2015-08-01
The Eastern box turtle (Terrapene carolina carolina) is a primarily terrestrial chelonian distributed across the eastern US. It has been proposed as a biomonitor due to its longevity, small home range, and reliance on the environment to meet its metabolic needs. Plasma samples from 273 free-ranging box turtles from populations in Tennessee and Illinois in 2011 and 2012 were evaluated for presence of heavy metals and to characterize hematologic variables. Lead (Pb), arsenic (As), zinc (Zn), chromium (Cr), selenium (Se), and copper (Cu) were detected, while cadmium (Cd) and silver (Ag) were not. There were no differences in any metal detected among age class or sex. However, Cr and Pb were higher in turtles from Tennessee, while As, Zn, Se, and Cu were higher in turtles from Illinois. Seasonal differences in metal concentrations were observed for Cr, Zn, and As. Health of turtles was assessed using hematologic variables. Packed cell volume was positively correlated with Cu, Se, and Pb in Tennessee. Total solids, a measure of plasma proteins, in Tennessee turtles were positively correlated with Cu and Zn. White blood cell count, a measure of inflammation, in Tennessee turtles was negatively correlated with Cu and As, and positively correlated with Pb. Metals are a threat to human health and the health of an ecosystem, and the Eastern Box Turtle can serve as a monitor of these contaminants. Differences established in this study can serve as baseline for future studies of these or related populations.
DOSE-DEPENDENT TRANSITIONS IN MECHANISMS OF TOXICITY: ZINC CASE EXAMPLE
Zinc (Zn) is an essential trace element. Maternal Zn deficiency can result in complications of pregnancy and inadequate supply of Zn to the conceptus can interfere with the development of numerous organ systems. Maternal dietary Zn deficiency has been shown to be teratogenic in a...
USDA-ARS?s Scientific Manuscript database
The mechanism by which zinc regulates insulin synthesis and secretion in pancreatic beta-cells is still unclear. Cellular zinc homeostasis is largely maintained by zinc transporters and intracellular zinc binding proteins. In this study, we demonstrated that zinc transporter 7 (ZnT7, Slc30a7) was co...
USDA-ARS?s Scientific Manuscript database
A two-year field experiment was carried out to investigate the effectiveness of soil and foliar applications of zinc sulfate and soil application of waste rubber ash to increase Zn and decrease cadmium (Cd) concentration in grain of 10 wheat genotypes with different Zn-efficiency. Foliar spray of zi...
Paramagnetic dysprosium-doped zinc oxide thin films grown by pulsed-laser deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo, Fang-Yuh, E-mail: fangyuhlo@ntnu.edu.tw; Ting, Yi-Chieh; Chou, Kai-Chieh
2015-06-07
Dysprosium(Dy)-doped zinc oxide (Dy:ZnO) thin films were fabricated on c-oriented sapphire substrate by pulsed-laser deposition with doping concentration ranging from 1 to 10 at. %. X-ray diffraction (XRD), Raman-scattering, optical transmission spectroscopy, and spectroscopic ellipsometry revealed incorporation of Dy into ZnO host matrix without secondary phase. Solubility limit of Dy in ZnO under our deposition condition was between 5 and 10 at. % according to XRD and Raman-scattering characteristics. Optical transmission spectroscopy and spectroscopic ellipsometry also showed increase in both transmittance in ultraviolet regime and band gap of Dy:ZnO with increasing Dy density. Zinc vacancies and zinc interstitials were identified by photoluminescencemore » spectroscopy as the defects accompanied with Dy incorporation. Magnetic investigations with a superconducting quantum interference device showed paramagnetism without long-range order for all Dy:ZnO thin films, and a hint of antiferromagnetic alignment of Dy impurities was observed at highest doping concentration—indicating the overall contribution of zinc vacancies and zinc interstitials to magnetic interaction was either neutral or toward antiferromagnetic. From our investigations, Dy:ZnO thin films could be useful for spin alignment and magneto-optical applications.« less
Effects of Zinc Supplementation on DNA Damage in Rats with Experimental Kidney Deficiency.
Yegin, Sevim Çiftçi; Dede, Semiha; Mis, Leyla; Yur, Fatmagül
2017-04-01
This study was carried out to determine the effect of zinc on oxidative DNA damage in rats with experimental acute and chronic kidney deficiency. Six groups of five Wistar-Albino rats each were assigned as controls (C), acute kidney deficiency (AKD), zinc-supplemented (+Zn), acute kidney deficiency, zinc-supplemented (AKD + Zn), chronic kidney deficiency (CKD) and zinc-supplemented chronic kidney deficiency (CKD + Zn). The levels of 8-Oxo-2'-deoxyguanosine (8-OHdG) were determined, being the lowest in the CKD group (p < 0.05), higher in the C group than those of rats with CKD but lower than that of all the other groups (p < 0.05). There were no significant differences between the controls and the CKD + Zn group, or between the AKD and the +Zn groups. Among all groups, the highest 8-OHdG level was found in the AKD + Zn group (p < 0.05). DNA damage was greater in acute renal failure than in rats with chronic renal failure. The DNA damage in the zinc group was significantly higher than in the controls.
Anti-cancer activity of ZnO chips by sustained zinc ion release.
Moon, Seong-Hee; Choi, Won Jin; Choi, Sik-Won; Kim, Eun Hye; Kim, Jiyeon; Lee, Jeong-O; Kim, Seong Hwan
2016-01-01
We report anti-cancer activity of ZnO thin-film-coated chips by sustained release of zinc ions. ZnO chips were fabricated by precisely tuning ZnO thickness using atomic layer deposition, and their potential to release zinc ions relative to the number of deposition cycles was evaluated. ZnO chips exhibited selective cytotoxicity in human B lymphocyte Raji cells while having no effect on human peripheral blood mononuclear cells. Of importance, the half-maximal inhibitory concentration of the ZnO chip on the viability of Raji cells was 121.5 cycles, which was comparable to 65.7 nM of daunorubicin, an anti-cancer drug for leukemia. Molecular analysis of cells treated with ZnO chips revealed that zinc ions released from the chips increased cellular levels of reactive oxygen species, including hydrogen peroxide, which led to the down-regulation of anti-apoptotic molecules (such as HIF-1α, survivin, cIAP-2, claspin, p-53, and XIAP) and caspase-dependent apoptosis. Because the anti-cancer activity of ZnO chips and the mode of action were comparable to those of daunorubicin, the development and optimization of ZnO chips that gradually release zinc ions might have clinical anti-cancer potential. A further understanding of the biological action of ZnO-related products is crucial for designing safe biomaterials with applications in disease treatment.
Monitoring of trace elements in breast milk sampling and measurement procedures.
Spĕvácková, V; Rychlík, S; Cejchanová, M; Spĕvácek, V
2005-06-01
The aims of this study were to test analytical procedures for the determination of Cd, Cu, Mn, Pb, Se and Zn in breast milk and to establish optimum sampling conditions for monitoring purposes. Two population groups were analysed: (1) Seven women from Prague whose breast milk was sampled on days 1,2, 3, 4, 10, 20 and 30 after delivery; (2) 200 women from four (two industrial and two rural) regions whose breast milk was sampled at defined intervals. All samples were mineralised in a microwave oven in the mixture of HNO3 + H2O2 and analysed by atomic absorption spectrometry. Conditions for the measurement of the elements under study (i.e. those for the electrothermal atomisation for Cd, Mn and Pb, flame technique for Cu and Zn, and hydride generation technique for Se) were optimized. Using optimized parameters the analysis was performed and the following conclusion has been made: the concentrations of zinc and manganese decreased very sharply over the first days, that of copper slightly increased within the first two days and then slightly decreased, that of selenium did not change significantly. Partial "stabilisation" was achieved after the second decade. No correlation among the elements was found. A significant difference between whole and skim milk was only found for selenium (26% rel. higher in whole milk). The majority concentrations of cadmium and lead were below the detection limit of the method (0.3 microg x l(-1) and 8.2 microg x l(-1), respectively, as calculated for the original sample). To provide biological monitoring, the maintenance of sampling conditions and especially the time of sampling is crucial.
REMOVAL OF CERTAIN FISSION PRODUCT METALS FROM LIQUID BISMUTH COMPOSITIONS
Dwyer, O.E.; Howe, H.E.; Avrutik, E.R.
1959-11-24
A method is described for purifying a solution of urarium in liquid bismuth containing at least one metal from the group consisting of selenium, tellurium, palladium, ruthenium, rhodium, niobium, and zirconium. The solution is contacted with zinc in an inert atmosphere to form a homogeneous melt, a solid zinc phase is formed, and the zinc phase containing the metal is separated from the melt.
In-house zinc SAD phasing at Cu Kα edge.
Kim, Min-Kyu; Lee, Sangmin; An, Young Jun; Jeong, Chang-Sook; Ji, Chang-Jun; Lee, Jin-Won; Cha, Sun-Shin
2013-07-01
De novo zinc single-wavelength anomalous dispersion (Zn-SAD) phasing has been demonstrated with the 1.9 Å resolution data of glucose isomerase and 2.6 Å resolution data of Staphylococcus aureus Fur (SaFur) collected using in-house Cu Kα X-ray source. The successful in-house Zn-SAD phasing of glucose isomerase, based on the anomalous signals of both zinc ions introduced to crystals by soaking and native sulfur atoms, drove us to determine the structure of SaFur, a zinc-containing transcription factor, by Zn-SAD phasing using in-house X-ray source. The abundance of zinc-containing proteins in nature, the easy zinc derivatization of the protein surface, no need of synchrotron access, and the successful experimental phasing with the modest 2.6 Å resolution SAD data indicate that inhouse Zn-SAD phasing can be widely applicable to structure determination.
NASA Astrophysics Data System (ADS)
Arafat, M. M.; Ong, J. Y.; Haseeb, A. S. M. A.
2018-03-01
In this research, the gas sensing behavior of Pd nanoparticles loaded zinc stannate/zinc oxide (Zn2SnO4/ZnO) nanowires were investigated. The Zn2SnO4/ZnO nanowires were grown on Au interdigitated alumina substrate by carbon assisted thermal evaporation process. Pd nanoparticles were loaded on the Zn2SnO4/ZnO nanowires by wet reduction process. The nanowires were characterized by X-ray diffractometer, field emission scanning electron microscope and energy dispersive X-ray spectroscope. The Zn2SnO4/ZnO and Pd nanoparticles loaded Zn2SnO4/ZnO nanowires were investigated for detecting H2, H2S and C2H5OH gases in N2 background. Results revealed that the average diameter and length of as-grown Zn2SnO4/ZnO nanowires were 74 nm and 30 μm, respectively. During wet reduction process,Pd particles having size of 20-60 nm were evenly distributed on the Zn2SnO4/ZnO nanowires. The Zn2SnO4/ZnO nanowires based sensors showed selective response towards C2H5OH whereas Pd nanoparticles loaded Zn2SnO4/ZnO nanowires showed selective response towards H2. The recovery time of the sensors reduced with Pd loading on Zn2SnO4/ZnO nanowires. A mechanism is proposed to elucidate the gas sensing mechanism of Pd nanoparticles loaded Zn2SnO4/ZnO nanowires.
Long-range ordering effect in electrodeposition of zinc and zinc oxide.
Liu, Tao; Wang, Sheng; Shi, Zi-Liang; Ma, Guo-Bin; Wang, Mu; Peng, Ru-Wen; Hao, Xi-Ping; Ming, Nai-Ben
2007-05-01
In this paper, we report the long-range ordering effect observed in the electro-crystallization of Zn and ZnO from an ultrathin aqueous electrolyte layer of ZnSO4 . The deposition branches are regularly angled, covered with random-looking, scalelike crystalline platelets of ZnO. Although the orientation of each crystalline platelet of ZnO appears random, transmission electron microscopy shows that they essentially possess the same crystallographic orientation as the single-crystalline zinc electrodeposit underneath. Based on the experimental observations, we suggest that this unique long-range ordering effect results from an epitaxial nucleation effect in electrocrystallization.
Biogenesis of zinc storage granules in Drosophila melanogaster.
Tejeda-Guzmán, Carlos; Rosas-Arellano, Abraham; Kroll, Thomas; Webb, Samuel M; Barajas-Aceves, Martha; Osorio, Beatriz; Missirlis, Fanis
2018-03-19
Membrane transporters and sequestration mechanisms concentrate metal ions differentially into discrete subcellular microenvironments for use in protein cofactors, signalling, storage or excretion. Here we identify zinc storage granules as the insect's major zinc reservoir in principal Malpighian tubule epithelial cells of Drosophila melanogaster The concerted action of Adaptor Protein-3, Rab32, HOPS and BLOC complexes as well as of the white-scarlet (ABCG2-like) and ZnT35C (ZnT2/ZnT3/ZnT8-like) transporters is required for zinc storage granule biogenesis. Due to lysosome-related organelle defects caused by mutations in the homologous human genes, patients with Hermansky-Pudlak syndrome may lack zinc granules in beta pancreatic cells, intestinal paneth cells and presynaptic vesicles of hippocampal mossy fibers. © 2018. Published by The Company of Biologists Ltd.
Liu, Zhen; Cui, Tong; Pulletikurthi, Giridhar; Lahiri, Abhishek; Carstens, Timo; Olschewski, Mark; Endres, Frank
2016-02-18
Metallic zinc is a promising anode material for rechargeable Zn-based batteries. However, the dendritic growth of zinc has prevented practical applications. Herein it is demonstrated that dendrite-free zinc deposits with a nanocrystalline structure can be obtained by using nickel triflate as an additive in a zinc triflate containing ionic liquid. The formation of a thin layer of Zn-Ni alloy (η- and γ-phases) on the surface and in the initial stages of deposition along with the formation of an interfacial layer on the electrode strongly affect the nucleation and growth of zinc. A well-defined and uniform nanocrystalline zinc deposit with particle sizes of about 25 nm was obtained in the presence of Ni(II) . Further, it is shown that the nanocrystalline Zn exhibits a high cycling stability even after 50 deposition/stripping cycles. This strategy of introducing an inorganic metal salt in ionic liquid electrolytes can be considered as an efficient way to obtain dendrite-free zinc. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Vostrikov, A. A.; Fedyaeva, O. N.; Sokol, M. Ya.; Shatrova, A. V.
2014-12-01
Formation of zinc sulfide nanoparticles was detected during interaction of bulk samples with hydrogen sulfide at supercritical parameters. Synthesis proceeds with liberation of H2 by the reaction nZn + nH2S = (ZnS) n + nH2. It has been found by the X-ray diffraction method, scanning electron microscopy, and mass spectrometry that the addition of water stimulates coupled reactions of nanoparticle synthesis nZn + nH2O = (ZnO) n + nH2 and (ZnO) n + nH2S = (ZnS) n + nH2O and brings about an increase in the synthesis rate and morphological changes of (ZnS) n nanoparticles.
Dos Santos, Francine Melise; Piffer, Alícia Corbellini; Schneider, Rafael de Oliveira; Ribeiro, Nicole Sartori; Garcia, Ane Wichine Acosta; Schrank, Augusto; Kmetzsch, Lívia; Vainstein, Marilene Henning; Staats, Charley Christian
2017-05-01
To evaluate alterations of zinc homeostasis in macrophages exposed to Cryptococcus neoformans. Materials & methods: Using a fluorescent zinc probe-based flow cytometry and atomic absorption spectrometry, zinc levels were evaluated in J774.A1 cell lines exposed to C. neoformans H99 cells. The transcription profile of macrophage zinc related homeostasis genes - metallothioneins and zinc transporters (ZnTs) of the SLC30 and SLC39 (Zrt-Irt-protein) families - was analyzed by quantitative PCR. Macrophage intracellular labile zinc levels decreased following exposure to C. neoformans. A significant decrease in transcription levels was detected in specific ZnTs from both the Zrt-Irt-protein and ZnT families, especially 24 h after infection. These findings suggest that macrophages may exhibit zinc depletion in response to C. neoformans infection.
Li, Ya Jie; Li, Min; Liu, Xiao Bing; Ren, Tong Xiang; Li, Wei Dong; Yang, Chun; Wu, Meng; Yang, Lin Li; Ma, Yu Xia; Wang, Jun; Piao, Jian Hua; Yang, Li Chen; Yang, Xiao Guang
2017-06-01
To determine the dietary zinc absorption in a Chinese elderly population and provide the basic data for the setting of zinc (Zn) recommended nutrient intakes (RNI) for Chinese elderly people. A total of 24 elderly people were recruited for this study and were administered oral doses of 3 mg 67Zn and 1.2 mg dysprosium on the fourth day. The primary macronutrients, energy, and phytic acid in the representative diet were examined based on the Chinese National Standard Methods. Fecal samples were collected during the experimental period and analyzed for zinc content, 67Zn isotope ratio, and dysprosium content. The mean (± SD) zinc intake from the representative Chinese diet was 10.6 ± 1.5 mg/d. The phytic acid-to-zinc molar ratio in the diet was 6.4. The absorption rate of 67Zn was 27.9% ± 9.2%. The RNI of zinc, which were calculated by the absorption rate in elderly men and women, were 10.4 and 9.2 mg/d, respectively. This study got the dietary Zn absorption in a Chinese elderly population. We found that Zn absorption was higher in elderly men than in elderly women. The current RNI in elderly female is lower than our finding, which indicates that more attention is needed regarding elderly females' zinc status and health. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Influence of Dopants in ZnO Films on Defects
NASA Astrophysics Data System (ADS)
Peng, Cheng-Xiao; Weng, Hui-Min; Zhang, Yang; Ma, Xing-Ping; Ye, Bang-Jiao
2008-12-01
The influence of dopants in ZnO films on defects is investigated by slow positron annihilation technique. The results show S that parameters meet SAl > Sun > SAg for Al-doped ZnO films, undoped and Ag-doped ZnO films. Zinc vacancies are found in all ZnO films with different dopants. According to S parameter and the same defect type, it can be induced that the zinc vacancy concentration is the highest in the Al-doped ZnO film, and it is the least in the Ag-doped ZnO film. When Al atoms are doped in the ZnO films grown on silicon substrates, Zn vacancies increase as compared to the undoped and Ag-doped ZnO films. The dopant concentration could determine the position of Fermi level in materials, while defect formation energy of zinc vacancy strongly depends on the position of Fermi level, so its concentration varies with dopant element and dopant concentration.
Spectroscopic characterization of zinc oxide nanorods synthesized by solid-state reaction
NASA Astrophysics Data System (ADS)
Prasad, Virendra; D'Souza, Charlene; Yadav, Deepti; Shaikh, A. J.; Vigneshwaran, Nadanathangam
2006-09-01
Well-crystallized zinc oxide nanorods have been fabricated by single step solid-state reaction using zinc acetate and sodium hydroxide, at room temperature. The sodium lauryl sulfate (SLS) stabilized zinc oxide nanorods were characterized by using X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and photoluminescence spectroscopy. The X-ray diffraction revealed the wurtzite structure of zinc oxide. The size estimation by XRD and TEM confirmed that the ZnO nanorods are made of single crystals. The growth of zinc oxide crystals into rod shape was found to be closely related to its hexagonal nature. The mass ratio of SLS:ZnO in the nanorods was found to be 1:10 based on the thermogravimetric analysis. Blue shift of photoluminescence emission was noticed in the ZnO nanorods when compared to that of ZnO bulk. FT-IR analysis confirmed the binding of SLS with ZnO nanorods. Apart from ease of preparation, this method has the advantage of eco-friendliness since the solvent and other harmful chemicals were eliminated in the synthesis protocol.
Brugger, Daniel; Windisch, Wilhelm M
2017-04-01
Background: Subclinical zinc deficiency (SZD) represents the common zinc malnutrition phenotype. However, its association with oxidative stress is not well understood. The heart muscle may be a promising target for studying early changes in redox metabolism. Objective: We investigated the effects of short-term SZD on cardiac redox metabolism in weaned piglets. Methods: Forty-eight weaned German Large White × Landrace × Piétrain piglets (50% castrated males and 50% females; body weight of 8.5 kg) were fed diets with different zinc concentrations for 8 d. Measurements included cardiac parameters of antioxidative capacity, stress-associated gene expression, and tissue zinc status. Analyses comprised (linear, broken-line) regression models and Pearson correlation coefficients. Results: Glutathione and α-tocopherol concentrations as well as catalase, glutathione reductase, B-cell lymphoma 2-associated X protein, and caspase 9 gene expression plateaued in response to reduction in dietary zinc from 88.0 to 57.6, 36.0, 36.5, 41.3, 55.3, and 33.8 mg/kg, respectively ( P < 0.0001). Further reduction in dietary zinc promoted a linear decrease of glutathione and α-tocopherol (30 and 0.6 nmol/mg dietary Zn, respectively; P < 0.05) and a linear increase of gene expression [0.02, 0.01, 0.003, and 0.02 Log 10 (2 -ΔΔCt )/mg dietary Zn, respectively; P < 0.05)]. Tissue zinc declined linearly with reduction in dietary zinc (0.21 mg tissue Zn/mg dietary Zn; P = 0.004) from 88.0 to 42.7 mg/kg ( P < 0.0001), below which it linearly increased inversely to further reduction in dietary zinc (0.57 mg tissue Zn/mg dietary Zn; P = 0.006). H 2 O 2 -detoxification activity and metallothionein 1A gene expression decreased linearly with reduction in dietary zinc from 88.0 to 28.1 mg/kg [0.02 mU and 0.008 Log 10 (2 -ΔΔCt )/mg dietary Zn, respectively; P < 0.05]. Fas cell-surface death receptor, etoposide-induced 2.4 and cyclin-dependent kinase inhibitor 1A gene expression correlated positively to cardiac zinc in piglets fed ≤42.7 mg Zn/kg ( r ≥ 0.97; P < 0.05). Conclusions: Short-term SZD decreased cardiac antioxidative capacity of weaned piglets while simultaneously increasing stress-associated gene expression and zinc concentration. This is the first report to our knowledge on the effects of SZD on redox metabolism. © 2017 American Society for Nutrition.
Characterizing bread wheat genotypes of Pakistani origin for grain zinc biofortification potential.
Rehman, Abdul; Farooq, Muhammad; Nawaz, Ahmad; Al-Sadi, Abdullah M; Al-Hashmi, Khalid S; Nadeem, Faisal; Ullah, Aman
2018-03-15
Zinc (Zn) is essential for all life forms and its deficiency is a major issue of malnutrition in humans. This study was carried out to characterize 28 wheat genotypes of Pakistani origin for grain zinc biofortification potential, genetic diversity and relatedness. There was low genetic differentiation among the tested genotypes. However, they differed greatly in yield-related traits, grain mineral (Zn, calcium (Ca) and protein) concentrations and Zn bioavailability. Zinc application increased the concentration of Zn in wheat grain (32.1%), embryo (19.8%), aleurone (47%) and endosperm (23.7%), with an increase in bioavailable Zn (22.2%) and a reduction in phytate concentration (6.8%). Application of Zn also enhanced grain protein and Ca concentrations. Among wheat genotypes, Blue Silver had the highest concentration of Zn in grain, embryo, aleurone and endosperm, with high bioavailable Zn, while Kohinoor-83 had low phytate concentration. Wheat genotypes of Pakistan are genetically less diverse owing to continuous focus on the development of high-yielding varieties only. Therefore genetically diverse wheat genotypes with high endospermic Zn concentration and better grain yield should be used in breeding programs approaches, aiming at improving Zn bioavailability. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Zhao, Ai-qing; Tian, Xiao-hong; Cao, Yu-xian; Lu, Xin-chun; Liu, Ting
2014-08-01
The concentration of Zn and phytic acid in wheat grain has important implications for human health. We conducted field and greenhouse experiments to compare the efficacy of soil and foliar Zn fertilisation in improving grain Zn concentration and bioavailability in wheat (Triticum aestivum L.) grain grown on potentially Zn-deficient calcareous soil. Results from the 2-year field experiment indicated that soil Zn application increased soil DTPA-Zn by an average of 174%, but had no significant effect on grain Zn concentration. In contrast, foliar Zn application increased grain Zn concentration by an average of 61%, and Zn bioavailability by an average of 36%. Soil DTPA-Zn concentrations varied depending on wheat cultivars. There were also significant differences in grain phytic acid concentration among the cultivars. A laboratory experiment indicated that Zn (from ZnSO4 ) had a low diffusion coefficient in this calcareous soil. Compared to soil Zn application, foliar Zn application is more effective in improving grain Zn content of wheat grown in potentially Zn-deficient calcareous soils. © 2013 Society of Chemical Industry.
Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system
NASA Astrophysics Data System (ADS)
Tang, Erjun; Cheng, Guoxiang; Ma, Xiaolu; Pang, Xingshou; Zhao, Qiang
2006-05-01
Commercial zinc oxide nanoparticles were modified by polymethacrylic acid (PMAA) in aqueous system. The hydroxyl groups of nano-ZnO particle surface can interact with carboxyl groups (COO-) of PMAA and form poly(zinc methacrylate) complex on the surface of nano-ZnO. The formation of poly(zinc methacrylate) complex was testified by Fourier-transform infrared spectra (FT-IR). Thermogravimetric analysis (TGA) indicated that PMAA molecules were absorbed or anchored on the surface of nano-ZnO particle, which facilitated to hinder the aggregation of nano-ZnO particles. Through particle size analysis and transmission electron micrograph (TEM) observation, it was found that PMAA enhanced the dispersibility of nano-ZnO particles in water. The dispersion stabilization of modified ZnO nanoparticles in aqueous system was significantly improved due to the introduction of grafted polymer on the surface of nanoparticles. The modification did not alter the crystalline structure of the ZnO nanoparticles according to the X-ray diffraction patterns.
Nejdl, Lukas; Ruttkay-Nedecky, Branislav; Kudr, Jiří; Kremplova, Monika; Cernei, Natalia; Prasek, Jan; Konecna, Marie; Hubalek, Jaromir; Zitka, Ondrej; Kynicky, Jindrich; Kopel, Pavel; Kizek, Rene; Adam, Vojtech
2013-01-01
In this study, we focused on microfluidic electrochemical analysis of zinc complexes (Zn(phen)(his)Cl2, Zn(his)Cl2) and ZnS quantum dots (QDs) using printed electrodes. This method was chosen due to the simple (easy to use) instrumentation and variable setting of flows. Reduction signals of zinc under the strictly defined and controlled conditions (pH, temperature, flow rate, accumulation time and applied potential) were studied. We showed that the increasing concentration of the complexes (Zn(phen)(his)Cl2, Zn(his)Cl2) led to a decrease in the electrochemical signal and a significant shift of the potential to more positive values. The most likely explanation of this result is that zinc is strongly bound in the complex and its distribution on the electrode is very limited. Changing the pH from 3.5 to 5.5 resulted in a significant intensification of the Zn(II) reduction signal. The complexes were also characterized by UV/VIS spectrophotometry, chromatography, and ESI-QTOF mass spectrometry. PMID:24233071
Xie, Linglin; Yang, Xia; He, Yi; Yuan, Ruo; Chai, Yaqin
2018-05-02
In this work, we adopted polyacrylamide gel-contained zinc finger peptide (PZF) as a "lock" of Raman signal and zinc ions (Zn 2+ ) as a sensitive "key", which was converted from target-captured ZnO NPs, to achieve the measurement of prostate-specific antigen (PSA). Owing to the lock effect from PZF, the surface-enhanced Raman scattering (SERS) tag toluidine blue (TB) connected on Ag NP-coating silica wafer was sheltered leading to low Raman response. Meanwhile, target PSA can specifically connect with antibody 2-coupled ZnO nanocomplexes (ZnO@Au@Ab 2 ) and antibody 1-coupled magnetic (CoFe 2 O 4 @Au@Ab 1 ) nanocomposite through sandwich immunoassay. In the presence of HCl, the ZnO NPs would convert into Zn 2+ to open the PZF because Zn 2+ can specifically react with zinc finger peptide to destroy the PZF structure forming abundant pores. In this way, Zn 2+ could act as the key of Raman signal to open the PZF structure obtaining a strong Raman signal of TB. The proposed SERS sensor can have a quantitative detection of PSA within the range of 1 pg mL -1 to 10 ng mL -1 with a detection limit of 0.65 pg mL -1 . The interaction between zinc finger peptide and Zn 2+ was firstly applied in SERS sensor for the sensitive detection of PSA. These results demonstrated that the new designed SERS biosensor could be a promising tool in biomarker diagnosis.
LIFE CYCLE INVENTORY ANALYSIS IN THE PRODUCTION OF METALS USED IN PHOTOVOLTAICS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
FTHENAKIS,V.M.; KIM, H.C.; WANG, W.
2007-03-30
Material flows and emissions in all the stages of production of zinc, copper, aluminum, cadmium, indium, germanium, gallium, selenium, tellurium, and molybdenum were investigated. These metals are used selectively in the manufacture of solar cells, and emission and energy factors in their production are used in the Life Cycle Analysis (LCA) of photovoltaics. Significant changes have occurred in the production and associated emissions for these metals over the last 10 years, which are not described in the LCA databases. Furthermore, emission and energy factors for several of the by-products of the base metal production were lacking. This report aims inmore » updating the life-cycle inventories associated with the production of the base metals (Zn, Cu, Al, Mo) and in defining the emission and energy allocations for the minor metals (Cd, In, Ge, Se, Te and Ga) used in photovoltaics.« less
Application of zinc oxide quantum dots in food safety
USDA-ARS?s Scientific Manuscript database
Zinc oxide quantum dots (ZnO QDs) are nanoparticles of purified powdered ZnO. The ZnO QDs were directly added into liquid foods or coated on the surface of glass jars using polylactic acid (PLA) as a carrier. The antimicrobial activities of ZnO QDs against Listeria monocytogenes, Salmonella Enteriti...
Liver metal concentrations in Greater Sage-grouse (Centrocercus urophasianus).
Dailey, Rebecca N; Raisbeck, Merl F; Siemion, Roger S; Cornish, Todd E
2008-04-01
Greater Sage-grouse (Centrocercus urophasianus) are a species of concern due to shrinking populations associated with habitat fragmentation and loss. Baseline health parameters for this species are limited or lacking, especially with regard to tissue metal concentrations. To obtain a range of tissue metal concentrations, livers were collected from 71 Greater Sage-grouse from Wyoming and Montana. Mean +/- SE metal concentrations (mg/kg wet weight) in liver were determined for vanadium (V) (0.12 +/- 0.01), chromium (Cr) (0.50 +/- 0.02), manganese (Mn) (2.68 +/- 0.11), iron (Fe) (1,019 +/- 103), nickel (Ni) (0.40 +/- 0.04), cobalt (Co) (0.08 +/- 0.02), copper (Cu) (6.43 +/- 0.40), mercury (Hg) (0.30 +/- 0.09), selenium (Se) (1.45 +/- 0.64), zinc (Zn) (59.2 +/- 4.70), molybdenum (Mo) (0.93 +/- 0.07), cadmium (Cd) (1.44 +/- 0.14), barium (Ba) (0.20 +/- 0.03), and lead (Pb) (0.17 +/- 0.03). In addition to providing baseline data, metal concentrations were compared between sex, age (juvenile/adult), and West Nile virus (WNv) groups (positive/negative). Adult birds had higher concentrations of Ni and Cd compared to juveniles. In addition, Zn and Cu concentrations were significantly elevated in WNv-positive birds.
Selective Sulfidation of Lead Smelter Slag with Pyrite and Flotation Behavior of Synthetic ZnS
NASA Astrophysics Data System (ADS)
Han, Junwei; Liu, Wei; Wang, Dawei; Jiao, Fen; Zhang, Tianfu; Qin, Wenqing
2016-08-01
The selective sulfidation of lead smelter slag with pyrite in the presence of carbon and Na salts, and the flotation behavior of synthetic ZnS were studied. The effects of temperature, time, pyrite dosage, Na salts, and carbon additions were investigated based on thermodynamic calculation, and correspondingly, the growth mechanism of ZnS particles was studied at high temperatures. The results indicated that the zinc in lead smelter slag was selectively converted into zinc sulfides by sulfidation roasting. The sulfidation degree of zinc was increased until the temperature, time, pyrite, and carbon dosages reached their optimum values, under which it was more than 95 pct. The growth of ZnS particles largely depended upon roasting temperature, and the ZnS grains were significantly increased above 1373 K (1100 °C) due to the formation of a liquid phase. After the roasting, the zinc sulfides generated had a good floatability, and 88.34 pct of zinc was recovered by conventional flotation.
The linoleic acid: dihomo-y-linolenic acid ratio (LA:DGLA)— an emerging biomarker of Zn status
USDA-ARS?s Scientific Manuscript database
Zinc (Zn) deficiency is a common aliment predicted to affect 17% of the world’s population. Zinc is a vital micronutrient used for over 300 enzymatic reactions and multiple biochemical and structural processes in the body. Although whole blood, plasma, and urine zinc decrease in severe zinc deficien...
Kılıç Altun, Serap; Dinç, Hikmet; Paksoy, Nilgün; Temamoğulları, Füsun Karaçal; Savrunlu, Mehmet
2017-01-01
The substantial of mineral ingredients in honey may symbolize the existence of elements in the plants and soil of the vicinity wherein the honey was taken. The aim of this study was to detect the levels of 13 elements (Potassium (K), Sodium (Na), Calcium (Ca), Iron (Fe), Zinc (Zn), Cadmium (Cd), Copper (Cu), Manganese (Mn), Lead (Pb), Nickel (Ni), Chromium (Cr), Aluminum (Al), and Selenium (Se)) in unifloral and multifloral honey samples from south and east regions of Turkey. Survey of 71 honey samples from seven different herbal origins, picked up from the south and east region of Turkey, was carried out to determine their mineral contents during 2015-2016. The mineral contents were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The most abundant minerals were K, Na, and Ca ranging within 1.18-268 ppm, 0.57-13.1 ppm, and 0.77-4.5 ppm, respectively. Zn and Cu were the most abundant trace element while Pb, Cd, Ni, and Cr were the lowest heavy metals in the honey samples surveyed, with regard to the concentrations of heavy metals such as Zn, Cu, Pb, Cd, Ni, and Cr suggested and influence of the botanical origin of element composition. Geochemical and geographical differences are probably related to the variations of the chemical components of honey samples.
Pipan-Tkalec, Ziva; Drobne, Damjana; Jemec, Anita; Romih, Tea; Zidar, Primoz; Bele, Marjan
2010-03-10
A number of reports on potential toxicity of nanoparticles are available, but there is still a lack of knowledge concerning bioaccumulation. The aim of this work was to investigate how different sources of zinc, such as uncoated and unmodified ZnO nanoparticles, ZnCl(2) in solution, and macropowder ZnO influence the bioaccumulation of this metal in the terrestrial isopod Porcellio scaber. After exposure to different sources of Zn in the diet, the amount of assimilated Zn in whole body, the efficiency of zinc assimilation, and bioaccumulation factors (BAFs) were assessed. The bioaccumulation potential of Zn was found to be the same regardless of Zn source. The amount of assimilated Zn and BAF were dose-dependent, and Zn assimilation efficiency was independent of exposure concentrations. The Zn assimilation capacity was found to be up to 16% of ingested Zn. It is known that as much as approximately 20% of Zn can be accreted from ZnO particles by dissolution. We conclude that bioaccumulation of Zn in isopods exposed to particulate ZnO depends most probably on Zn dissolution from ZnO particles and not on bioaccumulation of particulate ZnO.
[Efficacy of using zinc oxide nanoparticles in nutrition. Experiments on the laboratory animal].
Raspopov, R V; Trushina, E N; Mustafina, O K; Tananova, O N; Gmoshinskiĭ, I V; Khotimchenko, S A
2011-01-01
In experiments on rats there was researched bioavailability of zinc oxide (ZnO) nanoparticles. There were determined the content of Zn in blood serum and tibia, intestinal uptake of macromolecules of egg albumin, some hematological, biochemical and immune indices, liver cells apoptosis. The results obtained show that the uptake of nanoparticles of ZnO enables restoration of this microelement status damaged by zinc deficit diet.
Zheng, Jia-Lang; Yuan, Shuang-Shuang; Shen, Bin; Wu, Chang-Wen
2017-04-01
The study was carried out to evaluate the effects of low-dose zinc (Zn) pre-exposure on survival rate, new Zn accumulation, and mitochondrial bioenergetics in the liver and spleen of large yellow croaker exposed to high-dose Zn. To the end, fish were pre-exposed to 0 and 2 mg L -1 Zn for 48 h and post-exposed to 0 and 12 mg L -1 Zn for 48 h. Twelve milligrams Zn per liter exposure alone reduced survival rate, but the effect did not appear in the 2 mg L -1 Zn pre-exposure groups. Two milligrams per liter Zn pre-exposure also ameliorated 12 mg Zn L -1 induced new Zn accumulation, reactive oxygen species (ROS) levels, and mitochondrial swelling in the liver. However, these effects did not appear in the spleen. In the liver, 2 mg L -1 Zn pre-exposure apparently relieved 12 mg L -1 Zn induced down-regulation of activities of ATP synthase (F-ATPase), succinate dehydrogenase (SDH), and malate dehydrogenase (MDH). The mRNA levels of these genes remained relatively stable in fish exposed to 12 mg L -1 Zn alone, but increased in fish exposed to 12 mg L -1 Zn with 2 mg L -1 Zn pre-treatment. In the spleen, 2 mg Zn L -1 pre-exposure did not mitigate the down-regulation of mRNA levels of genes and activities of relative enzymes induced by 12 mg L -1 Zn. In conclusion, our study demonstrated low-dose zinc pre-exposure ameliorated high-dose zinc induced mitochondrial dysfunction in the liver but not in the spleen of large yellow croaker, indicating an organ-specific effect.
Croteau, Marie-Noele; Cain, Daniel J.; Fuller, Christopher C.
2017-01-01
We extend the use of a novel tracing technique to quantify the bioavailability of zinc (Zn) associated with natural particles using snails enriched with a less common Zn stable isotope. Lymnaea stagnalis is a model species that has relatively fast Zn uptake rates from the dissolved phase, enabling their rapid enrichment in 67Zn during the initial phase of labeling. Isotopically enriched snails were subsequently exposed to algae mixed with increasing amounts of metal-rich particles collected from two acid mine drainage impacted rivers. Zinc bioavailability from the natural particles was inferred from calculations of 66Zn assimilation into the snail’s soft tissues. Zinc assimilation efficiency (AE) varied from 28% for the Animas River particles to 45% for the Snake River particles, indicating that particle-bound, or sorbed Zn, was bioavailable from acid mine drainage wastes. The relative binding strength of Zn sorption to the natural particles was inversely related to Zn bioavailability; a finding that would not have been possible without using the reverse labeling approach. Differences in the chemical composition of the particles suggest that their geochemical properties may influence the extent of Zn bioavailability.
Croteau, Marie-Noële; Cain, Daniel J; Fuller, Christopher C
2017-03-07
We extend the use of a novel tracing technique to quantify the bioavailability of zinc (Zn) associated with natural particles using snails enriched with a less common Zn stable isotope. Lymnaea stagnalis is a model species that has relatively fast Zn uptake rates from the dissolved phase, enabling their rapid enrichment in 67 Zn during the initial phase of labeling. Isotopically enriched snails were subsequently exposed to algae mixed with increasing amounts of metal-rich particles collected from two acid mine drainage impacted rivers. Zinc bioavailability from the natural particles was inferred from calculations of 66 Zn assimilation into the snail's soft tissues. Zinc assimilation efficiency (AE) varied from 28% for the Animas River particles to 45% for the Snake River particles, indicating that particle-bound, or sorbed Zn, was bioavailable from acid mine drainage wastes. The relative binding strength of Zn sorption to the natural particles was inversely related to Zn bioavailability; a finding that would not have been possible without using the reverse labeling approach. Differences in the chemical composition of the particles suggest that their geochemical properties may influence the extent of Zn bioavailability.
NASA Astrophysics Data System (ADS)
Ramos, Pierre G.; Flores, Edson; Sánchez, Luis A.; Candal, Roberto J.; Hojamberdiev, Mirabbos; Estrada, Walter; Rodriguez, Juan
2017-12-01
In this work, ZnO/TiO2 nanostructures were fabricated by an electrostatically modified electrospinning technique using zinc acetate and commercially available TiO2-P25, polyvinyl alcohol, and a solvent. The ZnO/TiO2 nanostructures were fabricated on fluorine-doped tin oxide (FTO) glass substrate by electrospinning of aqueous solution containing different amounts of zinc acetate. The TiO2-P25 nanoparticles were immobilized within zinc acetate/PVA nanofibers. The precursor nanofibers obtained were converted into polycrystalline ZnO and ZnO/TiO2 by calcination at 600 °C. The structure and morphology of the obtained nanostructures were characterized by X-ray diffraction and field emission scanning electron microscopy, respectively. It was found that the TiO2-P25 nanoparticles were attached to the ZnO nanostructures, and the mean diameter of the nanoparticles forming the nanostructures ranged from 31 to 52 nm with increasing the amount of zinc acetate. The incident photon-to-current efficiency (IPCE) spectra of the fabricated nanostructures were measured in a three-electrode cell. The photocatalytic activities of ZnO and ZnO/TiO2 nanostructures were evaluated toward the decomposition of methyl orange. The obtained results evidenced that the coupling of TiO2 with ZnO enhanced the IPCE and improved the photocatalytic activity of ZnO. Particularly, the ZnO/TiO2 nanostructures fabricated with a zinc acetate-to-PVA ratio of 2:3 exhibited the highest IPCE and photocatalytic activity.
Zhang, Dongqing; Trzcinski, Antoine P; Oh, Hyun-Suk; Chew, Evelyn; Liu, Yu; Tan, Soon Keat; Ng, Wun Jern
2017-09-19
Zinc Oxide nanoparticles (ZnO NPs) are being increasingly applied in the industry, which results inevitably in the release of these materials into the hydrosphere. In this study, simulated waste-activated sludge experiments were conducted to investigate the effects of Zinc Oxide NPs and to compare it with its ionic counterpart (as ZnSO 4 ). It was found that even 1 mg/L of ZnO NPs could have a small impact on COD and ammonia removal. Under 1, 10 and 50 mg/L of ZnO NP exposure, the Chemical Oxygen Demand (COD) removal efficiencies decreased from 79.8% to 78.9%, 72.7% and 65.7%, respectively. The corresponding ammonium (NH 4 + N) concentration in the effluent significantly (P < 0.05) increased from 11.9 mg/L (control) to 15.3, 20.9 and 28.5 mg/L, respectively. Under equal Zn concentration, zinc ions were more toxic towards microorganisms compared to ZnO NPs. Under 50 mg/L exposure, the effluent Zn level was 5.69 mg/L, implying that ZnO NPs have a strong affinity for activated sludge. The capacity for adsorption of ZnO NPs onto activated sludge was found to be 2.3, 6.3, and 13.9 mg/g MLSS at influent ZnO NP concentrations of 1.0, 10 and 50 mg/L respectively, which were 1.74-, 2.13- and 2.05-fold more than under Zn ion exposure.
Annealing in tellurium-nitrogen co-doped ZnO films: The roles of intrinsic zinc defects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Kun, E-mail: ktang@nju.edu.cn; Gu, Ran; Gu, Shulin, E-mail: slgu@nju.edu.cn
2015-04-07
In this article, the authors have conducted an extensive investigation on the roles of intrinsic zinc defects by annealing of a batch of Te-N co-doped ZnO films. The formation and annihilation of Zn interstitial (Zn{sub i}) clusters have been found in samples with different annealing temperatures. Electrical and Raman measurements have shown that the Zn{sub i} clusters are a significant compensation source to holes, and the Te co-doping has a notable effect on suppressing the Zn{sub i} clusters. Meanwhile, shallow acceptors have been identified in photoluminescence spectra. The N{sub O}-Zn-Te complex, zinc vacancy (V{sub Zn})-N{sub O} complex, and V{sub Zn}more » clusters are thought to be the candidates as the shallow acceptors. The evolution of shallow acceptors upon annealing temperature have been also studied. The clustering of V{sub Zn} at high annealing temperature is proposed to be a possible candidate as a stable acceptor in ZnO.« less
Giacconi, R; Costarelli, L; Piacenza, F; Basso, A; Rink, L; Mariani, E; Fulop, T; Dedoussis, G; Herbein, G; Provinciali, M; Jajte, J; Lengyel, I; Mocchegiani, E; Malavolta, M
2017-12-01
Zinc (Zn) plays an essential role in many biological processes including immune response. Impaired Zn status promotes immune dysfunction, and it has been associated with enhanced chronic inflammation during aging. It has been suggested that the measurement of circulating Zn by itself could not reflect the real Zn status of an individual. It is therefore necessary to identify other determinants associated with plasma Zn to better understanding how physiopathological conditions during aging may affect the concentration of this metal. We have investigated the association between Zn levels and some biomarkers in 1090 healthy elderly from five European countries to increase the accuracy in the assessment of the Zn status. Stepwise multivariate linear regression models were used to analyze the influence of factors such as age, dietary intake, inflammatory mediators, laboratory parameters and polymorphisms previously associated with Zn homeostasis. Plasma Zn decrement was most strongly predicted by age, while positive correlations were found with albumin, RANTES and Zn intake after adjustment for multiple confounders. HSP70 +1267 AA genotype was an independent factor associated with Zn plasma concentrations. Cu/Zn ratio was positively associated with markers of systemic inflammation and age and negatively associated with albumin serum levels. Our findings show the most important independent determinants of plasma Zn concentration and Cu/Zn ratio variability in elderly population and suggest that the decline with age of Zn circulating levels is more dependent on physiopathological changes occurring with aging rather than to its nutritional intake.
Kumari, Anjali; Singh, Krishn Pratap; Mandal, Abhishek; Paswan, Ranjeet Kumar; Sinha, Preeti; Das, Pradeep; Ali, Vahab; Bimal, Sanjiva; Lal, Chandra Shekhar
2017-01-01
Leishmaniasis caused by Leishmania parasite is a global threat to public health and one of the most neglected tropical diseases. Therefore, the discovery of novel drug targets and effective drug is a major challenge and an important goal. Leishmania is an obligate intracellular parasite that alternates between sand fly and human host. To survive and establish infections, Leishmania parasites scavenge and internalize nutrients from the host. Nevertheless, host cells presents mechanism like nutrient restriction to inhibit microbial growth and control infection. Zinc is crucial for cellular growth and disruption in its homeostasis hinders growth and survival in many cells. However, little is known about the role of zinc in Leishmania growth and survival. In this study, the effect of zinc on the growth and survival of L.donovani was analyzed by both Zinc-depletion and Zinc-supplementation using Zinc-specific chelator N, N, N', N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) and Zinc Sulfate (ZnSO4). Treatment of parasites with TPEN rather than ZnSO4 had significantly affected the growth in a dose- and time-dependent manner. The pre-treatment of promastigotes with TPEN resulted into reduced host-parasite interaction as indicated by decreased association index. Zn depletion resulted into flux in intracellular labile Zn pool and increased in ROS generation correlated with decreased intracellular total thiol and retention of plasma membrane integrity without phosphatidylserine exposure in TPEN treated promastigotes. We also observed that TPEN-induced Zn depletion resulted into collapse of mitochondrial membrane potential which is associated with increase in cytosolic calcium and cytochrome-c. DNA fragmentation analysis showed increased DNA fragments in Zn-depleted cells. In summary, intracellular Zn depletion in the L. donovani promastigotes led to ROS-mediated caspase-independent mitochondrial dysfunction resulting into apoptosis-like cell death. Therefore, cellular zinc homeostasis in Leishmania can be explored for new drug targets and chemotherapeutics to control Leishmanial growth and disease progression.
Zinc (Zn) is consistently detected in respirable air particulate matter (PM). We recently demonstrated that inhalation of environmental combustion PM containing Zn produces myocardial lesions in rats, supporting epidemiological associations of cardiac morbidity and mortality ...
NASA Astrophysics Data System (ADS)
Senapati, Samarpita; Srivastava, Suneel K.; Singh, Shiv B.
2012-09-01
The hexagonal zinc oxide coated nickel (Ni/ZnO) nanostructure photocatalyst has successfully been prepared by the reduction of nickel chloride hexahydrate using hydrazine hydrate through the solvothermal process at 140 °C followed by surface modification of the product by the reflux method at 110 °C for 1 h. The X-ray diffraction (XRD) pattern showed that the `as prepared' sample consists of face centered cubic Ni and hexagonal wurtzite ZnO without any traces of impurity. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images confirmed the formation of nickel nanoparticles under solvothermal conditions. These nickel nanoparticles, when subjected to reflux, formed the hexagonal zinc oxide coated nickel nanostructure. Fourier transform infrared (FTIR) spectra, photoluminescence (PL) and Raman studies also confirmed the presence of zinc oxide in the hybrid nanostructure. The growth mechanism for the development of the hexagonal zinc oxide coated nickel (Ni/ZnO) nanostructure has also been proposed. The appearance of the hysteresis loop, in the as-prepared Ni/ZnO hybrid nanostructure, demonstrated its ferromagnetic character at room temperature. The hexagonal Ni/ZnO nanostructure also acts as an efficient photocatalyst in the degradation of methylene blue under ultraviolet light irradiation. It is observed that the catalytic efficiency of the hybrid nanocatalyst is better compared to pure zinc oxide. Most importantly, the Ni/ZnO catalyst could also be easily separated, simply by applying an external magnetic field, and reused.The hexagonal zinc oxide coated nickel (Ni/ZnO) nanostructure photocatalyst has successfully been prepared by the reduction of nickel chloride hexahydrate using hydrazine hydrate through the solvothermal process at 140 °C followed by surface modification of the product by the reflux method at 110 °C for 1 h. The X-ray diffraction (XRD) pattern showed that the `as prepared' sample consists of face centered cubic Ni and hexagonal wurtzite ZnO without any traces of impurity. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images confirmed the formation of nickel nanoparticles under solvothermal conditions. These nickel nanoparticles, when subjected to reflux, formed the hexagonal zinc oxide coated nickel nanostructure. Fourier transform infrared (FTIR) spectra, photoluminescence (PL) and Raman studies also confirmed the presence of zinc oxide in the hybrid nanostructure. The growth mechanism for the development of the hexagonal zinc oxide coated nickel (Ni/ZnO) nanostructure has also been proposed. The appearance of the hysteresis loop, in the as-prepared Ni/ZnO hybrid nanostructure, demonstrated its ferromagnetic character at room temperature. The hexagonal Ni/ZnO nanostructure also acts as an efficient photocatalyst in the degradation of methylene blue under ultraviolet light irradiation. It is observed that the catalytic efficiency of the hybrid nanocatalyst is better compared to pure zinc oxide. Most importantly, the Ni/ZnO catalyst could also be easily separated, simply by applying an external magnetic field, and reused. Electronic supplementary information (ESI) available: Fig. S1 Ni/ZnO hybrid nanostructure prepared using (a) 0.195 and (b) 0.25 M [Zn2+] at 90 °C Fig. S2 FTIR spectra of nickel nanoparticles prepared at 140 °C (a), and Ni/ZnO hybrid nanostructure prepared using (b) 0.063, (c) 0.125, (d) 0.195 and (e) 0.25 M [Zn2+]; Fig. S3 Raman spectra of Ni/ZnO nanostructure prepared using (a) 0.063, (b) 0.125, (c) 0.195 and (d) 0.25 M [Zn2+]; Fig. S4 Room temperature PL spectra of (a) ZnO and (b) Ni/ZnO nanostructure prepared using 0.25 M [Zn2+]. See DOI: 10.1039/c2nr31831h
Meyer, N R; Stuart, M A; Weaver, C M
1983-06-01
Bioavailability of zinc from diets prepared from intrinsically and extrinsically labeled autoclaved, defatted soy flour and scrambled, freeze-dried egg was investigated in male rats marginally depleted in zinc. In one study, retention of zinc from intrinsically labeled soybean flour (73%) was significantly less than from 65ZnCl2 extrinsically added to a soy flour-based diet (80%). Zinc from intrinsically labeled soybean hulls and from soy flour diets containing 10% soybean hulls extrinsically labeled with 65ZnCl2 was as available as the zinc from the extrinsically labeled soy flour diet. In a second study, extrinsic and intrinsic labeling techniques gave a similar assessment of bioavailability of zinc from egg- and soy flour-based diets when extrinsic labeling was accomplished by thoroughly mixing 65ZnCl2 with the protein source prior to incorporation into the diet. Absorption of 65Zn was greater from egg diets than from soy flour diets and of intermediate value from mixed soy flour and egg (50:50, wt/wt) diets regardless of which protein source was labeled, indicating that the zinc entered a common pool.
NASA Astrophysics Data System (ADS)
Singh, Chetan C.; Panda, Emila
2018-04-01
In order to know the threshold quantity of the zinc interstitials that contributes to an increase in carrier concentration in the Al-doped ZnO (AZO) films and their effect on the overall microstructure and optoelectronic properties of these films, in this work, Zn-rich-AZO and ZnO thin films are fabricated by adding excess zinc (from a zinc metallic target) during their deposition in RF magnetron sputtering and are then investigated using a wide range of experimental techniques. All these films are found to grow in a ZnO hexagonal wurtzite crystal structure with strong (002) orientation of the crystallites, with no indication of Al2O3, metallic Zn, and Al. The excessively introduced zinc in these AZO and/or ZnO films is found to increase the shallow donor level defects (i.e., zinc interstitials and oxygen-related electronic defect states), which is found to significantly increase the carrier concentration in these films. Additionally, aluminum is seen to enhance the creation of these electronic defect states in these films, thereby contributing more to the overall carrier concentration of these films. However, carrier mobility is found to decrease when the carrier concentration values are higher than 4 × 1020 cm-3, because of the electron-electron scattering. Whereas the optical band gap of the ZnO films is found to increase with increasing carrier concentration because of the Burstein-Moss shift, these decrease for the AZO films due to the band gap narrowing effect caused by excess carrier concentration.
DiGirolamo, Ann M; Ramirez-Zea, Manuel; Wang, Meng; Flores-Ayala, Rafael; Martorell, Reynaldo; Neufeld, Lynnette M; Ramakrishnan, Usha; Sellen, Daniel; Black, Maureen M; Stein, Aryeh D
2010-01-01
Background: Rates of mental illness in children are increasing throughout the world. Observational studies of depression, anxiety, and attention-deficit hyperactivity disorder suggest that zinc is an alternative treatment. Objective: We examined the effect of zinc supplementation on the mental health of school-age children in Guatemala. Design: From January to October 2006, we conducted a 6-mo randomized, double-blind, controlled trial comparing zinc supplementation (10 mg ZnO/d for 5 d/wk) with a placebo (10 mg glucose) in 674 Guatemalan children in grades 1–4. Outcome measures included internalizing (ie, depression and anxiety) and externalizing (ie, hyperactivity and conduct disorder) problem behaviors, positive behaviors (ie, socialization and leadership), and serum zinc concentrations. Results: Zinc and placebo groups did not differ significantly in any behavioral measures at baseline or at follow-up. At baseline, 21.4% of children had serum zinc concentrations <65 μg/dL. At follow-up, both groups improved significantly, and zinc concentrations were higher in the zinc group. Increases in serum zinc concentrations were inversely associated with decreases in depressive symptoms (estimate: −0.01 points per μg Zn/dL; P = 0.01), anxiety (estimate: −0.012 points per μg Zn/dL; P = 0.02), internalizing symptoms (estimate: −0.021 points per μg Zn/dL; P = 0.02), and social skills (estimate: −0.019 points per μg Zn/dL; P = 0.01) in adjusted models that were controlled for child age, sex, socioeconomic status, household, and treatment group. Conclusions: Six months of zinc supplementation did not induce differences in mental health outcomes between zinc and placebo groups. However, increases in serum zinc concentrations were associated with decreases in internalizing symptoms (ie, depression and anxiety) in a community-based sample of children at risk of zinc deficiency. This trial was registered at clinicaltrials.gov as NCT00283660. PMID:20881069
Rasic-Milutinovic, Z; Jovanovic, D; Bogdanovic, G; Trifunovic, J; Mutic, J
2017-02-01
Background: Besides genetic factors, it is known that some trace elements, as Selenium, Copper, and Zinc are essential for thyroid gland fuction and thyroid hormone metabolism. Moreover, there were some metals effect that suggested patterns associated with overt thyroid disease. Aim of study: Hashimoto thyroiditis (HT), chronic autoimune inflamation of thyroid gland with cosequtive hipothyroidism, is common disease in Serbia, and we thought it is worthwile to explore potential effects of essential and toxic metals and metalloides on thyroid function and ability to restore euthyroid status of them. Results: This cross-sectional, case-control, study investigated the status of essential elements (Selenium,Copper,and Zinc) and toxic metals and metalloides (Al, Cr, Mn, Co, As, Cd, Sb, Ba, Be, Pb and Ni) from the blood of 22 female, patients with Hashimoto thyroiditis and overt hypothyroidism, and compared it with those of 55 female healthy persons. We tried to establish the presence of any correlation between previous mentioned elements and thyroid function in hypothyroid patients and healthy participants. Conclusions: The results of our study suggested that the blood concentration of essential trace elements, especially the ratio of Copper, and Selenium may influence directly thyroid function in patients with HT and overt hypothyroidism.Thus, our findings may have implication to life-long substitution therapy in terms of l-thyroxine dose reduction. Furthermore, for the first time, our study shown potential toxic effect of Cadmium on thyroid function in HT patients, which may implicate the dose of l-thyroxine substitution. © Georg Thieme Verlag KG Stuttgart · New York.
Mondal, Sovik; Haldar, Sudipto; Saha, Pinaki; Ghosh, Tapan Kumar
2010-11-01
Supplementation of broiler diets with copper, manganese, and zinc at levels higher than that stipulated by the National Research Council 1994 reportedly improved live weight, feed conversion, and cured leg abnormality supposedly caused by inadequate intake of Mn and Zn. The objective of the study was to ascertain the effects of plethoric supplementation of copper (Cu), manganese (Mn), and zinc (Zn) on performance and metabolic responses in broiler chickens. The study also aimed to discriminate the responses of the birds when the mineral elements were supplemented either in an inorganic or in an organic form. Cobb 400 broiler chickens (1-day old, n = 300) were assigned to three dietary treatments each containing nine replicates with ten birds for 39 days. The treatments included a control in which the diet was devoid of supplemental trace elements and treatments supplemented with an inorganic trace element premix (ITM) and supplemented with a combination of the inorganic and an organic trace element premix (OTM). The ITM contained (per kilogram) copper, 15 g; iron, 90 g; manganese, 90 g; zinc, 80 g (all as sulfated salts); iodine (as potassium iodide), 2 g; and selenium (as sodium selenite), 0.3 g. The OTM on the other hand, contained copper, 2.5 g; iron, 15 g; manganese, 15 g; zinc, 13.33 g; and chromium, 0.226 g (all as protein chelates). Plethoric supplementation of trace elements improved live weight gain and feed/gain ratio (p < 0.05). Leg abnormality developed in the 16% of the control group of birds but not in the supplemented group. Metabolizability of dry matter, organic matter, and protein was higher (p < 0.01) in the ITM and OTM groups. Excretion of Cu, Fe, and Zn decreased (p < 0.1) due to supplementation of the trace elements leading to increased apparent absorption of the said mineral elements (p < 0.01). Concentration of the concerned trace elements in serum, liver, and composite muscle samples was higher (p < 0.05) in the ITM and OTM dietary groups indicating an increased deposition of the said mineral elements due to supplementation. Although the study revealed subtle difference between the inorganic and organic mineral premixes with regards to the parameters mentioned above, it became apparent that it is possible to reduce excretion of these trace elements by a judicious escalation in the level of supplementation. The results of the present investigation further revealed that the trace mineral requirement of broiler chickens suggested by the National Research Council may not be optimum to support the maximum growth potential of the high yielding strains, and it is reasonable to consider a review of the current NRC recommendations to meet the needs of the modern birds.
Perinatal ω-3 polyunsaturated fatty acid supply modifies brain zinc homeostasis during adulthood
Jayasooriya, Anura P.; Ackland, M. Leigh; Mathai, Michael L.; Sinclair, Andrew J.; Weisinger, Harrison S.; Weisinger, Richard S.; Halver, John E.; Kitajka, Klára; Puskás, László G.
2005-01-01
Dietary ω-3 polyunsaturated fatty acid (PUFA) influences the expression of a number of genes in the brain. Zinc transporter (ZnT) 3 has been identified as a putative transporter of zinc into synaptic vesicles of neurons and is found in brain areas such as hippocampus and cortex. Neuronal zinc is involved in the formation of amyloid plaques, a major characteristic of Alzheimer's disease. The present study evaluated the influence of dietary ω-3 PUFA on the expression of the ZnT3 gene in the brains of adult male Sprague-Dawley rats. The rats were raised and/or maintained on a control (CON) diet that contained ω-3 PUFA or a diet deficient (DEF) in ω-3 PUFA. ZnT3 gene expression was analyzed by using real-time PCR, free zinc in brain tissue was determined by zinquin staining, and total zinc concentrations in plasma and cerebrospinal fluid were determined by atomic absorption spectrophotometry. Compared with CON-raised animals, DEF-raised animals had increased expression of ZnT3 in the brain that was associated with an increased level of free zinc in the hippocampus. In addition, compared with CON-raised animals, DEF-raised animals had decreased plasma zinc level. No difference in cerebrospinal fluid zinc level was observed. The results suggest that overexpression of ZnT3 due to a perinatal ω-3 PUFA deficiency caused abnormal zinc metabolism in the brain. Conceivably, the influence of dietary ω-3 PUFA on brain zinc metabolism could explain the observation made in population studies that the consumption of fish is associated with a reduced risk of dementia and Alzheimer's disease. PMID:15883362
Jayasooriya, Anura P; Ackland, M Leigh; Mathai, Michael L; Sinclair, Andrew J; Weisinger, Harrison S; Weisinger, Richard S; Halver, John E; Kitajka, Klára; Puskás, László G
2005-05-17
Dietary omega-3 polyunsaturated fatty acid (PUFA) influences the expression of a number of genes in the brain. Zinc transporter (ZnT) 3 has been identified as a putative transporter of zinc into synaptic vesicles of neurons and is found in brain areas such as hippocampus and cortex. Neuronal zinc is involved in the formation of amyloid plaques, a major characteristic of Alzheimer's disease. The present study evaluated the influence of dietary omega-3 PUFA on the expression of the ZnT3 gene in the brains of adult male Sprague-Dawley rats. The rats were raised and/or maintained on a control (CON) diet that contained omega-3 PUFA or a diet deficient (DEF) in omega-3 PUFA. ZnT3 gene expression was analyzed by using real-time PCR, free zinc in brain tissue was determined by zinquin staining, and total zinc concentrations in plasma and cerebrospinal fluid were determined by atomic absorption spectrophotometry. Compared with CON-raised animals, DEF-raised animals had increased expression of ZnT3 in the brain that was associated with an increased level of free zinc in the hippocampus. In addition, compared with CON-raised animals, DEF-raised animals had decreased plasma zinc level. No difference in cerebrospinal fluid zinc level was observed. The results suggest that overexpression of ZnT3 due to a perinatal omega-3 PUFA deficiency caused abnormal zinc metabolism in the brain. Conceivably, the influence of dietary omega-3 PUFA on brain zinc metabolism could explain the observation made in population studies that the consumption of fish is associated with a reduced risk of dementia and Alzheimer's disease.
Mitzi, David B
2005-10-03
Two hydrazine zinc(II) telluride polymorphs, (N2H4)2ZnTe, have been isolated, using ambient-temperature solution-based techniques, and the crystal structures determined: alpha-(N2H4)2ZnTe (1) [P21, a = 7.2157(4) Angstroms, b = 11.5439(6) Angstroms, c = 7.3909(4) Angstroms, beta = 101.296(1) degrees, Z = 4] and beta-(N2H4)2ZnTe (2) [Pn, a = 8.1301(5) Angstroms, b = 6.9580(5) Angstroms, c = 10.7380(7) Angstroms, beta = 91.703(1) degrees, Z = 4]. The zinc atoms in 1 and 2 are tetrahedrally bonded to two terminal hydrazine molecules and two bridging tellurium atoms, leading to the formation of extended one-dimensional (1-D) zinc telluride chains, with different chain conformations and packings distinguishing the two polymorphs. Thermal decomposition of (N2H4)2ZnTe first yields crystalline wurtzite (hexagonal) ZnTe at temperatures as low as 200 degrees C, followed by the more stable zinc blende (cubic) form at temperatures above 350 degrees C. The 1-D polymorphs are soluble in hydrazine and can be used as convenient precursors for the low-temperature solution processing of p-type ZnTe semiconducting films.
Zhao, Shan; Seitz, Jan-M; Eifler, Rainer; Maier, Hans J; Guillory, Roger J; Earley, Elisha J; Drelich, Adam; Goldman, Jeremy; Drelich, Jaroslaw W
2017-07-01
Zinc shows great promise as a bio-degradable metal. Our early in vivo investigations implanting pure zinc wires into the abdominal aorta of Sprague-Dawley rats revealed that metallic zinc does not promote restenotic responses and may suppress the activities of inflammatory and smooth muscle cells. However, the low tensile strength of zinc remains a major concern. A cast billet of the Zn-Li alloy was produced in a vacuum induction caster under argon atmosphere, followed by a wire drawing process. Two phases of the binary alloy identified by x-ray diffraction include the zinc phase and intermetallic LiZn 4 phase. Mechanical testing proved that incorporating 0.1wt% of Li into Zn increased its ultimate tensile strength from 116±13MPa (pure Zn) to 274±61MPa while the ductility was held at 17±7%. Implantation of 10mm Zn-Li wire segments into abdominal aorta of rats revealed an excellent biocompatibility of this material in the arterial environment. The biodegradation rate for Zn-Li was found to be about 0.008mm/yr and 0.045mm/yr at 2 and 12months, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
The effect of dietary zinc - and polyphenols intake on DMBA-induced mammary tumorigenesis in rats
2012-01-01
Background The aim of the study was to investigate the effect of dietary supplementation with zinc and polyphenol compounds, i.e. resveratrol and genistein, on the effectiveness of chemically induced mammary cancer and the changes in the content of selected elements (Zn, Cu, Mg, Fe, Ca) in tumors as compared with normal tissue of the mammary gland. Methods Female Sprague-Dawley rats were divided into study groups which, apart from the standard diet and DMBA (7,12-dimethyl-1,2- benz[a]anthracene), were treated with zinc ions (Zn) or zinc ions + resveratrol (Zn + resveratrol) or zinc ions + genistein (Zn + genistein) via gavage for a period from 40 days until 20 weeks of age. The ICP-OES (inductively coupled plasma optical emission spectrometry) technique was used to analyze the following elements: magnesium, iron, zinc and calcium. Copper content in samples was estimated in an atomic absorption spectrophotometer. Results Regardless of the diet (standard; Zn; Zn + resveratrol; Zn + genistein), DMBA-induced breast carcinogenesis was not inhibited. On the contrary, in the Zn + resveratrol supplemented group, tumorigenesis developed at a considerably faster rate. On the basis of quantitative analysis of selected elements we found - irrespectively of the diet applied - great accumulation of copper and iron, which are strongly prooxidative, with a simultaneous considerable decrease of the magnesium content in DMBA-induced mammary tumors. The combination of zinc supplementation with resveratrol resulted in particularly large differences in the amount of the investigated elements in tumors as compared with their content in normal tissue. Conclusions Diet supplementation with zinc and polyphenol compounds, i.e. resveratrol and genistein had no effect on the decreased copper level in tumor tissue and inhibited mammary carcinogenesis in the rat. Irrespectively of the applied diet, the development of the neoplastic process in rats resulted in changes of the iron and magnesium content in the cancerous tissue in comparison with the healthy mammary tissue. The application of combined diet supplementation with zinc ions and resveratrol considerably promoted the rate of carcinogenesis and increased the number of DMBA-induced mammary tumors. PMID:22507225
Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components.
Li, Mei; Zhu, Lizhong; Lin, Daohui
2011-03-01
Water chemistry can be a major factor regulating the toxicity mechanism of ZnO nanoparticles (nano-ZnO) in water. The effect of five commonly used aqueous media with various chemical properties on the toxicity of nano-ZnO to Escherichia coli O111 (E. coli) was investigated, including ultrapure water, 0.85% NaCl, phosphate-buffered saline (PBS), minimal Davis (MD), and Luria-Bertani (LB). Combined results of physicochemical characterization and antibacterial tests of nano-ZnO in the five media suggest that the toxicity of nano-ZnO is mainly due to the free zinc ions and labile zinc complexes. The toxicity of nano-ZnO in the five media deceased as follows: ultrapure water > NaCl > MD > LB > PBS. The generation of precipitates (Zn(3)(PO(4))(2) in PBS) and zinc complexes (of zinc with citrate and amino acids in MD and LB, respectively) dramatically decreased the concentration of Zn(2+) ions, resulting in the lower toxicity in these media. Additionally, the isotonic and rich nutrient conditions improved the tolerance of E. coli to toxicants. Considering the dramatic difference of the toxicity of nano-ZnO in various aqueous media, the effect of water chemistry on the physicochemical properties of nanoparticles should be paid more attention in future nanotoxicity evaluations.
Thandavan, Tamil Many K; Gani, Siti Meriam Abdul; San Wong, Chiow; Md Nor, Roslan
2015-01-01
Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn-), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo+) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs.
Fabrega, Julia; Tantra, Ratna; Amer, Aisha; Stolpe, Bjorn; Tomkins, Jordan; Fry, Tony; Lead, Jamie R; Tyler, Charles R; Galloway, Tamara S
2012-01-17
We studied the effects of ZnO nanoparticles [ZnO NPs, primary particle size 35 ± 10 nm (circular diameter, TEM)], bulk [160 ± 81 nm (circular diameter, TEM)], and Zn ions (from ZnCl(2)) on mortality, growth, and reproductive endpoints in the sediment dwelling marine amphipod Corophium volutator over a complete lifecycle (100 days). ZnO NPs were characterized by size, aggregation, morphology, dissolution, and surface properties. ZnO NPs underwent aggregation and partial dissolution in the seawater exposure medium, resulting in a size distribution that ranged in size from discrete nanoparticles to the largest aggregate of several micrometers. Exposure via water to all forms of zinc in the range of 0.2-1.0 mg L(-1) delayed growth and affected the reproductive outcome of the exposed populations. STEM-EDX analysis was used to characterize insoluble zinc precipitates (sphaerites) of high sulfur content, which accumulated in the hepatopancreas following exposures. The elemental composition of the sphaerites did not differ for ZnO NP, Zn(2+), and bulk ZnO exposed organisms. These results provide an illustration of the comparable toxicity of Zn in bulk, soluble, and nanoscale forms on critical lifecycle parameters in a sediment dwelling organism.
NASA Astrophysics Data System (ADS)
Akranata, Ahmad Ridho; Sulistijono, Awali, Jatmoko
2018-04-01
Sacrificial anode is sacirifial component that used to protect steel from corrosion. Generally, the component are made of aluminium and zinc in water environment. Sacrificial anode change the protected metal structure become cathodic with giving current. The advantages of aluminium is corrosion resistance, non toxicity and easy forming. Zinc generally used for coating in steel to prevent steel from corrosion. This research was conducted to analyze the effect of zinc content to the value of cell potential and efficiency aluminium sacrificial anode with sand casting method in 0.2 M sulphuric acid environment. The sacrificial anode fabrication made with alloying aluminium and zinc metals with variation composition of alloy with pure Al, Al-3Zn, Al-6Zn, and Al-9Zn with open die sand casting process. The component installed with ASTM A36 steel. After the research has been done the result showed that addition of zinc content increase the cell potential, protection efficiency, and anode efficiency from steel plate. Cell potential value measurement and weight loss measurement showed that addition of zinc content increase the cell potential value into more positive that can protected the ASTM A36 steel more efficiently that showed in weight loss measurement where the protection efficiency and anodic efficiency of Al-9Zn sacrificial anode is better than protection efficiency and anodic efficiency of pure Al. The highest protection efficiency gotten by Al-9Zn alloy
Yuvakkumar, R; Suresh, J; Nathanael, A Joseph; Sundrarajan, M; Hong, S I
2014-08-01
In the present investigation, we report a sustainable novel green synthetic strategy to synthesis zinc oxide nanocrystals. This is the first report on sustainable biosynthesis of zinc oxide nanocrystals employing Nephelium lappaceum L., peel extract as a natural ligation agent. Green synthesis of zinc oxide nanocrystals was carried out via zinc-ellagate complex formation using rambutan peel wastes. The successful formation of zinc oxide nanocrystals was confirmed employing standard characterisation studies. A possible mechanism for the formation of ZnO nanocrystals with rambutan peel extract was also proposed. The prepared ZnO nanocrystals were coated on the cotton fabric and their antibacterial activity were analyzed. ZnO nanocrystals coated cotton showed good antibacterial activity towards Escherichia coli (E. coli), gram negative bacteria and Staphylococcus aureus (S. aureus), gram positive bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.
Single-layer ZnMN2 (M = Si, Ge, Sn) zinc nitrides as promising photocatalysts.
Bai, Yujie; Luo, Gaixia; Meng, Lijuan; Zhang, Qinfang; Xu, Ning; Zhang, Haiyang; Wu, Xiuqiang; Kong, Fanjie; Wang, Baolin
2018-05-30
Searching for two-dimensional semiconductor materials that are suitable for visible-light photocatalytic water splitting provides a sustainable solution to deal with the future energy crisis and environmental problems. Herein, based on first-principles calculations, single-layer ZnMN2 (M = Si, Ge, Sn) zinc nitrides are proposed as efficient photocatalysts for water splitting. Stability analyses show that the single-layer ZnMN2 zinc nitrides exhibit energetic and dynamical stability. The electronic properties reveal that all of the single-layer ZnMN2 zinc nitrides are semiconductors. Interestingly, single-layer ZnSnN2 is a direct band gap semiconductor with a desirable band gap (1.74 eV), and the optical adsorption spectrum confirms its optical absorption in the visible light region. The hydrogen evolution reaction (HER) calculations show that the catalytic activity for single-layer ZnMN2 (M = Ge, Sn) is better than that of single-layer ZnSiN2. Furthermore, the band gaps and band edge positions for the single-layer ZnMN2 zinc nitrides can be effectively tuned by biaxial strain. Especially, single-layer ZnGeN2 can be effectively tuned to match better with the redox potentials of water and enhance the light absorption in the visible light region at a tensile strain of 5%, which is confirmed by the corresponding optical absorption spectrum. Our results provide guidance for experimental synthesis efforts and future searches for single-layer materials suitable for photocatalytic water splitting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edalati, Khatereh, E-mail: kh_ed834@stu.um.ac.ir; Shakiba, Atefeh; Vahdati-Khaki, Jalil
2016-02-15
Highlights: • We synthesized ZnO nanorods by a simple hydrothermal process at 60 °C. • Effects of zinc salt concentration, solvent and alkaline mineralizer was studied. • Increasing concentration of zinc salt changed ZnO nucleation system. • NaOH yielded better results in the production of nanorods in both solvents. • Methanol performed better in the formation of nanorods using the two mineralizers. - Abstract: ZnO has been produced using various methods in the solid, gaseous, and liquid states, and the hydrothermal synthesis at low temperatures has been shown to be an environmentally-friendly one. The current work utilizes a low reactionmore » temperature (60 °C) for the simple hydrothermal synthesis of ZnO nanorod morphologies. Furthermore, the effects of zinc salt concentration, solvent type and alkaline mineralizer type on ZnO nanorods synthesis at a low reaction temperature by hydrothermal processing was studied. Obtained samples were analyzed using X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Increasing the concentration of the starting zinc salt from 0.02 to 0.2 M changed ZnO nucleation system from the homogeneous to the heterogeneous state. The XRD results confirmed the production hexagonal ZnO nanostructures of with a crystallite size of 40.4 nm. Varying the experimental parameters (mineralizer and solvent) yielded ZnO nanorods with diameters ranging from 90–250 nm and lengths of 1–2 μm.« less
2013-01-01
Cyanide is an extreme hazard and extensively found in the wastes of refinery, coke plant, and metal plating industries. A simple, fast, cost-effective, room-temperature wet chemical route, based on cyclohexylamine, for synthesizing zinc oxide nanoparticles in aqueous and enthanolic media was established and tested for the photodegradation of cyanide ions. Particles of polyhedra morphology were obtained for zinc oxide, prepared in ethanol (ZnOE), while spherical and some chunky particles were observed for zinc oxide, prepared in water (ZnOW). The morphology was crucial in enhancing the cyanide ion photocatalytic degradation efficiency of ZnOE by a factor of 1.5 in comparison to the efficiency of ZnOW at an equivalent concentration of 0.02 wt.% ZnO. Increasing the concentration wt.% of ZnOE from 0.01 to 0.09 led to an increase in the photocatalytic degradation efficiency from 85% to almost 100% after 180 min and a doubling of the first-order rate constant (k). PMID:24314056
Rizwan, Muhammad; Ali, Shafaqat; Hussain, Afzal; Ali, Qasim; Shakoor, Muhammad Bilal; Zia-Ur-Rehman, Muhammad; Farid, Mujahid; Asma, Maliha
2017-11-01
Cadmium (Cd) is among the most widespread toxic trace elements found in agricultural soils due to various anthropogenic activities. The role of micronutrient-amino chelates on reducing Cd toxicity in crop plants is recently introduced. The current study was conducted to highlight the role of foliar application of zinc-lysine (Zn-lys) complex on biochemical and growth parameters and Cd uptake in wheat (Triticum aestivum) grown in aged Cd-contaminated soil. Foliar concentration of Zn-lys (0, 10, 20, and 30 mg L -1 ) was applied at different time intervals (2nd, 3rd, 5th and 7th week of sowing) and plants were harvested at maturity. Folliar application of Zinc-lys significantly increased the photosynthesis, grain yield, enzyme activities and Zn contents in different plant tissues. Zinc-lys reduced Cd contents in grains, shoot and root as well as reduced the oxidative stress in wheat linearly in a dose-additive manner. Taken together, Zn-lys chelate efficiently improved wheat growth and fortified Zn contents while reduced Cd concentration in plant in a Zn-deficient Cd-contaminated soil. Although, health risk index (HRI) from the soil sampling area seems to be lower than <1 for Cd but may exceed due to long-term consumption of grains produced from such contaminated soil. Foliar applied Zn-lys reduced HRI which may help to reduce health risks associated with Cd. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of exogenous zinc on cell cycle, apoptosis and viability of MDAMB231, HepG2 and 293 T cells.
Wang, Yan-hong; Li, Ke-jin; Mao, Li; Hu, Xin; Zhao, Wen-jie; Hu, An; Lian, Hong-zhen; Zheng, Wei-juan
2013-09-01
As a non-toxic metal to humans, zinc is essential for cell proliferation, differentiation, regulation of DNA synthesis, genomic stability and mitosis. Zinc homeostasis in cells, which is crucial for normal cellular functioning, is maintained by various protein families including ZnT (zinc transporter/SLC30A) and ZIP (Zrt-, Irt-like proteins/SLC39A) that decrease and increase cytosolic zinc availability, respectively. In this study, we investigated the influences of a specific concentration range of ZnSO4 on cell cycle and apoptosis by flow cytometry, and cell viability by MTT method in MDAMB231, HepG2 and 293 T cell lines. Fluorescent sensors NBD-TPEA and the counterstain for nuclei Hoechst 33342 were used to stain the treated cells for observing the localisation and amount of Zn(2+) via laser scanning confocal microscope. It was found that the influence manners of ZnSO4 on cell cycle, apoptosis and cell viability in various cell lines were different and corresponding to the changes of Zn(2+) content of the three cell lines, respectively. The significant increase on intracelluar zinc content of MDAMB231 cells resulted in cell death, G1 and G2/M cell cycle arrest and increased apoptotic fraction. Additionally, the mRNA expression levels of ZnT and ZIP families in the three cell lines, when treated with high concentration of ZnSO4, increased and decreased corresponding to their functions, respectively.
USDA-ARS?s Scientific Manuscript database
Zinc was recognized as an essential trace metal for humans during the studies of Iranian adolescent dwarfs in the early 1960s. Zinc metal existing as Zn2+ is a strong electron acceptor in biological systems without risks of oxidant damage to cells. Zn2+ functions in the structure of proteins and is ...
Croteau, M.-N.; Dybowska, A.D.; Luoma, S.N.; Valsami-Jones, E.
2011-01-01
If engineered nanomaterials are released into the environment, some are likely to end up associated with the food of animals due to aggregation and sorption processes. However, few studies have considered dietary exposure of nanomaterials. Here we show that zinc (Zn) from isotopically modified 67ZnO particles is efficiently assimilated by freshwater snails when ingested with food. The 67Zn from nano-sized 67ZnO appears as bioavailable as 67Zn internalized by diatoms. Apparent agglomeration of the zinc oxide (ZnO) particles did not reduce bioavailability, nor preclude toxicity. In the diet, ZnO nanoparticles damage digestion: snails ate less, defecated less and inefficiently processed the ingested food when exposed to high concentrations of ZnO. It was not clear whether the toxicity was due to the high Zn dose achieved with nanoparticles or to the ZnO nanoparticles themselves. Further study of exposure from nanoparticles in food would greatly benefit assessment of ecological and human health risks. ?? 2011 Informa UK, Ltd.
Micronutrient levels and nutritional status of school children living in Northwest Ethiopia.
Amare, Bemnet; Moges, Beyene; Fantahun, Bereket; Tafess, Ketema; Woldeyohannes, Desalegn; Yismaw, Gizachew; Ayane, Tilahun; Yabutani, Tomoki; Mulu, Andargachew; Ota, Fusao; Kassu, Afework
2012-12-13
Several micronutrients are essential for adequate growth of children. However, little information is available on multiple micronutrient status of school children in Ethiopia. The present study was designed to evaluate the relationship between multiple micronutrient levels and nutritional status among school children. In this cross-sectional study, anthropometric data, blood and stool samples were collected from 100 children at Meseret Elementary School in Gondar town, Northwest Ethiopia. Serum concentration of magnesium, calcium, iron, copper, zinc, selenium and molybdenum were measured by inductively coupled plasma mass spectrometer. Anthropometric indices of weight-for-age, height-for-age and BMI-for-age were used to estimate the children's nutritional status. Stool samples were examined by standard microscopic methods for intestinal parasites. The prevalence of stunting, underweight, wasting and intestinal parasitoses among school children was 23%, 21%, 11% and 18%, respectively. The mean serum levels of magnesium, calcium, iron, copper, zinc, selenium and molybdenum were 2.42±0.32 (mg/dl), 15.31±2.14 (mg/dl), 328.19±148.91 (μg/dl), 191.30±50.17 (μg/dl), 86.40±42.40 (μg/dl), 6.32±2.59 (μg/dl), and 0.23±0.15 (μg/dl), respectively. Selenium deficiency, zinc deficiency and magnesium deficiency occurred in 62%, 47%, and 2% of the school children, respectively. Height-for-age showed significant positive correlation with the levels of copper and molybdenum (p = 0.01) and with the levels of magnesium (p = 0.05). Deficiencies of selenium and zinc were high among the school children although the deficiencies were not significantly related with their nutritional status. The prevalence of both malnutrition and intestinal parasitism was not negligible. These calls for the need to undertake multicentre studies in various parts of the country to substantiate the data obtained in the present study so that appropriate and beneficial strategies for micronutrient supplementation and interventions on nutritional deficiencies can be planned.
Hinck, J.E.; Schmitt, C.J.; Echols, K.R.; May, T.W.; Orazio, C.E.; Tillitt, D.E.
2006-01-01
Organochlorine chemical residues and elemental contaminants were measured in northern pike (Esox lucius), longnose sucker (Catostomus catostomus), and burbot (Lota lota) from 10 sites in the Yukon River Basin (YRB) during 2002. Contaminant concentrations were compared to historical YRB data and to toxicity thresholds for fish and piscivorous wildlife from the scientific literature. A risk analysis was conducted to screen for potential hazards to piscivorous wildlife for contaminants that exceeded literature-based toxicity thresholds. Concentrations of total DDT (sum of p,p???-homologs; 1.09-13.6 ng/g), total chlordane (0.67-7.5 ng/g), dieldrin (<0.16-0.6 ng/g), toxaphene (<11-34 ng/g), total PCBs (<20-87 ng/g), TCDD-EQ (???1.7 pg/g), arsenic (0.03-1.95 ??g/g), cadmium (<0.02-0.12 ??g/g), copper (0.41-1.49 ??g/g), and lead (<0.21-0.27 ??g/g) did not exceed toxicity thresholds for growth and reproduction in YRB fish. Concentrations of mercury (0.08-0.65 ??g/g), selenium (0.23-0.85 ??g/g), and zinc (11-56 ??g/g) exceeded toxicity thresholds in one or more samples and were included in the risk analysis for piscivorous wildlife. No effect hazard concentrations (NEHCs) and low effect hazard concentrations (LEHCs), derived from literature-based toxicity reference values and avian and mammalian life history parameters, were calculated for mercury, selenium, and zinc. Mercury concentrations in YRB fish exceeded the NEHCs for all bird and small mammal models, which indicated that mercury concentrations in fish may represent a risk to piscivorous wildlife throughout the YRB. Low risk to piscivorous wildlife was associated with selenium and zinc concentrations in YRB fish. Selenium and zinc concentrations exceeded the NEHCs and LEHCs for only the small bird model. These results indicate that mercury should continue to be monitored and assessed in Alaskan fish and wildlife. ?? 2006 Springer Science+Business Media, Inc.
Abedini, M; Shariatmadari, F; Karimi Torshizi, M A; Ahmadi, H
2018-06-01
The objective of this study was to evaluate the effects of dietary supplementation with zinc oxide nanoparticles (ZnO-NPs) on the performance, egg quality, Zn retention, immunity responses, superoxide dismutase activity (SOD), egg malondialdehyde (MDA) content, and serum parameters in laying hens in the late phase of production. A total of 288 laying hens at 64 weeks of age were randomly assigned to 4 treatments with 6 replicates, and 12 birds within each group. Experimental diets included a corn-soybean meal-based diet (without Zn supplementation) and a basal diet supplemented with 80 mg/kg of Zn-oxide, ZnO-NPs, and Zn-methionine. The results indicated that egg production and egg mass were significantly higher in the Zn-methionine and ZnO-NPs groups (p < .05). Also, eggshell thickness and shell strength increased in the ZnO-NPs group as compared with the other groups (p < .05). Moreover, Zn supplementation decreased egg loss (p < .05). There were significant differences among treatments in Zn deposition in tibiotarsus, liver, pancreas, eggs, and excreta (p < .01). Antibody titre, heterophil (%(, and phytohemagglutinin (PHA) were significantly higher in birds fed with Zn-supplemented diets (p < .05). In treatments supplemented with ZnO-NPs and Zn-methionine, the SOD activity in the liver, pancreas, and plasma was greater as compared with the other treatments (p < .05). The MDA content in eggs was significantly reduced in groups supplemented with Zn (p < .01). Moreover, dietary Zn supplementation significantly affected serum total protein, albumin, glucose, alkaline phosphatase activity, carbonic anhydrase activity, and Zn level (p < .05). In conclusion, this study demonstrated that dietary supplementation with ZnO-NPs can improve the performance of laying hens. Therefore, ZnO-NPs can enhance zinc absorption in the intestine of aged layers and can be a more suitable source of zinc than regular Zn-oxide in diets. © 2018 Blackwell Verlag GmbH.
Zinc Vacancy Formation and its Effect on the Conductivity of ZnO
NASA Astrophysics Data System (ADS)
Khan, Enamul; Weber, Marc; Langford, Steve; Dickinson, Tom
2010-03-01
Exposing single crystal ZnO to 193-nm ArF excimer laser radiation can produce metallic zinc nanoparticles along the surface. The particle production mechanism appears to involve interstitial-vacancy pair formation in the near-surface bulk. Conductivity measurements made with one probe inside the laser spot and the other outside show evidence for rectifying behavior. Positron annihilation spectroscopy confirms the presence of Zn vacancies. We suggest that Zn vacancies are a possible source of p-type behavior in irradiated ZnO. Quadrupole mass spectroscopy shows that both oxygen and zinc are emitted during irradiation. Electron-hole pair production has previously been invoked to account for particle desorption from ZnO during UV illumination. Our results suggest that preexisting and laser-generated defects play a critical role in particle desorption and Zn vacancy formation.
Code of Federal Regulations, 2013 CFR
2013-04-01
... to be applied and left on the skin or scalp. (4) Salicylic acid, 1.8 to 3 percent. (5) Selenium sulfide, 1 percent. (6) Selenium sulfide, micronized, 0.6 percent. (7) Sulfur, 2 to 5 percent. (b) Active...) Pyrithione zinc, 0.1 to 0.25 percent when formulated to be applied and left on the skin or scalp. (4...
Code of Federal Regulations, 2011 CFR
2011-04-01
... to be applied and left on the skin or scalp. (4) Salicylic acid, 1.8 to 3 percent. (5) Selenium sulfide, 1 percent. (6) Selenium sulfide, micronized, 0.6 percent. (7) Sulfur, 2 to 5 percent. (b) Active...) Pyrithione zinc, 0.1 to 0.25 percent when formulated to be applied and left on the skin or scalp. (4...
Code of Federal Regulations, 2012 CFR
2012-04-01
... to be applied and left on the skin or scalp. (4) Salicylic acid, 1.8 to 3 percent. (5) Selenium sulfide, 1 percent. (6) Selenium sulfide, micronized, 0.6 percent. (7) Sulfur, 2 to 5 percent. (b) Active...) Pyrithione zinc, 0.1 to 0.25 percent when formulated to be applied and left on the skin or scalp. (4...
Code of Federal Regulations, 2014 CFR
2014-04-01
... to be applied and left on the skin or scalp. (4) Salicylic acid, 1.8 to 3 percent. (5) Selenium sulfide, 1 percent. (6) Selenium sulfide, micronized, 0.6 percent. (7) Sulfur, 2 to 5 percent. (b) Active...) Pyrithione zinc, 0.1 to 0.25 percent when formulated to be applied and left on the skin or scalp. (4...
Code of Federal Regulations, 2010 CFR
2010-04-01
... to be applied and left on the skin or scalp. (4) Salicylic acid, 1.8 to 3 percent. (5) Selenium sulfide, 1 percent. (6) Selenium sulfide, micronized, 0.6 percent. (7) Sulfur, 2 to 5 percent. (b) Active...) Pyrithione zinc, 0.1 to 0.25 percent when formulated to be applied and left on the skin or scalp. (4...
Yang, Zhihong; Xie, Changsheng; Xia, Xianping; Cai, Shuizhou
2008-11-01
To decrease the side effects of the existing copper-bearing intrauterine devices, the zinc/low-density polyethylene (Zn/LDPE) nanocomposite and zinc-oxide/low-density polyethylene (ZnO/LDPE) nanocomposite have been developed in our research for intrauterine devices (IUDs). In this study, the influences of preparation methods of nanocomposites and particle sizes of zinc and zinc oxide on Zn(2+) release from composites incubated in simulated uterine solution were investigated. All release profiles are biphasic: an initial rapid release phase is followed by a near zero-order release period. Zn(2+) release rates of nanocomposites prepared by compressing moulding are higher than those of the nanocomposites prepared by hot-melt extrusing. Compared with Zn(2+) release from the microcomposites, the release profiles of the nanocomposites exhibit a sharp decrease in Zn(2+) release rate in the first 18 days, an early onset of the zero-order release period and a high release rate of Zn(2+) at the later stage. The microstructure of the Zn/LDPE sample and the ZnO/LDPE sample after being incubated for 200 days was characterized by SEM, XRD and EDX techniques. The results show that the dissolution depth of ZnO/LDPE nanocomposite is about 60 mum. Lots of pores were formed on the surface of the Zn/LDPE sample and ZnO/LDPE sample, indicating that these pores can provide channels for the dissolution of nanoparticles in the matrix. The undesirable deposits that are composed of ZnO are only detected on the surface of Zn/LDPE nanocomposite, which may increase the risk of side effects associated with IUDs. It can be expected that ZnO/LDPE nanocomposite is more suitable for IUDs than Zn/LDPE nanocomposite.
Florea, Daniela; Molina-López, Jorge; Hogstrand, Christer; Lengyel, Imre; de la Cruz, Antonio Pérez; Rodríguez-Elvira, Manuel; Planells, Elena
2018-09-01
Critically ill patients develop severe stress, inflammation and a clinical state that may raise the utilization and metabolic replacement of many nutrients and especially zinc, depleting their body reserves. This study was designed to assess the zinc status in critical care patients with systemic inflammatory response syndrome (SIRS), comparing them with a group of healthy people, and studying the association with expression of zinc transporters. This investigation was a prospective, multicentre, comparative, observational and analytic study. Twelve critically ill patients from different hospitals and 12 healthy subjects from Granada, Spain, all with informed consent were recruited. Data on daily nutritional assessment, ICU severity scores, inflammation, clinical and nutritional parameters, plasma and blood cell zinc concentrations, and levels of transcripts for zinc transporters in whole blood were taken at admission and at the seventh day of the ICU stay. Zinc levels on critical ill patient are diminish comparing with the healthy control (HS: 0.94 ± 0.19; CIPF: 0.67 ± 0.16 mg/dL). The 58% of critical ill patients showed zinc plasma deficiency at beginning of study while 50.0% of critical ill after 7 days of ICU stay. ZnT7, ZIP4 and ZIP9 were the zinc transporters with highest expression in whole blood. In general, all zinc transporters were significantly down-regulated (P < 0.05) in the critical ill population at admission in comparison with healthy subjects. Severity scores and inflammation were significantly associated (P < 0.05) with zinc plasma levels, and zinc transporters ZIP3, ZIP4, ZIP8, ZnT6, ZnT7. Expression of 11 out of 24 zinc transporters was analysed, and ZnT1, ZnT4, ZnT5 and ZIP4, which were downregulated by more than 3-fold in whole blood of patients. In summary, in our study an alteration of zinc status was related with the severity-of-illness scores and inflammation in critical ill patients since admission in ICU stay. SIRS caused a general shut-down of expression of zinc transporters in whole blood. That behavior was associated with severity and inflammation of patients at ICU admission regardless zinc status. We conclude that zinc transporters in blood might be useful indicators of severity of systemic inflammation and outcome for critically ill patients. Copyright © 2017 Elsevier GmbH. All rights reserved.
Characterization of zinc stress response in Cyanobacterium Synechococcus sp. IU 625.
Newby, Robert; Lee, Lee H; Perez, Jose L; Tao, Xin; Chu, Tinchun
2017-05-01
The ability of cyanobacteria to survive many environmental stress factors is a testament to their resilience in nature. Of these environmental stress factors, overexposure to zinc is important to study since excessive zinc intake can be a severe hazard. Zinc toxicity in freshwater has been demonstrated to affects organisms such as invertebrates, algae and cyanobacteria. Cyanobacteria which possess increased resistance to zinc have been isolated. It is therefore important to elucidate the mechanism of survival and response to determine what factors allow their survival; as well as any remediation implications they may have. To characterize the effects of zinc in freshwater cyanobacteria, we investigated the response of Synechococcus sp. IU 625 (S. IU 625) over 29days to various concentrations (10, 25, and 50mg/L) of ZnCl 2 . S. IU 625 was shown to be tolerant up to 25mg/L ZnCl 2 exposure, with 10mg/L ZnCl 2 having no outward physiological change and 50mg/L ZnCl 2 proving lethal to the cells. To determine a potential mechanism Inductive Coupled Plasma-Mass Spectrometry (ICP-MS) and RNA-seq analysis were performed on zinc exposed cells. Analysis performed on days 4 and 7 indicated that response is dose-dependent, with 10mg/L ZnCl 2 exhibiting nearly all zinc extracellular, corresponding with upregulation of cation transport response. Whereas the 25mg/L ZnCl 2 exhibited half of total zinc sequestered by the cells, which corresponds with the upregulation of sequestering proteins such as metallothionein and the downregulation of genes involved with ATP synthesis and phycobilisome assembly. These analyses were combined with growth monitoring, microscopy, quantitative polymerase chain reaction (qPCR) and flow cytometry to present a full spectrum of mechanisms behind zinc response in S. IU 625. Copyright © 2017 Elsevier B.V. All rights reserved.
Wiring Zinc in Three Dimensions Re-writes Battery Performance - Dendrite-Free Cycling
2014-01-01
surfaces throughout the electrode structure (Fig. 5D–I). The positive Zn@ZnO sponge exhibits a compact morphology uniformly distributed throughout (Fig...monolithic, three-dimensional (3D) aperiodic architecture. Utilization approaches 90% (728 mA h gZn 1) when the zinc “ sponge ” is used as the anode in...a primary (single-use) zinc–air cell. To probe rechargeability of the 3D Zn sponge , we cycled Zn–vs.–Zn symmetric cells and Ag–Zn full cells under
Chronic zinc deficiency alters chick gut microbiota composition and function
USDA-ARS?s Scientific Manuscript database
Zinc (Zn) deficiency is a prevalent micronutrient insufficiency. Although the gut is a vital organ for Zn utilization, and Zn deficiency is associated with impaired intestinal permeability and a global decrease in gastrointestinal health, alterations in the gut microbial ecology of the host under co...
Inoue, Koichi; O'Bryant, Zaven; Xiong, Zhi-Gang
2015-01-01
Zinc (Zn2+) is one of the most important trace metals in the body. It is necessary for the normal function of a large number of proteins including enzymes and transcription factors. While extracellular fluid may contain up to micromolar Zn2+, intracellular Zn2+ concentration is generally maintained at a subnanomolar level; this steep gradient across the cell membrane is primarily attributable to Zn2+ extrusion by Zn2+ transporting systems. Interestingly, systematic investigation has revealed that activities, previously believed to be dependent on calcium (Ca2+), may be partially mediated by Zn2+. This is also supported by new findings that some Ca2+-permeable channels such as voltage-dependent calcium channels (VDCCs), N-methyl-D-aspartate receptors (NMDA), and amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPA-Rs) are also permeable to Zn2+. Thus, the importance of Zn2+ in physiological and pathophysiological processes is now more widely appreciated. In this review, we describe Zn2+-permeable membrane molecules, especially Zn2+-permeable ion channels, in intracellular Zn2+dynamics and Zn2+ mediated physiology/pathophysiology. PMID:25666796
The role of selenium in thyroid gland pathophysiology.
Stuss, Michał; Michalska-Kasiczak, Marta; Sewerynek, Ewa
2017-01-01
It is now assumed that proper functioning of the thyroid gland (TG), beside iodine, requires also a number of elements, including selenium, iron, zinc, copper, and calcium. In many cases, only an adequate supply of one of these microelements (e.g. iodine) may reveal symptoms resulting from deficits of other microelements (e.g. iron or selenium). Selenium is accounted to the trace elements of key importance for homeostasis of the human system, in particular, for the proper functioning of the immune system and the TG. Results of epidemiological studies have demonstrated that selenium deficit may affect as many as one billion people in many countries all over the world. A proper sequence of particular supplementations is also worth emphasising for the significant correlations among the supplemented microelements. For example, it has been demonstrated that an excessive supplementation of selenium may enhance the effects of iodine deficit in endemic regions, while proper supplementation of selenium in studied animals may alleviate the consequences of iodine excess, preventing destructive-inflammatory lesions in the TG. This paper is a summary of the current knowledge on the role of selenium in the functionality of the TG.
Prenatal zinc supplementation of zinc-adequate rats adversely affects immunity in offspring
USDA-ARS?s Scientific Manuscript database
We previously showed that zinc (Zn) supplementation of Zn-adequate dams induced immunosuppressive effects that persist in the offspring after weaning. We investigated whether the immunosuppressive effects were due to in utero exposure and/or mediated via milk using a cross-fostering design. Pregnant...
Ferritin: a zinc detoxicant and a zinc ion donor.
Price, D; Joshi, J G
1982-01-01
Rats were injected with 1 mg of Zn2+ as zinc sulfate or 2 mg of Cd2+ as cadmium sulfate per kg of body weight on a daily basis. After seven injections, ferritin and metallothionein were isolated from the livers of the rats. Significant amounts of zinc were associated with ferritin. Incubation of such ferritin with apoenzymes of calf intestinal alkaline phosphatase, yeast phosphoglucomutase, and yeast aldolase restored their enzymic activity. The amount of zinc injected was insufficient to stimulate significant synthesis of metallothionein, but similar experiments with injection of cadmium did stimulate the synthesis of metallothionein. The amount of Zn2+ in ferritin of Cd-injected rats was greater than that in ferritin in Zn-injected rats, which was greater than that in ferritin of normal rats. Thus at comparable protein concentration ferritin from Cd-injected rats was a better Zn2+ donor than was ferritin from Zn-injected or normal animals. Ferritin is a normal constituent of several tissues, whereas metallothionein is synthesized under metabolic stress. Thus ferritin may function as a "metal storage and transferring agent" for iron and for zinc. It is suggested that ferritin probably serves as the initial chelator for Zn2+ and perhaps other metal ions as well and that under very high toxic levels of metal ions the synthesis of metallothionein is initiated as the second line of defense. PMID:6212927
Chakrabarti, Bornali; Bairagya, Hridoy R; Mukhopadhyay, Bishnu P; Sekar, K
2017-02-01
Human matrix metalloproteinase (MMP)-1 or collagenase-1 plays a significant role in embryonic development, tissue remodeling, and is also involved in several diseases like arthritis, metastasis, etc. Molecular dynamics simulation studies on hMMP-1 X-ray structures (PDB Id. 1CGE, 1CGF, 1CGL, 1HFC, and 2TCL) suggest that the three conserved water molecules (W H/1 , W I , W S ) are coordinated with catalytic zinc (Zn C ), and one water molecule (W) is associated at structural zinc ion (Zn S ). Transition of the coordination geometry around Zn C from tetrahedral to octahedral and tetrahedral to trigonal bipyramidal at Zn S are also observed during the dynamics. Recognition of two zinc ions through water mediated bridges (Zn C - W H (W 1 )…W 2 ….H 183 - Zn S ) and stabilization of secondary coordination zone around the metal ions indicates the possibility of Zn C …Zn S coupled catalytic mechanism in hMMP-I. This study not only reveals a functionally important role of conserved water molecules in hMMP-I but also highlights the involvement of other non catalytic residues, such as S172 and D170 in the catalytic mechanism. The results obtained in this study could be relevant for importance of conserved water mediated recognition site of the sequence residue id. 202(RWTNNFREY)210, interaction of W(tryptophan)203 to zinc bound histidine, their influence on the water molecules that are involved in bridging between Zn C and Zn S , and structure-based design of specific hMMP inhibitors. Graphical abstract Water mediated recognition of structural and catalytic zinc ions of hMMP-1 structure (MD simulatated conformation).
Bashmakov, Dmitry I; Lukatkin, Alexander S; Anjum, Naser A; Ahmad, Iqbal; Pereira, Eduarda
2015-10-01
This work investigated the accumulation, allocation, and impact of zinc (Zn; 1.0 μM-10 mM) in maize (Zea mays L.) seedlings under simulated laboratory conditions. Z. mays exhibited no significant change in its habitus (the physical characteristics of plants) up to 10-1000 μM of Zn (vs 5-10 mM Zn). Zn tolerance evaluation, based on the root test, indicated a high tolerance of Z. mays to both low and intermediate (or relatively high) concentrations of Zn, whereas this plant failed to tolerate 10 mM Zn and exhibited a 5-fold decrease in its Zn tolerance. Contingent to Zn treatment levels, Zn hampered the growth of axial organs and brought decreases in the leaf area, water regime, and biomass accumulation. Nevertheless, at elevated levels of Zn (10 mM), Zn(2+) was stored in the root cytoplasm and inhibited both axial organ growth and water regime. However, accumulation and allocation of Zn in Z. mays roots, studied herein employing X-ray fluorimeter and histochemical methods, were close to Zn accumulator plants. Overall, the study outcomes revealed Zn tolerance of Z. mays, and also implicate its potential role in Zn phytoextraction.
Serum zinc levels of cord blood: relation to birth weight and gestational period.
Gómez, Tahiry; Bequer, Leticia; Mollineda, Angel; González, Olga; Diaz, Mireisy; Fernández, Douglas
2015-04-01
Zn-deficiency has been associated with numerous alterations during pregnancy including low birth weight; however, the research relating neonatal zinc status and birth weight has not produced reliable results. To compare the serum Zn-levels of cord blood in healthy newborns and low birth weight newborns, and to assess a possible relationship between zinc concentration and neonatal birth weight and gestational age. 123 newborns divided in "study group" (n=50) with <2500g birth weight neonates and "control group" (n=73) with ≥2500g birth weight neonates were enrolled. Study group was subdivided according to gestational age in preterm (<37 weeks) and full-term (≥37 weeks). Serum cord blood samples were collected and the Zn-levels were analyzed using flame Atomic Absorption Spectrophotometry method and the result was expressed in μmol/L. The Zn-levels were compared between the groups (Mann-Whitney-U test) and the Zn-levels were correlated with the birth weight and gestational age (Spearman's rank correlations). Statistically significant low positive correlation between Zn-levels and birth weight (ρ=0.283; p=0.005) was found. No statistically significant difference between Zn-levels of study and control groups [17.00±0.43 vs. 18.16±0.32 (p=0.053)] was found. Statistically significant low positive correlation between Zn-levels and gestational age (ρ=0.351; p=0.001) was found. No statistically significant difference between Zn-levels of preterm as compare to full-term newborns [16.33±0.42 vs. 18.43±0.93 (p=0.079)] was found. Zn-level of preterm subgroup was significantly lower compared to control group (p=0.001). Despite low birth weight preterm neonates had significantly lower serum zinc levels of cord blood than healthy term neonates, the correlation between cord blood zinc levels and birth weight and gestational age was lower. The results are not enough to relate the change in cord blood zinc concentration to the birth weight values or gestational period. In relation to complicated pregnancies, further studies regarding zinc levels in blood in our population are required. Copyright © 2015 Elsevier GmbH. All rights reserved.
In-vitro antibacterial study of zinc oxide nanostructures on Streptococcus sobrinus
NASA Astrophysics Data System (ADS)
Bakhori, Siti Khadijah Mohd; Mahmud, Shahrom; Ann, Ling Chuo; Sirelkhatim, Amna; Hasan, Habsah; Mohamad, Dasmawati; Masudi, Sam'an Malik; Seeni, Azman; Rahman, Rosliza Abd
2014-10-01
Zinc oxide nanostructures were prepared using a pilot plant of zinc oxide boiling furnace. Generally, it produced two types of nanostructures different in morphology; one is rod-like shaped (ZnO-1) and a plate-like shape (ZnO-2). The properties of ZnO were studied by structural, optical and morphological using XRD, PL and FESEM respectively. The XRD patterns confirmed the wurtzite structures of ZnO with the calculated crystallite size of 41 nm (ZnO-1) and 42 nm (ZnO-2) using Scherrer formula. The NBE peaks were determined by photoluminescence spectra which reveal peak at 3.25 eV and 3.23 eV for ZnO-1 and ZnO-2 respectively. Prior to that, the morphologies for both ZnO-1 and ZnO-2 were demonstrated from FESEM micrographs. Subsequently the antibacterial study was conducted using in-vitro broth dilution technique towards a gram positive bacterium Streptococcus sobrinus (ATCC 33478) to investigate the level of antibacterial effect of zinc oxide nanostructures as antibacterial agent. Gradual increment of ZnO concentrations from 10-20 mM affected the inhibition level after twenty four hours of incubation. In conjunction with concentration increment of ZnO, the percentage inhibition towards Streptococcus sobrinus was also increased accordingly. The highest inhibition occurred at 20 mM of ZnO-1 and ZnO-2 for 98% and 77% respectively. It showed that ZnO has good properties as antibacterial agent and relevancy with data presented by XRD, PL and FESEM were determined.
Physical chemical effects of zinc on in vitro enamel demineralization.
Mohammed, N R; Mneimne, M; Hill, R G; Al-Jawad, M; Lynch, R J M; Anderson, P
2014-09-01
Zinc salts are formulated into oral health products as antibacterial agents, yet their interaction with enamel is not clearly understood. The aim was to investigate the effect of zinc concentration [Zn(2+)] on the in vitro demineralization of enamel during exposure to caries-simulating conditions. Furthermore, the possible mechanism of zinc's action for reducing demineralization was determined. Enamel blocks and synthetic hydroxyapatite (HAp) were demineralized in a range of zinc-containing acidic solutions (0-3565ppm [Zn(2+)]) at pH 4.0 and 37°C. Inductively coupled-plasma optical emission spectroscopy (ICP-OES) was used to measure ion release into solution. Enamel blocks were analysed by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), and HAp by X-ray diffraction (XRD) and neutron diffraction (ND). ICP-OES analysis of the acidic solutions showed a decrease in [Ca(2+)] and [PO4(3-)] release with increasing [Zn(2+)]. FTIR revealed a α-hopeite (α-Zn3(PO4)2.4H2O)-like phase on the enamel surfaces at >107ppm [Zn(2+)]. XRD and ND analysis confirmed a zinc-phosphate phase present alongside the HAp. This study confirms that zinc reduces enamel demineralization. Under the conditions studied, zinc acts predominantly on enamel surfaces at PO4(3-) sites in the HAp lattice to possibly form an α-hopeite-like phase. These results have a significant implication on the understanding of the fundamental chemistry of zinc in toothpastes and demonstrate its therapeutic potential in preventing tooth mineral loss. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Evaluation of Serum Levels of Zinc, Copper, Iron, and Zinc/Copper Ratio in Cutaneous Leishmaniasis
Pourfallah, F; Javadian, S; Zamani, Z; Saghiri, R; Sadeghi, S; Zarea, B; Faiaz, Sh; Mirkhani, F; Fatemi, N
2009-01-01
Background: The purpose of this study was to evaluate the levels of zinc (Zn), copper (Cu), iron (Fe) and zinc/ copper ratio in the serum of patients with cutaneous leishmaniasis in Qom Province, center of Iran. Methods: Serum levels of zinc and copper were determined by flame atomic absorption spectrophotometer and serum iron concentration was measured by using an Auto Analyzer. The study group consisted of 60 patients with cutaneous leishmaniasis and the control group of 100 healthy volunteers from the same area who were not exposed to cutaneous leishmaniasis. Result: There were no statistically significant differences in age and body mass index between the two groups. Serum Zn (P< 0.001) and Fe (P< 0.05) levels were lower in patients with cutaneous leishmaniasis than the control group. We also found serum Cu concentration (P< 0.05) in the patient group was significantly higher than that of the control group. However, zinc/ copper ratio (P< 0.001) was lower in patients with cutaneous leishmaniasis than in the control group. Conclusion: Our data indicated that Zn/Cu ratio was significantly lower in patients with CL as compared to the controls. Earlier reports suggest that, this ratio imbalance could be a useful marker for immune dysfunction in leishmaniasis. There was also strong association of Zn, Cu and Fe with CL. It suggests the use of blood zinc, copper, iron concentration and the copper/zinc ratio (Zn/Cu), as a means for estimating the prognosis of CL. PMID:22808376
Zinc uptake and regulation by the sublittoral prawn Pandalus montagui (Crustacea: Decapoda)
NASA Astrophysics Data System (ADS)
Nugegoda, D.; Rainbow, P. S.
1988-06-01
The sublittoral decapod crustacean Pandalus montagui Leach in artificial seawater at 10°C regulates the total body zinc concentration to a constant level in dissolved zinc concentrations up to ca. 22 μg Zn l -1, beyond which there is net accumulation of body zinc. This threshold of zinc regulation breakdown is lower than that in the littoral decapods Palaemon elegans (ca. 93 μg Zn l -1) and Palaemonetes varians (ca. 190 μg Zn l -1) under the same physico-chemical conditions. Correspondingly, zinc uptake rates of the three species of decapods decrease in the order P. montagui > P. elegans > P. varians. It is concluded that regulation of total body zinc concentration is more efficient in decapods adapted to the fluctuating environments of littoral habitats, possibly as a result of changes in permeability of uptake surfaces in combination with improved zinc excretion systems. The moult cycle is important in determining the ability of an individual prawn to regulate zinc. Body zinc in Pandalus montagui consists of at least two pools of zinc exchanging at different rates which the environment. Zinc and copper are not evenly distributed in the tissues of P. montagui.
Studies on the bioavailability of zinc in humans: intestinal interaction of tin and zinc.
Solomons, N W; Marchini, J S; Duarte-Favaro, R M; Vannuchi, H; Dutra de Oliveira, J E
1983-04-01
Mineral/mineral interactions at the intestinal level are important in animal nutrition and toxicology, but only limited understanding of their extent or importance in humans has been developed. An inhibitory interaction of dietary tin on zinc retention has been recently described from human metabolic studies. We have explored the tin/zinc interaction using the change-in-plasma-zinc-concentration method with a standard dosage of 12.5 mg of zinc as zinc sulfate in 100 ml of Coca-Cola. Sn/Zn ratios of 2:1, 4:1, and 8:1, constituted by addition of 25, 50, and 100 mg of tin as stannous chloride, had no significant overall effect on zinc uptake. The 100-mg dose of tin produced noxious gastrointestinal symptoms. Addition of iron as ferrous sulfate to form ratios of Sn/Fe/Zn of 1:1:1 and 2:2:1 with the standard zinc solution and the appropriate doses of tin produced a reduction of zinc absorption not dissimilar from that seen previously with zinc and iron alone, and addition of picolinic acid did not influence the uptake of zinc from the solution with the 2:2:1 Sn/Fe/Zn ratio.
Zinc in an ultraoligotrophic lake food web.
Montañez, Juan Cruz; Arribére, María A; Rizzo, Andrea; Arcagni, Marina; Campbell, Linda; Ribeiro Guevara, Sergio
2018-06-01
Zinc (Zn) bioaccumulation and trophic transfer were analyzed in the food web of Lake Nahuel Huapi, a deep, unpolluted ultraoligotrophic system in North Patagonia. Benthic macroinvertebrates, plankton, and native and introduced fish were collected at three sites. The effect of pyroclastic inputs on Zn levels in lacustrine food webs was assessed by studying the impact of the eruption of Puyehue-Cordón Caulle volcanic complex (PCCVC) in 2011, by performing three sampling campaigns immediately before and after the PCCVC eruption, and after 2 years of recovery of the ecosystem. Zinc trophodynamics in L. Nahuel Huapi food web was assessed using nitrogen stable isotopes (δ 15 N). There was no significant increase of Zn concentrations ([Zn]) in L. Nahuel Huapi biota after the PCCVC eruption, despite the evidence of [Zn] increase in lake water that could be associated with volcanic ash leaching. The organisms studied exhibited [Zn] above the threshold level considered for dietary deficiency, regulating Zn adequately even under a catastrophic situations like PCCVC 2011 eruption. Zinc concentrations exhibited a biodilution pattern in the lake's food web. To the best of our knowledge, present research is the first report of Zn biodilution in lacustrine systems, and the first to study Zn transfer in a freshwater food web including both pelagic and benthic compartments.
Islam, Faisal; Yasmeen, Tahira; Riaz, Muhammad; Arif, Muhammad Saleem; Ali, Shafaqat; Raza, Syed Hammad
2014-12-01
Plant-associated bacteria can have beneficial effects on the growth and health of their host. However, the role of plant growth promoting bacteria (PGPR), under metal stress, has not been widely investigated. The present study investigated the possible mandatory role of plant growth promoting rhizobacteria in protecting plants from zinc (Zn) toxicity. The exposure of maize plants to 50µM zinc inhibited biomass production, decreased chlorophyll, total soluble protein and strongly increased accumulation of Zn in both root and shoot. Similarly, Zn enhanced hydrogen peroxide, electrolyte leakage and lipid peroxidation as indicated by malondaldehyde accumulation. Pre-soaking with novel Zn tolerant bacterial strain Proteus mirabilis (ZK1) isolated zinc (Zn) contaminated soil, alleviated the negative effect of Zn on growth and led to a decrease in oxidative injuries caused by Zn. Furthermore, strain ZK1 significantly enhanced the activities of catalase, guaiacol peroxidase, superoxide dismutase and ascorbic acid but lowered the Proline accumulation in Zn stressed plants. The results suggested that the inoculation of Zea mays plants with P. mirabilis during an earlier growth period could be related to its plant growth promoting activities and avoidance of cumulative damage upon exposure to Zn, thus reducing the negative consequences of oxidative stress caused by heavy metal toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.
Ferreira, Marisa; Monteiro, Silvia S; Torres, Jordi; Oliveira, Isabel; Sequeira, Marina; López, Alfredo; Vingada, José; Eira, Catarina
2016-03-01
The coastal preferences of harbour porpoise (Phocoena phocoena) intensify their exposure to human activities. The harbour porpoise Iberian population is presently very small and information about the threats it endures is vital for the conservation efforts that are being implemented to avoid local extinction. The present study explored the possible relation between the accumulation of trace elements by porpoises and their sex, body length, nutritional state, presence of parasites and gross pathologies. The concentrations of arsenic (As), cadmium (Cd), copper (Cu), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), zinc (Zn) and selenium (Se) were evaluated in 42 porpoises stranded in Portugal between 2005 and 2013. Considering European waters, porpoises stranded in Portugal present the highest Hg concentrations and the lowest Cd concentrations, which may reflect dietary preferences and the geographic availability of these pollutants. While no effect of sex on trace element concentrations was detected, there was a positive relationship between porpoise body length and the concentration of Cd, Hg and Pb. Animals in worse nutritional condition showed higher levels of Zn. Harbour porpoises with high parasite burdens showed lower levels of Zn and As in all analysed tissues and also lower levels of renal Ni, while those showing gross pathologies presented higher Zn and Hg levels. This is the first data on the relationship between trace elements and health-related variables in porpoises from southern European Atlantic waters, providing valuable baseline information about the contamination status of this vulnerable population. Copyright © 2016 Elsevier Ltd. All rights reserved.
Heshmati, Ali; Karami-Momtaz, Javad; Nili-Ahmadabadi, Amir; Ghadimi, Sabah
2017-04-01
This study was conducted to determine and compare the concentrations of mercury (Hg), cadmium (Cd), arsenic (As), lead (Pb), nickel (Ni), iron (Fe), zinc (Zn), copper (Cu), manganese (Mn), cobalt (Co), and selenium (Se) in the muscle of wild and farmed carp (Cyprinus carpio) and wild and farmed Caspian kutum (Rutilus frisii kutum) collected from south-western Caspian Sea areas of Iran between December 2014 and March 2015. In addition, risk assessment of consumers to exposure to metals through fish consumption was estimated. In all the samples, the arsenic concentration was lower than the detection limit. The Pb, Cd, Hg and Mn concentrations were significantly higher in the wild fish samples compared to the farmed fish samples. There was no significant difference in the Fe, Zn, Cu, Co, Ni and Se concentrations of the wild and farmed carp and the wild and farmed Caspian kutum. Iron displayed the highest concentration of all the analysed metals in both the wild and farmed fish, followed by Zn and Cu. The highest Hg, Cd, Pb, Ni, Fe, Zn, Cu, Mn, Co and Se concentrations were 0.056, 0.011, 0.065, 0.120, 4.151, 3.792, 2.948, 2.690, 0.037 and 0.162 μg g -1 , respectively. The estimated daily intake of all metals was acceptable, and the hazard quotient values showed that consumption of the analysed fish posed no health risk to consumers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pang, Yuanjie; Peng, Roger D; Jones, Miranda R; Francesconi, Kevin A; Goessler, Walter; Howard, Barbara V; Umans, Jason G; Best, Lyle G; Guallar, Eliseo; Post, Wendy S; Kaufman, Joel D; Vaidya, Dhananjay; Navas-Acien, Ana
2016-05-01
Natural and anthropogenic sources of metal exposure differ for urban and rural residents. We searched to identify patterns of metal mixtures which could suggest common environmental sources and/or metabolic pathways of different urinary metals, and compared metal-mixtures in two population-based studies from urban/sub-urban and rural/town areas in the US: the Multi-Ethnic Study of Atherosclerosis (MESA) and the Strong Heart Study (SHS). We studied a random sample of 308 White, Black, Chinese-American, and Hispanic participants in MESA (2000-2002) and 277 American Indian participants in SHS (1998-2003). We used principal component analysis (PCA), cluster analysis (CA), and linear discriminant analysis (LDA) to evaluate nine urinary metals (antimony [Sb], arsenic [As], cadmium [Cd], lead [Pb], molybdenum [Mo], selenium [Se], tungsten [W], uranium [U] and zinc [Zn]). For arsenic, we used the sum of inorganic and methylated species (∑As). All nine urinary metals were higher in SHS compared to MESA participants. PCA and CA revealed the same patterns in SHS, suggesting 4 distinct principal components (PC) or clusters (∑As-U-W, Pb-Sb, Cd-Zn, Mo-Se). In MESA, CA showed 2 large clusters (∑As-Mo-Sb-U-W, Cd-Pb-Se-Zn), while PCA showed 4 PCs (Sb-U-W, Pb-Se-Zn, Cd-Mo, ∑As). LDA indicated that ∑As, U, W, and Zn were the most discriminant variables distinguishing MESA and SHS participants. In SHS, the ∑As-U-W cluster and PC might reflect groundwater contamination in rural areas, and the Cd-Zn cluster and PC could reflect common sources from meat products or metabolic interactions. Among the metals assayed, ∑As, U, W and Zn differed the most between MESA and SHS, possibly reflecting disproportionate exposure from drinking water and perhaps food in rural Native communities compared to urban communities around the US. Copyright © 2016 Elsevier Inc. All rights reserved.
Range, Nyagosya; Changalucha, John; Krarup, Henrik; Magnussen, Pascal; Andersen, Ase B; Friis, Henrik
2006-04-01
Malnutrition is common in pulmonary tuberculosis (TB), and may impair survival. The objective of this study was to assess effects of multi-vitamin/mineral (MVM) and zinc (Zn) supplementation during TB treatment on mortality. Patients diagnosed with sputum-positive pulmonary TB in Mwanza, Tanzania, were randomised, using a two-by-two factorial design, to Zn (45 mg) or placebo, and MVM (vitamins A, B, C, D, E, and selenium and copper) or placebo. Survival status was ascertained at the end of the 8-month TB treatment and supplementation period. Of 499 TB patients, 213 (43 %) had HIV. The mean weight gain at 7 months was 6.88 kg (95 % CI 6.36, 7.41). Zn and MVM combined, but neither alone (interaction, P=0.03), increased weight gain by 2.37 kg (95 % CI 0.91, 3.83), irrespective of HIV status. Survival status at 8 months was determined for 422 patients (84.6 %), of which fifty-two (12.3 %) had died. Among fifty-two deaths, there were no effects of MVM (relative risk (RR) 0.73; 95 % CI 0.43, 1.23) and Zn (RR 0.76; 95 % CI 0.46, 1.28). However, among HIV co-infected patients, marginally significant effects of both MVM (RR 0.60; 95 % CI 0.34, 1.05) and Zn (RR 0.63, 95 % CI 0.37, 1.08) were seen, and MVM and Zn combined reduced mortality (RR 0.29; 95 % CI 0.10, 0.80; interaction ratio 0.52). In conclusion, supplementation with MVM, including Zn, during treatment of pulmonary TB may reduce mortality in those co-infected with HIV. A randomised trial of the effect of the combined intervention used in this study should be conducted in a different setting to confirm the finding.
Schmidt, Debra A; Pye, Geoffrey W; Hamlin-Andrus, Chris C; Ellis, William A; Bercovitch, Fred B; Ellersieck, Mark R; Chen, Tai C; Holick, Michael F
2013-12-01
As part of a health investigation on koalas at San Diego Zoo, serum samples were analyzed from 18 free-ranging and 22 zoo-based koalas, Phascolarctos cinereus. Serum concentrations of calcium, chloride, cobalt, copper, iron, magnesium, manganese, molybdenum, phosphorus, potassium, selenium, sodium, zinc, and vitamins A, E, and 25(OH)D3 were quantified. Calcium, chloride, molybdenum, selenium, and vitamin E concentrations were significantly higher in zoo-based koalas than in free-ranging koalas, whereas magnesium, manganese, phosphorus, and zinc concentrations were significantly higher in the free-ranging koalas. No significant differences were found between genders. The results from this study will help to establish a starting point for determining target circulating nutrient concentrations in koalas.
Bonnet, M; Camares, O; Veisseire, P
2000-05-01
The effects of zinc on growth, mineral content, chlorophyll a fluorescence, and detoxifying enzyme activity (ascorbate peroxidase (APX), EC 1.11.1.11; superoxide dismutase (SOD), EC 1.15.1.1) of ryegrass infected or not by Acremonium lolii, and treated with nutrient solution containing 0-50 mM ZnSO(4) were studied. The introduction of zinc induces stress with a decrease in growth at 1, 5 and 10 mM ZnSO(4) and a cessation of growth at 50 mM ZnSO(4), in ryegrass plants infected by A. lolii or not. This decrease in growth may be due to an accumulation of zinc in leaves. Nevertheless, symbiotic plants showed higher values in tiller number, an advantage conferred by the fungus. After 24 d of Zn exposure, leaf fresh weights and leaf water content were lower in plants growing with Zn in the culture medium and no advantage was conferred by the fungus to its host. An increase in Zn supply resulted in a decrease of the Ca, K, Mg, and Cu content of the leaves, a reduction in the quantum yield of electron flow throughout photosystem II (DeltaF/F(1)(m))and a lowering of the efficiency of photosynthetic energy conversion (F(v)/F(m)), compared to control plants. To counter this zinc stress, detoxifying enzymes APX and SOD increased (100%) when Zn reached the value of 50 mM in the nutrient solution. At 10 mM ZnSO(4), the presence of the fungus in the plant led to an increase in the threshold toxicity of plants to zinc by a diminution of APX activity.
Dual role of Zn2+ in maintaining structural integrity and suppressing deacetylase activity of SIRT1.
Chen, Lei; Feng, Yu; Zhou, Yinqiu; Zhu, Weiliang; Shen, Xu; Chen, Kaixian; Jiang, Hualiang; Liu, Dongxiang
2010-02-01
Zn(2+) directly participates in catalysis of histone deacetylase (HDAC) Classes I, II, IV enzymes while its role in HDAC Class III activity is not well established. Herein we investigated the effects of Zn(2+) on the deacetylase activity of sirtuin 1 (silent mating type information regulation 2 homolog 1, SIRT1). We found that the inherent Zn(2+) at the zinc-finger motif of SIRT1 is essential for the structural integrity and the deacetylase activity of SIRT1, whereas the exogenous Zn(2+) strongly inhibits the deacetylase activity with an IC(50) of 0.82muM for Zn(Gly)(2). SIRT1 activity suppressed by the exogenous Zn(2+) can be fully recovered by the metal chelator EDTA but not by the activator resveratrol. We also identified Zn(2+) as a noncompetitive inhibitor for the substrates of NAD(+) and the acetyl peptide P53-AMC. The 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence titration experiments and site-directed mutagenesis study suggested that the exogenous Zn(2+) binds to SIRT1 but not at the zinc-finger motif. These results indicate that Zn(2+) plays a dual role in SIRT1 activity. Inherent Zn(2+) at the zinc-finger motif is structurally related and essential for SIRT1 activity. On the other hand, Zn(2+) may also bind to another site different from the zinc-finger motif or the binding sites for the substrates or resveratrol and act as a potent inhibitor of SIRT1.
Váradyová, Zora; Mravčáková, Dominika; Holodová, Monika; Grešáková, Ľubomira; Pisarčíková, Jana; Barszcz, Marcin; Taciak, Marcin; Tuśnio, Anna; Kišidayová, Svetlana; Čobanová, Klaudia
2018-06-14
Two experiments were conducted on sheep to determine the effect of dietary supplementation with zinc and a medicinal plant mixture on haematological parameters and microbial activity in the rumen and large intestine. In Experiment 1, 24 male lambs were randomly divided into four groups: One group was fed an unsupplemented basal diet (control), and three groups were fed a diet supplemented with 70 mg Zn/kg diet in the form of Zn sulphate (ZnSO 4 ), a Zn-chelate of glycine hydrate (Zn-Gly) or a Zn-proteinate (Zn-Pro), for five months. The ruminal content was collected separately from each lamb, and batch cultures of ruminal fluid were incubated in vitro with mixture of medicinal plants (Mix) with different roughage:concentrate ratios (800:200 and 400:600, w/w). Bioactive compounds in Mix were quantified by UPLC/MS/MS. In Experiment 2, four sheep were fed a diet consisting of meadow hay and barley grain (400:600, w/w), with Zn-Gly (70 mg Zn/kg diet), Mix (10% replacement of meadow hay) or Zn-Gly and Mix (Zn-Gly-Mix) as supplements in a Latin square design. Mix decreased total gas (p < 0.001) and methane (p < 0.01) production in vitro. In Experiment 1, caecal isobutyrate and isovalerate concentrations varied among the dietary treatments (p < 0.01). The isovalerate concentration of the zinc-supplemented groups in the distal colon was higher (p < 0.001) compared with the control. In Experiment 2, the molar proportion of isobutyrate was the highest in the faeces of the sheep fed the diet with Zn-Gly-Mix (p < 0.01). The plasma zinc concentration was higher in the groups fed a diet supplemented with zinc (p < 0.001). The haematological profile and antioxidant status did not differ between the dietary groups (p > 0.05). The diets containing medicinal plants and organic zinc thus helped to modulate the characteristics of fermentation in ruminants. © 2018 Blackwell Verlag GmbH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Qisheng
2014-11-14
Zinc clusters are not common for binary intermetallics with relatively low zinc content, but this work shows that zinc clustering can be triggered by lithiation, as exemplified by Ca ~30Li 3+xZn 60-x, P6/mmm, Z = 1, which can be directly converted from CaZn 2. Two end members of the solid solution (x = 0.44 and 1.38) were established and structurally characterized by single-crystal X-ray diffraction analyses: Ca 30Li 3.44(6)Zn59.56(6), a = 15.4651(9) Å, c = 9.3898(3) Å; Ca 30.45(2)Li 4.38(6)Zn 58.62(6), a = 15.524(3) Å, c = 9.413(2) Å. The structures of Ca ~30Li 3+xZn 60-x feature a condensed anionicmore » network of Zn3 triangles, lithium-centered Zn12 icosahedra, and arachno-(Zn,Li)18 tubular clusters that are surrounded respectively by Ca 14, Ca 20, and Ca 30 polyhedra. These polyhedra share faces and form a clathrate-like cationic framework. The specific occupation of lithium in the structure is consistent with theoretical “coloring” analyses. Analysis by the linear muffin-tin orbital (LMTO) method within the atomic sphere approximation reveals that Ca ~30Li 3+xZn 60-x is a metallic, Zintl-like phase with an open-shell electronic structure. The contribution of Ca–Zn polar covalent interactions is about 41%.« less
Synthesis and characterization of ZnO thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anilkumar, T. S., E-mail: anil24march@gmail.com; Girija, M. L., E-mail: girija.ml.grt1@gmail.com; Venkatesh, J., E-mail: phph9502@yahoo.com
2016-05-06
Zinc oxide (ZnO) Thin films were deposited on glass substrate using Spin coating method. Zinc acetate dehydrate, Carbinol and Mono-ethanolamine were used as the precursor, solvent and stabilizer respectively to prepare ZnO Thin-films. The molar ratio of Monoethanolamine to Zinc acetate was maintained as approximately 1. The thickness of the films was determined by Interference technique. The optical properties of the films were studied by UV Vis-Spectrophotometer. From transmittance and absorbance curve, the energy band gap of ZnO is found out. Electrical Conductivity measurements of ZnO are carried out by two probe method and Activation energy for the electrical conductivitymore » of ZnO are found out. The crystal structure and orientation of the films were analyzed by XRD. The XRD patterns show that the ZnO films are polycrystalline with wurtzite hexagonal structure.« less
Vacancy defects in electron-irradiated ZnO studied by Doppler broadening of annihilation radiation
NASA Astrophysics Data System (ADS)
Chen, Z. Q.; Betsuyaku, K.; Kawasuso, A.
2008-03-01
Vacancy defects in ZnO induced by electron irradiation were characterized by the Doppler broadening of annihilation radiation measurements together with the local density approximation calculations. Zinc vacancies (VZn) are responsible for positron trapping in the as-irradiated state. These are annealed out below 200°C . The further annealing at 400°C results in the formation of secondary defects attributed to the complexes composed of zinc vacancies and zinc antisites (VZn-ZnO) .
1991-10-01
8.3.1.2 Cadmium ............................ 8-8 8.3.1.3 Lead .... ............................ 8-8 8.3.1.4 Zinc .... ............................ 8-8...Beryllium, Cadmium , Chromium, Cobalt, Copper, Fluoride Salts, Lead, Mercury, Molydenum, Nickel, Selenium, Silver, Thallium, Vanadium, Zinc . I ~ 2 ,4... cadmium (4.070 ;&g/L), copper (20.100 ug/L), and zinc (28.700 ug/L). Round 2 background 3 groundwater results include arsenic (7.700 g/L), barium
Dielectric properties and carbothermic reduction of zinc oxide and zinc ferrite by microwave heating
Fabritius, Timo; Heikkinen, Eetu-Pekka; Chen, Guo
2017-01-01
This paper aims to study the dielectric properties and carbothermic reduction of zinc oxide (zincite, ZnO) and zinc ferrite (franklinite, ZnFe2O4) by microwave heating. To achieve this aim, the dielectric properties were measured with an open-ended coaxial method to understand the behaviour of the samples under microwave irradiation. The effects of microwave power, duration time and sample mass on the heating rate, and the effects of the stoichiometric amount of graphite on the reduction of ZnO and decomposition of ZnFe2O4 were investigated. The results show that ZnFe2O4 has significantly higher dielectric properties compared to ZnO. Generally, for both samples, the dielectric values at room temperature were quite low, indicating that both ZnO and ZnFe2O4 are poor microwave absorbers. It was found that the temperatures have a more significant effect on the imaginary permittivities than on the real permittivities. The heating rate showed that the sample temperature increased with increase in microwave power and sample mass. Using 700 W of microwave power and two times the stoichiometric amount of graphite, almost complete reduction of ZnO was achieved in 12 min, while ZnFe2O4 completely decomposed to zincite and wustite in 3 min. PMID:28989772
Zheng, Yong-Xing; Lv, Jin-Fang; Wang, Hua; Wen, Shu-Ming; Pang, Jie
2018-05-18
In this paper, formation of zinc sulfide species during roasting of ZnO with FeS 2 was investigated and its contribution on flotation was illustrated. The evolution process, phase and crystal growth were investigated by thermogravimetry (TG), X-Ray diffraction (XRD) along with thermodynamic calculation and scanning electron microscopy-Energy-dispersive X-ray spectroscopy (SEM-EDS), respectively, to interpret the formation mechanism of ZnS species. It was found that ZnS was initially generated at about 450 °C and then the reaction prevailed at about 600 °C. The generated Fe x S would dissolve into ZnS and then form (Zn, Fe)S compound in form of Fe 2 Zn 3 S 5 when temperature increased to about 750 °C. This obviously accelerated ZnS phase formation and growth. In addition, it was known that increasing of ZnO dosage had few effects on the decomposition behavior of FeS 2 . Then, flotation tests of different zinc oxide materials before and after treatment were performed to further confirm that the flotation performances of the treated materials could be obviously improved. Finally, a scheme diagram was proposed to regular its application to mineral processing. It was systematically illustrated that different types of ZnS species needed to be synthetized when sulfidization roasting-flotation process was carried out to treat zinc oxide materials.
Resistance of extremely halophilic archaea to zinc and zinc oxide nanoparticles
NASA Astrophysics Data System (ADS)
Salgaonkar, Bhakti B.; Das, Deepthi; Bragança, Judith Maria
2016-02-01
Industrialization as well as other anthropogenic activities have resulted in addition of high loads of metal and/or metal nanoparticles to the environment. In this study, the effect of one of the widely used heavy metal, zinc (Zn) and zinc oxide nanoparticles (ZnO NPs) on extremely halophilic archaea was evaluated. One representative member from four genera namely Halococcus, Haloferax, Halorubrum and Haloarcula of the family Halobacteriaceae was taken as the model organism. All the haloarchaeal genera investigated were resistant to both ZnCl2 and ZnO NPs at varying concentrations. Halococcus strain BK6 and Haloferax strain BBK2 showed the highest resistance in complex/minimal medium of up to 2.0/1.0 mM ZnCl2 and 2.0/1.0-0.5 mM ZnO NP. Accumulation of ZnCl2/ZnO NPs was seen as Haloferax strain BBK2 (287.2/549.6 mg g-1) > Halococcus strain BK6 (165.9/388.5 mg g-1) > Haloarcula strain BS2 (93.2/28.5 mg g-1) > Halorubrum strain BS17 (29.9/16.2 mg g-1). Scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDX) analysis revealed that bulk ZnCl2 was sorbed at a higher concentration (21.77 %) on the cell surface of Haloferax strain BBK2 as compared to the ZnO NPs (14.89 %).
Savi, Geovana D; Piacentini, Karim C; de Souza, Stephany Ramos; Costa, Maíra E B; Santos, Cristina M R; Scussel, Vildes M
2015-07-16
The efficiency of zinc compounds (zinc sulfate, ZnSO4 and zinc oxide, ZnO in regular and nanosize, respectively) on wheat plants was evaluated against growth of Fusarium graminearum and DON formation. In addition, any possible effects on the grain microstructures were observed by scanning electron microscopy (SEM), and the remaining residue of Zn on wheat plants was analyzed. The plants were inoculated with F. graminearum and treated with Zn compounds (100mM) onto spikelets at the anthesis stage. When wheat plants reached maturation, grains were harvested and evaluated for Fusarium (number of colonies, CFU/g), DON formation, and SEM observation, followed by determination of possible remaining Zn residue. The groups treated with ZnSO4 and ZnO-NP showed a reduction in number of CFU of F. graminearum when compared to the control. Similarly for DON formation, i.e. the toxin was reduced to non-detected levels in the treated group. ZnO-NP efficiently reduced F. graminearum and DON formation in the grains at low concentration. Zn remained within the international recommended level for consumption and the treatment did not cause any damage to wheat grains. New strategies of control using Zn compounds in addition to conventional treatments could increase the efficiency against FBH and DON formation. Copyright © 2015 Elsevier B.V. All rights reserved.
Suman, T Y; Radhika Rajasree, S R; Kirubagaran, R
2015-03-01
The increasing industrial use of nanomaterials during the last decades poses a potential threat to the environment and in particular to organisms living in the aquatic environment. In the present study, the toxicity of zinc oxide nanoparticles (ZnO NPs) was investigated in Marine algae Chlorella vulgaris (C. vulgaris). High zinc dissociation from ZnONPs, releasing ionic zinc in seawater, is a potential route for zinc assimilation and ZnONPs toxicity. To examine the mechanism of toxicity, C. vulgaris were treated with 50mg/L, 100mg/L, 200mg/L and 300 mg/L ZnO NPs for 24h and 72h. The detailed cytotoxicity assay showed a substantial reduction in the viability dependent on dose and exposure. Further, flow cytometry revealed the significant reduction in C. vulgaris viable cells to higher ZnO NPs. Significant reductions in LDH level were noted for ZnO NPs at 300 mg/L concentration. The activity of antioxidant enzyme superoxide dismutase (SOD) significantly increased in the C. vulgaris exposed to 200mg/L and 300 mg/L ZnO NPs. The content of non-enzymatic antioxidant glutathione (GSH) significantly decreased in the groups with a ZnO NPs concentration of higher than 100mg/L. The level of lipid peroxidation (LPO) was found to increase as the ZnO NPs dose increased. The FT-IR analyses suggested surface chemical interaction between nanoparticles and algal cells. The substantial morphological changes and cell wall damage were confirmed through microscopic analyses (FESEM and CM). Copyright © 2014 Elsevier Inc. All rights reserved.
Jo, Sinae; Kang, Seunggu
2013-11-01
Low-melting zinc-borate glass was added to the cordierite/Al2O3 composite in order to improve the sintering facility of Al2O3 and formation of nano-sized spinel crystal of high thermal conductivity. Increasing the ZnO/B2O3 ratio in the zinc-borate glass increased the ZnAl2O4 spinel and decreased the Al4B2O9 crystal peak intensities in X-ray diffraction pattern. The XRD peak intensities of the ZnAl2O4 spinel and Al4B2O9 crystals in the specimen containing 10 wt% zinc-borate glass (10G series) are higher than that of the specimen containing 5 wt% zinc-borate glass (5G series). The microstructures of most 10G series specimens had the flower-shaped crystal which was composed of 50 nm wide and 250 nm long needle-like crystals and identified as ZnAl2O4 spinel phase. The thermal conductivity of the 10G series specimen was higher than that of the 5G series in any ZnO/B2O3 ratio due to the formation of plenty of nano-sized ZnAl2O4 spinel of high thermal conductivity. Particularly, the thermal conductivity of the cordierite/Al2O3 composite containing 10 wt% zinc-borate glass of ZnO/B2O3 weight ratio = 1.5 was 3.8 W/Km which is much higher than that of the published value (3.0 W/Km).
Zinc composite anode for batteries with solid electrolyte
NASA Astrophysics Data System (ADS)
Tedjar, F.; Melki, T.; Zerroual, L.
A new negative composite anode for batteries with a solid electrolyte is studied. Using a complex of zinc ammonium chloride mixed with zinc metal powder, the advantage of the Zn/Zn 2+ electrode ( e = -760 mV) is kept while the energy density and the shelf-life of the battery are increased.
Influence Of pH On The Transport Of Nanoscale Zinc Oxide In Saturated Porous Media
Widespread use of nanoscale zinc oxide (nZnO) in various fields causes subsurface environment contamination. Even though the transport of dissolved zinc ions in subsurface environments such as soils and sediments has been widely studied, the transport mechanism of nZnO in such e...
Dolphin, Alexis E; Goodman, Alan H
2009-11-01
Despite attempts to use zinc (Zn) concentrations in hard tissues to comment upon the degree of carnivory in past populations, zinc has yielded inconsistent trophic level effects. The question of what, if anything, zinc in human enamel reveals regarding past diets is the focus of this research. We test whether the zinc content of deciduous tooth enamel from contemporary Mexican infants varies by maternal dietary variables such as zinc intake, proportion of animal products consumed, and dietary components that are known to impact zinc absorption. Deciduous teeth were collected from former participants in a longitudinal study of maternal and infant diet and function in highland Mexico. The Zn/Ca ratios of both prenatal and postnatal regions of 37 anterior teeth representing 26 individuals were assessed via laser ablation-inductively coupled plasma-mass spectrometry. Maternal dietary data collected during lactation were not correlated with zinc levels in the early postnatal enamel of infants' teeth, which were forming at the same time. In the case of prenatal enamel, zinc values were correlated with the consumption of foods known to influence Zn bioavailability, most notably tortillas (P = 0.008; r = 0.510), but not with meat consumption. Unexpectedly, women who consumed diets with poor zinc bioavailability during pregnancy gave birth to infants whose prenatal enamel demonstrated the highest Zn/Ca ratios, possibly due to enhanced zinc absorption during pregnancy for those mothers suffering most from long-term micronutrient deficiency. These results would suggest that zinc is not a reliable trophic level indicator.
Sarret, Géraldine; Harada, Emiko; Choi, Yong-Eui; Isaure, Marie-Pierre; Geoffroy, Nicolas; Fakra, Sirine; Marcus, Matthew A.; Birschwilks, Mandy; Clemens, Stephan; Manceau, Alain
2006-01-01
Tobacco (Nicotiana tabacum L. cv Xanthi) plants were exposed to toxic levels of zinc (Zn). Zn exposure resulted in toxicity signs in plants, and these damages were partly reduced by a calcium (Ca) supplement. Confocal imaging of intracellular Zn using Zinquin showed that Zn was preferentially accumulated in trichomes. Exposure to Zn and Zn + Ca increased the trichome density and induced the production of Ca/Zn mineral grains on the head cells of trichomes. These grains were aggregates of submicrometer-sized crystals and poorly crystalline material and contained Ca as major element, along with subordinate amounts of Zn, manganese, potassium, chlorine, phosphorus, silicon, and magnesium. Micro x-ray diffraction revealed that the large majority of the grains were composed essentially of metal-substituted calcite (CaCO3). CaCO3 polymorphs (aragonite and vaterite) and CaC2O4 (Ca oxalate) mono- and dihydrate also were identified, either as an admixture to calcite or in separate grains. Some grains did not diffract, although they contained Ca, suggesting the presence of amorphous form of Ca. The presence of Zn-substituted calcite was confirmed by Zn K-edge micro-extended x-ray absorption fine structure spectroscopy. Zn bound to organic compounds and Zn-containing silica and phosphate were also identified by this technique. The proportion of Zn-substituted calcite relative to the other species increased with Ca exposure. The production of Zn-containing biogenic calcite and other Zn compounds through the trichomes is a novel mechanism involved in Zn detoxification. This study illustrates the potential of laterally resolved x-ray synchrotron radiation techniques to study biomineralization and metal homeostasis processes in plants. PMID:16731580
Timmons, J.; Ao, T.; Paul, M.; Macalintal, L.; Pescatore, A.; Cantor, A.; Ford, M.; Dawson, K. A.
2017-01-01
Abstract The goal of this study was to determine the effects of feeding a zinc (Zn) deficient diet to broiler chicks for 96 h post-hatch followed by feeding diets with different Zn sources and supplemental levels (5 to 21 d) on the growth performance, tissue, and excreta Zn content. At the start of the study, four hundred 20-day-old male broiler chicks were divided into two groups. One group was fed a corn soybean meal based diet containing 25 mg of Zn/kg (imprinting diet, ID). The second group was fed the basal diet supplemented with 40 mg of Zn/kg from Zn oxide (ZnO) (non-imprinting diet, NID). Both groups were fed these diets for 96 h. At d 5, chicks from each group were randomly assigned to the dietary treatments consisting of the basal diet alone or the basal diet supplemented with 8 or 40 mg/kg Zn as ZnO or Zn proteinate. Main effects of post-hatch Zn ID were observed on feed intake and G:F. ID decreased (P < 0.05) feed intake and improved (P < 0.05) the gain to feed ratio (G:F) of 14 and 21 d old chicks compared to G:F of chicks fed NID. Additionally, G:F for 14 and 21 d was improved (P < 0.05) by interaction of Zn source × level. Furthermore, at d 21 chicks fed the ID had a lower (P < 0.05) Zn content in the tibia ash and excreta, and a higher (P < 0.05) Zn content in the pancreas tissue compared to chicks fed NID. These results suggest that Zn imprinting can affect body Zn stores and early performance. PMID:27664197
Song, Chang-Zheng; Liu, Mei-Ying; Meng, Jiang-Fei; Chi, Ming; Xi, Zhu-Mei; Zhang, Zhen-Wen
2015-02-02
The effect of foliage sprayed zinc sulfate on berry development of Vitis vinifera cv. Merlot growing on arid zone Zn-deficient soils was investigated over two consecutive seasons, 2013 and 2014. Initial zinc concentration in soil and vines, photosynthesis at three berry developmental stages, berry weight, content of total soluble solids, titratable acidity, phenolics and expression of phenolics biosynthetic pathway genes throughout the stages were measured. Foliage sprayed zinc sulfate showed promoting effects on photosynthesis and berry development of vines and the promotion mainly occurred from veraison to maturation. Zn treatments enhanced the accumulation of total soluble solids, total phenols, flavonoids, flavanols, tannins and anthocyanins in berry skin, decreasing the concentration of titratable acidity. Furthermore, foliage sprayed zinc sulfate could significantly influence the expression of phenolics biosynthetic pathway genes throughout berry development, and the results of expression analysis supported the promotion of Zn treatments on phenolics accumulation. This research is the first comprehensive and detailed study about the effect of foliage sprayed Zn fertilizer on grape berry development, phenolics accumulation and gene expression in berry skin, providing a basis for improving the quality of grape and wine in Zn-deficient areas.
NASA Astrophysics Data System (ADS)
Chen, Zhuo; Zhang, Yaxin; Wang, Dong; Li, Linsen; Zhou, Shanyong; Huang, Joy H.; Chen, Jincan; Hu, Ping; Huang, Mingdong
2016-01-01
Photodynamic antimicrobial chemotherapy (PACT) is an effective method for killing bacterial cells in view of the increasing problem of multiantibiotic resistance. We herein reported the PACT effect on bacteria involved in skin infections using a zinc phthalocyanine derivative, pentalysine β-carbonylphthalocyanine zinc (ZnPc-Lys). Compared with its anionic ZnPc counterpart, ZnPc-Lys showed an enhanced antibacterial efficacy in vitro and in an animal model of localized infection. Meanwhile, ZnPc-Lys was observed to significantly reduce the wound skin blood flow during wound healing, indicating an anti-inflammation activity. This study provides new insight on the mechanisms of PACT in bacterial skin infection.
Transparent ZnO-based ohmic contact to p-GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaminska, E.; Piotrowska, A.; Golaszewska, K.
2002-04-09
Highly conductive ZnO films were fabricated on p-GaN in a two-step process. First, zinc was thermally evaporated on p-GaN. Next, zinc film was oxidized in oxygen flow. To increase the conductivity of ZnO, nitrogen was introduced into zinc during its deposition. The above procedure proved successful in fabricating ZnO of the resistivity of {approx}1 x 10{sup -3} {Omega}cm and resulted in ohmic contacts of resistivity {approx}1 x 10{sup -2} {Omega}cm{sup 2} to low-doped p-GaN, and light transmittance of {approx}75% in the wavelength range of 400-700 nm.
Robinson, Sophia G; Burns, Philip T; Miceli, Amanda M; Grice, Kyle A; Karver, Caitlin E; Jin, Lihua
2016-07-19
The binding of drugs to metalloenzymes is an intricate process that involves several interactions, including binding of the drug to the enzyme active site metal, as well as multiple interactions between the drug and the enzyme residues. In order to determine the free energy contribution of Zn(2+) binding by known metalloenzyme inhibitors without the other interactions, valid active site zinc structural mimetics must be formed and binding studies need to be performed in biologically relevant conditions. The potential of each of five ligands to form a structural mimetic with Zn(2+) was investigated in buffer using Isothermal Titration Calorimetry (ITC). All five ligands formed strong 1 : 1 (ligand : Zn(2+)) binary complexes. The complexes were used in further ITC experiments to study their interaction with 8-hydroxyquinoline (8-HQ) and/or acetohydroxamic acid (AHA), two bidentate anionic zinc-chelating enzyme inhibitors. It was found that tetradentate ligands were not suitable for creating zinc structural mimetics for inhibitor binding in solution due to insufficient coordination sites remaining on Zn(2+). A stable binary complex, [Zn(BPA)](2+), which was formed by a tridentate ligand, bis(2-pyridylmethyl)amine (BPA), was found to bind one AHA in buffer or a methanol : buffer mixture (60 : 40 by volume) at pH 7.25 or one 8-HQ in the methanol : buffer mixture at pH 6.80, making it an effective structural mimetic for the active site of zinc metalloenzymes. These results are consistent with the observation that metalloenzyme active site zinc ions have three residues coordinated to them, leaving one or two sites open for inhibitors to bind. Our findings indicate that Zn(BPA)X2 can be used as an active site structural mimetic for zinc metalloenzymes for estimating the free energy contribution of zinc binding to the overall inhibitor active site interactions. Such use will help aid in the rational design of inhibitors to a variety of zinc metalloenzymes.
NASA Astrophysics Data System (ADS)
Stan, Manuela; Popa, Adriana; Toloman, Dana; Silipas, Teofil-Danut; Vodnar, Dan Cristian; Katona, Gabriel
2015-12-01
The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn2+ ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes and oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.
Pore-water chemistry explains zinc phytotoxicity in soil.
Kader, Mohammed; Lamb, Dane T; Correll, Ray; Megharaj, Mallavarapu; Naidu, Ravi
2015-12-01
Zinc (Zn) is a widespread soil contaminant arising from a numerous anthropogenic sources. However, adequately predicting toxicity of Zn to ecological receptors remains difficult due to the complexity of soil characteristics. In this study, we examined solid-solution partitioning using pore-water data and toxicity of Zn to cucumber (Cucumis sativus L.) in spiked soils. Pore-water effective concentration (ECx, x=10%, 20% and 50% reduction) values were negatively related to pH, indicating lower Zn pore water concentration were needed to cause phytotoxicity at high pH soils. Total dissolved zinc (Znpw) and free zinc (Zn(2+)) in soil-pore water successfully described 78% and 80.3% of the variation in relative growth (%) in the full dataset. When the complete data set was used (10 soils), the estimated EC50pw was 450 and 79.2 µM for Znpw and Zn(2+), respectively. Total added Zn, soil pore water pH (pHpw) and dissolve organic carbon (DOC) were the best predictors of Znpw and Zn(2+) in pore-water. The EC10 (total loading) values ranged from 179 to 5214 mg/kg, depending on soil type. Only pH measurements in soil were related to ECx total Zn data. The strongest relationship to ECx overall was pHca, although pHw and pHpw were in general related to Zn ECx. Similarly, when a solution-only model was used to predict Zn in shoot, DOC was negatively related to Zn in shoot, indicating a reduction in uptake/ translocation of Zn from solution with increasing DOC. Copyright © 2015 Elsevier Inc. All rights reserved.
Oxidized guar gum-ZnO hybrid nanostructures: synthesis, characterization and antibacterial activity
NASA Astrophysics Data System (ADS)
Singh, Vandana; Dwivedi, Lalit Mohan; Baranwal, Kirti; Asthana, Sugandha; Sundaram, Shanthy
2018-04-01
In the present study, guar gum (GG) and oxidized guar gum (OGG) have been used for modulating the antibacterial activity of ZnO. Oxidized guar gum-zinc oxide (OGG-ZnO) or guar gum-zinc oxide (GG-ZnO) nanostructures were synthesized by adding aqueous ammonia to zinc acetate solution in the presence of OGG or GG, respectively. OGG could significantly enhance the antibacterial activity of ZnO for a range of Gram-negative and Gram-positive bacterial strains and this enhancement was most pronounced for Bacillus subtilis and Salmonella typhi. At the same time, GG-ZnO nanostructures were found to be less bioactive than the pure ZnO for the same strains. TEM analysis revealed that optimum OGG-ZnO nanostructure (Z4) is of 200 nm size, oblong in shape, and has slightly clustered texture, while XRD confirmed its crystalline structure with hexagonal phase. The extra surface oxygen species (thus oxygen deficiency) has been assigned for better antibacterial behavior of OGG-ZnO. The study may be extended for other polysaccharide/derivatives to obtain ZnO nanostructures with enhanced antibacterial properties.
Passivation of Cu-Zn alloy on low carbon steel electrodeposited from a pyrophosphate medium
NASA Astrophysics Data System (ADS)
Yavuz, Abdulcabbar; Yakup Hacıibrahimoğlu, M.; Bedir, Metin
2018-01-01
The motivation of this study is to understand whether zinc-based alloy also has a passivation behaviour similar to zinc itself. Cu-Zn alloys were electrodeposited potentiostatically from a pyrophosphate medium on a carbon steel electrode and their corrosion behaviours were studied. Pt and carbon steel electrodes were used in order to examine the corrosion/passivation behaviour of bare Cu, bare Zn and Cu-Zn alloy coatings. The passivation behaviour of all brass-modified electrodes having Zn content between 10% and 100% was investigated. The growth potential affects the morphology and structure of crystals. The brass coatings are more porous than their pure components. The crystalline structure of Cu-Zn alloys can be obtained by changing the deposition potential. The zinc content in brass increases when the deposition voltage applied decreases. However, the growth potential and the ratio of zinc in brass do not affect the passivation behaviour of the resulting alloys. The coatings obtained by applying different growth potentials were immersed in tap water for 24 h to compare their corrosion behaviours with carbon steel having pitting formation.
Ley-Quiñónez, C P; Zavala-Norzagaray, A A; Réndon-Maldonado, J G; Espinosa-Carreón, T L; Canizales-Román, A; Escobedo-Urías, D C; Leal-Acosta, M L; Hart, C E; Aguirre, A A
2013-12-01
The concentration of heavy metals (Zn, Cd, Ni, Cu, Mn) and selenium (Se) was analyzed in blood collected from 12 black turtles (Chelonia mydas agasiizzi) captured in Canal del Infiernillo, Punta Chueca, Mexico. The most abundant metals were Zn (63.58 μg g(-1)) and Se (7.66 μg g(-1)), and Cd was the lower (0.99 μg g(-1)). The sequential concentrations of trace metals were Zn > Se > Cu > Mn > Ni > Cd. In conclusion, this information is important as a baseline when using blood as tissue analysis of heavy metals; however, these levels could represent recent exposure in foraging grounds of black turtles in the Sea of Cortez.
NASA Astrophysics Data System (ADS)
Eko Sardjono, Ratnaningsih; Khoerunnisa, Fitri; Musthopa, Iqbal; Khairunisa, Dinar; Astuti Suganda, Putri; Rachmawati, Rahmi
2018-01-01
This study aims to synthesize zinc nanoparticles using Indonesian velvet bean (Mucuna pruriens) seed extract and evaluate its potency in lowering catalepsy in mice. The research conducted consist of extraction of M. pruriens seed powder, synthesis of zinc-M. pruriens seed extract nanoparticles (Zn-MPn), characterization of Zn-MPn, and catalepsy test of Zn-MPn. M. pruriens seed powder was extracted by maceration using ethanol-water (1:1) at pH 3 adjusted with citric acid. The Zn-MPn was synthesized by reacting zinc acetate dihydrate (Zn(CH3COO2)2.2H2O) solution with M. pruriens seed extract for 40 min, dispersibility of the reaction was controlled by using sonication and ultrasonic homogenizer. The Zn-MPn obtained was characterized by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM), and Fourier-transform infrared (FTIR). Catalepsy test of Zn-MPn was conducted at doses of 5, 10, 15, 20 and 25 mg/kg body weight. The results of SEM-EDX and TEM analysis showed that the Zn-MPn formed nanoparticles with a particle diameter of 55 nm. Based on FTIR analysis, the absorption band at 464.8 cm-1 was a typical absorption indicated the Zn-O interaction on Zn-MPn. Catalepsy test showed that Zn-MPn on the all five doses were able to lower the catalepsy in mice with the best dose was 10 mg/kg body weight.
Al-Awadi, F M; Srikumar, T S
2001-08-01
Studies on camels' milk, whether with respect to concentration or bioavailability of trace elements from this milk, are limited and warrant further investigation. The object of this study was to analyse the concentration and distribution of zinc, copper, selenium, manganese and iron in camel milk compared to those in human milk, cows' milk and infant formula under similar experimental conditions. Camels' milk and cows' milk were collected from local farms, human milk samples were obtained from healthy donors in Kuwait and infant formula was purchased locally. Milk fractionation was performed by ultra-centrifugation and gelcolumn chromatography. The concentration of trace elements was analysed by atomic absorption spectrometry and that of protein was determined spectrophotometrically. The concentration of manganese and iron in camels' milk was remarkably higher (7-20-fold and 4-10-fold, respectively) than in human milk, cows' milk and infant formula. The zinc content of camels' milk was higher than that of human milk but slightly lower than in cows' milk and infant formula. The concentration of copper in camels' milk was similar to that of cows' milk but lower than in human milk and infant formula. The selenium content of camels' milk was comparable to those of other types of milk, Approximately 50-80% of zinc, copper and manganese in camels' milk were associated with the casein fraction, similar to that of cows' milk, The majority of selenium and iron in camels' milk was in association with the low molecular weight fraction, It is recommended that camels' milk be considered as a potential source of manganese, selenium and iron, perhaps not only for infants, but also for other groups suspected of mild deficiency of these elements. Further investigations are required to confirm this proposal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivetić, T.B., E-mail: tamara.ivetic@df.uns.ac.rs; Finčur, N.L.; Đačanin, Lj. R.
2015-02-15
Highlights: • Mechanochemically synthesized nanocrystalline zinc tin oxide (ZTO) powders. • Photocatalytic degradation of alprazolam in the presence of ZTO water suspensions. • Coupled binary ZTO exhibits enhanced photocatalytic activity compared to ternary ZTO. - Abstract: In this paper, ternary and coupled binary zinc tin oxide nanocrystalline powders were prepared via simple solid-state mechanochemical method. X-ray diffraction, scanning electron microscopy, Raman and reflectance spectroscopy were used to study the structure and optical properties of the obtained powder samples. The thermal behavior of zinc tin oxide system was examined through simultaneous thermogravimetric-differential scanning calorimetric analysis. The efficiencies of ternary (Zn{sub 2}SnO{submore » 4} and ZnSnO{sub 3}) and coupled binary (ZnO/SnO{sub 2}) zinc tin oxide water suspensions in the photocatalytic degradation of alprazolam, short-acting anxiolytic of the benzodiazepine class of psychoactive drugs, under UV irradiation were determined and compared with the efficiency of pure ZnO and SnO{sub 2}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bortolaz de Oliveira, Henrique; Wypych, Fernando, E-mail: wypych@ufpr.br
Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO{sub 4}{sup 2−}/g of material, respectively. Although the removal values obtained for Zn/NiHN andmore » Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO{sub 4}{sup 2−}/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated. - Highlights: • Zinc hydroxide nitrate and Zn/Ni hydroxide nitrate or acetate were synthesized. • The interlayer anions were replaced by chromate anions at pH=8.0. • Only Zn/Ni hydroxide nitrate or acetate have the structure preserved after exchange. • Fast exchange reaction and high capacity of chromate removal were observed. • Magnetic materials were obtained to facilitate the solids removal the from solutions.« less
The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism.
Krężel, Artur; Maret, Wolfgang
2017-06-09
Recent discoveries in zinc biology provide a new platform for discussing the primary physiological functions of mammalian metallothioneins (MTs) and their exquisite zinc-dependent regulation. It is now understood that the control of cellular zinc homeostasis includes buffering of Zn 2+ ions at picomolar concentrations, extensive subcellular re-distribution of Zn 2+ , the loading of exocytotic vesicles with zinc species, and the control of Zn 2+ ion signalling. In parallel, characteristic features of human MTs became known: their graded affinities for Zn 2+ and the redox activity of their thiolate coordination environments. Unlike the single species that structural models of mammalian MTs describe with a set of seven divalent or eight to twelve monovalent metal ions, MTs are metamorphic. In vivo, they exist as many species differing in redox state and load with different metal ions. The functions of mammalian MTs should no longer be considered elusive or enigmatic because it is now evident that the reactivity and coordination dynamics of MTs with Zn 2+ and Cu⁺ match the biological requirements for controlling-binding and delivering-these cellular metal ions, thus completing a 60-year search for their functions. MT represents a unique biological principle for buffering the most competitive essential metal ions Zn 2+ and Cu⁺. How this knowledge translates to the function of other families of MTs awaits further insights into the specifics of how their properties relate to zinc and copper metabolism in other organisms.
Grass, Gregor; Fan, Bin; Rosen, Barry P.; Franke, Sylvia; Nies, Dietrich H.; Rensing, Christopher
2001-01-01
The Escherichia coli zitB gene encodes a Zn(II) transporter belonging to the cation diffusion facilitator family. ZitB is specifically induced by zinc. ZitB expression on a plasmid rendered zntA-disrupted E. coli cells more resistant to zinc, and the cells exhibited reduced accumulation of 65Zn, suggesting ZitB-mediated efflux of zinc. PMID:11443104
Chen, Zhuo; Zhou, Shanyong; Chen, Jincan; Deng, Yicai; Luo, Zhipu; Chen, Hongwei; Hamblin, Michael R.
2010-01-01
Unsymmetrical phthalocyanine derivatives have been widely studied as photosensitizers for photodynamic therapy (PDT), targeting various tumor types. However, the preparation of unsymmetrical phthalocyanines is always a challenge due to the presence of many possible structural isomers. Herein we report a new unsymmetrical zinc phthalocyanine, pentalysine β-carbonylphthalocyanine zinc (ZnPc-(Lys)5), that was prepared in large quantity and high purity. This is a water-soluble cationic photosensitizer and maintains a high quantum yield of singlet oxygen generation similar to that of unsubstituted zinc phthalocyanine (ZnPc). Compared with anionic ZnPc counterparts, ZnPc-(Lys)5 shows a higher level cellular uptake and 20-fold higher phototoxicity toward tumor cells. Pharmacokinetics and PDT studies of ZnPc-(Lys)5 in S180 tumor-bearing mice showed a high ratio of tumor versus skin retention and significant tumor inhibition. This new molecular framework will allow synthetic diversity in the number of lysine residues incorporated and will facilitate future QSAR studies. PMID:20458713
Khan, Enamul H; Weber, Marc H; McCluskey, Matthew D
2013-07-05
Positron annihilation spectra reveal isolated zinc vacancy (V(Zn)) creation in single-crystal ZnO exposed to 193-nm radiation at 100 mJ/cm(2) fluence. The appearance of a photoluminescence excitation peak at 3.18 eV in irradiated ZnO is attributed to an electronic transition from the V(Zn) acceptor level at ~100 meV to the conduction band. The observed V(Zn) density profile and hyperthermal Zn(+) ion emission support zinc vacancy-interstitial Frenkel pair creation by exciting a wide 6.34 eV Zn-O antibonding state at 193-nm photon-a novel photoelectronic process for controlled V(Zn) creation in ZnO.
Concentrations of cadmium and selected essential elements in malignant large intestine tissue
Dziki, Adam; Kilanowicz, Anna; Sapota, Andrzej; Duda-Szymańska, Joanna; Daragó, Adam
2015-01-01
Introduction Colorectal cancer is one of the most common cancers worldwide. Incidence rates of large intestine cancer indicate a role of environmental and occupational factors. The role of essential elements and their interaction with toxic metals can contribute to the explanation of a complex mechanism by which large intestine cancer develops. Bearing this in mind, determining the levels of essential and toxic elements in tissues (organs), as well as in body fluids, seems to shed light on their role in the mode of action in malignant disease. Aim Determination of the levels of cadmium, zinc, copper, selenium, calcium, magnesium, and iron in large intestine malignant tissue. Material and methods Two intraoperative intestine sections were investigated: one from the malignant tissue and the other one from the normal tissue, collected from each person with diagnosed large intestine cancer. Cadmium, zinc, copper, calcium, magnesium, and iron levels were determined with atomic absorption spectrometry, and selenium levels by spectrofluorimetric method. Results The levels of copper, selenium, and magnesium were higher in the malignant than in normal tissues. In addition, the zinc/copper and calcium/magnesium relationship was altered in malignant tissue, where correlations were lower compared to non-malignant tissue. Conclusions The results seems to demonstrate disturbed homeostasis of some essential elements. However, it is hard to confirm their involvement in the aetiology of colorectal cancer. PMID:27110307
Geiser, Jim; De Lisle, Robert C.; Andrews, Glen K.
2013-01-01
Background ZIP5 localizes to the baso-lateral membranes of intestinal enterocytes and pancreatic acinar cells and is internalized and degraded coordinately in these cell-types during periods of dietary zinc deficiency. These cell-types are thought to control zinc excretion from the body. The baso-lateral localization and zinc-regulation of ZIP5 in these cells are unique among the 14 members of the Slc39a family and suggest that ZIP5 plays a role in zinc excretion. Methods/Principal Findings We created mice with floxed Zip5 genes and deleted this gene in the entire mouse or specifically in enterocytes or acinar cells and then examined the effects on zinc homeostasis. We found that ZIP5 is not essential for growth and viability but total knockout of ZIP5 led to increased zinc in the liver in mice fed a zinc-adequate (ZnA) diet but impaired accumulation of pancreatic zinc in mice fed a zinc-excess (ZnE) diet. Loss-of-function of enterocyte ZIP5, in contrast, led to increased pancreatic zinc in mice fed a ZnA diet and increased abundance of intestinal Zip4 mRNA. Finally, loss-of-function of acinar cell ZIP5 modestly reduced pancreatic zinc in mice fed a ZnA diet but did not impair zinc uptake as measured by the rapid accumulation of 67zinc. Retention of pancreatic 67zinc was impaired in these mice but the absence of pancreatic ZIP5 sensitized them to zinc-induced pancreatitis and exacerbated the formation of large cytoplasmic vacuoles containing secretory protein in acinar cells. Conclusions These studies demonstrate that ZIP5 participates in the control of zinc excretion in mice. Specifically, they reveal a paramount function of intestinal ZIP5 in zinc excretion but suggest a role for pancreatic ZIP5 in zinc accumulation/retention in acinar cells. ZIP5 functions in acinar cells to protect against zinc-induced acute pancreatitis and attenuate the process of zymophagy. This suggests that it may play a role in autophagy. PMID:24303081
Zinc enhances the number of regulatory T cells in allergen-stimulated cells from atopic subjects.
Rosenkranz, Eva; Hilgers, Ralf-Dieter; Uciechowski, Peter; Petersen, Arnd; Plümäkers, Birgit; Rink, Lothar
2017-03-01
The trace element zinc is essential for immune function and its regulation. Since zinc deficiency and allergic hyperresponsive reactions are often accompanied, the influence of zinc on allergen-induced cell growth, CD4+ regulatory T (Treg) cell numbers and cytokine expression during allergic immune reactions was investigated. Peripheral blood mononuclear cells (PBMCs) from non-atopic and atopic subjects were treated with timothy grass allergen pre-incubated with or without zinc. Proliferation was determined by analyzing the incorporation of 3 H-thymidine. Intracellular zinc and Foxp3 levels and cell surface antigens were measured by FACS, cytokine expression by ELISA and real-time PCR. Incubation with 50 μM zinc sulfate (Zn50) enhances cytosolic zinc concentrations in CD3+ T cells. The data also reveal that the combination of Zn50 plus allergen significantly reduces PBMC proliferation of atopic subjects. Additionally, Zn50 plus allergen enhances Th1 cytokine responses shown by increased interferon (IFN)-γ/interleukin (IL)-10 ratios as well as enhanced tumor necrosis factor-α release. In response to allergen, zinc increases Treg cells and upregulates the mRNA expression of cytotoxic T-lymphocyte antigen-4 in atopic subjects. Interestingly, Zn50 alone leads to an increase of CD4+CD25high(hi)+ cells in atopic and non-atopic subjects. Zinc may regulate unwanted hyperresponsive immune reactions by suppressing proliferation through a significant shift from IL-10 to the Th1 cytokine IFN-γ, and enhanced regulatory T cell numbers. Therefore, zinc supplementation may be a promising tool for the therapy of allergies, without negatively affecting the immune system.
NASA Astrophysics Data System (ADS)
Yu, Junting; Jiang, Zhou; Hao, Yifan; Zhu, Qianhong; Zhao, Mingliang; Jiang, Xue; Zhao, Jijun
2018-06-01
Compared to inorganic solar cells, the power conversion efficiencies (PCEs) of organic solar cells are much lower, but they are compensated by many merits such as lower cost, less weight, and tunable structures, making them prospective for further applications. Porphyrin and phthalocyanine are the two most significant materials for organic solar cells due to their strong light-absorbing properties and semiconductor characteristics. However, there is little research on the 2D heterojunction solar cells based on these two materials, meanwhile the PCEs of them are still low. Here we have self-assembled several 2D zinc porphyrins (ZnPors) and performed first-principles simulation to demonstrate their good stability, suitable light harvesting, and high charge carrier mobility. By perfectly matching lattice constants and molecular energy levels between those 2D ZnPors and our previous proposed zinc phthalocyanines (ZnPcs), 11 type-II organic heterojunctions are constructed to further improve their charge separation capability. Those advantages endow 2D ZnPors and ZnPcs appreciable PCEs for solar cells. Among them, the theoretical PCE of 2D ZnPors/ZnPcs heterojunctions achieves as high as 19.84%, which exceeds all reported organic solar cells, and even approaches the PCEs of inorganic solar cells. These results indicate that our 2D ZnPors and 2D ZnPcs are good candidate materials for future organic solar cells.
Metzler-Zebeli, B U; Caine, W R; McFall, M; Miller, B; Ward, T L; Kirkwood, R N; Mosenthin, R
2010-04-01
Sixty-four pigs from 16 sows were used to evaluate addition of zinc amino acid complex (ZnAA) to lactating sows and gastric nutriment-intubation of zinc methionine (ZnMet) to suckling pigs on mineral status, intestinal morphology and bacterial translocation after weaning. Sows were fed a barley-based diet supplying 120 ppm zinc (Zn; control) or the control diet supplemented with 240 ppm Zn from ZnAA. At birth, day-10 and day-21 (weaning) of age, pigs from each litter were nutriment-intubated with 5 ml of an electrolyte solution without or with 40 mg Zn from ZnMet. At weaning, 24 h prior to the collection of small and large intestinal lymph nodes and sections of the duodenum, jejunum and ileum, the pigs received an intramuscular injection of saline without or with 150 microg/kg body weight of Escherichia coli O26:B6 lipopolysaccharide (LPS). With the exception of a tendency (p = 0.09) for lower serum concentration of copper in pigs at weaning from ZnAA-supplemented sows, there were no differences (p > 0.1) than for pigs from control-fed sows for mineral status or intestinal morphology. Nutriment-intubation of ZnMet increased serum (p = 0.001) and liver (p = 0.003) Zn concentrations, number of goblet cells per 250 microm length of jejunal villous epithelium (p = 0.001) and tended (p = 0.06) to enhance jejunum mucosa thickness. Interactive effects (p < 0.05) for higher jejunal villi height and villi:crypt ratio and increased ileal goblet cell counts were apparent for pigs from ZnAA-supplemented sows that also received nutriment-intubation of ZnMet. Challenge with LPS increased (p = 0.05) ileal villous width. Nutriment-intubation of ZnMet decreased (p = 0.05) anaerobic bacteria colony forming unit counts in the large intestinal mesenteric lymph nodes. In conclusion, nutriment-intubation of ZnMet increased serum and liver tissue concentrations of Zn and resulted in limited improvement to intestinal morphology of weaned pigs.
Facile synthesis and photocatalytic activity of ZnO/zinc titanate core-shell nanorod arrays
NASA Astrophysics Data System (ADS)
He, Ding-Chao; Fu, Qiu-Ming; Ma, Zhi-Bin; Zhao, Hong-Yang; Tu, Ya-Fang; Tian, Yu; Zhou, Di; Zheng, Guang; Lu, Hong-Bing
2018-02-01
ZnO/zinc titanate core-shell nanorod arrays (CSNRs) were successfully prepared via a simple synthesis process by combining hydrothermal synthesis and liquid phase deposition (LPD). The surface morphologies, crystalline characteristics, optical properties and surface electronic states of the ZnO/zinc titanate CSNRs were characterized by scanning electron microscope, transmission electron microscope, x-ray diffractometer, x-ray photoelectron spectroscopy, PL and ultraviolet (UV)-visible absorption spectra. By controlling the reaction time of LPD, the shell thickness could vary with the reaction time. Furthermore, the impacts of the reaction time and post-annealing temperature on the crystalline structure and chemical composition of the CSNRs were also investigated. The studies of photocatalytic activity under UV light irradiation revealed that the ZnO/zinc titanate CSNRs annealed at 700 °C with 30 min deposition exhibited the best photocatalytic activity and good stability for degradation of methylene blue. It had been found that the effective separation of photogenerated electron-hole pairs in the CSNRs led to the enhanced photocatalytic activity. Moreover, the ZnO/zinc titanate CSNRs grown on quartz glass substrate could be easily recycled for reuse with almost unchanged photocatalytic activity.
Root Uptake Of Lipophilic Zinc-Rhamnolipid Complexes
This study investigated the formation and plant uptake of lipophilic metal-rhamnolipid complexes. Monorhamnosyl and dirhamnosyl rhamnolipids formed lipophilic complexes with copper (Cu), manganese (Mn), and zinc (Zn). Rhamnolipids significantly increased Zn absorption by Bra...
NASA Astrophysics Data System (ADS)
Çetinörgü, E.; Goldsmith, S.
2007-09-01
ZnO, SnO2 and zinc stannate thin films were deposited on commercial microscope glass and UV fused silica substrates using filtered vacuum arc deposition system. During the deposition, the substrate temperature was at room temperature (RT) or at 400 °C. The film structure and composition were determined using x-ray diffraction and x-ray photoelectron spectroscopy, respectively. The transmission of the films in the VIS was 85% to 90%. The thermal stability of the film electrical resistance was determined in air as a function of the temperature in the range 28 °C (RT) to 200 °C. The resistance of ZnO increased from ~ 5000 to 105 Ω when heated to 200 °C, that of SnO2 films increased from 500 to 3900 Ω, whereas that of zinc stannate thin films increased only from 370 to 470 Ω. During sample cooling to RT, the resistance of ZnO and SnO2 thin films continued to rise considerably; however, the increase in the zinc stannate thin film resistance was significantly lower. After cooling to RT, ZnO and SnO2 thin films became practically insulators, while the resistance of zinc stannate was 680 Ω. The chemical stability of the films was determined by immersing in acidic and basic solutions up to 27 h. The SnO2 thin films were more stable in the HCl solution than the ZnO and the zinc stannate thin films; however, SnO2 and zinc stannate thin films that were immersed in the NaOH solution did not dissolve after 27 h.
Bou, R; Guardiola, F; Barroeta, A C; Codony, R
2005-07-01
A factorial design was used to study the effect of changes in broiler feed on the composition and consumer acceptability of chicken meat. One week before slaughter, 1.25% dietary fish oil was removed from the feed and replaced by other fat sources (animal fat or linseed oil) or we continued with fish oil, and diets were supplemented with Zn (0, 300, or 600 mg/kg), and Se (0 or 1.2 mg/kg as sodium selenite or 0.2 mg/kg as Se-enriched yeast). The changes in dietary fat led to distinct fatty acid compositions of mixed raw dark and white chicken meat with skin. The fish oil diet produced meat with the highest eicosapentanoic acid (EPA) and docosahexanoic acid (DHA) content, whereas the linseed oil diet led to meat with the highest content in total n-3 polyunsaturated acids (PUFA), especially linolenic acid. However, meat from animals on the animal fat diet was still rich in very long-chain n-3 PUFA. Se content was affected by Se and Zn supplements. Se content increased with Zn supplementation. However, only Se from the organic source led to a significant increase in this mineral in meat compared with the control. Consumer acceptability scores and TBA values of cooked dark chicken meat after 74 d or after 18 mo of frozen storage were not affected by any of the dietary factors studied.
NASA Astrophysics Data System (ADS)
Fu, Rongrong; Wang, Qingyao; Gao, Shanmin; Wang, Zeyan; Huang, Baibiao; Dai, Ying; Lu, Jun
2015-07-01
Ti3+ self-doped titanium-zinc hybrid oxides with different phase compositions and morphologies were successfully synthesized using Zn powder as the reductant and Zn source by a chemical-reduction precipitation method with subsequent thermal treatment. The fabricated Ti3+ self-doped TiO2(A)/TiO2(R), TiO2(A)/TiO2(R)/ZnTiO3, and TiO2(A)/ZnO heterojunctions were characterized by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectroscopy. The effects of various Ti/Zn molar ratios and preparation processes on the structural, morphological, optical, photocurrent and photocatalytic properties of the resultant samples were investigated systematically. Results reveal that Ti3+ self-doping enhances the photoabsorption capability of titanium-zinc hybrid oxides in the visible-light region. Moreover, different processes and Ti/Zn molar ratios play great influences on the structure, morphology, optical, photocurrent and photocatalytic properties of the final products. Ti3+ self-doped titanium-zinc hybrid oxides exhibit excellent photocurrent and photocatalytic activity than pure TiO2 and ZnTiO3 under visible-light irradiation (λ ≥ 400 nm). The most active Ti3+ self-doped titanium-zinc hybrid oxides photoanode presents significantly improved water splitting performance. The synergistic effect between the Ti3+ self-doped and heterojunctions is responsible for the enhanced performance of these materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Rongrong; Wang, Qingyao; Gao, shanmin
2015-07-01
Ti3+ self-doped titanium–zinc hybrid oxides with different phase compositions and morphologies were successfully synthesized using Zn powder as the reductant and Zn source by a chemical-reduction precipitation method with subsequent thermal treatment. The fabricated Ti3+ self-doped TiO2(A)/TiO2(R), TiO2(A)/TiO2(R)/ZnTiO3, and TiO2(A)/ZnO heterojunctions were characterized by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and UV–Vis diffuse reflectance spectroscopy. The effects of various Ti/Zn molar ratios and preparation processes on the structural, morphological, optical, photocurrent and photocatalytic properties of the resultant samples were investigated systematically. Results reveal that Ti3+ self-doping enhances the photoabsorption capability of titanium–zinc hybrid oxidesmore » in the visible-light region. Moreover, different processes and Ti/Zn molar ratios play great influences on the structure, morphology, optical, photocurrent and photocatalytic properties of the final products. Ti3+ self-doped titanium–zinc hybrid oxides exhibit excellent photocurrent and photocatalytic activity than pure TiO2 and ZnTiO3 under visible-light irradiation (λ ≥ 400 nm). The most active Ti3+ self-doped titanium–zinc hybrid oxides photoanode presents significantly improved water splitting performance. The synergistic effect between the Ti3+ self-doped and heterojunctions is responsible for the enhanced performance of these materials.« less
NASA Astrophysics Data System (ADS)
Jabour, Salih; Hamed, Mazen Y.
2009-04-01
The three dimensional structure of Ferric uptake regulation protein dimer from E. coli, determined by molecular modeling, was docked on a DNA fragment (iron box) and Zn2+ ions were added in two steps. The first step involved the binding of one Zn2+ ion to what is known as the zinc site which consists of the residues Cys 92, Cys 95, Asp 137, Asp141, Arg139, Glu 140, His 145 and His 143 with an average metal-Nitrogen distance of 2.5 Å and metal-oxygen distance of 3.1-3.2 Å. The second Zn2+ ion is bound to the iron activating site formed from the residues Ile 50, His 71, Asn 72, Gly 97, Asp 105 and Ala 109. The binding of the second Zn2+ ion strengthened the binding of the first ion as indicated by the shortening of the zinc-residue distances. Fe2+, when added to the complex consisting of 2Zn2+/Fur dimer/DNA, replaced the Zn2+ ion in the zinc site and when a second Fe2+ was added, it replaced the second zinc ion in the iron activating site. The binding of both zinc and iron ions induced a similar change in Fur conformations, but shifted residues closer to DNA in a different manner. This is discussed along with a possible role for the Zn2+ ion in the Fur dimer binding of DNA in its repressor activity.
NASA Astrophysics Data System (ADS)
Kellogg, M. M.; Moran, D. M.; McIlvin, M. R.; Allen, A. E.; Saito, M. A.
2016-02-01
Marine diatoms such as the temperate Thalassiosira pseudonana (Tp) and the polar Chaetoceros sp (Ch) are known to be important contributors to marine primary productivity and the global carbon cycle. The nutritional use of zinc (Zn) in diatoms and the ability to substitute cobalt (Co) for Zn has been previously demonstrated to be of importance in their growth and biochemistry. We conducted physiological experiments with Zn and Co on these diatoms and analyzed their proteomic response. Growth studies involving Tp confirmed previous studies' findings showing Zn/Co substitution, while studies on Ch showed a toxic response to high Zn abundances. Proteome responses of Tp to Zn limitation identified a putative and previously unidentified transporter that was undetectable at high Zn concentration and became highly abundant at two lower Zn concentrations. The distribution of this protein in nature and its potential use as a Zn stress biomarker in diatoms will be discussed.
Modeling the thermal conductivities of the zinc antimonides ZnSb and Zn4Sb3
NASA Astrophysics Data System (ADS)
Bjerg, Lasse; Iversen, Bo B.; Madsen, Georg K. H.
2014-01-01
ZnSb and Zn4Sb3 are interesting as thermoelectric materials because of their low cost and low thermal conductivity. We introduce a model of the lattice thermal conductivity which is independent of fitting parameters and takes the full phonon dispersions into account. The model is found to give thermal conductivities with the correct relative magnitudes and in reasonable quantitative agreement with experiment for a number of semiconductor structures. The thermal conductivities of the zinc antimonides are reviewed and the relatively large effect of nanostructuring on the zinc antimonides is rationalized in terms of the mean free paths of the heat carrying phonons. The very low thermal conductivity of Zn4Sb3 is found to be intrinsic to the structure. However, the low-lying optical modes are observed in both Zn-Sb structures and involve both Zn and Sb vibrations, thereby strongly questioning dumbbell rattling. A mechanism for the very low thermal conductivity observed in Zn4Sb3 is identified. The large Grüneisen parameter of this compound is traced to the Sb atoms which coordinate only Zn atoms.
Copper-Zinc Superoxide Dismutase: A Unique Biological "Ligand" for Bioinorganic Studies.
ERIC Educational Resources Information Center
Valentine, Joan Selverstone; de Freitas, Duarte Mota
1985-01-01
Discusses superoxide dismutase (SOD) research and the properties of copper, zinc (Cu, Zn)-SOD. Emphasizes the controversy concerning the role of Cu,Zn-SOD and other SOD enzymes as protective agents in reactions involving dioxygen metabolism, and the properties of Cu, Zn-SOD that make it an interesting biological ligand for physical studies of…
Role of H2O2 in the Oxidative Effects of Zinc Exposure in Human Airway Epithelial Cells
Human exposure to particulate matter (PM) is a global environmental health concern. Zinc (Zn(2+)) is a ubiquitous respiratory toxicant that has been associated with PM health effects. However, the molecular mechanism of Zn(2+) toxicity is not fully understood. H202 and Zn(2+) hav...
Effects of zinc supplementation on Shiga toxin 2e-producing Escherichia coli in vitro.
Uemura, Ryoko; Katsuge, Tomoko; Sasaki, Yosuke; Goto, Shinya; Sueyoshi, Masuo
2017-10-07
Swine edema disease is caused by Shiga toxin (Stx) 2e-producing Escherichia coli (STEC). Addition of highly concentrated zinc formulations to feed has been used to treat and prevent the disease, but the mechanism of the beneficial effect is unknown. The purpose of the present study was to investigate the effects of highly concentrated zinc formulations on bacterial growth, hemolysin production, and an Stx2e release by STEC in vitro. STEC strain MVH269 isolated from a piglet with edema disease was cultured with zinc oxide (ZnO) or with zinc carbonate (ZnCO 3 ), each at up to 3,000 ppm. There was no effect of zinc addition on bacterial growth. Nonetheless, the cytotoxic activity of Stx2e released into the supernatant was significantly attenuated in the zinc-supplemented media compared to that in the control, with the 50% cytotoxic dose values of 163.2 ± 12.7, 211.6 ± 33.1 and 659.9 ± 84.2 after 24 hr of growth in the presence of ZnO, ZnCO 3 , or no supplemental zinc, respectively. The hemolytic zones around colonies grown on sheep blood agar supplemented with zinc were significantly smaller than those of colonies grown on control agar. Similarly, hemoglobin absorbance after exposure to the supernatants of STEC cultures incubated in sheep blood broth supplemented with zinc was significantly lower than that resulting from exposure to the control supernatant. These in vitro findings indicated that zinc formulations directly impair the factors associated with the virulence of STEC, suggesting a mechanism by which zinc supplementation prevents swine edema disease.
Zinc transporters and dysregulated channels in cancers
Pan, Zui; Choi, Sangyong; Ouadid-Ahidouch, Halima; Yang, Jin-Ming; Beattie, John H.; Korichneva, Irina
2016-01-01
As a nutritionally essential metal ion, zinc (Zn) not only constitutes a structural element for more than 3000 proteins but also plays important regulatory functions in cellular signal transduction. Zn homeostasis is tightly controlled by regulating the flux of Zn across cell membranes through specific transporters, i.e. ZnT and ZIP family proteins. Zn deficiency and malfunction of Zn transporters have been associated with many chronic diseases including cancer. However, the mechanisms underlying Zn regulatory functions in cellular signaling and their impact on the pathogenesis and progression of cancers remain largely unknown. In addition to these acknowledged multifunctions, Zn modulates a wide range of ion channels that in turn may also play an important role in cancer biology. The goal of this review is to propose how zinc deficiency, through modified Zn homeostasis, transporter activity and the putative regulatory function of Zn can influence ion channel activity, and thereby contribute to carcinogenesis and tumorigenesis. This review intends to stimulate interest in, and support for research into the understanding of Zn-modulated channels in cancers, and to search for novel biomarkers facilitating effective clinical stratification of high risk cancer patients as well as improved prevention and therapy in this emerging field. PMID:27814637
USDA-ARS?s Scientific Manuscript database
Phytic acid (PA) is an inhibitor of zinc (Zn) absorption. Because dietary PA is a major causative factor for low Zn bioavailability from most diets, a reduction in the PA content of staple diets is likely to improve Zn nutrition in populations of risk of Zn deficiency. Reducing the PA content of mai...
NASA Astrophysics Data System (ADS)
Jaouen, Klervia; Beasley, Melanie; Schoeninger, Margaret; Hublin, Jean-Jacques; Richards, Michael P.
2016-05-01
In order to explore the possibilities of using zinc (Zn) stable isotope ratios as dietary indicators, we report here on the measurements of the ratio of stable isotopes of zinc (66Zn/64Zn, expressed here as δ66Zn) in bioapatite (bone and dental enamel) of animals from a modern food web in the Koobi Fora region of the Turkana Basin in Kenya. We demonstrate that δ66Zn values in both bone and enamel allow a clear distinction between carnivores and herbivores from this food web. Differences were also observed between browsers and grazers as well as between carnivores that consumed bone (i.e. hyenas) compared to those that largely consume flesh (i.e. lions). We conclude that Zn isotope ratio measurements of bone and teeth are a new and promising dietary indicator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stan, Manuela, E-mail: manuela.stan@itim-cj.ro; Popa, Adriana; Toloman, Dana
The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn{sup 2+} ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes andmore » oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.« less
Chen, Yong-hua; Zhang, Fu-yun; Wu, Xiao-fu; Liang, Xi; Yuan, Si-wen
2015-10-01
Four kinds of lead-zinc tolerant woody plants: Nerium oleander, Koelreuteria paniculata, Paulownia and Boehmeria were used as materials to estimate their enrichment and transferable capacity of lead (Pb) and zinc (Zn) and analyze the subcellular distribution and chemical speciation of Zn and Ph in different parts of plants, under different modifier concentrations (CK group: 100% lead-zinc slag plus a small amount of phosphate fertilizer, improved one: 85% of lead-zinc slag ± 10% peat ± 5% bacterial manure plus a small amount of phosphate fertilizer, improved two: 75% lead-zinc slag ± 20% peat ± 5% bacterial manure ± a small amount of phosphate). Results showed that: (1) The content of Pb, Zn in matrix after planting four kinds of plants was lower than before, no significant difference between improved one and improved two of Nerium oleander and Boehmeria was found, but improved two was better than improved one of Paulownia, while improved one was better than improved two of Koelreuteria paniculata; Four plants had relatively low aboveground enrichment coefficient of Pb and Zn, but had a high transfer coefficient, showed that the appropriate modifier concentration was able to improve the Pb and Zn enrichment and transfer ability of plants. (2) In subcellular distribution, most of Pb and Zn were distributed in plant cell wall components and soluble components while the distribution in cell organelles such as mitochondria, chloroplasts and nucleus component were less. Compared with CK group, two improved group made soluble components of the cell walls of Pb fixation and retention of zinc role in the enhancement. (3) As for the chemical forms of Pb and Zn in plants, the main chemical forms of Pb were hydrochloric acid, sodium chloride and ethanol extractable forms, while other chemical form contents were few, the main chemical forms of Zn were different based on plant type. Compared with CK group, the proportion of the active Pb chemical form in different plant parts decreased in two improved groups, while the proportion of strong activity chemical forms increased; two improved groups led strong activity Zn chemical form of root increased, while strong activity Zn chemical form of aboveground decreased.
Araújo, Daniel; Machado, Wilson; Weiss, Dominik; Mulholland, Daniel S; Boaventura, Geraldo R; Viers, Jerome; Garnier, Jeremie; Dantas, Elton L; Babinski, Marly
2017-07-01
The application of zinc (Zn) isotopes in bivalve tissues to identify zinc sources in estuaries was critically assessed. We determined the zinc isotope composition of mollusks (Crassostrea brasiliana and Perna perna) and suspended particulate matter (SPM) in a tropical estuary (Sepetiba Bay, Brazil) historically impacted by metallurgical activities. The zinc isotope systematics of the SPM was in line with mixing of zinc derived from fluvial material and from metallurgical activities. In contrast, source mixing alone cannot account for the isotope ratios observed in the bivalves, which are significantly lighter in the contaminated metallurgical zone (δ 66 Zn JMC = +0.49 ± 0.06‰, 2σ, n = 3) compared to sampling locations outside (δ 66 Zn JMC = +0.83 ± 0.10‰, 2σ, n = 22). This observation suggests that additional factors such as speciation, bioavailability and bioaccumulation pathways (via solution or particulate matter) influence the zinc isotope composition of bivalves. Copyright © 2017 Elsevier Ltd. All rights reserved.
... infections as taking a combination of zinc, selenium, glutamine, and metoclopramide. Muscular disease (mitochondrial myopathies). Early research ... or 42-84 grams per day in a glutamine-enriched formula. For red, scaly skin (plaque psoriasis): ...
Predoi, Daniela; Iconaru, Simona Liliana; Deniaud, Aurélien; Chevallet, Mireille; Michaud-Soret, Isabelle; Buton, Nicolas; Prodan, Alina Mihaela
2017-01-01
The present work was focused on the synthesis and characterization of hydroxyapatite doped with low concentrations of zinc (Zn:HAp) (0.01 < xZn < 0.05). The incorporation of low concentrations of Zn2+ ions in the hydroxyapatite (HAp) structure was achieved by co-precipitation method. The physico-chemical properties of the samples were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), zeta-potential, and DLS and N2-BET measurements. The results obtained by XRD and FTIR studies demonstrated that doping hydroxyapatite with low concentrations of zinc leads to the formation of a hexagonal structure with lattice parameters characteristic to hydroxyapatite. The XRD studies have also shown that the crystallite size and lattice parameters of the unit cell depend on the substitutions of Ca2+ with Zn2+ in the apatitic structure. Moreover, the FTIR analysis revealed that the water content increases with the increase of zinc concentration. Furthermore, the Energy Dispersive X-ray Analysis (EDAX) and XPS analyses showed that the elements Ca, P, O, and Zn were found in all the Zn:HAp samples suggesting that the synthesized materials were zinc doped hydroxyapatite, Ca10−xZnx(PO4)6(OH), with 0.01 ≤ xZn ≤ 0.05. Antimicrobial assays on Staphylococcus aureus and Escherichia coli bacterial strains and HepG2 cell viability assay were carried out. PMID:28772589
Prognostic value of serum zinc levels in patients with acute HC/zinc chloride smoke inhalation
Xie, Fei; Zhang, Xingang; Xie, Lixin
2017-01-01
Abstract Hexachloroethane (HC)/zinc chloride (ZnCl, smoke bomb) exposure in the military setting results in lung injury which is uncommon and has been rarely described in previous studies. The aim of this study is to investigate the correlation between the serum zinc in patients with HC/ZnCl smoke inhalation lung injury and disease severity. A total of 15 patients with HC/ZnCl-related conditions were recruited in this study. The serum zinc level and the pulmonary function tests and liver function tests including total lung capacity (TLC), forced vital capacity (FVC), forced expiratory pressure in 1 second (FEV1), alanine aminotransferase (ALT), and aspartate transaminase (AST) were analyzed. Eleven cases had mild clinical manifestations. Four cases rapidly developed features typical of severe adult respiratory distress syndrome. The level of serum zinc was increased, but FVC, FEV1, and TLC was decreased significantly in the moderate and severe cases. In addition, the serum zinc level correlated well with the TLC, FVC, and FEV1 (r = −0.587, −0.626, −0.617, respectively; P = .027, .017, .019, respectively). The 4 cases in moderate and severe group had delayed impairment of liver functions after the accident. This study suggested that the serum zinc level may be associated with the severity of lung and liver injuries after HC/ZnCl smoke inhalation. PMID:28953660
NASA Astrophysics Data System (ADS)
Sarkar, Sanjit; Basak, Durga
2013-03-01
We have synthesized for the first time ZnO/rGO hybrids from metal zinc and GO using hydrothermal technique without adding further reducing agent. The photocatalytic property of ZnO-rGO reveals that the hybrid for 50 mg of GO has the highest activity, causing a 94% degradation of methyl orange compared to 70% by only ZnO. The consistent quenching and a gradual decrease in the decay life time of the emission at ˜500 nm as the rGO content increases indicates the interfacial charge transfer process between ZnO and rGO by the defect states responsible for green emission.
Microstructural Study Of Zinc Hot Dip Galvanized Coatings with Titanium Additions In The Zinc Melt
NASA Astrophysics Data System (ADS)
Konidaris, S.; Pistofidis, N.; Vourlias, G.; Pavlidou, E.; Stergiou, A.; Stergioudis, G.; Polychroniadis, E. K.
2007-04-01
Zinc hot-dip galvanizing is a method for protecting iron and steel against corrosion. Galvanizing with pure Zn or Zn with additions like Ni, Al, Pb and Bi has been extensively studied, but there is a lack of scientific information about other additions. The present work examines the effect of a 0.5 wt% Ti addition in the Zn melt. The samples were exposed to accelerated corrosion in a salt spray chamber (SSC). The microstructure and chemical composition of the coatings were determined by Optical Microscopy, XRD and SEM associated with an EDS Analyzer. The results indicate that the coatings have a typical morphology, while Zn-Ti phases were also detected.
The biological inorganic chemistry of zinc ions.
Krężel, Artur; Maret, Wolfgang
2016-12-01
The solution and complexation chemistry of zinc ions is the basis for zinc biology. In living organisms, zinc is redox-inert and has only one valence state: Zn(II). Its coordination environment in proteins is limited by oxygen, nitrogen, and sulfur donors from the side chains of a few amino acids. In an estimated 10% of all human proteins, zinc has a catalytic or structural function and remains bound during the lifetime of the protein. However, in other proteins zinc ions bind reversibly with dissociation and association rates commensurate with the requirements in regulation, transport, transfer, sensing, signalling, and storage. In contrast to the extensive knowledge about zinc proteins, the coordination chemistry of the "mobile" zinc ions in these processes, i.e. when not bound to proteins, is virtually unexplored and the mechanisms of ligand exchange are poorly understood. Knowledge of the biological inorganic chemistry of zinc ions is essential for understanding its cellular biology and for designing complexes that deliver zinc to proteins and chelating agents that remove zinc from proteins, for detecting zinc ion species by qualitative and quantitative analysis, and for proper planning and execution of experiments involving zinc ions and nanoparticles such as zinc oxide (ZnO). In most investigations, reference is made to zinc or Zn 2+ without full appreciation of how biological zinc ions are buffered and how the d-block cation Zn 2+ differs from s-block cations such as Ca 2+ with regard to significantly higher affinity for ligands, preference for the donor atoms of ligands, and coordination dynamics. Zinc needs to be tightly controlled. The interaction with low molecular weight ligands such as water and inorganic and organic anions is highly relevant to its biology but in contrast to its coordination in proteins has not been discussed in the biochemical literature. From the discussion in this article, it is becoming evident that zinc ion speciation is important in zinc biochemistry and for biological recognition as a variety of low molecular weight zinc complexes have already been implicated in biological processes, e.g. with ATP, glutathione, citrate, ethylenediaminedisuccinic acid, nicotianamine, or bacillithiol. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Bai, Shi; Sheline, Carolyn R.; Zhou, Yongdong; Sheline, Christian T.
2013-01-01
Our previous study on retinal light exposure suggests the involvement of zinc (Zn2+) toxicity in the death of RPE and photoreceptors (LD) which could be attenuated by pyruvate and nicotinamide, perhaps through restoration of NAD+ levels. In the present study, we examined Zn2+ toxicity, and the effects of NAD+ restoration in primary retinal cultures. We then reduced Zn2+ levels in rodents by reducing Zn2+ levels in the diet, or by genetics and measured LD. Sprague Dawley albino rats were fed 2, or 61 mg Zn2+/kg of diet for 3 weeks, and exposed to 18 kLux of white light for 4h. We light exposed (70 kLux of white light for 50h) Zn2+ transporter 3 knockout (ZnT3-KO, no synaptic Zn2+), or RPE65 knockout mice (RPE65-KO, lack rhodopsin cycling), or C57/BI6/J controls and determined light damage and Zn2+ staining. Retinal Zn2+ staining was examined at 1h and 4h after light exposure. Retinas were examined after 7d by optical coherence tomography and histology. After LD, rats fed the reduced Zn2+ diet showed less photoreceptor Zn2+ staining and degeneration compared to a normal Zn2+ diet. Similarly, ZnT3-KO and RPE65-KO mice showed less Zn2+ staining, NAD+ loss, and RPE or photoreceptor death than C57/BI6/J control mice. Dietary or ZnT3-dependent Zn2+ stores, and intracellular Zn2+ release from rhodopsin recycling are suggested to be involved in light-induced retinal degeneration. These results implicate novel rhodopsin-mediated mechanisms and therapeutic targets for LD. Our companion manuscript demonstrates that pharmacologic, circadian, or genetic manipulations which maintain NAD+ levels reduce LD. PMID:23274584
López-Valdivia, L M; Fernández, M D; Obrador, A; Alvarez, J M
2002-03-13
Experiments under laboratory and greenhouse conditions were conducted to study the response of maize (Zea mays L.) to Zn fertilizer applications (Zn-phenolate, Zn-EDDHA, Zn-EDTA, Zn-lignosulfonate, Zn-polyflavonoid, and Zn-heptagluconate) in an Aquic Haploxeralf soil. The application of Zn complexes significantly increased Zn uptake by the plant compared with that in the control soil. The highest enhancements were obtained in soil treated with Zn-EDTA, Zn-lignosulfonate, and Zn-EDDHA. The highest percentages of Zn taken up by the plants occurred when 20 mg x kg(-1) Zn was applied as Zn-EDTA fertilizer and 10 mg x kg(-1) as Zn-lignosulfonate fertilizer. In the greenhouse experiment, Zn speciation in soil after harvesting showed that almost all Zn was found in the residual fraction followed by metal in the water-soluble plus exchangeable fraction and metal bound to organic matter. The most effective fertilizers maintaining Zn in the most labile fractions were Zn-phenolate, Zn-EDTA, and Zn-lignosulfonate. Conversely, in the incubation experiment, only a small percentage of Zn was found in the water-soluble plus exchangeable fraction and no differences in the Zn distribution were observed between the different fertilizer treatments. The micronutrient content in maize was positively correlated with the water-soluble plus exchangeable Zn as well as with the available Zn determined by the diethylenetriaminepentaacetic acid and Mehlich-3 methods, in the greenhouse experiment. Results of this study showed that the incubation experiment in acidic soil is not a suitable tool to establish the different effectiveness of Zn chelates in plants.
Manganese-induced effects on cerebral trace element and nitric oxide of Hyline cocks.
Liu, Xiaofei; Zuo, Nan; Guan, Huanan; Han, Chunran; Xu, Shi Wen
2013-08-01
Exposure to Manganese (Mn) is a common phenomenon due to its environmental pervasiveness. To investigate the Mn-induced toxicity on cerebral trace element levels and crucial nitric oxide parameters on brain of birds, 50-day-old male Hyline cocks were fed either a commercial diet or a Mn-supplemented diet containing 600, 900, 1,800 mg kg(-1). After being treated with Mn for 30, 60, and 90 days, the following were determined: the changes in contents of copper (Cu), iron (Fe), zinc (Zn), calcium (Ca), selenium (Se) in brain; inducible nitric oxide synthase-nitric oxide (iNOS-NO) system activity in brain; and histopathology and ultrastructure changes of cerebral cortex. The results showed that Mn was accumulated in brain and the content of Cu and Fe increased. However, the levels of Zn and Se decreased and the Ca content presented no obvious regularity. Exposure to Mn significantly elevated the content of NO and the expression of iNOS mRNA. Activity of total NO synthase (T NOS) and iNOS appeared with an increased tendency. These findings suggested that Mn exposure resulted in the imbalance of cerebral trace elements and influenced iNOS in the molecular level, which are possible underlying nervous system injury mechanisms induced by Mn exposure.
Trace Elements in Ovaries: Measurement and Physiology.
Ceko, Melanie J; O'Leary, Sean; Harris, Hugh H; Hummitzsch, Katja; Rodgers, Raymond J
2016-04-01
Traditionally, research in the field of trace element biology and human and animal health has largely depended on epidemiological methods to demonstrate involvement in biological processes. These studies were typically followed by trace element supplementation trials or attempts at identification of the biochemical pathways involved. With the discovery of biological molecules that contain the trace elements, such as matrix metalloproteinases containing zinc (Zn), cytochrome P450 enzymes containing iron (Fe), and selenoproteins containing selenium (Se), much of the current research focuses on these molecules, and, hence, only indirectly on trace elements themselves. This review focuses largely on two synchrotron-based x-ray techniques: X-ray absorption spectroscopy and x-ray fluorescence imaging that can be used to identify the in situ speciation and distribution of trace elements in tissues, using our recent studies of bovine ovaries, where the distribution of Fe, Se, Zn, and bromine were determined. It also discusses the value of other techniques, such as inductively coupled plasma mass spectrometry, used to garner information about the concentrations and elemental state of the trace elements. These applications to measure trace elemental distributions in bovine ovaries at high resolutions provide new insights into possible roles for trace elements in the ovary. © 2016 by the Society for the Study of Reproduction, Inc.
Heavy-metal resistance in Gram-negative bacteria isolated from Kongsfjord, Arctic.
Neethu, C S; Mujeeb Rahiman, K M; Saramma, A V; Mohamed Hatha, A A
2015-06-01
Isolation and characterization of heterotrophic Gram-negative bacteria was carried out from the sediment and water samples collected from Kongsfjord, Arctic. In this study, the potential of Arctic bacteria to tolerate heavy metals that are of ecological significance to the Arctic (selenium (Se), mercury (Hg), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn)) was investigated. Quantitative assay of 130 isolates by means of plate diffusion and tube dilution methods was carried out by incorporation of different concentrations of metals. Growth in Se and Pb at a concentration of 3000 μg/L was significantly lower (P≤0.0001) than at 2000 μg/L. The minimum inhibitory concentration for Cd and Hg was 50 μg/L (P≤0.0001, F=264.23 and P≤0.0001, F=291.08, respectively) even though in the tube dilution test, Hg-containing tubes showed much less growth, revealing its superior toxicity to Cd. Thus, the level of toxicity of heavy metals was found to be in the order of Hg>Cd>Cu>Zn>Pb>Se. Multiple-metal-resistant isolates were investigated for their resistance against antibiotics, and a positive correlation was observed between antibiotic and metal resistance for all the isolates tested. The resistant organisms thus observed might influence the organic and inorganic cycles in the Arctic and affect the ecosystem.
Calibrating NIST SRM 683 as A New International Reference Standard for Zn Isotopes
NASA Astrophysics Data System (ADS)
Yang, Y.; Zhang, X.; Yu, H.; Huang, F.
2017-12-01
Zinc isotopes have been widely applied in the cosmochemical, geochemical, and environmental studies (Moynier et al. 2017). Obtaining precise Zn isotopic data for inter-laboratory comparison is a prerequisite to these applications. Currently, the JMC3-0749L is the primary reference standard for Zn isotopes (Albarède 2004), but it is not commercially available now. Thus, it is necessary to calibrate a new international primary reference standard for Zn isotopic analysis. Chen et al. (2016) showed that NIST SRM 683 (a pure Zn metal nugget of 140 grams) has a δ66ZnJMC of 0.12‰, which is falling within the range of natural Zn isotopic compositions, and it may a good candidate for the next generation of international reference standard (Chen et al. 2016). In order to further examine whether NIST SRM 683 has a homogeneous Zn isotopic composition, we measured more NIST SRM 683 by double-spike methods using MC-ICPMS (Conway et al. 2013). The metal nuggets of NIST SRM 683 were intensively sampled by micro-drilling. Zinc isotope analyses for two nuggets show that they have δ66Zn of 0.14 ± 0.02‰ (2SD, N = 32) and 0.13 ± 0.02‰ (2SD, N = 33), respectively. These values are similar to those of two Zn metal nuggets (0.11 ± 0.02‰ vs. 0.12 ± 0.02‰) reported previously by Chen et al. (2016). We fully dissolved one nugget, producing pure Zn solution with identical Zn isotopic composition with the drilling samples. All results strongly support that NIST SRM 683 is homogeneous in Zn isotopic compositions which could be an ideal candidate for the next reference for Zn isotopes. Tests on more metal nuggets will be performed in a few months for further confirming the Zn isotope compositions and homogeneity. Reference: Albarède et al., 2004. 'The stable isotope geochemistry of copper and zinc', Reviews in Mineralogy and Geochemistry, 55: 409-27. Chen et al., 2016. 'Zinc Isotopic Compositions of NIST SRM 683 and Whole-Rock Reference Materials', Geostandards and Geoanalytical Research, 40: 417-32. Conway et al., 2013. 'A new method for precise determination of iron, zinc and cadmium stable isotope ratios in seawater by double-spike mass spectrometry', Analytica chimica acta, 793: 44-52. Moynier et al., 2017. 'The isotope geochemistry of zinc and copper', Reviews in Mineralogy and Geochemistry, 82: 543-600.
Milani, Narges; Hettiarachchi, Ganga M.; Kirby, Jason K.; Beak, Douglas G.; Stacey, Samuel P.; McLaughlin, Mike J.
2015-01-01
Zinc oxide (ZnO) nanoparticles may provide a more soluble and plant available source of Zn in Zn fertilizers due to their greater reactivity compared to equivalent micron- or millimetre-sized (bulk) particles. However, the effect of soil on solubility, spatial distribution and speciation of ZnO nanoparticles has not yet been investigated. In this study, we examined the diffusion and solid phase speciation of Zn in an alkaline calcareous soil following application of nanoparticulate and bulk ZnO coated fertilizer products (monoammonium phosphate (MAP) and urea) using laboratory-based x-ray techniques and synchrotron-based μ-x-ray fluorescence (μ–XRF) mapping and absorption fine structure spectroscopy (μ–XAFS). Mapping of the soil-fertilizer reaction zones revealed that most of the applied Zn for all treatments remained on the coated fertilizer granule or close to the point of application after five weeks of incubation in soil. Zinc precipitated mainly as scholzite (CaZn2(PO4)2.2H2O) and zinc ammonium phosphate (Zn(NH4)PO4) species at the surface of MAP granules. These reactions reduced dissolution and diffusion of Zn from the MAP granules. Although Zn remained as zincite (ZnO) at the surface of urea granules, limited diffusion of Zn from ZnO-coated urea granules was also observed for both bulk and nanoparticulate ZnO treatments. This might be due to either the high pH of urea granules, which reduced solubility of Zn, or aggregation (due to high ionic strength) of released ZnO nanoparticles around the granule/point of application. The relative proportion of Zn(OH)2 and ZnCO3 species increased for all Zn treatments with increasing distance from coated MAP and urea granules in the calcareous soil. When coated on macronutrient fertilizers, Zn from ZnO nanoparticles (without surface modifiers) was not more mobile or diffusible compared to bulk forms of ZnO. The results also suggest that risk associated with the presence of ZnO NPs in calcareous soils would be the same as bulk sources of ZnO. PMID:25965385
NASA Astrophysics Data System (ADS)
de Oliveira, Henrique Bortolaz; Wypych, Fernando
2016-11-01
Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO42-/g of material, respectively. Although the removal values obtained for Zn/NiHN and Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO42-/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated.
Improved synthesis of fine zinc borate particles using seed crystals
NASA Astrophysics Data System (ADS)
Gürhan, Deniz; Çakal, Gaye Ö.; Eroğlu, İnci; Özkar, Saim
2009-03-01
Zinc borate is a flame retardant additive used in polymers, wood applications and textile products. There are different types of zinc borate having different chemical compositions and structures. In this study, the production of zinc borate having the molecular formula of 2ZnO·3B 2O 3·3.5H 2O was reexamined by studying the effects of reaction parameters on the properties of product as well as the reaction kinetics. Production of zinc borate from the reaction of boric acid and zinc oxide in the presence of seed crystals was performed in a continuously stirred, temperature-controlled batch reactor having a volume of 1.5 L. Samples taken in regular time intervals during the experiments were analyzed for the concentration of zinc oxide and boron oxide in the solid as well as for the conversion of zinc oxide to zinc borate versus time. The zinc borate production reaction was fit to the logistic model. The reaction rate, reaction completion time, composition and particle size distribution of zinc borate product were determined by varying the following parameters: the boric acid to zinc oxide ratio (H 3BO 3:ZnO=3:1, 3.5:1, 5:1 and 7:1), the particle size of zinc oxide (10 and 25 μm), stirring rate (275, 400, 800 and 1600 rpm), temperature (75, 85 and 95 °C) and the size of seed crystals (10 and 2 μm). The products were also analyzed for particle size distribution. The experimental results showed that the reaction rate increases with the increase in H 3BO 3:ZnO ratio, particle size of zinc oxide, stirring rate and temperature. Concomitantly, the reaction completion time is decreased by increasing the H 3BO 3:ZnO ratio, stirring rate and temperature. The average particle sizes of the zinc borate products are in the range 4.3-16.6 μm (wet dispersion analysis).
Kinetic Aspects of Leaching Zinc from Waste Galvanizing Zinc by Using Hydrochloric Acid Solutions
NASA Astrophysics Data System (ADS)
Sminčáková, Emília; Trpčevská, Jarmila; Pirošková, Jana
2017-10-01
In this work, the results of acid leaching of flux skimmings coming from two plants are presented. Sample A contained two phases, Zn(OH)Cl and NH4Cl. In sample B, the presence of three phases, Zn5(OH)8Cl2·H2O, (NH4)2(ZnCl4) and ZnCl2(NH3)2, was proved. The aqueous solution of hydrochloric acid and distilled water was used as the leaching medium. The effects of the leaching time, temperature and concentration of the leaching medium on the zinc extraction were investigated. The apparent activation energy, E a = 4.61 kJ mol-1, and apparent reaction order n = 0.18 for sample A, and the values E a = 6.28 kJ mol-1 and n = 0.33 for sample B were experimentally determined. Zinc leaching in acid medium is a diffusion-controlled process.
Chapin, T.P.; Nimick, D.A.; Gammons, C.H.; Wanty, R.B.
2007-01-01
Recent work has demonstrated that many trace metals undergo dramatic diel (24-h) cycles in near neutral pH streams with metal concentrations reproducibly changing up to 500% during the diel period (Nimick et al., 2003). To examine diel zinc cycles in streams affected by acid rock drainage, we have developed a novel instrument, the Zn-DigiScan, to continuously monitor in situ zinc concentrations in near real-time. Initial results from a 3-day deployment at Fisher Creek, Montana have demonstrated the ability of the Zn-DigiScan to record diel Zn cycling at levels below 100 ??g/l. Longer deployments of this instrument could be used to examine the effects of episodic events such as rainstorms and snowmelt pulses on zinc loading in streams affected by acid rock drainage. ?? Springer Science+Business Media B.V. 2006.
On the formation of nanocrystalline active zinc oxide from zinc hydroxide carbonate
NASA Astrophysics Data System (ADS)
Moezzi, Amir; Cortie, Michael; Dowd, Annette; McDonagh, Andrew
2014-04-01
The decomposition of zinc hydroxide carbonate, Zn5(CO3)2(OH)6 (ZHC), into the high surface area form of ZnO known as "active zinc oxide" is examined. In particular, the nucleation and evolution of the ZnO nanocrystals is of interest as the size of these particles controls the activity of the product. The decomposition process was studied using X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy and BET surface area measurements. At about 240 °C ZHC decomposes to porous ZnO in a single step. The product material has a specific surface area in the range of 47-65 m2 g-1 and initially has a crystallite size that is of the order of 10 nm. A further increase in temperature, however, causes the particles to coarsen to over 25 nm in diameter. In principle, the coarsening phenomenon may be interrupted to control the particle size.
Han, Ruiming; Quinet, Muriel; André, Emilie; van Elteren, Johannes Teun; Destrebecq, Florence; Vogel-Mikuš, Katarina; Cui, Guangling; Debeljak, Marta; Lefèvre, Isabelle; Lutts, Stanley
2013-09-01
Kosteletzkya virginica is a wetland halophyte that is a good candidate for rehabilitation of degraded salt marshes and production of oil as biodiesel. Salt marshes are frequently contaminated by heavy metals. The distribution of Zn in vegetative and reproductive organs of adult plants, and the NaCl influence on this distribution remain unknown and were thus explored in the present study. Plants were cultivated in a nutrient film technique system, from seedling stage until seed maturation in a control, Zn (100 μM), NaCl (50 mM) or Zn + NaCl medium. Photosynthesis, ion nutrition, malondialdehyde and non-protein thiol concentrations were quantified. Zinc distribution in reproductive organs was estimated by a laser ablation-inductively coupled plasma-mass spectrometry procedure (LA-ICP-MS). Adult plants accumulated up to 2 mg g(-1) DW Zn in the shoots. Zinc reduced plant growth, inhibited photosynthesis and reduced seed yield. Zinc accumulation in the seeds was only two times higher in Zn-treated plants than in controls. Exogenous NaCl neutralized the damaging action of Zn and modified the Zn distribution through a preferential accumulation of toxic ions in older leaves. Zinc was present in seed testa, endosperm and, to a lower extent, in embryo. Additional NaCl induced a chalazal retention of Zn during seed maturation and reduced final Zn seed content. It is concluded that NaCl 50 mM had a positive impact on the response of K. virginica to Zn toxicity and acts through a modification in Zn distribution rather than a decrease in Zn absorption.
ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation
NASA Astrophysics Data System (ADS)
Matinise, N.; Fuku, X. G.; Kaviyarasu, K.; Mayedwa, N.; Maaza, M.
2017-06-01
The research work involves the development of better and reliable method for the bio-fabrication of Zinc oxide nanoparticles through green method using Moringa Oleifera extract as an effective chelating agent. The electrochemical activity, crystalline structure, morphology, isothermal behavior, chemical composition and optical properties of ZnO nanoparticles were studied using various characterization techniques i.e. Cyclic voltammetry (CV), X-ray powder diffraction (XRD), High resolution transmission electron microscopy (HRTEM), Selected area electron diffraction (SEAD), Differential scanning calorimetry/thermogravimetric analysis (DSC/TGA), Fourier Transform Infrared analysis (FTIR) and Ultraviolet spectroscopy studies (UV-vis). The electrochemical analysis proved that the ZnO nano has high electrochemical activity without any modifications and therefore are considered as a potential candidate in electrochemical applications. The XRD pattern confirmed the crystallinity and pure phase of the sample. DSC/TGA analysis of ZnO sample (before anneal) revealed three endothermic peaks around 140.8 °C, 223.7 °C and 389.5 °C. These endothermic peaks are attributed to the loss of volatile surfactant, conversion of zinc hydroxide to zinc oxide nanoparticles and transformation of zinc oxide into zinc nanoparticles. Mechanisms of formation of the ZnO nanoparticles via the chemical reaction of the Zinc nitrate precursor with the bioactive compounds of the Moringa oleifera are proposed for each of the major family compounds: Vitamins, Flavonoids, and Phenolic acids.
Kreider-Mueller, Ava; Quinlivan, Patrick J; Rauch, Michael; Owen, Jonathan S; Parkin, Gerard
2016-02-07
The first terminal zinc hydride complex that features a sulfur-rich coordination environment, namely the tris(2-mercapto-1-tert-butylimidazolyl)hydroborato compound, [Tm(Bu(t))]ZnH, has been synthesized via the reaction of [Tm(Bu(t))]ZnOPh with PhSiH3. The Zn-H bond of [Tm(Bu(t))]ZnH is subject to insertion of CO2 and facile protolytic cleavage, of which the latter provides access to heterobimetallic [Tm(Bu(t))]ZnMo(CO)3Cp.
The Functions of Metallothionein and ZIP and ZnT Transporters: An Overview and Perspective
Kimura, Tomoki; Kambe, Taiho
2016-01-01
Around 3000 proteins are thought to bind zinc in vivo, which corresponds to ~10% of the human proteome. Zinc plays a pivotal role as a structural, catalytic, and signaling component that functions in numerous physiological processes. It is more widely used as a structural element in proteins than any other transition metal ion, is a catalytic component of many enzymes, and acts as a cellular signaling mediator. Thus, it is expected that zinc metabolism and homeostasis have sophisticated regulation, and elucidating the underlying molecular basis of this is essential to understanding zinc functions in cellular physiology and pathogenesis. In recent decades, an increasing amount of evidence has uncovered critical roles of a number of proteins in zinc metabolism and homeostasis through influxing, chelating, sequestrating, coordinating, releasing, and effluxing zinc. Metallothioneins (MT) and Zrt- and Irt-like proteins (ZIP) and Zn transporters (ZnT) are the proteins primarily involved in these processes, and their malfunction has been implicated in a number of inherited diseases such as acrodermatitis enteropathica. The present review updates our current understanding of the biological functions of MTs and ZIP and ZnT transporters from several new perspectives. PMID:26959009
Comparison of serum Concentration of Se, Pb, Mg, Cu, Zn, between MS patients and healthy controls
Alizadeh, Anahita; Mehrpour, Omid; Nikkhah, Karim; Bayat, Golnaz; Espandani, Mahsa; Golzari, Alireza; Jarahi, Lida; Foroughipour, Mohsen
2016-01-01
Introduction Multiple Sclerosis (MS) is defined as one of the inflammatory autoimmune disorders and is common. Its exact etiology is unclear. There are some evidences on the role of environmental factors in susceptible genetics. The aim of this study is to evaluate the possible role of Selenium, Zinc, Copper, Lead and Magnesium metals in Multiple Sclerosis patients. Methods In the present analytical cross-sectional study, 56 individuals including 26 patients and 30 healthy controls were enrolled in the evaluation. The serum level of Se, Zn, Cu, Pb were quantified in graphite furnace conditions and flame conditions by utilizing an atomic absorption Perkin Elmer spectrophotometer 3030. The serum levels of Mg were measured by auto analyzer 1500 BT. The mean level of minerals (Zn, Pb, Cu, Mg, Se) in serum samples were compared in both cases and controls. The mean level of minerals (Zn, Pb, Cu, Mg, Se) in serum samples were compared in both cases and controls by using independent-samples t-test for normal distribution and Mann-Whitney U test as a non-parametric test. All statistical analyses were carried out using SPSS 11.0. Results As well as the Zn, Cu, and Se, there was no significant difference between MS patients and healthy individuals in Pb concentrations (p-value = 0.11, 0.14, 0.32, 0.20 respectively) but the level of Mg was significantly different (p= 0.001). Conclusion All serum concentrations of Zn, Pb, Se, Cu in both groups were in normal ranges and there was no difference in MS patients compared with the healthy group who were matched in genetics. Blood level of Mg was significantly lower in MS patients. But it should be noted that even with the low level of serum magnesium in MS patients, this value is still in the normal range. PMID:27757186
Waalewijn-Kool, Pauline L; Diez Ortiz, Maria; van Gestel, Cornelis A M
2012-10-01
Due to the difficulty in dispersing some engineered nanomaterials in exposure media, realizing homogeneous distributions of nanoparticles (NP) in soil may pose major challenges. The present study investigated the distribution of zinc oxide (ZnO) NP (30 nm) and non-nano ZnO (200 nm) in natural soil using two different spiking procedures, i.e. as dry powder and as suspension in soil extract. Both spiking procedures showed a good recovery (>85 %) of zinc and based on total zinc concentrations no difference was found between the two spiking methods. Both spiking procedures resulted in a fairly homogeneous distribution of the ZnO particles in soil, as evidenced by the low variation in total zinc concentration between replicate samples (<12 % in most cases). Survival of Folsomia candida in soil spiked at concentrations up to 6,400 mg Zn kg(-1) d.w. was not affected for both compounds. Reproduction was reduced in a concentration-dependent manner with EC50 values of 3,159 and 2,914 mg Zn kg(-1) d.w. for 30 and 200 nm ZnO spiked as dry powder and 3,593 and 5,633 mg Zn kg(-1) d.w. introduced as suspension. Toxicity of ZnO at 30 and 200 nm did not differ. We conclude that the ZnO particle toxicity is not size related and that the spiking of the soil with ZnO as dry powder or as a suspension in soil extract does not affect its toxicity to F. candida.
... you have any questions: selenium sulfide 1% shampoo sulfur shampoo tar-based shampoo zinc pyrithione shampoo ketoconazole ... After treatment, some people notice that areas of skin that had severe seborrhea may be lighter than ...
Crystal structure of human S100A8 in complex with zinc and calcium.
Lin, Haili; Andersen, Gregers Rom; Yatime, Laure
2016-06-01
S100 proteins are a large family of calcium binding proteins present only in vertebrates. They function intra- and extracellularly both as regulators of homeostatic processes and as potent effectors during inflammation. Among these, S100A8 and S100A9 are two major constituents of neutrophils that can assemble into homodimers, heterodimers and higher oligomeric species, including fibrillary structures found in the ageing prostate. Each of these forms assumes specific functions and their formation is dependent on divalent cations, notably calcium and zinc. In particular, zinc appears as a major regulator of S100 protein function in a disease context. Despite this central role, no structural information on how zinc bind to S100A8/S100A9 and regulates their quaternary structure is yet available. Here we report two crystallographic structures of calcium and zinc-loaded human S100A8. S100A8 binds two zinc ions per homodimer, through two symmetrical, all-His tetracoordination sites, revealing a classical His-Zn binding mode for the protein. Furthermore, the presence of a (Zn)2-cacodylate complex in our second crystal form induces ligand swapping within the canonical His4 zinc binding motif, thereby creating two new Zn-sites, one of which involves residues from symmetry-related molecules. Finally, we describe the calcium-induced S100A8 tetramer and reveal how zinc stabilizes this tetramer by tightening the dimer-dimer interface. Our structures of Zn(2+)/Ca(2+)-bound hS100A8 demonstrate that S100A8 is a genuine His-Zn S100 protein. Furthermore, they show how zinc stabilizes S100A8 tetramerization and potentially mediates the formation of novel interdimer interactions. We propose that these zinc-mediated interactions may serve as a basis for the generation of larger oligomers in vivo.
Mazurek-Mochol, Małgorzata
2002-01-01
Drug interactions are the side effect of administration of two or more drugs or a drug-food combination. Although some drug interactions are intentional and beneficial to the patient, the majority are unintentional and associated with a potentially harmful effect. The aim of this study was to search for interactions in rats between fluoride and zinc administered orally for 12 weeks and to elucidate any potential toxicological and therapeutic consequences. 60 male Wistar rats were divided into six groups of ten rats each and exposed to: 1. controls (distilled water); 2. sodium fluoride (NaF); 3. low-dose zinc (Zn); 4. high-dose zinc; 5. NaF + low-dose Zn; 6. NaF + high-dose Zn. At the end of the experiment the content of F- and Zn+ in serum, urine, incisors, femur and mandible was measured and densitometry of femoral bones was performed. Serum alkaline phosphatase, alanine and aspartate aminotransferase activities, as well as bilirubin and creatinine concentrations were determined to confirm non-toxicity of fluoride dose. Animals receiving NaF only demonstrated higher content of fluorine in serum, urine bones and teeth. Zinc concentrations in serum, urine, bones and teeth were elevated in rats receiving zinc with or without NaF. Fluorine accumulation in bones and teeth was reduced by Zn, but in general the effect lacked statistical significance. Zinc slightly reduced the concentrations of fluorine in serum and urine. Sodium fluoride slightly reduced the concentration of zinc in serum and urine. Bone mineral content (BMC) was significantly increased by NaF and was not further increased by co-administration of zinc. No changes in serum alkaline phosphatase, alanine and aspartate aminotransferase activities, bilirubin and creatinine concentrations were detected. In conclusion, simultaneous administration of fluorine and zinc may be beneficial for prevention and treatment of pathologic conditions in bones and teeth and is not accompanied by an increase in fluorine levels which could be responsible for toxicological symptoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marimuthu, T.; Anandhan, N., E-mail: anandhan-kn@rediffmail.com; Mummoorthi, M.
Zinc oxide (ZnO) and zinc oxide/eosin yellow (ZnO/EY) thin films were potentiostatically deposited onto fluorine doped tin oxide (FTO) glass substrate. Effect of eosin yellow dye on structural, morphological and optical properties was studied. X-ray diffraction patterns, micro Raman spectra and photoluminescence (PL) spectra reveal hexagonal wurtzite structure with less atomic defects in 101 plane orientation of the ZnO/EY film. Scanning electron microscopy (SEM) images show flower for ZnO and porous like structure for ZnO/EY thin film, respectively. DSSC was constructed and evaluated by measuring the current density verses voltage curve.
Comment on "Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts".
Nakamura, Junji; Fujitani, Tadahiro; Kuld, Sebastian; Helveg, Stig; Chorkendorff, Ib; Sehested, Jens
2017-09-01
Kattel et al (Reports, 24 March 2017, p. 1296) report that a zinc on copper (Zn/Cu) surface undergoes oxidation to zinc oxide/copper (ZnO/Cu) during carbon dioxide (CO 2 ) hydrogenation to methanol and conclude that the Cu-ZnO interface is the active site for methanol synthesis. Similar experiments conducted two decades ago by Fujitani and Nakamura et al demonstrated that Zn is attached to formate rather than being fully oxidized. Copyright © 2017, American Association for the Advancement of Science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dazheng; Zhang, Chunfu, E-mail: cfzhang@xidian.edu.cn; Wang, Zhizhe
Indium-tin-oxide (ITO) free inverted organic solar cells (IOSCs) based on aluminum-doped zinc oxide (AZO) cathode, low-temperature aqueous solution processed zinc oxide (ZnO) electron extraction layer, and poly(3-hexylthiophene-2, 5-diyl):[6, 6]-phenyl C{sub 61} butyric acid methyl ester blend were realized in this work. The resulted IOSC with ZnO annealed at 150 °C shows the superior power conversion efficiency (PCE) of 3.01%, if decreasing the ZnO annealing temperature to 100 °C, the obtained IOSC also shows a PCE of 2.76%, and no light soaking issue is observed. It is found that this ZnO film not only acts as an effective buffer layer but also slightlymore » improves the optical transmittance of AZO substrates. Further, despite the relatively inferior air-stability, these un-encapsulated AZO/ZnO IOSCs show comparable PCEs to the referenced ITO/ZnO IOSCs, which demonstrates that the AZO cathode is a potential alternative to ITO in IOSCs. Meanwhile, this simple ZnO process is compatible with large area deposition and plastic substrates, and is promising to be widely used in IOSCs and other relative fields.« less
Nowakowski, Andrew B; Meeusen, Jeffrey W; Menden, Heather; Tomasiewicz, Henry; Petering, David H
2015-12-21
Fluorescent zinc sensors are the most commonly used tool to study the intracellular mobile zinc status within cellular systems. Previously, we have shown that the quinoline-based sensors Zinquin and 6-methoxy-8-p-toluenesulfonamido-quinoline (TSQ) predominantly form ternary adducts with members of the Zn-proteome. Here, the chemistries of these sensors are further characterized, including how Zn(sensor)2 complexes may react in an intracellular environment. We demonstrate that these sensors are typically used in higher concentrations than needed to obtain maximum signal. Exposing cells to either Zn(Zinquin)2 or Zn(TSQ)2 resulted in efficient cellular uptake and the formation of sensor-Zn-protein adducts as evidenced by both a fluorescence spectral shift toward that of ternary adducts and the localization of the fluorescence signal within the proteome after gel filtration of cellular lysates. Likewise, reacting Zn(sensor)2 with the Zn-proteome from LLC-PK1 cells resulted in the formation of sensor-Zn-protein ternary adducts that could be inhibited by first saturating the Zn- proteome with excess sensor. Further, a native SDS-PAGE analysis of the Zn-proteome reacted with either the sensor or the Zn(sensor)2 complex revealed that both reactions result in the formation of a similar set of sensor-Zn-protein fluorescent products. The results of this experiment also demonstrated that TSQ and Zinquin react with different members of the Zn-proteome. Reactions with the model apo-Zn-protein bovine serum albumin showed that both Zn(TSQ)2 and Zn(Zinquin)2 reacted to form ternary adducts with its apo-Zn-binding site. Moreover, incubating Zn(sensor)2 complexes with non-zinc binding proteins failed to elicit a spectral shift in the fluorescence spectrum, supporting the premise that blue-shifted emission spectra are due to sensor-Zn-protein ternary adducts. It was concluded that Zn(sensors)2 species do not play a significant role in the overall reaction between these sensors and intact cells. In turn, this study further supports the formation of sensor-Zn-protein adducts as the principal observed fluorescent product during experiments employing these two sensors.
NASA Astrophysics Data System (ADS)
Ikeda, Yuji; Kobayashi, Naoto; Kondo, Sohei; Yasui, Chikako; Kuzmenko, Paul J.; Tokoro, Hitoshi; Terada, Hiroshi
2009-08-01
We measure the internal attenuation of bulk crystals of chemical vapor deposition zinc selenide (CVD-ZnS), chemical vapor deposition zinc sulfide (CVD-ZnSe), Si, and GaAs in the short near-infrared (sNIR) region to evaluate the possibility of astronomical immersion gratings with those high refractive index materials. We confirm that multispectral grade CVD-ZnS and CVD-ZnSe are best suited for the immersion gratings, with the smallest internal attenuation of αatt=0.01 to 0.03 cm-1 among the major candidates. The measured attenuation is roughly in proportion to λ-2, suggesting it is dominated by bulk scattering due to the polycrystalline grains rather than by absorption. The total transmittance in the immersion grating is estimated to be at least >80%, even for the spectral resolution of R=300,000. Two potential problems, the scattered light by the bulk material and the degradation of the spectral resolution due to the gradient illumination in the diffracted beam, are investigated and found to be negligible for usual astronomical applications. Since the remaining problem, the difficulty of cutting grooves on CVD-ZnS and CVD-ZnSe, has recently been overcome by the nanoprecision fly-cutting technique, ZnS and ZnSe immersion gratings for astronomy can be technically realized.
Tavallali, Vahid; Rahmati, Sadegh; Rowshan, Vahid
2017-11-01
A new water soluble zinc-aminolevulinic acid nano complex (n[Zn(ALA) 2 ]), which was characterized by TEM, IR, and EDX spectra, has been prepared via sonochemical method under green conditions in water. In the current study, the effectiveness of foliar Zn amendment using synthetic Zn-ALA nano complex, as a new introduced Zn-fertilizer here, was evaluated. As the model plant, Pimpinella anisum, the most valuable spice and medicinal plant grown in warm regions, was used. By using zinc nano complex, further twenty compounds were obtained in the essential oil of anise plants. Application of 0.2% (w/v) Zn-ALA nano complex increased the levels of (E)-anethole, β-bisabolene, germacrene D, methyl chavicol, and α-zingiberene in the essential oil. Nano Zn complex at the rate of 0.2% induced considerable high phenolic compounds and zinc content of shoots and seeds. Chlorogenic acid had the highest level between four detected phenolic compounds. The maximum antioxidant activity was monitored through the application of Zn nano complex. According to the results, nanoscale nutrients can be provided with further decreased doses for medicinal plants. Using Zn-ALA nano complex is a new and efficient method to improve the pharmaceutical and food properties of anise plants. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Li, Lingling; Dong, Xinfa; Dong, Yingchao; Zhu, Li; You, Sheng-Jie; Wang, Ya-Fen
2015-04-28
In order to reduce environment risk of zinc, a spinel-based porous membrane support was prepared by the high-temperature reaction of zinc and bauxite mineral. The phase evolution process, shrinkage, porosity, mechanical property, pore size distribution, gas permeation flux and microstructure were systematically studied. The XRD results, based on a Zn/Al stoichiometric composition of 1/2, show a formation of ZnAl2O4 structure starting from 1000°C and then accomplished at 1300°C. For spinel-based composite membrane, shrinkage and porosity are mainly influenced by a combination of an expansion induced by ZnAl2O4 formation and a general densification due to amorphous liquid SiO2. The highest porosity, as high as 44%, is observed in ZnAl4 membrane support among all the investigated compositions. Compared with pure bauxite (Al), ZnAl4 composite membrane support is reinforced by ZnAl2O4 phase and inter-locked mullite crystals, which is proved by the empirical strength-porosity relationships. Also, an increase in average pore diameter and gas flux can be observed in ZnAl4. A prolonged leaching experiment reveals the zinc can be successfully incorporated into ceramic membrane support via formation of ZnAl2O4, which has substantially better resistance toward acidic attack. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Khalil, Salah; Tazarki, Helmi; Souli, Mehdi; Guasch, Cathy; Jamoussi, Bassem; Kamoun, Najoua
2017-11-01
Novel 4-Tetra-4-Tolylsulfonyl:zinc phthalocyanine and simple zinc phthalocyanine were synthesized. Our materials were grown on glass substrates by spin coating technique. Thin films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electronic micrograph (SEM), atomic force microscopy (AFM), spectrophotometer and Hall effect measurement. X-ray spectra reveal that 4-Tetra-4-Tolylsulfonyl:zinc phthalocyanine (4T4TS:ZnPc) and zinc phthalocyanine (ZnPc) thin films have a monoclinic crystalline structure in β phase. The surface properties and chemical composition were detailed using XPS measurement. SEM were used to investigate the surface morphology for 4T4TS:ZnPc and ZnPc thin films. Atomic force microscopy images have shown a decrease in surface roughness after substitution. Optical properties were investigated by measuring transmission and reflection spectra. Electrical properties were studied and the different electrical parameters was measured and compared on glass, silicon and tin dioxide substrates by Hall Effect technique. All obtained results indicate an improvement in physical properties of 4T4TS:ZnPc which allows used it in optoelectronic applications.
Ibrahim, Mohamed M; Seebacher, Jan; Steinfeld, Gunther; Vahrenkamp, Heinrich
2005-11-14
The S3Zn-SR coordination of thiolate-alkylating enzymes such as the Ada DNA repair protein was reproduced in tris(thioimidazolyl)borate-zinc-thiolate complexes Tti(R)Zn-SR'. Four different Tti(R) ligands and nine different thiolates were employed, yielding a total of 12 new complexes. In addition, one Tti(R)Zn-SH complex and two thiolate-bridged [Tti(R)-SEt-Tti(R)]+ complexes were obtained. A selection of six thiolate complexes was converted with methyl iodide to the corresponding methyl thioethers and Tti(R)Zn-I. According to a kinetic analysis these reactions are second-order processes, which implies that the alkylations are likely to occur at the zinc-bound thiolates. They are much faster than the alkylations of zinc thiolates with N3 or N2S tripod ligands. The most reactive thiolate, Tti(Xyl)Zn-SEt, reacts slowly with trimethyl phosphate in a nonpolar medium at room temperature, yielding methyl-ethyl-thioether and Tti(Xyl)Zn-OPO(OMe)2 which can be converted back to the thiolate complex with NaSEt. This is the closest reproduction of the Ada repair process so far.
Liu, Na; Wang, Yipeng; Ge, Fei; Liu, Shixiang; Xiao, Huaixian
2018-04-01
The interaction of nanoparticles with coexisting chemicals affects the fate and transport of nanoparticles, as well as their combined effects on aquatic organisms. Here, we evaluated the joint effect of ZnO nanoparticle (nano-ZnO) and cetyltrimethyl ammonium chloride (CTAC) on the growth of Chlorella vulgaris and explored the possible mechanism. Results showed that an antagonistic effect of nano-ZnO and CTAC (0.1, 0.2 and 0.3 mg L -1 ) was found because CTAC stop nano-ZnO being broken down into solution zinc ions (Zn 2+ ). In the presence of CTAC, the zinc (including nano-ZnO and released Zn 2+ ) showed a higher adsorption on bound extracellular polymeric substances (B-EPS) but lower accumulation in the algal cells. Moreover, we directly demonstrated that nano-ZnO was adsorbed on the algal B-EPS and entered into the algal cells by transmission electron microscope coupled with energy dispersive X-ray (TEM-EDX). Hence, these results suggested that the combined system of nano-ZnO and CTAC exhibited an antagonistic effect due to the inhibition of CTAC on dissolution of nano-ZnO and accumulation of the zinc in the algal cells. Copyright © 2017. Published by Elsevier Ltd.
Digital selective growth of a ZnO nanowire array by large scale laser decomposition of zinc acetate.
Hong, Sukjoon; Yeo, Junyeob; Manorotkul, Wanit; Kang, Hyun Wook; Lee, Jinhwan; Han, Seungyong; Rho, Yoonsoo; Suh, Young Duk; Sung, Hyung Jin; Ko, Seung Hwan
2013-05-07
We develop a digital direct writing method for ZnO NW micro-patterned growth on a large scale by selective laser decomposition of zinc acetate. For ZnO NW growth, by replacing the bulk heating with the scanning focused laser as a fully digital local heat source, zinc acetate crystallites can be selectively activated as a ZnO seed pattern to grow ZnO nanowires locally on a larger area. Together with the selective laser sintering process of metal nanoparticles, more than 10,000 UV sensors have been demonstrated on a 4 cm × 4 cm glass substrate to develop all-solution processible, all-laser mask-less digital fabrication of electronic devices including active layer and metal electrodes without any conventional vacuum deposition, photolithographic process, premade mask, high temperature and vacuum environment.
Preparation of Graphene-Zinc Oxide Nanostructure Composite for Carbon Monoxide Gas Sensing
NASA Astrophysics Data System (ADS)
Muchtar, Ahmad Rifqi; Septiani, Ni Luh Wulan; Iqbal, Muhammad; Nuruddin, Ahmad; Yuliarto, Brian
2018-03-01
A simple method to synthesize graphene-zinc oxide nanocomposite has been developed. A reduced graphene oxide-ZnO nanocomposite was prepared using a reflux method with ethylene glycol as medium. X-ray diffraction analysis, scanning electron microscopy, energy-dispersive spectrometry, and nitrogen adsorption-desorption measurements were used to characterize the resulting composite materials. The highest response of about 98% was observed when using pure ZnO at 300°C, while the second highest sensor response of about 96% was achieved by graphene-ZnO with 1:3 composition. It was found that the graphene-zinc oxide hybrid has potential to improve sensor performance at low temperature. The graphene-ZnO hybrid with 1:3 composition showed good response of 36% at 125°C, an operating temperature at which pure ZnO showed no response.
Preparation of Graphene-Zinc Oxide Nanostructure Composite for Carbon Monoxide Gas Sensing
NASA Astrophysics Data System (ADS)
Muchtar, Ahmad Rifqi; Septiani, Ni Luh Wulan; Iqbal, Muhammad; Nuruddin, Ahmad; Yuliarto, Brian
2018-07-01
A simple method to synthesize graphene-zinc oxide nanocomposite has been developed. A reduced graphene oxide-ZnO nanocomposite was prepared using a reflux method with ethylene glycol as medium. X-ray diffraction analysis, scanning electron microscopy, energy-dispersive spectrometry, and nitrogen adsorption-desorption measurements were used to characterize the resulting composite materials. The highest response of about 98% was observed when using pure ZnO at 300°C, while the second highest sensor response of about 96% was achieved by graphene-ZnO with 1:3 composition. It was found that the graphene-zinc oxide hybrid has potential to improve sensor performance at low temperature. The graphene-ZnO hybrid with 1:3 composition showed good response of 36% at 125°C, an operating temperature at which pure ZnO showed no response.
MacDonell, Sue O; Miller, Jody C; Harper, Michelle J; Reid, Malcolm R; Haszard, Jillian J; Gibson, Rosalind S; Houghton, Lisa A
2018-05-14
Older people are at risk of micronutrient deficiencies, which can be under- or overestimated in the presence of inflammation. Several methods have been proposed to adjust for the effect of inflammation; however, to our knowledge, none have been investigated in older adults in whom chronic inflammation is common. We investigated the influence of various inflammation-adjustment methods on micronutrient biomarkers associated with anemia in older people living in aged-care facilities in New Zealand. Blood samples were collected from 289 New Zealand aged-care residents aged >65 y. Serum ferritin, soluble transferrin receptor (sTfR), total body iron (TBI), plasma zinc, and selenium as well as the inflammatory markers high-sensitivity C-reactive protein (CRP), α1-acid glycoprotein (AGP), and interleukin 6 (IL-6) were measured. Four adjustment methods were applied to micronutrient concentrations: 1) internal correction factors based on stages of inflammation defined by CRP and AGP, 2) external correction factors derived from the literature, 3) a regression correction model in which reference CRP and AGP were set to the maximum of the lowest decile, and 4) a regression correction model in which reference IL-6 was set to the maximum of the lowest decile. Forty percent of participants had elevated concentrations of CRP, AGP, or both, and 37% of participants had higher than normal concentrations of IL-6. Adjusted geometric mean values for serum ferritin, sTfR, and TBI were significantly lower (P < 0.001), and plasma zinc and selenium were significantly higher (P < 0.001), than the unadjusted values regardless of the method applied. The greatest inflammation adjustment was observed with the regression correction that used IL-6. Subsequently, the prevalence of zinc and selenium deficiency decreased (-13% and -14%, respectively; P < 0.001), whereas iron deficiency remained unaffected. Adjustment for inflammation should be considered when evaluating micronutrient status in this aging population group; however, the approaches used require further investigation, particularly the influence of adjustment for IL-6.
De Nicola, Raffaele; Hazelwood, Lucie A.; De Hulster, Erik A. F.; Walsh, Michael C.; Knijnenburg, Theo A.; Reinders, Marcel J. T.; Walker, Graeme M.; Pronk, Jack T.; Daran, Jean-Marc; Daran-Lapujade, Pascale
2007-01-01
Transcriptional responses of the yeast Saccharomyces cerevisiae to Zn availability were investigated at a fixed specific growth rate under limiting and abundant Zn concentrations in chemostat culture. To investigate the context dependency of this transcriptional response and eliminate growth rate-dependent variations in transcription, yeast was grown under several chemostat regimens, resulting in various carbon (glucose), nitrogen (ammonium), zinc, and oxygen supplies. A robust set of genes that responded consistently to Zn limitation was identified, and the set enabled the definition of the Zn-specific Zap1p regulon, comprised of 26 genes and characterized by a broader zinc-responsive element consensus (MHHAACCBYNMRGGT) than so far described. Most surprising was the Zn-dependent regulation of genes involved in storage carbohydrate metabolism. Their concerted down-regulation was physiologically relevant as revealed by a substantial decrease in glycogen and trehalose cellular content under Zn limitation. An unexpectedly large number of genes were synergistically or antagonistically regulated by oxygen and Zn availability. This combinatorial regulation suggested a more prominent involvement of Zn in mitochondrial biogenesis and function than hitherto identified. PMID:17933919
NASA Astrophysics Data System (ADS)
Shimpi, Tushar M.; Drayton, Jennifer; Swanson, Drew E.; Sampath, Walajabad S.
2017-08-01
Zinc telluride (ZnTe) films have been deposited onto uncoated glass superstrates by reactive radiofrequency (RF) sputtering with different amounts of nitrogen introduced into the process gas, and the structural and electronic transport properties of the resulting nitrogen-doped ZnTe (ZnTe:N) films characterized. Based on transmission and x-ray diffraction measurements, it was observed that the crystalline quality of the ZnTe:N films decreased with increasing nitrogen in the deposition process. The bulk carrier concentration of the ZnTe:N films determined from Hall-effect measurements showed a slight decrease at 4% nitrogen flow rate. The effect of ZnTe:N films as back contact to cadmium telluride (CdTe) solar cells was also investigated. ZnTe:N films were deposited before or after CdCl2 passivation on CdTe/CdS samples. Small-area devices were characterized for their electronic properties. Glancing-angle x-ray diffraction measurements and energy-dispersive spectroscopy analysis confirmed substantial loss of zinc from the samples where CdCl2 passivation was carried out after ZnTe:N film deposition.
Tang, Song; Allagadda, Vinay; Chibli, Hicham; Nadeau, Jay L; Mayer, Gregory D
2013-10-01
Recent advances in the ability to manufacture and manipulate materials at the nanometer scale have led to increased production and use of many types of nanoparticles. Quantum dots (QDs) are small, fluorescent nanoparticles composed of a core of semiconductor material (e.g. cadmium selenide, zinc sulfide) and shells or dopants of other elements. Particle core composition, size, shell, and surface chemistry have all been found to influence toxicity in cells. The aim of this study was to compare the toxicities of ionic cadmium (Cd) and zinc (Zn) and Cd- and Zn-containing QDs in zebrafish liver cells (ZFL). As expected, Cd(2+) was more toxic than Zn(2+), and the general trend of IC50-24 h values of QDs was determined to be CdTe < CdSe/ZnS or InP/ZnS, suggesting that ZnS-shelled CdSe/ZnS QDs were more cytocompatible than bare core CdTe crystals. Smaller QDs showed greater toxicity than larger QDs. Isolated mRNA from these exposures was used to measure the expression of metal response genes including metallothionein (MT), metal response element-binding transcription factor (MTF-1), divalent metal transporter (DMT-1), zrt and irt like protein (ZIP-1) and the zinc transporter, ZnT-1. CdTe exposure induced expression of these genes in a dose dependent manner similar to that of CdSO4 exposure. However, CdSe/ZnS and InP/ZnS altered gene expression of metal homeostasis genes in a manner different from that of the corresponding Cd or Zn salts. This implies that ZnS shells reduce QD toxicity attributed to the release of Cd(2+), but do not eliminate toxic effects caused by the nanoparticles themselves.
Mwangi, S; Timmons, J; Ao, T; Paul, M; Macalintal, L; Pescatore, A; Cantor, A; Ford, M; Dawson, K A
2017-04-01
The goal of this study was to determine the effects of feeding a zinc (Zn) deficient diet to broiler chicks for 96 h post-hatch followed by feeding diets with different Zn sources and supplemental levels (5 to 21 d) on the growth performance, tissue, and excreta Zn content. At the start of the study, four hundred 20-day-old male broiler chicks were divided into two groups. One group was fed a corn soybean meal based diet containing 25 mg of Zn/kg (imprinting diet, ID). The second group was fed the basal diet supplemented with 40 mg of Zn/kg from Zn oxide (ZnO) (non-imprinting diet, NID). Both groups were fed these diets for 96 h. At d 5, chicks from each group were randomly assigned to the dietary treatments consisting of the basal diet alone or the basal diet supplemented with 8 or 40 mg/kg Zn as ZnO or Zn proteinate. Main effects of post-hatch Zn ID were observed on feed intake and G:F. ID decreased (P < 0.05) feed intake and improved (P < 0.05) the gain to feed ratio (G:F) of 14 and 21 d old chicks compared to G:F of chicks fed NID. Additionally, G:F for 14 and 21 d was improved (P < 0.05) by interaction of Zn source × level. Furthermore, at d 21 chicks fed the ID had a lower (P < 0.05) Zn content in the tibia ash and excreta, and a higher (P < 0.05) Zn content in the pancreas tissue compared to chicks fed NID. These results suggest that Zn imprinting can affect body Zn stores and early performance. © The Author 2016. Published by Oxford University Press on behalf of Poultry Science Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Yingwen; Luo, Langli; Zhong, Li
We demonstrate the application of the Chevrel phase Mo6S8 nanocubes as the anode material for rechargeable Zn-ion batteries. Mo6S8 can host Zn2+ ions reversibility both in aqueous and nonaqueous electrolytes with specific capacities around 90 mAh/g and exhibited remarkable intercalation kinetics as well as stability. Furthermore, we assembled full cells by integrating Mo6S8 anode with zinc-polyiodide (I-/I3-) based catholytes, and demonstrated that such fuel cells was also able to deliver outstanding rate performance and cyclic stability. This first demonstration of zinc intercalating anode could inspire the design of advanced Zn ion batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brousseau, R.; Arnott, M.; Baldock, B.
1995-08-01
Cathodic protection is used increasingly to mitigate steel reinforcement corrosion in concrete. the performance of zinc materials as impressed current anodes was evaluated. The anode materials investigated included rolled zinc sheets, metallized zinc, and 85% Zn-15% Al. The circuit resistance and the adhesion of the anodes was monitored with polarization time. Overall performance of arc-sprayed zinc was good. However, its adhesion to the concrete surface slowly decreased as the current density, or the polarization period, increased. Penny blank sheets and metallized 85% Zn-15% Al were found unsuitable as impressed current anodes.
Rapid green synthesis of ZnO nanoparticles using a hydroelectric cell without an electrolyte
NASA Astrophysics Data System (ADS)
Shah, Jyoti; Kumar Kotnala, Ravinder
2017-09-01
In this study, zinc oxide (ZnO) nanoparticles were synthesized using a novel environmentally friendly hydroelectric cell without an electrolyte or external current source. The hydroelectric cell comprised a nanoporous Li substituted magnesium ferrite pellet in contact with two electrodes, with zinc as the anode and silver as an inert cathode. The surface unsaturated cations and oxygen vacancies in the nanoporous ferrite dissociated water molecules into hydronium and hydroxide ions when the hydroelectric cell was dipped into deionized water. Hydroxide ions migrated toward the zinc electrode to form zinc hydroxide and the hydronium ions were evolved as H2 gas at the silver electrode. The zinc hydroxide collected as anode mud was converted into ZnO nanoparticles by heating at 250 °C. Structural analysis using Raman spectroscopy indicated the good crystallinity of the ZnO nanoparticles according to the presence of a high intensity E2-(high) mode. The nanoparticle size distribution was 5-20 nm according to high resolution transmission electron microscopy. An indirect band gap of 2.75 eV was determined based on the Tauc plot, which indicated the existence of an interstitial cation level in ZnO. Near band edge and blue emissions were detected in photoluminescence spectral studies. The blue emissions obtained from the ZnO nanoparticles could potentially have applications in blue lasers and LEDs. The ZnO nanoparticles synthesized using this method had a high dielectric constant value of 5 at a frequency of 1 MHz, which could be useful for fabricating nano-oscillators. This facile, clean, and cost-effective method obtained a significant yield of 0.017 g for ZnO nanoparticles without applying an external current source.
Izquierdo, Paulo; Astudillo, Carolina; Blair, Matthew W; Iqbal, Asif M; Raatz, Bodo; Cichy, Karen A
2018-05-11
Twelve meta-QTL for seed Fe and Zn concentration and/or content were identified from 87 QTL originating from seven population grown in sixteen field trials. These meta-QTL include 2 specific to iron, 2 specific to zinc and 8 that co-localize for iron and zinc concentrations and/or content. Common bean (Phaseolus vulgaris L.) is the most important legume for human consumption worldwide and it is an important source of microelements, especially iron and zinc. Bean biofortification breeding programs develop new varieties with high levels of Fe and Zn targeted for countries with human micronutrient deficiencies. Biofortification efforts thus far have relied on phenotypic selection of raw seed mineral concentrations in advanced generations. While numerous quantitative trait loci (QTL) studies have been conducted to identify genomic regions associated with increased Fe and Zn concentration in seeds, these results have yet to be employed for marker-assisted breeding. The objective of this study was to conduct a meta-analysis from seven QTL studies in Andean and Middle American intra- and inter-gene pool populations to identify the regions in the genome that control the Fe and Zn levels in seeds. Two meta-QTL specific to Fe and two meta-QTL specific to Zn were identified. Additionally, eight Meta QTL that co-localized for Fe and Zn concentration and/or content were identified across seven chromosomes. The Fe and Zn shared meta-QTL could be useful candidates for marker-assisted breeding to simultaneously increase seed Fe and Zn. The physical positions for 12 individual meta-QTL were identified and within five of the meta-QTL, candidate genes were identified from six gene families that have been associated with transport of iron and zinc in plants.
Studies of Peptide-Mineral Interactions and Biosilicification
2010-07-16
His). The effect of zinc oxide -binding peptides ( ZnO -BPs) on the morphology and formation of ZnO were studied using G-12 (GLHVMHKVAPPR) and EM-12...interactions with silica and zinc oxide . Detailed quantitative experimental studies together with molecular modeling studies have shown that G12 (GLHVMHKVAPPR...studies of a primitive 15. SUBJECT TERMS Peptides, zinc oxide , silica, silver, peptide-mineral interactions, computational chemistry, molecular
Laika, M; Jahanian, R
2015-06-01
The present study was carried out to investigate the effect of dietary supplementation of organic selenium (Se) on performance, egg quality indices, and yolk oxidative stability in laying hens fed diets with different fat sources. A total of 270 Hy-line W-36 Leghorn hens of 47 weeks of age were randomly distributed into the 5 replicate cages of 9 dietary treatments. Experimental diets consisted of a 3 × 3 factorial arrangement of treatments with three different fat sources (soybean oil, SO; yellow grease, YG; and palm fat powder, PFP) and three different levels of supplemental Se (0, 0.2, and 0.4 mg/kg of diet) as supplied by zinc-L-selenomethionine (ZnSeMet) complex, which fed during a 77-day feeding trial including 7 days for adaptation and 70 days as the main recording period. Results showed that the highest (P < 0.05) egg weights assigned to the hens fed on SO-supplemented diets. Hen-day egg production was affected by both dietary fat source (P < 0.01) and Se level (P < 0.05) throughout the trial period. Regardless of dietary fat source, dietary supplementation of ZnSeMet improved (P < 0.05) egg mass during all trial periods. Moreover, the significant (P < 0.05) fat source× Se interactions were observed for egg mass, so that dietary supplementation with 0.4 mg/kg Se was more effective in diets supplemented with YG. Although feed intake was not affected by experimental diets during the first 35-day period, dietary inclusion of PFP reduced feed intake during both second 35-day (P < 0.01) and entire trial period (P < 0.05). The best (P < 0.01) feed conversion ratio during the first 35-day period was assigned to the birds fed on SO-diets, followed by those fed YG-diets. Dietary supplementation of ZnSeMet improved (P < 0.05) feed efficiency during the first 35-day period. Supplementation of ZnSeMet into the diets increased yolk index, with more impact in hens fed on YG-diets. The highest concentration of yolk malondialdehyde was observed in YG-fed groups, and ZnSeMet supplementation of diets decreased (P < 0.05) yolk malondialdehyde. The highest (P<0.01) glutathione peroxidase activity was observed for hens fed on diets supplemented by YG, followed by those on SO-diets. Although different fat sources had no effect on antibody titer against Newcastle disease virus, supplemental ZnSeMet improved (P < 0.05) antibody response. The present findings indicate that dietary supplementation of ZnSeMet could improve performance parameters and egg oxidative stability in laying hens, with the highest impact in diets containing oxidized (high peroxide values) fat sources.
Protection of methamphetamine nigrostriatal toxicity by dietary selenium.
Kim, H C; Jhoo, W K; Choi, D Y; Im, D H; Shin, E J; Suh, J H; Floyd, R A; Bing, G
1999-12-18
Multiple dose administration of methamphetamine (MA) results in long-lasting toxic effects in the nigrostriatal dopaminergic system. These effects are considered to be primarily due to oxidative damage mediated by increased production of hydrogen peroxide or other reactive oxygen species in the dopaminergic system. The present study was designed to determine the protective effects of dietary antioxidant selenium on MA-induced neurotoxicity in the nigrostriatal dopaminergic system. Male C57BL/6J mice were fed either selenium-deficient (< 0.01 ppm Se) or selenium-replete (0.2 ppm Se) diets for 90 days. MA treatment decreased the dopamine (DA) levels in the striatum and substantia nigra (SN) of both Se-replete and Se-deficient animals. However, in Se-replete animals, this DA depletion was significantly attenuated in both the striatum and SN. A novel observation is that MA administration resulted in increased activity of Cu,Zn-SOD in the brains of both Se-deficient and Se-replete animals. However, MA administration to Se-deficient animals exhibited a higher Cu,Zn-SOD activity in the nigrostriatal system than the control animals. Elevated malondialdehyde (MDA) levels in the striatum and SN were also observed in Se-deficient MA-treated animals. Se repletion significantly increased the glutathione peroxidase (GPx) activity and the ratio of reduced glutathione (GSH)/oxidized glutathione (GSSG) in the MA-treated animals. In conclusion, we have shown that dietary Se attenuated methamphetamine neurotoxicity and that this protection involves GPx-mediated antioxidant mechanisms. Even though Cu,Zn-SOD activity was significantly elevated by MA treatment, the role of this enzyme in MA-mediated neurotoxicity is not yet clear.
Younesi, Simin; Parsian, Hadi; Hosseini, Seyed Reza; Noreddini, Hajighorban; Mosapour, Abbas; Bijani, Ali; Halalkhor, Sohrab
2015-08-01
The percentage of elderly persons is rapidly growing. Physical disability is one of the main age-related diseases which affect life quality. There are some studies that suggest the oxidative stress and trace elements are involved in physical disability in elderly persons, but the results are inconclusive. Therefore, the aim of this study was to investigate the status of aforementioned parameters in elderly physically disabled patients vs. healthy ones. According to the Katz questionnaire form, 44 subjects with physical disability and 66 age-gender-matched healthy subjects were selected from Amirkola Health and Aging Project (AHAP). The results indicated that patient group had lower serum Zn, Se, and total antioxidant levels than the control group (p < 0.001), whereas serum total oxidant level and Cu to Zn ratio (CZr) were higher in control group than in healthy one (p < 0.001). A positive correlation was found between Zn, Se, total antioxidant, and bone mineral density of femur (BMD.F) with activities of daily living (ADL) score (p < 0.01); meanwhile, a negative correlation between CZr and total oxidant with ADL score was observed (p < 0.01). Serum total oxidant level and CZr index had the highest area under the curve in receiver operating characteristic (ROC) analysis among the included parameters for discrimination of physically disabled patients than the normal ones. Decrease in serum Zn and Se levels, low BMD, and increase in CZr and oxidative stress were observed in physically disabled patients. It seems that CZr is more reliable parameter than the others to discriminate the physically disabled patients than the healthy persons.
Effect of Dietary Minerals on Virulence Attributes of Vibrio cholerae
Bhattaram, Varunkumar; Upadhyay, Abhinav; Yin, Hsin-Bai; Mooyottu, Shankumar; Venkitanarayanan, Kumar
2017-01-01
Vibrio cholerae is a water-borne pathogen responsible for causing a toxin-mediated profuse diarrhea in humans, leading to severe dehydration and death in unattended patients. With increasing reports of antibiotic resistance in V. cholerae, there is a need for alternate interventional strategies for controlling cholera. A potential new strategy for treating infectious diseases involves targeting bacterial virulence rather than growth, where a pathogen’s specific mechanisms critical for causing infection in hosts are inhibited. Since bacterial motility, intestinal colonization and cholera toxin are critical components in V. cholerae pathogenesis, attenuating these virulence factors could potentially control cholera in humans. In this study, the efficacy of sub-inhibitory concentration (SIC, highest concentration not inhibiting bacterial growth) of essential minerals, zinc (Zn), selenium (Se), and manganese (Mn) in reducing V. cholerae motility and adhesion to intestinal epithelial cells (Caco-2), cholera toxin production, and toxin binding to the ganglioside receptor (GM1) was investigated. Additionally, V. cholerae attachment and toxin production in an ex vivo mouse intestine model was determined. Further, the effect of Zn, Se and Mn on V. cholerae virulence genes, ctxAB (toxin production), fliA (motility), tcpA (intestinal colonization), and toxR (master regulon) was determined using real-time quantitative PCR. All three minerals significantly reduced V. cholerae motility, adhesion to Caco-2 cells, and cholera toxin production in vitro, and decreased adhesion and toxin production in mouse intestine ex vivo (P < 0.05). In addition, Zn, Se, and Mn down-regulated the transcription of virulence genes, ctxAB, fliA, and toxR. Results suggest that Zn, Se, and Mn could be potentially used to reduce V. cholerae virulence. However, in vivo studies in an animal model are necessary to validate these results. PMID:28579983
Comparison of serum trace element levels in patients with or without pre-eclampsia.
Farzin, Leila; Sajadi, Fattaneh
2012-10-01
In developing countries, nutritional deficiency of essential trace elements is a common health problem, particularly among pregnant women because of increased requirements of various nutrients. Accordingly, this study was initiated to compare trace elements status in women with or without pre-eclampsia. In this study, serum trace elements including zinc (Zn), selenium (Se), copper (Cu), calcium (Ca) and magnesium (Mg) were determined by using atomic absorption spectrometry (AAS) in 60 patients and 60 healthy subjects. There was no significant difference in the values of Cu between two groups (P > 0.05). A significant difference in Zn, Se, Ca and Mg levels were observed between patients with pre-eclampsia and control group (P < 0.001, P<0.01, P<0.01 and P<0.001, respectively). Zn, Se, Ca and Mg levels were found to be 76.49 ± 17.62 μg/ dl, 8.82 ± 2.10 μg/ dl, 8.65 ± 2.14 mg/dl and 1.51 ± 0.34 mg/dl in Pre-eclamptic cases, and these values were found statistically lower compared to the controls (100.61 ± 20.12 μg/dl, 10.47 ± 2.78 μg/dl, 9.77 ± 3.02 mg/dl and 1.78 ± 0.27 mg/dl, respectively). While Cu levels were 118.28 ± 16.92 and 116.55 ± 15.23 μg/dl in the patients and the healthy subjects, respectively. In addition, no significant difference was found between two groups with respect to Hemoglobin Concentration (HbC) and Total White Blood Cell Count (TWBC) (P>0.05). Our findings indicate that the levels of Zn, Se, Ca and Mg are significantly altered in pregnant women with pre-eclampsia. This research shows that these deficiencies can not due to hemodilution.
Origin of electrochemical, structural and transport properties in non-aqueous zinc electrolytes
Han, Sang -Don; Rajput, Nav Nidhi; Qu, Xiaohui; ...
2016-01-14
Through coupled experimental analysis and computational techniques, we uncover the origin of anodic stability for a range of nonaqueous zinc electrolytes. By examination of electrochemical, structural, and transport properties of nonaqueous zinc electrolytes with varying concentrations, it is demonstrated that the acetonitrile Zn(TFSI) 2, acetonitrile Zn(CF 3SO 3) 2, and propylene carbonate Zn(TFSI) 2 electrolytes can not only support highly reversible Zn deposition behavior on a Zn metal anode (≥99% of Coulombic efficiency), but also provide high anodic stability (up to ~3.8 V). The predicted anodic stability from DFT calculations is well in accordance with experimental results, and elucidates thatmore » the solvents play an important role in anodic stability of most electrolytes. Molecular dynamics (MD) simulations were used to understand the solvation structure (e.g., ion solvation and ionic association) and its effect on dynamics and transport properties (e.g., diffusion coefficient and ionic conductivity) of the electrolytes. Lastly, the combination of these techniques provides unprecedented insight into the origin of the electrochemical, structural, and transport properties in nonaqueous zinc electrolytes« less
Origin of green luminescence in hydrothermally grown ZnO single crystals
NASA Astrophysics Data System (ADS)
Čížek, J.; Valenta, J.; Hruška, P.; Melikhova, O.; Procházka, I.; Novotný, M.; Bulíř, J.
2015-06-01
Combining photoluminescence and positron annihilation studies of hydrothermally grown ZnO crystals with stoichiometry varied by controlled annealing enabled us to clarify the origin of green luminescence. It was found that green luminescence in ZnO has multiple origins and consists of a band at 2.3(1) eV due to recombination of electrons of the conduction band by zinc vacancy acceptors coupled with hydrogen and a band at 2.47(2) eV related to oxygen vacancies. The as-grown ZnO crystals contain zinc vacancies associated with hydrogen and exhibit a green luminescence at 2.3(1) eV. Annealing in Zn vapor removed zinc vacancies and introduced oxygen vacancies. This led to disappearance of the green luminescence band at 2.3(1) eV and appearance of a green emission at higher energy of 2.47(2) eV. Moreover, the color of the crystal was changed from colorless to dark red. In contrast, annealing of the as-grown crystal in Cd vapor did not remove zinc vacancies and did not cause any significant change of green luminescence nor change in coloration.
Diatom frustules decorated with zinc oxide nanoparticles for enhanced optical properties
NASA Astrophysics Data System (ADS)
Lamastra, F. R.; Grilli, M. L.; Leahu, G.; Belardini, A.; Li Voti, R.; Sibilia, C.; Salvatori, D.; Cacciotti, I.; Nanni, F.
2017-09-01
Zinc oxide (ZnO) nanoparticles were synthesized on diatomite (DE) surface by a low temperature sol gel technique, starting from zinc acetate dihydrate (Zn(CH3COO)2 · 2H2O) solution in water/ethyl alcohol, in presence of triethanolamine (TEA) with functions of Zn2+ chelating agent, catalyst and mediator of nanoparticle growth on DE surface. Microstructural features were investigated by field emission scanning electron microscopy and x-ray diffraction. ZnO crystalline nanoparticles, well distributed both on the surface and into the porous architecture of diatomite, were obtained just after the synthesis carried out at 80 °C without the need of calcination treatments. The optical properties of ZnO/DE hybrid powders were measured for the first time by means of photoacoustic spectroscopy (PAS). A new method to retrieve both the optical absorption and scattering coefficients from PAS is here discussed for powder aggregates. The fingerprint of the zinc oxide nanoparticles has been highlighted in the Mie scattering resonance in the UV-Vis range, and in the enhancement of the optical absorption with respect to diatomite.
Rabadjieva, D; Tepavitcharova, S; Gergulova, R; Sezanova, K; Titorenkova, R; Petrov, O; Dyulgerova, E
2011-10-01
Powders of magnesium-modified as well as zinc-modified calcium phosphates (Me-β-TCP and HA) with a (Ca(2+)+Mg(2+)+Zn(2+)+Na(+)+K(+))/P ratio of 1.3-1.4 and various Me(2+)/(Me(2+)+Ca(2+)) ratios (from 0.005 to 0.16) were prepared in biomimetic electrolyte systems at pH 8, mother liquid maturation and further syntering at 600-1000°C. Some differences in zinc and magnesium modifications have been prognosed on the basis of thermodynamic modeling of the studied systems and explained by the Mg(2+) and Zn(2+) ion chemical behaviour. The temperature as well as the degree of Zn(2+) and Mg(2+) ions substitutions were found to stabilize the β-TCP structure and this effect was more prononced for zinc. Thus, zinc-modified β-TCP powders consisting of idiomorphic crystals were obtained through sintering of Zn(2+) ion substituted calcium phosphates precursors at 800-1000°C. The Mg(2+) ion substitution leads to obtaining magnesium-modified β-TCP with spherical grains.
Roushani, Mahmoud; Abbasi, Shahryar; Khani, Hossein; Sahraei, Reza
2015-04-15
A new Zinc (II) ion-imprinted polymer (IIPs) nanoparticles was synthesised for the separation and recovery of trace Zn (II) ion from food and water sample. Zn (II) IIP was prepared by copolymerisation of methyl methacrylate (monomer) and ethylene glycol dimethacrylate (cross-linker) in the presence of Zn (II)-N,N'-o-phenylene bis (salicylideneimine) ternary complex wherein Zn (II) ion is the imprint ion and is used to form the imprinted polymer. Moreover, control polymer (NIP) particles were similarly prepared without the zinc (II) ions. The unleached and leached IIP particles were characterised by X-ray diffraction, Fourier transform infra-red spectroscopy and scanning electron microscopy. The preconcentration of Zn(2+) from aqueous solution was studied during rebinding with the leached IIP particles as a function of pH, the weight of the polymer material, the uptake and desorption times, the aqueous phase and the desorption volumes. Flame atomic absorption spectrometry was employed for determination of zinc in aqueous solution. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mahajan, Dhiraj S.; Deshpande, Tushar; Bari, Mahendra L.; Patil, Ujwal D.; Narkhede, Jitendra S.
2018-04-01
In the present study, we prepared zinc borates using aqueous phase synthesis under moderate pressures (MP) (<150 psi) with ethanol as a co-solvent in the presence of a quaternary ammonium surfactant-Cetyltrimethylammonium bromide (CTAB). 3D morphologies of self-assembled zinc borate (Zn(H2O)B2O4 · 0.12 H2O, Zn3B6O12 · 3.5H2O, ZnB2O4) resembling flower-like structures were obtained by varying temperature under moderate pressure conditions. Synthesized zinc borates’ florets were morphologically characterized by Field Emission Scanning Electron Microscopy. The x-ray diffractions of borate species reveal rhombohydra, monoclinic and cubic phases of zinc borate crystals as a function of process temperature. Additionally, thermal analysis confirms excellent dehydration/degradation behavior for the zinc borate crystals synthesized at moderate pressures and elevated temperatures and could be utilized as potential flame retardant fillers in the polymer matrices.
NASA Astrophysics Data System (ADS)
Li, Shengli; Long, Beihong; Wang, Zichen; Tian, Yumei; Zheng, Yunhui; Zhang, Qian
2010-04-01
Zinc borate (2ZnO·3B 2O 3·3.5H 2O) has relatively high dehydration on-set temperature which property permits processing in a wide range of polymer system. But zinc borate particles are hardly dispersed in a polymer matrix so that they prevent their using in industry. To address this problem, we synthesized hydrophobic zinc borate (2ZnO·3B 2O 3·3.5H 2O) nanoflakes by employing solid-liquid reaction of zinc oxide (ZnO) and boric acid (H 3BO 3) in the presence of oleic acid. This method does not bring pollution. By conducting morphological and microscopic analyses, we found that this compound displayed nanoflake morphology with particle size of around 100-200 nm, thickness less than 100 nm and there were uniform mesopores with the diameter about 10 nm within the particles. Furthermore, our products had an effect on flame retardant of polyethylene, especially when the zinc borate was modified by oleic acid.
Song, Zheng-Xing; Jiang, Wei-Dan; Liu, Yang; Wu, Pei; Jiang, Jun; Zhou, Xiao-Qiu; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Feng, Lin
2017-07-01
Our study investigated the effects of dietary zinc (Zn) deficiency on growth performance, intestinal immune and physical barrier functions of young grass carp (Ctenopharyngodon idella). A total of 630 grass carp (244.14 ± 0.40 g) were fed graded levels of zinc lactate (10.71, 30.21, 49.84, 72.31, 92.56, 110.78 mg Zn/kg diet) and one zinc sulfate group (56.9 mg Zn/kg diet) for 60 days. At the end of the feeding trial, fish were challenged with Aeromonas hydrophila for 14 days. These results indicated that compared with optimal dietary Zn level, dietary Zn deficiency (10.71 mg/kg diet) decreased the production of antibacterial compounds, up-regulated pro-inflammatory cytokines related to nuclear factor kappa B (NF-κB) and down-regulated anti-inflammatory cytokines related to target of rapamycin (TOR) in three intestinal segments of young grass carp (P < 0.05), suggesting that dietary Zn deficiency could impair intestinal immune barrier of fish; decreased the activities and mRNA levels of antioxidant enzymes related to NF-E2-related factor 2 (Nrf2), up-regulated the mRNA levels of caspase-3, -7, -8, -9 related to p38 mitogen activated protein (p38 MAPK) and c-Jun N-terminal protein kinase (JNK), down-regulated the mRNA levels of tight junction complexes (TJs) related to myosin light chain kinase (MLCK) in three intestinal segments of young grass carp (P < 0.05), demonstrating that dietary Zn deficiency could injury intestinal physical barrier of fish. Besides, the Zn requirements (zinc lactate as Zn source) based on percent weight gain (PWG), against enteritis morbidity, acid phosphatase (ACP) activity in the proximal intestine (PI) and malondialdehyde (MDA) content in the PI of young grass carp was estimated to be 61.2, 61.4, 69.2 and 69.5 mg/kg diet, respectively. Finally, based on specific growth rate (SGR), feed efficiency (FE) and against enteritis morbidity of young grass carp, the efficacy of zinc lactate relative to zinc sulfate were 132.59%, 135.27% and 154.04%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liang, Xiaomeng; Dempski, Robert E.; Burdette, Shawn C.
2016-01-01
Zinc is an essential micronutrient for cellular homeostasis. Initially proposed to only contribute to cellular viability through structural roles and non-redox catalysis, advances in quantifying changes in nM and pM quantities of Zn2+ have elucidated increasing functions as an important signaling molecule. This includes Zn2+-mediated regulation of transcription factors and subsequent protein expression, storage and release of intracellular compartments of zinc quanta into the extracellular space which modulates plasma membrane protein function, as well as intracellular signaling pathways which contribute to the immune response. This review highlights some recent advances in our understanding of zinc signaling. PMID:27010344
Habibi, Mohammad Hossein; Mardani, Maryam
2015-02-25
Nano-composite containing zinc oxide-tin oxide was obtained by a facile co-precipitation route using tin chloride tetrahydrate and zinc chloride as precursors and coated on glass by Doctor Blade deposition. The crystalline structure and morphology of composites were evaluated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The XRD results showed peaks relative to zinc oxide with hexagonal wurtzite structure and tin oxide with tetragonal structure. FESEM observations showed that the nano-composite consisted of aggregates of particles with an average particle size of 18 nm. The photocatalytic activity of the pure SnO2, pure ZnO, ZnSnO3-Zn2SnO4 and ZnO-SnO2 nano-structure thin films was examined using the degradation of a textile dye Reactive Blue 160 (KE2B). ZnO-SnO2 nano-composite showed enhanced photo-catalytic activity than the pure zinc oxide and tin oxide. The enhanced photo-catalytic activity of the nano-composite was ascribed to an improved charge separation of the photo-generated electron-hole pairs. Copyright © 2014 Elsevier B.V. All rights reserved.
Synthesis of photochromic nanoparticles and determination of the mechanism of photochromism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoue, Shuhei, E-mail: shu18@hiroshima-u.ac.jp; Matsumura, Yukihiko; Kawamoto, Takahiro
2016-05-15
Photochromic nanoparticles of zinc-silicon oxide were synthesized using plasma enhanced chemical vapor deposition. These particles turned black upon irradiating with ultraviolet light. We investigated this phenomenon using density functional theory calculations. Silicon inclusions create trap levels and oxygen defects that reduce the ionization potential of ZnO. This forms a quantum potential between ZnO and zinc-silicon oxide, and the excited electron is stable. Because oxygen defects also increase the bond overlap population between the zinc atoms in a ZnO crystal, they introduce further defects and help in the formation of quantum potentials. Growth of a perfect crystal of ZnO prevents themore » formation of oxygen defects, which is not desirable for photochromism.« less
X-ray peak profile analysis of zinc oxide nanoparticles formed by simple precipitation method
NASA Astrophysics Data System (ADS)
Pelicano, Christian Mark; Rapadas, Nick Joaquin; Magdaluyo, Eduardo
2017-12-01
Zinc oxide (ZnO) nanoparticles were successfully synthesized by a simple precipitation method using zinc acetate and tetramethylammonium hydroxide. The synthesized ZnO nanoparticles were characterized by X-ray Diffraction analysis (XRD) and Transmission Electron Microscopy (TEM). The XRD result revealed a hexagonal wurtzite structure for the ZnO nanoparticles. The TEM image showed spherical nanoparticles with an average crystallite size of 6.70 nm. For x-ray peak analysis, Williamson-Hall (W-H) and Size-Strain Plot (SSP) methods were applied to examine the effects of crystallite size and lattice strain on the peak broadening of the ZnO nanoparticles. Based on the calculations, the estimated crystallite sizes and lattice strains obtained are in good agreement with each other.
Small-Molecule Fluorescent Sensors for Investigating Zinc Metalloneurochemistry
Nolan, Elizabeth M.; Lippard, Stephen J.
2008-01-01
Conspectus Metal ions are involved in many neurobiological processes relevant to human health and disease. The metalloneurochemistry of Zn(II) is of substantial current interest. Zinc is the second most abundant d-block metal ion in the human brain and its distribution varies, with relatively high concentrations found in the hippocampus. Brain zinc is generally divided into two categories: protein-bound and loosely-bound. The latter pool is also referred to as histochemically observable, chelatable, labile, or mobile zinc. The neurophysiological and neuropathological significance of such mobile Zn(II) remains enigmatic. Studies of Zn(II) distribution, translocation, and function in vivo require tools for its detection. Because Zn(II) has a closed-shell d10 configuration and no convenient spectroscopic signature, fluorescence is a suitable method for monitoring Zn(II) in biological contexts. This Account summarizes work by our laboratory addressing the design, preparation, characterization, and use of small-molecule fluorescent sensors for imaging mobile Zn(II) in living cells and samples of brain tissue. These sensors provide “turn-on” or ratiometric Zn(II) detection in aqueous solution at neutral pH. By making alterations to the Zn(II)-binding unit and fluorophore platform, we have devised sensors with varied photophysical and metal-binding properties. We used several of these probes to image Zn(II) distribution, uptake, and mobilization in a variety of cell types, including neuronal cultures. Goals for the future include developing strategies for multi-color imaging, further defining the quenching and turn-on mechanisms of the sensors, and employing the probes to elucidate the functional significance of Zn(II) in neurobiology. PMID:18989940
Zhao, Yong; Li, Lan; Zhang, Peng-Fei; Shen, Wei; Liu, Jing; Yang, Fen-Fang; Liu, Hong-Bo; Hao, Zhi-Hui
2015-01-01
Annually, tons and tons of zinc oxide nanoparticles (ZnO NPs) are produced in the world. And they are applied in almost all aspects of our life. Their release from the products into environment may pose issue for human health. Although many studies have reported the adverse effects of ZnO NPs on organisms, little is known about the effects on female reproductive systems or the related mechanisms. Quantitative proteomics have not been applied although quantitative transcriptomics have been used in zinc oxide nanoparticles (ZnO NPs) research. Genes are very important players however proteins are the real actors in the biological systems. By using hen’s ovarian granulosa cells, it was found that ZnO-NP-5μg/ml and ZnSO4-10μg/ml treatments produced the same amount of intracellular Zn and resulted in similar cell growth inhibition. And NPs were found in the treated cells. However, ZnO-NP-5μg/ml specifically regulated the expression of genes and proteins compared with that in ZnSO4-10μg/ml treatment. For the first time, this investigation reports that intact NPs produce different impacts on the expression of genes and proteins involved in specific pathways compared to that by Zn2+. The findings enrich our knowledge for the molecular insights of zinc oxide nanoparticles effects on the female reproductive systems. This also may raise the health concern that ZnO NPs may adversely affect the female reproductive systems through regulation of specific signaling pathways. PMID:26460738
Zhao, Yong; Li, Lan; Zhang, Peng-Fei; Shen, Wei; Liu, Jing; Yang, Fen-Fang; Liu, Hong-Bo; Hao, Zhi-Hui
2015-01-01
Annually, tons and tons of zinc oxide nanoparticles (ZnO NPs) are produced in the world. And they are applied in almost all aspects of our life. Their release from the products into environment may pose issue for human health. Although many studies have reported the adverse effects of ZnO NPs on organisms, little is known about the effects on female reproductive systems or the related mechanisms. Quantitative proteomics have not been applied although quantitative transcriptomics have been used in zinc oxide nanoparticles (ZnO NPs) research. Genes are very important players however proteins are the real actors in the biological systems. By using hen's ovarian granulosa cells, it was found that ZnO-NP-5μg/ml and ZnSO4-10μg/ml treatments produced the same amount of intracellular Zn and resulted in similar cell growth inhibition. And NPs were found in the treated cells. However, ZnO-NP-5μg/ml specifically regulated the expression of genes and proteins compared with that in ZnSO4-10μg/ml treatment. For the first time, this investigation reports that intact NPs produce different impacts on the expression of genes and proteins involved in specific pathways compared to that by Zn2+. The findings enrich our knowledge for the molecular insights of zinc oxide nanoparticles effects on the female reproductive systems. This also may raise the health concern that ZnO NPs may adversely affect the female reproductive systems through regulation of specific signaling pathways.
Process for preparing zinc oxide-based sorbents
Gangwal, Santosh Kumar [Cary, NC; Turk, Brian Scott [Durham, NC; Gupta, Raghubir Prasad [Durham, NC
2011-06-07
The disclosure relates to zinc oxide-based sorbents, and processes for preparing and using them. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.
NASA Astrophysics Data System (ADS)
Luque, P. A.; Gómez-Gutiérrez, Claudia M.; Lastra, G.; Carrillo-Castillo, A.; Quevedo-López, M. A.; Olivas, A.
2014-11-01
Zinc sulfide (ZnS) thin films have been grown by chemical bath deposition (CBD) using different zinc sources on a silicon nitride (Si3N4) substrate in an alkaline solution. The zinc precursors used were zinc acetate, zinc nitrate, and zinc sulfate. The structural and optical characteristics of the ZnS thin films obtained were analyzed. The morphology of the surface showed that the films were compact and uniform, with some pinholes in the surface depending on the zinc source. The most homogeneous and compact surfaces were those obtained using zinc nitrate as the zinc source with a root-mean-square (RMS) value of 3 nm. The transmission spectra indicated average transmittance of 80% to 85% in the spectral range from 300 nm to 800 nm, and the optical bandgap calculated for the films was around 3.71 eV to 3.74 eV.
Bottari, Nathieli B; Baldissera, Matheus D; Oliveira, Camila B; Duarte, Thiago; Duarte, Marta M M F; Leal, Marta L R; Thomé, Gustavo R; Zanini, Daniela; Schetinger, Maria Rosa C; Nunes, Matheus A G; Dressler, Valderi L; Monteiro, Silvia G; Tonin, Alexandre A; Da Silva, Aleksandro S
2014-09-01
The aim of this study was to evaluate the effect of zinc supplementation on the ecto-adenosine deaminase activity (E-ADA), zinc seric levels and cytokines (TNF-α, IL-1, IL-6, and IL -10) on rats experimentally infected by Trypanosoma evansi. Four groups with 10 rats each were used as negative controls (groups A and B), while the animals from the groups C and D were infected intraperitoneally with 0.1 mL of cryopreserved blood containing 1.4 × 10(4) of trypanosomes. Animals of groups B and D received two doses of Zinc (Zn) at 5 mg kg(-1), subcutaneously, on the 2nd and 7th day post-infection (PI). Blood samples were collected on days 5 (n = 5) and 15 PI (n = 5). Zn supplementation was able to increase the rat's longevity and to reduce their parasitemia. It was observed that seric Zn levels were increased on infected animals under Zn supplementation. Animals that were infected and supplemented with Zn showed changes in E-ADA activity and in cytokine levels (P < 0.05). Zn supplementation of healthy animals (Group B), increased the E-ADA activity, as well as reduced the concentration of cytokines. Infected animals from groups C and D showed increased levels of cytokines. Finally, we observed that Zn supplementation led to a modulation on cytokine's level in rats infected by T. evansi, as well as in E-ADA activity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Application of pyroelectric crystal and ionic liquid to the production of metal compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imashuku, Susumu; Imanishi, Akira; Kawai, Jun
2013-04-19
Zinc fluoride (ZnF{sub 2}) was deposited on a silicon substrate by changing temperature of a pyroelectric crystal of LiTaO{sub 3} on which ionic liquid (EMI-Tf{sub 2}N) containing zinc ions was dripped at 1 Pa. ZnF{sub 2} was also obtained by bombarding argon ions on EMI-Tf{sub 2}N containing zinc ions. From these results, it is concluded that EMI-Tf{sub 2}N containing zinc ions on the LiTaO{sub 3} crystal was evaporated on the silicon substrate by changing temperature of the LiTaO{sub 3} crystal in vacuum and that the evaporated EMI-Tf{sub 2}N containing metal zinc ions was decomposed to ZnF{sub 2} by the bombardmentmore » of electrons accelerated by the electric field between the LiTaO{sub 3} crystal and the silicon substrate.« less
New interatomic potential for Mg–Al–Zn alloys with specific application to dilute Mg-based alloys
NASA Astrophysics Data System (ADS)
Dickel, Doyl E.; Baskes, Michael I.; Aslam, Imran; Barrett, Christopher D.
2018-06-01
Because of its very large c/a ratio, zinc has proven to be a difficult element to model using semi-empirical classical potentials. It has been shown, in particular, that for the modified embedded atom method (MEAM), a potential cannot simultaneously have an hcp ground state and c/a ratio greater than ideal. As an alloying element, however, useful zinc potentials can be generated by relaxing the condition that hcp be the lowest energy structure. In this paper, we present a MEAM zinc potential, which gives accurate material properties for the pure state, as well as a MEAM ternary potential for the Mg–Al–Zn system which will allow the atomistic modeling of a wide class of alloys containing zinc. The effects of zinc in simple Mg–Zn for this potential is demonstrated and these results verify the accuracy for the new potential in these systems.
[Biological availability of zinc lignosulfonate on calcareous soil of north Guoangdong Province].
Wang, Dehan; Lin, Huidong; Peng, Junjie; Xiao, Xiongshi; Liao, Zongwen
2004-07-01
Zinc lignosulfonate (Zn-LS) is a kind of organic fertilizers made from the by-products of paper industry. With leach and plot treatments, this paper studied the difference of the biological availability between Zn-LS and an inorganic Zn-fertilizer on calcareous soil of north Guangdong Province. The results indicated that the Zn of Zn-LS was less absorbed by calcareous soil. In soil B, when applying 10 mg x kg(-1) Zn, the dissolved amount of Zn-LS was 65.2% higher than that of inorganic Zn-fertilizer, corn grew well, and its biomass was higher. In soil A, when applying 10 mg x kg(-1) Zn of Zn-LS, the biomass of corn increased by 16.3%, and its Zn content was 81.2% higher. Therefore, biological availability of Zn-LS was better than that of inorganic Zn fertilizer.
[Surface-enhanced raman spectra studies on roughened Zn electrode in alkaline solutions].
Shen, Xiao-ying; Liu, Guo-kun; Gu, Ren-ao; Tian, Zhong-qun
2005-09-01
Electrochemical oxidation-reduction method was employed to roughen Zn electrode for obtaining SERS, and potential dependent surface enhanced Raman spectra (SERS) of roughened Zn electrode in KOH solution of different concentration wereobserved. The spectra of Zn electrode in various solutions had obvious differences which indicated the concentration of OH- had a great effect on the dissolution and passivation of zinc. Based on our experimental results, the authors attempt to analyse the behavior of zinc in alkaline and give the mechanism of its passivation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wibowo, Singgih, E-mail: singgih@st.fisika.undip.ac.id; Sutanto, Heri, E-mail: herisutanto@undip.ac.id
2016-02-08
Double layer (DL) thin films of zinc oxide and silver-doped zinc oxide (ZnO/ZnO:Ag) were deposited on glass substrate by sol-gel spray coating technique. The prepared thin films were subjected for optical and photocatalytic studies. UV-visible transmission spectra shows that the subtitution of Ag in ZnO leads to band gap reduction. The influence of Ag doping on the photocatalytic activity of ZnO for the degradation of methylene blue dye was studied under solar radiation. The light absorption over an extended visible region by Ag ion doping in ZnO film contributed equally to improve the photocatalytic activity up to 98.29%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saoud, Khaled; Alsoubaihi, Rola; Bensalah, Nasr
Highlights: • Synthesis of supported Ag NPs on ZnO nanorods using open vessel microwave reactor. • Use of the Ag/ZnO NPs as an efficient visible light photocatalyst. • Complete degradation of methylene blue in 1 h with 0.5 g/L Ag/ZnO NPs. - Abstract: We report the synthesis of silver (Ag) nano-spheres (NS) supported on zinc oxide (ZnO) nanorods through two step mechanism, using open vessel microwave reactor. Direct reduction of ZnO from zinc nitrates was followed by deposition precipitation of the silver on the ZnO nanorods. The supported Ag/ZnO nanoparticles were then characterized by electron microscopy, X-ray diffraction, FTIR, photoluminescencemore » and UV–vis spectroscopy. The visible light photocatalytic activity of Ag/ZnO system was investigated using a test contaminant, methylene blue (MB). Almost complete removal of MB in about 60 min for doses higher than 0.5 g/L of the Ag/ZnO photocatalyst was achieved. This significant improvement in the photocatalytic efficiency of Ag/ZnO photocatalyst under visible light irradiation can be attributed to the presence of Ag nanoparticles on the ZnO nanoparticles which greatly enhances absorption in the visible range of solar spectrum enabled by surface plasmon resonance effect from Ag nanoparticles.« less
Negative modulation of presynaptic activity by zinc released from Schaffer collaterals.
Takeda, Atsushi; Fuke, Sayuri; Tsutsumi, Wataru; Oku, Naoto
2007-12-01
The role of zinc in excitation of Schaffer collateral-CA1 pyramidal cell synapses is poorly understood. Schaffer collaterals stained with ZnAF-2 or ZnAF-2DA, a membrane-impermeable or a membrane-permeable zinc indicator, respectively, were treated by tetanic stimulation (200 Hz, 1 sec). Extracellular and intracellular ZnAF-2 signals were increased in the stratum radiatum of the CA1, in which Schaffer collateral synapses exist. Both the increases were completely blocked in the presence of 1 mM CaEDAT, a membrane-impermeable zinc chelator, suggesting that 1 mM CaEDTA is effective for chelating zinc released from Schaffer collaterals. The role of Schaffer collateral zinc in presynaptic activity was examined by using FM4-64, a fluorescent indicator for vesicular exocytosis. The decrease in FM4-64 signal during tetanic stimulation (10 Hz, 180 sec) was enhanced in Schaffer collaterals in the presence of 1 mM CaEDTA but suppressed in the presence of 5 microM ZnC1(2), suggesting that zinc released from Schaffer collaterals suppresses presynaptic activity during tetanic stimulation. When Schaffer collateral synapses stained with calcium orange AM, a membrane-permeable calcium indicator, were regionally stimulated with 1 mM glutamate, calcium orange signal was increased in the CA1 pyramidal cell layer. This increase was enhanced in the presence of CaEDTA and attenuated in the presence of zinc. These results suggest that zinc attenuates excitation of Schaffer collateral synapses elicited with glutamate via suppression of presynaptic activity. (c) 2007 Wiley-Liss, Inc.
Karpuraranjith, M; Thambidurai, S
2017-11-01
A new biopolymer based ZnO-PVP nanocomposite was successfully synthesized by single step in situ precipitation method using chitosan as biosurfactant, zinc chloride as a source material, PVP as stabilizing agent and sodium hydroxide as precipitating agent. The chemical bonding and crystalline behaviors of chitosan, zinc oxide and PVP were confirmed by FT-IR and XRD analysis. The biopolymer connected ZnO particles intercalated PVP matrix was layer and rod like structure appeared in nanometer range confirmed by HR-SEM and TEM analysis. The surface topography image of CS/ZnO-PVP nanocomposite was obtained in the average thickness of 12nm was confirmed by AFM analysis. Thermal stability of cationic biopolymer based ZnO intercalated PVP has higher stability than CS-PVP and chitosan. Consequently, antimicrobial activity of chitosan/ZnO-PVP matrix acts as a better microbial inhibition activity than PVP-ZnO nanocomposite. The obtained above results demonstrate that CS and ZnO intercalated PVP matrix has better reinforced effect than other components. Therefore, Chitosan/ZnO-PVP nanocomposite may be a promising material for the biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Vinogradova, Ekaterina V; Enakieva, Yulia Y; Nefedov, Sergey E; Birin, Kirill P; Tsivadze, Aslan Y; Gorbunova, Yulia G; Bessmertnykh Lemeune, Alla G; Stern, Christine; Guilard, Roger
2012-11-19
The first synthesis and self-organization of zinc β-phosphorylporphyrins in the solid state and in solution are reported. β-Dialkoxyphosphoryl-5,10,15,20-tetraphenylporphyrins and their Zn(II) complexes have been synthesized in good yields by using Pd- and Cu-mediated carbon-phosphorous bond-forming reactions. The Cu-mediated reaction allowed to prepare the mono-β-(dialkoxyphosphoryl)porphyrins 1 Zn-3 Zn starting from the β-bromo-substituted zinc porphyrinate ZnTPPBr (TPP = tetraphenylporphyrin) and dialkyl phosphites HP(O)(OR)(2) (R = Et, iPr, nBu). The derivatives 1 Zn-3 Zn were obtained in good yields by using one to three equivalents of CuI. When the reaction was carried out in the presence of catalytic amounts of palladium complexes in toluene, the desired zinc derivative 1 Zn was obtained in up to 72% yield. The use of a Pd-catalyzed C-P bond-forming reaction was further extended to the synthesis of β-poly(dialkoxyphosphoryl)porphyrins. An unprecedented one-pot sequence involving consecutive reduction and phosphorylation of H(2)TPPBr(4) led to the formation of a mixture of the 2,12- and 2,13-bis(dialkoxy)phosphorylporphyrins 5 H(2) and 6 H(2) in 81% total yield. According to the X-ray diffraction studies, 1 Zn and 3 Zn are partially overlapped cofacial dimers formed through the coordination of two Zn centers by two phosphoryl groups belonging to the adjacent molecules. The equilibrium between the monomeric and the dimeric species exists in solutions of 1 Zn and 3 Zn in weakly polar solvents according to spectroscopic data (UV/Vis absorption and NMR spectroscopy). The ratio of each form is dependent on the concentration, temperature, and traces of water or methanol. These features demonstrated that zinc β-phosphorylporphyrins can be regarded as new model compounds for the weakly coupled chlorophyll pair in the photosynthesis process. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Weatherability and leach resistance of wood impregnated with nano-zinc oxide
Carol A. Clausen; Frederick Green; S. Nami Kartal
2010-01-01
Southern pine specimens vacuum-treated with nano-zinc oxide (nano-ZnO) dispersions were evaluated for leach resistance and UV protection. Virtually, no leaching occurred in any of the nano-ZnOâtreated specimens in a laboratory leach test, even at the highest retention of 13 kg/m3. However, specimens treated with high concentrations of nano-ZnO...
Zinc in Cellular Regulation: The Nature and Significance of "Zinc Signals".
Maret, Wolfgang
2017-10-31
In the last decade, we witnessed discoveries that established Zn 2+ as a second major signalling metal ion in the transmission of information within cells and in communication between cells. Together with Ca 2+ and Mg 2+ , Zn 2+ covers biological regulation with redox-inert metal ions over many orders of magnitude in concentrations. The regulatory functions of zinc ions, together with their functions as a cofactor in about three thousand zinc metalloproteins, impact virtually all aspects of cell biology. This article attempts to define the regulatory functions of zinc ions, and focuses on the nature of zinc signals and zinc signalling in pathways where zinc ions are either extracellular stimuli or intracellular messengers. These pathways interact with Ca 2+ , redox, and phosphorylation signalling. The regulatory functions of zinc require a complex system of precise homeostatic control for transients, subcellular distribution and traffic, organellar homeostasis, and vesicular storage and exocytosis of zinc ions.
Remediation of arsenic and lead with nanocrystalline zinc sulfide.
Piquette, Alan; Cannon, Cody; Apblett, Allen W
2012-07-27
Nanocrystalline (1.7 ± 0.3 nm) zinc sulfide with a specific surface area up to 360 m(2) g(-1) was prepared from the thermal decomposition of a single-source precursor, zinc ethylxanthate. Zinc ethylxanthate decomposes to cubic zinc sulfide upon exposure to temperatures greater than or equal to 125 °C. The resulting zinc sulfide was tested as a water impurity extractant. The target impurities used in this study were As(5+), As(3+), and Pb(2+). The reaction of the nanocrystalline ZnS with Pb(2+) proceeds as a replacement reaction where solid PbS is formed and Zn(2+) is released into the aqueous system. Removal of lead to a level of less than two parts per billion is achievable. The results of a detailed kinetics experiment between the ZnS and Pb(2+) are included in this study. Unlike the instance of lead, both As(5+) and As(3+) adsorb on the surface of the ZnS extractant as opposed to an ion-exchange process. An uptake capacity of > 25 mg g(-1) for the removal of As(5+) is possible. The uptake of As(3+) appears to proceed by a slower process than that of the As(5+) with a capacity of nearly 20 mg g(-1). The nanocrystalline zinc sulfide was extremely successful for the removal of arsenic and lead from simulated oil sand tailing pond water.
NASA Astrophysics Data System (ADS)
Lalegani, Arash; Khaledi Sardashti, Mohammad; Gajda, Roman; Woźniak, Krzysztof
2017-12-01
Zinc(II) coordination polymers [Zn(bip)2(NCS)2]n (1) and [Zn(μ-bbd)(N3)2]n (2) were synthesized by using the neutral flexible bidentate N-donor ligands 1,4-bis(3,5-dimethylpyrazolyl)butane (bbd) and 1,3-bis(imidazolyl)propane (bip), mono-anionic NCS- or N3-ligand and zinc(II) chloride salts. The results of the X-ray analyses demonstrate that in the structure of 1, the zinc(II) ion is located on an inversion center and exhibits an ZnN6 octahedral arrangement while, in the structure of 2, the zinc(II) ion adopts an ZnN4 tetrahedral geometry. In the polymer 1, the NCS groups are terminally N-bonded to the metal center and the each bip with anti-gauche conformation acts as bridging connecting four zinc(II) ions to form a two-dimensional network with a sql [point symbol (44.62)] topology while, in the polymer 1, the N3 groups are terminally bonded to the metal center and each bbd with anti-anti-anti conformation acts as bridging ligand connecting two zinc(II) ions to form a one-dimensional zig-zag chain. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction. Thermal analyses of polymers were also presented.
Recycling of an electric arc furnace flue dust to obtain high grade ZnO.
Ruiz, Oscar; Clemente, Carmen; Alonso, Manuel; Alguacil, Francisco Jose
2007-03-06
The production of steel in electric arc furnace (EAF) generates a by-product called EAF dusts. These steelmaking flue dusts are classified in most industrialized countries as hazardous residues because the heavy metals contained in them, tend to leach under slightly acidic rainfall conditions. However, and at the same time they contain zinc species which can be used as a source to obtain valuable by-products. The present investigation shows results on the processing of an EAF flue dust using ammonium carbonate solutions. Once zinc is dissolved: ZnO + 4NH3 + H2O --> Zn(NH3)4(2+) + 2OH- with other impurities (i.e. cadmium and copper), these are eliminated from the zinc solution via cementation with metallic zinc. The purified zinc solution was evaporated (distilled) until precipitation of a zinc carbonate species, which then was calcined to yield a zinc oxide of a high grade. For the unattacked dust residue from the leaching operation, mainly composed of zinc ferrite, several options can be considered: back-recycling to the furnace, further treatment by sodium hydroxide processing or a more safely dumping due to its relatively inertness.
Prenatal zinc supplementation of zinc-adequate rats adversely affects immunity in offspring.
Sharkar, Mohammad T K; Jou, Ming-Yu; Hossain, Mohammad B; Lönnerdal, Bo; Stephensen, Charles B; Raqib, Rubhana
2011-08-01
We previously showed that zinc (Zn) supplementation of Zn-adequate dams induced immunosuppressive effects that persist in the offspring after weaning. We investigated whether the immunosuppressive effects were due to in utero exposure and/or mediated via milk using a cross-fostering design. Pregnant rats with adequate Zn nutriture were supplemented with either Zn (1.5 mg Zn in 10% sucrose) or placebo (10% sucrose) during pregnancy (3 times/wk). At postnatal d 3, 4 pups of Zn-supplemented dams (Zn-P) were exchanged with 4 of placebo-supplemented dams (P-Zn). The remaining pups continued with their biological mothers (Zn-Zn and P-P). Pups were orally immunized with dinitrophenol ovalbumin-BSA and/or cholera toxin B subunit (CTB), and serum Zn concentrations and cellular and humoral responses were assessed. Pups of Zn-supplemented dams had higher serum Zn when fostered either by placebo- or Zn-supplemented dams compared to pups of placebo-supplemented dams (P < 0.01). Postnatal Zn exposure reduced the number of Peyer's patches in both the Zn-Zn and P-Zn groups (P < 0.01). Prenatal Zn exposure suppressed CTB- (P = 0.05) and BSA-specific proliferation response of Peyer's Patch lymphocytes (P = 0.07). Prenatal Zn exposure effects on the splenocyte cytokine response were differently influenced by fostering mothers' Zn status. Antigen presenting cell (APC) activity of splenocytes was lower in the Zn-Zn group than in the P-P group (P < 0.08). In conclusion, prenatal Zn exposure increases serum Zn levels in pups and suppresses antigen-specific proliferation and antibody responses and APC function, whereas postnatal exposure may suppress the mucosal immune reservoir.
Protective effects of apomorphine against zinc-induced neurotoxicity in cultured cortical neurons.
Hara, Hirokazu; Maeda, Asuka; Kamiya, Tetsuro; Adachi, Tetsuo
2013-01-01
There is evidence that excessive zinc (Zn(2+)) release from presynaptic terminals following brain injuries such as ischemia and severe epileptic seizures induces neuronal cell death. Apomorphine (Apo), a dopamine receptor agonist, has been shown to have pleiotropic biological functions. In this study, we investigated whether Apo protects cultured cortical neurons from neurotoxicity provoked by excessive Zn(2+) exposure. Pretreatment with Apo dose- and time-dependently ameliorated Zn(2+) neurotoxicity. In addition, pretreatment with Apo prevented intracellular nicotinamide adenine dinucleotide (NAD(+)) and ATP depletion caused by Zn(2+) exposure. Dopamine receptor antagonists did not influence Apo protection against Zn(2+) neurotoxicity. Apo is shown to be autoxidized to produce oxidized products such as reactive oxygen species and quinones. N-Acetylcysteine, a thiol compound, partially reduced Apo protection. Entry of Zn(2+) into neurons is thought to be a critical step of Zn(2+) neurotoxicity. Interestingly, we found that pretreatment with Apo decreased elevation of intracellular Zn(2+) levels after Zn(2+) exposure and induced mRNA expression of the zinc transporter ZnT1, which transports intracellular Zn(2+) out of cells, and metallothionein. Taken together, these results suggest that the protective effects of Apo are regulated, at least in part, by its oxidized products, and preventing intracellular accumulation of Zn(2+) contributes to Apo protection against Zn(2+) neurotoxicity.
An overview of zinc addition for BWR dose rate control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marble, W.J.
1995-03-01
This paper presents an overview of the BWRs employing feedwater zinc addition to reduce primary system dose rates. It identifies which BWRs are using zinc addition and reviews the mechanical injection and passive addition hardware currently being employed. The impact that zinc has on plant chemistry, including the factor of two to four reduction in reactor water Co-60 concentrations, is discussed. Dose rate results, showing the benefits of implementing zinc on either fresh piping surfaces or on pipes with existing films are reviewed. The advantages of using zinc that is isotopically enhanced by the depletion of the Zn-64 precursor tomore » Zn-65 are identified.« less
Ho, Chia-Chi; Lee, Hui-Ling; Chen, Chao-Yu; Luo, Yueh-Hsia; Tsai, Ming-Hsien; Tsai, Hui-Ti; Lin, Pinpin
2017-04-01
Zinc oxide nanoparticles (ZnONPs) are widely used in our daily life, such as in sunscreens and electronic nanodevices. However, pulmonary exposure to ZnONPs causes acute pulmonary inflammation, which is considered as an initial event for various respiratory diseases. Thus, elucidation of the underlying cellular mechanisms of ZnONPs can help us in predicting their potential effects in respiratory diseases. In this study, we observed that ZnONPs increased proinflammatory cytokines, accompanied with an increased expression of aryl hydrocarbon receptor (AhR) and its downstream target cytochrome P450 1A1 (CYP1A1) in macrophages in vitro and in mouse lung epithelia in vivo. Moreover, zinc nitrate, but not silica or titanium dioxide nanoparticles (NPs), had similar effects on macrophages, indicating that the zinc element or ion released from ZnONPs is likely responsible for the activation of the AhR pathway. Cotreatment with an AhR antagonist or AhR knockout reduced ZnONPs-induced cytokine secretion in macrophages or mice, respectively. Furthermore, kynurenine (KYN), an endogenous AhR agonist and a tryptophan metabolite catalyzed by indoleamine 2,3-dioxygenase (IDO), was increased in the serums of mice that aspirated ZnONPs. Consistently, ZnONPs increased IDO1 expression in lung cells in vitro and in vivo. Finally, AhR knockout reduced ZnONPs-induced pulmonary inflammation, cytokine secretion and KYN production in mice, suggesting that AhR activation is involved in ZnONPs-induced cytokine secretion and pulmonary inflammation. In summary, we demonstrated that the pulmonary exposure of ZnONPs stimulated the cytokine-IDO1-AhR loop in the lungs, which has been implied to play roles in immune dysfunctions.
Current and Future Clinical Applications of Zinc Transporter-8 in Type 1 Diabetes Mellitus
Yi, Bo; Huang, Gan; Zhou, Zhi-Guang
2015-01-01
Objective: To evaluate the utility of zinc transporter-8 (ZnT8) in the improvement of type 1 diabetes mellitus (T1DM) diagnosis and prediction, and to explore whether ZnT8 is a potential therapeutic target in T1DM. Data Sources: A search was conducted within the medical database PubMed for relevant articles published from 2001 to 2015. The search terms are as follows: “ZnT8,” “type 1 diabetes,” “latent autoimmune diabetes in adults,” “type 2 diabetes,” “islet autoantibodies,” “zinc supplement,” “T cells,” “β cell,” “immune therapy.” We also searched the reference lists of selected articles. Study Selection: English-language original articles and critical reviews concerning ZnT8 and the clinical applications of islet autoantibodies in diabetes were reviewed. Results: The basic function of ZnT8 is maintaining intracellular zinc homeostasis, which modulates the process of insulin biosynthesis, storage, and secretion. Autoantibodies against ZnT8 (ZnT8A) and ZnT8-specific T cells are the reliable biomarkers for the identification, stratification, and characterization of T1DM. Additionally, the results from the animal models and clinical trials have shown that ZnT8 is a diabetogenic antigen, suggesting the possibility of ZnT8-specific immunotherapy as an alternative for T1DM therapy. Conclusions: ZnT8 is a novel islet autoantigen with a widely potential for clinical applications in T1DM. However, before the large-scale clinical applications, there are still many problems to be solved. PMID:26315089
NASA Astrophysics Data System (ADS)
Clausen, Carol A.; Kartal, S. Nami; Arango, Rachel A.; Green, Frederick
2011-06-01
Historically most residential wood preservatives were aqueous soluble metal formulations, but recently metals ground to submicron size and dispersed in water to give particulate formulations have gained importance. In this study, the specific role nano-zinc oxide (ZnO) particle size and leach resistance plays in termite mortality resulting from exposure to particulate ZnO-treated wood was investigated. Southern yellow pine (SYP) sapwood impregnated with three concentrations of two particle sizes (30 and 70 nm) of ZnO were compared to wood treated with soluble zinc sulphate (ZnSO4) preservative for leach resistance and termite resistance. Less than four percent leached from the particulate nano-ZnO-treated specimens, while 13 to 25% of the zinc sulphate leached from the soluble treated wood. Nano-ZnO was essentially non-leachable from wood treated with 5% formulation for the 30-nm particle size. In a no-choice laboratory test, eastern subterranean termites ( Reticulitermes flavipes) consumed less than 10% of the leached nano-ZnO-treated wood with 93 to 100% mortality in all treatment concentrations. In contrast, termites consumed 10 to 12% of the leached ZnSO4-treated wood, but with lower mortality: 29% in the 1% treatment group and less than 10% (5 and 8%, respectively) in the group of wood blocks treated with 2.5 and 5.0% ZnSO4. We conclude that termites were repelled from consuming wood treated with nano-ZnO, but when consumed it was more toxic to eastern subterranean termites than wood treated with the soluble metal oxide formulation. There were no differences in leaching or termite mortality between the two particle sizes of nano-ZnO.
NASA Astrophysics Data System (ADS)
La Porta, F. A.; Nogueira, A. E.; Gracia, Lourdes; Pereira, W. S.; Botelho, G.; Mulinari, T. A.; Andrés, Juan; Longo, E.
2017-04-01
From the viewpoints of materials chemistry and physical chemistry, crystal structure directly determines the electronic structure and furthermore their optical and photocatalytic properties. Zinc sulfide (ZnS) nanoparticles (NPs) with tunable photoluminescence (PL) emission and high photocatalytic activity have been obtained by means of a microwave-assisted solvothermal (MAS) method using different precursors (i.e., zinc nitrate (ZN), zinc chloride (ZC), or zinc acetate (ZA)). The morphologies, optical properties, and electronic structures of the as-synthesized ZnS NPs were characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET) isotherms for N2 adsorption/desorption processes, diffuse reflectance spectroscopy (DRS), PL measurements and theoretical calculations. Density functional theory calculations were used to determine the geometries and electronic properties of bulk wurtzite (WZ) ZnS NPs and their (0001), (101 ̅0), (112 ̅0), (101 ̅1), and (101 ̅2) surfaces. The dependence of the PL emission behavior of ZnS NPs on the precursor was elucidated by examining the energy band structure and density of states. The method for degradation of Rhodamine B (RhB) was used as a probe reaction to investigate the photocatalytic activity of the as-Synthesised ZnS NPs under UV light irradiation. The PL behavior as well as photocatalytic activities of ZnS NPs were attributed to specific features of the structural and electronic structures. Increased photocatalytic degradation was observed for samples synthesized using different precursors in the following order: ZA
40 CFR Appendix I to Part 258 - Constituents for Detection Monitoring
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Cobalt (Total) (8) Copper (Total) (9) Lead (Total) (10) Nickel (Total) (11) Selenium (Total) (12) Silver (Total) (13) Thallium (Total) (14) Vanadium (Total) (15) Zinc (Total) Organic Constituents: (16) Acetone...
40 CFR Appendix I to Part 258 - Constituents for Detection Monitoring
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Cobalt (Total) (8) Copper (Total) (9) Lead (Total) (10) Nickel (Total) (11) Selenium (Total) (12) Silver (Total) (13) Thallium (Total) (14) Vanadium (Total) (15) Zinc (Total) Organic Constituents: (16) Acetone...
NASA Astrophysics Data System (ADS)
Gélabert, A.; Pokrovsky, O. S.; Viers, J.; Schott, J.; Boudou, A.; Feurtet-Mazel, A.
2006-02-01
This work is devoted to characterization of zinc interaction in aqueous solution with two marine planktonic ( Thalassiosira weissflogii = TW, Skeletonema costatum = SC) and two freshwater periphytic species ( Achnanthidium minutissimum = AMIN, Navicula minima = NMIN) by combining adsorption and electrophoretic measurements with surface complexation modeling and by assessing Zn isotopes fractionation during both long term uptake and short term adsorption on diatom cells and their frustules. Reversible adsorption experiments were performed at 25 and 5 °C as a function of exposure time (5 min to 140 h), pH (2 to 10), zinc concentration in solution (10 nM to 1 mM), ionic strength ( I = 0.001 to 1.0 M) and the presence of light. While the shape of pH-dependent adsorption edge is almost the same for all four species, the constant-pH adsorption isotherm and maximal Zn binding capacities differ by an order of magnitude. The extent of adsorption increases with temperature from 5 to 25 °C and does not depend on light intensity. Zinc adsorption decreases with increase of ionic strength suggesting competition with sodium for surface sites. Cell number-normalized concentrations of sorbed zinc on whole cells and their silica frustules demonstrated only weak contribution of the latter (10-20%) to overall zinc binding by diatom cell wall. Measurements of electrophoretic mobilities ( μ) revealed negative diatoms surface potential in the full range of zinc concentrations investigated (0.15-760 μmol/L), however, the absolute value of μ decreases at [Zn] > 15 μmol/L suggesting a change in surface speciation. These observations allowed us to construct a surface complexation model for Zn binding by diatom surfaces that postulates the constant capacitance of the electric double layer and considers Zn complexation with carboxylate and silanol groups. Thermodynamic and structural parameters of this model are based on previous acid-base titration and spectroscopic results and allow quantitative reproduction of all adsorption experiments. Although Zn adsorption constants on carboxylate groups are almost the same, Zn surface adsorption capacities are very different among diatom species which is related to the systematic differences in their cell wall composition and thickness. Measurements of Zn isotopic composition ( 66Zn/( 64Zn)) performed using a multicollector ICP MS demonstrated that irreversible incorporation of Zn in cultured diatom cells produces enrichment in heavy isotope compared to growth media (Δ 66Zn(solid-solution) = 0.27 ± 0.05, 0.08 ± 0.05, 0.21 ± 0.05, and 0.19 ± 0.05‰ for TW, SC, NMIN, and AMIN species, respectively). Accordingly, an enrichment of cells in heavy isotopes (Δ 66Zn(solid-solution) = 0.43 ± 0.1 and 0.27 ± 0.1‰ for NMIN and AMIN, respectively) is observed following short-term Zn sorption on freshwater cells in nutrient media at pH ˜ 7.8. Finally, diatoms frustules are enriched in heavy isotopes compared to solution during Zn adsorption on silica shells at pH ˜ 5.5 (Δ 66Zn(solid-solution) = 0.35 ± 0.10‰). Measured isotopes fractionation can be related to the structure and stability of Zn complexes formed and they provide a firm basis for using Zn isotopes for biogeochemical tracing.
III-nitrides on oxygen- and zinc-face ZnO substrates
NASA Astrophysics Data System (ADS)
Namkoong, Gon; Burnham, Shawn; Lee, Kyoung-Keun; Trybus, Elaissa; Doolittle, W. Alan; Losurdo, Maria; Capezzuto, Pio; Bruno, Giovanni; Nemeth, Bill; Nause, Jeff
2005-10-01
The characteristics of III-nitrides grown on zinc- and oxygen-face ZnO by plasma-assisted molecular beam epitaxy were investigated. The reflection high-energy electron diffraction pattern indicates formation of a cubic phase at the interface between III-nitride and both Zn- and O-face ZnO. The polarity indicates that Zn-face ZnO leads to a single polarity, while O-face ZnO forms mixed polarity of III-nitrides. Furthermore, by using a vicinal ZnO substrate, the terrace-step growth of GaN was realized with a reduction by two orders of magnitude in the dislocation-related etch pit density to ˜108cm-2, while a dislocation density of ˜1010cm-2 was obtained on the on-axis ZnO substrates.
Two novel self-assemblies of supramolecular solar cells using N-heterocyclic-anchoring porphyrins.
Zhang, Qian; Wu, Fang-Yuan; Liu, Jia-Cheng; Li, Ren-Zhi; Jin, Neng-Zhi
2018-02-15
Two novel N-substituted anchoring porphyrins (ZnPAtz and ZnPAim) have been devised and synthesized. Moreover, these two anchoring porphyrins were linked to the TiO 2 semiconductor through carboxyl groups and then a zinc porphyrin ZnP was bound to the anchoring porphyrin using a zinc-to-ligand axial coordination approach. The different performances of these assemblies were compared with single anchoring porphyrin devices ZnPAtz and ZnPAim. The photoelectric conversion efficiency of the new supramolecular solar cells sensitized by ZnP-ZnPAx (x=tz, im) has been improved. The ZnP-ZnPAtz-based DSSCs provided the highest photovoltaic efficiency (1.86%). Fundamental studies showed that incorporation of these assemblies promote light-harvesting efficiency. Copyright © 2017. Published by Elsevier B.V.
In-situ synthesis of hydrogen peroxide in a novel Zn-CNTs-O2 system
NASA Astrophysics Data System (ADS)
Gong, Xiao-bo; Yang, Zhao; Peng, Lin; Zhou, An-lan; Liu, Yan-lan; Liu, Yong
2018-02-01
A novel strategy of in-situ synthesis of hydrogen peroxide (H2O2) was formulated and evaluated. Oxygen was selectively reduced to H2O2 combined with electrochemical corrosion of zinc in the Zn-CNTs-O2 system. The ratio of zinc and CNTs, heat treatment temperature, and operational parameters such as composite dosage, initial pH, solution temperature, oxygen flow rate were systematically investigated to improve the efficiency of H2O2 generation. The Zn-CNTs composite (weight ratio of 2.5:1) prepared at 500 °C showed the maximum H2O2 accumulation concentration of 293.51 mg L-1 within 60 min at the initial pH value of 3.0, Zn-CNTs dosage of 0.4 g and oxygen flow rate of 400 mL min-1. The oxygen was reduced through two-electron pathway to hydrogen peroxide on CNTs while the zinc was oxidized in the system and the dissolved zinc ions convert to zinc hydroxide and depositing on the surface of CNTs. It was proposed that the increment of direct H2O2 production was caused by the improvement of the formed Zn/CNTs corrosion cell. This provides promising strategy for in-situ synthesis and utilization of hydrogen peroxide in the novel Zn-CNTs-O2 system, which enhances the environmental and economic attractiveness of the use of H2O2 as green oxidant for wastewater treatments.