Sample records for zinc-blende wurtzite biphasic

  1. Electronic and structural characteristics of zinc-blende wurtzite biphasic homostructure GaN nanowires

    DOE PAGES

    Jacobs, Benjamin W.; Ayres, Virginia M.; Petkov, Mihail P.; ...

    2007-04-07

    Here, we report a new biphasic crystalline wurtzite/zinc-blende homostructure in gallium nitride nanowires. Cathodoluminescence was used to quantitatively measure the wurtzite and zinc-blende band gaps. High-resolution transmission electron microscopy was used to identify distinct wurtzite and zinc-blende crystalline phases within single nanowires through the use of selected area electron diffraction, electron dispersive spectroscopy, electron energy loss spectroscopy, and fast Fourier transform techniques. A mechanism for growth is identified.

  2. Electronic and structural characteristics of zinc-blende wurtzite biphasic homostructure GaN nanowires.

    PubMed

    Jacobs, Benjamin W; Ayres, Virginia M; Petkov, Mihail P; Halpern, Joshua B; He, Maoqi; Baczewski, Andrew D; McElroy, Kaylee; Crimp, Martin A; Zhang, Jiaming; Shaw, Harry C

    2007-05-01

    We report a new biphasic crystalline wurtzite/zinc-blende homostructure in gallium nitride nanowires. Cathodoluminescence was used to quantitatively measure the wurtzite and zinc-blende band gaps. High-resolution transmission electron microscopy was used to identify distinct wurtzite and zinc-blende crystalline phases within single nanowires through the use of selected area electron diffraction, electron dispersive spectroscopy, electron energy loss spectroscopy, and fast Fourier transform techniques. A mechanism for growth is identified.

  3. Electron transport in zinc-blende wurtzite biphasic gallium nitride nanowires and GaNFETs

    DOE PAGES

    Jacobs, Benjamin W.; Ayres, Virginia M.; Stallcup, Richard E.; ...

    2007-10-19

    Two-point and four-point probe electrical measurements of a biphasic gallium nitride nanowire and current–voltage characteristics of a gallium nitride nanowire based field effect transistor are reported. The biphasic gallium nitride nanowires have a crystalline homostructure consisting of wurtzite and zinc-blende phases that grow simultaneously in the longitudinal direction. There is a sharp transition of one to a few atomic layers between each phase. Here, all measurements showed high current densities. Evidence of single-phase current transport in the biphasic nanowire structure is discussed.

  4. Young's Modulus of Wurtzite and Zinc Blende InP Nanowires.

    PubMed

    Dunaevskiy, Mikhail; Geydt, Pavel; Lähderanta, Erkki; Alekseev, Prokhor; Haggrén, Tuomas; Kakko, Joona-Pekko; Jiang, Hua; Lipsanen, Harri

    2017-06-14

    The Young's modulus of thin conical InP nanowires with either wurtzite or mixed "zinc blende/wurtzite" structures was measured. It has been shown that the value of Young's modulus obtained for wurtzite InP nanowires (E [0001] = 130 ± 30 GPa) was similar to the theoretically predicted value for the wurtzite InP material (E [0001] = 120 ± 10 GPa). The Young's modulus of mixed "zinc blende/wurtzite" InP nanowires (E [111] = 65 ± 10 GPa) appeared to be 40% less than the theoretically predicted value for the zinc blende InP material (E [111] = 110 GPa). An advanced method for measuring the Young's modulus of thin and flexible nanostructures is proposed. It consists of measuring the flexibility (the inverse of stiffness) profiles 1/k(x) by the scanning probe microscopy with precise control of loading force in nanonewton range followed by simulations.

  5. Mechanical, Thermodynamic and Electronic Properties of Wurtzite and Zinc-Blende GaN Crystals.

    PubMed

    Qin, Hongbo; Luan, Xinghe; Feng, Chuang; Yang, Daoguo; Zhang, Guoqi

    2017-12-12

    For the limitation of experimental methods in crystal characterization, in this study, the mechanical, thermodynamic and electronic properties of wurtzite and zinc-blende GaN crystals were investigated by first-principles calculations based on density functional theory. Firstly, bulk moduli, shear moduli, elastic moduli and Poisson's ratios of the two GaN polycrystals were calculated using Voigt and Hill approximations, and the results show wurtzite GaN has larger shear and elastic moduli and exhibits more obvious brittleness. Moreover, both wurtzite and zinc-blende GaN monocrystals present obvious mechanical anisotropic behavior. For wurtzite GaN monocrystal, the maximum and minimum elastic moduli are located at orientations [001] and <111>, respectively, while they are in the orientations <111> and <100> for zinc-blende GaN monocrystal, respectively. Compared to the elastic modulus, the shear moduli of the two GaN monocrystals have completely opposite direction dependences. However, different from elastic and shear moduli, the bulk moduli of the two monocrystals are nearly isotropic, especially for the zinc-blende GaN. Besides, in the wurtzite GaN, Poisson's ratios at the planes containing [001] axis are anisotropic, and the maximum value is 0.31 which is located at the directions vertical to [001] axis. For zinc-blende GaN, Poisson's ratios at planes (100) and (111) are isotropic, while the Poisson's ratio at plane (110) exhibits dramatically anisotropic phenomenon. Additionally, the calculated Debye temperatures of wurtzite and zinc-blende GaN are 641.8 and 620.2 K, respectively. At 300 K, the calculated heat capacities of wurtzite and zinc-blende are 33.6 and 33.5 J mol -1 K -1 , respectively. Finally, the band gap is located at the G point for the two crystals, and the band gaps of wurtzite and zinc-blende GaN are 3.62 eV and 3.06 eV, respectively. At the G point, the lowest energy of conduction band in the wurtzite GaN is larger, resulting in a wider band

  6. Mechanical, Thermodynamic and Electronic Properties of Wurtzite and Zinc-Blende GaN Crystals

    PubMed Central

    Luan, Xinghe; Feng, Chuang; Yang, Daoguo; Zhang, Guoqi

    2017-01-01

    For the limitation of experimental methods in crystal characterization, in this study, the mechanical, thermodynamic and electronic properties of wurtzite and zinc-blende GaN crystals were investigated by first-principles calculations based on density functional theory. Firstly, bulk moduli, shear moduli, elastic moduli and Poisson’s ratios of the two GaN polycrystals were calculated using Voigt and Hill approximations, and the results show wurtzite GaN has larger shear and elastic moduli and exhibits more obvious brittleness. Moreover, both wurtzite and zinc-blende GaN monocrystals present obvious mechanical anisotropic behavior. For wurtzite GaN monocrystal, the maximum and minimum elastic moduli are located at orientations [001] and <111>, respectively, while they are in the orientations <111> and <100> for zinc-blende GaN monocrystal, respectively. Compared to the elastic modulus, the shear moduli of the two GaN monocrystals have completely opposite direction dependences. However, different from elastic and shear moduli, the bulk moduli of the two monocrystals are nearly isotropic, especially for the zinc-blende GaN. Besides, in the wurtzite GaN, Poisson’s ratios at the planes containing [001] axis are anisotropic, and the maximum value is 0.31 which is located at the directions vertical to [001] axis. For zinc-blende GaN, Poisson’s ratios at planes (100) and (111) are isotropic, while the Poisson’s ratio at plane (110) exhibits dramatically anisotropic phenomenon. Additionally, the calculated Debye temperatures of wurtzite and zinc-blende GaN are 641.8 and 620.2 K, respectively. At 300 K, the calculated heat capacities of wurtzite and zinc-blende are 33.6 and 33.5 J mol−1 K−1, respectively. Finally, the band gap is located at the G point for the two crystals, and the band gaps of wurtzite and zinc-blende GaN are 3.62 eV and 3.06 eV, respectively. At the G point, the lowest energy of conduction band in the wurtzite GaN is larger, resulting in a

  7. Internal structure of multiphase zinc-blende wurtzite gallium nitride nanowires.

    PubMed

    Jacobs, B W; Ayres, V M; Crimp, M A; McElroy, K

    2008-10-08

    In this paper, the internal structure of novel multiphase gallium nitride nanowires in which multiple zinc-blende and wurtzite crystalline domains grow simultaneously along the entire length of the nanowire is investigated. Orientation relationships within the multiphase nanowires are identified using high-resolution transmission electron microscopy of nanowire cross-sections fabricated with a focused ion beam system. A coherent interface between the zinc-blende and wurtzite phases is identified. A mechanism for catalyst-free vapor-solid multiphase nanowire nucleation and growth is proposed.

  8. Wurtzite/zinc-blende electronic-band alignment in basal-plane stacking faults in semi-polar GaN

    NASA Astrophysics Data System (ADS)

    Monavarian, Morteza; Hafiz, Shopan; Izyumskaya, Natalia; Das, Saikat; Özgür, Ümit; Morkoç, Hadis; Avrutin, Vitaliy

    2016-02-01

    Heteroepitaxial semipolar and nonpolar GaN layers often suffer from high densities of extended defects including basal plane stacking faults (BSFs). BSFs which are considered as inclusions of cubic zinc-blende phase in wurtzite matrix act as quantum wells strongly affecting device performance. Band alignment in BSFs has been discussed as type of band alignment at the wurtzite/zinc blende interface governs the response in differential transmission; fast decay after the pulse followed by slow recovery due to spatial splitting of electrons and heavy holes for type- II band alignment in contrast to decay with no recovery in case of type I band alignment. Based on the results, band alignment is demonstrated to be of type II in zinc-blende segments in wurtzite matrix as in BSFs.

  9. Triple-twin domains in Mg doped GaN wurtzite nanowires: structural and electronic properties of this zinc-blende-like stacking

    NASA Astrophysics Data System (ADS)

    Arbiol, Jordi; Estradé, Sònia; Prades, Joan D.; Cirera, Albert; Furtmayr, Florian; Stark, Christoph; Laufer, Andreas; Stutzmann, Martin; Eickhoff, Martin; Gass, Mhairi H.; Bleloch, Andrew L.; Peiró, Francesca; Morante, Joan R.

    2009-04-01

    We report on the effect of Mg doping on the properties of GaN nanowires grown by plasma assisted molecular beam epitaxy. The most significant feature is the presence of triple-twin domains, the density of which increases with increasing Mg concentration. The resulting high concentration of misplaced atoms gives rise to local changes in the crystal structure equivalent to the insertion of three non-relaxed zinc-blende (ZB) atomic cells, which result in quantum wells along the wurtzite (WZ) nanowire growth axis. High resolution electron energy loss spectra were obtained exactly on the twinned (zinc-blende) and wurtzite planes. These atomically resolved measurements, which allow us to identify modifications in the local density of states, revealed changes in the band to band electronic transition energy from 3.4 eV for wurtzite to 3.2 eV in the twinned lattice regions. These results are in good agreement with specific ab initio atomistic simulations and demonstrate that the redshift observed in previous photoluminescence analyses is directly related to the presence of these zinc-blende domains, opening up new possibilities for band-structure engineering.

  10. Thermal conductivity of wurtzite and zinc blende cubic phases of BeO from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Malakkal, Linu; Szpunar, Barbara; Siripurapu, Ravi Kiran; Zuniga, Juan Carlos; Szpunar, Jerzy A.

    2017-03-01

    The structural, mechanical, thermal and thermodynamic properties of Beryllium oxide (BeO) in the zinc blende (ZB) and wurtzite (WZ) form have been calculated using the density functional theory (DFT) in the general gradient approximation (GGA). The ground state structural and elastic properties of wurtzite BeO (w-BeO) is calculated using the new GGA ultrasoft pseudopotentials for solids (pbesol); the simulated results have shown excellent agreement with the experiments. The thermodynamic properties are studied using quasi-harmonic approximation (QHA), and the predicted properties agree well for the WZ phase for which the experimental data are available, while for ZB phase it remains to be validated with future experiments. Both Boltzmann transport equation (BTE) and Slack model were used to calculate the lattice thermal conductivity of wurtzite BeO (w-BeO). Furthermore, the thermal conductivity along the crystallographic 'a' and 'c' axis of wurtzite BeO is investigated using BTE. Our calculation of w-BeO agrees well with the available experimental measurements. Apart from these studies on w-BeO, we have also compared the mechanical, structural and phonon dispersions of z-BeO with previously reported theoretical studies. Additionally we report the volume thermal expansion and the heat capacity at constant pressure of z-BeO for the first time and the bulk thermal conductivity of zinc blende BeO (z-BeO) using BTE.

  11. Droplet heteroepitaxy of zinc-blende vs. wurtzite GaN quantum dots

    NASA Astrophysics Data System (ADS)

    Reese, C.; Jeon, S.; Hill, T.; Jones, C.; Shusterman, S.; Yacoby, Y.; Clarke, R.; Deng, H.; Goldman, Rs

    We have developed a GaN droplet heteroepitaxy process based upon plasma-assisted molecular-beam epitaxy. Using various surface treatments and Ga deposition parameters, we have demonstrated polycrystalline, zinc-blende (ZB), and wurtzite (WZ) GaN quantum dots (QDs) on Si(001), r-Al2O3, Si(111), and c-GaN substrates. For the polar substrates (i.e. Si(111) and c-GaN), high-resolution transmission electron microscopy and coherent Bragg rod analysis reveals the formation of coherent WZ GaN QDs with nitridation-temperature-dependent sizes and densities. For the non-polar substrates (i.e. Si(001) and r-Al2O3) , QDs with strong near-band photoluminescence emission are observed and ZB GaN QD growth on Si(001) is demonstrated for the first time.

  12. Mechanically controlling the reversible phase transformation from zinc blende to wurtzite in AlN

    DOE PAGES

    Li, Zhen; Yadav, Satyesh; Chen, Youxing; ...

    2017-04-10

    III–V and other binary octet semiconductors often take two phase forms—wurtzite (wz) and zinc blende (zb) crystal structures—with distinct functional performance at room temperature. Here, we investigate how to control the synthesized phase structure to either wz or zb phase by tuning the interfacial strain by taking AlN as a representative III–V compound. Furthermore, by applying in situ mechanical tests at atomic scale in a transmission electron microscope, we observed the reversible phase transformation from zb to wz, and characterized the transition path—the collective glide of Shockley partials on every two {111} planes of the zb AlN.

  13. Wurtzite Spin-Lasers

    NASA Astrophysics Data System (ADS)

    Xu, Gaofeng; Faria Junior, Paulo E.; Sipahi, Guilherme M.; Zutic, Igor

    Lasers in which spin-polarized carriers are injected provide paths to different practical room temperature spintronic devices, not limited to magnetoresistive effects. While theoretical studies of such spin-lasers have focused on zinc-blende semiconductors as their active regions, the first electrically injected carriers at room temperature were recently demonstrated in GaN-based wurtzite semiconductors, recognized also for the key role as highly-efficient light emitting diodes. By focusing on a wurtzite quantum well-based spin-laser, we use accurate electronic structure calculations to develop a microscopic description for its lasing properties. We discuss important differences between wurtzite and zinc-blende spin-lasers.

  14. Atomistic Interface Dynamics in Sn-Catalyzed Growth of Wurtzite and Zinc-Blende ZnO Nanowires.

    PubMed

    Jia, Shuangfeng; Hu, Shuaishuai; Zheng, He; Wei, Yanjie; Meng, Shuang; Sheng, Huaping; Liu, Huihui; Zhou, Siyuan; Zhao, Dongshan; Wang, Jianbo

    2018-06-11

    Unraveling the phase selection mechanisms of semiconductor nanowires (NWs) is critical for the applications in future advanced nanodevices. In this study, the atomistic vapor-solid-liquid growth processes of Sn-catalyzed wurtzite (WZ) and zinc blende (ZB) ZnO are directly revealed based on the in situ transmission electron microscopy. The growth kinetics of WZ and ZB crystal phases in ZnO appear markedly different in terms of the NW-droplet interface, whereas the nucleation site as determined by the contact angle ϕ between the seed particle and the NW is found to be crucial for tuning the NW structure through combined experimental and theoretical investigations. These results offer an atomic-scale view into the dynamic growth process of ZnO NW, which has implications for the phase-controllable synthesis of II-VI compounds and heterostructures with tunable band structures.

  15. Polytype transition of N-face GaN:Mg from wurtzite to zinc-blende

    NASA Astrophysics Data System (ADS)

    Monroy, E.; Hermann, M.; Sarigiannidou, E.; Andreev, T.; Holliger, P.; Monnoye, S.; Mank, H.; Daudin, B.; Eickhoff, M.

    2004-10-01

    We have investigated the polytype conversion of a GaN film from N-face wurtzite (2H) to zinc-blende (3C) structure due to Mg doping during growth by plasma-assisted molecular-beam epitaxy. Structural analysis by high-resolution transmission electron microscopy and high-resolution x-ray diffraction measurement revealed alignment of the cubic phase with the [111] axis perpendicular to the substrate surface. The optical characteristics of GaN:Mg layers are shown to be very sensitive to the presence of the cubic polytype. For low Mg doping, photoluminescence is dominated by a phonon-replicated donor-acceptor pair at ˜3.25eV, related to the shallow Mg acceptor level, accompanied by a narrow excitonic emission. For high Mg doping, the photoluminescence spectra are also dominated by a line around 3.25eV, but this emission displays the behavior of excitonic luminescence from cubic GaN. A cubic-related donor-acceptor transition at ˜3.16eV is also observed, together with a broad blue band around 2.9eV, previously reported in heavily Mg-doped 3C-GaN(001).

  16. Electron transport and electron energy distributions within the wurtzite and zinc-blende phases of indium nitride: Response to the application of a constant and uniform electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siddiqua, Poppy; Hadi, Walid A.; Salhotra, Amith K.

    2015-03-28

    Within the framework of an ensemble semi-classical three-valley Monte Carlo electron transport simulation approach, we critically contrast the nature of the electron transport that occurs within the wurtzite and zinc-blende phases of indium nitride in response to the application of a constant and uniform electric field. We use the electron energy distribution and its relationship with the electron transport characteristics in order to pursue this analysis. For the case of zinc-blende indium nitride, only a peak corresponding to the electrons within the lowest energy conduction band valley is observed, this peak being seen to broaden and shift to higher energiesmore » in response to increases in the applied electric field strength, negligible amounts of upper energy conduction band valley occupancy being observed. In contrast, for the case of wurtzite indium nitride, in addition to the aforementioned lowest energy conduction band valley peak in the electron energy distribution, and its broadening and shifting to higher energies in response to increases in the applied electric field strength, beyond a certain critical electric field strength, 30 kV/cm for the case of this particular material, upper energy conduction band valley occupancy is observed, this occupancy being further enhanced in response to further increases in the applied electric field strength. Reasons for these results are provided. The potential for device consequences is then commented upon.« less

  17. Wurtzite spin lasers

    NASA Astrophysics Data System (ADS)

    Faria Junior, Paulo E.; Xu, Gaofeng; Chen, Yang-Fang; Sipahi, Guilherme M.; Žutić, Igor

    2017-03-01

    Semiconductor lasers are strongly altered by adding spin-polarized carriers. Such spin lasers could overcome many limitations of their conventional (spin-unpolarized) counterparts. While the vast majority of experiments in spin lasers employed zinc-blende semiconductors, the room-temperature electrical manipulation was first demonstrated in wurtzite GaN-based lasers. However, the underlying theoretical description of wurtzite spin lasers is still missing. To address this situation, focusing on (In,Ga)N-based wurtzite quantum wells, we develop a theoretical framework in which the calculated microscopic spin-dependent gain is combined with a simple rate equation model. A small spin-orbit coupling in these wurtzites supports simultaneous spin polarizations of electrons and holes, providing unexplored opportunities to control spin lasers. For example, the gain asymmetry, as one of the key figures of merit related to spin amplification, can change the sign by simply increasing the carrier density. The lasing threshold reduction has a nonmonotonic dependence on electron-spin polarization, even for a nonvanishing hole spin polarization.

  18. Nondestructive Complete Mechanical Characterization of Zinc Blende and Wurtzite GaAs Nanowires Using Time-Resolved Pump-Probe Spectroscopy.

    PubMed

    Mante, Pierre-Adrien; Lehmann, Sebastian; Anttu, Nicklas; Dick, Kimberly A; Yartsev, Arkady

    2016-08-10

    We have developed and demonstrated an experimental method, based on the picosecond acoustics technique, to perform nondestructive complete mechanical characterization of nanowires, that is, the determination of the complete elasticity tensor. By means of femtosecond pump-probe spectroscopy, coherent acoustic phonons were generated in an ensemble of nanowires and their dynamics was resolved. Specific phonon modes were identified and the detection mechanism was addressed via wavelength dependent experiments. We calculated the exact phonon dispersion relation of the nanowires by fitting the experimentally observed frequencies, thus allowing the extraction of the complete elasticity tensor. The elasticity tensor and the nanowire diameter were determined for zinc blende GaAs nanowires and were found to be in a good agreement with literature data and independent measurements. Finally, we have applied this technique to characterize wurtzite GaAs nanowires, a metastable phase in bulk, for which no experimental values of elastic constants are currently available. Our results agree well with previous first principle calculations. The proposed approach to the complete and nondestructive mechanical characterization of nanowires will allow the efficient mechanical study of new crystal phases emerging in nanostructures, as well as size-dependent properties of nanostructured materials.

  19. Single crystalline wurtzite ZnO/zinc blende ZnS coaxial heterojunctions and hollow zinc blende ZnS nanotubes: synthesis, structural characterization and optical properties.

    PubMed

    Huang, Xing; Willinger, Marc-Georg; Fan, Hua; Xie, Zai-lai; Wang, Lei; Klein-Hoffmann, Achim; Girgsdies, Frank; Lee, Chun-Sing; Meng, Xiang-Min

    2014-08-07

    Synthesis of ZnO/ZnS heterostructures under thermodynamic conditions generally results in the wurtzite (WZ) structure of the ZnS component because its WZ phase is thermodynamically more stable than its zinc blende (ZB) phase. In this report, we demonstrate for the first time the preparation of ZnO/ZnS coaxial nanocables composed of single crystalline ZB structured ZnS epitaxially grown on WZ ZnO via a two-step thermal evaporation method. The deposition temperature is believed to play a crucial role in determining the crystalline phase of ZnS. Through a systematic structural analysis, the ZnO core and the ZnS shell are found to have an orientation relationship of (0002)ZnO(WZ)//(002)ZnS(ZB) and [01-10]ZnO(WZ)//[2-20]ZnS(ZB). Observation of the coaxial nanocables in cross-section reveals the formation of voids between the ZnO core and the ZnS shell during the coating process, which is probably associated with the nanoscale Kirkendall effect known to result in porosity. Furthermore, by immersing the ZnO/ZnS nanocable heterojunctions in an acetic acid solution to etch away the inner ZnO cores, single crystalline ZnS nanotubes orientated along the [001] direction of the ZB structure were also achieved for the first time. Finally, optical properties of the hollow ZnS tubes were investigated and discussed in detail. We believe that our study could provide some insights into the controlled fabrication of one dimensional (1D) semiconductors with desired morphology, structure and composition at the nanoscale, and the synthesized WZ ZnO/ZB ZnS nanocables as well as ZB ZnS nanotubes could be ideal candidates for the study of optoelectronics based on II-VI semiconductors.

  20. Selective epitaxial growth of zinc blende-derivative on wurtzite-derivative: the case of polytypic Cu2CdSn(S1-xSex)4 nanocrystals

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Fan, Feng-Jia; Gong, Ming; Ge, Jin; Yu, Shu-Hong

    2014-02-01

    Polytypic nanocrystals with zinc blende (ZB) cores and wurtzite (WZ) arms, such as tetrapod and octopod nanocrystals, have been widely reported. However, polytypic nanocrystals with WZ cores and ZB arms or ends have been rarely reported. Here, we report a facile, solution-based approach to the synthesis of polytypic Cu2CdSn(S1-xSex)4 (CCTSSe) nanocrystals with ZB-derivative selectively engineered on (000+/-2)WZ facets of WZ-derived cores. Accordingly, two typical morphologies, i.e., bullet-like nanocrystals with a WZ-derivative core and one ZB-derivative end, and rugby ball-like nanocrystals with a WZ-derivative core and two ZB-derivative ends, can be selectively prepared. The epitaxial growth mechanism is confirmed by the time-dependent experiments. The ratio of rugby ball-like and bullet-like polytypic CCTSSe nanocrystals can be tuned through changing the amount of Cd precursor to adjust the reactivity difference between (0002)WZ and (000-2)WZ facets. These unique polytypic CCTSSe nanocrystals may find applications in energetic semiconducting materials for energy conversion in the future.Polytypic nanocrystals with zinc blende (ZB) cores and wurtzite (WZ) arms, such as tetrapod and octopod nanocrystals, have been widely reported. However, polytypic nanocrystals with WZ cores and ZB arms or ends have been rarely reported. Here, we report a facile, solution-based approach to the synthesis of polytypic Cu2CdSn(S1-xSex)4 (CCTSSe) nanocrystals with ZB-derivative selectively engineered on (000+/-2)WZ facets of WZ-derived cores. Accordingly, two typical morphologies, i.e., bullet-like nanocrystals with a WZ-derivative core and one ZB-derivative end, and rugby ball-like nanocrystals with a WZ-derivative core and two ZB-derivative ends, can be selectively prepared. The epitaxial growth mechanism is confirmed by the time-dependent experiments. The ratio of rugby ball-like and bullet-like polytypic CCTSSe nanocrystals can be tuned through changing the amount of Cd precursor

  1. Unit cell parameters of wurtzite InP nanowires determined by x-ray diffraction.

    PubMed

    Kriegner, D; Wintersberger, E; Kawaguchi, K; Wallentin, J; Borgström, M T; Stangl, J

    2011-10-21

    High resolution x-ray diffraction is used to study the structural properties of the wurtzite polytype of InP nanowires. Wurtzite InP nanowires are grown by metal-organic vapor phase epitaxy using S-doping. From the evaluation of the Bragg peak position we determine the lattice parameters of the wurtzite InP nanowires. The unit cell dimensions are found to differ from the ones expected from geometric conversion of the cubic bulk InP lattice constant. The atomic distances along the c direction are increased whereas the atomic spacing in the a direction is reduced in comparison to the corresponding distances in the zinc-blende phase. Using core/shell nanowires with a thin core and thick nominally intrinsic shells we are able to determine the lattice parameters of wurtzite InP with a negligible influence of the S-doping due to the much larger volume in the shell. The determined material properties will enable the ab initio calculation of electronic and optical properties of wurtzite InP nanowires.

  2. Spin-orbit coupling effects in zinc-blende InSb and wurtzite InAs nanowires: Realistic calculations with multiband k .p method

    NASA Astrophysics Data System (ADS)

    Campos, Tiago; Faria Junior, Paulo E.; Gmitra, Martin; Sipahi, Guilherme M.; Fabian, Jaroslav

    2018-06-01

    A systematic numerical investigation of spin-orbit fields in the conduction bands of III-V semiconductor nanowires is performed. Zinc-blende (ZB) InSb nanowires are considered along [001], [011], and [111] directions, while wurtzite (WZ) InAs nanowires are studied along [0001] and [10 1 ¯0 ] or [11 2 ¯0 ] directions. Robust multiband k .p Hamiltonians are solved by using plane-wave expansions of real-space parameters. In all cases, the linear and cubic spin-orbit coupling parameters are extracted for nanowire widths from 30 to 100 nm. Typical spin-orbit energies are on the μ eV scale, except for WZ InAs nanowires grown along [10 1 ¯0 ] or [11 2 ¯0 ] , in which the spin-orbit energy is about meV, largely independent of the wire diameter. Significant spin-orbit coupling is obtained by applying a transverse electric field, causing the Rashba effect. For an electric field of about 4 mV/nm, the obtained spin-orbit energies are about 1 meV for both materials in all investigated growth directions. The most favorable system, in which the spin-orbit effects are maximal, are WZ InAs nanowires grown along [1010] or [11 2 ¯0 ] since here spin-orbit energies are giant (meV) already in the absence of electric field. The least favorable are InAs WZ nanowires grown along [0001] since here even the electric field does not increase the spin-orbit energies beyond 0.1 meV. The presented results should be useful for investigations of optical orientation, spin transport, weak localization, and superconducting proximity effects in semiconductor nanowires.

  3. Optical constants of wurtzite ZnS thin films determined by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Ong, H. C.; Chang, R. P. H.

    2001-11-01

    The complex dielectric functions of wurtzite ZnS thin films grown on (0001) Al2O3 have been determined by using spectroscopic ellipsometry over the spectral range of 1.33-4.7 eV. Below the band gap, the refractive index n is found to follow the first-order Sellmeir dispersion relationship n2(λ)=1+2.22λ2/(λ2-0.0382). Strong and well-defined free excitonic features located above the band edge are clearly observed at room temperature. The intrinsic optical parameters of wurtzite ZnS such as band gaps and excitonic binding energies have been determined by fitting the absorption spectrum using a modified Elliott expression together with Lorentizan broadening. Both parameters are found to be larger than their zinc blende counterparts.

  4. Growth of wurtzite CdTe nanowires on fluorine-doped tin oxide glass substrates and room-temperature bandgap parameter determination

    NASA Astrophysics Data System (ADS)

    Choi, Seon Bin; Song, Man Suk; Kim, Yong

    2018-04-01

    The growth of CdTe nanowires, catalyzed by Sn, was achieved on fluorine-doped tin oxide glass by physical vapor transport. CdTe nanowires grew along the 〈0001〉 direction, with a very rare and phase-pure wurtzite structure, at 290 °C. CdTe nanowires grew under Te-limited conditions by forming SnTe nanostructures in the catalysts and the wurtzite structure was energetically favored. By polarization-dependent and power-dependent micro-photoluminescence measurements of individual nanowires, heavy and light hole-related transitions could be differentiated, and the fundamental bandgap of wurtzite CdTe at room temperature was determined to be 1.562 eV, which was 52 meV higher than that of zinc-blende CdTe. From the analysis of doublet photoluminescence spectra, the valence band splitting energy between heavy hole and light hole bands was estimated to be 43 meV.

  5. Doping of free-standing zinc-blende GaN layers grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Novikov, S. V.; Powell, R. E. L.; Staddon, C. R.; Kent, A. J.; Foxon, C. T.

    2014-10-01

    Currently there is high level of interest in developing of vertical device structures based on the group III nitrides. We have studied n- and p-doping of free-standing zinc-blende GaN grown by plasma-assisted molecular beam epitaxy (PA-MBE). Si was used as the n-dopant and Mg as the p-dopant for zinc-blende GaN. Controllable levels of doping with Si and Mg in free-standing zinc-blende GaN have been achieved by PA-MBE. The Si and Mg doping depth uniformity through the zinc-blende GaN layers have been confirmed by secondary ion mass spectrometry (SIMS). Controllable Si and Mg doping makes PA-MBE a promising method for the growth of conducting group III-nitrides bulk crystals.

  6. Graphitic nanofilms of zinc-blende materials: ab initio calculations

    NASA Astrophysics Data System (ADS)

    Hu, San-Lue; Zhao, Li; Li, Yan-Li

    2017-12-01

    Ab initio calculations on ultra-thin nanofilms of 25 kinds of zinc-blende semiconductors demonstrate their stable geometry structures growth along (1 1 1) surface. Our results show that the (1 1 1) surfaces of 9 kinds of zinc-blende semiconductors can transform into a stable graphitelike structure within a certain thickness. The tensile strain effect on the thickness of graphitic films is not obvious. The band gaps of stable graphitic films can be tuned over a wide range by epitaxial tensile strain, which is important for applications in microelectronic devices, solar cells and light-emitting diodes.

  7. Low-temperature solution-processed zinc oxide field effect transistor by blending zinc hydroxide and zinc oxide nanoparticle in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Shin, Hyeonwoo; Kang, Chan-mo; Baek, Kyu-Ha; Kim, Jun Young; Do, Lee-Mi; Lee, Changhee

    2018-05-01

    We present a novel methods of fabricating low-temperature (180 °C), solution-processed zinc oxide (ZnO) transistors using a ZnO precursor that is blended with zinc hydroxide [Zn(OH)2] and zinc oxide hydrate (ZnO • H2O) in an ammonium solution. By using the proposed method, we successfully improved the electrical performance of the transistor in terms of the mobility (μ), on/off current ratio (I on/I off), sub-threshold swing (SS), and operational stability. Our new approach to forming a ZnO film was systematically compared with previously proposed methods. An atomic forced microscopic (AFM) image and an X-ray photoelectron spectroscopy (XPS) analysis showed that our method increases the ZnO crystallite size with less OH‑ impurities. Thus, we attribute the improved electrical performance to the better ZnO film formation using the blending methods.

  8. Sodium lauryl sulfate impedes drug release from zinc-crosslinked alginate beads: switching from enteric coating release into biphasic profiles.

    PubMed

    Taha, Mutasem O; Nasser, Wissam; Ardakani, Adel; Alkhatib, Hatim S

    2008-02-28

    The aim of this research is to investigate the effects of sodium lauryl sulfate (SLS) on ionotropically cross-linked alginate beads. Different levels of SLS were mixed with sodium alginate and chlorpheniramine maleate (as loaded model drug). The resulting viscous solutions were dropped onto aqueous solutions of zinc or calcium ions for ionotropic curing. The generated beads were assessed by their drug releasing profiles, infrared and differential scanning colorimetery (DSC) traits. SLS was found to exert profound concentration-dependent impacts on the characteristics of zinc-crosslinked alginate beads such that moderate modifications in the levels of SLS switched drug release from enteric coating-like behavior to a biphasic release modifiable to sustained-release by the addition of minute amounts of xanthan gum. Calcium cross-linking failed to reproduce the same behavior, probably due to the mainly ionic nature of calcium-carboxylate bonds compared to the coordinate character of their zinc-carboxylate counterparts. Apparently, moderate levels of SLS repel water penetration into the beads, and therefore minimize chlorpheniramine release. However, higher SLS levels seem to discourage polymeric cross-linking and therefore allow biphasic drug release.

  9. Electron spin relaxation in two polymorphic structures of GaN

    NASA Astrophysics Data System (ADS)

    Kang, Nam Lyong

    2015-03-01

    The relaxation process of electron spin in systems of electrons interacting with piezoelectric deformation phonons that are mediated through spin-orbit interactions was interpreted from a microscopic point of view using the formula for the electron spin relaxation times derived by a projection-reduction method. The electron spin relaxation times in two polymorphic structures of GaN were calculated. The piezoelectric material constant for the wurtzite structure obtained by a comparison with a previously reported experimental result was {{P}pe}=1.5 × {{10}29} eV {{m}-1}. The temperature and magnetic field dependence of the relaxation times for both wurtzite and zinc-blende structures were similar, but the relaxation times in zinc-blende GaN were smaller and decreased more rapidly with increasing temperature and magnetic field than that in wurtzite GaN. This study also showed that the electron spin relaxation for wurtzite GaN at low density could be explained by the Elliot-Yafet process but not for zinc-blende GaN in the metallic regime.

  10. Stacking fault effects in Mg-doped GaN

    NASA Astrophysics Data System (ADS)

    Schmidt, T. M.; Miwa, R. H.; Orellana, W.; Chacham, H.

    2002-01-01

    First-principles total energy calculations are performed to investigate the interaction of a stacking fault with a p-type impurity in both zinc-blende and wurtzite GaN. For both structures we find that, in the presence of a stacking fault, the impurity level is a more localized state in the band gap. In zinc-blende GaN, the minimum energy position of the substitutional Mg atom is at the plane of the stacking fault. In contrast, in wurtzite GaN the substitutional Mg atom at the plane of the stacking fault is a local minimum and the global minimum is the substitutional Mg far from the fault. This behavior can be understood as a packing effect which induces a distinct strain relief process, since the local structure of the stacking fault in zinc-blende GaN is similar to fault-free wurtzite GaN and vice-versa.

  11. Electronic properties of III-nitride semiconductors: A first-principles investigation using the Tran-Blaha modified Becke-Johnson potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araujo, Rafael B., E-mail: rafaelbna@gmail.com; Almeida, J. S. de, E-mail: jailton-almeida@hotmail.com; Ferreira da Silva, A.

    In this work, we use density functional theory to investigate the influence of semilocal exchange and correlation effects on the electronic properties of III-nitride semiconductors considering zinc-blende and wurtzite crystal structures. We find that the inclusion of such effects through the use of the Tran-Blaha modified Becke-Johnson potential yields an excellent description of the electronic structures of these materials giving energy band gaps which are systematically larger than the ones obtained with standard functionals such as the generalized gradient approximation. The discrepancy between the experimental and theoretical band gaps is then significantly reduced with semilocal exchange and correlation effects. However,more » the effective masses are overestimated in the zinc-blende nitrides, but no systematic trend is found in the wurtzite compounds. New results for energy band gaps and effective masses of zinc-blende and wurtzite indium nitrides are presented.« less

  12. Excitonic complexes in single zinc-blende GaN/AlN quantum dots grown by droplet epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sergent, S.; Kako, S.; Bürger, M.

    2014-10-06

    We study by microphotoluminescence the optical properties of single zinc-blende GaN/AlN quantum dots grown by droplet epitaxy. We show evidences of both excitonic and multiexcitonic recombinations in individual quantum dots with radiative lifetimes shorter than 287 ± 8 ps. Owing to large band offsets and a large exciton binding energy, the excitonic recombinations of single zinc-blende GaN/AlN quantum dots can be observed up to 300 K.

  13. Phytofabrication of bioinspired zinc oxide nanocrystals for biomedical application.

    PubMed

    Velmurugan, Palanivel; Park, Jung-Hee; Lee, Sang-Myeong; Jang, Jum-Suk; Yi, Young-Joo; Han, Sang-Sub; Lee, Sang-Hyun; Cho, Kwang-Min; Cho, Min; Oh, Byung-Taek

    2016-09-01

    In the present study, we investigated a novel green route for synthesis of zinc oxide nanoparticles (ZnO NPs) using the extract of young cones of Pinus densiflora as a reducing agent. Standard characterization studies were carried out to confirm the obtained product using UV-Vis spectra, SEM-EDS, FTIR, and XRD. TEM images showed that various shapes of ZnO NPs were synthesized, including hexagonal (wurtzite), triangular, spherical, and oval-shaped particles, with average sizes between 10 and 100 nm. The synthesized ZnO NPs blended with the young pine cone extract have very good activity against bacterial and fungal pathogens, similar to that of commercial ZnO NPs.

  14. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics - a Comparative Study with Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Wu, Xufei; Lee, Jonghoon; Varshney, Vikas; Wohlwend, Jennifer L.; Roy, Ajit K.; Luo, Tengfei

    2016-03-01

    Wurtzite Zinc-Oxide (w-ZnO) is a wide bandgap semiconductor that holds promise in power electronics applications, where heat dissipation is of critical importance. However, large discrepancies exist in the literature on the thermal conductivity of w-ZnO. In this paper, we determine the thermal conductivity of w-ZnO using first-principles lattice dynamics and compare it to that of wurtzite Gallium-Nitride (w-GaN) - another important wide bandgap semiconductor with the same crystal structure and similar atomic masses as w-ZnO. However, the thermal conductivity values show large differences (400 W/mK of w-GaN vs. 50 W/mK of w-ZnO at room temperature). It is found that the much lower thermal conductivity of ZnO originates from the smaller phonon group velocities, larger three-phonon scattering phase space and larger anharmonicity. Compared to w-GaN, w-ZnO has a smaller frequency gap in phonon dispersion, which is responsible for the stronger anharmonic phonon scattering, and the weaker interatomic bonds in w-ZnO leads to smaller phonon group velocities. The thermal conductivity of w-ZnO also shows strong size effect with nano-sized grains or structures. The results from this work help identify the cause of large discrepancies in w-ZnO thermal conductivity and will provide in-depth understanding of phonon dynamics for the design of w-ZnO-based electronics.

  15. Influence of Two-Photon Absorption Anisotropy on Terahertz Emission Through Optical Rectification in Zinc-Blende Crystals

    NASA Astrophysics Data System (ADS)

    Sanjuan, Federico; Gaborit, Gwenaël; Coutaz, Jean-Louis

    2018-04-01

    We report for the first time on the observation of an angular anisotropy of the THz signal generated by optical rectification in a < 111 > ZnTe crystal. This cubic (zinc-blende) crystal in the < 111 > orientation exhibits both transverse isotropy for optical effects involving the linear χ (1) and nonlinear χ (2) susceptibilities. Thus, the observed anisotropy can only be related to χ (3) effect, namely two-photon absorption, which leads to the photo-generation of free carriers that absorb the generated THz signal. Two-photon absorption in zinc-blende crystals is known to be due to a spin-orbit interaction between the valence and higher-conduction bands. We perform a couple of measurements that confirm our hypothesis, as well as we fit the recorded data with a simple model. This two-photon absorption effect makes difficult an efficient generation, through optical rectification in < 111 > zinc-blende crystals, of THz beams of any given polarization state by only monitoring the laser pump polarization.

  16. AB INITIO Investigations of the Magnetism in Diluted Magnetic Semiconductor Fe-DOPED GaN

    NASA Astrophysics Data System (ADS)

    Cheng, Jie; Zhou, Jing; Xu, Wei; Dong, Peng

    2014-01-01

    In this paper, we present a first principle investigation on Fe-doped GaN with wurtzite and zinc-blend structure using full potential density functional calculations. Data point out that the magnetic behavior of Fe-doped GaN system is strongly dependent on Fe doping configurations. In agreement with the experimental reports, and independently by doping, antiferromagnetism occurs in the zinc-blend structure, while in the wurtzite structure ferromagnetism depends on the Fe doping configurations. Detailed analyses combined with density of state calculations support the assignment that the ferromagnetism is closely related to the impurity band at the origin of the hybridization of Fe 3d and N 2p states in the Fe-doped GaN of wurtzite phase.

  17. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics – a Comparative Study with Gallium Nitride

    PubMed Central

    Wu, Xufei; Lee, Jonghoon; Varshney, Vikas; Wohlwend, Jennifer L.; Roy, Ajit K.; Luo, Tengfei

    2016-01-01

    Wurtzite Zinc-Oxide (w-ZnO) is a wide bandgap semiconductor that holds promise in power electronics applications, where heat dissipation is of critical importance. However, large discrepancies exist in the literature on the thermal conductivity of w-ZnO. In this paper, we determine the thermal conductivity of w-ZnO using first-principles lattice dynamics and compare it to that of wurtzite Gallium-Nitride (w-GaN) – another important wide bandgap semiconductor with the same crystal structure and similar atomic masses as w-ZnO. However, the thermal conductivity values show large differences (400 W/mK of w-GaN vs. 50 W/mK of w-ZnO at room temperature). It is found that the much lower thermal conductivity of ZnO originates from the smaller phonon group velocities, larger three-phonon scattering phase space and larger anharmonicity. Compared to w-GaN, w-ZnO has a smaller frequency gap in phonon dispersion, which is responsible for the stronger anharmonic phonon scattering, and the weaker interatomic bonds in w-ZnO leads to smaller phonon group velocities. The thermal conductivity of w-ZnO also shows strong size effect with nano-sized grains or structures. The results from this work help identify the cause of large discrepancies in w-ZnO thermal conductivity and will provide in-depth understanding of phonon dynamics for the design of w-ZnO-based electronics. PMID:26928396

  18. Structural and thermomechanical properties of the zinc-blende AlX (X = P, As, Sb) compounds

    NASA Astrophysics Data System (ADS)

    Ha, Vu Thi Thanh; Hung, Vu Van; Hanh, Pham Thi Minh; Nguyen, Viet Tuyen; Hieu, Ho Khac

    2017-08-01

    The structural and thermomechanical properties of zinc-blende aluminum class of III-V compounds have been studied based on the statistical moment method (SMM) in quantum statistical mechanics. Within the SMM scheme, we derived the analytical expressions of the nearest-neighbor distance, thermal expansion coefficient, atomic mean-square displacement and elastic moduli (Young’s modulus, bulk modulus and shear modulus). Numerical calculations have been performed for zinc-blende AlX (X = As, P, Sb) at ambient conditions up to the temperature of 1000 K. Our results are in good and reasonable agreements with earlier measurements and can provide useful references for future experimental and theoretical works. This research presents a systematic approach to investigate the thermodynamic and mechanical properties of materials.

  19. Electronic origins of the magnetic phase transitions in zinc-blende Mn chalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, S.; Zunger, A.

    1993-09-01

    Precise first-principles spin-polarized total-energy and band-structure calculations have been performed for the zinc-blende Mn chalcogenides with the use of the local-spin-density (LSD) approach. We find that the LSD is capable of identifying the correct magnetic-ground-state structure, but it overestimates the ordering temperature [ital T][sub [ital N

  20. Polaronic effects due to quasi-confined optical phonons in wurtzite nitride nanowire in the presence of an electric field

    NASA Astrophysics Data System (ADS)

    Vardanyan, Karen A.; Asatryan, Anna L.; Vartanian, Arshak L.

    2015-07-01

    Considering the effect of an external electric field in wurtzite nitride cylindrical nanowire (NW), the polaron self-energy and effective mass due to the electron interaction with the quasi-confined optical phonons are studied theoretically by means of Lee-Low-Pines variational approach. The analytical expressions for the quasi-one-dimensional Fröhlich polaron self-energy and effective mass are obtained as functions of the wire radius and the strength of the electric field applied perpendicular to the wire axis. It is found that the main contribution to polaron basic parameters is from higher frequency optical phonon modes. The numerical results on the GaN material show that the polaron self-energy increases with the increase of the electric field and is more sensitive to the field when the wire radius is larger. It is also found that the polaron self-energy in GaN NWs is higher than that in zinc-blende GaAs-based cylindrical NWs.

  1. Active zinc-blende III-nitride photonic structures on silicon

    NASA Astrophysics Data System (ADS)

    Sergent, Sylvain; Kako, Satoshi; Bürger, Matthias; Blumenthal, Sarah; Iwamoto, Satoshi; As, Donat Josef; Arakawa, Yasuhiko

    2016-01-01

    We use a layer transfer method to fabricate free-standing photonic structures in a zinc-blende AlN epilayer grown by plasma-assisted molecular beam epitaxy on a 3C-SiC pseudosubstrate and containing GaN quantum dots. The method leads to the successful realization of microdisks, nanobeam photonic crystal cavities, and waveguides integrated on silicon (100) and operating at short wavelengths. We assess the quality of such photonic elements by micro-photoluminescence spectroscopy in the visible and ultraviolet ranges, and extract the absorption coefficient of ZB AlN membranes (α ˜ (2-5) × 102 cm-1).

  2. Photoluminescence study of as-grown vertically standing wurtzite InP nanowire ensembles.

    PubMed

    Iqbal, Azhar; Beech, Jason P; Anttu, Nicklas; Pistol, Mats-Erik; Samuelson, Lars; Borgström, Magnus T; Yartsev, Arkady

    2013-03-22

    We demonstrate a method that enables the study of photoluminescence of as-grown nanowires on a native substrate by non-destructively suppressing the contribution of substrate photoluminescence. This is achieved by using polarized photo-excitation and photoluminescence and by making an appropriate choice of incident angle of both excitation beam and photoluminescence collection direction. Using TE-polarized excitation at a wavelength of 488 nm at an incident angle of ∼70° we suppress the InP substrate photoluminescence relative to that of the InP nanowires by about 80 times. Consequently, the photoluminescence originating from the nanowires becomes comparable to and easily distinguishable from the substrate photoluminescence. The measured photoluminescence, which peaks at photon energies of ∼1.35 eV and ∼1.49 eV, corresponds to the InP substrate with zinc-blende crystal structure and to the InP nanowires with wurtzite crystal structure, respectively. The photoluminescence quantum yield of the nanowires was found to be ∼20 times lower than that of the InP substrate. The nanowires, grown vertically in a random ensemble, neither exhibit substantial emission polarization selectivity to the axis of the nanowires nor follow excitation polarization preferences observed previously for a single nanowire.

  3. p-type zinc-blende GaN on GaAs substrates

    NASA Astrophysics Data System (ADS)

    Lin, M. E.; Xue, G.; Zhou, G. L.; Greene, J. E.; Morkoç, H.

    1993-08-01

    We report p-type cubic GaN. The Mg-doped layers were grown on vicinal (100) GaAs substrates by plasma-enhanced molecular beam epitaxy. Thermally sublimed Mg was, with N2 carrier gas, fed into an electron-cyclotron resonance source. p-type zinc-blende-structure GaN films were achieved with hole mobilities as high as 39 cm2/V s at room temperature. The cubic nature of the films were confirmed by x-ray diffractometry. The depth profile of Mg was investigated by secondary ions mass spectroscopy.

  4. Carrier trapping and activation at short-period wurtzite/zinc-blende stacking sequences in polytypic InAs nanowires

    NASA Astrophysics Data System (ADS)

    Becker, J.; Morkötter, S.; Treu, J.; Sonner, M.; Speckbacher, M.; Döblinger, M.; Abstreiter, G.; Finley, J. J.; Koblmüller, G.

    2018-03-01

    We explore the effects of random and short-period crystal-phase intermixing in InAs nanowires (NW) on the carrier trapping and thermal activation behavior using correlated optical and electrical transport spectroscopy. The polytypic InAs NWs are grown by catalyst-free molecular beam epitaxy under different temperatures, resulting in different fractions of wurtzite (WZ) and zincblende (ZB) and variable short-period (˜1-4 nm) WZ/ZB stacking sequences. Temperature-dependent microphotoluminescence (μ PL) studies reveal that variations in the WZ/ZB stacking govern the emission energy and carrier confinement properties. The optical transition energies are modeled for a wide range of WZ/ZB stacking sequences using a Kronig-Penney type effective mass approximation, while comparison with experimental results suggests that polarization sheet charges on the order of ˜0.0016-0.08 C/m along the WZ/ZB interfaces need to be considered to best describe the data. The thermal activation characteristics of carriers trapped inside the short-period WZ/ZB structure are directly reproduced in the temperature-dependent carrier density evolution (4-300 K) probed by four-terminal (4T) NW-field effect transistor measurements. In particular, we find that activation of carriers in-between ˜1016-1017c m-3 follows a two-step process, with activation at low temperature attributed to WZ/ZB traps and activation at high temperature being linked to surface states and electron accumulation at the InAs NW surface.

  5. Melt crystallization of bisphenol A polycarbonate in PC/zinc sulfonated polystyrene ionomer blend

    NASA Astrophysics Data System (ADS)

    Xu, Liang

    The effects of zinc sulfonated polystyrene ionomer (ZnSPS) on the melt crystallization of bisphenol A polycarbonate (PC) were investigated. Melt crystallization of pure PC is extremely slow due to its rigid chain. In the blend of PC and ZnSPS (PC-ZnSPS), the melt crystallization rate of PC can be enhanced. DSC was used to study the crystallization kinetics of PC in PC-ZnSPS blend. The crystallization of PC at 190°C increased in both partially miscible and miscible blends with ZnSPS. For PC-ZnSPS blend with same PC composition as 80%, the crystallization rate was affected by the sulfonation level of ZnSPS. The induction time of crystallization for a partially miscible blend PC-ZnSPS9.98 (80/20) was 40 minutes, and the crystallization reaches 27% crystallinity within 14 hrs. The induction time for pure PC with the same thermal history was more than 24 hrs. The crystal structure of PC crystal formed in PC-ZnSPS blend was studied by WAXD, which showed no difference from the reported WAXD pattern for pure PC. Molecular weight change of PC was found during the thermal annealing of PC-ZnSPS blend at 190°C, but molecular weight alone cannot explain the change of crystallization rate of PC in PC-ZnSPS blend. Discussion was made to address the mechanisms that are responsible for the crystallization rate enhancement of PC in PC-ZnSPS blend. In order to understand and elucidate the reason for the molecular weight change of PC in PC-ZnSPS blend and its effect on the crystallization of PC, TG, GPC and GC-MS were used to investigate the stability of PC-ZnSPS blend and mixtures of PC with sodium tosylate (NaTS), zinc tosylate (ZnTS) and sodium benzoate (NaBZ). ZnSPS, NaTS and ZnTS undergo desulfonation of the sulfonate group at temperatures above 350°C. The desulfonation process can destabilize PC and lower the maximum mass loss rate temperature of PC for more than 70°C. NaTS, ZnTS and NaBZ have quite different effect on the thermal stability of PC at temperatures below 250

  6. Mechanism of polarization switching in wurtzite-structured zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Konishi, Ayako; Ogawa, Takafumi; Fisher, Craig A. J.; Kuwabara, Akihide; Shimizu, Takao; Yasui, Shintaro; Itoh, Mitsuru; Moriwake, Hiroki

    2016-09-01

    The properties of a potentially new class of ferroelectric materials based on wurtzite-structured ZnO thin films are examined using the first-principles calculations. Theoretical P-E hysteresis loops were calculated using the fixed-D method for both unstrained and (biaxially) strained single crystals. Ferroelectric polarization switching in ZnO (S.G. P63mc) is shown to occur via an intermediate non-polar structure with centrosymmetric P63/mmc symmetry by displacement of cations relative to anions in the long-axis direction. The calculated coercive electric field (Ec) for polarization switching was estimated to be 7.2 MV/cm for defect-free monocrystalline ZnO. During switching, the short- and long-axis lattice parameters expand and contract, respectively. The large structural distortion required for switching may explain why ferroelectricity in this compound has not been reported experimentally for pure ZnO. Applying an epitaxial tensile strain parallel to the basal plane is shown to be effective in lowering Ec during polarization, with a 5% biaxial expansion resulting in a decrease of Ec to 3.5 MV/cm. Comparison with calculated values for conventional ferroelectric materials suggests that the ferroelectric polarization switching of wurtzite-structured ZnO may be achievable by preparing high-quality ZnO thin films with suitable strain levels and low defect concentrations.

  7. Biphasic zinc compartmentalisation in a human fungal pathogen.

    PubMed

    Crawford, Aaron C; Lehtovirta-Morley, Laura E; Alamir, Omran; Niemiec, Maria J; Alawfi, Bader; Alsarraf, Mohammad; Skrahina, Volha; Costa, Anna C B P; Anderson, Andrew; Yellagunda, Sujan; Ballou, Elizabeth R; Hube, Bernhard; Urban, Constantin F; Wilson, Duncan

    2018-05-01

    Nutritional immunity describes the host-driven manipulation of essential micronutrients, including iron, zinc and manganese. To withstand nutritional immunity and proliferate within their hosts, pathogenic microbes must express efficient micronutrient uptake and homeostatic systems. Here we have elucidated the pathway of cellular zinc assimilation in the major human fungal pathogen Candida albicans. Bioinformatics analysis identified nine putative zinc transporters: four cytoplasmic-import Zip proteins (Zrt1, Zrt2, Zrt3 and orf19.5428) and five cytoplasmic-export ZnT proteins (orf19.1536/Zrc1, orf19.3874, orf19.3769, orf19.3132 and orf19.52). Only Zrt1 and Zrt2 are predicted to localise to the plasma membrane and here we demonstrate that Zrt2 is essential for C. albicans zinc uptake and growth at acidic pH. In contrast, ZRT1 expression was found to be highly pH-dependent and could support growth of the ZRT2-null strain at pH 7 and above. This regulatory paradigm is analogous to the distantly related pathogenic mould, Aspergillus fumigatus, suggesting that pH-adaptation of zinc transport may be conserved in fungi and we propose that environmental pH has shaped the evolution of zinc import systems in fungi. Deletion of C. albicans ZRT2 reduced kidney fungal burden in wild type, but not in mice lacking the zinc-chelating antimicrobial protein calprotectin. Inhibition of zrt2Δ growth by neutrophil extracellular traps was calprotectin-dependent. This suggests that, within the kidney, C. albicans growth is determined by pathogen-Zrt2 and host-calprotectin. As well as serving as an essential micronutrient, zinc can also be highly toxic and we show that C. albicans deals with this potential threat by rapidly compartmentalising zinc within vesicular stores called zincosomes. In order to understand mechanistically how this process occurs, we created deletion mutants of all five ZnT-type transporters in C. albicans. Here we show that, unlike in Saccharomyces cerevisiae, C

  8. Mechanism of polarization switching in wurtzite-structured zinc oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konishi, Ayako; Ogawa, Takafumi; Fisher, Craig A. J.

    2016-09-05

    The properties of a potentially new class of ferroelectric materials based on wurtzite-structured ZnO thin films are examined using the first-principles calculations. Theoretical P-E hysteresis loops were calculated using the fixed-D method for both unstrained and (biaxially) strained single crystals. Ferroelectric polarization switching in ZnO (S.G. P6{sub 3}mc) is shown to occur via an intermediate non-polar structure with centrosymmetric P6{sub 3}/mmc symmetry by displacement of cations relative to anions in the long-axis direction. The calculated coercive electric field (E{sub c}) for polarization switching was estimated to be 7.2 MV/cm for defect-free monocrystalline ZnO. During switching, the short- and long-axis latticemore » parameters expand and contract, respectively. The large structural distortion required for switching may explain why ferroelectricity in this compound has not been reported experimentally for pure ZnO. Applying an epitaxial tensile strain parallel to the basal plane is shown to be effective in lowering E{sub c} during polarization, with a 5% biaxial expansion resulting in a decrease of E{sub c} to 3.5 MV/cm. Comparison with calculated values for conventional ferroelectric materials suggests that the ferroelectric polarization switching of wurtzite-structured ZnO may be achievable by preparing high-quality ZnO thin films with suitable strain levels and low defect concentrations.« less

  9. The steady-state and transient electron transport within bulk zinc-blende indium nitride: The impact of crystal temperature and doping concentration variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siddiqua, Poppy; O'Leary, Stephen K., E-mail: stephen.oleary@ubc.ca

    2016-03-07

    Within the framework of a semi-classical three-valley Monte Carlo electron transport simulation approach, we analyze the steady-state and transient aspects of the electron transport within bulk zinc-blende indium nitride, with a focus on the response to variations in the crystal temperature and the doping concentration. We find that while the electron transport associated with zinc-blende InN is highly sensitive to the crystal temperature, it is not very sensitive to the doping concentration selection. The device consequences of these results are then explored.

  10. The stability and half-metallicity of (001) surface and (001) interface based on zinc blende MnAs

    NASA Astrophysics Data System (ADS)

    Han, Hongpei; Feng, Tuanhui; Zhang, Chunli; Feng, Zhibo; Li, Ming; Yao, K. L.

    2018-06-01

    Motivated by the growth of MnAs/GaAs thin films in many experimental researches, we investigate the electronic and magnetic properties of bulk, (001) surfaces and (001) interfaces for zinc blende MnAs by means of first-principle calculations. It is confirmed that zinc blende MnAs is a nearly half-metallic ferromagnet with 4.00 μB magnetic moment. The calculated density of states show that the half-metallicity exists in As-terminated (001) surface while it is lost in Mn-terminated (001) surface. For the (001) interfaces of MnAs with semiconductor GaAs, it is found that As-Ga and Mn-As interfaces not only have higher spin polarization but also are more stable among the four considered interfaces. Our results would be helpful to grow stable and high polarized thin films or multilayers for the practical applications of spintronic devices.

  11. Cubic GaN quantum dots embedded in zinc-blende AlN microdisks

    NASA Astrophysics Data System (ADS)

    Bürger, M.; Kemper, R. M.; Bader, C. A.; Ruth, M.; Declair, S.; Meier, C.; Förstner, J.; As, D. J.

    2013-09-01

    Microresonators containing quantum dots find application in devices like single photon emitters for quantum information technology as well as low threshold laser devices. We demonstrate the fabrication of 60 nm thin zinc-blende AlN microdisks including cubic GaN quantum dots using dry chemical etching techniques. Scanning electron microscopy analysis reveals the morphology with smooth surfaces of the microdisks. Micro-photoluminescence measurements exhibit optically active quantum dots. Furthermore this is the first report of resonator modes in the emission spectrum of a cubic AlN microdisk.

  12. Native defect properties and p -type doping efficiency in group-IIA doped wurtzite AlN

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Liu, Wen; Niu, Hanben

    2008-01-01

    Using the first-principles full-potential linearized augmented plane-wave (FPLAPW) method based on density functional theory (DFT), we have investigated the native defect properties and p -type doping efficiency in AlN doped with group-IIA elements such as Be, Mg, and Ca. It is shown that nitrogen vacancies (VN) have low formation energies and introduce deep donor levels in wurtzite AlN, while in zinc blende AlN and GaN, these levels are reported to be shallow. The calculated acceptor levels γ(0/-) for substitutional Be (BeAl) , Mg (MgAl) , and Ca (CaAl) are 0.48, 0.58, and 0.95eV , respectively. In p -type AlN, Be interstitials (Bei) , which act as donors, have low formation energies, making them a likely compensating center in the case of acceptor doping. Whereas, when N-rich growth conditions are applied, Bei are energetically not favorable. It is found that p -type doping efficiency of substitutional Be, Mg, and Ca impurities in w-AlN is affected by atomic size and electronegativity of dopants. Among the three dopants, Be may be the best candidate for p -type w-AlN . N-rich growth conditions help us to increase the concentration of BeAl , MgAl , and CaAl .

  13. Selected Growth of Cubic and Hexagonal GaN Epitaxial Films on Polar MgO(111)

    NASA Astrophysics Data System (ADS)

    Lazarov, V. K.; Zimmerman, J.; Cheung, S. H.; Li, L.; Weinert, M.; Gajdardziska-Josifovska, M.

    2005-06-01

    Selected molecular beam epitaxy of zinc blende (111) or wurtzite (0001) GaN films on polar MgO(111) is achieved depending on whether N or Ga is deposited first. The cubic stacking is enabled by nitrogen-induced polar surface stabilization, which yields a metallic MgO(111)-(1×1)-ON surface. High-resolution transmission electron microscopy and density functional theory studies indicate that the atomically abrupt semiconducting GaN(111)/MgO(111) interface has a Mg-O-N-Ga stacking, where the N atom is bonded to O at a top site. This specific atomic arrangement at the interface allows the cubic stacking to more effectively screen the substrate and film electric dipole moment than the hexagonal stacking, thus stabilizing the zinc blende phase even though the wurtzite phase is the ground state in the bulk.

  14. AES and LEED study of the zinc blende SiC(100) surface

    NASA Technical Reports Server (NTRS)

    Dayan, M.

    1985-01-01

    Auger and LEED measurements have been carried out on the (100) surface of zinc blende SiC. Two different phases of the clean surface, in addition to two kinds of oxygen-covered surfaces, have been obtained, identified, and discussed. In the oxygen-covered surface, the oxygen is bonded to the Si. The carbon-rich phase is reconstructed (2 x 1), similar to the (100) clean surfaces of Si, Ge, and diamond. The Si-topped surface is reconstructed. A model of alternating Si dimers is suggested for this surface.

  15. Zinc titanate sorbents

    DOEpatents

    Gupta, R.P.; Gangwal, S.K.; Jain, S.C.

    1998-02-03

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750 to about 950 C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 microns, and about 1 part titanium dioxide having a median particle size of less than about 1 micron. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  16. Zinc titanate sorbents

    DOEpatents

    Gupta, Raghubir P.; Gangwal, Santosh K.; Jain, Suresh C.

    1998-01-01

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750.degree. C. to about 950.degree. C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 .mu., and about 1 part titanium dioxide having a median particle size of less than about 1 .mu.. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  17. Topological Phase Transitions in Zinc-Blende Semimetals Driven Exclusively by Electronic Temperature

    NASA Astrophysics Data System (ADS)

    Trushin, Egor; Görling, Andreas

    2018-04-01

    We show that electronic phase transitions in zinc-blende semimetals with quadratic band touching (QBT) at the center of the Brillouin zone, like GaBi, InBi, or HgTe, can occur exclusively due to a change of the electronic temperature without the need to involve structural transformations or electron-phonon coupling. The commonly used Kohn-Sham density-functional methods based on local and semilocal density functionals employing the local density approximation (LDA) or generalized gradient approximations (GGAs), however, are not capable of describing such phenomena because they lack an intrinsic temperature dependence and account for temperature only via the occupation of bands, which essentially leads only to a shift of the Fermi level without changing the shape or topology of bands. Kohn-Sham methods using the exact temperature-dependent exchange potential, not to be confused with the Hartree-Fock exchange potential, on the other hand, describe such phase transitions. A simple modeling of correlation effects can be achieved by screening of the exchange. In the considered zinc-blende compounds the QBT is unstable at low temperatures and a transition to electronic states without QBT takes place. In the case of HgTe and GaBi Weyl points of type I and type II, respectively, emerge during the transitions. This demonstrates that Kohn-Sham methods can describe such topological phase transitions provided they are based on functionals more accurate than those within the LDA or GGA. Moreover, the electronic temperature is identified as a handle to tune topological materials.

  18. Energy bands and acceptor binding energies of GaN

    NASA Astrophysics Data System (ADS)

    Xia, Jian-Bai; Cheah, K. W.; Wang, Xiao-Liang; Sun, Dian-Zhao; Kong, Mei-Ying

    1999-04-01

    The energy bands of zinc-blende and wurtzite GaN are calculated with the empirical pseudopotential method, and the pseudopotential parameters for Ga and N atoms are given. The calculated energy bands are in agreement with those obtained by the ab initio method. The effective-mass theory for the semiconductors of wurtzite structure is established, and the effective-mass parameters of GaN for both structures are given. The binding energies of acceptor states are calculated by solving strictly the effective-mass equations. The binding energies of donor and acceptor are 24 and 142 meV for the zinc-blende structure, 20 and 131, and 97 meV for the wurtzite structure, respectively, which are consistent with recent experimental results. It is proposed that there are two kinds of acceptor in wurtzite GaN. One kind is the general acceptor such as C, which substitutes N, which satisfies the effective-mass theory. The other kind of acceptor includes Mg, Zn, Cd, etc., the binding energy of these acceptors is deviated from that given by the effective-mass theory. In this report, wurtzite GaN is grown by the molecular-beam epitaxy method, and the photoluminescence spectra were measured. Three main peaks are assigned to the donor-acceptor transitions from two kinds of acceptors. Some of the transitions were identified as coming from the cubic phase of GaN, which appears randomly within the predominantly hexagonal material.

  19. ZnxCd1-xSe alloy nanowires covering the entire compositional range grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Shan, C. X.; Liu, Z.; Ng, C. M.; Hark, S. K.

    2005-07-01

    We show that preferentially oriented, single-crystalline ZnxCd1-xSe alloy nanowires can be grown on GaAs (100) surface using Au as a catalyst over the entire compositional range in a metalorganic chemical vapor deposition system. The composition of the alloy nanowires can be simply adjusted through the ratio of the flow rates of group-II precursors. Electron microscopy shows that the nanowires are smooth and uniform in shape; their diameters range from 20 to 80 nm and lengths exceed a few micrometers. Nanowires containing more than 13% Zn are zinc blende structured and grow along the ⟨110⟩ direction. Those containing less Zn are wurtzite structured and grow along the ⟨210⟩ direction. Compared with the bulk alloy, the change from zinc blende to wurtzite structure in nanowires occurs at far smaller x. The preferred orientation and the persistence of the zinc blende structure both reflect the influence of the substrate on the growth of the nanowires. Photoluminescence measurements identify a strong near-band-edge emission for all samples and show that its peak energy tracks the band gap of ZnxCd1-xSe epilayer for x>0.13. The growth of alloy nanowires at many compositions opens up the possibility of realizing quasi-one-dimensional heterojunctions.

  20. Systematic approach to developing empirical interatomic potentials for III-N semiconductors

    NASA Astrophysics Data System (ADS)

    Ito, Tomonori; Akiyama, Toru; Nakamura, Kohji

    2016-05-01

    A systematic approach to the derivation of empirical interatomic potentials is developed for III-N semiconductors with the aid of ab initio calculations. The parameter values of empirical potential based on bond order potential are determined by reproducing the cohesive energy differences among 3-fold coordinated hexagonal, 4-fold coordinated zinc blende, wurtzite, and 6-fold coordinated rocksalt structures in BN, AlN, GaN, and InN. The bond order p is successfully introduced as a function of the coordination number Z in the form of p = a exp(-bZn ) if Z ≤ 4 and p = (4/Z)α if Z ≥ 4 in empirical interatomic potential. Moreover, the energy difference between wurtzite and zinc blende structures can be successfully evaluated by considering interaction beyond the second-nearest neighbors as a function of ionicity. This approach is feasible for developing empirical interatomic potentials applicable to a system consisting of poorly coordinated atoms at surfaces and interfaces including nanostructures.

  1. Polymorphic improvement of Stillinger-Weber potential for InGaN

    NASA Astrophysics Data System (ADS)

    Zhou, X. W.; Jones, R. E.; Chu, K.

    2017-12-01

    A Stillinger-Weber potential is computationally very efficient for molecular dynamics simulations. Despite its simple mathematical form, the Stillinger-Weber potential can be easily parameterized to ensure that crystal structures with tetrahedral bond angles (e.g., diamond-cubic, zinc-blende, and wurtzite) are stable and have the lowest energy. As a result, the Stillinger-Weber potential has been widely used to study a variety of semiconductor elements and alloys. When studying an A-B binary system, however, the Stillinger-Weber potential is associated with two major drawbacks. First, it significantly overestimates the elastic constants of elements A and B, limiting its use for systems involving both compounds and elements (e.g., an A/AB multilayer). Second, it prescribes equal energy for zinc-blende and wurtzite crystals, limiting its use for compounds with large stacking fault energies. Here, we utilize the polymorphic potential style recently implemented in LAMMPS to develop a modified Stillinger-Weber potential for InGaN that overcomes these two problems.

  2. A Stillinger-Weber Potential for InGaN

    DOE PAGES

    Zhou, X. W.; Jones, R. E.

    2017-09-27

    Reducing defects in InGaN films deposited on GaN substrates has been critical to fill the “green” gap for solid-state lighting applications. To enable researchers to use molecular dynamics vapor deposition simulations to explores ways to reduce defects in InGaN films, we have developed and characterized a Stillinger-Weber potential for InGaN. We show that this potential reproduces the experimental atomic volume, cohesive energy, and bulk modulus of the equilibrium wurtzite / zinc-blende phases of both InN and GaN. Most importantly, the potential captures the stability of the correct phase of InGaN compounds against a variety of other elemental, alloy, and compoundmore » configurations. Lastly, this is validated by the potential’s ability to predict crystalline growth of stoichiometric wurtzite and zinc-blende In xGa 1-xN compounds during vapor deposition simulations where adatoms are randomly injected to the growth surface.« less

  3. Polymorphic one-dimensional (N2H4)2ZnTe: soluble precursors for the formation of hexagonal or cubic zinc telluride.

    PubMed

    Mitzi, David B

    2005-10-03

    Two hydrazine zinc(II) telluride polymorphs, (N2H4)2ZnTe, have been isolated, using ambient-temperature solution-based techniques, and the crystal structures determined: alpha-(N2H4)2ZnTe (1) [P21, a = 7.2157(4) Angstroms, b = 11.5439(6) Angstroms, c = 7.3909(4) Angstroms, beta = 101.296(1) degrees, Z = 4] and beta-(N2H4)2ZnTe (2) [Pn, a = 8.1301(5) Angstroms, b = 6.9580(5) Angstroms, c = 10.7380(7) Angstroms, beta = 91.703(1) degrees, Z = 4]. The zinc atoms in 1 and 2 are tetrahedrally bonded to two terminal hydrazine molecules and two bridging tellurium atoms, leading to the formation of extended one-dimensional (1-D) zinc telluride chains, with different chain conformations and packings distinguishing the two polymorphs. Thermal decomposition of (N2H4)2ZnTe first yields crystalline wurtzite (hexagonal) ZnTe at temperatures as low as 200 degrees C, followed by the more stable zinc blende (cubic) form at temperatures above 350 degrees C. The 1-D polymorphs are soluble in hydrazine and can be used as convenient precursors for the low-temperature solution processing of p-type ZnTe semiconducting films.

  4. Unravelling the origin of the giant Zn deficiency in wurtzite type ZnO nanoparticles

    PubMed Central

    Renaud, Adèle; Cario, Laurent; Rocquelfelte, Xavier; Deniard, Philippe; Gautron, Eric; Faulques, Eric; Das, Tilak; Cheviré, François; Tessier, Franck; Jobic, Stéphane

    2015-01-01

    Owing to its high technological importance for optoelectronics, zinc oxide received much attention. In particular, the role of defects on its physical properties has been extensively studied as well as their thermodynamical stability. In particular, a large concentration of Zn vacancies in ZnO bulk materials is so far considered highly unstable. Here we report that the thermal decomposition of zinc peroxide produces wurtzite-type ZnO nanoparticles with an extraordinary large amount of zinc vacancies (>15%). These Zn vacancies segregate at the surface of the nanoparticles, as confirmed by ab initio calculations, to form a pseudo core-shell structure made of a dense ZnO sphere coated by a Zn free oxo-hydroxide mono layer. In others terms, oxygen terminated surfaces are privileged over zinc-terminated surfaces for passivation reasons what accounts for the Zn off-stoichiometry observed in ultra-fine powdered samples. Such Zn-deficient Zn1-xO nanoparticles exhibit an unprecedented photoluminescence signature suggesting that the core-shell-like edifice drastically influences the electronic structure of ZnO. This nanostructuration could be at the origin of the recent stabilisation of p-type charge carriers in nitrogen-doped ZnO nanoparticles. PMID:26333510

  5. Microstructural study of Mg-doped p-type GaN: Correlation between high-resolution electron microscopy and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Tsen, S.-C. Y.; Smith, David J.; Tsen, K. T.; Kim, W.; Morkoç, H.

    1997-12-01

    A series of Mg-doped GaN films (˜1-1.3 μm) grown by reactive molecular beam epitaxy at substrate temperatures of 750 and 800 °C has been studied by high-resolution electron microscopy (HREM) and Raman spectroscopy. Stacking defects parallel to the substrate surface were observed in samples grown on sapphire substrates at 750 °C with AlN buffer layers (60-70 nm) at low Mg concentration. A transition region with mixed zinc-blende cubic (c) and wurtzite hexagonal (h) phases having the relative orientations of (111)c//(00.1)h and (11¯0)c//(10.0)h was observed for increased Mg concentration. The top surfaces of highly doped samples were rough and assumed a completely zinc-blende phase with some inclined stacking faults. Samples grown with a Mg cell temperature of 350 °C and high doping levels were highly disordered with many small crystals having inclined stacking faults, microtwins, and defective wurtzite and zinc-blende phases. Correlation between HREM and Raman scattering results points towards the presence of compressive lattice distortion along the growth direction which might be attributable to structural defects. The films grown at 800 °C had better quality with less observable defects and less yellow luminescence than samples grown at 750 °C.

  6. Ternary mixed crystal effects on interface optical phonon and electron-phonon coupling in zinc-blende GaN/AlxGa1-xN spherical quantum dots

    NASA Astrophysics Data System (ADS)

    Huang, Wen Deng; Chen, Guang De; Yuan, Zhao Lin; Yang, Chuang Hua; Ye, Hong Gang; Wu, Ye Long

    2016-02-01

    The theoretical investigations of the interface optical phonons, electron-phonon couplings and its ternary mixed effects in zinc-blende spherical quantum dots are obtained by using the dielectric continuum model and modified random-element isodisplacement model. The features of dispersion curves, electron-phonon coupling strengths, and its ternary mixed effects for interface optical phonons in a single zinc-blende GaN/AlxGa1-xN spherical quantum dot are calculated and discussed in detail. The numerical results show that there are three branches of interface optical phonons. One branch exists in low frequency region; another two branches exist in high frequency region. The interface optical phonons with small quantum number l have more important contributions to the electron-phonon interactions. It is also found that ternary mixed effects have important influences on the interface optical phonon properties in a single zinc-blende GaN/AlxGa1-xN quantum dot. With the increase of Al component, the interface optical phonon frequencies appear linear changes, and the electron-phonon coupling strengths appear non-linear changes in high frequency region. But in low frequency region, the frequencies appear non-linear changes, and the electron-phonon coupling strengths appear linear changes.

  7. Electronic and Magnetic Properties of Ni-Doped Zinc-Blende ZnO: A First-Principles Study.

    PubMed

    Xue, Suqin; Zhang, Fuchun; Zhang, Shuili; Wang, Xiaoyang; Shao, Tingting

    2018-04-26

    The electronic structure, band structure, density of state, and magnetic properties of Ni-doped zinc-blende (ZB) ZnO are studied by using the first-principles method based on the spin-polarized density-functional theory. The calculated results show that Ni atoms can induce a stable ferromagnetic (FM) ground state in Ni-doped ZB ZnO. The magnetic moments mainly originate from the unpaired Ni 3 d orbitals, and the O 2 p orbitals contribute a little to the magnetic moments. The magnetic moment of a supercell including a single Ni atom is 0.79 μ B . The electronic structure shows that Ni-doped ZB ZnO is a half-metallic FM material. The strong spin-orbit coupling appears near the Fermi level and shows obvious asymmetry for spin-up and spin-down density of state, which indicates a significant hybrid effects from the Ni 3 d and O 2 p states. However, the coupling of the anti-ferromagnetic (AFM) state show metallic characteristic, the spin-up and spin-down energy levels pass through the Fermi surface. The magnetic moment of a single Ni atom is 0.74 μ B . Moreover, the results show that the Ni 3 d and O 2 p states have a strong p - d hybridization effect near the Fermi level and obtain a high stability. The above theoretical results demonstrate that Ni-doped zinc blende ZnO can be considered as a potential half-metal FM material and dilute magnetic semiconductors.

  8. Coordination radii in diamond, zinc blende, and CaF2 structures

    NASA Astrophysics Data System (ADS)

    Hall, George L.

    1982-07-01

    The radii of all ''shells'' of atoms about any lattice point are given for these three structures, and for the zinc blende (AB) and CaF2 (AB2) structures it is shown that all shells about an A origin and all shells about a B origin are of pure type, i.e., contain only A's or only B's. The initial sequence (small radii) of shell types does not continue indefinitely and is broken according to rules completely specified. These results are analogous to those reported by Hall and Christy earlier for the NaCl and CsCl structures in which the ABABABṡṡṡ sequence for NaCl and the ABAABAABAAṡṡṡ for CsCl, both taken about an A origin, do not continue indefinitely. It is shown that Ferris-Prabhu's results for diamond violate theorem 1 of Hall and Christy.

  9. Polymorphic improvement of Stillinger-Weber potential for InGaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiaowang W.; Jones, Reese E.; Chu, Kevin

    A Stillinger-Weber potential is computationally very efficient for molecular dynamics simulations. Despite its simple mathematical form, the Stillinger-Weber potential can be easily parameterized to ensure that crystal structures with tetrahedral bond angles (e.g., diamond-cubic, zinc-blende, and wurtzite) are stable and have the lowest energy. As a result, the Stillinger-Weber potential has been widely used to study a variety of semiconductor elements and alloys. When studying an A-B binary system, however, the Stillinger-Weber potential is associated with two major drawbacks. First, it significantly overestimates the elastic constants of elements A and B, limiting its use for systems involving both compounds andmore » elements (e.g., an A/AB multilayer). Second, it prescribes equal energy for zinc-blende and wurtzite crystals, limiting its use for compounds with large stacking fault energies. Here in this paper, we utilize the polymorphic potential style recently implemented in LAMMPS to develop a modified Stillinger-Weber potential for InGaN that overcomes these two problems.« less

  10. Polymorphic improvement of Stillinger-Weber potential for InGaN

    DOE PAGES

    Zhou, Xiaowang W.; Jones, Reese E.; Chu, Kevin

    2017-12-21

    A Stillinger-Weber potential is computationally very efficient for molecular dynamics simulations. Despite its simple mathematical form, the Stillinger-Weber potential can be easily parameterized to ensure that crystal structures with tetrahedral bond angles (e.g., diamond-cubic, zinc-blende, and wurtzite) are stable and have the lowest energy. As a result, the Stillinger-Weber potential has been widely used to study a variety of semiconductor elements and alloys. When studying an A-B binary system, however, the Stillinger-Weber potential is associated with two major drawbacks. First, it significantly overestimates the elastic constants of elements A and B, limiting its use for systems involving both compounds andmore » elements (e.g., an A/AB multilayer). Second, it prescribes equal energy for zinc-blende and wurtzite crystals, limiting its use for compounds with large stacking fault energies. Here in this paper, we utilize the polymorphic potential style recently implemented in LAMMPS to develop a modified Stillinger-Weber potential for InGaN that overcomes these two problems.« less

  11. Efficient n-type doping of zinc-blende III-V semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Besteiro, Lucas V.; Tortajada, Luis; Souto, J.; Gallego, L. J.; Chelikowsky, James R.; Alemany, M. M. G.

    2014-03-01

    We demonstrate that it is preferable to dope III-V semiconductor nanowires by n-type anion substitution as opposed to cation substitution. Specifically, we show the dopability of zinc-blende nanowires is more efficient when the dopants are placed at the anion site as quantified by formation energies and the stabilization of DX-like defect centers. The comparison with previous work on n - type III-V semiconductor nanocrystals also allows to determine the role of dimensionality and quantum confinement on doping characteristics of materials. Our results are based on first-principles calculations of InP nanowires by using the PARSEC code. Work supported by the Spanish MICINN (FIS2012-33126) and Xunta de Galicia (GPC2013-043) in conjunction with FEDER. JRC acknowledges support from DoE (DE-FG02-06ER46286 and DESC0008877). Computational support was provided in part by CESGA.

  12. Experimental Investigation of Performance and emission characteristics of Various Nano Particles with Bio-Diesel blend on Di Diesel Engine

    NASA Astrophysics Data System (ADS)

    Karthik, N.; Goldwin Xavier, X.; Rajasekar, R.; Ganesh Bairavan, P.; Dhanseelan, S.

    2017-05-01

    Present study provides the effect of Zinc Oxide (ZnO) and Cerium Oxide (CeO2) nanoparticles additives on the Performance and emission uniqueness of Jatropha. Jatropha blended fuel is prepared by the emulsification technique with assist of mechanical agitator. Nano particles (Zinc Oxide (ZnO)) and Cerium Oxide (CeO2)) mixed with Jatropha blended fuel in mass fraction (100 ppm) with assist of an ultrasonicator. Experiments were conducted in single cylinder constant speed direct injection diesel engine for various test fuels. Performance results revealed that Brake Thermal Efficiency (BTE) of Jatropha blended Cerium Oxide (B20CE) is 3% and 11% higher than Jatropha blended zinc oxide (B20ZO) and Jatropha blended fuel (B20) and 4% lower than diesel fuel (D100) at full load conditions. Emission result shows that HC and CO emissions of Jatropha blended Cerium Oxide (B20CE) are (6%, 22%, 11% and 6%, 15%, 12%) less compared with Jatropha blended Zinc Oxide (B20ZO), diesel (D100) and Jatropha blended fuel (B20) at full load conditions. NOx emissions of Jatropha blended Cerium Oxide is 1 % higher than diesel fuel (D100) and 2% and 5% lower than Jatropha blended Zinc Oxide, and jatropha blended fuel.

  13. Redox-Mediated Stabilization in Zinc Molybdenum Nitrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arca, Elisabetta; Lany, Stephan; Perkins, John D.

    We report on the theoretical prediction and experimental realization of new ternary zinc molybdenum nitride compounds. We used theory to identify previously unknown ternary compounds in the Zn-Mo-N systems, Zn 3MoN 4 and ZnMoN 2, and to analyze their bonding environment. Experiments show that Zn-Mo-N alloys can form in broad composition range from Zn 3MoN 4 to ZnMoN 2 in the wurtzite-derived structure, accommodating very large off-stoichiometry. Interestingly, the measured wurtzite-derived structure of the alloys is metastable for the ZnMoN 2 stoichiometry, in contrast to the Zn 3MoN 4 stoichiometry, where ordered wurtzite is predicted to be the ground state.more » The formation of Zn 3MoN 4-ZnMoN 2 alloy with wurtzite-derived crystal structure is enabled by the concomitant ability of Mo to change oxidation state from +VI in Zn 3MoN 4 to +IV in ZnMoN 2, and the capability of Zn to contribute to the bonding states of both compounds, an effect that we define as 'redox-mediated stabilization.' The stabilization of Mo in both the +VI and +IV oxidation states is due to the intermediate electronegativity of Zn, which enables significant polar covalent bonding in both Zn 3MoN 4 and ZnMoN 2 compounds. The smooth change in the Mo oxidation state between Zn 3MoN 4 and ZnMoN 2 stoichiometries leads to a continuous change in optoelectronic properties - from resistive and semitransparent Zn 3MoN 4 to conductive and absorptive ZnMoN 2. The reported redox-mediated stabilization in zinc molybdenum nitrides suggests there might be many undiscovered ternary compounds with one metal having an intermediate electronegativity, enabling significant covalent bonding, and another metal capable of accommodating multiple oxidation states, enabling stoichiometric flexibility.« less

  14. Redox-Mediated Stabilization in Zinc Molybdenum Nitrides

    DOE PAGES

    Arca, Elisabetta; Lany, Stephan; Perkins, John D.; ...

    2018-03-01

    We report on the theoretical prediction and experimental realization of new ternary zinc molybdenum nitride compounds. We used theory to identify previously unknown ternary compounds in the Zn-Mo-N systems, Zn 3MoN 4 and ZnMoN 2, and to analyze their bonding environment. Experiments show that Zn-Mo-N alloys can form in broad composition range from Zn 3MoN 4 to ZnMoN 2 in the wurtzite-derived structure, accommodating very large off-stoichiometry. Interestingly, the measured wurtzite-derived structure of the alloys is metastable for the ZnMoN 2 stoichiometry, in contrast to the Zn 3MoN 4 stoichiometry, where ordered wurtzite is predicted to be the ground state.more » The formation of Zn 3MoN 4-ZnMoN 2 alloy with wurtzite-derived crystal structure is enabled by the concomitant ability of Mo to change oxidation state from +VI in Zn 3MoN 4 to +IV in ZnMoN 2, and the capability of Zn to contribute to the bonding states of both compounds, an effect that we define as 'redox-mediated stabilization.' The stabilization of Mo in both the +VI and +IV oxidation states is due to the intermediate electronegativity of Zn, which enables significant polar covalent bonding in both Zn 3MoN 4 and ZnMoN 2 compounds. The smooth change in the Mo oxidation state between Zn 3MoN 4 and ZnMoN 2 stoichiometries leads to a continuous change in optoelectronic properties - from resistive and semitransparent Zn 3MoN 4 to conductive and absorptive ZnMoN 2. The reported redox-mediated stabilization in zinc molybdenum nitrides suggests there might be many undiscovered ternary compounds with one metal having an intermediate electronegativity, enabling significant covalent bonding, and another metal capable of accommodating multiple oxidation states, enabling stoichiometric flexibility.« less

  15. Impact of Group-II Acceptors on the Electrical and Optical Properties of GaN

    NASA Astrophysics Data System (ADS)

    Lyons, John L.; Janotti, Anderson; Van de Walle, Chris G.

    2013-08-01

    We explore the properties of group-II acceptors in GaN by performing hybrid density functional calculations. We find that MgGa gives rise to hole localization in zinc-blende GaN, similar to the behavior in the wurtzite phase. Alternative acceptor impurities, such as Zn and Be, also lead to localized holes in wurtzite GaN, and their ionization energies are larger than that of Mg. All these group-II acceptors also cause large lattice distortions in their neutral charge state, which in turn lead to deep and broad luminescence signals. We explore the consequences of these results for p-type doping.

  16. Damage initiated self-healing in ionomer blends

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Arifur; Penco, Maurizio; Spagnoli, Gloria; Peroni, Isabella; Ramorino, Giorgio; Sartore, Luciana; Bignotti, Fabio; Landro, Luca Di

    2012-07-01

    The development and understanding of self-healing mechanisms have been investigated in blends of ionomers (Poly(ethyelene-co-methacrylic acid), sodium & zinc ions) (EMNa & EMZn) containing both elastomers (Epoxidized natural rubbers (ENR) and cis-1,4-Polyisoprene (PISP)) and crystalline component (Poly(vinly alcohol-co-ethylene) [PVAcE]) as secondary phases. All the blends were prepared by melt-blending and self-healing behavior was studied in ballistic puncture tests. Self-healing behavior of each material was evaluated by observing the impact zones under a stereo-optical microscope and the micrographic results were further supported by the fluid flow test in the punctured zones. Interestingly, ENR50 blends of sodium ion containing ionomers exhibited complete self-repairing behavior while zinc ion containing ionomer showed limited mending but EMNa/ENR25 and EMNa/PISP blends did not show any self-healing behavior following the damage. On the other hand, a composition dependent healing behavior was observed in the EMNa/PVAcE blends where healing was observed up to 30wt% PVAcE containing blends. The chemical structure studied by FTIR analysis showed that both ion content of ionomer and functionality of ENR have significant influence on the self-repairing behavior of blends. TEM analysis revealed that self-healing occurs in the blends when the dispersed phase has a dimension of 100 to 400 nm.

  17. Long exciton lifetimes in stacking-fault-free wurtzite GaAs nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furthmeier, Stephan, E-mail: stephan.furthmeier@ur.de; Dirnberger, Florian; Hubmann, Joachim

    We present a combined photoluminescence and transmission electron microscopy study of single GaAs nanowires. Each wire was characterized both in microscopy and spectroscopy, allowing a direct correlation of the optical and the structural properties. By tuning the growth parameters, the nanowire crystal structure is optimized from a highly mixed zincblende–wurtzite structure to pure wurtzite. We find the latter one to be stacking-fault-free over nanowire lengths up to 4.1 μm. We observe the emission of purely wurtzite nanowires to occur only with polarization directions perpendicular to the wurtzite c{sup ^}-axis, as expected from the hexagonal unit cell symmetry. The free exciton recombinationmore » energy in the wurtzite structure is 1.518 eV at 5 K with a narrow linewidth of 4 meV. Most notably, these pure wurtzite nanowires display long carrier recombination lifetimes of up to 11.2 ns, exceeding reported lifetimes in bulk GaAs and state-of-the-art 2D GaAs/AlGaAs heterostructures.« less

  18. Hyperaccumulation of zinc by zinc-depleted Candida utilis grown in chemostat culture.

    PubMed

    Lawford, H G; Pik, J R; Lawford, G R; Williams, T; Kligerman, A

    1980-01-01

    The steady-state levels of zinc in Candida utilis yeast grown in continuous culture under conditions of zinc limitations are <1nmol Zn2+/mg dry weight of cells. Unlike carbon-limited cells, zinc-depleted cells from a zinc-limited chemostat possess the capacity to accumulate and store zinc at levels far in excess of the steady-state level of 4 nmol/mg dry biomass observed in carbon-limited chemostat cultures. Zinc uptake is energy-dependent and apparently undirectional since accumulated 65Zn neither exists from preloaded cells nor exchanges with cold Zn2+. The transport system exhibits a high affinity for Zn2+ (Km =.36micrM) with a Vmaxof 2.2 nmol per minute per milligram dry weight of cells. Growth during the period of the uptake assay is responsible for the apparent plateau level of 35 nmol Zn2+/mg dry weight of cells achieved after 20-30 min in the presence of 65Zn at pH 4.5 and 30 degrees C. Inhibition of growth during the uptake assay by cycloheximide results in a biphasic linear pattern of zinc accumulation where the cellular zinc is about 60 nmol/mg dry weight after 1 h. The enhanced level of accumulated zinc is not inhibtory to growth. Zinc-depleted C. utilis contains elevated amounts of polyphosphate and this anionic evidence does not allow discrimination between possible regulation of zinc homestasis either by inhibitions of zinc efflux through control of the membrane carrier or by control of the synthesis of a cytoplasmic zinc-sequestering macromolecule.

  19. Energetics of cubic and hexagonal phases in Mn-doped GaN : First-principles pseudopotential calculations

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Ae; Kang, Joongoo; Chang, K. J.

    2006-12-01

    We perform first-principles pseudopotential calculations to study the influence of Mn doping on the stability of two polytypes, wurtzite and zinc-blende, in GaN . In Mn δ -doped GaN and GaMnN alloys, we find similar critical concentrations of the Mn ions for stabilizing the zinc-blende phase against the wurtzite phase. Using a slab geometry of hexagonal lattices, we find that it is energetically unfavorable to form inversion domains with Mn exposure, in contrast to Mg doping. At the initial stage of epitaxial growth, a stacking fault that leads to the cubic bonds can be generated with the Mn exposure to the Ga-polar surface. However, the influence of the Mn δ -doped layer on the formation of the cubic phase is only effective for GaN layers deposited up to two monolayers. We find that the Mn ions are energetically more stable on the growth front than in the bulk, indicating that these ions act as a surfactant. Thus it is possible to grow cubic GaN if the Mn ions are periodically supplied or diffuse out from the Mn δ -doped layer to the growth front during the growth process.

  20. Competing nucleation of islands and nanopits in zinc-blend Ill-nitride quaternary material system

    NASA Astrophysics Data System (ADS)

    Gambaryan, K. M.; Aroutiounian, V. M.; Simonyan, A. K.; Yeranyan, L. S.

    2016-10-01

    The growth mechanism of quantum dots (QDs), nanopits and collaborative QDs- nanopits structures in GaN-InN-AlN material system is theoretically investigated using the continuum elasticity model. The islands energy versus their volume, as well as the critical energy and volume versus the island and wetting layer lattice constants relative mismatch ratio (strain s), are calculated. It is shown that when the zinc-blend GaN is used as a substrate and when the strain between the wetting layer and a substrate overcomes critical ε* = 0.039 value, instead of QDs nucleation, the formation of nanopits becomes energetically preferable. Revealed feature is critical and has to be taking into account at QDs engineering in GaInAlN material system.

  1. First-principles calculations of CdS-based nanolayers and nanotubes

    NASA Astrophysics Data System (ADS)

    Bandura, A. V.; Kuruch, D. D.; Evarestov, R. A.

    2018-05-01

    The first-principles simulations using hybrid exchange-correlation density functional and localized atomic basis set were performed to investigate the properties of CdS nanolayers and nanotubes constructed from wurtzite and zinc blende phases. Different types of cylindrical and facetted nanotubes have been considered. The new classification of the facetted nanotubes is proposed. The stability of CdS nanotubes has been analyzed using formation and strain energies. Obtained results show that facetted tubes are favorable as compared to the most of cylindrical ones. Nevertheless, the cylindrical nanotubes generated from the layers with experimentally proved freestanding existence, also have a chance to be synthesized. Preliminary calculation of facetted nanotubes constructed from the zinc blende phase gives evidence for their possible using in the photocatalytic decomposition of water.

  2. Effect of intrinsic zinc oxide coating on the properties of Al-doped zinc oxide nanorod arrays

    NASA Astrophysics Data System (ADS)

    Saidi, S. A.; Mamat, M. H.; Ismail, A. S.; Malek, M. F.; Yusoff, M. M.; Sin, N. D. Md.; Zoolfakar, A. S.; Khusaimi, Z.; Rusop, M.

    2018-05-01

    The aim of this study was to explore the influence of intrinsic zinc oxide (ZnO) coating fabricated by a simple immersion method. X-ray powder diffraction (XRD) analysis indicated that the Al-doped ZnO nanorod arrays films had a hexagonal wurtzite structure, similar to that of an intrinsic ZnO coating. Structural properties of the samples were characterised using field emission scanning electron microscopy (FESEM; JEOL JSM-7600F) and optical properties using X-ray diffraction (XRD). The XRD results showed that all films were crystallized under hexagonal wurtzite structure and presented a preferential orientation along the c-axis (002) was obtained. The XRD results showed that the intrinsic ZnO coating material had a strong orientation, whereas the ZnO was randomly oriented. Overall these results indicate that intrinsic ZnO coating are pontetial for the creation of functional materials such as barrier protection, optoelectronic devices, humidity sensor and ultraviolet photoconductive sensor.

  3. Far field emission profile of pure wurtzite InP nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulgarini, Gabriele, E-mail: g.bulgarini@tudelft.nl; Reimer, Michael E.; Zwiller, Val

    2014-11-10

    We report on the far field emission profile of pure wurtzite InP nanowires in comparison to InP nanowires with predominantly zincblende crystal structure. The emission profile is measured on individual nanowires using Fourier microscopy. The most intense photoluminescence of wurtzite nanowires is collected at small angles with respect to the nanowire growth axis. In contrast, zincblende nanowires present a minimum of the collected light intensity in the direction of the nanowire growth. Results are explained by the orientation of electric dipoles responsible for the photoluminescence, which is different from wurtzite to zincblende. Wurtzite nanowires have dipoles oriented perpendicular to themore » nanowire growth direction, whereas zincblende nanowires have dipoles oriented along the nanowire axis. This interpretation is confirmed by both numerical simulations and polarization dependent photoluminescence spectroscopy. Knowledge of the dipole orientation in nanostructures is crucial for developing a wide range of photonic devices such as light-emitting diodes, photodetectors, and solar cells.« less

  4. Ab initio calculations of the magnetic properties of TM (Ti, V)-doped zinc-blende ZnO

    NASA Astrophysics Data System (ADS)

    Goumrhar, F.; Bahmad, L.; Mounkachi, O.; Benyoussef, A.

    2018-01-01

    In order to promote suitable material to be used in spintronics devices, this study purposes to evaluate the magnetic properties of the titanium and vanadium-doped zinc-blende ZnO from first-principles. The calculations of these properties are based on the Korringa-Kohn-Rostoker (KKR) method combined with the coherent potential approximation (CPA), using the local density approximation (LDA). We have calculated and discussed the density of states (DOSs) in the energy phase diagrams for different concentration values, of the dopants. We have also investigated the magnetic and half-metallic properties of this doped compound. Additionally, we showed the mechanism of the exchange coupling interaction. Finally, we estimated and studied the Curie temperature for different concentrations.

  5. Growth and stress-induced transformation of zinc blende AlN layers in Al-AlN-TiN multilayers

    DOE PAGES

    Li, Nan; Yadav, Satyesh K.; Wang, Jian; ...

    2015-12-18

    We report that AlN nanolayers in sputter deposited {111}Al/AlN/TiN multilayers exhibit the metastable zinc-blende-structure (z-AlN). Based on density function theory calculations, the growth of the z-AlN is ascribed to the kinetically and energetically favored nitridation of the deposited aluminium layer. In situ nanoindentation of the as-deposited {111}Al/AlN/TiN multilayers in a high-resolution transmission electron microscope revealed the z-AlN to wurzite AlN phase transformation through collective glide of Shockley partial dislocations on every two {111} planes of the z-AlN.

  6. Molecular Beam Epitaxial Growth of Iron Nitrides on Zinc-Blende Gallium Nitride(001)

    NASA Astrophysics Data System (ADS)

    Pak, Jeongihm; Lin, Wenzhi; Chinchore, Abhijit; Wang, Kangkang; Smith, Arthur R.

    2008-03-01

    Iron nitrides are attractive materials for their high magnetic moments, corrosion, and oxidation resistance. We present the successful epitaxial growth of iron nitride on zinc-blende gallium nitride (c-GaN) in order to develop a novel magnetic transition metal nitride/semiconductor system. First, GaN is grown on magnesium oxide (MgO) substrates having (001) orientation using rf N2-plasma molecular beam epitaxy. Then we grow FeN at substrate temperature of ˜ 210 ^oC up to a thickness of ˜ 10.5 nm. In-situ reflection high-energy electron diffraction (RHEED) is used to monitor the surface during growth. Initial results suggest that the epitaxial relationship is FeN[001] || GaN[001] and FeN[100] || GaN[100]. Work in progress is to investigate the surface using in-situ scanning tunneling microscopy (STM) to reveal the surface structure at atomic scale, as well as to explore more Fe-rich magnetic phases.

  7. Intermediate-phase method for computing the natural band offset between two materials with dissimilar structures

    NASA Astrophysics Data System (ADS)

    Gu, Hui-Jun; Zhang, Yue-Yu; Chen, Shi-You; Xiang, Hong-Jun; Gong, Xin-Gao

    2018-06-01

    The band offset between different semiconductors is an important physical quantity determining carrier transport properties near the interface in heterostructure devices. Computation of the natural band offset is a longstanding challenge. We propose an intermediate-phase method to predict the natural band offset between two structures with different symmetry, for which the superlattice model cannot be directly constructed. With this method and the intermediate phases obtained by our searching algorithm, we successfully calculate the natural band offsets for two representative systems: (i) zinc-blende CdTe and wurtzite CdS and (ii) diamond and graphite. The calculation shows that the valence band maximum (VBM) of zinc-blende CdTe lies 0.71 eV above that of wurtzite CdS, close to the result 0.76 eV obtained by the three-step method. For the natural band offset between diamond and graphite which could not be computed reliably with any superlattice methods, our calculation shows that the Fermi level of graphite lies 1.51 eV above the VBM of diamond using an intermediate phase. This method, under the assumption that the transitivity rule is valid, can be used to calculate the band offsets between any semiconductors with different symmetry on condition that the intermediate phase is reasonably designed.

  8. Zinc-blende to rocksalt transition in SiC in a laser-heated diamond-anvil cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daviau, Kierstin; Lee, Kanani K. M.

    2017-04-18

    We explore the stability of the ambient pressure zinc-blende polymorph (B3) structure of silicon carbide (SiC) at high pressures and temperatures where it transforms to the rocksalt (B1) structure. We find that the transition occurs ~40 GPa lower than previously measured when heated to moderately high temperatures. A lower transition pressure is consistent with the transition pressures predicted in numerous ab initio computations. We find a large volume decrease across the transition of ~17%, with the volume drop increasing at higher formation pressures, suggesting this transition is volume driven yielding a nearly pressure-independent Clapeyron slope. Such a dramatic density increasemore » occurring at pressure is important to consider in applications where SiC is exposed to extreme conditions, such as in industrial applications or planetary interiors.« less

  9. All-wurtzite ZnO/ZnSe hetero-nanohelix: formation, mechanics and luminescence

    NASA Astrophysics Data System (ADS)

    Sun, Luwei; Ye, Zhizhen; He, Haiping

    2015-04-01

    A unique all-wurtzite ZnO/ZnSe hetero-nanohelix is formed via growing wurtzite ZnSe nanoteeth on ZnO nanobelts through a one step thermal evaporation method. The microstructure and growth mechanism of the hetero-nanohelix are investigated in detail. The formation of metastable wurtzite ZnSe is attributed to the wurtzite ZnO template. Mechanical forces, thermal expansion and polar plane in hexagonal crystals are suggested to contribute to the bending of the nanohelix. A boomerang-like structural block is proposed to assemble the zigzag ZnO nanobelts. The incorporation of Se into ZnO results in a strong orange emission. The heterostructure of the ZnO/ZnSe nanohelix is confirmed by elemental mapping and luminescence imaging. The fabrication of such a hetero-nanohelix may provide insights into the growth mechanism of the rich family of ZnO-based nanostructures.A unique all-wurtzite ZnO/ZnSe hetero-nanohelix is formed via growing wurtzite ZnSe nanoteeth on ZnO nanobelts through a one step thermal evaporation method. The microstructure and growth mechanism of the hetero-nanohelix are investigated in detail. The formation of metastable wurtzite ZnSe is attributed to the wurtzite ZnO template. Mechanical forces, thermal expansion and polar plane in hexagonal crystals are suggested to contribute to the bending of the nanohelix. A boomerang-like structural block is proposed to assemble the zigzag ZnO nanobelts. The incorporation of Se into ZnO results in a strong orange emission. The heterostructure of the ZnO/ZnSe nanohelix is confirmed by elemental mapping and luminescence imaging. The fabrication of such a hetero-nanohelix may provide insights into the growth mechanism of the rich family of ZnO-based nanostructures. Electronic supplementary information (ESI) available: HRTEM image, EDS elemental mapping, XRD data, and calculation of bending mechanics. See DOI: 10.1039/c5nr00567a

  10. Morphology study of peroxide-induced dynamically vulcanized polypropylene/ethylene-propylene-diene monomer/zinc dimethacrylate blends during tensile deformation.

    PubMed

    Chen, Yukun; Xu, Chuanhui; Cao, Liming; Wang, Yanpeng; Fang, Liming

    2013-06-27

    Polypropylene (PP)/ethylene-propylene-diene monomer (EPDM)/zinc dimethacrylate (ZDMA) blend (EPDM/PP ratio of 30/70) with remarkable extensibility was successfully prepared via peroxide dynamic vulcanization. The uniaxial tensile properties, crystallization behavior, structure, and morphology during stretching were investigated. The tensile process study showed that the PP/EPDM/ZDMA blend exhibited the rubbery-like behavior with an elongation beyond 600%. The ZDMA graft-product domain increased the compatibility and interfacial adhesion between rubber and PP phases, while it reduced the crystallinity of the PP phase. On the basis of TEM and SEM analyses, we found that the cross-linked rubber particles could be elongated and oriented along the tensile direction, whereas the ZDMA graft-product domain "encapsulated" rubber phase together, acting as a "bridge" between elongated rubber phases and the PP phase during uniaxial stretching. The stress could be effectively transferred from the PP phase to the numerous elongated rubber phases due to the excellent compatibility and interfacial adhesion between rubber and PP phases, resulting in the rubbery-like behavior.

  11. Growth study of self-assembled GaN nanocolumns on silica glass by plasma assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Liudi Mulyo, Andreas; Konno, Yuta; Nilsen, Julie S.; van Helvoort, Antonius T. J.; Fimland, Bjørn-Ove; Weman, Helge; Kishino, Katsumi

    2017-12-01

    We demonstrate GaN nanocolumn growth on fused silica glass by plasma-assisted molecular beam epitaxy. The effect of the substrate temperature, Ga flux and N2 flow rate on the structural and optical properties are studied. At optimum growth conditions, GaN nanocolumns are vertically aligned and well separated with an average diameter, height and density of 72 nm, 1.2 μm and 1.6 × 109 cm-2, respectively. The nanocolumns exhibit wurtzite crystal structure with no threading dislocations, stacking faults or twinning and grow in the [0 0 0 1] direction. At the interface adjacent to the glass, there is a few atom layers thick intermediate phase with ABC stacking order (zinc blende). Photoluminescence measurements evidence intense and narrow excitonic emissions, along with the absence of any defect-related zinc blende and yellow luminescence emission.

  12. Crystallographic phase induced electro-optic properties of nanorod blend nematic liquid crystal.

    PubMed

    Kundu, Sudarshan; Hill, Jonathan P; Richards, Gary J; Ariga, Katsuhiko; Khan, Ali Hossain; Thupakula, Umamahesh; Acharya, Somobrata

    2011-09-01

    Ultrasmall ZnS or PbS nanorods encapsulated in fluid-like soft organic surfactants show excellent miscibility in the nematic liquid crystal (LC ZLI-4792) host resulting in a novel soft matter type blend with enhanced electro-optic properties. The ultranarrow ZnS rods are of wurtzite phase and possess a chemical bipolarity and a net dipole moment. The centrosymmetric ultranarrow PbS rods possess a finite size and shape dependent inherent dipole moment despite their cubic rock-salt structure. When an electric field is applied, the blend aligns along the direction of the field producing a local unidirectional orientation of the rods and LC directors, and defining a unique axis for the system. The local ordering significantly affects the global ordering of the blend allowing a more rapid response of the electro-optic properties. The degree and switching speed of the blends depend upon the magnitude of dipole moments present in the dopant nanorods. We show how a non-mesogenic element designed with preferential crystallographic phase can be introduced within a LC for improvement of the switching properties of the LC blend. These types of unique blends are a model for fundamental conceptual advances in general understanding of interaction behaviour leading consequently to a significant technological advancement for superior device fabrication.

  13. Process for producing wurtzitic or cubic boron nitride

    DOEpatents

    Holt, J.B.; Kingman, D.D.; Bianchini, G.M.

    1992-04-28

    Disclosed is a process for producing wurtzitic or cubic boron nitride comprising the steps of: [A] preparing an intimate mixture of powdered boron oxide, a powdered metal selected from the group consisting of magnesium or aluminum, and a powdered metal azide; [B] igniting the mixture and bringing it to a temperature at which self-sustaining combustion occurs; [C] shocking the mixture at the end of the combustion thereof with a high pressure wave, thereby forming as a reaction product, wurtzitic or cubic boron nitride and occluded metal oxide; and, optionally [D] removing the occluded metal oxide from the reaction product. Also disclosed are reaction products made by the process described.

  14. Process for producing wurtzitic or cubic boron nitride

    DOEpatents

    Holt, J. Birch; Kingman, deceased, Donald D.; Bianchini, Gregory M.

    1992-01-01

    Disclosed is a process for producing wurtzitic or cubic boron nitride comprising the steps of: [A] preparing an intimate mixture of powdered boron oxide, a powdered metal selected from the group consisting of magnesium or aluminum, and a powdered metal azide; [B] igniting the mixture and bringing it to a temperature at which self-sustaining combustion occurs; [C] shocking the mixture at the end of the combustion thereof with a high pressure wave, thereby forming as a reaction product, wurtzitic or cubic boron nitride and occluded metal oxide; and, optionally [D] removing the occluded metal oxide from the reaction product. Also disclosed are reaction products made by the process described.

  15. Spectroscopic characterization of zinc oxide nanorods synthesized by solid-state reaction

    NASA Astrophysics Data System (ADS)

    Prasad, Virendra; D'Souza, Charlene; Yadav, Deepti; Shaikh, A. J.; Vigneshwaran, Nadanathangam

    2006-09-01

    Well-crystallized zinc oxide nanorods have been fabricated by single step solid-state reaction using zinc acetate and sodium hydroxide, at room temperature. The sodium lauryl sulfate (SLS) stabilized zinc oxide nanorods were characterized by using X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and photoluminescence spectroscopy. The X-ray diffraction revealed the wurtzite structure of zinc oxide. The size estimation by XRD and TEM confirmed that the ZnO nanorods are made of single crystals. The growth of zinc oxide crystals into rod shape was found to be closely related to its hexagonal nature. The mass ratio of SLS:ZnO in the nanorods was found to be 1:10 based on the thermogravimetric analysis. Blue shift of photoluminescence emission was noticed in the ZnO nanorods when compared to that of ZnO bulk. FT-IR analysis confirmed the binding of SLS with ZnO nanorods. Apart from ease of preparation, this method has the advantage of eco-friendliness since the solvent and other harmful chemicals were eliminated in the synthesis protocol.

  16. Indium Doped Zinc Oxide Thin Films Deposited by Ultrasonic Chemical Spray Technique, Starting from Zinc Acetylacetonate and Indium Chloride

    PubMed Central

    Biswal, Rajesh; Maldonado, Arturo; Vega-Pérez, Jaime; Acosta, Dwight Roberto; Olvera, María De La Luz

    2014-01-01

    The physical characteristics of ultrasonically sprayed indium-doped zinc oxide (ZnO:In) thin films, with electrical resistivity as low as 3.42 × 10−3 Ω·cm and high optical transmittance, in the visible range, of 50%–70% is presented. Zinc acetylacetonate and indium chloride were used as the organometallic zinc precursor and the doping source, respectively, achieving ZnO:In thin films with growth rate in the order of 100 nm/min. The effects of both indium concentration and the substrate temperature on the structural, morphological, optical, and electrical characteristics were measured. All the films were polycrystalline, fitting well with hexagonal wurtzite type ZnO. A switching in preferential growth, from (002) to (101) planes for indium doped samples were observed. The surface morphology of the films showed a change from hexagonal slices to triangle shaped grains as the indium concentration increases. Potential applications as transparent conductive electrodes based on the resulting low electrical resistance and high optical transparency of the studied samples are considered. PMID:28788118

  17. Indium Doped Zinc Oxide Thin Films Deposited by Ultrasonic Chemical Spray Technique, Starting from Zinc Acetylacetonate and Indium Chloride.

    PubMed

    Biswal, Rajesh; Maldonado, Arturo; Vega-Pérez, Jaime; Acosta, Dwight Roberto; De La Luz Olvera, María

    2014-07-04

    The physical characteristics of ultrasonically sprayed indium-doped zinc oxide (ZnO:In) thin films, with electrical resistivity as low as 3.42 × 10 -3 Ω·cm and high optical transmittance, in the visible range, of 50%-70% is presented. Zinc acetylacetonate and indium chloride were used as the organometallic zinc precursor and the doping source, respectively, achieving ZnO:In thin films with growth rate in the order of 100 nm/min. The effects of both indium concentration and the substrate temperature on the structural, morphological, optical, and electrical characteristics were measured. All the films were polycrystalline, fitting well with hexagonal wurtzite type ZnO. A switching in preferential growth, from (002) to (101) planes for indium doped samples were observed. The surface morphology of the films showed a change from hexagonal slices to triangle shaped grains as the indium concentration increases. Potential applications as transparent conductive electrodes based on the resulting low electrical resistance and high optical transparency of the studied samples are considered.

  18. Applications of ionic liquids in biphasic separation: Aqueous biphasic systems and liquid-liquid equilibria.

    PubMed

    Shukla, Shashi Kant; Pandey, Shubha; Pandey, Siddharth

    2018-07-20

    Ionic liquids (ILs) have been receiving much attention in many fields of analytical chemistry because of their various interesting properties which distinguish them from volatile organic compounds. They offer both directional and non-directional forces towards a solute molecule and therefore act as excellent solvents for a wide range of polar and non-polar compounds. Because of the presence of various possible interactions, ILs easily undergo biphasic separation with water and other less polar/non-polar organic solvents. Their ability to create biphasic splitting makes them a promising candidate for liquid-liquid separation processes, such as aqueous biphasic systems and liquid-liquid equilibria. Various aspects of ILs in these separation methods are discussed in view of the origin of physical forces responsible for the biphasic interactions, the effect of structural components, temperature, pressure, pH and additives. The specific advantages of using ILs in aqueous biphasic systems and liquid-liquid equilibria in binary and ternary systems are discussed with a view to defining their future role in separation processes by giving major emphasis on developing non-toxic ILs with physical and solution properties tailored to the needs of specific sample preparation techniques. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Fruit peel extract mediated green synthesis of zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Nava, O. J.; Soto-Robles, C. A.; Gómez-Gutiérrez, C. M.; Vilchis-Nestor, A. R.; Castro-Beltrán, A.; Olivas, A.; Luque, P. A.

    2017-11-01

    This work presents a study of the effects on the photocatalytic capabilities of zinc oxide nanoparticles when prepared via green synthesis using different fruit peel extracts as reducing agents. Zinc nitrate was used as a source of the zinc ions, while Lycopersicon esculentum (tomato), Citrus sinensis (orange), Citrus paradisi (grapefruit) and Citrus aurantifolia (lemon) contributed their peels for extracts. The Synthesized Samples were studied and characterized through Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), and High Resolution Transmission Electron Microscopy (HRTEM). All samples presented a band at 618 cm-1, indicating the presence of the Znsbnd O bond. The different samples all presented the same hexagonal crystal growth in their structure, the Wurtzite phase. The surface morphology of the nanoparticles showed that, depending on the extract used, the samples vary in size and shape distribution due to the chemical composition of the extracts. The photocatalytic properties of the zinc oxide samples were tested through UV light aided degradation of methylene blue. Most samples exhibited degradation rates at 180 min of around 97%, a major improvement when compared to chemically synthesized commercially available zinc oxide nanoparticles.

  20. Efficient Green Emission from Wurtzite Al xIn1- xP Nanowires.

    PubMed

    Gagliano, L; Kruijsse, M; Schefold, J D D; Belabbes, A; Verheijen, M A; Meuret, S; Koelling, S; Polman, A; Bechstedt, F; Haverkort, J E M; Bakkers, E P A M

    2018-06-13

    Direct band gap III-V semiconductors, emitting efficiently in the amber-green region of the visible spectrum, are still missing, causing loss in efficiency in light emitting diodes operating in this region, a phenomenon known as the "green gap". Novel geometries and crystal symmetries however show strong promise in overcoming this limit. Here we develop a novel material system, consisting of wurtzite Al x In 1- x P nanowires, which is predicted to have a direct band gap in the green region. The nanowires are grown with selective area metalorganic vapor phase epitaxy and show wurtzite crystal purity from transmission electron microscopy. We show strong light emission at room temperature between the near-infrared 875 nm (1.42 eV) and the "pure green" 555 nm (2.23 eV). We investigate the band structure of wurtzite Al x In 1- x P using time-resolved and temperature-dependent photoluminescence measurements and compare the experimental results with density functional theory simulations, obtaining excellent agreement. Our work paves the way for high-efficiency green light emitting diodes based on wurtzite III-phosphide nanowires.

  1. Investigation of intrinsic defect magnetic properties in wurtzite ZnO materials

    NASA Astrophysics Data System (ADS)

    Fedorov, A. S.; Visotin, M. A.; Kholtobina, A. S.; Kuzubov, A. A.; Mikhaleva, N. S.; Hsu, Hua Shu

    2017-10-01

    Theoretical and experimental investigations of the ferromagnetism induced by intrinsic defects inside wurtzite zinc oxide structures are performed using magnetic field-dependent circular dichroism (MCD-H), direct magnetization measurement (M-H) by superconducting quantum interference device (SQUID) as well as by generalized gradient density functional theory (GGA-DFT). To investigate localized magnetic moments of bulk material intrinsic defects - vacancies, interstitial atoms and Frenkel defects, various-size periodic supercells are calculated. It is shown that oxygen interstitial atoms (Oi) or zinc vacancies (Znv) generate magnetic moments of 1,98 и 1,26 μB respectively, however, the magnitudes are significantly reduced when the distance between defects increases. At the same time, the magnetic moments of oxygen Frenkel defects are large ( 1.5-1.8 μB) and do not depend on the distance between the defects. It is shown that the origin of the induced ferromagnetism in bulk ZnO is the extra spin density on the oxygen atoms nearest to the defect. Also dependence of the magnetization of ZnO (10 1 ̅ 0) and (0001) thin films on the positions of Oi and Znv in subsurface layers were investigated and it is shown that the magnetic moments of both defects are significantly different from the values inside bulk material. In order to check theoretical results regarding the defect induced ferromagnetism in ZnO, two thin films doped by carbon (C) and having Zn interstitials and oxygen vacancies were prepared and annealed in vacuum and air, respectively. According to the MCD-H and M-H measurements, the film, which was annealed in air, exhibits a ferromagnetic behavior, while the other does not. One can assume annealing of ZnO in vacuum should create oxygen vacancies or Zn interstitial atoms. At that annealing of the second C:ZnO film in air leads to essential magnetization, probably by annihilation of oxygen vacancies, formation of interstitial oxygen atoms or zinc vacancies

  2. Ab-initio Electronic, Transport and Related Properties of Zinc Blende Boron Arsenide (zb-BAs)

    NASA Astrophysics Data System (ADS)

    Nwigboji, Ifeanyi H.; Malozovsky, Yuriy; Bagayoko, Diola

    We present results from ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport, and bulk properties of zinc blende boron arsenide (zb-BAs). We utilized a local density approximation (LDA) potential and the linear combination of atomic orbital (LCAO) formalism. Our computational technique follows the Bagayoko, Zhao, and Williams method, as enhanced by Ekuma and Franklin. Our results include electronic energy bands, densities of states, and effective masses. We explain the agreement between these findings, including the indirect band gap, and available, corresponding, experimental ones. This work confirms the capability of DFT to describe accurately properties of materials, provided the computations adhere to the conditions of validity of DFT [AIP Advances, 4, 127104 (2014)]. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE- NA0002630), LaSPACE, and LONI-SUBR.

  3. Novel symmetry in the growth of gallium nitride on magnesium aluminate substrates

    NASA Astrophysics Data System (ADS)

    George, T.; Jacobsohn, E.; Pike, W. T.; Chang-Chien, P.; Khan, M. A.; Yang, J. W.; Mahajan, S.

    1996-01-01

    The growth of GaN by metalorganic chemical vapor deposition on (111) and (100) magnesium aluminate (MgAl2O4) substrates is examined using transmission electron microscopy. The results indicate that mainly wurtzite GaN is grown for both orientations. On the (111) substrate the following epitaxial relationship is observed: (0001)GaN ∥ (111)MgAl2O4, and [112¯0]GaN ∥ [11¯0]MgAl2O4. During the early stages of the (100) growth, four orientations of the wurtzite phase and a zinc-blende phase are formed. With increasing thickness, one of the wurtzite orientations dominates, with the epitaxial relationship being (11¯01)GaN ∥ (100)MgAl2O4 and the [112¯0]GaN nearly parallel to [011]MgAl2O4. This choice of growth orientation appears to be determined primarily by the nature of the interfacial bonding, with the basal plane of each of the four wurtzite GaN variants being nearly aligned along one of the four {111} planes intersecting the (100) surface of the MgAl2O4.

  4. Stability and electronic properties of oxygen-doped ZnS polytypes: DFTB study

    NASA Astrophysics Data System (ADS)

    Popov, Ilya S.; Vorokh, Andrey S.; Enyashin, Andrey N.

    2018-06-01

    Synthesis from aqueous solutions is an affordable method for fabrication of II-VI semiconductors. However, application of this method often imposes a disorder of crystal lattice, manifesting as a rich variety of polytypes arising from wurtzite and zinc blende phases. The origin of this disordering still remains debatable. Here, the influence of the most likely impurity at water environment - substitutional oxygen - on the polytypic equilibrium of zinc sulphide is studied by means of density-functional tight-binding method. According to calculations, the inclusion of such oxygen does not affect the polytypic equilibrium. Apart of thermodynamic stability, the electronic and elastic properties of ZnS polytypes are studied as the function of oxygen distribution.

  5. Unique synergism in flame retardancy in ABS based composites through blending PVDF and halloysite nanotubes

    NASA Astrophysics Data System (ADS)

    Remanan, Sanjay; Sharma, Maya; Jayashree, Priyadarshini; Parameswaranpillai, Jyotishkumar; Fabian, Thomas; Shih, Julie; Shankarappa, Prasad; Nuggehalli, Bharath; Bose, Suryasarathi

    2017-06-01

    This study demonstrates flame retardant materials designed using bi-phasic polymer blends of acrylonitrile butadiene styrene (ABS) and polyvinylidene fluoride (PVDF) containing halloysite nanotubes (HNTs) and Cloisite 30B nanoclay. The prepared blends with and without nanoparticles were extensively characterized. The nanoparticles were added in different weight concentrations to improve the flame retardancy. It was observed that prepared ABS/PVDF blends showed better flame retardancy than ABS based composites. The flame resistance was further improved by the addition of nanoparticles in the blends. The microscale combustion calorimetry (MCC) test showed better flame resistance in ABS/PVDF blends filled with 5 wt% HNTs than other composites. The total heat release of ABS/PVDF blend filled with 5 wt% HNTs decreased by 31% and also the heat of combustion decreased by 26% as compared to neat ABS. When compared with nanoparticles, the addition of PVDF reduced the peak heat release rate (PHRR) and increased the char residue more effectively. A synergistic improvement was observed from both PVDF and HNTs on the flame resistance properties.

  6. Investigation of channeling and radiation of relativistic electrons in charged planes of the crystals with zinc blende structure

    NASA Astrophysics Data System (ADS)

    Maksyuta, N. V.; Vysotskii, V. I.; Efimenko, S. V.; Slinchenko, Y. A.

    2018-04-01

    In this paper the interaction potentials of relativistic electrons with the charged (2m+1, 2n+1, 2p+1) and (2m+1, 2n, 2p) planes (m, n, p=0,1,dot s, and Miller indices are mutually prime numbers) in the crystals with a zinc blende structure are calculated using Moliere approximation. It is shown that at the change of the type of used crystal plane (from the main (100) to the high-index charged planes), the structures of potential wells are transformed from non-unimodal to unimodal ones. In this case for the crystals constructed from ions with close nucleus charges, there arise so-called positron-like potential wells for the channeled electrons, i.e. with minima in the interplanar space. The influence of temperature factor on interaction potentials structures is also investigated. For the electrons with Lorentz-factors γ = 25, 50, 75 in the main (100) and (111) planes the transverse energy levels and corresponding wave functions in single planar approximation are found numerically. By means of these data the spectra of channeling radiation (CR) in dipole approximation are calculated for the electrons beams with a Lorentz-factor γ = 50 and an angular dispersion θ 0 ≈ 0,5 mrad, arising in the main charged (100) and (111) planes in ZnS, ZnSe and ZnTe crystals. It is shown that the CR generated at electron channeling along the (111) planes is more intense. It is shown also that spectra of CR arising in (111) planes of silicon and AlP crystals at using of channeled electron beam with γ = 25 and an angular dispersion θ 0 ≈ 0,5 mrad, due to similarity of structures of potential wells are identical. The spectra of CR at γ = 25, 50, 75 are calculated for a number of crystals with a zinc blende structure, namely AlP, AlAs, AlSb, GaP, GaAs, InP, InAs, InSb.

  7. Superabsorbent biphasic system based on poly(lactic acid) and poly(acrylic acid)

    NASA Astrophysics Data System (ADS)

    Sartore, Luciana; Pandini, Stefano; Baldi, Francesco; Bignotti, Fabio

    2016-05-01

    In this research work, biocomposites based on crosslinked particles of poly(acrylic acid), commonly used as superabsorbent polymer (SAP), and poly-L-lactic acid (PLLA) were developed to elucidate the role of the filler (i.e., polymeric crosslinked particles) on the overall physico-mechanical behavior and to obtain superabsorbent thermoplastic products. Samples prepared by melt-blending of components in different ratios showed a biphasic system with a regular distribution of particles, with diameter ranging from 5 to 10 μm, within the PLLA polymeric matrix. The polymeric biphasic system, coded PLASA i.e. superabsorbent poly(lactic acid), showed excellent swelling properties, demonstrating that cross-linked particles retain their superabsorbent ability, as in their free counterparts, even if distributed in a thermoplastic polymeric matrix. The thermal characteristics of the biocomposites evidence enhanced thermal stability in comparison with neat PLLA and also mechanical properties are markedly modified by addition of crosslinked particles which induce regular stiffening effect. Furthermore, in aqueous environments the particles swell and are leached from PLLA matrix generating very high porosity. These new open-pore PLLA foams, produced in absence of organic solvents and chemical foaming agents, with good physico-mechanical properties appear very promising for several applications, for instance in tissue engineering for scaffold production.

  8. Engineering hybrid epitaxial InAsSb/Al nanowires for stronger topological protection

    NASA Astrophysics Data System (ADS)

    Sestoft, Joachim E.; Kanne, Thomas; Gejl, Aske Nørskov; von Soosten, Merlin; Yodh, Jeremy S.; Sherman, Daniel; Tarasinski, Brian; Wimmer, Michael; Johnson, Erik; Deng, Mingtang; Nygârd, Jesper; Jespersen, Thomas Sand; Marcus, Charles M.; Krogstrup, Peter

    2018-04-01

    The combination of strong spin-orbit coupling, large g factors, and the coupling to a superconductor can be used to create a topologically protected state in a semiconductor nanowire. Here we report on growth and characterization of hybrid epitaxial InAsSb/Al nanowires, with varying composition and crystal structure. We find the strongest spin-orbit interaction at intermediate compositions in zinc-blende InAs1 -xSbx nanowires, exceeding that of both InAs and InSb materials, confirming recent theoretical studies. We show that the epitaxial InAsSb/Al interface allows for a hard induced superconducting gap and 2 e transport in Coulomb charging experiments, similarly to experiments on InAs/Al and InSb/Al materials, and find measurements consistent with topological phase transitions at low magnetic fields due to large effective g factors. Finally we present a method to grow pure wurtzite InAsSb nanowires which are predicted to exhibit even stronger spin-orbit coupling than the zinc-blende structure.

  9. Notes on Piezoelectricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redondo, Antonio

    These notes provide a pedagogical discussion of the physics of piezoelectricity. The exposition starts with a brief analysis of the classical (continuum) theory of piezoelectric phenomena in solids. The main subject of the notes is, however, a quantum mechanical analysis. We first derive the Frohlich Hamiltonian as part of the description of the electron-phonon interaction. The results of this analysis are then employed to derive the equations of piezoelectricity. A couple of examples with the zinc blende and and wurtzite structures are presented at the end

  10. Ferromagnetism in sphalerite and wurtzite CdS nanostructures

    PubMed Central

    2013-01-01

    Room-temperature ferromagnetism is observed in undoped sphalerite and wurtzite CdS nanostructures which are synthesized by hydrothermal methods. Scanning electron microscopy and transmission electron microscopy results indicate that the sphalerite CdS samples show a spherical-like shape and the wurtzite CdS ones show a flower-like shape, both of which are aggregated by lots of smaller particles. The impurity of the samples has been ruled out by the results of X-ray diffraction, selected-area electron diffraction, and X-ray photoelectron spectroscopy. Magnetization measurements indicate that all the samples exhibit room-temperature ferromagnetism and the saturation magnetization decreases with the increased crystal sizes, revealing that the observed ferromagnetism is defect-related, which is also confirmed by the post-annealing processes. This finding in CdS should be the focus of future electronic and spintronic devices. PMID:23294671

  11. Protective effect of zinc against ischemic neuronal injury in a middle cerebral artery occlusion model.

    PubMed

    Kitamura, Youji; Iida, Yasuhiko; Abe, Jun; Ueda, Masashi; Mifune, Masaki; Kasuya, Fumiyo; Ohta, Masayuki; Igarashi, Kazuo; Saito, Yutaka; Saji, Hideo

    2006-02-01

    In this study, we investigated the effect of vesicular zinc on ischemic neuronal injury. In cultured neurons, addition of a low concentration (under 100 microM) of zinc inhibited both glutamate-induced calcium influx and neuronal death. In contrast, a higher concentration (over 150 microM) of zinc decreased neuronal viability, although calcium influx was inhibited. These results indicate that zinc exhibits biphasic effects depending on its concentration. Furthermore, in cultured neurons, co-addition of glutamate and CaEDTA, which binds extra-cellular zinc, increased glutamate-induced calcium influx and aggravated the neurotoxicity of glutamate. In a rat transient middle cerebral artery occlusion (MCAO) model, the infarction volume, which is related to the neurotoxicity of glutamate, increased rapidly on the intracerebral ventricular injection of CaEDTA 30 min prior to occlusion. These results suggest that zinc released from synaptic vesicles may provide a protective effect against ischemic neuronal injury.

  12. Strain relaxation and ambipolar electrical transport in GaAs/InSb core-shell nanowires.

    PubMed

    Rieger, Torsten; Zellekens, Patrick; Demarina, Natalia; Hassan, Ali Al; Hackemüller, Franz Josef; Lüth, Hans; Pietsch, Ullrich; Schäpers, Thomas; Grützmacher, Detlev; Lepsa, Mihail Ion

    2017-11-30

    The growth, crystal structure, strain relaxation and room temperature transport characteristics of GaAs/InSb core-shell nanowires grown using molecular beam epitaxy are investigated. Due to the large lattice mismatch between GaAs and InSb of 14%, a transition from island-based to layer-like growth occurs during the formation of the shell. High resolution transmission electron microscopy in combination with geometric phase analyses as well as X-ray diffraction with synchrotron radiation are used to investigate the strain relaxation and prove the existence of different dislocations relaxing the strain on zinc blende and wurtzite core-shell nanowire segments. While on the wurtzite phase only Frank partial dislocations are found, the strain on the zinc blende phase is relaxed by dislocations with perfect, Shockley partial and Frank partial dislocations. Even for ultrathin shells of about 2 nm thickness, the strain caused by the high lattice mismatch between GaAs and InSb is relaxed almost completely. Transfer characteristics of the core-shell nanowires show an ambipolar conductance behavior whose strength strongly depends on the dimensions of the nanowires. The interpretation is given based on an electronic band profile which is calculated for completely relaxed core/shell structures. The peculiarities of the band alignment in this situation implies simultaneously occupied electron and hole channels in the InSb shell. The ambipolar behavior is then explained by the change of carrier concentration in both channels by the gate voltage.

  13. Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask

    NASA Astrophysics Data System (ADS)

    Puybaret, Renaud; Patriarche, Gilles; Jordan, Matthew B.; Sundaram, Suresh; El Gmili, Youssef; Salvestrini, Jean-Paul; Voss, Paul L.; de Heer, Walt A.; Berger, Claire; Ougazzaden, Abdallah

    2016-03-01

    We report the growth of high-quality triangular GaN nanomesas, 30-nm thick, on the C-face of 4H-SiC using nanoselective area growth (NSAG) with patterned epitaxial graphene grown on SiC as an embedded mask. NSAG alleviates the problems of defects in heteroepitaxy, and the high mobility graphene film could readily provide the back low-dissipative electrode in GaN-based optoelectronic devices. A 5-8 graphene-layer film is first grown on the C-face of 4H-SiC by confinement-controlled sublimation of silicon carbide. Graphene is then patterned and arrays of 75-nm-wide openings are etched in graphene revealing the SiC substrate. A 30-nm-thick GaN is subsequently grown by metal organic vapor phase epitaxy. GaN nanomesas grow epitaxially with perfect selectivity on SiC, in the openings patterned through graphene. The up-or-down orientation of the mesas on SiC, their triangular faceting, and cross-sectional scanning transmission electron microscopy show that they are biphasic. The core is a zinc blende monocrystal surrounded with single-crystal wurtzite. The GaN crystalline nanomesas have no threading dislocations or V-pits. This NSAG process potentially leads to integration of high-quality III-nitrides on the wafer scalable epitaxial graphene/silicon carbide platform.

  14. Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puybaret, Renaud; Jordan, Matthew B.; Voss, Paul L.

    We report the growth of high-quality triangular GaN nanomesas, 30-nm thick, on the C-face of 4H-SiC using nanoselective area growth (NSAG) with patterned epitaxial graphene grown on SiC as an embedded mask. NSAG alleviates the problems of defects in heteroepitaxy, and the high mobility graphene film could readily provide the back low-dissipative electrode in GaN-based optoelectronic devices. A 5–8 graphene-layer film is first grown on the C-face of 4H-SiC by confinement-controlled sublimation of silicon carbide. Graphene is then patterned and arrays of 75-nm-wide openings are etched in graphene revealing the SiC substrate. A 30-nm-thick GaN is subsequently grown by metalmore » organic vapor phase epitaxy. GaN nanomesas grow epitaxially with perfect selectivity on SiC, in the openings patterned through graphene. The up-or-down orientation of the mesas on SiC, their triangular faceting, and cross-sectional scanning transmission electron microscopy show that they are biphasic. The core is a zinc blende monocrystal surrounded with single-crystal wurtzite. The GaN crystalline nanomesas have no threading dislocations or V-pits. This NSAG process potentially leads to integration of high-quality III-nitrides on the wafer scalable epitaxial graphene/silicon carbide platform.« less

  15. Calculated electronic, transport, and related properties of zinc blende boron arsenide (zb-BAs)

    NASA Astrophysics Data System (ADS)

    Nwigboji, Ifeanyi H.; Malozovsky, Yuriy; Franklin, Lashounda; Bagayoko, Diola

    2016-10-01

    We present the results from ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport, and bulk properties of zinc blende boron arsenide. We utilized the local density approximation potential of Ceperley and Alder, as parameterized by Vosko and his group, the linear combination of Gaussian orbitals formalism, and the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), in carrying out our completely self-consistent calculations. With this method, the results of our calculations have the full, physical content of density functional theory (DFT). Our results include electronic energy bands, densities of states, effective masses, and the bulk modulus. Our calculated, indirect band gap of 1.48 eV, from Γ to a conduction band minimum close to X, for the room temperature lattice constant of 4.777 Å, is in an excellent agreement with the experimental value of 1.46 ± 0.02 eV. We thoroughly explain the reasons for the excellent agreement between our findings and corresponding, experimental ones. This work provides a confirmation of the capability of DFT to describe accurately properties of materials, if the computations adhere strictly to the conditions of validity of DFT, as done by the BZW-EF method.

  16. Temperature-dependent optical band gap of the metastable zinc-blende structure [beta]-GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramirez-Flores, G.; Navarro-Contreras, H.; Lastras-Martinez, A.

    1994-09-15

    The temperature-dependent (10--300 K) optical band gap [ital E][sub 0]([ital T]) of the epitaxial metastable zinc-blende-structure [beta]-GaN(001)4[times]1 has been determined by modulated photoreflectance and used to interpret low-temperature photoluminescence spectra. [ital E][sub 0] in [beta]-GaN was found to vary from 3.302[plus minus]0.004 eV at 10 K to 3.231[plus minus]0.008 eV at 300 K with a temperature dependence given by [ital E][sub 0]([ital T]) =3.302--6.697[times]10[sup [minus]4][ital T][sup 2]/([ital T]+600) eV. The spin-orbit splitting [Delta][sub 0] in the valence band was determined to be 17[plus minus]1 meV. The oscillations in the photoreflectance spectra were very sharp with a broadening parameter [Gamma] ofmore » only 10 meV at 10 K. The dominant transition observed in temperature-dependent photoluminescence was attributed to radiative recombination between a shallow donor, at [congruent]11 meV below the conduction-band edge and the valence band.« less

  17. Probability of twin formation on self-catalyzed GaAs nanowires on Si substrate

    PubMed Central

    2012-01-01

    We attempted to control the incorporation of twin boundaries in self-catalyzed GaAs nanowires (NWs). Self-catalyzed GaAs NWs were grown on a Si substrate under various arsenic pressures using molecular beam epitaxy and the vapor-liquid-solid method. When the arsenic flux is low, wurtzite structures are dominant in the GaAs NWs. On the other hand, zinc blende structures become dominant as the arsenic flux rises. We discussed this phenomenon on the basis of thermodynamics and examined the probability of twin-boundary formation in detail. PMID:23043754

  18. A crystallographic investigation of GaN nanostructures by reciprocal space mapping in a grazing incidence geometry.

    PubMed

    Lee, Sanghwa; Sohn, Yuri; Kim, Chinkyo; Lee, Dong Ryeol; Lee, Hyun-Hwi

    2009-05-27

    Reciprocal space mapping with a two-dimensional (2D) area detector in a grazing incidence geometry was applied to determine crystallographic orientations of GaN nanostructures epitaxially grown on a sapphire substrate. By using both unprojected and projected reciprocal space mapping with a proper coordinate transformation, the crystallographic orientations of GaN nanostructures with respect to that of a substrate were unambiguously determined. In particular, the legs of multipods in the wurtzite phase were found to preferentially nucleate on the sides of tetrahedral cores in the zinc blende phase.

  19. Pressure dependence of the refractive index in wurtzite and rocksalt indium nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliva, R.; MALTA-Consolider Team, Departament de Física Aplicada, ICMUV, Universitat de València, c/Dr. Moliner 50, 46100 Burjassot, València; Segura, A.

    2014-12-08

    We have performed high-pressure Fourier transform infrared reflectance measurements on a freestanding InN thin film to determine the refractive index of wurtzite InN and its high-pressure rocksalt phase as a function of hydrostatic pressure. From a fit to the experimental refractive-index curves including the effect of the high-energy optical gaps, phonons, free carriers, and the direct (fundamental) band-gap in the case of wurtzite InN, we obtain pressure coefficients for the low-frequency (electronic) dielectric constant ε{sub ∞}. Negative pressure coefficients of −8.8 × 10{sup −2 }GPa{sup −1} and −14.8 × 10{sup −2 }GPa{sup −1} are obtained for the wurtzite and rocksalt phases, respectively. The results are discussedmore » in terms of the electronic band structure and the compressibility of both phases.« less

  20. Preparation of Zinc Oxide (ZnO) Thin Film as Transparent Conductive Oxide (TCO) from Zinc Complex Compound on Thin Film Solar Cells: A Study of O2 Effect on Annealing Process

    NASA Astrophysics Data System (ADS)

    Muslih, E. Y.; Kim, K. H.

    2017-07-01

    Zinc oxide (ZnO) thin film as a transparent conductive oxide (TCO) for thin film solar cell application was successfully prepared through two step preparations which consisted of deposition by spin coating at 2000 rpm for 10 second and followed by annealing at 500 °C for 2 hours under O2 and ambient atmosphere. Zinc acetate dehydrate was used as a precursor which dissolved in ethanol and acetone (1:1 mol) mixture in order to make a zinc complex compound. In this work, we reported the O2 effect, reaction mechanism, structure, morphology, optical and electrical properties. ZnO thin film in this work shows a single phase of wurtzite, with n-type semiconductor and has band gap, carrier concentration, mobility, and resistivity as 3.18 eV, 1.21 × 10-19cm3, 11 cm2/Vs, 2.35 × 10-3 Ωcm respectively which is suitable for TCO at thin film solar cell.

  1. X-ray peak profile analysis of zinc oxide nanoparticles formed by simple precipitation method

    NASA Astrophysics Data System (ADS)

    Pelicano, Christian Mark; Rapadas, Nick Joaquin; Magdaluyo, Eduardo

    2017-12-01

    Zinc oxide (ZnO) nanoparticles were successfully synthesized by a simple precipitation method using zinc acetate and tetramethylammonium hydroxide. The synthesized ZnO nanoparticles were characterized by X-ray Diffraction analysis (XRD) and Transmission Electron Microscopy (TEM). The XRD result revealed a hexagonal wurtzite structure for the ZnO nanoparticles. The TEM image showed spherical nanoparticles with an average crystallite size of 6.70 nm. For x-ray peak analysis, Williamson-Hall (W-H) and Size-Strain Plot (SSP) methods were applied to examine the effects of crystallite size and lattice strain on the peak broadening of the ZnO nanoparticles. Based on the calculations, the estimated crystallite sizes and lattice strains obtained are in good agreement with each other.

  2. Molecular beam epitaxy-grown wurtzite MgS thin films for solar-blind ultra-violet detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Y. H.; He, Q. L.; Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, HKSAR, People's Republic of China

    2013-04-29

    Molecular beam epitaxy grown MgS on GaAs(111)B substrate was resulted in wurtzite phase, as demonstrated by detailed structural characterizations. Phenomenological arguments were used to account for why wurtzite phase is preferred over zincblende phase or its most stable rocksalt phase. Results of photoresponse and reflectance measurements performed on wurtzite MgS photodiodes suggest a direct bandgap at around 5.1 eV. Their response peaks at 245 nm with quantum efficiency of 9.9% and enjoys rejection of more than three orders at 320 nm and close to five orders at longer wavelengths, proving the photodiodes highly competitive in solar-blind ultraviolet detection.

  3. Observation of spontaneous spin-splitting in the band structure of an n-type zinc-blende ferromagnetic semiconductor

    PubMed Central

    Anh, Le Duc; Hai, Pham Nam; Tanaka, Masaaki

    2016-01-01

    Large spin-splitting in the conduction band and valence band of ferromagnetic semiconductors, predicted by the influential mean-field Zener model and assumed in many spintronic device proposals, has never been observed in the mainstream p-type Mn-doped ferromagnetic semiconductors. Here, using tunnelling spectroscopy in Esaki-diode structures, we report the observation of such a large spontaneous spin-splitting energy (31.7–50 meV) in the conduction band bottom of n-type ferromagnetic semiconductor (In,Fe)As, which is surprising considering the very weak s-d exchange interaction reported in several zinc-blende type semiconductors. The mean-field Zener model also fails to explain consistently the ferromagnetism and the spin-splitting energy of (In,Fe)As, because we found that the Curie temperature values calculated using the observed spin-splitting energies are much lower than the experimental ones by a factor of 400. These results urge the need for a more sophisticated theory of ferromagnetic semiconductors. PMID:27991502

  4. Biphasic catalysis in water/carbon dioxide micellar systems

    DOEpatents

    Jacobson, Gunilla B.; Tumas, William; Johnston, Keith P.

    2002-01-01

    A process is provided for catalyzing an organic reaction to form a reaction product by placing reactants and a catalyst for the organic reaction, the catalyst of a metal complex and at least one ligand soluble within one of the phases of said aqueous biphasic system, within an aqueous biphasic system including a water phase, a dense phase fluid, and a surfactant adapted for forming an emulsion or microemulsion within the aqueous biphasic system, the reactants soluble within one of the phases of the aqueous biphasic system and convertible in the presence of the catalyst to a product having low solubility in the phase in which the catalyst is soluble; and, maintaining the aqueous biphasic system under pressures, at temperatures, and for a period of time sufficient for the organic reaction to occur and form the reaction product and to maintain sufficient density on the dense phase fluid, the reaction product characterized as having low solubility in the phase in which the catalyst is soluble.

  5. Ultrasound irradiation based in-situ synthesis of star-like Tragacanth gum/zinc oxide nanoparticles on cotton fabric.

    PubMed

    Ghayempour, Soraya; Montazer, Majid

    2017-01-01

    Application of natural biopolymers for green and safe synthesis of zinc oxide nanoparticles on the textiles is a novel and interesting approach. The present study offers the use of natural biopolymer, Tragacanth gum, as the reducing, stabilizing and binding agent for in-situ synthesis of zinc oxide nanoparticles on the cotton fabric. Ultrasonic irradiation leads to clean and easy synthesis of zinc oxide nanoparticles in short-time at low-temperature. FESEM/EDX, XRD, FT-IR spectroscopy, DSC, photocatalytic activities and antimicrobial assay are used to characterize Tragacanth gum/zinc oxide nanoparticles coated cotton fabric. The analysis confirmed synthesis of star-like zinc oxide nanoparticles with hexagonal wurtzite structure on the cotton fabric with the average particle size of 62nm. The finished cotton fabric showed a good photocatalytic activity on degradation of methylene blue and 100% antimicrobial properties with inhibition zone of 3.3±0.1, 3.1±0.1 and 3.0±0.1mm against Staphylococcus aureus, Escherichia coli and Candida albicans. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Calculated electronic, transport, and related properties of zinc blende boron arsenide (zb-BAs)

    DOE PAGES

    Nwigboji, Ifeanyi H.; Malozovsky, Yuriy; Franklin, Lashounda; ...

    2016-10-11

    Here, we present the results from ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport, and bulk properties of zinc blende boron arsenide. We utilized the local density approximation potential of Ceperley and Alder, as parameterized by Vosko and his group, the linear combination of Gaussian orbitals formalism, and the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), in carrying out our completely self-consistent calculations. With this method, the results of our calculations have the full, physical content of density functional theory (DFT). Our results include electronic energy bands, densities of states, effective masses,more » and the bulk modulus. Our calculated, indirect band gap of 1.48 eV, from C to a conduction band minimum close to X, for the room temperature lattice constant of 4.777 Å, is in an excellent agreement with the experimental value of 1.46 6 0.02 eV. We thor-oughly explain the reasons for the excellent agreement between our findings and corresponding, experimental ones. This work provides a confirmation of the capability of DFT to describe accu-rately properties of materials, provides a confirmation of the capability of DFT to describe accu-rately properties of materials, if the computations adhere strictly to the conditions of validity of DFT, as done by the BZW-EF method.« less

  7. Zinc oxide nanocolloids prepared by picosecond pulsed laser ablation in water at different temperatures

    NASA Astrophysics Data System (ADS)

    D'Urso, Luisa; Spadaro, Salvatore; Bonsignore, Martina; Santangelo, Saveria; Compagnini, Giuseppe; Neri, Fortunato; Fazio, Enza

    2018-01-01

    Zinc oxide with wide direct band gap and high exciton binding energy is one of the most promising materials for ultraviolet (UV) light-emitting devices. It further exhibits good performance in the degradation of non-biodegradable pollutants under UV irradiation. In this work, zinc oxide (ZnO) and zinc oxide/gold (ZnO/Au) nanocolloids are prepared by picosecond pulsed laser ablation (ps-PLA), using a Zn and Au metallic targets in water media at room temperature (RT) and 80°C. ZnO and Au nanoparticles (NPs) with size in the 10-50 nm range are obtained at RT, while ZnO nanorods (NRs) are formed when water is maintained at 80°C during the ps-PLA process. Au NPs, added to ZnO colloids after the ablation process, decorate ZnO NRs. The crystalline phase of all ZnO nanocolloids is wurtzite. Methylene blue dye is used to investigate the photo-catalytic activity of all the synthesised nanocolloids, under UV light irradiation.

  8. Synthesis and characterization of lanthanum doped zinc oxide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Vinod; Sonia,; Suman,

    La doped ZnO (Zn{sub 1-x}La{sub x}O, x = 0, 3, 6 and 9) were prepared via chemical co-precipitation method using Zinc Acetate, Lanthanum Acetate and Sodium Hydroxide at 50°C. Hydrate nanoparticles were annealed in air at 300°C for 3 hours. The synthesized samples have been characterized by powder X-ray diffraction and UV–Visible spectrophotometer. The XRD measurement revealsthat the prepared nanoparticles have different microstructure without changing a hexagonal wurtzite structure. The result shows the change in nanoparticles size with the increment of lanthanum concentration for lower concentration for x = 0 to 6 and decreases at x = 9.

  9. Injectable glycosaminoglycan-protein nano-complex in semi-interpenetrating networks: A biphasic hydrogel for hyaline cartilage regeneration.

    PubMed

    Radhakrishnan, Janani; Subramanian, Anuradha; Sethuraman, Swaminathan

    2017-11-01

    Articular hyaline cartilage regeneration remains challenging due to its less intrinsic reparability. The study develops injectable biphasic semi-interpenetrating polymer networks (SIPN) hydrogel impregnated with chondroitin sulfate (ChS) nanoparticles for functional cartilage restoration. ChS loaded zein nanoparticles (∼150nm) prepared by polyelectrolyte-protein complexation were interspersed into injectable SIPNs developed by blending alginate with poly(vinyl alcohol) and calcium crosslinking. The hydrogel exhibited interconnected porous microstructure (39.9±5.8μm pore diameter, 57.7±5.9% porosity), 92% swellability and >350Pa elastic modulus. Primary chondrocytes compatibility, chondrocyte-matrix interaction with cell-cell clustering and spheroidal morphology was demonstrated in ChS loaded hydrogel and long-term (42days) proliferation was also determined. Higher fold expression of cartilage-specific genes sox9, aggrecan and collagen-II was observed in ChS loaded hydrogel while exhibiting poor expression of collagen-I. Immunoblotting of aggregan and collagen II demonstrate favorable positive influence of ChS on chondrocytes. Thus, the injectable biphasic SIPNs could be promising composition-mimetic substitute for cartilage restoration at irregular defects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. All zinc-blende GaAs/(Ga,Mn)As core-shell nanowires with ferromagnetic ordering.

    PubMed

    Yu, Xuezhe; Wang, Hailong; Pan, Dong; Zhao, Jianhua; Misuraca, Jennifer; von Molnár, Stephan; Xiong, Peng

    2013-04-10

    Combining self-catalyzed vapor-liquid-solid growth of GaAs nanowires and low-temperature molecular-beam epitaxy of (Ga,Mn)As, we successfully synthesized all zinc-blende (ZB) GaAs/(Ga,Mn)As core-shell nanowires on Si(111) substrates. The ZB GaAs nanowire cores are first fabricated at high temperature by utilizing the Ga droplets as the catalyst and controlling the triple phase line nucleation, then the (Ga,Mn)As shells are epitaxially grown on the side facets of the GaAs core at low temperature. The growth window for the pure phase GaAs/(Ga,Mn)As core-shell nanowires is found to be very narrow. Both high-resolution transmission electron microscopy and scanning electron microscopy observations confirm that all-ZB GaAs/(Ga,Mn)As core-shell nanowires with smooth side surface are obtained when the Mn concentration is not more than 2% and the growth temperature is 245 °C or below. Magnetic measurements with different applied field directions provide strong evidence for ferromagnetic ordering in the all-ZB GaAs/(Ga,Mn)As nanowires. The hybrid nanowires offer an attractive platform to explore spin transport and device concepts in fully epitaxial all-semiconductor nanospintronic structures.

  11. Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stan, Manuela, E-mail: manuela.stan@itim-cj.ro; Popa, Adriana; Toloman, Dana

    The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn{sup 2+} ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes andmore » oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.« less

  12. Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts

    NASA Astrophysics Data System (ADS)

    Stan, Manuela; Popa, Adriana; Toloman, Dana; Silipas, Teofil-Danut; Vodnar, Dan Cristian; Katona, Gabriel

    2015-12-01

    The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn2+ ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes and oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.

  13. Mediated water electrolysis in biphasic systems.

    PubMed

    Scanlon, Micheál D; Peljo, Pekka; Rivier, Lucie; Vrubel, Heron; Girault, Hubert H

    2017-08-30

    The concept of efficient electrolysis by linking photoelectrochemical biphasic H 2 evolution and water oxidation processes in the cathodic and anodic compartments of an H-cell, respectively, is introduced. Overpotentials at the cathode and anode are minimised by incorporating light-driven elements into both biphasic reactions. The concepts viability is demonstrated by electrochemical H 2 production from water splitting utilising a polarised water-organic interface in the cathodic compartment of a prototype H-cell. At the cathode the reduction of decamethylferrocenium cations ([Cp 2 *Fe (III) ] + ) to neutral decamethylferrocene (Cp 2 *Fe (II) ) in 1,2-dichloroethane (DCE) solvent takes place at the solid electrode/oil interface. This electron transfer process induces the ion transfer of a proton across the immiscible water/oil interface to maintain electroneutrality in the oil phase. The oil-solubilised proton immediately reacts with Cp 2 *Fe (II) to form the corresponding hydride species, [Cp 2 *Fe (IV) (H)] + . Subsequently, [Cp 2 *Fe (IV) (H)] + spontaneously undergoes a chemical reaction in the oil phase to evolve hydrogen gas (H 2 ) and regenerate [Cp 2 *Fe (III) ] + , whereupon this catalytic Electrochemical, Chemical, Chemical (ECC') cycle is repeated. During biphasic electrolysis, the stability and recyclability of the [Cp 2 *Fe (III) ] + /Cp 2 *Fe (II) redox couple were confirmed by chronoamperometric measurements and, furthermore, the steady-state concentration of [Cp 2 *Fe (III) ] + monitored in situ by UV/vis spectroscopy. Post-biphasic electrolysis, the presence of H 2 in the headspace of the cathodic compartment was established by sampling with gas chromatography. The rate of the biphasic hydrogen evolution reaction (HER) was enhanced by redox electrocatalysis in the presence of floating catalytic molybdenum carbide (Mo 2 C) microparticles at the immiscible water/oil interface. The use of a superhydrophobic organic electrolyte salt was critical to

  14. Hierarchical, ultrathin single-crystal nanowires of CdS conveniently produced in laser-induced thermal field

    DOE PAGES

    Han, Li -Li; Xin, Huolin L.; Kulinich, Sergei A.; ...

    2015-07-16

    Hierarchical nanowires (HNWs) exhibit unique properties and have wide applications, while often suffering from imperfect structure. We report a facile strategy toward ultrathin CdS HNWs with monocrystal structure, where a continuous-wave (CW) Nd:YAG laser is employed to irradiate an oleic acid (OA) solution containing precursors and a light absorber. The high heating rate and large temperature gradient generated by the CW laser lead to the rapid formation of tiny zinc-blende CdS nanocrystals which then line up into nanowires with the help of OA molecules. Next, the nanowires experience a phase transformation from zinc-blende to wurtzite structure, and the transformation-induced stressmore » creates terraces on their surface, which promotes the growth of side branches and eventually results in monocrystal HNWs with an ultrathin diameter of 24 nm. The one-step synthesis of HNWs is conducted in air and completes in just 40 seconds, thus being very simple and rapid. The prepared CdS HNWs display photocatalytic performance superior to their nanoparticle counterparts, thus showing promise for catalytic applications in the future.« less

  15. Stages in molecular beam epitaxy growth of GaAs nanowires studied by x-ray diffraction.

    PubMed

    Mariager, Simon O; Lauridsen, Søren L; Sørensen, Claus B; Dohn, Asmus; Willmott, Phillip R; Nygård, Jesper; Feidenhans'l, Robert

    2010-03-19

    GaAs nanowires were grown by molecular beam epitaxy and studied by glancing-angle x-ray diffraction during five different stages of the growth process. An entire forest of randomly positioned epitaxial nanowires was sampled simultaneously and a large variation in the Au-Ga catalyst was found. Au, AuGa, AuGa(2) and the hexagonal beta phase were all identified in several orientations and in similar amounts. The nanowires are shown to consist of regular zinc blende crystal, its twin and the hexagonal wurtzite. The evolution of the various Au-Ga catalysts and the development in the twin to the wurtzite abundance ratio indicate that the Au catalyst is saturated upon initiation of growth leading to an increased amount of wurtzite structure in the wires. A specular x-ray scan identifies the various Au-Ga alloys, three Au lattice constants and a rough interface between nanowires and catalyst. Reciprocal space maps were obtained around Au Bragg points and show the development of the Au catalyst from a distribution largely oriented with respect to the lattice to a non-uniform distribution with several well-defined lattice constants.

  16. Interacting quasi-band theory for electronic states in compound semiconductor alloys: Wurtzite structure

    NASA Astrophysics Data System (ADS)

    Kishi, Ayaka; Oda, Masato; Shinozuka, Yuzo

    2016-05-01

    This paper reports on the electronic states of compound semiconductor alloys of wurtzite structure calculated by the recently proposed interacting quasi-band (IQB) theory combined with empirical sp3 tight-binding models. Solving derived quasi-Hamiltonian 24 × 24 matrix that is characterized by the crystal parameters of the constituents facilitates the calculation of the conduction and valence bands of wurtzite alloys for arbitrary concentrations under a unified scheme. The theory is applied to III-V and II-VI wurtzite alloys: cation-substituted Al1- x Ga x N and Ga1- x In x N and anion-substituted CdS1- x Se x and ZnO1- x S x . The obtained results agree well with the experimental data, and are discussed in terms of mutual mixing between the quasi-localized states (QLS) and quasi-average bands (QAB): the latter bands are approximately given by the virtual crystal approximation (VCA). The changes in the valence and conduction bands, and the origin of the band gap bowing are discussed on the basis of mixing character.

  17. Electrical properties of zinc-oxide-based thin-film transistors using strontium-oxide-doped semiconductors

    NASA Astrophysics Data System (ADS)

    Wu, Shao-Hang; Zhang, Nan; Hu, Yong-Sheng; Chen, Hong; Jiang, Da-Peng; Liu, Xing-Yuan

    2015-10-01

    Strontium-zinc-oxide (SrZnO) films forming the semiconductor layers of thin-film transistors (TFTs) are deposited by using ion-assisted electron beam evaporation. Using strontium-oxide-doped semiconductors, the off-state current can be dramatically reduced by three orders of magnitude. This dramatic improvement is attributed to the incorporation of strontium, which suppresses carrier generation, thereby improving the TFT. Additionally, the presence of strontium inhibits the formation of zinc oxide (ZnO) with the hexagonal wurtzite phase and permits the formation of an unusual phase of ZnO, thus significantly changing the surface morphology of ZnO and effectively reducing the trap density of the channel. Project supported by the National Natural Science Foundation of China (Grant No. 6140031454) and the Innovation Program of Chinese Academy of Sciences and State Key Laboratory of Luminescence and Applications.

  18. An interatomic pair potential for cadmium selenide

    NASA Astrophysics Data System (ADS)

    Rabani, Eran

    2002-01-01

    We have developed a set of interatomic pair potentials for cadmium selenide based on a form similar to the Born-Mayer model. We show that this simple form of the pair potential, which has been used to describe the properties of alkali halides in the sixfold-coordinate structure, provides a realistic description of the properties of cadmium selenide in all three crystal structures: wurtzite, zinc blende, and rocksalt. Using the new pair potential we have studied the pressure-induced phase transition from the fourfold-coordinate wurtzite structure to the sixfold-coordinate rocksalt structure. The pressure transformation and the equation of state are in good agreement with experimental observations. Using the dispersion term in our pair potential we have also calculated the Hamaker constant for cadmium selenide within the framework of the original microscopic approach due to Hamaker. The results indicate that for ionic materials many-body terms that are included in the Lifshitz theory are well captured by the simple pair potential.

  19. Sulfidation behavior of ZnFe2O4 roasted with pyrite: Sulfur inducing and sulfur-oxygen interface exchange mechanism

    NASA Astrophysics Data System (ADS)

    Min, Xiaobo; Zhou, Bosheng; Ke, Yong; Chai, Liyuan; Xue, Ke; Zhang, Chun; Zhao, Zongwen; Shen, Chen

    2016-05-01

    The sulfidation roasting behavior was analyzed in detail to reveal the reaction mechanism. Information about the sulfidation reaction, including phase transformation, ionic migration behavior and morphological change, were obtained by XRD, 57Fe Mossbauer spectroscopy, XPS and SEM analysis. The results showed that the sulfidation of zinc ferrite is a process of sulfur inducing and sulfur-oxygen interface exchange. This process can be divided into six stages: decomposition of FeS2, formation of the oxygen-deficient environment, migration of O2- induced by S2(g), formation of ZnFe2O4-δ, migration of Fe2+ accompanied by the precipitation of ZnO, and the sulfur-oxygen interface exchange reaction. The sulfidation products were zinc blende, wurtzite, magnetite and a fraction of zinc-bearing magnetite. These findings can provide theoretical support for controlling the process during which the recovery of Zn and Fe is achieved through the combined flotation-magnetic separation process.

  20. Synthesis of hexagonal wurtzite Cu{sub 2}ZnSnS{sub 4} prisms by an ultrasound-assisted microwave solvothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Fei, E-mail: long.drf@gmail.com; Chi, Shangsen; Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083

    Wurtzite Cu{sub 2}ZnSnS{sub 4} (CZTS) hexagonal prisms were synthesized by a simple ultrasound-microwave solvothermal method. The product was characterized by XRD, FESEM, EDS, TEM, Raman and UV–vis spectrometer. The hexagonal prisms were 0.5–2 μm wide and 5–12 μm long. The PVP played an important role in the formation of the CZTS hexagonal prisms. In addition, the ultrasound-assisted microwave process was helpful for synthesis of wurtzite rather than kesterite phase CZTS. A nucleation–dissolution–recrystallization mechanism was also proposed to explain the growth of the CZTS hexagonal prisms. - Graphical abstract: Wurtzite Cu{sub 2}ZnSnS{sub 4} hexagonal prisms were synthesized by ultrasound-microwave solvothermal method.more » The ultrasound-assisted microwave process and PVP were useful to the growth of CZTS. A nucleation–dissolution–recrystallization growth mechanism was also proposed. - Highlights: • Wurtzite Cu{sub 2}ZnSnS{sub 4} was prepared by ultrasound-assisted microwave solvothermal method. • The wurtzite CZTS hexagonal prisms are demonstrated a band gap of 1.49 eV. • Synergistic effect of ultrasound and microwave is helpful to prepare Wurtzite CZTS. • PVP plays an important role in the formation of the CZTS hexagonal prisms. • Nucleation–dissolution–recrystallization growth mechanism of the CZTS was proposed.« less

  1. Changes in transthoracic impedance during sequential biphasic defibrillation.

    PubMed

    Deakin, Charles D; Ambler, Jonathan J S; Shaw, Steven

    2008-08-01

    Sequential monophasic defibrillation reduces transthoracic impedance (TTI) and progressively increases current flow for any given energy level. The effect of sequential biphasic shocks on TTI is unknown. We therefore studied patients undergoing elective cardioversion using a biphasic waveform to establish whether this is a phenomenon seen in the clinical setting. Adults undergoing elective DC cardioversion for atrial flutter or fibrillation received sequential transthoracic shocks using an escalating protocol (70J, 100J, 150J, 200J, and 300J) with a truncated exponential biphasic waveform. TTI was calculated through the defibrillator circuit and recorded electronically. Successful cardioversion terminated further defibrillation shocks. A total of 58 patients underwent elective cardioversion. Cardioversion was successful in 93.1% patients. First shock TTI was 92.2 [52.0-126.0]Omega (n=58) and decreased significantly with each sequential shock. Mean TTI in patients receiving five shocks (n=5) was 85.0Omega. Sequential biphasic defibrillation decreases TTI in a similar manner to that seen with monophasic waveforms. The effect is likely during defibrillation during cardiac arrest by the quick succession in which shocks are delivered and the lack of cutaneous blood flow which limits the inflammatory response. The ability of biphasic defibrillators to adjust their waveform according to TTI is likely to minimise any effect of these findings on defibrillation efficacy.

  2. States of direct and indirect excitons in strained zinc-blende GaN/InGaN asymmetric quantum wells

    NASA Astrophysics Data System (ADS)

    Rojas-Briseño, J. G.; Martínez-Orozco, J. C.; Mora-Ramos, M. E.

    2017-12-01

    The total and binding energies of excitons in step-like asymmetric quantum wells made of zincblende GaN/InxlGa(1-xl)N/InxrGa(1-xr)N/GaN are theoretically reported. It is discussed how the asymmetry in the carrier confinement leads to singular behaviors in the exciton binding energy, allowing to observe both direct and indirect exciton states in the heterostructure. The study is carried out with the use of the effective mass approximation. The effects of strain are taken into account and a comparison of the results obtained for both strained and unstrained situations is presented. Exciton energy shows a decreasing behavior when the size of the effective confinement region is augmented. The total exciton energy as well as the binding energy are reported as functions of the indium concentration and quantum well width. In addition, the results of the calculation of the photoluminescence peak are presented. For this latter quantity, our results for the limiting case of a single zinc-blende GaN/InGaN quantum well show very good agreement with published experimental ones.

  3. Machine learning properties of binary wurtzite superlattices

    DOE PAGES

    Pilania, G.; Liu, X. -Y.

    2018-01-12

    The burgeoning paradigm of high-throughput computations and materials informatics brings new opportunities in terms of targeted materials design and discovery. The discovery process can be significantly accelerated and streamlined if one can learn effectively from available knowledge and past data to predict materials properties efficiently. Indeed, a very active area in materials science research is to develop machine learning based methods that can deliver automated and cross-validated predictive models using either already available materials data or new data generated in a targeted manner. In the present paper, we show that fast and accurate predictions of a wide range of propertiesmore » of binary wurtzite superlattices, formed by a diverse set of chemistries, can be made by employing state-of-the-art statistical learning methods trained on quantum mechanical computations in combination with a judiciously chosen numerical representation to encode materials’ similarity. These surrogate learning models then allow for efficient screening of vast chemical spaces by providing instant predictions of the targeted properties. Moreover, the models can be systematically improved in an adaptive manner, incorporate properties computed at different levels of fidelities and are naturally amenable to inverse materials design strategies. Finally, while the learning approach to make predictions for a wide range of properties (including structural, elastic and electronic properties) is demonstrated here for a specific example set containing more than 1200 binary wurtzite superlattices, the adopted framework is equally applicable to other classes of materials as well.« less

  4. Machine learning properties of binary wurtzite superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilania, G.; Liu, X. -Y.

    The burgeoning paradigm of high-throughput computations and materials informatics brings new opportunities in terms of targeted materials design and discovery. The discovery process can be significantly accelerated and streamlined if one can learn effectively from available knowledge and past data to predict materials properties efficiently. Indeed, a very active area in materials science research is to develop machine learning based methods that can deliver automated and cross-validated predictive models using either already available materials data or new data generated in a targeted manner. In the present paper, we show that fast and accurate predictions of a wide range of propertiesmore » of binary wurtzite superlattices, formed by a diverse set of chemistries, can be made by employing state-of-the-art statistical learning methods trained on quantum mechanical computations in combination with a judiciously chosen numerical representation to encode materials’ similarity. These surrogate learning models then allow for efficient screening of vast chemical spaces by providing instant predictions of the targeted properties. Moreover, the models can be systematically improved in an adaptive manner, incorporate properties computed at different levels of fidelities and are naturally amenable to inverse materials design strategies. Finally, while the learning approach to make predictions for a wide range of properties (including structural, elastic and electronic properties) is demonstrated here for a specific example set containing more than 1200 binary wurtzite superlattices, the adopted framework is equally applicable to other classes of materials as well.« less

  5. Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles.

    PubMed

    Zak, A Khorsand; Razali, R; Majid, W H Abd; Darroudi, Majid

    2011-01-01

    Zinc oxide nanoparticles (ZnO-NPs) were synthesized via a solvothermal method in triethanolamine (TEA) media. TEA was utilized as a polymer agent to terminate the growth of ZnO-NPs. The ZnO-NPs were characterized by a number of techniques, including X-ray diffraction analysis, transition electron microscopy, and field emission electron microscopy. The ZnO-NPs prepared by the solvothermal process at 150°C for 18 hours exhibited a hexagonal (wurtzite) structure, with a crystalline size of 33 ± 2 nm, and particle size of 48 ± 7 nm. The results confirm that TEA is a suitable polymer agent to prepare homogenous ZnO-NPs.

  6. Beyond spatial correlation effect in micro-Raman light scattering: An example of zinc-blende GaN/GaAs hetero-interface

    NASA Astrophysics Data System (ADS)

    Ning, J. Q.; Zheng, C. C.; Zheng, L. X.; Xu, S. J.

    2015-08-01

    Spatially resolved Raman light scattering experiments were performed on a zinc-blende GaN/GaAs heterostructure with confocal micro-Raman scattering technique under the backscattering geometric configuration. By varying the illumination spot locations across the heterostructure interface, we found that the Raman light scattering spectral features change remarkably. The interface effect on the GaAs substrate manifested as a much broader lineshape of the transverse optical (TO) phonon mode. Two kinds of broadening mechanisms, namely, spatial correlation induced wave-vector relaxation effect and lattice-mismatch strain + compositional intermixing effect, have been identified. The former leads to the broadening of the TO mode at the low-energy side, whereas the latter accounts for the broadening at the high-energy side. The diffuse light scattering from the highly defective nucleation layer of GaN was found to produce a broad scattering background of the GaN TO mode. The methodology and conclusions of the present work could be applicable to Raman spectroscopic studies on other material interfaces.

  7. Creating a single twin boundary between two CdTe (111) wafers with controlled rotation angle by wafer bonding

    NASA Astrophysics Data System (ADS)

    Sun, Ce; Lu, Ning; Wang, Jinguo; Lee, Jihyung; Peng, Xin; Klie, Robert F.; Kim, Moon J.

    2013-12-01

    The single twin boundary with crystallographic orientation relationship (1¯1¯1¯)//(111) [01¯1]//[011¯] was created by wafer bonding. Electron diffraction patterns and high-resolution transmission electron microscopy images demonstrated the well control of the rotation angle between the bonded pair. At the twin boundary, one unit of wurtzite structure was found between two zinc-blende matrices. High-angle annular dark-field scanning transmission electron microscopy images showed Cd- and Te-terminated for the two bonded portions, respectively. The I-V curve across the twin boundary showed increasingly nonlinear behavior, indicating a potential barrier at the bonded twin boundary.

  8. The fundamental surface science of wurtzite gallium nitride

    NASA Astrophysics Data System (ADS)

    Bermudez, V. M.

    2017-09-01

    A review is presented that covers the experimental and theoretical literature relating to the preparation, electronic structure and chemical and physical properties of the surfaces of the wurtzite form of GaN. The discussion includes the adsorption of various chemical elements and of inorganic, organometallic and organic species. The focus is on work that contributes to a microscopic, atomistic understanding of GaN surfaces and interfaces, and the review concludes with an assessment of possible future directions.

  9. Biphasic Scaffolds from Marine Collagens for Regeneration of Osteochondral Defects.

    PubMed

    Bernhardt, Anne; Paul, Birgit; Gelinsky, Michael

    2018-03-13

    Collagens of marine origin are applied increasingly as alternatives to mammalian collagens in tissue engineering. The aim of the present study was to develop a biphasic scaffold from exclusively marine collagens supporting both osteogenic and chondrogenic differentiation and to find a suitable setup for in vitro chondrogenic and osteogenic differentiation of human mesenchymal stroma cells (hMSC). Biphasic scaffolds from biomimetically mineralized salmon collagen and fibrillized jellyfish collagen were fabricated by joint freeze-drying and crosslinking. Different experiments were performed to analyze the influence of cell density and TGF-β on osteogenic differentiation of the cells in the scaffolds. Gene expression analysis and analysis of cartilage extracellular matrix components were performed and activity of alkaline phosphatase was determined. Furthermore, histological sections of differentiated cells in the biphasic scaffolds were analyzed. Stable biphasic scaffolds from two different marine collagens were prepared. An in vitro setup for osteochondral differentiation was developed involving (1) different seeding densities in the phases; (2) additional application of alginate hydrogel in the chondral part; (3) pre-differentiation and sequential seeding of the scaffolds and (4) osteochondral medium. Spatially separated osteogenic and chondrogenic differentiation of hMSC was achieved in this setup, while osteochondral medium in combination with the biphasic scaffolds alone was not sufficient to reach this ambition. Biphasic, but monolithic scaffolds from exclusively marine collagens are suitable for the development of osteochondral constructs.

  10. Synthesis and characterization of nanocomposite polymer blend electrolyte thin films by spin-coating method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapi, Sharanappa; Niranjana, M.; Devendrappa, H., E-mail: dehu2010@gmail.com

    2016-05-23

    Solid Polymer blend electrolytes based on Polyethylene oxide (PEO) and poly vinyl pyrrolidone (PVP) complexed with zinc oxide nanoparticles (ZnO NPs; Synthesized by Co-precipitation method) thin films have prepared at a different weight percent using the spin-coating method. The complexation of the NPs with the polymer blend was confirmed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR). The variation in film morphology was examined by polarized optical micrographs (POMs). The thermal behavior of blends was investigated under non-isothermal conditions by differential thermal analyses (DTA). A single glass transition temperature for each blend was observed, which supports the existence ofmore » compatibility of such system. The obtained results represent that the ternary based thin films are prominent materials for battery and optoelectronic device applications.« less

  11. Ergonomic Synthesis Suitable for Industrial Production of Silver-Festooned Zinc Oxide Nanorods

    NASA Astrophysics Data System (ADS)

    Khan, G. R.; Khan, R. A.

    2015-07-01

    For maximizing productivity, minimizing cost, time-boxing process and optimizing human effort, a single-step, cost-effective, ultra-fast and environmentally benign synthesis suitable for industrial production of nanocrystalline ZnO, and Ag-doped ZnO has been reported in this paper. The synthesis based on microwave-supported aqueous solution method used zinc acetate dehydrate and silver nitrate as precursors for fabrication of nanorods. The synthesized products were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and UV-Vis-NIR spectroscopy. The undoped and Ag-doped ZnO nanorods crystallized in a hexagonal wurtzite structure having spindle-like morphology. The blue shift occurred at absorption edge of Ag-doped ZnO around 260 nm compared to 365 nm of bulk ZnO. The red shift occurred at Raman peak site of 434 cm-1 compared to characteristic wurtzite phase peak of ZnO (437 cm-1). The bandgap energies were found to be 3.10 eV, 3.11 eV and 3.18 eV for undoped, 1% Ag-doped, and 3% Ag-doped ZnO samples, respectively. The TEM results provided average particle sizes of 17 nm, 15 nm and 13 nm for undoped, and 1% and 3% Ag-doped ZnO samples, respectively.

  12. Ascending-ramp biphasic waveform has a lower defibrillation threshold and releases less troponin I than a truncated exponential biphasic waveform.

    PubMed

    Huang, Jian; Walcott, Gregory P; Ruse, Richard B; Bohanan, Scott J; Killingsworth, Cheryl R; Ideker, Raymond E

    2012-09-11

    We tested the hypothesis that the shape of the shock waveform affects not only the defibrillation threshold but also the amount of cardiac damage. Defibrillation thresholds were determined for 11 waveforms-3 ascending-ramp waveforms, 3 descending-ramp waveforms, 3 rectilinear first-phase biphasic waveforms, a Gurvich waveform, and a truncated exponential biphasic waveform-in 6 pigs with electrodes in the right ventricular apex and superior vena cava. The ascending, descending, and rectilinear waveforms had 4-, 8-, and 16-millisecond first phases and a 3.5-millisecond rectilinear second phase that was half the voltage of the first phase. The exponential biphasic waveform had a 60% first-phase and a 50% second-phase tilt. In a second study, we attempted to defibrillate after 10 seconds of ventricular fibrillation with a single ≈30-J shock (6 pigs successfully defibrillated with 8-millisecond ascending, 8-millisecond rectilinear, and truncated exponential biphasic waveforms). Troponin I blood levels were determined before and 2 to 10 hours after the shock. The lowest-energy defibrillation threshold was for the 8-milliseconds ascending ramp (14.6±7.3 J [mean±SD]), which was significantly less than for the truncated exponential (19.6±6.3 J). Six hours after shock, troponin I was significantly less for the ascending-ramp waveform (0.80±0.54 ng/mL) than for the truncated exponential (1.92±0.47 ng/mL) or the rectilinear waveform (1.17±0.45 ng/mL). The ascending ramp has a significantly lower defibrillation threshold and at ≈30 J causes 58% less troponin I release than the truncated exponential biphasic shock. Therefore, the shock waveform affects both the defibrillation threshold and the amount of cardiac damage.

  13. A charge carrier transport model for donor-acceptor blend layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Janine, E-mail: janine.fischer@iapp.de; Widmer, Johannes; Koerner, Christian

    2015-01-28

    Highly efficient organic solar cells typically comprise donor-acceptor blend layers facilitating effective splitting of excitons. However, the charge carrier mobility in the blends can be substantially smaller than in neat materials, hampering the device performance. Currently, available mobility models do not describe the transport in blend layers entirely. Here, we investigate hole transport in a model blend system consisting of the small molecule donor zinc phthalocyanine (ZnPc) and the acceptor fullerene C{sub 60} in different mixing ratios. The blend layer is sandwiched between p-doped organic injection layers, which prevent minority charge carrier injection and enable exploiting diffusion currents for themore » characterization of exponential tail states from a thickness variation of the blend layer using numerical drift-diffusion simulations. Trap-assisted recombination must be considered to correctly model the conductivity behavior of the devices, which are influenced by local electron currents in the active layer, even though the active layer is sandwiched in between p-doped contacts. We find that the density of deep tail states is largest in the devices with 1:1 mixing ratio (E{sub t} = 0.14 eV, N{sub t} = 1.2 × 10{sup 18 }cm{sup −3}) directing towards lattice disorder as the transport limiting process. A combined field and charge carrier density dependent mobility model are developed for this blend layer.« less

  14. Nonlinear estimation of parameters in biphasic Arrhenius plots.

    PubMed

    Puterman, M L; Hrboticky, N; Innis, S M

    1988-05-01

    This paper presents a formal procedure for the statistical analysis of data on the thermotropic behavior of membrane-bound enzymes generated using the Arrhenius equation and compares the analysis to several alternatives. Data is modeled by a bent hyperbola. Nonlinear regression is used to obtain estimates and standard errors of the intersection of line segments, defined as the transition temperature, and slopes, defined as energies of activation of the enzyme reaction. The methodology allows formal tests of the adequacy of a biphasic model rather than either a single straight line or a curvilinear model. Examples on data concerning the thermotropic behavior of pig brain synaptosomal acetylcholinesterase are given. The data support the biphasic temperature dependence of this enzyme. The methodology represents a formal procedure for statistical validation of any biphasic data and allows for calculation of all line parameters with estimates of precision.

  15. THE AB INITIO CALCULATION OF THE DYNAMICAL AND THE THERMODYNAMIC PROPERTIES OF THE ZINC-BLENDE GaX (X=N, P, As AND Sb)

    NASA Astrophysics Data System (ADS)

    Bouhadda, Y.; Bentabet, A.; Fenineche, N. E.; Boudouma, Y.

    2012-12-01

    By this work, we aim to study the dynamical and the thermodynamic properties of the zinc-blende GaX (X = N, P, As and Sb) using the Ab initio simulation method. Indeed, we studied the lattice dynamics, the constant-volume specific heat (Cv), the internal energy (U), the entropy (S) and the free energy (F). The observed differences between the properties of GaX elements were discussed. Our results and the available literature data (theoretical and experimental) seems to be in good agreement. Moreover, Cv, U, F and S were calculated by using the harmonic approximation in the calculation of the dynamic lattice vibration. The good agreement between our results of both the phonon frequency, the constant-volume specific heat and the experimental data allows us to conclude that our results of S, U and F of GaX were well predicted.

  16. EQUIVALENCE BETWEEN SHORT-TIME BIPHASIC AND INCOMPRESSIBLE ELASTIC MATERIAL RESPONSES

    PubMed Central

    Ateshian, Gerard A.; Ellis, Benjamin J.; Weiss, Jeffrey A.

    2009-01-01

    Porous-permeable tissues have often been modeled using porous media theories such as the biphasic theory. This study examines the equivalence of the short-time biphasic and incompressible elastic responses for arbitrary deformations and constitutive relations from first principles. This equivalence is illustrated in problems of unconfined compression of a disk, and of articular contact under finite deformation, using two different constitutive relations for the solid matrix of cartilage, one of which accounts for the large disparity observed between the tensile and compressive moduli in this tissue. Demonstrating this equivalence under general conditions provides a rationale for using available finite element codes for incompressible elastic materials as a practical substitute for biphasic analyses, so long as only the short-time biphasic response is sought. In practice, an incompressible elastic analysis is representative of a biphasic analysis over the short-term response δt≪Δ2/‖C4‖||K||, where Δ is a characteristic dimension, C4 is the elasticity tensor and K is the hydraulic permeability tensor of the solid matrix. Certain notes of caution are provided with regard to implementation issues, particularly when finite element formulations of incompressible elasticity employ an uncoupled strain energy function consisting of additive deviatoric and volumetric components. PMID:17536908

  17. Equivalence between short-time biphasic and incompressible elastic material responses.

    PubMed

    Ateshian, Gerard A; Ellis, Benjamin J; Weiss, Jeffrey A

    2007-06-01

    Porous-permeable tissues have often been modeled using porous media theories such as the biphasic theory. This study examines the equivalence of the short-time biphasic and incompressible elastic responses for arbitrary deformations and constitutive relations from first principles. This equivalence is illustrated in problems of unconfined compression of a disk, and of articular contact under finite deformation, using two different constitutive relations for the solid matrix of cartilage, one of which accounts for the large disparity observed between the tensile and compressive moduli in this tissue. Demonstrating this equivalence under general conditions provides a rationale for using available finite element codes for incompressible elastic materials as a practical substitute for biphasic analyses, so long as only the short-time biphasic response is sought. In practice, an incompressible elastic analysis is representative of a biphasic analysis over the short-term response deltat

  18. Biphasic responses in multi-site phosphorylation systems.

    PubMed

    Suwanmajo, Thapanar; Krishnan, J

    2013-12-06

    Multi-site phosphorylation systems are repeatedly encountered in cellular biology and multi-site modification is a basic building block of post-translational modification. In this paper, we demonstrate how distributive multi-site modification mechanisms by a single kinase/phosphatase pair can lead to biphasic/partial biphasic dose-response characteristics for the maximally phosphorylated substrate at steady state. We use simulations and analysis to uncover a hidden competing effect which is responsible for this and analyse how it may be accentuated. We build on this to analyse different variants of multi-site phosphorylation mechanisms showing that some mechanisms are intrinsically not capable of displaying this behaviour. This provides both a consolidated understanding of how and under what conditions biphasic responses are obtained in multi-site phosphorylation and a basis for discriminating between different mechanisms based on this. We also demonstrate how this behaviour may be combined with other behaviour such as threshold and bistable responses, demonstrating the capacity of multi-site phosphorylation systems to act as complex molecular signal processors.

  19. A facile arrested precipitation method for synthesis of pure wurtzite Cu{sub 2}ZnSnS{sub 4} nanocrystals using thiourea as a sulfur source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chunya; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074; Ha, Enna

    2012-11-15

    Graphical abstract: High-resolution TEM image of wurtzite Cu{sub 2}ZnSnS{sub 4} nanocrystals. Highlights: ► Wurtzite Cu{sub 2}ZnSnS{sub 4} nanocrystals were synthesized by arrested precipitation method. ► XRD, EDX, TEM demonstrate that the CZTS nanocrystals are purely wurtzite structure. ► The average diameter of the bulk CZTS products is found to be 10 ± 1.1 nm. ► The estimated direct bandgap energy is 1.56 eV for wurtzite CZTS nanocrystals. ► The electrical resistivity of the wurtzite CZTS nanocrystals is low. -- Abstract: A facile route for the synthesis of wurtzite Cu{sub 2}ZnSnS{sub 4} (CZTS) nanocrystals was developed by an arrested precipitation methodmore » at 240 °C under simple reaction conditions with diethanolamine as the solvent and thiourea as sulfur source. The structure and morphology of the CZTS nanocrystals were characterized by X-ray diffraction and transmission electron microscopy. Control experiments demonstrated that CZTS nanocrystals which are purely wurtzite structure are readily obtained. The average diameter of the bulk CZTS products is found to be 10 ± 1.1 nm. The estimated direct bandgap energy is 1.56 eV, which indicates that the CZTS nanocrystals produced by this method possess promising applications in photovoltaic devices.« less

  20. Anaerobic treatment of blended sugar industry and ethanol distillery wastewater through biphasic high rate reactor.

    PubMed

    Fito, Jemal; Tefera, Nurelegne; Kloos, Helmut; Van Hulle, Stijn W H

    2018-06-07

    This study aimed to investigate the physicochemical properties of sugar industry and ethanol distillery wastewater and the treatment of the blended wastewater through a two-stage anaerobic reactor. For this treatment, different initial chemical oxygen demand (COD) concentrations (5-20 g/L) and hydraulic retention times (HRTs) (2-10 days) were applied. The sugar industry effluent characteristics obtained in terms of organic matter (mg/L) were as follows: 5 days biochemical oxygen demand (BOD 5 ): 654.5-1,968; COD: 1,100-2,148.9; total solids (TS): 2,467-4,012 mg/L; and pH: 6.93-8.43. The ethanol distillery spent wash strengths obtained were: BOD 5 : 27,600-42,921 mg/L; COD: 126,000-167,534 mg/L; TS: 140,160-170,000 mg/L; and pH: 3.9-4.2. Maximum COD removal of 65% was obtained at optimum condition (initial COD concentration of 10 g/L and HRT of 10 days), and maximum color removal of 79% was recorded under similar treatment conditions. Hence, the performance of the two-stage anaerobic reactor for simultaneous removal of COD and color from high-strength blended wastewater is promising for scaling up in order to mitigate environmental problems of untreated effluent discharge.

  1. Morphology and vulcanizate properties of ethylene-propylene-diene rubber/ styrene-butadiene rubber blends.

    PubMed

    Park, Gayoung; Kim, Yun Hee; Kim, Dong Soo; Ko, Young Chun

    2010-05-01

    Morphology and vulcanizate properties of EPDM/SBR blends were investigated. AAHR (a mixture of aliphatic and aromatic hydrocarbon resins) was used as a compatibilizer and bis(3-triethoxysilylpropyl)tetrasulfide (TESPT) was used as a coupling agent. The vulcanizate properties and the morphological studies revealed that EPDM and SBR were incompatible, and the addition of AAHR was very effective to enhance the compatibility between EPDM and SBR. The weight percent of bound rubbers was increased with increasing SBR contents. The addition of an AAHR increased the amounts of bound rubbers, and hence the vulcanizate properties such as tear strength and fatigue resistance of the EPDM/SBR blends were improved. The dynamic mechanical analysis and the morphological studies revealed that the addition of TESPT increased the weight of bound rubbers and provided better dispersion of carbon black, resulting in good mechanical properties such as tear strength and fatigue resistance of the vulcanized EPDM/SBR blends. The smaller particle of zinc oxide (i.e., 50 nm > 100 nm > 1000 nm) yielded to the better blending properties of the polymer blend.

  2. Comparative Evaluation of Two Venous Sampling Techniques for the Assessment of Pancreatic Insulin and Zinc Release upon Glucose Challenge.

    PubMed

    Pillai, Anil Kumar; Silvers, William; Christensen, Preston; Riegel, Matthew; Adams-Huet, Beverley; Lingvay, Ildiko; Sun, Xiankai; Öz, Orhan K

    2015-01-01

    Advances in noninvasive imaging modalities have provided opportunities to study β cell function through imaging zinc release from insulin secreting β cells. Understanding the temporal secretory pattern of insulin and zinc corelease after a glucose challenge is essential for proper timing of administration of zinc sensing probes. Portal venous sampling is an essential part of pharmacological and nutritional studies in animal models. The purpose of this study was to compare two different percutaneous image-guided techniques: transhepatic ultrasound guided portal vein access and transsplenic fluoroscopy guided splenic vein access for ease of access, safety, and evaluation of temporal kinetics of insulin and zinc release into the venous effluent from the pancreas. Both techniques were safe, reproducible, and easy to perform. The mean time required to obtain desired catheter position for venous sampling was 15 minutes shorter using the transsplenic technique. A clear biphasic insulin release profile was observed in both techniques. Statistically higher insulin concentration but similar zinc release after a glucose challenge was observed from splenic vein samples, as compared to the ones from the portal vein. To our knowledge, this is the first report of percutaneous methods to assess zinc release kinetics from the porcine pancreas.

  3. Orientation and size dependence of the elastic properties of zinc oxide nanobelts

    NASA Astrophysics Data System (ADS)

    Kulkarni, A. J.; Zhou, M.; Ke, F. J.

    2005-12-01

    Molecular dynamics simulations are performed to characterize the response of zinc oxide (ZnO) nanobelts to tensile loading. The ultimate tensile strength (UTS) and Young's modulus are obtained as functions of size and growth orientation. Nanobelts in three growth orientations are generated by assembling the unit wurtzite cell along the [0001], [01\\bar {1} 0] , and [2\\bar {1} \\bar {1}0] crystalline axes. Following the geometric construction, dynamic relaxation is carried out to yield free-standing nanobelts at 300 K. Two distinct configurations are observed in the [0001] and [01\\bar {1} 0] orientations. When the lateral dimensions are above 10 Å, nanobelts with rectangular cross-sections are seen. Below this critical size, tubular structures involving two concentric shells similar to double-walled carbon nanotubes are obtained. Quasi-static deformations of belts with [2\\bar {1} \\bar {1} 0] and [01\\bar {1} 0] orientations consist of three stages, including initial elastic stretching, wurtzite-ZnO to graphitic-ZnO structural transformation, and cleavage fracture. On the other hand, [0001] belts do not undergo any structural transformation and fail through cleavage along (0001) planes. Calculations show that the UTS and Young's modulus of the belts are size dependent and are higher than the corresponding values for bulk ZnO. Specifically, as the lateral dimensions increase from 10 to 40 Å, decreases between 38-76% and 24-63% are observed for the UTS and Young's modulus, respectively. This effect is attributed to the size-dependent compressive stress induced by tensile surface stress in the nanobelts. [01\\bar {1} 0] and [2\\bar {1} \\bar {1} 0] nanobelts with multi-walled tubular structures are seen to have higher values of elastic moduli (~340 GPa) and UTS (~36 GPa) compared to their wurtzite counterparts, echoing a similar trend in multi-walled carbon nanotubes.

  4. Ion channeling studies on mixed phases formed in metalorganic chemical vapor deposition grown Mg-doped GaN on Al2O3(0001)

    NASA Astrophysics Data System (ADS)

    Sundaravel, B.; Luo, E. Z.; Xu, J. B.; Wilson, I. H.; Fong, W. K.; Wang, L. S.; Surya, C.

    2000-01-01

    Rutherford backscattering spectrometry and ion channeling were used to determine the relative quantities of wurtzite and zinc-blende phases in metalorganic chemical vapor deposition grown Mg-doped GaN(0001) on an Al2O3(0001) substrate with a GaN buffer layer. Offnormal axial channeling scans were used. High-resolution x-ray diffraction measurements also confirmed the presence of mixed phases. The in-plane orientation was found to be GaN[11¯0]‖GaN[112¯0]‖Al2O3[112¯0]. The effects of rapid thermal annealing on the relative phase content, thickness and crystalline quality of the GaN epilayer were also studied.

  5. Pressure Induced Phase Transition and Electronic Properties of 1d ZnO Nanocrystal: AN AB INITIO Study

    NASA Astrophysics Data System (ADS)

    Srivastava, Anurag; Tyagi, Neha

    2012-10-01

    We have analyzed the one-dimensional (1D) ZnO nanocrystals in its wurtzite (B4); zinc-blende (B3) and rocksalt (B1) type phases, by means of density functional theory (DFT) calculations. The energetic stability of nanocrystal has been analyzed using Revised Perdew-Burke-Ernzerhof (revPBE) type parameterized GGA potential. The B3 type phase is most stable amongst other phases of nanocrystals. The computation of ground state properties for all the phases of ZnO nanocrystals finds that the bulk modulus are smaller than their bulk counterpart, in turn softening the material at reduced dimensions. The electronic band structure analysis confirms the semiconducting nature of B4 type phase whereas other two are metallic.

  6. Optical properties and carrier dynamics of GaAs/GaInAs multiple-quantum-well shell grown on GaAs nanowire by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Kwangwook; Ravindran, Sooraj; Ju, Gun Wu

    GaAs/GaInAs multiple-quantum-well (MQW) shells having different GaInAs shell width formed on the surface of self-catalyzed GaAs core nanowires (NWs) are grown on (100) Si substrate using molecular beam epitaxy. The photoluminescence emission from GaAs/GaInAs MQW shells and the carrier lifetime could be varied by changing the width of GaInAs shell. Time-resolved photoluminescence measurements showed that the carrier lifetime had a fast and slow decay owing to the mixing of wurtzite and zinc-blende structures of the NWs. Furthermore, strain relaxation caused the carrier lifetime to decrease beyond a certain thickness of GaInAs quantum well shells.

  7. Metastable growth of pure wurtzite InGaAs microstructures.

    PubMed

    Ng, Kar Wei; Ko, Wai Son; Lu, Fanglu; Chang-Hasnain, Connie J

    2014-08-13

    III-V compound semiconductors can exist in two major crystal phases, namely, zincblende (ZB) and wurtzite (WZ). While ZB is thermodynamically favorable in conventional III-V epitaxy, the pure WZ phase can be stable in nanowires with diameters smaller than certain critical values. However, thin nanowires are more vulnerable to surface recombination, and this can ultimately limit their performances as practical devices. In this work, we study a metastable growth mechanism that can yield purely WZ-phased InGaAs microstructures on silicon. InGaAs nucleates as sharp nanoneedles and expand along both axial and radial directions simultaneously in a core-shell fashion. While the base can scale from tens of nanometers to over a micron, the tip can remain sharp over the entire growth. The sharpness maintains a high local surface-to-volume ratio, favoring hexagonal lattice to grow axially. These unique features lead to the formation of microsized pure WZ InGaAs structures on silicon. To verify that the WZ microstructures are truly metastable, we demonstrate, for the first time, the in situ transformation from WZ to the energy-favorable ZB phase inside a transmission electron microscope. This unconventional core-shell growth mechanism can potentially be applied to other III-V materials systems, enabling the effective utilization of the extraordinary properties of the metastable wurtzite crystals.

  8. Generation of useful energy from process fluids using the biphase turbine

    NASA Astrophysics Data System (ADS)

    Helgeson, N. L.

    1981-01-01

    The six largest energy consuming industries in the United States were surveyed to determine the energy savings that could result from applying the Biphase turbine to industrial process streams. A national potential energy savings of 58 million barrels of oil per year (technical market) was identified. This energy is recoverable from flashing gas liquid process streams and is separate and distinct from exhaust gas waste heat recovery. The industries surveyed in this program were the petroleum chemical, primary metals, paper and pulp, stone-clay-glass, and food. It was required to determine the applicability of the Biphase turbine to flashing operations connected with process streams, to determine the energy changes associated with these flashes if carried out in a Biphase turbine, and to determine the suitability (technical and economical feasibility) of applying the Biphase turbine to these processes.

  9. Effects of lattice parameters on piezoelectric constants in wurtzite materials: A theoretical study using first-principles and statistical-learning methods

    NASA Astrophysics Data System (ADS)

    Momida, Hiroyoshi; Oguchi, Tamio

    2018-04-01

    Longitudinal piezoelectric constant (e 33) values of wurtzite materials, which are listed in a structure database, are calculated and analyzed by using first-principles and statistical learning methods. It is theoretically shown that wurtzite materials with high e 33 generally have small lattice constant ratios (c/a) almost independent of constituent elements, and approximately expressed as e 33 ∝ c/a - (c/a)0 with ideal lattice constant ratio (c/a)0. This relation also holds for highly-piezoelectric ternary materials such as Sc x Al1- x N. We conducted a search for high-piezoelectric wurtzite materials by identifying materials with smaller c/a values. It is proposed that the piezoelectricity of ZnO can be significantly enhanced by substitutions of Zn with Ca.

  10. Surface characterization of colloidal-sol gel derived biphasic HA/FA coatings.

    PubMed

    Cheng, Kui; Zhang, Sam; Weng, Wenjian

    2007-10-01

    Hydroxyapatite (HA) powders are ultrasonically dispersed in the precursor of fluoridated hydroxyapatite (FHA) or fluorapatite (FA) to form a "colloidal sol". HA/FA biphasic coatings are prepared on Ti6Al4V substrate via dip coating, 150 degrees C drying and 600 degrees C firing. The coatings show homogenous distribution of HA particles in the FA matrix. The relative phase proportion can be tailored by the amount of HA in the colloidal sol. The surfaces of the coatings consist of two kinds of distinct domains: HA and FA, resulting in a compositionally heterogeneous surface. The biphasic coating surface becomes increasingly rougher with HA powders, from around 200 nm of pure FA to 400-600 nm in Ra of biphasic coatings. The rougher biphasic HA/FA surfaces with chemically controllable domains will favor cell attachment, apatite layer deposition and necessary dissolution in clinical applications.

  11. Synthesis and characterization of copper zinc oxide nanoparticles obtained via metathesis process

    NASA Astrophysics Data System (ADS)

    Phoohinkong, Weerachon; Foophow, Tita; Pecharapa, Wisanu

    2017-09-01

    Copper-doped zinc oxide nanoparticles were successfully synthesized by grinding copper acetate and zinc acetate powder with different starting molar ratios in combined with sodium hydroxide. The effect of initial copper and zinc molar ratios on the product samples was investigated and discussed. Relevant ligand coordination type of reactant acetate salt precursors and product samples were investigated by Fourier transform infrared spectroscopy (FTIR). The particle shapes and surface morphologies were characterized by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Phase structures of prepared samples were studied by x-ray powder diffraction (XRD) and x-ray absorption near-edge spectroscopy (XANES) was applied to investigate the local structure of Cu and Zn environment atoms. The results demonstrate that the, particle size of as-synthesized products affected by copper concentration in the precursor trend to gradually decreases from nanorod shape with diameter around 50-100 nm to irregular particle structure around 5 nm associated with an increase in the concentration of copper in precursor. Moreover, it is noticed that shape and morphology of the products are strongly dependent on Cu:Zn ratios during the synthesis. Nanocrystallines Cu-doped ZnO by the substitution in Zn site with a high crystallization degree of hexagonal wurtzite structure were obtained. This synthesis technique is suggested as a potential effective technique for preparing copper zinc oxide nanoparticles with various atomic ratio in wide range of applications. Contribution at the 4th Southeast Asia Conference on Thermoelectrics 2016 (SACT 2016), 15-18 December 2016, Da Nang City, Vietnam.

  12. Stabilization of Wide Band-Gap p-Type Wurtzite MnTe Thin Films on Amorphous Substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakutayev, Andriy A; Siol, Sebastian; Han, Yanbing

    An important challenge in the development of optoelectronic devices for energy conversion applications is the search for suitable p-type contact materials. For example, p-type MnTe would be a promising alternative back contact to due to their chemical compatibility, but at normal conditions it has too narrow band gap due to octahedrally coordinated nickeline (NC) structure. The tetrahedrally coordinated wurtzite (WZ) polymorph of MnTe has not been reported, but it is especially interesting due to its predicted wider band gap, and because of better structural compatibility with CdTe and related II-VI semiconductor materials. Here, we report on the stabilization of WZ-MnTemore » thin films on amorphous indium zinc oxide (a-IZO) substrates relevant to photovoltaic applications. Optical spectroscopy of the WZ-MnTe films shows a wide direct band gap of Eg = 2.7 eV, while PES measurements reveal weak p-type doping with the Fermi level 0.6 eV above the valence band maximum. The results of electron microscopy and photoelectron spectroscopy (PES) measurements indicate that the WZ-MnTe is stabilized due to interdiffusion at the interface with IZO. The results of this work introduce a substrate stabilized WZ-MnTe polymorph as a potential p-type contact material candidate for future applications in CdTe devices for solar energy conversion and other optoelectronic technologies.« less

  13. Cardioversion Efficacy Using Pulsed Biphasic or Biphasic Truncated Exponential Waveforms: A Randomized Clinical Trial.

    PubMed

    Schmidt, Anders S; Lauridsen, Kasper G; Adelborg, Kasper; Torp, Peter; Bach, Leif F; Jepsen, Simon M; Hornung, Nete; Deakin, Charles D; Rickers, Hans; Løfgren, Bo

    2017-03-08

    Several different defibrillators are currently used for cardioversion and defibrillation of cardiac arrhythmias. The efficacy of a novel pulsed biphasic (PB) waveform has not been compared to other biphasic waveforms. Accordingly, this study aims to compare the efficacy and safety of PB shocks with biphasic truncated exponential (BTE) shocks in patients undergoing cardioversion of atrial fibrillation or -flutter. This prospective, randomized study included patients admitted for elective direct current cardioversion. Patients were randomized to receive cardioversion using either PB or BTE shocks. We used escalating shocks until sinus rhythm was obtained or to a maximum of 4 shocks. Patients randomized to PB shocks received 90, 120, 150, and 200 J and patients randomized to BTE shocks received 100, 150, 200, and 250 J, as recommended by the manufacturers. In total, 69 patients (51%) received PB shocks and 65 patients (49%) BTE shocks. Successful cardioversion, defined as sinus rhythm 4 hours after cardioversion, was achieved in 43 patients (62%) using PB shocks and in 56 patients (86%) using BTE shocks; ratio 1.4 (95% CI 1.1-1.7) ( P =0.002). There was no difference in safety (ie, myocardial injury judged by changes in high-sensitive troponin I levels; ratio 1.1) (95% CI 1.0-1.3), P =0.15. The study was terminated prematurely because of an adverse event. Cardioversion using a BTE waveform was more effective when compared with a PB waveform. There was no difference in safety between the 2 waveforms, as judged by changes in troponin I levels. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02317029. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  14. Study of interatomic interactions and phonons in magnesium chalcogenides

    NASA Astrophysics Data System (ADS)

    Gupta, Yuhit; Sinha, M. M.

    2018-05-01

    Alkaline earth chalcogenides (AECs) are very important compounds because of these possess semiconducting properties besides having large band gap mostly of the order of 7-10 eV which is the characteristic properties of insulators. These compounds are having many important optoelectronic properties, which serves its role in the production of many electronic devices. These are found in many crystallographic phases such as rock salt (B1), zinc blende (B3), wurtzite (B5) and nickel arsenide (B8) phase. A de-Launay angular force (DAF) model has been used to study the interatomic interactions and phonons of MgX (X=S, Se, Te) in zinc blende structure. The interatomic interaction in the form of central and angular forces up to second nearest neighbors has been considered. The interatomic interaction Mg-X is found to be strongest and its value is highest for MgS compared to others. This is because of small bond length in MgS compared to others. Zone centre phonons have been calculated for MgX and are in agreement with other available results. The phonon dispersion curves in three high symmetric direction are calculated for MgX (X=S, Se, Te) and are interpreted in light of other existing results.

  15. The sensitivity of the electron transport within bulk zinc-blende gallium nitride to variations in the crystal temperature, the doping concentration, and the non-parabolicity coefficient associated with the lowest energy conduction band valley

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siddiqua, Poppy; O'Leary, Stephen K., E-mail: stephen.oleary@ubc.ca

    2016-09-07

    Within the framework of a semi-classical three-valley Monte Carlo simulation approach, we analyze the steady-state and transient electron transport that occurs within bulk zinc-blende gallium nitride. In particular, we examine how the steady-state and transient electron transport that occurs within this material changes in response to variations in the crystal temperature, the doping concentration, and the non-parabolicity coefficient associated with the lowest energy conduction band valley. These results are then contrasted with those corresponding to a number of other compound semiconductors of interest.

  16. Theoretical prediction of low-density hexagonal ZnO hollow structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuoc, Vu Ngoc, E-mail: tuoc.vungoc@hust.edu.vn; Huan, Tran Doan; Thao, Nguyen Thi

    2016-10-14

    Along with wurtzite and zinc blende, zinc oxide (ZnO) has been found in a large number of polymorphs with substantially different properties and, hence, applications. Therefore, predicting and synthesizing new classes of ZnO polymorphs are of great significance and have been gaining considerable interest. Herein, we perform a density functional theory based tight-binding study, predicting several new series of ZnO hollow structures using the bottom-up approach. The geometry of the building blocks allows for obtaining a variety of hexagonal, low-density nanoporous, and flexible ZnO hollow structures. Their stability is discussed by means of the free energy computed within the lattice-dynamicsmore » approach. Our calculations also indicate that all the reported hollow structures are wide band gap semiconductors in the same fashion with bulk ZnO. The electronic band structures of the ZnO hollow structures are finally examined in detail.« less

  17. Zinc interstitial threshold in Al-doped ZnO film: Effect on microstructure and optoelectronic properties

    NASA Astrophysics Data System (ADS)

    Singh, Chetan C.; Panda, Emila

    2018-04-01

    In order to know the threshold quantity of the zinc interstitials that contributes to an increase in carrier concentration in the Al-doped ZnO (AZO) films and their effect on the overall microstructure and optoelectronic properties of these films, in this work, Zn-rich-AZO and ZnO thin films are fabricated by adding excess zinc (from a zinc metallic target) during their deposition in RF magnetron sputtering and are then investigated using a wide range of experimental techniques. All these films are found to grow in a ZnO hexagonal wurtzite crystal structure with strong (002) orientation of the crystallites, with no indication of Al2O3, metallic Zn, and Al. The excessively introduced zinc in these AZO and/or ZnO films is found to increase the shallow donor level defects (i.e., zinc interstitials and oxygen-related electronic defect states), which is found to significantly increase the carrier concentration in these films. Additionally, aluminum is seen to enhance the creation of these electronic defect states in these films, thereby contributing more to the overall carrier concentration of these films. However, carrier mobility is found to decrease when the carrier concentration values are higher than 4 × 1020 cm-3, because of the electron-electron scattering. Whereas the optical band gap of the ZnO films is found to increase with increasing carrier concentration because of the Burstein-Moss shift, these decrease for the AZO films due to the band gap narrowing effect caused by excess carrier concentration.

  18. Zinc oxide nanoparticles as novel alpha-amylase inhibitors

    NASA Astrophysics Data System (ADS)

    Dhobale, Sandip; Thite, Trupti; Laware, S. L.; Rode, C. V.; Koppikar, Soumya J.; Ghanekar, Ruchika-Kaul; Kale, S. N.

    2008-11-01

    Amylase inhibitors, also known as starch blockers, contain substances that prevent dietary starches from being absorbed by the body via inhibiting breakdown of complex sugars to simpler ones. In this sense, these materials are projected as having potential applications in diabetes control. In this context, we report on zinc oxide nanoparticles as possible alpha-amylase inhibitors. Zinc oxide nanoparticles have been synthesized using soft-chemistry approach and 1-thioglycerol was used as a surfactant to yield polycrystalline nanoparticles of size ˜18 nm, stabilized in wurtzite structure. Conjugation study and structural characterization have been done using x-ray diffraction technique, Fourier transform infrared spectroscopy, UV-visible spectroscopy, and transmission electron microscopy. Cytotoxicity studies on human fibrosarcoma (HT-1080) and skin carcinoma (A-431) cell lines as well as mouse primary fibroblast cells demonstrate that up to a dose of 20 μg/ml, ZnO nanoparticles are nontoxic to the cells. We report for the first time the alpha-amylase inhibitory activity of ZnO nanoparticles wherein an optimum dose of 20 μg/ml was sufficient to exhibit 49% glucose inhibition at neutral pH and 35 °C temperature. This inhibitory activity was similar to that obtained with acarbose (a standard alpha-amylase inhibitor), thereby projecting ZnO nanoparticles as novel alpha-amylase inhibitors.

  19. Comparative Evaluation of Two Venous Sampling Techniques for the Assessment of Pancreatic Insulin and Zinc Release upon Glucose Challenge

    PubMed Central

    Pillai, Anil Kumar; Silvers, William; Christensen, Preston; Riegel, Matthew; Adams-Huet, Beverley; Lingvay, Ildiko; Sun, Xiankai; Öz, Orhan K.

    2015-01-01

    Advances in noninvasive imaging modalities have provided opportunities to study β cell function through imaging zinc release from insulin secreting β cells. Understanding the temporal secretory pattern of insulin and zinc corelease after a glucose challenge is essential for proper timing of administration of zinc sensing probes. Portal venous sampling is an essential part of pharmacological and nutritional studies in animal models. The purpose of this study was to compare two different percutaneous image-guided techniques: transhepatic ultrasound guided portal vein access and transsplenic fluoroscopy guided splenic vein access for ease of access, safety, and evaluation of temporal kinetics of insulin and zinc release into the venous effluent from the pancreas. Both techniques were safe, reproducible, and easy to perform. The mean time required to obtain desired catheter position for venous sampling was 15 minutes shorter using the transsplenic technique. A clear biphasic insulin release profile was observed in both techniques. Statistically higher insulin concentration but similar zinc release after a glucose challenge was observed from splenic vein samples, as compared to the ones from the portal vein. To our knowledge, this is the first report of percutaneous methods to assess zinc release kinetics from the porcine pancreas. PMID:26273676

  20. A mixed-penalty biphasic finite element formulation incorporating viscous fluids and material interfaces.

    PubMed

    Chan, B; Donzelli, P S; Spilker, R L

    2000-06-01

    The fluid viscosity term of the fluid phase constitutive equation and the interface boundary conditions between biphasic, solid and fluid domains have been incorporated into a mixed-penalty finite element formulation of the linear biphasic theory for hydrated soft tissue. The finite element code can now model a single-phase viscous incompressible fluid, or a single-phase elastic solid, as limiting cases of a biphasic material. Interface boundary conditions allow the solution of problems involving combinations of biphasic, fluid and solid regions. To incorporate these conditions, the volume-weighted mixture velocity is introduced as a degree of freedom at interface nodes so that the kinematic continuity conditions are satisfied by conventional finite element assembly techniques. Results comparing our numerical method with an independent, analytic solution for the problem of Couette flow over rigid and deformable porous biphasic layers show that the finite element code accurately predicts the viscous fluid flows and deformation in the porous biphasic region. Thus, the analysis can be used to model the interface between synovial fluid and articular cartilage in diarthrodial joints. This is an important step toward modeling and understanding the mechanisms of joint lubrication and another step toward fully modeling the in vivo behavior of a diarthrodial joint.

  1. Influence of Fröhlich polaron coupling on renormalized electron bands in polar semiconductors: Results for zinc-blende GaN

    NASA Astrophysics Data System (ADS)

    Nery, Jean Paul; Allen, Philip B.

    2016-09-01

    We develop a simple method to study the zero-point and thermally renormalized electron energy ɛk n(T ) for k n the conduction band minimum or valence maximum in polar semiconductors. We use the adiabatic approximation, including an imaginary broadening parameter i δ to suppress noise in the density-functional integrations. The finite δ also eliminates the polar divergence which is an artifact of the adiabatic approximation. Nonadiabatic Fröhlich polaron methods then provide analytic expressions for the missing part of the contribution of the problematic optical phonon mode. We use this to correct the renormalization obtained from the adiabatic approximation. Test calculations are done for zinc-blende GaN for an 18 ×18 ×18 integration grid. The Fröhlich correction is of order -0.02 eV for the zero-point energy shift of the conduction band minimum, and +0.03 eV for the valence band maximum; the correction to renormalization of the 3.28 eV gap is -0.05 eV, a significant fraction of the total zero point renormalization of -0.15 eV.

  2. Self-repairing systems based on ionomers and epoxidized natural rubber blends.

    PubMed

    Rahman, Md Arifur; Penco, Maurizio; Peroni, Isabella; Ramorino, Giorgio; Grande, Antonio Mattia; Di Landro, Luca

    2011-12-01

    The development of materials with the ability of intrinsic self-repairing after damage in a fashion resembling that of living tissues has important scientific and technological implications, particularly in relation to cost-effective approaches toward damage management of materials. Natural rubbers with epoxy functional groups in the macromolecular chain (ENR) and ethylene-methacrylic acid ionomers having acid groups partially neutralized with metal ions possess self-repairing behavior following high energy impacts. This research investigates the self-repairing behavior of both ENR and ionomers during ballistic puncture test on the basis of their thermal and mechanical properties. Heterogeneous blending of ionomers and ENR have also been used here as a strategy to tune the thermal and mechanical properties of the materials. Interestingly, blends of sodium ion containing ionomer exhibit complete self-repairing behavior, whereas blends of zinc ion containing ionomer show limited mending. The chemical structure studied by FTIR and thermal analysis shows that both ion content of ionomer and functionality of ENR have significant influence on the self-repairing behavior of blends. The mobility of rubbery phases along with its interaction to ionomer phase in the blends significantly changes the mending capability of materials. The healing behavior of the materials has been discussed on the basis of their thermal, mechanical, and rheological tests for each materials. © 2011 American Chemical Society

  3. Metal separations using aqueous biphasic partitioning systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaiko, D.J.; Zaslavsky, B.; Rollins, A.N.

    1996-05-01

    Aqueous biphasic extraction (ABE) processes offer the potential for low-cost, highly selective separations. This countercurrent extraction technique involves selective partitioning of either dissolved solutes or ultrafine particulates between two immiscible aqueous phases. The extraction systems that the authors have studied are generated by combining an aqueous salt solution with an aqueous polymer solution. They have examined a wide range of applications for ABE, including the treatment of solid and liquid nuclear wastes, decontamination of soils, and processing of mineral ores. They have also conducted fundamental studies of solution microstructure using small angle neutron scattering (SANS). In this report they reviewmore » the physicochemical fundamentals of aqueous biphase formation and discuss the development and scaleup of ABE processes for environmental remediation.« less

  4. Understanding misfit strain releasing mechanisms via molecular dynamics simulations of CdTe growth on {112}zinc-blende CdS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiaowang; Chavez, Jose J.; Almeida, Sergio F.

    Molecular dynamics simulations have been used to analyse microstructures of CdTe films grown on {112} surfaces of zinc-blende CdS. Interestingly, CdTe films grow in <331> orientations as opposed to <112> epitaxial orientations. At the CdTe-{331}/CdS-{112} interface, however, there exists an axis that is parallel to the <110> orientation of both CdS and CdTe. It is the direction orthogonal to this <110> that becomes different, being <116> for CdTe and <111> for CdS, respectively. Missing CdTe-{110} planes are found along the <110> axis, suggesting that the misfit strain is released by the conventional misfit dislocation mechanism along this axis. In themore » orthogonal axis, the misfit strain is found to be more effectively released by the new grain orientation mechanism. Our finding is supported by literature experimental observations of the change of growth direction when Cd 0.96Zn 0.04Te films are deposited on GaAs. Lastly the analyses of energetics clearly demonstrate the cause for the formation of the new orientation, and the insights gained from our studies can help understand the grain structures experimentally observed in lattice mismatched systems.« less

  5. Understanding misfit strain releasing mechanisms via molecular dynamics simulations of CdTe growth on {112}zinc-blende CdS

    DOE PAGES

    Zhou, Xiaowang; Chavez, Jose J.; Almeida, Sergio F.; ...

    2016-07-25

    Molecular dynamics simulations have been used to analyse microstructures of CdTe films grown on {112} surfaces of zinc-blende CdS. Interestingly, CdTe films grow in <331> orientations as opposed to <112> epitaxial orientations. At the CdTe-{331}/CdS-{112} interface, however, there exists an axis that is parallel to the <110> orientation of both CdS and CdTe. It is the direction orthogonal to this <110> that becomes different, being <116> for CdTe and <111> for CdS, respectively. Missing CdTe-{110} planes are found along the <110> axis, suggesting that the misfit strain is released by the conventional misfit dislocation mechanism along this axis. In themore » orthogonal axis, the misfit strain is found to be more effectively released by the new grain orientation mechanism. Our finding is supported by literature experimental observations of the change of growth direction when Cd 0.96Zn 0.04Te films are deposited on GaAs. Lastly the analyses of energetics clearly demonstrate the cause for the formation of the new orientation, and the insights gained from our studies can help understand the grain structures experimentally observed in lattice mismatched systems.« less

  6. Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues.

    PubMed

    Wu, J Z; Herzog, W; Epstein, M

    1998-02-01

    The biphasic cartilage model proposed by Mow et al. (1980) has proven successful to capture the essential mechanical features of articular cartilage. In order to analyse the joint contact mechanics in real, anatomical joints, the cartilage model needs to be implemented into a suitable finite element code to approximate the irregular surface geometries of such joints. However, systematic and extensive evaluation of the capacity of commercial software for modelling the contact mechanics with biphasic cartilage layers has not been made. This research was aimed at evaluating the commercial finite element software ABAQUS for analysing biphasic soft tissues. The solutions obtained using ABAQUS were compared with those obtained using other finite element models and analytical solutions for three numerical tests: an unconfined indentation test, a test with the contact of a spherical cartilage surface with a rigid plate, and an axi-symmetric joint contact test. It was concluded that the biphasic cartilage model can be implemented into the commercial finite element software ABAQUS to analyse practical joint contact problems with biphasic articular cartilage layers.

  7. Biphasic Synergistic Gel Materials with Switchable Mechanics and Self-Healing Capacity.

    PubMed

    Zhao, Ziguang; Liu, Yuxia; Zhang, Kangjun; Zhuo, Shuyun; Fang, Ruochen; Zhang, Jianqi; Jiang, Lei; Liu, Mingjie

    2017-10-16

    A fabrication strategy for biphasic gels is reported, which incorporates high-internal-phase emulsions. Closely packed micro-inclusions within the elastic hydrogel matrix greatly improve the mechanical properties of the materials. The materials exhibit excellent switchable mechanics and shape-memory performance because of the switchable micro- inclusions that are incorporated into the hydrogel matrix. The produced materials demonstrated a self-healing capacity that originates from the noncovalent effect of the biphasic heteronetwork. The aforementioned characteristics suggest that the biphasic gels may serve as ideal composite gel materials with validity in a variety of applications, such as soft actuators, flexible devices, and biological materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A Structurally and Functionally Biomimetic Biphasic Scaffold for Intervertebral Disc Tissue Engineering

    PubMed Central

    Choy, Andrew Tsz Hang; Chan, Barbara Pui

    2015-01-01

    Tissue engineering offers high hopes for the treatment of intervertebral disc (IVD) degeneration. Whereas scaffolds of the disc nucleus and annulus have been extensively studied, a truly biomimetic and mechanically functional biphasic scaffold using naturally occurring extracellular matrix is yet to be developed. Here, a biphasic scaffold was fabricated with collagen and glycosaminoglycans (GAGs), two of the most abundant extracellular matrix components in the IVD. Following fabrication, the scaffold was characterized and benchmarked against native disc. The biphasic scaffold was composed of a collagen-GAG co-precipitate making up the nucleus pulposus-like core, and this was encapsulated in multiple lamellae of photochemically crosslinked collagen membranes comprising the annulus fibrosus-like lamellae. On mechanical testing, the height of our engineered disc recovered by ~82-89% in an annulus-independent manner, when compared with the 99% recovery exhibited by native disc. The annulus-independent nature of disc height recovery suggests that the fluid replacement function of the engineered nucleus pulposus core might mimic this hitherto unique feature of native disc. Biphasic scaffolds comprised of 10 annulus fibrosus-like lamellae had the best overall mechanical performance among the various designs owing to their similarity to native disc in most aspects, including elastic compliance during creep and recovery, and viscous compliance during recovery. However, the dynamic mechanical performance (including dynamic stiffness and damping factor) of all the biphasic scaffolds was similar to that of the native discs. This study contributes to the rationalized design and development of a biomimetic and mechanically viable biphasic scaffold for IVD tissue engineering. PMID:26115332

  9. Antibacterial and antioxidant properties of biosynthesized zinc oxide nanoparticles from Ceropegia candelabrum L. - An endemic species

    NASA Astrophysics Data System (ADS)

    Murali, M.; Mahendra, C.; Nagabhushan; Rajashekar, N.; Sudarshana, M. S.; Raveesha, K. A.; Amruthesh, K. N.

    2017-05-01

    Zinc oxide nanoparticles (ZnO-NPs) were synthesized for the first time from any of the species of Ceropegia. Presently, ZnO-NPs were synthesized from the leaf extract of Ceropegia candelabrum with zinc nitrate using a simple hydrothermal process. The synthesized ZnO-NPs showed an absorption peak at 320 nm which is one of the characteristic features of ZnO-NPs. The FT-IR characterization revealed a spectrum band at 551.93 cm- 1 corresponding to the functional group metal oxide. SEM images showed agglomeration of nanoparticles with a hexagonal shape. XRD results are in corroboration with SEM images as the synthesized particles were of hexagonal wurtzite shape and the size of the particles was in the range of 12-35 nm calculated using Scherrer's formula. The elemental analysis using EDS confirmed high zinc content of 70.48% stating that the process of biosynthesis of nanoparticles was carried out in accordance. The biosynthesized ZnO-NPs offered significant antibacterial potential against S. aureus, B. subtilis, E. coli and S. typhi. The antioxidant results revealed significant (p ≤ 0.05) RSA from 0% to 55.43% (IC50 = 95.09 μg mL- 1). The results affirm that biosynthesized ZnO-NPs can be used as an alternative to present-day chemical compounds.

  10. Morphology- and orientation-controlled gallium arsenide nanowires on silicon substrates.

    PubMed

    Ihn, Soo-Ghang; Song, Jong-In; Kim, Tae-Wook; Leem, Dong-Seok; Lee, Takhee; Lee, Sang-Geul; Koh, Eui Kwan; Song, Kyung

    2007-01-01

    GaAs nanowires were epitaxially grown on Si(001) and Si(111) substrates by using Au-catalyzed vapor-liquid-solid (VLS) growth in a solid source molecular beam epitaxy system. Scanning electron microscopy analysis revealed that almost all the GaAs nanowires were grown along <111> directions on both Si substrates for growth conditions investigated. The GaAs nanowires had a very uniform diameter along the growth direction. X-ray diffraction data and transmission electron microscopy analysis revealed that the GaAs<111> nanowires had a mixed crystal structure of the hexagonal wurtzite and the cubic zinc-blende. Current-voltage characteristics of junctions formed by the epitaxially grown GaAs nanowires and the Si substrate were investigated by using a current-sensing atomic force microscopy.

  11. Heterocrystal and bicrystal structures of ZnS nanowires synthesized by plasma enhanced chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Jie, J. S.; Zhang, W. J.; Jiang, Y.; Meng, X. M.; Zapien, J. A.; Shao, M. W.; Lee, S. T.

    2006-06-01

    ZnS nanowires with heterocrystal and bicrystal structures were successfully synthesized using the DC-plasma chemical vapour deposition (CVD) method. The heterocrystalline ZnS nanowires have the zinc blende (ZB) and wurtzite (WZ) zones aligned alternately in the transverse direction but without an obvious period. The bicrystal ZnS nanowires are composed of two ZB fractions separated by a clear grain boundary along the length. Significantly, the grain boundaries in both the heterocrystal and bicrystal structures are atomically sharp without any visible lattice distortion. The effects of plasma species, ion bombardment, and silicon impurities in the formation of these distinctive structures are discussed. A defect-induced red-shift and broadening of the band-gap emission are revealed in photoluminescence (PL) and cathodoluminescence (CL) measurements.

  12. Valence band offset of β-Ga2O3/wurtzite GaN heterostructure measured by X-ray photoelectron spectroscopy.

    PubMed

    Wei, Wei; Qin, Zhixin; Fan, Shunfei; Li, Zhiwei; Shi, Kai; Zhu, Qinsheng; Zhang, Guoyi

    2012-10-10

    A sample of the β-Ga2O3/wurtzite GaN heterostructure has been grown by dry thermal oxidation of GaN on a sapphire substrate. X-ray diffraction measurements show that the β-Ga2O3 layer was formed epitaxially on GaN. The valence band offset of the β-Ga2O3/wurtzite GaN heterostructure is measured by X-ray photoelectron spectroscopy. It is demonstrated that the valence band of the β-Ga2O3/GaN structure is 1.40 ± 0.08 eV.

  13. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Polar Mixing Optical Phonon Spectra in Wurtzite GaN Cylindrical Quantum Dots: Quantum Size and Dielectric Effects

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Liao, Jian-Shang

    2010-05-01

    The interface-optical-propagating (IO-PR) mixing phonon modes of a quasi-zero-dimensional (QoD) wurtzite cylindrical quantum dot (QD) structure are derived and studied by employing the macroscopic dielectric continuum model. The analytical phonon states of IO-PR mixing modes are given. It is found that there are two types of IO-PR mixing phonon modes, i.e. ρ-IO/z-PR mixing modes and the z-IO/ρ-PR mixing modes existing in QoD wurtzite QDs. And each IO-PR mixing modes also have symmetrical and antisymmetrical forms. Via a standard procedure of field quantization, the Fröhlich Hamiltonians of electron-(IO-PR) mixing phonons interaction are obtained. Numerical calculations on a wurtzite GaN cylindrical QD are performed. The results reveal that both the radial-direction size and the axial-direction size as well as the dielectric matrix have great influence on the dispersive frequencies of the IO-PR mixing phonon modes. The limiting features of dispersive curves of these phonon modes are discussed in depth. The phonon modes “reducing" behavior of wurtzite quantum confined systems has been observed obviously in the structures. Moreover, the degenerating behaviors of the IO-PR mixing phonon modes in wurtzite QoD QDs to the IO modes and PR modes in wurtzite Q2D QW and Q1D QWR systems are analyzed deeply from both of the viewpoints of physics and mathematics.

  14. Transfer matrix method solving interface optical phonons in wurtzite core-multishell nanowires of III-nitrides

    NASA Astrophysics Data System (ADS)

    Xue, Z. X.; Qu, Y.; Xie, H.; Ban, S. L.

    2016-12-01

    Within the framework of dielectric continuum and Loudon's uniaxial crystal models, the transfer matrix method (TMM) is developed to investigate interface optical phonons (IOPs) in cylindrical wurtzite core-multishell nanowires (CMSNWs) consisting of ternary mixed crystals (TMCs). The IOPs in GaN/InxGa1-xN/InyGa1-yN and GaN/InxGa1-xN/InyGa1-yN/InzGa1-zN CMSNWs are calculated as examples. The results show that there may be several types of IOPs existing in certain frequency regions in CMSNWs for a given component due to the phonon dispersion anisotropy in wurtzite nitrides. The IOPs are classified by possible combinations of the interfaces in CMSNWs. Furthermore, the dispersion relations and electro-static potentials of each kind of IOPs are discussed in detail. The dispersion relations of IOPs in CMSNWs is found to be the combination of that in each nearest two layer CSNW. It can explain the fact that the total branch number of IOPs obey the 2n rule. It is also found that the peak positions of electro-static potentials are decided by the layer component order from the inner layer to outside in CMSNWs. The results indicate that TMM for IOPs is available and can be commodiously extended to other cylindrical wurtzite III-nitride CMSNWs. Based on this method, one can further discuss the IOPs related photoelectric properties in nitride CMSNWs consisting of TMCs.

  15. Electrical and optical properties of molybdenum doped zinc oxide films prepared by reactive RF magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, R. Subba; Sreedhar, A.; Uthanna, S., E-mail: uthanna@rediffmail.com

    Molybdenum doped zinc oxide (MZO) films were deposited on to glass substrates held at temperatures in the range from 303 to 673 K by reactive RF magnetron sputtering method. The chemical composition, crystallographic structure and surface morphology, electrical and optical properties of the films were determined. The films contained the molybdenum of 2.7 at. % in ZnO. The films deposited at 303 K were of X-ray amorphous. The films formed at 473 K were of nanocrystalline in nature with wurtzite structure. The crystallite size of the films was increased with the increase of substrate temperature. The optical transmittance of the films was inmore » the visible range was 80–85%. The molybdenum (2.7 at %) doped zinc oxide films deposited at substrate temperature of 573 K were of nanocrystalline with electrical resistivity of 7.2×10{sup −3} Ωcm, optical transmittance of 85 %, optical band gap of 3.35 eV and figure of merit 30.6 Ω{sup −1}cm{sup −1}.« less

  16. A re-examination of the biphasic theory of skeletal muscle growth.

    PubMed Central

    Levine, A S; Hegarty, P V

    1977-01-01

    Because of the importance of fibre diameter measurements it was decided to re-evaluate the biphasic theory of skeletal muscle growth and development. This theory proposes an initial memophasic distribution of muscle fibres which changes to a biphasic distribution during development. The theory is based on observations made on certain muscles in mice, where two distinct populations of fibre diameters (20 and 40 micronm) contribute to the biphasic distribution. In the present investigation corss sections of frozen biceps brachii of mice in rigor mortis were examined. The rigor state was used to avoid complications produced by thaw-rigor contraction. The diameters of the outermost and innermost fibres were found to be significantly different. However, if the outer and inner fibres were combined to form one group, no significant difference between this group and other random groups was found. The distributions of all groups were monophasic. The diameters of isolated fibres from mice and rats also displayed a monophasic distribution. This evidence leads to the conclusion that the biphasic theory of muscle growth is untenable. Some of the variables which may occur in fibre size and shape are discussed. Images Fig. 1 PMID:858691

  17. Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamand, S.M., E-mail: soran.mamand@univsul.net; Omar, M.S.; Muhammad, A.J.

    2012-05-15

    Graphical abstract: Temperature dependence of calculated lattice thermal conductivity of Wurtzite GaN nanowires. Highlights: Black-Right-Pointing-Pointer A modified Callaway model is used to calculate lattice thermal conductivity of Wurtzite GaN nanowires. Black-Right-Pointing-Pointer A direct method is used to calculate phonon group velocity for these nanowires. Black-Right-Pointing-Pointer 3-Gruneisen parameter, surface roughness, and dislocations are successfully investigated. Black-Right-Pointing-Pointer Dislocation densities are decreases with the decrease of wires diameter. -- Abstract: A detailed calculation of lattice thermal conductivity of freestanding Wurtzite GaN nanowires with diameter ranging from 97 to 160 nm in the temperature range 2-300 K, was performed using a modified Callaway model.more » Both longitudinal and transverse modes are taken into account explicitly in the model. A method is used to calculate the Debye and phonon group velocities for different nanowire diameters from their related melting points. Effect of Gruneisen parameter, surface roughness, and dislocations as structure dependent parameters are successfully used to correlate the calculated values of lattice thermal conductivity to that of the experimentally measured curves. It was observed that Gruneisen parameter will decrease with decreasing nanowire diameters. Scattering of phonons is assumed to be by nanowire boundaries, imperfections, dislocations, electrons, and other phonons via both normal and Umklapp processes. Phonon confinement and size effects as well as the role of dislocation in limiting thermal conductivity are investigated. At high temperatures and for dislocation densities greater than 10{sup 14} m{sup -2} the lattice thermal conductivity would be limited by dislocation density, but for dislocation densities less than 10{sup 14} m{sup -2}, lattice thermal conductivity would be independent of that.« less

  18. Hydride VPE: the unexpected process for the fast growth of GaAs and GaN nanowires with record aspect ratio and polytypism-free crystalline structure

    NASA Astrophysics Data System (ADS)

    André, Yamina; Trassoudaine, Agnès.; Avit, Geoffrey; Lekhal, Kaddour; Ramdani, Mohammed R.; Leroux, Christine; Monier, Guillaume; Varenne, Christelle; Hoggan, Philip; Castelluci, Dominique; Bougerol, Catherine; Réveret, François; Leymarie, Joël.; Petit, Elodie; Dubrovskii, Vladimir G.; Gil, Evelyne

    2013-12-01

    Hydride Vapor Phase Epitaxy (HVPE) makes use of chloride III-Cl and hydride V-H3 gaseous growth precursors. It is known as a near-equilibrium process, providing the widest range of growth rates from 1 to more than 100 μm/h. When it comes to metal catalyst-assisted VLS (vapor-liquid-solid) growth, the physics of HVPE growth is maintained: high dechlorination frequency, high axial growth rate of nanowires (NWs) up to 170 μm/h. The remarkable features of NWs grown by HVPE are the untapered morphology with constant diameter and the stacking fault-free crystalline phase. Record pure zinc blende cubic phase for 20 μm long GaAs NWs with radii of 10 and 5 nm is shown. The absence of wurtzite phase in GaAs NWs grown by HVPE whatever the diameter is discussed with respect to surface energetic grounds and kinetics. Ni assisted, Ni-Au assisted and catalyst-free HVPE growth of wurtzite GaN NWs is also addressed. Micro-photoluminescence spectroscopy analysis revealed GaN nanowires of great optical quality, with a FWHM of 1 meV at 10 K for the neutral donor bound exciton transition.

  19. In-vitro antibacterial study of zinc oxide nanostructures on Streptococcus sobrinus

    NASA Astrophysics Data System (ADS)

    Bakhori, Siti Khadijah Mohd; Mahmud, Shahrom; Ann, Ling Chuo; Sirelkhatim, Amna; Hasan, Habsah; Mohamad, Dasmawati; Masudi, Sam'an Malik; Seeni, Azman; Rahman, Rosliza Abd

    2014-10-01

    Zinc oxide nanostructures were prepared using a pilot plant of zinc oxide boiling furnace. Generally, it produced two types of nanostructures different in morphology; one is rod-like shaped (ZnO-1) and a plate-like shape (ZnO-2). The properties of ZnO were studied by structural, optical and morphological using XRD, PL and FESEM respectively. The XRD patterns confirmed the wurtzite structures of ZnO with the calculated crystallite size of 41 nm (ZnO-1) and 42 nm (ZnO-2) using Scherrer formula. The NBE peaks were determined by photoluminescence spectra which reveal peak at 3.25 eV and 3.23 eV for ZnO-1 and ZnO-2 respectively. Prior to that, the morphologies for both ZnO-1 and ZnO-2 were demonstrated from FESEM micrographs. Subsequently the antibacterial study was conducted using in-vitro broth dilution technique towards a gram positive bacterium Streptococcus sobrinus (ATCC 33478) to investigate the level of antibacterial effect of zinc oxide nanostructures as antibacterial agent. Gradual increment of ZnO concentrations from 10-20 mM affected the inhibition level after twenty four hours of incubation. In conjunction with concentration increment of ZnO, the percentage inhibition towards Streptococcus sobrinus was also increased accordingly. The highest inhibition occurred at 20 mM of ZnO-1 and ZnO-2 for 98% and 77% respectively. It showed that ZnO has good properties as antibacterial agent and relevancy with data presented by XRD, PL and FESEM were determined.

  20. Absolute surface energy calculations of Wurtzite (0001)/(000-1): a study of ZnO and GaN

    NASA Astrophysics Data System (ADS)

    Zhang, Jingzhao; Zhang, Yiou; Tse, Kinfai; Deng, Bei; Xu, Hu; Zhu, Junyi

    The accurate absolute surface energies of (0001)/(000-1) surfaces of wurtzite structures are crucial in determining the thin film growth mode of important energy materials. However, the surface energies still remain to be solved due to the intrinsic difficulty of calculating dangling bond energy of asymmetrically bonded surface atoms. We used a pseudo-hydrogen passivation method to estimate the dangling bond energy and calculate the polar surfaces of ZnO and GaN. The calculations were based on the pseudo chemical potentials obtained from a set of tetrahedral clusters or simple pseudo-molecules, using density functional theory approaches, for both GGA and HSE. And the surface energies of (0001)/(000-1) surfaces of wurtzite ZnO and GaN we obtained showed relatively high self-consistencies. A wedge structure calculation with a new bottom surface passivation scheme of group I and group VII elements was also proposed and performed to show converged absolute surface energy of wurtzite ZnO polar surfaces. Part of the computing resources was provided by the High Performance Cluster Computing Centre, Hong Kong Baptist University. This work was supported by the start-up funding and direct Grant with the Project code of 4053134 at CUHK.

  1. Reinforcement of SBR/waste rubber powder vulcanizate with in situ generated zinc dimethacrylate

    NASA Astrophysics Data System (ADS)

    Wang, X. P.; Cheng, B. K.; Zhang, X.; Jia, D. M.

    2016-07-01

    Methyl acrylic acid/zinc oxide (MAA/ZnO) was introduced to modify styrene- butadiene rubber/waste rubber powder (SBR/WRP) composites by blending. The enhanced mechanical properties and processing ability were presumably originated from improved compatibility and interfacial interaction between WRP and the SBR matrix by the in situ polymerization of zinc dimethacrylate (ZDMA). A refined interface of the modified SBR/WRP composite was observed by scanning electron microscopy. The formation of ZDMA significantly increased the ionic bond content in the vulcanizate, resulting in exceptional mechanical performance. The comprehensive mechanical properties including tensile strength, tear strength and dynamic heat-building performance reached optimum values with 16 phr MAA.

  2. Valence band offset of β-Ga2O3/wurtzite GaN heterostructure measured by X-ray photoelectron spectroscopy

    PubMed Central

    2012-01-01

    A sample of the β-Ga2O3/wurtzite GaN heterostructure has been grown by dry thermal oxidation of GaN on a sapphire substrate. X-ray diffraction measurements show that the β-Ga2O3 layer was formed epitaxially on GaN. The valence band offset of the β-Ga2O3/wurtzite GaN heterostructure is measured by X-ray photoelectron spectroscopy. It is demonstrated that the valence band of the β-Ga2O3/GaN structure is 1.40 ± 0.08 eV. PMID:23046910

  3. Structural, optical, and magnetic studies of manganese-doped zinc oxide hierarchical microspheres by self-assembly of nanoparticles.

    PubMed

    Hao, Yao-Ming; Lou, Shi-Yun; Zhou, Shao-Min; Yuan, Rui-Jian; Zhu, Gong-Yu; Li, Ning

    2012-02-02

    In this study, a series of manganese [Mn]-doped zinc oxide [ZnO] hierarchical microspheres [HMSs] are prepared by hydrothermal method only using zinc acetate and manganese acetate as precursors and ethylene glycol as solvent. X-ray diffraction indicates that all of the as-obtained samples including the highest Mn (7 mol%) in the crystal lattice of ZnO have a pure phase (hexagonal wurtzite structure). A broad Raman spectrum from as-synthesized doping samples ranges from 500 to 600 cm-1, revealing the successful doping of paramagnetic Mn2+ ions in the host ZnO. Optical absorption analysis of the samples exhibits a blueshift in the absorption band edge with increasing dopant concentration, and corresponding photoluminescence spectra show that Mn doping suppresses both near-band edge UV emission and defect-related blue emission. In particular, magnetic measurements confirm robust room-temperature ferromagnetic behavior with a high Curie temperature exceeding 400 K, signifying that the as-formed Mn-doped ZnO HMSs will have immense potential in spintronic devices and spin-based electronic technologies.

  4. Nanoparticles of wurtzite aluminum nitride from the nut shells

    NASA Astrophysics Data System (ADS)

    Qadri, S. B.; Gorzkowski, E. P.; Rath, B. B.; Feng, C. R.; Amarasinghe, R.

    2016-11-01

    Nanoparticles of aluminum nitride were produced from a thermal treatment of a mixture of aluminum oxide (Al2O3) and shells of almond, cashew, coconuts, pistachio, and walnuts in a nitrogen atmosphere at temperatures in excess of 1450 °C. By selecting the appropriate ratios of each nut powder to Al2O3, it is shown that stoichiometric aluminum nitride can be produced by carbo-thermal reduction in nitrogen atmosphere. Using x-ray diffraction analysis, Raman scattering and Fourier Transform Infrared spectroscopy, it is demonstrated that aluminum nitride consists of pure wurtzite phase. Transmission electron microscopy showed the formation of nanoparticles and in some cases nanotubes of AlN.

  5. Electronic and mechanical properties of 5d transition metal mononitrides via first principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Erjun; Graduate School, Chinese Academy of Sciences, Beijing 100049; Wu Zhijian

    2008-10-15

    The electronic and mechanical properties of 5d transition metal mononitrides from LaN to AuN are systematically investigated by use of the density-functional theory. For each nitride, six structures are considered, i.e., rocksalt, zinc blende, CsCl, wurtzite, NiAs and WC structures. Among the considered structures, rocksalt structure is the most stable for LaN, HfN and AuN, WC structure for TaN, NiAs structure for WN, wurtzite structure for ReN, OsN, IrN and PtN. The most stable structure for each nitride is mechanically stable. The formation enthalpy increases from LaN to AuN. For LaN, HfN and TaN, the formation enthalpy is negative formore » all the considered structures, while from WN to AuN, except wurtzite structure in ReN, the formation enthalpy is positive. The calculated density of states shows that they are all metallic. ReN in NiAs structure has the largest bulk modulus, 418 GPa. The largest shear modulus 261 GPa is from TaN in WC structure. Trends are discussed. - Graphical abstract: Formation enthalpy per formula unit {delta}H (eV) for all the considered structures of 5d transition metal mononitrides MN (M=La-Au). It was shown that the formation enthalpy increases from LaN to AuN. The nitrides with negative values indicate that they can be synthesized experimentally at ambient conditions.« less

  6. Biphasic Dose Response in Low Level Light Therapy – An Update

    PubMed Central

    Huang, Ying-Ying; Sharma, Sulbha K; Carroll, James; Hamblin, Michael R

    2011-01-01

    Low-level laser (light) therapy (LLLT) has been known since 1967 but still remains controversial due to incomplete understanding of the basic mechanisms and the selection of inappropriate dosimetric parameters that led to negative studies. The biphasic dose-response or Arndt-Schulz curve in LLLT has been shown both in vitro studies and in animal experiments. This review will provide an update to our previous (Huang et al. 2009) coverage of this topic. In vitro mediators of LLLT such as adenosine triphosphate (ATP) and mitochondrial membrane potential show biphasic patterns, while others such as mitochondrial reactive oxygen species show a triphasic dose-response with two distinct peaks. The Janus nature of reactive oxygen species (ROS) that may act as a beneficial signaling molecule at low concentrations and a harmful cytotoxic agent at high concentrations, may partly explain the observed responses in vivo. Transcranial LLLT for traumatic brain injury (TBI) in mice shows a distinct biphasic pattern with peaks in beneficial neurological effects observed when the number of treatments is varied, and when the energy density of an individual treatment is varied. Further understanding of the extent to which biphasic dose responses apply in LLLT will be necessary to optimize clinical treatments. PMID:22461763

  7. Magnesium and zinc borate enhance osteoblastic differentiation of stem cells from human exfoliated deciduous teeth in vitro.

    PubMed

    Liu, Yao-Jen; Su, Wen-Ta; Chen, Po-Hung

    2018-01-01

    Various biocompatible and biodegradable scaffolds blended with biochemical signal molecules with adequate osteoinductive and osteoconductive properties have attracted significant interest in hard tissue engineering regeneration. We evaluated the distinct effects of magnesium borate, zinc borate, and boric acid blended into chitosan scaffold for osteogenic differentiation of stem cells from exfoliated deciduous teeth. Stem cells from exfoliated deciduous teeth cells are a potential source of functional osteoblasts for applications in bone tissue engineering, but the efficiency of osteoblastic differentiation is low, thereby significantly limiting their clinical applications. Divalent metal borates have potential function in bone remodeling because they can simulate bone formation and decrease bone resorption. These magnesium, zinc, and B ions can gradually be released into the culture medium from the scaffold and induce advanced osteoblastic differentiation from stem cells from exfoliated deciduous teeth. Stem cells from exfoliated deciduous teeth with magnesium borate or zinc borate as inducer demonstrated more osteoblastic differentiation after 21 days of culture. Differentiated cells exhibited activity of alkaline phosphatase, bone-related gene expression of collagen type I, runt-related transcription factor 2, osteopontin, osteocalcin, vascular endothelial growth factor, and angiopoietin-1, as noted via real-time polymerase chain reaction analysis, as well as significant deposits of calcium minerals. Divalent mental magnesium and zinc and nonmetal boron can be an effective inducer of osteogenesis for stem cells from exfoliated deciduous teeth. This experiment might provide useful inducers for osteoblastic differentiation of stem cells from exfoliated deciduous teeth for tissue engineering and bone repair.

  8. Spin-orbit coupling in GaN/AlGaN wurtzite quantum wells

    NASA Astrophysics Data System (ADS)

    Penteado, Poliana H.; Fu, J. Y.; Bernardes, Esmerindo; Egues, J. Carlos

    2012-02-01

    We investigate the spin-orbit coupling for electrons in wurtzite quantum wells with two subbands [1]. By folding down the 8x8 Kane model, accounting for the s-pz orbital mixing [2, 3] absent in zincblende structures, we derive an effective 2x2 Hamiltonian for the conduction electrons. In this derivation we consider the renormalization of the spinor component of the conduction band wave function, which is crucial to properly obtain the corresponding spin-orbit couplings. In addition to the Rashba-type term arising from the bulk inversion asymmetry of the wurtzite lattice, we obtain the usual linear in momentum Rashba term induced by the structural inversion asymmetry of the well and; interestingly, we also find a new Rashba-like contribution. The spin-orbit coupling parameters are obtained via a self-consistent calculation. For completeness, the Dresselhaus term is also included in our calculation. [4pt] [1] Rafael S. Calsaverini, Esmerindo Bernardes, J. Carlos Egues, and Daniel Loss, Phys. Rev. B 78, 155313 (2008). [0pt] [2] L. C. Lew Yan Voon, M. Willatzen, and M. Cardona, Phys. Rev. B 53, 10703 (1996). [0pt] [3] J. Y. Fu and M. W. Wu, J. Appl. Phys 104, 093712 (2008).

  9. Direct Band Gap Wurtzite Gallium Phosphide Nanowires

    PubMed Central

    2013-01-01

    The main challenge for light-emitting diodes is to increase the efficiency in the green part of the spectrum. Gallium phosphide (GaP) with the normal cubic crystal structure has an indirect band gap, which severely limits the green emission efficiency. Band structure calculations have predicted a direct band gap for wurtzite GaP. Here, we report the fabrication of GaP nanowires with pure hexagonal crystal structure and demonstrate the direct nature of the band gap. We observe strong photoluminescence at a wavelength of 594 nm with short lifetime, typical for a direct band gap. Furthermore, by incorporation of aluminum or arsenic in the GaP nanowires, the emitted wavelength is tuned across an important range of the visible light spectrum (555–690 nm). This approach of crystal structure engineering enables new pathways to tailor materials properties enhancing the functionality. PMID:23464761

  10. Co-precipitation synthesis of nano-composites consists of zinc and tin oxides coatings on glass with enhanced photocatalytic activity on degradation of Reactive Blue 160 KE2B.

    PubMed

    Habibi, Mohammad Hossein; Mardani, Maryam

    2015-02-25

    Nano-composite containing zinc oxide-tin oxide was obtained by a facile co-precipitation route using tin chloride tetrahydrate and zinc chloride as precursors and coated on glass by Doctor Blade deposition. The crystalline structure and morphology of composites were evaluated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The XRD results showed peaks relative to zinc oxide with hexagonal wurtzite structure and tin oxide with tetragonal structure. FESEM observations showed that the nano-composite consisted of aggregates of particles with an average particle size of 18 nm. The photocatalytic activity of the pure SnO2, pure ZnO, ZnSnO3-Zn2SnO4 and ZnO-SnO2 nano-structure thin films was examined using the degradation of a textile dye Reactive Blue 160 (KE2B). ZnO-SnO2 nano-composite showed enhanced photo-catalytic activity than the pure zinc oxide and tin oxide. The enhanced photo-catalytic activity of the nano-composite was ascribed to an improved charge separation of the photo-generated electron-hole pairs. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Biphasic decay of the Ca transient results from increased sarcoplasmic reticulum Ca leak

    PubMed Central

    Sankaranarayanan, Rajiv; Li, Yatong; Greensmith, David J.; Eisner, David A.

    2016-01-01

    Key points Ca leak from the sarcoplasmic reticulum through the ryanodine receptor (RyR) reduces the amplitude of the Ca transient and slows its rate of decay.In the presence of β‐adrenergic stimulation, RyR‐mediated Ca leak produces a biphasic decay of the Ca transient with a fast early phase and a slow late phase.Two forms of Ca leak have been studied, Ca‐sensitising (induced by caffeine) and non‐sensitising (induced by ryanodine) and both induce biphasic decay of the Ca transient.Only Ca‐sensitising leak can be reversed by traditional RyR inhibitors such as tetracaine.Ca leak can also induce Ca waves. At low levels of leak, waves occur. As leak is increased, first biphasic decay and then slowed monophasic decay is seen. The level of leak has major effects on the shape of the Ca transient. Abstract In heart failure, a reduction in Ca transient amplitude and contractile dysfunction can by caused by Ca leak through the sarcoplasmic reticulum (SR) Ca channel (ryanodine receptor, RyR) and/or decreased activity of the SR Ca ATPase (SERCA). We have characterised the effects of two forms of Ca leak (Ca‐sensitising and non‐sensitising) on calcium cycling and compared with those of SERCA inhibition. We measured [Ca2+]i with fluo‐3 in voltage‐clamped rat ventricular myocytes. Increasing SR leak with either caffeine (to sensitise the RyR to Ca activation) or ryanodine (non‐sensitising) had similar effects to SERCA inhibition: decreased systolic [Ca2+]i, increased diastolic [Ca2+]i and slowed decay. However, in the presence of isoproterenol, leak produced a biphasic decay of the Ca transient in the majority of cells while SERCA inhibition produced monophasic decay. Tetracaine reversed the effects of caffeine but not of ryanodine. When caffeine (1 mmol l−1) was added to a cell which displayed Ca waves, the wave frequency initially increased before waves disappeared and biphasic decay developed. Eventually (at higher caffeine concentrations), the

  12. An investigation into the role of polyethyleneimine in chemical bath deposition of zinc oxide nanowires

    NASA Astrophysics Data System (ADS)

    Eskandari, Alireza; Abdizadeh, Hossein; Pourshaban, Erfan; Golobostanfard, Mohammad Reza

    2018-01-01

    Zinc oxide nanowires are considered as promising materials for wide range of optoelectrical and chemical devices, thanks to their desirable structural and optoelectrical properties. Over the past decade, chemical bath deposition (CBD) has been widely used to synthesize these nanostructures due to its low cost and controllability. Since improving the aspect ratio and length of nanowires is a vital issue in growing one-dimensional nanostructures, the influence of polyethyleneimine (PEI) as a complexing and chelating agent on the structural, morphological, and optoelectrical properties of ZnO nanowires has been studied in this report. As-grown ZnO nanowires synthesized by mixing deionized water, zinc acetate dihydrate, hexamethylenetetramine, and PEI were characterized with field emission scanning electron microscope (FESEM), X-ray diffractometer (XRD), and photoluminescence spectroscopy (PL). FESEM results unambiguously show that increasing PEI concentration (from 0 to 0.2 g in 50 ml DI water) reduces the diameter and density of nanowires from ˜120 to 56 nm and from ˜85% to 65%, respectively. Interestingly, although adding more PEI decreases nanowires diameter, over-increasing of PEI brings about an inappropriate nanostructures growth. Moreover, XRD patterns demonstrate that all the samples have wurtzite structure with a preferred orientation along c-axis which may be improved or deteriorated by adding PEI into the chemical bath. Accordingly, it is crucial to optimize the amount of PEI in CBD method. Near-band edge (NBE) region in PL spectrum also confirms wide bandgap of ZnO (˜3.3 eV). In addition, comparing the appearance of PEI free with PEI assisted solutions show a considerable difference in their colors, which may be attributed to the formation of new chemical compounds. Considering these results, PEI plays a couple of determining roles in synthesizing ZnO nanowires; making nanowires thinner, with selectively absorption to the non-polar, lateral facets of

  13. Growth of different phases and morphological features of MnS thin films by chemical bath deposition: Effect of deposition parameters and annealing

    NASA Astrophysics Data System (ADS)

    Hannachi, Amira; Maghraoui-Meherzi, Hager

    2017-03-01

    Manganese sulfide thin films have been deposited on glass slides by chemical bath deposition (CBD) method. The effects of preparative parameters such as deposition time, bath temperature, concentration of precursors, multi-layer deposition, different source of manganese, different complexing agent and thermal annealing on structural and morphological film properties have been investigated. The prepared thin films have been characterized using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It exhibit the metastable forms of MnS, the hexagonal γ-MnS wurtzite phase with preferential orientation in the (002) plane or the cubic β-MnS zinc blende with preferential orientation in the (200) plane. Microstructural studies revealed the formation of MnS crystals with different morphologies, such as hexagons, spheres, cubes or flowers like.

  14. Electrospun Polymer Blend Nanofibers for Tunable Drug Delivery: The Role of Transformative Phase Separation on Controlling the Release Rate.

    PubMed

    Tipduangta, Pratchaya; Belton, Peter; Fábián, László; Wang, Li Ying; Tang, Huiru; Eddleston, Mark; Qi, Sheng

    2016-01-04

    Electrospun fibrous materials have a wide range of biomedical applications, many of them involving the use of polymers as matrices for incorporation of therapeutic agents. The use of polymer blends improves the tuneability of the physicochemical and mechanical properties of the drug loaded fibers. This also benefits the development of controlled drug release formulations, for which the release rate can be modified by altering the ratio of the polymers in the blend. However, to realize these benefits, a clear understanding of the phase behavior of the processed polymer blend is essential. This study reports an in depth investigation of the impact of the electrospinning process on the phase separation of a model partially miscible polymer blend, PVP K90 and HPMCAS, in comparison to other conventional solvent evaporation based processes including film casting and spin coating. The nanoscale stretching and ultrafast solvent removal of electrospinning lead to an enhanced apparent miscibility between the polymers, with the same blends showing micronscale phase separation when processed using film casting and spin coating. Nanoscale phase separation in electrospun blend fibers was confirmed in the dry state. Rapid, layered, macroscale phase separation of the two polymers occurred during the wetting of the fibers. This led to a biphasic drug release profile from the fibers, with a burst release from PVP-rich phases and a slower, more continuous release from HPMCAS-rich phases. It was noted that the model drug, paracetamol, had more favorable partitioning into the PVP-rich phase, which is likely to be a result of greater hydrogen bonding between PVP and paracetamol. This led to higher drug contents in the PVP-rich phases than the HPMCAS-rich phases. By alternating the proportions of the PVP and HPMCAS, the drug release rate can be modulated.

  15. Synthesis of Zinc Oxide Nanoparticles using Anthocyanin as a Capping Agent

    NASA Astrophysics Data System (ADS)

    Septiani, N. L. W.; Yuliarto, B.; Iqbal, M.; Nugraha

    2017-05-01

    Zinc Oxide nanoparticles have been successfully synthesized by utilizing anthocyanin as a capping agent by thermal decomposition of precursor route. The influence of the high and low concentrations of the anthocyanin to the shape and size of ZnO was investigated in this work. The anthocyanin was obtained from Indonesia black rice extract with methanol as a solvent. The crystallinity and morphology properties were characterized by X-Ray Diffractometer (XRD), and Scanning Electron Microscope (SEM), respectively. XRD result showed that ZnO was formed with good crystallinity without any second phase and had a hexagonal wurtzite crystal structure. SEM result revealed that ZnO with a low concentration of anthocyanin has a spherical shape with a uniform size of about 16 nm while ZnO with a high concentration of anthocyanin has a rod-like shape. The size of spherical ZnO in this work is smaller than ZnO from the same method of synthesis without anthocyanin (~30 nm).

  16. Hydroxyapatite/polylactide biphasic combination scaffold loaded with dexamethasone for bone regeneration.

    PubMed

    Son, Jun-Sik; Kim, Su-Gwan; Oh, Ji-Su; Appleford, Mark; Oh, Sunho; Ong, Joo L; Lee, Kyu-Bok

    2011-12-15

    This study presents a novel design of a ceramic/polymer biphasic combination scaffold that mimics natural bone structures and is used as a bone graft substitute. To mimic the natural bone structures, the outside cortical-like shells were composed of porous hydroxyapatite (HA) with a hollow interior using a polymeric template-coating technique; the inner trabecular-like core consisted of porous poly(D,L-lactic acid) (PLA) that was loaded with dexamethasone (DEX) and was directly produced using a particle leaching/gas forming technique to create the inner diameter of the HA scaffold. It was observed that the HA and PLA parts of the fabricated HA/PLA biphasic scaffold contained open and interconnected pore structures, and the boundary between both parts was tightly connected without any gaps. It was found that the structure of the combination scaffold was analogous to that of natural bone based on micro-computed tomography analysis. Additionally, the dense, uniform apatite layer was formed on the surface of the HA/PLA biphasic scaffold through a biomimetic process, and DEX was successfully released from the PLA of the biphasic scaffold over a 1-month period. This release caused human embryonic palatal mesenchyme cells to proliferate, differentiate, produce ECM, and form tissue in vitro. Therefore, it was concluded that this functionally graded scaffold is similar to natural bone and represents a potential bone-substitute material. Copyright © 2011 Wiley Periodicals, Inc.

  17. Continuous Flow Science in an Undergraduate Teaching Laboratory: Bleach-Mediated Oxidation in a Biphasic System

    ERIC Educational Resources Information Center

    Kairouz, Vanessa; Collins, Shawn K.

    2018-01-01

    An undergraduate teaching laboratory experiment involving a continuous flow, bleach-mediated oxidation of aldehydes under biphasic conditions was developed that allowed students to explore concepts of mixing or mass transport, solvent sustainability, biphasic reactions, phase transfer catalysis, and continuous flow chemistry.

  18. The added predictive value of biphasic events in ST analysis of the fetal electrocardiogram for intrapartum fetal monitoring.

    PubMed

    Becker, Jeroen H; Krikhaar, Anniek; Schuit, Ewoud; Mårtendal, Annika; Maršál, Karel; Kwee, Anneke; Visser, Gerard H A; Amer-Wåhlin, Isis

    2015-02-01

    To study the predictive value of biphasic ST-events for interventions for suspected fetal distress and adverse neonatal outcome, when using ST-analysis of the fetal electrocardiogram (FECG) for intrapartum fetal monitoring. Prospective cohort study. Three academic hospitals in Sweden. Women in labor with a high-risk singleton fetus in cephalic position beyond 36 weeks of gestation. In women in labor who were monitored with conventional cardiotocography, ST-waveform analysis was recorded and concealed. Traces with biphasic ST-events of the FECG (index) were compared with traces without biphasic events of the FECG. The ability of biphasic events to predict interventions for suspected fetal distress and adverse outcome was assessed using univariable and multivariable logistic regression analyses. Interventions for suspected fetal distress and adverse outcome (defined as presence of metabolic acidosis (i.e. umbilical cord pH <7.05 and base deficit in extracellular fluid >12 mmol), umbilical cord pH <7.00, 5-min Apgar score <7, admittance to neonatal intensive care unit or perinatal death). Although the presence of biphasic events of the FECG was associated with more interventions for fetal distress and an increased risk of adverse outcome compared with cases with no biphasic events, the presence of significant (i.e. intervention advised according to cardiotocography interpretation) biphasic events showed no independent association with interventions for fetal distress [odds ratio (OR) 1.71, 95% confidence interval (CI) 0.65-4.50] or adverse outcome (OR 1.96, 95% CI 0.74-5.24). The presence of significant biphasic events did not discriminate in the prediction of interventions for fetal distress or adverse outcome. Therefore, biphasic events in relation to ST-analysis monitoring during birth should be omitted if future studies confirm our findings. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.

  19. A top-down strategy to synthesize wurtzite Cu2ZnSnS4 nanocrystals by green chemistry.

    PubMed

    Sun, Yiwen; Hu, Zhengqiao; Zhang, Junjun; Wang, Li; Wu, Chunyan; Xu, Jun

    2016-07-28

    Green synthesis of metastable wurtzite Cu2ZnSnS4 nanocrystals through a top-down synthetic strategy is presented. Formation mechanisms associated with Kirkendall and etching effects are illustrated in detail. The nanocrystals exhibit remarkable photoluminescence properties at room temperature.

  20. Dissolved nutrients and atrazine removal by column-scale monophasic and biphasic rain garden model systems.

    PubMed

    Yang, Hanbae; McCoy, Edward L; Grewal, Parwinder S; Dick, Warren A

    2010-08-01

    Rain gardens are bioretention systems that have the potential to reduce peak runoff flow and improve water quality in a natural and aesthetically pleasing manner. We compared hydraulic performance and removal efficiencies of nutrients and atrazine in a monophasic rain garden design versus a biphasic design at a column-scale using simulated runoff. The biphasic rain garden was designed to increase retention time and removal efficiency of runoff pollutants by creating a sequence of water saturated to unsaturated conditions. We also evaluated the effect of C substrate availability on pollutant removal efficiency in the biphasic rain garden. Five simulated runoff events with various concentrations of runoff pollutants (i.e. nitrate, phosphate, and atrazine) were applied to the monophasic and biphasic rain gardens once every 5d. Hydraulic performance was consistent over the five simulated runoff events. Peak flow was reduced by approximately 56% for the monophasic design and 80% for the biphasic design. Both rain garden systems showed excellent removal efficiency of phosphate (89-100%) and atrazine (84-100%). However, significantly (p<0.001) higher removal of nitrate was observed in the biphasic (42-63%) compared to the monophasic rain garden (29-39%). Addition of C substrate in the form of glucose increased removal efficiency of nitrate significantly (p<0.001), achieving up to 87% removal at a treatment C/N ratio of 2.0. This study demonstrates the importance of retention time, environmental conditions (i.e. saturated/unsaturated conditions), and availability of C substrate for bioremediation of pollutants, especially nitrates, in rain gardens. (c) 2010 Elsevier Ltd. All rights reserved.

  1. Operation and Performance of a Biphase Turbine Power Plant at the Cerro Prieto Geothermal Field (Final Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hays, Lance G.

    2000-09-01

    A full scale, wellhead Biphase turbine was manufactured and installed with the balance of plant at Well 103 of the Cerro Prieto geothermal resource in Baja, California. The Biphase turbine was first synchronized with the electrical grid of Comision Federal de Electricidad on August 20, 1997. The Biphase power plant was operated from that time until May 23, 2000, a period of 2 years and 9 months. A total of 77,549 kWh were delivered to the grid. The power plant was subsequently placed in a standby condition pending replacement of the rotor with a newly designed, higher power rotor andmore » replacement of the bearings and seals. The maximum measured power output of the Biphase turbine, 808 kWe at 640 psig wellhead pressure, agreed closely with the predicted output, 840 kWe. When combined with the backpressure steam turbine the total output power from that flow would be increased by 40% above the power derived only from the flow by the present flash steam plant. The design relations used to predict performance and design the turbine were verified by these tests. The performance and durability of the Biphase turbine support the conclusion of the Economics and Application Report previously published, (Appendix A). The newly designed rotor (the Dual Pressure Rotor) was analyzed for the above power condition. The Dual Pressure Rotor would increase the power output to 2064 kWe by incorporating two pressure letdown stages in the Biphase rotor, eliminating the requirement for a backpressure steam turbine. The power plant availability was low due to deposition of solids from the well on the Biphase rotor and balance of plant problems. A great deal of plant down time resulted from the requirement to develop methods to handle the solids and from testing the apparatus in the Biphase turbine. Finally an online, washing method using the high pressure two-phase flow was developed which completely eliminated the solids problem. The availability of the Biphase turbine itself was

  2. A Rapid Deposition of Fluorine Doped Zinc Oxide Using the Atmospheric Pressure Chemical Vapour Deposition Method

    NASA Astrophysics Data System (ADS)

    Najafi, Navid; Rozati, S. M.

    2018-03-01

    Fluorine-doped zinc oxide (FZO) (ZnO:F) thin films were manufactured by atmospheric pressure chemical vapor deposition (APCVD) on glass substrates using zinc acetate dihydrate [C4H6O4Zn·2H2O, ZnAc] and ammonium fluoride (NH4F) as the source of fluorine with deposition duration of only 120 s for each sample. The effects of different amounts of fluorine as the dopant on the structural, electrical and optical properties of FZO thin films were investigated. The results show a polycrystalline structure at higher temperatures compared to amorphous structure at lower temperatures. The x-ray diffraction patterns of the polycrystalline films were identified as a hexagonal wurtzite structure of zinc oxide (ZnO) with the (002) preferred orientation. Also, the sheet resistance decreased from 17.8 MΩ/□ to 28.9 KΩ/□ for temperatures 325°C to 450°C, respectively. In order to further decrease the sheet resistance of the undoped ZnO thin films, fluorine was added using NH4F as the precursor, and again a drastic change in sheet resistance of only 17.7 Ω/□ was obtained. Based on the field emission scanning electron microscopy images, the fluorine concentration in CVD source is an important factor affecting the grain size and modifies electrical parameters. Ultraviolet-visible measurements revealed reduction of transparency of the layers with increasing fluorine as the dopant.

  3. Synthesis and characterization of biopolymer protected zinc sulphide nanoparticles

    NASA Astrophysics Data System (ADS)

    Senapati, U. S.; Sarkar, D.

    2015-09-01

    Zinc sulphide (ZnS) nanoparticles are prepared by a simple, economic and green synthesis route. X-ray diffraction patterns confirm zinc blend structure. ZnS formation is confirmed through chemical analysis by energy dispersive analysis of X-rays. Transmission electron microscopy reveals formation of nanosize with dimension in the range of 8-2 nm. Band gap of the nanocrystals is found to lie in the range of 4.51-4.65 eV. Photoluminescence study indicate defect like vacancies. The growth mechanism of ZnS nanoparticles is discussed with the help of Fourier transform infrared spectroscopy and thermogravimetric analysis. The materials show high dielectric constant compared to its bulk counterpart. The dielectric loss of the samples shows anomalous behaviour. The frequency dependent A.C. conductivity of the samples is discussed both in high and low frequency regimes. Current-voltage (I-V) characteristic performed under dark and under illumination, shows excellent light response of the material.

  4. Biphasic non-adrenergic, non-cholinergic relaxations of the mouse anococcygeus muscle.

    PubMed Central

    Gibson, A.; Yu, O.

    1983-01-01

    Trains of field stimulation of 60 s duration caused a biphasic relaxation of carbachol (50 microM)-induced tone in the mouse anococcygeus. The optimal pulse frequency and width were 10 Hz and 1 ms respectively. Tetrodotoxin (31, 124, and 310 nM) caused a dose-dependent reduction in the magnitude of both phases. Neither phase was affected by (+/-)-propranolol (1 microM), neostigmine (1 microM), (+)-tubocurarine (100 microM), or apamin (500 nM). Biphasic relaxations were observed in muscles from 6-hydroxydopamine pretreated mice. Haemolysed blood (10, 40, and 100 microliter/ml) reduced the magnitude of the first phase of nerve-induced relaxation to a greater extent than the second. This effect was reversible. Following a prolonged train of inhibitory nerve stimulation (10 Hz; 10 min) the magnitude of the first phase was reduced only slightly, but the second markedly. The possible relationships between the biphasic relaxation to field stimulation and putative non-adrenergic, non-cholinergic transmitters in the mouse anococcygeus are discussed. PMID:6652345

  5. Preventing gastric sieving by blending a solid/water meal enhances satiation in healthy humans.

    PubMed

    Marciani, Luca; Hall, Nicholas; Pritchard, Susan E; Cox, Eleanor F; Totman, John J; Lad, Mita; Hoad, Caroline L; Foster, Tim J; Gowland, Penny A; Spiller, Robin C

    2012-07-01

    Separation of solids and liquids within the stomach allows faster gastric emptying of liquids compared with solids, a phenomenon known as sieving. We tested the hypothesis that blending a solid and water meal would abolish sieving, preventing the early rapid decrease in gastric volume and thereby enhancing satiety. We carried out 2 separate studies. Study 1 was a 2-way, crossover, satiety study of 22 healthy volunteers who consumed roasted chicken and vegetables with a glass of water (1008 kJ) or the same blended to a soup. They completed satiety visual analogue scales at intervals for 3 h. Study 2 was a 2-way, crossover, mechanistic study of 18 volunteers who consumed the same meals and underwent an MRI to assess gastric emptying, gallbladder contraction, and small bowel water content (SBWC) at intervals for 3 h. In Study 1, the soup meal was associated with reduced hunger (P = 0.02). In Study 2, the volume of the gastric contents after the soup meal decreased more slowly than after the solid/liquid meal (P = 0.0003). The soup meal caused greater gallbladder contraction (P < 0.04). SBWC showed a biphasic response with an initial "gastric" phase during which SBWC was greater when the solid/liquid meal was consumed (P < 0.001) and a later "small bowel" phase when SBWC was greater when the soup meal was consumed (P < 0.01). Blending the solid/liquid meal to a soup delayed gastric emptying and increased the hormonal response to feeding, which may contribute to enhanced postprandial satiety.

  6. Evaluation of a biphasic in vitro dissolution test for estimating the bioavailability of carbamazepine polymorphic forms.

    PubMed

    Deng, Jia; Staufenbiel, Sven; Bodmeier, Roland

    2017-07-15

    The purpose of this study was to discriminate three crystal forms of carbamazepine (a BCS II drug) by in vitro dissolution testing and to correlate in vitro data with published in vivo data. A biphasic dissolution system (phosphate buffer pH6.8 and octanol) was used to evaluate the dissolution of the three polymorphic forms and to compare it with conventional single phase dissolution tests performed under sink and non-sink conditions. Similar dissolution profiles of three polymorphic forms were observed in the conventional dissolution test under sink conditions. Although a difference in dissolution was seen in the single phase dissolution test under non-sink conditions as well as in the aqueous phase of the biphasic test, little relevance for in vivo data was observed. In contrast, the biphasic dissolution system could discriminate between the different polymorphic forms in the octanol phase with a ranking of form III>form I>dihydrate form. This was in agreement with the in vivo performance. The dissolved drug available for oral absorption, which was dominated by dissolution and solution-mediated phase transformation, could be reflected in the biphasic dissolution test. Moreover, a good correlation was established between in vitro dissolution in the octanol phase of the biphasic test and in vivo pharmacokinetic data (R 2 =0.99). The biphasic dissolution method is a valuable tool to discriminate between different crystal forms in the formulations of poorly soluble drugs. Copyright © 2017. Published by Elsevier B.V.

  7. Solid solutions of gadolinium doped zinc oxide nanorods by combined microwave-ultrasonic irradiation assisted crystallization

    NASA Astrophysics Data System (ADS)

    Kiani, Armin; Dastafkan, Kamran; Obeydavi, Ali; Rahimi, Mohammad

    2017-12-01

    Nanocrystalline solid solutions consisting of un-doped and gadolinium doped zinc oxide nanorods were fabricated by a modified sol-gel process utilizing combined ultrasonic-microwave irradiations. Polyvinylpyrrolidone, diethylene glycol, and triethylenetetramine respectively as capping, structure directing, and complexing agents were used under ultrasound dynamic aging and microwave heating to obtain crystalline nanorods. Crystalline phase monitoring, lattice parameters and variation, morphology and shape, elemental analysis, functional groups, reducibility, and the oxidation state of emerged species were examined by PXRD, FESEM, TEM, EDX, FTIR, micro Raman, H2-TPR, and EPR techniques. Results have verified that irradiation mechanism of gelation and crystallization reduces the reaction time, augments the crystal quality, and formation of hexagonal close pack structure of Wurtzite morphology. Besides, dissolution of gadolinium within host lattice involves lattice deformation, unit cell distortion, and angular position variation. Structure related shape and growth along with compositional purity were observed through microscopic and spectroscopic surveys. Furthermore, TPR and EPR studies elucidated more detailed behavior upon exposure to the exerted irradiations and subsequent air-annealing including the formed oxidation states and electron trapping centers, presence of gadolinium, zinc, and oxygen disarrays and defects, as well as alteration in the host unit cell via gadolinium addition.

  8. Combined effects of an intense laser field, electric field and hydrostatic pressure on donor impurity states in zinc-blende InGaN/GaN quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Guangxin; Zhou, Rui; Duan, Xiuzhi

    2016-07-01

    The shallow-donor impurity states in cylindrical zinc-blende (ZB) In x Ga1- x N/GaN quantum dots (QDs) have been theoretically investigated, considering the combined effects of an intense laser field (ILF), an external electric field, and hydrostatic pressure. The numerical results show that for an on-center impurity in ZB In x Ga1- x N/GaN QD, (1) the ground-state binding energy of the donor impurity is a decreasing function of the laser-dressing parameter and/or the QD's height; (2) as the QD's radius decreases, the binding energy of the donor impurity increases at first, reaches a maximum value, and then drops rapidly; (3) the binding energy of the donor impurity is a decreasing function of the external electric field due to the Stark effect; (4) the binding energy of the donor impurity increases as the applied hydrostatic pressure becomes large. In addition, the position of the impurity ion was also found to have an important influence on the binding energy of the donor impurity. The physical reasons have been analyzed in detail.

  9. Polarization of stacking fault related luminescence in GaN nanorods

    NASA Astrophysics Data System (ADS)

    Pozina, G.; Forsberg, M.; Serban, E. A.; Hsiao, C.-L.; Junaid, M.; Birch, J.; Kaliteevski, M. A.

    2017-01-01

    Linear polarization properties of light emission are presented for GaN nanorods (NRs) grown along [0001] direction on Si(111) substrates by direct-current magnetron sputter epitaxy. The near band gap photoluminescence (PL) measured at low temperature for a single NR demonstrated an excitonic line at ˜3.48 eV and the stacking faults (SFs) related transition at ˜3.43 eV. The SF related emission is linear polarized in direction perpendicular to the NR growth axis in contrast to a non-polarized excitonic PL. The results are explained in the frame of the model describing basal plane SFs as polymorphic heterostructure of type II, where anisotropy of chemical bonds at the interfaces between zinc blende and wurtzite GaN subjected to in-built electric field is responsible for linear polarization parallel to the interface planes.

  10. Hole-mediated stabilization of cubic GaN.

    PubMed

    Dalpian, Gustavo M; Wei, Su-Huai

    2004-11-19

    We propose here a new approach to stabilize the cubic zinc-blende (ZB) phase by incorporation of impurities into a compound that has a hexagonal wurtzite (WZ) ground state. For GaN, we suggest that this can be achieved by adding 3d acceptors such as Zn, Mn, or Cu because the p-d repulsion between the 3d impurity levels and the valence band maximum is larger in the ZB phase than in the WZ phase. This makes the top of the valence states of the ZB structure higher than that of the WZ structure. As holes are created at the top of the valence states by the impurities, it will cost less energy for the holes to be created in the ZB structure, thus stabilizing this phase. Our first-principles total energy calculations confirm this novel idea.

  11. Microstructural changes in CdSe-coated ZnO nanowires evaluated by in situ annealing in transmission electron microscopy and x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Majidi, Hasti; Winkler, Christopher R.; Taheri, Mitra L.; Baxter, Jason B.

    2012-07-01

    We report on the crystallite growth and phase change of electrodeposited CdSe coatings on ZnO nanowires during annealing. Both in situ transmission electron microscopy (TEM) and x-ray diffraction (XRD) reveal that the nanocrystal size increases from ˜3 to ˜10 nm upon annealing at 350 °C for 1 h and then to more than 30 nm during another 1 h at 400 °C, exhibiting two distinct growth regimes. Nanocrystal growth occurs together with a structural change from zinc blende to wurtzite. The structural transition begins at 350 °C, which results in the formation of stacking faults. Increased crystallite size, comparable to the coating thickness, can improve charge separation in extremely thin absorber solar cells. We demonstrate a nearly two-fold improvement in power conversion efficiency upon annealing.

  12. Structural properties and defects of GaN crystals grown at ultra-high pressures: A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Gao, Tinghong; Li, Yidan; Xie, Quan; Tian, Zean; Chen, Qian; Liang, Yongchao; Ren, Lei; Hu, Xuechen

    2018-01-01

    The growth of GaN crystals at different pressures was studied by molecular dynamics simulation employing the Stillinger-Weber potential, and their structural properties and defects were characterized using the radial distribution function, the Voronoi polyhedron index method, and a suitable visualization technology. Crystal structures formed at 0, 1, 5, 10, and 20 GPa featured an overwhelming number of <4 0 0 0> Voronoi polyhedra, whereas amorphous structures comprising numerous disordered polyhedra were produced at 50 GPa. During quenching, coherent twin boundaries were easily formed between zinc-blende and wurtzite crystal structures in GaN. Notably, point defects usually appeared at low pressure, whereas dislocations were observed at high pressure, since the simultaneous growth of two crystal grains with different crystal orientations and their boundary expansion was hindered in the latter case, resulting in the formation of a dislocation between these grains.

  13. Shock-induced termination of reentrant cardiac arrhythmias: Comparing monophasic and biphasic shock protocols

    NASA Astrophysics Data System (ADS)

    Bragard, Jean; Simic, Ana; Elorza, Jorge; Grigoriev, Roman O.; Cherry, Elizabeth M.; Gilmour, Robert F.; Otani, Niels F.; Fenton, Flavio H.

    2013-12-01

    In this article, we compare quantitatively the efficiency of three different protocols commonly used in commercial defibrillators. These are based on monophasic and both symmetric and asymmetric biphasic shocks. A numerical one-dimensional model of cardiac tissue using the bidomain formulation is used in order to test the different protocols. In particular, we performed a total of 4.8 × 106 simulations by varying shock waveform, shock energy, initial conditions, and heterogeneity in internal electrical conductivity. Whenever the shock successfully removed the reentrant dynamics in the tissue, we classified the mechanism. The analysis of the numerical data shows that biphasic shocks are significantly more efficient (by about 25%) than the corresponding monophasic ones. We determine that the increase in efficiency of the biphasic shocks can be explained by the higher proportion of newly excited tissue through the mechanism of direct activation.

  14. Study of vibrational modes and specific heat of wurtzite phase of BN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Daljit, E-mail: daljit.jt@gmail.com; Sinha, M. M.

    2016-05-06

    In these days of nanotechnology the materials like BN is of utmost importance as in hexagonal phase it is among hardest materials. The phonon mode study of the materials is most important factor to find structural and thermodynamcal properties. To study the phonons de launey angular force (DAF) constant model is best suited as it involves many particle interactions. Therefore in this presentation we have studied the lattice dynamical properties and specific heat of BN in wurtzite phase using DAF model. The obtained results are in excellent agreement with existing results.

  15. Biphasic Effects of Alcohol on Delay and Probability Discounting

    PubMed Central

    Bidwell, L. Cinnamon; MacKillop, James; Murphy, James G.; Grenga, Andrea; Swift, Robert M.; McGeary, John E.

    2014-01-01

    Delay discounting and probability discounting are behavioral economic indices of impulsive and risky decision making that have been associated with addictive behavior, but the acute biphasic effects of alcohol on these decision-making processes are not well understood. This study sought to investigate the biphasic effects of alcohol on delay and probability discounting across the ascending and descending limbs of the breath alcohol concentration (BAC) curve, which are respectively characterized by the stimulant and sedative effects of alcohol. Delay and probability discounting were measured at four time points (Baseline, Ascending, Descending, and Endpoint) across the BAC curve at two target alcohol doses (40 mg/dl and 80 mg/dl) in healthy adults (N = 23 and 27, for both doses, respectively). There was no significant effect of alcohol on delay discounting at either dose. Alcohol significantly affected probability discounting, such that reduced discounting for uncertain rewards was evident during the descending limb of the BAC curve at the lower dose (p<.05) and during both the ascending and descending limb of the BAC curve at the higher dose (p<.05). Thus, alcohol resulted in increased risky decision making, particularly during the descending limb which is primarily characterized by the sedative effects of alcohol. These findings suggest that the biphasic effects of alcohol across the ascending and descending limbs of the BAC have differential effects on behavior related to decision-making for probabilistic, but not delayed, rewards. Parallels to and distinctions from previous findings are discussed. PMID:23750692

  16. A hybrid composite system of biphasic calcium phosphate granules loaded with hyaluronic acid-gelatin hydrogel for bone regeneration.

    PubMed

    Faruq, Omar; Kim, Boram; Padalhin, Andrew R; Lee, Gun Hee; Lee, Byong-Taek

    2017-10-01

    An ideal bone substitute should be made of biocompatible materials that mimic the structure, characteristics, and functions of natural bone. Many researchers have worked on the fabrication of different bone scaffold systems including ceramic-polymer hybrid system. In the present study, we incorporated hyaluronic acid-gelatin hydrogel to micro-channeled biphasic calcium phosphate granules as a carrier to improve cell attachment and proliferation through highly interconnected porous structure. This hybrid system is composed of ceramic biphasic calcium phosphate granules measuring 1 mm in diameter with seven holes and hyaluronic acid-gelatin hydrogel. This combination of biphasic calcium phosphate and hyaluronic acid-gelatin retained suitable characteristics for bone regeneration. The resulting scaffold had a porosity of 56% with a suitable pore sizes. The mechanical strength of biphasic calcium phosphate granule increased after loading hyaluronic acid-gelatin from 4.26 ± 0.43 to 6.57 ± 0.25 MPa, which is highly recommended for cancellous bone substitution. Swelling and degradation rates decreased in the hybrid scaffold compared to hydrogel due to the presence of granules in hybrid scaffold. In vitro cytocompatibility studies were observed by preosteoblasts (MC3T3-E1) cell line and the result revealed that biphasic calcium phosphate/hyaluronic acid-gelatin significantly increased cell growth and proliferation compared to biphasic calcium phosphate granules. Analysis of micro-computed tomography data and stained tissue sections from the implanted samples showed that the hybrid scaffold had good osseointegration and better bone formation in the scaffold one and two months postimplantation. Histological section confirmed the formation of dense collagenous tissue and new bone in biphasic calcium phosphate/hyaluronic acid-gelatin scaffolds at two months. Our study demonstrated that such hybrid biphasic calcium phosphate/hyaluronic acid-gelatin scaffold is a

  17. Characterization of individual stacking faults in a wurtzite GaAs nanowire by nanobeam X-ray diffraction.

    PubMed

    Davtyan, Arman; Lehmann, Sebastian; Kriegner, Dominik; Zamani, Reza R; Dick, Kimberly A; Bahrami, Danial; Al-Hassan, Ali; Leake, Steven J; Pietsch, Ullrich; Holý, Václav

    2017-09-01

    Coherent X-ray diffraction was used to measure the type, quantity and the relative distances between stacking faults along the growth direction of two individual wurtzite GaAs nanowires grown by metalorganic vapour epitaxy. The presented approach is based on the general property of the Patterson function, which is the autocorrelation of the electron density as well as the Fourier transformation of the diffracted intensity distribution of an object. Partial Patterson functions were extracted from the diffracted intensity measured along the [000\\bar{1}] direction in the vicinity of the wurtzite 00\\bar{1}\\bar{5} Bragg peak. The maxima of the Patterson function encode both the distances between the fault planes and the type of the fault planes with the sensitivity of a single atomic bilayer. The positions of the fault planes are deduced from the positions and shapes of the maxima of the Patterson function and they are in excellent agreement with the positions found with transmission electron microscopy of the same nanowire.

  18. Characterization of individual stacking faults in a wurtzite GaAs nanowire by nanobeam X-ray diffraction

    PubMed Central

    Davtyan, Arman; Lehmann, Sebastian; Zamani, Reza R.; Dick, Kimberly A.; Bahrami, Danial; Al-Hassan, Ali; Leake, Steven J.; Pietsch, Ullrich; Holý, Václav

    2017-01-01

    Coherent X-ray diffraction was used to measure the type, quantity and the relative distances between stacking faults along the growth direction of two individual wurtzite GaAs nanowires grown by metalorganic vapour epitaxy. The presented approach is based on the general property of the Patterson function, which is the autocorrelation of the electron density as well as the Fourier transformation of the diffracted intensity distribution of an object. Partial Patterson functions were extracted from the diffracted intensity measured along the direction in the vicinity of the wurtzite Bragg peak. The maxima of the Patterson function encode both the distances between the fault planes and the type of the fault planes with the sensitivity of a single atomic bilayer. The positions of the fault planes are deduced from the positions and shapes of the maxima of the Patterson function and they are in excellent agreement with the positions found with transmission electron microscopy of the same nanowire. PMID:28862620

  19. Shock-induced termination of reentrant cardiac arrhythmias: Comparing monophasic and biphasic shock protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bragard, Jean, E-mail: jbragard@unav.es; Simic, Ana; Elorza, Jorge

    2013-12-15

    In this article, we compare quantitatively the efficiency of three different protocols commonly used in commercial defibrillators. These are based on monophasic and both symmetric and asymmetric biphasic shocks. A numerical one–dimensional model of cardiac tissue using the bidomain formulation is used in order to test the different protocols. In particular, we performed a total of 4.8 × 10{sup 6} simulations by varying shock waveform, shock energy, initial conditions, and heterogeneity in internal electrical conductivity. Whenever the shock successfully removed the reentrant dynamics in the tissue, we classified the mechanism. The analysis of the numerical data shows that biphasic shocksmore » are significantly more efficient (by about 25%) than the corresponding monophasic ones. We determine that the increase in efficiency of the biphasic shocks can be explained by the higher proportion of newly excited tissue through the mechanism of direct activation.« less

  20. Mechanisms of the Wurtzite to Rocksalt Transformation in CdSe Nanocrystals

    NASA Astrophysics Data System (ADS)

    Grünwald, Michael; Rabani, Eran; Dellago, Christoph

    2006-06-01

    We study the pressure-driven phase transition from the four-coordinate wurtzite to the six-coordinate rocksalt structure in CdSe nanocrystals with molecular dynamics computer simulations. With an ideal gas as the pressure medium, we apply hydrostatic pressure to spherical and faceted nanocrystals ranging in diameter from 25 to 62 Å. In spherical crystals, the main mechanism of the transformation involves the sliding of (100) planes, but depending on the specific surface structure we also observe a second mechanism proceeding through the flattening of (100) planes. In faceted crystals, the transition proceeds via a five-coordinated hexagonal structure, which is stabilized at intermediate pressures due to dominant surface energetics.

  1. Development of zinc oxide nanoparticle by sonochemical method and study of their physical and optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Samreen Heena, E-mail: samreen.heena.khan@gmail.com; Suriyaprabha, R.; Pathak, Bhawana, E-mail: bhawana.pathak@cug.ac.in

    shaped nanoparticle under the size range of 50nm. The XRD data showed that the ZnO-3 which was synthesized using Zinc Nitrate Hexahydrate as precursor showed the hexagonal wurtzite crystal structure. The XRD data obtained were compared with the JCPDS standard data. The precursor Zinc Nitrate Hexahydrate (ZnO-3) showed the good yield, monodispersity and size of nanoparticle under the range of 50 nm. The ZnO nanoparticles synthesize using different precursor was found effective in order of ZnO-3, followed by ZnO-1 & ZnO-2. The Synthesized ZnO has wider application in environmental remediation and clean-up as a potential nano-catalyst.« less

  2. Preparation of highly infective Leishmania promastigotes by cultivation on SNB-9 biphasic medium.

    PubMed

    Grekov, Igor; Svobodová, Milena; Nohýnková, Eva; Lipoldová, Marie

    2011-12-01

    Protozoan hemoflagellates Leishmania are causative agents of leishmaniases and an important biological model for study of host-pathogen interaction. A wide range of methods of Leishmania cultivation on both biphasic and liquid media is available. Biphasic media are considered to be superior for initial isolation of the parasites and obtaining high promastigote infectivity; however, liquid media are more suitable for large-scale experiments. The aim of the present study was the adaptation and optimization of the cultivation of Leishmania promastigotes on a biphasic SNB-9 (saline-neopeptone-blood 9) medium that was originally developed for Trypanosoma cultivation and combines the advantages of biphasic and liquid media. SNB-9 medium is characterized with a large volume of the liquid phase, which facilitates the manipulation with the culture and provides parasite yields comparable to parasite yields on such liquid medium as Schneider's Insect Medium. We demonstrate that SNB-9 very considerably surpasses Schneider's Insect Medium in in vitro infectivity of the parasites. Additionally, we show that the ratio of apoptotic parasites, which are important for the infectivity of the inoculum, in Leishmania culture in SNB-9 is higher than in Leishmania culture in Schneider's Insect Medium. Thus, we demonstrate that the cultivation of Leishmania on SNB-9 reliably yields highly infective promastigotes suitable for experimental infection. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Zinc electrode and rechargeable zinc-air battery

    DOEpatents

    Ross, Jr., Philip N.

    1989-01-01

    An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.

  4. Exciplex electroluminescence and photoluminescence spectra of the new organic materials based on zinc complexes of sulphanylamino-substituted ligands.

    PubMed

    Kaplunov, Mikhail G; Krasnikova, Svetlana S; Nikitenko, Sergey L; Sermakasheva, Natalia L; Yakushchenko, Igor K

    2012-04-03

    We have investigated the electroluminescence spectra of the electroluminescent devices based on the new zinc complexes of amino-substituted benzothiazoles and quinolines containing the C-N-M-N chains in their chelate cycles. The spectra exhibit strong exciplex bands in the green to yellow region 540 to 590 nm due to interaction of the excited states of zinc complexes and triaryl molecules of the hole-transporting layer. For some devices, the intrinsic luminescence band of 460 nm in the blue region is also observed along with the exciplex band giving rise to an almost white color of the device emission. The exciplex band can be eliminated if the material of the hole-transporting layer is not a triarylamine derivative. We have also found the exciplex emission in the photoluminescence spectra of the films containing blends of zinc complex and triphenylamine material.

  5. Exciplex electroluminescence and photoluminescence spectra of the new organic materials based on zinc complexes of sulphanylamino-substituted ligands

    PubMed Central

    2012-01-01

    We have investigated the electroluminescence spectra of the electroluminescent devices based on the new zinc complexes of amino-substituted benzothiazoles and quinolines containing the C-N-M-N chains in their chelate cycles. The spectra exhibit strong exciplex bands in the green to yellow region 540 to 590 nm due to interaction of the excited states of zinc complexes and triaryl molecules of the hole-transporting layer. For some devices, the intrinsic luminescence band of 460 nm in the blue region is also observed along with the exciplex band giving rise to an almost white color of the device emission. The exciplex band can be eliminated if the material of the hole-transporting layer is not a triarylamine derivative. We have also found the exciplex emission in the photoluminescence spectra of the films containing blends of zinc complex and triphenylamine material. PMID:22471942

  6. Modeling and predictions of biphasic mechanosensitive cell migration altered by cell-intrinsic properties and matrix confinement.

    PubMed

    Pathak, Amit

    2018-04-12

    Motile cells sense the stiffness of their extracellular matrix (ECM) through adhesions and respond by modulating the generated forces, which in turn lead to varying mechanosensitive migration phenotypes. Through modeling and experiments, cell migration speed is known to vary with matrix stiffness in a biphasic manner, with optimal motility at an intermediate stiffness. Here, we present a two-dimensional cell model defined by nodes and elements, integrated with subcellular modeling components corresponding to mechanotransductive adhesion formation, force generation, protrusions and node displacement. On 2D matrices, our calculations reproduce the classic biphasic dependence of migration speed on matrix stiffness and predict that cell types with higher force-generating ability do not slow down on very stiff matrices, thus disabling the biphasic response. We also predict that cell types defined by lower number of total receptors require stiffer matrices for optimal motility, which also limits the biphasic response. For a cell type with robust biphasic migration on 2D surface, simulations in channel-like confined environments of varying width and height predict faster migration in more confined matrices. Simulations performed in shallower channels predict that the biphasic mechanosensitive cell migration response is more robust on 2D micro-patterns as compared to the channel-like 3D confinement. Thus, variations in the dimensionality of matrix confinement alters the way migratory cells sense and respond to the matrix stiffness. Our calculations reveal new phenotypes of stiffness- and topography-sensitive cell migration that critically depend on both cell-intrinsic and matrix properties. These predictions may inform our understanding of various mechanosensitive modes of cell motility that could enable tumor invasion through topographically heterogeneous microenvironments. © 2018 IOP Publishing Ltd.

  7. Pretreatment of Eucalyptus in biphasic system for furfural production and accelerated enzymatic hydrolysis.

    PubMed

    Zhang, Xiudong; Bai, Yuanyuan; Cao, Xuefei; Sun, Runcang

    2017-08-01

    Herein, an efficient biphasic pretreatment process was developed to improve the production of furfural (FF) and glucose from Eucalyptus. The influence of formic acid and NaCl on FF production from xylose in water and various biphasic systems was investigated. Results showed that the addition of formic acid and NaCl significantly promoted the FF yield, and the biphasic system of MIBK (methyl isobutyl ketone)/water exhibited the best performance for FF production. Then the Eucalyptus was pretreated in the MIBK/water system, and a maximum FF yield of 82.0% was achieved at 180°C for 60min. Surface of the pretreated Eucalyptus became relatively rough and loose, and its crystallinity index increased obviously due to the removal of hemicelluloses and lignin. The pretreated Eucalyptus samples showed much higher enzymatic hydrolysis rates (26.2-70.7%) than the raw Eucalyptus (14.5%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Supporting School Leaders in Blended Learning with Blended Learning

    ERIC Educational Resources Information Center

    Acree, Lauren; Gibson, Theresa; Mangum, Nancy; Wolf, Mary Ann; Kellogg, Shaun; Branon, Suzanne

    2017-01-01

    This study provides a mixed-methods case-study design evaluation of the Leadership in Blended Learning (LBL) program. The LBL program uses blended approaches, including face-to-face and online, to prepare school leaders to implement blended learning initiatives in their schools. This evaluation found that the program designers effectively…

  9. Mahan excitons in degenerate wurtzite InN: Photoluminescence spectroscopy and reflectivity measurements

    NASA Astrophysics Data System (ADS)

    Feneberg, Martin; Däubler, Jürgen; Thonke, Klaus; Sauer, Rolf; Schley, Pascal; Goldhahn, Rüdiger

    2008-06-01

    Unintentionally degenerately doped n -type hexagonal wurtzite InN samples were studied by using Fourier-transform photoluminescence spectroscopy and reflectivity measurements. We found in luminescence overlapping band acceptor (e,A0) transitions related to two different acceptors with a strong enhancement of their intensities close to the Fermi energy of the electrons recombining with the localized holes. Our explanation is in terms of a Fermi-edge singularity of the electrons due to strongly increased electron-hole scattering. Electron-hole pairs with such resonantly enhanced oscillator strengths have been referred to as Mahan excitons. Temperature-dependent reflectivity measurements confirm this interpretation.

  10. Biphasic Effect of Nitric Oxide on the Cardiac Voltage-dependent Anion Channel

    PubMed Central

    Cheng, Qunli; Sedlic, Filip; Pravdic, Danijel; Bosnjak, Zeljko J.; Kwok, Wai-Meng

    2010-01-01

    Nitric oxide (NO˙) effects on the cardiac mitochondrial voltage-dependent anion channel (VDAC) are unknown. The effects of exogenous NO˙ on VDAC purified from rat hearts were investigated in this study. When incorporated into lipid bilayers, VDAC was inhibited directly by an NO˙ donor, PAPA NONOate, in a concentration-dependent biphasic manner. This was prevented by an NO˙ scavenger, PTIO. The effect paralleled that of NO˙ in delaying the opening of the mitochondrial permeability transition (PT) pore. These biphasic effects on the cardiac VDAC and the PT pore reveal a tandem impact of NO˙ on the two mitochondrial entities. PMID:21156174

  11. The electronic structures of AlN and InN wurtzite nanowires

    NASA Astrophysics Data System (ADS)

    Xiong, Wen; Li, Dong-Xiao

    2017-07-01

    We derive the relations between the analogous seven Luttinger-Kohn parameters and six Rashba-Sheka-Pikus parameters for wurtzite semiconductors, which can be used to investigate the electronic structures of some wurtzite semiconductors such as AlN and InN materials, including their low-dimensional structures. As an example, the electronic structures of AlN and InN nanowires are calculated by using the derived relations and six-band effective-mass k · p theory. Interestingly, it is found that the ground hole state of AlN nanowires is always a pure S state whether the radius R is small (1 nm) or large (6 nm), and the ground hole state only contains | Z 〉 Bloch orbital component. Therefore, AlN nanowires is the ideal low-dimensional material for the production of purely linearly polarized π light, unlike ZnO nanowires, which emits plane-polarized σ light. However, the ground hole state of InN nanowires can be tuned from a pure S state to a mixed P state when the radius R is larger than 2.6 nm, which will make the polarized properties of the lowest optical transition changes from linearly polarized π light to plane-polarized σ light. Meanwhile, the valence band structures of InN nanowires will present strong band-crossings when the radius R increases to 6 nm, and through the detail analysis of possible transitions of InN nanowires at the Γ point, we find some of the neighbor optical transitions are almost degenerate, because the spin-orbit splitting energy of InN material is only 0.001 eV. Therefore, it is concluded that the electronic structures and optical properties of InN nanowires present great differences with that of AlN nanowires.

  12. Nucleation and growth of zinc oxide nanorods directly on metal wire by sonochemical method.

    PubMed

    Rayathulhan, Ruzaina; Sodipo, Bashiru Kayode; Aziz, Azlan Abdul

    2017-03-01

    ZnO nanorods were directly grown on four different wires (silver, nickel, copper, and tungsten) using sonochemical method. Zinc nitrate hexahydrate and hexamethylenetetramine (HMT) were used as precursors. Influence of growth parameters such as precursors' concentration and ultrasonic power on the grown nanorods were determined. The results demonstrated that the precursor concentration affected the growth structure and density of the nanorods. The morphology, distribution, and orientation of nanorods changed as the ultrasonic power changed. Nucleation of ZnO nanorods on the wire occurred at lower ultrasonic power and when the power increased, the formation and growth of ZnO nanorods on the wires were initiated. The best morphology, size, distribution, and orientation of the nanorods were observed on the Ag wire. The presence of single crystal nanorod with hexagonal shaped was obtained. This shape indicates that the ZnO nanorods corresponded to the hexagonal wurtzite structure with growth preferential towards the (002) direction. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Enhancing productivity for cascade biotransformation of styrene to (S)-vicinal diol with biphasic system in hollow fiber membrane bioreactor.

    PubMed

    Gao, Pengfei; Wu, Shuke; Praveen, Prashant; Loh, Kai-Chee; Li, Zhi

    2017-03-01

    Biotransformation is a green and useful tool for sustainable and selective chemical synthesis. However, it often suffers from the toxicity and inhibition from organic substrates or products. Here, we established a hollow fiber membrane bioreactor (HFMB)-based aqueous/organic biphasic system, for the first time, to enhance the productivity of a cascade biotransformation with strong substrate toxicity and inhibition. The enantioselective trans-dihydroxylation of styrene to (S)-1-phenyl-1,2-ethanediol, catalyzed by Escherichia coli (SSP1) coexpressing styrene monooxygenase and an epoxide hydrolase, was performed in HFMB with organic solvent in the shell side and aqueous cell suspension in the lumen side. Various organic solvents were investigated, and n-hexadecane was found as the best for the HFMB-based biphasic system. Comparing to other reported biphasic systems assisted by HFMB, our system not only shield much of the substrate toxicity but also deflate the product recovery burden in downstream processing as the majority of styrene stayed in organic phase while the diol product mostly remained in the aqueous phase. The established HFMB-based biphasic system enhanced the production titer to 143 mM, being 16-fold higher than the aqueous system and 1.6-fold higher than the traditional dispersive partitioning biphase system. Furthermore, the combination of biphasic system with HFMB prevents the foaming and emulsification, thus reducing the burden in downstream purification. HFMB-based biphasic system could serve as a suitable platform for enhancing the productivity of single-step or cascade biotransformation with toxic substrates to produce useful and valuable chemicals.

  14. Pressure-Dependent Photoluminescence Study of Wurtzite InP Nanowires.

    PubMed

    Chauvin, Nicolas; Mavel, Amaury; Patriarche, Gilles; Masenelli, Bruno; Gendry, Michel; Machon, Denis

    2016-05-11

    The elastic properties of InP nanowires are investigated by photoluminescence measurements under hydrostatic pressure at room temperature and experimentally deduced values of the linear pressure coefficients are obtained. The pressure-induced energy shift of the A and B transitions yields a linear pressure coefficient of αA = 88.2 ± 0.5 meV/GPa and αB = 89.3 ± 0.5 meV/GPa with a small sublinear term of βA = βB = -2.7 ± 0.2 meV/GPa(2). Effective hydrostatic deformation potentials of -6.12 ± 0.04 and -6.2 ± 0.04 eV are derived from the results for the A and B transitions, respectively. A decrease of the integrated intensity is observed above 0.5 GPa and is interpreted as a carrier transfer from the first to the second conduction band of the wurtzite InP.

  15. Cell–material interactions on biphasic polyurethane matrix

    PubMed Central

    Dicesare, Patrick; Fox, Wade M.; Hill, Michael J.; Krishnan, G. Rajesh; Yang, Shuying; Sarkar, Debanjan

    2013-01-01

    Cell–matrix interaction is a key regulator for controlling stem cell fate in regenerative tissue engineering. These interactions are induced and controlled by the nanoscale features of extracellular matrix and are mimicked on synthetic matrices to control cell structure and functions. Recent studies have shown that nanostructured matrices can modulate stem cell behavior and exert specific role in tissue regeneration. In this study, we have demonstrated that nanostructured phase morphology of synthetic matrix can control adhesion, proliferation, organization and migration of human mesenchymal stem cells (MSCs). Nanostructured biodegradable polyurethanes (PU) with segmental composition exhibit biphasic morphology at nanoscale dimensions and can control cellular features of MSCs. Biodegradable PU with polyester soft segment and hard segment composed of aliphatic diisocyanates and dipeptide chain extender were designed to examine the effect polyurethane phase morphology. By altering the polyurethane composition, morphological architecture of PU was modulated and its effect was examined on MSC. Results show that MSCs can sense the nanoscale morphology of biphasic polyurethane matrix to exhibit distinct cellular features and, thus, signifies the relevance of matrix phase morphology. The role of nanostructured phases of a synthetic matrix in controlling cell–matrix interaction provides important insights for regulation of cell behavior on synthetic matrix and, therefore, is an important tool for engineering tissue regeneration. PMID:23255285

  16. A pilot trial of square biphasic pulse deep brain stimulation for dystonia: The BIP dystonia study.

    PubMed

    Almeida, Leonardo; Martinez-Ramirez, Daniel; Ahmed, Bilal; Deeb, Wissam; Jesus, Sol De; Skinner, Jared; Terza, Matthew J; Akbar, Umer; Raike, Robert S; Hass, Chris J; Okun, Michael S

    2017-04-01

    Dystonia often has inconsistent benefits and requires more energy-demanding DBS settings. Studies suggest that squared biphasic pulses could provide significant clinical benefit; however, dystonia patients have not been explored. To assess safety and tolerability of square biphasic DBS in dystonia patients. This study included primary generalized or cervical dystonia patients with bilateral GPi DBS. Square biphasic pulses were implemented and patients were assessed at baseline, immediately postwashout, post-30-minute washout, 1 hour post- and 2 hours postinitiation of investigational settings. Ten participants completed the study. There were no patient-reported or clinician-observed side effects. There was improvement across time on the Toronto Western Spasmodic Torticollis Rating Scale (χ 2  = 10.7; P = 0.031). Similar improvement was detected in objective gait measurements. Square biphasic stimulation appears safe and feasible in dystonia patients with GPi DBS. Further studies are needed to evaluate possible effectiveness particularly in cervical and gait features. © 2016 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  17. Fabrication and tritium release property of Li2TiO3-Li4SiO4 biphasic ceramics

    NASA Astrophysics Data System (ADS)

    Yang, Mao; Ran, Guangming; Wang, Hailiang; Dang, Chen; Huang, Zhangyi; Chen, Xiaojun; Lu, Tiecheng; Xiao, Chengjian

    2018-05-01

    Li2TiO3-Li4SiO4 biphasic ceramic pebbles have been developed as an advanced tritium breeder due to the potential to combine the advantages of both Li2TiO3 and Li4SiO4. Wet method was developed for the pebble fabrication and Li2TiO3-Li4SiO4 biphasic ceramic pebbles were successfully prepared by wet method using the powders synthesized by hydrothermal method. The tritium release properties of the Li2TiO3-Li4SiO4 biphasic ceramic pebbles were evaluated. The biphasic pebbles exhibited good tritium release property at low temperatures and the tritium release temperature was around 470 °C. Because of the isotope exchange reaction between H2 and tritium, the addition of 0.1%H2 to purge gas He could significantly enhance the tritium gas release and the fraction of molecular form of tritium increased from 28% to 55%. The results indicate that the Li2TiO3-Li4SiO4 biphasic ceramic pebbles fabricated by wet method exhibit good tritium release property and hold promising potential as advanced breeder pebbles.

  18. Zinc Absorption by Young Adults from Supplemental Zinc Citrate Is Comparable with That from Zinc Gluconate and Higher than from Zinc Oxide123

    PubMed Central

    Wegmüller, Rita; Tay, Fabian; Zeder, Christophe; Brnić, Marica; Hurrell, Richard F.

    2014-01-01

    The water-soluble zinc salts gluconate, sulfate, and acetate are commonly used as supplements in tablet or syrup form to prevent zinc deficiency and to treat diarrhea in children in combination with oral rehydration. Zinc citrate is an alternative compound with high zinc content, slightly soluble in water, which has better sensory properties in syrups but no absorption data in humans. We used the double-isotope tracer method with 67Zn and 70Zn to measure zinc absorption from zinc citrate given as supplements containing 10 mg of zinc to 15 healthy adults without food and compared absorption with that from zinc gluconate and zinc oxide (insoluble in water) using a randomized, double-masked, 3-way crossover design. Median (IQR) fractional absorption of zinc from zinc citrate was 61.3% (56.6–71.0) and was not different from that from zinc gluconate with 60.9% (50.6–71.7). Absorption from zinc oxide at 49.9% (40.9–57.7) was significantly lower than from both other supplements (P < 0.01). Three participants had little or no absorption from zinc oxide. We conclude that zinc citrate, given as a supplement without food, is as well absorbed by healthy adults as zinc gluconate and may thus be a useful alternative for preventing zinc deficiency and treating diarrhea. The more insoluble zinc oxide is less well absorbed when given as a supplement without food and may be minimally absorbed by some individuals. This trial was registered at clinicaltrials.gov as NCT01576627. PMID:24259556

  19. Zinc lozenges and the common cold: a meta-analysis comparing zinc acetate and zinc gluconate, and the role of zinc dosage.

    PubMed

    Hemilä, Harri

    2017-05-01

    To compare the efficacy of zinc acetate lozenges with zinc gluconate lozenges in common cold treatment and to examine the dose-dependency of the effect. Meta-analysis. Placebo-controlled zinc lozenge trials, in which the zinc dose was > 75 mg/day. The pooled effect of zinc lozenges on common cold duration was calculated by using inverse-variance random-effects method. Seven randomised trials with 575 participants with naturally acquired common colds. Duration of the common cold. The mean common cold duration was 33% (95% CI 21% to 45%) shorter for the zinc groups of the seven included trials. Three trials that used lozenges composed of zinc acetate found that colds were shortened by 40% and four trials that used zinc gluconate by 28%. The difference between the two salts was not significant: 12 percentage points (95% CI: -12 to + 36). Five trials used zinc doses of 80-92 mg/day, common cold duration was reduced by 33%, and two trials used zinc doses of 192-207 mg/day and found an effect of 35%. The difference between the high-dose and low-dose zinc trials was not significant: 2 percentage points (95% CI: -29 to + 32). Properly composed zinc gluconate lozenges may be as effective as zinc acetate lozenges. There is no evidence that zinc doses over 100 mg/day might lead to greater efficacy in the treatment of the common cold. Common cold patients may be encouraged to try zinc lozenges for treating their colds. The optimal lozenge composition and dosage scheme need to be investigated further.

  20. Development of modified-release tablets of zolpidem tartrate by biphasic quick/slow delivery system.

    PubMed

    Mahapatra, Anjan Kumar; Sameeraja, N H; Murthy, P N

    2015-06-01

    Zolpidem tartrate is a non-benzodiazepine analogue of imidazopyridine of sedative and hypnotic category. It has a short half-life with usual dosage regimen being 5 mg, two times a day, or 10 mg, once daily. The duration of action is considered too short in certain circumstances. Thus, it is desirable to lengthen the duration of action. The formulation design was implemented by preparing extended-release tablets of zolpidem tartrate using the biphasic delivery system technology, where sodium starch glycolate acts as a superdisintegrant in immediate-release part and hydroxypropyl methyl cellulose as a release retarding agent in extended-release core. Tablets were prepared by direct compression. Both the core and the coat contained the drug. The pre-compression blends were evaluated for angle of repose, bulk density, and compressibility index. The tablets were evaluated for thickness, hardness, weight variation test, friability, and in vitro release studies. No interaction was observed between zolpidem tartrate and excipients from the Fourier transform infrared spectroscopy and differential scanning calorimetry analysis. The results of all the formulations prepared were compared with reference product Stilnoct®. Optimized formulations showed release patterns that match the United States Pharmacopeia (USP) guidelines for zolpidem tartrate extended-release tablets. The mechanism of drug release was studied using different mathematical models, and the optimized formulation has shown Fickian diffusion. Accelerated stability studies were performed on the optimized formulation.

  1. First principles study of structural stability, electronic structure and mechanical properties of ReN and TcN

    NASA Astrophysics Data System (ADS)

    Rajeswarapalanichamy, R.; Kavitha, M.; Sudha Priyanga, G.; Iyakutti, K.

    2015-03-01

    The crystal structure, structural stability, electronic and mechanical properties of ReN and TcN are investigated using first principles calculations. We have considered five different crystal structures: NaCl, zinc blende (ZB), NiAs, tungsten carbide (WC) and wurtzite (WZ). Among these ZB phase is found to be the lowest energy phase for ReN and TcN at normal pressure. Pressure induced structural phase transitions from ZB to WZ phase at 214 GPa in ReN and ZB to NiAs phase at 171 GPa in TcN are predicted. The electronic structure reveals that both ReN and TcN are metallic in nature. The computed elastic constants indicate that both the nitrides are mechanically stable. As ReN in NiAs phase has high bulk and shear moduli and low Poisson's ratio, it is found to be a potential ultra incompressible super hard material.

  2. Dietary phytate, zinc and hidden zinc deficiency.

    PubMed

    Sandstead, Harold H; Freeland-Graves, Jeanne H

    2014-10-01

    Epidemiological data suggest at least one in five humans are at risk of zinc deficiency. This is in large part because the phytate in cereals and legumes has not been removed during food preparation. Phytate, a potent indigestible ligand for zinc prevents it's absorption. Without knowledge of the frequency of consumption of foods rich in phytate, and foods rich in bioavailable zinc, the recognition of zinc deficiency early in the illness may be difficult. Plasma zinc is insensitive to early zinc deficiency. Serum ferritin concentration≤20μg/L is a potential indirect biomarker. Early effects of zinc deficiency are chemical, functional and may be "hidden". The clinical problem is illustrated by 2 studies that involved US Mexican-American children, and US premenopausal women. The children were consuming home diets that included traditional foods high in phytate. The premenopausal women were not eating red meat on a regular basis, and their consumption of phytate was mainly from bran breakfast cereals. In both studies the presence of zinc deficiency was proven by functional responses to controlled zinc treatment. In the children lean-mass, reasoning, and immunity were significantly affected. In the women memory, reasoning, and eye-hand coordination were significantly affected. A screening self-administered food frequency questionnaire for office might help caregiver's identify patients at risk of zinc deficiency. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. HIV-1 dynamics revisited: biphasic decay by cytotoxic T lymphocyte killing?

    PubMed Central

    Arnaout, R A; Nowak, M A; Wodarz, D

    2000-01-01

    The biphasic decay of blood viraemia in patients being treated for human immunodeficiency virus type 1 (HIV-1) infection has been explained as the decay of two distinct populations of cells: the rapid death of productively infected cells followed by the much slower elimination of a second population the identity of which remains unknown. Here we advance an alternative explanation based on the immune response against a single population of infected cells. We show that the biphasic decay can be explained simply, without invoking multiple compartments: viral load falls quickly while cytotoxic T lymphocytes (CTL) are still abundant, and more slowly as CTL disappear. We propose a method to test this idea, and develop a framework that is readily applicable to treatment of other infections. PMID:10972131

  4. Nano/microstructure and optical properties of ZnO particles precipitated from zinc acetylacetonate

    NASA Astrophysics Data System (ADS)

    Petrović, Željka; Ristić, Mira; Musić, Svetozar; Fabián, Martin

    2015-06-01

    The influence of experimental conditions on the nano/microstructure and optical properties of ZnO particles produced by rapid hydrolysis of zinc acetylacetonate, followed by aging of the precipitation system at 160 °C, was investigated. Samples were characterized by XRD, FE scanning electron microscopy (FE-SEM), FT-IR, UV/Vis/NIR and photoluminescence (PL) spectroscopies. XRD patterns of all samples were assigned to the hexagonal ZnO phase (wurtzite-type), as well as the corresponding FT-IR spectra. FE-SEM inspection showed a high dependence of the ZnO nano/microstructure on the chemical composition of the reaction mixture and autoclaving time after the rapid hydrolysis of zinc acetylacetonate. Microstructural differences were noticed between C2H5OH/H2O and H2O media, as well as under the influence of NH4OH addition. Measurements of nanocrystallite sizes showed no significant preferential orientation in the (1 0 0) and (0 0 2) directions relative to the (1 0 1) and (1 1 0) directions. Somewhat smaller crystallite sizes were noticed for ZnO samples synthesized by adding the NH4OH solution. Dissolution/recrystallization of ZnO particles played an important role in the formation of different ZnO nano/microstructures. The band gap values for prepared ZnO samples were calculated on the basis of recorded UV/Vis spectra. PL spectra were recorded for ZnO samples in powder form and their suspensions in pure ethanol. Noticed differences are discussed.

  5. Post-annealing effect on optical absorbance of hydrothermally grown zinc oxide nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohar, Rahmat Setiawan; Djuhana, Dede; Imawan, Cuk

    In this study, the optical absorbance of zinc oxide (ZnO) nanorods was investigated. The ZnO thin film were deposited on indium tin oxide (ITO) layers using ultrasonic spray pyrolysis (USP) method and then grown by hydrothermal method. In order to improve the optical absorbance, the ZnO nanorods were then post-annealed for one hour at three different of temperatures, namely 250, 400, and 500 °C. The X-ray diffraction (XRD) spectra and FESEM images show that the ZnO nanorods have the hexagonal wurtzite crystal structure and the increasing of post-annealing temperature resulted in the increasing of crystallite size from 38.2 nm to 48.4 nm.more » The UV-vis spectra shows that all samples of ZnO nanorods exhibited the identical sharp absorption edge at 390 nm indicating that all samples have the same bandgap. The post-annealing process seemed to decrease the optical absorbance in the region of 300-550 nm and increase the optical absorbance in the region of 550-700 nm..« less

  6. Acute changes in cellular zinc alters zinc uptake rates prior to zinc transporter gene expression in Jurkat cells.

    PubMed

    Holland, Tai C; Killilea, David W; Shenvi, Swapna V; King, Janet C

    2015-12-01

    A coordinated network of zinc transporters and binding proteins tightly regulate cellular zinc levels. Canonical responses to zinc availability are thought to be mediated by changes in gene expression of key zinc transporters. We investigated the temporal relationships of actual zinc uptake with patterns of gene expression in membrane-bound zinc transporters in the human immortalized T lymphocyte Jurkat cell line. Cellular zinc levels were elevated or reduced with exogenous zinc sulfate or N,N,N',N-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), respectively. Excess zinc resulted in a rapid 44 % decrease in the rate of zinc uptake within 10 min. After 120 min, the expression of metallothionein (positive control) increased, as well as the zinc exporter, ZnT1; however, the expression of zinc importers did not change during this time period. Zinc chelation with TPEN resulted in a rapid twofold increase in the rate of zinc uptake within 10 min. After 120 min, the expression of ZnT1 decreased, while again the expression of zinc importers did not change. Overall, zinc transporter gene expression kinetics did not match actual changes in cellular zinc uptake with exogenous zinc or TPEN treatments. This suggests zinc transporter regulation may be the initial response to changes in zinc within Jurkat cells.

  7. Triple-channel microreactor for biphasic gas-liquid reactions: Photosensitized oxygenations.

    PubMed

    Maurya, Ram Awatar; Park, Chan Pil; Kim, Dong-Pyo

    2011-01-01

    A triple-channel microreactor fabricated by means of a soft-lithography technique was devised for efficient biphasic gas-liquid reactions. The excellent performance of the microreactor was demonstrated by carrying out photosensitized oxygenations of α-terpinene, citronellol, and allyl alcohols.

  8. Electron-polar optical phonon scattering suppression and mobility enhancement in wurtzite heterostructures

    NASA Astrophysics Data System (ADS)

    Pokatilov, E. P.; Nika, D. L.; Zincenco, N. D.; Balandin, A. A.

    2007-12-01

    We have shown theoretically that the electron mobility in wurtzite AlN/GaN/AlN heterostructures can be enhanced by compensating the built-in electric field with the externally applied perpendicular electric field and by introducing a shallow InxGa1-xN channel in the center of GaN potential well. It was found that two- to fivefold increase of the room temperature electron mobility can be achieved. The tuning of the electron mobility with the external electric field or InxGa1-xN channel can be useful for the design of GaN-based field-effect transistors and optoelectronic devices.

  9. Monophasic versus biphasic defibrillation for pediatric out-of-hospital cardiac arrest patients: a nationwide population-based study in Japan

    PubMed Central

    2012-01-01

    Introduction Conventional monophasic defibrillators for out-of-hospital cardiac-arrest patients have been replaced with biphasic defibrillators. However, the advantage of biphasic over monophasic defibrillation for pediatric out-of-hospital cardiac-arrest patients remains unknown. This study aimed to compare the survival outcomes of pediatric out-of-hospital cardiac-arrest patients who underwent monophasic defibrillation with those who underwent biphasic defibrillation. Methods This prospective, nationwide, population-based observational study included pediatric out-of-hospital cardiac-arrest patients from January 1, 2005, to December 31, 2009. The primary outcome measure was survival at 1 month with minimal neurologic impairment. The secondary outcome measures were survival at 1 month and the return of spontaneous circulation before hospital arrival. Multivariable logistic regression analysis was performed to identify the independent association between defibrillator type (monophasic or biphasic) and outcomes. Results Among 5,628 pediatric out-of-hospital cardiac-arrest patients (1 through 17 years old), 430 who received defibrillation shock with monophasic or biphasic defibrillator were analyzed. The number of patients who received defibrillation shock with monophasic defibrillator was 127 (30%), and 303 (70%) received defibrillation shock with biphasic defibrillator. The survival rates at 1 month with minimal neurologic impairment were 17.5% and 24.4%, the survival rates at 1 month were 32.3% and 35.6%, and the rates of return of spontaneous circulation before hospital arrival were 24.4% and 27.4% in the monophasic and biphasic defibrillator groups, respectively. Hierarchic logistic regression analyses by using generalized estimation equations found no significant difference between the two groups in terms of 1-month survival with minimal neurologic impairment (odds ratio (OR), 1.57; 95% confidence interval (CI), 0.87 to 2.83; P = 0.14) and 1-month survival (OR

  10. Zinc Enzymes.

    ERIC Educational Resources Information Center

    Bertini, I.; And Others

    1985-01-01

    Discusses the role of zinc in various enzymes concerned with hydration, hydrolysis, and redox reactions. The binding of zinc to protein residues, properties of noncatalytic zinc(II) and catalytic zinc, and the reactions catalyzed by zinc are among the topics considered. (JN)

  11. Viral assembly of oriented quantum dot nanowires

    NASA Astrophysics Data System (ADS)

    Mao, Chuanbin; Flynn, Christine E.; Hayhurst, Andrew; Sweeney, Rozamond; Qi, Jifa; Georgiou, George; Iverson, Brent; Belcher, Angela M.

    2003-06-01

    The highly organized structure of M13 bacteriophage was used as an evolved biological template for the nucleation and orientation of semiconductor nanowires. To create this organized template, peptides were selected by using a pIII phage display library for their ability to nucleate ZnS or CdS nanocrystals. The successful peptides were expressed as pVIII fusion proteins into the crystalline capsid of the virus. The engineered viruses were exposed to semiconductor precursor solutions, and the resultant nanocrystals that were templated along the viruses to form nanowires were extensively characterized by using high-resolution analytical electron microscopy and photoluminescence. ZnS nanocrystals were well crystallized on the viral capsid in a hexagonal wurtzite or a cubic zinc blende structure, depending on the peptide expressed on the viral capsid. Electron diffraction patterns showed single-crystal type behavior from a polynanocrystalline area of the nanowire formed, suggesting that the nanocrystals on the virus were preferentially oriented with their [001] perpendicular to the viral surface. Peptides that specifically directed CdS nanocrystal growth were also engineered into the viral capsid to create wurtzite CdS virus-based nanowires. Lastly, heterostructured nucleation was achieved with a dual-peptide virus engineered to express two distinct peptides within the same viral capsid. This work represents a genetically controlled biological synthesis route to a semiconductor nanoscale heterostructure.

  12. Viral assembly of oriented quantum dot nanowires.

    PubMed

    Mao, Chuanbin; Flynn, Christine E; Hayhurst, Andrew; Sweeney, Rozamond; Qi, Jifa; Georgiou, George; Iverson, Brent; Belcher, Angela M

    2003-06-10

    The highly organized structure of M13 bacteriophage was used as an evolved biological template for the nucleation and orientation of semiconductor nanowires. To create this organized template, peptides were selected by using a pIII phage display library for their ability to nucleate ZnS or CdS nanocrystals. The successful peptides were expressed as pVIII fusion proteins into the crystalline capsid of the virus. The engineered viruses were exposed to semiconductor precursor solutions, and the resultant nanocrystals that were templated along the viruses to form nanowires were extensively characterized by using high-resolution analytical electron microscopy and photoluminescence. ZnS nanocrystals were well crystallized on the viral capsid in a hexagonal wurtzite or a cubic zinc blende structure, depending on the peptide expressed on the viral capsid. Electron diffraction patterns showed single-crystal type behavior from a polynanocrystalline area of the nanowire formed, suggesting that the nanocrystals on the virus were preferentially oriented with their [001] perpendicular to the viral surface. Peptides that specifically directed CdS nanocrystal growth were also engineered into the viral capsid to create wurtzite CdS virus-based nanowires. Lastly, heterostructured nucleation was achieved with a dual-peptide virus engineered to express two distinct peptides within the same viral capsid. This work represents a genetically controlled biological synthesis route to a semiconductor nanoscale heterostructure.

  13. Zinc

    MedlinePlus

    ... Using toothpastes containing zinc, with or without an antibacterial agent, appears to prevent plaque and gingivitis. Some ... is some evidence that zinc has some antiviral activity against the herpes virus. Low zinc levels can ...

  14. Nanostructure of aluminium (Al) - Doped zinc oxide (AZO) thin films

    NASA Astrophysics Data System (ADS)

    Hussin, Rosniza; Husin, M. Asri

    2017-12-01

    Aluminium (Al)-doped Zinc Oxide (ZnO) was deposited on glass substrates by using the sol-gel dip coating technique. Next, AZO sol-gel solution was produced via sol-gel method. Al was used as doped element with molar ratios of 1%, 2%, and 3%, while the calcination temperatures were set at 400°C, 500°C, and 600°C for 2 hours. In fact, characterization was carried out in order to determine the effect of calcination temperature and molar ratio of doping by using several techniques, such as X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM), Field Emission Scanning Electron Microscopy (FESEM), and Ultraviolet-Visible spectroscopy (UV-Vis). XRD was performed to investigate the crystal structure in which the ZnO was in wurtzite hexagonal form. Next, Energy Dispersive Spectroscopy (EDS) was used to determine the composition of thin films where the result revealed the existence of zinc, oxygen, and aluminium. The roughness of the deposited film was later measured by using the AFM approach where the findings indicated increment in RMS from 8.496 nm to 35.883 nm as the temperature was increased. Additionally, FESEM was carried out to look into the microstructure surfaces of the deposited AZO thin film for increased temperature caused the particle to grow bigger for all molar ratio of dopant. Lastly, UV-Vis was conducted to study the optical properties of AZO, in which the result demonstrated that AZO thin film possessed the highest transmittance percentage among all samples above 90% with band gap value that ranged from 3.25 eV to 3.32 eV.

  15. Aqueous biphasic extraction process with pH and particle control

    DOEpatents

    Chaiko, David J.; Mensah-Biney, R.

    1995-01-01

    A process for aqueous biphasic extraction of metallic oxides and the like from substances containing silica. Control of media pH enables efficient and effective partition of mixture components. The inventive method may be employed to remove excess silica from kaolin clay.

  16. Triple-channel microreactor for biphasic gas–liquid reactions: Photosensitized oxygenations

    PubMed Central

    Maurya, Ram Awatar; Park, Chan Pil

    2011-01-01

    Summary A triple-channel microreactor fabricated by means of a soft-lithography technique was devised for efficient biphasic gas–liquid reactions. The excellent performance of the microreactor was demonstrated by carrying out photosensitized oxygenations of α-terpinene, citronellol, and allyl alcohols. PMID:21915221

  17. Lipase in biphasic alginate beads as a biocatalyst for esterification of butyric acid and butanol in aqueous media.

    PubMed

    Ng, Choong Hey; Yang, Kun-Lin

    2016-01-01

    Esterification of organic acids and alcohols in aqueous media is very inefficient due to thermodynamic constraints. However, fermentation processes used to produce organic acids and alcohols are often conducted in aqueous media. To produce esters in aqueous media, biphasic alginate beads with immobilized lipase are developed for in situ esterification of butanol and butyric acid. The biphasic beads contain a solid matrix of calcium alginate and hexadecane together with 5 mg/mL of lipase as the biocatalyst. Hexadecane in the biphasic beads serves as an organic phase to facilitate the esterification reaction. Under optimized conditions, the beads are able to catalyze the production of 0.16 mmol of butyl butyrate from 0.5 mmol of butyric acid and 1.5 mmol of butanol. In contrast, when monophasic beads (without hexadecane) are used, only trace amount of butyl butyrate is produced. One main application of biphasic beads is in simultaneous fermentation and esterification (SFE) because the organic phase inside the beads is very stable and does not leach out into the culture medium. SFE is successfully conducted with an esterification yield of 6.32% using biphasic beads containing iso-octane even though the solvent is proven toxic to the butanol-producing Clostridium spp. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Biphasic Kinetic Behavior of Nitrate Reductase from Heterocystous, Nitrogen-Fixing Cyanobacteria 1

    PubMed Central

    Martin-Nieto, José; Flores, Enrique; Herrero, Antonia

    1992-01-01

    Nitrate reductase activity from filamentous, heterocyst-forming cyanobacteria showed a biphasic kinetic behavior with respect to nitrate as the variable substrate. Two kinetic components were detected, the first showing a higher affinity for nitrate (Km, 0.05-0.25 mm) and a lower catalytic activity and the second showing a lower affinity for nitrate (Km, 5-25 mm) and a higher (3- to 5-fold) catalytic activity. In contrast, among unicellular cyanobacteria, most representatives studied exhibited a monophasic, Michaelis-Menten kinetic pattern for nitrate reductase activity. Biphasic kinetics remained unchanged with the use of different assay conditions (i.e. cell disruption or permeabilization, two different electron donors) or throughout partial purification of the enzyme. PMID:16652939

  19. Aqueous biphasic extraction process with pH and particle control

    DOEpatents

    Chaiko, D.J.; Mensah-Biney, R.

    1995-05-02

    A process for aqueous biphasic extraction of metallic oxides and the like from substances containing silica. Control of media pH enables efficient and effective partition of mixture components. The inventive method may be employed to remove excess silica from kaolin clay. 2 figs.

  20. Polymer blends

    DOEpatents

    Allen, Scott D.; Naik, Sanjeev

    2017-08-22

    The present invention provides, among other things, extruded blends of aliphatic polycarbonates and polyolefins. In one aspect, provided blends comprise aliphatic polycarbonates such as poly(propylene carbonate) and a lesser amount of a crystalline or semicrystalline polymer. In certain embodiments, provided blends are characterized in that they exhibit unexpected improvements in their elongation properties. In another aspect, the invention provides methods of making such materials and applications of the materials in applications such as the manufacture of consumer packaging materials.

  1. Predictive Feedback Can Account for Biphasic Responses in the Lateral Geniculate Nucleus

    PubMed Central

    Jehee, Janneke F. M.; Ballard, Dana H.

    2009-01-01

    Biphasic neural response properties, where the optimal stimulus for driving a neural response changes from one stimulus pattern to the opposite stimulus pattern over short periods of time, have been described in several visual areas, including lateral geniculate nucleus (LGN), primary visual cortex (V1), and middle temporal area (MT). We describe a hierarchical model of predictive coding and simulations that capture these temporal variations in neuronal response properties. We focus on the LGN-V1 circuit and find that after training on natural images the model exhibits the brain's LGN-V1 connectivity structure, in which the structure of V1 receptive fields is linked to the spatial alignment and properties of center-surround cells in the LGN. In addition, the spatio-temporal response profile of LGN model neurons is biphasic in structure, resembling the biphasic response structure of neurons in cat LGN. Moreover, the model displays a specific pattern of influence of feedback, where LGN receptive fields that are aligned over a simple cell receptive field zone of the same polarity decrease their responses while neurons of opposite polarity increase their responses with feedback. This phase-reversed pattern of influence was recently observed in neurophysiology. These results corroborate the idea that predictive feedback is a general coding strategy in the brain. PMID:19412529

  2. Biphasic papillary renal cell carcinoma is a rare morphological variant with frequent multifocality: a study of 28 cases.

    PubMed

    Trpkov, Kiril; Athanazio, Daniel; Magi-Galluzzi, Cristina; Yilmaz, Helene; Clouston, David; Agaimy, Abbas; Williamson, Sean R; Brimo, Fadi; Lopez, Jose I; Ulamec, Monika; Rioux-Leclercq, Nathalie; Kassem, Maysoun; Gupta, Nilesh; Hartmann, Arndt; Leroy, Xavier; Bashir, Samir Al; Yilmaz, Asli; Hes, Ondřej

    2018-04-01

    To further characterise biphasic squamoid renal cell carcinoma (RCC), a recently proposed variant of papillary RCC. We identified 28 tumours from multiple institutions. They typically showed two cell populations-larger cells with eosinophilic cytoplasm and higher-grade nuclei, surrounded by smaller, amphophilic cells with scanty cytoplasm. The dual morphology was variable (median 72.5% of tumour, range 5-100%); emperipolesis was found in all cases. The male/female ratio was 2:1, and the median age was 55 years (range 39-86 years). The median tumour size was 20 mm (range 9-65 mm). Pathological stage pT1a was found in 21 cases, pT1b in three, and pT3a and pT3b in one each (two not available). Multifocality was found in 32%: multifocal biphasic RCC in one case, biphasic + papillary RCC in two cases, biphasic + clear cell RCC in three cases, biphasic + low-grade urothelial carcinoma of the renal pelvis in one case, and biphasic + Birt-Hogg-Dubé syndrome in one case. Positive immunostains included: PAX8, cytokeratin (CK) 7, α-methylacyl-CoA racemase, epithelial membrane antigen, and vimentin. Cyclin D1 was expressed only in the larger cells. The Ki67 index was higher in the larger cells (median 5% versus ≤1%). Negative stains included: carbonic anhydrase 9, CD117, GATA-3, WT1, CK5/6, and CK20; CD10 and 34βE12 were variably expressed. Gains of chromosomes 7 and 17 were found in two evaluated cases. Follow-up was available for 23 patients (median 24 months, range 1-244 months): 19 were alive without disease, one was alive with recurrence, and one had died of disease (two had died of other causes). Biphasic papillary RCC is a rare variant of papillary RCC, and is often multifocal. © 2017 John Wiley & Sons Ltd.

  3. Biphasic patterns of diversification and the emergence of modules

    PubMed Central

    Mittenthal, Jay; Caetano-Anollés, Derek; Caetano-Anollés, Gustavo

    2012-01-01

    The intricate molecular and cellular structure of organisms converts energy to work, which builds and maintains structure. Evolving structure implements modules, in which parts are tightly linked. Each module performs characteristic functions. In this work we propose that a module can emerge through two phases of diversification of parts. Early in the first phase of this biphasic pattern, the parts have weak linkage—they interact weakly and associate variously. The parts diversify and compete. Under selection for performance, interactions among the parts increasingly constrain their structure and associations. As many variants are eliminated, parts self-organize into modules with tight linkage. Linkage may increase in response to exogenous stresses as well as endogenous processes. In the second phase of diversification, variants of the module and its functions evolve and become new parts for a new cycle of generation of higher-level modules. This linkage hypothesis can interpret biphasic patterns in the diversification of protein domain structure, RNA and protein shapes, and networks in metabolism, codes, and embryos, and can explain hierarchical levels of structural organization that are widespread in biology. PMID:22891076

  4. Biphasic synovial sarcoma in the cervical spine: Case report.

    PubMed

    Foreman, Stephen M; Stahl, Michael J

    2011-05-23

    Synovial sarcoma is a rare malignant neoplasm of soft tissue that typically arising near large joints of the upper and lower extremities in young adult males. Only 3% of these neoplasms have been found to arise in the head and neck region. To our knowledge, there are limited reports in the literature of this neoplasm in the cervical spine.A case of biphasic synovial sarcoma of the cervical spine is reviewed. A 29 year-old male presented with pain on the left side of the cervical spine. Physical examination revealed a global loss of cervical motion and large, palpable mass in the left paravertebral area. The long-delayed Magnetic Resonance (MR) scan revealed a soft tissue mass measuring 8.3 centimeters (cm) × 5.7 cm that was surgically removed. A malignant biphasic synovial sarcoma was diagnosed on pathologic examination.The clinical and imaging findings of an atypically located synovial sarcoma are reviewed. This case report emphasizes the consequences of a limited differential diagnosis, prolonged treatment and the failure to perform timely diagnostic imaging in the presence of a paraspinal mass.

  5. Usefulness of p16/CDKN2A fluorescence in situ hybridization and BAP1 immunohistochemistry for the diagnosis of biphasic mesothelioma.

    PubMed

    Wu, Di; Hiroshima, Kenzo; Yusa, Toshikazu; Ozaki, Daisuke; Koh, Eitetsu; Sekine, Yasuo; Matsumoto, Shinji; Nabeshima, Kazuki; Sato, Ayuko; Tsujimura, Tohru; Yamakawa, Hisami; Tada, Yuji; Shimada, Hideaki; Tagawa, Masatoshi

    2017-02-01

    Malignant mesothelioma is a highly aggressive neoplasm, and the histologic subtype is one of the most reliable prognostic factors. Some biphasic mesotheliomas are difficult to distinguish from epithelioid mesotheliomas with atypical fibrous stroma. The aim of this study was to analyze p16/CDKN2A deletions in mesotheliomas by fluorescence in situ hybridization (FISH) and BAP1 immunohistochemistry to evaluate their potential role in the diagnosis of biphasic mesothelioma. We collected 38 cases of pleural mesotheliomas. The results of this study clearly distinguished 29 cases of biphasic mesothelioma from 9 cases of epithelioid mesothelioma. The proportion of biphasic mesotheliomas with homozygous deletions of p16/CDKN2A in total was 96.6% (28/29). Homozygous deletion of p16/CDKN2A was observed in 18 (94.7%) of 19 biphasic mesotheliomas with 100% concordance of the p16/CDKN2A deletion status between the epithelioid and sarcomatoid components in each case. Homozygous deletion of the p16/CDKN2A was observed in 7 (77.8%) of 9 epithelioid mesotheliomas but not in fibrous stroma. BAP1 loss was observed in 5 (38.5%) of 13 biphasic mesotheliomas and in both epithelioid and sarcomatoid components. BAP1 loss was observed in 5 (62.5%) of 8 epithelioid mesotheliomas but not in fibrous stroma. Homozygous deletion of p16/CDKN2A is common in biphasic mesotheliomas, and the analysis of only one component of mesothelioma is sufficient to show that the tumor is malignant. However, compared with histology alone, FISH analysis of the p16/CDKN2A status and BAP1 immunohistochemistry in the spindled mesothelium provide a more objective means to differentiate between biphasic mesothelioma and epithelioid mesothelioma with atypical stromal cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Analysis of the Angle of Maximal Stability and Flow Regime Transitions in Different Proportions of Bi-phasic Granular Matter Mixtures

    NASA Astrophysics Data System (ADS)

    Maquiling, Joel Tiu; Visaga, Shane Marie

    This study investigates the dependence of the critical angle θc of stability on different mass ratios γ of layered bi-phasic granular matter mixtures and on the critical angle of its mono-disperse individual components. It also aims to investigate and explain regime transitions of granular matter flowing down a tilted rough inclined plane. Critical angles and flow regimes for a bi-phasic mixture of sago spheres and bi-phasic pepper mixture of fine powder and rough spheres were observed and measured using video analysis. The critical angles θc MD of mono-disperse granular matter and θc BP of biphasic granular matter mixtures were observed and compared. All types of flow regimes and a supramaximal critical angle of stability exist at mass ratio γ = 0.5 for all biphasic granular matter mixtures. The θc BP of sago spheres was higher than the θc MD of sago spheres. Moreover, the θc BP of the pepper mixture was in between the θc MD of fine pepper and θc MD of rough pepper spheres. Comparison of different granular material shows that θc MD is not simply a function of particle diameter but of particle roughness as well. Results point to a superposition mechanism of the critical angles of biphasic sphere mixtures.

  7. The photocatalytic investigation of methylene blue dye with Cr doped zinc oxide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, Rajeev; Kumar, Ashavani, E-mail: ashavani@yahoo.com

    2015-08-28

    The present work reports eco-friendly and cost effective sol-gel technique for synthesis of Chromium doped ZnO nanoparticles at room temperature. In this process Zinc nitrate, Chromium nitrate were used as precursor. Structural as well as optical properties of Cr induced ZnO samples were analysed by X-ray diffraction technique (XRD), SEM, PL and UV-Visible spectroscopy (UV-Vis) respectively. XRD analysis shows that the samples have hexagonal (wurtzite) structure with no additional peak which suggests that Cr ions fit into the regular Zn sites of ZnO crystal structure. By using Scherrer’s formula for pure and Cr doped ZnO samples the average grain sizemore » was found to be 32 nm. Further band gap of pure and doped ZnO samples have been calculated by using UV-Vis spectra. The photo-catalytic degradation of methyl blue dye under UV irradiation was examined for synthesized samples. The results show that the concentration plays an important role in photo-catalytic activity.« less

  8. Structure evolution of zinc oxide thin films deposited by unbalance DC magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aryanto, Didik, E-mail: didi027@lipi.go.id; Materials Research Group, Physics Department, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah; Marwoto, Putut

    Zinc oxide (ZnO) thin films are deposited on corning glass substrates using unbalanced DC magnetron sputtering. The effect of growth temperature on surface morphology and crystallographic orientation of ZnO thin film is studied using atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. The surface morphology and crystallographic orientation of ZnO thin film are transformed against the increasing of growth temperature. The mean grain size of film and the surface roughness are inversely and directly proportional towards the growth temperature from room temperature to 300 °C, respectively. The smaller grain size and finer roughness of ZnO thin film are obtainedmore » at growth temperature of 400 °C. The result of AFM analysis is in good agreement with the result of XRD analysis. ZnO thin films deposited in a series of growth temperatures have hexagonal wurtzite polycrystalline structures and they exhibit transformations in the crystallographic orientation. The results in this study reveal that the growth temperature strongly influences the surface morphology and crystallographic orientation of ZnO thin film.« less

  9. [Improvement in zinc nutrition due to zinc transporter-targeting strategy].

    PubMed

    Kambe, Taiho

    2016-07-01

    Adequate intake of zinc from the daily diet is indispensable to maintain health. However, the dietary zinc content often fails to fulfill the recommended daily intake, leading to zinc deficiency and also increases the risk of developing chronic diseases, particularly in elderly individuals. Therefore, increased attention is required to overcome zinc deficiency and it is important to improve zinc nutrition in daily life. In the small intestine, the zinc transporter, ZIP4, functions as a component that is essential for zinc absorption. In this manuscript, we present a brief overview regarding zinc deficiency. Moreover, we review a novel strategy, called "ZIP4-targeting", which has the potential to enable efficient zinc absorption from the diet. ZIP4-targeting strategy is possibly a major step in preventing zinc deficiency and improving human health.

  10. Time dependent rise and decay of photocurrent in zinc oxide nanoparticles in ambient and vacuum medium

    NASA Astrophysics Data System (ADS)

    C, Rajkumar; Srivastava, Rajneesh K.

    2018-05-01

    Zinc oxide (ZnO) nanoparticle has been synthesized by cost effective Co-precipitation method and studied its photo-response activity. The synthesized ZnO nanomaterial was characterized by using various analytical techniques such as x-ray diffraction (XRD), UV–visible spectroscopy, FTIR spectroscopy, photoluminescence (PL) spectroscopy, and Scanning Electron Microscopy (SEM). From the XRD results, it is confirmed that synthesized ZnO nanomaterial possess hexagonal wurtzite phase structure with an average crystallite size of ∼16–17 nm. The UV-Visible absorption spectrum shows that it has blue shift compared to their bulk counterparts. Photoluminescence spectra of ZnO nanoparticles have a strong violet band at 423 nm and three weak bands at 485 nm (blue), 506 nm (green), and 529 nm (green). The presence of hydroxyl group was confirmed by FTIR. The photo-response analysis was studied by the time-dependent rise and decay photocurrent of ZnO nanoparticle was tested in the air as well as vacuum medium.

  11. Influence of the Formulation Parameters on the Particle Size and Encapsulation Efficiency of Resveratrol in PLA and PLA-PEG Blend Nanoparticles: A Factorial Design.

    PubMed

    Lindner, Gabriela da Rocha; Dalmolin, Luciana Facco; Khalil, Najeh Maissar; Mainardes, Rubiana Mara

    2015-12-01

    Polymeric nanoparticles are colloidal systems that promote protection and modification of physicochemical characteristics of a drug and that also ensure controlled and extended drug release. This paper reports a 2(3) factorial design study to optimize poly(lactide) (PLA) and poly(lactide)-polyethylene glycol (PLA-PEG) blend nanoparticles containing resveratrol (RVT) for prolonged release. The independent variables analyzed were solvent composition, surfactant concentration and ratio of aqueous to organic phase (two levels each factor). Mean particle size and RVT encapsulation efficiency were set as the dependent variables. The selected optimized parameters were set as organic phase comprised of a mixture of dichloromethane and ethyl acetate, 1% of surfactant polyvinyl alcohol and a 3:1 ratio of aqueous to organic phase, for both PLA and PLA-PEG blend nanoparticles. This formulation originated nanoparticles with size of 228 ± 10 nm and 185 ± 70 nm and RVT encapsulation efficiency of 82 ± 10% and 76 ± 7% for PLA and PLA-PEG blend nanoparticles, respectively. The in vitro release study showed a biphasic pattern with prolonged RVT release and PEG did not influence the RVT release. The in vitro release data were in favor of Higuchi-diffusion kinetics for both nanoformulations and the Kossmeyer-Peppas coefficient indicated that anomalous transport was the main release mechanism of RVT. PLA and PLA-PEG blend nanoparticles produced with single emulsion-solvent evaporation technology were found to be a promising approach for the incorporation of RVT and promoted its controlled release. The factorial design is a tool of great value in choosing formulations with optimized parameters.

  12. Variation of crystal structure and optical properties of wurtzite-type oxide semiconductor alloys of β-Cu(Ga,Al)O2

    NASA Astrophysics Data System (ADS)

    Nagatani, Hiraku; Mizuno, Yuki; Suzuki, Issei; Kita, Masao; Ohashi, Naoki; Omata, Takahisa

    2017-06-01

    Band-gap engineering of β-CuGaO2 was demonstrated by the alloying of gallium with aluminum, that is, Cu(Ga1-xAlx)O2. The ternary wurtzite β-NaFeO2-type alloys were obtained in the range 0 ≤ x ≤ 0.7, and γ-LiAlO2-type phase appeared in the range 0.7 ≤ x ≤ 1. The energy band gap of wurtzite β-CuGaO2 was controlled in the range between 1.47 and 2.09 eV. A direct band gap for x < 0.6 and indirect band gap for x ≥ 0.6 were proposed based on the structural distortion in the β-NaFeO2-type phase and density functional theory (DFT) calculation of β-CuAlO2. The DFT calculation also indicated that the γ-LiAlO2-type phases appeared in 0.7 ≤ x ≤ 1 are also indirect-gap semiconductors.

  13. Improved zinc electrode and rechargeable zinc-air battery

    DOEpatents

    Ross, P.N. Jr.

    1988-06-21

    The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

  14. A Simplified Whole-Organ CT Perfusion Technique with Biphasic Acquisition: Preliminary Investigation of Accuracy and Protocol Feasibility in Kidneys.

    PubMed

    Yuan, XiaoDong; Zhang, Jing; Quan, ChangBin; Tian, Yuan; Li, Hong; Ao, GuoKun

    2016-04-01

    To determine the feasibility and accuracy of a protocol for calculating whole-organ renal perfusion (renal blood flow [RBF]) and regional perfusion on the basis of biphasic computed tomography (CT), with concurrent dynamic contrast material-enhanced (DCE) CT perfusion serving as the reference standard. This prospective study was approved by the institutional review board, and written informed consent was obtained from all patients. Biphasic CT of the kidneys, including precontrast and arterial phase imaging, was integrated with a first-pass dynamic volume CT protocol and performed and analyzed in 23 patients suspected of having renal artery stenosis. The perfusion value derived from biphasic CT was calculated as CT number enhancement divided by the area under the arterial input function and compared with the DCE CT perfusion data by using the paired t test, correlation analysis, and Bland-Altman plots. Correlation analysis was made between the RBF and the extent of renal artery stenosis. All postprocessing was independently performed by two observers and then averaged as the final result. Mean ± standard deviation biphasic and DCE CT perfusion data for RBF were 425.62 mL/min ± 124.74 and 419.81 mL/min ± 121.13, respectively (P = .53), and for regional perfusion they were 271.15 mL/min per 100 mL ± 82.21 and 266.33 mL/min per 100 mL ± 74.40, respectively (P = .31). Good correlation and agreement were shown between biphasic and DCE CT perfusion for RBF (r = 0.93; ±10% variation from mean perfusion data [P < .001]) and for regional perfusion (r = 0.90; ±13% variation from mean perfusion data [P < .001]). The extent of renal artery stenosis was negatively correlated with RBF with biphasic CT perfusion (r = -0.81, P = .012). Biphasic CT perfusion is clinically feasible and provides perfusion data comparable to DCE CT perfusion data at both global and regional levels in the kidney. Online supplemental material is available for this article.

  15. Tuning the morphology of metastable MnS films by simple chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Dhandayuthapani, T.; Girish, M.; Sivakumar, R.; Sanjeeviraja, C.; Gopalakrishnan, R.

    2015-10-01

    In the present investigation, we have prepared the spherical particles, almond-like, and cauliflower-like morphological structures of metastable MnS films on glass substrate by chemical bath deposition technique at low temperature without using any complexing or chelating agent. The morphological change of MnS films with molar ratio may be due to the oriented aggregation of adjacent particles. The compositional purity of deposited film was confirmed by the EDAX study. X-ray diffraction and micro-Raman studies confirm the sulfur source concentration induced enhancement in the crystallization of films with metastable MnS phase (zinc-blende β-MnS, and wurtzite γ-MnS). The shift in PL emission peak with molar ratio may be due to the change in optical energy band gap of the MnS, which was further confirmed by the optical absorbance study. The paramagnetic behavior of the sample was confirmed by the M-H plot.

  16. Review: mechanical behavior of metal/ceramic interfaces in nanolayered composites—experiments and modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nan; Liu, Xiang-Yang

    In this study, recent experimental and modeling studies in nanolayered metal/ceramic composites are reviewed, with focus on the mechanical behaviors of metal/nitrides interfaces. The experimental and modeling studies of the slip systems in bulk TiN are reviewed first. Then, the experimental studies of interfaces, including co-deformation mechanism by micropillar compression tests, in situ TEM straining tests for the dynamic process of the co-deformation, thickness-dependent fracture behavior, and interrelationship among the interfacial bonding, microstructure, and mechanical response, are reviewed for the specific material systems of Al/TiN and Cu/TiN multilayers at nanoscale. The modeling studies reviewed cover first-principles density functional theory-based modeling,more » atomistic molecular dynamics simulations, and mesoscale modeling of nanolayered composites using discrete dislocation dynamics. The phase transformation between zinc-blende and wurtzite AlN phases in Al/AlN multilayers at nanoscale is also reviewed. Finally, a summary and perspective of possible research directions and challenges are given.« less

  17. Crystal-phase intergradation in InAs nanostructures grown by van der Waals heteroepitaxy on graphene

    NASA Astrophysics Data System (ADS)

    Choi, Ji Eun; Yoo, Jinkyoung; Lee, Donghwa; Hong, Young Joon; Fukui, Takashi

    2018-04-01

    This study demonstrates the crystal-phase intergradation of InAs nanostructures grown on graphene via van der Waals epitaxy. InAs nanostructures with diverse diameters are yielded on graphene. High-resolution transmission electron microscopy (HR-TEM) reveals two crystallographic features of (i) wurtzite (WZ)-to-zinc blende (ZB) intergradation along the growth direction of InAs nanostructures and (ii) an increased mean fraction of ZB according to diameter increment. Based on the HR-TEM observations, a crystal-phase intergradation diagram is depicted. We discuss how the formation of a WZ-rich phase during the initial growth stage is an effective way of releasing heterointerfacial stress endowed by the lattice mismatch of InAs/graphene for energy minimization in terms of less in-plane lattice mismatching between WZ-InAs and graphene. The WZ-to-ZB evolution is responsible for the attenuation of the bottom-to-top surface charge interaction as growth proceeds.

  18. Characterization of structural and electrical properties of ZnO tetrapods

    NASA Astrophysics Data System (ADS)

    Gu, Yu-Dong; Mai, Wen-Jie; Jiang, Peng

    2011-12-01

    ZnO tetrapods were synthesized by a typical thermal vapor-solid deposition method in a horizontal tube furnace. Structural characterization was carried out by transmission electron microscopy (TEM) and select-area electron diffraction (SAED), which shows the presence of zinc blende nucleus in the center of tetrapods while the four branches taking hexagonal wurtzite structure. The electrical transport property of ZnO tetrapods was investigated through an in-situ nanoprobe system. The three branches of a tetrapod serve as source, drain, and "gate", respectively; while the fourth branch pointing upward works as the force trigger by vertically applying external force downward. The conductivity of each branch of ZnO-tetrapods increases 3-4 times under pressure. In such situation, the electrical current through the branches of ZnO tetrapods can be tuned by external force, and therefore a simple force sensor based on ZnO tetrapods has been demonstrated for the first time.

  19. Review: mechanical behavior of metal/ceramic interfaces in nanolayered composites—experiments and modeling

    DOE PAGES

    Li, Nan; Liu, Xiang-Yang

    2017-11-03

    In this study, recent experimental and modeling studies in nanolayered metal/ceramic composites are reviewed, with focus on the mechanical behaviors of metal/nitrides interfaces. The experimental and modeling studies of the slip systems in bulk TiN are reviewed first. Then, the experimental studies of interfaces, including co-deformation mechanism by micropillar compression tests, in situ TEM straining tests for the dynamic process of the co-deformation, thickness-dependent fracture behavior, and interrelationship among the interfacial bonding, microstructure, and mechanical response, are reviewed for the specific material systems of Al/TiN and Cu/TiN multilayers at nanoscale. The modeling studies reviewed cover first-principles density functional theory-based modeling,more » atomistic molecular dynamics simulations, and mesoscale modeling of nanolayered composites using discrete dislocation dynamics. The phase transformation between zinc-blende and wurtzite AlN phases in Al/AlN multilayers at nanoscale is also reviewed. Finally, a summary and perspective of possible research directions and challenges are given.« less

  20. Traditional Semiconductors in the Two-Dimensional Limit.

    PubMed

    Lucking, Michael C; Xie, Weiyu; Choe, Duk-Hyun; West, Damien; Lu, Toh-Ming; Zhang, S B

    2018-02-23

    Interest in two-dimensional materials has exploded in recent years. Not only are they studied due to their novel electronic properties, such as the emergent Dirac fermion in graphene, but also as a new paradigm in which stacking layers of distinct two-dimensional materials may enable different functionality or devices. Here, through first-principles theory, we reveal a large new class of two-dimensional materials which are derived from traditional III-V, II-VI, and I-VII semiconductors. It is found that in the ultrathin limit the great majority of traditional binary semiconductors studied (a series of 28 semiconductors) are not only kinetically stable in a two-dimensional double layer honeycomb structure, but more energetically stable than the truncated wurtzite or zinc-blende structures associated with three dimensional bulk. These findings both greatly increase the landscape of two-dimensional materials and also demonstrate that in the double layer honeycomb form, even ordinary semiconductors, such as GaAs, can exhibit exotic topological properties.

  1. Linearly arranged polytypic CZTSSe nanocrystals

    PubMed Central

    Fan, Feng-Jia; Wu, Liang; Gong, Ming; Chen, Shi You; Liu, Guang Yao; Yao, Hong-Bin; Liang, Hai-Wei; Wang, Yi-Xiu; Yu, Shu-Hong

    2012-01-01

    Even colloidal polytypic nanostructures show promising future in band-gap tuning and alignment, researches on them have been much less reported than the standard nano-heterostructures because of the difficulties involved in synthesis. Up to now, controlled synthesis of colloidal polytypic nanocrsytals has been only realized in II-VI tetrapod and octopod nanocrystals with branched configurations. Herein, we report a colloidal approach for synthesizing non-branched but linearly arranged polytypic I2-II-IV-VI4 nanocrystals, with a focus on polytypic non-stoichiometric Cu2ZnSnSxSe4−x nanocrystals. Each synthesized polytypic non-stoichiometric Cu2ZnSnSxSe4−x nanocrystal is consisted of two zinc blende-derived ends and one wurtzite-derived center part. The formation mechanism has been studied and the phase composition can be tuned through adjusting the reaction temperature, which brings a new band-gap tuning approach to Cu2ZnSnSxSe4-x nanocrystals. PMID:23233871

  2. Detection of Cu2Zn5SnSe8 and Cu2Zn6SnSe9 phases in co-evaporated Cu2ZnSnSe4 thin-films

    NASA Astrophysics Data System (ADS)

    Schwarz, Torsten; Marques, Miguel A. L.; Botti, Silvana; Mousel, Marina; Redinger, Alex; Siebentritt, Susanne; Cojocaru-Mirédin, Oana; Raabe, Dierk; Choi, Pyuck-Pa

    2015-10-01

    Cu2ZnSnSe4 thin-films for photovoltaic applications are investigated using combined atom probe tomography and ab initio density functional theory. The atom probe studies reveal nano-sized grains of Cu2Zn5SnSe8 and Cu2Zn6SnSe9 composition, which cannot be assigned to any known phase reported in the literature. Both phases are considered to be metastable, as density functional theory calculations yield positive energy differences with respect to the decomposition into Cu2ZnSnSe4 and ZnSe. Among the conceivable crystal structures for both phases, a distorted zinc-blende structure shows the lowest energy, which is a few tens of meV below the energy of a wurtzite structure. A band gap of 1.1 eV is calculated for both the Cu2Zn5SnSe8 and Cu2Zn6SnSe9 phases. Possible effects of these phases on solar cell performance are discussed.

  3. Integrated Multi-Color Light Emitting Device Made with Hybrid Crystal Structure

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor)

    2017-01-01

    An integrated hybrid crystal Light Emitting Diode ("LED") display device that may emit red, green, and blue colors on a single wafer. The various embodiments may provide double-sided hetero crystal growth with hexagonal wurtzite III-Nitride compound semiconductor on one side of (0001) c-plane sapphire media and cubic zinc-blended III-V or II-VI compound semiconductor on the opposite side of c-plane sapphire media. The c-plane sapphire media may be a bulk single crystalline c-plane sapphire wafer, a thin free standing c-plane sapphire layer, or crack-and-bonded c-plane sapphire layer on any substrate. The bandgap energies and lattice constants of the compound semiconductor alloys may be changed by mixing different amounts of ingredients of the same group into the compound semiconductor. The bandgap energy and lattice constant may be engineered by changing the alloy composition within the cubic group IV, group III-V, and group II-VI semiconductors and within the hexagonal III-Nitrides.

  4. Integrated Multi-Color Light Emitting Device Made with Hybrid Crystal Structure

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor)

    2016-01-01

    An integrated hybrid crystal Light Emitting Diode ("LED") display device that may emit red, green, and blue colors on a single wafer. The various embodiments may provide double-sided hetero crystal growth with hexagonal wurtzite III-Nitride compound semiconductor on one side of (0001) c-plane sapphire media and cubic zinc-blended III-V or II-VI compound semiconductor on the opposite side of c-plane sapphire media. The c-plane sapphire media may be a bulk single crystalline c-plane sapphire wafer, a thin free standing c-plane sapphire layer, or crack-and-bonded c-plane sapphire layer on any substrate. The bandgap energies and lattice constants of the compound semiconductor alloys may be changed by mixing different amounts of ingredients of the same group into the compound semiconductor. The bandgap energy and lattice constant may be engineered by changing the alloy composition within the cubic group IV, group III-V, and group II-VI semiconductors and within the hexagonal III-Nitrides.

  5. S–Te Interdiffusion within Grains and Grain Boundaries in CdTe Solar Cells

    DOE PAGES

    Li, C.; Poplawsky, J.; Paudel, N.; ...

    2014-09-19

    At the CdTe/CdS interface, a significant Te-S interdiffusion has been found a few nanometers into the grain interiors with scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS). S substitution at Te sites has been directly resolved in CdTe with STEM Z-contrast images. Moreover, when enough S substitutes for Te, a structural transformation from zinc-blende to wurtzite has been observed. Cl segregation has also been found at the interface. STEM electron-beam-induced current (EBIC) shows that the p-n junction occurs a few nm into the CdTe grains, which is consistent with the S diffusion range we observe. The shiftmore » of the p-n junction suggests a buried homo-junction which would help reduce non-radiative recombination at the junction. Meanwhile, long-range S diffusion in CdTe grain boundaries (GBs) has been detected, as well as Te and Cl diffusion in CdS GBs.« less

  6. Seed mediated synthesis of nanosized zinc oxide and its electron transporting activity in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Rajkumar, C.; Arulraj, Arunachalam

    2018-01-01

    A zinc oxide (ZnO) nanoparticle has been synthesized using seed mediated method at a low temperature of 90 °C. To understand its optical, structural and morphological properties of as-synthesized ZnO, it was characterized using various analytical techniques. The obtained result reveals that ZnO nanoparticles possess hexagonal wurtzite crystal structure with an average crystallite size of ˜40 nm. The presence of hydroxyl, amine and alkyl groups was confirmed from Fourier transform infrared analysis. Furthermore, the synthesized ZnO powder has employed as photoanode for the fabrication of dye-sensitized solar cells using Doctor-blade technique. To evaluate its photo-conversion efficiency, the device has been assembled into a cell module and illuminated with the light intensity of 100 mW cm-2. The device exhibits the photo-conversion efficiency of 1.85% with the current density of 4.532 mA cm-2 and voltage of 0.61 V.

  7. Development and Characterization of Biphasic Hydroxyapatite/β-TCP Cements

    PubMed Central

    Gallinetti, Sara; Canal, Cristina; Ginebra, Maria-Pau; Ferreira, J

    2014-01-01

    Biphasic calcium phosphate bioceramics composed of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) have relevant properties as synthetic bone grafts, such as tunable resorption, bioactivity, and intrinsic osteoinduction. However, they have some limitations associated to their condition of high-temperature ceramics. In this work self-setting Biphasic Calcium Phosphate Cements (BCPCs) with different HA/β-TCP ratios were obtained from self-setting α-TCP/β-TCP pastes. The strategy used allowed synthesizing BCPCs with modulated composition, compressive strength, and specific surface area. Due to its higher solubility, α-TCP was fully hydrolyzed to a calcium-deficient HA (CDHA), whereas β-TCP remained unreacted and completely embedded in the CDHA matrix. Increasing amounts of the non-reacting β-TCP phase resulted in a linear decrease of the compressive strength, in association to the decreasing amount of precipitated HA crystals, which are responsible for the mechanical consolidation of apatitic cements. Ca2+ release and degradation in acidic medium was similar in all the BCPCs within the timeframe studied, although differences might be expected in longer term studies once β-TCP, the more soluble phase was exposed to the surrounding media. PMID:25866411

  8. Development and Characterization of Biphasic Hydroxyapatite/β-TCP Cements.

    PubMed

    Gallinetti, Sara; Canal, Cristina; Ginebra, Maria-Pau; Ferreira, J

    2014-04-01

    Biphasic calcium phosphate bioceramics composed of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) have relevant properties as synthetic bone grafts, such as tunable resorption, bioactivity, and intrinsic osteoinduction. However, they have some limitations associated to their condition of high-temperature ceramics. In this work self-setting Biphasic Calcium Phosphate Cements (BCPCs) with different HA/β-TCP ratios were obtained from self-setting α-TCP/β-TCP pastes. The strategy used allowed synthesizing BCPCs with modulated composition, compressive strength, and specific surface area. Due to its higher solubility, α-TCP was fully hydrolyzed to a calcium-deficient HA (CDHA), whereas β-TCP remained unreacted and completely embedded in the CDHA matrix. Increasing amounts of the non-reacting β-TCP phase resulted in a linear decrease of the compressive strength, in association to the decreasing amount of precipitated HA crystals, which are responsible for the mechanical consolidation of apatitic cements. Ca 2+ release and degradation in acidic medium was similar in all the BCPCs within the timeframe studied, although differences might be expected in longer term studies once β-TCP, the more soluble phase was exposed to the surrounding media.

  9. Aqueous biphasic plutonium oxide extraction process with pH and particle control

    DOEpatents

    Chaiko, D.J.; Mensah-Biney, R.

    1997-04-29

    A method is described for simultaneously partitioning a metal oxide and silica from a material containing silica and the metal oxide, using a biphasic aqueous medium having immiscible salt and polymer phases. 2 figs.

  10. Influence of DNA-methylation on zinc homeostasis in myeloid cells: Regulation of zinc transporters and zinc binding proteins.

    PubMed

    Kessels, Jana Elena; Wessels, Inga; Haase, Hajo; Rink, Lothar; Uciechowski, Peter

    2016-09-01

    The distribution of intracellular zinc, predominantly regulated through zinc transporters and zinc binding proteins, is required to support an efficient immune response. Epigenetic mechanisms such as DNA methylation are involved in the expression of these genes. In demethylation experiments using 5-Aza-2'-deoxycytidine (AZA) increased intracellular (after 24 and 48h) and total cellular zinc levels (after 48h) were observed in the myeloid cell line HL-60. To uncover the mechanisms that cause the disturbed zinc homeostasis after DNA demethylation, the expression of human zinc transporters and zinc binding proteins were investigated. Real time PCR analyses of 14 ZIP (solute-linked carrier (SLC) SLC39A; Zrt/IRT-like protein), and 9 ZnT (SLC30A) zinc transporters revealed significantly enhanced mRNA expression of the zinc importer ZIP1 after AZA treatment. Because ZIP1 protein was also enhanced after AZA treatment, ZIP1 up-regulation might be the mediator of enhanced intracellular zinc levels. The mRNA expression of ZIP14 was decreased, whereas zinc exporter ZnT3 mRNA was also significantly increased; which might be a cellular reaction to compensate elevated zinc levels. An enhanced but not significant chromatin accessibility of ZIP1 promoter region I was detected by chromatin accessibility by real-time PCR (CHART) assays after demethylation. Additionally, DNA demethylation resulted in increased mRNA accumulation of zinc binding proteins metallothionein (MT) and S100A8/S100A9 after 48h. MT mRNA was significantly enhanced after 24h of AZA treatment also suggesting a reaction of the cell to restore zinc homeostasis. These data indicate that DNA methylation is an important epigenetic mechanism affecting zinc binding proteins and transporters, and, therefore, regulating zinc homeostasis in myeloid cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Learning new meanings for known words: Biphasic effects of prior knowledge.

    PubMed

    Fang, Xiaoping; Perfetti, Charles; Stafura, Joseph

    2017-01-01

    In acquiring word meanings, learners are often confronted by a single word form that is mapped to two or more meanings. For example, long after how to roller-"skate", one may learn that "skate" is also a kind of fish. Such learning of new meanings for familiar words involves two potentially contrasting processes, relative to new form-new meaning learning: 1) Form-based familiarity may facilitate learning a new meaning, and 2) meaning-based interference may inhibit learning a new meaning. We examined these two processes by having native English speakers learn new, unrelated meanings for familiar (high frequency) and less familiar (low frequency) English words, as well as for unfamiliar (novel or pseudo-) words. Tracking learning with cued-recall tasks at several points during learning revealed a biphasic pattern: higher learning rates and greater learning efficiency for familiar words relative to novel words early in learning and a reversal of this pattern later in learning. Following learning, interference from original meanings for familiar words was detected in a semantic relatedness judgment task. Additionally, lexical access to familiar words with new meanings became faster compared to their exposure controls, but no such effect occurred for less familiar words. Overall, the results suggest a biphasic pattern of facilitating and interfering processes: Familiar word forms facilitate learning earlier, while interference from original meanings becomes more influential later. This biphasic pattern reflects the co-activation of new and old meanings during learning, a process that may play a role in lexicalization of new meanings.

  12. Learning new meanings for known words: Biphasic effects of prior knowledge

    PubMed Central

    Fang, Xiaoping; Perfetti, Charles; Stafura, Joseph

    2017-01-01

    In acquiring word meanings, learners are often confronted by a single word form that is mapped to two or more meanings. For example, long after how to roller-“skate”, one may learn that “skate” is also a kind of fish. Such learning of new meanings for familiar words involves two potentially contrasting processes, relative to new form-new meaning learning: 1) Form-based familiarity may facilitate learning a new meaning, and 2) meaning-based interference may inhibit learning a new meaning. We examined these two processes by having native English speakers learn new, unrelated meanings for familiar (high frequency) and less familiar (low frequency) English words, as well as for unfamiliar (novel or pseudo-) words. Tracking learning with cued-recall tasks at several points during learning revealed a biphasic pattern: higher learning rates and greater learning efficiency for familiar words relative to novel words early in learning and a reversal of this pattern later in learning. Following learning, interference from original meanings for familiar words was detected in a semantic relatedness judgment task. Additionally, lexical access to familiar words with new meanings became faster compared to their exposure controls, but no such effect occurred for less familiar words. Overall, the results suggest a biphasic pattern of facilitating and interfering processes: Familiar word forms facilitate learning earlier, while interference from original meanings becomes more influential later. This biphasic pattern reflects the co-activation of new and old meanings during learning, a process that may play a role in lexicalization of new meanings. PMID:29399593

  13. Synthesis of silica coated zinc oxide–poly(ethylene-co-acrylic acid) matrix and its UV shielding evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramasamy, Mohankandhasamy; Kim, Yu Jun; Gao, Haiyan

    Graphical abstract: - Highlights: • Well layer thickness controlled silica shell was made on ZnO nanoparticles. • PEAA, an interfacial agent is used to make nanocomposite–polymer matrix by twin-screw extruder. • Si-ZnO/PEAA matrix is highly stable and UV protective as compared to ZnO/PEAA matrix. • Nanoparticle embedded polymer matrix is suggested to make UV shielding fabrics with Nylon4. - Abstract: Silica coated zinc oxide nanoparticles (Si-ZnO NPs) (7 nm thick) were synthesized successfully and melt blended with poly(ethylene-co-acrylic acid) (PEAA resin) to improving ultraviolet (UV) shielding of zinc oxide nanoparticles (ZnO NPs). The photostability of both the ZnO NPs andmore » Si-ZnO NPs were analyzed by the difference in photoluminescence (PL) and by methylene blue (MB) degradation. Photo-degradation studies confirmed that Si-ZnO NPs are highly photostable compared to ZnO NPs. The melt blended matrices were characterized by field emission scanning electron microscopy interfaced with energy dispersive X-ray spectroscopy (FE-SEM-EDX). The UV shielding property was analyzed from the transmittance spectra of UV–visible (UV–vis) spectroscopy. The results confirmed fine dispersion of thick Si-ZnO NPs in the entire resin matrix. Moreover, the Si-ZnO/PEAA showed about 97% UV shielding properties than the ZnO/PEAA.« less

  14. Method of capturing or trapping zinc using zinc getter materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunyadi Murph, Simona E.; Korinko, Paul S.

    2017-07-11

    A method of trapping or capturing zinc is disclosed. In particular, the method comprises a step of contacting a zinc vapor with a zinc getter material. The zinc getter material comprises nanoparticles and a metal substrate.

  15. Quinary wurtzite Zn-Ga-Ge-N-O solid solutions and their photocatalytic properties under visible light irradiation

    PubMed Central

    Xie, Yinghao; Wu, Fangfang; Sun, Xiaoqin; Chen, Hongmei; Lv, Meilin; Ni, Shuang; Liu, Gang; Xu, Xiaoxiang

    2016-01-01

    Wurtzite solid solutions between GaN and ZnO highlight an intriguing paradigm for water splitting into hydrogen and oxygen using solar energy. However, large composition discrepancy often occurs inside the compound owing to the volatile nature of Zn, thereby prescribing rigorous terms on synthetic conditions. Here we demonstrate the merits of constituting quinary Zn-Ga-Ge-N-O solid solutions by introducing Ge into the wurtzite framework. The presence of Ge not only mitigates the vaporization of Zn but also strongly promotes particle crystallization. Synthetic details for these quinary compounds were systematically explored and their photocatalytic properties were thoroughly investigated. Proper starting molar ratios of Zn/Ga/Ge are of primary importance for single phase formation, high particle crystallinity and good photocatalytic performance. Efficient photocatalytic hydrogen and oxygen production from water were achieved for these quinary solid solutions which is strongly correlated with Ge content in the structure. Apparent quantum efficiency for optimized sample approaches 1.01% for hydrogen production and 1.14% for oxygen production. Theoretical calculation reveals the critical role of Zn for the band gap reduction in these solid solutions and their superior photocatalytic acitivity can be understood by the preservation of Zn in the structure as well as a good crystallinity after introducing Ge. PMID:26755070

  16. Quinary wurtzite Zn-Ga-Ge-N-O solid solutions and their photocatalytic properties under visible light irradiation.

    PubMed

    Xie, Yinghao; Wu, Fangfang; Sun, Xiaoqin; Chen, Hongmei; Lv, Meilin; Ni, Shuang; Liu, Gang; Xu, Xiaoxiang

    2016-01-12

    Wurtzite solid solutions between GaN and ZnO highlight an intriguing paradigm for water splitting into hydrogen and oxygen using solar energy. However, large composition discrepancy often occurs inside the compound owing to the volatile nature of Zn, thereby prescribing rigorous terms on synthetic conditions. Here we demonstrate the merits of constituting quinary Zn-Ga-Ge-N-O solid solutions by introducing Ge into the wurtzite framework. The presence of Ge not only mitigates the vaporization of Zn but also strongly promotes particle crystallization. Synthetic details for these quinary compounds were systematically explored and their photocatalytic properties were thoroughly investigated. Proper starting molar ratios of Zn/Ga/Ge are of primary importance for single phase formation, high particle crystallinity and good photocatalytic performance. Efficient photocatalytic hydrogen and oxygen production from water were achieved for these quinary solid solutions which is strongly correlated with Ge content in the structure. Apparent quantum efficiency for optimized sample approaches 1.01% for hydrogen production and 1.14% for oxygen production. Theoretical calculation reveals the critical role of Zn for the band gap reduction in these solid solutions and their superior photocatalytic acitivity can be understood by the preservation of Zn in the structure as well as a good crystallinity after introducing Ge.

  17. Quinary wurtzite Zn-Ga-Ge-N-O solid solutions and their photocatalytic properties under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Xie, Yinghao; Wu, Fangfang; Sun, Xiaoqin; Chen, Hongmei; Lv, Meilin; Ni, Shuang; Liu, Gang; Xu, Xiaoxiang

    2016-01-01

    Wurtzite solid solutions between GaN and ZnO highlight an intriguing paradigm for water splitting into hydrogen and oxygen using solar energy. However, large composition discrepancy often occurs inside the compound owing to the volatile nature of Zn, thereby prescribing rigorous terms on synthetic conditions. Here we demonstrate the merits of constituting quinary Zn-Ga-Ge-N-O solid solutions by introducing Ge into the wurtzite framework. The presence of Ge not only mitigates the vaporization of Zn but also strongly promotes particle crystallization. Synthetic details for these quinary compounds were systematically explored and their photocatalytic properties were thoroughly investigated. Proper starting molar ratios of Zn/Ga/Ge are of primary importance for single phase formation, high particle crystallinity and good photocatalytic performance. Efficient photocatalytic hydrogen and oxygen production from water were achieved for these quinary solid solutions which is strongly correlated with Ge content in the structure. Apparent quantum efficiency for optimized sample approaches 1.01% for hydrogen production and 1.14% for oxygen production. Theoretical calculation reveals the critical role of Zn for the band gap reduction in these solid solutions and their superior photocatalytic acitivity can be understood by the preservation of Zn in the structure as well as a good crystallinity after introducing Ge.

  18. Design Principles for the Blend in Blended Learning: A Collective Case Study

    ERIC Educational Resources Information Center

    Lai, Ming; Lam, Kwok Man; Lim, Cher Ping

    2016-01-01

    This paper reports on a collective case study of three blended courses taught by different instructors in a higher education institution, with the purpose of identifying the different types of blend and how the blend supports student learning. Based on the instructors' and students' interviews, and document analysis of course outlines, two major…

  19. Effect of blend ratio of PP/kapok blend nonwoven fabrics on oil sorption capacity.

    PubMed

    Lee, Young-Hee; Kim, Ji-Soo; Kim, Do-Hyung; Shin, Min-Seung; Jung, Young-Jin; Lee, Dong-Jin; Kim, Han-Do

    2013-01-01

    More research and development on novel oil sorbent materials is needed to protect the environmental pollution. New nonwoven fabrics (pads) of polypropylene (PP)/kapok blends (blend ratio: 100/0, 75/25, 50/50, 25/75 and 10/90) were prepared by needle punching process at a fixed (optimized) condition (punch density: 50 punches/cm2 and depth: 4mm). This study focused on the effect of blend ratio of PP/kapok nonwoven fabrics on oil sorption capacities to find the best blend ratio having the highest synergy effect. The PP/kapok blend (50/50) sample has the lowest bulk density and showed the best oil absorption capacity. The oil sorption capacity of PP/kapok blend (50/50) nonwoven fabric for kerosene/soybean oil [21.09/27.01 (g oil/g sorbent)] was 1.5-2 times higher than those of commercial PP pad oil sorbents. The highest synergy effect of PP/kapok blend (50/50) was ascribed to the lowest bulk density of PP/kapok blend (50/50), which might be due to the highest morphologically incompatibility between PP fibre and kapok. These results suggest that the PP/kapok blend (50/50) having the highest synergy effect has a high potential as a new high-performance oil sorbent material.

  20. A case of mumps-related acute encephalopathy with biphasic seizures and late reduced diffusion.

    PubMed

    Hazama, Kyoko; Shiihara, Takashi; Tsukagoshi, Hiroyuki; Hasegawa, Shunji; Dowa, Yuri; Watanabe, Mio

    2017-10-01

    Mumps is a common childhood viral disease characterized by fever and swelling of the parotid gland. The prognosis is generally good, although some complications, such as encephalitis (0.1%), exist. Acute encephalopathy with biphasic seizures and late reduced diffusion is the most common type of acute encephalopathy. However, this type of encephalopathy has not been reported in association with mumps infection. A previously healthy 3-year-old Japanese boy had a brief convulsion after fever for 3days, and then had conscious disturbance and parotitis. After several days, he had a second brief convulsion and was admitted. Increased serum amylase levels and presence of anti-mumps immunoglobulin M antibody confirmed mumps parotitis. The patient had another brief seizure later the day of admission. He did not have status or cluster seizures, although the biphasic nature of his seizures, conscious disturbance between the seizures, no pleocytosis in cerebrospinal fluid, and brain magnetic resonance images were consistent with acute encephalopathy with biphasic seizures and late reduced diffusion. In Japan, the mumps vaccine is not administered as a part of routine immunizations. It thus has low coverage (30-40%), and as a result, mumps infections are still common. However, this is the first case of mumps-related acute encephalopathy with biphasic seizures and late reduced diffusion. This case may be representative of only a minority of patients with mumps-associated central nervous system involvement. Nevertheless, this diagnostic possibility may be considered. In order to prevent mumps-related complications, routine mumps vaccination might be warranted. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  1. Biphasic Effects of Alcohol as a Function of Circadian Phase

    PubMed Central

    Van Reen, Eliza; Rupp, Tracy L.; Acebo, Christine; Seifer, Ronald; Carskadon, Mary A.

    2013-01-01

    Study Objectives: To assess how alcohol affects multiple sleep latency tests (MSLT) and subjective measures of stimulation/sedation when alcohol is given at different circadian phases. Participants: Twenty-seven healthy young adults (age 21-26 yr) were studied. Design: Double-blind placebo and alcohol (vodka tonic targeting 0.05 g% concentration) beverages were each administered three times during the 20-h forced desynchrony protocol. Sleep latency tests and Biphasic Effects of Alcohol Scale (BAES) were administered on each forced desynchrony day. The outcome variables for this study include sleep onset latency (SOL) and stimulation and sedation value (from the BAES). Each outcome variable was associated with the ascending or descending limb of the breath alcohol concentration (BrAC) curve and assigned a circadian phase within a 90° bin. Measurements and Results: BrAC confirmed targeted maximal levels. Only outcome variables associated with the ascending and descending limb of the alcohol curve were analyzed for this article. Alcohol administered at a circadian time associated with greatest sleepiness showed longer SOL compared with placebo when measured on the ascending limb of the BrAC curve. We also found longer SOL with alcohol on the ascending limb of the BrAC curve in a circadian bin that favors greatest alertness. We observed shorter SOLs on the descending limb of the BrAC curve, but with no circadian phase interaction. The subjective data were partially consistent with the objective data. Conclusions: The physiologic findings in this study support the biphasic stimulating and sedating properties of alcohol, but limit the effect to specific circadian times. Citation: Van Reen E; Rupp TL; Acebo C; Seifer R; Carskadon MA. Biphasic effects of alcohol as a function of circadian phase. SLEEP 2013;36(1):137-145. PMID:23288980

  2. Blended Isogeometric Shells

    DTIC Science & Technology

    2012-08-01

    biomechanical modeling (e.g. arteries). It is also possible to go still fur- ther with the concept and blend shell theories with continuum solid theories in the...spirit of transition elements. Again biomechanical modeling opportunities present themselves, such as for heart-artery models . We also note that all...these blended theories can be developed within the IGA format of exact CAD modeling . The blended formulation presented here is valid for a broad class

  3. Attenuated adult biphasic shocks for prolonged pediatric ventricular fibrillation: support for pediatric automated defibrillators.

    PubMed

    Berg, Robert A

    2004-09-01

    To evaluate published data regarding the treatment of prolonged pediatric defibrillation, with special emphasis on the use of attenuated adult biphasic shocks for pediatric defibrillation. Review relevant human and animal literature. Rhythm analysis algorithms from two manufacturers of automated external defibrillators can accurately distinguish shockable from nonshockable rhythms in children. Theoretical considerations and transthoracic impedance data from animals and children suggest that pediatric defibrillation doses should not necessarily vary in a simple weight-based manner. Two piglet studies have established that an attenuated adult biphasic dosage can be successfully used for 3.5- to 24-kg animals in ventricular fibrillation. One study established that the attenuated adult biphasic dosage was at least as safe and effective as the standard monophasic weight-based dosing. This review supports the American Heart Association's new guidelines for pediatric automated external defibrillator usage: "Automated external defibrillators may be used for children 1 to 8 yrs of age who have no signs of circulation. Ideally the device should deliver a pediatric dose. The arrhythmia detection system used in the device should demonstrate high specificity for pediatric shockable rhythms, i.e., it will not recommend delivery of a shock for nonshockable rhythms."

  4. A biphasic dialytic strategy for the treatment of neonatal hyperammonemia

    PubMed Central

    Avasare, Sonal; Tsai, Eileen; Yadin, Ora; Zaritsky, Joshua

    2018-01-01

    Background Neonates with inborn errors of metabolism (IEM) often develop hyperammonemia which, if not corrected quickly, may result in poor neurologic outcomes. As pharmacologic therapy cannot rapidly lower ammonia levels, dialysis is frequently required. Both hemodialysis (HD) and standard-dose continuous renal replacement therapy (CRRT) are effective; however, HD may be followed by post-dialytic ammonia rebound, and standard-dose CRRT may not effect a rapid enough decrease in ammonia levels. Case-Diagnosis/Treatment We present two cases of IEM-associated neonatal hyperammonemia in which we employed a biphasic, high-dose CRRT treatment strategy, initially using dialysate flow rates of 5,000 mL/h (approximately 40,000 mL/h/1.73 m2) in order to rapidly decrease ammonia levels, then decreasing the dialysate flow rates to 500 mL/h (approximately 4,000 mL/h/1.73 m2) in order to prevent ammonia rebound. Conclusions This biphasic dialytic treatment strategy for neonatal hyperammonemia effected rapid ammonia reduction without rebound and accomplished during a single dialysis run without equipment changes. PMID:24122260

  5. A New Biphasic Dicalcium Silicate Bone Cement Implant.

    PubMed

    Zuleta, Fausto; Murciano, Angel; Gehrke, Sergio A; Maté-Sánchez de Val, José E; Calvo-Guirado, José L; De Aza, Piedad N

    2017-07-06

    This study aimed to investigate the processing parameters and biocompatibility of a novel biphasic dicalcium silicate (C₂S) cement. Biphasic α´ L + β-C₂S ss was synthesized by solid-state processing, and was used as a raw material to prepare the cement. In vitro bioactivity and biocompatibility studies were assessed by soaking the cement samples in simulated body fluid (SBF) and human adipose stem cell cultures. Two critical-sized defects of 6 mm Ø were created in 15 NZ tibias. A porous cement made of the high temperature forms of C₂S, with a low phosphorous substitution level, was produced. An apatite-like layer covered the cement's surface after soaking in SBF. The cell attachment test showed that α´ L + β-C₂S ss supported cells sticking and spreading after 24 h of culture. The cement paste (55.86 ± 0.23) obtained higher bone-to-implant contact (BIC) percentage values (better quality, closer contact) in the histomorphometric analysis, and defect closure was significant compared to the control group (plastic). The residual material volume of the porous cement was 35.42 ± 2.08% of the initial value. The highest BIC and bone formation percentages were obtained on day 60. These results suggest that the cement paste is advantageous for initial bone regeneration.

  6. A New Biphasic Dicalcium Silicate Bone Cement Implant

    PubMed Central

    Murciano, Angel; Maté-Sánchez de Val, José E.

    2017-01-01

    This study aimed to investigate the processing parameters and biocompatibility of a novel biphasic dicalcium silicate (C2S) cement. Biphasic α´L + β-C2Sss was synthesized by solid-state processing, and was used as a raw material to prepare the cement. In vitro bioactivity and biocompatibility studies were assessed by soaking the cement samples in simulated body fluid (SBF) and human adipose stem cell cultures. Two critical-sized defects of 6 mm Ø were created in 15 NZ tibias. A porous cement made of the high temperature forms of C2S, with a low phosphorous substitution level, was produced. An apatite-like layer covered the cement’s surface after soaking in SBF. The cell attachment test showed that α´L + β-C2Sss supported cells sticking and spreading after 24 h of culture. The cement paste (55.86 ± 0.23) obtained higher bone-to-implant contact (BIC) percentage values (better quality, closer contact) in the histomorphometric analysis, and defect closure was significant compared to the control group (plastic). The residual material volume of the porous cement was 35.42 ± 2.08% of the initial value. The highest BIC and bone formation percentages were obtained on day 60. These results suggest that the cement paste is advantageous for initial bone regeneration. PMID:28773119

  7. Blended Learning

    ERIC Educational Resources Information Center

    Tucker, Catlin; Umphrey, Jan

    2013-01-01

    Catlin Tucker, author of "Blended Learning in Grades 4-12," is an English language arts teacher at Windsor High School in Sonoma County, CA. In this conversation with "Principal Leadership," she defines blended learning as a formal education program in which a student is engaged in active learning in part online where they…

  8. Efficient asymmetric hydrolysis of styrene oxide catalyzed by Mung bean epoxide hydrolases in ionic liquid-based biphasic systems.

    PubMed

    Chen, Wen-Jing; Lou, Wen-Yong; Zong, Min-Hua

    2012-07-01

    The asymmetric hydrolysis of styrene oxide to (R)-1-phenyl-1,2-ethanediol using Mung bean epoxide hydrolases was, for the first time, successfully conducted in an ionic liquid (IL)-containing biphasic system. Compared to aqueous monophasic system, IL-based biphasic systems could not only dissolve the substrate, but also effectively inhibit the non-enzymatic hydrolysis, and therefore markedly improve the reaction efficiency. Of all the tested ILs, the best results were observed in the biphasic system containing C(4)MIM·PF(6), which exhibited good biocompatibility with the enzyme and was an excellent solvent for the substrate. In the C(4)MIM·PF(6)/buffer biphasic system, it was found that the optimal volume ratio of IL to buffer, reaction temperature, buffer pH and substrate concentration were 1/6, 35°C, 6.5 and 100 mM, respectively, under which the initial reaction rate, the yield and the product e.e. were 18.4 mM/h, 49.4% and 97.0%. The biocatalytic process was shown to be feasible on a 500-mL preparative scale. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Zinc in human health: effect of zinc on immune cells.

    PubMed

    Prasad, Ananda S

    2008-01-01

    Although the essentiality of zinc for plants and animals has been known for many decades, the essentiality of zinc for humans was recognized only 40 years ago in the Middle East. The zinc-deficient patients had severe immune dysfunctions, inasmuch as they died of intercurrent infections by the time they were 25 years of age. In our studies in an experimental human model of zinc deficiency, we documented decreased serum testosterone level, oligospermia, severe immune dysfunctions mainly affecting T helper cells, hyperammonemia, neurosensory disorders, and decreased lean body mass. It appears that zinc deficiency is prevalent in the developing world and as many as two billion subjects may be growth retarded due to zinc deficiency. Besides growth retardation and immune dysfunctions, cognitive impairment due to zinc deficiency also has been reported recently. Our studies in the cell culture models showed that the activation of many zinc-dependent enzymes and transcription factors were adversely affected due to zinc deficiency. In HUT-78 (T helper 0 [Th(0)] cell line), we showed that a decrease in gene expression of interleukin-2 (IL-2) and IL-2 receptor alpha(IL-2Ralpha) were due to decreased activation of nuclear factor-kappaB (NF-kappaB) in zinc deficient cells. Decreased NF-kappaB activation in HUT-78 due to zinc deficiency was due to decreased binding of NF-kappaB to DNA, decreased level of NF-kappaB p105 (the precursor of NF-kappaB p50) mRNA, decreased kappaB inhibitory protein (IkappaB) phosphorylation, and decreased Ikappa kappa. These effects of zinc were cell specific. Zinc also is an antioxidant and has anti-inflammatory actions. The therapeutic roles of zinc in acute infantile diarrhea, acrodermatitis enteropathica, prevention of blindness in patients with age-related macular degeneration, and treatment of common cold with zinc have been reported. In HL-60 cells (promyelocytic leukemia cell line), zinc enhances the up-regulation of A20 mRNA, which, via TRAF

  10. Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems.

    PubMed

    An, Jiwoo; Trujillo-Rodríguez, María J; Pino, Verónica; Anderson, Jared L

    2017-06-02

    The development of rapid, convenient, and high throughput sample preparation approaches such as liquid phase microextraction techniques have been continuously developed over the last decade. More recently, significant attention has been given to the replacement of conventional organic solvents used in liquid phase microextraction techniques in order to reduce toxic waste and to improve selectivity and/or extraction efficiency. With these objectives, non-conventional solvents have been explored in liquid phase microextraction and aqueous biphasic systems. The utilized non-conventional solvents include ionic liquids, magnetic ionic liquids, and deep eutectic solvents. They have been widely used as extraction solvents or additives in various liquid phase microextraction modes including dispersive liquid-liquid microextraction, single-drop microextraction, hollow fiber-liquid phase microextraction, as well as in aqueous biphasic systems. This review provides an overview into the use of non-conventional solvents in these microextraction techniques in the past 5 years (2012-2016). Analytical applications of the techniques are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Biphasic magnetic nanoparticles-nanovesicle hybrids for chemotherapy and self-controlled hyperthermia.

    PubMed

    Gogoi, Manashjit; Sarma, Haladhar D; Bahadur, Dhirendra; Banerjee, Rinti

    2014-05-01

    The aim was to develop magnetic nanovesicles for chemotherapy and self-controlled hyperthermia that prevent overheating of tissues. Magnetic nanovesicles containing paclitaxel and a dextran-coated biphasic suspension of La0.75Sr0.25MnO3 and Fe3O4 nanoparticles (magnetic nanoparticles) were developed. Encapsulation efficiencies of magnetic nanoparticles and paclitaxel were 67 ± 5 and 83 ± 3%, respectively. Sequential release performed at 37°C for 1 h followed by 44°C for another 1 h (as expected for intratumoral injection), showed a cumulative release of 6.6% (109.6 µg), which was above the IC50 of the drug. In an alternating current magnetic field, the temperature remained controlled at 44°C and a synergistic cytotoxicity of paclitaxel and hyperthermia was observed in MCF-7 cells. Magnetic nanovesicles containing biphasic suspensions La0.75Sr0.25MnO3 and Fe3O4 nanoparticles encapsulating paclitaxel have potential for combined self-controlled hyperthermia and chemotherapy.

  12. Blended Learning

    ERIC Educational Resources Information Center

    Halan, Deepak

    2005-01-01

    Blended learning basically refers to using several methods for teaching. It can be thought to be a learning program where more than one delivery mode is being used with the ultimate goal of optimizing the learning result and cost of program delivery. Examples of blended learning could be the combination of technology-based resources and…

  13. Separation and recovery of food coloring dyes using aqueous biphasic extraction chromatographic resins.

    PubMed

    Huddleston, J G; Willauer, H D; Boaz, K R; Rogers, R D

    1998-06-26

    Aqueous biphasic systems (ABS) and aqueous biphasic extraction chromatographic (ABEC) resins are currently under investigation for their utility in the removal of color from textile plant wastes. The structures of several widely used food colorings, suggest that these dyes would also be retained on the resins. In work currently in progress, we have begun to investigate the retention and resolution of several common food colorings including indigo carmine, amaranth, carminic acid. erythrosin B, tartrazine and quinoline yellow. The relationship between the uptake of these dyes on ABEC resins in terms of the binding strengths and capacities of the resins and their partitioning behavior in ABS is illustrated. Some possible theoretical and practical approaches to the prediction of the partitioning and retention behavior is discussed.

  14. CORRELATION OF A BIPHASIC METABOLIC RESPONSE WITH A BIPHASIC RESPONSE IN RESISTANCE TO TUBERCULOSIS IN RABBITS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allison, M.J.; Zappasodi, P.; Lurie, M.B.

    Peritoneal exudate mononuclear cells obtained from BCG-vaccinated rabbits showed higher utilization of succinate, glycerophosphate, beta - hydroxybutyrate, and glycerol than cells from control animals. No differences in utilization of the following substrates were noted: lactate, glucose-6-phosphate, malate, isocitrate, alpha -ketoglutarate, and glutamic acid. A second, later stage of elevated metabolic activity was associated with heightened resistance to infection. When rabbits which had been irradiated with 400 r 2 years previously were vaccinated with BCG, they failed to respond as shown by their lack of resistance to infection and failure of their mononuclear cells to show the biphasic metabolic stimulation. Themore » results demonstrate the close relation between the metabolic capabilities of reticuloendothelial cells and their resistance to tuberculosis. (H.H.D.)« less

  15. Sol–gel synthesized zinc oxide nanorods and their structural and optical investigation for optoelectronic application

    PubMed Central

    2014-01-01

    Nanostructured zinc oxide (ZnO) nanorods (NRs) with hexagonal wurtzite structures were synthesized using an easy and low-cost bottom-up hydrothermal growth technique. ZnO thin films were prepared with the use of four different solvents, namely, methanol, ethanol, isopropanol, and 2-methoxyethanol, and then used as seed layer templates for the subsequent growth of the ZnO NRs. The influences of the different solvents on the structural and optical properties were investigated through scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, and photoluminescence. The obtained X-ray diffraction patterns showed that the synthesized ZnO NRs were single crystals and exhibited a preferred orientation along the (002) plane. In addition, the calculated results from the specific models of the refractive index are consistent with the experimental data. The ZnO NRs that grew from the 2-methoxyethanol seeded layer exhibited the smallest grain size (39.18 nm), largest diffracted intensities on the (002) plane, and highest bandgap (3.21 eV). PMID:25221458

  16. Blended Learning

    ERIC Educational Resources Information Center

    Imbriale, Ryan

    2013-01-01

    Teachers always have been and always will be the essential element in the classroom. They can create magic inside four walls, but they have never been able to create learning environments outside the classroom like they can today, thanks to blended learning. Blended learning allows students and teachers to break free of the isolation of the…

  17. Apparatus for blending small particles

    DOEpatents

    Bradley, R.A.; Reese, C.R.; Sease, J.D.

    1975-08-26

    An apparatus is described for blending small particles and uniformly loading the blended particles in a receptacle. Measured volumes of various particles are simultaneously fed into a funnel to accomplish radial blending and then directed onto the apex of a conical splitter which collects the blended particles in a multiplicity of equal subvolumes. Thereafter the apparatus sequentially discharges the subvolumes for loading in a receptacle. A system for blending nuclear fuel particles and loading them into fuel rod molds is described in a preferred embodiment. (auth)

  18. The Zinc Transporter Zip5 (Slc39a5) Regulates Intestinal Zinc Excretion and Protects the Pancreas against Zinc Toxicity

    PubMed Central

    Geiser, Jim; De Lisle, Robert C.; Andrews, Glen K.

    2013-01-01

    Background ZIP5 localizes to the baso-lateral membranes of intestinal enterocytes and pancreatic acinar cells and is internalized and degraded coordinately in these cell-types during periods of dietary zinc deficiency. These cell-types are thought to control zinc excretion from the body. The baso-lateral localization and zinc-regulation of ZIP5 in these cells are unique among the 14 members of the Slc39a family and suggest that ZIP5 plays a role in zinc excretion. Methods/Principal Findings We created mice with floxed Zip5 genes and deleted this gene in the entire mouse or specifically in enterocytes or acinar cells and then examined the effects on zinc homeostasis. We found that ZIP5 is not essential for growth and viability but total knockout of ZIP5 led to increased zinc in the liver in mice fed a zinc-adequate (ZnA) diet but impaired accumulation of pancreatic zinc in mice fed a zinc-excess (ZnE) diet. Loss-of-function of enterocyte ZIP5, in contrast, led to increased pancreatic zinc in mice fed a ZnA diet and increased abundance of intestinal Zip4 mRNA. Finally, loss-of-function of acinar cell ZIP5 modestly reduced pancreatic zinc in mice fed a ZnA diet but did not impair zinc uptake as measured by the rapid accumulation of 67zinc. Retention of pancreatic 67zinc was impaired in these mice but the absence of pancreatic ZIP5 sensitized them to zinc-induced pancreatitis and exacerbated the formation of large cytoplasmic vacuoles containing secretory protein in acinar cells. Conclusions These studies demonstrate that ZIP5 participates in the control of zinc excretion in mice. Specifically, they reveal a paramount function of intestinal ZIP5 in zinc excretion but suggest a role for pancreatic ZIP5 in zinc accumulation/retention in acinar cells. ZIP5 functions in acinar cells to protect against zinc-induced acute pancreatitis and attenuate the process of zymophagy. This suggests that it may play a role in autophagy. PMID:24303081

  19. A Biphasic Calcium Sulphate/Hydroxyapatite Carrier Containing Bone Morphogenic Protein-2 and Zoledronic Acid Generates Bone

    PubMed Central

    Raina, Deepak Bushan; Isaksson, Hanna; Hettwer, Werner; Kumar, Ashok; Lidgren, Lars; Tägil, Magnus

    2016-01-01

    In orthopedic surgery, large amount of diseased or injured bone routinely needs to be replaced. Autografts are mainly used but their availability is limited. Commercially available bone substitutes allow bone ingrowth but lack the capacity to induce bone formation. Thus, off-the-shelf osteoinductive bone substitutes that can replace bone grafts are required. We tested the carrier properties of a biphasic, calcium sulphate and hydroxyapatite ceramic material, containing a combination of recombinant human bone morphogenic protein-2 (rhBMP-2) to induce bone, and zoledronic acid (ZA) to delay early resorption. In-vitro, the biphasic material released 90% of rhBMP-2 and 10% of ZA in the first week. No major changes were found in the surface structure using scanning electron microscopy (SEM) or in the mechanical properties after adding rhBMP-2 or ZA. In-vivo bone formation was studied in an abdominal muscle pouch model in rats (n = 6/group). The mineralized volume was significantly higher when the biphasic material was combined with both rhBMP-2 and ZA (21.4 ± 5.5 mm3) as compared to rhBMP-2 alone (10.9 ± 2.1 mm3) when analyzed using micro computed tomography (μ-CT) (p < 0.01). In the clinical setting, the biphasic material combined with both rhBMP-2 and ZA can potentially regenerate large volumes of bone. PMID:27189411

  20. Deriving sulfamethoxazole dissipation endpoints in pasture soils using first order and biphasic kinetic models.

    PubMed

    Srinivasan, Prakash; Sarmah, Ajit K; Rohan, Maheswaran

    2014-08-01

    Single first-order (SFO) kinetic model is often used to derive the dissipation endpoints of an organic chemical in soil. This model is used due to its simplicity and requirement by regulatory agencies. However, using the SFO model for all types of decay pattern could lead to under- or overestimation of dissipation endpoints when the deviation from first-order is significant. In this study the performance of three biphasic kinetic models - bi-exponential decay (BEXP), first-order double exponential decay (FODED), and first-order two-compartment (FOTC) models was evaluated using dissipation datasets of sulfamethoxazole (SMO) antibiotic in three different soils under varying concentration, depth, temperature, and sterile conditions. Corresponding 50% (DT50) and 90% (DT90) dissipation times for the antibiotics were numerically obtained and compared against those obtained using the SFO model. The fit of each model to the measured values was evaluated based on an array of statistical measures such as coefficient of determination (R(2)adj), root mean square error (RMSE), chi-square (χ(2)) test at 1% significance, Bayesian Information Criteria (BIC) and % model error. Box-whisker residual plots were also used to compare the performance of each model to the measured datasets. The antibiotic dissipation was successfully predicted by all four models. However, the nonlinear biphasic models improved the goodness-of-fit parameters for all datasets. Deviations from datasets were also often less evident with the biphasic models. The fits of FOTC and FODED models for SMO dissipation datasets were identical in most cases, and were found to be superior to the BEXP model. Among the biphasic models, the FOTC model was found to be the most suitable for obtaining the endpoints and could provide a mechanistic explanation for SMO dissipation in the soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Sub-threshold depolarizing pre-pulses can enhance the efficiency of biphasic stimuli in transcutaneous neuromuscular electrical stimulation.

    PubMed

    Vargas Luna, Jose Luis; Mayr, Winfried; Cortés-Ramirez, Jorge-Armando

    2018-06-09

    There is multiple evidence in the literature that a sub-threshold pre-pulse, delivered immediately prior to an electrical stimulation pulse, can alter the activation threshold of nerve fibers and motor unit recruitment characteristics. So far, previously published works combined monophasic stimuli with sub-threshold depolarizing pre-pulses (DPPs) with inconsistent findings-in some studies, the DPPs decreased the activation threshold, while in others it was increased. This work aimed to evaluate the effect of DPPs during biphasic transcutaneous electrical stimulation and to study the possible mechanism underlying those differences. Sub-threshold DPPs between 0.5 and 15 ms immediately followed by biphasic or monophasic pulses were administered to the tibial nerve; the electrophysiological muscular responses (motor-wave, M-wave) were monitored via electromyogram (EMG) recording from the soleus muscle. The data show that, under the specific studied conditions, DPPs tend to lower the threshold for nerve fiber activation rather than elevating it. DPPs with the same polarity as the leading phase of biphasic stimuli are more effective to increase the sensitivity. This work assesses for the first time the effect of DPPs on biphasic pulses, which are required to achieve charge-balanced stimulation, and it provides guidance on the effect of polarity and intensity to take full advantage of this feature. Graphical abstract In this work, the effect of sub-threshold depolarizing pre-pulses (DPP) is investigated in a setup with transcutaneous electrical stimulation. We found that, within the tested 0-15 ms DPP duration range, the DPPs administered immediately before biphasic pulses proportionally increase the nerve excitability as visible in the M-waves recorded from the soleus muscle. Interestingly, these findings oppose published results, where DPPs, administered immediately before monophasic stimuli via implanted electrodes, led to decrease of nerve excitability.

  2. Anti-prelog reduction of prochiral carbonyl compounds by Oenococcus oeni in a biphasic system.

    PubMed

    Hu, Jian; Xu, Yan

    2006-07-01

    An aqueous-organic biphasic system was established and used with whole cells of Oenococcus oeni to reduce 2-octanone to (R)-2-octanol. The conversion reached 99% when the Tris/borate buffer was increased from 50 mM to 300 mM in the aqueous phase. In addition, the conversion increased as the log P value of the organic solvent changed from 0.5 to 6.6. Under optimized conditions, the conversion of (R)-2-octanol reached 99% from 0.5 M 2-octanone with an optical purity of 99% e.e. The biphasic system allows the anti-Prelog reduction of aliphatic and aromatic ketones to furnish (R)-configurated alcohols in high optical purity as well.

  3. Zinc pharmacokinetic parameters in the determination of body zinc status in children.

    PubMed

    Vale, S H L; Leite, L D; Alves, C X; Dantas, M M G; Costa, J B S; Marchini, J S; França, M C; Brandão-Neto, J

    2014-02-01

    Serum or tissue zinc concentrations are often used to assess body zinc status. However, all of these methods are relatively inaccurate. Thus, we investigated three different kinetic methods for the determination of zinc clearance to establish which of these could detect small changes in the body zinc status of children. Forty apparently healthy children were studied. Renal handling of zinc was investigated during intravenous zinc administration (0.06537 mg Zn/kg of body weight), both before and after oral zinc supplementation (5 mg Zn/day for 3 months). Three kinetic methods were used to determine zinc clearance: CZn-Formula A and CZn-Formula B were both used to calculate systemic clearance; the first is a general formula and the second is used for the specific analysis of a single-compartment model; CZn-Formula C is widely used in medical practices to analyze kinetic routine. Basal serum zinc values, which were within the reference range for healthy children, increased significantly after oral zinc supplementation. The three formulas used gave different results for zinc clearance both before and after oral zinc supplementation. CZn-Formula B showed a positive correlation with basal serum zinc concentration after oral supplementation (R2=0.1172, P=0.0306). In addition, CZn-Formula B (P=0.0002) was more effective than CZn-Formula A (P=0.6028) and CZn-Formula C (P=0.0732) in detecting small variations in body zinc status. All three of the formulas used are suitable for studying zinc kinetics; however, CZn-Formula B is particularly effective at detecting small changes in body zinc status in healthy children.

  4. Morphology control of zinc regeneration for zinc-air fuel cell and battery

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Pei, Pucheng; Ma, Ze; Xu, Huachi; Li, Pengcheng; Wang, Xizhong

    2014-12-01

    Morphology control is crucial both for zinc-air batteries and for zinc-air fuel cells during zinc regeneration. Zinc dendrite should be avoided in zinc-air batteries and zinc pellets are yearned to be formed for zinc-air fuel cells. This paper is mainly to analyze the mechanism of shape change and to control the zinc morphology during charge. A numerical three-dimensional model for zinc regeneration is established with COMSOL software on the basis of ionic transport theory and electrode reaction electrochemistry, and some experiments of zinc regeneration are carried out. The deposition process is qualitatively analyzed by the kinetics Monte Carlo method to study the morphological change from the electrocrystallization point of view. Morphological evolution of deposited zinc under different conditions of direct currents and pulse currents is also investigated by simulation. The simulation shows that parametric variables of the flowing electrolyte, the surface roughness and the structure of the electrode, the charging current and mode affect morphological evolution. The uniform morphology of deposited zinc is attained at low current, pulsating current or hydrodynamic electrolyte, and granular morphology is obtained by means of an electrode of discrete columnar structure in combination with high current and flowing electrolyte.

  5. Elastic-plastic and phase transition of zinc oxide single crystal under shock compression

    NASA Astrophysics Data System (ADS)

    Liu, Xun; Mashimo, Tsutomu; Li, Wei; Zhou, Xianming; Sekine, Toshimori

    2015-03-01

    The Hugoniot data for zinc oxide (ZnO) single crystals were measured up to 80 GPa along both the ⟨ 11 2 ¯ 0 ⟩ (a-axis) and ⟨0001⟩ (c-axis) directions using a velocity interferometer system for any reflector and inclined-mirror method combined with a powder gun and two-stage light gas gun. The Hugoniot-elastic limits of ZnO were determined to be 10.5 and 11.5 GPa along the a- and c-axes, respectively. The wurtzite (B4) to rocksalt (B1) phase transition pressures along the a- and c-axes are 12.3 and 14.4 GPa, respectively. Shock velocity (Us) versus particle velocity (Up) relation of the final phase is given by the following relationship: Us (km/s) = 2.76 + 1.51Up (km/s). Based on the Debye-Grüneisen model and Birch-Murnaghan equation of state (EOS), we discuss the EOS of the B1 phase ZnO. The bulk modulus (K0) and its pressure derivative (K0') are estimated to be K0 = 174 GPa and K0' = 3.9, respectively.

  6. Zinc and Autophagy

    PubMed Central

    Liuzzi, Juan P.; Guo, Liang; Yoo, Changwon; Stewart, Tiffanie S

    2014-01-01

    Autophagy is a highly conserved degradative process through which cells overcome stressful conditions. Inasmuch as faulty autophagy has been associated with aging, neuronal degeneration disorders, diabetes, and fatty liver, autophagy is regarded as a potential therapeutic target. This review summarizes the present state of knowledge concerning the role of zinc in the regulation of autophagy, the role of autophagy in zinc metabolism, and the potential role of autophagy as a mediator of the protective effects of zinc. Data from in vitro studies consistently support the notion that zinc is critical for early and late autophagy. Studies have shown inhibition of early and late autophagy in cells cultured in medium treated with zinc chelators. Conversely, excess zinc added to the medium has shown to potentiate the stimulation of autophagy by tamoxifen, H2O2, ethanol and dopamine. The potential role of autophagy in zinc homeostasis has just begun to be investigated.Increasing evidence indicates that autophagy dysregulation causes significant changes in cellular zinc homeostasis. Autophagy may mediate the protective effect of zinc against lipid accumulation, apoptosis and inflammation by promoting degradation of lipid droplets, inflammasomes, p62/SQSTM1 and damaged mitochondria.Studies with humans and animal models are necessary to determine whether autophagy is influenced by zinc intake. PMID:25012760

  7. A dynamic model for predicting growth in zinc-deficient stunted infants given supplemental zinc.

    PubMed

    Wastney, Meryl E; McDonald, Christine M; King, Janet C

    2018-05-01

    Zinc deficiency limits infant growth and increases susceptibility to infections, which further compromises growth. Zinc supplementation improves the growth of zinc-deficient stunted infants, but the amount, frequency, and duration of zinc supplementation required to restore growth in an individual child is unknown. A dynamic model of zinc metabolism that predicts changes in weight and length of zinc-deficient, stunted infants with dietary zinc would be useful to define effective zinc supplementation regimens. The aims of this study were to develop a dynamic model for zinc metabolism in stunted, zinc-deficient infants and to use that model to predict the growth response when those infants are given zinc supplements. A model of zinc metabolism was developed using data on zinc kinetics, tissue zinc, and growth requirements for healthy 9-mo-old infants. The kinetic model was converted to a dynamic model by replacing the rate constants for zinc absorption and excretion with functions for these processes that change with zinc intake. Predictions of the dynamic model, parameterized for zinc-deficient, stunted infants, were compared with the results of 5 published zinc intervention trials. The model was then used to predict the results for zinc supplementation regimes that varied in the amount, frequency, and duration of zinc dosing. Model predictions agreed with published changes in plasma zinc after zinc supplementation. Predictions of weight and length agreed with 2 studies, but overpredicted values from a third study in which other nutrient deficiencies may have been growth limiting; the model predicted that zinc absorption was impaired in that study. The model suggests that frequent, smaller doses (5-10 mg Zn/d) are more effective for increasing growth in stunted, zinc-deficient 9-mo-old infants than are larger, less-frequent doses. The dose amount affects the duration of dosing necessary to restore and maintain plasma zinc concentration and growth.

  8. Production of zinc pellets

    DOEpatents

    Cooper, J.F.

    1996-11-26

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries. 6 figs.

  9. Production of zinc pellets

    DOEpatents

    Cooper, John F.

    1996-01-01

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries.

  10. Microstructure and mechanical properties of biodegradable poly (D/L) lactic acid/polycaprolactone blends processed from the solvent-evaporation technique.

    PubMed

    Esmaeilzadeh, Javad; Hesaraki, Saeed; Hadavi, Seyed Mohammad-Mehdi; Esfandeh, Masoud; Ebrahimzadeh, Mohammad Hosein

    2017-02-01

    In this study, polymer blends comprising poly(D/L) lactic acid (PDLLA) and 0-30wt% polycaprolactone (PCL) was prepared by a solvent-evaporation technique. The effect of PCL content on the dynamic-mechanical properties and tensile and flexural characteristics of the blends was evaluated. The creep and stress relaxation behaviors were also determined and using various known models such as power law, Burgers model and Weibull distribution equation. The results showed that by increasing the PCL content from 10 to 30wt%, the yield stress and flexural strength decreased from 47MPa to 26MPa and 72MPa to 29MPa respectively. In addition to tensile and flexural strength, the elastic modulus of neat PDLLA declined with increasing the PCL content, whereas the elongation or the strain percentage at the break point increased considerably. Biphasic regions were observed in the microstructures of the blends, indicating the immiscibility of PCL in PDLLA matrix. However, the PCL spherulites with an average particle diameter of 100nm to 5μm were homogeneously dispersed in PDLLA phase even at high PCL concentrations. Moreover, the microstructures of the fractured surfaces of the polymers confirmed that PDLLA with a brittle fracture behavior tends toward a soft fracture behavior when it is blended with PCL. The dynamic-mechanical tests indicated that the damping energy and dissipative ability of PDLLA improve by adding PCL. Moreover, T g of neat PDLLA by adding of 10, 20 and 30wt% decreases from 67.3 to 66.2, 65.1 and 63.5°C respectively. Increasing in the recovered viscoelastic strain due to the addition of PCL was also experienced which can be attributed to the presence of large volumetric backbone of PCL chains as well as easy movement of them in the matrix. The results of modeling studies showed a good correlation between the experimentally obtained data. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Zinc Signals and Immunity.

    PubMed

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-10-24

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as "zinc waves", and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.

  12. Zinc Signals and Immunity

    PubMed Central

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-01-01

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as “zinc waves”, and late homeostatic zinc signals regarding prolonged changes in intracellular zinc. PMID:29064429

  13. Zinc in Cellular Regulation: The Nature and Significance of "Zinc Signals".

    PubMed

    Maret, Wolfgang

    2017-10-31

    In the last decade, we witnessed discoveries that established Zn 2+ as a second major signalling metal ion in the transmission of information within cells and in communication between cells. Together with Ca 2+ and Mg 2+ , Zn 2+ covers biological regulation with redox-inert metal ions over many orders of magnitude in concentrations. The regulatory functions of zinc ions, together with their functions as a cofactor in about three thousand zinc metalloproteins, impact virtually all aspects of cell biology. This article attempts to define the regulatory functions of zinc ions, and focuses on the nature of zinc signals and zinc signalling in pathways where zinc ions are either extracellular stimuli or intracellular messengers. These pathways interact with Ca 2+ , redox, and phosphorylation signalling. The regulatory functions of zinc require a complex system of precise homeostatic control for transients, subcellular distribution and traffic, organellar homeostasis, and vesicular storage and exocytosis of zinc ions.

  14. Zinc and Wound Healing: A Review of Zinc Physiology and Clinical Applications.

    PubMed

    Kogan, Samuel; Sood, Aditya; Garnick, Mark S

    2017-04-01

    Our understanding of the role of zinc in normal human physiology is constantly expanding, yet there are major gaps in our knowledge with regard to the function of zinc in wound healing. This review aims to provide the clinician with sufficient understanding of zinc biology and an up-to-date perspective on the role of zinc in wound healing. Zinc is an essential ion that is crucial for maintenance of normal physiology, and zinc deficiency has many manifestations ranging from delayed wound healing to immune dysfunction and impairment of multiple sensory systems. While consensus has been reached regarding the detrimental effects of zinc deficiency on wound healing, there is considerable discord in the literature on the optimal methods and true benefits of zinc supplementation.

  15. Zinc

    MedlinePlus

    ... Guidelines for Americans and the U.S. Department of Agriculture's MyPlate . Where can I find out more about ... on food sources of zinc: U.S. Department of Agriculture's (USDA’s) National Nutrient Database Nutrient List for zinc ( ...

  16. Compositional dependence of optical and electrical properties of indium doped zinc oxide (IZO) thin films deposited by chemical spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Dintle, Lawrence K.; Luhanga, Pearson V. C.; Moditswe, Charles; Muiva, Cosmas M.

    2018-05-01

    The structural and optoelectronic properties of undoped and indium doped zinc oxide (IZO) thin films grown on glass substrates through a simple reproducible custom-made pneumatic chemical spray pyrolysis technique are presented. X-ray diffraction (XRD) results showed a polycrystalline structure of hexagonal wurtzite phase growing preferentially along the (002) plane for the undoped sample. Increase in dopant content modified the orientation leading to more pronounced (100) and (101) reflections. Optical transmission spectra showed high transmittance of 80-90% in the visible range for all thin films. The optical band gap energy (Eg) was evaluated on the basis of the derivative of transmittance (dT/dλ) versus wavelength (λ) model and Tauc's extrapolation method in the region where the absorption coefficient, α ≥ 104 cm-1. The observed values of Eg were found to decrease generally with increasing In dopant concentration. From the figure of merit calculations a sample with 4 at.% In dopant concentration showed better optoelectronic properties.

  17. The effect of collagen fibril orientation on the biphasic mechanics of articular cartilage.

    PubMed

    Meng, Qingen; An, Shuqiang; Damion, Robin A; Jin, Zhongmin; Wilcox, Ruth; Fisher, John; Jones, Alison

    2017-01-01

    The highly inhomogeneous distribution of collagen fibrils may have important effects on the biphasic mechanics of articular cartilage. However, the effect of the inhomogeneity of collagen fibrils has mainly been investigated using simplified three-layered models, which may have underestimated the effect of collagen fibrils by neglecting their realistic orientation. The aim of this study was to investigate the effect of the realistic orientation of collagen fibrils on the biphasic mechanics of articular cartilage. Five biphasic material models, each of which included a different level of complexity of fibril reinforcement, were solved using two different finite element software packages (Abaqus and FEBio). Model 1 considered the realistic orientation of fibrils, which was derived from diffusion tensor magnetic resonance images. The simplified three-layered orientation was used for Model 2. Models 3-5 were three control models. The realistic collagen orientations obtained in this study were consistent with the literature. Results from the two finite element implementations were in agreement for each of the conditions modelled. The comparison between the control models confirmed some functions of collagen fibrils. The comparison between Models 1 and 2 showed that the widely-used three-layered inhomogeneous model can produce similar fluid load support to the model including the realistic fibril orientation; however, an accurate prediction of the other mechanical parameters requires the inclusion of the realistic orientation of collagen fibrils. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Two cases of traumatic head injury mimicking acute encephalopathy with biphasic seizures and late reduced diffusion.

    PubMed

    Nishiyama, Masahiro; Fujita, Kyoko; Maruyama, Azusa; Nagase, Hiroaki

    2014-11-01

    Acute encephalopathy with biphasic seizures and late reduced diffusion (AESD) presents a distinct clinical course of biphasic seizures and impaired consciousness. These symptoms are followed by reduced diffusion in the subcortical white matter on magnetic resonance imaging that is typically observed between 3 and 9 days after illness onset. Here, we report two cases of traumatic head injury with clinical and radiological features similar to those for AESD. The similarities between our cases and AESD may be useful in understanding the pathogenesis of AESD. Copyright © 2013 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  19. Comparison of outcomes after use of biphasic or monophasic defibrillators among out-of-hospital cardiac arrest patients: a nationwide population-based observational study.

    PubMed

    Tanabe, Seizan; Yasunaga, Hideo; Ogawa, Toshio; Koike, Soichi; Akahane, Manabu; Horiguchi, Hiromasa; Hatanaka, Tetsuo; Yokota, Hiroyuki; Imamura, Tomoaki

    2012-09-01

    The use and popularity of the biphasic waveform defibrillator as a replacement for the monophasic waveform defibrillator are increasing, but it is unclear whether this can improve the rate of survival among out-of-hospital cardiac arrest patients. This study aimed to verify the hypothesis that the outcome of out-of-hospital cardiac arrest patients who received defibrillation shock with the biphasic waveform defibrillator was better than that of patients who received defibrillation shock with the monophasic defibrillator. This prospective, nationwide, population-based, observational study included 21 172 out-of-hospital cardiac arrest patients with initial ventricular fibrillation or pulseless ventricular tachycardia from January 1, 2005, through December 31, 2007. Defibrillation shock was performed by monophasic defibrillator on 8224 (39%) patients and by biphasic defibrillator on 12 948 (61%) patients. The rate of survival at 1 month with minimal neurological impairment was 11.6% (951/8192) in the monophasic defibrillator group and 12.8% (1653/12 928) in the biphasic defibrillator group. Hierarchical logistic regression analysis using a generalized estimation equation showed no significant difference between the biphasic and monophasic groups in 1-month survival with minimal neurological impairment (adjusted odds ratio, 1.07; 95% confidence interval, 0.91-1.26; P=0.42). Confirmatory propensity score analyses showed similar results. Although monophasic defibrillators are being replaced by biphasic defibrillators, our nationwide population-based observational study failed to demonstrate a statistically significant association between defibrillation waveform and 1-month survival rate with minimal neurological impairment.

  20. Parasitic wasp females are attracted to blends of host-induced plant volatiles: do qualitative and quantitative differences in the blend matter?

    PubMed Central

    Uefune, Masayoshi; Kugimiya, Soichi; Ozawa, Rika; Takabayashi, Junji

    2013-01-01

    Naïve Cotesia vestalis wasps, parasitoids of diamondback moth (DBM) larvae, are attracted to a synthetic blend (Blend A) of host-induced plant volatiles composed of sabinene, n-heptanal, α-pinene, and ( Z)-3-hexenyl acetate, in a ratio of 1.8:1.3:2.0:3.0. We studied whether qualitative (adding ( R)-limonene: Blend B) or quantitative changes (changing ratios: Blend C) to Blend A affected the olfactory response of C. vestalis in the background of intact komatsuna plant volatiles. Naïve wasps showed equal preference to Blends A and B and Blends A and C in two-choice tests. Wasps with oviposition experience in the presence of Blend B preferred Blend B over Blend A, while wasps that had oviposited without a volatile blend showed no preference between the two. Likewise, wasps that had starvation experience in the presence of Blend B preferred Blend A over Blend B, while wasps that had starved without a volatile blend showed no preference between the two. Wasps that had oviposition experience either with or without Blend A showed equal preferences between Blends C and A. However, wasps that had starvation experience in the presence of Blend A preferred Blend C over Blend A, while those that starved without a volatile blend showed equal preferences between the two. By manipulating quality and quantity of the synthetic attractants, we showed to what extent C. vestalis could discriminate/learn slight differences between blends that were all, in principle, attractive. PMID:24358892

  1. Update on zinc biology.

    PubMed

    Solomons, Noel W

    2013-01-01

    Zinc has become a prominent nutrient of clinical and public health interest in the new millennium. Functions and actions for zinc emerge as increasingly ubiquitous in mammalian anatomy, physiology and metabolism. There is undoubtedly an underpinning in fundamental biology for all of the aspects of zinc in human health (clinical and epidemiological) in pediatric and public health practice. Unfortunately, basic science research may not have achieved a full understanding as yet. As a complement to the applied themes in the companion articles, a selection of recent advances in the domains homeostatic regulation and transport of zinc is presented; they are integrated, in turn, with findings on genetic expression, intracellular signaling, immunity and host defense, and bone growth. The elements include ionic zinc, zinc transporters, metallothioneins, zinc metalloenzymes and zinc finger proteins. In emerging basic research, we find some plausible mechanistic explanations for delayed linear growth with zinc deficiency and increased infectious disease resistance with zinc supplementation. Copyright © 2013 S. Karger AG, Basel.

  2. Zinc at glutamatergic synapses.

    PubMed

    Paoletti, P; Vergnano, A M; Barbour, B; Casado, M

    2009-01-12

    It has long been known that the mammalian forebrain contains a subset of glutamatergic neurons that sequester zinc in their synaptic vesicles. This zinc may be released into the synaptic cleft upon neuronal activity. Extracellular zinc has the potential to interact with and modulate many different synaptic targets, including glutamate receptors and transporters. Among these targets, NMDA receptors appear particularly interesting because certain NMDA receptor subtypes (those containing the NR2A subunit) contain allosteric sites exquisitely sensitive to extracellular zinc. The existence of these high-affinity zinc binding sites raises the possibility that zinc may act both in a phasic and tonic mode. Changes in zinc concentration and subcellular zinc distribution have also been described in several pathological conditions linked to glutamatergic transmission dysfunctions. However, despite intense investigation, the functional significance of vesicular zinc remains largely a mystery. In this review, we present the anatomy and the physiology of the glutamatergic zinc-containing synapse. Particular emphasis is put on the molecular and cellular mechanisms underlying the putative roles of zinc as a messenger involved in excitatory synaptic transmission and plasticity. We also highlight the many controversial issues and unanswered questions. Finally, we present and compare two widely used zinc chelators, CaEDTA and tricine, and show why tricine should be preferred to CaEDTA when studying fast transient zinc elevations as may occur during synaptic activity.

  3. 7 CFR 989.16 - Blend.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Blend. 989.16 Section 989.16 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... CALIFORNIA Order Regulating Handling Definitions § 989.16 Blend. Blend means to mix or commingle raisins. ...

  4. 7 CFR 989.16 - Blend.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Blend. 989.16 Section 989.16 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... CALIFORNIA Order Regulating Handling Definitions § 989.16 Blend. Blend means to mix or commingle raisins. ...

  5. Production of Furfural from Process-Relevant Biomass-Derived Pentoses in a Biphasic Reaction System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Ashutosh; Black, Stuart K.; Vinzant, Todd B.

    Furfural is an important fuel precursor which can be converted to hydrocarbon fuels and fuel intermediates. In this work, the production of furfural by dehydration of process-relevant pentose rich corn stover hydrolyzate using a biphasic batch reaction system has been investigated. Methyl isobutyl ketone (MIBK) and toluene have been used to extract furfural and enhance overall furfural yield by limiting its degradation to humins. The effects of reaction time, temperature, and acid concentration (H 2SO 4) on pentose conversion and furfural yield were investigated. For the dehydration of 8 wt % pentose-rich corn stover hydrolyzate under optimum reaction conditions, 0.05more » M H 2SO 4, 170 degrees C for 20 min with MIBK as the solvent, complete conversion of xylose (98-100%) and a furfural yield of 80% were obtained. Under these same conditions, except with toluene as the solvent, the furfural yield was 77%. Additionally, dehydration of process-relevant pentose rich corn stover hydrolyzate using solid acid ion-exchange resins under optimum reaction conditions has shown that Purolite CT275 is as effective as H 2SO 4 for obtaining furfural yields approaching 80% using a biphasic batch reaction system. In conclusion, this work has demonstrated that a biphasic reaction system can be used to process biomass-derived pentose rich sugar hydrolyzates to furfural in yields approaching 80%.« less

  6. Production of Furfural from Process-Relevant Biomass-Derived Pentoses in a Biphasic Reaction System

    DOE PAGES

    Mittal, Ashutosh; Black, Stuart K.; Vinzant, Todd B.; ...

    2017-05-16

    Furfural is an important fuel precursor which can be converted to hydrocarbon fuels and fuel intermediates. In this work, the production of furfural by dehydration of process-relevant pentose rich corn stover hydrolyzate using a biphasic batch reaction system has been investigated. Methyl isobutyl ketone (MIBK) and toluene have been used to extract furfural and enhance overall furfural yield by limiting its degradation to humins. The effects of reaction time, temperature, and acid concentration (H 2SO 4) on pentose conversion and furfural yield were investigated. For the dehydration of 8 wt % pentose-rich corn stover hydrolyzate under optimum reaction conditions, 0.05more » M H 2SO 4, 170 degrees C for 20 min with MIBK as the solvent, complete conversion of xylose (98-100%) and a furfural yield of 80% were obtained. Under these same conditions, except with toluene as the solvent, the furfural yield was 77%. Additionally, dehydration of process-relevant pentose rich corn stover hydrolyzate using solid acid ion-exchange resins under optimum reaction conditions has shown that Purolite CT275 is as effective as H 2SO 4 for obtaining furfural yields approaching 80% using a biphasic batch reaction system. In conclusion, this work has demonstrated that a biphasic reaction system can be used to process biomass-derived pentose rich sugar hydrolyzates to furfural in yields approaching 80%.« less

  7. Number series of atoms, interatomic bonds and interface bonds defining zinc-blende nanocrystals as function of size, shape and surface orientation: Analytic tools to interpret solid state spectroscopy data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    König, Dirk, E-mail: dirk.koenig@unsw.edu.au

    2016-08-15

    Semiconductor nanocrystals (NCs) experience stress and charge transfer by embedding materials or ligands and impurity atoms. In return, the environment of NCs experiences a NC stress response which may lead to matrix deformation and propagated strain. Up to now, there is no universal gauge to evaluate the stress impact on NCs and their response as a function of NC size d{sub NC}. I deduce geometrical number series as analytical tools to obtain the number of NC atoms N{sub NC}(d{sub NC}[i]), bonds between NC atoms N{sub bnd}(d{sub NC}[i]) and interface bonds N{sub IF}(d{sub NC}[i]) for seven high symmetry zinc-blende (zb) NCsmore » with low-index faceting: {001} cubes, {111} octahedra, {110} dodecahedra, {001}-{111} pyramids, {111} tetrahedra, {111}-{001} quatrodecahedra and {001}-{111} quadrodecahedra. The fundamental insights into NC structures revealed here allow for major advancements in data interpretation and understanding of zb- and diamond-lattice based nanomaterials. The analytical number series can serve as a standard procedure for stress evaluation in solid state spectroscopy due to their deterministic nature, easy use and general applicability over a wide range of spectroscopy methods as well as NC sizes, forms and materials.« less

  8. Optical, Magnetic and Photocatalytic Activity Studies of Li, Mg and Sr Doped and Undoped Zinc Oxide Nanoparticles.

    PubMed

    Shanthi, S I; Poovaragan, S; Arularasu, M V; Nithya, S; Sundaram, R; Magdalane, C Maria; Kaviyarasu, K; Maaza, M

    2018-08-01

    Nanoparticles of Li, Mg and Sr doped and undoped zinc oxide was prepared by simple precipitation method. The structural, optical, and magnetic properties of the samples were investigated by the Powder X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Fourier Transform Infrared (FTIR) spectroscopy, Ultra-violet Visible spectroscopy (UV-vis) spectra, Photoluminescence (PL) and Vibrational Sample Magnetometer (VSM). The Powder X-ray diffraction data confirm the formation of hexagonal wurtzite structure of all doped and undoped ZnO. The SEM photograph reveals that the pores availability and particles size in the range of 10 nm-50 nm. FTIR and UV-Visible spectra results confirm the incorporation of the dopant into the ZnO lattice nanostructure. The UV-Visible spectra indicate that the shift of blue region (lower wavelength) due to bandgap widening. Photoluminescence intensity varies with doping due to the increase of oxygen vacancies in prepared ZnO. The pure ZnO exist paramagnetic while doped (Li, Mg and Sr) ZnO exist ferromagnetic property. The photocatalytic activity of the prepared sample also carried out in detail.

  9. Zinc and Zinc Transporters: Novel Regulators of Ventricular Myocardial Development.

    PubMed

    Lin, Wen; Li, Deqiang

    2018-06-01

    Ventricular myocardial development is a well-orchestrated process involving different cardiac structures, multiple signal pathways, and myriad proteins. Dysregulation of this important developmental event can result in cardiomyopathies, such as left ventricle non-compaction, which affect the pediatric population and the adults. Human and mouse studies have shed light upon the etiology of some cardiomyopathy cases and highlighted the contribution of both genetic and environmental factors. However, the regulation of ventricular myocardial development remains incompletely understood. Zinc is an essential trace metal with structural, enzymatic, and signaling function. Perturbation of zinc homeostasis has resulted in developmental and physiological defects including cardiomyopathy. In this review, we summarize several mechanisms by which zinc and zinc transporters can impact the regulation of ventricular myocardial development. Based on our review, we propose that zinc deficiency and mutations of zinc transporters may underlie some cardiomyopathy cases especially those involving ventricular myocardial development defects.

  10. Computational solvent system screening for the separation of tocopherols with centrifugal partition chromatography using deep eutectic solvent-based biphasic systems.

    PubMed

    Bezold, Franziska; Weinberger, Maria E; Minceva, Mirjana

    2017-03-31

    Tocopherols are a class of molecules with vitamin E activity. Among those, α-tocopherol is the most important vitamin E source in the human diet. The purification of tocopherols involving biphasic liquid systems can be challenging since these vitamins are poorly soluble in water. Deep eutectic solvents (DES) can be used to form water-free biphasic systems and have already proven applicable for centrifugal partition chromatography separations. In this work, a computational solvent system screening was performed using the predictive thermodynamic model COSMO-RS. Liquid-liquid equilibria of solvent systems composed of alkanes, alcohols and DES, as well as partition coefficients of α-tocopherol, β-tocopherol, γ-tocopherol, and σ-tocopherol in these biphasic solvent systems were calculated. From the results the best suited biphasic solvent system, namely heptane/ethanol/choline chloride-1,4-butanediol, was chosen and a batch injection of a tocopherol mixture, mainly consisting of α- and γ-tocopherol, was performed using a centrifugal partition chromatography set up (SCPE 250-BIO). A separation factor of 1.74 was achieved for α- and γ-tocopherol. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Blended Course Design: Where's the Pedagogy?

    ERIC Educational Resources Information Center

    McGee, Patricia

    2014-01-01

    Blended or hybrid course design is generally considered to involve a combination of online and classroom activities. However defining blended courses solely based on delivery mode suggests there is nothing more to a blended course than where students meet and how they use technology. Ultimately there is a risk that blended courses defined in this…

  12. Biphasic rattlesnake venom-induced thrombocytopenia.

    PubMed

    Offerman, Steven R; Barry, J David; Schneir, Aaron; Clark, Richard F

    2003-04-01

    Thrombocytopenia is a common occurrence in moderate to severe crotaline envenomation. The exact mechanism by which rattlesnake venom leads to thrombocytopenia is unclear, but aggressive treatment with crotaline-specific antivenom often leads to resolution of this disorder. Crotalinae Polyvalent Immune Fab (CroFab(TM), Protherics Inc., Nashville, TN) (crotaline Fab) is now available for the treatment of symptomatic rattlesnake envenomation. Although recurrence of thrombocytopenia has been reported in patients after envenomation treated with crotaline Fab, cases refractory to this therapy have not been described. We report a case of severe crotaline envenomation that appears to have exhibited two separate episodes of thrombocytopenia, only one of which responded to antivenom. The second, later phase was refractory to both crotaline Fab as well as traditional Antivenin (Crotalinae) Polyvalent (Wyeth-Ayerst Pharmaceuticals, Philadelphia, PA) (ACP). By reviewing the literature regarding venom-induced thrombocytopenia, we attempt to explain this "biphasic" phenomenon and the inability of crotaline Fab to reverse this toxic effect.

  13. Molecular dynamics simulation of ZnO wurtzite phase under high and low pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Chergui, Y.; Aouaroun, T.; Hadley, M. J.; Belkada, R.; Chemam, R.; Mekki, D. E.

    2017-11-01

    Isothermal and isobaric ensembles behaviours of ZnO wurtzite phase have been investigated, by parallel molecular dynamics method and using Buckingham potential, which contains long-range Coulomb, repulsive exponential, and attractive dispersion terms. To conduct our calculations, we have used dl_poly 4 software, under which the method is implemented. We have examined the influence of the temperature and pressure on molar volume in the ranges of 300-3000 K and 0-200 GPa. Isothermal-isobaric relationships, fluctuations, standard error, equilibrium time, molar volume and its variation versus time are predicted and analyzed. Our results are close to available experimental data and theoretical results.

  14. The Optimum Blend: Affordances and Challenges of Blended Learning for Students

    ERIC Educational Resources Information Center

    Gedik, Nuray; Kiraz, Ercan; Ozden, M. Yasar

    2012-01-01

    The purpose of this study was to elicit students' perceptions regarding the most facilitative and most challenging features (affordances and barriers) in a blended course design. Following the phenomenological approach of qualitative inquiry, data were collected from ten undergraduate students who had experiences in a blended learning environment.…

  15. Correct implementation of polarization constants in wurtzite materials and impact on III-nitrides

    DOE PAGES

    Dreyer, Cyrus E.; Janotti, Anderson; Van de Walle, Chris G.; ...

    2016-06-20

    Here, accurate values for polarization discontinuities between pyroelectric materials are critical for understanding and designing the electronic properties of heterostructures. For wurtzite materials, the zincblende structure has been used in the literature as a reference to determine the effective spontaneous polarization constants. We show that, because the zincblende structure has a nonzero formal polarization, this method results in a spurious contribution to the spontaneous polarization differences between materials. In addition, we address the correct choice of "improper" versus "proper" piezoelectric constants. For the technologically important III-nitride materials GaN, AlN, and InN, we determine polarization discontinuities using a consistent reference basedmore » on the layered hexagonal structure and the correct choice of piezoelectric constants, and discuss the results in light of available experimental data.« less

  16. * Fabrication and Characterization of Biphasic Silk Fibroin Scaffolds for Tendon/Ligament-to-Bone Tissue Engineering.

    PubMed

    Font Tellado, Sònia; Bonani, Walter; Balmayor, Elizabeth R; Foehr, Peter; Motta, Antonella; Migliaresi, Claudio; van Griensven, Martijn

    2017-08-01

    Tissue engineering is an attractive strategy for tendon/ligament-to-bone interface repair. The structure and extracellular matrix composition of the interface are complex and allow for a gradual mechanical stress transfer between tendons/ligaments and bone. Thus, scaffolds mimicking the structural features of the native interface may be able to better support functional tissue regeneration. In this study, we fabricated biphasic silk fibroin scaffolds designed to mimic the gradient in collagen molecule alignment present at the interface. The scaffolds had two different pore alignments: anisotropic at the tendon/ligament side and isotropic at the bone side. Total porosity ranged from 50% to 80% and the majority of pores (80-90%) were <100-300 μm. Young's modulus varied from 689 to 1322 kPa depending on the type of construct. In addition, human adipose-derived mesenchymal stem cells were cultured on the scaffolds to evaluate the effect of pore morphology on cell proliferation and gene expression. Biphasic scaffolds supported cell attachment and influenced cytoskeleton organization depending on pore alignment. In addition, the gene expression of tendon/ligament, enthesis, and cartilage markers significantly changed depending on pore alignment in each region of the scaffolds. In conclusion, the biphasic scaffolds fabricated in this study show promising features for tendon/ligament-to-bone tissue engineering.

  17. Evaluation of a Unique Defibrillation Unit with Dual-Vector Biphasic Waveform Capabilities: Towards a Miniaturized Defibrillator.

    PubMed

    Okamura, Hideo; Desimone, Christopher V; Killu, Ammar M; Gilles, Emily J; Tri, Jason; Asirvatham, Roshini; Ladewig, Dejae J; Suddendorf, Scott H; Powers, Joanne M; Wood-Wentz, Christina M; Gray, Peter D; Raymond, Douglas M; Savage, Shelley J; Savage, Walter T; Bruce, Charles J; Asirvatham, Samuel J; Friedman, Paul A

    2017-02-01

    Automated external defibrillators can provide life-saving therapies to treat ventricular fibrillation. We developed a prototype unit that can deliver a unique shock waveform produced by four independent capacitors that is delivered through two shock vectors, with the rationale of providing more robust shock pathways during emergent defibrillation. We describe the initial testing and feasibility of this unique defibrillation unit, features of which may enable downsizing of current defibrillator devices. We tested our defibrillation unit in four large animal models (two canine and two swine) under general anesthesia. Experimental defibrillation thresholds (DFT) were obtained by delivery of a unique waveform shock pulse via a dual-vector pathway with four defibrillation pads (placed across the chest). DFTs were measured and compared with those of a commercially available biphasic defibrillator (Zoll M series, Zoll Medical, Chelmsford, MA, USA) tested in two different vectors. Shocks were delivered after 10 seconds of stable ventricular fibrillation and the output characteristics and shock outcome recorded. Each defibrillation series used a step-down to failure protocol to define the defibrillation threshold. A total of 96 shocks were delivered during ventricular fibrillation in four large animals. In comparison to the Zoll M series, which delivered a single-vector, biphasic shock, the energy required for successful defibrillation using the unique dual-vector biphasic waveform did not differ significantly (P = 0.65). Our early findings support the feasibility of a unique external defibrillation unit using a dual-vector biphasic waveform approach. This warrants further study to leverage this unique concept and work toward a miniaturized, portable shock delivery system. © 2016 Wiley Periodicals, Inc.

  18. Effect of cadmium incorporation on the properties of zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Bharath, S. P.; Bangera, Kasturi V.; Shivakumar, G. K.

    2018-02-01

    Cd x Zn1- x O (0 ≤ x ≤ 0.20) thin films are deposited on soda lime glass substrates using spray pyrolysis technique. To check the thermal stability, Cd x Zn1- x O thin films are subjected to annealing. Both the as-deposited and annealed Cd x Zn1- x O thin films are characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) and energy-dispersive X-ray analysis (EDAX) to check the structural, surface morphological and compositional properties, respectively. XRD analysis reveals that the both as-deposited and annealed Cd x Zn1- x O thin films are (002) oriented with wurtzite structure. SEM studies confirm that as-deposited, as well as annealed Cd x Zn1- x O thin films are free from pinholes and cracks. Compositional analysis shows the deficiency in Cd content after annealing. Optical properties evaluated from UV-Vis spectroscopy shows red shift in the band gap for Cd x Zn1- x O thin films. Electrical property measured using two probe method shows a decrease in the resistance after Cd incorporation. The results indicate that cadmium can be successfully incorporated in zinc oxide thin films to achieve structural changes in the properties of films.

  19. Dynamic defect annealing in wurtzite MgZnO implanted with Ar ions

    NASA Astrophysics Data System (ADS)

    Azarov, A. Yu.; Wendler, E.; Du, X. L.; Kuznetsov, A. Yu.; Svensson, B. G.

    2015-09-01

    Successful implementation of ion beams for modification of ternary ZnO-based oxides requires understanding and control of radiation-induced defects. Here, we study structural disorder in wurtzite ZnO and MgxZn1-xO (x ⩽ 0.3) samples implanted at room and 15 K temperatures with Ar ions in a wide fluence range (5 × 1012-3 × 1016 cm-2). The samples were characterized by Rutherford backscattering/channeling spectrometry performed in-situ without changing the sample temperature. The results show that all the samples exhibit high radiation resistance and cannot be rendered amorphous even for high ion fluences. Increasing the Mg content leads to some damage enhancement near the surface region; however, irrespective of the Mg content, the fluence dependence of bulk damage in the samples displays the so-called IV-stage evolution with a reverse temperature effect for high ion fluences.

  20. A biphasic parameter estimation method for quantitative analysis of dynamic renal scintigraphic data

    NASA Astrophysics Data System (ADS)

    Koh, T. S.; Zhang, Jeff L.; Ong, C. K.; Shuter, B.

    2006-06-01

    Dynamic renal scintigraphy is an established method in nuclear medicine, commonly used for the assessment of renal function. In this paper, a biphasic model fitting method is proposed for simultaneous estimation of both vascular and parenchymal parameters from renal scintigraphic data. These parameters include the renal plasma flow, vascular and parenchymal mean transit times, and the glomerular extraction rate. Monte Carlo simulation was used to evaluate the stability and confidence of the parameter estimates obtained by the proposed biphasic method, before applying the method on actual patient study cases to compare with the conventional fitting approach and other established renal indices. The various parameter estimates obtained using the proposed method were found to be consistent with the respective pathologies of the study cases. The renal plasma flow and extraction rate estimated by the proposed method were in good agreement with those previously obtained using dynamic computed tomography and magnetic resonance imaging.

  1. A Better Blend

    ERIC Educational Resources Information Center

    Demski, Jennifer

    2010-01-01

    In May 2009, the US Department of Education released a meta-analysis of effectiveness studies of online, face-to-face, and blended learning models. The analysis found that online learning produced better student outcomes than face-to-face classes, and that blended learning offered an even "larger advantage" over face-to-face. The hybrid approach…

  2. Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life12

    PubMed Central

    Maret, Wolfgang

    2013-01-01

    The nutritional essentiality of zinc for the growth of living organisms had been recognized long before zinc biochemistry began with the discovery of zinc in carbonic anhydrase in 1939. Painstaking analytical work then demonstrated the presence of zinc as a catalytic and structural cofactor in a few hundred enzymes. In the 1980s, the field again gained momentum with the new principle of “zinc finger” proteins, in which zinc has structural functions in domains that interact with other biomolecules. Advances in structural biology and a rapid increase in the availability of gene/protein databases now made it possible to predict zinc-binding sites from metal-binding motifs detected in sequences. This procedure resulted in the definition of zinc proteomes and the remarkable estimate that the human genome encodes ∼3000 zinc proteins. More recent developments focus on the regulatory functions of zinc(II) ions in intra- and intercellular information transfer and have tantalizing implications for yet additional functions of zinc in signal transduction and cellular control. At least three dozen proteins homeostatically control the vesicular storage and subcellular distribution of zinc and the concentrations of zinc(II) ions. Novel principles emerge from quantitative investigations on how strongly zinc interacts with proteins and how it is buffered to control the remarkably low cellular and subcellular concentrations of free zinc(II) ions. It is fair to conclude that the impact of zinc for health and disease will be at least as far-reaching as that of iron. PMID:23319127

  3. Tracing of Zinc Nanocrystals in the Anterior Pituitary of Zinc-Deficient Wistar Rats.

    PubMed

    Kuldeep, Anjana; Nair, Neena; Bedwal, Ranveer Singh

    2017-06-01

    The aim of this study was to trace zinc nanocrystals in the anterior pituitary of zinc-deficient Wistar rats by using autometallographic technique. Male Wistar rats (30-40 days of age, pre-pubertal period) of 40-50 g body weight were divided into the following: the ZC (zinc control) group-fed with 100 ppm zinc in diet, the ZD (zinc-deficient) group-fed with zinc-deficient (1.00 ppm) diet and the PF (pair-fed) group-received 100 ppm zinc in diet. The experiments were set for 2 and 4 weeks. Pituitary was removed and processed for the autometallographic technique. The control and pair-fed groups retained their normal morphological features. However, male Wistar rats fed on zinc-deficient diet for 2 and 4 weeks displayed a wide range of symptoms such as significant (P < 0.05) decrease in diet consumption, body weight and pituitary weight and decrease in gradation of intensity of zinc nanocrystals in the nuclei. The present findings suggest that the dietary zinc deficiency causes decreased intensity of zinc nanocrystals localization and their distribution in the pituitary thereby contributing to the dysfunction of the pituitary of the male Wistar rats. The severity of zinc deficiency symptoms progressed after the second week of the experiment. Decreased intensity of zinc nanocrystals attenuates the pituitary function which would exert its affect on other endocrine organs impairing their functions indicating that the metabolic regulation of pituitary is mediated to a certain extent by zinc and/or hypothalamus-hypophysial system which also reflects its essentiality during the period of growth.

  4. A randomised controlled trial of the effect of biphasic or monophasic waveform on the incidence and severity of cutaneous burns following external direct current cardioversion.

    PubMed

    Ambler, Jonathan J S; Deakin, Charles D

    2006-12-01

    Cutaneous burns are a common cause of morbidity following direct current (DC) cardioversion. We designed a prospective randomised double-blinded controlled study to determine the effect of biphasic or monophasic waveform on the pain and inflammation occurring after elective cardioversion. One hundred and thirty nine patients undergoing elective DC cardioversion were randomised to receive monophasic (HP Codemaster XL; 100, 200, 300, 360, and 360 J) or biphasic (Welch Allyn-MRL PIC defibrillator; 70, 100, 150, 200, and 300 J) waveforms. Two hours after DC cardioversion, skin temperature, erythema index and sensory threshold to light and sharp touch was measured at the centre and edge of paddle sites. Visual analogue pain score (VAS) was recorded at 2 and 24 h. There was significantly less pain following biphasic cardioversion as assessed by VAS at both 2 h (p < 0.001; 95% confidence intervals of difference of medians (CI) 0.2-0.8 cm) and 24 h (p = 0.004; 95% CI 0.0-0.4 cm). There was significantly less erythema in patients receiving biphasic cardioversion at the edge of the sternal site (p = 0.046; 95% CI 0.41-4.5). There was no difference in any other variable at any site between biphasic and monophasic cardioversion. The use of a biphasic waveform for DC cardioversion reduces the inflammation and pain of burns as measured by erythema index and visual analogue scale.

  5. Blended Teaching & Learning

    ERIC Educational Resources Information Center

    Pape, Liz

    2010-01-01

    Blended learning is using online tools to communicate, collaborate and publish, to extend the school day or year and to develop the 21st-century skills students need. With blended learning, teachers can use online tools and resources as part of their daily classroom instruction. Using many of the online tools and resources students already are…

  6. Tuning the Blend

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2012-01-01

    "Tuning the blend" is a phrase that educators hear a lot these days. It refers to finding the correct balance of online activities and face-to-face instruction in hybrid--or blended--courses. Finding a mix that meets the needs of both faculty and students requires experimentation, experience, and constant tweaking. And, as with coffee, the same…

  7. Contribution of Zinc Solubilizing Bacteria in Growth Promotion and Zinc Content of Wheat.

    PubMed

    Kamran, Sana; Shahid, Izzah; Baig, Deeba N; Rizwan, Muhammad; Malik, Kauser A; Mehnaz, Samina

    2017-01-01

    Zinc is an imperative micronutrient required for optimum plant growth. Zinc solubilizing bacteria are potential alternatives for zinc supplementation and convert applied inorganic zinc to available forms. This study was conducted to screen zinc solubilizing rhizobacteria isolated from wheat and sugarcane, and to analyze their effect on wheat growth and development. Fourteen exo-polysaccharides producing bacterial isolates of wheat were identified and characterized biochemically as well as on the basis of 16S rRNA gene sequences. Along these, 10 identified sugarcane isolates were also screened for zinc solubilizing ability on five different insoluble zinc sources. Out of 24, five strains, i.e., EPS 1 ( Pseudomonas fragi) , EPS 6 ( Pantoea dispersa) , EPS 13 ( Pantoea agglomerans) , PBS 2 ( E. cloacae) and LHRW1 ( Rhizobium sp.) were selected (based on their zinc solubilizing and PGP activities) for pot scale plant experiments. ZnCO 3 was used as zinc source and wheat seedlings were inoculated with these five strains, individually, to assess their effect on plant growth and development. The effect on plants was analyzed based on growth parameters and quantifying zinc content of shoot, root and grains using atomic absorption spectroscopy. Plant experiment was performed in two sets. For first set of plant experiments (harvested after 1 month), maximum shoot and root dry weights and shoot lengths were noted for the plants inoculated with Rhizobium sp. (LHRW1) while E. cloacae (PBS 2) increased both shoot and root lengths. Highest zinc content was found in shoots of E. cloacae (PBS 2) and in roots of P. agglomerans (EPS 13) followed by zinc supplemented control. For second set of plant experiment, when plants were harvested after three months, Pantoea dispersa (EPS 6), P. agglomerans (EPS 13) and E. cloacae (PBS 2) significantly increased shoot dry weights. However, significant increase in root dry weights and maximum zinc content was recorded for Pseudomonas fragi (EPS

  8. Blended Learning over Two Decades

    ERIC Educational Resources Information Center

    Zhonggen, Yu; Yuexiu, Zhejiang

    2015-01-01

    The 21st century has witnessed vast amounts of research into blended learning since the conception of online learning formed the possibility of blended learning in the early 1990s. The theme of this paper is blended learning in mainstream disciplinary communities. In particular, the paper reports on findings from the last two decades which looked…

  9. Evaporation characteristics of ETBE-blended gasoline.

    PubMed

    Okamoto, Katsuhiro; Hiramatsu, Muneyuki; Hino, Tomonori; Otake, Takuma; Okamoto, Takashi; Miyamoto, Hiroki; Honma, Masakatsu; Watanabe, Norimichi

    2015-04-28

    To reduce greenhouse gas emissions, which contribute to global warming, production of gasoline blended with ethyl tert-buthyl ether (ETBE) is increasing annually. The flash point of ETBE is higher than that of gasoline, and blending ETBE into gasoline will change the flash point and the vapor pressure. Therefore, it is expected that the fire hazard caused by ETBE-blended gasoline would differ from that caused by normal gasoline. The aim of this study was to acquire the knowledge required for estimating the fire hazard of ETBE-blended gasoline. Supposing that ETBE-blended gasoline was a two-component mixture of gasoline and ETBE, we developed a prediction model that describes the vapor pressure and flash point of ETBE-blended gasoline in an arbitrary ETBE blending ratio. We chose 8-component hydrocarbon mixture as a model gasoline, and defined the relation between molar mass of gasoline and mass loss fraction. We measured the changes in the vapor pressure and flash point of gasoline by blending ETBE and evaporation, and compared the predicted values with the measured values in order to verify the prediction model. The calculated values of vapor pressures and flash points corresponded well to the measured values. Thus, we confirmed that the change in the evaporation characteristics of ETBE-blended gasoline by evaporation could be predicted by the proposed model. Furthermore, the vapor pressure constants of ETBE-blended gasoline were obtained by the model, and then the distillation curves were developed. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Biphasic and monophasic repair: comparative implications for biologically equivalent dose calculations in pulsed dose rate brachytherapy of cervical carcinoma

    PubMed Central

    Millar, W T; Davidson, S E

    2013-01-01

    Objective: To consider the implications of the use of biphasic rather than monophasic repair in calculations of biologically-equivalent doses for pulsed-dose-rate brachytherapy of cervix carcinoma. Methods: Calculations are presented of pulsed-dose-rate (PDR) doses equivalent to former low-dose-rate (LDR) doses, using biphasic vs monophasic repair kinetics, both for cervical carcinoma and for the organ at risk (OAR), namely the rectum. The linear-quadratic modelling calculations included effects due to varying the dose per PDR cycle, the dose reduction factor for the OAR compared with Point A, the repair kinetics and the source strength. Results: When using the recommended 1 Gy per hourly PDR cycle, different LDR-equivalent PDR rectal doses were calculated depending on the choice of monophasic or biphasic repair kinetics pertaining to the rodent central nervous and skin systems. These differences virtually disappeared when the dose per hourly cycle was increased to 1.7 Gy. This made the LDR-equivalent PDR doses more robust and independent of the choice of repair kinetics and α/β ratios as a consequence of the described concept of extended equivalence. Conclusion: The use of biphasic and monophasic repair kinetics for optimised modelling of the effects on the OAR in PDR brachytherapy suggests that an optimised PDR protocol with the dose per hourly cycle nearest to 1.7 Gy could be used. Hence, the durations of the new PDR treatments would be similar to those of the former LDR treatments and not longer as currently prescribed. Advances in knowledge: Modelling calculations indicate that equivalent PDR protocols can be developed which are less dependent on the different α/β ratios and monophasic/biphasic kinetics usually attributed to normal and tumour tissues for treatment of cervical carcinoma. PMID:23934965

  11. Zinc

    USDA-ARS?s Scientific Manuscript database

    Zinc was recognized as an essential trace metal for humans during the studies of Iranian adolescent dwarfs in the early 1960s. Zinc metal existing as Zn2+ is a strong electron acceptor in biological systems without risks of oxidant damage to cells. Zn2+ functions in the structure of proteins and is ...

  12. Zinc and Chlamydia trachomatis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugarman, B.; Epps, L.R.

    1985-07-01

    Zinc was noted to have significant effects upon the infection of McCoy cells by each of two strains of Chlamydia trachomatis. With a high or low Chlamydia inoculant, the number of infected cells increased up to 200% utilizing supplemental zinc (up to 1 x 10/sup -4/ M) in the inoculation media compared with standard Chlamydia cultivation media (8 x 10/sup -6/ M zinc). Ferric chloride and calcium chloride did not effect any such changes. Higher concentrations of zinc, after 2 hr of incubation with Chlamydia, significantly decreased the number of inclusions. This direct effect of zinc on the Chlamydia remainedmore » constant after further repassage of the Chlamydia without supplemental zinc, suggesting a lethal effect of the zinc. Supplemental zinc (up to 10/sup -4/ M) may prove to be a useful addition to inoculation media to increase the yield of culturing for Chlamydia trachomatis. Similarly, topical or oral zinc preparations used by people may alter their susceptibility to Chamydia trachomatis infections.« less

  13. Association between Maternal Zinc Status, Dietary Zinc Intake and Pregnancy Complications: A Systematic Review

    PubMed Central

    Wilson, Rebecca L.; Grieger, Jessica A.; Bianco-Miotto, Tina; Roberts, Claire T.

    2016-01-01

    Adequate zinc stores in the body are extremely important during periods of accelerated growth. However, zinc deficiency is common in developing countries and low maternal circulating zinc concentrations have previously been associated with pregnancy complications. We reviewed current literature assessing circulating zinc and dietary zinc intake during pregnancy and the associations with preeclampsia (PE); spontaneous preterm birth (sPTB); low birthweight (LBW); and gestational diabetes (GDM). Searches of MEDLINE; CINAHL and Scopus databases identified 639 articles and 64 studies were reviewed. In 10 out of 16 studies a difference was reported with respect to circulating zinc between women who gave birth to a LBW infant (≤2500 g) and those who gave birth to an infant of adequate weight (>2500 g), particularly in populations where inadequate zinc intake is prevalent. In 16 of our 33 studies an association was found between hypertensive disorders of pregnancy and circulating zinc; particularly in women with severe PE (blood pressure ≥160/110 mmHg). No association between maternal zinc status and sPTB or GDM was seen; however; direct comparisons between the studies was difficult. Furthermore; only a small number of studies were based on women from populations where there is a high risk of zinc deficiency. Therefore; the link between maternal zinc status and pregnancy success in these populations cannot be established. Future studies should focus on those vulnerable to zinc deficiency and include dietary zinc intake as a measure of zinc status. PMID:27754451

  14. The magnetic and adsorption properties of ZnO1-xSx nanoparticles.

    PubMed

    Zhang, Huiyun; Liu, Guixian; Cao, Yanqiang; Chen, Jing; Shen, Kai; Kumar, Ashwini; Xu, Mingxiang; Li, Qi; Xu, Qingyu

    2017-10-11

    Sulfur is easy to be incorporated into ZnO nanoparticles by the solution-combustion method. Herein, the magnetic and adsorption properties of a series of ZnO 1-x S x (x = 0, 0.05, 0.1, 0.15, and 0.2) nanoparticles were systematically investigated. The X-ray diffraction patterns show that the as-prepared ZnO 1-x S x nanoparticles have the hexagonal wurtzite structure of ZnO with a low sulfur content that gradually transforms into the zinc blende structure of ZnS when the x value is greater than 0.1. PL spectra show several bands due to different transitions, which have been explained by the recombination of free excitons or defect-induced transitions. The introduction of sulfur not only modifies the bandgap of ZnO, but also impacts the concentration of Zn vacancies. The as-prepared ZnO shows weak room-temperature ferromagnetism, and the incorporation of sulfur improves the ferromagnetism owing to the increased concentration of Zn vacancies, which may be stabilized by the doped sulfur ions. The adsorption capability of ZnO 1-x S x nanoparticles has been significantly improved, and the process can be well described by the pseudo-first-order kinetic model and the Freundlich isotherm model. The mechanism has been confirmed to be due to the active sulfate groups existing in zinc oxysulfide nanoparticles.

  15. Band alignment of semiconductors and insulators using dielectric-dependent hybrid functionals: Toward high-throughput evaluation

    NASA Astrophysics Data System (ADS)

    Hinuma, Yoyo; Kumagai, Yu; Tanaka, Isao; Oba, Fumiyasu

    2017-02-01

    The band alignment of prototypical semiconductors and insulators is investigated using first-principles calculations. A dielectric-dependent hybrid functional, where the nonlocal Fock exchange mixing is set at the reciprocal of the static electronic dielectric constant and the exchange correlation is otherwise treated as in the Perdew-Burke-Ernzerhof (PBE0) hybrid functional, is used as well as the Heyd-Scuseria-Ernzerhof (HSE06) hybrid and PBE semilocal functionals. In addition, these hybrid functionals are applied non-self-consistently to accelerate calculations. The systems considered include C and Si in the diamond structure, BN, AlP, AlAs, AlSb, GaP, GaAs, InP, ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe in the zinc-blende structure, MgO in the rocksalt structure, and GaN and ZnO in the wurtzite structure. Surface band positions with respect to the vacuum level, i.e., ionization potentials and electron affinities, and band offsets at selected zinc-blende heterointerfaces are evaluated as well as band gaps. The non-self-consistent approach speeds up hybrid functional calculations by an order of magnitude, while it is shown using HSE06 that the resultant band gaps and surface band positions are similar to the self-consistent results. The dielectric-dependent hybrid functional improves the band gaps and surface band positions of wide-gap systems over HSE06. The interfacial band offsets are predicted with a similar degree of precision. Overall, the performance of the dielectric-dependent hybrid functional is comparable to the G W0 approximation based on many-body perturbation theory in the prediction of band gaps and alignments for most systems. The present results demonstrate that the dielectric-dependent hybrid functional, particularly when applied non-self-consistently, is promising for applications to systematic calculations or high-throughput screening that demand both computational efficiency and sufficient accuracy.

  16. Evaluation of parallel milliliter-scale stirred-tank bioreactors for the study of biphasic whole-cell biocatalysis with ionic liquids.

    PubMed

    Dennewald, Danielle; Hortsch, Ralf; Weuster-Botz, Dirk

    2012-01-01

    As clear structure-activity relationships are still rare for ionic liquids, preliminary experiments are necessary for the process development of biphasic whole-cell processes involving these solvents. To reduce the time investment and the material costs, the process development of such biphasic reaction systems would profit from a small-scale high-throughput platform. Exemplarily, the reduction of 2-octanone to (R)-2-octanol by a recombinant Escherichia coli in a biphasic ionic liquid/water system was studied in a miniaturized stirred-tank bioreactor system allowing the parallel operation of up to 48 reactors at the mL-scale. The results were compared to those obtained in a 20-fold larger stirred-tank reactor. The maximum local energy dissipation was evaluated at the larger scale and compared to the data available for the small-scale reactors, to verify if similar mass transfer could be obtained at both scales. Thereafter, the reaction kinetics and final conversions reached in different reactions setups were analysed. The results were in good agreement between both scales for varying ionic liquids and for ionic liquid volume fractions up to 40%. The parallel bioreactor system can thus be used for the process development of the majority of biphasic reaction systems involving ionic liquids, reducing the time and resource investment during the process development of this type of applications. Copyright © 2011. Published by Elsevier B.V.

  17. Zinc Absorption from Milk Is Affected by Dilution but Not by Thermal Processing, and Milk Enhances Absorption of Zinc from High-Phytate Rice in Young Dutch Women.

    PubMed

    Talsma, Elise F; Moretti, Diego; Ly, Sou Chheng; Dekkers, Renske; van den Heuvel, Ellen Ghm; Fitri, Aditia; Boelsma, Esther; Stomph, Tjeerd Jan; Zeder, Christophe; Melse-Boonstra, Alida

    2017-06-01

    Background: Milk has been suggested to increase zinc absorption. The effect of processing and the ability of milk to enhance zinc absorption from other foods has not been measured directly in humans. Objective: We aimed to assess zinc absorption from 1 ) milk undergoing various processing and preparatory steps and 2 ) from intrinsically labeled high-phytate rice consumed with milk or water. Methods: Two randomized crossover studies were conducted in healthy young women [age:18-25 y; body mass index (in kg/m 2 ): 20-25]: 1 ) a milk study ( n = 19) comparing the consumption of 800 mL full-fat ultra-high temperature (UHT) milk [heat-treated milk (HTM)], full-fat UHT milk diluted 1:1 with water [heat-treated milk and water (MW)], water, or unprocessed (raw) milk (UM), each extrinsically labeled with 67 Zn, and 2 ) a rice study ( n = 18) comparing the consumption of 90 g intrinsically 67 Zn-labeled rice with 600 mL of water [rice and water (RW)] or full-fat UHT milk [rice and milk (RM)]. The fractional absorption of zinc (FAZ) was measured with the double-isotope tracer ratio method. In vitro, we assessed zinc extraction from rice blended into water, UM, or HTM with or without phytate. Results: FAZ from HTM was 25.5% (95% CI: 21.6%, 29.4%) and was not different from UM (27.8%; 95% CI: 24.2%, 31.4%). FAZ from water was higher (72.3%; 95% CI: 68.7%, 75.9%), whereas FAZ from MW was lower (19.7%; 95% CI: 17.5%, 21.9%) than HTM and UM (both P < 0.01). FAZ from RM (20.7%; 95% CI: 18.8%, 22.7%) was significantly higher than from RW (12.8%; 95% CI: 10.8%, 14.6%; P < 0.01). In vitro, HTM and UM showed several orders of magnitude higher extraction of zinc from rice with HTM than from rice with water at various phytate concentrations. Conclusions: Milk enhanced human FAZ from high-phytate rice by 62% compared with water. Diluting milk with water decreases its absorption-enhancing proprieties, whereas UHT processing does not. This trial was registered at the Dutch trial registry as

  18. Biogenic synthesis of Zinc oxide nanostructures from Nigella sativa seed: Prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm

    PubMed Central

    Al-Shabib, Nasser A.; Husain, Fohad Mabood; Ahmed, Faheem; Khan, Rais Ahmad; Ahmad, Iqbal; Alsharaeh, Edreese; Khan, Mohd Shahnawaz; Hussain, Afzal; Rehman, Md Tabish; Yusuf, Mohammad; Hassan, Iftekhar; Khan, Javed Masood; Ashraf, Ghulam Md; Alsalme, Ali Mohammed; Al-Ajmi, Mohamed F.; Tarasov, Vadim V.; Aliev, Gjumrakch

    2016-01-01

    Bacterial spoilage of food products is regulated by density dependent communication system called quorum sensing (QS). QS control biofilm formation in numerous food pathogens and Biofilms formed on food surfaces act as carriers of bacterial contamination leading to spoilage of food and health hazards. Agents inhibiting or interfering with bacterial QS and biofilm are gaining importance as a novel class of next-generation food preservatives/packaging material. In the present study, Zinc nanostructures were synthesised using Nigella sativa seed extract (NS-ZnNPs). Synthesized nanostructures were characterized hexagonal wurtzite structure of size ~24 nm by UV-visible, XRD, FTIR and TEM. NS-ZnNPs demonstrated broad-spectrum QS inhibition in C. violaceum and P. aeruginosa biosensor strains. Synthesized nanostructures inhibited QS regulated functions of C. violaceum CVO26 (violacein) and elastase, protease, pyocyanin and alginate production in PAO1 significantly. NS-ZnNPs at sub-inhibitory concentrations inhibited the biofilm formation of four-food pathogens viz. C. violaceum 12472, PAO1, L. monocytogenes, E. coli. Moreover, NS-ZnNPs was found effective in inhibiting pre-formed mature biofilms of the four pathogens. Therefore, the broad-spectrum inhibition of QS and biofilm by biogenic Zinc oxide nanoparticles and it is envisaged that these nontoxic bioactive nanostructures can be used as food packaging material and/or as food preservative. PMID:27917856

  19. Biogenic synthesis of Zinc oxide nanostructures from Nigella sativa seed: Prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm.

    PubMed

    Al-Shabib, Nasser A; Husain, Fohad Mabood; Ahmed, Faheem; Khan, Rais Ahmad; Ahmad, Iqbal; Alsharaeh, Edreese; Khan, Mohd Shahnawaz; Hussain, Afzal; Rehman, Md Tabish; Yusuf, Mohammad; Hassan, Iftekhar; Khan, Javed Masood; Ashraf, Ghulam Md; Alsalme, Ali Mohammed; Al-Ajmi, Mohamed F; Tarasov, Vadim V; Aliev, Gjumrakch

    2016-12-05

    Bacterial spoilage of food products is regulated by density dependent communication system called quorum sensing (QS). QS control biofilm formation in numerous food pathogens and Biofilms formed on food surfaces act as carriers of bacterial contamination leading to spoilage of food and health hazards. Agents inhibiting or interfering with bacterial QS and biofilm are gaining importance as a novel class of next-generation food preservatives/packaging material. In the present study, Zinc nanostructures were synthesised using Nigella sativa seed extract (NS-ZnNPs). Synthesized nanostructures were characterized hexagonal wurtzite structure of size ~24 nm by UV-visible, XRD, FTIR and TEM. NS-ZnNPs demonstrated broad-spectrum QS inhibition in C. violaceum and P. aeruginosa biosensor strains. Synthesized nanostructures inhibited QS regulated functions of C. violaceum CVO26 (violacein) and elastase, protease, pyocyanin and alginate production in PAO1 significantly. NS-ZnNPs at sub-inhibitory concentrations inhibited the biofilm formation of four-food pathogens viz. C. violaceum 12472, PAO1, L. monocytogenes, E. coli. Moreover, NS-ZnNPs was found effective in inhibiting pre-formed mature biofilms of the four pathogens. Therefore, the broad-spectrum inhibition of QS and biofilm by biogenic Zinc oxide nanoparticles and it is envisaged that these nontoxic bioactive nanostructures can be used as food packaging material and/or as food preservative.

  20. Entanglement in miscible blends

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiroshi

    2010-03-01

    The entanglement length Le of polymer chains (corresponding to the entanglement molecular weight Me) is not an intrinsic material parameter but changes with the interaction with surrounding chains. For miscible blends of cis-polyisoprene (PI) and poly(tert-butyl styrene) (PtBS), changes of Le on blending was examined. It turned out that the Le averaged over the number fractions of the Kuhn segments of the components (PI and PtBS) satisfactorily describes the viscoelastic behavior of pseudo-monodisperse blends in which the terminal relaxation time is the same for PI and PtBS.

  1. Acute exercise induces biphasic increase in respiratory mRNA in skeletal muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeda, Shin-ichi; Kizaki, Takako; Haga, Shukoh

    2008-04-04

    Peroxisome proliferator-activated receptor {gamma} coactivator-1{alpha} (PGC-1{alpha}) promotes the expression of oxidative enzymes in skeletal muscle. We hypothesized that activation of the p38 MAPK (mitogen-activated protein kinase) in response to exercise was associated with exercise-induced PGC-1{alpha} and respiratory enzymes expression and aimed to demonstrate this under the physiological level. We subjected mice to a single bout of treadmill running and found that the exercise induced a biphasic increase in the expression of respiratory enzymes mRNA. The second phase of the increase was accompanied by an increase in PGC-1{alpha} protein, but the other was not. Administration of SB203580 (SB), an inhibitor ofmore » p38 MAPK, suppressed the increase in PGC-1{alpha} expression and respiratory enzymes mRNA in both phases. These data suggest that p38 MAPK is associated with the exercise-induced expression of PGC-1{alpha} and biphasic increase in respiratory enzyme mRNAs in mouse skeletal muscle under physiological conditions.« less

  2. Occurrence of amylose-lipid complexes in teff and maize starch biphasic pastes.

    PubMed

    Wokadala, Obiro Cuthbert; Ray, Suprakas Sinha; Emmambux, Mohammad Naushad

    2012-09-01

    The occurrence of amylose-lipid complexes was determined in maize and teff starch biphasic pastes i.e. peak viscosity pastes at short and prolonged pasting times. Maize and teff starches were pasted for 11.5 and 130 min with or without added stearic acid followed by thermo-stable alpha-amylase hydrolysis in a rapid visco-analyzer. X-ray diffraction analysis of pastes before and residues after hydrolysis showed crystalline V-amylose diffraction patterns for the starches pasted for a prolonged time with added stearic acid while less distinct V-amylose patterns with non-complexed stearic acid peaks were observed with a short pasting time. Differential scanning calorimetry of pastes before and residues after paste hydrolysis showed that Type I amylose-lipid complexes were formed after pasting for the short duration with added stearic acid, while Type II complexes are formed after pasting for the prolonged time. The present research provides evidence that amylose-lipid complexes play an important role in starch biphasic pasting. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Injectable TEMPO-oxidized nanofibrillated cellulose/biphasic calcium phosphate hydrogel for bone regeneration.

    PubMed

    Safwat, Engie; Hassan, Mohammad L; Saniour, Sayed; Zaki, Dalia Yehia; Eldeftar, Mervat; Saba, Dalia; Zazou, Mohamed

    2018-05-01

    Nanofibrillated cellulose, obtained from rice straw agricultural wastes was used as a substrate for the preparation of a new injectable and mineralized hydrogel for bone regeneration. Tetramethyl pyridine oxyl (TEMPO) oxidized nanofibrillated cellulose, was mineralized through the incorporation of a prepared and characterized biphasic calcium phosphate at a fixed ratio of 50 wt%. The TEMPO-oxidized rice straw nanofibrillated cellulose was characterized using transmission electron microscopy, Fourier transform infrared, and carboxylic content determination. The injectability and viscosity of the prepared hydrogel were evaluated using universal testing machine and rheometer testing, respectively. Cytotoxicity and alkaline phosphatase level tests on osteoblast like-cells for in vitro assessment of the biocompatibility were investigated. Results revealed that the isolated rice straw nanofibrillated cellulose is a nanocomposite of the cellulose nanofibers and silica nanoparticles. Rheological properties of the tested materials are suitable for use as injectable material and of nontoxic effect on osteoblast-like cells, as revealed by the positive alkaline phosphate assay. However, nanofibrillated cellulose/ biphasic calcium phosphate hydrogel showed higher cytotoxicity and lower bioactivity test results when compared to that of nanofibrillated cellulose.

  4. Origin and Correction of Magnetic Field Inhomogeneity at the Interface in Biphasic NMR Samples

    PubMed Central

    Martin, Bryan T.; Chingas, G. C.

    2012-01-01

    The use of susceptibility matching to minimize spectral distortion of biphasic samples layered in a standard 5 mm NMR tube is described. The approach uses magic angle spinning (MAS) to first extract chemical shift differences by suppressing bulk magnetization. Then, using biphasic coaxial samples, magnetic susceptibilities are matched by titration with a paramagnetic salt. The matched phases are then layered in a standard NMR tube where they can be shimmed and examined. Line widths of two distinct spectral lines, selected to characterize homogeneity in each phase, are simultaneously optimized. Two-dimensional distortion-free, slice-resolved spectra of an octanol/water system illustrate the method. These data are obtained using a 2D stepped-gradient pulse sequence devised for this application. Advantages of this sequence over slice-selective methods are that acquisition efficiency is increased and processing requires only conventional software. PMID:22459062

  5. Efficient indium-tin-oxide free inverted organic solar cells based on aluminum-doped zinc oxide cathode and low-temperature aqueous solution processed zinc oxide electron extraction layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dazheng; Zhang, Chunfu, E-mail: cfzhang@xidian.edu.cn; Wang, Zhizhe

    Indium-tin-oxide (ITO) free inverted organic solar cells (IOSCs) based on aluminum-doped zinc oxide (AZO) cathode, low-temperature aqueous solution processed zinc oxide (ZnO) electron extraction layer, and poly(3-hexylthiophene-2, 5-diyl):[6, 6]-phenyl C{sub 61} butyric acid methyl ester blend were realized in this work. The resulted IOSC with ZnO annealed at 150 °C shows the superior power conversion efficiency (PCE) of 3.01%, if decreasing the ZnO annealing temperature to 100 °C, the obtained IOSC also shows a PCE of 2.76%, and no light soaking issue is observed. It is found that this ZnO film not only acts as an effective buffer layer but also slightlymore » improves the optical transmittance of AZO substrates. Further, despite the relatively inferior air-stability, these un-encapsulated AZO/ZnO IOSCs show comparable PCEs to the referenced ITO/ZnO IOSCs, which demonstrates that the AZO cathode is a potential alternative to ITO in IOSCs. Meanwhile, this simple ZnO process is compatible with large area deposition and plastic substrates, and is promising to be widely used in IOSCs and other relative fields.« less

  6. Acceptor binding energies in GaN and AlN

    NASA Astrophysics Data System (ADS)

    Mireles, Francisco; Ulloa, Sergio E.

    1998-08-01

    We employ effective-mass theory for degenerate hole bands to calculate the acceptor binding energies for Be, Mg, Zn, Ca, C, and Si substitutional acceptors in GaN and AlN. The calculations are performed through the 6×6 Rashba-Sheka-Pikus and the Luttinger-Kohn matrix Hamiltonians for wurtzite (WZ) and zinc-blende (ZB) crystal phases, respectively. An analytic representation for the acceptor pseudopotential is used to introduce the specific nature of the impurity atoms. The energy shift due to polaron effects is also considered in this approach. The ionization energy estimates are in very good agreement with those reported experimentally in WZ GaN. The binding energies for ZB GaN acceptors are all predicted to be shallower than the corresponding impurities in the WZ phase. The binding-energy dependence upon the crystal-field splitting in WZ GaN is analyzed. Ionization levels in AlN are found to have similar ``shallow'' values to those in GaN, but with some important differences which depend on the band structure parametrizations, especially the value of the crystal-field splitting used.

  7. Synthesis and structural characterization of CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Kotkata, M. F.; Masoud, A. E.; Mohamed, M. B.; Mahmoud, E. A.

    2009-08-01

    Amorphous CdS nanoparticles capped with cetyltrimethyl ammonium bromide (CTAB) were synthesised under various conditions using a coprecipitation method. A blue shift in the band gap was observed in the UV-visible absorption spectra indicating the formation of nanoparticles of an approximate size of 8 nm. The recorded transmission electron micrographs confirmed this result. The phase-nature, phase transformation as well as the structure of the synthesised CdS nanoparticles have been extensively characterized using X-ray diffraction (XRD), radial distribution function (RDF), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR), Raman scattering (RS) and/or heat stage X-ray diffraction (HSXRD). Analysis of the obtained results revealed that the synthesised amorphous CdS nanoparticles could be transformed into CdS nanocrystals having a zinc blende or a wurtzite structure, relying on the applied heat treatment scheme. The rate of nanocrystal growth depends on the aging period, prior filtering the reacted materials, and its relation to the quality of the capping process. Five days aging period tends to enhance the stability of the grown phase with a remarkable surface stability.

  8. Fluorescent lighting with aluminum nitride phosphors

    DOEpatents

    Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Srivastava, Alok M.

    2016-05-10

    A fluorescent lamp includes a glass envelope; at least two electrodes connected to the glass envelope; mercury vapor and an inert gas within the glass envelope; and a phosphor within the glass envelope, wherein the phosphor blend includes aluminum nitride. The phosphor may be a wurtzite (hexagonal) crystalline structure Al.sub.(1-x)M.sub.xN phosphor, where M may be drawn from beryllium, magnesium, calcium, strontium, barium, zinc, scandium, yttrium, lanthanum, cerium, praseodymium, europium, gadolinium, terbium, ytterbium, bismuth, manganese, silicon, germanium, tin, boron, or gallium is synthesized to include dopants to control its luminescence under ultraviolet excitation. The disclosed Al.sub.(1-x)M.sub.xN:Mn phosphor provides bright orange-red emission, comparable in efficiency and spectrum to that of the standard orange-red phosphor used in fluorescent lighting, Y.sub.2O.sub.3:Eu. Furthermore, it offers excellent lumen maintenance in a fluorescent lamp, and does not utilize "critical rare earths," minimizing sensitivity to fluctuating market prices for the rare earth elements.

  9. Raman spectroscopy and atomic force microscopy study of interfacial polytypism in GaP/Ge(111) heterostructures

    NASA Astrophysics Data System (ADS)

    Aggarwal, R.; Ingale, Alka A.; Dixit, V. K.

    2018-01-01

    Effects of lattice and polar/nonpolar mismatch between the GaP layer and Ge(111) substrate are investigated by spatially resolved Raman spectroscopy. The red shifted transverse optical (TO) and longitudinal optical (LO) phonons due to residual strain, along with asymmetry to TO phonon ∼358 cm-1 are observed in GaP/Ge(111). The peak intensity variation of mode ∼358 cm-1 with respect to TO phonon across the crystallographic morphed surface of GaP micro structures is associated with the topographical variations using atomic force microscopy mapping and Raman spectroscopy performed on both in plane and cross-sectional surface. Co-existence of GaP allotropes, i.e. wurtzite phase near heterojunction interface and dominant zinc-blende phase near surface is established using the spatially resolved polarized Raman spectroscopy from the cross sectional surface of heterostructures. This consistently explains effect of surface morphology on Raman spectroscopy from GaP(111). The study shows the way to identify crystalline phases in other advanced semiconductor heterostructures without any specific sample preparation.

  10. The preparation and cathodoluminescence of ZnS nanowires grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Huang, Meng-Wen; Cheng, Yin-Wei; Pan, Ko-Ying; Chang, Chen-Chuan; Shieu, F. S.; Shih, Han C.

    2012-11-01

    Single crystal ZnS nanowires were successfully synthesized in large quantities on Si (1 0 0) substrates by simple thermal chemical vapor deposition without using any catalyst. The morphology, composition, and crystal structure were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and cathodoluminescence (CL) spectroscopy. SEM observations show that the nanowires have diameters about 20-50 nm and lengths up to several tens of micrometers. XRD and TEM results confirmed that the nanowires exhibited both wurtzite and zinc blende structures with growth directions aligned along [0 0 0 2] and [1 1 1], respectively. The CL spectrum revealed emission bands in the UV and blue regions. The blue emissions at 449 and ˜581 nm were attributed to surface states and impurity-related defects of the nanowires, respectively. The perfect crystal structure of the nanowires indicates their potential applications in nanotechnology and in the fabrication of nanodevices.

  11. Sustainable thermoelectric materials fabricated by using Cu2Sn1-xZnxS3 nanoparticles as building blocks

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Shijimaya, Chiko; Takahashi, Mari; Miyata, Masanobu; Mott, Derrick; Koyano, Mikio; Ohta, Michihiro; Akatsuka, Takeo; Ono, Hironobu; Maenosono, Shinya

    2017-12-01

    Uniform Cu2Sn1-xZnxS3 (x = 0-0.2) nanoparticles (NPs) with a characteristic size of about 40 nm were chemically synthesized. The primary crystal phase of the NPs was wurtzite (WZ) with a mean crystalline size of about 20 nm. The NPs were sintered to form nanostructured pellets with different compositions preserving the composition and grain size of the original NPs by the pulse electric current sintering technique. The pellets had a zinc blende (ZB) structure with a residual WZ phase, and the mean crystalline size was found to remain virtually unchanged for all pellets. Among all samples, the pellets of Cu2Sn0.95Zn0.05S3 and Cu2Sn0.85Zn0.15S3 exhibited the highest ZT value (0.37 at 670 K) which is 10 times higher than that of a non-nanostructured Cu2SnS3 bulk crystal thanks to effective phonon scattering by nanograins, the phase-pure ZB crystal structure, and the increase in hole carrier density by Zn doping.

  12. 1D Piezoelectric Material Based Nanogenerators: Methods, Materials and Property Optimization

    PubMed Central

    Li, Xing; Sun, Mei; Wei, Xianlong; Shan, Chongxin

    2018-01-01

    Due to the enhanced piezoelectric properties, excellent mechanical properties and tunable electric properties, one-dimensional (1D) piezoelectric materials have shown their promising applications in nanogenerators (NG), sensors, actuators, electronic devices etc. To present a clear view about 1D piezoelectric materials, this review mainly focuses on the characterization and optimization of the piezoelectric properties of 1D nanomaterials, including semiconducting nanowires (NWs) with wurtzite and/or zinc blend phases, perovskite NWs and 1D polymers. Specifically, the piezoelectric coefficients, performance of single NW-based NG and structure-dependent electromechanical properties of 1D nanostructured materials can be respectively investigated through piezoresponse force microscopy, atomic force microscopy and the in-situ scanning/transmission electron microcopy. Along with the introduction of the mechanism and piezoelectric properties of 1D semiconductor, perovskite materials and polymers, their performance improvement strategies are summarized from the view of microstructures, including size-effect, crystal structure, orientation and defects. Finally, the extension of 1D piezoelectric materials in field effect transistors and optoelectronic devices are simply introduced. PMID:29570639

  13. InP and InAs nanowires hetero- and homojunctions: energetic stability and electronic properties.

    PubMed

    Dionízio Moreira, M; Venezuela, P; Miwa, R H

    2010-07-16

    We performed an ab initio total energy investigation, within the density functional theory, of the energetic stability and the electronic properties of hydrogenated InAs/InP nanowire (NW) heterojunctions, as well as InAs and InP homojunctions composed of different structural arrangements, zinc-blend (zb) and wurtzite (w). For InAs/InP NW heterojunctions our results indicate that w and zb NW heterojunctions are quite similar, energetically, for thin NWs. We also examined the robustness of the abrupt interface through an atomic <--> swap at the InAs/InP interface. Our results support the formation of abrupt (non-abrupt) interfaces in w (zb) InAs/InP heterojunctions. Concerning InAs/InP NW-SLs, our results indicate a type-I band alignment, with the energy barrier at the InP layers, in accordance with experimental works. For InAs or InP zb/w homojunctions, we also found a type-I band alignment for thin NWs, however, on increasing the NW diameter both InAs and InP homojunctions exhibit a type-II band alignment.

  14. Effects of Blended-Cement Paste Chemical Composition Changes on Some Strength Gains of Blended-Mortars

    PubMed Central

    Kirgiz, Mehmet Serkan

    2014-01-01

    Effects of chemical compositions changes of blended-cement pastes (BCPCCC) on some strength gains of blended cement mortars (BCMSG) were monitored in order to gain a better understanding for developments of hydration and strength of blended cements. Blended cements (BC) were prepared by blending of 5% gypsum and 6%, 20%, 21%, and 35% marble powder (MP) or 6%, 20%, 21%, and 35% brick powder (BP) for CEMI42.5N cement clinker and grinding these portions in ball mill at 30 (min). Pastes and mortars, containing the MP-BC and the BP-BC and the reference cement (RC) and tap water and standard mortar sand, were also mixed and they were cured within water until testing. Experiments included chemical compositions of pastes and compressive strengths (CS) and flexural strengths (FS) of mortars were determined at 7th-day, 28th-day, and 90th-day according to TS EN 196-2 and TS EN 196-1 present standards. Experimental results indicated that ups and downs of silica oxide (SiO2), sodium oxide (Na2O), and alkali at MP-BCPCC and continuously rising movement of silica oxide (SiO2) at BP-BCPCC positively influenced CS and FS of blended cement mortars (BCM) in comparison with reference mortars (RM) at whole cure days as MP up to 6% or BP up to 35% was blended for cement. PMID:24587737

  15. Electrical contact of wurtzite GaN mircrodisks on p-type GaN template

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Da; Lo, Ikai; Wang, Ying-Chieh; Hsu, Yu-Chi; Shih, Cheng-Hung; Pang, Wen-Yuan; You, Shuo-Ting; Hu, Chia-Hsuan; Chou, Mitch M. C.; Yang, Chen-Chi; Lin, Yu-Chiao

    2015-03-01

    We developed a back processing to fabricate a secure electrical contact of wurtzite GaN microdisk on a transparent p-type GaN template with the orientation, [10-10]disk // [10-10]template. GaN microdisks were grown on LiAlO2 substrate by using plasma-assisted molecular beam epitaxy. In the further study, we analyzed the TEM specimen of a sample with annealed GaN microdisk/p-typed GaN template by selection area diffraction (SAD) to confirm the alignment of the microdisks with the template at the interface. From the I-V measurements performed on the samples, we obtained a threshold voltage of ~ 5.9 V for the current passing through the GaN microdisks with a resistance of ~ 45 K Ω. The electrical contact can be applied to the nanometer-scaled GaN light-emitting diode.

  16. Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide.

    PubMed

    Moezzi, Amir; Cortie, Michael; McDonagh, Andrew

    2016-04-25

    Thermal decomposition of layered zinc hydroxide double salts provides an interesting alternative synthesis for particles of zinc oxide. Here, we examine the sequence of changes occurring as zinc hydroxide chloride monohydrate (Zn5(OH)8Cl2·H2O) is converted to crystalline ZnO by thermal decomposition. The specific surface area of the resultant ZnO measured by BET was 1.3 m(2) g(-1). A complicating and important factor in this process is that the thermal decomposition of zinc hydroxide chloride is also accompanied by the formation of volatile zinc-containing species under certain conditions. We show that this volatile compound is anhydrous ZnCl2 and its formation is moisture dependent. Therefore, control of atmospheric moisture is an important consideration that affects the overall efficiency of ZnO production by this process.

  17. Optical study of the band structure of wurtzite GaP nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assali, S., E-mail: simone.assali@polymtl.ca; Greil, J.; Zardo, I.

    2016-07-28

    We investigated the optical properties of wurtzite (WZ) GaP nanowires by performing photoluminescence (PL) and time-resolved PL measurements in the temperature range from 4 K to 300 K, together with atom probe tomography to identify residual impurities in the nanowires. At low temperature, the WZ GaP luminescence shows donor-acceptor pair emission at 2.115 eV and 2.088 eV, and Burstein-Moss band-filling continuum between 2.180 and 2.253 eV, resulting in a direct band gap above 2.170 eV. Sharp exciton α-β-γ lines are observed at 2.140–2.164–2.252 eV, respectively, showing clear differences in lifetime, presence of phonon replicas, and temperature-dependence. The excitonic nature of those peaks is critically discussed, leading tomore » a direct band gap of ∼2.190 eV and to a resonant state associated with the γ-line ∼80 meV above the Γ{sub 8C} conduction band edge.« less

  18. Carrier thermalization dynamics in single zincblende and wurtzite InP Nanowires.

    PubMed

    Wang, Yuda; Jackson, Howard E; Smith, Leigh M; Burgess, Tim; Paiman, Suriati; Gao, Qiang; Tan, Hark Hoe; Jagadish, Chennupati

    2014-12-10

    Using transient Rayleigh scattering (TRS) measurements, we obtain photoexcited carrier thermalization dynamics for both zincblende (ZB) and wurtzite (WZ) InP single nanowires (NW) with picosecond resolution. A phenomenological fitting model based on direct band-to-band transition theory is developed to extract the electron-hole-plasma density and temperature as a function of time from TRS measurements of single nanowires, which have complex valence band structures. We find that the thermalization dynamics of hot carriers depends strongly on material (GaAs NW vs InP NW) and less strongly on crystal structure (ZB vs WZ). The thermalization dynamics of ZB and WZ InP NWs are similar. But a comparison of the thermalization dynamics in ZB and WZ InP NWs with ZB GaAs NWs reveals more than an order of magnitude slower relaxation for the InP NWs. We interpret these results as reflecting their distinctive phonon band structures that lead to different hot phonon effects. Knowledge of hot carrier thermalization dynamics is an essential component for effective incorporation of nanowire materials into electronic devices.

  19. Functional studies of Drosophila zinc transporters reveal the mechanism for dietary zinc absorption and regulation

    PubMed Central

    2013-01-01

    Background Zinc is key to the function of many proteins, but the process of dietary zinc absorption is not well clarified. Current knowledge about dietary zinc absorption is fragmented, and mostly derives from incomplete mammalian studies. To gain a comprehensive picture of this process, we systematically characterized all zinc transporters (that is, the Zip and ZnT family members) for their possible roles in dietary zinc absorption in a genetically amenable model organism, Drosophila melanogaster. Results A set of plasma membrane-resident zinc transporters was identified to be responsible for absorbing zinc from the lumen into the enterocyte and the subsequent exit of zinc to the circulation. dZip1 and dZip2, two functionally overlapping zinc importers, are responsible for absorbing zinc from the lumen into the enterocyte. Exit of zinc to the circulation is mediated through another two functionally overlapping zinc exporters, dZnT1, and its homolog CG5130 (dZnT77C). Somewhat surprisingly, it appears that the array of intracellular ZnT proteins, including the Golgi-resident dZnT7, is not directly involved in dietary zinc absorption. By modulating zinc status in different parts of the body, we found that regulation of dietary zinc absorption, in contrast to that of iron, is unresponsive to bodily needs or zinc status outside the gut. The zinc transporters that are involved in dietary zinc absorption, including the importers dZip1 and dZip2, and the exporter dZnT1, are respectively regulated at the RNA and protein levels by zinc in the enterocyte. Conclusions Our study using the model organism Drosophila thus starts to reveal a comprehensive sketch of dietary zinc absorption and its regulatory control, a process that is still incompletely understood in mammalian organisms. The knowledge gained will act as a reference for future mammalian studies, and also enable an appreciation of this important process from an evolutionary perspective. PMID:24063361

  20. Effect of molecular weight of hyaluronic acid (HA) on viscoelasticity and particle texturing feel of HA dermal biphasic fillers.

    PubMed

    Chun, Cheolbyong; Lee, Deuk Yong; Kim, Jin-Tae; Kwon, Mi-Kyung; Kim, Young-Zu; Kim, Seok-Soon

    2016-01-01

    Hyaluronic acid (HA) dermal biphasic fillers are synthesized for their efficacy in correcting aesthetic defects such as wrinkles, scars and facial contouring defects. The fillers consist of crosslinked HA microspheres suspended in a noncrosslinked HA. To extend the duration of HAs within the dermis and obtain the particle texturing feel, HAs are crosslinked to obtain the suitable mechanical properties. Hyaluronic acid (HA) dermal biphasic fillers are prepared by mixing the crosslinked HA microspheres and the noncrosslinked HAs. The elastic modulus of the fillers increased with raising the volume fraction of the microspheres. The mechanical properties and the particle texturing feel of the fillers made from crosslinked HA (1058 kDa) microspheres suspended in noncrosslinked HA (1368 kDa) are successfully achieved, which are adequate for the fillers. Dermal biphasic HA fillers made from 1058 kDa exhibit suitable elastic moduli (211 to 420 Pa) and particle texturing feel (scale 7 ~ 9).

  1. Structure of β-AgGaO{sub 2}; ternary I–III–VI{sub 2} oxide semiconductor with a wurtzite-derived structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagatani, Hiraku; Suzuki, Issei; Kita, Masao

    2015-02-15

    The structure of the wurtzite-derived β-AgGaO{sub 2} was refined by Rietveld analysis of high-resolution powder diffraction data obtained using synchrotron X-ray radiation. The space group of the crystal is Pna2{sub 1} with lattice parameters of a{sub 0}=5.56175 Å, b{sub 0}=7.14749 Å, and c{sub 0}=5.46875 Å. The deviation of O–Ag–O and M–O–M bond angles from the regular tetrahedral angle of 109.5° was very large at ∼8° and ∼11°, respectively. The electronic structure of β-AgGaO{sub 2} is discussed based on its structure, and the indirect band gap of β-AgGaO{sub 2} was related to significant tetrahedral distortion. Although β-AgGaO{sub 2} decomposes into metallicmore » silver and Ga{sub 2}O{sub 3} at a high temperature in any atmosphere, β-AgGaO{sub 2} is stable up to 690 °C under an O{sub 2} atmosphere. No direct transformation from the wurtzite-derived phase to a delafossite phase occurs in β-AgGaO{sub 2}. - Graphical abstract: Crystal structure of β-AgGaO{sub 2} was refined by Rietveld analysis. AgO{sub 4} and O(Ag,Ga){sub 4} tetrahedra are significantly distorted from ideal tetrahedron. - Highlights: • Orthorhombic β-AgGaO{sub 2} with a wurtzite-derived β-NaFeO{sub 2} structure was synthesized. • Its structure was refined by Rietveld analysis of high-resolution XRD data. • Silver and oxygen tetrahedra are significantly distorted from an ideal tetrahedron. • The extent of this tetrahedral distortion is related to the band gap nature. • β-AgGaO{sub 2} is a metastable phase but is stable up to 690 °C in an O{sub 2} atmosphere.« less

  2. Zinc triggers microglial activation.

    PubMed

    Kauppinen, Tiina M; Higashi, Youichirou; Suh, Sang Won; Escartin, Carole; Nagasawa, Kazuki; Swanson, Raymond A

    2008-05-28

    Microglia are resident immune cells of the CNS. When stimulated by infection, tissue injury, or other signals, microglia assume an activated, "ameboid" morphology and release matrix metalloproteinases, reactive oxygen species, and other proinflammatory factors. This innate immune response augments host defenses, but it can also contribute to neuronal death. Zinc is released by neurons under several conditions in which microglial activation occurs, and zinc chelators can reduce neuronal death in animal models of cerebral ischemia and neurodegenerative disorders. Here, we show that zinc directly triggers microglial activation. Microglia transfected with a nuclear factor-kappaB (NF-kappaB) reporter gene showed a severalfold increase in NF-kappaB activity in response to 30 microm zinc. Cultured mouse microglia exposed to 15-30 microm zinc increased nitric oxide production, increased F4/80 expression, altered cytokine expression, and assumed the activated morphology. Zinc-induced microglial activation was blocked by inhibiting NADPH oxidase, poly(ADP-ribose) polymerase-1 (PARP-1), or NF-kappaB activation. Zinc injected directly into mouse brain induced microglial activation in wild-type mice, but not in mice genetically lacking PARP-1 or NADPH oxidase activity. Endogenous zinc release, induced by cerebral ischemia-reperfusion, likewise induced a robust microglial reaction, and this reaction was suppressed by the zinc chelator CaEDTA. Together, these results suggest that extracellular zinc triggers microglial activation through the sequential activation of NADPH oxidase, PARP-1, and NF-kappaB. These findings identify a novel trigger for microglial activation and a previously unrecognized mechanism by which zinc may contribute to neurological disorders.

  3. Steroid biotransformations in biphasic systems with Yarrowia lipolytica expressing human liver cytochrome P450 genes

    PubMed Central

    2012-01-01

    Background Yarrowia lipolytica efficiently metabolizes and assimilates hydrophobic compounds such as n-alkanes and fatty acids. Efficient substrate uptake is enabled by naturally secreted emulsifiers and a modified cell surface hydrophobicity and protrusions formed by this yeast. We were examining the potential of recombinant Y. lipolytica as a biocatalyst for the oxidation of hardly soluble hydrophobic steroids. Furthermore, two-liquid biphasic culture systems were evaluated to increase substrate availability. While cells, together with water soluble nutrients, are maintained in the aqueous phase, substrates and most of the products are contained in a second water-immiscible organic solvent phase. Results For the first time we have co-expressed the human cytochromes P450 2D6 and 3A4 genes in Y. lipolytica together with human cytochrome P450 reductase (hCPR) or Y. lipolytica cytochrome P450 reductase (YlCPR). These whole-cell biocatalysts were used for the conversion of poorly soluble steroids in biphasic systems. Employing a biphasic system with the organic solvent and Y. lipolytica carbon source ethyl oleate for the whole-cell bioconversion of progesterone, the initial specific hydroxylation rate in a 1.5 L stirred tank bioreactor was further increased 2-fold. Furthermore, the product formation was significantly prolonged as compared to the aqueous system. Co-expression of the human CPR gene led to a 4-10-fold higher specific activity, compared to the co-overexpression of the native Y. lipolytica CPR gene. Multicopy transformants showed a 50-70-fold increase of activity as compared to single copy strains. Conclusions Alkane-assimilating yeast Y. lipolytica, coupled with the described expression strategies, demonstrated its high potential for biotransformations of hydrophobic substrates in two-liquid biphasic systems. Especially organic solvents which can be efficiently taken up and/or metabolized by the cell might enable more efficient bioconversion as compared

  4. The Potential for Zinc Stable Isotope Techniques and Modelling to Determine Optimal Zinc Supplementation

    PubMed Central

    Tran, Cuong D.; Gopalsamy, Geetha L.; Mortimer, Elissa K.; Young, Graeme P.

    2015-01-01

    It is well recognised that zinc deficiency is a major global public health issue, particularly in young children in low-income countries with diarrhoea and environmental enteropathy. Zinc supplementation is regarded as a powerful tool to correct zinc deficiency as well as to treat a variety of physiologic and pathologic conditions. However, the dose and frequency of its use as well as the choice of zinc salt are not clearly defined regardless of whether it is used to treat a disease or correct a nutritional deficiency. We discuss the application of zinc stable isotope tracer techniques to assess zinc physiology, metabolism and homeostasis and how these can address knowledge gaps in zinc supplementation pharmacokinetics. This may help to resolve optimal dose, frequency, length of administration, timing of delivery to food intake and choice of zinc compound. It appears that long-term preventive supplementation can be administered much less frequently than daily but more research needs to be undertaken to better understand how best to intervene with zinc in children at risk of zinc deficiency. Stable isotope techniques, linked with saturation response and compartmental modelling, also have the potential to assist in the continued search for simple markers of zinc status in health, malnutrition and disease. PMID:26035248

  5. Zinc Information

    MedlinePlus

    ... for Eye Conditions Clinical Digest: Hepatitis C and Dietary Supplements Related Resources From Other Agencies Age-Related Eye Disease Study 2 (AREDS2) ( NEI ) Can Zinc Be Harmful? ( ODS ) Zinc ( ODS ) Follow NCCIH: Read our disclaimer ...

  6. Zinc starvation induces autophagy in yeast

    PubMed Central

    Kawamata, Tomoko; Horie, Tetsuro; Matsunami, Miou; Sasaki, Michiko; Ohsumi, Yoshinori

    2017-01-01

    Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes. PMID:28264932

  7. Blended Learning: How Teachers Balance the Blend of Online and Classroom Components

    ERIC Educational Resources Information Center

    Jeffrey, Lynn M.; Milne, John; Suddaby, Gordon

    2014-01-01

    Despite teacher resistance to the use of technology in education, blended learning has increased rapidly, driven by evidence of its advantages over either online or classroom teaching alone. However, blended learning courses still fail to maximize the benefits this format offers. Much research has been conducted on various aspects of this problem,…

  8. Studies on the bioavailability of zinc in humans: intestinal interaction of tin and zinc.

    PubMed

    Solomons, N W; Marchini, J S; Duarte-Favaro, R M; Vannuchi, H; Dutra de Oliveira, J E

    1983-04-01

    Mineral/mineral interactions at the intestinal level are important in animal nutrition and toxicology, but only limited understanding of their extent or importance in humans has been developed. An inhibitory interaction of dietary tin on zinc retention has been recently described from human metabolic studies. We have explored the tin/zinc interaction using the change-in-plasma-zinc-concentration method with a standard dosage of 12.5 mg of zinc as zinc sulfate in 100 ml of Coca-Cola. Sn/Zn ratios of 2:1, 4:1, and 8:1, constituted by addition of 25, 50, and 100 mg of tin as stannous chloride, had no significant overall effect on zinc uptake. The 100-mg dose of tin produced noxious gastrointestinal symptoms. Addition of iron as ferrous sulfate to form ratios of Sn/Fe/Zn of 1:1:1 and 2:2:1 with the standard zinc solution and the appropriate doses of tin produced a reduction of zinc absorption not dissimilar from that seen previously with zinc and iron alone, and addition of picolinic acid did not influence the uptake of zinc from the solution with the 2:2:1 Sn/Fe/Zn ratio.

  9. Ethanol-diesel fuel blends -- a review.

    PubMed

    Hansen, Alan C; Zhang, Qin; Lyne, Peter W L

    2005-02-01

    Ethanol is an attractive alternative fuel because it is a renewable bio-based resource and it is oxygenated, thereby providing the potential to reduce particulate emissions in compression-ignition engines. In this review the properties and specifications of ethanol blended with diesel fuel are discussed. Special emphasis is placed on the factors critical to the potential commercial use of these blends. These factors include blend properties such as stability, viscosity and lubricity, safety and materials compatibility. The effect of the fuel on engine performance, durability and emissions is also considered. The formulation of additives to correct certain key properties and maintain blend stability is suggested as a critical factor in ensuring fuel compatibility with engines. However, maintaining vehicle safety with these blends may entail fuel tank modifications. Further work is required in specifying acceptable fuel characteristics, confirming the long-term effects on engine durability, and ensuring safety in handling and storing ethanol-diesel blends.

  10. Suppression of zinc dendrites in zinc electrode power cells

    NASA Technical Reports Server (NTRS)

    Damjanovic, A.; Diggle, J. W.

    1970-01-01

    Addition of various tetraalkyl quarternary ammonium salts, to alkaline zincate electrolyte of cell, prevents formation of zinc dendrites during charging of zinc electrode. Electrode capacity is not impaired and elimination of dendrites prolongs cell life.

  11. Zincblende to Wurtzite phase shift of CdSe thin films prepared by electrochemical deposition

    NASA Astrophysics Data System (ADS)

    Bai, Rekha; Chaudhary, Sujeet; Pandya, Dinesh K.

    2018-04-01

    Cadmium selenide (CdSe) nanostructured thin films have been deposited on conducting glass substrates by potentiostatic electrochemical deposition (ECD) technique. The effect of electrolyte bath pH on the structural, morphological and optical properties of CdSe films has been investigated. Crystal structure of these films is characterized by X-ray diffraction and Raman spectroscopy which reveal polycrystalline nature of CdSe films exhibiting phase shift from zincblende to wurtzite structure with increase in bath pH. Optical studies reveal that the CdSe thin films have good absorbance in visible spectral region and they possess direct optical band gap which increases from 1.68 to 1.97 eV with increase in bath pH. The results suggest CdSe is an efficient absorber material for next generation solar cells.

  12. Clinical experience with biphasic insulin aspart in people with type 2 diabetes: Results from the Libya cohort of the A1chieve study.

    PubMed

    Hajjaji, Issam M; Sherif, Ibrahim; Elazrag, Aisha; Jaber, Suhair; Chakkarwar, Praful N; Eltabal, Salem

    2013-11-01

    The A1chieve, a multicentric (28 countries), 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726) in routine clinical care across four continents. Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled in biphasic insulin aspart sub group from Libya. A total of 179 patients were enrolled in the biphasic insulin aspart subgroup. All the patients were prior insulin users. At baseline glycaemic control was poor (mean HbA1c: 9.3%). After 24 weeks of treatment there was an improvement in HbA1c (-0.9%). Hypoglycaemic events reduced from 7.2 events/patient-year to 3.7 events/patient-year in 24 weeks. SADRs did not occur in any of the study patients. Starting or switching to biphasic insulin aspart was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  13. Zinc triggers microglial activation

    PubMed Central

    Kauppinen, Tiina M.; Higashi, Youichirou; Suh, Sang Won; Escartin, Carole; Nagasawa, Kazuki; Swanson, Raymond A.

    2009-01-01

    Microglia are resident immune cells of the central nervous system. When stimulated by infection, tissue injury, or other signals, microglia assume an activated, “amoeboid” morphology and release matrix metalloproteinases, reactive oxygen species, and other pro-inflammatory factors. This innate immune response augments host defenses, but it can also contribute to neuronal death. Zinc is released by neurons under several conditions in which microglial activation occurs, and zinc chelators can reduce neuronal death in animal models of cerebral ischemia and neurodegenerative disorders. Here we show that zinc directly triggers microglial activation. Microglia transfected with an NF-kB reporter gene showed a several-fold increase in NF-kB activity in response to 30 μM zinc. Cultured mouse microglia exposed to 15 – 30 μM zinc increased nitric oxide production, increased F4/80 expression, altered cytokine expression, and assumed the activated morphology. Zinc-induced microglial activation was blocked by inhibiting NADPH oxidase, poly(ADP-ribose) polymerase-1 (PARP-1), or NF-κB activation. Zinc injected directly into mouse brain induced microglial activation in wild-type mice, but not in mice genetically lacking PARP-1 or NADPH oxidase activity. Endogenous zinc release, induced by cerebral ischemia-reperfusion, likewise induced a robust microglial reaction, and this reaction was suppressed by the zinc chelator CaEDTA. Together, these results suggest that extracellular zinc triggers microglial activation through the sequential activation of NADPH oxidase, PARP-1, and NF-κB. These findings identify a novel trigger for microglial activation and a previously unrecognized mechanism by which zinc may contribute to neurological disorders. PMID:18509044

  14. Zinc starvation induces autophagy in yeast.

    PubMed

    Kawamata, Tomoko; Horie, Tetsuro; Matsunami, Miou; Sasaki, Michiko; Ohsumi, Yoshinori

    2017-05-19

    Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Coalescence in PLA-PBAT blends under shear flow: Effects of blend preparation and PLA molecular weight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nofar, M.; Heuzey, M. C.; Carreau, P. J., E-mail: pierre.carreau@polymtl.ca

    Blends containing 75 wt. % of an amorphous polylactide (PLA) with two different molecular weights and 25 wt. % of a poly[(butylene adipate)-co-terephthalate] (PBAT) were prepared using either a Brabender batch mixer or a twin-screw extruder. These compounds were selected because blending PLA with PBAT can overcome various drawbacks of PLA such as its brittleness and processability limitations. In this study, we investigated the effects of varying the molecular weight of the PLA matrix and of two different mixing processes on the blend morphology and, further, on droplet coalescence during shearing. The rheological properties of these blends were investigated and the interfacialmore » properties were analyzed using the Palierne emulsion model. Droplet coalescence was investigated by applying shear flows of 0.05 and 0.20 s{sup −1} at a fixed strain of 60. Subsequently, small amplitude oscillatory shear tests were conducted to investigate changes in the viscoelastic properties. The morphology of the blends was also examined using scanning electron microscope (SEM) micrographs. It was observed that the PBAT droplets were much smaller when twin-screw extrusion was used for the blend preparation. Shearing at 0.05 s{sup −1} induced significant droplet coalescence in all blends, but coalescence and changes in the viscoelastic properties were much more pronounced for the PLA-PBAT blend based on a lower molecular weight PLA. The viscoelastic responses were also somehow affected by the thermal degradation of the PLA matrix during the experiments.« less

  16. Development of high-performance blended cements

    NASA Astrophysics Data System (ADS)

    Wu, Zichao

    2000-10-01

    This thesis presents the development of high-performance blended cements from industrial by-products. To overcome the low-early strength of blended cements, several chemicals were studied as the activators for cement hydration. Sodium sulfate was discovered as the best activator. The blending proportions were optimized by Taguchi experimental design. The optimized blended cements containing up to 80% fly ash performed better than Type I cement in strength development and durability. Maintaining a constant cement content, concrete produced from the optimized blended cements had equal or higher strength and higher durability than that produced from Type I cement alone. The key for the activation mechanism was the reaction between added SO4 2- and Ca2+ dissolved from cement hydration products.

  17. Photochromism of 7-(N,N-diethylamino)-4'-hydroxyflavylium in a water-ionic liquid biphasic system.

    PubMed

    Pina, Fernando; Parola, A Jorge; Melo, Maria João; Laia, César A T; Afonso, Carlos A M

    2007-04-28

    Photochromism of trans-4-(N,N-diethylamino)-2,4'-dihydroxychalcone, with formation of the photoproduct 7-(N,N-diethylamino)-4'-hydroxyflavylium, is promoted in the ionic liquid phase of a water/[bmim][PF6] biphasic system.

  18. Supplemental levels of iron and calcium interfere with repletion of zinc status in zinc-deficient animals.

    PubMed

    Jayalakshmi, S; Platel, Kalpana

    2016-05-18

    Negative interactions between minerals interfering with each other's absorption are of concern when iron and calcium supplements are given to pregnant women and children. We have previously reported that supplemental levels of iron and calcium inhibit the bioaccessibility of zinc, and compromise zinc status in rats fed diets with high levels of these two minerals. The present study examined the effect of supplemental levels of iron and calcium on the recovery of zinc status during a zinc repletion period in rats rendered zinc-deficient. Iron and calcium, both individually and in combination, significantly interfered with the recovery of zinc status in zinc deficient rats during repletion with normal levels of zinc in the diet. Rats maintained on diets containing supplemental levels of these two minerals had significantly lower body weight, and the concentration of zinc in serum and organs was significantly lower than in zinc-deficient rats not receiving the supplements. Iron and calcium supplementation also significantly inhibited the activity of zinc-containing enzymes in the serum as well as liver. Both iron and calcium independently exerted this negative effect on zinc status, while their combination seemed to have a more prominent effect, especially on the activities of zinc containing enzymes. This investigation is probably the first systematic study on the effect of these two minerals on the zinc status of zinc deficient animals and their recovery during repletion with normal amounts of zinc.

  19. Synthesis of ALD zinc oxide and thin film materials optimization for UV photodetector applications

    NASA Astrophysics Data System (ADS)

    Tapily, Kandabara Nouhoum

    Zinc oxide (ZnO) is a direct, wide bandgap semiconductor material. It is thermodynamically stable in the wurtzite structure at ambient temperature conditions. ZnO has very interesting optical and electrical properties and is a suitable candidate for numerous optoelectronic applications such as solar cells, LEDs and UV-photodetectors. ZnO is a naturally n-type semiconductor. Due to the lack of reproducible p-type ZnO, achieving good homojunction ZnO-based photodiodes such as UV-photodetectors remains a challenge. Meanwhile, heterojunction structures of ZnO with p-type substrates such as SiC, GaN, NiO, AlGaN, Si etc. are used; however, those heterojunction diodes suffer from low efficiencies. ZnO is an n-type material with numerous intrinsic defect levels responsible for the electrical and optical behaviors. Presently, there is no clear consensus about the origin of those defects. In this work, ZnO was synthesized by atomic layer deposition (ALD). ALD is a novel deposition technique suitable for nanotechnology engineering that provides unique features such as precise control of ZnO thin film with atomic resolution, high uniformity, good conformity and high aspect ratio. Using this novel deposition technique, the ALD ZnO deposition process was developed and optimized using diethyl zinc as the precursor for zinc and water vapor as the oxygen source. In order to optimize the film quality for use in electronic applications, the physical, mechanical and electrical properties were investigated. The structural and mechanical properties of the ALD ZnO thin films were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), scanning electron microscopy (SEM), spectroscopic Ellipsometry, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-VIS absorption and nanoindentation. The electrical characterizations were performed using C-V, I-V, DLTS, Hall Effect, and four-point probe. The intrinsic defects responsible

  20. Safety and effectiveness of biphasic insulin aspart 30 in people with type 2 diabetes switching from basal-bolus insulin regimens in the A1chieve study.

    PubMed

    Dieuzeide, Guillermo; Chuang, Lee-Ming; Almaghamsi, Abdulrahman; Zilov, Alexey; Chen, Jian-Wen; Lavalle-González, Fernando J

    2014-07-01

    Biphasic insulin aspart 30 allows fewer daily injections versus basal-bolus insulin regimens, which may improve adherence and treatment outcome. This sub-analysis of the observational A1chieve study assessed clinical safety and effectiveness of biphasic insulin aspart 30 in people with type 2 diabetes previously receiving basal-bolus insulin regimens. A1chieve was an international, open-label, 24-week study in people with type 2 diabetes starting/switching to biphasic insulin aspart 30, insulin detemir or insulin aspart. This sub-analysis assessed patients switching from insulin glargine- or neutral protamine Hagedorn insulin-based basal-bolus insulin regimens to biphasic insulin aspart 30. 1024 patients were included. At 24 weeks, glycated haemoglobin and fasting plasma glucose were significantly reduced from baseline in both cohorts (all p<0.001). The proportion reporting any hypoglycaemia, major hypoglycaemia or nocturnal hypoglycaemia was significantly reduced after 24 weeks (all p<0.05). No serious adverse drug reactions were reported. Both cohorts had significantly improved health-related quality of life (HRQoL; p<0.001). 24 weeks after switching from basal-bolus insulin regimens to biphasic insulin aspart 30, glycaemic control and HRQoL were significantly improved, and hypoglycaemia was significantly reduced. This suggests that people with type 2 diabetes inadequately controlled on basal-bolus insulin regimens can consider biphasic insulin aspart 30. Copyright © 2013 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  1. [Zinc and chronic enteropathies].

    PubMed

    Giorgi, P L; Catassi, C; Guerrieri, A

    1984-01-01

    In recent years the nutritional importance of zinc has been well established; its deficiency and its symptoms have also been recognized in humans. Furthermore, Acrodermatitis Enteropathica has been isolated, a rare but severe disease, of which skin lesions, chronic diarrhoea and recurring infections are the main symptoms. The disease is related to the malfunctioning of intestinal absorption of zinc and can be treated by administering pharmacological doses of zinc orally. Good dietary sources of zinc are meat, fish and, to a less extent, human milk. The amount of zinc absorbed in the small intestine is influenced by other nutrients: some compounds inhibit this process (dietary fiber, phytate) while others (picolinic acid, citric acid), referred to as Zn-binding ligands (ZnBL) facilitate it. Citric acid is thought to be the ligand which accounts for the high level of bioavailability of zinc in human milk. zinc absorption occurs throughout the small intestine, not only in the prossimal tract (duodenum and jejunum) but also in the distal tract (ileum). Diarrhoea is one of the clinical manifestations of zinc deficiency, thus many illnesses distinguished by chronic diarrhoea entail a bad absorption of zinc. In fact, in some cases of chronic enteropathies in infants, like coeliac disease and seldom cystic fibrosis, a deficiency of zinc has been isolated. Some of the symptoms of Crohn's disease, like retarded growth and hypogonadism, have been related to hypozinchemia which is present in this illness. Finally, it is possible that some of the dietary treatments frequently used for persistent post-enteritis diarrhoea (i.e. cow's milk exclusion, abuse and misuse of dietary fiber like carrot and carub powder, use of soy formula) can constitute a scarce supply of zinc and therefore could promote the persistency of diarrhoea itself.

  2. Biphasic growth of orbital volume in Chinese children.

    PubMed

    Wei, Nan; Bi, Hua; Zhang, Bin; Li, Xue; Sun, Fengyuan; Qian, Xuehan

    2017-09-01

    The aim of this study was to map out the developmental curve of the orbital volume of Chinese children aged 1-15 years. CT scanning was performed on 109 children and the orbital volume, interlateral orbital rim distance (IORD), and extent of exophthalmos were measured on the CT images and plotted against age. The development of the orbit structure followed a biphasic pattern. The first growth phase was before 3 years and the second growth phase was between 7 years and 12 years of age. The growth speed in the first phase was about 3 times that of the second one (first vs second phase: 2.28 cm 3 /year vs 0.67 cm 3 /year for orbital volume, 5.01 mm/year vs 1.57 mm/year for IORD, 1.29 mm/year vs 0.42 mm/year for the exophthalmos). During development, there was no significant difference between the left and right orbits. There was no significant difference between boys and girls before 12 years of age. However, after 12 years of age, boys had significantly larger orbital volumes (22.16±2.28 cm 3 /year vs 18.57±1.16 cm 3 /year, p<0.001) and a greater IORD (96.29±3.18 mm/year vs 91.00±4.54 mm/year, p<0.001) than girls. In Chinese children, the development of orbital volume follows a biphasic pattern and a sex difference becomes significant after the age of 12 years. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  3. Zinc oxyfluoride transparent conductor

    DOEpatents

    Gordon, Roy G.

    1991-02-05

    Transparent, electrically conductive and infrared-reflective films of zinc oxyfluoride are produced by chemical vapor deposition from vapor mixtures of zinc, oxygen and fluorine-containing compounds. The substitution of fluorine for some of the oxygen in zinc oxide results in dramatic increases in the electrical conductivity. For example, diethyl zinc, ethyl alcohol and hexafluoropropene vapors are reacted over a glass surface at 400.degree. C. to form a visibly transparent, electrically conductive, infrared reflective and ultraviolet absorptive film of zinc oxyfluoride. Such films are useful in liquid crystal display devices, solar cells, electrochromic absorbers and reflectors, energy-conserving heat mirrors, and antistatic coatings.

  4. Application of aqueous biphasic systems as strategy to purify tannase from Aspergillus tamarii URM 7115.

    PubMed

    de Sena, Amanda Reges; Barros Oliveira, Flávio Manoel; Campos Leite, Tonny Cley; Evaristo da Silva Nascimento, Talita Camila; Moreira, Keila Aparecida; de Assis, Sandra Aparecida

    2017-10-21

    The aims of the current study are to assess the influence of polyethylene glycol (PEG) concentration, molar mass, pH, and citrate concentrations on aqueous biphasic systems based on 2 4 factorial designs, as well as to check their capacity to purify tannase secreted by Aspergillus tamarii URM 7115. Tannase was produced through submerged fermentation at 26°C for 67 h in Czapeck-Dox modified broth and added with yeast extract and tannic acid. The factorial design was followed to assess the influence of PEG molar mass (M PEG 600; 4,000 and 8,000 g/ mol), and PEG (C PEG 20.0; 22.0 and 24.0% w/w) and citrate concentrations (C CIT 15.0, 17.5, and 20.0%, w/w), as well as of pH (6.0, 7.0, and 8.0) on the response variables; moreover, partition coefficient (K), yield (Y), and purification factor (PF) were analyzed. The most suitable parameters to purify tannase secreted by A. tamarii URM 7115 through a biphasic system were 600 (g/mol) M PEG , 24% (w/w) C PEG , 15% (w/w) C CIT at pH 6.0 and they resulted in 6.33 enzyme partition, 131.25% yield, 19.80 purification factor and 195.08 selectivity. Tannase secreted by A. tamarii URM 7115 purified through aqueous biphasic systems composed of PEG/citrate can be used for industrial purposes, since it presents suitable purification factor and yield.

  5. Zinc Extraction from Zinc Plants Residue Using Selective Alkaline Leaching and Electrowinning

    NASA Astrophysics Data System (ADS)

    Ashtari, Pedram; Pourghahramani, Parviz

    2015-10-01

    Annually, a great amount of zinc plants residue is produced in Iran. One of them is hot filter cake (known as HFC) which can be used as a secondary resource of zinc, cobalt and manganese. Unfortunately, despite its heavy metal content, the HFC is not treated. For the first time, zinc was selectively leached from HFC employing alkaline leaching. Secondly, leaching was optimized to achieve maximum recovery using this method. Effects of factors like NaOH concentration (C = 3, 5, 7 and 9 M), temperature (T = 50, 70, 90 and 105 °C), solid/liquid ratio (weight/volume, S/L = 1/10 and 1/5 W/V) and stirring speed (R = 500 and 800 rpm) were studied on HFC leaching. L16 orthogonal array (OA, two factors in four levels and two factors in two levels) was applied to determine the optimum condition and the most significant factor affecting the overall zinc extraction. As a result, maximum zinc extraction was 83.4 %. Afterwards, a rough test was conducted for zinc electrowinning from alkaline solution according to the common condition available in literature by which pure zinc powder (99.96 %) was successfully obtained.

  6. Monodispersed Zinc Oxide Nanoparticle-Dye Dyads and Triads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gladfelter, Wayne L.; Blank, David A.; Mann, Kent R.

    The overall energy conversion efficiency of photovoltaic cells depends on the combined efficiencies of light absorption, charge separation and charge transport. Dye-sensitized solar cells are photovoltaic devices in which a molecular dye absorbs light and uses this energy to initiate charge separation. The most efficient dye-sensitized solar cells (DSSCs) use nanocrystal titanium dioxide films to which are attached ruthenium complexes. Numerous studies have provided valuable insight into the dynamics of these and analogous photosystems, but the lack of site homogeneity in binding dye molecules to metal oxide films and nanocrystals (NCs) is a significant impediment to extracting fundamental details aboutmore » the electron transfer across the interface. Although zinc oxide is emerging as a potential semiconducting component in DSSCs, there is less known about the factors controlling charge separation across the dye/ZnO interface. Zinc oxide crystallizes in the wurtzite lattice and has a band gap of 3.37 eV. One of the features that makes ZnO especially attractive is the remarkable ability to control the morphology of the films. Using solution deposition processes, one can prepare NCs, nanorods and nanowires having a variety of shapes and dimensions. This project solved problems associated with film heterogeneity through the use of dispersible sensitizer/ZnO NC ensembles. The overarching goal of this research was to study the relationship between structure, energetics and dynamics in a set of synthetically controlled donor-acceptor dyads and triads. These studies provided access to unprecedented understanding of the light absorption and charge transfer steps that lie at the heart of DSSCs, thus enabling significant future advances in cell efficiencies. The approach began with the construction of well-defined dye-NC dyads that were sufficiently dispersible to allow the use of state of the art pulsed laser spectroscopic and kinetic methods to understand the charge

  7. A promising tritium breeding material: Nanostructured 2Li2TiO3-Li4SiO4 biphasic ceramic pebbles

    NASA Astrophysics Data System (ADS)

    Dang, Chen; Yang, Mao; Gong, Yichao; Feng, Lan; Wang, Hailiang; Shi, Yanli; Shi, Qiwu; Qi, Jianqi; Lu, Tiecheng

    2018-03-01

    As an advanced tritium breeder material for the fusion reactor blanket of the International Thermonuclear Experimental Reactor (ITER), Li2TiO3-Li4SiO4 biphasic ceramic has attracted widely attention due to its merits. In this paper, the uniform precursor powders were prepared by hydrothermal method, and nanostructured 2Li2TiO3-Li4SiO4 biphasic ceramic pebbles were fabricated by an indirect wet method at the first time. In addition, the composition dependence (x/y) of their microstructure characteristics and mechanical properties were investigated. The results indicated that the crush load of biphasic ceramic pebbles was better than that of single phase ceramic pebbles under identical conditions. The 2Li2TiO3-Li4SiO4 ceramic pebbles have good morphology, small grain size (90 nm), satisfactory crush load (37.8 N) and relative density (81.8 %T.D.), which could be a promising breeding material in the future fusion reactor.

  8. Effect of resveratrol and zinc on intracellular zinc status in normal human prostate epithelial cells

    USDA-ARS?s Scientific Manuscript database

    To evaluate the influence of resveratrol on cellular zinc status, normal human prostate epithelial (NHPrE) cells were treated with 6 levels of resveratrol (0, 0.5, 1, 2.5, 5 and 10 microM) and 4 levels of zinc [0, 4, 16, and 32 microM for zinc-deficient (ZD), zinc-normal (ZN), zinc-adequate (ZA), an...

  9. Zinc and gastrointestinal disease

    PubMed Central

    Skrovanek, Sonja; DiGuilio, Katherine; Bailey, Robert; Huntington, William; Urbas, Ryan; Mayilvaganan, Barani; Mercogliano, Giancarlo; Mullin, James M

    2014-01-01

    This review is a current summary of the role that both zinc deficiency and zinc supplementation can play in the etiology and therapy of a wide range of gastrointestinal diseases. The recent literature describing zinc action on gastrointestinal epithelial tight junctions and epithelial barrier function is described. Zinc enhancement of gastrointestinal epithelial barrier function may figure prominently in its potential therapeutic action in several gastrointestinal diseases. PMID:25400994

  10. Formation of a Fluorous/Organic Biphasic Supramolecular Octopus Assembly for Enhanced Porphyrin Phosphorescence in Air

    DOE PAGES

    Yang, Chi; Arvapally, Ravi K.; Tekarli, Sammer M.; ...

    2015-03-03

    The trinuclear triangle-shaped system [tris{3,5-bis(heptafluoropropyl)-1,2,4-triazolatosilver(I)}] (1) and the multi-armed square-shaped metalloporphyrin PtOEP or the free porphyrin base H2OEP serve as excellent octopus hosts (OEP=2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine). Coupling of the fluorous/organic molecular octopi 1 and H2OEP or PtOEP by strong quadrupole-quadrupole and metal- interactions affords the supramolecular assemblies [1PtOEP] or [1H(2)OEP] (2a), which feature nanoscopic cavities surrounding the upper triangular and lower square cores. The fluorous/organic biphasic configuration of [1PtOEP] leads to an increase in the phosphorescence of PtOEP under ambient conditions. Guest molecules can be included in the biphasic double-octopus assembly in three different site-selective modes.

  11. Aqueous biphasic extraction of uranium and thorium from contaminated soils. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaiko, D.J.; Gartelmann, J.; Henriksen, J.L.

    1995-07-01

    The aqueous biphasic extraction (ABE) process for soil decontamination involves the selective partitioning of solutes and fine particulates between two immiscible aqueous phases. The biphase system is generated by the appropriate combination of a water-soluble polymer (e.g., polyethlene glycol) with an inorganic salt (e.g., sodium carbonate). Selective partitioning results in 99 to 99.5% of the soil being recovered in the cleaned-soil fraction, while only 0.5 to 1% is recovered in the contaminant concentrate. The ABE process is best suited to the recovery of ultrafine, refractory material from the silt and clay fractions of soils. During continuous countercurrent extraction tests withmore » soil samples from the Fernald Environmental Management Project site (Fernald, OH), particulate thorium was extracted and concentrated between 6- and 16-fold, while the uranium concentration was reduced from about 500 mg/kg to about 77 mg/kg. Carbonate leaching alone was able to reduce the uranium concentration only to 146 mg/kg. Preliminary estimates for treatment costs are approximately $160 per ton of dry soil. A detailed flowsheet of the ABE process is provided.« less

  12. WI Biodiesel Blending Progream Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redmond, Maria E; Levy, Megan M

    The Wisconsin State Energy Office's (SEO) primary mission is to implement cost effective, reliable, balanced, and environmentally friendly clean energy projects. To support this mission the Wisconsin Biodiesel Blending Program was created to financially support the installation infrastructure necessary to directly sustain biodiesel blending and distribution at petroleum terminal facilities throughout Wisconsin. The SEO secured a federal directed award of $600,000 over 2.25 years. With these funds, the SEO supported the construction of inline biodiesel blending facilities at two petroleum terminals in Wisconsin. The Federal funding provided through the state provided a little less than half of the necessary investmentmore » to construct the terminals, with the balance put forth by the partners. Wisconsin is now home to two new biodiesel blending terminals. Fusion Renewables on Jones Island (in the City of Milwaukee) will offer a B100 blend to both bulk and retail customers. CITGO is currently providing a B5 blend to all customers at their Granville, WI terminal north of the City of Milwaukee.« less

  13. Effectiveness of Blended Learning

    ERIC Educational Resources Information Center

    Rao, A. V. Nageswararao

    2006-01-01

    The introduction of blended learning added new dimension to training, and the possibilities for delivering knowledge and information to learners at an accelerated pace and opened new vistas for knowledge management. Industry pioneers and academicians agree that blended learning will continue to become a driving force in business and in education.…

  14. Properties of Zip4 accumulation during zinc deficiency and its usefulness to evaluate zinc status: a study of the effects of zinc deficiency during lactation.

    PubMed

    Hashimoto, Ayako; Nakagawa, Miki; Tsujimura, Natsuki; Miyazaki, Shiho; Kizu, Kumiko; Goto, Tomoko; Komatsu, Yusuke; Matsunaga, Ayu; Shirakawa, Hitoshi; Narita, Hiroshi; Kambe, Taiho; Komai, Michio

    2016-03-01

    Systemic and cellular zinc homeostasis is elaborately controlled by ZIP and ZnT zinc transporters. Therefore, detailed characterization of their expression properties is of importance. Of these transporter proteins, Zip4 functions as the primarily important transporter to control systemic zinc homeostasis because of its indispensable function of zinc absorption in the small intestine. In this study, we closely investigated Zip4 protein accumulation in the rat small intestine in response to zinc status using an anti-Zip4 monoclonal antibody that we generated and contrasted this with the zinc-responsive activity of the membrane-bound alkaline phosphatase (ALP). We found that Zip4 accumulation is more rapid in response to zinc deficiency than previously thought. Accumulation increased in the jejunum as early as 1 day following a zinc-deficient diet. In the small intestine, Zip4 protein expression was higher in the jejunum than in the duodenum and was accompanied by reduction of ALP activity, suggesting that the jejunum can become zinc deficient more easily. Furthermore, by monitoring Zip4 accumulation levels and ALP activity in the duodenum and jejunum, we reasserted that zinc deficiency during lactation may transiently alter plasma glucose levels in the offspring in a sex-specific manner, without affecting homeostatic control of zinc metabolism. This confirms that zinc nutrition during lactation is extremely important for the health of the offspring. These results reveal that rapid Zip4 accumulation provides a significant conceptual advance in understanding the molecular basis of systemic zinc homeostatic control, and that properties of Zip4 protein accumulation are useful to evaluate zinc status closely. Copyright © 2016 the American Physiological Society.

  15. Interaction Between Yeasts and Zinc

    NASA Astrophysics Data System (ADS)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  16. Method for separating water soluble organics from a process stream by aqueous biphasic extraction

    DOEpatents

    Chaiko, David J.; Mego, William A.

    1999-01-01

    A method for separating water-miscible organic species from a process stream by aqueous biphasic extraction is provided. An aqueous biphase system is generated by contacting a process stream comprised of water, salt, and organic species with an aqueous polymer solution. The organic species transfer from the salt-rich phase to the polymer-rich phase, and the phases are separated. Next, the polymer is recovered from the loaded polymer phase by selectively extracting the polymer into an organic phase at an elevated temperature, while the organic species remain in a substantially salt-free aqueous solution. Alternatively, the polymer is recovered from the loaded polymer by a temperature induced phase separation (cloud point extraction), whereby the polymer and the organic species separate into two distinct solutions. The method for separating water-miscible organic species is applicable to the treatment of industrial wastewater streams, including the extraction and recovery of complexed metal ions from salt solutions, organic contaminants from mineral processing streams, and colorants from spent dye baths.

  17. Nanoparticle-Seeding Approach to Buried (Semi) Metal Film Growth

    DTIC Science & Technology

    2014-05-20

    semimetals that can be grown epitaxially on zinc-blende III-V substrates, with thermodynamically stable interfaces. However, the rotational symmetry...epitaxially on zinc-blende III-V substrates, with thermodynamically stable interfaces. However, the rotational symmetry mismatch between the III-V and ErAs

  18. Design and development of a low-cost biphasic charge-balanced functional electric stimulator and its clinical validation.

    PubMed

    Shendkar, Chandrashekhar; Lenka, Prasanna K; Biswas, Abhishek; Kumar, Ratnesh; Mahadevappa, Manjunatha

    2015-10-01

    Functional electric stimulators that produce near-ideal, charge-balanced biphasic stimulation waveforms with interphase delay are considered safer and more efficacious than conventional stimulators. An indigenously designed, low-cost, portable FES device named InStim is developed. It features a charge-balanced biphasic single channel. The authors present the complete design, mathematical analysis of the circuit and the clinical evaluation of the device. The developed circuit was tested on stroke patients affected by foot drop problems. It was tested both under laboratory conditions and in clinical settings. The key building blocks of this circuit are low dropout regulators, a DC-DC voltage booster and a single high-power current source OP-Amp with current-limiting capabilities. This allows the device to deliver high-voltage, constant current, biphasic pulses without the use of a bulky step-up transformer. The advantages of the proposed design over the currently existing devices include improved safety features (zero DC current, current-limiting mechanism and safe pulses), waveform morphology that causes less muscle fatigue, cost-effectiveness and compact power-efficient circuit design with minimal components. The device is also capable of producing appropriate ankle dorsiflexion in patients having foot drop problems of various Medical Research Council scale grades.

  19. Enhanced zinc consumption causes memory deficits and increased brain levels of zinc

    USGS Publications Warehouse

    Flinn, J.M.; Hunter, D.; Linkous, D.H.; Lanzirotti, A.; Smith, L.N.; Brightwell, J.; Jones, B.F.

    2005-01-01

    Zinc deficiency has been shown to impair cognitive functioning, but little work has been done on the effects of elevated zinc. This research examined the effect on memory of raising Sprague-Dawley rats on enhanced levels of zinc (10 ppm ZnCO3; 0.153 mM) in the drinking water for periods of 3 or 9 months, both pre- and postnatally. Controls were raised on lab water. Memory was tested in a series of Morris Water Maze (MWM) experiments, and zinc-treated rats were found to have impairments in both reference and working memory. They were significantly slower to find a stationary platform and showed greater thigmotaxicity, a measure of anxiety. On a working memory task, where the platform was moved each day, zinc-treated animals had longer latencies over both trials and days, swam further from the platform, and showed greater thigmotaxicity. On trials using an Atlantis platform, which remained in one place but was lowered on probe trials, the zinc-treated animals had significantly fewer platform crossings, spent less time in the target quadrant, and did not swim as close to the platform position. They had significantly greater latency on nonprobe trials. Microprobe synchrotron X-ray fluorescence (??SXRF) confirmed that brain zinc levels were increased by adding ZnCO 3 to the drinking water. These data show that long-term dietary administration of zinc can lead to impairments in cognitive function. ?? 2004 Elsevier Inc. All rights reserved.

  20. [Advances in the research of zinc deficiency and zinc supplementation treatment in patients with severe burns].

    PubMed

    Wang, X X; Zhang, M J; Li, X B

    2018-01-20

    Zinc is one of the essential trace elements in human body, which plays an important role in regulating acute inflammatory response, glucose metabolism, anti-oxidation, immune and gastrointestinal function of patients with severe burns. Patients with severe burns may suffer from zinc deficiency because of insufficient amount of zinc intake from the diet and a large amount of zinc lose through wounds and urine. Zinc deficiency may affect their wound healing process and prognosis. This article reviews the characteristics of zinc metabolism in patients with severe burns through dynamic monitoring the plasma and urinary concentration of zinc. An adequate dosage of zinc supplemented to patients with severe burns by an appropriate method can increase the level of zinc in plasma and skin tissue and improve wound healing, as well as reduce the infection rates and mortality. At the same time, it is important to observe the symptoms and signs of nausea, dizziness, leukopenia and arrhythmia in patients with severe burns after supplementing excessive zinc.

  1. Blended Teaching and Learning

    ERIC Educational Resources Information Center

    Pape, Liz

    2010-01-01

    "Blended learning" is using online tools to communicate, collaborate, and publish, to extend the school day or year and to develop the 21st-century skills students need. With blended learning, teachers can use online tools and resources as part of their daily classroom instruction. Using many of the online tools and resources students already are…

  2. Ru-Catalyzed Estragole Isomerization under Homogeneous and Ionic Liquid Biphasic Conditions

    PubMed Central

    2017-01-01

    The isomerization of estragole to trans-anethole is an important reaction and is industrially performed using an excess of NaOH or KOH in ethanol at high temperatures with very low selectivity. Simple Ru-based transition-metal complexes, under homogeneous, ionic liquid (IL)-supported (biphasic) and “solventless” conditions, can be used for this reaction. The selectivity of this reaction is more sensitive to the solvent/support used than the ligands associated with the metal catalyst. Thus, under the optimized reaction conditions, 100% conversion can be achieved in the estragole isomerization, using as little as 4 × 10–3 mol % (40 ppm) of [RuHCl(CO)(PPh3)3] in toluene, reflecting a total turnover number (TON) of 25 000 and turnover frequencies (TOFs) of up to 500 min–1 at 80 °C. Using a dimeric Ru precursor, [RuCl(μ-Cl)(η3:η3-C10H16)]2, in ethanol associated with P(OEt)3, a TON of 10 000 and a TOF of 125 min–1 are obtained with 100% conversion and 99% selectivity. These two Ru catalytic systems can be transposed to biphasic IL systems by using ionic-tagged P-ligands such as 1-(3-(diphenylphosphanyl)propyl)-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide immobilized in 1-(3-hydroxypropyl)-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl) imide with up to 99% selectivity and almost complete estragole conversion. However, the reaction is much slower than that performed under solventless or homogeneous conditions. The use of ionic-tagged ligands significantly reduces the Ru leaching to the organic phase, compared to that in reactions performed under homogeneous conditions, where the catalytic system loses catalytic performance after the second recycling. Detailed kinetic investigations of the reaction catalyzed by [RuHCl(CO)(PPh3)3] indicate that a simplified kinetic model (a monomolecular reversible first-order reaction) is adequate for fitting the homogeneous reaction at 80 °C and under biphasic conditions. However, the kinetics of

  3. 99. ZINC ROUGHER CELLS ON LEFT, ZINC CLEANER CELLS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    99. ZINC ROUGHER CELLS ON LEFT, ZINC CLEANER CELLS ON RIGHT, LOOKING NORTH. NOTE ONE STYLE OF DENVER AGITATOR IN LOWER RIGHT CELL. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  4. Serum thymulin in human zinc deficiency.

    PubMed Central

    Prasad, A S; Meftah, S; Abdallah, J; Kaplan, J; Brewer, G J; Bach, J F; Dardenne, M

    1988-01-01

    The activity of thymulin (a thymic hormone) is dependent on the presence of zinc in the molecule. We assayed serum thymulin activity in three models of mildly zinc-deficient (ZD) human subjects before and after zinc supplementation: (a) two human volunteers in whom a specific and mild zinc deficiency was induced by dietary means; (b) six mildly ZD adult sickle cell anemia (SCA) subjects; and (c) six mildly ZD adult non-SCA subjects. Their plasma zinc levels were normal and they showed no overt clinical manifestations of zinc deficiency. The diagnosis of mild zinc deficiency was based on the assay of zinc in lymphocytes, granulocytes, and platelets. Serum thymulin activity was decreased as a result of mild zinc deficiency and was corrected by in vivo and in vitro zinc supplementation, suggesting that this parameter was a sensitive indicator of zinc deficiency in humans. An increase in T101-, sIg-cells, decrease in T4+/T8+ ratio, and decreased IL 2 activity were observed in the experimental human model during the zinc depletion phase, all of which were corrected after repletion with zinc. Similar changes in lymphocyte subpopulation, correctable with zinc supplementation, were also observed in mildly ZD SCA subjects. Inasmuch as thymulin is known to induce intra- and extrathymic T cell differentiation, our studies provide a possible mechanism for the role of zinc on T cell functions. Images PMID:3262625

  5. Fixed-energy biphasic waveform defibrillation in a pediatric model of cardiac arrest and resuscitation.

    PubMed

    Tang, Wanchun; Weil, Max Harry; Jorgenson, Dawn; Klouche, Kada; Morgan, Carl; Yu, Ting; Sun, Shijie; Snyder, David

    2002-12-01

    For adults, 150-J fixed-energy, impedance-compensating biphasic truncated exponential (ICBTE) shocks are now effectively used in automated defibrillators. However, the high energy levels delivered by adult automated defibrillators preclude their use for pediatric patients. Accordingly, we investigated a method by which adult automated defibrillators may be adapted to deliver a 50-J ICBTE shock for pediatric defibrillation. Prospective, randomized study. A university-affiliated research institution. Domestic piglets. We initially investigated four groups of anesthetized mechanically ventilated piglets weighing 3.8, 7.5, 15, and 25 kg. Ventricular fibrillation was induced with an AC current delivered to the right ventricular endocardium. After 7 mins of untreated ventricular fibrillation, a conventional manual defibrillator was used to deliver up to three 50-J ICBTE shocks. If ventricular fibrillation was not reversed, a 1-min interval of precordial compression preceded a second sequence of up to three shocks. The protocol was repeated until spontaneous circulation was restored, or for a total of 15 mins. In a second set of experiments, we evaluated a 150-J biphasic adult automated defibrillator that was operated in conjunction with energy-reducing electrodes such as to deliver 50-J shocks. The same resuscitation protocol was then exercised on piglets weighing 3.7, 13.5, and 24.2 kg. All animals were successfully resuscitated. Postresuscitation hemodynamic and myocardial function quickly returned to baseline values in both experimental groups, and all animals survived. An adaptation of a 150-J biphasic adult automated defibrillator in which energy-reducing electrodes delivered 50-J shocks successfully resuscitated animals ranging from 3.7 to 25 kg without compromise of postresuscitation myocardial function or survival.

  6. Zinc supplementation in public health.

    PubMed

    Penny, Mary Edith

    2013-01-01

    Zinc is necessary for physiological processes including defense against infections. Zinc deficiency is responsible for 4% of global child morbidity and mortality. Zinc supplements given for 10-14 days together with low-osmolarity oral rehydration solution (Lo-ORS) are recommended for the treatment of childhood diarrhea. In children aged ≥ 6 months, daily zinc supplements reduce the duration of acute diarrhea episodes by 12 h and persistent diarrhea by 17 h. Zinc supplements could reduce diarrhea mortality in children aged 12-59 months by an estimated 23%; they are very safe but are associated with an increase in vomiting especially with the first dose. Heterogeneity between the results of trials is not understood but may be related to dose and the etiology of the diarrhea infection. Integration of zinc and Lo-ORS into national programs is underway but slowly, procurement problems are being overcome and the greatest challenge is changing health provider and caregiver attitudes to diarrhea management. Fewer trials have been conducted of zinc adjunct therapy in severe respiratory tract infections and there is as yet insufficient evidence to recommend addition of zinc to antibiotic therapy. Daily zinc supplements for all children >12 months of age in zinc deficient populations are estimated to reduce diarrhea incidence by 11-23%. The greatest impact is in reducing multiple episodes of diarrhea. The effect on duration of diarrheal episodes is less clear, but there may be up to 9% reduction. Zinc is also efficacious in reducing dysentery and persistent diarrhea. Zinc supplements may also prevent pneumonia by about 19%, but heterogeneity across studies has not yet been explained. When analyses are restricted to better quality studies using CHERG (Child Health Epidemiology Reference Group) methodology, zinc supplements are estimated to reduce diarrheal deaths by 13% and pneumonia deaths by 20%. National-level programs to combat childhood zinc deficiency should be

  7. Viscoelastic properties of PLA/PCL blends compatibilized with different methods

    NASA Astrophysics Data System (ADS)

    Shin, Boo Young; Han, Do Hung

    2017-11-01

    The aim of this study was to observe changes in the viscoelastic properties of PLA/PCL (80/20) blends produced using different compatibilization methods. Reactive extrusion and high-energy radiation methods were used for blend compatibilization. Storage and loss moduli, complex viscosity, transient stress relaxation modulus, and tan δ of blends were analyzed and blend morphologies were examined. All compatibilized PLA/PCL blends had smaller dispersed particle sizes than the non-compatibilized blend, and well compatibilized blends had finer morphologies than poorly compatibilized blends. Viscoelastic properties differentiated well compatibilized and poorly compatibilized blends. Well compatibilized blends had higher storage and loss moduli and complex viscosities than those calculated by the log-additive mixing rule due to strong interfacial adhesion, whereas poorly compatibilized blends showed negative deviations due to weak interfacial adhesion. Moreover, well compatibilized blends had much slower stress relaxation than poorly compatibilized blends and didn't show tan δ plateau region caused by slippage at the interface between continuous and dispersed phases.

  8. Substitutional and interstitial oxygen in wurtzite GaN

    NASA Astrophysics Data System (ADS)

    Wright, A. F.

    2005-11-01

    Density-functional theory was used to compute energy-minimum configurations and formation energies of substitutional and interstitial oxygen (O) in wurtzite GaN. The results indicate that O substituted at a N site (ON) acts as a single donor with the ionized state (ON+1) being the most stable O state in p-type GaN. In n-type GaN, interstitial O (OI) is predicted to be a double acceptor and O substituted at a Ga site (OGa) is predicted to be a triple acceptor. The formation energies of these two species are comparable to that of ON in n-type GaN and, as such, they should form and compensate the ON donors. The extent of compensation was estimated for both Ga-rich and N-rich conditions with a total O concentration of 1017cm-3. Ga-rich conditions yielded negligible compensation and an ON concentration in excess of 9.9×1016cm-3. N-rich conditions yielded a 25% lower ON concentration, due to the increased stability of OI and OGa relative to ON, and moderate compensation. These findings are consistent with experimental results indicating that O acts as a donor in GaN(O). Complexes of ON with the Mg acceptor and OI with the Si donor were examined. Binding energies for charge-conserving reactions were ⩾0.5eV, indicating that these complexes can exist in equilibrium at room temperature. Complexes of ON with the Ga vacancy in n-type GaN were also examined and their binding energies were 1.2 and 1.4eV, indicating that appreciable concentrations can exist in equilibrium even at elevated temperatures.

  9. Fitting Photometry of Blended Microlensing Events

    NASA Astrophysics Data System (ADS)

    Thomas, Christian L.; Griest, Kim

    2006-03-01

    We reexamine the usefulness of fitting blended light-curve models to microlensing photometric data. We find agreement with previous workers (e.g., Woźniak & Paczyński) that this is a difficult proposition because of the degeneracy of blend fraction with other fit parameters. We show that follow-up observations at specific point along the light curve (peak region and wings) of high-magnification events are the most helpful in removing degeneracies. We also show that very small errors in the baseline magnitude can result in problems in measuring the blend fraction and study the importance of non-Gaussian errors in the fit results. The biases and skewness in the distribution of the recovered blend fraction is discussed. We also find a new approximation formula relating the blend fraction and the unblended fit parameters to the underlying event duration needed to estimate microlensing optical depth.

  10. History of Zinc in Agriculture12

    PubMed Central

    Nielsen, Forrest H.

    2012-01-01

    Zinc was established as essential for green plants in 1926 and for mammals in 1934. However, >20 y would pass before the first descriptions of zinc deficiencies in farm animals appeared. In 1955, it was reported that zinc supplementation would cure parakeratosis in swine. In 1958, it was reported that zinc deficiency induced poor growth, leg abnormalities, poor feathering, and parakeratosis in chicks. In the 1960s, zinc supplementation was found to alleviate parakeratosis in grazing cattle and sheep. Within 35 y, it was established that nearly one half of the soils in the world may be zinc deficient, causing decreased plant zinc content and production that can be prevented by zinc fertilization. In many of these areas, zinc deficiency is prevented in grazing livestock by zinc fertilization of pastures or by providing salt licks. For livestock under more defined conditions, such as poultry, swine, and dairy and finishing cattle, feeds are easily supplemented with zinc salts to prevent deficiency. Today, the causes and consequences of zinc deficiency and methods and effects of overcoming the deficiency are well established for agriculture. The history of zinc in agriculture is an outstanding demonstration of the translation of research into practical application. PMID:23153732

  11. Blending in: The Extent and Promise of Blended Education in the United States

    ERIC Educational Resources Information Center

    Allen, I. Elaine; Seaman, Jeff; Garrett, Richard

    2007-01-01

    "Blending In: The Extent and Promise of Blended Education in the United States" builds on the series of annual reports on the state of online education in U.S. Higher Education. This study, like the previous reports, is aimed at answering some of the fundamental questions about the nature and extent of education in the United States.…

  12. Endogenous Zinc in Neurological Diseases

    PubMed Central

    2005-01-01

    The use of zinc in medicinal skin cream was mentioned in Egyptian papyri from 2000 BC (for example, the Smith Papyrus), and zinc has apparently been used fairly steadily throughout Roman and modern times (for example, as the American lotion named for its zinc ore, 'Calamine'). It is, therefore, somewhat ironic that zinc is a relatively late addition to the pantheon of signal ions in biology and medicine. However, the number of biological functions, health implications and pharmacological targets that are emerging for zinc indicate that it might turn out to be 'the calcium of the twenty-first century'. Here neurobiological roles of endogenous zinc is summarized. PMID:20396459

  13. Measurements of zinc absorption: application and interpretation in research designed to improve human zinc nutriture.

    PubMed

    Hambidge, K Michael; Miller, Leland V; Tran, Cuong D; Krebs, Nancy F

    2005-11-01

    The focus of this paper is on the application of measurements of zinc absorption in human research, especially studies designed to assess the efficacy of intervention strategies to prevent and manage zinc deficiency in populations. Emphasis is given to the measurement of quantities of zinc absorbed rather than restricting investigations to measurements of fractional absorption of zinc. This is especially important when determining absorption of zinc from the diet, whether it be the habitual diet or an intervention diet under evaluation. Moreover, measurements should encompass all meals for a minimum of one day with the exception of some pilot studies. Zinc absorption is primarily via an active saturable transport process into the enterocytes of the proximal small intestine. The relationship between quantity of zinc absorbed and the quantity ingested is best characterized by saturable binding models. When applied to human studies that have sufficient data to examine dose-response relationships, efficiency of absorption is high until approximately 50-60% maximal absorption is achieved, even with moderate phytate intakes. This also coincides approximately with the quantity of absorbed zinc necessary to meet physiologic requirements. Efficiency of absorption with intakes that exceed this level is low or very low. These observations have important practical implications for the design and interpretation of intervention studies to prevent zinc deficiency. They also suggest the potential utility of measurements of the quantity of zinc absorbed when evaluating the zinc status of populations.

  14. 27 CFR 24.213 - Heavy bodied blending wine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Heavy bodied blending wine..., DEPARTMENT OF THE TREASURY LIQUORS WINE Production of Other Than Standard Wine § 24.213 Heavy bodied blending wine. Heavy bodied blending wine is wine made for blending purposes from grapes or other fruit without...

  15. Interaction of zinc with dental mineral.

    PubMed

    Ingram, G S; Horay, C P; Stead, W J

    1992-01-01

    As some currently available toothpastes contain zinc compounds, the reaction of zinc with dental mineral and its effect on crystal growth rates were studied using three synthetic calcium-deficient hydroxyapatites (HAP) as being representative of dental mineral. Zinc was readily acquired by all HAP samples in the absence of added calcium, the amount adsorbed being proportional to the HAP surface area; about 9 mumol Zn/m2 was adsorbed at high zinc concentrations. As zinc was acquired, calcium was released, consistent with 1:1 Ca:Zn exchange. Soluble calcium reduced zinc uptake and similarly, calcium post-treatment released zinc. Pretreatment of HAP with 0.5 mM zinc reduced its subsequent ability to undergo seeded crystal growth, as did extracts of a toothpaste containing 0.5% zinc citrate, even in the presence of saliva. The reverse reaction, i.e. displacement of adsorbed zinc by salivary levels of calcium, however, indicates the mechanism by which zinc can reduce calculus formation in vivo by inhibiting plaque mineralisation without adversely affecting the anti-caries effects of fluoride.

  16. [Blending powdered antineoplastic medicine in disposable ointment container].

    PubMed

    Miyazaki, Yasunori; Uchino, Tomonobu; Kagawa, Yoshiyuki

    2014-01-01

    On dispensing powdered antineoplastic medicines, it is important to prevent cross-contamination and environmental exposure. Recently, we developed a method for blending powdered medicine in a disposable ointment container using a planetary centrifugal mixer. The disposable container prevents cross-contamination. In addition, environmental exposure associated with washing the apparatus does not arise because no blending blade is used. In this study, we aimed to confirm the uniformity of the mixture and weight loss of medicine in the blending procedure. We blended colored lactose powder with Leukerin(®) or Mablin(®) powders using the new method and the ordinary pestle and mortar method. Then, the blending state was monitored using image analysis. Blending variables, such as the blending ratio (1:9-9:1), container size (35-125 mL), and charging rate (20-50%) in the container were also investigated under the operational conditions of 500 rpm and 50 s. At a 20% charging rate in a 35 mL container, the blending precision of the mixtures was not influenced by the blending ratio, and was less than 6.08%, indicating homogeneity. With an increase in the charging rate, however, the blending precision decreased. The possible amount of both mixtures rose to about 17 g with a 20% charging rate in a 125 mL container. Furthermore, weight loss of medicines with this method was smaller than that with the pestle and mortar method, suggesting that this method is safer for pharmacists. In conclusion, we have established a precise and safe method for blending powdered medicines in pharmacies.

  17. Partitioning of mercury in aqueous biphasic systems and on ABEC resins.

    PubMed

    Rogers, R D; Griffin, S T

    1998-06-26

    Poly(ethylene glycol)-based aqueous biphasic systems (PEG-ABS) can be utilized to separate and recover metal ions in environmental and hydrometallurgical applications. A concurrent study was conducted comparing the partitioning of mercury between aqueous layers in an ABS [Me-PEG-5000/(NH4)2SO4] and partitioning of mercury from aqueous solutions to aqueous biphasic extraction chromatographic (ABEC-5000) resins. In ammonium sulfate solutions, mercury partitions to the salt-rich phase in ABS, but by using halide ion extractants, mercury will partition to the PEG-rich phase after formation of a chloro, bromo or iodo complex. The efficacy of the extractant increases in the order Cl-

  18. Rechargeable zinc cell with alkaline electrolyte which inhibits shape change in zinc electrode

    DOEpatents

    Adler, T.C.; McLarnon, F.R.; Cairns, E.J.

    1994-04-12

    An improved rechargeable zinc cell is described comprising a zinc electrode and another electrode such as, for example, a nickel-containing electrode, and having an electrolyte containing KOH and a combination of KF and K[sub 2]CO[sub 3] salts which inhibits shape change in the zinc electrode, i.e., the zinc electrode exhibits low shape change, resulting in an improved capacity retention of the cell over an number of charge-discharge cycles, while still maintaining high discharge rate characteristics. 8 figures.

  19. Rechargeable zinc cell with alkaline electrolyte which inhibits shape change in zinc electrode

    DOEpatents

    Adler, Thomas C.; McLarnon, Frank R.; Cairns, Elton J.

    1994-01-01

    An improved rechargeable zinc cell is described comprising a zinc electrode and another electrode such as, for example, a nickel-containing electrode, and having an electrolyte containing KOH and a combination of KF and K.sub.2 CO.sub.3 salts which inhibits shape change in the zinc electrode, i.e., the zinc electrode exhibits low shape change, resulting in an improved capacity retention of the cell over an number of charge-discharge cycles, while still maintaining high discharge rate characteristics.

  20. Leptin, NPY, Melatonin and Zinc Levels in Experimental Hypothyroidism and Hyperthyroidism: The Relation to Zinc.

    PubMed

    Baltaci, Abdulkerim Kasım; Mogulkoc, Rasim

    2017-06-01

    Since zinc mediates the effects of many hormones or is found in the structure of numerous hormone receptors, zinc deficiency leads to various functional impairments in the hormone balance. And also thyroid hormones have important activity on metabolism and feeding. NPY and leptin are affective on food intake and regulation of appetite. The present study is conducted to determine how zinc supplementation and deficiency affect thyroid hormones (free and total T3 and T4), melatonin, leptin, and NPY levels in thyroid dysfunction in rats. The experiment groups in the study were formed as follows: Control (C); Hypothyroidism (PTU); Hypothyroidism+Zinc (PTU+Zn); Hypothyroidism+Zinc deficient; Hyperthyroidism (H); Hyperthyroidism+Zinc (H+Zn); and Hyperthyroidism+Zinc deficient. Thyroid hormone parameters (FT 3 , FT 4 , TT 3 , and TT 4 ) were found to be reduced in hypothyroidism groups and elevated in the hyperthyroidism groups. Melatonin values increased in hyperthyroidism and decreased in hypothyroidism. Leptin and NPY levels both increased in hypo- and hyperthyroidism. Zinc levels, on the other hand, decreased in hypothyroidism and increased in hyperthyroidism. Zinc supplementation, particularly when thyroid function is impaired, has been demonstrated to markedly prevent these changes.

  1. Effect of Fe incorporation on the optical behavior of ZnO thin films prepared by sol-gel derived spin coating techniques

    NASA Astrophysics Data System (ADS)

    Rakkesh, R. Ajay; Malathi, R.; Balakumar, S.

    2013-02-01

    In this work, Fe doped Zinc Oxide (ZnO) thin films were fabricated on the glass substrate by sol-gel derived spin coating technique. X-ray Diffraction studies revealed that the obtained pure and Fe doped ZnO thin films were in the wurtzite and spinel phase respectively. The three well defined Raman lines at 432, 543 and 1091 cm-1 also confirmed the lattice structure of the ZnO thin film has wurtzite symmetry. While doping Fe atoms in the ZnO, there was a significant change in the phase from wurtzite to spinel structure; owing to Fe (III) ions being incorporated into the lattice through substitution of Zn (II) ions. Room temperature PL spectra showed that the role of defect mediated red emissions at 612 nm was due to radial recombination of a photogenerated hole with an electron that belongs to the Fe atoms, which were discussed in detail.

  2. Zinc as a Gatekeeper of Immune Function

    PubMed Central

    Wessels, Inga; Maywald, Martina; Rink, Lothar

    2017-01-01

    After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc “importers” (ZIP 1–14), zinc “exporters” (ZnT 1–10), and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate “zinc waves”, and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function. PMID:29186856

  3. A randomized controlled trial of efficacy and ST change following use of the Welch-Allyn MRL PIC biphasic waveform versus damped sine monophasic waveform for external DC cardioversion.

    PubMed

    Ambler, Jonathan J S; Deakin, Charles D

    2006-11-01

    Biphasic waveforms have similar or greater efficacy at cardioverting atrial and ventricular arrhythmias at lower energy levels than monophasic waveforms, and cause less ST depression following defibrillation of ventricular fibrillation. No studies have investigated this effect on ST change with atrial arrhythmias. We studied the efficacy of the Welch Allyn-MRL PIC biphasic defibrillator. One hundred and thirty-nine patients undergoing elective DC cardioversion for atrial arrhythmias were randomised to cardioversion by monophasic (Hewlett Packard Codemaster XL; 100, 200, 300, 360 and 360J) or biphasic (Welch Allyn-MRL PIC; 70, 100, 150, 200 and 300J) defibrillator. We analysed success of cardioversion after 0 and 30min, cumulative energy, number of shocks and energy at successful cardioversion. The ST change in the recorded electrocardiogram was measured at 15s after all shocks using electronic callipers. Immediately after cardioversion 59/68 (86.8%) of the monophasic group versus 56/60 (93.3%) of the biphasic group were in sinus rhythm. Of the monophasic group, 55/67 (82.1%) remained in sinus rhythm at 30min versus 53/58 (91.4%) of the biphasic group. These differences were not significant at 0min (P=0.35) or 30min (P=0.21). The biphasic group required significantly fewer shocks (P=0.006), less cumulative energy (P<0.0001) and required lower total energy for successful cardioversion (P<0.0001). Of the 102 patients with electrocardiogram recordings suitable for analysis, ST segment change was greater in the monophasic group (P=0.037). The Welch Allyn-MRL biphasic waveform for DC cardioversion results in fewer shocks, with less cumulative energy delivered and less post shock ST change than with a Hewlett Packard Codemaster XL damped sine wave monophasic waveform.

  4. Uptake and partitioning of zinc in Lemnaceae.

    PubMed

    Lahive, Elma; O'Callaghan, Michael J A; Jansen, Marcel A K; O'Halloran, John

    2011-11-01

    Macrophytes provide food and shelter for aquatic invertebrates and fish, while also acting as reservoirs for nutrients and trace elements. Zinc accumulation has been reported for various Lemnaceae species. However, comparative accumulation across species and the link between zinc accumulation and toxicity are poorly understood. Morphological distribution and cellular storage, in either bound or soluble form, are important for zinc tolerance. This study shows differences in the uptake and accumulation of zinc by three duckweed species. Landoltia punctata and Lemna minor generally accumulated more zinc than Lemna gibba. L. minor, but not L. gibba or L. punctata, accumulated greater concentrations of zinc in roots compared to fronds when exposed to high levels of zinc. The proportion of zinc stored in the bound form relative to the soluble-form was higher in L. minor. L. punctata accumulated greater concentrations of zinc in fronds compared to roots and increased the proportion of zinc it stored in the soluble form, when exposed to high zinc levels. L. gibba is the only species that significantly accumulated zinc at low concentrations, and was zinc-sensitive. Overall, internal zinc concentrations showed no consistent correlation with toxic effect. We conclude that relationships between zinc toxicity and uptake and accumulation are species specific reflecting, among others, zinc distribution and storage. Differences in zinc distribution and storage are also likely to have implications for zinc bioavailability and trophic mobility.

  5. 21 CFR 133.167 - Pasteurized blended cheese.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Pasteurized blended cheese. 133.167 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.167 Pasteurized blended cheese. Pasteurized blended cheese conforms to...

  6. 21 CFR 133.167 - Pasteurized blended cheese.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Pasteurized blended cheese. 133.167 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.167 Pasteurized blended cheese. Pasteurized blended cheese conforms to...

  7. Zinc: an essential but elusive nutrient123

    PubMed Central

    King, Janet C

    2011-01-01

    Zinc is essential for multiple aspects of metabolism. Physiologic signs of zinc depletion are linked with diverse biochemical functions rather than with a specific function, which makes it difficult to identify biomarkers of zinc nutrition. Nutrients, such as zinc, that are required for general metabolism are called type 2 nutrients. Protein and magnesium are examples of other type 2 nutrients. Type 1 nutrients are required for one or more specific functions: examples include iron, vitamin A, iodine, folate, and copper. When dietary zinc is insufficient, a marked reduction in endogenous zinc loss occurs immediately to conserve the nutrient. If zinc balance is not reestablished, other metabolic adjustments occur to mobilize zinc from small body pools. The location of those pools is not known, but all cells probably have a small zinc reserve that includes zinc bound to metallothionein or zinc stored in the Golgi or in other organelles. Plasma zinc is also part of this small zinc pool that is vulnerable to insufficient intakes. Plasma zinc concentrations decline rapidly with severe deficiencies and more moderately with marginal depletion. Unfortunately, plasma zinc concentrations also decrease with a number of conditions (eg, infection, trauma, stress, steroid use, after a meal) due to a metabolic redistribution of zinc from the plasma to the tissues. This redistribution confounds the interpretation of low plasma zinc concentrations. Biomarkers of metabolic zinc redistribution are needed to determine whether this redistribution is the cause of a low plasma zinc rather than poor nutrition. Measures of metallothionein or cellular zinc transporters may fulfill that role. PMID:21715515

  8. Blended Working: For Whom It May (Not) Work

    PubMed Central

    Van Yperen, Nico W.; Rietzschel, Eric F.; De Jonge, Kiki M. M.

    2014-01-01

    Similarly to related developments such as blended learning and blended care, blended working is a pervasive and booming trend in modern societies. Blended working combines on-site and off-site working in an optimal way to improve workers’ and organizations’ outcomes. In this paper, we examine the degree to which workers feel that the two defining features of blended working (i.e., time-independent working and location-independent working) enhance their own functioning in their jobs. Blended working, enabled through the continuing advance and improvement of high-tech ICT software, devices, and infrastructure, may be considered beneficial for workers’ perceived effectiveness because it increases their job autonomy. However, because blended working may have downsides as well, it is important to know for whom blended working may (not) work. As hypothesized, in a sample of 348 workers (51.7% women), representing a wide range of occupations and organizations, we found that the perceived personal effectiveness of blended working was contingent upon workers’ psychological need strength. Specifically, the perceived effectiveness of both time-independent working and location-independent working was positively related to individuals’ need for autonomy at work, and negatively related to their need for relatedness and need for structure at work. PMID:25033202

  9. Low-temperature self-limiting atomic layer deposition of wurtzite InN on Si(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haider, Ali, E-mail: ali.haider@bilkent.edu.tr, E-mail: biyikli@unam.bilkent.edu.tr; Kizir, Seda; Biyikli, Necmi, E-mail: ali.haider@bilkent.edu.tr, E-mail: biyikli@unam.bilkent.edu.tr

    2016-04-15

    In this work, we report on self-limiting growth of InN thin films at substrate temperatures as low as 200 °C by hollow-cathode plasma-assisted atomic layer deposition (HCPA-ALD). The precursors used in growth experiments were trimethylindium (TMI) and N{sub 2} plasma. Process parameters including TMI pulse time, N{sub 2} plasma exposure time, purge time, and deposition temperature have been optimized for self-limiting growth of InN with in ALD window. With the increase in exposure time of N{sub 2} plasma from 40 s to 100 s at 200 °C, growth rate showed a significant decrease from 1.60 to 0.64 Å/cycle. At 200 °C, growth ratemore » saturated as 0.64 Å/cycle for TMI dose starting from 0.07 s. Structural, optical, and morphological characterization of InN were carried out in detail. X-ray diffraction measurements revealed the hexagonal wurtzite crystalline structure of the grown InN films. Refractive index of the InN film deposited at 200 °C was found to be 2.66 at 650 nm. 48 nm-thick InN films exhibited relatively smooth surfaces with Rms surface roughness values of 0.98 nm, while the film density was extracted as 6.30 g/cm{sup 3}. X-ray photoelectron spectroscopy (XPS) measurements depicted the peaks of indium, nitrogen, carbon, and oxygen on the film surface and quantitative information revealed that films are nearly stoichiometric with rather low impurity content. In3d and N1s high-resolution scans confirmed the presence of InN with peaks located at 443.5 and 396.8 eV, respectively. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) further confirmed the polycrystalline structure of InN thin films and elemental mapping revealed uniform distribution of indium and nitrogen along the scanned area of the InN film. Spectral absorption measurements exhibited an optical band edge around 1.9 eV. Our findings demonstrate that HCPA-ALD might be a promising technique to grow crystalline wurtzite InN thin films at low substrate

  10. Effect of short-term zinc supplementation on zinc and selenium tissue distribution and serum antioxidant enzymes.

    PubMed

    Skalny, Andrey A; Tinkov, Alexey A; Medvedeva, Yulia S; Alchinova, Irina B; Karganov, Mikhail Y; Skalny, Anatoly V; Nikonorov, Alexandr A

    2015-01-01

    A significant association between Zn and Se homeostasis exists. At the same time, data on the influence of zinc supplementation on selenium distribution in organs and tissues seem to be absent. Therefore, the primary objective of the current study is to investigate the influence of zinc asparaginate supplementation on zinc and selenium distribution and serum superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity in Wistar rats. 36 rats were used in the experiment. The duration of the experiment was 7 and 14 days in the first and second series, respectively. The rats in Group I were used as the control ones. Animals in Groups II and III daily obtained zinc asparaginate (ZnA) in the doses of 5 and 15 mg/kg weight, respectively. Zinc and selenium content in liver, kidneys, heart, muscle, serum and hair was assessed using inductively coupled plasma mass spectrometry. Serum SOD and GPx activity was analysed spectrophotometrically using Randox kits. Intragastric administration of zinc asparaginate significantly increased liver, kidney, and serum zinc content without affecting skeletal and cardiac muscle levels. Zinc supplementation also stimulated selenium retention in the rats' organs. Moreover, a significant positive correlation between zinc and selenium content was observed. Finally, zinc asparaginate treatment has been shown to modulate serum GPx but not SOD activity. The obtained data indicate that zinc-induced increase in GPx activity may be mediated through modulation of selenium status. However, future studies are required to estimate the exact mechanisms of zinc and selenium interplay.

  11. Evaluation and implementation of a soil blending application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honerlah, H.; Sendra, D.; Zafran, A.

    2007-07-01

    With the Nuclear Regulatory Commission (NRC) issuing guidance on the 'Use of Intentional Mixing of Contaminated Soil' (SECY-04-0035) dated 1 March 2004, an opportunity to blend higher level radiologically contaminated soils with that of lower activity from the Colonie Formerly Utilized Sites Remedial Action Program (FUSRAP) site became available. Shaw Environmental, under contract with United States Army Corps of Engineers (USACE) to remediate the Colonie site, was tasked to blend soils of higher radioactivity (> 6.29 Bq/g or 170 pCi/g) concentration with soils of lower radioactivity concentration (< 6.29 Bq/g or 170 pCi/g). A mass balance formula approach was usedmore » to determine the proper soil blending ratio. This blending process enabled soils to meet the Waste Acceptance Criteria (WAC) of a specific disposal facility. All blended waste streams were treated to stabilize lead, removing the hazardous waste code D008, and to meet appropriate Resource Conservation Recovery Act (RCRA) requirements and land disposal restrictions. The initial blending on-site was conducted with a 2,485 m{sup 3} (3,250 yd{sup 3}) stockpile of higher concentration soils being blended with lower concentration soils. The lower concentration soils were excavated, staged and sampled into 191 m{sup 3} (250 yd{sup 3}) stockpiles. The ratio for this blending was based on the average radiological concentration of the large stockpile being blended and average concentrations of the individual 191 m{sup 3} (250 yd{sup 3}) piles of lower radiological concentration using a mass balance approach. Once a new 191 m{sup 3} (250 yd{sup 3}) stockpile was created with blended soils it was sampled to insure it met the WAC of Facility A. After the large stockpile had been successfully blended and additional in-situ soils of higher concentration were excavated, they were blended using a similar mass balance approach. For the newly excavated soils, each of the individual piles radiological concentrations

  12. Zinc oxide overdose

    MedlinePlus

    Zinc oxide is an ingredient in many products. Some of these are certain creams and ointments used ... prevent or treat minor skin burns and irritation. Zinc oxide overdose occurs when someone eats one of ...

  13. Using Blended Teaching to Teach Blended Learning: Lessons Learned from Pre-Service Teachers in an Instructional Methods Course

    ERIC Educational Resources Information Center

    Shand, Kristen; Farrelly, Susan Glassett

    2017-01-01

    In this study, we explore the design and delivery of a blended social studies teaching methods course to examine the elements of the blended design that pre-service teachers found most constructive. In focus groups at the completion of the course, pre-service teachers were asked to reflect on their experience in the blended course, identify the…

  14. Average current is better than peak current as therapeutic dosage for biphasic waveforms in a ventricular fibrillation pig model of cardiac arrest.

    PubMed

    Chen, Bihua; Yu, Tao; Ristagno, Giuseppe; Quan, Weilun; Li, Yongqin

    2014-10-01

    Defibrillation current has been shown to be a clinically more relevant dosing unit than energy. However, the effects of average and peak current in determining shock outcome are still undetermined. The aim of this study was to investigate the relationship between average current, peak current and defibrillation success when different biphasic waveforms were employed. Ventricular fibrillation (VF) was electrically induced in 22 domestic male pigs. Animals were then randomized to receive defibrillation using one of two different biphasic waveforms. A grouped up-and-down defibrillation threshold-testing protocol was used to maintain the average success rate of 50% in the neighborhood. In 14 animals (Study A), defibrillations were accomplished with either biphasic truncated exponential (BTE) or rectilinear biphasic waveforms. In eight animals (Study B), shocks were delivered using two BTE waveforms that had identical peak current but different waveform durations. Both average and peak currents were associated with defibrillation success when BTE and rectilinear waveforms were investigated. However, when pathway impedance was less than 90Ω for the BTE waveform, bivariate correlation coefficient was 0.36 (p=0.001) for the average current, but only 0.21 (p=0.06) for the peak current in Study A. In Study B, a high defibrillation success (67.9% vs. 38.8%, p<0.001) was observed when the waveform delivered more average current (14.9±2.1A vs. 13.5±1.7A, p<0.001) while keeping the peak current unchanged. In this porcine model of VF, average current was better than peak current to be an adequate parameter to describe the therapeutic dosage when biphasic defibrillation waveforms were used. The institutional protocol number: P0805. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Selective Acidic Leaching of Spent Zinc-Carbon Batteries Followed by Zinc Electrowinning

    NASA Astrophysics Data System (ADS)

    Shalchian, Hossein; Rafsanjani-Abbasi, Ali; Vahdati-Khaki, Jalil; Babakhani, Abolfazl

    2015-02-01

    In this work, a selective acidic leaching procedure was employed for recycling zinc from spent zinc-carbon batteries. Leaching experiments were carried out in order to maximize zinc recovery and minimize manganese recovery in diluted sulfuric acid media. Response surface methodology and analysis of variance were employed for experimental design, data analysis, and leaching optimization. The experimental design has 28 experiments that include 24 main runs and four replicate in center point. The optimal conditions obtained from the selective acidic leaching experiments, were sulfuric acid concentration of 1 pct v/v, leaching temperature of 343 K (70 °C), pulp density of 8 pct w/v, and stirring speed of 300 rpm. The results show that the zinc and manganese recoveries after staged selective leaching are about 92 and 15 pct, respectively. Finally, metallic zinc with purity of 99.9 pct and electrolytic manganese dioxide were obtained by electrowinning.

  16. Blended learning within an undergraduate exercise physiology laboratory.

    PubMed

    Elmer, Steven J; Carter, Kathryn R; Armga, Austin J; Carter, Jason R

    2016-03-01

    In physiological education, blended course formats (integration of face-to-face and online instruction) can facilitate increased student learning, performance, and satisfaction in classroom settings. There is limited evidence on the effectiveness of using blending course formats in laboratory settings. We evaluated the impact of blended learning on student performance and perceptions in an undergraduate exercise physiology laboratory. Using a randomized, crossover design, four laboratory topics were delivered in either a blended or traditional format. For blended laboratories, content was offloaded to self-paced video demonstrations (∼15 min). Laboratory section 1 (n = 16) completed blended laboratories for 1) neuromuscular power and 2) blood lactate, whereas section 2 (n = 17) completed blended laboratories for 1) maximal O2 consumption and 2) muscle electromyography. Both sections completed the same assignments (scored in a blinded manner using a standardized rubric) and practicum exams (evaluated by two independent investigators). Pre- and postcourse surveys were used to assess student perceptions. Most students (∼79%) watched videos for both blended laboratories. Assignment scores did not differ between blended and traditional laboratories (P = 0.62) or between sections (P = 0.91). Practicum scores did not differ between sections (both P > 0.05). At the end of the course, students' perceived value of the blended format increased (P < 0.01) and a greater percentage of students agreed that learning key foundational content through video demonstrations before class greatly enhanced their learning of course material compared with a preassigned reading (94% vs. 78%, P < 0.01). Blended exercise physiology laboratories provided an alternative method for delivering content that was favorably perceived by students and did not compromise student performance. Copyright © 2016 The American Physiological Society.

  17. Bioavailability of Zinc in Wistar Rats Fed with Rice Fortified with Zinc Oxide

    PubMed Central

    Della Lucia, Ceres Mattos; Santos, Laura Luiza Menezes; Rodrigues, Kellen Cristina da Cruz; Rodrigues, Vivian Cristina da Cruz; Martino, Hércia Stampini Duarte; Pinheiro Sant’Ana, Helena Maria

    2014-01-01

    The study of zinc bioavailability in foods is important because this mineral intake does not meet the recommended doses for some population groups. Also, the presence of dietary factors that reduce zinc absorption contributes to its deficiency. Rice fortified with micronutrients (Ultra Rice®) is a viable alternative for fortification since this cereal is already inserted into the population habit. The aim of this study was to evaluate the bioavailability of zinc (Zn) in rice fortified with zinc oxide. During 42 days, rats were divided into four groups and fed with diets containing two different sources of Zn (test diet: UR® fortified with zinc oxide, or control diet: zinc carbonate (ZnCO3)), supplying 50% or 100%, respectively, of the recommendations of this mineral for animals. Weight gain, food intake, feed efficiency ratio, weight, thickness and length of femur; retention of zinc, calcium (Ca) and magnesium (Mg) in the femur and the concentrations of Zn in femur, plasma and erythrocytes were evaluated. Control diet showed higher weight gain, feed efficiency ratio, retention of Zn and Zn concentration in the femur (p < 0.05). However, no differences were observed (p > 0.05) for dietary intake, length and thickness of the femur, erythrocyte and plasmatic Zn between groups. Although rice fortified with zinc oxide showed a lower bioavailability compared to ZnCO3, this food can be a viable alternative to be used as a vehicle for fortification. PMID:24932657

  18. Zinc finger proteins in cancer progression.

    PubMed

    Jen, Jayu; Wang, Yi-Ching

    2016-07-13

    Zinc finger proteins are the largest transcription factor family in human genome. The diverse combinations and functions of zinc finger motifs make zinc finger proteins versatile in biological processes, including development, differentiation, metabolism and autophagy. Over the last few decades, increasing evidence reveals the potential roles of zinc finger proteins in cancer progression. However, the underlying mechanisms of zinc finger proteins in cancer progression vary in different cancer types and even in the same cancer type under different types of stress. Here, we discuss general mechanisms of zinc finger proteins in transcription regulation and summarize recent studies on zinc finger proteins in cancer progression. In this review, we also emphasize the importance of further investigations in elucidating the underlying mechanisms of zinc finger proteins in cancer progression.

  19. Assessment of Fluoride Concentration of Soil and Vegetables in Vicinity of Zinc Smelter, Debari, Udaipur, Rajasthan.

    PubMed

    Bhat, Nagesh; Jain, Sandeep; Asawa, Kailash; Tak, Mridula; Shinde, Kushal; Singh, Anukriti; Gandhi, Neha; Gupta, Vivek Vardhan

    2015-10-01

    As of late, natural contamination has stimulated as a reaction of mechanical and other human exercises. In India, with the expanding industrialization, numerous unsafe substances are utilized or are discharged amid generation as cleans, exhaust, vapours and gasses. These substances at last are blended in the earth and causes health hazards. To determine concentration of fluoride in soils and vegetables grown in the vicinity of Zinc Smelter, Debari, Udaipur, Rajasthan. Samples of vegetables and soil were collected from areas situated at 0, 1, 2, 5, and 10 km distance from the zinc smelter, Debari. Three samples of vegetables (i.e. Cabbage, Onion and Tomato) and 3 samples of soil {one sample from the upper layer of soil (i.e. 0 to 20 cm) and one from the deep layer (i.e. 20 - 40 cm)} at each distance were collected. The soil and vegetable samples were sealed in clean polythene bags and transported to the laboratory for analysis. One sample each of water and fertilizer from each distance were also collected. The mean fluoride concentration in the vegetables grown varied between 0.36 ± 0.69 to 0.71 ± 0.90 ppm. The fluoride concentration in fertilizer and water sample from various distances was found to be in the range of 1.4 - 1.5 ppm and 1.8 - 1.9 ppm respectively. The fluoride content of soil and vegetables was found to be higher in places near to the zinc smelter.

  20. Biphasic regulation of the transcription factor ABORTED MICROSPORES (AMS) is essential for tapetum and pollen development in Arabidopsis.

    PubMed

    Ferguson, Alison C; Pearce, Simon; Band, Leah R; Yang, Caiyun; Ferjentsikova, Ivana; King, John; Yuan, Zheng; Zhang, Dabing; Wilson, Zoe A

    2017-01-01

    Viable pollen is essential for plant reproduction and crop yield. Its production requires coordinated expression at specific stages during anther development, involving early meiosis-associated events and late pollen wall formation. The ABORTED MICROSPORES (AMS) transcription factor is a master regulator of sporopollenin biosynthesis, secretion and pollen wall formation in Arabidopsis. Here we show that it has complex regulation and additional essential roles earlier in pollen formation. An inducible-AMS reporter was created for functional rescue, protein expression pattern analysis, and to distinguish between direct and indirect targets. Mathematical modelling was used to create regulatory networks based on wild-type RNA and protein expression. Dual activity of AMS was defined by biphasic protein expression in anther tapetal cells, with an initial peak around pollen meiosis and then later during pollen wall development. Direct AMS-regulated targets exhibit temporal regulation, indicating that additional factors are associated with their regulation. We demonstrate that AMS biphasic expression is essential for pollen development, and defines distinct functional activities during early and late pollen development. Mathematical modelling suggests that AMS may competitively form a protein complex with other tapetum-expressed transcription factors, and that biphasic regulation is due to repression of upstream regulators and promotion of AMS protein degradation. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.