Science.gov

Sample records for zinc-blende cubic structure

  1. Cubic GaN quantum dots embedded in zinc-blende AlN microdisks

    NASA Astrophysics Data System (ADS)

    Bürger, M.; Kemper, R. M.; Bader, C. A.; Ruth, M.; Declair, S.; Meier, C.; Förstner, J.; As, D. J.

    2013-09-01

    Microresonators containing quantum dots find application in devices like single photon emitters for quantum information technology as well as low threshold laser devices. We demonstrate the fabrication of 60 nm thin zinc-blende AlN microdisks including cubic GaN quantum dots using dry chemical etching techniques. Scanning electron microscopy analysis reveals the morphology with smooth surfaces of the microdisks. Micro-photoluminescence measurements exhibit optically active quantum dots. Furthermore this is the first report of resonator modes in the emission spectrum of a cubic AlN microdisk.

  2. Internal structure of multiphase zinc-blende wurtzite gallium nitride nanowires.

    PubMed

    Jacobs, B W; Ayres, V M; Crimp, M A; McElroy, K

    2008-10-08

    In this paper, the internal structure of novel multiphase gallium nitride nanowires in which multiple zinc-blende and wurtzite crystalline domains grow simultaneously along the entire length of the nanowire is investigated. Orientation relationships within the multiphase nanowires are identified using high-resolution transmission electron microscopy of nanowire cross-sections fabricated with a focused ion beam system. A coherent interface between the zinc-blende and wurtzite phases is identified. A mechanism for catalyst-free vapor-solid multiphase nanowire nucleation and growth is proposed.

  3. Thermal conductivity of wurtzite and zinc blende cubic phases of BeO from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Malakkal, Linu; Szpunar, Barbara; Siripurapu, Ravi Kiran; Zuniga, Juan Carlos; Szpunar, Jerzy A.

    2017-03-01

    The structural, mechanical, thermal and thermodynamic properties of Beryllium oxide (BeO) in the zinc blende (ZB) and wurtzite (WZ) form have been calculated using the density functional theory (DFT) in the general gradient approximation (GGA). The ground state structural and elastic properties of wurtzite BeO (w-BeO) is calculated using the new GGA ultrasoft pseudopotentials for solids (pbesol); the simulated results have shown excellent agreement with the experiments. The thermodynamic properties are studied using quasi-harmonic approximation (QHA), and the predicted properties agree well for the WZ phase for which the experimental data are available, while for ZB phase it remains to be validated with future experiments. Both Boltzmann transport equation (BTE) and Slack model were used to calculate the lattice thermal conductivity of wurtzite BeO (w-BeO). Furthermore, the thermal conductivity along the crystallographic 'a' and 'c' axis of wurtzite BeO is investigated using BTE. Our calculation of w-BeO agrees well with the available experimental measurements. Apart from these studies on w-BeO, we have also compared the mechanical, structural and phonon dispersions of z-BeO with previously reported theoretical studies. Additionally we report the volume thermal expansion and the heat capacity at constant pressure of z-BeO for the first time and the bulk thermal conductivity of zinc blende BeO (z-BeO) using BTE.

  4. DFT applied to the study of carbon-doped zinc-blende (cubic) GaN

    NASA Astrophysics Data System (ADS)

    Espitia R, M. J.; Ortega-López, C.; Rodríguez Martínez, J. A.

    2016-08-01

    Employing first principles within the framework of density functional theory, the structural properties, electronic structure, and magnetism of C-doped zincblende (cubic) GaN were investigated. The calculations were carried out using the pseudopotential method, employed exactly as implemented in Quantum ESPRESSO code. For GaC0.0625N0.9375 concentration, a metallic behavior was found. This metallic property comes from the hybridization and polarization of C-2p states and their neighboring N-2p and G-4p states.

  5. Symmetry and Structure of Cubic Semiconductor Surfaces.

    PubMed

    Jenkins, Stephen J

    2017-11-07

    A systematic stereographic approach to the description of surface symmetry and structure, applied previously to face-centered cubic, body-centered cubic, and hexagonal close-packed metals, is here extended to the surfaces of diamond-structure and zinc-blende-structure semiconductors. A variety of symmetry-structure combinations are categorized and the chiral properties of certain cases emphasized. A general condition for nonpolarity in the surfaces of zincblende materials is also noted.

  6. X-ray detection with zinc-blende (cubic) GaN Schottky diodes

    NASA Astrophysics Data System (ADS)

    Gohil, T.; Whale, J.; Lioliou, G.; Novikov, S. V.; Foxon, C. T.; Kent, A. J.; Barnett, A. M.

    2016-07-01

    The room temperature X-ray responses as functions of time of two n type cubic GaN Schottky diodes (200 μm and 400 μm diameters) are reported. The current densities as functions of time for both diodes showed fast turn-on transients and increases in current density when illuminated with X-ray photons of energy up to 35 keV. The diodes were also electrically characterized: capacitance, implied depletion width and dark current measurements as functions of applied bias at room temperature are presented. At -5 V reverse bias, the capacitances of the diodes were measured to be (84.05 ± 0.01) pF and (121.67 ± 0.02) pF, respectively. At -5 V reverse bias, the dark current densities of the diodes were measured to be (347.2 ± 0.4) mA cm-2 and (189.0 ± 0.2) mA cm-2, respectively. The Schottky barrier heights of the devices (0.52 ± 0.07) eV and (0.63 ± 0.09) eV, respectively, were extracted from the forward dark current characteristics.

  7. Active zinc-blende III-nitride photonic structures on silicon

    NASA Astrophysics Data System (ADS)

    Sergent, Sylvain; Kako, Satoshi; Bürger, Matthias; Blumenthal, Sarah; Iwamoto, Satoshi; As, Donat Josef; Arakawa, Yasuhiko

    2016-01-01

    We use a layer transfer method to fabricate free-standing photonic structures in a zinc-blende AlN epilayer grown by plasma-assisted molecular beam epitaxy on a 3C-SiC pseudosubstrate and containing GaN quantum dots. The method leads to the successful realization of microdisks, nanobeam photonic crystal cavities, and waveguides integrated on silicon (100) and operating at short wavelengths. We assess the quality of such photonic elements by micro-photoluminescence spectroscopy in the visible and ultraviolet ranges, and extract the absorption coefficient of ZB AlN membranes (α ˜ (2-5) × 102 cm-1).

  8. Electronic and structural characteristics of zinc-blende wurtzite biphasic homostructure GaN nanowires

    DOE PAGES

    Jacobs, Benjamin W.; Ayres, Virginia M.; Petkov, Mihail P.; ...

    2007-04-07

    Here, we report a new biphasic crystalline wurtzite/zinc-blende homostructure in gallium nitride nanowires. Cathodoluminescence was used to quantitatively measure the wurtzite and zinc-blende band gaps. High-resolution transmission electron microscopy was used to identify distinct wurtzite and zinc-blende crystalline phases within single nanowires through the use of selected area electron diffraction, electron dispersive spectroscopy, electron energy loss spectroscopy, and fast Fourier transform techniques. A mechanism for growth is identified.

  9. Electronic and structural characteristics of zinc-blende wurtzite biphasic homostructure GaN nanowires.

    PubMed

    Jacobs, Benjamin W; Ayres, Virginia M; Petkov, Mihail P; Halpern, Joshua B; He, Maoqi; Baczewski, Andrew D; McElroy, Kaylee; Crimp, Martin A; Zhang, Jiaming; Shaw, Harry C

    2007-05-01

    We report a new biphasic crystalline wurtzite/zinc-blende homostructure in gallium nitride nanowires. Cathodoluminescence was used to quantitatively measure the wurtzite and zinc-blende band gaps. High-resolution transmission electron microscopy was used to identify distinct wurtzite and zinc-blende crystalline phases within single nanowires through the use of selected area electron diffraction, electron dispersive spectroscopy, electron energy loss spectroscopy, and fast Fourier transform techniques. A mechanism for growth is identified.

  10. Coordination radii in diamond, zinc blende, and CaF2 structures

    NASA Astrophysics Data System (ADS)

    Hall, George L.

    1982-07-01

    The radii of all ''shells'' of atoms about any lattice point are given for these three structures, and for the zinc blende (AB) and CaF2 (AB2) structures it is shown that all shells about an A origin and all shells about a B origin are of pure type, i.e., contain only A's or only B's. The initial sequence (small radii) of shell types does not continue indefinitely and is broken according to rules completely specified. These results are analogous to those reported by Hall and Christy earlier for the NaCl and CsCl structures in which the ABABABṡṡṡ sequence for NaCl and the ABAABAABAAṡṡṡ for CsCl, both taken about an A origin, do not continue indefinitely. It is shown that Ferris-Prabhu's results for diamond violate theorem 1 of Hall and Christy.

  11. Single crystalline wurtzite ZnO/zinc blende ZnS coaxial heterojunctions and hollow zinc blende ZnS nanotubes: synthesis, structural characterization and optical properties.

    PubMed

    Huang, Xing; Willinger, Marc-Georg; Fan, Hua; Xie, Zai-lai; Wang, Lei; Klein-Hoffmann, Achim; Girgsdies, Frank; Lee, Chun-Sing; Meng, Xiang-Min

    2014-08-07

    Synthesis of ZnO/ZnS heterostructures under thermodynamic conditions generally results in the wurtzite (WZ) structure of the ZnS component because its WZ phase is thermodynamically more stable than its zinc blende (ZB) phase. In this report, we demonstrate for the first time the preparation of ZnO/ZnS coaxial nanocables composed of single crystalline ZB structured ZnS epitaxially grown on WZ ZnO via a two-step thermal evaporation method. The deposition temperature is believed to play a crucial role in determining the crystalline phase of ZnS. Through a systematic structural analysis, the ZnO core and the ZnS shell are found to have an orientation relationship of (0002)ZnO(WZ)//(002)ZnS(ZB) and [01-10]ZnO(WZ)//[2-20]ZnS(ZB). Observation of the coaxial nanocables in cross-section reveals the formation of voids between the ZnO core and the ZnS shell during the coating process, which is probably associated with the nanoscale Kirkendall effect known to result in porosity. Furthermore, by immersing the ZnO/ZnS nanocable heterojunctions in an acetic acid solution to etch away the inner ZnO cores, single crystalline ZnS nanotubes orientated along the [001] direction of the ZB structure were also achieved for the first time. Finally, optical properties of the hollow ZnS tubes were investigated and discussed in detail. We believe that our study could provide some insights into the controlled fabrication of one dimensional (1D) semiconductors with desired morphology, structure and composition at the nanoscale, and the synthesized WZ ZnO/ZB ZnS nanocables as well as ZB ZnS nanotubes could be ideal candidates for the study of optoelectronics based on II-VI semiconductors.

  12. Structural and thermomechanical properties of the zinc-blende AlX (X = P, As, Sb) compounds

    NASA Astrophysics Data System (ADS)

    Ha, Vu Thi Thanh; Hung, Vu Van; Hanh, Pham Thi Minh; Nguyen, Viet Tuyen; Hieu, Ho Khac

    2017-08-01

    The structural and thermomechanical properties of zinc-blende aluminum class of III-V compounds have been studied based on the statistical moment method (SMM) in quantum statistical mechanics. Within the SMM scheme, we derived the analytical expressions of the nearest-neighbor distance, thermal expansion coefficient, atomic mean-square displacement and elastic moduli (Young’s modulus, bulk modulus and shear modulus). Numerical calculations have been performed for zinc-blende AlX (X = As, P, Sb) at ambient conditions up to the temperature of 1000 K. Our results are in good and reasonable agreements with earlier measurements and can provide useful references for future experimental and theoretical works. This research presents a systematic approach to investigate the thermodynamic and mechanical properties of materials.

  13. Investigation of channeling and radiation of relativistic electrons in charged planes of the crystals with zinc blende structure

    NASA Astrophysics Data System (ADS)

    Maksyuta, N. V.; Vysotskii, V. I.; Efimenko, S. V.; Slinchenko, Y. A.

    2018-04-01

    In this paper the interaction potentials of relativistic electrons with the charged (2m+1, 2n+1, 2p+1) and (2m+1, 2n, 2p) planes (m, n, p=0,1,dot s, and Miller indices are mutually prime numbers) in the crystals with a zinc blende structure are calculated using Moliere approximation. It is shown that at the change of the type of used crystal plane (from the main (100) to the high-index charged planes), the structures of potential wells are transformed from non-unimodal to unimodal ones. In this case for the crystals constructed from ions with close nucleus charges, there arise so-called positron-like potential wells for the channeled electrons, i.e. with minima in the interplanar space. The influence of temperature factor on interaction potentials structures is also investigated. For the electrons with Lorentz-factors γ = 25, 50, 75 in the main (100) and (111) planes the transverse energy levels and corresponding wave functions in single planar approximation are found numerically. By means of these data the spectra of channeling radiation (CR) in dipole approximation are calculated for the electrons beams with a Lorentz-factor γ = 50 and an angular dispersion θ 0 ≈ 0,5 mrad, arising in the main charged (100) and (111) planes in ZnS, ZnSe and ZnTe crystals. It is shown that the CR generated at electron channeling along the (111) planes is more intense. It is shown also that spectra of CR arising in (111) planes of silicon and AlP crystals at using of channeled electron beam with γ = 25 and an angular dispersion θ 0 ≈ 0,5 mrad, due to similarity of structures of potential wells are identical. The spectra of CR at γ = 25, 50, 75 are calculated for a number of crystals with a zinc blende structure, namely AlP, AlAs, AlSb, GaP, GaAs, InP, InAs, InSb.

  14. Observation of spontaneous spin-splitting in the band structure of an n-type zinc-blende ferromagnetic semiconductor

    PubMed Central

    Anh, Le Duc; Hai, Pham Nam; Tanaka, Masaaki

    2016-01-01

    Large spin-splitting in the conduction band and valence band of ferromagnetic semiconductors, predicted by the influential mean-field Zener model and assumed in many spintronic device proposals, has never been observed in the mainstream p-type Mn-doped ferromagnetic semiconductors. Here, using tunnelling spectroscopy in Esaki-diode structures, we report the observation of such a large spontaneous spin-splitting energy (31.7–50 meV) in the conduction band bottom of n-type ferromagnetic semiconductor (In,Fe)As, which is surprising considering the very weak s-d exchange interaction reported in several zinc-blende type semiconductors. The mean-field Zener model also fails to explain consistently the ferromagnetism and the spin-splitting energy of (In,Fe)As, because we found that the Curie temperature values calculated using the observed spin-splitting energies are much lower than the experimental ones by a factor of 400. These results urge the need for a more sophisticated theory of ferromagnetic semiconductors. PMID:27991502

  15. Temperature-dependent optical band gap of the metastable zinc-blende structure [beta]-GaN

    SciTech Connect

    Ramirez-Flores, G.; Navarro-Contreras, H.; Lastras-Martinez, A.

    1994-09-15

    The temperature-dependent (10--300 K) optical band gap [ital E][sub 0]([ital T]) of the epitaxial metastable zinc-blende-structure [beta]-GaN(001)4[times]1 has been determined by modulated photoreflectance and used to interpret low-temperature photoluminescence spectra. [ital E][sub 0] in [beta]-GaN was found to vary from 3.302[plus minus]0.004 eV at 10 K to 3.231[plus minus]0.008 eV at 300 K with a temperature dependence given by [ital E][sub 0]([ital T]) =3.302--6.697[times]10[sup [minus]4][ital T][sup 2]/([ital T]+600) eV. The spin-orbit splitting [Delta][sub 0] in the valence band was determined to be 17[plus minus]1 meV. The oscillations in the photoreflectance spectra were very sharp with a broadening parameter [Gamma] ofmore » only 10 meV at 10 K. The dominant transition observed in temperature-dependent photoluminescence was attributed to radiative recombination between a shallow donor, at [congruent]11 meV below the conduction-band edge and the valence band.« less

  16. Triple-twin domains in Mg doped GaN wurtzite nanowires: structural and electronic properties of this zinc-blende-like stacking

    NASA Astrophysics Data System (ADS)

    Arbiol, Jordi; Estradé, Sònia; Prades, Joan D.; Cirera, Albert; Furtmayr, Florian; Stark, Christoph; Laufer, Andreas; Stutzmann, Martin; Eickhoff, Martin; Gass, Mhairi H.; Bleloch, Andrew L.; Peiró, Francesca; Morante, Joan R.

    2009-04-01

    We report on the effect of Mg doping on the properties of GaN nanowires grown by plasma assisted molecular beam epitaxy. The most significant feature is the presence of triple-twin domains, the density of which increases with increasing Mg concentration. The resulting high concentration of misplaced atoms gives rise to local changes in the crystal structure equivalent to the insertion of three non-relaxed zinc-blende (ZB) atomic cells, which result in quantum wells along the wurtzite (WZ) nanowire growth axis. High resolution electron energy loss spectra were obtained exactly on the twinned (zinc-blende) and wurtzite planes. These atomically resolved measurements, which allow us to identify modifications in the local density of states, revealed changes in the band to band electronic transition energy from 3.4 eV for wurtzite to 3.2 eV in the twinned lattice regions. These results are in good agreement with specific ab initio atomistic simulations and demonstrate that the redshift observed in previous photoluminescence analyses is directly related to the presence of these zinc-blende domains, opening up new possibilities for band-structure engineering.

  17. p-type zinc-blende GaN on GaAs substrates

    NASA Astrophysics Data System (ADS)

    Lin, M. E.; Xue, G.; Zhou, G. L.; Greene, J. E.; Morkoç, H.

    1993-08-01

    We report p-type cubic GaN. The Mg-doped layers were grown on vicinal (100) GaAs substrates by plasma-enhanced molecular beam epitaxy. Thermally sublimed Mg was, with N2 carrier gas, fed into an electron-cyclotron resonance source. p-type zinc-blende-structure GaN films were achieved with hole mobilities as high as 39 cm2/V s at room temperature. The cubic nature of the films were confirmed by x-ray diffractometry. The depth profile of Mg was investigated by secondary ions mass spectroscopy.

  18. Graphitic nanofilms of zinc-blende materials: ab initio calculations

    NASA Astrophysics Data System (ADS)

    Hu, San-Lue; Zhao, Li; Li, Yan-Li

    2017-12-01

    Ab initio calculations on ultra-thin nanofilms of 25 kinds of zinc-blende semiconductors demonstrate their stable geometry structures growth along (1 1 1) surface. Our results show that the (1 1 1) surfaces of 9 kinds of zinc-blende semiconductors can transform into a stable graphitelike structure within a certain thickness. The tensile strain effect on the thickness of graphitic films is not obvious. The band gaps of stable graphitic films can be tuned over a wide range by epitaxial tensile strain, which is important for applications in microelectronic devices, solar cells and light-emitting diodes.

  19. Polytype transition of N-face GaN:Mg from wurtzite to zinc-blende

    NASA Astrophysics Data System (ADS)

    Monroy, E.; Hermann, M.; Sarigiannidou, E.; Andreev, T.; Holliger, P.; Monnoye, S.; Mank, H.; Daudin, B.; Eickhoff, M.

    2004-10-01

    We have investigated the polytype conversion of a GaN film from N-face wurtzite (2H) to zinc-blende (3C) structure due to Mg doping during growth by plasma-assisted molecular-beam epitaxy. Structural analysis by high-resolution transmission electron microscopy and high-resolution x-ray diffraction measurement revealed alignment of the cubic phase with the [111] axis perpendicular to the substrate surface. The optical characteristics of GaN:Mg layers are shown to be very sensitive to the presence of the cubic polytype. For low Mg doping, photoluminescence is dominated by a phonon-replicated donor-acceptor pair at ˜3.25eV, related to the shallow Mg acceptor level, accompanied by a narrow excitonic emission. For high Mg doping, the photoluminescence spectra are also dominated by a line around 3.25eV, but this emission displays the behavior of excitonic luminescence from cubic GaN. A cubic-related donor-acceptor transition at ˜3.16eV is also observed, together with a broad blue band around 2.9eV, previously reported in heavily Mg-doped 3C-GaN(001).

  20. Young's Modulus of Wurtzite and Zinc Blende InP Nanowires.

    PubMed

    Dunaevskiy, Mikhail; Geydt, Pavel; Lähderanta, Erkki; Alekseev, Prokhor; Haggrén, Tuomas; Kakko, Joona-Pekko; Jiang, Hua; Lipsanen, Harri

    2017-06-14

    The Young's modulus of thin conical InP nanowires with either wurtzite or mixed "zinc blende/wurtzite" structures was measured. It has been shown that the value of Young's modulus obtained for wurtzite InP nanowires (E [0001] = 130 ± 30 GPa) was similar to the theoretically predicted value for the wurtzite InP material (E [0001] = 120 ± 10 GPa). The Young's modulus of mixed "zinc blende/wurtzite" InP nanowires (E [111] = 65 ± 10 GPa) appeared to be 40% less than the theoretically predicted value for the zinc blende InP material (E [111] = 110 GPa). An advanced method for measuring the Young's modulus of thin and flexible nanostructures is proposed. It consists of measuring the flexibility (the inverse of stiffness) profiles 1/k(x) by the scanning probe microscopy with precise control of loading force in nanonewton range followed by simulations.

  1. Doping of free-standing zinc-blende GaN layers grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Novikov, S. V.; Powell, R. E. L.; Staddon, C. R.; Kent, A. J.; Foxon, C. T.

    2014-10-01

    Currently there is high level of interest in developing of vertical device structures based on the group III nitrides. We have studied n- and p-doping of free-standing zinc-blende GaN grown by plasma-assisted molecular beam epitaxy (PA-MBE). Si was used as the n-dopant and Mg as the p-dopant for zinc-blende GaN. Controllable levels of doping with Si and Mg in free-standing zinc-blende GaN have been achieved by PA-MBE. The Si and Mg doping depth uniformity through the zinc-blende GaN layers have been confirmed by secondary ion mass spectrometry (SIMS). Controllable Si and Mg doping makes PA-MBE a promising method for the growth of conducting group III-nitrides bulk crystals.

  2. Electronic origins of the magnetic phase transitions in zinc-blende Mn chalcogenides

    SciTech Connect

    Wei, S.; Zunger, A.

    1993-09-01

    Precise first-principles spin-polarized total-energy and band-structure calculations have been performed for the zinc-blende Mn chalcogenides with the use of the local-spin-density (LSD) approach. We find that the LSD is capable of identifying the correct magnetic-ground-state structure, but it overestimates the ordering temperature [ital T][sub [ital N

  3. Superhard BC(3) in cubic diamond structure.

    PubMed

    Zhang, Miao; Liu, Hanyu; Li, Quan; Gao, Bo; Wang, Yanchao; Li, Hongdong; Chen, Changfeng; Ma, Yanming

    2015-01-09

    We solve the crystal structure of recently synthesized cubic BC(3) using an unbiased swarm structure search, which identifies a highly symmetric BC(3) phase in the cubic diamond structure (d-BC(3)) that contains a distinct B-B bonding network along the body diagonals of a large 64-atom unit cell. Simulated x-ray diffraction and Raman peaks of d-BC(3) are in excellent agreement with experimental data. Calculated stress-strain relations of d-BC(3) demonstrate its intrinsic superhard nature and reveal intriguing sequential bond-breaking modes that produce superior ductility and extended elasticity, which are unique among superhard solids. The present results establish the first boron carbide in the cubic diamond structure with remarkable properties, and these new findings also provide insights for exploring other covalent solids with complex bonding configurations.

  4. Superhard BC 3 in cubic diamond structure

    DOE PAGES

    Zhang, Miao; Liu, Hanyu; Li, Quan; ...

    2015-01-06

    We solve the crystal structure of recently synthesized cubic BC 3 using an unbiased swarm structure search, which identifies a highly symmetric BC 3 phase in the cubic diamond structure (d–BC3) that contains a distinct B-B bonding network along the body diagonals of a large 64-atom unit cell. Simulated x-ray diffraction and Raman peaks of d–BC 3 are in excellent agreement with experimental data. Calculated stress-strain relations of d–BC 3 demonstrate its intrinsic superhard nature and reveal intriguing sequential bond-breaking modes that produce superior ductility and extended elasticity, which are unique among superhard solids. Here, the present results establish themore » first boron carbide in the cubic diamond structure with remarkable properties, and these new findings also provide insights for exploring other covalent solids with complex bonding configurations.« less

  5. Wurtzite/zinc-blende electronic-band alignment in basal-plane stacking faults in semi-polar GaN

    NASA Astrophysics Data System (ADS)

    Monavarian, Morteza; Hafiz, Shopan; Izyumskaya, Natalia; Das, Saikat; Özgür, Ümit; Morkoç, Hadis; Avrutin, Vitaliy

    2016-02-01

    Heteroepitaxial semipolar and nonpolar GaN layers often suffer from high densities of extended defects including basal plane stacking faults (BSFs). BSFs which are considered as inclusions of cubic zinc-blende phase in wurtzite matrix act as quantum wells strongly affecting device performance. Band alignment in BSFs has been discussed as type of band alignment at the wurtzite/zinc blende interface governs the response in differential transmission; fast decay after the pulse followed by slow recovery due to spatial splitting of electrons and heavy holes for type- II band alignment in contrast to decay with no recovery in case of type I band alignment. Based on the results, band alignment is demonstrated to be of type II in zinc-blende segments in wurtzite matrix as in BSFs.

  6. Use of Pom Pons to Illustrate Cubic Crystal Structures.

    ERIC Educational Resources Information Center

    Cady, Susan G.

    1997-01-01

    Describes a method that uses olefin pom pons to illustrate cubic crystal structure. Facilitates hands-on examination of different packing arrangements such as hexagonal close-packed and cubic close-packed structures. (JRH)

  7. Influence of Two-Photon Absorption Anisotropy on Terahertz Emission Through Optical Rectification in Zinc-Blende Crystals

    NASA Astrophysics Data System (ADS)

    Sanjuan, Federico; Gaborit, Gwenaël; Coutaz, Jean-Louis

    2018-04-01

    We report for the first time on the observation of an angular anisotropy of the THz signal generated by optical rectification in a < 111 > ZnTe crystal. This cubic (zinc-blende) crystal in the < 111 > orientation exhibits both transverse isotropy for optical effects involving the linear χ (1) and nonlinear χ (2) susceptibilities. Thus, the observed anisotropy can only be related to χ (3) effect, namely two-photon absorption, which leads to the photo-generation of free carriers that absorb the generated THz signal. Two-photon absorption in zinc-blende crystals is known to be due to a spin-orbit interaction between the valence and higher-conduction bands. We perform a couple of measurements that confirm our hypothesis, as well as we fit the recorded data with a simple model. This two-photon absorption effect makes difficult an efficient generation, through optical rectification in < 111 > zinc-blende crystals, of THz beams of any given polarization state by only monitoring the laser pump polarization.

  8. Mechanically controlling the reversible phase transformation from zinc blende to wurtzite in AlN

    DOE PAGES

    Li, Zhen; Yadav, Satyesh; Chen, Youxing; ...

    2017-04-10

    III–V and other binary octet semiconductors often take two phase forms—wurtzite (wz) and zinc blende (zb) crystal structures—with distinct functional performance at room temperature. Here, we investigate how to control the synthesized phase structure to either wz or zb phase by tuning the interfacial strain by taking AlN as a representative III–V compound. Furthermore, by applying in situ mechanical tests at atomic scale in a transmission electron microscope, we observed the reversible phase transformation from zb to wz, and characterized the transition path—the collective glide of Shockley partials on every two {111} planes of the zb AlN.

  9. Electron transport in zinc-blende wurtzite biphasic gallium nitride nanowires and GaNFETs

    DOE PAGES

    Jacobs, Benjamin W.; Ayres, Virginia M.; Stallcup, Richard E.; ...

    2007-10-19

    Two-point and four-point probe electrical measurements of a biphasic gallium nitride nanowire and current–voltage characteristics of a gallium nitride nanowire based field effect transistor are reported. The biphasic gallium nitride nanowires have a crystalline homostructure consisting of wurtzite and zinc-blende phases that grow simultaneously in the longitudinal direction. There is a sharp transition of one to a few atomic layers between each phase. Here, all measurements showed high current densities. Evidence of single-phase current transport in the biphasic nanowire structure is discussed.

  10. Competing nucleation of islands and nanopits in zinc-blend Ill-nitride quaternary material system

    NASA Astrophysics Data System (ADS)

    Gambaryan, K. M.; Aroutiounian, V. M.; Simonyan, A. K.; Yeranyan, L. S.

    2016-10-01

    The growth mechanism of quantum dots (QDs), nanopits and collaborative QDs- nanopits structures in GaN-InN-AlN material system is theoretically investigated using the continuum elasticity model. The islands energy versus their volume, as well as the critical energy and volume versus the island and wetting layer lattice constants relative mismatch ratio (strain s), are calculated. It is shown that when the zinc-blend GaN is used as a substrate and when the strain between the wetting layer and a substrate overcomes critical ε* = 0.039 value, instead of QDs nucleation, the formation of nanopits becomes energetically preferable. Revealed feature is critical and has to be taking into account at QDs engineering in GaInAlN material system.

  11. X-Ray Diffraction (XRD) Characterization Methods for Sigma=3 Twin Defects in Cubic Semiconductor (100) Wafers

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Kim, Hyun Jung (Inventor); Skuza, Jonathan R. (Inventor); Lee, Kunik (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor)

    2017-01-01

    An X-ray defraction (XRD) characterization method for sigma=3 twin defects in cubic semiconductor (100) wafers includes a concentration measurement method and a wafer mapping method for any cubic tetrahedral semiconductor wafers including GaAs (100) wafers and Si (100) wafers. The methods use the cubic semiconductor's (004) pole figure in order to detect sigma=3/{111} twin defects. The XRD methods are applicable to any (100) wafers of tetrahedral cubic semiconductors in the diamond structure (Si, Ge, C) and cubic zinc-blend structure (InP, InGaAs, CdTe, ZnSe, and so on) with various growth methods such as Liquid Encapsulated Czochralski (LEC) growth, Molecular Beam Epitaxy (MBE), Organometallic Vapor Phase Epitaxy (OMVPE), Czochralski growth and Metal Organic Chemical Vapor Deposition (MOCVD) growth.

  12. Topological Phase Transitions in Zinc-Blende Semimetals Driven Exclusively by Electronic Temperature

    NASA Astrophysics Data System (ADS)

    Trushin, Egor; Görling, Andreas

    2018-04-01

    We show that electronic phase transitions in zinc-blende semimetals with quadratic band touching (QBT) at the center of the Brillouin zone, like GaBi, InBi, or HgTe, can occur exclusively due to a change of the electronic temperature without the need to involve structural transformations or electron-phonon coupling. The commonly used Kohn-Sham density-functional methods based on local and semilocal density functionals employing the local density approximation (LDA) or generalized gradient approximations (GGAs), however, are not capable of describing such phenomena because they lack an intrinsic temperature dependence and account for temperature only via the occupation of bands, which essentially leads only to a shift of the Fermi level without changing the shape or topology of bands. Kohn-Sham methods using the exact temperature-dependent exchange potential, not to be confused with the Hartree-Fock exchange potential, on the other hand, describe such phase transitions. A simple modeling of correlation effects can be achieved by screening of the exchange. In the considered zinc-blende compounds the QBT is unstable at low temperatures and a transition to electronic states without QBT takes place. In the case of HgTe and GaBi Weyl points of type I and type II, respectively, emerge during the transitions. This demonstrates that Kohn-Sham methods can describe such topological phase transitions provided they are based on functionals more accurate than those within the LDA or GGA. Moreover, the electronic temperature is identified as a handle to tune topological materials.

  13. Topological Oxide Insulator in Cubic Perovskite Structure

    PubMed Central

    Jin, Hosub; Rhim, Sonny H.; Im, Jino; Freeman, Arthur J.

    2013-01-01

    The emergence of topologically protected conducting states with the chiral spin texture is the most prominent feature at the surface of topological insulators. On the application side, large band gap and high resistivity to distinguish surface from bulk degrees of freedom should be guaranteed for the full usage of the surface states. Here, we suggest that the oxide cubic perovskite YBiO3, more than just an oxide, defines itself as a new three-dimensional topological insulator exhibiting both a large bulk band gap and a high resistivity. Based on first-principles calculations varying the spin-orbit coupling strength, the non-trivial band topology of YBiO3 is investigated, where the spin-orbit coupling of the Bi 6p orbital plays a crucial role. Taking the exquisite synthesis techniques in oxide electronics into account, YBiO3 can also be used to provide various interface configurations hosting exotic topological phenomena combined with other quantum phases. PMID:23575973

  14. Single-crystalline cubic structured InP nanosprings

    NASA Astrophysics Data System (ADS)

    Shen, G. Z.; Bando, Y.; Zhi, C. Y.; Yuan, X. L.; Sekiguchi, T.; Golberg, D.

    2006-06-01

    Cubic structured nanosprings, InP nanosprings, have been synthesized via a simple thermochemical process using InP and ZnS as the source materials. Each InP nanospring is formed by rolling up a single InP nanobelt with the growth direction along the ⟨111⟩ orientation. The formation of these novel nanostructures is mainly attributed to the minimization of the electrostatic energy due to the polar charges on the ±(002) side surfaces of cubic InP. Cathodoluminescence properties were also studied, which reveal that the InP nanosprings have three emission bands centered at ˜736, ˜920, and ˜980nm.

  15. Hole-mediated stabilization of cubic GaN.

    PubMed

    Dalpian, Gustavo M; Wei, Su-Huai

    2004-11-19

    We propose here a new approach to stabilize the cubic zinc-blende (ZB) phase by incorporation of impurities into a compound that has a hexagonal wurtzite (WZ) ground state. For GaN, we suggest that this can be achieved by adding 3d acceptors such as Zn, Mn, or Cu because the p-d repulsion between the 3d impurity levels and the valence band maximum is larger in the ZB phase than in the WZ phase. This makes the top of the valence states of the ZB structure higher than that of the WZ structure. As holes are created at the top of the valence states by the impurities, it will cost less energy for the holes to be created in the ZB structure, thus stabilizing this phase. Our first-principles total energy calculations confirm this novel idea.

  16. Nanoparticle Phosphors Manufactured Using the Bicontinuous Cubic Phase Process

    DTIC Science & Technology

    1997-11-18

    due to the recent interest in developing emissive 13 flat panel displays, e.g. full-color low-voltage field eminer displays (FEDs), large area plasma...it was determined that the nanoparticles were 5 monocrystalline with a zinc-blende cubic lattice. 6 7 Example 2 - Photoluminescence studies 8

  17. Molecular Beam Epitaxial Growth of Iron Nitrides on Zinc-Blende Gallium Nitride(001)

    NASA Astrophysics Data System (ADS)

    Pak, Jeongihm; Lin, Wenzhi; Chinchore, Abhijit; Wang, Kangkang; Smith, Arthur R.

    2008-03-01

    Iron nitrides are attractive materials for their high magnetic moments, corrosion, and oxidation resistance. We present the successful epitaxial growth of iron nitride on zinc-blende gallium nitride (c-GaN) in order to develop a novel magnetic transition metal nitride/semiconductor system. First, GaN is grown on magnesium oxide (MgO) substrates having (001) orientation using rf N2-plasma molecular beam epitaxy. Then we grow FeN at substrate temperature of ˜ 210 ^oC up to a thickness of ˜ 10.5 nm. In-situ reflection high-energy electron diffraction (RHEED) is used to monitor the surface during growth. Initial results suggest that the epitaxial relationship is FeN[001] || GaN[001] and FeN[100] || GaN[100]. Work in progress is to investigate the surface using in-situ scanning tunneling microscopy (STM) to reveal the surface structure at atomic scale, as well as to explore more Fe-rich magnetic phases.

  18. Mechanical, Thermodynamic and Electronic Properties of Wurtzite and Zinc-Blende GaN Crystals.

    PubMed

    Qin, Hongbo; Luan, Xinghe; Feng, Chuang; Yang, Daoguo; Zhang, Guoqi

    2017-12-12

    For the limitation of experimental methods in crystal characterization, in this study, the mechanical, thermodynamic and electronic properties of wurtzite and zinc-blende GaN crystals were investigated by first-principles calculations based on density functional theory. Firstly, bulk moduli, shear moduli, elastic moduli and Poisson's ratios of the two GaN polycrystals were calculated using Voigt and Hill approximations, and the results show wurtzite GaN has larger shear and elastic moduli and exhibits more obvious brittleness. Moreover, both wurtzite and zinc-blende GaN monocrystals present obvious mechanical anisotropic behavior. For wurtzite GaN monocrystal, the maximum and minimum elastic moduli are located at orientations [001] and <111>, respectively, while they are in the orientations <111> and <100> for zinc-blende GaN monocrystal, respectively. Compared to the elastic modulus, the shear moduli of the two GaN monocrystals have completely opposite direction dependences. However, different from elastic and shear moduli, the bulk moduli of the two monocrystals are nearly isotropic, especially for the zinc-blende GaN. Besides, in the wurtzite GaN, Poisson's ratios at the planes containing [001] axis are anisotropic, and the maximum value is 0.31 which is located at the directions vertical to [001] axis. For zinc-blende GaN, Poisson's ratios at planes (100) and (111) are isotropic, while the Poisson's ratio at plane (110) exhibits dramatically anisotropic phenomenon. Additionally, the calculated Debye temperatures of wurtzite and zinc-blende GaN are 641.8 and 620.2 K, respectively. At 300 K, the calculated heat capacities of wurtzite and zinc-blende are 33.6 and 33.5 J mol -1 K -1 , respectively. Finally, the band gap is located at the G point for the two crystals, and the band gaps of wurtzite and zinc-blende GaN are 3.62 eV and 3.06 eV, respectively. At the G point, the lowest energy of conduction band in the wurtzite GaN is larger, resulting in a wider band

  19. Mechanical, Thermodynamic and Electronic Properties of Wurtzite and Zinc-Blende GaN Crystals

    PubMed Central

    Luan, Xinghe; Feng, Chuang; Yang, Daoguo; Zhang, Guoqi

    2017-01-01

    For the limitation of experimental methods in crystal characterization, in this study, the mechanical, thermodynamic and electronic properties of wurtzite and zinc-blende GaN crystals were investigated by first-principles calculations based on density functional theory. Firstly, bulk moduli, shear moduli, elastic moduli and Poisson’s ratios of the two GaN polycrystals were calculated using Voigt and Hill approximations, and the results show wurtzite GaN has larger shear and elastic moduli and exhibits more obvious brittleness. Moreover, both wurtzite and zinc-blende GaN monocrystals present obvious mechanical anisotropic behavior. For wurtzite GaN monocrystal, the maximum and minimum elastic moduli are located at orientations [001] and <111>, respectively, while they are in the orientations <111> and <100> for zinc-blende GaN monocrystal, respectively. Compared to the elastic modulus, the shear moduli of the two GaN monocrystals have completely opposite direction dependences. However, different from elastic and shear moduli, the bulk moduli of the two monocrystals are nearly isotropic, especially for the zinc-blende GaN. Besides, in the wurtzite GaN, Poisson’s ratios at the planes containing [001] axis are anisotropic, and the maximum value is 0.31 which is located at the directions vertical to [001] axis. For zinc-blende GaN, Poisson’s ratios at planes (100) and (111) are isotropic, while the Poisson’s ratio at plane (110) exhibits dramatically anisotropic phenomenon. Additionally, the calculated Debye temperatures of wurtzite and zinc-blende GaN are 641.8 and 620.2 K, respectively. At 300 K, the calculated heat capacities of wurtzite and zinc-blende are 33.6 and 33.5 J mol−1 K−1, respectively. Finally, the band gap is located at the G point for the two crystals, and the band gaps of wurtzite and zinc-blende GaN are 3.62 eV and 3.06 eV, respectively. At the G point, the lowest energy of conduction band in the wurtzite GaN is larger, resulting in a

  20. A cubic extended interior penalty function for structural optimization

    NASA Technical Reports Server (NTRS)

    Prasad, B.; Haftka, R. T.

    1979-01-01

    This paper describes an optimization procedure for the minimum weight design of complex structures. The procedure is based on a new cubic extended interior penalty function (CEIPF) used with the sequence of unconstrained minimization technique (SUMT) and Newton's method. The Hessian matrix of the penalty function is approximated using only constraints and their derivatives. The CEIPF is designed to minimize the error in the approximation of the Hessian matrix, and as a result the number of structural analyses required is small and independent of the number of design variables. Three example problems are reported. The number of structural analyses is reduced by as much as 50 per cent below previously reported results.

  1. Topological Characterization of Carbon Graphite and Crystal Cubic Carbon Structures.

    PubMed

    Siddiqui, Wei Gao Muhammad Kamran; Naeem, Muhammad; Rehman, Najma Abdul

    2017-09-07

    Graph theory is used for modeling, designing, analysis and understanding chemical structures or chemical networks and their properties. The molecular graph is a graph consisting of atoms called vertices and the chemical bond between atoms called edges. In this article, we study the chemical graphs of carbon graphite and crystal structure of cubic carbon. Moreover, we compute and give closed formulas of degree based additive topological indices, namely hyper-Zagreb index, first multiple and second multiple Zagreb indices, and first and second Zagreb polynomials.

  2. Atomistic Interface Dynamics in Sn-Catalyzed Growth of Wurtzite and Zinc-Blende ZnO Nanowires.

    PubMed

    Jia, Shuangfeng; Hu, Shuaishuai; Zheng, He; Wei, Yanjie; Meng, Shuang; Sheng, Huaping; Liu, Huihui; Zhou, Siyuan; Zhao, Dongshan; Wang, Jianbo

    2018-06-11

    Unraveling the phase selection mechanisms of semiconductor nanowires (NWs) is critical for the applications in future advanced nanodevices. In this study, the atomistic vapor-solid-liquid growth processes of Sn-catalyzed wurtzite (WZ) and zinc blende (ZB) ZnO are directly revealed based on the in situ transmission electron microscopy. The growth kinetics of WZ and ZB crystal phases in ZnO appear markedly different in terms of the NW-droplet interface, whereas the nucleation site as determined by the contact angle ϕ between the seed particle and the NW is found to be crucial for tuning the NW structure through combined experimental and theoretical investigations. These results offer an atomic-scale view into the dynamic growth process of ZnO NW, which has implications for the phase-controllable synthesis of II-VI compounds and heterostructures with tunable band structures.

  3. Zinc-blende to rocksalt transition in SiC in a laser-heated diamond-anvil cell

    SciTech Connect

    Daviau, Kierstin; Lee, Kanani K. M.

    2017-04-18

    We explore the stability of the ambient pressure zinc-blende polymorph (B3) structure of silicon carbide (SiC) at high pressures and temperatures where it transforms to the rocksalt (B1) structure. We find that the transition occurs ~40 GPa lower than previously measured when heated to moderately high temperatures. A lower transition pressure is consistent with the transition pressures predicted in numerous ab initio computations. We find a large volume decrease across the transition of ~17%, with the volume drop increasing at higher formation pressures, suggesting this transition is volume driven yielding a nearly pressure-independent Clapeyron slope. Such a dramatic density increasemore » occurring at pressure is important to consider in applications where SiC is exposed to extreme conditions, such as in industrial applications or planetary interiors.« less

  4. Electronic and Magnetic Properties of Ni-Doped Zinc-Blende ZnO: A First-Principles Study.

    PubMed

    Xue, Suqin; Zhang, Fuchun; Zhang, Shuili; Wang, Xiaoyang; Shao, Tingting

    2018-04-26

    The electronic structure, band structure, density of state, and magnetic properties of Ni-doped zinc-blende (ZB) ZnO are studied by using the first-principles method based on the spin-polarized density-functional theory. The calculated results show that Ni atoms can induce a stable ferromagnetic (FM) ground state in Ni-doped ZB ZnO. The magnetic moments mainly originate from the unpaired Ni 3 d orbitals, and the O 2 p orbitals contribute a little to the magnetic moments. The magnetic moment of a supercell including a single Ni atom is 0.79 μ B . The electronic structure shows that Ni-doped ZB ZnO is a half-metallic FM material. The strong spin-orbit coupling appears near the Fermi level and shows obvious asymmetry for spin-up and spin-down density of state, which indicates a significant hybrid effects from the Ni 3 d and O 2 p states. However, the coupling of the anti-ferromagnetic (AFM) state show metallic characteristic, the spin-up and spin-down energy levels pass through the Fermi surface. The magnetic moment of a single Ni atom is 0.74 μ B . Moreover, the results show that the Ni 3 d and O 2 p states have a strong p - d hybridization effect near the Fermi level and obtain a high stability. The above theoretical results demonstrate that Ni-doped zinc blende ZnO can be considered as a potential half-metal FM material and dilute magnetic semiconductors.

  5. Interfaces between hexagonal and cubic oxides and their structure alternatives

    DOE PAGES

    Zhou, Hua; Wu, Lijun; Wang, Hui-Qiong; ...

    2017-11-14

    Multi-layer structure of functional materials often involves the integration of different crystalline phases. The film growth orientation thus frequently exhibits a transformation, owing to multiple possibilities caused by incompatible in-plane structural symmetry. Nevertheless, the detailed mechanism of the transformation has not yet been fully explored. Here we thoroughly probe the heteroepitaxially grown hexagonal zinc oxide (ZnO) films on cubic (001)-magnesium oxide (MgO) substrates using advanced scanning transition electron microscopy, X-ray diffraction and first principles calculations, revealing two distinct interface models of (001) ZnO/(001) MgO and (100) ZnO/(001) MgO. Here we have found that the structure alternatives are controlled thermodynamically bymore » the nucleation, while kinetically by the enhanced Zn adsorption and O diffusion upon the phase transformation. Finally, this work not only provides a guideline for the interface fabrication with distinct crystalline phases but also shows how polar and non-polar hexagonal ZnO films might be manipulated on the same cubic substrate.« less

  6. Structural building principles of complex face-centered cubic intermetallics.

    PubMed

    Dshemuchadse, Julia; Jung, Daniel Y; Steurer, Walter

    2011-08-01

    Fundamental structural building principles are discussed for all 56 known intermetallic phases with approximately 400 or more atoms per unit cell and space-group symmetry F43m, Fd3m, Fd3, Fm3m or Fm3c. Despite fundamental differences in chemical composition, bonding and electronic band structure, their complex crystal structures show striking similarities indicating common building principles. We demonstrate that the structure-determining elements are flat and puckered atomic {110} layers stacked with periodicities 2p. The atoms on this set of layers, which intersect each other, form pentagon face-sharing endohedral fullerene-like clusters arranged in a face-centered cubic packing (f.c.c.). Due to their topological layer structure, all these crystal structures can be described as (p × p × p) = p(3)-fold superstructures of a common basic structure of the double-diamond type. The parameter p, with p = 3, 4, 7 or 11, is determined by the number of layers per repeat unit and the type of cluster packing, which in turn are controlled by chemical composition.

  7. Growth and stress-induced transformation of zinc blende AlN layers in Al-AlN-TiN multilayers

    DOE PAGES

    Li, Nan; Yadav, Satyesh K.; Wang, Jian; ...

    2015-12-18

    We report that AlN nanolayers in sputter deposited {111}Al/AlN/TiN multilayers exhibit the metastable zinc-blende-structure (z-AlN). Based on density function theory calculations, the growth of the z-AlN is ascribed to the kinetically and energetically favored nitridation of the deposited aluminium layer. In situ nanoindentation of the as-deposited {111}Al/AlN/TiN multilayers in a high-resolution transmission electron microscope revealed the z-AlN to wurzite AlN phase transformation through collective glide of Shockley partial dislocations on every two {111} planes of the z-AlN.

  8. Excitonic complexes in single zinc-blende GaN/AlN quantum dots grown by droplet epitaxy

    SciTech Connect

    Sergent, S.; Kako, S.; Bürger, M.

    2014-10-06

    We study by microphotoluminescence the optical properties of single zinc-blende GaN/AlN quantum dots grown by droplet epitaxy. We show evidences of both excitonic and multiexcitonic recombinations in individual quantum dots with radiative lifetimes shorter than 287 ± 8 ps. Owing to large band offsets and a large exciton binding energy, the excitonic recombinations of single zinc-blende GaN/AlN quantum dots can be observed up to 300 K.

  9. New cubic structure compounds as actinide host phases

    NASA Astrophysics Data System (ADS)

    Stefanovsky, S. V.; Yudintsev, S. V.; Livshits, T. S.

    2010-03-01

    Various compounds with fluorite (cubic zirconia) and fluorite-derived (pyrochlore, zirconolite) structures are considered as promising actinide host phases at immobilization of actinide-bearing nuclear wastes. Recently some new cubic compounds — stannate and stannate-zirconate pyrochlores, murataite and related phases, and actinide-bearing garnet structure compounds were proposed as perspective matrices for complex actinide wastes. Zirconate pyrochlore (ideally Gd2Zr2O7) has excellent radiation resistance and high chemical durability but requires high temperatures (at least 1500 °C) to be produced by hot-pressing from sol-gel derived precursor. Partial Sn4+ substitution for Zr4+ reduces production temperature and the compounds REE2ZrSnO7 may be hot-pressed or cold pressed and sintered at ~1400 °C. Pyrochlore, A2B2O7-x (two-fold elementary fluorite unit cell), and murataite, A3B6C2O20-y (three-fold fluorite unit cell), are end-members of the polysomatic series consisting of the phases whose structures are built from alternating pyrochlore and murataite blocks (nano-sized modules) with seven- (2C/3C/2C), five- (2C/3C), eight- (3C/2C/3C) and three-fold (3C — murataite) fluorite unit cells. Actinide content in this series reduces in the row: 2C (pyrochlore) > 7C > 5C > 8C > 3C (murataite). Due to congruent melting murataite-based ceramics may be produced by melting and the firstly segregated phase at melt crystallization is that with the highest fraction of the pyrochlore modules in its structure. The melts containing up to 10 wt. % AnO2 (An = Th, U, Np, Pu) or REE/An fraction of HLW form at crystallization zoned grains composed sequentially of the 5C → 8C → 3C phases with the highest actinide concentration in the core and the lowest — in the rim of the grains. Radiation resistance of the "murataite" is comparable to titanate pyrochlores. One more promising actinide hosts are ferrites with garnet structure. The matrices containing sometime complex fluorite

  10. Structure of turbulent flow over regular arrays of cubical roughness

    NASA Astrophysics Data System (ADS)

    Coceal, O.; Dobre, A.; Thomas, T. G.; Belcher, S. E.

    The structure of turbulent flow over large roughness consisting of regular arrays of cubical obstacles is investigated numerically under constant pressure gradient conditions. Results are analysed in terms of first- and second-order statistics, by visualization of instantaneous flow fields and by conditional averaging. The accuracy of the simulations is established by detailed comparisons of first- and second-order statistics with wind-tunnel measurements. Coherent structures in the log region are investigated. Structure angles are computed from two-point correlations, and quadrant analysis is performed to determine the relative importance of Q2 and Q4 events (ejections and sweeps) as a function of height above the roughness. Flow visualization shows the existence of low-momentum regions (LMRs) as well as vortical structures throughout the log layer. Filtering techniques are used to reveal instantaneous examples of the association of the vortices with the LMRs, and linear stochastic estimation and conditional averaging are employed to deduce their statistical properties. The conditional averaging results reveal the presence of LMRs and regions of Q2 and Q4 events that appear to be associated with hairpin-like vortices, but a quantitative correspondence between the sizes of the vortices and those of the LMRs is difficult to establish; a simple estimate of the ratio of the vortex width to the LMR width gives a value that is several times larger than the corresponding ratio over smooth walls. The shape and inclination of the vortices and their spatial organization are compared to recent findings over smooth walls. Characteristic length scales are shown to scale linearly with height in the log region. Whilst there are striking qualitative similarities with smooth walls, there are also important differences in detail regarding: (i) structure angles and sizes and their dependence on distance from the rough surface; (ii) the flow structure close to the roughness; (iii

  11. Deformation-induced structural transition in body-centred cubic molybdenum

    PubMed Central

    Wang, S. J.; Wang, H.; Du, K.; Zhang, W.; Sui, M. L.; Mao, S. X.

    2014-01-01

    Molybdenum is a refractory metal that is stable in a body-centred cubic structure at all temperatures before melting. Plastic deformation via structural transitions has never been reported for pure molybdenum, while transformation coupled with plasticity is well known for many alloys and ceramics. Here we demonstrate a structural transformation accompanied by shear deformation from an original <001>-oriented body-centred cubic structure to a <110>-oriented face-centred cubic lattice, captured at crack tips during the straining of molybdenum inside a transmission electron microscope at room temperature. The face-centred cubic domains then revert into <111>-oriented body-centred cubic domains, equivalent to a lattice rotation of 54.7°, and ~15.4% tensile strain is reached. The face-centred cubic structure appears to be a well-defined metastable state, as evidenced by scanning transmission electron microscopy and nanodiffraction, the Nishiyama–Wassermann and Kurdjumov–Sachs relationships between the face-centred cubic and body-centred cubic structures and molecular dynamics simulations. Our findings reveal a deformation mechanism for elemental metals under high-stress deformation conditions. PMID:24603655

  12. AES and LEED study of the zinc blende SiC(100) surface

    NASA Technical Reports Server (NTRS)

    Dayan, M.

    1985-01-01

    Auger and LEED measurements have been carried out on the (100) surface of zinc blende SiC. Two different phases of the clean surface, in addition to two kinds of oxygen-covered surfaces, have been obtained, identified, and discussed. In the oxygen-covered surface, the oxygen is bonded to the Si. The carbon-rich phase is reconstructed (2 x 1), similar to the (100) clean surfaces of Si, Ge, and diamond. The Si-topped surface is reconstructed. A model of alternating Si dimers is suggested for this surface.

  13. All zinc-blende GaAs/(Ga,Mn)As core-shell nanowires with ferromagnetic ordering.

    PubMed

    Yu, Xuezhe; Wang, Hailong; Pan, Dong; Zhao, Jianhua; Misuraca, Jennifer; von Molnár, Stephan; Xiong, Peng

    2013-04-10

    Combining self-catalyzed vapor-liquid-solid growth of GaAs nanowires and low-temperature molecular-beam epitaxy of (Ga,Mn)As, we successfully synthesized all zinc-blende (ZB) GaAs/(Ga,Mn)As core-shell nanowires on Si(111) substrates. The ZB GaAs nanowire cores are first fabricated at high temperature by utilizing the Ga droplets as the catalyst and controlling the triple phase line nucleation, then the (Ga,Mn)As shells are epitaxially grown on the side facets of the GaAs core at low temperature. The growth window for the pure phase GaAs/(Ga,Mn)As core-shell nanowires is found to be very narrow. Both high-resolution transmission electron microscopy and scanning electron microscopy observations confirm that all-ZB GaAs/(Ga,Mn)As core-shell nanowires with smooth side surface are obtained when the Mn concentration is not more than 2% and the growth temperature is 245 °C or below. Magnetic measurements with different applied field directions provide strong evidence for ferromagnetic ordering in the all-ZB GaAs/(Ga,Mn)As nanowires. The hybrid nanowires offer an attractive platform to explore spin transport and device concepts in fully epitaxial all-semiconductor nanospintronic structures.

  14. An Easily Constructed Model of a Coordination Polyhedron that Represents the Cubic Closest-Packed Structure.

    ERIC Educational Resources Information Center

    Yamana, Shukichi

    1987-01-01

    Illustrates the 18 steps to the development of a model of a coordination polyhedron that represents the cubic closest-packed structure. Uses a sealed, empty envelope in developing the model in teaching about stereochemistry. (TW)

  15. Use of the Primitive Unit Cell in Understanding Subtle Features of the Cubic Closest-Packed Structure

    ERIC Educational Resources Information Center

    Hawkins, John A.; Rittenhouse, Jeffrey L.; Soper, Linda M.; Rittenhouse, Robert C.

    2008-01-01

    One of the most important crystal structures adopted by metals is characterized by the "abcabc"...stacking of close-packed layers. This structure is commonly referred to in textbooks as the cubic close-packed (ccp) or face-centered cubic (fcc) structure, since the entire lattice can be generated by replication of a face-centered cubic unit cell…

  16. Droplet heteroepitaxy of zinc-blende vs. wurtzite GaN quantum dots

    NASA Astrophysics Data System (ADS)

    Reese, C.; Jeon, S.; Hill, T.; Jones, C.; Shusterman, S.; Yacoby, Y.; Clarke, R.; Deng, H.; Goldman, Rs

    We have developed a GaN droplet heteroepitaxy process based upon plasma-assisted molecular-beam epitaxy. Using various surface treatments and Ga deposition parameters, we have demonstrated polycrystalline, zinc-blende (ZB), and wurtzite (WZ) GaN quantum dots (QDs) on Si(001), r-Al2O3, Si(111), and c-GaN substrates. For the polar substrates (i.e. Si(111) and c-GaN), high-resolution transmission electron microscopy and coherent Bragg rod analysis reveals the formation of coherent WZ GaN QDs with nitridation-temperature-dependent sizes and densities. For the non-polar substrates (i.e. Si(001) and r-Al2O3) , QDs with strong near-band photoluminescence emission are observed and ZB GaN QD growth on Si(001) is demonstrated for the first time.

  17. Efficient n-type doping of zinc-blende III-V semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Besteiro, Lucas V.; Tortajada, Luis; Souto, J.; Gallego, L. J.; Chelikowsky, James R.; Alemany, M. M. G.

    2014-03-01

    We demonstrate that it is preferable to dope III-V semiconductor nanowires by n-type anion substitution as opposed to cation substitution. Specifically, we show the dopability of zinc-blende nanowires is more efficient when the dopants are placed at the anion site as quantified by formation energies and the stabilization of DX-like defect centers. The comparison with previous work on n - type III-V semiconductor nanocrystals also allows to determine the role of dimensionality and quantum confinement on doping characteristics of materials. Our results are based on first-principles calculations of InP nanowires by using the PARSEC code. Work supported by the Spanish MICINN (FIS2012-33126) and Xunta de Galicia (GPC2013-043) in conjunction with FEDER. JRC acknowledges support from DoE (DE-FG02-06ER46286 and DESC0008877). Computational support was provided in part by CESGA.

  18. Local and electronic structure around manganese in Cd0.98Mn0.02Te0.97Se0.03 studied by XAFS

    NASA Astrophysics Data System (ADS)

    Radisavljević, I.; Novaković, N.; Romčević, N.; Ivanović, N.

    2013-04-01

    X-ray Absorption Fine Structure (XAFS) technique was employed to study local electronic and structural features of Mn ions incorporated in Cd0.98Mn0.02Te0.97Se0.03. XAFS measurements performed at Mn K edge revealed that manganese Mn(II) ions are well incorporated into the host CdTe lattice (cubic zinc-blende structure type) and their immediate surrounding is found to be composed exclusively of Te atoms. The observed preference of Mn ions distribution around Te opposes earlier observations on the similar systems, where preferential Mn-Se over Mn-Te paring was found.

  19. The stability and half-metallicity of (001) surface and (001) interface based on zinc blende MnAs

    NASA Astrophysics Data System (ADS)

    Han, Hongpei; Feng, Tuanhui; Zhang, Chunli; Feng, Zhibo; Li, Ming; Yao, K. L.

    2018-06-01

    Motivated by the growth of MnAs/GaAs thin films in many experimental researches, we investigate the electronic and magnetic properties of bulk, (001) surfaces and (001) interfaces for zinc blende MnAs by means of first-principle calculations. It is confirmed that zinc blende MnAs is a nearly half-metallic ferromagnet with 4.00 μB magnetic moment. The calculated density of states show that the half-metallicity exists in As-terminated (001) surface while it is lost in Mn-terminated (001) surface. For the (001) interfaces of MnAs with semiconductor GaAs, it is found that As-Ga and Mn-As interfaces not only have higher spin polarization but also are more stable among the four considered interfaces. Our results would be helpful to grow stable and high polarized thin films or multilayers for the practical applications of spintronic devices.

  20. On the structure of critical energy levels for the cubic focusing NLS on star graphs

    NASA Astrophysics Data System (ADS)

    Adami, Riccardo; Cacciapuoti, Claudio; Finco, Domenico; Noja, Diego

    2012-05-01

    We provide information on a non-trivial structure of phase space of the cubic nonlinear Schrödinger (NLS) on a three-edge star graph. We prove that, in contrast to the case of the standard NLS on the line, the energy associated with the cubic focusing Schrödinger equation on the three-edge star graph with a free (Kirchhoff) vertex does not attain a minimum value on any sphere of constant L2-norm. We moreover show that the only stationary state with prescribed L2-norm is indeed a saddle point.

  1. Synthesis of ordered mesoporous carbon monoliths with bicontinuous cubic pore structure of Ia3d symmetry.

    PubMed

    Yang, Haifeng; Shi, Qihui; Liu, Xiaoying; Xie, Songhai; Jiang, Decheng; Zhang, Fuqiang; Yu, Chengzhong; Tu, Bo; Zhao, Dongyuan

    2002-12-07

    Large-diameter-sized mesoporous carbon monoliths with bicontinuous cubic structure of Ia3d symmetry have been synthesized by using mesoporous silica monoliths as hard templates; such carbon monoliths show potential application of advanced electrodes and electrochemical double layer capacitors.

  2. Ab-initio Electronic, Transport and Related Properties of Zinc Blende Boron Arsenide (zb-BAs)

    NASA Astrophysics Data System (ADS)

    Nwigboji, Ifeanyi H.; Malozovsky, Yuriy; Bagayoko, Diola

    We present results from ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport, and bulk properties of zinc blende boron arsenide (zb-BAs). We utilized a local density approximation (LDA) potential and the linear combination of atomic orbital (LCAO) formalism. Our computational technique follows the Bagayoko, Zhao, and Williams method, as enhanced by Ekuma and Franklin. Our results include electronic energy bands, densities of states, and effective masses. We explain the agreement between these findings, including the indirect band gap, and available, corresponding, experimental ones. This work confirms the capability of DFT to describe accurately properties of materials, provided the computations adhere to the conditions of validity of DFT [AIP Advances, 4, 127104 (2014)]. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE- NA0002630), LaSPACE, and LONI-SUBR.

  3. Calculated electronic, transport, and related properties of zinc blende boron arsenide (zb-BAs)

    NASA Astrophysics Data System (ADS)

    Nwigboji, Ifeanyi H.; Malozovsky, Yuriy; Franklin, Lashounda; Bagayoko, Diola

    2016-10-01

    We present the results from ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport, and bulk properties of zinc blende boron arsenide. We utilized the local density approximation potential of Ceperley and Alder, as parameterized by Vosko and his group, the linear combination of Gaussian orbitals formalism, and the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), in carrying out our completely self-consistent calculations. With this method, the results of our calculations have the full, physical content of density functional theory (DFT). Our results include electronic energy bands, densities of states, effective masses, and the bulk modulus. Our calculated, indirect band gap of 1.48 eV, from Γ to a conduction band minimum close to X, for the room temperature lattice constant of 4.777 Å, is in an excellent agreement with the experimental value of 1.46 ± 0.02 eV. We thoroughly explain the reasons for the excellent agreement between our findings and corresponding, experimental ones. This work provides a confirmation of the capability of DFT to describe accurately properties of materials, if the computations adhere strictly to the conditions of validity of DFT, as done by the BZW-EF method.

  4. Calculated electronic, transport, and related properties of zinc blende boron arsenide (zb-BAs)

    DOE PAGES

    Nwigboji, Ifeanyi H.; Malozovsky, Yuriy; Franklin, Lashounda; ...

    2016-10-11

    Here, we present the results from ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport, and bulk properties of zinc blende boron arsenide. We utilized the local density approximation potential of Ceperley and Alder, as parameterized by Vosko and his group, the linear combination of Gaussian orbitals formalism, and the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), in carrying out our completely self-consistent calculations. With this method, the results of our calculations have the full, physical content of density functional theory (DFT). Our results include electronic energy bands, densities of states, effective masses,more » and the bulk modulus. Our calculated, indirect band gap of 1.48 eV, from C to a conduction band minimum close to X, for the room temperature lattice constant of 4.777 Å, is in an excellent agreement with the experimental value of 1.46 6 0.02 eV. We thor-oughly explain the reasons for the excellent agreement between our findings and corresponding, experimental ones. This work provides a confirmation of the capability of DFT to describe accu-rately properties of materials, provides a confirmation of the capability of DFT to describe accu-rately properties of materials, if the computations adhere strictly to the conditions of validity of DFT, as done by the BZW-EF method.« less

  5. Direct Visualisation of the Structural Transformation between the Lyotropic Liquid Crystalline Lamellar and Bicontinuous Cubic Mesophase.

    PubMed

    Tran, Nhiem; Zhai, Jiali; Conn, Charlotte E; Mulet, Xavier; Waddington, Lynne J; Drummond, Calum J

    2018-05-29

    The transition between the lyotropic liquid crystalline lamellar and the bicontinuous cubic mesophase drives multiple fundamental cellular processes involving changes in cell membrane topology including endocytosis and membrane budding. While several theoretical models have been proposed to explain this dynamic transformation, experimental validation of these models has been challenging due to the short lived nature of the intermediates present during the phase transition. Herein, we report the direct observation of a lamellar to bicontinuous cubic phase transition in nanoscale dispersions using a combination of cryogenic transmission electron microscopy and static small angle X-ray scattering. The results represent the first experimental confirmation of a theoretical model which proposed that the bicontinuous cubic phase originates from the centre of a lamellar vesicle, then propagates outward via the formation of inter-lamellar attachments and stalks. The observation was possible due to the precise control of the lipid composition to place the dispersion systems at the phase boundary of a lamellar and a cubic phase, allowing for the creation of long-lived structural intermediates. By surveying the nanoparticles using cryogenic transmission electron microscopy, a complete phase transition sequence was established.

  6. Spin-orbit coupling effects in zinc-blende InSb and wurtzite InAs nanowires: Realistic calculations with multiband k .p method

    NASA Astrophysics Data System (ADS)

    Campos, Tiago; Faria Junior, Paulo E.; Gmitra, Martin; Sipahi, Guilherme M.; Fabian, Jaroslav

    2018-06-01

    A systematic numerical investigation of spin-orbit fields in the conduction bands of III-V semiconductor nanowires is performed. Zinc-blende (ZB) InSb nanowires are considered along [001], [011], and [111] directions, while wurtzite (WZ) InAs nanowires are studied along [0001] and [10 1 ¯0 ] or [11 2 ¯0 ] directions. Robust multiband k .p Hamiltonians are solved by using plane-wave expansions of real-space parameters. In all cases, the linear and cubic spin-orbit coupling parameters are extracted for nanowire widths from 30 to 100 nm. Typical spin-orbit energies are on the μ eV scale, except for WZ InAs nanowires grown along [10 1 ¯0 ] or [11 2 ¯0 ] , in which the spin-orbit energy is about meV, largely independent of the wire diameter. Significant spin-orbit coupling is obtained by applying a transverse electric field, causing the Rashba effect. For an electric field of about 4 mV/nm, the obtained spin-orbit energies are about 1 meV for both materials in all investigated growth directions. The most favorable system, in which the spin-orbit effects are maximal, are WZ InAs nanowires grown along [1010] or [11 2 ¯0 ] since here spin-orbit energies are giant (meV) already in the absence of electric field. The least favorable are InAs WZ nanowires grown along [0001] since here even the electric field does not increase the spin-orbit energies beyond 0.1 meV. The presented results should be useful for investigations of optical orientation, spin transport, weak localization, and superconducting proximity effects in semiconductor nanowires.

  7. Rietveld analysis of the cubic crystal structure of Na-stabilized zirconia

    SciTech Connect

    Fagherazzi, G.; Canton, P.; Benedetti, A.

    Using x-ray Rietveld analysis the fcc (fluorite-type) structure of a Na-containing nanocrystalline zirconia powder (9.5 nm estimated of crystallite size) obtained by precipitation and subsequent calcination has been confirmed. The result shows that using conventional x-ray diffraction techniques the cubic crystallographic form of ZrO{sub 2} from the tetragonal one in nanosized powders. These conclusions are supported by the findings of independent Raman scattering experiments. {copyright} {ital 1997 Materials Research Society.}

  8. Engineering the electronic band structures of novel cubic structured germanium monochalcogenides for thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Ul Haq, Bakhtiar; AlFaify, S.; Ahmed, R.; Butt, Faheem K.; Laref, A.; Goumri-Said, Souraya; Tahir, S. A.

    2018-05-01

    Germanium mono-chalcogenides have received considerable attention for being a promising replacement for the relatively toxic and expensive chalcogenides in renewable and sustainable energy applications. In this paper, we explore the potential of the recently discovered novel cubic structured (π-phase) GeS and GeSe for thermoelectric applications in the framework of density functional theory coupled with Boltzmann transport theory. To examine the modifications in their physical properties, the across composition alloying of π-GeS and π-GeSe (such as π-GeS1-xSex for x =0, 0.25, 0.50, 0.75, and 1) has been performed that has shown important effects on the electronic band structures and effective masses of charge carriers. An increase in Se composition in π-GeS1-xSex has induced a downward shift in their conduction bands, resulting in the narrowing of their energy band gaps. The thermoelectric coefficients of π-GeS1-xSex have been accordingly influenced by the evolution of the electronic band structures and effective masses of charge carriers. π-GeS1-xSex features sufficiently larger values of Seebeck coefficients, power factors and figures of merit (ZTs), which experience further improvement with an increase in temperature, revealing their potential for high-temperature applications. The calculated results show that ZT values equivalent to unity can be achieved for π-GeS1-xSex at appropriate n-type doping levels. Our calculations for the formation enthalpies indicate that a π-GeS1-xSex alloying system is energetically stable and could be synthesized experimentally. These intriguing characteristics make π-GeS1-xSex a promising candidate for futuristic thermoelectric applications in energy harvesting devices.

  9. Formation of met-cars and face-centered cubic structures. Thermodynamically or kinetically controlled

    SciTech Connect

    Wei, S.; Guo, B.C.; Deng, H.T.

    1994-05-18

    On the basis of a series of experimental studies from our laboratory, it is well established that metallocarbohedrenes, or Met-Cars for short, are a stable class of cluster materials. To account for their exceptional stability, we initially proposed a pentagonal dodecahedron structure. This cage-like structure is consistent with all the experimental findings. In general, there are two possible structures that can be developed in these metal-carbon systems, i.e., Met-Cars and cubes. Since only one structural pattern is generally observed for one particular cluster system, it has been suggested that their thermodynamical stabilities might be responsible for the selective formation ofmore » specific structures, e.g., Met-Cars or fcc structures. Herein, we present new experimental results on the system of Nb[sub m]C[sub n] under various conditions. It is shown that the experimental conditions are extremely critical for the formation of either Met-Cars or cubic structures, as predicted by Reddy and Khanma. Moreover, the new data show that the cubic structures do not develop on top of Met-Cars, but rather, they grow independently. The experiments were performed by using both time-of-flight and quadrupole mass spectrometer techniques coupled with a laser vaporization source. 23 refs., 1 fig.« less

  10. Selected Growth of Cubic and Hexagonal GaN Epitaxial Films on Polar MgO(111)

    NASA Astrophysics Data System (ADS)

    Lazarov, V. K.; Zimmerman, J.; Cheung, S. H.; Li, L.; Weinert, M.; Gajdardziska-Josifovska, M.

    2005-06-01

    Selected molecular beam epitaxy of zinc blende (111) or wurtzite (0001) GaN films on polar MgO(111) is achieved depending on whether N or Ga is deposited first. The cubic stacking is enabled by nitrogen-induced polar surface stabilization, which yields a metallic MgO(111)-(1×1)-ON surface. High-resolution transmission electron microscopy and density functional theory studies indicate that the atomically abrupt semiconducting GaN(111)/MgO(111) interface has a Mg-O-N-Ga stacking, where the N atom is bonded to O at a top site. This specific atomic arrangement at the interface allows the cubic stacking to more effectively screen the substrate and film electric dipole moment than the hexagonal stacking, thus stabilizing the zinc blende phase even though the wurtzite phase is the ground state in the bulk.

  11. Atomistic simulation of cubic and tetragonal phases of U-Mo alloy: Structure and thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Starikov, S. V.; Kolotova, L. N.; Kuksin, A. Yu.; Smirnova, D. E.; Tseplyaev, V. I.

    2018-02-01

    We studied structure and thermodynamic properties of cubic and tetragonal phases of pure uranium and U-Mo alloys using atomistic simulations: molecular dynamics and density functional theory. The main attention was paid to the metastable γ0 -phase that is formed in U-Mo alloys at low temperature. Structure of γ0 -phase is similar to body-centered tetragonal (bct) lattice with displacement of a central atom in the basic cell along [ 001 ] direction. Such displacements have opposite orientations for part of the neighbouring basic cells. In this case, such ordering of the displacements can be designated as antiferro-displacement. Formation of such complex structure may be interpreted through forming of short U-U bonds. At heating, the tetragonal structure transforms into cubic γs -phase, still showing ordering of central atom displacements. With rise in temperature, γs -phase transforms to γ-phase with a quasi body-centered cubic (q-bcc) lattice. The local positions of uranium atoms in γ-phase correspond to γs -phase, however, orientations of the central atom displacements become disordered. Transition from γ0 to γ can be considered as antiferro-to paraelastic transition of order-disorder type. This approach to the structure description of uranium alloy allows to explain a number of unusual features found in the experiments: anisotropy of lattice at low temperature; remarkably high self-diffusion mobility in γ-phase; decreasing of electrical resistivity at heating for some alloys. In addition, important part of this work is the development of new interatomic potential for U-Mo system made with taking into account details of studied structures.

  12. First principle investigation of structural and optical properties of cubic titanium dioxide

    NASA Astrophysics Data System (ADS)

    Dash, Debashish; Chaudhury, Saurabh; Tripathy, Susanta K.

    2018-05-01

    This paper presents an analysis of structural and optical properties of cubic titanium dioxide (TiO2) using Orthogonalzed Linear Combinations of Atomic Orbitals (OLCAO) basis set under the framework of Density Functional Theory (DFT). The structural property, specially the lattice constant `a' and the optical properties such as refractive index, extinction coefficient, and reflectivity are investigated and discussed in the energy range of 0-16 eV. Further, the results have compared with previous theoretical as well as with experimental results. It was found that DFT based simulation results are approximation to experimental results.

  13. Understanding misfit strain releasing mechanisms via molecular dynamics simulations of CdTe growth on {112}zinc-blende CdS

    DOE PAGES

    Zhou, Xiaowang; Chavez, Jose J.; Almeida, Sergio F.; ...

    2016-07-25

    Molecular dynamics simulations have been used to analyse microstructures of CdTe films grown on {112} surfaces of zinc-blende CdS. Interestingly, CdTe films grow in <331> orientations as opposed to <112> epitaxial orientations. At the CdTe-{331}/CdS-{112} interface, however, there exists an axis that is parallel to the <110> orientation of both CdS and CdTe. It is the direction orthogonal to this <110> that becomes different, being <116> for CdTe and <111> for CdS, respectively. Missing CdTe-{110} planes are found along the <110> axis, suggesting that the misfit strain is released by the conventional misfit dislocation mechanism along this axis. In themore » orthogonal axis, the misfit strain is found to be more effectively released by the new grain orientation mechanism. Our finding is supported by literature experimental observations of the change of growth direction when Cd 0.96Zn 0.04Te films are deposited on GaAs. Lastly the analyses of energetics clearly demonstrate the cause for the formation of the new orientation, and the insights gained from our studies can help understand the grain structures experimentally observed in lattice mismatched systems.« less

  14. Understanding misfit strain releasing mechanisms via molecular dynamics simulations of CdTe growth on {112}zinc-blende CdS

    SciTech Connect

    Zhou, Xiaowang; Chavez, Jose J.; Almeida, Sergio F.

    Molecular dynamics simulations have been used to analyse microstructures of CdTe films grown on {112} surfaces of zinc-blende CdS. Interestingly, CdTe films grow in <331> orientations as opposed to <112> epitaxial orientations. At the CdTe-{331}/CdS-{112} interface, however, there exists an axis that is parallel to the <110> orientation of both CdS and CdTe. It is the direction orthogonal to this <110> that becomes different, being <116> for CdTe and <111> for CdS, respectively. Missing CdTe-{110} planes are found along the <110> axis, suggesting that the misfit strain is released by the conventional misfit dislocation mechanism along this axis. In themore » orthogonal axis, the misfit strain is found to be more effectively released by the new grain orientation mechanism. Our finding is supported by literature experimental observations of the change of growth direction when Cd 0.96Zn 0.04Te films are deposited on GaAs. Lastly the analyses of energetics clearly demonstrate the cause for the formation of the new orientation, and the insights gained from our studies can help understand the grain structures experimentally observed in lattice mismatched systems.« less

  15. The steady-state and transient electron transport within bulk zinc-blende indium nitride: The impact of crystal temperature and doping concentration variations

    SciTech Connect

    Siddiqua, Poppy; O'Leary, Stephen K., E-mail: stephen.oleary@ubc.ca

    2016-03-07

    Within the framework of a semi-classical three-valley Monte Carlo electron transport simulation approach, we analyze the steady-state and transient aspects of the electron transport within bulk zinc-blende indium nitride, with a focus on the response to variations in the crystal temperature and the doping concentration. We find that while the electron transport associated with zinc-blende InN is highly sensitive to the crystal temperature, it is not very sensitive to the doping concentration selection. The device consequences of these results are then explored.

  16. Zinc-blende MnN bilayer formation on the GaN(111) surface

    NASA Astrophysics Data System (ADS)

    Gutierrez-Ojeda, S. J.; Guerrero-Sánchez, J.; Garcia-Diaz, R.; Ramirez-Torres, A.; Takeuchi, Noboru; H. Cocoletzi, Gregorio

    2017-07-01

    Atomic layers of manganese nitride, deposited on the cubic gallium nitride (111) surface, are investigated using spin polarized periodic density functional theory calculations. The adsorption of a manganese atom has been evaluated at different high symmetry sites. Incorporation into the GaN substrate by replacing gallium atoms drives the formation of a site in which the displaced Ga atom forms bonds with Ga atoms at the surface. This energetically favorable configuration shows a ferromagnetic alignment. Surface formation energy calculations demonstrate that when a full Mn ML is incorporated into the GaN structure, a Ga ML on top of a MnN bilayer may be formed for very Ga-rich conditions. On the other hand, when a full Mn ML is deposited on top of the nitrogen terminated surface, an epitaxial MnN bilayer is formed with antiferromagnetic characteristics. Density of states and partial density of states are reported to show the antiferromagnetic alignment in both structures. This behavior is mainly induced by the Mn-d orbitals.

  17. Impact of Cubic Pin Finned Surface Structure Geometry upon Spray Cooling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Silk, Eric A.; Kim, Jungho; Kiger, Ken

    2005-01-01

    Experiments were conducted to study the effects of enhanced surface structures on heat flux using spray cooling. The surface enhancements consisted of cubic pin fins machined on the top surface of copper heater blocks. The structure height, pitch, and width were parametrically vaned. Each copper block had a projected cross-sectional area of 2.0 sq cm. Measurements were also obtained on a heater block with a flat surface for baseline comparison purposes. A 2 x 2 nozzle array was used with PF-5060 as the working fluid. Thermal performance data were obtained under nominally degassed (chamber pressure of 41.4 kPa) and gassy conditions (chamber with N2 gas at 100.7 kPa) with a bulk fluid temperature of 20.5 C. Results for both the degassed and gassy cases show that structure width and separation distance have a dominant effect upon the heat transfer for the size ranges used. Cubic pin fin height had little impact upon heat flux. The maximum critical heat flux (CHF) attained for any of the surfaces was 121 W/sq cm, giving an enhancement of 51% relative to the flat surface case under nominally degassed conditions. The gassy case had a maximum CHF of 149 W/sq cm, giving an enhancement of 38% relative to the flat surface case.

  18. Large-Eddy Simulation of Coherent Flow Structures within a Cubical Canopy

    NASA Astrophysics Data System (ADS)

    Inagaki, Atsushi; Castillo, Marieta Cristina L.; Yamashita, Yoshimi; Kanda, Manabu; Takimoto, Hiroshi

    2012-02-01

    Instantaneous flow structures "within" a cubical canopy are investigated via large-eddy simulation. The main topics of interest are, (1) large-scale coherent flow structures within a cubical canopy, (2) how the structures are coupled with the turbulent organized structures (TOS) above them, and (3) the classification and quantification of representative instantaneous flow patterns within a street canyon in relation to the coherent structures. We use a large numerical domain (2,560 m × 2,560 m × 1,710 m) with a fine spatial resolution (2.5 m), thereby simulating a complete daytime atmospheric boundary layer (ABL), as well as explicitly resolving a regular array of cubes (40 m in height) at the surface. A typical urban ABL is numerically modelled. In this situation, the constant heat supply from roof and floor surfaces sustains a convective mixed layer as a whole, but strong wind shear near the canopy top maintains the surface layer nearly neutral. The results reveal large coherent structures in both the velocity and temperature fields "within" the canopy layer. These structures are much larger than the cubes, and their shapes and locations are shown to be closely related to the TOS above them. We classify the instantaneous flow patterns in a cavity, specifically focusing on two characteristic flow patterns: flushing and cavity-eddy events. Flushing indicates a strong upward motion, while a cavity eddy is characterized by a dominant vortical motion within a single cavity. Flushing is clearly correlated with the TOS above, occurring frequently beneath low-momentum streaks. The instantaneous momentum and heat transport within and above a cavity due to flushing and cavity-eddy events are also quantified.

  19. Semiconducting cubic titanium nitride in the Th 3 P 4 structure

    SciTech Connect

    Bhadram, Venkata S.; Liu, Hanyu; Xu, Enshi

    We report the discovery of a long-sought-after phase of titanium nitride with stoichiometry Ti 3 N 4 using diamond anvil cell experiments combined with in situ high-resolution x-ray diffraction and Raman spectroscopy techniques, supported by ab initio calculations. Ti 3 N 4 crystallizes in the cubic Th 3 P 4 structure [space group I ¯ 4 3 d (220)] from a mixture of TiN and N 2 above ≈ 75 GPa and ≈ 2400 K. The density ( ≈ 5.22 g/cc) and bulk modulus ( K 0 = 290 GPa) of cubic- Ti 3 N 4 ( c - Timore » 3 N 4 ) at 1 atm, estimated from the pressure-volume equation of state, are comparable to rocksalt TiN. Ab initio calculations based on the GW approximation and using hybrid functionals indicate that c - Ti 3 N 4 is a semiconductor with a direct band gap between 0.8 and 0.9 eV, which is larger than the previously predicted values. The c - Ti 3 N 4 phase is not recoverable to ambient pressure due to dynamic instabilities, but recovery of Ti 3 N 4 in the defect rocksalt (or related) structure may be feasible.« less

  20. Ab initio calculations of the magnetic properties of TM (Ti, V)-doped zinc-blende ZnO

    NASA Astrophysics Data System (ADS)

    Goumrhar, F.; Bahmad, L.; Mounkachi, O.; Benyoussef, A.

    2018-01-01

    In order to promote suitable material to be used in spintronics devices, this study purposes to evaluate the magnetic properties of the titanium and vanadium-doped zinc-blende ZnO from first-principles. The calculations of these properties are based on the Korringa-Kohn-Rostoker (KKR) method combined with the coherent potential approximation (CPA), using the local density approximation (LDA). We have calculated and discussed the density of states (DOSs) in the energy phase diagrams for different concentration values, of the dopants. We have also investigated the magnetic and half-metallic properties of this doped compound. Additionally, we showed the mechanism of the exchange coupling interaction. Finally, we estimated and studied the Curie temperature for different concentrations.

  1. Investigation of the asymmetric misfit dislocation morphology in epitaxial layers with the zinc-blende structure

    NASA Technical Reports Server (NTRS)

    Fox, Bradley A.; Jesser, William A.

    1990-01-01

    The source of the asymmetry in the dislocation morphology exhibited in the epitaxial growth of compound semiconductors on (100) was investigated. A thickness wedge of p- and n-type GaAs(0.95)P(0.05) was grown on GaAs by metalorganic chemical vapor deposition, and the effect of misorientation on the resolved shear stress for each slip system was calculated and eliminated as the source of the asymmetry. Another potential source of asymmetry, the thickness gradient, was also eliminated. Results show that the substrate misorientation and the thickness gradient do not significantly contribute to the asymmetry and that the dominant contributor to the asymmetry of misfit dislocations in the (001) epitaxial interface can be attributed to the differences in the Peierls barriers between the two types of dilocations in GaAsP/GaAs.

  2. Head-on collisions of localized pressure excitations in derivative cubic relaxing media: dynamical structure survey

    NASA Astrophysics Data System (ADS)

    Youssoufa, Saliou; Kamgang Kuetche, Victor; Crepin Kofane, Timoleon

    2015-02-01

    In the wake of the recent derivation of the new cubic nonlinear evolution equation of high-frequency pressure perturbations of a barothropic medium under relaxation (Kuetche V K et al 2014 J. Math. Phys. 55 052702), we closely investigate the head-on collisions of some typical localized waveguide excitations, which are solutions to the previous system. From the viewpoint of Hirota's formalism, we delve into the structural scattering features of the interacting waves mentioned above. As a result, we find that there might exist some ‘characteristic’ amplitude ratio of the interacting waves at which the scattering changes its features. Accordingly, we provide an illustration of the previous result within the depiction of the interactions between three single soliton solutions alongside the phase-shift of each particle. Following these depictions, we address some physical implications of the results as well as the different potential applications.

  3. Anharmonic phonon decay in cubic GaN

    NASA Astrophysics Data System (ADS)

    Cuscó, R.; Domènech-Amador, N.; Novikov, S.; Foxon, C. T.; Artús, L.

    2015-08-01

    We present a Raman-scattering study of optical phonons in zinc-blende (cubic) GaN for temperatures ranging from 80 to 750 K. The experiments were performed on high-quality, cubic GaN films grown by molecular-beam epitaxy on GaAs (001) substrates. The observed temperature dependence of the optical phonon frequencies and linewidths is analyzed in the framework of anharmonic decay theory, and possible decay channels are discussed in the light of density-functional-theory calculations. The longitudinal-optical (LO) mode relaxation is found to occur via asymmetric decay into acoustic phonons, with an appreciable contribution of higher-order processes. The transverse-optical mode linewidth shows a weak temperature dependence and its frequency downshift is primarily determined by the lattice thermal expansion. The LO phonon lifetime is derived from the observed Raman linewidth and an excellent agreement with previous theoretical predictions is found.

  4. Structural investigations in helium implanted cubic zirconia using grazing incidence XRD and EXAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Kuri, G.; Degueldre, C.; Bertsch, J.; Döbeli, M.

    2010-06-01

    The crystal structure and local atom arrangements surrounding Zr atoms were determined for a helium implanted cubic stabilized zirconia (CSZ) using X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy, respectively, measured at glancing angles. The implanted specimen was prepared at a helium fluence of 2 × 10 16 cm -2 using He + beams at two energies (2.54 and 2.74 MeV) passing through a 8.0 μm Al absorber foil. XRD results identified the formation of a new rhombohedral phase in the helium embedded layer, attributed to internal stress as a result of expansion of the CSZ-lattice. Zr K-edge EXAFS data suggested loss of crystallinity in the implanted lattice and disorder of the Zr atoms environment. EXAFS Fourier transforms analysis showed that the average first-shell radius of the Zr sbnd O pair in the implanted sample was slightly larger than that of the CSZ standard. Common general disorder features were explained by rhombohedral type short-range ordered clusters. The average structural parameters estimated from the EXAFS data of unimplanted and implanted CSZ are compared and discussed. Potential of EXAFS as a local probe of atomic-scale structural modifications induced by helium implantation in CSZ is demonstrated.

  5. Structural defects in cubic semiconductors characterized by aberration-corrected scanning transmission electron microscopy.

    PubMed

    Arroyo Rojas Dasilva, Yadira; Kozak, Roksolana; Erni, Rolf; Rossell, Marta D

    2017-05-01

    The development of new electro-optical devices and the realization of novel types of transistors require a profound understanding of the structural characteristics of new semiconductor heterostructures. This article provides a concise review about structural defects which occur in semiconductor heterostructures on the basis of micro-patterned Si substrates. In particular, one- and two-dimensional crystal defects are being discussed which are due to the plastic relaxation of epitaxial strain caused by the misfit of crystal lattices. Besides a few selected examples from literature, we treat in particular crystal defects occurring in GaAs/Si, Ge/Si and β-SiC/Si structures which are studied by high-resolution annular dark-field scanning transmission electron microscopy. The relevance of this article is twofold; firstly, it should provide a collection of data which are of help for the identification and characterization of defects in cubic semiconductors by means of atomic-resolution imaging, and secondly, the experimental data shall provide a basis for advancing the understanding of device characteristics with the aid of theoretical modelling by considering the defective nature of strained semiconductor heterostructures. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Femoral stem incorporating a diamond cubic lattice structure: Design, manufacture and testing.

    PubMed

    Jetté, Bruno; Brailovski, Vladimir; Dumas, Mathieu; Simoneau, Charles; Terriault, Patrick

    2018-01-01

    The current total hip prostheses with dense femoral stems are considerably stiffer than the host bones, which leads to such long-term complications as aseptic loosening, and eventually, the need for a revision. Consequently, the lifetime of the implantation does not match the lifetime expectation of young patients. A femoral stem design featuring a porous structure is proposed to lower its stiffness and allow bone tissue ingrowth. The porous structure is based on a diamond cubic lattice in which the pore size and the strut thickness are selected to meet the biomechanical requirements of the strength and the bone ingrowth. A porous stem and its fully dense counterpart are produced by laser powder-bed fusion using Ti-6Al-4V alloy. To evaluate the stiffness reduction, static testing based on the ISO standard 7206-4 is performed. The experimental results recorded by digital image correlation are analyzed and compared to the numerical model. The numerical and experimental force-displacement characteristics of the porous stem show a 31% lower stiffness as compared to that of its dense counterpart. Moreover, the correlation analysis of the total displacement and equivalent strain fields allows the preliminary validation of the numerical model of the porous stem. Finally, the analysis of the surface-to-volume and the strength-to-stiffness ratios of diamond lattice structures allow the assessment of their potential as biomimetic constructs for load-bearing orthopaedic implants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Thickness dependencies of structural and magnetic properties of cubic and tetragonal Heusler alloy bilayer films

    NASA Astrophysics Data System (ADS)

    Ranjbar, R.; Suzuki, K. Z.; Sugihara, A.; Ando, Y.; Miyazaki, T.; Mizukami, S.

    2017-07-01

    The thickness dependencies of the structural and magnetic properties for bilayers of cubic Co-based Heusler alloys (CCHAs: Co2FeAl (CFA), Co2FeSi (CFS), Co2MnAl (CMA), and Co2MnSi (CMS)) and D022-MnGa were investigated. Epitaxy of the B2 structure of CCHAs on a MnGa film was achieved; the smallest thickness with the B2 structure was found for 3-nm-thick CMS and CFS. The interfacial exchange coupling (Jex) was antiferromagnetic (AFM) for all of the CCHAs/MnGa bilayers except for unannealed CFA/MnGa samples. A critical thickness (tcrit) at which perpendicular magnetization appears of approximately 4-10 nm for the CMA/MnGa and CMS/MnGa bilayers was observed, whereas this thickness was 1-3 nm for the CFA/MnGa and CFS/MnGa films. The critical thickness for different CCHAs materials is discussed in terms of saturation magnetization (Ms) and the Jex .

  8. Electron band structure of the high pressure cubic phase of AlH3

    NASA Astrophysics Data System (ADS)

    Shi, Hongliang; Zarifi, Niliffar; Yim, Wai-Leung; Tse, J. S.

    2012-07-01

    The electronic band structure of the cubic Pm3n phase of AlH3 stable above 100 GPa is examined with semi-local, Tran-Blaha modified Becke-Johnson local density approximation (TB-mBJLDA), screened hybrid density functionals and GW methods. The shift of the conduction band to higher energy with increasing pressure is predicted by all methods. However, there are significant differences in detail band structure. In the pressure range from 90 to160 GPa, semi-local, hybrid functional and TB-mBJLDA calculations predicted that AlH3 is a poor metal. In comparison, GW calculations show a gap opening at 160 GPa and AlH3 becomes a small gap semi-conductor. From the trends of the calculated band shifts, it can be concluded that the favourable conditions leading to the nesting of Fermi surfaces predicted by semi-local calculation have disappeared if the exchange term is included. The results highlight the importance of the correction to the exchange energy on the band structure of hydrogen dominant dense metal hydrides at high pressure hydrides and may help to rationalize the absence of superconductivity in AlH3 from experimental measurements.

  9. Orientation-dependent hydration structures at yttria-stabilized cubic zirconia surfaces

    DOE PAGES

    Hou, Binyang; Kim, Seunghyun; Kim, Taeho; ...

    2016-11-30

    Water interaction with surfaces is very important and plays key roles in many natural and technological processes. Because the experimental challenges that arise when studying the interaction water with specific crystalline surfaces, most studies on metal oxides have focused on powder samples, which averaged the interaction over different crystalline surfaces. As a result, studies on the crystal orientation-dependent interaction of water with metal oxides are rarely available in the literature. In this work, water adsorption at 8 mol % yttria-stabilized cubic single crystal zirconia (100) and (111) surfaces was studied in terms of interfacial hydration structures using high resolution X-raymore » reflectivity measurements. The interfacial electron density profiles derived from the structure factor analysis of the measured data show the existence of multiple layers of adsorbed water with additional peculiar metal adsorption near the oxide surfaces.Surface relaxation, depletion, and interaction between the adsorbed layers and bulk water are found to vary greatly between the two surfaces and are also different when compared to the previously studied (110) surface. The fractional ratio between chemisorbed and physisorbed water species were also quantitatively estimated, which turned out to vary dramatically from surface to surface. Finally, the result gives us a unique opportunity to reconsider the simplified 2:1 relation between chemisorption and physisorption, originally proposed by Morimoto et al. based on the adsorption isotherms of water on powder metal oxide samples.« less

  10. Cubic and orthorhombic structures of aluminum hydride Al H3 predicted by a first-principles study

    NASA Astrophysics Data System (ADS)

    Ke, Xuezhi; Kuwabara, Akihide; Tanaka, Isao

    2005-05-01

    The most stable structure of aluminum hydride AlH3 is believed to be a hexagonal symmetry. However, using the density functional theory, we have identified two more stable structures for the AlH3 with the cubic and orthorhombic symmetries. Based on the quasiharmonic approximation, the cubic and orthorhombic AlH3 are almost degenerate when the zero-point energies are included. The geometric and electronic structures, the phonon, and the thermodynamic properties for the hexagonal, cubic, and orthorhombic AlH3 have been studied by means of density functional theory and direct ab initio force constant approach. The calculated electronic structures, phonon density of states, and thermodynamic functions [including S(T) and H(T)-H(0) ] for the three hydrides are similar. The results show that these three hydrides have negative enthalpies of formation, but positive free energies of formation. This conclusion is the same as that made by Wolverton for the hexagonal AlH3 [Phys. Rev. B 69, 144109 (2004)]. The thermodynamic properties indicate that the orthorhombic and cubic AlH3 should be more difficult to dissociate than the hexagonal AlH3 .

  11. Tailoring band structure and band filling in a simple cubic (IV, III)-VI superconductor

    NASA Astrophysics Data System (ADS)

    Kriener, M.; Kamitani, M.; Koretsune, T.; Arita, R.; Taguchi, Y.; Tokura, Y.

    2018-04-01

    Superconductivity and its underlying mechanisms are one of the most active research fields in condensed-matter physics. An important question is how to enhance the transition temperature Tc of a superconductor. In this respect, the possibly positive role of valence-skipping elements in the pairing mechanism has been attracting considerable interest. Here we follow this pathway and successfully enhance Tc up to almost 6 K in the simple chalcogenide SnTe known as a topological crystalline insulator by doping the valence-skipping element In substitutionally for the Sn site and codoping Se for the Te site. A high-pressure synthesis method enabled us to form single-phase solid solutions Sn1 -xInxTe1 -ySey over a wide composition range while keeping the cubic structure necessary for the superconductivity. Our experimental results are supported by density-functional theory calculations which suggest that even higher Tc values would be possible if the required doping range was experimentally accessible.

  12. Electronic Structure of p- and n-Type Doping Impurities in Cubic Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Pentaleri, E. A.; Gubanov, V. A.; Fong, C. Y.; Klein, B. M.

    1996-03-01

    LMTO-TB calculations were performed to investigate the electronic structure of C, Be, Mg, Si, Zn, and Cd substitutional impurities in cubic GaN (c-GaN). The calculations used 128-site supercells consisting of 64-atoms. Empty spheres of two types occupied the remaining sites. Semi-core Ga 3d states were treated explicitly as valence states. Both amphoteric substitutions were considered for C and Si impurities, while only cation-site substitutions were considered for Be, Mg, Zn, and Cd. All metal impurities formed partially occupied impurity states at the VB edge, which may result in p-type conductivity. C and Si impurities substituted at anion sites form sharp resonances in the gap, and are inactive in creating either p- or n-type carriers. Likewise, cation-site C substitutions introduce to the middle of the band gap strongly localized states that are inactive in carrier formation. Cation-site Si substitutions form an impurity sub-band at the CB edge, leading to n-type conductivity. The DOS at the Fermi level for each impurity-doped c-GaN crystal is used to estimate the most effective p-type doping impurities. The wave-function composition, space, and energy localization is analyzed for different impurities via projections onto the orbital basis and atomic coordinational spheres, and by examining calculated charge-density distributions.

  13. States of direct and indirect excitons in strained zinc-blende GaN/InGaN asymmetric quantum wells

    NASA Astrophysics Data System (ADS)

    Rojas-Briseño, J. G.; Martínez-Orozco, J. C.; Mora-Ramos, M. E.

    2017-12-01

    The total and binding energies of excitons in step-like asymmetric quantum wells made of zincblende GaN/InxlGa(1-xl)N/InxrGa(1-xr)N/GaN are theoretically reported. It is discussed how the asymmetry in the carrier confinement leads to singular behaviors in the exciton binding energy, allowing to observe both direct and indirect exciton states in the heterostructure. The study is carried out with the use of the effective mass approximation. The effects of strain are taken into account and a comparison of the results obtained for both strained and unstrained situations is presented. Exciton energy shows a decreasing behavior when the size of the effective confinement region is augmented. The total exciton energy as well as the binding energy are reported as functions of the indium concentration and quantum well width. In addition, the results of the calculation of the photoluminescence peak are presented. For this latter quantity, our results for the limiting case of a single zinc-blende GaN/InGaN quantum well show very good agreement with published experimental ones.

  14. Effect of Hydrostatic Pressure on the Structural, Electronic and Optical Properties of SnS2 with a Cubic Structure: The DFT Approach

    NASA Astrophysics Data System (ADS)

    Bakhshayeshi, A.; Taghavi Mendi, R.; Majidiyan Sarmazdeh, M.

    2018-02-01

    Recently, a cubic structure of polymorphic SnS2 has been synthesized experimentally, which is stable at room temperature. In this paper, we calculated some structural, electronic and optical properties of the cubic SnS2 structure based on the full potential-linearized augmented plane waves method. We also studied the effect of hydrostatic pressure on the physical properties of the cubic SnS2 structure. Structural results show that the compressibility of the cubic SnS2 phase is greater than its trigonal phase and the compressibility decreases with increasing pressure. Investigations of the electronic properties indicate that pressure changes the density of states and the energy band gap increases with increasing pressure. The variation of energy band gap versus pressure is almost linear. We concluded that cubic SnS2 is a semiconductor with an indirect energy band gap, like its trigonal phase. The optical calculations revealed that the dielectric constant decreases with increasing pressure, and the width of the forbidden energy interval increases for electromagnetic wave propagation. Moreover, plasmonic energy and refractive index are changed with increasing pressure.

  15. Magneto-structural correlation in Co0.8Cu0.2Cr2O4 cubic spinel

    NASA Astrophysics Data System (ADS)

    Kumar, Ram; Rayaprol, S.; Siruguri, V.; Xiao, Y.; Ji, W.; Pal, D.

    2018-05-01

    Neutron and X-ray diffraction, magnetic susceptibility, and specific heat measurements have been used to investigate the magneto-structural phase transitions in 20% Cu substituted multiferroic CoCr2O4 spinel. The Jahn-Teller active Cu2+ ion in the tetrahedral A-site of the spinel configuration induces the Jahn-Teller distortion slightly above the Néel temperature. In this compound, we observe a Jahn-Teller distortion of the crystal structure at 90 K. It was further observed that the high temperature cubic (Fd 3 ‾ m) structure coexists with the low temperature orthorhombic (Fddd) structure till the lowest temperature of measurement.

  16. Formation of highly structured cubic micellar lipid nanoparticles of soy phosphatidylcholine and glycerol dioleate and their degradation by triacylglycerol lipase.

    PubMed

    Wadsäter, Maria; Barauskas, Justas; Nylander, Tommy; Tiberg, Fredrik

    2014-05-28

    Lipid nanoparticles of reversed internal phase structures, such as cubic micellar (I2) structure show good drug loading ability of peptides and proteins as well as some small molecules. Due to their controllable small size and inner morphology, such nanoparticles are suitable for drug delivery using several different administration routes, including intravenous, intramuscular, and subcutaneous injection. A very interesting system in this regard, is the two component soy phosphatidylcholine (SPC)/glycerol dioleate (GDO) system, which depending on the ratio of the lipid components form a range of reversed liquid crystalline phases. For a 50/50 (w/w) ratio in excess water, these lipids have been shown to form a reversed cubic micellar (I2) phase of the Fd3m structure. Here, we demonstrate that this SPC/GDO phase, in the presence of small quantities (5-10 wt %) of Polysorbate 80 (P80), can be dispersed into nanoparticles, still with well-defined Fd3m structure. The resulting nanoparticle dispersion has a narrow size distribution and exhibit good long-term stability. In pharmaceutical applications, biodegradation pathways of the drug delivery vehicles and their components are important considerations. In the second part of the study we show how the structure of the particles evolves during exposure to a triacylglycerol lipase (TGL) under physiological-like temperature and pH. TGL catalyzes the lipolytic degradation of acylglycerides, such as GDO, to monoglycerides, glycerol, and free fatty acids. During the degradation, the interior phase of the particles is shown to undergo continuous phase transitions from the reversed I2 structure to structures of less negative curvature (2D hexagonal, bicontinuous cubic, and sponge), ultimately resulting in the formation of multilamellar vesicles.

  17. Hybrid-exchange density-functional theory study of the electronic structure of MnV2O4 : Exotic orbital ordering in the cubic structure

    NASA Astrophysics Data System (ADS)

    Wu, Wei

    2015-05-01

    The electronic structures of cubic and tetragonal MnV2O4 have been studied using hybrid-exchange density-functional theory. The computed electronic structure of the tetragonal phase shows an antiferro-orbital ordering on V sites and a ferrimagnetic ground state (the spins on V and Mn are antialigned). These results are in good agreement with the previous theoretical result obtained from the local-density approximation + U methods [S. Sarkar et al., Phys. Rev. Lett. 102, 216405 (2009), 10.1103/PhysRevLett.102.216405]. Moreover, the electronic structure, especially the projected density of states of the cubic phase, has been predicted with good agreement with the recent soft x-ray spectroscopy experiment. Similar to the tetragonal phase, the spins on V and Mn in the cubic structure favor a ferrimagnetic configuration. Most interesting is that the computed charge densities of the spin-carrying orbitals on V in the cubic phase show an exotic orbital ordering, i.e., a ferro-orbital ordering along [110] but an antiferro-orbital ordering along [1 ¯10 ] .

  18. A canonical stability-elasticity relationship verified for one million face-centred-cubic structures.

    PubMed

    Maisel, Sascha B; Höfler, Michaela; Müller, Stefan

    2012-11-29

    Any thermodynamically stable or metastable phase corresponds to a local minimum of a potentially very complicated energy landscape. But however complex the crystal might be, this energy landscape is of parabolic shape near its minima. Roughly speaking, the depth of this energy well with respect to some reference level determines the thermodynamic stability of the system, and the steepness of the parabola near its minimum determines the system's elastic properties. Although changing alloying elements and their concentrations in a given material to enhance certain properties dates back to the Bronze Age, the systematic search for desirable properties in metastable atomic configurations at a fixed stoichiometry is a very recent tool in materials design. Here we demonstrate, using first-principles studies of four binary alloy systems, that the elastic properties of face-centred-cubic intermetallic compounds obey certain rules. We reach two conclusions based on calculations on a huge subset of the face-centred-cubic configuration space. First, the stiffness and the heat of formation are negatively correlated with a nearly constant Spearman correlation for all concentrations. Second, the averaged stiffness of metastable configurations at a fixed concentration decays linearly with their distance to the ground-state line (the phase diagram of an alloy at zero Kelvin). We hope that our methods will help to simplify the quest for new materials with optimal properties from the vast configuration space available.

  19. Number series of atoms, interatomic bonds and interface bonds defining zinc-blende nanocrystals as function of size, shape and surface orientation: Analytic tools to interpret solid state spectroscopy data

    SciTech Connect

    König, Dirk, E-mail: dirk.koenig@unsw.edu.au

    2016-08-15

    Semiconductor nanocrystals (NCs) experience stress and charge transfer by embedding materials or ligands and impurity atoms. In return, the environment of NCs experiences a NC stress response which may lead to matrix deformation and propagated strain. Up to now, there is no universal gauge to evaluate the stress impact on NCs and their response as a function of NC size d{sub NC}. I deduce geometrical number series as analytical tools to obtain the number of NC atoms N{sub NC}(d{sub NC}[i]), bonds between NC atoms N{sub bnd}(d{sub NC}[i]) and interface bonds N{sub IF}(d{sub NC}[i]) for seven high symmetry zinc-blende (zb) NCsmore » with low-index faceting: {001} cubes, {111} octahedra, {110} dodecahedra, {001}-{111} pyramids, {111} tetrahedra, {111}-{001} quatrodecahedra and {001}-{111} quadrodecahedra. The fundamental insights into NC structures revealed here allow for major advancements in data interpretation and understanding of zb- and diamond-lattice based nanomaterials. The analytical number series can serve as a standard procedure for stress evaluation in solid state spectroscopy due to their deterministic nature, easy use and general applicability over a wide range of spectroscopy methods as well as NC sizes, forms and materials.« less

  20. Energetics of cubic and hexagonal phases in Mn-doped GaN : First-principles pseudopotential calculations

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Ae; Kang, Joongoo; Chang, K. J.

    2006-12-01

    We perform first-principles pseudopotential calculations to study the influence of Mn doping on the stability of two polytypes, wurtzite and zinc-blende, in GaN . In Mn δ -doped GaN and GaMnN alloys, we find similar critical concentrations of the Mn ions for stabilizing the zinc-blende phase against the wurtzite phase. Using a slab geometry of hexagonal lattices, we find that it is energetically unfavorable to form inversion domains with Mn exposure, in contrast to Mg doping. At the initial stage of epitaxial growth, a stacking fault that leads to the cubic bonds can be generated with the Mn exposure to the Ga-polar surface. However, the influence of the Mn δ -doped layer on the formation of the cubic phase is only effective for GaN layers deposited up to two monolayers. We find that the Mn ions are energetically more stable on the growth front than in the bulk, indicating that these ions act as a surfactant. Thus it is possible to grow cubic GaN if the Mn ions are periodically supplied or diffuse out from the Mn δ -doped layer to the growth front during the growth process.

  1. Electron transport and electron energy distributions within the wurtzite and zinc-blende phases of indium nitride: Response to the application of a constant and uniform electric field

    SciTech Connect

    Siddiqua, Poppy; Hadi, Walid A.; Salhotra, Amith K.

    2015-03-28

    Within the framework of an ensemble semi-classical three-valley Monte Carlo electron transport simulation approach, we critically contrast the nature of the electron transport that occurs within the wurtzite and zinc-blende phases of indium nitride in response to the application of a constant and uniform electric field. We use the electron energy distribution and its relationship with the electron transport characteristics in order to pursue this analysis. For the case of zinc-blende indium nitride, only a peak corresponding to the electrons within the lowest energy conduction band valley is observed, this peak being seen to broaden and shift to higher energiesmore » in response to increases in the applied electric field strength, negligible amounts of upper energy conduction band valley occupancy being observed. In contrast, for the case of wurtzite indium nitride, in addition to the aforementioned lowest energy conduction band valley peak in the electron energy distribution, and its broadening and shifting to higher energies in response to increases in the applied electric field strength, beyond a certain critical electric field strength, 30 kV/cm for the case of this particular material, upper energy conduction band valley occupancy is observed, this occupancy being further enhanced in response to further increases in the applied electric field strength. Reasons for these results are provided. The potential for device consequences is then commented upon.« less

  2. From Layered Structures to Cubic Frameworks. Expanding the Structural Diversity of Uranyl Carboxyphosphonates via the Incorporation of Cobalt

    SciTech Connect

    Alsobrook, Andrea N.; Hauser, Brad G.; Hupp, Joseph T.

    2011-02-08

    Five heterobimetallic U(VI)/Co(II) carboxyphosphonates have been synthesized under mild hydrothermal conditions by reacting UO 3, Co(CH 3CO 2) 2·4H 2O, and triethyl phosphonoacetate. These compounds, Co(H 2O) 4[(UO 2) 2(PO 3CH 2CO 2) 2(H 2O) 2] (CoUPAA-1), [Co(H 2O) 6][UO 2(PO 3CH 2CO 2)] 2·8H 2O (CoUPAA-2), Co(H 2O) 4[UO 2(PO 3CH 2CO 2)] 2·4H 2O (CoUPAA-3), Co(H 2O) 4[(UO 2) 62CH 2CO 2) 2O 2(OH) 3(H 2O) 3] 2·3H 2O (CoUPAA-4), and Co 2(UO 2) 6(PO 3CH 2CO 2) 3O 3(OH)(H 2O) 2·16H 2O (CoUPAA-5), range from two- to three-dimensional structures. CoUPAA-1 to CoUPAA-3 all possess uranyl carboxyphosphonate layersmore » that are separated by the Co(II) cation with varying degrees of hydration. CoUPAA-4 contains both UO 7 pentagonal bipyramids and UO 8 hexagonal bipyramids within the uranyl carboxyphosphonate plane. Unlike the first four low-symmetry compounds, CoUPAA-5 is a cubic, three-dimensional network with large cavities approximately 16 Å in diameter that are filled with cocrystallized water molecules. Differential gas absorption measurements performed on CoUPAA-5 displayed a surface area uptake for CO 2 of 40 m 2 g -1 at 273 K, and no uptake for N 2 at 77 K.« less

  3. Polymorphic one-dimensional (N2H4)2ZnTe: soluble precursors for the formation of hexagonal or cubic zinc telluride.

    PubMed

    Mitzi, David B

    2005-10-03

    Two hydrazine zinc(II) telluride polymorphs, (N2H4)2ZnTe, have been isolated, using ambient-temperature solution-based techniques, and the crystal structures determined: alpha-(N2H4)2ZnTe (1) [P21, a = 7.2157(4) Angstroms, b = 11.5439(6) Angstroms, c = 7.3909(4) Angstroms, beta = 101.296(1) degrees, Z = 4] and beta-(N2H4)2ZnTe (2) [Pn, a = 8.1301(5) Angstroms, b = 6.9580(5) Angstroms, c = 10.7380(7) Angstroms, beta = 91.703(1) degrees, Z = 4]. The zinc atoms in 1 and 2 are tetrahedrally bonded to two terminal hydrazine molecules and two bridging tellurium atoms, leading to the formation of extended one-dimensional (1-D) zinc telluride chains, with different chain conformations and packings distinguishing the two polymorphs. Thermal decomposition of (N2H4)2ZnTe first yields crystalline wurtzite (hexagonal) ZnTe at temperatures as low as 200 degrees C, followed by the more stable zinc blende (cubic) form at temperatures above 350 degrees C. The 1-D polymorphs are soluble in hydrazine and can be used as convenient precursors for the low-temperature solution processing of p-type ZnTe semiconducting films.

  4. Ionic and Optical Properties of Methylammonium Lead Iodide Perovskite across the Tetragonal-Cubic Structural Phase Transition

    SciTech Connect

    Hoque, Md Nadim Ferdous; Islam, Nazifah; Li, Zhen

    Practical hybrid perovskite solar cells (PSCs) must endure temperatures above the tetragonal-cubic structural phase transition of methylammonium lead iodide (MAPbI3). However, the ionic and optical properties of MAPbI3 in such a temperature range, and particularly, dramatic changes in these properties resulting from a structural phase transition, are not well studied. Herein, we report a striking contrast at approximately 45 degrees C in the ionic/electrical properties of MAPbl3 owing to a change of the ion activation energy from 0.7 to 0.5 eV, whereas the optical properties exhibit no particular transition except for the steady increase of the bandgap with temperature. Thesemore » observations can be explained by the 'continuous' nature of perovskite phase transition. We speculate that the critical temperature at which the ionic/electrical properties change, although related to crystal symmetry variation, is not necessarily the same temperature as when tetragonal-cubic structural phase transition occurs.« less

  5. Local structure of In0.5Ga0.5As from joint high-resolution and differential pair distribution function analysis

    NASA Astrophysics Data System (ADS)

    Petkov, V.; Jeong, I.-K.; Mohiuddin-Jacobs, F.; Proffen, Th.; Billinge, S. J. L.; Dmowski, W.

    2000-07-01

    High resolution total and indium differential atomic pair distribution functions (PDFs) for In0.5Ga0.5As alloys have been obtained by high energy and anomalous x-ray diffraction experiments, respectively. The first peak in the total PDF is resolved as a doublet due to the presence of two distinct bond lengths, In-As and Ga-As. The In differential PDF, which involves only atomic pairs containing In, yields chemical specific information and helps ease the structure data interpretation. Both PDFs have been fit with structure models and the way in that the underlying cubic zinc-blende lattice of In0.5Ga0.5As semiconductor alloy distorts locally to accommodate the distinct In-As and Ga-As bond lengths present has been quantified.

  6. The role of the cubic structure in freezing of a supercooled water droplet on an ice substrate

    NASA Astrophysics Data System (ADS)

    Takahashi, T.; Kobayashi, T.

    1983-12-01

    The possibility of the formation of a metastable cubic (diamond) structure and its role in freezing of a supercooled water droplet on an ice substrate are discussed in terms of two-dimensional nucleation. The mode of stacking sequence of new layers formed by two-dimensional nucleation is divided into single and multi-nucleation according to the degree of supercooling and to the size of the supercooled droplet. In the case of single nucleation a frozen droplet develops into a complete hexagonal single crystal or an optically single crystal (containing discontinuous stacking faults). In the case of multi-nucleation attention is paid to the size effect and the stacking direction of the nucleus to calculate the waiting time in the nucleation. Then the frozen droplets are crystallographically divided into three categories: completely single crystals, optically single crystals (containing a small cubic structure, i.e. stacking faults) and polycrystals with a misorientation of 70.53° between the c-axes.

  7. Cubic structure and canted antiferromagnetism of CaMn7O12 doped with trivalent cations (Fe, Al, Cr)

    NASA Astrophysics Data System (ADS)

    Motin Seikh, Md.; Caignaert, V.; Lebedev, O. I.; Raveau, B.

    2014-02-01

    In this study, we show the dramatic effect of the doping of the octahedral sites with M3+ cations (Fe3+, Al3+ and Cr3+) upon the structure and magnetism of the rhombohedral double perovskite CaMn7O12. In the oxides CaMn7-xMxO12, charge ordering between Mn3+ and Mn4+ octahedral sites is destroyed leading to the cubic structure (Im-3), whereas the initial magnetic properties (TN~90 K) have disappeared leading to canted antiferromagnetism (TN≈50-70 K) for small x values (x ~0.2-1). A spin glass like behaviour is also observed for larger values (x~1) in the case of Fe substitution.

  8. Electronic structure and metallization of cubic GdH{sub 3} under pressure: Ab initio many-body GW calculations

    SciTech Connect

    Kong, Bo, E-mail: kong79@yeah.net, E-mail: yachao.zhang@pku.edu.cn; Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018; Zhang, Yachao, E-mail: kong79@yeah.net, E-mail: yachao.zhang@pku.edu.cn

    The electronic structures of the cubic GdH{sub 3} are extensively investigated using the ab initio many-body GW calculations treating the Gd 4f electrons either in the core (4f-core) or in the valence states (4f-val). Different degrees of quasiparticle (QP) self-consistent calculations with the different starting points are used to correct the failures of the GGA/GGA + U/HSE03 calculations. In the 4f-core case, GGA + G{sub 0}W{sub 0} calculations give a fundamental band gap of 1.72 eV, while GGA+ GW{sub 0} or GGA + GW calculations present a larger band gap. In the 4f-val case, the nonlocal exchange-correlation (xc) functional HSE03 can account much better for the strong localizationmore » of the 4f states than the semilocal or Hubbard U corrected xc functional in the Kohn–Sham equation. We show that the fundamental gap of the antiferromagnetic (AFM) or ferromagnetic (FM) GdH{sub 3} can be opened up by solving the QP equation with improved starting point of eigenvalues and wave functions given by HSE03. The HSE03 + G{sub 0}W{sub 0} calculations present a fundamental band gap of 2.73 eV in the AFM configuration, and the results of the corresponding GW{sub 0} and GW calculations are 2.89 and 3.03 eV, respectively. In general, for the cubic structure, the fundamental gap from G{sub 0}W{sub 0} calculations in the 4f-core case is the closest to the real result. By G{sub 0}W{sub 0} calculations in the 4f-core case, we find that H or Gd defects can strongly affect the band structure, especially the H defects. We explain the mechanism in terms of the possible electron correlation on the hydrogen site. Under compression, the insulator-to-metal transition in the cubic GdH{sub 3} occurs around 40 GPa, which might be a satisfied prediction.« less

  9. An Exceptionally Narrow Band-Gap (∼4 eV) Silicate Predicted in the Cubic Perovskite Structure: BaSiO3.

    PubMed

    Hiramatsu, Hidenori; Yusa, Hitoshi; Igarashi, Ryo; Ohishi, Yasuo; Kamiya, Toshio; Hosono, Hideo

    2017-09-05

    The electronic structures of 35 A 2+ B 4+ O 3 ternary cubic perovskite oxides, including their hypothetical chemical compositions, were calculated by a hybrid functional method with the expectation that peculiar electronic structures and unique carrier transport properties suitable for semiconductor applications would be hidden in high-symmetry cubic perovskite oxides. We found unique electronic structures of Si-based oxides (A = Mg, Ca, Sr, and Ba, and B = Si). In particular, the unreported cubic BaSiO 3 has a very narrow band gap (4.1 eV) compared with conventional nontransition-metal silicates (e.g., ∼9 eV for SiO 2 and the calculated value of 7.3 eV for orthorhombic BaSiO 3 ) and a small electron effective mass (0.3m 0 , where m 0 is the free electron rest mass). The narrow band gap is ascribed to the nonbonding state of Si 3s and the weakened Madelung potential. The existence of the predicted cubic perovskite structure of BaSiO 3 was experimentally verified by applying a high pressure of 141 GPa. The present finding indicates that it could be possible to develop a new transparent oxide semiconductor of earth abundant silicates if the symmetry of its crystal structure is appropriately chosen. Cubic BaSiO 3 is a candidate for high-performance oxide semiconductors if this phase can be stabilized at room temperature and ambient pressure.

  10. THE AB INITIO CALCULATION OF THE DYNAMICAL AND THE THERMODYNAMIC PROPERTIES OF THE ZINC-BLENDE GaX (X=N, P, As AND Sb)

    NASA Astrophysics Data System (ADS)

    Bouhadda, Y.; Bentabet, A.; Fenineche, N. E.; Boudouma, Y.

    2012-12-01

    By this work, we aim to study the dynamical and the thermodynamic properties of the zinc-blende GaX (X = N, P, As and Sb) using the Ab initio simulation method. Indeed, we studied the lattice dynamics, the constant-volume specific heat (Cv), the internal energy (U), the entropy (S) and the free energy (F). The observed differences between the properties of GaX elements were discussed. Our results and the available literature data (theoretical and experimental) seems to be in good agreement. Moreover, Cv, U, F and S were calculated by using the harmonic approximation in the calculation of the dynamic lattice vibration. The good agreement between our results of both the phonon frequency, the constant-volume specific heat and the experimental data allows us to conclude that our results of S, U and F of GaX were well predicted.

  11. Phononic Band Gaps in 2D Quadratic and 3D Cubic Cellular Structures

    PubMed Central

    Warmuth, Franziska; Körner, Carolin

    2015-01-01

    The static and dynamic mechanical behaviour of cellular materials can be designed by the architecture of the underlying unit cell. In this paper, the phononic band structure of 2D and 3D cellular structures is investigated. It is shown how the geometry of the unit cell influences the band structure and eventually leads to full band gaps. The mechanism leading to full band gaps is elucidated. Based on this knowledge, a 3D cellular structure with a broad full band gap is identified. Furthermore, the dependence of the width of the gap on the geometry parameters of the unit cell is presented. PMID:28793713

  12. Phononic Band Gaps in 2D Quadratic and 3D Cubic Cellular Structures.

    PubMed

    Warmuth, Franziska; Körner, Carolin

    2015-12-02

    The static and dynamic mechanical behaviour of cellular materials can be designed by the architecture of the underlying unit cell. In this paper, the phononic band structure of 2D and 3D cellular structures is investigated. It is shown how the geometry of the unit cell influences the band structure and eventually leads to full band gaps. The mechanism leading to full band gaps is elucidated. Based on this knowledge, a 3D cellular structure with a broad full band gap is identified. Furthermore, the dependence of the width of the gap on the geometry parameters of the unit cell is presented.

  13. Transformation Paths from Cubic to Low-Symmetry Structures in Heusler Ni2MnGa Compound.

    PubMed

    Zelený, Martin; Straka, Ladislav; Sozinov, Alexei; Heczko, Oleg

    2018-05-08

    In order to explain the formation of low-temperature phases in stoichiometric Ni 2 MnGa magnetic shape memory alloy, we investigate the phase transformation paths from cubic austenite with Heusler structure to low-symmetry martensitic structures. We used ab initio calculations combined with the generalized solid state nudged elastic band method to determine the minimum energy path and corresponding changes in crystal lattice. The four-, five-, and seven-layered modulated phases of martensite (4O, 10M, and 14M) are built as the relaxed nanotwinned non-modulated (NM) phase. Despite having a total energy larger than the other martensitic phases, the 10M phase will spontaneously form at 0 K, because there is no energy barrier on the path and the energy decreases with a large negative slope. Moreover, a similar negative slope in the beginning of path is found also for the transformation to the 6M premartensite, which appears as a local minimum on the path leading further to 10M martensite. Transformation paths to other structures exhibit more or less significant barriers in the beginning hindering such a transformation from austenite. These findings correspond to experiment and demonstrates that the kinetics of the transformation is decisive for the selection of the particular low-symmetry structure.

  14. The hydration structure at yttria-stabilized cubic zirconia (110)-water interface with sub-Ångström resolution

    DOE PAGES

    Hou, Binyang; Kim, Seunghyun; Kim, Taeho; ...

    2016-06-15

    The interfacial hydration structure of yttria-stabilized cubic zirconia (110) surface in contact with water was determined with ~0.5 Å resolution by high-resolution X-ray reflectivity measurement. The terminal layer shows a reduced electron density compared to the following substrate lattice layers, which indicates there are additional defects generated by metal depletion as well as intrinsic oxygen vacancies, both of which are apparently filled by water species. Above this top surface layer, two additional adsorbed layers are observed forming a characteristic interfacial hydration structure. The first adsorbed layer shows abnormally high density as pure water and likely includes metal species, whereas themore » second layer consists of pure water. The observed interfacial hydration structure seems responsible for local equilibration of the defective surface in water and eventually regulating the long-term degradation processes. As a result, the multitude of water interactions with the zirconia surface results in the complex but highly ordered interfacial structure constituting the reaction front.« less

  15. Stabilities and defect-mediated lithium-ion conduction in a ground state cubic Li 3 N structure

    DOE PAGES

    Nguyen, Manh Cuong; Hoang, Khang; Wang, Cai-Zhuang; ...

    2016-01-07

    A stable ground state structure with cubic symmetry of Li 3N (c-Li 3N) is found by ab initio initially symmetric random-generated crystal structure search method. Gibbs free energy, calculated within quasi-harmonic approximation, shows that c-Li 3N is the ground state structure for a wide range of temperature. The c-Li 3N structure has a negative thermal expansion coefficient at temperatures lower than room temperature, due mainly to two transverse acoustic phonon modes. This c-Li 3N phase is a semiconductor with an indirect band gap of 1.90 eV within hybrid density functional calculation. We also investigate the migration and energetics of nativemore » point defects in c-Li 3N, including lithium and nitrogen vacancies, interstitials, and anti-site defects. Lithium interstitials are found to have a very low migration barrier (~0.12 eV) and the lowest formation energy among all possible defects. Thus, the ionic conduction in c-Li 3N is expected to occur via an interstitial mechanism, in contrast to that in the well-known α-Li 3N phase which occurs via a vacancy mechanism.« less

  16. Three-dimensional fluid-structure interaction case study on cubical fluid cavity with flexible bottom

    NASA Astrophysics Data System (ADS)

    Ghelardi, Stefano; Rizzo, Cesare; Villa, Diego

    2017-12-01

    In this paper, we report our study on a numerical fluid-structure interaction problem originally presented by Mok et al. (2001) in two dimensions and later studied in three dimensions by Valdés Vazquez (2007), Lombardi (2012), and Trimarchi (2012). We focus on a 3D test case in which we evaluated the sensitivity of several input parameters on the fluid and structural results. In particular, this analysis provides a starting point from which we can look deeper into specific aspects of these simulations and analyze more realistic cases, e.g., in sails design. In this study, using the commercial software ADINA™, we addressed a well-known unsteadiness problem comprising a square box representing the fluid domain with a flexible bottom modeled with structural shell elements. We compared data from previously published work whose authors used the same numerical approach, i.e., a partitioned approach coupling a finite volume solver (for the fluid domain) and a finite element solver (for the solid domain). Specifically, we established several benchmarks and made comparisons with respect to fluid and solid meshes, structural element types, and structural damping, as well as solution algorithms. Moreover, we compared our method with a monolithic finite element solution method. Our comparisons of new and old results provide an outline of best practices for such simulations.

  17. Dislocation structures of Σ3 {112} twin boundaries in face centered cubic metals

    NASA Astrophysics Data System (ADS)

    Wang, J.; Anderoglu, O.; Hirth, J. P.; Misra, A.; Zhang, X.

    2009-07-01

    High resolution transmission electron microscopy of nanotwinned Cu films revealed Σ3 {112} incoherent twin boundaries (ITBs), with a repeatable pattern involving units of three {111} atomic planes. Topological analysis shows that Σ3 {112} ITBs adopt two types of atomic structure with differing arrangements of Shockley partial dislocations. Atomistic simulations were performed for Cu and Al. These studies revealed the structure of the two types of ITBs, the formation mechanism and stability of the associated 9R phase, and the influence of stacking fault energies on them. The results suggest that Σ3 {112} ITBs may migrate through the collective glide of partial dislocations.

  18. Structural stability and energetics of grain boundary triple junctions in face centered cubic materials

    NASA Astrophysics Data System (ADS)

    Adlakha, I.; Solanki, K. N.

    2015-03-01

    We present a systematic study to elucidate the role of triple junctions (TJs) and their constituent grain boundaries on the structural stability of nanocrystalline materials. Using atomistic simulations along with the nudge elastic band calculations, we explored the atomic structural and thermodynamic properties of TJs in three different fcc materials. We found that the magnitude of excess energy at a TJ was directly related to the atomic density of the metal. Further, the vacancy binding and migration energetics in the vicinity of the TJ were examined as they play a crucial role in the structural stability of NC materials. The resolved line tension which takes into account the stress buildup at the TJ was found to be a good measure in predicting the vacancy binding tendency near the TJ. The activation energy for vacancy migration along the TJ was directly correlated with the measured excess energy. Finally, we show that the resistance for vacancy diffusion increased for TJs with larger excess stored energy and the defect mobility at some TJs is slower than their constituent GBs. Hence, our results have general implications on the diffusional process in NC materials and provide new insight into stabilizing NC materials with tailored TJs.

  19. Structure and magnetic properties of Fe-Co-B alloy thin films prepared on cubic (001) single-crystal substrates

    NASA Astrophysics Data System (ADS)

    Ohtake, Mitsuru; Serizawa, Kana; Futamoto, Masaaki; Kirino, Fumiyoshi; Inaba, Nobuyuki

    2018-04-01

    Fe70Co30 and (Fe70Co30)0.95B5 (at. %) alloy films of 5 nm thickness are prepared by sputtering on cubic (001) oxide substrates at 200 °C. The lattice mismatch between film and substrate is varied from -4.2%, 0%, to +3.5% by employing MgO, MgAl2O4, and SrTiO3 substrates, respectively. Fe70Co30 and (Fe70Co30)0.95B5 single-crystal films with bcc structure grow epitaxially on all the substrates in the orientation relationship of (001)[110]film || (001)[100]substrate. The in-plane and out-of-plane lattice constants, a and c, are in agreement within small differences ranging between +1.1% and -0.9% with the value of bulk bcc-Fe70Co30 crystal, even though there exist the lattice mismatches of -4.2% and +3.5%. The result indicates that misfit dislocations are introduced around the film/substrate interface when films are deposited on MgO and SrTiO3 substrates. The single-crystal films show in-plane magnetic anisotropies with the easy magnetization direction of bcc[100], which are reflecting the magnetocrystalline anisotropy of bulk Fe70Co30 crystal.

  20. Electrical transport and capacitance characteristics of metal-insulator-metal structures using hexagonal and cubic boron nitride films as dielectrics

    NASA Astrophysics Data System (ADS)

    Teii, Kungen; Kawamoto, Shinsuke; Fukui, Shingo; Matsumoto, Seiichiro

    2018-04-01

    Metal-insulator-metal capacitor structures using thick hexagonal and cubic boron nitride (hBN and cBN) films as dielectrics are produced by plasma jet-enhanced chemical vapor deposition, and their electrical transport and capacitance characteristics are studied in a temperature range of 298 to 473 K. The resistivity of the cBN film is of the order of 107 Ω cm at 298 K, which is lower than that of the hBN film by two orders of magnitude, while it becomes the same order as the hBN film above ˜423 K. The dominant current transport mechanism at high fields (≥1 × 104 V cm-1) is described by the Frenkel-Poole emission and thermionic emission models for the hBN and cBN films, respectively. The capacitance of the hBN film remains stable for a change in alternating-current frequency and temperature, while that of the cBN film has variations of at most 18%. The dissipation factor as a measure of energy loss is satisfactorily low (≤5%) for both films. The origin of leakage current and capacitance variation is attributed to a high defect density in the film and a transition interlayer between the substrate and the film, respectively. This suggests that cBN films with higher crystallinity, stoichiometry, and phase purity are potentially applicable for dielectrics like hBN films.

  1. Selective epitaxial growth of zinc blende-derivative on wurtzite-derivative: the case of polytypic Cu2CdSn(S1-xSex)4 nanocrystals

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Fan, Feng-Jia; Gong, Ming; Ge, Jin; Yu, Shu-Hong

    2014-02-01

    Polytypic nanocrystals with zinc blende (ZB) cores and wurtzite (WZ) arms, such as tetrapod and octopod nanocrystals, have been widely reported. However, polytypic nanocrystals with WZ cores and ZB arms or ends have been rarely reported. Here, we report a facile, solution-based approach to the synthesis of polytypic Cu2CdSn(S1-xSex)4 (CCTSSe) nanocrystals with ZB-derivative selectively engineered on (000+/-2)WZ facets of WZ-derived cores. Accordingly, two typical morphologies, i.e., bullet-like nanocrystals with a WZ-derivative core and one ZB-derivative end, and rugby ball-like nanocrystals with a WZ-derivative core and two ZB-derivative ends, can be selectively prepared. The epitaxial growth mechanism is confirmed by the time-dependent experiments. The ratio of rugby ball-like and bullet-like polytypic CCTSSe nanocrystals can be tuned through changing the amount of Cd precursor to adjust the reactivity difference between (0002)WZ and (000-2)WZ facets. These unique polytypic CCTSSe nanocrystals may find applications in energetic semiconducting materials for energy conversion in the future.Polytypic nanocrystals with zinc blende (ZB) cores and wurtzite (WZ) arms, such as tetrapod and octopod nanocrystals, have been widely reported. However, polytypic nanocrystals with WZ cores and ZB arms or ends have been rarely reported. Here, we report a facile, solution-based approach to the synthesis of polytypic Cu2CdSn(S1-xSex)4 (CCTSSe) nanocrystals with ZB-derivative selectively engineered on (000+/-2)WZ facets of WZ-derived cores. Accordingly, two typical morphologies, i.e., bullet-like nanocrystals with a WZ-derivative core and one ZB-derivative end, and rugby ball-like nanocrystals with a WZ-derivative core and two ZB-derivative ends, can be selectively prepared. The epitaxial growth mechanism is confirmed by the time-dependent experiments. The ratio of rugby ball-like and bullet-like polytypic CCTSSe nanocrystals can be tuned through changing the amount of Cd precursor

  2. Ternary mixed crystal effects on interface optical phonon and electron-phonon coupling in zinc-blende GaN/AlxGa1-xN spherical quantum dots

    NASA Astrophysics Data System (ADS)

    Huang, Wen Deng; Chen, Guang De; Yuan, Zhao Lin; Yang, Chuang Hua; Ye, Hong Gang; Wu, Ye Long

    2016-02-01

    The theoretical investigations of the interface optical phonons, electron-phonon couplings and its ternary mixed effects in zinc-blende spherical quantum dots are obtained by using the dielectric continuum model and modified random-element isodisplacement model. The features of dispersion curves, electron-phonon coupling strengths, and its ternary mixed effects for interface optical phonons in a single zinc-blende GaN/AlxGa1-xN spherical quantum dot are calculated and discussed in detail. The numerical results show that there are three branches of interface optical phonons. One branch exists in low frequency region; another two branches exist in high frequency region. The interface optical phonons with small quantum number l have more important contributions to the electron-phonon interactions. It is also found that ternary mixed effects have important influences on the interface optical phonon properties in a single zinc-blende GaN/AlxGa1-xN quantum dot. With the increase of Al component, the interface optical phonon frequencies appear linear changes, and the electron-phonon coupling strengths appear non-linear changes in high frequency region. But in low frequency region, the frequencies appear non-linear changes, and the electron-phonon coupling strengths appear linear changes.

  3. First principles study of structural and magnetic properties of transition metal nitrides TMN (TM = Cr, Mn)

    NASA Astrophysics Data System (ADS)

    Rajeswarapalanichamy, R.; Amudhavalli, A.; Manikandan, M.; Kavitha, M.; Iyakutti, K.

    2017-09-01

    The structural stability of chromium nitride (CrN) and manganese nitride (MnN) is investigated among four different structures, namely, NaCl (Fm3m), zinc blende (F4-3m), orthorhombic (Pnma) and tetragonal (I4/mmm). It is found that the most stable phase is the zinc blende phase for CrN and MnN. The structural phase transition from zinc blende to orthorhombic phase is predicted at high pressure. At normal pressure, CrN and MnN are found to be antiferromagnetic. As the pressure is increased, antiferromagnetic-to-nonmagnetic phase transition is observed at the pressures of 169.5 GPa in CrN and 206 GPa in MnN. The elastic constants obey the Born-Huang criteria, suggesting that they are mechanically stable. The calculated B/G values indicate that CrN and MnN are ductile in nature.

  4. Influence of Fröhlich polaron coupling on renormalized electron bands in polar semiconductors: Results for zinc-blende GaN

    NASA Astrophysics Data System (ADS)

    Nery, Jean Paul; Allen, Philip B.

    2016-09-01

    We develop a simple method to study the zero-point and thermally renormalized electron energy ɛk n(T ) for k n the conduction band minimum or valence maximum in polar semiconductors. We use the adiabatic approximation, including an imaginary broadening parameter i δ to suppress noise in the density-functional integrations. The finite δ also eliminates the polar divergence which is an artifact of the adiabatic approximation. Nonadiabatic Fröhlich polaron methods then provide analytic expressions for the missing part of the contribution of the problematic optical phonon mode. We use this to correct the renormalization obtained from the adiabatic approximation. Test calculations are done for zinc-blende GaN for an 18 ×18 ×18 integration grid. The Fröhlich correction is of order -0.02 eV for the zero-point energy shift of the conduction band minimum, and +0.03 eV for the valence band maximum; the correction to renormalization of the 3.28 eV gap is -0.05 eV, a significant fraction of the total zero point renormalization of -0.15 eV.

  5. Combined effects of an intense laser field, electric field and hydrostatic pressure on donor impurity states in zinc-blende InGaN/GaN quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Guangxin; Zhou, Rui; Duan, Xiuzhi

    2016-07-01

    The shallow-donor impurity states in cylindrical zinc-blende (ZB) In x Ga1- x N/GaN quantum dots (QDs) have been theoretically investigated, considering the combined effects of an intense laser field (ILF), an external electric field, and hydrostatic pressure. The numerical results show that for an on-center impurity in ZB In x Ga1- x N/GaN QD, (1) the ground-state binding energy of the donor impurity is a decreasing function of the laser-dressing parameter and/or the QD's height; (2) as the QD's radius decreases, the binding energy of the donor impurity increases at first, reaches a maximum value, and then drops rapidly; (3) the binding energy of the donor impurity is a decreasing function of the external electric field due to the Stark effect; (4) the binding energy of the donor impurity increases as the applied hydrostatic pressure becomes large. In addition, the position of the impurity ion was also found to have an important influence on the binding energy of the donor impurity. The physical reasons have been analyzed in detail.

  6. Beyond spatial correlation effect in micro-Raman light scattering: An example of zinc-blende GaN/GaAs hetero-interface

    NASA Astrophysics Data System (ADS)

    Ning, J. Q.; Zheng, C. C.; Zheng, L. X.; Xu, S. J.

    2015-08-01

    Spatially resolved Raman light scattering experiments were performed on a zinc-blende GaN/GaAs heterostructure with confocal micro-Raman scattering technique under the backscattering geometric configuration. By varying the illumination spot locations across the heterostructure interface, we found that the Raman light scattering spectral features change remarkably. The interface effect on the GaAs substrate manifested as a much broader lineshape of the transverse optical (TO) phonon mode. Two kinds of broadening mechanisms, namely, spatial correlation induced wave-vector relaxation effect and lattice-mismatch strain + compositional intermixing effect, have been identified. The former leads to the broadening of the TO mode at the low-energy side, whereas the latter accounts for the broadening at the high-energy side. The diffuse light scattering from the highly defective nucleation layer of GaN was found to produce a broad scattering background of the GaN TO mode. The methodology and conclusions of the present work could be applicable to Raman spectroscopic studies on other material interfaces.

  7. Nondestructive Complete Mechanical Characterization of Zinc Blende and Wurtzite GaAs Nanowires Using Time-Resolved Pump-Probe Spectroscopy.

    PubMed

    Mante, Pierre-Adrien; Lehmann, Sebastian; Anttu, Nicklas; Dick, Kimberly A; Yartsev, Arkady

    2016-08-10

    We have developed and demonstrated an experimental method, based on the picosecond acoustics technique, to perform nondestructive complete mechanical characterization of nanowires, that is, the determination of the complete elasticity tensor. By means of femtosecond pump-probe spectroscopy, coherent acoustic phonons were generated in an ensemble of nanowires and their dynamics was resolved. Specific phonon modes were identified and the detection mechanism was addressed via wavelength dependent experiments. We calculated the exact phonon dispersion relation of the nanowires by fitting the experimentally observed frequencies, thus allowing the extraction of the complete elasticity tensor. The elasticity tensor and the nanowire diameter were determined for zinc blende GaAs nanowires and were found to be in a good agreement with literature data and independent measurements. Finally, we have applied this technique to characterize wurtzite GaAs nanowires, a metastable phase in bulk, for which no experimental values of elastic constants are currently available. Our results agree well with previous first principle calculations. The proposed approach to the complete and nondestructive mechanical characterization of nanowires will allow the efficient mechanical study of new crystal phases emerging in nanostructures, as well as size-dependent properties of nanostructured materials.

  8. Structural phase transition of BeTe: an ab initio molecular dynamics study.

    PubMed

    Alptekin, Sebahaddin

    2017-08-11

    Beryllium telluride (BeTe) with cubic zinc-blende (ZB) structure was studied using ab initio constant pressure method under high pressure. The ab initio molecular dynamics (MD) approach for constant pressure was studied and it was found that the first order phase transition occurs from the ZB structure to the nickel arsenide (NiAs) structure. It has been shown that the MD simulation predicts the transition pressure P T more than the value obtained by the static enthalpy and experimental data. The structural pathway reveals MD simulation such as cubic → tetragonal → orthorhombic → monoclinic → orthorhombic → hexagonal, leading the ZB to NiAs phase. The phase transformation is accompanied by a 10% volume drop and at 80 GPa is likely to be around 35 GPa in the experiment. In the present study, our obtained values can be compared with the experimental and theoretical results. Graphical abstract The energy-volume relation and ZB phase for the BeTe.

  9. First determination of volume changes and enthalpies of the high-pressure decomposition reaction of the structure H methane hydrate to the cubic structure I methane hydrate and fluid methane.

    PubMed

    Ogienko, Andrey G; Tkacz, Marek; Manakov, Andrey Yu; Lipkowski, Janusz

    2007-11-08

    Pressure-temperature (P-T) conditions of the decomposition reaction of the structure H high-pressure methane hydrate to the cubic structure I methane hydrate and fluid methane were studied with a piston-cylinder apparatus at room temperature. For the first time, volume changes accompanying this reaction were determined. With the use of the Clausius-Clapeyron equation the enthalpies of the decomposition reaction of the structure H high-pressure methane hydrate to the cubic structure I methane hydrate and fluid methane have been calculated.

  10. Reply to “Structural and magnetic behavior of the cubic oxyfluoride SrFeO{sub 2}F studied by neutron diffraction”

    SciTech Connect

    Clemens, Oliver, E-mail: oliver.clemens@kit.edu; Karlsruher Institut für Technologie, Institut für Nanotechnologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen; Berry, Frank J.

    2015-03-15

    In this article we comment on the results published by Thompson et al. (, J. Solid State Chem. 219 (2014) 173–178) on the crystal structure of SrFeO{sub 2}F, who claim the compound to crystallize in the cubic space group Pm-3m. We give a more detailed explanation of the determination of our previously reported structural model with Imma symmetry (Clemens et al., J. Solid State Chem. 206 (2013) 158–169), with addition of variable temperature XRD measurements with high counting time to provide unambiguous evidence for the Imma model being correct for our sample. - Graphical abstract: The crystal structure of SrFeO{submore » 2}F is discussed with regards to previous reports. - Highlights: • SrFeO{sub 2}F was synthesized by polymer based fluorination of SrFeO{sub 3}. • Evaluation of the diffraction data shows a pseudocubic cell metric. • Superstructure reflections at low d-spacings indicate deviation from cubic symmetry. • The phase transition temperature from orthorhombic to cubic was determined using variable temperature X-ray diffraction. • Results published by Thompson et al. are critically discussed with respect to those observations.« less

  11. Bismuth doping strategies in GeTe nanowires to promote high-temperature phase transition from rhombohedral to face-centered cubic structure

    SciTech Connect

    Zhang, Jie; Huang, Rong; Wei, Fenfen

    2014-11-17

    The phase transition of Bi-doped (∼3 at. %) GeTe nanowires from a rhombohedral (R) to a face-centered cubic (C) structure was observed in in situ high-temperature X-ray diffraction. The promotion of high-temperature R-C phase transition by a doping approach was revealed. Ab initio energy calculations of doped GeTe at various Bi doping concentrations were performed to interpret the promoted temperature-induced phase transitions. Those results indicated that the total energy differences between R and C structures of doped GeTe decreased as Bi doping concentrations increased, which facilitated R-C phase transitions.

  12. The sensitivity of the electron transport within bulk zinc-blende gallium nitride to variations in the crystal temperature, the doping concentration, and the non-parabolicity coefficient associated with the lowest energy conduction band valley

    SciTech Connect

    Siddiqua, Poppy; O'Leary, Stephen K., E-mail: stephen.oleary@ubc.ca

    2016-09-07

    Within the framework of a semi-classical three-valley Monte Carlo simulation approach, we analyze the steady-state and transient electron transport that occurs within bulk zinc-blende gallium nitride. In particular, we examine how the steady-state and transient electron transport that occurs within this material changes in response to variations in the crystal temperature, the doping concentration, and the non-parabolicity coefficient associated with the lowest energy conduction band valley. These results are then contrasted with those corresponding to a number of other compound semiconductors of interest.

  13. The competitive growth of cubic domains in Ti(1-x)AlxN films studied by diffraction anomalous near-edge structure spectroscopy.

    PubMed

    Pinot, Y; Tuilier, M-H; Pac, M-J; Rousselot, C; Thiaudière, D

    2015-11-01

    Titanium and aluminium nitride films deposited by magnetron sputtering generally grow as columnar domains made of oriented nanocrystallites with cubic or hexagonal symmetry depending on Al content, which are embedded in more disordered grain boundaries. The substitution of Al atoms for Ti in the cubic lattice of the films improves their resistance to wear and oxidation, allowing their use as protective coatings. Ti K-edge X-ray absorption spectroscopy, which probes both crystallized and more disordered grain boundaries, and X-ray diffraction anomalous fine structure, which is sensitive to short- and long-range order within a given crystallized domain, are carried out on a set of Ti(1-x)AlxN films deposited by magnetron sputtering on Si substrates. Attention is paid to the shape of the pre-edge region, which is sensitive to the symmetry of the site occupied by Ti atoms, either octahedral in face-centred-cubic Ti-rich (TiN, Ti0.54Al0.46N) samples or tetrahedral in hexagonal-close-packed Al-rich (Ti0.32Al0.68N) films. In order to obain information on the titanium environment in the well crystallized areas, subtraction of the smooth part of the energy-dependent structure factor for the Bragg reflections is applied to the pre-edge region of the diffraction anomalous data in order to restore their spectroscopic appearance. A flat pre-edge is related to the typical octahedral environment of Ti atoms for cubic reflections. The difference observed between pre-edge spectra associated with face-centred-cubic 200 and 111 Bragg reflections of Ti0.54Al0.46N is assigned to Ti enrichment of 111 large well ordered domains compared with the more disordered 200 ones. The sharp peak observed in the spectrum recorded from the hexagonal 002 peak of Ti0.32Al0.68N can be regarded as a standard for the pure tetrahedral Ti environment in hexagonal-close-packed nitride.

  14. Carrier trapping and activation at short-period wurtzite/zinc-blende stacking sequences in polytypic InAs nanowires

    NASA Astrophysics Data System (ADS)

    Becker, J.; Morkötter, S.; Treu, J.; Sonner, M.; Speckbacher, M.; Döblinger, M.; Abstreiter, G.; Finley, J. J.; Koblmüller, G.

    2018-03-01

    We explore the effects of random and short-period crystal-phase intermixing in InAs nanowires (NW) on the carrier trapping and thermal activation behavior using correlated optical and electrical transport spectroscopy. The polytypic InAs NWs are grown by catalyst-free molecular beam epitaxy under different temperatures, resulting in different fractions of wurtzite (WZ) and zincblende (ZB) and variable short-period (˜1-4 nm) WZ/ZB stacking sequences. Temperature-dependent microphotoluminescence (μ PL) studies reveal that variations in the WZ/ZB stacking govern the emission energy and carrier confinement properties. The optical transition energies are modeled for a wide range of WZ/ZB stacking sequences using a Kronig-Penney type effective mass approximation, while comparison with experimental results suggests that polarization sheet charges on the order of ˜0.0016-0.08 C/m along the WZ/ZB interfaces need to be considered to best describe the data. The thermal activation characteristics of carriers trapped inside the short-period WZ/ZB structure are directly reproduced in the temperature-dependent carrier density evolution (4-300 K) probed by four-terminal (4T) NW-field effect transistor measurements. In particular, we find that activation of carriers in-between ˜1016-1017c m-3 follows a two-step process, with activation at low temperature attributed to WZ/ZB traps and activation at high temperature being linked to surface states and electron accumulation at the InAs NW surface.

  15. How Cubic Can Ice Be?

    DOE PAGES

    Amaya, Andrew J.; Pathak, Harshad; Modak, Viraj P.; ...

    2017-06-28

    Using an X-ray laser, we investigated the crystal structure of ice formed by homogeneous ice nucleation in deeply supercooled water nanodrops (r ≈ 10 nm) at ~225 K. The nanodrops were formed by condensation of vapor in a supersonic nozzle, and the ice was probed within 100 μs of freezing using femtosecond wide-angle X-ray scattering at the Linac Coherent Light Source free-electron X-ray laser. The X-ray diffraction spectra indicate that this ice has a metastable, predominantly cubic structure; the shape of the first ice diffraction peak suggests stacking-disordered ice with a cubicity value, χ, in the range of 0.78 ±more » 0.05. The cubicity value determined here is higher than those determined in experiments with micron-sized drops but comparable to those found in molecular dynamics simulations. Lastly, the high cubicity is most likely caused by the extremely low freezing temperatures and by the rapid freezing, which occurs on a ~1 μs time scale in single nanodroplets.« less

  16. Crystal Structure and Magnetic Properties of New Cubic Quaternary Compounds RT2Sn2Zn18 (R = La, Ce, Pr, and Nd, and T = Co and Fe)

    NASA Astrophysics Data System (ADS)

    Isikawa, Yosikazu; Mizushima, Toshio; Ejiri, Jun-ichi; Kitayama, Shiori; Kumagai, Keigou; Kuwai, Tomohiko; Bordet, Pierre; Lejay, Pascal

    2015-07-01

    The new cubic quaternary intermetallic compounds RT2Sn2Zn18 (R = La, Ce, Pr, and Nd, and T = Co and Fe) were synthesized by the mixture-metal flux method using Zn and Sn. The crystal structure was investigated by powder X-ray diffraction and with a four-circle X-ray diffractometer using single crystals. The space group of the compounds is Fdbar{3}m (No. 227). The rare-earth atom is at the cubic site which is the center of a cage composed of Zn and Sn atoms. The crystal structure is the same as the CeCr2Al20-type crystal structure except the atoms at the 16c site, i.e., the Zn atoms at the 16c site are completely replaced by Sn atoms, indicating that the compounds are crystallographically new ordered quaternary compounds. The lattice parameter a and the physical properties of the magnetic susceptibility χ, the magnetization M, and the specific heat C of these cubic caged compounds were investigated. LaCo2Sn2Zn18 and LaFe2Sn2Zn18 are enhanced Pauli paramagnets that originate from the Co and Fe itinerant 3d electrons. CeCo2Sn2Zn18 and CeFe2Sn2Zn18 are also enhanced Pauli paramagnets that originate from both the 3d electrons and Ce 4f electrons. PrCo2Sn2Zn18 and PrFe2Sn2Zn18 are nonmagnetic materials with huge values of C divided by temperature, which indicates that the ground state of Pr ions is a non-Kramers' doublet. NdCo2Sn2Zn18 and NdFe2Sn2Zn18 are magnetic materials with the Néel temperatures of 1.0 and 3.8 K, respectively. All eight compounds have large magnetic moments of Co/Fe in the paramagnetic temperature region, and thus their magnetic moments are inferred to be magnetically frustrating owing to the pyrochlore lattice in the low-temperature region.

  17. Unified structure theory of icosahedral quasicrystals: Evidence from neutron powder diffraction patterns that AlCrFeMnSi, AlCuLiMg, and TiNiFeSi icosahedral quasicrystals are twins of cubic crystals containing about 820 or 1012 atoms in a primitive unit cube

    PubMed Central

    Pauling, Linus

    1988-01-01

    A unified structure theory of icosahedral quasicrystals, combining the twinned-cubic-crystal theory and the Penrose-tiling-six-dimensional-projection theory, is described. Values of the primitive-cubic lattice constant for several quasicrystals are evaluated from x-ray and neutron diffraction data. The fact that the low-angle diffraction maxima can be indexed with cubic unit cells provides additional support for the twinned-cubic-crystal theory of icosahedral quasicrystals. PMID:16593990

  18. Enhancement of photoluminescence intensity of GaAs with cubic GaS chemical vapor deposited using a structurally designed single-source precursor

    NASA Technical Reports Server (NTRS)

    Macinnes, Andrew N.; Power, Michael B.; Barron, Andrew R.; Jenkins, Phillip P.; Hepp, Aloysius F.

    1993-01-01

    A two order-of-magnitude enhancement of photoluminescence intensity relative to untreated GaAs has been observed for GaAs surfaces coated with chemical vapor-deposited GaS. The increase in photoluminescence intensity can be viewed as an effective reduction in surface recombination velocity and/or band bending. The gallium cluster /(t-Bu)GaS/4 was used as a single-source precursor for the deposition of GaS thin films. The cubane core of the structurally characterized precursor is retained in the deposited film producing a cubic phase. Furthermore, a near-epitaxial growth is observed for the GaS passivating layer. Films were characterized by transmission electron microscopy, X-ray powder diffraction, and X-ray photoelectron and Rutherford backscattering spectroscopies.

  19. Single crystal plastic behavior of a single-phase, face-center-cubic-structured, equiatomic FeNiCrCo alloy

    DOE PAGES

    Wu, Zhenggang; Gao, Y. F.; Bei, Hongbin

    2015-07-25

    To understand the fundamental deformation mechanisms of compositionally complex alloys, single crystals of a multi-component equiatomic FeNiCoCr alloy with face-centered cubic (FCC) structure were grown for mechanical studies. Similarly to typical FCC pure metals, slip trace analyses indicate that dislocation slips take place on (1 1 1) planes along [11¯0] directions. The critical resolved shear stress (CRSS) obeys the Schmid law at both 77 and 293 K, and tension–compression asymmetry is not observed. Although this material slips in a normal FCC manner both at 293 and 77 K, compared to typical FCC metals the CRSS’s strong temperature dependence is abnormal.

  20. Eu3+-doped (Y0.5La0.5)2O3: new nanophosphor with the bixbyite cubic structure

    NASA Astrophysics Data System (ADS)

    Đorđević, Vesna; Nikolić, Marko G.; Bartova, Barbora; Krsmanović, Radenka M.; Antić, Željka; Dramićanin, Miroslav D.

    2013-01-01

    New red sesquioxide phosphor, Eu3+-doped (Y0.5La0.5)2O3, was synthesized in the form of nanocrystalline powder with excellent structural ordering in cubic bixbyite-type, and with nanoparticle sizes ranging between 10 and 20 nm. Photoluminescence measurements show strong, Eu3+ characteristic, red emission ( x = 0.66 and y = 0.34 CIE color coordinates) with an average 5D0 emission lifetime of about 1.3 ms. Maximum splitting of the 7F1 manifold of the Eu3+ ion emission behaves in a way directly proportional to the crystal field strength parameter, and experimental results show perfect agreement with theoretical values for pure cubic sesquioxides. This could be used as an indicator of complete dissolution of Y2O3 and La2O3, showing that (Y0.5La0.5)2O3:Eu3+ behaves as a new bixbyite structure oxide, M2O3, where M acts as an ion having average ionic radius of constituting Y3+ and La3+. Emission properties of this new phosphor were documented with detailed assignments of Eu3+ energy levels at 10 K and at room temperature. Second order crystal field parameters were found to be B 20 = -66 cm-1 and B 22 = -665 cm-1 at 10 K and B 20 = -78 cm-1 and B 22 = -602 cm-1 at room temperature, while for the crystal field strength the value of 1495 cm-1 was calculated at 10 K and 1355 cm-1 at room temperature.

  1. Structural stability and electronic structure of transition metal compound: HfN

    NASA Astrophysics Data System (ADS)

    Sarwan, Madhu; Shukoor, V. Abdul; Singh, Sadhna

    2018-05-01

    The structural stability of transition metal nitride (HfN) has been investigated using density functional theory (DFT) with the help of Quantum-espresso codes. Our calculations confirm that the hafnium nitride (HfN) is stable in zinc-blende (B3) and rock-salt (B1) type structure. We have also reported the structural and electronic properties of HfN compound. These structural properties have been compared with experimental and theoretical data available on this compound.

  2. Einsteinian cubic gravity

    NASA Astrophysics Data System (ADS)

    Bueno, Pablo; Cano, Pablo A.

    2016-11-01

    We drastically simplify the problem of linearizing a general higher-order theory of gravity. We reduce it to the evaluation of its Lagrangian on a particular Riemann tensor depending on two parameters, and the computation of two derivatives with respect to one of those parameters. We use our method to construct a D -dimensional cubic theory of gravity which satisfies the following properties: (1) it shares the spectrum of Einstein gravity, i.e., it only propagates a transverse and massless graviton on a maximally symmetric background; (2) it is defined in the same way in general dimensions; (3) it is neither trivial nor topological in four dimensions. Up to cubic order in curvature, the only previously known theories satisfying the first two requirements are the Lovelock ones. We show that, up to cubic order, there exists only one additional theory satisfying requirements (1) and (2). Interestingly, this theory is, along with Einstein gravity, the only one which also satisfies (3).

  3. Structure-property relationships in cubic cuprous iodide: A novel view on stability, chemical bonding, and electronic properties

    NASA Astrophysics Data System (ADS)

    Pishtshev, A.; Karazhanov, S. Zh.

    2017-02-01

    Based on the combination of density functional theory and theory-group methods, we performed systematic modeling of γ-CuI structural design at the atomistic level. Being started from the metallic copper lattice, we treated a crystal assembly as a stepwise iodination process characterized in terms of a sequence of intermediate lattice geometries. These geometries were selected and validated via screening of possible structural transformations. The genesis of chemical bonding was studied for three structural transformations by analyzing the relevant changes in the topology of valence electron densities. We determined structural trends driven by metal-ligand coupling. This allowed us to suggest the improved scenario of chemical bonding in γ-CuI. In particular, the unconventional effect of spatial separation of metallic and covalent interactions was found to be very important with respect to the preferred arrangements of valence electrons in the iodination process. We rigorously showed that useful electronic and optical properties of γ-CuI originate from the combination of two separated bonding patterns—strong covalency established in I-Cu tetrahedral connections and noncovalent interactions of copper cores is caused by the 3d10 closed-shell electron configurations. The other finding of ours is that the self-consistency of the GW calculations is crucial for correctly determining the dynamic electronic correlations in γ-CuI. Detail reinvestigation of the quasi-particle energy structure by means of the self-consistent GW approach allowed us to explain how p-type electrical conductivity can be engineered in the material.

  4. Cubic nitride templates

    DOEpatents

    Burrell, Anthony K; McCleskey, Thomas Mark; Jia, Quanxi; Mueller, Alexander H; Luo, Hongmei

    2013-04-30

    A polymer-assisted deposition process for deposition of epitaxial cubic metal nitride films and the like is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures under a suitable atmosphere to yield metal nitride films and the like. Such films can be used as templates for the development of high quality cubic GaN based electronic devices.

  5. Electrostatic swelling of bicontinuous cubic lipid phases.

    PubMed

    Tyler, Arwen I I; Barriga, Hanna M G; Parsons, Edward S; McCarthy, Nicola L C; Ces, Oscar; Law, Robert V; Seddon, John M; Brooks, Nicholas J

    2015-04-28

    Lipid bicontinuous cubic phases have attracted enormous interest as bio-compatible scaffolds for use in a wide range of applications including membrane protein crystallisation, drug delivery and biosensing. One of the major bottlenecks that has hindered exploitation of these structures is an inability to create targeted highly swollen bicontinuous cubic structures with large and tunable pore sizes. In contrast, cubic structures found in vivo have periodicities approaching the micron scale. We have been able to engineer and control highly swollen bicontinuous cubic phases of spacegroup Im3m containing only lipids by (a) increasing the bilayer stiffness by adding cholesterol and (b) inducing electrostatic repulsion across the water channels by addition of anionic lipids to monoolein. By controlling the composition of the ternary mixtures we have been able to achieve lattice parameters up to 470 Å, which is 5 times that observed in pure monoolein and nearly twice the size of any lipidic cubic phase reported previously. These lattice parameters significantly exceed the predicted maximum swelling for bicontinuous cubic lipid structures, which suggest that thermal fluctuations should destroy such phases for lattice parameters larger than 300 Å.

  6. Fatigue and biological properties of Ti-6Al-4V ELI cellular structures with variously arranged cubic cells made by selective laser melting.

    PubMed

    Dallago, M; Fontanari, V; Torresani, E; Leoni, M; Pederzolli, C; Potrich, C; Benedetti, M

    2018-02-01

    Traditional implants made of bulk titanium are much stiffer than human bone and this mismatch can induce stress shielding. Although more complex to produce and with less predictable properties compared to bulk implants, implants with a highly porous structure can be produced to match the bone stiffness and at the same time favor bone ingrowth and regeneration. This paper presents the results of the mechanical and dimensional characterization of different regular cubic open-cell cellular structures produced by Selective Laser Melting (SLM) of Ti6Al4V alloy, all with the same nominal elastic modulus of 3GPa that matches that of human trabecular bone. The main objective of this research was to determine which structure has the best fatigue resistance through fully reversed fatigue tests on cellular specimens. The quality of the manufacturing process and the discrepancy between the actual measured cell parameters and the nominal CAD values were assessed through an extensive metrological analysis. The results of the metrological assessment allowed us to discuss the effect of manufacturing defects (porosity, surface roughness and geometrical inaccuracies) on the mechanical properties. Half of the specimens was subjected to a stress relief thermal treatment while the other half to Hot Isostatic Pressing (HIP), and we compared the effect of the treatments on porosity and on the mechanical properties. Fatigue strength seems to be highly dependent on the surface irregularities and notches introduced during the manufacturing process. In fully reversed fatigue tests, the high performances of stretching dominated structures compared to bending dominated structures are not found. In fact, with thicker struts, such structures proved to be more resistant, even if bending actions were present. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Crystal growth, structural, low temperature thermoluminescence and mechanical properties of cubic fluoroperovskite single crystal (LiBaF3)

    NASA Astrophysics Data System (ADS)

    Daniel, D. Joseph; Ramasamy, P.; Ramaseshan, R.; Kim, H. J.; Kim, Sunghwan; Bhagavannarayana, G.; Cheon, Jong-Kyu

    2017-10-01

    Polycrystalline compounds of LiBaF3 were synthesized using conventional solid state reaction route and the phase purity was confirmed using powder X-ray diffraction technique. Using vertical Bridgman technique single crystal was grown from melt. Rocking curve measurements have been carried out to study the structural perfection of the grown crystal. The single peak of diffraction curve clearly reveals that the grown crystal was free from the structural grain boundaries. The low temperature thermoluminescence of the X-ray irradiated sample has been analyzed and found four distinguishable peaks having maximum temperatures at 18, 115, 133 and 216 K. Activation energy (E) and frequency factor (s) for the individual peaks have been studied using Peak shape method and the computerized curve fitting method combining with the Tmax- TStop procedure. Nanoindentation technique was employed to study the mechanical behaviour of the crystal. The indentation modulus and Vickers hardness of the grown crystal have values of 135.15 GPa and 680.81 respectively, under the maximum indentation load of 10 mN.

  8. Study of structural properties of cubic InN films on GaAs(001) substrates by molecular beam epitaxy and migration enhanced epitaxy

    SciTech Connect

    Casallas-Moreno, Y. L.; Perez-Caro, M.; Gallardo-Hernandez, S.

    InN epitaxial films with cubic phase were grown by rf-plasma-assisted molecular beam epitaxy (RF-MBE) on GaAs(001) substrates employing two methods: migration-enhanced epitaxy (MEE) and conventional MBE technique. The films were synthesized at different growth temperatures ranging from 490 to 550 Degree-Sign C, and different In beam fluxes (BEP{sub In}) ranging from 5.9 Multiplication-Sign 10{sup -7} to 9.7 Multiplication-Sign 10{sup -7} Torr. We found the optimum conditions for the nucleation of the cubic phase of the InN using a buffer composed of several thin layers, according to reflection high-energy electron diffraction (RHEED) patterns. Crystallographic analysis by high resolution X-ray diffraction (HR-XRD)more » and RHEED confirmed the growth of c-InN by the two methods. We achieved with the MEE method a higher crystal quality and higher cubic phase purity. The ratio of cubic to hexagonal components in InN films was estimated from the ratio of the integrated X-ray diffraction intensities of the cubic (002) and hexagonal (1011) planes measured by X-ray reciprocal space mapping (RSM). For MEE samples, the cubic phase of InN increases employing higher In beam fluxes and higher growth temperatures. We have obtained a cubic purity phase of 96.4% for a film grown at 510 Degree-Sign C by MEE.« less

  9. BF into cubic meters

    Treesearch

    Henry Spelter

    2002-01-01

    Noted forest products industry researcher and writer says the conversion factor traditionally used to convert logs measured in board feet to cubic meters has risen. In the U.S., most timber is measured in terms of board feet. The log scales currently in use to estimate lumber recovery from roundwood, however, were created in the 19th century according to sawmill...

  10. Cubic-to-tetragonal structural phase transition in Rb1-xCsxCaF3 solid solutions: Thermal expansion and EPR studies

    NASA Astrophysics Data System (ADS)

    Lahoz, F.; Villacampa, B.; Alcalá, R.; Marquina, C.; Ibarra, M. R.

    1997-04-01

    The influence of crystal mixing on the structural phase transitions in Rb1-xCsxCaF3 (0cubic-to-tetragonal phase transition has been detected in crystals with x=0, 0.1, 0.21, 0.27, and 0.35. The critical temperature and the tetragonal distortion decrease as x increases. No transition was observed for x>=0.44. This transition shows a weak first-order component in the x=0 and 0.1 samples, which is progressively smeared out for x>0.1, indicating a spatial distribution of the critical temperature in those crystals with high ionic substitution rate. In RbCaF3 , another structural phase transition was observed at 20 K with a thermal hysteresis between 20 and 40 K. This transition has not been found in any of the mixed crystals.

  11. Effect of Ti seed layers on structure of self-organized epitaxial face-centered-cubic-Ag(001) oriented nanodots

    SciTech Connect

    Kamiko, M.; Nose, K.; Suenaga, R.

    2013-12-28

    The influence of Ti seed layers on the structure of self-organized Ag nanodots, obtained with a Ti seed-layer-assisted thermal agglomeration method, has been investigated. The samples were grown on MgO(001) single crystal substrates by RF magnetron sputter deposition. The samples were deposited at room temperature and post-annealed at 350 °C for 4 h while maintaining the chamber vacuum conditions. The results of atomic force microscopy (AFM) observations indicated that the insertion of the Ti seed layer (0.6–5.0 nm) between the MgO substrate and Ag layer promotes the agglomeration process, forming the nanodot array. Comparisons between the AFM images revealed thatmore » the size of the Ag nanodots was increased with an increase in the Ti seed layer thickness. The atomic concentration of the film surface was confirmed by X-ray photoelectron spectroscopy (XPS). The XPS result suggested that the nanodot surface mainly consisted of Ag. Moreover, X-ray diffraction results proved that the initial deposition of the Ti seed layer (0.6–5.0 nm) onto MgO(001) prior to the Ag deposition yielded high-quality fcc-Ag(001) oriented epitaxial nanodots. The optical absorbance spectra of the fabricated Ag nanodots with various Ti seed layer thicknesses were obtained in the visible light range.« less

  12. Structural, morphological and optical properties of ZnSe quantum dot thin films.

    PubMed

    Zedan, I T; Azab, A A; El-Menyawy, E M

    2016-02-05

    ZnSe powder was prepared via hydrothermal technique using zinc acetate and sodium selenite as source materials. The prepared ZnSe powder was used for preparing film with different thickness values (95, 135 and 230 nm) via thermal evaporation technique. X-ray diffraction showed that the prepared powder has cubic zinc-blende structure with a space group, F43m. The high resolution transmittance electron microscope results show that the films are composed of spherical-shaped nanoparticles with a diameter in the range of 2-8 nm. The optical properties of ZnSe films with differing thicknesses are investigated by means of spectrophotometric measurements of the photoluminescence, transmittance and reflectance. The absorption coefficient of the films is calculated and the optical band gap is estimated. The refractive index of the films is determined and its normal dispersion behavior is analyzed on the basis of a single oscillator model, in which oscillator energy, dispersion energy and dielectric constant at high frequency are evaluated. Drude model is also applied to determine the lattice dielectric constant and the ratio of the carriers' concentration to their effective mass. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Structural and optical characterization of 1 µm of ternary alloy ZnCuSe thin films

    NASA Astrophysics Data System (ADS)

    Shaaban, E. R.; Hassan, H. Shokry; Aly, S. A.; Elshaikh, H. A.; Mahasen, M. M.

    2016-08-01

    Different compositions of Cu-doped ZnSe in ternary alloy Zn1- x Cu x Se thin films (with x = 0, 0.025, 0.05, 0.075 and 0.10) were evaporated (thickness 1 µm) onto glass substrate using electron beam evaporation method. The X-ray diffraction analysis for both powder and films indicated their polycrystalline nature with zinc blende (cubic) structure. The crystallite size was found to increase, while the lattice microstrain was decreased with increasing Cu dopant. The optical characterization of films was carried out using the transmittance spectra, where the refractive indices have been evaluated in transparent and medium transmittance regions using the envelope method, suggested by Swanepoel. The refractive index has been found to increase with increasing Cu content. The dispersion of refractive index has been analyzed in terms of the Wemple-DiDomenico single-oscillator model. The oscillator parameters, the single-oscillator energy E o, the dispersion energy E d and the static refractive index n 0, were estimated. The optical band gap was determined in strong absorption region of transmittance spectra and was found to increase from 2.702 to 2.821 eV with increasing the Cu content. This increase in the band gap was well explained by the Burstein-Moss effect.

  14. Fermi surfaces properties of AuAl2, AuGa2, and AuIn2 with the CaF2-type cubic structure

    NASA Astrophysics Data System (ADS)

    Nishimura, K.; Kakihana, M.; Suzuki, F.; Yara, T.; Hedo, M.; Nakama, T.; Ōnuki, Y.; Harima, H.

    2018-05-01

    We grew high-quality single crystals of AuAl2, AuGa2, and AuIn2 with the fluorite (CaF2)-type cubic structure and determined the Fermi surface properties by the de Haas-van Alphen (dHvA) experiments using full-potential LAPW bad calculations. The Fermi surface and optical properties for three compounds were once studied from an interest of colors because AuAl2 has a striking bright reddish-purple color, whereas AuGa2 and AuIn2 are, respectively, neutral and bluish. The detected dHvA frequencies in the present study are found to be in a wide range of (0.1-13)×107 Oe. The main dHvA branches for three compounds are in excellent agreement with the theoretical ones, but some dHvA branches with small dHvA frequencies are slightly deviated from the theoretical ones, especially in AuGa2 and AuIn2.

  15. Icosahedral quasicrystals as twins of cubic crystals containing large icosahedral clusters of atoms: The 1012-atom primitive cubic structure of Al(6)CuLi(3), the C-phase Al(37)Cu(3)Li(21)Mg(3), and GaMg(2)Zn(3).

    PubMed

    Pauling, L

    1988-06-01

    Single-grain precession x-ray diffraction photographs of Al(6)CuLi(3) have been successfully indexed on the basis of icosahedral twinning of cubic crystals with a 1012-atom primitive cubic unit with edge 25.70 A, giving support to the proposal that the so-called icosahedral quasicrystals are twins of crystals containing eight large icosahedral clusters in the beta-W arrangement. In this compound two of the clusters consist of 104 atoms and six consist of 136 atoms, with 24 atoms shared. The same structure is assigned to the C-phase, Al(37)Cu(3)Li(21)Mg(3), and to GaMg(2)Zn(3). A theory of icosahedral quasicrystals and amorphous metals is described.

  16. Icosahedral quasicrystals as twins of cubic crystals containing large icosahedral clusters of atoms: The 1012-atom primitive cubic structure of Al6CuLi3, the C-phase Al37Cu3Li21Mg3, and GaMg2Zn3

    PubMed Central

    Pauling, Linus

    1988-01-01

    Single-grain precession x-ray diffraction photographs of Al6CuLi3 have been successfully indexed on the basis of icosahedral twinning of cubic crystals with a 1012-atom primitive cubic unit with edge 25.70 Å, giving support to the proposal that the so-called icosahedral quasicrystals are twins of crystals containing eight large icosahedral clusters in the β-W arrangement. In this compound two of the clusters consist of 104 atoms and six consist of 136 atoms, with 24 atoms shared. The same structure is assigned to the C-phase, Al37Cu3Li21Mg3, and to GaMg2Zn3. A theory of icosahedral quasicrystals and amorphous metals is described. PMID:16593929

  17. New lipid family that forms inverted cubic phases in equilibrium with excess water: molecular structure-aqueous phase structure relationship for lipids with 5,9,13,17-tetramethyloctadecyl and 5,9,13,17-tetramethyloctadecanoyl chains.

    PubMed

    Yamashita, Jun; Shiono, Manzo; Hato, Masakatsu

    2008-10-02

    With a view to discovering a new family of lipids that form inverted cubic phases, the aqueous phase behavior of a series of lipids with isoprenoid-type hydrophobic chains has been examined over a temperature range from -40 to 65 degrees C by using optical microscopy, DSC (differential scanning calorimetry), and SAXS (small-angle X-ray scattering) techniques. The lipids examined are those with 5,9,13,17-tetramethyloctadecyl and 5,9,13,17-tetramethyloctadecanoyl chains linked to a series of headgroups, that is, erythritol, pentaerythritol, xylose, and glucose. All of the lipid/water systems displayed a "water + liquid crystalline phase" two-phase coexistence state when sufficiently diluted. The aqueous phase structures of the most diluted liquid crystalline phases in equilibrium with excess water depend both on the lipid molecular structure and on the temperature. Given an isoprenoid chain, the preferred phase consistently follows a phase sequence of an H II (an inverted hexagonal phase) to a Q II (an inverted bicontinuous cubic phase) to an L alpha (a lamellar phase) as A* (cross-section area of the headgroup) increases. For a given lipid/water system, the phase sequence observed as the temperature increases is L alpha to Q II to H II. The present study allowed us to find four cubic phase-forming lipid species, PEOC 18+4 [mono- O-(5,9,13,17-tetramethyloctadecyl)pentaerythritol], beta-XylOC 18+4 [1- O-(5,9,13,17-tetramethyloctadecyl)-beta- d-xylopyranoside], EROCOC 17+4 [1- O-(5,9,13,17-tetramethyloctadecanoyl)erythritol], and PEOCOC 17+4 [mono- O-(5,9,13,17-tetramethyloctadecanoyl)pentaerythritol]. The values of T K (hydrated solid-liquid crystalline phase transition temperature) of the cubic phase-forming lipids are all below 0 degrees C. Quantitative analyses of the lipid molecular structure-aqueous phase structure relationship in terms of the experimentally evaluated "surfactant parameter" allow us to rationally select an optimum combination of hydrophilic

  18. Weak lensing probe of cubic Galileon model

    NASA Astrophysics Data System (ADS)

    Dinda, Bikash R.

    2018-06-01

    The cubic Galileon model containing the lowest non-trivial order action of the full Galileon action can produce the stable late-time cosmic acceleration. This model can have a significant role in the growth of structures. The signatures of the cubic Galileon model in the structure formation can be probed by the weak lensing statistics. Weak lensing convergence statistics is one of the strongest probes to the structure formation and hence it can probe the dark energy or modified theories of gravity models. In this work, we investigate the detectability of the cubic Galileon model from the ΛCDM model or from the canonical quintessence model through the convergence power spectrum and bi-spectrum.

  19. STRUCTURAL, SURFACE MORPHOLOGICAL AND MAGNETIC STUDIES OF Zn1-xFexS (x=0.00-0.10) DILUTED MAGNETIC SEMICONDUCTORS GROWN BY CO-PRECIPITATION METHOD

    NASA Astrophysics Data System (ADS)

    Hassan, M.; Ghazanfar, M.; Arooj, N.; Riaz, S.; Hussain, S. Sajjad; Naseem, S.

    We have fabricated Zn1-xFexS (x=0.00, 0.02, 0.04, 0.06, 0.08 and 0.10) diluted magnetic semiconductors using co-precipitation method. X-ray diffraction patterns depict that Zn1-xFexS appears as a dominant phase with cubic zinc blende structure and nanoscale crystallite size. In addition, a secondary phase of rhombohedral ZnS also appears; however, no additional phase arises that primarily belongs to Fe dopant. Using Debye-Scherrer relation, the crystallite size is found to be in the range of 20-27nm, which is in good agreement with the crystallite size calculated using the Williamson-Hall (WH) plot method. The appearance of secondary phase provoked to study the residual strain using Stokes-Wilson equation, which is nearly consistent to that observed using WH plot method. The surface morphology, revealed using scanning electron microscopy, depicts non-uniform surface structure with a variety of grains and void dimensions. Hysteresis loops measured for Zn1-xFexS at room temperature (RT) illustrate a paramagnetic behavior at higher fields; however, small ferromagnetic behavior is evident due to the small openings of the measured hysteresis loops around the origin. The measured RT ferromagnetism reveals the potential spintronic device applications of the studied diluted magnetic semiconductors.

  20. Phase boundary between cubic B1 and rhombohedral structures in (Mg,Fe)O magnesiowüstite determined by in situ X-ray diffraction measurements

    NASA Astrophysics Data System (ADS)

    Dymshits, Anna M.; Litasov, Konstantin D.; Shatskiy, Anton; Chanyshev, Artem D.; Podborodnikov, Ivan V.; Higo, Yuji

    2018-01-01

    The phase relations and equation of state of (Mg0.08Fe0.92)O magnesiowüstite (Mw92) have been studied using the Kawai-type high-pressure apparatus coupled with synchrotron radiation. To determine the phase boundary between the NaCl-type cubic (B1) and rhombohedral ( rB1) structures in Mw92, in situ X-ray observations were carried out at pressures of 0-35 GPa and temperatures of 300-1473 K. Au and MgO were used as the internal pressure markers and metallic Fe as oxygen fugacity buffer. The phase boundary between B1 and rB1 structures was described by a linear equation P (GPa) = 1.6 + 0.033 × T (K). The Clapeyron slope (d P/d T) determined in this study is close to that obtained at pressures above 70 GPa but steeper than that obtained for FeO. An addition of MgO to FeO structure expands the stability field of the rB1 phase to lower pressures and higher temperatures. Thus, the rB1 phase may be stabilized with respect to the B1 phase at a lower pressures. The pressure-volume-temperature equation of state of B1-Mw92 was determined up to 30 GPa and 1473 K. Fitting the hydrostatic compression data up to 30 GPa with the Birch-Murnaghan equation of state (EoS) yielded: unit cell volume ( V 0, T0), 79.23 ± 4 Å3; bulk modulus ( K 0, T0), 183 ± 4 GPa; its pressure derivative ( K' T ), 4.1 ± 0.4; (∂ K 0, T /∂ T) = -0.029 ± 0.005 GPa K‒1; a = 3.70 ± 0.27 × 10-5 K-1 and b = 0.47 ± 0.49 × 10-8 K-2, where α0, T = a + bT is the volumetric thermal expansion coefficient. The obtained bulk modulus of Mw92 is very close to the value expected for stoichiometric iron-rich (Mg,Fe)O. This result confirms the idea that the bulk modulus of (Mg,Fe)O is greatly affected by the actual defect structure, caused by either Mg2+ or vacancies.

  1. Spin structure of electron subbands in (110)-grown quantum wells

    SciTech Connect

    Nestoklon, M. O.; Tarasenko, S. A.; Jancu, J.-M.

    We present the theory of fine structure of electron states in symmetric and asymmetric zinc-blende-type quantum wells with the (110) crystallographic orientation. By combining the symmetry analysis, sp{sup 3}d{sup 5}s* tight-binding method, and envelope-function approach we obtain quantitative description of in-plane wave vector, well width and applied electric field dependencies of the zero-magnetic-field spin splitting of electron subbands and extract spin-orbit-coupling parameters.

  2. Low temperature formation of higher-k cubic phase HfO{sub 2} by atomic layer deposition on GeO{sub x}/Ge structures fabricated by in-situ thermal oxidation

    SciTech Connect

    Zhang, R., E-mail: zhang@mosfet.t.u-tokyo.ac.jp; Department of Information Science and Electronic Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027; Huang, P.-C.

    2016-02-01

    We have demonstrated a low temperature formation (300 °C) of higher-k HfO{sub 2} using atomic layer deposition (ALD) on an in-situ thermal oxidation GeO{sub x} interfacial layer. It is found that the cubic phase is dominant in the HfO{sub 2} film with an epitaxial-like growth behavior. The maximum permittivity of 42 is obtained for an ALD HfO{sub 2} film on a 1-nm-thick GeO{sub x} form by the in-situ thermal oxidation. It is suggested from physical analyses that the crystallization of cubic phase HfO{sub 2} can be induced by the formation of six-fold crystalline GeO{sub x} structures in the underlying GeO{sub x}more » interfacial layer.« less

  3. Icosahedral and decagonal quasicrystals of intermetallic compounds are multiple twins of cubic or orthorhombic crystals composed of very large atomic complexes with icosahedral point-group symmetry in cubic close packing or body-centered packing: Structure of decagonal Al6Pd

    PubMed Central

    Pauling, Linus

    1989-01-01

    A doubly icosahedral complex involves roughly spherical clusters of atoms with icosahedral point-group symmetry, which are themselves, in parallel orientation, icosahedrally packed. These complexes may form cubic crystallites; three structures of this sort have been identified. Analysis of electron diffraction photographs of the decagonal quasicrystal Al6Pd has led to its description as involving pentagonal twinning of an orthorhombic crystal with a = 51.6 Å, b = 37.6 Å, and c = 33.24 Å, with about 4202 atoms in the unit, comprising two 1980-atom doubly icosahedral complexes, each involving icosahedral packing of 45 44-atom icosahedral complexes (at 0 0 0 and 1/2 1/2 1/2) and 242 interstitial atoms. The complexes and clusters are oriented with one of their fivefold axes in the c-axis direction. Images PMID:16594092

  4. Icosahedral and decagonal quasicrystals of intermetallic compounds are multiple twins of cubic or orthorhombic crystals composed of very large atomic complexes with icosahedral point-group symmetry in cubic close packing or body-centered packing: Structure of decagonal Al(6)Pd.

    PubMed

    Pauling, L

    1989-12-01

    A doubly icosahedral complex involves roughly spherical clusters of atoms with icosahedral point-group symmetry, which are themselves, in parallel orientation, icosahedrally packed. These complexes may form cubic crystallites; three structures of this sort have been identified. Analysis of electron diffraction photographs of the decagonal quasicrystal Al(6)Pd has led to its description as involving pentagonal twinning of an orthorhombic crystal with a = 51.6 A, b = 37.6 A, and c = 33.24 A, with about 4202 atoms in the unit, comprising two 1980-atom doubly icosahedral complexes, each involving icosahedral packing of 45 44-atom icosahedral complexes (at 0 0 0 and 1/2 1/2 1/2) and 242 interstitial atoms. The complexes and clusters are oriented with one of their fivefold axes in the c-axis direction.

  5. Electron spin relaxation in two polymorphic structures of GaN

    NASA Astrophysics Data System (ADS)

    Kang, Nam Lyong

    2015-03-01

    The relaxation process of electron spin in systems of electrons interacting with piezoelectric deformation phonons that are mediated through spin-orbit interactions was interpreted from a microscopic point of view using the formula for the electron spin relaxation times derived by a projection-reduction method. The electron spin relaxation times in two polymorphic structures of GaN were calculated. The piezoelectric material constant for the wurtzite structure obtained by a comparison with a previously reported experimental result was {{P}pe}=1.5 × {{10}29} eV {{m}-1}. The temperature and magnetic field dependence of the relaxation times for both wurtzite and zinc-blende structures were similar, but the relaxation times in zinc-blende GaN were smaller and decreased more rapidly with increasing temperature and magnetic field than that in wurtzite GaN. This study also showed that the electron spin relaxation for wurtzite GaN at low density could be explained by the Elliot-Yafet process but not for zinc-blende GaN in the metallic regime.

  6. Ion-beam-induced magnetic and structural phase transformation of Ni-stabilized face-centered-cubic Fe films on Cu(100)

    SciTech Connect

    Gloss, Jonas; Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69 Brno; Shah Zaman, Sameena

    2013-12-23

    Metastable face-centered cubic (fcc) Fe/Cu(100) thin films are good candidates for ion-beam magnetic patterning due to their magnetic transformation upon ion-beam irradiation. However, pure fcc Fe films undergo spontaneous transformation when their thickness exceeds 10 ML. This limit can be extended to approximately 22 ML by deposition of Fe at increased CO background pressures. We show that much thicker films can be grown by alloying with Ni for stabilizing the fcc γ phase. The amount of Ni necessary to stabilize nonmagnetic, transformable fcc Fe films in dependence on the residual background pressure during the deposition is determined and a phasemore » diagram revealing the transformable region is presented.« less

  7. Crystal Structure of Garnet-Related Li-Ion Conductor Li7–3xGaxLa3Zr2O12: Fast Li-Ion Conduction Caused by a Different Cubic Modification?

    PubMed Central

    2016-01-01

    Li-oxide garnets such as Li7La3Zr2O12 (LLZO) are among the most promising candidates for solid-state electrolytes to be used in next-generation Li-ion batteries. The garnet-structured cubic modification of LLZO, showing space group Ia-3d, has to be stabilized with supervalent cations. LLZO stabilized with Ga3+ shows superior properties compared to LLZO stabilized with similar cations; however, the reason for this behavior is still unknown. In this study, a comprehensive structural characterization of Ga-stabilized LLZO is performed by means of single-crystal X-ray diffraction. Coarse-grained samples with crystal sizes of several hundred micrometers are obtained by solid-state reaction. Single-crystal X-ray diffraction results show that Li7–3xGaxLa3Zr2O12 with x > 0.07 crystallizes in the acentric cubic space group I-43d. This is the first definite record of this cubic modification for LLZO materials and might explain the superior electrochemical performance of Ga-stabilized LLZO compared to its Al-stabilized counterpart. The phase transition seems to be caused by the site preference of Ga3+. 7Li NMR spectroscopy indicates an additional Li-ion diffusion process for LLZO with space group I-43d compared to space group Ia-3d. Despite all efforts undertaken to reveal structure–property relationships for this class of materials, this study highlights the potential for new discoveries. PMID:27019548

  8. The Coulombic Lattice Potential of Ionic Compounds: The Cubic Perovskites.

    ERIC Educational Resources Information Center

    Francisco, E.; And Others

    1988-01-01

    Presents coulombic models representing the particles of a system by point charges interacting through Coulomb's law to explain coulombic lattice potential. Uses rubidium manganese trifluoride as an example of cubic perovskite structure. Discusses the effects on cluster properties. (CW)

  9. Pressure-induced structural phase transition in transition metal carbides TMC (TM = Ru, Rh, Pd, Os, Ir, Pt): a DFT study

    NASA Astrophysics Data System (ADS)

    Manikandan, M.; Rajeswarapalanichamy, R.; Iyakutti, K.

    2018-03-01

    First-principles calculations based on density functional theory was performed to analyse the structural stability of transition metal carbides TMC (TM = Ru, Rh, Pd, Os, Ir, Pt). It is observed that zinc-blende phase is the most stable one for these carbides. Pressure-induced structural phase transition from zinc blende to NiAs phase is predicted at the pressures of 248.5 GPa, 127 GPa and 142 GPa for OsC, IrC and PtC, respectively. The electronic structure reveals that RuC exhibits a semiconducting behaviour with an energy gap of 0.7056 eV. The high bulk modulus values of these carbides indicate that these metal carbides are super hard materials. The high B/G value predicts that the carbides are ductile in their most stable phase.

  10. The nature of the structural phase transition from the hexagonal (4H) phase to the cubic (3C) phase of silver.

    PubMed

    Chakraborty, Indrani; Shirodkar, Sharmila N; Gohil, Smita; Waghmare, Umesh V; Ayyub, Pushan

    2014-03-19

    The phase transition from the hexagonal 4H polytype of silver to the commonly known 3C (fcc) phase was studied in detail using x-ray diffraction, electron microscopy, differential scanning calorimetry and Raman spectroscopy. The phase transition is irreversible and accompanied by extensive microstructural changes and grain growth. Detailed scanning and isothermal calorimetric analysis suggests that it is an autocatalytic transformation. Though the calorimetric data suggest an exothermic first-order phase transition with an onset at 155.6 °C (for a heating rate of 2 K min(-1)) and a latent heat of 312.9 J g(-1), the microstructure and the electrical resistance appear to change gradually from much lower temperatures. The 4H phase shows a Raman active mode at 64.3 cm(-1) (at 4 K) that undergoes mode softening as the 4H → 3C transformation temperature is approached. A first-principles density functional theory calculation shows that the stacking fault energy of 4H-Ag increases monotonically with temperature. That 4H-Ag has a higher density of stacking faults than 3C-Ag, implies the metastability of the former at higher temperatures. Energetically, the 4H phase is intermediate between the hexagonal 2H phase and the 3C ground state, as indicated by the spontaneous transformation of the 2H to the 4H phase at -4 °C. Our data appear to indicate that the 4H-Ag phase is stabilized at reduced dimensions and thermally induced grain growth is probably responsible for triggering the irreversible transformation to cubic Ag.

  11. Structure, morphology and Raman and optical spectroscopic analysis of In1-xCuxP thin films grown by MOCVD technique for solar cell applications

    NASA Astrophysics Data System (ADS)

    Alshahrie, Ahmed; Juodkazis, S.; Al-Ghamdi, A. A.; Hafez, M.; Bronstein, L. M.

    2017-10-01

    Nanocrystalline In1-xCuxP thin films (0 ≤ x ≤ 0.5) have been deposited on quartz substrates by a Metal-Organic Chemical Vapor Deposition (MOCVD) technique. The effect of the copper ion content on the structural crystal lattice, morphology and optical behavior of the InP thin films was assessed using X-ray diffraction, scanning electron microscopy, atomic force microscopy, Raman spectroscopy and spectrophotometry. All films exhibited a crystalline cubic zinc blende structure, inferring the solubility of the Cu atoms in the InP crystal structure. The XRD patterns demonstrated that the inclusion of Cu atoms into the InP films forced the nanoparticles in the films to grow along the (1 1 1) direction. The AFM topography showed that the Cu ions reduce the surface roughness of deposited films. The Raman spectra of the deposited films contain the first and second order anti-stoke ΓTO, ΓLO, ΧLO + ΧTO, 2ΓTO, and ΓLO + ΓTO bands which are characteristic of the InP crystalline structure. The intensities of these bands decreased with increasing the content of the Cu atoms in the InP crystals implying the creation of a stacking fault density in the InP crystal structure. The In1-xCuxP thin films have shown high optical transparency of 90%. An increase of the optical band gap from 1.38 eV to 1.6 eV was assigned to the increase of the amount of Cu ions in the InP films. The In0.5Cu0.5P thin film exhibited remarkable optical conductivity with very low dissipation factor which makes it a promising buffer window for solar energy applications.

  12. The diagonalization of cubic matrices

    NASA Astrophysics Data System (ADS)

    Cocolicchio, D.; Viggiano, M.

    2000-08-01

    This paper is devoted to analysing the problem of the diagonalization of cubic matrices. We extend the familiar algebraic approach which is based on the Cardano formulae. We rewrite the complex roots of the associated resolvent secular equation in terms of transcendental functions and we derive the diagonalizing matrix.

  13. Cubication of Conservative Nonlinear Oscillators

    ERIC Educational Resources Information Center

    Belendez, Augusto; Alvarez, Mariela L.; Fernandez, Elena; Pascual, Immaculada

    2009-01-01

    A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear…

  14. Cubic Unit Cell Construction Kit.

    ERIC Educational Resources Information Center

    Mattson, Bruce

    2000-01-01

    Presents instructions for building a simple interactive unit-cell construction kit that allows for the construction of simple, body-centered, and face-centered cubic lattices. The lit is built from inexpensive and readily available materials and can be built in any number of sizes. (WRM)

  15. Structural phase transition, electronic structure and optical properties of half Heusler alloys LiBeZ (Z = As, Sb)

    SciTech Connect

    Amudhavalli, A.; Rajeswarapalanichamy, R., E-mail: rajeswarapalanichamy@gmail.com

    2016-05-23

    Ab initio calculations are performed to investigate the structural stability, electronic structure, mechanical properties and optical properties of half Heusler alloys (LiBeAs and LiBeSb) for three different phases of zinc blende crystal structure. Among the considered phases, α- phase is found to be the most stable phase for these alloys at normal pressure. A pressure induced structural phase transition from α-phase to β- phase is observed for LiBeAs. The electronic structure reveals that these alloys are semiconductors. The optical properties confirm that these alloys are semiconductor in nature.

  16. An Example of Body-Centered Cubic Crystal Structure: The Atomium in Brussels as an Educative Tool for Introductory Materials Chemistry

    ERIC Educational Resources Information Center

    Pinto, Gabriel

    2012-01-01

    When students are introduced to the ways in which atoms are arranged in crystal structures, transposing the textbook illustrations into three-dimensional structures is difficult for some of them. To facilitate this transition, this article describes an approach to the study of the structure of solids through a well-known monument, the Atomium in…

  17. Thermoelectric properties of p-type cubic and rhombohedral GeTe

    SciTech Connect

    Xing, Guangzong; Sun, Jifeng; Li, Yuwei

    Here, we investigate the electronic and thermoelectric properties of GeTe in both cubic and rhombohedral phases. We find that cubic GeTe has an electronic structure with a narrow band gap that is unfavorable at high temperature, where the cubic phase is normally stable. However, cubic GeTe has electronic features that may lead to p-type performance superior to the normal rhombohedral phase at lower temperature. This is explained in part by the combination of light and heavy band character that is very effective in obtaining high thermopower and conductivity. In addition, the valence band edge carrier pockets in cubic GeTe possessmore » the largest anisotropy among cubic IV-VI analogs. These effects are stronger than the effect of band convergence in the rhombohedral structure. The results suggest further study of stabilized cubic GeTe as a thermoelectric.« less

  18. Thermoelectric properties of p-type cubic and rhombohedral GeTe

    DOE PAGES

    Xing, Guangzong; Sun, Jifeng; Li, Yuwei; ...

    2018-05-21

    Here, we investigate the electronic and thermoelectric properties of GeTe in both cubic and rhombohedral phases. We find that cubic GeTe has an electronic structure with a narrow band gap that is unfavorable at high temperature, where the cubic phase is normally stable. However, cubic GeTe has electronic features that may lead to p-type performance superior to the normal rhombohedral phase at lower temperature. This is explained in part by the combination of light and heavy band character that is very effective in obtaining high thermopower and conductivity. In addition, the valence band edge carrier pockets in cubic GeTe possessmore » the largest anisotropy among cubic IV-VI analogs. These effects are stronger than the effect of band convergence in the rhombohedral structure. The results suggest further study of stabilized cubic GeTe as a thermoelectric.« less

  19. CUBIC pathology: three-dimensional imaging for pathological diagnosis.

    PubMed

    Nojima, Satoshi; Susaki, Etsuo A; Yoshida, Kyotaro; Takemoto, Hiroyoshi; Tsujimura, Naoto; Iijima, Shohei; Takachi, Ko; Nakahara, Yujiro; Tahara, Shinichiro; Ohshima, Kenji; Kurashige, Masako; Hori, Yumiko; Wada, Naoki; Ikeda, Jun-Ichiro; Kumanogoh, Atsushi; Morii, Eiichi; Ueda, Hiroki R

    2017-08-24

    The examination of hematoxylin and eosin (H&E)-stained tissues on glass slides by conventional light microscopy is the foundation for histopathological diagnosis. However, this conventional method has some limitations in x-y axes due to its relatively narrow range of observation area and in z-axis due to its two-dimensionality. In this study, we applied a CUBIC pipeline, which is the most powerful tissue-clearing and three-dimensional (3D)-imaging technique, to clinical pathology. CUBIC was applicable to 3D imaging of both normal and abnormal patient-derived, human lung and lymph node tissues. Notably, the combination of deparaffinization and CUBIC enabled 3D imaging of specimens derived from paraffin-embedded tissue blocks, allowing quantitative evaluation of nuclear and structural atypia of an archival malignant lymphoma tissue. Furthermore, to examine whether CUBIC can be applied to practical use in pathological diagnosis, we performed a histopathological screening of a lymph node metastasis based on CUBIC, which successfully improved the sensitivity in detecting minor metastatic carcinoma nodules in lymph nodes. Collectively, our results indicate that CUBIC significantly contributes to retrospective and prospective clinicopathological diagnosis, which might lead to the establishment of a novel field of medical science based on 3D histopathology.

  20. Solving Cubic Equations by Polynomial Decomposition

    ERIC Educational Resources Information Center

    Kulkarni, Raghavendra G.

    2011-01-01

    Several mathematicians struggled to solve cubic equations, and in 1515 Scipione del Ferro reportedly solved the cubic while participating in a local mathematical contest, but did not bother to publish his method. Then it was Cardano (1539) who first published the solution to the general cubic equation in his book "The Great Art, or, The Rules of…

  1. Cubic martensite in high carbon steel

    NASA Astrophysics Data System (ADS)

    Chen, Yulin; Xiao, Wenlong; Jiao, Kun; Ping, Dehai; Xu, Huibin; Zhao, Xinqing; Wang, Yunzhi

    2018-05-01

    A distinguished structural characteristic of martensite in Fe-C steels is its tetragonality originating from carbon atoms occupying only one set of the three available octahedral interstitial sites in the body-centered-cubic (bcc) Fe lattice. Such a body-centered-tetragonal (bct) structure is believed to be thermodynamically stable because of elastic interactions between the interstitial carbon atoms. For such phase stability, however, there has been a lack of direct experimental evidence despite extensive studies of phase transformations in steels over one century. In this Rapid Communication, we report that the martensite formed in a high carbon Fe-8Ni-1.26C (wt%) steel at room temperature induced by applied stress/strain has actually a bcc rather than a bct crystal structure. This finding not only challenges the existing theories on the stability of bcc vs bct martensite in high carbon steels, but also provides insights into the mechanism for martensitic transformation in ferrous alloys.

  2. The 2:3:6 quasi-periodic oscillation structure in GRS 1915+105 and cubic subharmonics in the context of relativistic discoseismology

    NASA Astrophysics Data System (ADS)

    Ortega-Rodríguez, M.; Solís-Sánchez, H.; López-Barquero, V.; Matamoros-Alvarado, B.; Venegas-Li, A.

    2014-06-01

    We propose a simple toy model to explain the 2:3:6 quasi-periodic oscillation (QPO) structure in GRS 1915+105 and, more generally, the 2:3 QPO structure in XTE J1550-564, GRO J1655-40 and H1743-322. The model exploits the onset of subharmonics in the context of discoseismology. We suggest that the observed frequencies may be the consequence of a resonance between a fundamental g mode and an unobservable p wave. The results include the prediction that, as better data become available, a QPO with a frequency of twice the higher twin frequency and a large quality factor will be observed in twin peak sources, as it might already have been observed in the especially active GRS 1915+105.

  3. First principles study of structural, electronic and optical properties of perovskites CaZrO3 and CaHfO3 in cubic phase

    NASA Astrophysics Data System (ADS)

    Hoat, D. M.; Silva, J. F. Rivas; Blas, A. Méndez

    2018-07-01

    In this work, we present the first principles calculations for structural, electronic and optical properties of perovskites CaZrO3 and CaHfO3 using the full-potential linearized augmented plane wave method (FP-LAPW) within the framework of density functional theory (DFT) as implemented in WIEN2k package. The exchange-correlation potential is treated with local density approximation (LDA) and generalized gradient approximation (GGA-PBE and PBESol). Additionally, the Tran Blaha modified Becke-Johnson exchange potential (mBJ) also is employed for electronic and optical calculations due to that it gives very accurate band gap of solids. Our obtained structural parameters are in good agreement with experimental datas and other theoretical results. The energy band gap obtained with mBJ is 4.56 eV for CaZrO3 and 5.27 eV for CaHfO3. The hybridization of states of O atom with those of Zr and Hf atoms in CaZrO3 and CaHfO3, respectively, is observed. The spin-orbit coupling effect on electronic properties of considered compounds also is investigated. Finally, the linear optical properties of CaZrO3 and CaHfO3 are derived from their complex dielectric function calculated with mBJ potential for wide energy range up to 45 eV, and all of them analyzed in details.

  4. Weighted cubic and biharmonic splines

    NASA Astrophysics Data System (ADS)

    Kvasov, Boris; Kim, Tae-Wan

    2017-01-01

    In this paper we discuss the design of algorithms for interpolating discrete data by using weighted cubic and biharmonic splines in such a way that the monotonicity and convexity of the data are preserved. We formulate the problem as a differential multipoint boundary value problem and consider its finite-difference approximation. Two algorithms for automatic selection of shape control parameters (weights) are presented. For weighted biharmonic splines the resulting system of linear equations can be efficiently solved by combining Gaussian elimination with successive over-relaxation method or finite-difference schemes in fractional steps. We consider basic computational aspects and illustrate main features of this original approach.

  5. Cubic-to-tetragonal structural phase transition in Rb{sub 1{minus}x}Cs{sub x}CaF{sub 3} solid solutions: Thermal expansion and EPR studies

    SciTech Connect

    Lahoz, F.; Villacampa, B.; Alcala, R.

    1997-04-01

    The influence of crystal mixing on the structural phase transitions in Rb{sub 1{minus}x}Cs{sub x}CaF{sub 3} (0{lt}x{lt}1) fluoroperovskite crystals has been studied by thermal expansion and EPR measurements of Ni{sup 2+} and Ni{sup 3+} paramagnetic probes. A cubic-to-tetragonal phase transition has been detected in crystals with x=0, 0.1, 0.21, 0.27, and 0.35. The critical temperature and the tetragonal distortion decrease as x increases. No transition was observed for x{ge}0.44. This transition shows a weak first-order component in the x=0 and 0.1 samples, which is progressively smeared out for x{gt}0.1, indicating a spatial distribution of the critical temperature in those crystals withmore » high ionic substitution rate. In RbCaF{sub 3}, another structural phase transition was observed at 20 K with a thermal hysteresis between 20 and 40 K. This transition has not been found in any of the mixed crystals.« less

  6. Structural and electronic properties of GaAs and GaP semiconductors

    SciTech Connect

    Rani, Anita; Kumar, Ranjan

    2015-05-15

    The Structural and Electronic properties of Zinc Blende phase of GaAs and GaP compounds are studied using self consistent SIESTA-code, pseudopotentials and Density Functional Theory (DFT) in Local Density Approximation (LDA). The Lattice Constant, Equillibrium Volume, Cohesive Energy per pair, Compressibility and Band Gap are calculated. The band gaps calcultated with DFT using LDA is smaller than the experimental values. The P-V data fitted to third order Birch Murnaghan equation of state provide the Bulk Modulus and its pressure derivatives. Our Structural and Electronic properties estimations are in agreement with available experimental and theoretical data.

  7. Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography.

    PubMed

    Weierstall, Uwe; James, Daniel; Wang, Chong; White, Thomas A; Wang, Dingjie; Liu, Wei; Spence, John C H; Bruce Doak, R; Nelson, Garrett; Fromme, Petra; Fromme, Raimund; Grotjohann, Ingo; Kupitz, Christopher; Zatsepin, Nadia A; Liu, Haiguang; Basu, Shibom; Wacker, Daniel; Han, Gye Won; Katritch, Vsevolod; Boutet, Sébastien; Messerschmidt, Marc; Williams, Garth J; Koglin, Jason E; Marvin Seibert, M; Klinker, Markus; Gati, Cornelius; Shoeman, Robert L; Barty, Anton; Chapman, Henry N; Kirian, Richard A; Beyerlein, Kenneth R; Stevens, Raymond C; Li, Dianfan; Shah, Syed T A; Howe, Nicole; Caffrey, Martin; Cherezov, Vadim

    2014-01-01

    Lipidic cubic phase (LCP) crystallization has proven successful for high-resolution structure determination of challenging membrane proteins. Here we present a technique for extruding gel-like LCP with embedded membrane protein microcrystals, providing a continuously renewed source of material for serial femtosecond crystallography. Data collected from sub-10-μm-sized crystals produced with less than 0.5 mg of purified protein yield structural insights regarding cyclopamine binding to the Smoothened receptor.

  8. Cubic liquid crystalline nanoparticles: optimization and evaluation for ocular delivery of tropicamide.

    PubMed

    Verma, Purnima; Ahuja, Munish

    2016-10-01

    The purpose of this study was to investigate the potential of cubic liquid crystalline nanoparticles for ocular delivery of tropicamide. Ultrasound-assisted fragmentation of cubic liquid crystalline bulk phases resulted in cubic liquid crystalline nanoparticles employing Pluronic F127 as dispersant. The effects of process variables such as sonication time, sonication amplitude, sonication depth, and pre-mixing time on particle size and polydispersity index was investigated using central composite design. The morphology of tropicamide-loaded nanoparticles was found to be nearly cubical in shape by transmission electron microscopy observation. Further, small angle X-ray scattering experiment confirmed the presence of D and P phase cubic structures in coexistence. The optimized tropicamide-loaded cubic nanoparticles showed in vitro corneal permeation of tropicamide across isolated porcine cornea comparable to its commercial preparation, Tropicacyl®. Ocular tolerance was evaluated by Hen's egg-chorioallantoic membrane test and histological studies. The results of in vivo mydriatic response study demonstrated a remarkably higher area under mydriatic response curve (AUC 0→1440 min ) values of cubic nanoparticles over Tropicacyl® indicating better therapeutic value of cubic nanoparticles. Furthermore, tropicamide-loaded cubic nanoparticles exhibited prolonged mydriatic effect on rabbits as compared to commercial conventional aqueous ophthalmic solution.

  9. Accelerated formation of cubic phases in phosphatidylethanolamine dispersions.

    PubMed Central

    Tenchov, B; Koynova, R; Rapp, G

    1998-01-01

    By means of x-ray diffraction we show that several sodium salts and the disaccharides sucrose and trehalose strongly accelerate the formation of cubic phases in phosphatidylethanolamine (PE) dispersions upon temperature cycling through the lamellar liquid crystalline-inverted hexagonal (Lalpha-HII) phase transition. Ethylene glycol does not have such an effect. The degree of acceleration increases with the solute concentration. Such an acceleration has been observed for dielaidoyl PE (DEPE), dihexadecyl PE, and dipalmitoyl PE. It was investigated in detail for DEPE dispersions. For DEPE (10 wt% of lipid) aqueous dispersions at 1 M solute concentration, 10-50 temperature cycles typically result in complete conversion of the Lalpha phase into cubic phase. Most efficient is temperature cycling executed by laser flash T-jumps. In that case the conversion completes within 10-15 cycles. However, the cubic phases produced by laser T-jumps are less ordered in comparison to the rather regular cubic structures produced by linear, uniform temperature cycling at 10 degrees C/min. Temperature cycles at scan rates of 1-3 degrees C/min also induce the rapid formation of cubic phases. All solutes used induce the formation of Im3m (Q229) cubic phase in 10 wt% DEPE dispersions. The initial Im3m phases appearing during the first temperature cycles have larger lattice parameters that relax to smaller values with continuation of the cycling after the disappearance of the Lalpha phase. A cooperative Im3m --> Pn3m transition takes place at approximately 85 degrees C and transforms the Im3m phase into a mixture of coexisting Pn3m (Q224) and Im3m phases. The Im3m/Pn3m lattice parameter ratio is 1. 28, as could be expected from a representation of the Im3m and Pn3m phases with the primitive and diamond infinite periodic minimal surfaces, respectively. At higher DEPE contents ( approximately 30 wt%), cubic phase formation is hindered after 20-30 temperature cycles. The conversion does not go

  10. The compressibility of cubic white and orthorhombic, rhombohedral, and simple cubic black phosphorus

    SciTech Connect

    Clark, Simon M; Zaug, Joseph

    2010-03-10

    The effect of pressure on the crystal structure of white phosphorus has been studied up to 22.4 GPa. The ?alpha phase was found to transform into the alpha' phase at 0.87 +- 0.04 GPa with a volume change of 0.1 +- 0.3 cc/mol. A fit of a second order Birch- Murnaghan equation to the data gave Vo = 16.94 ? 0.08 cc/mol and Ko = 6.7 +- 0.5 GPa for the alpha phase and Vo = 16.4 +- 0.1 cc/mol and Ko = 9.1 +- 0.3 GPa for the alpha' phase. The alpha' phase was found to transform to themore » A17 phase of black phosphorus at 2.68 +- 0.34 GPa and then with increasing pressure to the A7 and then simple cubic phase of black phosphorus. A fit of a second order Birch-Murnaghan equation to our data combined with previous measurements gave Vo = 11.43 +- 0.05 cc/mol and Ko = 34.7 +- 0.5 GPa for the A17 phase, Vo = 9.62 +- 0.01 cc/mol and Ko = 65.0 +- 0.6 GPa for the A7 phase and , Vo = 9.23 +- 0.01 cc/mol and Ko = 72.5 +- 0.3 GPa for the simple cubic phase.« less

  11. Generalized Vaidya spacetime for cubic gravity

    NASA Astrophysics Data System (ADS)

    Ruan, Shan-Ming

    2016-03-01

    We present a kind of generalized Vaidya solution of a new cubic gravity in five dimensions whose field equations in spherically symmetric spacetime are always second order like the Lovelock gravity. We also study the thermodynamics of its spherically symmetric apparent horizon and get its entropy expression and generalized Misner-Sharp energy. Finally, we present the first law and second law hold in this gravity. Although all the results are analogous to those in Lovelock gravity, we in fact introduce the contribution of a new cubic term in five dimensions where the cubic Lovelock term is just zero.

  12. Rheology of Ultraswollen Bicontinuous Lipidic Cubic Phases.

    PubMed

    Speziale, Chiara; Ghanbari, Reza; Mezzenga, Raffaele

    2018-05-01

    Rheological studies of liquid crystalline systems based on monopalmitolein and 5 or 8% of 1,2 distearoylphosphatidylglycerol are reported. Such cubic phases have been shown to possess unusually large water channels because of their ability of accommodating up to 80 wt % of water, a feature that renders these systems suitable for crystallizing membrane proteins with large extracellular domains. Their mechanical properties are supposed to be substantially different from those of traditional cubic phases. Rheological measurements were carried out on cubic phases of both Pn3 m and Ia3 d symmetries. It was verified that these ultraswollen cubic phases are less rigid than the normal cubic phases, with the Pn3 m being softer that the Ia3 d ones. Furthermore, for the Pn3 m case, the longest relaxation time is shown to decrease logarithmically with increasing surface area per unit volume, proving the critical role of the density of interfaces in establishing the macroscopic viscoelastic properties of the bicontinuous cubic phases.

  13. Epitaxial Growth of Cubic Crystalline Semiconductor Alloys on Basal Plane of Trigonal or Hexagonal Crystal

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor)

    2011-01-01

    Hetero-epitaxial semiconductor materials comprising cubic crystalline semiconductor alloys grown on the basal plane of trigonal and hexagonal substrates, in which misfit dislocations are reduced by approximate lattice matching of the cubic crystal structure to underlying trigonal or hexagonal substrate structure, enabling the development of alloyed semiconductor layers of greater thickness, resulting in a new class of semiconductor materials and corresponding devices, including improved hetero-bipolar and high-electron mobility transistors, and high-mobility thermoelectric devices.

  14. Structural and elastic properties of InX (X = P, As, Sb) at pressure and room temperature

    NASA Astrophysics Data System (ADS)

    Pawar, Pooja; Singh, Sadhna

    2018-06-01

    We have investigated the pressure-induced phase transition of InX (X = P, As, Sb) from Zinc-Blende (ZB) to NaCl structure by using realistic interaction potential model involving the effect of temperature. This model consists of Coulomb interaction, three-body interaction and short-range overlap repulsive interaction upto the second nearest neighbor involving temperature. Phase-transition pressure is associated with a sudden collapse in volume, showing the incidence of first-order phase transition. The phase-transition pressure is associated with volume collapses, and the elastic constants obtained from the present model indicate good agreement with the available experimental and theoretical data.

  15. Theoretical calculations of structural, electronic, and elastic properties of CdSe1-x Te x : A first principles study

    NASA Astrophysics Data System (ADS)

    M, Shakil; Muhammad, Zafar; Shabbir, Ahmed; Muhammad Raza-ur-rehman, Hashmi; M, A. Choudhary; T, Iqbal

    2016-07-01

    The plane wave pseudo-potential method was used to investigate the structural, electronic, and elastic properties of CdSe1-x Te x in the zinc blende phase. It is observed that the electronic properties are improved considerably by using LDA+U as compared to the LDA approach. The calculated lattice constants and bulk moduli are also comparable to the experimental results. The cohesive energies for pure CdSe and CdTe binary and their mixed alloys are calculated. The second-order elastic constants are also calculated by the Lagrangian theory of elasticity. The elastic properties show that the studied material has a ductile nature.

  16. Packing of nonoverlapping cubic particles: Computational algorithms and microstructural characteristics

    NASA Astrophysics Data System (ADS)

    Malmir, Hessam; Sahimi, Muhammad; Tabar, M. Reza Rahimi

    2016-12-01

    Packing of cubic particles arises in a variety of problems, ranging from biological materials to colloids and the fabrication of new types of porous materials with controlled morphology. The properties of such packings may also be relevant to problems involving suspensions of cubic zeolites, precipitation of salt crystals during CO2 sequestration in rock, and intrusion of fresh water in aquifers by saline water. Not much is known, however, about the structure and statistical descriptors of such packings. We present a detailed simulation and microstructural characterization of packings of nonoverlapping monodisperse cubic particles, following up on our preliminary results [H. Malmir et al., Sci. Rep. 6, 35024 (2016), 10.1038/srep35024]. A modification of the random sequential addition (RSA) algorithm has been developed to generate such packings, and a variety of microstructural descriptors, including the radial distribution function, the face-normal correlation function, two-point probability and cluster functions, the lineal-path function, the pore-size distribution function, and surface-surface and surface-void correlation functions, have been computed, along with the specific surface and mean chord length of the packings. The results indicate the existence of both spatial and orientational long-range order as the the packing density increases. The maximum packing fraction achievable with the RSA method is about 0.57, which represents the limit for a structure similar to liquid crystals.

  17. Martensitic and austenitic transformations in core-surface cubic nanoparticles

    NASA Astrophysics Data System (ADS)

    Özüm, S.; Yalçın, O.; Erdem, R.; Bayrakdar, H.; Eker, H. N.

    2015-01-01

    As a continuation of our recently published work, we have used the pair approximation in Kikuchi version to investigate martensitic and austenitic transformations in homogeneous (HM) and composite (CM) cubic nanoparticles (CNPs) based on the Blume-Emery-Griffiths model. A single cubic nanoparticle made of a core surrounded by a surface is considered as shaped in two dimensional (2D) square arrays instead of hexagonal array. From the phase diagrams of HM and CM-CNPs it has been observed that the martensitic-austenitic transformations (MT-AT) occurred. The influence of the exchange coupling and single-ion anisotropy parameters in the model Hamiltonian on the MT-AT is studied and analyzed in comparison with the results for hexagonal nanoparticles. Significant changes of the phase transition points and hysteresis behaviours depending upon the particle structure have been discussed.

  18. Data reduction using cubic rational B-splines

    NASA Technical Reports Server (NTRS)

    Chou, Jin J.; Piegl, Les A.

    1992-01-01

    A geometric method is proposed for fitting rational cubic B-spline curves to data that represent smooth curves including intersection or silhouette lines. The algorithm is based on the convex hull and the variation diminishing properties of Bezier/B-spline curves. The algorithm has the following structure: it tries to fit one Bezier segment to the entire data set and if it is impossible it subdivides the data set and reconsiders the subset. After accepting the subset the algorithm tries to find the longest run of points within a tolerance and then approximates this set with a Bezier cubic segment. The algorithm uses this procedure repeatedly to the rest of the data points until all points are fitted. It is concluded that the algorithm delivers fitting curves which approximate the data with high accuracy even in cases with large tolerances.

  19. Polarization Change in Face-Centered Cubic Opal Films

    NASA Astrophysics Data System (ADS)

    Wolff, Christian; Romanov, Sergei; Küchenmeister, Jens; Peschel, Ulf; Busch, Kurt

    2011-10-01

    Artificial opals are a popular platform for investigating fundamental properties of Photonic Crystals (PhC). In this work, we provide a theoretical analysis of polarization-resolved transmission experiments through thin opal films. Despite the full cubic symmetry of the PhC, this system provides a very efficient mechanism for manipulating the polarization state of light. Based on band structure calculations and Bloch mode analysis, we find that this effect closely resembles classical birefringence. Due to the cubic symmetry, however, a description using tensorial quantities is not possible. This indicates fundamental limitations of effective material models for Photonic Crystals and demonstrates the importance of accurately modelling the microscopic geometry of such systems.

  20. Calculations of and evidence for chain packing stress in inverse lyotropic bicontinuous cubic phases.

    PubMed

    Shearman, Gemma C; Khoo, Bee J; Motherwell, Mary-Lynn; Brakke, Kenneth A; Ces, Oscar; Conn, Charlotte E; Seddon, John M; Templer, Richard H

    2007-06-19

    Inverse bicontinuous cubic lyotropic phases are a complex solution to the dilemma faced by all self-assembled water-amphiphile systems: how to satisfy the incompatible requirements for uniform interfacial curvature and uniform molecular packing. The solution reached in this case is for the water-amphiphile interfaces to deform hyperbolically onto triply periodic minimal surfaces. We have previously suggested that although the molecular packing in these structures is rather uniform the relative phase behavior of the gyroid, double diamond, and primitive inverse bicontinuous cubic phases can be understood in terms of subtle differences in packing frustration. In this work, we have calculated the packing frustration for these cubics under the constraint that their interfaces have constant mean curvature. We find that the relative packing stress does indeed differ between phases. The gyroid cubic has the least packing stress, and at low water volume fraction, the primitive cubic has the greatest packing stress. However, at very high water volume fraction, the double diamond cubic becomes the structure with the greatest packing stress. We have tested the model in two ways. For a system with a double diamond cubic phase in excess water, the addition of a hydrophobe may release packing frustration and preferentially stabilize the primitive cubic, since this has previously been shown to have lower curvature elastic energy. We have confirmed this prediction by adding the long chain alkane tricosane to 1-monoolein in excess water. The model also predicts that if one were able to hydrate the double diamond cubic to high water volume fractions, one should destabilize the phase with respect to the primitive cubic. We have found that such highly swollen metastable bicontinuous cubic phases can be formed within onion vesicles. Data from monoelaidin in excess water display a well-defined transition, with the primitive cubic appearing above a water volume fraction of 0.75. Both of

  1. Negative thermal expansion materials related to cubic zirconium tungstate

    NASA Astrophysics Data System (ADS)

    Lind, Cora

    2001-12-01

    A non-hydrolytic sol-gel method for the preparation of ZrW2O 8 was developed. A new trigonal polymorph was discovered, which is structurally related to trigonal ZrMO2O8 and MnRe2O 8 as evidenced by powder x-ray diffraction and EXAFS studies. Seeding of the starting mixtures with cubic ZrW2O8 promoted crystallization of the cubic phase instead of trigonal material. Dehydration of ZrW2O7(OH)2·2H 2O gave cubic ZrW2O8 at 650°C, and a modification of this route led to the discovery of the new NTE materials cubic ZrMo 2O8 and HfMo2O8. These compounds crystallize in the same temperature range as the more stable trigonal AMo2O 8 polymorphs. To facilitate preparation of phase pure cubic molybdates, the influence of precursor chemistry on the crystallization behavior was investigated. The synthesis was extended to the solid solution system ZrxHf 1-xMoyW2-yO8 (0 ≤ x ≤ 1, 0 ≤ y ≤ 2). All compounds showed negative thermal expansion between 77 and 573 K. High-pressure in situ diffraction experiments were conducted on several AM2O8 polymorphs. With the exception of monoclinic ZrMo2O8, all materials underwent at least one pressure induced phase transition. Quasi-hydrostatic experiments on cubic AMo 2O8 led to a reversible transition to a new high-pressure structure, while low-pressure amorphization was observed under non-hydrostatic conditions. Isothermal kinetic studies of the cubic to trigonal transformation for ZrMo2O8 were carried out on four samples. Apparent activation energies of 170--290 kJ/mol were obtained using an Avrami model in combination with an Arrhenius analysis. This corresponds to 5% conversion levels after one year at temperatures between 220 and 315°C. Ex situ studies showed that the conversion at lower temperatures was considerably slower than what would be expected from extrapolation of the kinetic data. Drop solution calorimetry was carried out on several polymorphs of ZrMo 2O8, HfMo2O8 and ZrW2O 8. Only monoclinic ZrMo2O8 was enthalpically

  2. New tetragonal derivatives of cubic NaZn{sub 13}-type structure: RNi{sub 6}Si{sub 6} compounds, crystal structure and magnetic ordering (R=Y, La, Ce, Sm, Gd–Yb)

    SciTech Connect

    Pani, M.; Manfrinetti, P.; Provino, A.

    2014-02-15

    Novel RNi{sub 6}Si{sub 6} compounds adopt the new CeNi{sub 6}Si{sub 6}-type structure for R=La–Ce (tP52, space group P4/nbm N 125-1) and new YNi{sub 6}Si{sub 6}-type structure for R=Y, Sm, Gd–Yb (tP52, space group P4{sup ¯}b2N 117) that are tetragonal derivative of NaZn{sub 13}-type structure, like LaCo{sub 9}Si{sub 4}-type. The CeNi{sub 6}Si{sub 6}, GdNi{sub 6}Si{sub 6}, TbNi{sub 6}Si{sub 6}, DyNi{sub 6}Si{sub 6} and HoNi{sub 6}Si{sub 6} compounds are Curie–Weiss paramagnets down to ∼30 K, and do not order magnetically down to 5 K. However, the inverse paramagnetic susceptibility of LaNi{sub 6}Si{sub 6} does not follow Curie–Weiss law. The DyNi{sub 6}Si{sub 6}more » shows ferromagnetic-like saturation behaviour at 5 K in applied fields of 50 kOe, giving rise to a magnetic moment value of 6.5 μ{sub B}/f.u. in 50 kOe. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi{sub 6}Si{sub 6} with K=[±1/4, ±1/4, 0] wave vector below ∼10 K. - Graphical abstract: Novel (La, Ce)Ni{sub 6}Si{sub 6} compounds adopt the new CeNi{sub 6}Si{sub 6}-type structure and (Y, Sm, Gd–Yb) adopt the new YNi{sub 6}Si{sub 6}-type structure that are tetragonal derivative of NaZn{sub 13}-type structure, like LaCo{sub 9}Si{sub 4}-type. The CeNi{sub 6}Si{sub 6}, GdNi{sub 6}Si{sub 6}, TbNi{sub 6}Si{sub 6}, DyNi{sub 6}Si{sub 6} and HoNi{sub 6}Si{sub 6} compounds are Curie–Weiss paramagnets down to ∼30 K, and do not order magnetically down to 4.2 K. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi{sub 6}Si{sub 6} with K=[±1/4, ±1/4, 0] wave vector below ∼10 K. Display Omitted - Highlights: • The new (La, Ce)Ni{sub 6}Si{sub 6} compounds adopt the new CeNi{sub 6}Si{sub 6}-type structure. • The new (Y, Sm, Gd–Yb)Ni{sub 6}Si{sub 6} compounds adopt the new YNi{sub 6}Si{sub 6}-type structure. • Tb

  3. Purely cubic action for string field theory

    NASA Technical Reports Server (NTRS)

    Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.

    1986-01-01

    It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.

  4. Electronic structures of filled tetrahedral semiconductors LiMgN and LiZnN: conduction band distortion

    NASA Astrophysics Data System (ADS)

    Yu, L. H.; Yao, K. L.; Liu, Z. L.

    2004-12-01

    The band structures of the filled tetrahedral semiconductors LiMgN and LiZnN, viewed as the zinc-blende (MgN) - and (ZnN) - lattices partially filled with He-like Li + ion interstitials, were studied using the full-potential linearized augmented plane wave method (FP-LAPW) within density functional theory. The conduction band distortions of LiMgN and LiZnN, compared to their “parent” zinc-blende analog AlN and GaN, are discussed. It was found that the insertion of Li + ions at the interstitial sites near the cation or anion pushes the conduction band minimum of the X point in the Brillouin zone upward, relative to that of the Γ point, for both (MgN) - and (ZnN) - lattices (the valence band maximum is at Γ for AlN, GaN, LiMgN, and LiZnN), which provides a method to convert a zinc-blende indirect gap semiconductor into a direct gap material, but the conduction band distortion of the β phase (Li + near the cation) is quite stronger than that of the α phase (Li + near the anion). The total energy calculations show the α phase to be more stable than the β phase for both LiMgN and LiZnN. The Li-N and Mg-N bonds exhibit a strong ionic character, whereas the Zn-N bond has a strong covalent character in LiMgN and LiZnN.

  5. New tetragonal derivatives of cubic NaZn13-type structure: RNi6Si6 compounds, crystal structure and magnetic ordering (R=Y, La, Ce, Sm, Gd-Yb)

    NASA Astrophysics Data System (ADS)

    Pani, M.; Manfrinetti, P.; Provino, A.; Yuan, Fang; Mozharivskyj, Y.; Morozkin, A. V.; Knotko, A. V.; Garshev, A. V.; Yapaskurt, V. O.; Isnard, O.

    2014-02-01

    Novel RNi6Si6 compounds adopt the new CeNi6Si6-type structure for R=La-Ce (tP52, space group P4/nbm N 125-1) and new YNi6Si6-type structure for R=Y, Sm, Gd-Yb (tP52, space group P4barb2N 117) that are tetragonal derivative of NaZn13-type structure, like LaCo9Si4-type. The CeNi6Si6, GdNi6Si6, TbNi6Si6, DyNi6Si6 and HoNi6Si6 compounds are Curie-Weiss paramagnets down to ~30 K, and do not order magnetically down to 5 K. However, the inverse paramagnetic susceptibility of LaNi6Si6 does not follow Curie-Weiss law. The DyNi6Si6 shows ferromagnetic-like saturation behaviour at 5 K in applied fields of 50 kOe, giving rise to a magnetic moment value of 6.5 μB/f.u. in 50 kOe. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi6Si6 with K=[±1/4, ±1/4, 0] wave vector below ~10 K. The CeNi6Si6, GdNi6Si6, TbNi6Si6, DyNi6Si6 and HoNi6Si6 compounds are Curie-Weiss paramagnets down to ~30 K, and do not order magnetically down to 4.2 K. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi6Si6 with K=[±1/4, ±1/4, 0] wave vector below ~10 K.

  6. Temperature and pressure tuneable swollen bicontinuous cubic phases approaching nature's length scales.

    PubMed

    Barriga, H M G; Tyler, A I I; McCarthy, N L C; Parsons, E S; Ces, O; Law, R V; Seddon, J M; Brooks, N J

    2015-01-21

    Bicontinuous cubic structures offer enormous potential in applications ranging from protein crystallisation to drug delivery systems and have been observed in cellular membrane structures. One of the current bottlenecks in understanding and exploiting these structures is that cubic scaffolds produced in vitro are considerably smaller in size than those observed in biological systems, differing by almost an order of magnitude in some cases. We have addressed this technological bottleneck and developed a methodology capable of manufacturing highly swollen bicontinuous cubic membranes with length scales approaching those seen in vivo. Crucially, these cubic systems do not require the presence of proteins. We have generated highly swollen Im3m symmetry bicontinuous cubic phases with lattice parameters of up to 480 Å, composed of ternary mixtures of monoolein, cholesterol and negatively charged lipid (DOPS or DOPG) and we have been able to tune their lattice parameters. The swollen cubic phases are highly sensitive to both temperature and pressure; these structural changes are likely to be controlled by a fine balance between lipid headgroup repulsions and lateral pressure in the hydrocarbon chain region.

  7. Spin-orbit coupling effects in indium antimonide quantum well structures

    NASA Astrophysics Data System (ADS)

    Dedigama, Aruna Ruwan

    Indium antimonide (InSb) is a narrow band gap material which has the smallest electron effective mass (0.014m0) and the largest electron Lande g-facture (-51) of all the III-V semiconductors. Spin-orbit effects of III-V semiconductor heterostructures arise from two different inversion asymmetries namely bulk inversion asymmetry (BIA) and structural inversion asymmetry (SIA). BIA is due to the zinc-blende nature of this material which leads to the Dresselhaus spin splitting consisting of both linear and cubic in-plane wave vector terms. As its name implies SIA arises due to the asymmetry of the quantum well structure, this leads to the Rashba spin splitting term which is linear in wave vector. Although InSb has theoretically predicted large Dresselhaus (760 eVA3) and Rashba (523 eA 2) coefficients there has been relatively little experimental investigation of spin-orbit coefficients. Spin-orbit coefficients can be extracted from the beating patterns of Shubnikov--de Haas oscillations (SdH), for material like InSb it is hard to use this method due to the existence of large electron Lande g-facture. Therefore it is essential to use a low field magnetotransport technique such as weak antilocalization to extract spin-orbit parameters for InSb. The main focus of this thesis is to experimentally determine the spin-orbit parameters for both symmetrically and asymmetrically doped InSb/InxAl 1-xSb heterostructures. During this study attempts have been made to tune the Rashba spin-orbit coupling coefficient by using a back gate to change the carrier density of the samples. Dominant phase breaking mechanisms for InSb/InxAl1-xSb heterostructures have been identified by analyzing the temperature dependence of the phase breaking field from weak antilocalization measurements. Finally the strong spin-orbit effects on InSb/InxAl1-xSb heterostructures have been demonstrated with ballistic spin focusing devices.

  8. Emission properties of body-centered cubic elemental metal photocathodes

    SciTech Connect

    Li, Tuo; Rickman, Benjamin L., E-mail: brickm2@uic.edu; Schroeder, W. Andreas

    2015-04-07

    A first principles analysis of photoemission is developed to explain the lower than expected rms transverse electron momentum measured using the solenoid scan technique for the body-centered cubic Group Vb (V, Nb, and Ta) and Group VIb (Cr, Mo, and W) metallic photocathodes. The density functional theory based analysis elucidates the fundamental role that the electronic band structure (and its dispersion) plays in determining the emission properties of solid-state photocathodes and includes evaluation of work function anisotropy using a thin-slab method.

  9. First principles study of structural stability, electronic structure and mechanical properties of ReN and TcN

    NASA Astrophysics Data System (ADS)

    Rajeswarapalanichamy, R.; Kavitha, M.; Sudha Priyanga, G.; Iyakutti, K.

    2015-03-01

    The crystal structure, structural stability, electronic and mechanical properties of ReN and TcN are investigated using first principles calculations. We have considered five different crystal structures: NaCl, zinc blende (ZB), NiAs, tungsten carbide (WC) and wurtzite (WZ). Among these ZB phase is found to be the lowest energy phase for ReN and TcN at normal pressure. Pressure induced structural phase transitions from ZB to WZ phase at 214 GPa in ReN and ZB to NiAs phase at 171 GPa in TcN are predicted. The electronic structure reveals that both ReN and TcN are metallic in nature. The computed elastic constants indicate that both the nitrides are mechanically stable. As ReN in NiAs phase has high bulk and shear moduli and low Poisson's ratio, it is found to be a potential ultra incompressible super hard material.

  10. Deposition Of Cubic BN On Diamond Interlayers

    NASA Technical Reports Server (NTRS)

    Ong, Tiong P.; Shing, Yuh-Han

    1994-01-01

    Thin films of polycrystalline, pure, cubic boron nitride (c-BN) formed on various substrates, according to proposal, by chemical vapor deposition onto interlayers of polycrystalline diamond. Substrate materials include metals, semiconductors, and insulators. Typical substrates include metal-cutting tools: polycrystalline c-BN coats advantageous for cutting ferrous materials and for use in highly oxidizing environments-applications in which diamond coats tend to dissolve in iron or be oxidized, respectively.

  11. Quasiparticle Interference on Cubic Perovskite Oxide Surfaces.

    PubMed

    Okada, Yoshinori; Shiau, Shiue-Yuan; Chang, Tay-Rong; Chang, Guoqing; Kobayashi, Masaki; Shimizu, Ryota; Jeng, Horng-Tay; Shiraki, Susumu; Kumigashira, Hiroshi; Bansil, Arun; Lin, Hsin; Hitosugi, Taro

    2017-08-25

    We report the observation of coherent surface states on cubic perovskite oxide SrVO_{3}(001) thin films through spectroscopic-imaging scanning tunneling microscopy. A direct link between the observed quasiparticle interference patterns and the formation of a d_{xy}-derived surface state is supported by first-principles calculations. We show that the apical oxygens on the topmost VO_{2} plane play a critical role in controlling the coherent surface state via modulating orbital state.

  12. On the Cubic Lattice Green Functions

    NASA Astrophysics Data System (ADS)

    Joyce, G. S.

    1994-05-01

    Wheatstone Physics Laboratory, King's College, University of London, Strand, London WC2R 2LS, U.K. It is proved that K (k+) = [(4-eta )1/2 - (1 - eta )1/2]K(k-), where eta is a complex variable which lies in a certain region R2 of the eta plane, and K (k±) are complete elliptic integrals of the first kind with moduli k± which are given by k±2equiv k±2(eta ) = 1/2 ± 1/4eta (4 - eta )1/2 - 1/4(2-eta )(1-eta )1/2. This basic result is then used to express the face-centred cubic and simple cubic lattice Green functions at the origin in terms of the square of a complete elliptic integral of the first kind. Several new identities involving the Heun function F(a, b; α , β , γ , δ ; eta ) are also derived. Next it is shown that the three cubic lattice Green functions all have parametric representations which involve the Green function for the two-dimensional honeycomb lattice. Finally, the results are applied to a variety of problems in lattice statistics. In particular, a new simplified formula for the generating function of staircase polygons on a four-dimensional hypercubic lattice is derived.

  13. Intermediate-phase method for computing the natural band offset between two materials with dissimilar structures

    NASA Astrophysics Data System (ADS)

    Gu, Hui-Jun; Zhang, Yue-Yu; Chen, Shi-You; Xiang, Hong-Jun; Gong, Xin-Gao

    2018-06-01

    The band offset between different semiconductors is an important physical quantity determining carrier transport properties near the interface in heterostructure devices. Computation of the natural band offset is a longstanding challenge. We propose an intermediate-phase method to predict the natural band offset between two structures with different symmetry, for which the superlattice model cannot be directly constructed. With this method and the intermediate phases obtained by our searching algorithm, we successfully calculate the natural band offsets for two representative systems: (i) zinc-blende CdTe and wurtzite CdS and (ii) diamond and graphite. The calculation shows that the valence band maximum (VBM) of zinc-blende CdTe lies 0.71 eV above that of wurtzite CdS, close to the result 0.76 eV obtained by the three-step method. For the natural band offset between diamond and graphite which could not be computed reliably with any superlattice methods, our calculation shows that the Fermi level of graphite lies 1.51 eV above the VBM of diamond using an intermediate phase. This method, under the assumption that the transitivity rule is valid, can be used to calculate the band offsets between any semiconductors with different symmetry on condition that the intermediate phase is reasonably designed.

  14. Molecular beam epitaxial growth, transmittance and photoluminescence spectra of zinc-blende CdTe thin films with high-quality on perovskite SrTiO3 (1 1 1) substrates

    NASA Astrophysics Data System (ADS)

    Song, Kun; Zhu, Xuanting; Tang, Kai; Bai, W.; Zhu, Liangqing; Yang, Jing; Zhang, Yuanyuan; Tang, Xiaodong; Chu, Junhao

    2018-03-01

    High-crystalline quality CdTe thin films are grown on the largely lattice-mismatched SrTiO3 (STO) (1 1 1) substrates by molecular beam epitaxy. A transformation from a three dimensional regime to a two dimensional one is observed by the reflection high energy electron diffraction (RHEED) and atomic force microscopy (AFM). The formation of an elastic deformation CdTe layer on STO (1 1 1), namely a pseudomorphic growth mode with a critical thickness of ∼40 nm, is supported by the RHEED, AFM and X-ray diffraction. Crystal structures and epitaxial relationships of CdTe epitaxial films on STO (1 1 1) are characterized by 2θ-ω scans and reciprocal space mapping. Two strong absorption peaks at the energies of ∼1.621 eV and ∼1.597 eV at 5 K are clearly observed for a ∼120 nm thick CdTe epitaxial film, which are proposed to be ascribed to the strained and unstrained epitaxial CdTe layers, respectively. Moreover, the presence of the exciton band while the absence of deep level defect states for the ∼120 nm thick CdTe film characterized by the temperature dependent photoluminescence spectra further supports the high-crystalline quality.

  15. Design and performance of tapered cubic anvil used for achieving higher pressure and larger sample cell

    NASA Astrophysics Data System (ADS)

    Han, Qi-Gang; Yang, Wen-Ke; Zhu, Pin-Wen; Ban, Qing-Chu; Yan, Ni; Zhang, Qiang

    2013-07-01

    In order to increase the maximum cell pressure of the cubic high pressure apparatus, we have developed a new structure of tungsten carbide cubic anvil (tapered cubic anvil), based on the principle of massive support and lateral support. Our results indicated that the tapered cubic anvil has some advantages. First, tapered cubic anvil can push the transfer rate of pressure well into the range above 36.37% compare to the conventional anvil. Second, the rate of failure crack decreases about 11.20% after the modification of the conventional anvil. Third, the limit of static high-pressure in the sample cell can be extended to 13 GPa, which can increase the maximum cell pressure about 73.3% than that of the conventional anvil. Fourth, the volume of sample cell compressed by tapered cubic anvils can be achieved to 14.13 mm3 (3 mm diameter × 2 mm long), which is three and six orders of magnitude larger than that of double-stage apparatus and diamond anvil cell, respectively. This work represents a relatively simple method for achieving higher pressures and larger sample cell.

  16. Northeastern forest survey revised cubic-foot volume equations

    Treesearch

    Charles T. Scott

    1981-01-01

    Cubic-foot volume equations are presented for the 17 species groups used in the forest survey of the 14 northeastern states. The previous cubic- foot volume equations were simple linear in form; the revised cubic-foot volume equations are nonlinear.

  17. Lipidic cubic phase serial millisecond crystallography using synchrotron radiation

    PubMed Central

    Nogly, Przemyslaw; James, Daniel; Wang, Dingjie; White, Thomas A.; Zatsepin, Nadia; Shilova, Anastasya; Nelson, Garrett; Liu, Haiguang; Johansson, Linda; Heymann, Michael; Jaeger, Kathrin; Metz, Markus; Wickstrand, Cecilia; Wu, Wenting; Båth, Petra; Berntsen, Peter; Oberthuer, Dominik; Panneels, Valerie; Cherezov, Vadim; Chapman, Henry; Schertler, Gebhard; Neutze, Richard; Spence, John; Moraes, Isabel; Burghammer, Manfred; Standfuss, Joerg; Weierstall, Uwe

    2015-01-01

    Lipidic cubic phases (LCPs) have emerged as successful matrixes for the crystallization of membrane proteins. Moreover, the viscous LCP also provides a highly effective delivery medium for serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs). Here, the adaptation of this technology to perform serial millisecond crystallography (SMX) at more widely available synchrotron microfocus beamlines is described. Compared with conventional microcrystallography, LCP-SMX eliminates the need for difficult handling of individual crystals and allows for data collection at room temperature. The technology is demonstrated by solving a structure of the light-driven proton-pump bacteriorhodopsin (bR) at a resolution of 2.4 Å. The room-temperature structure of bR is very similar to previous cryogenic structures but shows small yet distinct differences in the retinal ligand and proton-transfer pathway. PMID:25866654

  18. Synthesis and structures of new niobium cluster compounds with pyridinium cations: (PyrH){sub 2}[Nb{sub 6}Cl{sub 18}].EtOH (Pyr: pyridine, Et: ethyl) and the cubic modification of (PyrH){sub 2}[Nb{sub 6}Cl{sub 18}

    SciTech Connect

    Flemming, Anke; Hoppe, Alessandra; Koeckerling, Martin

    2008-10-15

    Slow crystallization of (PyrH){sub 2}[Nb{sub 6}Cl{sub 18}] from hot ethanol solution affords triclinic (PyrH){sub 2}[Nb{sub 6}Cl{sub 18}].EtOH. Treatment of [Nb{sub 6}Cl{sub 14}(H{sub 2}O){sub 4}].4H{sub 2}O with pyridine in a methanol solution gives the second title compound, the cubic modification of (PyrH){sub 2}[Nb{sub 6}Cl{sub 18}]. Both structures were determined by single crystal X-ray diffraction, (PyrH){sub 2}[Nb{sub 6}Cl{sub 18}].EtOH: P1-bar , a=9.3475(3), b=9.3957(3), c=10.8600(3) A, {alpha}=82.582(1){sup o}, {beta}=78.608(1){sup o}, and {gamma}=78.085(1){sup o}, Z=1, R{sub 1}(F)/wR{sub 2}(F{sup 2})=0.0254/0.0573, cub.-(PyrH){sub 2}[Nb{sub 6}Cl{sub 18}]: Fd3-bar m, a=19.935(2) A, Z=8, R{sub 1}(F)/wR{sub 2}(F{sup 2})=0.0557/0.1796. The cluster compounds contain isolated, molecular [Nb{sub 6}Cl{sup i}{sub 12}Cl{sup a}{sub 6}]{supmore » 2-} cluster anions with an octahedron of metal atoms edge bridged by chlorido ligands with additional ones on all the six exo positions. These cluster anions are separated by the pyridinium cations and ethanol solvent molecules, respectively. For the cubic modification of (PyrH){sub 2}[Nb{sub 6}Cl{sub 18}], a structural comparison is given to the known rhombohedral modification using the group-subgroup relations as expressed by a Baernighausen tree. - Graphical abstract: The synthesis and structure of a second cubic modification of (PyrH){sub 2}[Nb{sub 6}Cl{sub 18}] and of the new (PyrH){sub 2}[Nb{sub 6}Cl{sub 18}].EtOH are reported, both of which contain isolated niobium halide cluster anions with an octahedral core of metal atoms.« less

  19. Cherenkov and Scintillation Properties of Cubic Zirconium

    NASA Technical Reports Server (NTRS)

    Christl, M.J.; Adams, J.H.; Parnell, T.A.; Kuznetsov, E.N.

    2008-01-01

    Cubic zirconium (CZ) is a high index of refraction (n =2.17) material that we have investigated for Cherenkov counter applications. Laboratory and proton accelerator tests of an 18cc sample of CZ show that the expected fast Cherenkov response is accompanied by a longer scintillation component that can be separated by pulse shaping. This presents the possibility of novel particle spectrometers which exploits both properties of CZ. Other high index materials being examined for Cherenkov applications will be discussed. Results from laboratory tests and an accelerator exposure will be presented and a potential application in solar energetic particle instruments will be discussed

  20. Craniofacial Reconstruction Using Rational Cubic Ball Curves

    PubMed Central

    Majeed, Abdul; Mt Piah, Abd Rahni; Gobithaasan, R. U.; Yahya, Zainor Ridzuan

    2015-01-01

    This paper proposes the reconstruction of craniofacial fracture using rational cubic Ball curve. The idea of choosing Ball curve is based on its robustness of computing efficiency over Bezier curve. The main steps are conversion of Digital Imaging and Communications in Medicine (Dicom) images to binary images, boundary extraction and corner point detection, Ball curve fitting with genetic algorithm and final solution conversion to Dicom format. The last section illustrates a real case of craniofacial reconstruction using the proposed method which clearly indicates the applicability of this method. A Graphical User Interface (GUI) has also been developed for practical application. PMID:25880632

  1. Stability and electronic structure of the low- Σ grain boundaries in CdTe: a density functional study

    DOE PAGES

    Park, Ji-Sang; Kang, Joongoo; Yang, Ji-Hui; ...

    2015-01-15

    Using first-principles density functional calculations, we investigate the relative stability and electronic structure of the grain boundaries (GBs) in zinc-blende CdTe. Among the low-Σ-value symmetric tilt Σ3 (111), Σ3 (112), Σ5 (120), and Σ5 (130) GBs, we show that the Σ3 (111)GB is always the most stable due to the absence of dangling bonds and wrong bonds. The Σ5 (120) GBs, however, are shown to be more stable than the Σ3 (112) GBs, even though the former has a higher Σ value, and the latter is often used as a model system to study GB effects in zinc-blende semiconductors. Furthermore,more » we find that although containing wrong bonds, the Σ5 (120) GBs are electrically benign due to the short wrong bond lengths, and thus are not as harmful as the Σ3 (112) GBs also having wrong bonds but with longer bond lengths.« less

  2. Microstructural characterization of random packings of cubic particles

    DOE PAGES

    Malmir, Hessam; Sahimi, Muhammad; Tabar, M. Reza Rahimi

    2016-10-11

    Understanding the properties of random packings of solid objects is of critical importance to a wide variety of fundamental scientific and practical problems. The great majority of the previous works focused, however, on packings of spherical and sphere-like particles. We report the first detailed simulation and characterization of packings of non-overlapping cubic particles. Such packings arise in a variety of problems, ranging from biological materials, to colloids and fabrication of porous scaffolds using salt powders. In addition, packing of cubic salt crystals arise in various problems involving preservation of pavements, paintings, and historical monuments, mineral-fluid interactions, CO 2 sequestration inmore » rock, and intrusion of groundwater aquifers by saline water. Not much is known, however, about the structure and statistical descriptors of such packings. We have developed a version of the random sequential addition algorithm to generate such packings, and have computed a variety of microstructural descriptors, including the radial distribution function, two-point probability function, orientational correlation function, specific surface, and mean chord length, and have studied the effect of finite system size and porosity on such characteristics. Here, the results indicate the existence of both spatial and orientational long-range order in the packing, which is more distinctive for higher packing densities.« less

  3. Microstructural characterization of random packings of cubic particles

    PubMed Central

    Malmir, Hessam; Sahimi, Muhammad; Tabar, M. Reza Rahimi

    2016-01-01

    Understanding the properties of random packings of solid objects is of critical importance to a wide variety of fundamental scientific and practical problems. The great majority of the previous works focused, however, on packings of spherical and sphere-like particles. We report the first detailed simulation and characterization of packings of non-overlapping cubic particles. Such packings arise in a variety of problems, ranging from biological materials, to colloids and fabrication of porous scaffolds using salt powders. In addition, packing of cubic salt crystals arise in various problems involving preservation of pavements, paintings, and historical monuments, mineral-fluid interactions, CO2 sequestration in rock, and intrusion of groundwater aquifers by saline water. Not much is known, however, about the structure and statistical descriptors of such packings. We have developed a version of the random sequential addition algorithm to generate such packings, and have computed a variety of microstructural descriptors, including the radial distribution function, two-point probability function, orientational correlation function, specific surface, and mean chord length, and have studied the effect of finite system size and porosity on such characteristics. The results indicate the existence of both spatial and orientational long-range order in the packing, which is more distinctive for higher packing densities. The maximum packing fraction is about 0.57. PMID:27725736

  4. Interaction of anions with lipid cubic phase membranes, an electrochemical impedance study.

    PubMed

    Meynaq, Mohammad Yaser Khani; Lindholm-Sethson, Britta; Tesfalidet, Solomon

    2018-05-29

    Electrochemical impedance spectroscopy is useful to monitor anionic interactions with a Lipid Cubic Phase, as previously demonstrated for cationic interaction (Khani Meynaq et al., 2016). It was expected that the smaller hydrophilic anions, acetate and chloride, would interact differently than the large tryptophan anion with its hydrophobic tail. The impedance measurements enabled estimation of resistances and capacitances of a freestanding lipid cubic phase membrane at exposure to 4 and 40 mM solutions of NaCl, NaOAc and NaTrp. Small-angle X-ray scattering was used for cubic phase identification and to track structural changes within the cubic phase when exposed to the different electrolytes. The membrane resistance increases at exposure to the electrolytes in the order Cl -  < OAc -  < Trp - . The membrane resistance decreases with time at exposure to the hydrophilic anions and increases with time at Trp - exposure. The membrane capacitances were lower for NaTrp compared to NaCl and NaOAc at the corresponding concentrations which is consistent with the results from SAXRD. It is concluded that Trp - ions do not enter the aqueous channels of the cubic phase but are strongly adsorbed to the membrane/electrolyte interface leading to large alteration of the lipid phase structure and a high membrane resistance. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Theoretical prediction of low-density hexagonal ZnO hollow structures

    SciTech Connect

    Tuoc, Vu Ngoc, E-mail: tuoc.vungoc@hust.edu.vn; Huan, Tran Doan; Thao, Nguyen Thi

    2016-10-14

    Along with wurtzite and zinc blende, zinc oxide (ZnO) has been found in a large number of polymorphs with substantially different properties and, hence, applications. Therefore, predicting and synthesizing new classes of ZnO polymorphs are of great significance and have been gaining considerable interest. Herein, we perform a density functional theory based tight-binding study, predicting several new series of ZnO hollow structures using the bottom-up approach. The geometry of the building blocks allows for obtaining a variety of hexagonal, low-density nanoporous, and flexible ZnO hollow structures. Their stability is discussed by means of the free energy computed within the lattice-dynamicsmore » approach. Our calculations also indicate that all the reported hollow structures are wide band gap semiconductors in the same fashion with bulk ZnO. The electronic band structures of the ZnO hollow structures are finally examined in detail.« less

  6. Adapting Shape Parameters for Cubic Bezier Curves

    NASA Technical Reports Server (NTRS)

    Isacoff, D.; Bailey, M. J.

    1985-01-01

    Bezier curves are an established tool in Computer Aided Geometric Design. One of the drawbacks of the Bezier method is that the curves often bear little resemblance to their control polygons. As a result, it becomes increasingly difficult to obtain anything but a rough outline of the desired shape. One possible solution is tomanipulate the curve itself instead of the control polygon. The standard cubic Bezier curve form has introduced into it two shape parameters, gamma 1 and 2. These parameters give the user the ability to manipulate the curve while the control polygon retains its original form, thereby providing a more intuitive feel for the necessary changes to the curve in order to achieve the desired shape.

  7. Expansion into lattice harmonics in cubic symmetries

    NASA Astrophysics Data System (ADS)

    Kontrym-Sznajd, G.

    2018-05-01

    On the example of a few sets of sampling directions in the Brillouin zone, this work shows how important the choice of the cubic harmonics is on the quality of approximation of some quantities by a series of such harmonics. These studies led to the following questions: (1) In the case that for a given l there are several independent harmonics, can one use in the expansion only one harmonic with a given l?; (2) How should harmonics be ordered: according to l or, after writing them in terms of (x4 + y4 + z4)n (x2y2z2)m, according to their degree q = n + m? To enable practical applications of such harmonics, they are constructed in terms of the associated Legendre polynomials up to l = 26. It is shown that electron momentum densities, reconstructed from experimental data for ErGa3 and InGa3, are described much better by harmonics ordered with q.

  8. A smoothing algorithm using cubic spline functions

    NASA Technical Reports Server (NTRS)

    Smith, R. E., Jr.; Price, J. M.; Howser, L. M.

    1974-01-01

    Two algorithms are presented for smoothing arbitrary sets of data. They are the explicit variable algorithm and the parametric variable algorithm. The former would be used where large gradients are not encountered because of the smaller amount of calculation required. The latter would be used if the data being smoothed were double valued or experienced large gradients. Both algorithms use a least-squares technique to obtain a cubic spline fit to the data. The advantage of the spline fit is that the first and second derivatives are continuous. This method is best used in an interactive graphics environment so that the junction values for the spline curve can be manipulated to improve the fit.

  9. Marginal states in a cubic autocatalytic reaction

    NASA Astrophysics Data System (ADS)

    Das, Debojyoti; Ghosh, Pushpita; Ray, Deb Shankar

    2011-09-01

    Marginal steady state belongs to a special class of states in nonlinear dynamics. To realize this state we consider a cubic autocatalytic reaction A + 2B → 3B in a continuous-stirred-tank-reactor, where the flow rate of the reactant A can be controlled to manipulate the dynamical behavior of the open system. We demonstrate that when the flow rate is weakly noisy the autocatalytic reaction admits of a steady state which is marginal in nature and is surrounded by infinite number of periodic trajectories. When the uncatalyzed reaction A → B is included in the reaction scheme, there exists a marginal steady state which is a critical state corresponding to the point of transition between the flow branch and the equilibrium branch, similar to gas-liquid critical point of transition. This state loses its stability in the weak noise limit.

  10. The electric field of a uniformly charged cubic shell

    NASA Astrophysics Data System (ADS)

    McCreery, Kaitlin; Greenside, Henry

    2018-01-01

    As an integrative and insightful example for undergraduates learning about electrostatics, we discuss how to use symmetry, Coulomb's law, superposition, Gauss's law, and visualization to understand the electric field E (x ,y ,z ) produced by a uniformly charged cubic shell. We first discuss how to deduce qualitatively, using freshman-level physics, the perhaps surprising fact that the interior electric field is nonzero and has a complex structure, pointing inwards from the middle of each face of the shell and pointing outwards towards each edge and corner. We then discuss how to understand the quantitative features of the electric field by plotting an analytical expression for E along symmetry lines and on symmetry surfaces of the shell.

  11. Quantum corrections for the cubic Galileon in the covariant language

    SciTech Connect

    Saltas, Ippocratis D.; Vitagliano, Vincenzo, E-mail: isaltas@fc.ul.pt, E-mail: vincenzo.vitagliano@ist.utl.pt

    We present for the first time an explicit exposition of quantum corrections within the cubic Galileon theory including the effect of quantum gravity, in a background- and gauge-invariant manner, employing the field-reparametrisation approach of the covariant effective action at 1-loop. We show that the consideration of gravitational effects in combination with the non-linear derivative structure of the theory reveals new interactions at the perturbative level, which manifest themselves as higher-operators in the associated effective action, which' relevance is controlled by appropriate ratios of the cosmological vacuum and the Galileon mass scale. The significance and concept of the covariant approach inmore » this context is discussed, while all calculations are explicitly presented.« less

  12. Hairy black holes in cubic quasi-topological gravity

    NASA Astrophysics Data System (ADS)

    Dykaar, Hannah; Hennigar, Robie A.; Mann, Robert B.

    2017-05-01

    We construct a class of five dimensional black hole solutions to cubic quasi-topological gravity with conformal scalar hair and study their thermodynamics. We find these black holes provide the second example of black hole λ-lines: a line of second order (continuous) phase transitions, akin to the fluid/superfluid transition of 4He. Examples of isolated critical points are found for spherical black holes, marking the first in the literature to date. We also find various novel and interesting phase structures, including an isolated critical point occurring in conjunction with a double reentrant phase transition. The AdS vacua of the theory are studied, finding ghost-free configurations where the scalar field takes on a non-zero constant value, in notable contrast to the five dimensional Lovelock case.

  13. Grain boundary crystallography in polycrystalline yttria-stabilised cubic zirconia

    NASA Astrophysics Data System (ADS)

    Kini, Maya K.

    2018-07-01

    Properties of grain boundaries such as grain boundary energy, mobility and diffusion are reported to depend strongly on their crystallography. While studies on ceramic bicrystals with low Σ misorientations have shown highly ordered structures and low energies, studies on dense polycrystalline ceramics often show the significance of grain boundary planes. In the present study, grain boundary plane distributions were studied for yttria-stabilised cubic zirconia with varying grain sizes using Electron Back Scattered Diffraction technique combined with a stereological approach. Despite nearly isotropic grain boundary plane distributions, a highly anisotropic grain boundary character distribution is observed for specific misorientations. Certain low-energy symmetric tilts such as Σ3 and Σ11 are found to occur with high frequencies across the grain size range studied, leading to an inverse correlation between GB energy and frequency of occurrence, consistent with other ceramics studied in literature.

  14. Serial femtosecond crystallography of soluble proteins in lipidic cubic phase

    DOE PAGES

    Fromme, Raimund; Ishchenko, Andrii; Metz, Markus; ...

    2015-08-04

    Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables high-resolution protein structure determination using micrometre-sized crystals at room temperature with minimal effects from radiation damage. SFX requires a steady supply of microcrystals intersecting the XFEL beam at random orientations. An LCP–SFX method has recently been introduced in which microcrystals of membrane proteins are grown and delivered for SFX data collection inside a gel-like membrane-mimetic matrix, known as lipidic cubic phase (LCP), using a special LCP microextrusion injector. Here, it is shown enabling a dramatic reduction in the amount of crystallized protein required for data collection compared with crystals deliveredmore » by liquid injectors. High-quality LCP–SFX data sets were collected for two soluble proteins, lysozyme and phycocyanin, using less than 0.1 mg of each protein.« less

  15. Serial femtosecond crystallography of soluble proteins in lipidic cubic phase

    SciTech Connect

    Fromme, Raimund; Ishchenko, Andrii; Metz, Markus

    Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables high-resolution protein structure determination using micrometre-sized crystals at room temperature with minimal effects from radiation damage. SFX requires a steady supply of microcrystals intersecting the XFEL beam at random orientations. An LCP–SFX method has recently been introduced in which microcrystals of membrane proteins are grown and delivered for SFX data collection inside a gel-like membrane-mimetic matrix, known as lipidic cubic phase (LCP), using a special LCP microextrusion injector. Here, it is shown enabling a dramatic reduction in the amount of crystallized protein required for data collection compared with crystals deliveredmore » by liquid injectors. High-quality LCP–SFX data sets were collected for two soluble proteins, lysozyme and phycocyanin, using less than 0.1 mg of each protein.« less

  16. Absence of metastable states in strained monoatomic cubic crystals.

    NASA Astrophysics Data System (ADS)

    Aguayo, Aarón; Mehl, Michael L.; de Coss, Romeo

    2005-03-01

    The Bain path distortion of a metal with an fcc (bcc) ground state toward the bcc (fcc) structure initially requires an increase in energy, but at some point along the Bain path the energy will again decrease until a local minimum is reached. We have studied the tetragonal distortion (Bain path) of monoatomic cubic crystals, using a combination of parametrized tight-binding and first-principles linearized augmented plane wave calculations. We show that this local minimum is unstable with respect to an elastic distortion, except in the rare case that the minimum is at the bcc (fcc) point on the Bain path. This shows that body-centered-tetragonal phases of these materials, which have been seen in epitaxially grown thin films, must be stabilized by the substrate and cannot be freestanding films. This work was partially supported by Consejo Nacional de Ciencia y Tecnolog'ia (CONACYT, M'exico) under Grant No. 43830-F.

  17. Stabilization of cubic Li7La3Hf2O12 by Al-doping

    NASA Astrophysics Data System (ADS)

    Baklanova, Yana V.; Tyutyunnik, Alexander P.; Tarakina, Nadezda V.; Fortes, A. Dominic; Maksimova, Lidiya G.; Korona, Daniil V.; Denisova, Tatyana A.

    2018-07-01

    In this paper we report on the stabilization of cubic Li7La3Hf2O12 by Al3+ doping and present a detailed crystal structure study and lithium ion conductivity measurements of the obtained compound. Polycrystalline Al-doped Li7La3Hf2O12 was prepared by a modified solid state method. The compound consists of micrometer size grains encapsulated by a glassy phase, which helps preventing the volatilization of lithium during annealing. Al-doped Li7La3Hf2O12 crystallizes in the garnet-related structure with a cubic unit cell (sp. gr. Ia 3 bar d (230)). A structural refinement using X-ray and neutron powder diffraction data showed that the Al3+ ions occupy only tetrahedral Li+ sites in the structure. The presence of overextended leading edges of the peaks on the XRD and NPD data is described by the introduction of an additional phase with rhombohedral distortion that occurs through a stretching of the cubic phase along the body diagonal. The activation energy as well as the total conductivity at room temperature are close to values obtained for un-doped cubic Li7La3Zr2O12 and Li7La3Hf2O12 garnets, which make Al-doped Li7La3Hf2O12 a potential candidate for the application as solid electrolyte in solid-state rechargeable lithium-ion batteries.

  18. Rhombohedral Super Hetero Epitaxy of Cubic SiGe on Trigonal c-plane Sapphire

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Duzik, Adam J.

    2017-01-01

    New rhombohedral super-hetero-epitaxy technology was developed at NASA. This epitaxy technology enables the growth of unprecedented cubic-trigonal hybrid single crystal structures with lattice match on sapphire (Al2O3) substrates, hence with little strain and very few defects at the interface.

  19. Super-hard cubic BN layer formation by nitrogen ion implantation

    NASA Astrophysics Data System (ADS)

    Komarov, F. F.; Pilko, V. V.; Yakushev, V. A.; Tishkov, V. S.

    1994-11-01

    Microcrystalline and amorphous boron thin films were implanted with nitrogen ions at energies from 25 to 125 keV and with doses from 2 × 10 17 to 1 × 10 18 at.cm 2 at temperatures below 200°C. The structure of boron nitride phases after ion implantation, formation of phases and phase transformations were investigated by TEM and TED methods. The cubic boron nitride phase is revealed. The microhardness of the formed films was satisfactorily explained in terms of chemical compound formation by polyenergetic ion implantation. The influence of the copper impurity on the formation of the cubic boron nitride phase is demonstrated. It has also been shown that low concentrations of copper promote cubic BN boundary formation.

  20. Spiraling elliptic Laguerre-Gaussian soliton in isotropic nonlocal competing cubic-quintic nonlinear media

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Li, JingZhen; Xie, WeiXin

    2018-06-01

    This paper introduce a kind of spiraling elliptic Laguerre-Gaussian (SELG) soliton which has complicated structures in its profile and phase, and find that it can be formed in nonlocal cubic, quantic and competing cubic-quintic nonlinear media, respectively. The different-order SELG solitons with the same ellipticity have the same rotation period, cross-term phase coefficient, critical power and different critical orbital angular momentums (OAM). However, with the increase of ellipticity, the rotation period, cross-term phase coefficient, critical power and OAM are all increased. In particular, there are bistable SELG solitons stemmed by the competing effect between self-focusing cubic and self-defocusing quintic nonlinearities.

  1. First-principles investigation on the mechanism of photocatalytic properties for cubic and orthorhombic KNbO3

    NASA Astrophysics Data System (ADS)

    Xu, Yong-Qiang; Wu, Shao-Yi; Ding, Chang-Chun; Wu, Li-Na; Zhang, Gao-Jun

    2018-03-01

    The geometric structures, band structures, density of states and optical absorption spectra are studied for cubic and orthorhombic KNbO3 (C- and O-KNO) crystals by using first-principles calculations. Based on the above calculation results, the mechanisms of photocatalytic properties for both crystals are further theoretically investigated to deepen the understandings of their photocatalytic activity from the electronic level. Calculations for the effective masses of electron and hole are carried out to make comparison in photocatalytic performance between cubic and orthorhombic phases. Optical absorption in cubic phase is found to be stronger than that in orthorhombic phase. C-KNO has smaller electron effective mass, higher mobility of photogenerated electrons, lower electron-hole recombination rate and better light absorption capacity than O-KNO. So, the photocatalytic activity of cubic phase can be higher than orthorhombic one. The present work may be beneficial to explore the series of perovskite photocatalysts.

  2. Low pressure growth of cubic boron nitride films

    NASA Technical Reports Server (NTRS)

    Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)

    1997-01-01

    A method for forming thin films of cubic boron nitride on substrates at low pressures and temperatures. A substrate is first coated with polycrystalline diamond to provide a uniform surface upon which cubic boron nitride can be deposited by chemical vapor deposition. The cubic boron nitride film is useful as a substitute for diamond coatings for a variety of applications in which diamond is not suitable. any tetragonal or hexagonal boron nitride. The cubic boron nitride produced in accordance with the preceding example is particularly well-suited for use as a coating for ultra hard tool bits and abrasives, especially those intended to use in cutting or otherwise fabricating iron.

  3. Zr 2Ir 6B with an eightfold superstructure of the cubic perovskite-like boride ZrIr 3B 0.5: Synthesis, crystal structure and bonding analysis

    NASA Astrophysics Data System (ADS)

    Hermus, Martin; Fokwa, Boniface P. T.

    2010-04-01

    Single phase powder samples and single crystals of Zr 2Ir 6B were successfully synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. Superstructure reflections were observed both on powder and on single crystal diffraction data, leading to an eightfold superstructure of ZrIr 3B x phase. The new phase, which has a metallic luster, crystallizes in space group Fm3¯m (no. 225) with the lattice parameters a=7.9903(4) Å, V=510.14(4) Å 3. Its crystal structure was refined on the basis of powder as well as single crystal data. The single crystal refinement converged to R1=0.0239 and w R2=0.0624 for all 88 unique reflections and 6 parameters. Zr 2Ir 6B is isotypic to Ti 2Rh 6B and its structure can be described as a defect double perovskite, A2BB' O6, where the A site is occupied by zirconium, the B site by boron, the O site by iridium but the B' site is vacant, leading to the formation of empty and boron-filled octahedral Ir 6 clusters. According to the result of tight-binding electronic structure calculations, Ir-B and Ir-Zr interactions are mainly responsible for the structural stability of the phase. According to COHP bonding analysis, the strongest bonding occurs for the Ir-B contacts, and the Ir-Ir bonding within the empty clusters is two times stronger than that in the BIr 6 octahedra.

  4. The three dimensionality of cell membranes: lamellar to cubic membrane transition as investigated by electron microscopy.

    PubMed

    Chong, Ketpin; Deng, Yuru

    2012-01-01

    Biological membranes are generally perceived as phospholipid bilayer structures that delineate in a lamellar form the cell surface and intracellular organelles. However, much more complex and highly convoluted membrane organizations are ubiquitously present in many cell types under certain types of stress, states of disease, or in the course of viral infections. Their occurrence under pathological conditions make such three-dimensionally (3D) folded and highly ordered membranes attractive biomarkers. They have also stimulated great biomedical interest in understanding the molecular basis of their formation. Currently, the analysis of such membrane arrangements, which include tubulo-reticular structures (TRS) or cubic membranes of various subtypes, is restricted to electron microscopic methods, including tomography. Preservation of membrane structures during sample preparation is the key to understand their true 3D nature. This chapter discusses methods for appropriate sample preparations to successfully examine and analyze well-preserved highly ordered membranes by electron microscopy. Processing methods and analysis conditions for green algae (Zygnema sp.) and amoeba (Chaos carolinense), mammalian cells in culture and primary tissue cells are described. We also discuss methods to identify cubic membranes by transmission electron microscopy (TEM) with the aid of a direct template matching method and by computer simulation. A 3D analysis of cubic cell membrane topology by electron tomography is described as well as scanning electron microscopy (SEM) to investigate surface contours of isolated mitochondria with cubic membrane arrangement. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Integrated Multi-Color Light Emitting Device Made with Hybrid Crystal Structure

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor)

    2017-01-01

    An integrated hybrid crystal Light Emitting Diode ("LED") display device that may emit red, green, and blue colors on a single wafer. The various embodiments may provide double-sided hetero crystal growth with hexagonal wurtzite III-Nitride compound semiconductor on one side of (0001) c-plane sapphire media and cubic zinc-blended III-V or II-VI compound semiconductor on the opposite side of c-plane sapphire media. The c-plane sapphire media may be a bulk single crystalline c-plane sapphire wafer, a thin free standing c-plane sapphire layer, or crack-and-bonded c-plane sapphire layer on any substrate. The bandgap energies and lattice constants of the compound semiconductor alloys may be changed by mixing different amounts of ingredients of the same group into the compound semiconductor. The bandgap energy and lattice constant may be engineered by changing the alloy composition within the cubic group IV, group III-V, and group II-VI semiconductors and within the hexagonal III-Nitrides.

  6. Integrated Multi-Color Light Emitting Device Made with Hybrid Crystal Structure

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor)

    2016-01-01

    An integrated hybrid crystal Light Emitting Diode ("LED") display device that may emit red, green, and blue colors on a single wafer. The various embodiments may provide double-sided hetero crystal growth with hexagonal wurtzite III-Nitride compound semiconductor on one side of (0001) c-plane sapphire media and cubic zinc-blended III-V or II-VI compound semiconductor on the opposite side of c-plane sapphire media. The c-plane sapphire media may be a bulk single crystalline c-plane sapphire wafer, a thin free standing c-plane sapphire layer, or crack-and-bonded c-plane sapphire layer on any substrate. The bandgap energies and lattice constants of the compound semiconductor alloys may be changed by mixing different amounts of ingredients of the same group into the compound semiconductor. The bandgap energy and lattice constant may be engineered by changing the alloy composition within the cubic group IV, group III-V, and group II-VI semiconductors and within the hexagonal III-Nitrides.

  7. Electronic structure and mechanical properties of osmium borides, carbides and nitrides from first principles

    NASA Astrophysics Data System (ADS)

    Liang, Yongcheng; Zhao, Jianzhi; Zhang, Bin

    2008-06-01

    The stabilities, mechanical properties and electronic structures of osmium boride (OsB), carbide (OsC) and nitride (OsN), in the tungsten carbide (WC), rocksalt (NaCl), cesium chloride (CsCl) and zinc blende (ZnS) structures respectively, are systematically predicted by calculations from first-principles. Only four phases, namely, OsB(WC), OsB(CsCl), OsC(WC), and OsC(ZnS), are mechanically stable, and none is a superhard compound, contrary to previous speculation. Most importantly, we find that the changing trends of bulk modulus and shear modulus are completely different for OsB, OsC and OsN in same hexagonal WC structure, which indicates that the underlying sources of hardness and incompressibility are fundamentally different: the former is determined by bonding nature while the latter is closely associated with valence electron density.

  8. Heterocrystal and bicrystal structures of ZnS nanowires synthesized by plasma enhanced chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Jie, J. S.; Zhang, W. J.; Jiang, Y.; Meng, X. M.; Zapien, J. A.; Shao, M. W.; Lee, S. T.

    2006-06-01

    ZnS nanowires with heterocrystal and bicrystal structures were successfully synthesized using the DC-plasma chemical vapour deposition (CVD) method. The heterocrystalline ZnS nanowires have the zinc blende (ZB) and wurtzite (WZ) zones aligned alternately in the transverse direction but without an obvious period. The bicrystal ZnS nanowires are composed of two ZB fractions separated by a clear grain boundary along the length. Significantly, the grain boundaries in both the heterocrystal and bicrystal structures are atomically sharp without any visible lattice distortion. The effects of plasma species, ion bombardment, and silicon impurities in the formation of these distinctive structures are discussed. A defect-induced red-shift and broadening of the band-gap emission are revealed in photoluminescence (PL) and cathodoluminescence (CL) measurements.

  9. Holographic studies of Einsteinian cubic gravity

    NASA Astrophysics Data System (ADS)

    Bueno, Pablo; Cano, Pablo A.; Ruipérez, Alejandro

    2018-03-01

    Einsteinian cubic gravity provides a holographic toy model of a nonsupersymmetric CFT in three dimensions, analogous to the one defined by Quasi-topological gravity in four. The theory admits explicit non-hairy AdS4 black holes and allows for numerous exact calculations, fully nonperturbative in the new coupling. We identify several entries of the AdS/CFT dictionary for this theory, and study its thermodynamic phase space, finding interesting new phenomena. We also analyze the dependence of Rényi entropies for disk regions on universal quantities characterizing the CFT. In addition, we show that η/ s is given by a non-analytic function of the ECG coupling, and that the existence of positive-energy black holes strictly forbids violations of the KSS bound. Along the way, we introduce a new method for evaluating Euclidean on-shell actions for general higher-order gravities possessing second-order linearized equations on AdS( d+1). Our generalized action involves the very same Gibbons-Hawking boundary term and counterterms valid for Einstein gravity, which now appear weighted by the universal charge a * controlling the entanglement entropy across a spherical region in the CFT dual to the corresponding higher-order theory.

  10. Black holes in a cubic Galileon universe

    SciTech Connect

    Babichev, E.; Charmousis, C.; Lehébel, A.

    2016-09-01

    We find and study the properties of black hole solutions for a subclass of Horndeski theory including the cubic Galileon term. The theory under study has shift symmetry but not reflection symmetry for the scalar field. The Galileon is assumed to have linear time dependence characterized by a velocity parameter. We give analytic 3-dimensional solutions that are akin to the BTZ solutions but with a non-trivial scalar field that modifies the effective cosmological constant. We then study the 4-dimensional asymptotically flat and de Sitter solutions. The latter present three different branches according to their effective cosmological constant. For two ofmore » these branches, we find families of black hole solutions, parametrized by the velocity of the scalar field. These spherically symmetric solutions, obtained numerically, are different from GR solutions close to the black hole event horizon, while they have the same de-Sitter asymptotic behavior. The velocity parameter represents black hole primary hair.« less

  11. CubiCal: Suite for fast radio interferometric calibration

    NASA Astrophysics Data System (ADS)

    Kenyon, J. S.; Smirnov, O. M.; Grobler, T. L.; Perkins, S. J.

    2018-05-01

    CubiCal implements several accelerated gain solvers which exploit complex optimization for fast radio interferometric gain calibration. The code can be used for both direction-independent and direction-dependent self-calibration. CubiCal is implemented in Python and Cython, and multiprocessing is fully supported.

  12. Planar Cubics Through a Point in a Direction

    NASA Technical Reports Server (NTRS)

    Chou, J. J.; Blake, M. W.

    1993-01-01

    It is shown that the planar cubics through three points and the associated tangent directions can be found by solving a cubic equation and a 2 x 2 system of linear equations. The result is combined with a previous published scheme to produce a better curve-fitting method.

  13. Nonlocal dark solitons under competing cubic-quintic nonlinearities.

    PubMed

    Chen, L; Wang, Q; Shen, M; Zhao, H; Lin, Y-Y; Jeng, C-C; Lee, R-K; Krolikowski, W

    2013-01-01

    We investigate properties of dark solitons under competing nonlocal cubic-local quintic nonlinearities. Analytical results, based on a variational approach and confirmed by direct numerical simulations, reveal the existence of a unique dark soliton solutions with their width being independent of the degree of nonlocality, due to the competing cubic-quintic nonlinearities.

  14. Cubic Polynomials with Real or Complex Coefficients: The Full Picture

    ERIC Educational Resources Information Center

    Bardell, Nicholas S.

    2016-01-01

    The cubic polynomial with real coefficients has a rich and interesting history primarily associated with the endeavours of great mathematicians like del Ferro, Tartaglia, Cardano or Vieta who sought a solution for the roots (Katz, 1998; see Chapter 12.3: The Solution of the Cubic Equation). Suffice it to say that since the times of renaissance…

  15. Key parameters governing the densification of cubic-Li7La3Zr2O12 Li+ conductors

    NASA Astrophysics Data System (ADS)

    Yi, Eongyu; Wang, Weimin; Kieffer, John; Laine, Richard M.

    2017-06-01

    Cubic-Li7La3Zr2O12 (LLZO) is regarded as one of the most promising solid electrolytes for the construction of inherently safe, next generation all-solid-state Li batteries. Unfortunately, sintering these materials to full density with controlled grain sizes, mechanical and electrochemical properties relies on energy and equipment intensive processes. In this work, we elucidate key parameters dictating LLZO densification by tracing the compositional and structural changes during processing calcined and ball-milled Al3+ doped LLZO powders. We find that the powders undergo ion (Li+/H+) exchange during room temperature processing, such that on heating, the protonated LLZO lattice collapses and crystallizes to its constituent oxides, leading to reaction driven densification at < 1000 °C, prior to sintering of LLZO grains at higher temperatures. It is shown that small particle sizes and protonation cannot be decoupled, and actually aid densification. We conclude that using fully decomposed nanoparticle mixtures, as obtained by liquid-feed flame spray pyrolysis, provides an ideal approach to use high surface and reaction energy to drive densification, resulting in pressureless sintering of Ga3+ doped LLZO thin films (25 μm) at 1130 °C/0.3 h to ideal microstructures (95 ± 1% density, 1.2 ± 0.2 μm average grain size) normally accessible only by pressure-assisted sintering. Such films offer both high ionic conductivity (1.3 ± 0.1 mS cm-1) and record low ionic area specific resistance (2 Ω cm2).

  16. Electron affinity of cubic boron nitride terminated with vanadium oxide

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Sun, Tianyin; Shammas, Joseph; Kaur, Manpuneet; Hao, Mei; Nemanich, Robert J.

    2015-10-01

    A thermally stable negative electron affinity (NEA) for a cubic boron nitride (c-BN) surface with vanadium-oxide-termination is achieved, and its electronic structure was analyzed with in-situ photoelectron spectroscopy. The c-BN films were prepared by electron cyclotron resonance plasma-enhanced chemical vapor deposition employing BF3 and N2 as precursors. Vanadium layers of ˜0.1 and 0.5 nm thickness were deposited on the c-BN surface in an electron beam deposition system. Oxidation of the metal layer was achieved by an oxygen plasma treatment. After 650 °C thermal annealing, the vanadium oxide on the c-BN surface was determined to be VO2, and the surfaces were found to be thermally stable, exhibiting an NEA. In comparison, the oxygen-terminated c-BN surface, where B2O3 was detected, showed a positive electron affinity of ˜1.2 eV. The B2O3 evidently acts as a negatively charged layer introducing a surface dipole directed into the c-BN. Through the interaction of VO2 with the B2O3 layer, a B-O-V layer structure would contribute a dipole between the O and V layers with the positive side facing vacuum. The lower enthalpy of formation for B2O3 is favorable for the formation of the B-O-V layer structure, which provides a thermally stable surface dipole and an NEA surface.

  17. Structural properties and defects of GaN crystals grown at ultra-high pressures: A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Gao, Tinghong; Li, Yidan; Xie, Quan; Tian, Zean; Chen, Qian; Liang, Yongchao; Ren, Lei; Hu, Xuechen

    2018-01-01

    The growth of GaN crystals at different pressures was studied by molecular dynamics simulation employing the Stillinger-Weber potential, and their structural properties and defects were characterized using the radial distribution function, the Voronoi polyhedron index method, and a suitable visualization technology. Crystal structures formed at 0, 1, 5, 10, and 20 GPa featured an overwhelming number of <4 0 0 0> Voronoi polyhedra, whereas amorphous structures comprising numerous disordered polyhedra were produced at 50 GPa. During quenching, coherent twin boundaries were easily formed between zinc-blende and wurtzite crystal structures in GaN. Notably, point defects usually appeared at low pressure, whereas dislocations were observed at high pressure, since the simultaneous growth of two crystal grains with different crystal orientations and their boundary expansion was hindered in the latter case, resulting in the formation of a dislocation between these grains.

  18. On the shock response of cubic metals

    NASA Astrophysics Data System (ADS)

    Bourne, N. K.; Gray, G. T.; Millett, J. C. F.

    2009-11-01

    The response of four cubic metals to shock loading is reviewed in order to understand the effects of microstructure on continuum response. Experiments are described that link defect generation and storage mechanisms at the mesoscale to observations in the bulk. Four materials were reviewed; these were fcc nickel, the ordered fcc intermetallic Ni3Al, the bcc metal tantalum, and two alloys based on the intermetallic phase TiAl; Ti-46.5Al-2Cr-2Nb and Ti-48Al-2Cr-2Nb-1B. The experiments described are in two groups: first, equation of state and shear strength measurements using Manganin stress gauges and, second, postshock microstructural examinations and measurement of changes in mechanical properties. The behaviors described are linked through the description of time dependent plasticity mechanisms to the final states achieved. Recovered targets displayed dislocation microstructures illustrating processes active during the shock-loading process. Reloading of previously shock-prestrained samples illustrated shock strengthening for the fcc metals Ni and Ni3Al while showing no such effect for bcc Ta and for the intermetallic TiAl. This difference in effective shock hardening has been related, on the one hand, to the fact that bcc metals have fewer available slip systems that can operate than fcc crystals and to the observation that the lower symmetry materials (Ta and TiAl) both possess high Peierls stress and thus have higher resistances to defect motion in the lattice under shock-loading conditions. These behaviors, compared between these four materials, illustrate the role of defect generation, transport, storage, and interaction in determining the response of materials to shock prestraining.

  19. Picosecond Acoustics in Single Quantum Wells of Cubic GaN /(Al ,Ga )N

    NASA Astrophysics Data System (ADS)

    Czerniuk, T.; Ehrlich, T.; Wecker, T.; As, D. J.; Yakovlev, D. R.; Akimov, A. V.; Bayer, M.

    2017-01-01

    A picosecond acoustic pulse is used to study the photoelastic interaction in single zinc-blende GaN /AlxGa1 -x N quantum wells. We use an optical time-resolved pump-probe setup and demonstrate that tuning the photon energy to the quantum well's lowest electron-hole transition makes the experiment sensitive to the quantum well only. Because of the small width, its temporal and spatial resolution allows us to track the few-picosecond-long transit of the acoustic pulse. We further deploy a model to analyze the unknown photoelastic coupling strength of the quantum well for different photon energies and find good agreement with the experiments.

  20. Characterization of structural and electrical properties of ZnO tetrapods

    NASA Astrophysics Data System (ADS)

    Gu, Yu-Dong; Mai, Wen-Jie; Jiang, Peng

    2011-12-01

    ZnO tetrapods were synthesized by a typical thermal vapor-solid deposition method in a horizontal tube furnace. Structural characterization was carried out by transmission electron microscopy (TEM) and select-area electron diffraction (SAED), which shows the presence of zinc blende nucleus in the center of tetrapods while the four branches taking hexagonal wurtzite structure. The electrical transport property of ZnO tetrapods was investigated through an in-situ nanoprobe system. The three branches of a tetrapod serve as source, drain, and "gate", respectively; while the fourth branch pointing upward works as the force trigger by vertically applying external force downward. The conductivity of each branch of ZnO-tetrapods increases 3-4 times under pressure. In such situation, the electrical current through the branches of ZnO tetrapods can be tuned by external force, and therefore a simple force sensor based on ZnO tetrapods has been demonstrated for the first time.

  1. Electrical leakage phenomenon in heteroepitaxial cubic silicon carbide on silicon

    NASA Astrophysics Data System (ADS)

    Pradeepkumar, Aiswarya; Zielinski, Marcin; Bosi, Matteo; Verzellesi, Giovanni; Gaskill, D. Kurt; Iacopi, Francesca

    2018-06-01

    Heteroepitaxial 3C-SiC films on silicon substrates are of technological interest as enablers to integrate the excellent electrical, electronic, mechanical, thermal, and epitaxial properties of bulk silicon carbide into well-established silicon technologies. One critical bottleneck of this integration is the establishment of a stable and reliable electronic junction at the heteroepitaxial interface of the n-type SiC with the silicon substrate. We have thus investigated in detail the electrical and transport properties of heteroepitaxial cubic silicon carbide films grown via different methods on low-doped and high-resistivity silicon substrates by using van der Pauw Hall and transfer length measurements as test vehicles. We have found that Si and C intermixing upon or after growth, particularly by the diffusion of carbon into the silicon matrix, creates extensive interstitial carbon traps and hampers the formation of a stable rectifying or insulating junction at the SiC/Si interface. Although a reliable p-n junction may not be realistic in the SiC/Si system, we can achieve, from a point of view of the electrical isolation of in-plane SiC structures, leakage suppression through the substrate by using a high-resistivity silicon substrate coupled with deep recess etching in between the SiC structures.

  2. Mechanical and Thermophysical Properties of Cubic Rock-Salt AlN Under High Pressure

    NASA Astrophysics Data System (ADS)

    Lebga, Noudjoud; Daoud, Salah; Sun, Xiao-Wei; Bioud, Nadhira; Latreche, Abdelhakim

    2018-03-01

    Density functional theory, density functional perturbation theory, and the Debye model have been used to investigate the structural, elastic, sound velocity, and thermodynamic properties of AlN with cubic rock-salt structure under high pressure, yielding the equilibrium structural parameters, equation of state, and elastic constants of this interesting material. The isotropic shear modulus, Pugh ratio, and Poisson's ratio were also investigated carefully. In addition, the longitudinal, transverse, and average elastic wave velocities, phonon contribution to the thermal conductivity, and interesting thermodynamic properties were predicted and analyzed in detail. The results demonstrate that the behavior of the elastic wave velocities under increasing hydrostatic pressure explains the hardening of the corresponding phonons. Based on the elastic stability criteria under pressure, it is found that AlN with cubic rock-salt structure is mechanically stable, even at pressures up to 100 GPa. Analysis of the Pugh ratio and Poisson's ratio revealed that AlN with cubic rock-salt structure behaves in brittle manner.

  3. Unusually large unit cell of lipid bicontinuous cubic phase: towards nature's length scales

    NASA Astrophysics Data System (ADS)

    Kim, Hojun; Leal, Cecilia

    Lipid bicontinuous cubic phases are of great interest for drug delivery, protein crystallization, biosensing, and templates for directing hard material assembly. Structural modulations of lipid mesophases regarding phase identity and unit cell size are often necessary to augment loading and gain pore size control. One important example is the need for unit cells large enough to guide the crystallization of bigger proteins without distortion of the templating phase. In nature, bicontinuous cubic constructs achieve unit cell dimensions as high as 300 nm. However, the largest unit cell of lipid mesophases synthesized in the lab is an order of magnitude lower. In fact, it has been predicted theoretically that lipid bicontinuous cubic phases of unit cell dimensions exceeding 30 nm could not exist, as high membrane fluctuations would damp liquid crystalline order. Here we report non-equilibrium assembly methods of synthesizing metastable bicontinuous cubic phases with unit cell dimensions as high as 70 nm. The phases are stable for very long periods and become increasingly ordered as time goes by without changes to unit cell dimensions. We acknowledge the funding source as a NIH.

  4. Bare and boron-doped cubic silicon carbide nanowires for electrochemical detection of nitrite sensitively

    PubMed Central

    Yang, Tao; Zhang, Liqin; Hou, Xinmei; Chen, Junhong; Chou, Kuo-Chih

    2016-01-01

    Fabrication of eletrochemical sensors based on wide bandgap compound semiconductors has attracted increasing interest in recent years. Here we report for the first time electrochemical nitrite sensors based on cubic silicon carbide (SiC) nanowires (NWs) with smooth surface and boron-doped cubic SiC NWs with fin-like structure. Multiple techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) were used to characterize SiC and boron-doped SiC NWs. As for the electrochemical behavior of both SiC NWs electrode, the cyclic voltammetric results show that both SiC electrodes exhibit wide potential window and excellent electrocatalytic activity toward nitrite oxidation. Differential pulse voltammetry (DPV) determination reveals that there exists a good linear relationship between the oxidation peak current and the concentration in the range of 50–15000 μmoL L−1 (cubic SiC NWs) and 5–8000 μmoL L−1 (B-doped cubic SiC NWs) with the detection limitation of 5 and 0.5 μmoL L−1 respectively. Compared with previously reported results, both as-prepared nitrite sensors exhibit wider linear response range with comparable high sensitivity, high stability and reproducibility. PMID:27109361

  5. Diamond cubic phase of monoolein and water as an amphiphilic matrix for electrophoresis of oligonucleotides.

    PubMed

    Carlsson, Nils; Winge, Ann-Sofie; Engström, Sven; Akerman, Björn

    2005-10-06

    We used a cubic liquid crystal formed by the nonionic monoglyceride monoolein and water as a porous matrix for the electrophoresis of oligonucleotides. The diamond cubic phase is thermodynamically stable when in contact with a water-rich phase, which we exploit to run the electrophoresis in the useful submarine mode. Oligonucleotides are separated according to size and secondary structure by migration through the space-filling aqueous nanometer pores of the regular liquid crystal, but the comparatively slow migration means the cubic phase will not be a replacement for the conventional DNA gels. However, our demonstration that the cubic phase can be used in submarine electrophoresis opens up the possibility for a new matrix for electrophoresis of amphiphilic molecules. From this perspective, the results on the oligonucleotides show that water-soluble particles of nanometer size, typical for the hydrophilic parts of membrane-bound proteins, may be a useful separation motif. A charged contamination in the commercial sample of monoolein, most likely oleic acid that arises from its hydrolysis, restricts useful buffer conditions to a pH below 5.6.

  6. Ab Initio High Pressure and Temperature Investigation on Cubic PbMoO3 Perovskite

    NASA Astrophysics Data System (ADS)

    Dar, Sajad Ahmad; Srivastava, Vipul; Sakalle, Umesh Kumar

    2017-12-01

    A combined high pressure and temperature investigation on recently reported cubic perovskite PbMoO3 have been performed within the most accurate density functional theory (DFT). The structure was found stable in cubic paramagnetic phase. The DFT calculated analytical and experimental lattice constant were found in good agreement. The analytical tolerance factor as well as the elastic properties further verifies the cubic stability for PbMoO3. The spin polarized electronic band structure and density of states presented metallic nature with symmetry in up and down states. The insignificant magnetic moment also confirms the paramagnetic nature for the compound. The high pressure elastic and mechanical study up to 35 GPa reveal the structural stability of the material in this pressure range. The compound was found to establish a ductile nature. The electrical conductivity obtained from the band structure results show a decreasing trend with increasing temperature. The temperature dependence of thermodynamic parameters such as specific heat ( C v), thermal expansion ( α) has also been evaluated.

  7. Cubic Polynomials, Their Roots and the Perron-Frobenius Theorem

    ERIC Educational Resources Information Center

    Dealba, Luz Maria

    2002-01-01

    In this note several cubic polynomials and their roots are examined, in particular, how these roots move as some of the coefficients are modified. The results obtained are applied to eigenvalues of matrices. (Contains 8 figures and 1 footnote.)

  8. Plastic fluctuations in empty crystals formed by cubic wireframe particles

    NASA Astrophysics Data System (ADS)

    McBride, John M.; Avendaño, Carlos

    2018-05-01

    We present a computer simulation study of the phase behavior of colloidal hard cubic frames, i.e., particles with nonconvex cubic wireframe geometry interacting purely by excluded volume. Despite the propensity of cubic wireframe particles to form cubic phases akin to their convex counterparts, these particles exhibit unusual plastic fluctuations in which a random and dynamic fraction of particles rotate around their lattice positions in the crystal lattice while the remainder of the particles remains fully ordered. We argue that this unexpected effect stems from the nonconvex geometry of the particles in which the faces of a particle can be penetrated by the vertices of the nearest neighbors even at high number densities.

  9. Monotonicity preserving splines using rational cubic Timmer interpolation

    NASA Astrophysics Data System (ADS)

    Zakaria, Wan Zafira Ezza Wan; Alimin, Nur Safiyah; Ali, Jamaludin Md

    2017-08-01

    In scientific application and Computer Aided Design (CAD), users usually need to generate a spline passing through a given set of data, which preserves certain shape properties of the data such as positivity, monotonicity or convexity. The required curve has to be a smooth shape-preserving interpolant. In this paper a rational cubic spline in Timmer representation is developed to generate interpolant that preserves monotonicity with visually pleasing curve. To control the shape of the interpolant three parameters are introduced. The shape parameters in the description of the rational cubic interpolant are subjected to monotonicity constrained. The necessary and sufficient conditions of the rational cubic interpolant are derived and visually the proposed rational cubic Timmer interpolant gives very pleasing results.

  10. 19. 1500 CUBIC FEET CAPACITY SCRAP STEEL CHARGING BOX ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. 1500 CUBIC FEET CAPACITY SCRAP STEEL CHARGING BOX ON THE CHARGING AISLE OF THE BOP SHOP LOOKING NORTHWEST. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  11. Cubic nonlinearity in shear wave beams with different polarizations

    PubMed Central

    Wochner, Mark S.; Hamilton, Mark F.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.

    2008-01-01

    A coupled pair of nonlinear parabolic equations is derived for the two components of the particle motion perpendicular to the axis of a shear wave beam in an isotropic elastic medium. The equations account for both quadratic and cubic nonlinearity. The present paper investigates, analytically and numerically, effects of cubic nonlinearity in shear wave beams for several polarizations: linear, elliptical, circular, and azimuthal. Comparisons are made with effects of quadratic nonlinearity in compressional wave beams. PMID:18529167

  12. Membrane protein crystallization in meso: lipid type-tailoring of the cubic phase.

    PubMed Central

    Cherezov, Vadim; Clogston, Jeffrey; Misquitta, Yohann; Abdel-Gawad, Wissam; Caffrey, Martin

    2002-01-01

    Hydrated monoolein forms the cubic-Pn3m mesophase that has been used for in meso crystallization of membrane proteins. The crystals have subsequently provided high-resolution structures by crystallographic means. It is possible that the hosting cubic phase created by monoolein alone, which itself is not a common membrane component, will limit the range of membrane proteins crystallizable by the in meso method. With a view to expanding the range of applicability of the method, we investigated by x-ray diffraction the degree to which the reference cubic-Pn3m phase formed by hydrated monoolein could be modified by other lipid types. These included phosphatidylcholine (PC), phosphatidylethanolamine, phosphatidylserine, cardiolipin, lyso-PC, a polyethylene glycol-lipid, 2-monoolein, oleamide, and cholesterol. The results show that all nine lipids were accommodated in the cubic phase to some extent without altering phase identity. The positional isomer, 2-monoolein, was tolerated to the highest level. The least well tolerated were the anionic lipids, followed by lyso-PC. The others were accommodated to the extent of 20-25 mol %. Beyond a certain concentration limit, the lipid additives either triggered one or a series of phase transitions or saturated the phase and separated out as crystals, as seen with oleamide and cholesterol. The series of phases observed and their order of appearance were consistent with expectations in terms of interfacial curvature changes. The changes in phase type and microstructure have been rationalized on the basis of lipid molecular shape, interfacial curvature, and chain packing energy. The data should prove useful in the rational design of cubic phase crystallization matrices with different lipid profiles that match the needs of a greater range of membrane proteins. PMID:12496106

  13. Transdermal delivery of paeonol using cubic gel and microemulsion gel

    PubMed Central

    Luo, Maofu; Shen, Qi; Chen, Jinjin

    2011-01-01

    Background The aim of this study was to develop new systems for transdermal delivery of paeonol, in particular microemulsion gel and cubic gel formulations. Methods Various microemulsion vehicles were prepared using isopropyl myristate as an oil phase, polyoxyethylated castor oil (Cremophor® EL) as a surfactant, and polyethylene glycol 400 as a cosurfactant. In the optimum microemulsion gel formulation, carbomer 940 was selected as the gel matrix, and consisted of 1% paeonol, 4% isopropyl myristate, 28% Cremophor EL/polyethylene glycol 400 (1:1), and 67% water. The cubic gel was prepared containing 3% paeonol, 30% water, and 67% glyceryl monooleate. Results A skin permeability test using excised rat skins indicated that both the cubic gel and microemulsion gel formulations had higher permeability than did the paeonol solution. An in vivo pharmacokinetic study done in rats showed that the relative bioavailability of the cubic gel and microemulsion gel was enhanced by about 1.51-fold and 1.28-fold, respectively, compared with orally administered paeonol suspension. Conclusion Both the cubic gel and microemulsion gel formulations are promising delivery systems to enhance the skin permeability of paeonol, in particular the cubic gel. PMID:21904450

  14. Cubic mesoporous Ag@CN: a high performance humidity sensor.

    PubMed

    Tomer, Vijay K; Thangaraj, Nishanthi; Gahlot, Sweta; Kailasam, Kamalakannan

    2016-12-01

    The fabrication of highly responsive, rapid response/recovery and durable relative humidity (%RH) sensors that can precisely monitor humidity levels still remains a considerable challenge for realizing the next generation humidity sensing applications. Herein, we report a remarkably sensitive and rapid %RH sensor having a reversible response using a nanocasting route for synthesizing mesoporous g-CN (commonly known as g-C 3 N 4 ). The 3D replicated cubic mesostructure provides a high surface area thereby increasing the adsorption, transmission of charge carriers and desorption of water molecules across the sensor surfaces. Owing to its unique structure, the mesoporous g-CN functionalized with well dispersed catalytic Ag nanoparticles exhibits excellent sensitivity in the 11-98% RH range while retaining high stability, negligible hysteresis and superior real time %RH detection performances. Compared to conventional resistive sensors based on metal oxides, a rapid response time (3 s) and recovery time (1.4 s) were observed in the 11-98% RH range. Such impressive features originate from the planar morphology of g-CN as well as unique physical affinity and favourable electronic band positions of this material that facilitate water adsorption and charge transportation. Mesoporous g-CN with Ag nanoparticles is demonstrated to provide an effective strategy in designing high performance %RH sensors and show great promise for utilization of mesoporous 2D layered materials in the Internet of Things and next generation humidity sensing applications.

  15. Dynamic consolidation of cubic boron nitride and its admixtures

    SciTech Connect

    Tan, H.; Ahrens, T.J.

    1988-09-01

    Cubic boron nitride (C-BN) powders admixed with graphite-structured boron nitride powder (g-BN), silicon carbide whisker (SCW), or silicon nitride whisker (SNW) were shock compacted to pressures up to 22 GPa. Unlike previous work with diamond and graphite (D. K. Potter and T. J. Ahrens, J. Appl. Phys. 63, 910 (1987)) it was found that the addition of g-BN inhibited dynamic consolidation. Good consolidation was achieved with a 4--8 ..mu..m particle size C-BN powder admixed with 15 wt.% SNW or 20 wt.% SCW. Whereas a 37--44 ..mu..m particle size C-BN mixture was only poorly consolidated. Scanning electron microscopy (SEM) analysis demonstratemore » that SCW and SNW in the mixtures were highly deformed and indicated melt textures. A skin heating model was used to describe the physics of consolidation. Model calculations are consistent with SEM analysis images that indicate plastic deformation of SCW and SNW. Micro-Vickers hardness values as high as 50 GPa were obtained for consolidated C-BN and SNW mixtures. This compares to 21 GPa for single-crystal Al/sub 2/O/sub 3/ and 120 GPa for diamond.« less

  16. Theory for plasticity of face-centered cubic metals.

    PubMed

    Jo, Minho; Koo, Yang Mo; Lee, Byeong-Joo; Johansson, Börje; Vitos, Levente; Kwon, Se Kyun

    2014-05-06

    The activation of plastic deformation mechanisms determines the mechanical behavior of crystalline materials. However, the complexity of plastic deformation and the lack of a unified theory of plasticity have seriously limited the exploration of the full capacity of metals. Current efforts to design high-strength structural materials in terms of stacking fault energy have not significantly reduced the laborious trial and error works on basic deformation properties. To remedy this situation, here we put forward a comprehensive and transparent theory for plastic deformation of face-centered cubic metals. This is based on a microscopic analysis that, without ambiguity, reveals the various deformation phenomena and elucidates the physical fundaments of the currently used phenomenological correlations. We identify an easily accessible single parameter derived from the intrinsic energy barriers, which fully specifies the potential diversity of metals. Based entirely on this parameter, a simple deformation mode diagram is shown to delineate a series of convenient design criteria, which clarifies a wide area of material functionality by texture control.

  17. Theory for plasticity of face-centered cubic metals

    PubMed Central

    Jo, Minho; Koo, Yang Mo; Lee, Byeong-Joo; Johansson, Börje; Vitos, Levente; Kwon, Se Kyun

    2014-01-01

    The activation of plastic deformation mechanisms determines the mechanical behavior of crystalline materials. However, the complexity of plastic deformation and the lack of a unified theory of plasticity have seriously limited the exploration of the full capacity of metals. Current efforts to design high-strength structural materials in terms of stacking fault energy have not significantly reduced the laborious trial and error works on basic deformation properties. To remedy this situation, here we put forward a comprehensive and transparent theory for plastic deformation of face-centered cubic metals. This is based on a microscopic analysis that, without ambiguity, reveals the various deformation phenomena and elucidates the physical fundaments of the currently used phenomenological correlations. We identify an easily accessible single parameter derived from the intrinsic energy barriers, which fully specifies the potential diversity of metals. Based entirely on this parameter, a simple deformation mode diagram is shown to delineate a series of convenient design criteria, which clarifies a wide area of material functionality by texture control. PMID:24753563

  18. Defect Genome of Cubic Perovskites for Fuel Cell Applications

    SciTech Connect

    Balachandran, Janakiraman; Lin, Lianshan; Anchell, Jonathan S.

    Heterogeneities such as point defects, inherent to material systems, can profoundly influence material functionalities critical for numerous energy applications. This influence in principle can be identified and quantified through development of large defect data sets which we call the defect genome, employing high-throughput ab initio calculations. However, high-throughput screening of material models with point defects dramatically increases the computational complexity and chemical search space, creating major impediments toward developing a defect genome. In this paper, we overcome these impediments by employing computationally tractable ab initio models driven by highly scalable workflows, to study formation and interaction of various point defectsmore » (e.g., O vacancies, H interstitials, and Y substitutional dopant), in over 80 cubic perovskites, for potential proton-conducting ceramic fuel cell (PCFC) applications. The resulting defect data sets identify several promising perovskite compounds that can exhibit high proton conductivity. Furthermore, the data sets also enable us to identify and explain, insightful and novel correlations among defect energies, material identities, and defect-induced local structural distortions. Finally, such defect data sets and resultant correlations are necessary to build statistical machine learning models, which are required to accelerate discovery of new materials.« less

  19. Defect Genome of Cubic Perovskites for Fuel Cell Applications

    DOE PAGES

    Balachandran, Janakiraman; Lin, Lianshan; Anchell, Jonathan S.; ...

    2017-10-10

    Heterogeneities such as point defects, inherent to material systems, can profoundly influence material functionalities critical for numerous energy applications. This influence in principle can be identified and quantified through development of large defect data sets which we call the defect genome, employing high-throughput ab initio calculations. However, high-throughput screening of material models with point defects dramatically increases the computational complexity and chemical search space, creating major impediments toward developing a defect genome. In this paper, we overcome these impediments by employing computationally tractable ab initio models driven by highly scalable workflows, to study formation and interaction of various point defectsmore » (e.g., O vacancies, H interstitials, and Y substitutional dopant), in over 80 cubic perovskites, for potential proton-conducting ceramic fuel cell (PCFC) applications. The resulting defect data sets identify several promising perovskite compounds that can exhibit high proton conductivity. Furthermore, the data sets also enable us to identify and explain, insightful and novel correlations among defect energies, material identities, and defect-induced local structural distortions. Finally, such defect data sets and resultant correlations are necessary to build statistical machine learning models, which are required to accelerate discovery of new materials.« less

  20. Serial femtosecond crystallography of soluble proteins in lipidic cubic phase

    SciTech Connect

    Fromme, Raimund; Ishchenko, Andrii; Metz, Markus

    Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables high-resolution protein structure determination using micrometre-sized crystals at room temperature with minimal effects from radiation damage. SFX requires a steady supply of microcrystals intersecting the XFEL beam at random orientations. An LCP–SFX method has recently been introduced in which microcrystals of membrane proteins are grown and delivered for SFX data collection inside a gel-like membrane-mimetic matrix, known as lipidic cubic phase (LCP), using a special LCP microextrusion injector. Here, it is demonstrated that LCP can also be used as a suitable carrier medium for microcrystals of soluble proteins, enabling amore » dramatic reduction in the amount of crystallized protein required for data collection compared with crystals delivered by liquid injectors. High-quality LCP–SFX data sets were collected for two soluble proteins, lysozyme and phycocyanin, using less than 0.1 mg of each protein.« less

  1. Experimental evidence of body centered cubic iron in Earth's core

    NASA Astrophysics Data System (ADS)

    Hrubiak, R.; Meng, Y.; Shen, G.

    2017-12-01

    The Earth's core is mainly composed of iron. While seismic evidence has shown a liquid outer core and a solid inner core, the crystalline nature of the solid iron at the core condition remains debated, largely due to the difficulties in experimental determination of exact polymorphs at corresponding pressure-temperature conditions. We have examined crystal structures of iron up to 220 GPa and 6000 K with x-ray diffraction using a double-sided laser heating system at HPCAT, Advanced Photon Source. The iron sample is confined in a small chamber surrounded by single crystal MgO. The laser power can be modulated together with temperature measurements. The modulated heating of iron in an MgO single crystal matrix allows for microstructure analysis during heating and after the sample is quenched. We present experimental evidence of a body-centered-cubic (BCC) iron from about 100 GPa and 3000 K to at least 220 GPa and 4000 K. The observed BCC phase may be consistent with a theoretically predicted BCC phase that is dynamically stable in similar pressure-temperature conditions [1]. We will discuss the stability region of the BCC phase and the melting curve of iron and their implications in the nature of the Earth's inner core. References: A. B. Belonoshko et al., Nat. Geosci., 1-6 (2017).

  2. Turbulent convective flows in a cubic cavity at high Prandtl number

    NASA Astrophysics Data System (ADS)

    Vasiliev, A.; Sukhanovskii, A.; Frick, P.

    2016-10-01

    Characteristics of turbulent convective flows in a cubic cell is studied experimentally for high values of Prandtl number. The first set was carriied out with propylene glycol (Pr = 64 and the second one with 25% water solution of propylene glycol (Pr = 24). It was found that increasing of Pr from 6.1 to 24 leads only to the slight change of intensity of the flow but during the next increasing of Pr from 24 to 64 the flow changes its structure.

  3. On the influence of tetrahedral covalent-hybridization on electronic band structure of topological insulators from first principles

    SciTech Connect

    Zhang, X. M.; Xu, G. Z.; Liu, E. K.

    Based on first-principles calculations, we investigate the influence of tetrahedral covalent-hybridization between main-group and transition-metal atoms on the topological band structures of binary HgTe and ternary half-Heusler compounds, respectively. Results show that, for the binary HgTe, when its zinc-blend structure is artificially changed to rock-salt one, the tetrahedral covalent-hybridization will be removed and correspondingly the topologically insulating band character lost. While for the ternary half-Heusler system, the strength of covalent-hybridization can be tuned by varying both chemical compositions and atomic arrangements, and the competition between tetrahedral and octahedral covalent-hybridization has been discussed in details. As a result, we found thatmore » a proper strength of tetrahedral covalent-hybridization is probably in favor to realizing the topologically insulating state with band inversion occurring at the Γ point of the Brillouin zone.« less

  4. On the electron density localization in elemental cubic ceramic and FCC transition metals by means of a localized electrons detector.

    PubMed

    Aray, Yosslen; Paredes, Ricardo; Álvarez, Luis Javier; Martiz, Alejandro

    2017-06-14

    The electron density localization in insulator and semiconductor elemental cubic materials with diamond structure, carbon, silicon, germanium, and tin, and good metallic conductors with face centered cubic structure such as α-Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au, was studied using a localized electrons detector defined in the local moment representation. Our results clearly show an opposite pattern of the electron density localization for the cubic ceramic and transition metal materials. It was found that, for the elemental ceramic materials, the zone of low electron localization is very small and is mainly localized on the atomic basin edges. On the contrary, for the transition metals, there are low-valued localized electrons detector isocontours defining a zone of highly delocalized electrons that extends throughout the material. We have found that the best conductors are those in which the electron density at this low-value zone is the lowest.

  5. Nonsymmorphic cubic Dirac point and crossed nodal rings across the ferroelectric phase transition in LiOsO3

    NASA Astrophysics Data System (ADS)

    Yu, Wing Chi; Zhou, Xiaoting; Chuang, Feng-Chuan; Yang, Shengyuan A.; Lin, Hsin; Bansil, Arun

    2018-05-01

    Crystalline symmetries can generate exotic band-crossing features, which can lead to unconventional fermionic excitations with interesting physical properties. We show how a cubic Dirac point—a fourfold-degenerate band-crossing point with cubic dispersion in a plane and a linear dispersion in the third direction—can be stabilized through the presence of a nonsymmorphic glide mirror symmetry in the space group of the crystal. Notably, the cubic Dirac point in our case appears on a threefold axis, even though it has been believed previously that such a point can only appear on a sixfold axis. We show that a cubic Dirac point involving a threefold axis can be realized close to the Fermi level in the nonferroelectric phase of LiOsO3. Upon lowering temperature, LiOsO3 has been shown experimentally to undergo a structural phase transition from the nonferroelectric phase to the ferroelectric phase with spontaneously broken inversion symmetry. Remarkably, we find that the broken symmetry transforms the cubic Dirac point into three mutually crossed nodal rings. There also exist several linear Dirac points in the low-energy band structure of LiOsO3, each of which is transformed into a single nodal ring across the phase transition.

  6. Pharmacokinetics and enhanced oral bioavailability in beagle dogs of cyclosporine A encapsulated in glyceryl monooleate/poloxamer 407 cubic nanoparticles

    PubMed Central

    Lai, Jie; Lu, Yi; Yin, Zongning; Hu, Fuqiang; Wu, Wei

    2010-01-01

    Efforts to improve the oral bioavailability of cyclosporine A (CyA) remains a challenge in the field of drug delivery. In this study, glyceryl monooleate (GMO)/poloxamer 407 cubic nanoparticles were evaluated as potential vehicles to improve the oral bioavailability of CyA. Cubic nanoparticles were prepared via the fragmentation of a bulk GMO/poloxamer 407 cubic phase gel by sonication and homogenization. The cubic inner structure formed was verified using Cryo-TEM. The mean diameters of the nanoparticles were about 180 nm, and the entrapment efficiency of these particles for CyA was over 85%. The in vitro release of CyA from these nanoparticles was less than 5% at 12 h. The results of a pharmacokinetic study in beagle dogs showed improved absorption of CyA from cubic nanoparticles as compared to microemulsion-based Neoral®; higher Cmax (1371.18 ± 37.34 vs 969.68 ± 176.3 ng mL−1), higher AUC0–t (7757.21 ± 1093.64 vs 4739.52 ± 806.30 ng h mL−1) and AUC0–∞ (9004.77 ± 1090.38 vs 5462.31 ± 930.76 ng h mL−1). The relative oral bioavailability of CyA cubic nanoparticles calculated on the basis of AUC0–∞ was about 178% as compared to Neoral®. The enhanced bioavailability of CyA is likely due to facilitated absorption by cubic nanoparticles rather than improved release. PMID:20161984

  7. Docosapentaenoic acid (DPA) is a critical determinant of cubic membrane formation in amoeba Chaos mitochondria.

    PubMed

    Deng, Yuru; Almsherqi, Zakaria A; Shui, Guanghou; Wenk, Markus R; Kohlwein, Sepp D

    2009-09-01

    Very long-chain polyunsaturated fatty acids (VLC-PUFAs), such as docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA), have recently made it to the realm of "magical molecules" based on their multiple presumably beneficial effects in biological systems, making these PUFAs particularly interesting in biomedicine. Their specific biological functions, however, remain enigmatic. Here we provide evidence derived from studies in the amoeba Chaos that indicates a structural role for omega-6 DPA in cell membrane organization, which may help to explain the multiple diverse effects of VLC-PUFA in healthy and diseased states. Amoeba Chaos mitochondria undergo a remarkable and reversible morphological transition into cubic morphology on starvation. This morphological transition is reflected in major changes in fatty acid and lipid composition, as determined by gas liquid chromatography and mass spectrometry, in particular by a drastic increase in C22:5 modified phosphatidylcholine plasmalogen, phosphatidylethanolamine plasmalogen, and phosphatidylinositol species. Liposomes produced in vitro from lipids of starved amoeba cells show a high propensity to form hexagonal tubular and cubic morphologies. Addition of omega-6 DPA, but not of omega-3 DPA, to the cell culture also induced mitochondrial membrane transformation into cubic morphology in fed cells, demonstrating for the first time an important structural role of omega-6 DPA-containing lipids in cell membrane organization.

  8. Geometrical aspects of the frustration in the cubic phases of lyotropic liquid crystals.

    PubMed Central

    Anderson, D M; Gruner, S M; Leibler, S

    1988-01-01

    Bicontinuous cubic phases, composed of bilayers arranged in the geometries of periodic minimal surfaces, are found in a variety of different lipid/water systems. It has been suggested recently that these cubic structures arrive as the result of competition between two free-energy terms: the curvature energy of each monolayer and the stretching energy of the lipid chains. This scenario, closely analogous to the one that explains the origin of the hexagonal phases, is investigated here by means of simple geometrical calculations. It is first assumed that the lipid bilayer is of constant thickness and the distribution of the (local) mean curvature of the phospholipid-water interfaces is calculated. Then, assuming the mean curvature of these interfaces is constant, the distribution of the bilayer's thickness is calculated. Both calculations quantify the fact that the two energy terms are frustrated and cannot be satisfied simultaneously. However, the amount of the frustration can be smaller for the cubic phase than for the lamellar and hexagonal structures. Therefore, this phase can appear in the phase diagram between the other two, as observed in many recent experiments. PMID:3399497

  9. The influence of coordinated defects on inhomogeneous broadening in cubic lattices

    NASA Astrophysics Data System (ADS)

    Matheson, P. L.; Sullivan, Francis P.; Evenson, William E.

    2016-12-01

    The joint probability distribution function (JPDF) of electric field gradient (EFG) tensor components in cubic materials is dominated by coordinated pairings of defects in shells near probe nuclei. The contributions from these inner shell combinations and their surrounding structures contain the essential physics that determine the PAC-relevant quantities derived from them. The JPDF can be used to predict the nature of inhomogeneous broadening (IHB) in perturbed angular correlation (PAC) experiments by modeling the G 2 spectrum and finding expectation values for V zz and η. The ease with which this can be done depends upon the representation of the JPDF. Expanding on an earlier work by Czjzek et al. (Hyperfine Interact. 14, 189-194, 1983), Evenson et al. (Hyperfine Interact. 237, 119, 2016) provide a set of coordinates constructed from the EFG tensor invariants they named W 1 and W 2. Using this parameterization, the JPDF in cubic structures was constructed using a point charge model in which a single trapped defect (TD) is the nearest neighbor to a probe nucleus. Individual defects on nearby lattice sites pair with the TD to provide a locus of points in the W 1- W 2 plane around which an amorphous-like distribution of probability density grows. Interestingly, however, marginal, separable PDFs appear adequate to model IHB relevant cases. We present cases from simulations in cubic materials illustrating the importance of these near-shell coordinations.

  10. Cubic Mn2Ga Thin Films: Crossing the Spin Gap with Ruthenium

    NASA Astrophysics Data System (ADS)

    Kurt, H.; Rode, K.; Stamenov, P.; Venkatesan, M.; Lau, Y.-C.; Fonda, E.; Coey, J. M. D.

    2014-01-01

    Cubic Mn2Ga films with the half-Heusler C1b structure are grown on V (001) epitaxial films. The phase is a soft ferrimagnet, with Curie temperature TC = 225 K and magnetization Ms=280 kA m-1, equivalent to 1.65μB per formula. Adding ruthenium leads to an increase of TC up to 550 K in cubic Mn2RuxGa films with x = 0.33 and a collapse of the net magnetization. The anomalous Hall effect changes sign at x = 0.5, where the sign of the magnetization changes and the magnetic easy direction flips from in plane to perpendicular to the film. The Mn2Ru0.5Ga compound with a valence electron count of 21 is identified as a zero-moment ferrimagnet with high spin polarization, which shows evidence of half-metallicity.

  11. Lattice matched crystalline substrates for cubic nitride semiconductor growth

    DOEpatents

    Norman, Andrew G; Ptak, Aaron J; McMahon, William E

    2015-02-24

    Disclosed embodiments include methods of fabricating a semiconductor layer or device and devices fabricated thereby. The methods include, but are not limited to, providing a substrate having a cubic crystalline surface with a known lattice parameter and growing a cubic crystalline group III-nitride alloy layer on the cubic crystalline substrate by coincident site lattice matched epitaxy. The cubic crystalline group III-nitride alloy may be prepared to have a lattice parameter (a') that is related to the lattice parameter of the substrate (a). The group III-nitride alloy may be a cubic crystalline In.sub.xGa.sub.yAl.sub.1-x-yN alloy. The lattice parameter of the In.sub.xGa.sub.yAl.sub.1-x-yN or other group III-nitride alloy may be related to the substrate lattice parameter by (a')= 2(a) or (a')=(a)/ 2. The semiconductor alloy may be prepared to have a selected band gap.

  12. Cubic phase stabilization in nanoparticles of hafnia-zirconia oxides: Particle-size and annealing environment effects

    NASA Astrophysics Data System (ADS)

    Lu, Chih-Hsin; Raitano, Joan M.; Khalid, Syed; Zhang, Lihua; Chan, Siu-Wai

    2008-06-01

    Amorphous hafnia (HfO2-y), zirconia (ZrO2-y), and hafnia-zirconia (xHfO2-y-(1-x)(ZrO2-y)) nanoparticles were prepared by combining aqueous solutions of hexamethylenetetramine (HMT) with hafnium dichloride oxide (HfOCl2ṡ8H2O), zirconium dichloride oxide (ZrOCl2ṡ8H2O), or a mixture of these two salts at room temperature. For pure hafnia, transmission electron microscopy showed that the lower cation concentration (0.01M) resulted in the precipitation of smaller amorphous nanoparticles relative to higher concentrations (0.015M-0.04M). Consequently, the lower concentration preparation route coupled with a reducing environment (H2:N2=9:91) during annealing at temperatures between 650 and 850°C allowed for nanoparticles with a cubic structure to be prepared as determined by x-ray diffraction. The structurally cubic hafnia nanoparticles were 6nm or less in diameter and equiaxed. Using the same method (0.01M total metal cation concentration and reducing environment during annealing), nanoparticles of cubic structure were prepared across the entire hafnia-zirconia compositional spectrum, with a critical particle size for the cubic structure of about 6nm. Nanoparticles of tetragonal and monoclinic structure were prepared by increasing the annealing temperature and/or using a less reducing environment. The unique role of HMT in sample preparation is discussed as well.

  13. A facile growth mechanism, structural, optical, dielectric and electrical properties of ZnSe nanosphere via hydrothermal process

    NASA Astrophysics Data System (ADS)

    Javed, Qurat-Ul-Ain; Baqi, Sabah; Abbas, Hussain; Bibi, Maryam

    2017-02-01

    Hydrothermal method was chosen as a convenient method to fabricate zinc selenide (ZnSe) nanoparticle materials. The prepared nanospheres were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM), where its different properties were observed using UV-visible spectroscopy and LCR meter. It was found that the pure ZnSe nanoparticles have a Zinc blende structure with crystallite size 10.91 nm and in a spherical form with average diameter of 35 nm (before sonication) and 18 nm (after sonication) with wide band gap of 4.28 eV. It was observed that there is inverse relation of frequency with dielectric constant and dielectric loss while AC conductivity grows up by increasing frequency. Such nanostructures were determined to be effectively used in optoelectronic devices as UV detector and in those devices where high-dielectric constant materials are required.

  14. Theoretical investigation of structural, mechanical and electronic properties of GaAs1-xNx alloys under ambient and high pressure

    NASA Astrophysics Data System (ADS)

    Li, Jian; Han, Xiuxun; Dong, Chen; Fan, Changzeng

    2017-12-01

    Using first-principles total energy calculations, we have studied the structural, mechanical and electronic properties of GaAs1-xNx ternary semiconductor alloys with the zinc-blende crystal structure over the whole nitrogen concentration range (with x from 0 to 1) within density functional theory (DFT) framework. To obtain the ideal band gap, we employ the semi-empirical approach called local density approximation plus the multi-orbital mean-field Hubbard model (LDA+U). The calculated results illustrate the varying lattice constants and band gap in GaAs1-xNx alloys as functions of the nitrogen concentration x. According to the pressure dependence of the lattice constants and volume, the higher N concentration alloy exhibits the better anti-compressibility. In addition, an increasing band gap is predicted under 20 GPa pressure for GaAs1-xNx alloys.

  15. Enhanced initial protein adsorption on engineered nanostructured cubic zirconia.

    PubMed

    Sabirianov, R F; Rubinstein, A; Namavar, F

    2011-04-14

    Motivated by experimentally-observed biocompatibility enhancement of nanoengineered cubic zirconia (ZrO(2)) coatings to mesenchymal stromal cells, we have carried out computational analysis of the initial immobilization of one known structural fragment of the adhesive protein (fibronectin) on the corresponding surface. We constructed an atomistic model of the ZrO(2) nano-hillock of 3-fold symmetry based on Atom Force Microscopy and Transmission Electron Microscopy images. First principle quantum mechanical calculations show a substantial variation of electrostatic potential at the hillock due to the presence of surface features such as edges and vertexes. Using an implemented Monte Carlo simulated annealing method, we found the orientation of the immobilized protein on the ZrO(2) surface and the contribution of the amino acid residues from the protein sequence to the adsorption energy. Accounting for the variation of the dielectric permittivity at the protein-implant interface, we used a model distance-dependent dielectric function to describe the inter-atom electrostatic interactions in the adsorption potential. We found that the initial immobilization of the rigid protein fragment on the nanostructured pyramidal ZrO(2) surface is achieved with a magnitude of adsorption energy larger than that of the protein on the smooth (atomically flat) surface. The strong attractive electrostatic interactions are a major contributing factor in the enhanced adsorption at the nanostructured surface. In the case of adsorption on the flat, uncharged surface this factor is negligible. We show that the best electrostatic and steric fit of the protein to the inorganic surface corresponds to a minimum of the adsorption energy determined by the non-covalent interactions.

  16. A spatio-spectral polarization analysis of 1 µm-pumped bulk supercontinuum in a cubic crystal (YAG)

    NASA Astrophysics Data System (ADS)

    Choudhuri, Aradhana; Chatterjee, Gourab; Zheng, Jiaan; Hartl, Ingmar; Ruehl, Axel; Dwayne Miller, R. J.

    2018-06-01

    We present the first systematic study of the spatio-spectral polarization properties of a supercontinuum generated in a cubic crystal, yttrium-aluminum garnet (YAG), including a full spectral analysis of the white light core and surrounding ring structure. We observe no depolarization of the supercontinuum, and no spatial dependence of polarization ratios for any wavelength. We discuss the discrepancy of YAG's polarization behavior in the context of well-established results in literature reporting self-induced depolarization in other cubic crystals.

  17. Process for producing wurtzitic or cubic boron nitride

    DOEpatents

    Holt, J.B.; Kingman, D.D.; Bianchini, G.M.

    1992-04-28

    Disclosed is a process for producing wurtzitic or cubic boron nitride comprising the steps of: [A] preparing an intimate mixture of powdered boron oxide, a powdered metal selected from the group consisting of magnesium or aluminum, and a powdered metal azide; [B] igniting the mixture and bringing it to a temperature at which self-sustaining combustion occurs; [C] shocking the mixture at the end of the combustion thereof with a high pressure wave, thereby forming as a reaction product, wurtzitic or cubic boron nitride and occluded metal oxide; and, optionally [D] removing the occluded metal oxide from the reaction product. Also disclosed are reaction products made by the process described.

  18. Process for producing wurtzitic or cubic boron nitride

    DOEpatents

    Holt, J. Birch; Kingman, deceased, Donald D.; Bianchini, Gregory M.

    1992-01-01

    Disclosed is a process for producing wurtzitic or cubic boron nitride comprising the steps of: [A] preparing an intimate mixture of powdered boron oxide, a powdered metal selected from the group consisting of magnesium or aluminum, and a powdered metal azide; [B] igniting the mixture and bringing it to a temperature at which self-sustaining combustion occurs; [C] shocking the mixture at the end of the combustion thereof with a high pressure wave, thereby forming as a reaction product, wurtzitic or cubic boron nitride and occluded metal oxide; and, optionally [D] removing the occluded metal oxide from the reaction product. Also disclosed are reaction products made by the process described.

  19. Characterization of cubic ceria?zirconia powders by X-ray diffraction and vibrational and electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Sánchez Escribano, Vicente; Fernández López, Enrique; Panizza, Marta; Resini, Carlo; Gallardo Amores, José Manuel; Busca, Guido

    2003-10-01

    The X-ray diffraction (XRD) patterns and the Infrared, Raman and UV-visible spectra of CeO 2ZrO 2 powders prepared by co-precipitation are presented. Raman spectra provide evidence for the largely predominant cubic structure of the powders with CeO 2 molar composition higher than 25%. Also skeletal IR spectra allow to distinguish cubic from tetragonal phases which are instead not easily distinguished on the basis of the XRD patterns. All mixed oxides including pure ceria are strong UV absorbers although also absorb in the violet visible region. By carefully selecting their composition and treatment temperature, the onset of the radiation that they cut off can be chosen in the 425-475 nm interval. Although they are likely metastable, the cubic phases are still pure even after heating at 1173 K for 4 h.

  20. Formation of hexagonal and cubic ice during low-temperature growth

    PubMed Central

    Thürmer, Konrad; Nie, Shu

    2013-01-01

    From our daily life we are familiar with hexagonal ice, but at very low temperature ice can exist in a different structure––that of cubic ice. Seeking to unravel the enigmatic relationship between these two low-pressure phases, we examined their formation on a Pt(111) substrate at low temperatures with scanning tunneling microscopy and atomic force microscopy. After completion of the one-molecule-thick wetting layer, 3D clusters of hexagonal ice grow via layer nucleation. The coalescence of these clusters creates a rich scenario of domain-boundary and screw-dislocation formation. We discovered that during subsequent growth, domain boundaries are replaced by growth spirals around screw dislocations, and that the nature of these spirals determines whether ice adopts the cubic or the hexagonal structure. Initially, most of these spirals are single, i.e., they host a screw dislocation with a Burgers vector connecting neighboring molecular planes, and produce cubic ice. Films thicker than ∼20 nm, however, are dominated by double spirals. Their abundance is surprising because they require a Burgers vector spanning two molecular-layer spacings, distorting the crystal lattice to a larger extent. We propose that these double spirals grow at the expense of the initially more common single spirals for an energetic reason: they produce hexagonal ice. PMID:23818592

  1. Microstructural study of Mg-doped p-type GaN: Correlation between high-resolution electron microscopy and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Tsen, S.-C. Y.; Smith, David J.; Tsen, K. T.; Kim, W.; Morkoç, H.

    1997-12-01

    A series of Mg-doped GaN films (˜1-1.3 μm) grown by reactive molecular beam epitaxy at substrate temperatures of 750 and 800 °C has been studied by high-resolution electron microscopy (HREM) and Raman spectroscopy. Stacking defects parallel to the substrate surface were observed in samples grown on sapphire substrates at 750 °C with AlN buffer layers (60-70 nm) at low Mg concentration. A transition region with mixed zinc-blende cubic (c) and wurtzite hexagonal (h) phases having the relative orientations of (111)c//(00.1)h and (11¯0)c//(10.0)h was observed for increased Mg concentration. The top surfaces of highly doped samples were rough and assumed a completely zinc-blende phase with some inclined stacking faults. Samples grown with a Mg cell temperature of 350 °C and high doping levels were highly disordered with many small crystals having inclined stacking faults, microtwins, and defective wurtzite and zinc-blende phases. Correlation between HREM and Raman scattering results points towards the presence of compressive lattice distortion along the growth direction which might be attributable to structural defects. The films grown at 800 °C had better quality with less observable defects and less yellow luminescence than samples grown at 750 °C.

  2. Assessing Inquiry Learning: How Much Is a Cubic Metre?

    ERIC Educational Resources Information Center

    Fry, Kym

    2014-01-01

    In this article, Kym Fry uses the "Programme for International Student Assessment" (PISA) assessment framework to break down what her Year 6 students learned as they explored the inquiry question, "How much is a cubic metre?" First, an overview of the lessons in the unit is provided. Quality assessment opportunities are…

  3. Tangent Lines without Derivatives for Quadratic and Cubic Equations

    ERIC Educational Resources Information Center

    Carroll, William J.

    2009-01-01

    In the quadratic equation, y = ax[superscript 2] + bx + c, the equation y = bx + c is identified as the equation of the line tangent to the parabola at its y-intercept. This is extended to give a convenient method of graphing tangent lines at any point on the graph of a quadratic or a cubic equation. (Contains 5 figures.)

  4. Estimating the board foot to cubic foot ratio

    Treesearch

    Steve P. Verrill; Victoria L. Herian; Henry N. Spelter

    2004-01-01

    Certain issues in recent softwood lumber trade negotiations have centered on the method for converting estimates of timber volumes reported in cubic meters to board feet. Such conversions depend on many factors; three of the most important of these are log length, diameter, and taper. Average log diameters vary by region and have declined in the western United States...

  5. Synthesis of nanowires and nanoparticles of cubic aluminium nitride

    NASA Astrophysics Data System (ADS)

    Balasubramanian, C.; Godbole, V. P.; Rohatgi, V. K.; Das, A. K.; Bhoraskar, S. V.

    2004-03-01

    Nanostructures of cubic aluminium nitride were synthesized by DC arc-plasma-induced melting of aluminium in a nitrogen-argon ambient. The material flux ejected from the molten aluminium surface was found to react with nitrogen under highly non-equilibrium conditions and subsequently condense on a water-cooled surface to yield a mixture of nanowires and nanoparticles of crystalline cubic aluminium nitride. Both x-ray diffraction and electron diffraction measurements revealed that the as-synthesized nitrides adopted the cubic phase. Fourier transform infrared spectroscopy was used to understand the bonding configuration. Microstructural features of the synthesized material were best studied by transmission electron microscopy. From these analyses cubic aluminium nitride was found to be the dominating phase for both nanowires and nanoparticles synthesized at low currents. The typical particle size distribution was found to range over 15-80 nm, whereas the wires varied from 30 to 100 nm in diameter and 500 to 700 nm in length, depending upon the process parameters such as arc current and the nitrogen pressure. The reaction products inside the plasma zone were also obtained theoretically by minimization of free energy and the favourable zone temperature necessary for the formation of aluminium nitride was found to be {\\sim } 6000 K. Results are discussed in view of the highly non-equilibrium conditions that prevail during the arc-plasma synthesis.

  6. Particle Creation in Oscillating Cavities with Cubic and Cylindrical Geometry

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Dinani, H. T.

    2008-04-01

    In the present paper we study the creation of massless scalar particles from the quantum vacuum due to the dynamical Casimir effect by oscillating cavities with cubic and cylindrical geometry. To the first order of the amplitude we derive the expressions for the number of the created particles.

  7. Cubic Equations and the Ideal Trisection of the Arbitrary Angle

    ERIC Educational Resources Information Center

    Farnsworth, Marion B.

    2006-01-01

    In the year 1837 mathematical proof was set forth authoritatively stating that it is impossible to trisect an arbitrary angle with a compass and an unmarked straightedge in the classical sense. The famous proof depends on an incompatible cubic equation having the cosine of an angle of 60 and the cube of the cosine of one-third of an angle of 60 as…

  8. A Unified Approach to Teaching Quadratic and Cubic Equations.

    ERIC Educational Resources Information Center

    Ward, A. J. B.

    2003-01-01

    Presents a simple method for teaching the algebraic solution of cubic equations via completion of the cube. Shows that this method is readily accepted by students already familiar with completion of the square as a method for quadratic equations. (Author/KHR)

  9. Aspects on mediated glucose oxidation at a supported cubic phase.

    PubMed

    Aghbolagh, Mahdi Shahmohammadi; Khani Meynaq, Mohammad Yaser; Shimizu, Kenichi; Lindholm-Sethson, Britta

    2017-12-01

    A supported liquid crystalline cubic phase housing glucose oxidase on an electrode surface has been suggested as bio-anode in a biofuel. The purpose of this investigation is to clarify some aspect on the mediated enzymatic oxidation of glucose in such a bio-anode where the mediator ferrocene-carboxylic acid and glucose were dissolved in the solution. The enzyme glucose oxidase was housed in the water channels of the mono-olein cubic phase. The system was investigated with cyclic voltammetry at different scan rates and the temperature was varied between 15°C and 30°C. The diffusion coefficient of the mediator and also the film resistance was estimated showing a large decrease in the mass-transport properties as the temperature was decreased. The current from mediated oxidation of glucose at the electrode surface increased with decreasing film thickness. The transport of the mediator in the cubic phase was the rate-limiting step in the overall reaction, where the oxidation of glucose took place at the outer surface of the cubic phase. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Cubic phase stability, optical and magnetic properties of Cu-stabilized zirconia nanocrystals

    NASA Astrophysics Data System (ADS)

    Pramanik, Prativa; Singh, Sobhit; Joshi, Deep Chandra; Mallick, Ayan; Pisane, Kelly; Romero, Aldo H.; Thota, Subhash; Seehra, M. S.

    2018-06-01

    By means of experimental and ab initio investigations, we report on the cubic phase stability of Cu doped zirconia (ZrO2) at room temperature, and further characterize its structural, optical and magnetic properties. Various compositions of Zr1‑x Cu x O2 (0.01  ⩽  x  ⩽  0.25) nanocrystallites of average size  ∼16 nm were synthesized using co-precipitation technique. Thermal analysis and kinetics of crystallization revealed that the cubic phase at ambient temperature can be stabilized by using a critical calcination temperature of 500 °C for 8 h in air and a critical composition of . For x  <  x c , some undigested monoclinic phase of ZrO2 exists together with the cubic structure. However, for x  >  x c , the monoclinic CuO emerges as a secondary phase with shrinkage of unit-cell volume with increasing the Cu content. At x  =  0.05 and 500 °C calcination temperature, we observe a high degree of cubic crystallinity which breaks down into monoclinic phase with increasing calcination temperature beyond 550 °C. Electron magnetic resonance studies provide evidence for the substitution of Cu2+ (2D5/9,3d9) ions at Zr4+ sites with g, g and average g a   =  (  +  2)/3  ∼  2.1. The temperature dependence of magnetic susceptibility measurements from 2 K to 300 K exhibits Curie–Weiss behaviour whose analysis using g a   =  2.1 and spin S  =  1/2 yields x  =  0.028 and x  =  0.068 for the nominal x  =  0.05 and x  =  0.20 samples, respectively. This magnetic analysis confirms the findings from x-ray diffraction that only a part of Cu is successfully doped into cubic phase of Cu-doped ZrO2. The optical bandgap decreases with increasing x, which is due to the emergence of Cu-d states at Fermi-level near the valence bands, thus making Cu-doped zirconia a hole doped (p-type) semiconductor.

  11. Fermi surfaces of the pyrite-type cubic AuSb2 compared with split Fermi surfaces of the ullmannite-type cubic chiral NiSbS and PdBiSe

    NASA Astrophysics Data System (ADS)

    Nishimura, K.; Kakihana, M.; Nakamura, A.; Aoki, D.; Harima, H.; Hedo, M.; Nakama, T.; Ōnuki, Y.

    2018-05-01

    We grew high-quality single crystals of AuSb2 with the pyrite (FeS2)-type cubic structure by the Bridgman method and studied the Fermi surface properties by the de Haas-van Alphen (dHvA) experiment and the full potential LAPW band calculation. The Fermi surfaces of AuSb2 are found to be similar to those of NiSbS and PdBiSe with the ullmannite (NiSbS)-type cubic chiral structure because the crystal structures are similar each other and the number of valence electrons is the same between two different compounds. Note that each Fermi surface splits into two Fermi surfaces in NiSbS and PdBiSe, reflecting the non-centrosymmetric crystal structure.

  12. Effect of the introduction of oxide ion vacancies into cubic fluorite-type rare earth oxides on the NO decomposition catalysis

    SciTech Connect

    Masui, Toshiyuki; Nagai, Ryosuke; Imanaka, Nobuhito, E-mail: imanaka@chem.eng.osaka-u.ac.jp

    2014-12-15

    Cubic fluorite-type solid solutions based on Pr{sub 6}O{sub 11} and CeO{sub 2} were synthesized and oxide anion vacancies were intentionally introduced into the cubic fluorite-type lattice through the charge compensating mechanism by Mg{sup 2+} and/or Ca{sup 2+} doping into their lattices. The oxide anion vacancies bring about positive effect on NO decomposition catalysis. The reason for the increase in the catalytic activity was attributed to defect fluorite-type structures close to the C-type cubic one, because C-type cubic rare earth oxides, in which one-quarter of the oxygen atoms in the fluorite-type structure are removed, show high NO decomposition activity. In particular,more » the positive effect of the formation of oxide anion vacancies was significant for Pr{sub 6}O{sub 11} and its solid solutions, because the molar volume of Pr{sub 6}O{sub 11} is larger than that of CeO{sub 2}, and Pr{sub 6}O{sub 11} contains Pr{sup 3+} as well as Pr{sup 4+} and thereby a small amount of oxide anion vacancies exist inherently in the lattice. - Graphical abstract: Oxide anion vacancies intentionally introduced into the cubic fluorite-type lattice bring about positive effect on NO decomposition catalysis. - Highlights: • Cubic fluorite-type solid solutions were synthesized. • Oxide anion vacancies were intentionally introduced into the cubic fluorite-type lattice. • The oxide anion vacancies bring about positive effect on NO decomposition catalysis. • The activity was enhanced by making the structure close to the C-type cubic one.« less

  13. Synthesis of cubic Ia-3d mesoporous silica in anionic surfactant templating system with the aid of acetate.

    PubMed

    Deng, Shao-Xin; Xu, Xue-Yan; He, Wen-Chao; Wang, Jin-Gui; Chen, Tie-Hong

    2014-08-01

    Mesoporous silica with three-dimensional (3D) bicontinuous cubic Ia-3d structure and fascinating caterpillar-like morphology was synthesized by using anionic surfactant N-lauroylsarcosine sodium (Sar-Na) as the template and 3-amionpropyltrimethoxysilane (APS) as the co-structure-directing agent (CSDA) with the aid of acetate. A phase transformation from high interfacial curvature 2D hexagonal to low interfacial curvature 3D cubic Ia-3d occurred in the presence of a proper amount of acetate. Other species of salts (excluding acetate) had the ability to induce the caterpillar-like morphology, but failed to induce the cubic Ia-3d mesostructure. Furthermore, [3-(2-aminoethyl)-aminopropyl]trimethoxysilane (DAPS) was also used as the CSDA to synthesize Ia-3d mesostructured silica under the aid of sodium acetate. After extraction of the anionic surfactants, amino and di-amine functionalized 3D bicontinuous cubic Ia-3d mesoporous silicas were obtained and used as supports to immobilize Pd nanoparticles for supported catalysts. The catalytic activity of the catalysts was tested by catalytic hydrogenation of allyl alcohol. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. [Study of cubic boron nitride crystal UV absorption spectroscopy].

    PubMed

    Liu, Hai-Bo; Jia, Gang; Chen, Gang; Meng, Qing-Ju; Zhang, Tie-Chen

    2008-07-01

    UV absorption spectroscopy of artificial cubic boron nitride (cBN) single crystal flake, synthesized under high-temperature and high-pressure, was studied in the present paper. UV WINLAB spectrometer was used in the experiments, and MOLECULAR SPECTROSCOPY software was used for data analysis. The UV-cBN limit of 198 nm was showed in this test by a special fixture quartz sample. We calculated the energy gap by virtue of the formula: lambda0 = 1.24/E(g) (microm). The energy gap is 6. 26 eV. There are many viewpoints about the gap of cBN. By using the first-principles theory to calculate energy band structure and density of electronic states of cBN, an indirect transition due to electronics in valence band jumping into conduction band by absorbing photon can be confirmed. That leads to UV absorption. The method of calculation was based on the quantum mechanics of CASTEP in the commercial software package of Cerius2 in the Co. Accerlrys in the United States. The theory of CASTEP is based on local density approximation or gradient corrected LDA. The crystal parameter of cBN was input to the quantum mechanics of CASTEP in order to construct the crystal parameter model of cBN. We calculated the energy gap of cBN by the method of gradient corrected LDA. The method underestimates the value of nonconductor by about 1 to 2 eV. We gaot some opinions as follows: cBN is indirect band semiconductor. The energy gap is 4.76 eV, less than our experiment. The reason may be defect that we ignored in calculating process. It was reported that the results by first principles method of calculation of the band generally was less than the experimental results. This paper shows good UV characteristics of cBN because of the good agreement of experimental results with the cBN band width. That is a kind of development prospect of UV photo-electronic devices and high-temperature semiconductor devices.

  15. Laser sintered thin layer graphene and cubic boron nitride reinforced nickel matrix nanocomposites

    NASA Astrophysics Data System (ADS)

    Hu, Zengrong; Tong, Guoquan

    2015-10-01

    Laser sintered thin layer graphene (Gr)-cubic boron nitride (CBN)-Ni nanocomposites were fabricated on AISI 4140 plate substrate. The composites fabricating process, composites microstructure and mechanical properties were studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy were employed to study the micro structures and composition of the composites. XRD and Raman tests proved that graphene and CBN were dispersed in the nanocomposites. Nanoindentation test results indicate the significant improvements were achieved in the composites mechanical properties.

  16. New twinning route in face-centered cubic nanocrystalline metals.

    PubMed

    Wang, Lihua; Guan, Pengfei; Teng, Jiao; Liu, Pan; Chen, Dengke; Xie, Weiyu; Kong, Deli; Zhang, Shengbai; Zhu, Ting; Zhang, Ze; Ma, Evan; Chen, Mingwei; Han, Xiaodong

    2017-12-15

    Twin nucleation in a face-centered cubic crystal is believed to be accomplished through the formation of twinning partial dislocations on consecutive atomic planes. Twinning should thus be highly unfavorable in face-centered cubic metals with high twin-fault energy barriers, such as Al, Ni, and Pt, but instead is often observed. Here, we report an in situ atomic-scale observation of twin nucleation in nanocrystalline Pt. Unlike the classical twinning route, deformation twinning initiated through the formation of two stacking faults separated by a single atomic layer, and proceeded with the emission of a partial dislocation in between these two stacking faults. Through this route, a three-layer twin was nucleated without a mandatory layer-by-layer twinning process. This route is facilitated by grain boundaries, abundant in nanocrystalline metals, that promote the nucleation of separated but closely spaced partial dislocations, thus enabling an effective bypassing of the high twin-fault energy barrier.

  17. Shadows, signals, and stability in Einsteinian cubic gravity

    NASA Astrophysics Data System (ADS)

    Hennigar, Robie A.; Jahani Poshteh, Mohammad Bagher; Mann, Robert B.

    2018-03-01

    We conduct a preliminary investigation into the phenomenological implications of Einsteinian cubic gravity (ECG), a four-dimensional theory of gravity cubic in curvature of interest for its unique formulation and properties. We find an analytic approximation for a spherically symmetric black hole solution to this theory using a continued fraction ansatz. This approximate solution is valid everywhere outside of the horizon and we use it to study the orbit of massive test bodies near a black hole, specifically computing the innermost stable circular orbit. We compute constraints on the ECG coupling parameter imposed by Shapiro time delay. We then compute the shadow of an ECG black hole and find it to be larger than its Einsteinian counterpart in general relativity for the same value of the mass. Applying our results to Sgr A*, we find that departures from general relativity are small but in principle distinguishable.

  18. Localized states in the conserved Swift-Hohenberg equation with cubic nonlinearity

    NASA Astrophysics Data System (ADS)

    Thiele, Uwe; Archer, Andrew J.; Robbins, Mark J.; Gomez, Hector; Knobloch, Edgar

    2013-04-01

    The conserved Swift-Hohenberg equation with cubic nonlinearity provides the simplest microscopic description of the thermodynamic transition from a fluid state to a crystalline state. The resulting phase field crystal model describes a variety of spatially localized structures, in addition to different spatially extended periodic structures. The location of these structures in the temperature versus mean order parameter plane is determined using a combination of numerical continuation in one dimension and direct numerical simulation in two and three dimensions. Localized states are found in the region of thermodynamic coexistence between the homogeneous and structured phases, and may lie outside of the binodal for these states. The results are related to the phenomenon of slanted snaking but take the form of standard homoclinic snaking when the mean order parameter is plotted as a function of the chemical potential, and are expected to carry over to related models with a conserved order parameter.

  19. Structural phase transitions in GaAs to 108 GPa

    SciTech Connect

    Weir, S.T.; Vohra, Y.K.; Vanderborgh, C.A.

    1989-01-15

    The III-V compound GaAs was studied using energy-dispersive x-ray diffraction with a synchro- tron source up to a pressure of 108 GPa. When the pressure was increased to 16.6 GPa, the GaAs sample transformed from the zinc-blende structure to an orthorhombic structure (GaAs(II)), space group Pmm2, consisting of a primitive orthorhombic lattice with a basis of (0,0,0) and (0,(1/2,..cap alpha..), where ..cap alpha.. = 0.35. Upon a further increase of pressure to 24 +- 1 GPa, GaAs(II) transformed to another orthorhombic structure (GaAs(III)), space group Imm2, consisting of a body-centered orthorhombic lattice with a basis of (0,0,0) and (0, (1/2,..delta..),more » where ..delta.. is 0.425 at 28.1 GPa. With increasing pressure, ..delta.. approached (1/2 and the GaAs(III) structure gradually assumed the symmetry of the simple hexagonal structure. The transition to the simple hexagonal structure (GaAs(IV)) was completed in the vicinity of 60--80 GPa. The structure remains simple hexagonal up to at least 108 GPa, the highest pressure reached in this study.« less

  20. Distribution coefficients of rare earth ions in cubic zirconium dioxide

    NASA Astrophysics Data System (ADS)

    Romer, H.; Luther, K.-D.; Assmus, W.

    1994-08-01

    Cubic zirconium dioxide crystals are grown with the skull melting technique. The effective distribution coefficients for Nd(exp 3+), Sm(exp 3+) and Er(sup 3+) as dopants are determined experimentally as a function of the crystal growth velocity. With the Burton-Prim-Slichter theory, the equilibrium distribution coefficients can be calculated. The distribution coefficients of all other trivalent rare earth ions can be estimated by applying the correlation towards the ionic radii.

  1. Bifurcation of rupture path by linear and cubic damping force

    NASA Astrophysics Data System (ADS)

    Dennis L. C., C.; Chew X., Y.; Lee Y., C.

    2014-06-01

    Bifurcation of rupture path is studied for the effect of linear and cubic damping. Momentum equation with Rayleigh factor was transformed into ordinary differential form. Bernoulli differential equation was obtained and solved by the separation of variables. Analytical or exact solutions yielded the bifurcation was visible at imaginary part when the wave was non dispersive. For the dispersive wave, bifurcation of rupture path was invisible.

  2. The Number of Real Roots of a Cubic Equation

    ERIC Educational Resources Information Center

    Kavinoky, Richard; Thoo, John B.

    2008-01-01

    To find the number of distinct real roots of the cubic equation (1) x[caret]3 + bx[caret]2 + cx + d = 0, we could attempt to solve the equation. Fortunately, it is easy to tell the number of distinct real roots of (1) without having to solve the equation. The key is the discriminant. The discriminant of (1) appears in Cardan's (or Cardano's) cubic…

  3. BDA: A novel method for identifying defects in body-centered cubic crystals.

    PubMed

    Möller, Johannes J; Bitzek, Erik

    2016-01-01

    The accurate and fast identification of crystallographic defects plays a key role for the analysis of atomistic simulation output data. For face-centered cubic (fcc) metals, most existing structure analysis tools allow for the direct distinction of common defects, such as stacking faults or certain low-index surfaces. For body-centered cubic (bcc) metals, on the other hand, a robust way to identify such defects is currently not easily available. We therefore introduce a new method for analyzing atomistic configurations of bcc metals, the BCC Defect Analysis (BDA). It uses existing structure analysis algorithms and combines their results to uniquely distinguish between typical defects in bcc metals. In essence, the BDA method offers the following features:•Identification of typical defect structures in bcc metals.•Reduction of erroneously identified defects by iterative comparison to the defects in the atom's neighborhood.•Availability as ready-to-use Python script for the widespread visualization tool OVITO [http://ovito.org].

  4. Cubic and Hexagonal Liquid Crystals as Drug Delivery Systems

    PubMed Central

    Chen, Yulin; Ma, Ping; Gui, Shuangying

    2014-01-01

    Lipids have been widely used as main constituents in various drug delivery systems, such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-based lyotropic liquid crystals. Among them, lipid-based lyotropic liquid crystals have highly ordered, thermodynamically stable internal nanostructure, thereby offering the potential as a sustained drug release matrix. The intricate nanostructures of the cubic phase and hexagonal phase have been shown to provide diffusion controlled release of active pharmaceutical ingredients with a wide range of molecular weights and polarities. In addition, the biodegradable and biocompatible nature of lipids demonstrates the minimum toxicity and thus they are used for various routes of administration. Therefore, the research on lipid-based lyotropic liquid crystalline phases has attracted a lot of attention in recent years. This review will provide an overview of the lipids used to prepare cubic phase and hexagonal phase at physiological temperature, as well as the influencing factors on the phase transition of liquid crystals. In particular, the most current research progresses on cubic and hexagonal phases as drug delivery systems will be discussed. PMID:24995330

  5. Predicted cubic-foot yields of sawmill products for black cherry trees

    Treesearch

    Leland F. Hanks

    1980-01-01

    Equations and tables for estimating the cubic-foot volumes of lumber, sawdust, and sawmill residue for black cherry trees are presented. Also included are cubic-foot and board-foot predictions for the sawlog portion of the trees.

  6. A theoretical study of the stability of anionic defects in cubic ZrO 2 at extreme conditions

    DOE PAGES

    Samanta, Amit

    2016-02-19

    Using first principles density functional theory calculations, we present a study of the structure, mobility, and the thermodynamic stability of anionic defects in the high-temperature cubic phase of ZrO 2. Our results suggest that the local structure of an oxygen interstitial depends on the charge state and the cubic symmetry of the anionic sublattice is unstable at 0 K. In addition, the oxygen interstitials and the vacancies exhibit symmetry breaking transitions to low-energy structures with tetragonal distortion of the oxygen sublattice at 0 K. However, the vibrational entropy stabilizes the defect structures with cubic symmetry at 2600–2980 K. The formationmore » free energies of the anionic defects and Gibbs free energy changes associated with different defect reactions are calculated by including the vibrational free energy contributions and the effect of pressure on these defect structures. By analyzing the defect chemistry, we obtain the defect concentrations at finite temperature and pressure conditions using the zero temperature ab initio results as input and find that at low oxygen partial pressures, neutral oxygen vacancies are most dominant and at high oxygen partial pressures, doubly charged anionic defects are dominant. As a result, the relevance of the results to the thermal protective coating capabilities of zirconium-based ceramic composites is elucidated.« less

  7. Face-centred cubic to body-centred cubic phase transformation under [1 0 0] tensile loading

    NASA Astrophysics Data System (ADS)

    Xie, Hongxian; Yu, Jiayun; Yu, Tao; Yin, Fuxing

    2018-06-01

    Molecular dynamics simulation was used to verify a speculation of the existence of a certain face-centred cubic (FCC) to body-centred cubic (BCC) phase transformation pathway. Four FCC metals, Ni, Cu, Au and Ag, were stretched along the [1 0 0] direction at various strain rates and temperatures. Under high strain rate and low temperature, and beyond the elastic limit, the bifurcation of the FCC phase occurred with sudden contraction along one lateral direction and expansion along the other lateral direction. When the lattice constant along the expansion direction converged with that of the stretched direction, the FCC phase transformed into an unstressed BCC phase. By reducing the strain rate or increasing the temperature, dislocation or 'momentum-induced melting' mechanisms began to control the plastic deformation of the FCC metals, respectively.

  8. Pressure-Stabilized Cubic Perovskite Oxyhydride BaScO2H.

    PubMed

    Goto, Yoshihiro; Tassel, Cédric; Noda, Yasuto; Hernandez, Olivier; Pickard, Chris J; Green, Mark A; Sakaebe, Hikari; Taguchi, Noboru; Uchimoto, Yoshiharu; Kobayashi, Yoji; Kageyama, Hiroshi

    2017-05-01

    We report a scandium oxyhydride BaScO 2 H prepared by solid state reaction under high pressure. Rietveld refinements against powder synchrotron X-ray and neutron diffraction data revealed that BaScO 2 H adopts the ideal cubic perovskite structure (Pm3̅m), where oxide (O 2- ) and hydride (H - ) anions are disordered. 1 H nuclear magnetic resonance (NMR) spectroscopy provides a positive chemical shift of about +4.4 ppm, which can be understood by the distance to the nearest (and possibly the next nearest) cation from the H nucleus. A further analysis of the NMR data and calculations based on ab initio random structure searches suggest a partial cis preference in ScO 4 H 2 octahedra. The present oxyhydride, if compositionally or structurally tuned, may become a candidate for H - conductors.

  9. Dicyanamide Salts that Adopt Smectic, Columnar, or Bicontinuous Cubic Liquid-Crystalline Mesophases.

    PubMed

    Park, Geonhui; Goossens, Karel; Shin, Tae Joo; Bielawski, Christopher W

    2018-04-25

    Although dicyanamide (i.e., [N(CN) 2 ] - ) has been commonly used to obtain low-viscosity, halogen-free, room-temperature ionic liquids, liquid-crystalline salts containing such anions have remained virtually unexplored. Here we report a series of amphiphilic dicyanamide salts that, depending on their structures and compositions, adopt smectic, columnar, or bicontinuous cubic thermotropic liquid-crystalline mesophases, even at room temperature in some cases. Their thermal properties were explored by polarized light optical microscopy, differential scanning calorimetry, thermogravimetric analysis (including evolved gas analysis), and variable-temperature synchrotron X-ray diffraction. Comparison of the thermal phase characteristics of these new liquid-crystalline salts featuring "V-shaped" [N(CN) 2 ] - anions with those of structural analogues containing [SCN] - , [BF 4 ] - , [PF 6 ] - , or [CF 3 SO 3 ] - anions indicated that not only the size of the counterion but also its shape should be considered in the development of mesomorphic salts. Collectively, these discoveries may be expected to facilitate the design of thermotropic ionic liquid crystals that form inverted-type bicontinuous cubic and other sophisticated liquid-crystalline phases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Comparative study of elastic constantd of α-, β- and Cubic- silicon nitride

    NASA Astrophysics Data System (ADS)

    Yao, Hongzhi; Ouyang, Lizhi; Ching, Wai-Yim

    2003-03-01

    Silicon nitride is an important structural ceramic and dielectric insulator. Recently, the new high pressure cubic phase of silicon nitride in spinel structure has attracted a lot of attention.^[1] We have carried out a detailed ab-initio calculation of all independent elastic constants for all three phases of Si_3N4 by using the Vienna Ab-initio Simulation Package (VASP) in both LDA and GGA approxmations. The results for β-Si_3N4 are in reasonable agreement with a experimental measurement on single crystal samples.^[2] For cubic-Si_3N4 , The three independent elastic constants are predicted to be C_11 = 504.16 GPa, C_12 = 176.66 GPa, C_44 = 326.65 GPa and a bulk modulus B = 286 GPa. This value is very close to the experimental value of 300 GPa.^[1] All these results will be compared with those obtained by using the OLCAO method based on localized orbital approach.^[3] [1]. Wai-Yim Ching, Yong-Nian Xu, Jukian D. Gale, and Manfred Ruhle, J. Am. Ceram. Soc. 81, 3189 (1998) [2]. R. Vogelgesang, M. Grimsditch, and J. S. Wallace, Appl. Phys. Lett. 76, 8 (2000) [3]. W.Y.Ching, Lizhi Ouyang, and Julian D. Gale, Phys. Rev. B61, 13, (2000)

  11. Humidity sensing behavior of tin-loaded 3-D cubic mesoporous silica

    NASA Astrophysics Data System (ADS)

    Poonia, Ekta; Dahiya, Manjeet S.; Tomer, Vijay K.; Kumar, Krishan; Kumar, Sunil; Duhan, Surender

    2018-07-01

    The present scientific investigation deals with template synthesis of 3D-cubic mesoporous KIT-6 with in-situ loading of SnO2 to obtain a material with enhanced number of surface active sites. The structural insights have been reported through analysis of XRD, TEM, FESEM, N2 sorption and mid-IR absorption data. X-ray diffraction confirmed 3D-cubic mesoporous structure of silica with Ia 3 bar d symmetry and existence of anatase SnO2 species. A decrease in surface area on loading of SnO2 nanoparticles is revealed via analysis of N2 adsorption-desorption isotherms. Rapid response time of 15 s and super rapid recovery time of 2 s (with response > 100) have been exhibited by sensor based on sample containing 1 wt% of SnO2. Further investigation on sensing performance of nanocomposite with 1 wt% of SnO2 confirmed its ohmic behavior (with negligible V-I hysteresis), excellent cycle stability, outstanding long term stability and very low hysteresis (1.4% at 53% RH).

  12. First principles calculations of electronic structure and magnetic properties of Cr-based magnetic semiconductors Al{sub 1-x}Cr{sub x}X (X=N, P, As, Sb)

    SciTech Connect

    Saeed, Y., E-mail: yasir_saeed54321@yahoo.co; Shaukat, A., E-mail: schaukat@gmail.co; Nazir, S., E-mail: nazirsafdar@gmail.co

    2010-01-15

    First principles calculations based on the density functional theory (DFT) within the local spin density approximation are performed to investigate the electronic structure and magnetic properties of Cr-based zinc blende diluted magnetic semiconductors Al{sub 1-x}Cr{sub x}X (X=N, P, As, Sb) for 0<=x<=0.50.The behaviour of magnetic moment of Al{sub 1-x}Cr{sub x}X at each Cr site as well as the change in the band gap value due to spin down electrons has been studied by increasing the concentration of Cr atom and through changing X from N to Sb. Furthermore, the role of p-d hybridization is analyzed in the electronic band structuremore » and exchange splitting of d-dominated bands. The interaction strength is stronger in Al{sub 1-x}Cr{sub x}N and becomes weaker in Al{sub 1-x}Cr{sub x}Sb. The band gap due to the spin down electrons decreases with the increased concentration of Cr in Al{sub 1-x}Cr{sub x}X, and as one moves down along the isoelectronic series in the group V from N to Sb. Our calculations also verify the half-metallic ferromagnetic character in Cr doped AlX. - Graphical abstract: The prototype structures of Cr doped AlX (X=N, P, As, Sb) compounds: (A) zinc blende AlP for x=0, (B) Cr{sub 1}Al{sub 7}P{sub 8} for x=0.125, (C) Cr{sub 1}Al{sub 3}P{sub 4} for x=0.25, (D) Cr{sub 1}Al{sub 1}P{sub 2} for x=0.5.« less

  13. Cubic γ-phase U-Mo alloys synthesized by splat-cooling

    NASA Astrophysics Data System (ADS)

    Kim-Ngan, Nhu-T. H.; Tkach, I.; Mašková, S.; Havela, L.; Warren, A.; Scott, T.

    2013-09-01

    U-Mo alloys are the most promising materials fulfilling the requirements of using low enriched uranium (LEU) fuel in research reactors. From a fundamental standpoint, it is of interest to determine the basic thermodynamic properties of the cubic γ-phase U-Mo alloys. We focus our attention on the use of Mo doping together with ultrafast cooling (with high cooling rates ⩾106 K s-1), which helps to maintain the cubic γ-phase in U-Mo system to low temperatures and on determination of the low-temperature properties of these γ-U alloys. Using a splat cooling method it has been possible to maintain some fraction of the high-temperature γ-phase at room temperature in pure uranium. U-13 at.% Mo splat clearly exhibits the pure γ-phase structure. All the splats become superconducting with Tc in the range from 1.24 K (pure U splat) to 2.11 K (U-15 at.% Mo). The γ-phase in U-Mo alloys undergoes eutectoid decomposition to form equilibrium phases of orthorhombic α-uranium and tetragonal γ‧-phase upon annealing at 500 °C, while annealing at 800 °C has stabilized the initial γ phase. The α-U easily absorbs a large amount of hydrogen (UH3 hydride), while the cubic bcc phase does not absorb any detectable amount of hydrogen at pressures below 1 bar and at room temperature. At 80 bar, the U-15 at.% Mo splat becomes powder consisting of elongated particles of 1-2 mm, revealing amorphous state.

  14. High activity of cubic PtRh alloys supported on graphene towards ethanol electrooxidation.

    PubMed

    Rao, Lu; Jiang, Yan-Xia; Zhang, Bin-Wei; Cai, Yuan-Rong; Sun, Shi-Gang

    2014-07-21

    Cubic PtRh alloys supported on graphene (PtxRhy/GN) with different atomic ratio of Pt and Rh were directly synthesized for the first time using the modified polyol method with Br(-) for the shape-directing agents. The process didn't use surface-capping agents such as PVP that easily occupy the active sites of electrocatalysts and are difficult to remove. Graphene is the key factor for cubic shape besides Br(-) and keeping catalysts high-dispersed. The X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to characterize the structure and morphology of these electrocatalysts. The results showed that they were composed of homogeneous cubic PtRh alloys. Traditional electrochemical methods, such as cyclic voltammetry and chronoamperometry, were used to investigate the electrocatalytic properties of PtxRhy/GN towards ethanol electrooxidation. It can be seen that PtxRhy/GN with all atomic ratios exhibited high catalytic activity, and the most active one has a composition with Pt : Rh = 9 : 1 atomic ratio. Electrochemical in situ FTIR spectroscopy was used to evaluate the cleavage of C-C bond in ethanol at room temperature in acidic solutions, the results illustrated that Rh in an alloy can promote the split of C-C bond in ethanol, and the alloy catalyst with atomic ratio Pt : Rh = 1 : 1 showed obviously better performance for the C-C bond breaking in ethanol and higher selectivity for the enhanced activity of ethanol complete oxidation to CO2 than alloys with other ratios of Pt and Rh. The investigation indicates that high activity of PtxRhy/GN electrocatalyst towards ethanol oxidation is due to the specific shape of alloys and the synergistic effect of two metal elements as well as graphene support.

  15. Hydride VPE: the unexpected process for the fast growth of GaAs and GaN nanowires with record aspect ratio and polytypism-free crystalline structure

    NASA Astrophysics Data System (ADS)

    André, Yamina; Trassoudaine, Agnès.; Avit, Geoffrey; Lekhal, Kaddour; Ramdani, Mohammed R.; Leroux, Christine; Monier, Guillaume; Varenne, Christelle; Hoggan, Philip; Castelluci, Dominique; Bougerol, Catherine; Réveret, François; Leymarie, Joël.; Petit, Elodie; Dubrovskii, Vladimir G.; Gil, Evelyne

    2013-12-01

    Hydride Vapor Phase Epitaxy (HVPE) makes use of chloride III-Cl and hydride V-H3 gaseous growth precursors. It is known as a near-equilibrium process, providing the widest range of growth rates from 1 to more than 100 μm/h. When it comes to metal catalyst-assisted VLS (vapor-liquid-solid) growth, the physics of HVPE growth is maintained: high dechlorination frequency, high axial growth rate of nanowires (NWs) up to 170 μm/h. The remarkable features of NWs grown by HVPE are the untapered morphology with constant diameter and the stacking fault-free crystalline phase. Record pure zinc blende cubic phase for 20 μm long GaAs NWs with radii of 10 and 5 nm is shown. The absence of wurtzite phase in GaAs NWs grown by HVPE whatever the diameter is discussed with respect to surface energetic grounds and kinetics. Ni assisted, Ni-Au assisted and catalyst-free HVPE growth of wurtzite GaN NWs is also addressed. Micro-photoluminescence spectroscopy analysis revealed GaN nanowires of great optical quality, with a FWHM of 1 meV at 10 K for the neutral donor bound exciton transition.

  16. Computational prediction of body-centered cubic carbon in an all- s p 3 six-member ring configuration

    SciTech Connect

    Li, Zhen -Zhen; Lian, Chao -Sheng; Xu, Jing

    2015-06-11

    Recent shock compression experiments produced clear evidence of a new carbon phase, but a full structural identification has remained elusive. Here we establish by ab initio calculations a body-centered cubic carbon phase in Ia3¯d(O 10 h) symmetry, which contains twelve atoms in its primitive cell, thus termed BC12, and comprises all-sp 3 six-membered rings. This structural configuration places BC12 carbon in the same bonding type as cubic diamond, and its stability is verified by phonon mode analysis. Simulated x-ray diffraction patterns provide an excellent match to the previously unexplained distinct diffraction peak found in shock compression experiments. Electronic band andmore » density of states calculations reveal that BC12 is a semiconductor with a direct band gap of ~2.97eV. Lastly, these results provide a solid foundation for further exploration of this new carbon allotrope.« less

  17. Cubic and Rhombohedral Heterobimetallic Networks Constructed from Uranium, Transition Metals, and Phosphonoacetate. New Methods for Constructing Porous Materials

    SciTech Connect

    Alsobrook, Andera N.; Hauser, B. G.; Hupp, Joseph T.

    2010-11-01

    Four heterobimetallic U(VI)/M(II) (M = Mn, Co, Cd) carboxyphosphonates have been synthesized. M 2[(UO 2) 6(PO 3CH 2CO 2) 3O 3(OH)(H 2O) 2]·16H 2O (M = Mn(II), Co(II), and Cd(II)) adopt cubic three-dimensional network structures with large cavities approximately 16 Å in diameter that are filled with co-crystallized water molecules. [Cd 3(UO 2) 6(PO 3CH 2CO 2) 6(H 2O) 13]·6H 2 O forms a rhombohedral channel structure with hydrated Cd(II) within the channels. The cubic compound (Co) displays differential gas absorption with a surface area for CO 2 uptake of 40 m 2 g -1 at 273 K, and nomore » uptake of N 2 at 77 K.« less

  18. Structural Investigation of Biological and Semiconductor Nanostructures with Nonlinear Multicontrast Microscopy

    NASA Astrophysics Data System (ADS)

    Cisek, Richard

    Physical and functional properties of advanced nano-composite materials and biological structures are determined by self-organized atoms and molecules into nanostructures and in turn by microscopic organization of the nanostructures into assemblies of higher structural complexity. Therefore, microscopes are indispensable tools for structural investigations at various levels of organization. In this work, novel nonlinear optical microscopy methods were developed to non-invasively study structural organization at the nanoscopic and microscopic levels. Atomic organization of semiconductor nanowires, molecular organization of amylose biocrystallites in starch granules, and microscopic organization of several photosynthetic organisms was elucidated. The structure of ZnSe nanowires, key components in many modern nanodevices, was investigated using polarization harmonic generation microscopy. Based on nonlinear optical properties of the different crystal lattices, zinc blende and wurtzite nanowires were differentiated, and the three-dimensional orientation of the zinc blende nanowires could be found. The structure of starch granules, a model biocrystal, important in food as well as health sciences, was also investigated using polarization harmonic microscopy. The study was combined with ab initio calculations using the crystal structures of amylose A and B, revealing that second harmonic signals originate from the hydroxide and hydrogen bonds in the starch granules. Visualization of several photosynthetic organisms including the green algae, Chlamydomonas reinhardtii, two species of cyanobacteria, Leptolyngbya sp. and Anabaena sp., aggregates of light-harvesting pigment-protein complexes as well as chloroplasts from green plants were also explored, revealing that future nonlinear microscopy applications could include structural studies of cell walls, the Chlamydomonas eyespot, and photosynthetic membranes. In this study, several nonlinear optical microscopy modalities

  19. Cubic polynomial maps with periodic critical orbit, Part II

    NASA Astrophysics Data System (ADS)

    Bonifant, Araceli; Kiwi, Jan; Milnor, John

    The parameter space S_p for monic centered cubic polynomial maps with a marked critical point of period p is a smooth affine algebraic curve whose genus increases rapidly with p . Each S_p consists of a compact connectedness locus together with finitely many escape regions, each of which is biholomorphic to a punctured disk and is characterized by an essentially unique Puiseux series. This note will describe the topology of S_p , and of its smooth compactification, in terms of these escape regions. In particular, it computes the Euler characteristic. It concludes with a discussion of the real sub-locus of S_p .

  20. Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices.

    PubMed

    Cramer, M; Eisert, J; Illuminati, F

    2004-11-05

    We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices and parabolic confining potentials. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimension within mean-field and perturbation theory. The results are compared with a new numerical method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose-Fermi mixtures in optical lattices.

  1. A topological coordinate system for the diamond cubic grid.

    PubMed

    Čomić, Lidija; Nagy, Benedek

    2016-09-01

    Topological coordinate systems are used to address all cells of abstract cell complexes. In this paper, a topological coordinate system for cells in the diamond cubic grid is presented and some of its properties are detailed. Four dependent coordinates are used to address the voxels (triakis truncated tetrahedra), their faces (hexagons and triangles), their edges and the points at their corners. Boundary and co-boundary relations, as well as adjacency relations between the cells, can easily be captured by the coordinate values. Thus, this coordinate system is apt for implementation in various applications, such as visualizations, morphological and topological operations and shape analysis.

  2. Structure and energetics of extended defects in ice Ih

    NASA Astrophysics Data System (ADS)

    Silva Junior, Domingos L.; de Koning, Maurice

    2012-01-01

    We consider the molecular structure and energetics of extended defects in proton-disordered hexagonal ice Ih. Using plane-wave density functional theory (DFT) calculations, we compute the energetics of stacking faults and determine the structure of the 30∘ and 90∘ partial dislocations on the basal plane. Consistent with experimental data, the formation energies of all fully reconstructed stacking faults are found to be very low. This is consistent with the idea that basal-plane glide dislocations in ice Ih are dissociated into partial dislocations separated by an area of stacking fault. For both types of partial dislocation we find a strong tendency toward core reconstruction through pairwise hydrogen-bond reformation. In the case of the 30∘ dislocation, the pairwise hydrogen-bond formation leads to a period-doubling core structure equivalent to that seen in zinc-blende semiconductor crystals. For the 90∘ partial we consider two possible core reconstructions, one in which the periodicity of the structure along the core remains unaltered and another in which it is doubled. The latter is preferred, although the energy difference between both is rather small, so that a coexistence of both reconstructions appears plausible. Our results imply that a mobility theory for dislocations on the basal plane in ice Ih should be based on the idea of reconstructed partial dislocations.

  3. Trends in adsorption of electrocatalytic water splitting intermediates on cubic ABO 3 oxides

    DOE PAGES

    Montoya, Joseph H.; Doyle, Andrew D.; Nørskov, Jens K.; ...

    2018-01-19

    The reactivity of solid oxide surfaces towards adsorption of oxygen and hydrogen is a key metric for the design of new catalysts for electrochemical water splitting. Here, in this paper, we report on trends in the adsorption energy of different adsorbed intermediates derived from the oxidation and reduction of water for ternary ABO 3 oxides in the cubic perovskite structure. Our findings support a previously reported trend that rationalizes the observed lower bound in oxygen evolution (OER) overpotentials from correlations in OH* and OOH* adsorption energies. In addition, we report hydrogen adsorption energies that may be used to estimate hydrogenmore » evolution (HER) overpotentials along with potential metrics for electrochemical metastability in reducing environments. Finally, we also report and discuss trends between atom-projected density of states and adsorption energies, which may enable a design criteria from the local electronic structure of the active site.« less

  4. Trends in adsorption of electrocatalytic water splitting intermediates on cubic ABO 3 oxides

    SciTech Connect

    Montoya, Joseph H.; Doyle, Andrew D.; Nørskov, Jens K.

    The reactivity of solid oxide surfaces towards adsorption of oxygen and hydrogen is a key metric for the design of new catalysts for electrochemical water splitting. Here, in this paper, we report on trends in the adsorption energy of different adsorbed intermediates derived from the oxidation and reduction of water for ternary ABO 3 oxides in the cubic perovskite structure. Our findings support a previously reported trend that rationalizes the observed lower bound in oxygen evolution (OER) overpotentials from correlations in OH* and OOH* adsorption energies. In addition, we report hydrogen adsorption energies that may be used to estimate hydrogenmore » evolution (HER) overpotentials along with potential metrics for electrochemical metastability in reducing environments. Finally, we also report and discuss trends between atom-projected density of states and adsorption energies, which may enable a design criteria from the local electronic structure of the active site.« less

  5. Cubic to tetragonal phase transition of Tm{sup 3+} doped nanocrystals in oxyfluoride glass ceramics

    SciTech Connect

    Li, Yiming; Fu, Yuting; Shi, Yahui

    2016-02-15

    Tm{sup 3+} ions doped β-PbF{sub 2} nanocrystals in oxyfluoride glass ceramics with different doping concentrations and thermal temperatures are prepared by a traditional melt-quenching and thermal treatment method to investigate the structure and the phase transition of Tm{sup 3+} doped nanocrystals. The structures are characterized by X-ray diffraction Rietveld analysis and confirmed with numerical simulation. The phase transitions are proved further by the emission spectra. Both of the doping concentration and thermal temperature can induce an O{sub h} to D{sub 4h} site symmetry distortion and a cubic to tetragonal phase transition. The luminescence of Tm{sup 3+} doped nanocrystals at 800more » nm was modulated by the phase transition of the surrounding crystal field.« less

  6. Stacking fault energies of face-centered cubic concentrated solid solution alloys

    SciTech Connect

    Zhao, Shijun; Stocks, G. Malcolm; Zhang, Yanwen

    We report the stacking fault energy (SFE) for a series of face-centered cubic (fcc) equiatomic concentrated solid solution alloys (CSAs) derived as subsystems from the NiCoFeCrMn and NiCoFeCrPd high entropy alloys based on ab initio calculations. At low temperatures, these CSAs display very low even negative SFEs, indicating that hexagonal close-pack ( hcp) is more energy favorable than fcc structure. The temperature dependence of SFE for some CSAs is studied. With increasing temperature, a hcp-to- fcc transition is revealed for those CSAs with negative SFEs, which can be attributed to the role of intrinsic vibrational entropy. The analysis of themore » vibrational modes suggests that the vibrational entropy arises from the high frequency states in the hcp structure that originate from local vibrational mode. Furthermore, our results underscore the importance of vibrational entropy in determining the temperature dependence of SFE for CSAs.« less

  7. Stacking fault energies of face-centered cubic concentrated solid solution alloys

    DOE PAGES

    Zhao, Shijun; Stocks, G. Malcolm; Zhang, Yanwen

    2017-06-22

    We report the stacking fault energy (SFE) for a series of face-centered cubic (fcc) equiatomic concentrated solid solution alloys (CSAs) derived as subsystems from the NiCoFeCrMn and NiCoFeCrPd high entropy alloys based on ab initio calculations. At low temperatures, these CSAs display very low even negative SFEs, indicating that hexagonal close-pack ( hcp) is more energy favorable than fcc structure. The temperature dependence of SFE for some CSAs is studied. With increasing temperature, a hcp-to- fcc transition is revealed for those CSAs with negative SFEs, which can be attributed to the role of intrinsic vibrational entropy. The analysis of themore » vibrational modes suggests that the vibrational entropy arises from the high frequency states in the hcp structure that originate from local vibrational mode. Furthermore, our results underscore the importance of vibrational entropy in determining the temperature dependence of SFE for CSAs.« less

  8. Preparation of Microcrystals in Lipidic Cubic Phase for Serial Femtosecond Crystallography

    PubMed Central

    Liu, Wei; Ishchenko, Andrii; Cherezov, Vadim

    2014-01-01

    We have recently established a procedure for serial femtosecond crystallography in lipidic cubic phase (LCP-SFX) for protein structure determination at X-ray free electron lasers (XFELs). LCP-SFX uses the gel-like lipidic cubic phase (LCP) as a matrix for growth and delivery of membrane protein microcrystals for crystallographic data collection. LCP is a liquid-crystalline mesophase, composed of lipids and water. It provides a membrane-mimicking environment that stabilizes membrane proteins and supports their crystallization. Here we describe detailed procedures for the preparation and characterization of microcrystals for LCP-SFX applications. The advantages of LCP-SFX over traditional crystallographic methods include the capability of collecting room temperature high-resolution data with minimal effects of radiation damage from sub-10 µm crystals of membrane and soluble proteins that are difficult to crystallize, while eliminating the need for crystal harvesting and cryo-cooling. Compared to SFX methods for microcrystals in solution using liquid injectors, LCP-SFX reduces protein consumption by 2–3 orders of magnitude for data collection at currently available XFELs. The whole procedure typically takes 3–5 days, including the time required for crystals to grow. PMID:25122522

  9. Radiation effects in cubic zirconia: A model system for ceramic oxides

    NASA Astrophysics Data System (ADS)

    Thomé, L.; Moll, S.; Sattonnay, G.; Vincent, L.; Garrido, F.; Jagielski, J.

    2009-06-01

    Ceramics are key engineering materials for electronic, space and nuclear industry. Some of them are promising matrices for the immobilization and/or transmutation of radioactive waste. Cubic zirconia is a model system for the study of radiation effects in ceramic oxides. Ion beams are very efficient tools for the simulation of the radiations produced in nuclear reactors or in storage form. In this article, we summarize the work made by combining advanced techniques (RBS/C, XRD, TEM, AFM) to study the structural modifications produced in ion-irradiated cubic zirconia single crystals. Ions with energies in the MeV-GeV range allow exploring the nuclear collision and electronic excitation regimes. At low energy, where ballistic effects dominate, the damage exhibits a peak around the ion projected range; it accumulates with a double-step process by the formation of a dislocation network. At high energy, where electronic excitations are favored, the damage profiles are rather flat up to several micrometers; the damage accumulation is monotonous (one step) and occurs through the creation and overlap of ion tracks. These results may be generalized to many nuclear ceramics.

  10. Efficient LBM visual simulation on face-centered cubic lattices.

    PubMed

    Petkov, Kaloian; Qiu, Feng; Fan, Zhe; Kaufman, Arie E; Mueller, Klaus

    2009-01-01

    The Lattice Boltzmann method (LBM) for visual simulation of fluid flow generally employs cubic Cartesian (CC) lattices such as the D3Q13 and D3Q19 lattices for the particle transport. However, the CC lattices lead to suboptimal representation of the simulation space. We introduce the face-centered cubic (FCC) lattice, fD3Q13, for LBM simulations. Compared to the CC lattices, the fD3Q13 lattice creates a more isotropic sampling of the simulation domain and its single lattice speed (i.e., link length) simplifies the computations and data storage. Furthermore, the fD3Q13 lattice can be decomposed into two independent interleaved lattices, one of which can be discarded, which doubles the simulation speed. The resulting LBM simulation can be efficiently mapped to the GPU, further increasing the computational performance. We show the numerical advantages of the FCC lattice on channeled flow in 2D and the flow-past-a-sphere benchmark in 3D. In both cases, the comparison is against the corresponding CC lattices using the analytical solutions for the systems as well as velocity field visualizations. We also demonstrate the performance advantages of the fD3Q13 lattice for interactive simulation and rendering of hot smoke in an urban environment using thermal LBM.

  11. String scattering amplitudes and deformed cubic string field theory

    NASA Astrophysics Data System (ADS)

    Lai, Sheng-Hong; Lee, Jen-Chi; Lee, Taejin; Yang, Yi

    2018-01-01

    We study string scattering amplitudes by using the deformed cubic string field theory which is equivalent to the string field theory in the proper-time gauge. The four-string scattering amplitudes with three tachyons and an arbitrary string state are calculated. The string field theory yields the string scattering amplitudes evaluated on the world sheet of string scattering whereas the conventional method, based on the first quantized theory brings us the string scattering amplitudes defined on the upper half plane. For the highest spin states, generated by the primary operators, both calculations are in perfect agreement. In this case, the string scattering amplitudes are invariant under the conformal transformation, which maps the string world sheet onto the upper half plane. If the external string states are general massive states, generated by non-primary field operators, we need to take into account carefully the conformal transformation between the world sheet and the upper half plane. We show by an explicit calculation that the string scattering amplitudes calculated by using the deformed cubic string field theory transform into those of the first quantized theory on the upper half plane by the conformal transformation, generated by the Schwarz-Christoffel mapping.

  12. Four-dimensional black holes in Einsteinian cubic gravity

    NASA Astrophysics Data System (ADS)

    Bueno, Pablo; Cano, Pablo A.

    2016-12-01

    We construct static and spherically symmetric generalizations of the Schwarzschild- and Reissner-Nordström-(anti-)de Sitter [RN-(A)dS] black-hole solutions in four-dimensional Einsteinian cubic gravity (ECG). The solutions are characterized by a single function which satisfies a nonlinear second-order differential equation. Interestingly, we are able to compute independently the Hawking temperature T , the Wald entropy S and the Abbott-Deser mass M of the solutions analytically as functions of the horizon radius and the ECG coupling constant λ . Using these we show that the first law of black-hole mechanics is exactly satisfied. Some of the solutions have positive specific heat, which makes them thermodynamically stable, even in the uncharged and asymptotically flat case. Further, we claim that, up to cubic order in curvature, ECG is the most general four-dimensional theory of gravity which allows for nontrivial generalizations of Schwarzschild- and RN-(A)dS characterized by a single function which reduce to the usual Einstein gravity solutions when the corresponding higher-order couplings are set to zero.

  13. Identification and properties of the non-cubic phases of Mg 2Pb

    DOE PAGES

    Li, Yuwei; Bian, Guang; Singh, David J.

    2016-12-20

    Mg 2Pb occurs in the cubic fluorite structure and is a semimetal with a band structure strongly affected by spin-orbit interaction on the Pb p states. Its properties are therefore of interest in the context of topological materials. In addition a different phase of Mg 2Pb was experimentally reported, but its crystal structure and properties remain unknown. Here we determine the structure of this phase using ab initio evolutionary methods and report its properties. The energy of one tetragonal phase, space group P4/ nmm, is 2 meV per atom higher than that of the ground state structure supporting the experimentalmore » observation. We find this tetragonal phase to be a compenstated anisotropic metal with strong spin orbit effects. As a result, many other metastable structures have also been identified, especially one orthorhombic structure, space group Pnma, of which energy is 17 meV per atom higher than that of ground state structure and which perhaps could be the phase that was reported based on similarity of lattice parameters.« less

  14. Synthesis of Cubic-Shaped Pt Particles with (100) Preferential Orientation by a Quick, One-Step and Clean Electrochemical Method.

    PubMed

    Liu, Jie; Fan, Xiayue; Liu, Xiaorui; Song, Zhishuang; Deng, Yida; Han, Xiaopeng; Hu, Wenbin; Zhong, Cheng

    2017-06-07

    A new approach has been developed for in situ preparing cubic-shaped Pt particles with (100) preferential orientation on the surface of the conductive support by using a quick, one-step, and clean electrochemical method with periodic square-wave potential. The whole electrochemical deposition process is very quick (only 6 min is required to produce cubic Pt particles), without the use of particular capping agents. The shape and the surface structure of deposited Pt particles can be controlled by the lower and upper potential limits of the square-wave potential. For a frequency of 5 Hz and an upper potential limit of 1.0 V (vs saturated calomel electrode), as the lower potential limit decreases to the H adsorption potential region, the Pt deposits are changed from nearly spherical particles to cubic-shaped (100)-oriented Pt particles. High-resolution transmission electron microscopy and selected-area electron diffraction reveal that the formed cubic Pt particles are single-crystalline and enclosed by (100) facets. Cubic Pt particles exhibit characteristic H adsorption/desorption peaks corresponding to the (100) preferential orientation. Ge irreversible adsorption indicates that the fraction of wide Pt(100) surface domains is 47.8%. The electrocatalytic activities of different Pt particles are investigated by ammonia electro-oxidation, which is particularly sensitive to the amount of Pt(100) sites, especially larger (100) domains. The specific activity of cubic Pt particles is 3.6 times as high as that of polycrystalline spherical Pt particles, again confirming the (100) preferential orientation of Pt cubes. The formation of cubic-shaped Pt particles is related with the preferential electrochemical deposition and dissolution processes of Pt, which are coupled with the periodic desorption and adsorption processes of O-containing species and H adatoms.

  15. On local and global aspects of the 1:4 resonance in the conservative cubic Hénon maps

    NASA Astrophysics Data System (ADS)

    Gonchenko, M.; Gonchenko, S. V.; Ovsyannikov, I.; Vieiro, A.

    2018-04-01

    We study the 1:4 resonance for the conservative cubic Hénon maps C± with positive and negative cubic terms. These maps show up different bifurcation structures both for fixed points with eigenvalues ±i and for 4-periodic orbits. While for C-, the 1:4 resonance unfolding has the so-called Arnold degeneracy [the first Birkhoff twist coefficient equals (in absolute value) to the first resonant term coefficient], the map C+ has a different type of degeneracy because the resonant term can vanish. In the last case, non-symmetric points are created and destroyed at pitchfork bifurcations and, as a result of global bifurcations, the 1:4 resonant chain of islands rotates by π/4. For both maps, several bifurcations are detected and illustrated.

  16. The cubicon method for concentrating membrane proteins in the cubic mesophase.

    PubMed

    Ma, Pikyee; Weichert, Dietmar; Aleksandrov, Luba A; Jensen, Timothy J; Riordan, John R; Liu, Xiangyu; Kobilka, Brian K; Caffrey, Martin

    2017-09-01

    The lipid cubic phase (in meso) method is an important approach for generating crystals and high-resolution X-ray structures of integral membrane proteins. However, as a consequence of instability, it can be impossible-using traditional methods-to concentrate certain membrane proteins and complexes to values suitable for in meso crystallization and structure determination. The cubicon method described here exploits the amphiphilic nature of membrane proteins and their natural tendency to partition preferentially into lipid bilayers from aqueous solution. Using several rounds of reconstitution, the protein concentration in the bilayer of the cubic mesophase can be ramped up stepwise from less than a milligram per milliliter to tens of milligrams per milliliter for crystallogenesis. The general applicability of the method is demonstrated with five integral membrane proteins: the β 2 -adrenergic G protein-coupled receptor (β 2 AR), the peptide transporter (PepT St ), diacylglycerol kinase (DgkA), the alginate transporter (AlgE) and the cystic fibrosis transmembrane conductance regulator (CFTR). In the cases of β 2 AR, PepT St , DgkA and AlgE, an effective 20- to 45-fold concentration was realized, resulting in a protein-laden mesophase that allowed the formation of crystals using the in meso method and structure determination to resolutions ranging from 2.4 Å to 3.2 Å. In addition to opening up in meso crystallization to a broader range of integral membrane protein targets, the cubicon method should find application in situations that require membrane protein reconstitution in a lipid bilayer at high concentrations. These applications include functional and biophysical characterization studies for ligand screening, drug delivery, antibody production and protein complex formation. A typical cubicon experiment can be completed in 3-5 h.

  17. Icosahedral quasicrystals of intermetallic compounds are icosahedral twins of cubic crystals of three kinds, consisting of large (about 5000 atoms) icosahedral complexes in either a cubic body-centered or a cubic face-centered arrangement or smaller (about 1350 atoms) icosahedral complexes in the β-tungsten arrangement

    PubMed Central

    Pauling, Linus

    1989-01-01

    The twofold-axis electron-diffraction photographs of icosahedral quasicrystals are of three kinds, reflecting three different structures of the cubic crystals that by icosahedral twinning form the quasicrystals. The first kind, represented by Al13Cu4Fe3, contains two very large icosahedral complexes, each of about 4680 atoms, in the body-centered arrangement, with six smaller icosahedral complexes (104 atoms each) in the principal interstices. The second kind, represented by Al5Mn, contains four of the very large complexes in the face-centered arrangement (cubic close packing), with four of the smaller clusters in the interstices. The third kind, represented by Al6CuLi3, contains eight icosahedral complexes, each of about 1350 atoms, in the β-W arrangement. The supporting evidence for these cubic structures is discussed as well as other evidence showing that the simple quasicrystal theory, which states that quasicrystals do not involve any translational identity operations, has to be modified. Images PMID:16594078

  18. Submicron cubic boron nitride as hard as diamond

    SciTech Connect

    Liu, Guoduan; Kou, Zili, E-mail: kouzili@scu.edu.cn, E-mail: yanxz@hpstar.ac.cn; Lei, Li

    Here, we report the sintering of aggregated submicron cubic boron nitride (sm-cBN) at a pressure of 8 GPa. The sintered cBN compacts exhibit hardness values comparable to that of single crystal diamond, fracture toughness about 5-fold that of cBN single crystal, in combination with a high oxidization temperature. Thus, another way has been demonstrated to improve the mechanical properties of cBN besides reducing the grain size to nano scale. In contrast to other ultrahard compacts with similar hardness, the sm-cBN aggregates are better placed for potential industrial application, as their relative low pressure manufacturing perhaps be easier and cheaper.

  19. Explosive attractor solutions to a universal cubic delay equation

    NASA Astrophysics Data System (ADS)

    Sanz-Orozco, D.; Berk, H. L.

    2017-05-01

    New explosive attractor solutions have been found in a universal cubic delay equation that has been studied in both the plasma and the fluid mechanics literature. Through computational simulations and analytic approximations, it is found that the oscillatory component of the explosive mode amplitude solutions are described through multi-frequency Fourier expansions with respect to a pseudo-time variable. The spectral dependence of these solutions as a function of a system parameter, ϕ , is studied. The mode amplitude that is described in the explosive regime has two main features: a well-known envelope ( t 0 - t ) - 5 / 2 , with t0 the blow-up time of the amplitude, and a spectrum of discrete oscillations with ever-increasing frequencies, which may give experimental information about the properties of a system's equilibrium.

  20. Dynamic Displacement Disorder of Cubic BaTiO3

    NASA Astrophysics Data System (ADS)

    Paściak, M.; Welberry, T. R.; Kulda, J.; Leoni, S.; Hlinka, J.

    2018-04-01

    The three-dimensional distribution of the x-ray diffuse scattering intensity of BaTiO3 has been recorded in a synchrotron experiment and simultaneously computed using molecular dynamics simulations of a shell model. Together, these have allowed the details of the disorder in paraelectric BaTiO3 to be clarified. The narrow sheets of diffuse scattering, related to the famous anisotropic longitudinal correlations of Ti ions, are shown to be caused by the overdamped anharmonic soft phonon branch. This finding demonstrates that the occurrence of narrow sheets of diffuse scattering agrees with a displacive picture of the cubic phase of this textbook ferroelectric material. The presented methodology allows one to go beyond the harmonic approximation in the analysis of phonons and phonon-related scattering.

  1. Quantum-Carnot engine for particle confined to cubic potential

    NASA Astrophysics Data System (ADS)

    Sutantyo, Trengginas Eka P.; Belfaqih, Idrus H.; Prayitno, T. B.

    2015-09-01

    Carnot cycle consists of isothermal and adiabatic processes which are reversible. Using analogy in quantum mechanics, these processes can be well explained by replacing variables in classical process with a quantum system. Quantum system which is shown in this paper is a particle that moves under the influence of a cubic potential which is restricted only to the state of the two energy levels. At the end, the efficiency of the system is shown as a function of the width ratio between the initial conditions and the farthest wall while expanding. Furthermore, the system efficiency will be considered 1D and 2D cases. The providing efficiencies are different due to the influence of the degeneration of energy and the degrees of freedom of the system.

  2. Bounce universe and black holes from critical Einsteinian cubic gravity

    NASA Astrophysics Data System (ADS)

    Feng, Xing-Hui; Huang, Hyat; Mai, Zhan-Feng; Lü, Hong

    2017-11-01

    We show that there exists a critical point for the coupling constants in Einsteinian cubic gravity in which the linearized equations on the maximally symmetric vacuum vanish identically. We construct an exact isotropic bounce universe in the critical theory in four dimensions. The comoving time runs from minus infinity to plus infinity, yielding a smooth universe bouncing between two de Sitter vacua. In five dimensions, we adopt a numerical approach to construct a bounce solution, in which a singularity occurs before the bounce takes place. We then construct exact anisotropic bounces that connect two isotropic de Sitter spacetimes with flat spatial sections. We further construct exact anti-de Sitter black holes in the critical theory in four and five dimensions and obtain an exact anti-de Sitter worm brane in four dimensions.

  3. Adaptive image coding based on cubic-spline interpolation

    NASA Astrophysics Data System (ADS)

    Jiang, Jian-Xing; Hong, Shao-Hua; Lin, Tsung-Ching; Wang, Lin; Truong, Trieu-Kien

    2014-09-01

    It has been investigated that at low bit rates, downsampling prior to coding and upsampling after decoding can achieve better compression performance than standard coding algorithms, e.g., JPEG and H. 264/AVC. However, at high bit rates, the sampling-based schemes generate more distortion. Additionally, the maximum bit rate for the sampling-based scheme to outperform the standard algorithm is image-dependent. In this paper, a practical adaptive image coding algorithm based on the cubic-spline interpolation (CSI) is proposed. This proposed algorithm adaptively selects the image coding method from CSI-based modified JPEG and standard JPEG under a given target bit rate utilizing the so called ρ-domain analysis. The experimental results indicate that compared with the standard JPEG, the proposed algorithm can show better performance at low bit rates and maintain the same performance at high bit rates.

  4. Shock-induced reaction synthesis of cubic boron nitride

    NASA Astrophysics Data System (ADS)

    Beason, M. T.; Pauls, J. M.; Gunduz, I. E.; Rouvimov, S.; Manukyan, K. V.; Matouš, K.; Son, S. F.; Mukasyan, A.

    2018-04-01

    Here, we report ultra-fast (0.1-5 μs) shock-induced reactions in the 3B-TiN system, leading to the direct synthesis of cubic boron nitride, which is extremely rare in nature and is the second hardest material known. Composite powders were produced through high-energy ball milling to provide intimate mixing and subsequently shocked using an explosive charge. High-resolution transmission electron microscopy and X-ray diffraction confirm the formation of nanocrystalline grains of c-BN produced during the metathetical reaction between boron and titanium nitride. Our results illustrate the possibility of rapid reactions enabled by high-energy ball milling possibly occurring in the solid state on incredibly short timescales. This process may provide a route for the discovery and fabrication of advanced compounds.

  5. A cubic spline approximation for problems in fluid mechanics

    NASA Technical Reports Server (NTRS)

    Rubin, S. G.; Graves, R. A., Jr.

    1975-01-01

    A cubic spline approximation is presented which is suited for many fluid-mechanics problems. This procedure provides a high degree of accuracy, even with a nonuniform mesh, and leads to an accurate treatment of derivative boundary conditions. The truncation errors and stability limitations of several implicit and explicit integration schemes are presented. For two-dimensional flows, a spline-alternating-direction-implicit method is evaluated. The spline procedure is assessed, and results are presented for the one-dimensional nonlinear Burgers' equation, as well as the two-dimensional diffusion equation and the vorticity-stream function system describing the viscous flow in a driven cavity. Comparisons are made with analytic solutions for the first two problems and with finite-difference calculations for the cavity flow.

  6. Bistable dark solitons of a cubic-quintic Helmholtz equation

    SciTech Connect

    Christian, J. M.; McDonald, G. S.; Chamorro-Posada, P.

    2010-05-15

    We provide a report on exact analytical bistable dark spatial solitons of a nonlinear Helmholtz equation with a cubic-quintic refractive-index model. Our analysis begins with an investigation of the modulational instability characteristics of Helmholtz plane waves. We then derive a dark soliton by mapping the desired asymptotic form onto a uniform background field and obtain a more general solution by deploying rotational invariance laws in the laboratory frame. The geometry of the new soliton is explored in detail, and a range of new physical predictions is uncovered. Particular attention is paid to the unified phenomena of arbitrary-angle off-axis propagation andmore » nondegenerate bistability. Crucially, the corresponding solution of paraxial theory emerges in a simultaneous multiple limit. We conclude with a set of computer simulations that examine the role of Helmholtz dark solitons as robust attractors.« less

  7. Supersymmetry breaking and Nambu-Goldstone fermions with cubic dispersion

    NASA Astrophysics Data System (ADS)

    Sannomiya, Noriaki; Katsura, Hosho; Nakayama, Yu

    2017-03-01

    We introduce a lattice fermion model in one spatial dimension with supersymmetry (SUSY) but without particle number conservation. The Hamiltonian is defined as the anticommutator of two nilpotent supercharges Q and Q†. Each supercharge is built solely from spinless fermion operators and depends on a parameter g . The system is strongly interacting for small g , and in the extreme limit g =0 , the number of zero-energy ground states grows exponentially with the system size. By contrast, in the large-g limit, the system is noninteracting and SUSY is broken spontaneously. We study the model for modest values of g and show that under certain conditions spontaneous SUSY breaking occurs in both finite and infinite chains. We analyze the low-energy excitations both analytically and numerically. Our analysis suggests that the Nambu-Goldstone fermions accompanying the spontaneous SUSY breaking have cubic dispersion at low energies.

  8. Multilayer gyroid cubic membrane organization in green alga Zygnema.

    PubMed

    Zhan, Ting; Lv, Wenhua; Deng, Yuru

    2017-09-01

    Biological cubic membranes (CM), which are fluid membranes draped onto the 3D periodic parallel surface geometries with cubic symmetry, have been observed within subcellular organelles, including mitochondria, endoplasmic reticulum, and thylakoids. CM transition tends to occur under various stress conditions; however, multilayer CM organizations often appear associated with light stress conditions. This report is about the characterization of a projected gyroid CM in a transmission electron microscopy study of the chloroplast membranes within green alga Zygnema (LB923) whose lamellar form of thylakoid membrane started to fold into multilayer gyroid CM in the culture at the end of log phase of cell growth. Using the techniques of computer simulation of transmission electron microscopy (TEM) and a direct template matching method, we show that these CM are based on the gyroid parallel surfaces. The single, double, and multilayer gyroid CM morphologies are observed in which space is continuously divided into two, three, and more subvolumes by either one, two, or several parallel membranes. The gyroid CM are continuous with varying amount of pseudo-grana with lamellar-like morphology. The relative amount and order of these two membrane morphologies seem to vary with the age of cell culture and are insensitive to ambient light condition. In addition, thylakoid gyroid CM continuously interpenetrates the pyrenoid body through stalk, bundle-like, morphologies. Inside the pyrenoid body, the membranes re-folded into gyroid CM. The appearance of these CM rearrangements due to the consequence of Zygnema cell response to various types of environmental stresses will be discussed. These stresses include nutrient limitation, temperature fluctuation, and ultraviolet (UV) exposure.

  9. Modelling subject-specific childhood growth using linear mixed-effect models with cubic regression splines.

    PubMed

    Grajeda, Laura M; Ivanescu, Andrada; Saito, Mayuko; Crainiceanu, Ciprian; Jaganath, Devan; Gilman, Robert H; Crabtree, Jean E; Kelleher, Dermott; Cabrera, Lilia; Cama, Vitaliano; Checkley, William

    2016-01-01

    Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration. We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life. Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p < 0.001) when using a linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p < 0.001) and slopes (p < 0.001) of the individual growth trajectories. We also identified important serial correlation within the structure of the data (ρ = 0.66; 95 % CI 0.64 to 0.68; p < 0.001), which we modeled with a first order continuous autoregressive error term as evidenced by the variogram of the residuals and by a lack of association among residuals. The final model provides a parametric linear regression equation for both estimation and prediction of population- and individual-level growth

  10. A three-dimensional single-cell-resolution whole-brain atlas using CUBIC-X expansion microscopy and tissue clearing.

    PubMed

    Murakami, Tatsuya C; Mano, Tomoyuki; Saikawa, Shu; Horiguchi, Shuhei A; Shigeta, Daichi; Baba, Kousuke; Sekiya, Hiroshi; Shimizu, Yoshihiro; Tanaka, Kenji F; Kiyonari, Hiroshi; Iino, Masamitsu; Mochizuki, Hideki; Tainaka, Kazuki; Ueda, Hiroki R

    2018-04-01

    A three-dimensional single-cell-resolution mammalian brain atlas will accelerate systems-level identification and analysis of cellular circuits underlying various brain functions. However, its construction requires efficient subcellular-resolution imaging throughout the entire brain. To address this challenge, we developed a fluorescent-protein-compatible, whole-organ clearing and homogeneous expansion protocol based on an aqueous chemical solution (CUBIC-X). The expanded, well-cleared brain enabled us to construct a point-based mouse brain atlas with single-cell annotation (CUBIC-Atlas). CUBIC-Atlas reflects inhomogeneous whole-brain development, revealing a significant decrease in the cerebral visual and somatosensory cortical areas during postnatal development. Probabilistic activity mapping of pharmacologically stimulated Arc-dVenus reporter mouse brains onto CUBIC-Atlas revealed the existence of distinct functional structures in the hippocampal dentate gyrus. CUBIC-Atlas is shareable by an open-source web-based viewer, providing a new platform for whole-brain cell profiling.

  11. Synthesis and structural characterization of CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Kotkata, M. F.; Masoud, A. E.; Mohamed, M. B.; Mahmoud, E. A.

    2009-08-01

    Amorphous CdS nanoparticles capped with cetyltrimethyl ammonium bromide (CTAB) were synthesised under various conditions using a coprecipitation method. A blue shift in the band gap was observed in the UV-visible absorption spectra indicating the formation of nanoparticles of an approximate size of 8 nm. The recorded transmission electron micrographs confirmed this result. The phase-nature, phase transformation as well as the structure of the synthesised CdS nanoparticles have been extensively characterized using X-ray diffraction (XRD), radial distribution function (RDF), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR), Raman scattering (RS) and/or heat stage X-ray diffraction (HSXRD). Analysis of the obtained results revealed that the synthesised amorphous CdS nanoparticles could be transformed into CdS nanocrystals having a zinc blende or a wurtzite structure, relying on the applied heat treatment scheme. The rate of nanocrystal growth depends on the aging period, prior filtering the reacted materials, and its relation to the quality of the capping process. Five days aging period tends to enhance the stability of the grown phase with a remarkable surface stability.

  12. Synthesis and microstructure of electrodeposited and sputtered nanotwinned face-centered-cubic metals

    DOE PAGES

    Bufford, Daniel C.; Wang, Morris; Liu, Yue; ...

    2016-04-01

    The remarkable properties of nanotwinned (NT) face-centered-cubic (fcc) metals arise directly from twin boundaries, the structures of which can be initially determined by growth twinning during the deposition process. When we understand the synthesis process and its relation to the resulting microstructure, and ultimately to material properties, we realize how key it is to understanding and utilizing these materials. Furthermore, our article presents recent studies on electrodeposition and sputtering methods that produce a high density of nanoscale growth twins in fcc metals. Nanoscale growth twins tend to form spontaneously in monolithic and alloyed fcc metals with lower stacking-fault energies, whilemore » engineered approaches are necessary for fcc metals with higher stacking-fault energies. Finally, growth defects and other microstructural features that influence nanotwin behavior and stability are introduced here, and future challenges in fabricating NT materials are highlighted.« less

  13. Emergent magnetic anisotropy in the cubic heavy-fermion metal CeIn3

    SciTech Connect

    Moll, Philip J. W.; Helm, Toni; Zhang, Shang-Shun

    Metals containing cerium exhibit a diverse range of fascinating phenomena including heavy fermion behavior, quantum criticality, and novel states of matter such as unconventional superconductivity. The cubic system CeIn3 has attracted significant attention as a structurally isotropic Kondo lattice material possessing the minimum required complexity to still reveal this rich physics. By using magnetic fields with strengths comparable to the crystal field energy scale, we illustrate a strong field-induced anisotropy as a consequence of non-spherically symmetric spin interactions in the prototypical heavy fermion material CeIn3. We demonstrate the importance of magnetic anisotropy in modeling f-electron materials when the orbital charactermore » of the 4f wavefunction changes (e.g., with pressure or composition). Additionally, magnetic fields are shown to tune the effective hybridization and exchange interactions potentially leading to new exotic field tuned effects in f-based materials.« less

  14. Self-buckled effect of cubic Cu3N film: Surface stoichiometry

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Arun Kumar; Roy, Avishek; Das, Sadhan Chandra; Wulff, Harm; Hippler, Rainer; Majumdar, Abhijit

    2018-05-01

    We report the surface stoichiometry of cubic Cu3N films as function of nitrogen concentration (N/Cu). The film is deposited at 1Pa showing self-buckled (surface peels off) effect as it is exposed to ambient air at atmospheric pressure whereas at 5 Pa, the film shows no such effect. The spectroscopic (X-ray photoelectron spectroscopy (XPS)) analysis suggests that the presence of nitride layer is not the prime cause but the surface oxidation playing a major role for the self-buckling effect. Grazing incidence X-ray diffraction (GIXRD) confirms the formation of a crystalline Cu3N phase of the film. Atomic force microscopic (AFM) study reveals that the 1Pa film shows a lower roughness as compared to 5 Pa films and furthermore, Fast Fourier Transform (FFT) analysis shows a fourfold symmetric structure (both modes of pattern-orientation) in both the deposited films.

  15. Emergent magnetic anisotropy in the cubic heavy-fermion metal CeIn3

    DOE PAGES

    Moll, Philip J. W.; Helm, Toni; Zhang, Shang-Shun; ...

    2017-08-21

    Metals containing cerium exhibit a diverse range of fascinating phenomena including heavy fermion behavior, quantum criticality, and novel states of matter such as unconventional superconductivity. The cubic system CeIn3 has attracted significant attention as a structurally isotropic Kondo lattice material possessing the minimum required complexity to still reveal this rich physics. By using magnetic fields with strengths comparable to the crystal field energy scale, we illustrate a strong field-induced anisotropy as a consequence of non-spherically symmetric spin interactions in the prototypical heavy fermion material CeIn3. We demonstrate the importance of magnetic anisotropy in modeling f-electron materials when the orbital charactermore » of the 4f wavefunction changes (e.g., with pressure or composition). Additionally, magnetic fields are shown to tune the effective hybridization and exchange interactions potentially leading to new exotic field tuned effects in f-based materials.« less

  16. Pressure-driven insulator-metal transition in cubic phase UO 2

    DOE PAGES

    Huang, Li; Wang, Yilin; Werner, Philipp

    2017-09-21

    Understanding the electronic properties of actinide oxides under pressure poses a great challenge for experimental and theoretical studies. Here, we investigate the electronic structure of cubic phase uranium dioxide at different volumes using a combination of density functional theory and dynamical mean-field theory. The ab initio calculations predict an orbital-selective insulator-metal transition at a moderate pressure of ~45 GPa. At this pressure the uranium's 5f 5/2 state becomes metallic, while the 5f 7/2 state remains insulating up to about 60 GPa. In the metallic state, we observe a rapid decrease of the 5f occupation and total angular momentum with pressure.more » Simultaneously, the so-called "Zhang-Rice state", which is of predominantly 5f 5/2 character, quickly disappears after the transition into the metallic phase.« less

  17. Synthesis and microstructure of electrodeposited and sputtered nanotwinned face-centered-cubic metals

    SciTech Connect

    Bufford, Daniel C.; Wang, Morris; Liu, Yue

    The remarkable properties of nanotwinned (NT) face-centered-cubic (fcc) metals arise directly from twin boundaries, the structures of which can be initially determined by growth twinning during the deposition process. When we understand the synthesis process and its relation to the resulting microstructure, and ultimately to material properties, we realize how key it is to understanding and utilizing these materials. Furthermore, our article presents recent studies on electrodeposition and sputtering methods that produce a high density of nanoscale growth twins in fcc metals. Nanoscale growth twins tend to form spontaneously in monolithic and alloyed fcc metals with lower stacking-fault energies, whilemore » engineered approaches are necessary for fcc metals with higher stacking-fault energies. Finally, growth defects and other microstructural features that influence nanotwin behavior and stability are introduced here, and future challenges in fabricating NT materials are highlighted.« less

  18. Face Centered Cubic SnSe as a Z2 Trivial Dirac Nodal Line Material

    NASA Astrophysics Data System (ADS)

    Tateishi, Ikuma; Matsuura, Hiroyasu

    2018-07-01

    The presence of a Dirac nodal line in a time-reversal and inversion symmetric system is dictated by the Z2 index when spin-orbit interaction is absent. In a first principles calculation, we show that a Dirac nodal line can emerge in Z2 trivial material by calculating the band structure of SnSe in a face centered cubic lattice as an example. We qualitatively show that it becomes a topological crystalline insulator when spin-orbit interaction is taken into account. We clarify the origin of the Dirac nodal line by obtaining irreducible representations corresponding to bands and explain the triviality of the Z2 index. We construct an effective model representing the Dirac nodal line using the k · p method, and discuss the Berry phase and a surface state expected from the Dirac nodal line.

  19. Pressure-driven insulator-metal transition in cubic phase UO2

    NASA Astrophysics Data System (ADS)

    Huang, Li; Wang, Yilin; Werner, Philipp

    2017-09-01

    Understanding the electronic properties of actinide oxides under pressure poses a great challenge for experimental and theoretical studies. Here, we investigate the electronic structure of cubic phase uranium dioxide at different volumes using a combination of density functional theory and dynamical mean-field theory. The ab initio calculations predict an orbital-selective insulator-metal transition at a moderate pressure of ∼45 GPa. At this pressure the uranium's 5f 5/2 state becomes metallic, while the 5f 7/2 state remains insulating up to about 60 GPa. In the metallic state, we observe a rapid decrease of the 5f occupation and total angular momentum with pressure. Simultaneously, the so-called “Zhang-Rice state”, which is of predominantly 5f 5/2 character, quickly disappears after the transition into the metallic phase.

  20. The exchange interactions and the state of manganese atoms in the solid solutions in Bi{sub 3}NbO{sub 7} of cubic and tetragonal modifications

    SciTech Connect

    Chezhina, N.V., E-mail: chezhina@nc2490.spb.edu; Zhuk, N.A.; Korolev, D.A.

    2016-01-15

    The comparative analysis of magnetic behavior of manganese-containing solid solutions Bi{sub 3}Nb{sub 1−x}Mn{sub x}O{sub 7−δ} (x=0.01−0.10) of cubic and tetragonal modifications was performed. Based on the results of magnetic susceptibility studies paramagnetic manganese atoms in solid solutions of cubic and tetragonal modifications were found to be in the form of Mn(III), Mn(IV) monomers and exchange-coupled dimers of Mn(III)–O–Mn(III), Mn(IV)–O–Mn(IV), Mn(III)–O–Mn(IV). The exchange parameters and the distribution of monomers and dimers in solid solutions as a function of the content of paramagnetic atoms were calculated. - Graphical abstract: Structural transition of cubic to tetragonal Bi{sub 3}NbO{sub 7−δ}.

  1. Stabilization of the cubic phase of HfO2 by Y addition in films grown by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Rauwel, E.; Dubourdieu, C.; Holländer, B.; Rochat, N.; Ducroquet, F.; Rossell, M. D.; Van Tendeloo, G.; Pelissier, B.

    2006-07-01

    Addition of yttrium in HfO2 thin films prepared on silicon by metal organic chemical vapor deposition is investigated in a wide compositional range (2.0-99.5at.%). The cubic structure of HfO2 is stabilized for 6.5at.%. The permittivity is maximum for yttrium content of 6.5-10at.%; in this range, the effective permittivity, which results from the contribution of both the cubic phase and silicate phase, is of 22. These films exhibit low leakage current density (5×10-7A /cm2 at -1V for a 6.4nm film). The cubic phase is stable upon postdeposition high temperature annealing at 900°C under NH3.

  2. Stress-Induced Cubic-to-Hexagonal Phase Transformation in Perovskite Nanothin Films.

    PubMed

    Cao, Shi-Gu; Li, Yunsong; Wu, Hong-Hui; Wang, Jie; Huang, Baoling; Zhang, Tong-Yi

    2017-08-09

    The strong coupling between crystal structure and mechanical deformation can stabilize low-symmetry phases from high-symmetry phases or induce novel phase transformation in oxide thin films. Stress-induced structural phase transformation in oxide thin films has drawn more and more attention due to its significant influence on the functionalities of the materials. Here, we discovered experimentally a novel stress-induced cubic-to-hexagonal phase transformation in the perovskite nanothin films of barium titanate (BaTiO 3 ) with a special thermomechanical treatment (TMT), where BaTiO 3 nanothin films under various stresses are annealed at temperature of 575 °C. Both high-resolution transmission electron microscopy and Raman spectroscopy show a higher density of hexagonal phase in the perovskite thin film under higher tensile stress. Both X-ray photoelectron spectroscopy and electron energy loss spectroscopy does not detect any change in the valence state of Ti atoms, thereby excluding the mechanism of oxygen vacancy induced cubic-to-hexagonal (c-to-h) phase transformation. First-principles calculations show that the c-to-h phase transformation can be completed by lattice shear at elevated temperature, which is consistent with the experimental observation. The applied bending plus the residual tensile stress produces shear stress in the nanothin film. The thermal energy at the elevated temperature assists the shear stress to overcome the energy barriers during the c-to-h phase transformation. The stress-induced phase transformation in perovskite nanothin films with TMT provides materials scientists and engineers a novel approach to tailor nano/microstructures and properties of ferroelectric materials.

  3. Structural, electronic, mechanical and magnetic properties of rare earth nitrides REN (RE= Pm, Eu and Yb)

    NASA Astrophysics Data System (ADS)

    Murugan, A.; Rajeswarapalanichamy, R.; Santhosh, M.; Iyakutti, K.

    2015-07-01

    The structural, electronic and mechanical properties of rare earth nitrides REN (RE=Pm, Eu and Yb) are investigated in NaCl and CsCl, and zinc blende structures using first principles calculations based on density functional theory. The calculated lattice parameters are in good agreement with the available results. Among the considered structures, these nitrides are most stable in NaCl structure. A pressure induced structural phase transition from NaCl to CsCl phase is observed in all these nitrides. The electronic structure reveals that these rare earth nitrides are half metallic at normal pressure. These nitrides are found to be covalent and ionic in the stable phase. The computed elastic constants indicate that these nitrides are mechanically stable and elastically anisotropic. Our results confirm that these nitrides are ferromagnetic in nature. A ferromagnetic to non-magnetic phase transition is observed at the pressures of 21.5 GPa and 46.1 GPa in PmN and YbN respectively.

  4. Subalgebras of BCK/BCI-Algebras Based on Cubic Soft Sets

    PubMed Central

    Muhiuddin, G.; Jun, Young Bae

    2014-01-01

    Operations of cubic soft sets including “AND” operation and “OR” operation based on P-orders and R-orders are introduced and some related properties are investigated. An example is presented to show that the R-union of two internal cubic soft sets might not be internal. A sufficient condition is provided, which ensure that the R-union of two internal cubic soft sets is also internal. Moreover, some properties of cubic soft subalgebras of BCK/BCI-algebras based on a given parameter are discussed. PMID:24895652

  5. Hierarchical Na-doped cubic ZrO{sub 2} synthesis by a simple hydrothermal route and its application in biodiesel production

    SciTech Connect

    Lara-García, Hugo A.; Romero-Ibarra, Issis C.; Pfeiffer, Heriberto, E-mail: pfeiffer@iim.unam.mx

    Hierarchical growth of cubic ZrO{sub 2} phase was successfully synthesized via a simple hydrothermal process in the presence of different surfactants (cationic, non-ionic and anionic) and sodium hydroxide. The structural and microstructural characterizations of different ZrO{sub 2} powders were performed using various techniques, such as X-ray diffraction, transmission electron microscopy, N{sub 2} adsorption–desorption, scanning electron microscopy and infrared. Results indicated that sodium addition stabilized the cubic ZrO{sub 2} phase by a Na-doping process, independently of the surfactant used. In contrast, microstructural characteristics varied as a function of the surfactant and sodium presence. In addition, water vapor (H{sub 2}O) and carbonmore » dioxide (CO{sub 2}) sorption properties were evaluated on ZrO{sub 2} samples. Results evidenced that sample surface reactivity changed as a function of the sodium content. Finally, this surface reactivity was evaluated on the biodiesel transesterification reaction using the different synthesized samples, obtaining yields of 93%. - Graphical abstract: Hierarchical growth of cubic Na-ZrO{sub 2} phase was synthesized by hydrothermal processes in the presence of surfactants and sodium. Sodium addition stabilized the cubic phase by a Na-doping process, while the microstructural characteristics varied with surfactants. Finally, this surface reactivity was evaluated on the biodiesel transesterification reaction. - Highlights: • Cubic-ZrO{sub 2} phase was synthesized via a simple hydrothermal process. • ZrO{sub 2} structure and microstructures changed as a function of the surfactant. • Cubic-ZrO{sub 2} phase was evaluated on the biodiesel transesterification reaction.« less

  6. Longitudinal sound velocities, elastic anisotropy, and phase transition of high-pressure cubic H2O ice to 82 GPa

    NASA Astrophysics Data System (ADS)

    Kuriakose, Maju; Raetz, Samuel; Hu, Qing Miao; Nikitin, Sergey M.; Chigarev, Nikolay; Tournat, Vincent; Bulou, Alain; Lomonosov, Alexey; Djemia, Philippe; Gusev, Vitalyi E.; Zerr, Andreas

    2017-10-01

    Water ice is a molecular solid whose behavior under compression reveals the interplay of covalent bonding in molecules and forces acting between them. This interplay determines high-pressure phase transitions, the elastic and plastic behavior of H2O ice, which are the properties needed for modeling the convection and internal structure of the giant planets and moons of the solar system as well as H2O -rich exoplanets. We investigated experimentally and theoretically elastic properties and phase transitions of cubic H2O ice at room temperature and high pressures between 10 and 82 GPa. The time-domain Brillouin scattering (TDBS) technique was used to measure longitudinal sound velocities (VL) in polycrystalline ice samples compressed in a diamond anvil cell. The high spatial resolution of the TDBS technique revealed variations of VL caused by elastic anisotropy, allowing us to reliably determine the fastest and the slowest sound velocity in a single crystal of cubic H2O ice and thus to evaluate existing equations of state. Pressure dependencies of the single-crystal elastic moduli Ci j(P ) of cubic H2O ice to 82 GPa have been obtained which indicate its hardness and brittleness. These results were compared with ab initio calculations. It is suggested that the transition from molecular ice VII to ionic ice X occurs at much higher pressures than proposed earlier, probably above 80 GPa.

  7. Bond-order potential for magnetic body-centered-cubic iron and its transferability

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Shen; Mrovec, M.; Vitek, V.

    2016-06-01

    We derived and thoroughly tested a bond-order potential (BOP) for body-centered-cubic (bcc) magnetic iron that can be employed in atomistic calculations of a broad variety of crystal defects that control structural, mechanical, and thermodynamic properties of this technologically important metal. The constructed BOP reflects correctly the mixed nearly free electron and covalent bonding arising from the partially filled d band as well as the ferromagnetism that is actually responsible for the stability of the bcc structure of iron at low temperatures. The covalent part of the cohesive energy is determined within the tight-binding bond model with the Green's function of the Schrödinger equation determined using the method of continued fractions terminated at a sufficient level of the moments of the density of states. This makes the BOP an O (N ) method usable for very large numbers of particles. Only d d bonds are included explicitly, but the effect of s electrons on the covalent energy is included via their screening of the corresponding d d bonds. The magnetic part of the cohesive energy is included using the Stoner model of itinerant magnetism. The repulsive part of the cohesive energy is represented, as in any tight-binding scheme, by an empirical formula. Its functional form is physically justified by studies of the repulsion in face-centered-cubic (fcc) solid argon under very high pressure where the repulsion originates from overlapping s and p closed-shell electrons just as it does from closed-shell s electrons in transition metals squeezed into the ion core under the influence of the large covalent d bonding. Testing of the transferability of the developed BOP to environments significantly different from those of the ideal bcc lattice was carried out by studying crystal structures and magnetic states alternative to the ferromagnetic bcc lattice, vacancies, divacancies, self-interstitial atoms (SIAs), paths continuously transforming the bcc structure to

  8. X-Ray Crystallographic Studies of Electrostatic Effects in Cubic Insulin

    NASA Astrophysics Data System (ADS)

    Gursky, Olga

    1992-09-01

    Cubic crystals of bovine insulin were obtained at pH 9 from sodium phosphate buffer. Pathway dependence of crystallization was analysed and crystallization using controlled nucleation was developed. Crystal stability and solubility were surveyed by dialysing the crystals against salt solutions varying in salt composition and ionic strength. Crystals dialysed in 0.1-0.2M Li, Na, K, Rb, NH(4) or Tl salt solutions at pH 9 diffracted to beyond 2.8A, while crystals dialysed in Cs, Mg, Ca or La rapidly lost lattice order. Change in the solvent anion did not affect crystal stability. Electron density maps calculated from X-ray data to 2.8A resolution showed two specific cation binding sites which may be occupied by monovalent cations with ionic radii <1.5A. One site lies between insulin dimers near crystallographic two-fold axis without the close involvement of protein charged groups. Cation binding at this site is important for crystal stability. The other site is alternatively occupied by B10 His in one of its two conformations. At pH 7, the Tl occupancy at both sites was decreased, at pH 9.5 the Tl occupancy of the site near B10 His was increased. The structure was refined using the refined model of cubic porcine insulin and the X-ray data collected to 2A resolution from a bovine insulin crystal at pH 9, to R = 16.1% for the data extending from 10A to 2A. High -resolution data from crystals at pH 7 and pH 10 were collected and analysed. The weights of the two B10 His conformers and the cation occupancy near B10 vary in the pH range from 7 to 10, indicating histidine titration. Shifts in the positions of B1-B4 at pH 7 suggest titration of the B-chain terminal amino groups. Co-operative conformational changes in the surface charged residues A1, A4, B21, B29, B30 at pH 10.2 suggest titration of the A-chain terminal amino groups. In several crystals treated with dichloroethane, the syn-dichloroethane was bound in the niche across the two-fold axis connecting insulin

  9. Galilean-invariant preconditioned central-moment lattice Boltzmann method without cubic velocity errors for efficient steady flow simulations

    NASA Astrophysics Data System (ADS)

    Hajabdollahi, Farzaneh; Premnath, Kannan N.

    2018-05-01

    Lattice Boltzmann (LB) models used for the computation of fluid flows represented by the Navier-Stokes (NS) equations on standard lattices can lead to non-Galilean-invariant (GI) viscous stress involving cubic velocity errors. This arises from the dependence of their third-order diagonal moments on the first-order moments for standard lattices, and strategies have recently been introduced to restore Galilean invariance without such errors using a modified collision operator involving corrections to either the relaxation times or the moment equilibria. Convergence acceleration in the simulation of steady flows can be achieved by solving the preconditioned NS equations, which contain a preconditioning parameter that can be used to tune the effective sound speed, and thereby alleviating the numerical stiffness. In the present paper, we present a GI formulation of the preconditioned cascaded central-moment LB method used to solve the preconditioned NS equations, which is free of cubic velocity errors on a standard lattice, for steady flows. A Chapman-Enskog analysis reveals the structure of the spurious non-GI defect terms and it is demonstrated that the anisotropy of the resulting viscous stress is dependent on the preconditioning parameter, in addition to the fluid velocity. It is shown that partial correction to eliminate the cubic velocity defects is achieved by scaling the cubic velocity terms in the off-diagonal third-order moment equilibria with the square of the preconditioning parameter. Furthermore, we develop additional corrections based on the extended moment equilibria involving gradient terms with coefficients dependent locally on the fluid velocity and the preconditioning parameter. Such parameter dependent corrections eliminate the remaining truncation errors arising from the degeneracy of the diagonal third-order moments and fully restore Galilean invariance without cubic defects for the preconditioned LB scheme on a standard lattice. Several

  10. Optical Characterization of Light-Bending Mechanisms in Photonic Crystals with Simple Cubic Symmetry

    NASA Astrophysics Data System (ADS)

    Frey, Brian James

    For much of Earth's history, light was reputed to be an intangible, intractable, and transient quantity, but our understanding of light has since been revolutionized. The flow of electromagnetic energy through space can today be manipulated with a degree of precision and control once only dreamed of; rapidly developing technologies can create, guide, bend, and detect light to produce useful energy and information. One field where these technologies are most relevant is the field of light trapping, which concerns the harvesting of incident photons within a limited space by scattering, slowing, or otherwise prolonging and enhancing their interaction with matter. Over the past few decades, a class of materials, called photonic crystals (PCs), has emerged that is ideally suited for this task. This is because their wavelength-scale periodicity in one, two, or three dimensions can be designed to alter the dispersion relation and photonic density-of-states in a controllable manner. In this work, a TiO2 simple cubic PC with high dielectric contrast ( > 4:1) is fabricated with a lattice constant of 450 nm, and a newly discovered light-trapping mechanism is demonstrated, which bends light by 90 degrees and enhances optical absorption by one to two orders-of-magnitude over that in a reference film of the same thickness. It is shown that, for wavelengths from 450-950 nm, the achievable enhancement factor for this structure surpasses the theoretical limit of 4n2 derived under the assumption of ergodic system by multiple times. These results derive directly from the symmetry of the simple cubic lattice and are fundamental in nature, not depending on the material used or on the method of fabrication. The light trapping capability of these PCs has straight-forward applications that would be useful in a variety of areas where increased light-matter interaction is desirable, such as white-light generation, thin-film solar cells, photocatalytic pollutant degradation and hydrogen fuel

  11. Polyethylene Glycol-Mediated Synthesis of Cubic Iron Oxide Nanoparticles with High Heating Power

    NASA Astrophysics Data System (ADS)

    Iacovita, Cristian; Stiufiuc, Rares; Radu, Teodora; Florea, Adrian; Stiufiuc, Gabriela; Dutu, Alina; Mican, Sever; Tetean, Romulus; Lucaciu, Constantin M.

    2015-10-01

    Iron oxide magnetic nanoparticles (IOMNPs) have been successfully synthesized by means of solvothermal reduction method employing polyethylene glycol (PEG200) as a solvent. The as-synthesized IOMNPs are poly-dispersed, highly crystalline, and exhibit a cubic shape. The size of IOMNPs is strongly dependent on the reaction time and the ration between the amount of magnetic precursor and PEG200 used in the synthesis method. At low magnetic precursor/PEG200 ratio, the cubic IOMNPs coexist with polyhedral IOMNPs. The structure and morphology of the IOMNPs were thoroughly investigated by using a wide range of techniques: TEM, XRD, XPS, FTIR, and RAMAN. XPS analysis showed that the IOMNPs comprise a crystalline magnetite core bearing on the outer surface functional groups from PEG200 and acetate. The presence of physisorbed PEG200 on the IOMNP surface is faintly detected through FT-IR spectroscopy. The surface of IOMNPs undergoes oxidation into maghemite as proven by RAMAN spectroscopy and the occurrence of satellite peaks in the Fe2p XP spectra. The magnetic studies performed on powder show that the blocking temperature (TB) of IOMNPs is around 300 K displaying a coercive field in between 160 and 170 Oe. Below the TB, the field-cooled (FC) curves turn concave and describe a plateau indicating that strong magnetic dipole-dipole interactions are manifested in between IOMNPs. The specific absorption rate (SAR) values increase with decreasing nanoparticle concentrations for the IOMNPs dispersed in water. The SAR dependence on the applied magnetic field, studied up to magnetic field amplitude of 60 kA/m, presents a sigmoid shape with saturation values up to 1700 W/g. By dispersing the IOMNPs in PEG600 (liquid) and PEG1000 (solid), it was found that the SAR values decrease by 50 or 75 %, indicating that the Brownian friction within the solvent was the main contributor to the heating power of IOMNPs.

  12. Origin of the pressure-dependent Tc valley in superconducting simple cubic phosphorus

    NASA Astrophysics Data System (ADS)

    Wu, Xianxin; Jeschke, Harald O.; Di Sante, Domenico; von Rohr, Fabian O.; Cava, Robert J.; Thomale, Ronny

    2018-03-01

    Motivated by recent experiments, we investigate the pressure-dependent electronic structure and electron-phonon (e-ph) coupling for simple cubic phosphorus by performing first-principles calculations within the full potential linearized augmented plane-wave method. As a function of increasing pressure, our calculations show a valley feature in Tc, followed by an eventual decrease for higher pressures. We demonstrate that this Tc valley at low pressures is due to two nearby Lifshitz transitions, as we analyze the band-resolved contributions to the e-ph coupling. Below the first Lifshitz transition, the phonon hardening and shrinking of the γ Fermi surface with s -orbital character results in a decreased Tc with increasing pressure. After the second Lifshitz transition, the appearance of δ Fermi surfaces with 3 d -orbital character generate strong e-ph interband couplings in α δ and β δ channels, and hence lead to an increase of Tc. For higher pressures, the phonon hardening finally dominates, and Tc decreases again. Our study reveals that the intriguing Tc valley discovered in experiment can be attributed to Lifshitz transitions, while the plateau of Tc detected at intermediate pressures appears to be beyond the scope of our analysis. This strongly suggests that aside from e-ph coupling, electronic correlations along with plasmonic contributions may be relevant for simple cubic phosphorus. Our findings hint at the notion that increasing pressure can shift the low-energy orbital weight towards d character, and as such even trigger an enhanced importance of orbital-selective electronic correlations despite an increase of the overall bandwidth.

  13. Plasmon polaritons in cubic lattices of spherical metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lamowski, Simon; Mann, Charlie-Ray; Hellbach, Felicitas; Mariani, Eros; Weick, Guillaume; Pauly, Fabian

    2018-03-01

    We theoretically investigate plasmon polaritons in cubic lattices of spherical metallic nanoparticles. The nanoparticles, each supporting triply-degenerate localized surface plasmons, couple through the Coulomb dipole-dipole interaction, giving rise to collective plasmons that extend over the whole metamaterial. The latter hybridize with photons forming plasmon polaritons, which are the hybrid light-matter eigenmodes of the system. We derive general analytical expressions to evaluate both plasmon and plasmon-polariton dispersions and the corresponding eigenstates. These are obtained within a Hamiltonian formalism, which takes into account retardation effects in the dipolar interaction between the nanoparticles and considers the dielectric properties of the nanoparticles as well as their surrounding. Within this model we predict polaritonic splittings in the near-infrared to the visible range of the electromagnetic spectrum that depend on polarization, lattice symmetry, and wave-vector direction. Finally, we show that the predictions of our model are in excellent quantitative agreement with conventional finite-difference frequency-domain simulations, but with the advantages of analytical insight and significantly reduced computational cost.

  14. Characterizing vaccine-associated risks using cubic smoothing splines.

    PubMed

    Brookhart, M Alan; Walker, Alexander M; Lu, Yun; Polakowski, Laura; Li, Jie; Paeglow, Corrie; Puenpatom, Tosmai; Izurieta, Hector; Daniel, Gregory W

    2012-11-15

    Estimating risks associated with the use of childhood vaccines is challenging. The authors propose a new approach for studying short-term vaccine-related risks. The method uses a cubic smoothing spline to flexibly estimate the daily risk of an event after vaccination. The predicted incidence rates from the spline regression are then compared with the expected rates under a log-linear trend that excludes the days surrounding vaccination. The 2 models are then used to estimate the excess cumulative incidence attributable to the vaccination during the 42-day period after vaccination. Confidence intervals are obtained using a model-based bootstrap procedure. The method is applied to a study of known effects (positive controls) and expected noneffects (negative controls) of the measles, mumps, and rubella and measles, mumps, rubella, and varicella vaccines among children who are 1 year of age. The splines revealed well-resolved spikes in fever, rash, and adenopathy diagnoses, with the maximum incidence occurring between 9 and 11 days after vaccination. For the negative control outcomes, the spline model yielded a predicted incidence more consistent with the modeled day-specific risks, although there was evidence of increased risk of diagnoses of congenital malformations after vaccination, possibly because of a "provider visit effect." The proposed approach may be useful for vaccine safety surveillance.

  15. Partially chaotic orbits in a perturbed cubic force model

    NASA Astrophysics Data System (ADS)

    Muzzio, J. C.

    2017-11-01

    Three types of orbits are theoretically possible in autonomous Hamiltonian systems with 3 degrees of freedom: fully chaotic (they only obey the energy integral), partially chaotic (they obey an additional isolating integral besides energy) and regular (they obey two isolating integrals besides energy). The existence of partially chaotic orbits has been denied by several authors, however, arguing either that there is a sudden transition from regularity to full chaoticity or that a long enough follow-up of a supposedly partially chaotic orbit would reveal a fully chaotic nature. This situation needs clarification, because partially chaotic orbits might play a significant role in the process of chaotic diffusion. Here we use numerically computed Lyapunov exponents to explore the phase space of a perturbed three-dimensional cubic force toy model, and a generalization of the Poincaré maps to show that partially chaotic orbits are actually present in that model. They turn out to be double orbits joined by a bifurcation zone, which is the most likely source of their chaos, and they are encapsulated in regions of phase space bounded by regular orbits similar to each one of the components of the double orbit.

  16. Cubic-panorama image dataset analysis for storage and transmission

    NASA Astrophysics Data System (ADS)

    Salehi, Saeed; Dubois, Eric

    2013-02-01

    In this paper we address the problem of disparity estimation required for free navigation in acquired cubicpanorama image datasets. A client server based scheme is assumed and a remote user is assumed to seek information at each navigation step. The initial compression of such image datasets for storage as well as the transmission of the required data is addressed in this work. Regarding the compression of such data for storage, a fast method that uses properties of the epipolar geometry together with the cubic format of panoramas is used to estimate disparity vectors efficiently. Assuming the use of B pictures, the concept of forward and backward prediction is addressed. Regarding the transmission stage, a new disparity vector transcoding-like scheme is introduced and a frame conversion scenario is addressed. Details on how to pick the best vector among candidate disparity vectors is explained. In all the above mentioned cases, results are compared both visually through error images as well as using the objective measure of Peak Signal to Noise Ratio (PSNR) versus time.

  17. Random walks on cubic lattices with bond disorder

    SciTech Connect

    Ernst, M.H.; van Velthoven, P.F.J.

    1986-12-01

    The authors consider diffusive systems with static disorder, such as Lorentz gases, lattice percolation, ants in a labyrinth, termite problems, random resistor networks, etc. In the case of diluted randomness the authors can apply the methods of kinetic theory to obtain systematic expansions of dc and ac transport properties in powers of the impurity concentration c. The method is applied to a hopping model on a d-dimensional cubic lattice having two types of bonds with conductivity sigma and sigma/sub 0/ = 1, with concentrations c and 1-c, respectively. For the square lattice the authors explicitly calculate the diffusion coefficient D(c,sigma)more » as a function of c, to O(c/sup 2/) terms included for different ratios of the bond conductivity sigma. The probability of return at long times is given by P/sub 0/(t) approx. (4..pi..D(c,sigma)t)/sup -d/2/, which is determined by the diffusion coefficient of the disordered system.« less

  18. Twinning of cubic diamond explains reported nanodiamond polymorphs

    NASA Astrophysics Data System (ADS)

    Németh, Péter; Garvie, Laurence A. J.; Buseck, Peter R.

    2015-12-01

    The unusual physical properties and formation conditions attributed to h-, i-, m-, and n-nanodiamond polymorphs has resulted in their receiving much attention in the materials and planetary science literature. Their identification is based on diffraction features that are absent in ordinary cubic (c-) diamond (space group: Fd-3m). We show, using ultra-high-resolution transmission electron microscope (HRTEM) images of natural and synthetic nanodiamonds, that the diffraction features attributed to the reported polymorphs are consistent with c-diamond containing abundant defects. Combinations of {113} reflection and <011> rotation twins produce HRTEM images and d-spacings that match those attributed to h-, i-, and m-diamond. The diagnostic features of n-diamond in TEM images can arise from thickness effects of c-diamonds. Our data and interpretations strongly suggest that the reported nanodiamond polymorphs are in fact twinned c-diamond. We also report a new type of twin (<11> rotational), which can give rise to grains with dodecagonal symmetry. Our results show that twins are widespread in diamond nanocrystals. A high density of twins could strongly influence their applications.

  19. Cubic Interactions of Massless Bosonic Fields in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Mkrtchyan, Karapet

    2018-06-01

    In this Letter, we take the first step towards construction of nontrivial Lagrangian theories of higher-spin gravity in a metriclike formulation in three dimensions. The crucial feature of a metriclike formulation is that it is known how to incorporate matter interactions into the description. We derive a complete classification of cubic interactions for arbitrary triples s1 , s2 , s3 of massless fields, which are the building blocks of any interacting theory with massless higher spins. We find that there is, at most, one vertex for any given triple of spins in 3D (with one exception, s1=s2=s3=1 , which allows for two vertices). Remarkably, there are no vertices for spin values that do not respect strict triangle inequalities and contain at least two spins greater than one. This translates into selection rules for three-point functions of higher-spin conserved currents in two dimensional conformal field theory. Furthermore, universal coupling to gravity for any spin is derived. Last, we argue that this classification persists in arbitrary Einstein backgrounds.

  20. Tunable surface configuration of skyrmion lattices in cubic helimagnets

    NASA Astrophysics Data System (ADS)

    Wan, Xuejin; Hu, Yangfan; Wang, Biao

    2018-06-01

    In bulk helimagnets, the presence of magnetic skyrmion lattices is always accompanied by a periodic stress field due to the intrinsic magnetoelastic coupling. The release of this nontrivial stress field at the surface causes a periodic displacement field, which characterizes a novel particle-like property of skyrmion: its surface configuration. Here, we derive the analytical solution of this displacement field for semi-infinite cubic helimagnet with the skyrmion magnetization approximated by the triple-Q representation. For MnSi, we show that the skyrmion lattices have a bumpy surface configuration characterized by periodically arranged peaks with a characteristic height of about 10‑13 m. The pattern of the peaks can be controlled by varying the strength of the applied magnetic field. Moreover, we prove that the surface configuration varies together with the motion and deformation of the skyrmion lattices. As a result, the surface configuration can be tuned by application of electric current, mechanical loads, as well as any other effective external fields for skyrmion lattices.

  1. Dependence of Internal Crystal Structures of InAs Nanowires on Electrical Characteristics of Field Effect Transistors

    NASA Astrophysics Data System (ADS)

    Han, Sangmoon; Choi, Ilgyu; Lee, Kwanjae; Lee, Cheul-Ro; Lee, Seoung-Ki; Hwang, Jeongwoo; Chung, Dong Chul; Kim, Jin Soo

    2018-02-01

    We report on the dependence of internal crystal structures on the electrical properties of a catalyst-free and undoped InAs nanowire (NW) formed on a Si(111) substrate by metal-organic chemical vapor deposition. Cross-sectional transmission electron microscopy images, obtained from four different positions of a single InAs NW, indicated that the wurtzite (WZ) structure with stacking faults was observed mostly in the bottom region of the NW. Vertically along the InAs NW, the amount of stacking faults decreased and a zinc-blende (ZB) structure was observed. At the top of the NW, the ZB structure was prominently observed. The resistance and resistivity of the top region of the undoped InAs NW with the ZB structure were measured to be 121.5 kΩ and 0.19 Ω cm, respectively, which are smaller than those of the bottom region with the WZ structure, i.e., 251.8 kΩ and 0.39 Ω cm, respectively. The reduction in the resistance of the top region of the NW is attributed to the improvement in the crystal quality and the change in the ZB crystal structure. For a field effect transistor with an undoped InAs NW channel, the drain current versus drain-source voltage characteristic curves under various negative gate-source voltages were successfully observed at room temperature.

  2. Eliminating cubic terms in the pseudopotential lattice Boltzmann model for multiphase flow

    NASA Astrophysics Data System (ADS)

    Huang, Rongzong; Wu, Huiying; Adams, Nikolaus A.

    2018-05-01

    It is well recognized that there exist additional cubic terms of velocity in the lattice Boltzmann (LB) model based on the standard lattice. In this work, elimination of these cubic terms in the pseudopotential LB model for multiphase flow is investigated, where the force term and density gradient are considered. By retaining high-order (≥3 ) Hermite terms in the equilibrium distribution function and the discrete force term, as well as introducing correction terms in the LB equation, the additional cubic terms of velocity are entirely eliminated. With this technique, the computational simplicity of the pseudopotential LB model is well maintained. Numerical tests, including stationary and moving flat and circular interface problems, are carried out to show the effects of such cubic terms on the simulation of multiphase flow. It is found that the elimination of additional cubic terms is beneficial to reduce the numerical error, especially when the velocity is relatively large. Numerical results also suggest that these cubic terms mainly take effect in the interfacial region and that the density-gradient-related cubic terms are more important than the other cubic terms for multiphase flow.

  3. The Normals to a Parabola and the Real Roots of a Cubic

    ERIC Educational Resources Information Center

    Bains, Majinder S.; Thoo, J. B.

    2007-01-01

    The geometric problem of finding the number of normals to the parabola y = x[squared] through a given point is equivalent to the algebraic problem of finding the number of distinct real roots of a cubic equation. Apollonius solved the former problem, and Cardano gave a solution to the latter. The two problems are bridged by Neil's (semi-cubical)…

  4. Extending a Property of Cubic Polynomials to Higher-Degree Polynomials

    ERIC Educational Resources Information Center

    Miller, David A.; Moseley, James

    2012-01-01

    In this paper, the authors examine a property that holds for all cubic polynomials given two zeros. This property is discovered after reviewing a variety of ways to determine the equation of a cubic polynomial given specific conditions through algebra and calculus. At the end of the article, they will connect the property to a very famous method…

  5. Cubic-foot tree volume equations and tables for western juniper.

    Treesearch

    Judith M. Chittester; Colin D. MacLean

    1984-01-01

    This note presents cubic-foot volume equations and tables for western juniper (Juniperus occidentalis Hook. ). Total cubicfoot volume (ground to tip, excluding all branches (CVTS)) is expressed as a function of diameter at breast height (DBH) and total height. Utilizable cubic-foot volume (top of 12-inch stump to a 4-inch top, excluding all...

  6. Some Curious Properties and Loci Problems Associated with Cubics and Other Polynomials

    ERIC Educational Resources Information Center

    de Alwis, Amal

    2012-01-01

    The article begins with a well-known property regarding tangent lines to a cubic polynomial that has distinct, real zeros. We were then able to generalize this property to any polynomial with distinct, real zeros. We also considered a certain family of cubics with two fixed zeros and one variable zero, and explored the loci of centroids of…

  7. Monoclinic to cubic phase transformation and photoluminescence properties in Hf1-xSmxO2 (x = 0-0.12) nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Rai, S. B.; Rath, Chandana

    2018-02-01

    Bulk hafnium oxide (HfO2) exhibits the monoclinic phase at room temperature which transforms to tetragonal and cubic phases at 1700 and 2600 °C, respectively, under ambient conditions. For the first time, we observe a monoclinic to stable cubic phase transformation at room temperature in nanoparticles of HfO2 by incorporating Sm3+ ions up to 12 at. %. Although the monoclinic structure is retained at 1 at. % of Sm, a mixed phase of monoclinic and cubic is observed at intermediate Sm concentration (5-11 at. %). Le-Bail profile refinement of X-ray diffraction patterns confirms the monoclinic to cubic phase transformation with increasing Sm3+ ion concentration. While the significant difference in ionic radii of Sm3+ and Hf4+ ion induces strain in the lattice above 9 at. %, a lower valency of Sm produces oxygen vacancy leading to 8-fold coordination with Sm3+ ion and stabilizes the cubic phase at room temperature. Not only the particle size obtained from transmission electron micrograph (TEM) matches well with the size calculated from the Williamson-Hall plot, the lattice spacing estimated from high resolution TEM also confirms the monoclinic and cubic phases in HfO2 and Hf0.88Sm0.12O2, respectively. Apart from phase transformation induced by Sm3+ ions, photoluminescence studies demonstrate an excellent emission in near green and red regions in Hf1-xSmxO2 nanoparticles. A schematic energy band diagram has been proposed based on the excitation and emission processes involved in HfO2 and Hf0.99Sm0.01O2 nanoparticles.

  8. Growth of InAs/InP core-shell nanowires with various pure crystal structures.

    PubMed

    Gorji Ghalamestani, Sepideh; Heurlin, Magnus; Wernersson, Lars-Erik; Lehmann, Sebastian; Dick, Kimberly A

    2012-07-20

    We have studied the epitaxial growth of an InP shell on various pure InAs core nanowire crystal structures by metal-organic vapor phase epitaxy. The InP shell is grown on wurtzite (WZ), zinc-blende (ZB), and {111}- and {110}-type faceted ZB twin-plane superlattice (TSL) structures by tuning the InP shell growth parameters and controlling the shell thickness. The growth results, particularly on the WZ nanowires, show that homogeneous InP shell growth is promoted at relatively high temperatures (∼500 °C), but that the InAs nanowires decompose under the applied conditions. In order to protect the InAs core nanowires from decomposition, a short protective InP segment is first grown axially at lower temperatures (420-460 °C), before commencing the radial growth at a higher temperature. Further studies revealed that the InP radial growth rate is significantly higher on the ZB and TSL nanowires compared to WZ counterparts, and shows a strong anisotropy in polar directions. As a result, thin shells were obtained during low temperature InP growth on ZB structures, while a higher temperature was used to obtain uniform thick shells. In addition, a schematic growth model is suggested to explain the basic processes occurring during the shell growth on the TSL crystal structures.

  9. ZnS thin films deposition by thermal evaporation for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Benyahia, K.; Benhaya, A.; Aida, M. S.

    2015-10-01

    ZnS thin films were deposited on glass substrates by thermal evaporation from millimetric crystals of ZnS. The structural, compositional and optical properties of the films are studied by X-ray diffraction, SEM microscopy, and UV-VIS spectroscopy. The obtained results show that the films are pin hole free and have a cubic zinc blend structure with (111) preferential orientation. The estimated optical band gap is 3.5 eV and the refractive index in the visible wavelength ranges from 2.5 to 1.8. The good cubic structure obtained for thin layers enabled us to conclude that the prepared ZnS films may have application as buffer layer in replacement of the harmful CdS in CIGS thin film solar cells or as an antireflection coating in silicon-based solar cells.

  10. Morphology-dependent low-frequency Raman scattering in ultrathin spherical, cubic, and cuboid SnO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Liu, L. Z.; Wu, X. L.; Li, T. H.; Xiong, S. J.; Chen, H. T.; Chu, Paul K.

    2011-12-01

    Nanoscale spherical, cubic, and cuboid SnO2 nanocrystals (NCs) are used to investigate morphology-dependent low-frequency Raman scattering. A double-peak structure in which the linewidths and energy separation between two subpeaks decrease with increasing sizes of cuboid NCs is observed and attributed to the surface acoustic phonon modes confined in three dimensional directions and determined by the surface/interface compositions. The decrease in energy separation is due to weaker coupling between the acoustic modes in different vibration directions. Our experimental and theoretical studies clearly disclose the morphology-dependent surface vibrational behavior in self-assembled NCs.

  11. Deposition of Cubic AlN Films on MgO (100) Substrates by Laser Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Mo, Z. K.; Yang, W. J.; Weng, Y.; Fu, Y. C.; He, H.; Shen, X. M.

    2017-12-01

    Cubic AlN (c-AlN) films were deposited on MgO (100) substrates by laser molecular beam epitaxy (LMBE) technique. The crystal structure and surface morphology of deposited films with various laser pulse energy and substrate temperature were investigated. The results indicate that c-AlN films exhibit the (200) preferred orientation, showing a good epitaxial relationship with the substrate. The surface roughness of c-AlN films increases when the laser pulse energy and substrate temperature increase. The film grown at laser pulse energy of 150 mJ and substrate temperature of 700 °C shows the best crystalline quality and relatively smooth surface.

  12. Consolidation of cubic and hexagonal boron nitride composites

    DOE PAGES

    Du Frane, W. L.; Cervantes, O.; Ellsworth, G. F.; ...

    2015-12-08

    When we Consolidate cubic boron nitride (cBN) it typically requires either a matrix of metal bearing materials that are undesirable for certain applications, or very high pressures within the cBN phase stability field that are prohibitive to manufacturing size and cost. We present new methodology for consolidating high stiffness cBN composites within a hexagonal boron nitride (hBN) matrix (15–25 vol%) with the aid of a binder phase (0–6 vol%) at moderate pressures (0.5–1.0 GPa) and temperatures (900–1300 °C). The composites are demonstrated to be highly tailorable with a range of compositions and resulting physical/mechanical properties. Ultrasonic measurements indicate that inmore » some cases these composites have elastic mechanical properties that exceed those of the highest strength steel alloys. Moreover, two methods were identified to prevent phase transformation of the metastable cBN phase into hBN during consolidation: 1. removal of hydrocarbons, and 2. increased cBN particle size. Lithium tetraborate worked better as a binder than boron oxide, aiding consolidation without enhancing cBN to hBN phase transformation kinetics. These powder mixtures consolidated within error of their full theoretical mass densities at 1 GPa, and had only slightly lower densities at 0.5 GPa. This shows potential for consolidation of these composites into larger parts, in a variety of shapes, at even lower pressures using more conventional manufacturing methods, such as hot-pressing.« less

  13. Three-Dimensional Random Voronoi Tessellations: From Cubic Crystal Lattices to Poisson Point Processes

    NASA Astrophysics Data System (ADS)

    Lucarini, Valerio

    2009-01-01

    We perturb the simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) structures with a spatial Gaussian noise whose adimensional strength is controlled by the parameter α and analyze the statistical properties of the cells of the resulting Voronoi tessellations using an ensemble approach. We concentrate on topological properties of the cells, such as the number of faces, and on metric properties of the cells, such as the area, volume and the isoperimetric quotient. The topological properties of the Voronoi tessellations of the SC and FCC crystals are unstable with respect to the introduction of noise, because the corresponding polyhedra are geometrically degenerate, whereas the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. Whereas the average volume of the cells is the intensity parameter of the system and does not depend on the noise, the average area of the cells has a rather interesting behavior with respect to noise intensity. For weak noise, the mean area of the Voronoi tessellations corresponding to perturbed BCC and FCC perturbed increases quadratically with the noise intensity. In the case of perturbed SCC crystals, there is an optimal amount of noise that minimizes the mean area of the cells. Already for a moderate amount of noise ( α>0.5), the statistical properties of the three perturbed tessellations are indistinguishable, and for intense noise ( α>2), results converge to those of the Poisson-Voronoi tessellation. Notably, 2-parameter gamma distributions constitute an excellent model for the empirical pdf of all considered topological and metric properties. By analyzing jointly the statistical properties of the area and of the volume of the cells, we discover that also the cells shape, measured by the isoperimetric quotient, fluctuates. The Voronoi tessellations of the BCC and of the FCC structures result to be local maxima for the isoperimetric quotient among space

  14. Thermal stability of ‘metastable’ cubic tin sulfide and its relevance to applications

    NASA Astrophysics Data System (ADS)

    González Flores, Victoria Elena; Nair, M. T. S.; Nair, P. K.

    2018-07-01

    Recently identified tin sulfide polymorph with a cubic crystalline structure (SnS-CUB) and a large direct bandgap (1.74 eV) is described in theoretical studies as ‘metastable’. This implies that it is less stable than the orthorhombic polymorph (SnS-ORT) with indirect bandgap (1.1 eV). We find that SnS-CUB thin film (400 nm in thickness) and powder prepared by a chemical deposition method remain structurally stable, with 64 atoms in a large cubic unit cell of lattice constant 11.6 Å, even after they have been heated at 500 °C. Upon such heating the optical bandgap (E g ) of thin films decreased from 1.76 eV—direct gap in as-prepared thin films to 1.6 eV, and the electrical conductivity (σ) reduced from 3 × 10‑7 to 1 × 10‑7 Ω‑1 cm‑1. During prolonged heating at 500 °C for 30 min, some structural changes do happen: there is a significant preferential orientation of (410) crystalline planes of SnS-CUB parallel to substrate surface, and/or of (400) planes of SnS-ORT with identical inter-planar distance of 2.816 Å. Consequently, E g was 1.24 eV and σ, 10‑3 Ω‑1 cm‑1 (p-type). We also found that at a reduced pressure of 30 Torr nitrogen, such changes in SnS-CUB set-in at a temperature of 435 °C. Grazing incidence x-ray diffraction suggested that this transformation initiated at the glass/film interface. The results on the stability and ‘meta-stability’ of SnS-CUB offer guidelines toward its applications in photovoltaics and in nonlinear optical devices which depends on its lack of center of symmetry persisting at higher operating temperatures.

  15. Theoretical investigation of the structural stabilities, optoelectronic properties and thermodynamic characteristics of GaPxSb1-x ternary alloys

    NASA Astrophysics Data System (ADS)

    Oumelaz, F.; Nemiri, O.; Boumaza, A.; Ghemid, S.; Meradji, H.; Bin Omran, S.; El Haj Hassan, F.; Rai, D. P.; Khenata, R.

    2018-06-01

    In this theoretical study, we have investigated the structural, phase transition, electronic, thermodynamic and optical properties of GaPxSb1-x ternary alloys. Our calculations are performed with the WIEN2k code based on density functional theory using the full-potential linearized augmented plane wave method. For the electron exchange-correlation potential, a generalized gradient approximation within Wu-Cohen scheme is considered. The recently developed Tran-Blaha modified Becke-Johnson potential has also been used to improve the underestimated band gap. The structural properties, including the lattice constants, the bulk moduli and their pressure derivatives are in very good agreement with the available experimental data and theoretical results. Several structural phase transitions were studied here to establish the stable structure and to predict the phase transition under hydrostatic pressure. The computed transition pressure (Pt) of the material of our interest from the zinc blende (B3) to the rock salt (B1) phase has been determined and found to agree well with the experimental and theoretical data. The calculated band structure shows that GaSb binary compound and the ternary alloys are direct band gap semiconductors. Optical parameters such as the dielectric constants and the refractive indices are calculated and analyzed. The thermodynamic results are also interpreted and analyzed.

  16. Magnetism and the spin state in cubic perovskite CaCo O 3 synthesized under high pressure

    SciTech Connect

    Xia, Hailiang; Dai, Jianhong; Xu, Yuanji

    Cubic SrCo O 3 with an intermediate spin state can only be stabilized by high pressure and high temperature (HPHT) treatment. It is metallic and ferromagnetic with the highest Curie temperature of the transition-metal perovskites. The chemical substitution by Ca on Sr sites would normally lower crystal symmetry from cubic to orthorhombic as seen in the perovskite family of Ca M O 3 ( M = M 4 + of transition metals, G e 4 + , S n 4 + , and Z r 4 +) at room temperature. This structural change narrows the bandwidth, so as to furthermore » enhance the Curie temperature as the crossover to the localized electronic state is approached. Here, we report a successful synthesis of the perovskite CaCo O 3 with a HPHT treatment. Surprisingly, CaCo O 3 crystallizes in a simple cubic structure that remains stable down to 20 K, the lowest temperature in the structural study. The new perovskite has been thoroughly characterized by a suite of measurements including transport, magnetization, specific heat, thermal conductivity, and thermoelectric power. Furthermore, metallic CaCo O 3 undergoes two successive magnetic transitions at 86 K and 54 K as temperature decreases. The magnetization at 5 K is compatible with the intermediate spin state t 4 e 1 of C o 4 + at the octahedral site. The thermal expansion of the Co-O bond length indicates that the population of high spin state t 3 e 2 increases for T > 100 K . The shortest Co-O bond length in cubic CaCo O 3 is responsible for delocalizing electrons in the π * -band and itinerant-electron ferromagnetism at T < 54 K . In our comprehensive comparison between SrCo O 3 and CaCo O 3 and the justification of their physical properties by first-principles calculation were made in this report. Partially filled π * and σ * bands would make CaCo O 3 suitable to study the Hund's coupling effect in a metal.« less

  17. Magnetism and the spin state in cubic perovskite CaCo O 3 synthesized under high pressure

    DOE PAGES

    Xia, Hailiang; Dai, Jianhong; Xu, Yuanji; ...

    2017-07-17

    Cubic SrCo O 3 with an intermediate spin state can only be stabilized by high pressure and high temperature (HPHT) treatment. It is metallic and ferromagnetic with the highest Curie temperature of the transition-metal perovskites. The chemical substitution by Ca on Sr sites would normally lower crystal symmetry from cubic to orthorhombic as seen in the perovskite family of Ca M O 3 ( M = M 4 + of transition metals, G e 4 + , S n 4 + , and Z r 4 +) at room temperature. This structural change narrows the bandwidth, so as to furthermore » enhance the Curie temperature as the crossover to the localized electronic state is approached. Here, we report a successful synthesis of the perovskite CaCo O 3 with a HPHT treatment. Surprisingly, CaCo O 3 crystallizes in a simple cubic structure that remains stable down to 20 K, the lowest temperature in the structural study. The new perovskite has been thoroughly characterized by a suite of measurements including transport, magnetization, specific heat, thermal conductivity, and thermoelectric power. Furthermore, metallic CaCo O 3 undergoes two successive magnetic transitions at 86 K and 54 K as temperature decreases. The magnetization at 5 K is compatible with the intermediate spin state t 4 e 1 of C o 4 + at the octahedral site. The thermal expansion of the Co-O bond length indicates that the population of high spin state t 3 e 2 increases for T > 100 K . The shortest Co-O bond length in cubic CaCo O 3 is responsible for delocalizing electrons in the π * -band and itinerant-electron ferromagnetism at T < 54 K . In our comprehensive comparison between SrCo O 3 and CaCo O 3 and the justification of their physical properties by first-principles calculation were made in this report. Partially filled π * and σ * bands would make CaCo O 3 suitable to study the Hund's coupling effect in a metal.« less

  18. Magnetism and the spin state in cubic perovskite CaCo O3 synthesized under high pressure

    NASA Astrophysics Data System (ADS)

    Xia, Hailiang; Dai, Jianhong; Xu, Yuanji; Yin, Yunyu; Wang, Xiao; Liu, Zhehong; Liu, Min; McGuire, Michael A.; Li, Xiang; Li, Zongyao; Jin, Changqing; Yang, Yifeng; Zhou, Jianshi; Long, Youwen

    2017-07-01

    Cubic SrCo O3 with an intermediate spin state can only be stabilized by high pressure and high temperature (HPHT) treatment. It is metallic and ferromagnetic with the highest Curie temperature of the transition-metal perovskites. The chemical substitution by Ca on Sr sites would normally lower crystal symmetry from cubic to orthorhombic as seen in the perovskite family of Ca M O3 (M =M4 + of transition metals, G e4 + , S n4 + , and Z r4 + ) at room temperature. This structural change narrows the bandwidth, so as to further enhance the Curie temperature as the crossover to the localized electronic state is approached. We report a successful synthesis of the perovskite CaCo O3 with a HPHT treatment. Surprisingly, CaCo O3 crystallizes in a simple cubic structure that remains stable down to 20 K, the lowest temperature in the structural study. The new perovskite has been thoroughly characterized by a suite of measurements including transport, magnetization, specific heat, thermal conductivity, and thermoelectric power. Metallic CaCo O3 undergoes two successive magnetic transitions at 86 K and 54 K as temperature decreases. The magnetization at 5 K is compatible with the intermediate spin state t4e1 of C o4 + at the octahedral site. The thermal expansion of the Co-O bond length indicates that the population of high spin state t3e2 increases for T >100 K . The shortest Co-O bond length in cubic CaCo O3 is responsible for delocalizing electrons in the π*-band and itinerant-electron ferromagnetism at T <54 K . A comprehensive comparison between SrCo O3 and CaCo O3 and the justification of their physical properties by first-principles calculation have also been made in this report. Partially filled π* and σ* bands would make CaCo O3 suitable to study the Hund's coupling effect in a metal.

  19. Effects of Fetch on Turbulent Flow and Pollutant Dispersion Within a Cubical Canopy

    NASA Astrophysics Data System (ADS)

    Michioka, Takenobu; Takimoto, Hiroshi; Ono, Hiroki; Sato, Ayumu

    2018-03-01

    The effects of fetch on turbulent flow and pollutant dispersion within a canopy formed by regularly-spaced cubical objects is investigated using large-eddy simulation. Six tracer gases are simultaneously released from a ground-level continuous pollutant line source placed parallel to the spanwise axis at the first, second, third, fifth, seventh and tenth rows. Beyond the seventh row, the standard deviations of the fluctuations in the velocity components and the Reynolds shear stresses reach nearly equivalent states. Low-frequency turbulent flow is generated near the bottom surface around the first row and develops as the fetch increases. The turbulent flow eventually passes through the canopy at a near-constant interval. The mean concentration within the canopy reaches a near-constant value beyond the seventh row. In the first and second rows, narrow coherent structures frequently affect the pollutant escape from the top of the canopy. These structures increase in width as the fetch increases, and they mainly affect the removal of pollutants from the canopy.

  20. Characterization and In Vitro Permeation Study of Cubic Liquid Crystal Containing Sinomenine Hydrochloride.

    PubMed

    Chu, Xiaoqin; Li, Qian; Gui, Shuangying; Li, Zhengguang; Cao, Jiaojiao; Jiang, Jianqin

    2018-05-08

    This study developed a new transdermal delivery system for the improved delivery of sinomenine hydrochloride (SH). The delivery system utilized the advantages of lyotropic liquid crystals (LLC) creating an adaptable system that offers a variety of options for the field of transdermal delivery. The formulation was prepared, characterized, and evaluated for its skin penetration in vitro. In the study, the appearance of samples was characterized by visual observation, and these LLC gels were colorless and transparent. Polarizing light microscopy (PLM) and small-angle X-ray diffraction (SAXS) were used to analyze the internal structures of gels, and the gels displayed a cubic double-diamond (P n 3 m ) internal structure with a dark field of vision. The Franze diffusion cell was used to evaluate its skin penetration. There were several factors which might influence the skin penetration of drugs, such as drug loading, water content, and the layer spacing of the LLC. In our case, drug concentration gradient played a more powerful role. The result of in vitro permeation studies demonstrated that the drug concentration was higher; the cumulative osmotic quantity of SH (Q) was greater. Therefore, the system was a promising formulation for successful percutaneous delivery of SH through the skin.

  1. Radiation response of cubic mesoporous silicate and borosilicate thin films

    NASA Astrophysics Data System (ADS)

    Manzini, Ayelén; Alurralde, Martín; Luca, Vittorio

    2018-01-01

    The radiation response has been studied of cubic mesoporous silicate and borosilicate thin films having different boron contents prepared using the block copolymer template Brij 58 and the dip coating technique. The degree of pore ordering of the films was analysed using low-angle X-ray diffraction and film thickness measured by X-ray reflectivity. For films calcined at 350 °C, the incorporation of boron resulted in a reproducible oscillatory variation in the d-spacing and intensity of the primary reflection as a function of boron content. A clear peak was observed in the d-spacing at 5-10 mol% boron incorporation. For borosilicate films of a given composition an overall suppression of d-spacing was observed as a function of aging time relative to films that did not contain boron. This was ascribed to a slow condensation process. The films were irradiated in pile with neutrons and with iodine ions at energies of 180 keV and 70 MeV. Neutron irradiation of the silicate thin films for periods up to 30 days and aged for 400 days resulted in little reduction in either d-spacing or intensity of the primary low-angle X-ray reflection indicating that the films retained their mesopore ordering. In contrast borosilicate films for which the B (n, α) reaction was expected to result in enhanced displacement damage showed much larger variations in X-ray parameters. For these films short irradiation times resulted in a reduction of the d-spacing and intensity of the primary reflections considerably beyond that observed through aging. It is concluded that prolonged neutron irradiation and internal α irradiation have only a small, although measurable, impact on mesoporous borosilicate thin films increasing the degree of condensation and increasing unit cell contraction. When these borosilicate films were irradiated with iodine ions, more profound changes occurred. The pore ordering of the films was significantly degraded when low energy ions were used. In some cases the degree

  2. Collapse of ultrashort spatiotemporal pulses described by the cubic generalized Kadomtsev-Petviashvili equation

    SciTech Connect

    Leblond, Herve; Kremer, David; Mihalache, Dumitru

    2010-03-15

    By using a reductive perturbation method, we derive from Maxwell-Bloch equations a cubic generalized Kadomtsev-Petviashvili equation for ultrashort spatiotemporal optical pulse propagation in cubic (Kerr-like) media without the use of the slowly varying envelope approximation. We calculate the collapse threshold for the propagation of few-cycle spatiotemporal pulses described by the generic cubic generalized Kadomtsev-Petviashvili equation by a direct numerical method and compare it to analytic results based on a rigorous virial theorem. Besides, typical evolution of the spectrum (integrated over the transverse spatial coordinate) is given and a strongly asymmetric spectral broadening of ultrashort spatiotemporal pulses during collapse is evidenced.

  3. High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates.

    PubMed

    Jin, C-Q; Zhou, J-S; Goodenough, J B; Liu, Q Q; Zhao, J G; Yang, L X; Yu, Y; Yu, R C; Katsura, T; Shatskiy, A; Ito, E

    2008-05-20

    The cubic perovskite BaRuO(3) has been synthesized under 18 GPa at 1,000 degrees C. Rietveld refinement indicates that the new compound has a stretched Ru-O bond. The cubic perovskite BaRuO(3) remains metallic to 4 K and exhibits a ferromagnetic transition at T(c) = 60 K, which is significantly lower than the T(c) approximately = 160 K for SrRuO(3). The availability of cubic perovskite BaRuO(3) not only makes it possible to map out the evolution of magnetism in the whole series of ARuO(3) (A = Ca, Sr, Ba) as a function of the ionic size of the A-site r(A,) but also completes the polytypes of BaRuO(3). Extension of the plot of T(c) versus r(A) in perovskites ARuO(3) (A = Ca, Sr, Ba) shows that T(c) does not increase as the cubic structure is approached, but has a maximum for orthorhombic SrRuO(3). Suppressing T(c) by Ca and Ba doping in SrRuO(3) is distinguished by sharply different magnetic susceptibilities chi(T) of the paramagnetic phase. This distinction has been interpreted in the context of a Griffiths' phase on the (Ca Sr)RuO(3) side and bandwidth broadening on the (Sr,Ba)RuO(3) side.

  4. High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates

    PubMed Central

    Jin, C.-Q.; Zhou, J.-S.; Goodenough, J. B.; Liu, Q. Q.; Zhao, J. G.; Yang, L. X.; Yu, Y.; Yu, R. C.; Katsura, T.; Shatskiy, A.; Ito, E.

    2008-01-01

    The cubic perovskite BaRuO3 has been synthesized under 18 GPa at 1,000°C. Rietveld refinement indicates that the new compound has a stretched Ru–O bond. The cubic perovskite BaRuO3 remains metallic to 4 K and exhibits a ferromagnetic transition at Tc = 60 K, which is significantly lower than the Tc ≈ 160 K for SrRuO3. The availability of cubic perovskite BaRuO3 not only makes it possible to map out the evolution of magnetism in the whole series of ARuO3 (A = Ca, Sr, Ba) as a function of the ionic size of the A-site rA, but also completes the polytypes of BaRuO3. Extension of the plot of Tc versus rA in perovskites ARuO3 (A = Ca, Sr, Ba) shows that Tc does not increase as the cubic structure is approached, but has a maximum for orthorhombic SrRuO3. Suppressing Tc by Ca and Ba doping in SrRuO3 is distinguished by sharply different magnetic susceptibilities χ(T) of the paramagnetic phase. This distinction has been interpreted in the context of a Griffiths' phase on the (Ca Sr)RuO3 side and bandwidth broadening on the (Sr,Ba)RuO3 side. PMID:18480262

  5. Effect of Lipid-Based Nanostructure on Protein Encapsulation within the Membrane Bilayer Mimetic Lipidic Cubic Phase Using Transmembrane and Lipo-proteins from the Beta-Barrel Assembly Machinery.

    PubMed

    van 't Hag, Leonie; Shen, Hsin-Hui; Lin, Tsung-Wu; Gras, Sally L; Drummond, Calum J; Conn, Charlotte E

    2016-11-29

    A fundamental understanding of the effect of amphiphilic protein encapsulation on the nanostructure of the bicontinuous cubic phase is crucial to progressing biomedical and biological applications of these hybrid protein-lipid materials, including as drug delivery vehicles, as biosensors, biofuel cells and for in meso crystallization. The relationship between the lipid nanomaterial and the encapsulated protein, however, remains poorly understood. In this study, we investigated the effect of incorporating the five transmembrane and lipo-proteins which make up the β-barrel assembly machinery from Gram-negative bacteria within a series of bicontinuous cubic phases. The transmembrane β-barrel BamA caused an increase in lattice parameter of the cubic phase upon encapsulation. By contrast, the mainly hydrophilic lipo-proteins BamB-E caused the cubic phase lattice parameters to decrease, despite their large size relative to the diameter of the cubic phase water channels. Analysis of the primary amino acid sequence was used to rationalize this effect, based on specific interactions between aromatic amino acids within the proteins and the polar-apolar interface. Other factors that were found to have an effect were lateral bilayer pressure and rigidity within the lipid bilayer, water channel diameter, and size and structure of the lipo-proteins. The data presented suggest that hydrophilic bioactive molecules can be selectively encapsulated within the cubic phase by using a lipid anchor or aromatic amino acids, for drug delivery or biosensing applications.

  6. Doping dependent crystal structures and optoelectronic properties of n-type CdSe:Ga nanowries.

    PubMed

    Hu, Zhizhong; Zhang, Xiujuan; Xie, Chao; Wu, Chunyan; Zhang, Xiaozhen; Bian, Liang; Wu, Yiming; Wang, Li; Zhang, Yuping; Jie, Jiansheng

    2011-11-01

    Although CdSe nanostructures possess excellent electrical and optical properties, efforts to make nano-optoelectronic devices from CdSe nanostructures have been hampered by the lack of efficient methods to rationally control their structural and electrical characteristics. Here, we report CdSe nanowires (NWs) with doping dependent crystal structures and optoelectronic properties by using gallium (Ga) as the efficient n-type dopant via a simple thermal co-evaporation method. The phase change of CdSe NWs from wurtzite to zinc blende with increased doping level is observed. Systematical measurements on the transport properties of the CdSe:Ga NWs reveal that the NW conductivity could be tuned in a wide range of near nine orders of magnitude by adjusting the Ga doping level and a high electron concentration up to 4.5 × 10(19) cm(-3) is obtained. Moreover, high-performance top-gate field-effect transistors are constructed based on the individual CdSe:Ga NWs by using high-κ HfO(2) as the gate dielectric. The great potential of the CdSe:Ga NWs as high-sensitive photodetectors and nanoscale light emitters is also exploited, revealing the promising applications of the CdSe:Ga NWs in new-generation nano-optoelectronics.

  7. Preparation and Delivery of Protein Microcrystals in Lipidic Cubic Phase for Serial Femtosecond Crystallography.

    PubMed

    Ishchenko, Andrii; Cherezov, Vadim; Liu, Wei

    2016-09-20

    Membrane proteins (MPs) are essential components of cellular membranes and primary drug targets. Rational drug design relies on precise structural information, typically obtained by crystallography; however MPs are difficult to crystallize. Recent progress in MP structural determination has benefited greatly from the development of lipidic cubic phase (LCP) crystallization methods, which typically yield well-diffracting, but often small crystals that suffer from radiation damage during traditional crystallographic data collection at synchrotron sources. The development of new-generation X-ray free-electron laser (XFEL) sources that produce extremely bright femtosecond pulses has enabled room temperature data collection from microcrystals with no or negligible radiation damage. Our recent efforts in combining LCP technology with serial femtosecond crystallography (LCP-SFX) have resulted in high-resolution structures of several human G protein-coupled receptors, which represent a notoriously difficult target for structure determination. In the LCP-SFX technique, LCP is recruited as a matrix for both growth and delivery of MP microcrystals to the intersection of the injector stream with an XFEL beam for crystallographic data collection. It has been demonstrated that LCP-SFX can substantially improve the diffraction resolution when only sub-10 µm crystals are available, or when the use of smaller crystals at room temperature can overcome various problems associated with larger cryocooled crystals, such as accumulation of defects, high mosaicity and cryocooling artifacts. Future advancements in X-ray sources and detector technologies should make serial crystallography highly attractive and practicable for implementation not only at XFELs, but also at more accessible synchrotron beamlines. Here we present detailed visual protocols for the preparation, characterization and delivery of microcrystals in LCP for serial crystallography experiments. These protocols include

  8. Spin-polarized structural, elastic, electronic and magnetic properties of half-metallic ferromagnetism in V-doped ZnSe

    NASA Astrophysics Data System (ADS)

    Monir, M. El Amine.; Baltache, H.; Murtaza, G.; Khenata, R.; Ahmed, Waleed K.; Bouhemadou, A.; Omran, S. Bin; Seddik, T.

    2015-01-01

    Based on first principles spin-polarized density functional theory, the structural, elastic electronic and magnetic properties of Zn1-xVxSe (for x=0.25, 0.50, 0.75) in zinc blende structure have been studied. The investigation was done using the full-potential augmented plane wave method as implemented in WIEN2k code. The exchange-correlation potential was treated with the generalized gradient approximation PBE-GGA for the structural and elastic properties. Moreover, the PBE-GGA+U approximation (where U is the Hubbard correlation terms) is employed to treat the "d" electrons properly. A comparative study between the band structures, electronic structures, total and partial densities of states and local moments calculated within both GGA and GGA+U schemes is presented. The analysis of spin-polarized band structure and density of states shows the half-metallic ferromagnetic character and are also used to determine s(p)-d exchange constants N0α (conduction band) and N0β (valence band) due to Se(4p)-V(3d) hybridization. It has been clearly evidence that the magnetic moment of V is reduced from its free space change value of 3 μB and the minor atomic magnetic moment on Zn and Se are generated.

  9. Variational analysis of SPM- and IPM-based interactions in cubic non-local nonlinear media

    NASA Astrophysics Data System (ADS)

    Maleshkov, G.; Bezuhanov, Kalojan; Dreischuh, Aleksander A.

    2005-04-01

    We analytically show the non-locality of cubic nonlinear media causes an increase of the critical power for self- and induced focusing and influences the condition for signal beam attraction/repulsion in an off-axis geometry.

  10. Effect of Percolation on the Cubic Susceptibility of Metal Nanoparticle Composites

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Bender, Matthew W.; Boyd, Robert W.

    1998-01-01

    Generalized two-dimensional and three-dimensional Maxwell Garnett and Bruggeman geometries reveal that a sign reversal in the cubic susceptibility occurs for metal nanoparticle composites near the percolation threshold.

  11. Effective optical path length for tandem diffuse cubic cavities as gas absorption cell

    NASA Astrophysics Data System (ADS)

    Yu, J.; Gao, Q.; Zhang, Y. G.; Zhang, Z. G.; Wu, S. H.

    2014-12-01

    Tandem diffuse cubic cavities designed by connecting two single diffuse cubic-shaped cavities, A and B, with an aperture (port fraction fap) in the middle of the connecting baffle was developed as a gas absorption cell. The effective optical path length (EOPL) was evaluated by comparing the oxygen absorption signal in the cavity and in air based on tunable diode laser absorption spectroscopy (TDLAS). Experimental results manifested an enhancement of EOPL for the tandem diffuse cubic cavities as the decrease of fap and can be expressed as the sum of EOPL of two single cubic cavities at fap < 0.01, which coincided well with theoretical analysis. The simulating EOPL was smaller than experimental results at fap > 0.01, which indicated that back scattering light from cavity B to cavity A cannot be ignored at this condition.

  12. Energy bands and acceptor binding energies of GaN

    NASA Astrophysics Data System (ADS)

    Xia, Jian-Bai; Cheah, K. W.; Wang, Xiao-Liang; Sun, Dian-Zhao; Kong, Mei-Ying

    1999-04-01

    The energy bands of zinc-blende and wurtzite GaN are calculated with the empirical pseudopotential method, and the pseudopotential parameters for Ga and N atoms are given. The calculated energy bands are in agreement with those obtained by the ab initio method. The effective-mass theory for the semiconductors of wurtzite structure is established, and the effective-mass parameters of GaN for both structures are given. The binding energies of acceptor states are calculated by solving strictly the effective-mass equations. The binding energies of donor and acceptor are 24 and 142 meV for the zinc-blende structure, 20 and 131, and 97 meV for the wurtzite structure, respectively, which are consistent with recent experimental results. It is proposed that there are two kinds of acceptor in wurtzite GaN. One kind is the general acceptor such as C, which substitutes N, which satisfies the effective-mass theory. The other kind of acceptor includes Mg, Zn, Cd, etc., the binding energy of these acceptors is deviated from that given by the effective-mass theory. In this report, wurtzite GaN is grown by the molecular-beam epitaxy method, and the photoluminescence spectra were measured. Three main peaks are assigned to the donor-acceptor transitions from two kinds of acceptors. Some of the transitions were identified as coming from the cubic phase of GaN, which appears randomly within the predominantly hexagonal material.

  13. Evidence from electron micrographs that icosahedral quasicrystals are icosahedral twins of cubic crystals.

    PubMed

    Pauling, L

    1990-10-01

    An analysis of electron micrographs of Al5Mn quasicrystals obtained by rapidly cooling a molten alloy with composition Al17Mn and removing the Al matrix by electrosolution, revealing aggregates of 20 microcrystals at the corners of a pentagonal dodecahedron, supports the proposal that these microcrystals are cubic crystals twinned about an icosahedral seed, with each cubic microcrystal sharing a threefold axis and three symmetry planes with the seed.

  14. High reflected cubic cavity as long path absorption cell for infrared gas sensing

    NASA Astrophysics Data System (ADS)

    Yu, Jia; Gao, Qiang; Zhang, Zhiguo

    2014-10-01

    One direct and efficient method to improve the sensitivity of infrared gas sensors is to increase the optical path length of gas cells according to Beer-Lambert Law. In this paper, cubic shaped cavities with high reflected inner coating as novel long path absorption cells for infrared gas sensing were developed. The effective optical path length (EOPL) for a single cubic cavity and tandem cubic cavities were investigated based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) measuring oxygen P11 line at 763 nm. The law of EOPL of a diffuse cubic cavity in relation with the reflectivity of the coating, the port fraction and side length of the cavity was obtained. Experimental results manifested an increase of EOPL for tandem diffuse cubic cavities as the decrease of port fraction of the connecting aperture f', and the EOPL equaled to the sum of that of two single cubic cavities at f'<0.01. The EOPL spectra at infrared wavelength range for different inner coatings including high diffuse coatings and high reflected metallic thin film coatings were deduced.

  15. Getting off the Bain path: Are there any metastable states of cubic elements?

    NASA Astrophysics Data System (ADS)

    Mehl, Michael J.; Boyer, Larry L.

    2003-03-01

    Body-centered and face-centered cubic crystals can be considered as special cases of a body-centered tetragonal crystal with c/a = 1 and 2, respectively. First-principles calculations along this Bain path show that elements with an fcc (bcc) ground state are elastically unstable with respect to a tetragonal distortion in the bcc (fcc) phase. Starting with a normally fcc element and calculating E(c/a) for c/a < 1 we find a local minimum near c/a = 2/3, while for a bcc element we find a local minimum at some c/a > 2. It is tempting to conclude that these bct minima, which are required by continuity, are metastable, but calculations by several authors show that, at least for Al, Cu, and Pd, the bct structures are unstable with respect to an orthorhombic distortion. We use a simple "magic strain" construction(L. L. Boyer, Acta Cryst. A) 45, FC29 (1989).(M. J. Mehl and L. L. Boyer, Phys. Rev. B) 43, 9498 (1991). to study the stability of these bct states, and present examples which suggest that no fcc or bcc element has a metastable bct state.

  16. Singular orientations and faceted motion of dislocations in body-centered cubic crystals.

    PubMed

    Kang, Keonwook; Bulatov, Vasily V; Cai, Wei

    2012-09-18

    Dislocation mobility is a fundamental material property that controls strength and ductility of crystals. An important measure of dislocation mobility is its Peierls stress, i.e., the minimal stress required to move a dislocation at zero temperature. Here we report that, in the body-centered cubic metal tantalum, the Peierls stress as a function of dislocation orientation exhibits fine structure with several singular orientations of high Peierls stress-stress spikes-surrounded by vicinal plateau regions. While the classical Peierls-Nabarro model captures the high Peierls stress of singular orientations, an extension that allows dislocations to bend is necessary to account for the plateau regions. Our results clarify the notion of dislocation kinks as meaningful only for orientations within the plateau regions vicinal to the Peierls stress spikes. These observations lead us to propose a Read-Shockley type classification of dislocation orientations into three distinct classes-special, vicinal, and general-with respect to their Peierls stress and motion mechanisms. We predict that dislocation loops expanding under stress at sufficiently low temperatures, should develop well defined facets corresponding to two special orientations of highest Peierls stress, the screw and the M111 orientations, both moving by kink mechanism. We propose that both the screw and the M111 dislocations are jointly responsible for the yield behavior of BCC metals at low temperatures.

  17. Stacking fault energy of face-centered cubic metals: thermodynamic and ab initio approaches.

    PubMed

    Li, Ruihuan; Lu, Song; Kim, Dongyoo; Schönecker, Stephan; Zhao, Jijun; Kwon, Se Kyun; Vitos, Levente

    2016-10-05

    The formation energy of the interface between face-centered cubic (fcc) and hexagonal close packed (hcp) structures is a key parameter in determining the stacking fault energy (SFE) of fcc metals and alloys using thermodynamic calculations. It is often assumed that the contribution of the planar fault energy to the SFE has the same order of magnitude as the bulk part, and thus the lack of precise information about it can become the limiting factor in thermodynamic predictions. Here, we differentiate between the interfacial energy for the coherent fcc(1 1 1)/hcp(0 0 0 1) interface and the 'pseudo-interfacial energy' that enters the thermodynamic expression for the SFE. Using first-principles calculations, we determine the coherent and pseudo-interfacial energies for six elemental metals (Al, Ni, Cu, Ag, Pt, and Au) and three paramagnetic Fe-Cr-Ni alloys. Our results show that the two interfacial energies significantly differ from each other. We observe a strong chemistry dependence for both interfacial energies. The calculated pseudo-interfacial energies for the Fe-Cr-Ni steels agree well with the available literature data. We discuss the effects of strain on the description of planar faults via thermodynamic and ab initio approaches.

  18. Electronically highly cubic conditions for Ru in α -RuCl3

    NASA Astrophysics Data System (ADS)

    Agrestini, S.; Kuo, C.-Y.; Ko, K.-T.; Hu, Z.; Kasinathan, D.; Vasili, H. B.; Herrero-Martin, J.; Valvidares, S. M.; Pellegrin, E.; Jang, L.-Y.; Henschel, A.; Schmidt, M.; Tanaka, A.; Tjeng, L. H.

    2017-10-01

    We studied the local Ru 4 d electronic structure of α -RuCl3 by means of polarization-dependent x-ray absorption spectroscopy at the Ru L2 ,3 edges. We observed a vanishingly small linear dichroism indicating that electronically the Ru 4 d local symmetry is highly cubic. Using full multiplet cluster calculations we were able to reproduce the spectra excellently and to extract that the trigonal splitting of the t2 g orbitals is -12 ±10 meV, i.e., negligible as compared to the Ru 4 d spin-orbit coupling constant. Consistent with our magnetic circular dichroism measurements, we found that the ratio of the orbital and spin moments is 2.0, the value expected for a Jeff=1/2 ground state. We have thus shown that as far as the Ru 4 d local properties are concerned, α -RuCl3 is an ideal candidate for the realization of Kitaev physics.

  19. Stacking fault energy of face-centered cubic metals: thermodynamic and ab initio approaches

    NASA Astrophysics Data System (ADS)

    Li, Ruihuan; Lu, Song; Kim, Dongyoo; Schönecker, Stephan; Zhao, Jijun; Kwon, Se Kyun; Vitos, Levente

    2016-10-01

    The formation energy of the interface between face-centered cubic (fcc) and hexagonal close packed (hcp) structures is a key parameter in determining the stacking fault energy (SFE) of fcc metals and alloys using thermodynamic calculations. It is often assumed that the contribution of the planar fault energy to the SFE has the same order of magnitude as the bulk part, and thus the lack of precise information about it can become the limiting factor in thermodynamic predictions. Here, we differentiate between the interfacial energy for the coherent fcc(1 1 1)/hcp(0 0 0 1) interface and the ‘pseudo-interfacial energy’ that enters the thermodynamic expression for the SFE. Using first-principles calculations, we determine the coherent and pseudo-interfacial energies for six elemental metals (Al, Ni, Cu, Ag, Pt, and Au) and three paramagnetic Fe-Cr-Ni alloys. Our results show that the two interfacial energies significantly differ from each other. We observe a strong chemistry dependence for both interfacial energies. The calculated pseudo-interfacial energies for the Fe-Cr-Ni steels agree well with the available literature data. We discuss the effects of strain on the description of planar faults via thermodynamic and ab initio approaches.

  20. Size effects on negative thermal expansion in cubic ScF{sub 3}

    SciTech Connect

    Yang, C.; Guo, X. G.; Zhang, K.

    2016-07-11

    Scandium trifluoride (ScF{sub 3}), adopting a cubic ReO{sub 3}-type structure at ambient pressure, undergoes a pronounced negative thermal expansion (NTE) over a wide range of temperatures (10 K–1100 K). Here, we report the size effects on the NTE properties of ScF{sub 3}. The magnitude of NTE is reduced with diminishing the crystal size. As revealed by the specific heat measurement, the low-energy phonon vibrations which account for the NTE behavior are stiffened as the crystal size decreases. With decreasing the crystal size, the peaks in high-energy X-ray pair distribution function (PDF) become broad, which cannot be illuminated by local symmetry breaking. Instead,more » the broadened PDF peaks are strongly indicative of enhanced atomic displacements which are suggested to be responsible for the stiffening of NTE-related lattice vibrations. The present study suggests that the NTE properties of ReO{sub 3}-type and other open-framework materials can be effectively adjusted by controlling the crystal size.« less

  1. Cesium hafnium chloride: A high light yield, non-hygroscopic cubic crystal scintillator for gamma spectroscopy

    SciTech Connect

    Burger, Arnold, E-mail: aburger@fisk.edu; Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235; Rowe, Emmanuel

    We report on the scintillation properties of Cs{sub 2}HfCl{sub 6} (cesium hafnium chloride or CHC) as an example of a little-known class of non-hygroscopic compounds having the generic cubic crystal structure of K{sub 2}PtCl{sub 6}. The crystals are easily growable from the melt using the Bridgman method with minimal precursor treatments or purification. CHC scintillation is centered at 400 nm, with a principal decay time of 4.37 μs and a light yield of up to 54 000 photons/MeV when measured using a silicon CCD photodetector. The light yield is the highest ever reported for an undoped crystal, and CHC also exhibits excellent lightmore » yield nonproportionality. These desirable properties allowed us to build and test CHC gamma-ray spectrometers providing energy resolution of 3.3% at 662 keV.« less

  2. The nonlinear aeroelastic characteristics of a folding wing with cubic stiffness

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Yang, Zhichun; Gu, Yingsong; Wang, Xiaochen

    2017-07-01

    This paper focuses on the nonlinear aeroelastic characteristics of a folding wing in the quasi-steady condition (namely at fixed folding angles) and during the morphing process. The structure model of the folding wing is formulated by the Lagrange equations, and the constraint equation is used to describe the morphing strategy. The aerodynamic influence coefficient matrices at several folding angles are calculated by the Doublet Lattice method, and described as rational functions in the Laplace domain by the rational function approximation, and then the Kriging agent model technique is adopted to interpolate the coefficient matrices of the rational functions, and the aerodynamics model of the folding wing during the morphing process is built. The aeroelastic responses of the folding wing with cubic stiffness are simulated, and the results show that the motion types of aeroelastic responses in the quasi-steady condition and during the morphing process are all sensitive to the initial condition and folding angle. During the morphing process, the transition of the motion types is observed. And apart from the period of transition, the aeroelastic response at some folding angles may exhibit different motion types, which can be found from the results in the quasi-steady condition.

  3. Design of new face-centered cubic high entropy alloys by thermodynamic calculation

    NASA Astrophysics Data System (ADS)

    Choi, Won-Mi; Jung, Seungmun; Jo, Yong Hee; Lee, Sunghak; Lee, Byeong-Joo

    2017-09-01

    A new face-centered cubic (fcc) high entropy alloy system with non-equiatomic compositions has been designed by utilizing a CALculation of PHAse Diagram (CALPHAD) - type thermodynamic calculation technique. The new alloy system is based on the representative fcc high entropy alloy, the Cantor alloy which is an equiatomic Co- Cr-Fe-Mn-Ni five-component alloy, but fully or partly replace the cobalt by vanadium and is of non-equiatomic compositions. Alloy compositions expected to have an fcc single-phase structure between 700 °C and melting temperatures are proposed. All the proposed alloys are experimentally confirmed to have the fcc single-phase during materials processes (> 800 °C), through an X-ray diffraction analysis. It is shown that there are more chances to find fcc single-phase high entropy alloys if paying attention to non-equiatomic composition regions and that the CALPHAD thermodynamic calculation can be an efficient tool for it. An alloy design technique based on thermodynamic calculation is demonstrated and the applicability and limitation of the approach as a design tool for high entropy alloys is discussed.

  4. An extended UTD analysis for the scattering and diffraction from cubic polynomial strips

    NASA Technical Reports Server (NTRS)

    Constantinides, E. D.; Marhefka, R. J.

    1993-01-01

    Spline and polynomial type surfaces are commonly used in high frequency modeling of complex structures such as aircraft, ships, reflectors, etc. It is therefore of interest to develop an efficient and accurate solution to describe the scattered fields from such surfaces. An extended Uniform Geometrical Theory of Diffraction (UTD) solution for the scattering and diffraction from perfectly conducting cubic polynomial strips is derived and involves the incomplete Airy integrals as canonical functions. This new solution is universal in nature and can be used to effectively describe the scattered fields from flat, strictly concave or convex, and concave convex boundaries containing edges. The classic UTD solution fails to describe the more complicated field behavior associated with higher order phase catastrophes and therefore a new set of uniform reflection and first-order edge diffraction coefficients is derived. Also, an additional diffraction coefficient associated with a zero-curvature (inflection) point is presented. Higher order effects such as double edge diffraction, creeping waves, and whispering gallery modes are not examined. The extended UTD solution is independent of the scatterer size and also provides useful physical insight into the various scattering and diffraction processes. Its accuracy is confirmed via comparison with some reference moment method results.

  5. Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography

    DOE PAGES

    Nogly, Przemyslaw; Panneels, Valerie; Nelson, Garrett; ...

    2016-08-22

    Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within themore » crystal lattice is confirmed by time-resolved visible absorption spectroscopy. Furthermore, this study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.« less

  6. Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography

    PubMed Central

    Nogly, Przemyslaw; Panneels, Valerie; Nelson, Garrett; Gati, Cornelius; Kimura, Tetsunari; Milne, Christopher; Milathianaki, Despina; Kubo, Minoru; Wu, Wenting; Conrad, Chelsie; Coe, Jesse; Bean, Richard; Zhao, Yun; Båth, Petra; Dods, Robert; Harimoorthy, Rajiv; Beyerlein, Kenneth R.; Rheinberger, Jan; James, Daniel; DePonte, Daniel; Li, Chufeng; Sala, Leonardo; Williams, Garth J.; Hunter, Mark S.; Koglin, Jason E.; Berntsen, Peter; Nango, Eriko; Iwata, So; Chapman, Henry N.; Fromme, Petra; Frank, Matthias; Abela, Rafael; Boutet, Sébastien; Barty, Anton; White, Thomas A.; Weierstall, Uwe; Spence, John; Neutze, Richard; Schertler, Gebhard; Standfuss, Jörg

    2016-01-01

    Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within the crystal lattice is confirmed by time-resolved visible absorption spectroscopy. This study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX. PMID:27545823

  7. Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography

    SciTech Connect

    Nogly, Przemyslaw; Panneels, Valerie; Nelson, Garrett

    Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within themore » crystal lattice is confirmed by time-resolved visible absorption spectroscopy. Furthermore, this study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.« less

  8. Preparation of microcrystals in lipidic cubic phase for serial femtosecond crystallography.

    PubMed

    Liu, Wei; Ishchenko, Andrii; Cherezov, Vadim

    2014-09-01

    We have recently established a procedure for serial femtosecond crystallography (SFX) in lipidic cubic phase (LCP) for protein structure determination at X-ray free-electron lasers (XFELs). LCP-SFX uses the gel-like LCP as a matrix for growth and delivery of membrane protein microcrystals for crystallographic data collection. LCP is a liquid-crystalline mesophase composed of lipids and water. It provides a membrane-mimicking environment that stabilizes membrane proteins and supports their crystallization. Here we describe detailed procedures for the preparation and characterization of microcrystals for LCP-SFX applications. The advantages of LCP-SFX over traditional crystallographic methods include the capability of collecting room-temperature high-resolution data with minimal effects of radiation damage from sub-10-μm crystals of membrane and soluble proteins that are difficult to crystallize, while eliminating the need for crystal harvesting and cryo-cooling. Compared with SFX methods for microcrystals in solution using liquid injectors, LCP-SFX reduces protein consumption by 2-3 orders of magnitude for data collection at currently available XFELs. The whole procedure typically takes 3-5 d, including the time required for the crystals to grow.

  9. Additional evidence from x-ray powder diffraction patterns that icosahedral quasi-crystals of intermetallic compounds are twinned cubic crystals

    PubMed Central

    Pauling, Linus

    1988-01-01

    Analysis of the measured values of Q for the weak peaks (small maxima, usually considered to be background fluctuations, “noise”) on the x-ray powder diffraction curves for 17 rapidly quenched alloys leads directly to the conclusion that they are formed by an 820-atom or 1012-atom primitive cubic structure that by icosahedral twinning produces the so-called icosahedral quasi-crystals. PMID:16593948

  10. Surfactant-assisted synthesis of mono-dispersed cubic BaTiO{sub 3} nanoparticles

    SciTech Connect

    Hai, Chunxi; Inukai, Koji; Takahashi, Yosuke

    2014-09-15

    Mono-dispersed BaTiO{sub 3} nanoparticles have been prepared via the assistance of capping agent poly(vinylpyrrolidone) (PVP). - Highlights: • BaTiO{sub 3} nanoparticles with single cubic crystal structure. • Poor dispersibility of nanoparticles has been overcome by in situ modification way. • Growth competition between BaTiO3 core and polymer shell. - Abstract: In this study, poly(vinylpyrrolidone)-assisted synthesis of mono-dispersed BaTiO{sub 3} nanoparticles have been reported. The various processing parameters, namely, refluxing temperature, KOH concentration, and poly(vinylpyrrolidone) concentration, have been varied, and the effects on the growth of BaTiO{sub 3} particles have been analyzed systematically. X-ray diffraction studies indicated that poly(vinylpyrrolidone) did notmore » affect the crystal structure, but rather influenced the crystal lattice structure. In addition, the use of surfactant poly(vinylpyrrolidone) hindered the agglomeration of the nanoparticles, and facilitated the formation of mono-dispersed core–shell organic/inorganic hybrid nanocomposite. Furthermore, the mineralizer KOH promoted the dissolution of reactants and promoted the crystallization of BaTiO{sub 3} particles. Accordingly, the dissolution-precipitation scheme was believed to be the mechanism underlying the formation of BaTiO{sub 3} particles. This was further substantiated by the experimental observations, which indicated that the nucleation and crystallization of the particles was affected by the KOH concentration in the reaction system. Finally, the formation of mono-dispersed core–shell nanocomposites proceeded via reaction limited cluster aggregation. We believe that the method proposed in this study could be extended for the synthesis of mono-dispersed nanoparticles for industrial applications.« less

  11. Principles of quasi-equivalence and Euclidean geometry govern the assembly of cubic and dodecahedral cores of pyruvate dehydrogenase complexes.

    PubMed

    Izard, T; Aevarsson, A; Allen, M D; Westphal, A H; Perham, R N; de Kok, A; Hol, W G

    1999-02-16

    The pyruvate dehydrogenase multienzyme complex (Mr of 5-10 million) is assembled around a structural core formed of multiple copies of dihydrolipoyl acetyltransferase (E2p), which exhibits the shape of either a cube or a dodecahedron, depending on the source. The crystal structures of the 60-meric dihydrolipoyl acyltransferase cores of Bacillus stearothermophilus and Enterococcus faecalis pyruvate dehydrogenase complexes were determined and revealed a remarkably hollow dodecahedron with an outer diameter of approximately 237 A, 12 large openings of approximately 52 A diameter across the fivefold axes, and an inner cavity with a diameter of approximately 118 A. Comparison of cubic and dodecahedral E2p assemblies shows that combining the principles of quasi-equivalence formulated by Caspar and Klug [Caspar, D. L. & Klug, A. (1962) Cold Spring Harbor Symp. Quant. Biol. 27, 1-4] with strict Euclidean geometric considerations results in predictions of the major features of the E2p dodecahedron matching the observed features almost exactly.

  12. Determination of the optical band-gap energy of cubic and hexagonal boron nitride using luminescence excitation spectroscopy

    NASA Astrophysics Data System (ADS)

    Evans, D. A.; McGlynn, A. G.; Towlson, B. M.; Gunn, M.; Jones, D.; Jenkins, T. E.; Winter, R.; Poolton, N. R. J.

    2008-02-01

    Using synchrotron-based luminescence excitation spectroscopy in the energy range 4-20 eV at 8 K, the indirect Γ-X optical band-gap transition in cubic boron nitride is determined as 6.36 ± 0.03 eV, and the quasi-direct band-gap energy of hexagonal boron nitride is determined as 5.96 ± 0.04 eV. The composition and structure of the materials are self-consistently established by optically detected x-ray absorption spectroscopy, and both x-ray diffraction and Raman measurements on the same samples give independent confirmation of their chemical and structural purity: together, the results are therefore considered as providing definitive measurements of the optical band-gap energies of the two materials.

  13. Preparation of highly ordered cubic NaA zeolite from halloysite mineral for adsorption of ammonium ions.

    PubMed

    Zhao, Yafei; Zhang, Bing; Zhang, Xiang; Wang, Jinhua; Liu, Jindun; Chen, Rongfeng

    2010-06-15

    Well-ordered cubic NaA zeolite was first synthesized using natural halloysite mineral with nanotubular structure as source material by hydro-thermal method. SEM and HRTEM images indicate that the synthesized NaA zeolite is cubic-shaped crystal with planar surface, well-defined edges and symmetrical and uniform pore channels. The adsorption behavior of ammonium ions (NH(4)(+)) from aqueous solution onto NaA zeolite was investigated as a function of parameters such as equilibrium time, pH, initial NH(4)(+) concentration, temperature and competitive cations. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. A maximum adsorption capacity of 44.3 mg g(-1) of NH(4)(+) was achieved. The regeneration and reusable ability of this adsorbent was evaluated, and the results indicated that the recovered adsorbent could be used again for NH(4)(+) removal with nearly constant adsorption capacity. Thermodynamic parameters such as change in free energy (DeltaG(0)), enthalpy (DeltaH(0)) and entropy (DeltaS(0)) were also determined, which indicated that the adsorption was a spontaneous and exothermic process at ambient conditions. Compared with other adsorbents, the as-synthesized NaA zeolite displays a faster adsorption rate and higher adsorption capacity, which implies potential application for removing NH(4)(+) pollutants from wastewaters. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Alignment of large image series using cubic B-splines tessellation: application to transmission electron microscopy data.

    PubMed

    Dauguet, Julien; Bock, Davi; Reid, R Clay; Warfield, Simon K

    2007-01-01

    3D reconstruction from serial 2D microscopy images depends on non-linear alignment of serial sections. For some structures, such as the neuronal circuitry of the brain, very large images at very high resolution are necessary to permit reconstruction. These very large images prevent the direct use of classical registration methods. We propose in this work a method to deal with the non-linear alignment of arbitrarily large 2D images using the finite support properties of cubic B-splines. After initial affine alignment, each large image is split into a grid of smaller overlapping sub-images, which are individually registered using cubic B-splines transformations. Inside the overlapping regions between neighboring sub-images, the coefficients of the knots controlling the B-splines deformations are blended, to create a virtual large grid of knots for the whole image. The sub-images are resampled individually, using the new coefficients, and assembled together into a final large aligned image. We evaluated the method on a series of large transmission electron microscopy images and our results indicate significant improvements compared to both manual and affine alignment.

  15. Chapter 6: cubic membranes the missing dimension of cell membrane organization.

    PubMed

    Almsherqi, Zakaria A; Landh, Tomas; Kohlwein, Sepp D; Deng, Yuru

    2009-01-01

    Biological membranes are among the most fascinating assemblies of biomolecules: a bilayer less than 10 nm thick, composed of rather small lipid molecules that are held together simply by noncovalent forces, defines the cell and discriminates between "inside" and "outside", survival, and death. Intracellular compartmentalization-governed by biomembranes as well-is a characteristic feature of eukaryotic cells, which allows them to fulfill multiple and highly specialized anabolic and catabolic functions in strictly controlled environments. Although cellular membranes are generally visualized as flat sheets or closely folded isolated objects, multiple observations also demonstrate that membranes may fold into "unusual", highly organized structures with 2D or 3D periodicity. The obvious correlation of highly convoluted membrane organizations with pathological cellular states, for example, as a consequence of viral infection, deserves close consideration. However, knowledge about formation and function of these highly organized 3D periodic membrane structures is scarce, primarily due to the lack of appropriate techniques for their analysis in vivo. Currently, the only direct way to characterize cellular membrane architecture is by transmission electron microscopy (TEM). However, deciphering the spatial architecture solely based on two-dimensionally projected TEM images is a challenging task and prone to artifacts. In this review, we will provide an update on the current progress in identifying and analyzing 3D membrane architectures in biological systems, with a special focus on membranes with cubic symmetry, and their potential role in physiological and pathophysiological conditions. Proteomics and lipidomics approaches in defined experimental cell systems may prove instrumental to understand formation and function of 3D membrane morphologies.

  16. Effect of hydrostatic pressure on the structural and electronic properties of Cd{sub 0.75}Cr{sub 0.25}S

    SciTech Connect

    Rani, Anita; Kaur, Kulwinder; Kumar, Ranjan

    In this paper we present the results obtained from first principle calculations of the effect of hydrostatic pressure on the structural and electronic properties of Cd{sub 1-x}Cr{sub x}S diluted magnetic semiconductor in Zinc Blende (B3) phase at x=0.25. High pressure behavior of Cd{sub 1-x}Cr{sub x}S has been investigated between 0 GPa to 100 GPa The calculations have been performed using Density functional theory as implemented in the Spanish Initiative for Electronic Simulations with Thousands of Atoms code using local density approximation as exchange-correlation (XC) potential. Calculated electronic band structures of Cd{sub 1-x}Cr{sub x}S are discussed in terms of contribution ofmore » Cr 3d{sup 5} 4s{sup 1}, Cd 4d{sup 10} 5s{sup 2}, S 3s{sup 2} 3p{sup 4} orbital’s. Study of band structures shows half-metallic ferromagnetic nature of Cd{sub 0.75}Cr{sub 0.25}S with 100% spin polarization. Under application of external pressure, the valence band and conduction band are shifted upward which leads to modification of electronic structure.« less

  17. First principles examination of electronic structure and optical features of 4H-GaN1-xPx polytype alloys

    NASA Astrophysics Data System (ADS)

    Laref, A.; Hussain, Z.; Laref, S.; Yang, J. T.; Xiong, Y. C.; Luo, S. J.

    2018-04-01

    By using first-principles calculations, we compute the electronic band structures and typical aspects of the optical spectra of hexagonally structured GaN1-xPx alloys. Although a type III-V semiconductor, GaP commonly possesses a zinc-blende structure with an indirect band gap; as such, it may additionally form hexagonal polytypes under specific growth conditions. The electronic structures and optical properties are calculated by combining a non-nitride III-V semiconductor and a nitride III-V semiconductor, as GaP and GaN crystallizing in a 4H polytype, with the N composition ranging between x = 0-1. For all studied materials, the energy gap is found to be direct. The optical properties of the hexagonal materials may illustrate the strong polarization dependence owing to the crystalline anisotropy. This investigation for GaN1-xPx alloys is anticipated to supply paramount information for applications in the visible/ultraviolet spectral regions. At a specific concentration, x, these alloys would be exclusively appealing candidates for solar-cell applications.

  18. Electronic structure and chemical bonding of the electron-poor II-V semiconductors ZnSb and ZnAs

    NASA Astrophysics Data System (ADS)

    Benson, Daryn; Sankey, Otto F.; Häussermann, Ulrich

    2011-09-01

    The binary compounds ZnSb and ZnAs with the CdSb structure are semiconductors (II-V), although the average electron concentration (3.5 per atom) is lower than that of the tetrahedrally bonded III-V and II-VI archetype systems (four per atom). We report a detailed electronic structure and chemical bonding analysis for ZnSb and ZnAs based on first-principles calculations. ZnSb and ZnAs are compared to the zinc blende-type semiconductors GaSb, ZnTe, GaAs, and ZnSe, as well as the more ionic, hypothetical, II-V systems MgSb and MgAs. We establish a clearly covalent bonding scenario for ZnSb and ZnAs where multicenter bonded structural entities (rhomboid rings Zn2Sb2 and Zn2As2) are connected to each other by classical two-center, two-electron bonds. This bonding scenario is only compatible with a weak ionicity in II-V semiconductor systems, and weak ionicity appears as a necessary condition for the stability of the CdSb structure type. It is argued that a chemical bonding scenario with mixed multicenter and two-center bonding resembles that of boron and boron-rich compounds and is typical of electron-poor sp-bonded semiconductors with average valence electron concentrations below four per atom.

  19. Origin and chemical composition of the amorphous material from the intergrain pores of self-assembled cubic ZnS:Mn nanocrystals

    NASA Astrophysics Data System (ADS)

    Stefan, Mariana; Vlaicu, Ioana Dorina; Nistor, Leona Cristina; Ghica, Daniela; Nistor, Sergiu Vasile

    2017-12-01

    We have shown in previous investigations that the low temperature collective magnetism observed in mesoporous cubic ZnS:Mn nanocrystalline powders prepared by colloidal synthesis, with nominal doping concentrations above 0.2 at.%, is due to the formation of Mn2+ clusters with distributed antiferromagnetic coupling localized in an amorphous phase found between the cubic ZnS:Mn nanocrystals. Here we investigate the composition, origin and thermal annealing behavior of this amorphous phase in such a mesoporous ZnS:Mn sample doped with 5 at.% Mn nominal concentration. Correlated analytical transmission electron microscopy, multifrequency electron paramagnetic resonance and Fourier transform infrared spectroscopy data show that the amorphous nanomaterial consists of unreacted precursor hydrated zinc and manganese acetates trapped inside the pores and on the surface of the cubic ZnS nanocrystals. The decomposition of the acetates under isochronal annealing up to 270 °C, where the mesoporous structure is still preserved, lead to changes in the nature and strength of the magnetic interactions between the aggregated Mn2+ ions. These results strongly suggest the possibility to modulate the magnetic properties of such transition metal ions doped II-VI mesoporous structures by varying the synthesis conditions and/or by post-synthesis thermochemical treatments.

  20. Hierarchical Na-doped cubic ZrO2 synthesis by a simple hydrothermal route and its application in biodiesel production

    NASA Astrophysics Data System (ADS)

    Lara-García, Hugo A.; Romero-Ibarra, Issis C.; Pfeiffer, Heriberto

    2014-10-01

    Hierarchical growth of cubic ZrO2 phase was successfully synthesized via a simple hydrothermal process in the presence of different surfactants (cationic, non-ionic and anionic) and sodium hydroxide. The structural and microstructural characterizations of different ZrO2 powders were performed using various techniques, such as X-ray diffraction, transmission electron microscopy, N2 adsorption-desorption, scanning electron microscopy and infrared. Results indicated that sodium addition stabilized the cubic ZrO2 phase by a Na-doping process, independently of the surfactant used. In contrast, microstructural characteristics varied as a function of the surfactant and sodium presence. In addition, water vapor (H2O) and carbon dioxide (CO2) sorption properties were evaluated on ZrO2 samples. Results evidenced that sample surface reactivity changed as a function of the sodium content. Finally, this surface reactivity was evaluated on the biodiesel transesterification reaction using the different synthesized samples, obtaining yields of 93%.

  1. Sequence-selective encapsulation and protection of long peptides by a self-assembled FeII8L6 cubic cage

    NASA Astrophysics Data System (ADS)

    Mosquera, Jesús; Szyszko, Bartosz; Ho, Sarah K. Y.; Nitschke, Jonathan R.

    2017-03-01

    Self-assembly offers a general strategy for the preparation of large, hollow high-symmetry structures. Although biological capsules, such as virus capsids, are capable of selectively recognizing complex cargoes, synthetic encapsulants have lacked the capability to specifically bind large and complex biomolecules. Here we describe a cubic host obtained from the self-assembly of FeII and a zinc-porphyrin-containing ligand. This cubic cage is flexible and compatible with aqueous media. Its selectivity of encapsulation is driven by the coordination of guest functional groups to the zinc porphyrins. This new host thus specifically encapsulates guests incorporating imidazole and thiazole moieties, including drugs and peptides. Once encapsulated, the reactivity of a peptide is dramatically altered: encapsulated peptides are protected from trypsin hydrolysis, whereas physicochemically similar peptides that do not bind are cleaved.

  2. Self-organization of dendritic supermolecules, based on isocyanide-gold(I), -copper(I), -palladium(II), and -platinum(II) complexes, into micellar cubic mesophases.

    PubMed

    Coco, Silverio; Cordovilla, Carlos; Donnio, Bertrand; Espinet, Pablo; García-Casas, María Jesús; Guillon, Daniel

    2008-01-01

    First- and second-generation dendrimers with an isocyanide group as the focal functional point (CN-G(n); n: 1,2) and their corresponding organometallic complexes [MCl(CN-G(n))] (M: Au, Cu), [{CuCl(CN-G(n))2}2], and trans-[MI2(CN-G(n))2] (M: Pd, Pt) have been synthesized. The free ligands and the first-generation complexes do not show mesogenic behavior, but all of the second-generation complexes display a thermotropic micellar cubic mesophase, over a large temperature range, and some of them directly at room temperature. The structure of the mesophase consists of the packing of two, discrete polyhedral micellar aggregates in a three-dimensional cubic Im$\\bar 3$m lattice.

  3. Voltage gating by molecular subunits of Na+ and K+ ion channels: higher-dimensional cubic kinetics, rate constants, and temperature.

    PubMed

    Fohlmeister, Jürgen F

    2015-06-01

    The structural similarity between the primary molecules of voltage-gated Na and K channels (alpha subunits) and activation gating in the Hodgkin-Huxley model is brought into full agreement by increasing the model's sodium kinetics to fourth order (m(3) → m(4)). Both structures then virtually imply activation gating by four independent subprocesses acting in parallel. The kinetics coalesce in four-dimensional (4D) cubic diagrams (16 states, 32 reversible transitions) that show the structure to be highly failure resistant against significant partial loss of gating function. Rate constants, as fitted in phase plot data of retinal ganglion cell excitation, reflect the molecular nature of the gating transitions. Additional dimensions (6D cubic diagrams) accommodate kinetically coupled sodium inactivation and gating processes associated with beta subunits. The gating transitions of coupled sodium inactivation appear to be thermodynamically irreversible; response to dielectric surface charges (capacitive displacement) provides a potential energy source for those transitions and yields highly energy-efficient excitation. A comparison of temperature responses of the squid giant axon (apparently Arrhenius) and mammalian channel gating yields kinetic Q10 = 2.2 for alpha unit gating, whose transitions are rate-limiting at mammalian temperatures; beta unit kinetic Q10 = 14 reproduces the observed non-Arrhenius deviation of mammalian gating at low temperatures; the Q10 of sodium inactivation gating matches the rate-limiting component of activation gating at all temperatures. The model kinetics reproduce the physiologically large frequency range for repetitive firing in ganglion cells and the physiologically observed strong temperature dependence of recovery from inactivation. Copyright © 2015 the American Physiological Society.

  4. Voltage gating by molecular subunits of Na+ and K+ ion channels: higher-dimensional cubic kinetics, rate constants, and temperature

    PubMed Central

    2015-01-01

    The structural similarity between the primary molecules of voltage-gated Na and K channels (alpha subunits) and activation gating in the Hodgkin-Huxley model is brought into full agreement by increasing the model's sodium kinetics to fourth order (m3 → m4). Both structures then virtually imply activation gating by four independent subprocesses acting in parallel. The kinetics coalesce in four-dimensional (4D) cubic diagrams (16 states, 32 reversible transitions) that show the structure to be highly failure resistant against significant partial loss of gating function. Rate constants, as fitted in phase plot data of retinal ganglion cell excitation, reflect the molecular nature of the gating transitions. Additional dimensions (6D cubic diagrams) accommodate kinetically coupled sodium inactivation and gating processes associated with beta subunits. The gating transitions of coupled sodium inactivation appear to be thermodynamically irreversible; response to dielectric surface charges (capacitive displacement) provides a potential energy source for those transitions and yields highly energy-efficient excitation. A comparison of temperature responses of the squid giant axon (apparently Arrhenius) and mammalian channel gating yields kinetic Q10 = 2.2 for alpha unit gating, whose transitions are rate-limiting at mammalian temperatures; beta unit kinetic Q10 = 14 reproduces the observed non-Arrhenius deviation of mammalian gating at low temperatures; the Q10 of sodium inactivation gating matches the rate-limiting component of activation gating at all temperatures. The model kinetics reproduce the physiologically large frequency range for repetitive firing in ganglion cells and the physiologically observed strong temperature dependence of recovery from inactivation. PMID:25867741

  5. Optical soliton solutions of the cubic-quintic non-linear Schrödinger's equation including an anti-cubic term

    NASA Astrophysics Data System (ADS)

    Kaplan, Melike; Hosseini, Kamyar; Samadani, Farzan; Raza, Nauman

    2018-07-01

    A wide range of problems in different fields of the applied sciences especially non-linear optics is described by non-linear Schrödinger's equations (NLSEs). In the present paper, a specific type of NLSEs known as the cubic-quintic non-linear Schrödinger's equation including an anti-cubic term has been studied. The generalized Kudryashov method along with symbolic computation package has been exerted to carry out this objective. As a consequence, a series of optical soliton solutions have formally been retrieved. It is corroborated that the generalized form of Kudryashov method is a direct, effectual, and reliable technique to deal with various types of non-linear Schrödinger's equations.

  6. Raman spectroscopy insight into Norovirus encapsulation in Bombyx mori cypovirus cubic microcrystals.

    PubMed

    Mori, Hajime; Oda, Naoki; Abe, Satoshi; Ueno, Takafumi; Zhu, Wenliang; Pernstich, Chris; Pezzotti, Giuseppe

    2018-05-16

    Protein and amino acid structures of Norovirus-like particles (NoVLP) have been investigated by Raman spectroscopy before and after encapsulation into Bombyx mori cypovirus (BmCPV) cubic microcrystals, which are usually referred to as cubes or polyhedra. Two different types of tag were used in co-expression, namely VP3 and H1 tags. VP3 tag is derived from a capsid protein VP4 from BmCPV and H1 tag is N-terminal α-helix of BmCPV polyhedrin, respectively. A major capsid protein VP1 of NoVLP G11.4 was fused with H1 or VP3 tags, and then encapsulated into BmCPV polyhedra. Analyses of the spectroscopic data permitted the assignment of conformation-sensitive Raman bands to viral amino acid constituents and the observation of structural similarities or differences between differently tagged samples. Three separate Raman zones were attentioned, namely, the ring-mode structure region (1000-1500 cm -1 ), the CO and CC double-bond region and its surroundings (1500-1750 cm -1 ), and the high-frequency CH stretching region (2800-3100 cm -1 ). Structural fingerprints could be found in specific spectral zones for differently co-expressed samples. One clear characteristic of the H1-tagged VP1 polyhedra was the increase in tyrosine fraction, which played a critical role in binding neighboring strands through its unpaired negatively charged COO - sites. This feature could consistently be detected in different regions, but it was best represented by Raman signals associated with negatively charged COO - sites and H1 helices in the double-bond region. Such peculiar chemical features were revealed by two relatively broad bands at 1570 and 1630 cm -1 , which were assigned to COO - anti-symmetric stretching and amide I in 3 10 -helix extensions to α-helices at N-termini, respectively. These specific features did not display in the spectrum of the VP3-tagged VP1 polyhedra. Concurrently, a strong reduction of CH bond Raman signal was noticed in the high frequency stretching

  7. Mass-induced instability of SAdS black hole in Einstein-Ricci cubic gravity

    NASA Astrophysics Data System (ADS)

    Myung, Yun Soo

    2018-05-01

    We perform the stability analysis of Schwarzschild-AdS (SAdS) black hole in the Einstein-Ricci cubic gravity. It shows that the Ricci tensor perturbations exhibit unstable modes for small black holes. We call this the mass-induced instability of SAdS black hole because the instability of small black holes arises from the massiveness in the linearized Einstein-Ricci cubic gravity, but not a feature of higher-order derivative theory giving ghost states. Also, we point out that the correlated stability conjecture holds for the SAdS black hole by computing the Wald entropy of SAdS black hole in Einstein-Ricci cubic gravity.

  8. Orientation dependence of the dislocation microstructure in compressed body-centered cubic molybdenum

    SciTech Connect

    Wang, S.; Wang, M.P.; Chen, C., E-mail: chench011-33@163.com

    2014-05-01

    The orientation dependence of the deformation microstructure has been investigated in commercial pure molybdenum. After deformation, the dislocation boundaries of compressed molybdenum can be classified, similar to that in face-centered cubic metals, into three types: dislocation cells (Type 2), and extended planar boundaries parallel to (Type 1) or not parallel to (Type 3) a (110) trace. However, it shows a reciprocal relationship between face-centered cubic metals and body-centered cubic metals on the orientation dependence of the deformation microstructure. The higher the strain, the finer the microstructure is and the smaller the inclination angle between extended planar boundaries and the compressionmore » axis is. - Highlights: • A reciprocal relationship between FCC metals and BCC metals is confirmed. • The dislocation boundaries can be classified into three types in compressed Mo. • The dislocation characteristic of different dislocation boundaries is different.« less

  9. Polymorphic improvement of Stillinger-Weber potential for InGaN

    SciTech Connect

    Zhou, Xiaowang W.; Jones, Reese E.; Chu, Kevin

    A Stillinger-Weber potential is computationally very efficient for molecular dynamics simulations. Despite its simple mathematical form, the Stillinger-Weber potential can be easily parameterized to ensure that crystal structures with tetrahedral bond angles (e.g., diamond-cubic, zinc-blende, and wurtzite) are stable and have the lowest energy. As a result, the Stillinger-Weber potential has been widely used to study a variety of semiconductor elements and alloys. When studying an A-B binary system, however, the Stillinger-Weber potential is associated with two major drawbacks. First, it significantly overestimates the elastic constants of elements A and B, limiting its use for systems involving both compounds andmore » elements (e.g., an A/AB multilayer). Second, it prescribes equal energy for zinc-blende and wurtzite crystals, limiting its use for compounds with large stacking fault energies. Here in this paper, we utilize the polymorphic potential style recently implemented in LAMMPS to develop a modified Stillinger-Weber potential for InGaN that overcomes these two problems.« less

  10. Polymorphic improvement of Stillinger-Weber potential for InGaN

    NASA Astrophysics Data System (ADS)

    Zhou, X. W.; Jones, R. E.; Chu, K.

    2017-12-01

    A Stillinger-Weber potential is computationally very efficient for molecular dynamics simulations. Despite its simple mathematical form, the Stillinger-Weber potential can be easily parameterized to ensure that crystal structures with tetrahedral bond angles (e.g., diamond-cubic, zinc-blende, and wurtzite) are stable and have the lowest energy. As a result, the Stillinger-Weber potential has been widely used to study a variety of semiconductor elements and alloys. When studying an A-B binary system, however, the Stillinger-Weber potential is associated with two major drawbacks. First, it significantly overestimates the elastic constants of elements A and B, limiting its use for systems involving both compounds and elements (e.g., an A/AB multilayer). Second, it prescribes equal energy for zinc-blende and wurtzite crystals, limiting its use for compounds with large stacking fault energies. Here, we utilize the polymorphic potential style recently implemented in LAMMPS to develop a modified Stillinger-Weber potential for InGaN that overcomes these two problems.

  11. Growth and band gap of the filled tetrahedral semiconductor LiMgN

    NASA Astrophysics Data System (ADS)

    Kuriyama, K.; Nagasawa, K.; Kushida, K.

    2002-04-01

    The cubic AlN-like compound, LiMgN, can be considered as a zinc blende-like (MgN) - lattice partially filled with He-like Li + interstitials. LiMgN was synthesized by direct reaction between N 2 and LiMg alloy at around 800°C for 8 h. Polycrystalline crystals are grown as cornflake-like shapes with a light yellow color and show the LiMgN-phase (the lattice constant a=4.955±0.005 Å) except for non-reactant LiMg and oxide (LiNO 3). The ordered structure between Li and Mg is not confirmed exactly by X-ray diffraction studies. The band gap of as-grown crystals evaluated using photoacoustic spectroscopy is 3.2 eV, which value is supported by an optical transmission spectrum. The band gap value of LiMgN is close to that of GaN (zinc blende, Eg=3.45 eV).

  12. Polymorphic improvement of Stillinger-Weber potential for InGaN

    DOE PAGES

    Zhou, Xiaowang W.; Jones, Reese E.; Chu, Kevin

    2017-12-21

    A Stillinger-Weber potential is computationally very efficient for molecular dynamics simulations. Despite its simple mathematical form, the Stillinger-Weber potential can be easily parameterized to ensure that crystal structures with tetrahedral bond angles (e.g., diamond-cubic, zinc-blende, and wurtzite) are stable and have the lowest energy. As a result, the Stillinger-Weber potential has been widely used to study a variety of semiconductor elements and alloys. When studying an A-B binary system, however, the Stillinger-Weber potential is associated with two major drawbacks. First, it significantly overestimates the elastic constants of elements A and B, limiting its use for systems involving both compounds andmore » elements (e.g., an A/AB multilayer). Second, it prescribes equal energy for zinc-blende and wurtzite crystals, limiting its use for compounds with large stacking fault energies. Here in this paper, we utilize the polymorphic potential style recently implemented in LAMMPS to develop a modified Stillinger-Weber potential for InGaN that overcomes these two problems.« less

  13. Ab initio elastic tensor of cubic Ti0.5Al0.5N alloys: Dependence of elastic constants on size and shape of the supercell model and their convergence

    NASA Astrophysics Data System (ADS)

    Tasnádi, Ferenc; Odén, M.; Abrikosov, Igor A.

    2012-04-01

    In this study we discuss the performance of the special quasirandom structure (SQS) method in predicting the elastic properties of B1 (rocksalt) Ti0.5Al0.5N alloy. We use a symmetry-based projection technique, which gives the closest cubic approximate of the elastic tensor and allows us to align the SQSs of different shapes and sizes for a comparison in modeling elastic tensors. We show that the derived closest cubic approximate of the elastic tensor converges faster with respect to SQS size than the elastic tensor itself. That establishes a less demanding computational strategy to achieve convergence for the elastic constants. We determine the cubic elastic constants (Cij) and Zener's type elastic anisotropy (A) of Ti0.5Al0.5N. Optimal supercells, which capture accurately both the configurational disorder and cubic symmetry of elastic tensor, result in C11=447 GPa, C12=158 GPa, and C44=203 GPa with 3% of error and A=1.40 with 6% of error. In addition, we establish the general importance of selecting proper SQS with symmetry arguments to reliably model elasticity of alloys. We suggest the calculation of nine elastic tensor elements: C11, C22, C33, C12, C13, C23, C44, C55, and C66, to analyze the performance of SQSs and predict elastic constants of cubic alloys. The described methodology is general enough to be extended for alloys with other symmetry at arbitrary composition.

  14. Natural convection in a cubical cavity with a coaxial heated cylinder

    SciTech Connect

    Aithal, S. M.

    High-resolution three-dimensional simulations were conducted to investigate the velocity and temperature fields in a cold cubical cavity due to natural convection induced by a centrally placed hot cylinder. Unsteady, incompressible Navier-Stokes equations were solved by using a spectral- element method for Rayleigh numbers ranging from 103 to 109. The effect of spanwise thermal boundary conditions, aspect ratio (radius of the cylinder to the side of the cavity), and spanwise temperature distribution of the inner cylinder on the velocity and thermal fields were investigated for each Rayleigh number. Results from two-dimensional calculations were compared with three-dimensional simulations. The 3D results indicatemore » a complex flow structure in the vicinity of the spanwise walls. The results also show that the imposed thermal wall boundary condition impacts the flow and temperature fields strongly near the spanwise walls. The variation of the local Nusselt number on the cylinder surface and enclosure walls at various spanwise locations was also investigated. The local Nusselt number on the cylinder surface and enclosure walls at the cavity mid-plane (Z = 0) is close to 2D simulations for 103 ≤ Ra ≤ 108. Simulations also show a variation in the local Nusselt number, on both the cylinder surface and the enclosure walls, in the spanwise direction, for all Rayleigh numbers studied in this work. The results also indicate that if the enclosure walls are insulated in the spanwise direction (as opposed to a constant temperature), the peak Nusselt number on the enclosure surface occurs near the spanwise walls and is about 20% higher than the peak Nusselt number at the cavity mid-plane. The temporal characteristics of 3D flows are also different from 2D results for Ra > 108. These results suggest that 3D simulations would be more appropriate for flows with Ra > 108.« less

  15. Exact Calculation of the Thermodynamics of Biomacromolecules on Cubic Recursive Lattice.

    NASA Astrophysics Data System (ADS)

    Huang, Ran

    The thermodynamics of biomacromolecules featured as foldable polymer with inner-linkage of hydrogen bonds, e. g. protein, RNA and DNA, play an impressive role in either physical, biological, and polymer sciences. By treating the foldable chains to be the two-tolerate self-avoiding trails (2T polymer), abstract lattice modeling of these complex polymer systems to approach their thermodynamics and subsequent bio-functional properties have been developed for decades. Among these works, the calculations modeled on Bethe and Husimi lattice have shown the excellence of being exactly solvable. Our project extended this effort into the 3D situation, i.e. the cubic recursive lattice. The preliminary exploration basically confirmed others' previous findings on the planar structure, that we have three phases in the grand-canonical phase diagram, with a 1st order transition between non-polymerized and polymer phases, and a 2nd order transition between two distinguishable polymer phases. However the hydrogen bond energy J, stacking energy ɛ, and chain rigidity energy H play more vigorous effects on the thermal behaviors, and this is hypothesized to be due to the larger number of possible configurations provided by the complicated 3D model. By the so far progress, the calculation of biomacromolecules may be applied onto more complex recursive lattices, such as the inhomogeneous lattice to describe the cross-dimensional situations, and beside the thermal properties of the 2T polymers, we may infer some interesting insights of the mysterious folding problem itself. National Natural Science Foundation of China.

  16. Formation of prismatic loops from C15 Laves phase interstitial clusters in body-centered cubic iron

    SciTech Connect

    Zhang, Yongfeng; Bai, Xian-Ming; Tonks, Michael R.

    2015-03-01

    This Letter reports the transition of C15 phase self-interstitial clusters to loops in body-centered-cubic Iron. Molecular dynamics simulations are performed to evaluate the relative stabilities of difference interstitial cluster configurations including C15 phase structure and <100> and <111>/2 loops. Within a certain size range, C15 cluster are found more stable than loops, and the relative stabilities are reversed beyond that range. In accordance to the crossover in relative stabilities, C15 clusters may grow by absorbing individual interstitials at small sizes and transitions into loops eventually. The transition takes place by nucleation and reaction of <111>/2 loop segments. These observations explainmore » the absence of C15 phase interstitial clusters predicted by density-functional-theory calculations in previous experimental observations. More importantly, the current results provide a new formation mechanism of <100> loops which requires no interaction of loops.« less

  17. Semiempirical self-consistent polarization description of bulk water, the liquid-vapor interface, and cubic ice.

    PubMed

    Murdachaew, Garold; Mundy, Christopher J; Schenter, Gregory K; Laino, Teodoro; Hutter, Jürg

    2011-06-16

    We have applied an efficient electronic structure approach, the semiempirical self-consistent polarization neglect of diatomic differential overlap (SCP-NDDO) method, previously parametrized to reproduce properties of water clusters by Chang, Schenter, and Garrett [ J. Chem. Phys. 2008 , 128 , 164111 ] and now implemented in the CP2K package, to model ambient liquid water at 300 K (both the bulk and the liquid-vapor interface) and cubic ice at 15 and 250 K. The SCP-NDDO potential retains its transferability and good performance across the full range of conditions encountered in the clusters and the bulk phases of water. In particular, we obtain good results for the density, radial distribution functions, enthalpy of vaporization, self-diffusion coefficient, molecular dipole moment distribution, and hydrogen bond populations, in comparison to experimental measurements. © 2011 American Chemical Society

  18. Uranium nitride: a cubic antiferromagnet with anisotropic critical behavior

    SciTech Connect

    Buyers, W J.L.; Holden, T M; Svensson, E C

    1977-11-01

    Highly anisotropic critical scattering associated with the transition at T/sub N/ = 49.5 K to the type-I antiferromagnetic structure has been observed in uranium nitride. The transverse susceptibility is found to be unobservably small. The longitudinal susceptibility diverges at T/sub N/ and its anisotropy shows that the spins within the (001) ferromagnetic sheets of the (001) domain are much more highly correlated than they are with the spins lying in adjacent (001) sheets. The correlation range within the sheets is much greater than that expected for a Heisenberg system with the same T/sub N/. The rod-like scattering extended along themore » spin and domain direction is reminiscent of two-dimensional behavior. The results are inconsistent with a simple localized model and may reflect the itinerant nature of the 5f electrons.« less

  19. Curvature and bottlenecks control molecular transport in inverse bicontinuous cubic phases

    NASA Astrophysics Data System (ADS)

    Assenza, Salvatore; Mezzenga, Raffaele

    2018-02-01

    We perform a simulation study of the diffusion of small solutes in the confined domains imposed by inverse bicontinuous cubic phases for the primitive, diamond, and gyroid symmetries common to many lipid/water mesophase systems employed in experiments. For large diffusing domains, the long-time diffusion coefficient shows universal features when the size of the confining domain is renormalized by the Gaussian curvature of the triply periodic minimal surface. When bottlenecks are widely present, they become the most relevant factor for transport, regardless of the connectivity of the cubic phase.

  20. Secure optical generalized filter bank multi-carrier system based on cubic constellation masked method.

    PubMed

    Zhang, Lijia; Liu, Bo; Xin, Xiangjun

    2015-06-15

    A secure optical generalized filter bank multi-carrier (GFBMC) system with carrier-less amplitude-phase (CAP) modulation is proposed in this Letter. The security is realized through cubic constellation-masked method. Large key space and more flexibility masking can be obtained by cubic constellation masking aligning with the filter bank. An experiment of 18 Gb/s encrypted GFBMC/CAP system with 25-km single-mode fiber transmission is performed to demonstrate the feasibility of the proposed method.

  1. Exact optical solitons in (n + 1)-dimensions with anti-cubic nonlinearity

    NASA Astrophysics Data System (ADS)

    Younis, Muhammad; Shahid, Iram; Anbreen, Sumaira; Rizvi, Syed Tahir Raza

    2018-02-01

    The paper studies the propagation of optical solitons in (n + 1)-dimensions under anti-cubic law of nonlinearity. The bright, dark and singular optical solitons are extracted using the extended trial equation method. The constraint conditions, for the existence of these solitons, are also listed. Additionally, a couple of other solutions known as singular periodic and Jacobi elliptic solutions, fall out as a by-product of this scheme. The obtained results are new and reported first time in (n + 1)-dimensions with anti-cubic law of nonlinearity.

  2. Surfactant-Enabled Epitaxy of Smooth, Cubic Oxides on Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Paisley, Elizabeth Aldret

    Epitaxial integration of polar oxides with polar semiconductors presents the possibility of tunable 2D charge carriers at polar interfaces and integration of non-linear dielectric properties if defect densities are low and interfaces are smooth. Achieving this in materials with highly dissimilar structure and symmetry remains a serious challenge and requires a dramatically improved understanding of chemically and structurally dissimilar interfaces and their synthesis. Current efforts to achieve such devices are impeded by the fact that many polar oxides have a close-packed cubic substructure that requires the oxide to grow along the {111} direction, which is compatible with hexagonal (0002) GaN. Since the {111} direction is not the lowest energy face for these oxides, conventional methods used to synthesize these oxides usually allow the interface to compensate by forming facets resulting in defects, detrimental to the sustaining interface conductivity. This thesis demonstrates a new methodology developed to allow in situ stabilization of desired crystallographic habits where water vapor is utilized during growth to hydroxylate the oxide (111) surfaces, changing the equilibrium habit from cubic to octahedral, eliminating the (100)-faceting tendency. Bulk thermodynamic calculations show that a hydroxide termination can stabilize the (111)-face. Further, Ca(OH)2 (the structure likely to represent such termination) provides a low-energy surface with six-fold symmetry and atomic registry matching {111}-CaO and GaN. Additionally, the relative free energies of formation for CaO and Ca(OH)2 provide an adequate processing window to avoid competition between oxide and hydroxide deposition. This approach is demonstrated for three model systems of rocksalt oxides grown along a polar direction on GaN: MgO, CaO, and lattice-matched compositions: Mg0.52Ca0.48O. MBE growth of smooth (111) CaO is demonstrated using RHEED intensity vs. time oscillations that show layer

  3. Enhanced solar-blind responsivity of photodetectors based on cubic MgZnO films via gallium doping.

    PubMed

    Xie, Xiuhua; Zhang, Zhenzhong; Li, Binghui; Wang, Shuangpeng; Jiang, Mingming; Shan, Chongxin; Zhao, Dongxu; Chen, Hongyu; Shen, Dezhen

    2014-01-13

    We report on gallium (Ga) doped cubic MgZnO films, which have been grown by metal organic chemical vapor deposition. It was demonstrated that Ga doping improves the n-type conduction of the cubic MgZnO films. A two-orders of magnitude enhancement in lateral n-type conduction have been achieved for the cubic MgZnO films. The responsivity of the cubic MgZnO-based photodetector has been also enhanced. Depletion region electric field intensity enhanced model was adopted to explain the improvement of quantum efficiency in Ga doped MgZnO-based detectors.

  4. Cubic map algebra functions for spatio-temporal analysis

    USGS Publications Warehouse

    Mennis, J.; Viger, R.; Tomlin, C.D.

    2005-01-01

    We propose an extension of map algebra to three dimensions for spatio-temporal data handling. This approach yields a new class of map algebra functions that we call "cube functions." Whereas conventional map algebra functions operate on data layers representing two-dimensional space, cube functions operate on data cubes representing two-dimensional space over a third-dimensional period of time. We describe the prototype implementation of a spatio-temporal data structure and selected cube function versions of conventional local, focal, and zonal map algebra functions. The utility of cube functions is demonstrated through a case study analyzing the spatio-temporal variability of remotely sensed, southeastern U.S. vegetation character over various land covers and during different El Nin??o/Southern Oscillation (ENSO) phases. Like conventional map algebra, the application of cube functions may demand significant data preprocessing when integrating diverse data sets, and are subject to limitations related to data storage and algorithm performance. Solutions to these issues include extending data compression and computing strategies for calculations on very large data volumes to spatio-temporal data handling.

  5. Full Vector Wave Calculation of Photonic Band Structures in Face-Centered Cubic Dielectric Media

    DTIC Science & Technology

    1990-01-01

    refractive index ratios90 0(;o8 070 2 were painstakingly machined out of low-loss dk’-tric materials. This very time comsuming approach was necessary to...find that the X-gap goes to zero for f=0.66. This is very close to the experimental value of 0.68. The physical origin of this behavior has been fully

  6. Semiconducting cubic titanium nitride in the Th 3 P 4 structure

    DOE PAGES

    Bhadram, Venkata S.; Liu, Hanyu; Xu, Enshi; ...

    2018-01-22

    We report the discovery of a long-sought-after phase of titanium nitride with stoichiometry Ti3N4 using diamond anvil cell experiments combined with in situ high-resolution x-ray diffraction and Raman spectroscopy techniques, supported by ab initio calculations.

  7. Predictions of the Electronic Structure and Related Properties of Cubic Calcium Hexaboride (CaB6)

    DTIC Science & Technology

    2010-06-01

    not display a currently valid OMB control number. 1. REPORT DATE JUN 2010 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE...TERAKURA, AND T. MIYAKE . 2002. Abnormal Quasiparticle shifts in CaB6. Phys. Rev. B. 66: 121103-1-121103-4. LEE, BYOUNGHAK, AND LIN-WANG WANG. 2005

  8. Ab-initio Calculation of Optoelectronic and Structural Properties of Cubic Lithium Oxide (Li2O)

    NASA Astrophysics Data System (ADS)

    Ziegler, Joshua; Polin, Daniel; Malozovsky, Yuriy; Bagayoko, Diola

    Using the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), we performed ab-initio, density functional theory (DFT) calculations of optoelectronic, transport, and bulk properties of Li2S. In so doing, we avoid ``band gap'' and problems plaguing many DET calculations [AIP Advances 4, 127104 (2014)]. We employed a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO). With the BZW-EF method, our results possess the full, physical content of DFT and agree with available, corresponding experimental ones. In particular, we found a room temperature indirect band gap of 6.659 eV that compares favorably with experimental values ranging from 5 to 7.99 eV. We also calculated total and partial density of states (DOS and PDOS), effective masses of charge carriers, the equilibrium lattice constant, and the bulk modulus. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award Nos. DE-NA0001861 and DE- NA0002630), LaSPACE, and LONI-SUBR.

  9. Structural and dynamical properties of Bridgman-grown CdSexTe1-x (0

    NASA Astrophysics Data System (ADS)

    Talwar, Devki N.; Feng, Zhe Chuan; Lee, Jyh-Fu; Becla, P.

    2013-04-01

    Measurements of the Raman scattering and extended x-ray-absorption fine-structure (EXAFS) spectroscopy are reported on a series of Bridgman-grown zinc-blende CdTe1-xSex (0.35 ≥ x > 0.05) ternary alloys to empathize their lattice dynamical and structural properties. Low-temperature Raman spectra have revealed the classic CdTe-like (TO1, LO1) and CdSe-like (TO2, LO2) pairs of optical phonons. The composition-dependent peak positions of the LO2 modes exhibited shifts towards the higher-energy side, while those of the LO1 phonon frequencies have unveiled the slight redshifts. Detailed analyses of EXAFS data by using the first-principles bond orbital model have enabled us to estimate both the lattice relaxations and nearest-neighbor radial force constants around the Se/Te atoms in the CdTe/CdSe matrix. These results are methodically integrated in the “average t-matrix” formalism within the Green's-function theory for defining the impurity perturbations to comprehend the composition-dependent optical phonons in CdTe1-xSex alloys. Based on our comprehensive calculations of impurity modes in the low-composition regime x→ 0, we have assigned the weak phonon feature observed near ˜175 cm-1 in the low-temperature infrared reflectivity spectroscopy study to a SeTe localized vibrational mode.

  10. Density functional theory calculations of III-N based semiconductors with mBJLDA

    NASA Astrophysics Data System (ADS)

    Gürel, Hikmet Hakan; Akıncı, Özden; Ünlü, Hilmi

    2017-02-01

    In this work, we present first principles calculations based on a full potential linear augmented plane-wave method (FP-LAPW) to calculate structural and electronic properties of III-V based nitrides such as GaN, AlN, InN in a zinc-blende cubic structure. First principles calculation using the local density approximation (LDA) and generalized gradient approximation (GGA) underestimate the band gap. We proposed a new potential called modified Becke-Johnson local density approximation (MBJLDA) that combines modified Becke-Johnson exchange potential and the LDA correlation potential to get better band gap results compared to experiment. We compared various exchange-correlation potentials (LSDA, GGA, HSE, and MBJLDA) to determine band gaps and structural properties of semiconductors. We show that using MBJLDA density potential gives a better agreement with experimental data for band gaps III-V nitrides based semiconductors.

  11. Estimating load weights with Huber's Cubic Volume formula: a field trial.

    Treesearch

    Dale R. Waddell

    1989-01-01

    Log weights were estimated from the product of Huber's cubic volume formula and green density. Tags showing estimated log weights were attached to logs in the field, and the weights were tallied into a single load weight as logs were assembled for aerial yarding. Accuracy of the estimated load weights was evaluated by comparing the predicted with the actual load...

  12. Critical temperature of noninteracting bosonic gases in cubic optical lattices at arbitrary integer fillings.

    PubMed

    Rakhimov, Abdulla; Askerzade, Iman N

    2014-09-01

    We have shown that the critical temperature of a Bose-Einstein condensate to a normal phase transition of noninteracting bosons in cubic optical lattices has a linear dependence on the filling factor, especially at large densities. The condensed fraction exhibits a linear power law dependence on temperature in contrast to the case of ideal homogeneous Bose gases.

  13. Breakup of Kol'mogorov-Arnol'd-Moser tori of cubic irrational winding number

    SciTech Connect

    Mao, J.; Helleman, R.H.G.

    1989-01-01

    For the special case in which the irrational winding number is the root of a cubic equation, we present numerical evidence for the validity of some form of residue criterion (Greene, J. Math. Phys. 20, 1182 (1979)). This is a criterion for the breakup of Kol'mogorov-Arnol'd-Moser tori in two degrees of freedom. The cubic case is essential for future work on four-dimensional maps. While the residues do approach infinity (respectively, 0) after (respectively, before) the breaking point, it is numerically very difficult to estimate a critical residue value R/sub cr/ for this cubic case (0.15approx. ..infinity, with a ''new'' scalingmore » constant xiapprox. =0.72, where p/sub n//q/sub n/ is the nth rational approximant in the continued-fraction expansion of the cubic irrational. For a quadratic irrational this scaling reduces to the usual power-law scaling approx.delta/sup -//sup n/.« less

  14. Effect of rotation age and physiographic region on weight per cubic foot of planted loblolly pine

    Treesearch

    Alexander Clark; Richard F. Daniels; Bruce E. Borders

    2006-01-01

    Most harvested southern pine is sold by weight. We discuss how the weight of wood and bark per cubic foot of wood (the weight scaling factor) for plantation-grown loblolly pine (Pinus taeda L.) varies with tree age across the coastal and inland regions of the Southern United States. To determine the weight scaling factor for plantation trees in the...

  15. Cubic-foot tree volumes and product recoveries for eastern redcedar in the Ozarks

    Treesearch

    Leland F. Hanks

    1979-01-01

    Tree volume tables and equations for eastern redcedar are presented for gross volume, cant volume, and volume of sawmill residue. These volumes, when multiplied by the average value per cubic foot of cants and residue, provide a way to estimate tree value.

  16. Stem Cubic-Foot Volume Tables for Tree Species in the Upper Coastal Plain

    Treesearch

    Alexander Clark; Ray A. Souter

    1996-01-01

    Stemwood cubic-foot volume inside bark tables are presented for 11 species and 8 species groups based on equations used to estimate timber sale volumes on national forests in the Upper Coastal Plain. Tables are based on form class measurement data for 521 trees sampled in the Upper Coastal Plain and taper data collected across the South. A series of tables is...

  17. Stem Cubic-Foot Volume Tables for Tree Species in the Appalachian Area

    Treesearch

    Alexander Clark; Ray A. Souter

    1996-01-01

    Stemwood cubic-foot volume inside bark tables are presented for 20 species and 8 species groups based on equations used to estimate timber sale volumes on national forests in the Appalachian Area. Tables are based on form class measurement data for 2,870 trees sampled in the Appalachian Area and taper data collected across the South. A series of tables is presented...

  18. Why Do Membranes of Some Unhealthy Cells Adopt a Cubic Architecture?

    DOE PAGES

    Xiao, Qi; Wang, Zhichun; Williams, Dewight; ...

    2016-12-05

    Nonlamellar lipid arrangements, including cubosomes, appear in unhealthy cells, e.g., when they are subject to stress, starvation, or viral infection. The bioactivity of cubosomes—nanoscale particles exhibiting bicontinuous cubic structures—versus more common vesicles is an unexplored area due to lack of suitable model systems. Here, glycodendrimercubosomes (GDCs)—sugar-presenting cubosomes assembled from Janus glycodendrimers by simple injection into buffer—are proposed as mimics of biological cubic membranes. The bicontinuous cubic GDC architecture has been demonstrated by electron tomography. The stability of these GDCs in buffer enabled studies on lectin-dependent agglutination, revealing significant differences compared with the vesicular glycodendrimersome (GDS) counterpart. In particular, GDCs showedmore » an increased activity toward concanavalin A, as well as an increased sensitivity and selectivity toward two variants of banana lectins, a wild-type and a genetically modified variant, which is not exhibited by GDSs. These results suggest that cells may adapt under unhealthy conditions by undergoing a transformation from lamellar to cubic membranes as a method of defense.« less

  19. [An Improved Cubic Spline Interpolation Method for Removing Electrocardiogram Baseline Drift].

    PubMed

    Wang, Xiangkui; Tang, Wenpu; Zhang, Lai; Wu, Minghu

    2016-04-01

    The selection of fiducial points has an important effect on electrocardiogram(ECG)denoise with cubic spline interpolation.An improved cubic spline interpolation algorithm for suppressing ECG baseline drift is presented in this paper.Firstly the first order derivative of original ECG signal is calculated,and the maximum and minimum points of each beat are obtained,which are treated as the position of fiducial points.And then the original ECG is fed into a high pass filter with 1.5Hz cutoff frequency.The difference between the original and the filtered ECG at the fiducial points is taken as the amplitude of the fiducial points.Then cubic spline interpolation curve fitting is used to the fiducial points,and the fitting curve is the baseline drift curve.For the two simulated case test,the correlation coefficients between the fitting curve by the presented algorithm and the simulated curve were increased by 0.242and0.13 compared with that from traditional cubic spline interpolation algorithm.And for the case of clinical baseline drift data,the average correlation coefficient from the presented algorithm achieved 0.972.

  20. Why Do Membranes of Some Unhealthy Cells Adopt a Cubic Architecture?

    SciTech Connect

    Xiao, Qi; Wang, Zhichun; Williams, Dewight

    Nonlamellar lipid arrangements, including cubosomes, appear in unhealthy cells, e.g., when they are subject to stress, starvation, or viral infection. The bioactivity of cubosomes—nanoscale particles exhibiting bicontinuous cubic structures—versus more common vesicles is an unexplored area due to lack of suitable model systems. Here, glycodendrimercubosomes (GDCs)—sugar-presenting cubosomes assembled from Janus glycodendrimers by simple injection into buffer—are proposed as mimics of biological cubic membranes. The bicontinuous cubic GDC architecture has been demonstrated by electron tomography. The stability of these GDCs in buffer enabled studies on lectin-dependent agglutination, revealing significant differences compared with the vesicular glycodendrimersome (GDS) counterpart. In particular, GDCs showedmore » an increased activity toward concanavalin A, as well as an increased sensitivity and selectivity toward two variants of banana lectins, a wild-type and a genetically modified variant, which is not exhibited by GDSs. These results suggest that cells may adapt under unhealthy conditions by undergoing a transformation from lamellar to cubic membranes as a method of defense.« less