Sample records for zinc-bromine battery design

  1. Design of bipolar, flowing-electrolyte zinc-bromine electric-vehicle battery systems

    NASA Astrophysics Data System (ADS)

    Malachesky, P. A.; Bellows, R. J.; Einstein, H. E.; Grimes, P. G.; Newby, K.; Young, A.

    1983-01-01

    The integration of bipolar, flowing electrolyte zinc-bromine technology into a viable electric vehicle battery system requires careful analysis of the requirements placed on the battery system by the EV power train. In addition to the basic requirement of an appropriate battery voltage and power density, overall battery system energy efficiency must also be considered and parasitic losses from auxiliaries such as pumps and shunt current protection minimized. An analysis of the influence of these various factors on zinc-bromine EV battery system design has been carried out for two types of EV propulsion systems. The first of these is a nominal 100V dc system, while the second is a high voltage (200V dc) system as might be used with an advanced design ac propulsion system. Battery performance was calculated using an experimentally determined relationship which expresses battery voltage as a function of current density and state-of-charge.

  2. Preparation of ionic membranes for zinc/bromine storage batteries

    NASA Astrophysics Data System (ADS)

    Assink, R. A.; Arnold, C., Jr.

    Zinc/bromine flow batteries are being developed for vehicular and utility load leveling applications. During charge, an aqueous zinc bromide salt is electrolyzed to zinc metal and molecular bromine. During discharge, the zinc and bromine react to again form the zinc bromide salt. One serious disadvantage of the microporous separators presently used in the zinc/bromine battery is that modest amounts of bromine and negatively charged bromine moieties permeate through these materials and react with the zinc anode. This results in partial self-discharge of the battery and low coulombic efficiencies. Our approach to this problem is to impregnate the microporous separators with a soluble cationic polyelectrolyte. In laboratory screening tests a sulfonated polysulfone resin and fully fluorinated sulfonic acid polymer substantially reduced bromine permeation with only modest increases in the area resistance.

  3. Improved electrolyte for zinc-bromine flow batteries

    NASA Astrophysics Data System (ADS)

    Wu, M. C.; Zhao, T. S.; Wei, L.; Jiang, H. R.; Zhang, R. H.

    2018-04-01

    Conventional zinc bromide electrolytes offer low ionic conductivity and often trigger severe zinc dendrite growth in zinc-bromine flow batteries. Here we report an improved electrolyte modified with methanesulfonic acid, which not only improves the electrolyte conductivity but also ameliorates zinc dendrite. Experimental results also reveal that the kinetics and reversibility of Zn2+/Zn and Br2/Br- are improved in this modified electrolyte. Moreover, the battery's internal resistance is significantly reduced from 4.9 to 2.0 Ω cm2 after adding 1 M methanesulfonic acid, thus leading to an improved energy efficiency from 64% to 75% at a current density of 40 mA cm-2. More impressively, the battery is capable of delivering an energy efficiency of about 78% at a current density of as high as 80 mA cm-2 when the electrode is replaced by a thermally treated one. Additionally, zinc dendrite growth is found to be effectively suppressed in methanesulfonic acid supported media, which, as a result, enables the battery to be operated for 50 cycles without degradation, whereas the one without methanesulfonic acid suffers from significant decay after only 40 cycles, primarily due to severe zinc dendrite growth. These superior results indicate methanesulfonic acid is a promising supporting electrolyte for zinc-bromine flow batteries.

  4. Method and apparatus for maintaining the pH in zinc-bromine battery systems

    DOEpatents

    Grimes, Patrick G.

    1985-09-10

    A method and apparatus for maintaining the pH level in a zinc-bromine battery features reacting decomposition hydrogen with bromine in the presence of a catalyst. The catalyst encourages the formation of hydrogen and bromine ions. The decomposition hydrogen is therefore consumed, alloying the pH of the system to remain substantially at a given value.

  5. An antisymmetric cell structure for high-performance zinc bromine flow battery

    NASA Astrophysics Data System (ADS)

    Kim, Yongbeom; Jeon, Joonhyeon

    2017-12-01

    Zinc-bromine flow batteries (ZBBs) remain a problem of designing a cell with high coulombic efficiency and stability. This problem is caused intrinsically by different phase transition in each side of the half-cells during charge-discharge process. This paper describes a ZBB with an antisymmetric cell structure, which uses anode and cathode with different surface morphologies, for high-discharge capacity and reliability. The structure of the antisymmetric ZBB cell contains a carbon-surface electrode and a carbon-volume electrode in zinc and bromine half cells, respectively. To demonstrate the effectiveness of this proposed ZBB cell structure, Cyclic Voltammetry measurement is performed on a graphite foil and a carbon felt which are used as the surface and electrodes. Charge and discharge cyclic operations are also carried out with symmetric and antisymmetric ZBB cells combined with the two electrode types. Experimental results show that the arrangement of antisymmetric cell structure in ZBB provides a solution to the high performance and durability.

  6. Critical rate of electrolyte circulation for preventing zinc dendrite formation in a zinc-bromine redox flow battery

    NASA Astrophysics Data System (ADS)

    Yang, Hyeon Sun; Park, Jong Ho; Ra, Ho Won; Jin, Chang-Soo; Yang, Jung Hoon

    2016-09-01

    In a zinc-bromine redox flow battery, a nonaqueous and dense polybromide phase formed because of bromide oxidation in the positive electrolyte during charging. This formation led to complicated two-phase flow on the electrode surface. The polybromide and aqueous phases led to different kinetics of the Br/Br- redox reaction; poor mixing of the two phases caused uneven redox kinetics on the electrode surface. As the Br/Br- redox reaction was coupled with the zinc deposition reaction, the uneven redox reaction on the positive electrode was accompanied by nonuniform zinc deposition and zinc dendrite formation, which degraded battery stability. A single-flow cell was operated at varying electrolyte circulation rates and current densities. Zinc dendrite formation was observed after cell disassembly following charge-discharge testing. In addition, the flow behavior in the positive compartment was observed by using a transparent version of the cell. At low rate of electrolyte circulation, the polybromide phase clearly separated from the aqueous phase and accumulated at the bottom of the flow frame. In the corresponding area on the negative electrode, a large amount of zinc dendrites was observed after charge-discharge testing. Therefore, a minimum circulation rate should be considered to avoid poor mixing of the positive electrolyte.

  7. Review of storage battery system cost estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, D.R.; Russell, J.A.

    1986-04-01

    Cost analyses for zinc bromine, sodium sulfur, and lead acid batteries were reviewed. Zinc bromine and sodium sulfur batteries were selected because of their advanced design nature and the high level of interest in these two technologies. Lead acid batteries were included to establish a baseline representative of a more mature technology.

  8. Battery resource assessment. Subtask 2.5: Battery manufacturing capability recycling of battery materials

    NASA Astrophysics Data System (ADS)

    Pemsler, P.

    1981-02-01

    Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: nickel/zinc, nickel/iron, zinc/chlorine, zinc/bromine, sodium/sulfur, and lithium-aluminum/iron sulfide. For each battery system, one or more processes were developed which would permit recycling of the major or active materials. Each recycle process was designed to produce a product material which can be used directly as a raw material by the battery manufacturer. Metal recoverabilities are in the range of 93 to 95% for all processes. In each case, capital and operating costs were developed for a recycling plant which processes 100,000 electric vehicle batteries per year.

  9. A Pulsed Power System Design Using Lithium-ion Batteries and One Charger per Battery

    DTIC Science & Technology

    2009-12-01

    zinc-bromine and vanadium redox batteries • NAS: high-temperature sodium batteries • EDLC: Electric Double-Layer Capacitors • SMES...terminology used in this figure. • Conventional: lead-acid, nickel-cadmium, and nickel-metal hydride batteries . • Lithium: lithium ion batteries . • Flow ...than the second stage due to less current flowing to the battery [5], [7], [8], [9]. Figure 4 shows typical current, voltage, and capacity curves

  10. Zinc electrode and rechargeable zinc-air battery

    DOEpatents

    Ross, Jr., Philip N.

    1989-01-01

    An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.

  11. Cage-Like Porous Carbon with Superhigh Activity and Br2 -Complex-Entrapping Capability for Bromine-Based Flow Batteries.

    PubMed

    Wang, Chenhui; Lai, Qinzhi; Xu, Pengcheng; Zheng, Daoyuan; Li, Xianfeng; Zhang, Huamin

    2017-06-01

    Bromine-based flow batteries receive wide attention in large-scale energy storage because of their attractive features, such as high energy density and low cost. However, the Br 2 diffusion and relatively low activity of Br 2 /Br - hinder their further application. Herein, a cage-like porous carbon (CPC) with specific pore structure combining superhigh activity and Br 2 -complex-entrapping capability is designed and fabricated. According to the results of density functional theory (DFT) calculation, the pore size of the CPC (1.1 nm) is well designed between the size of Br - (4.83 Å), MEP + (9.25 Å), and Br 2 complex (MEPBr 3 12.40 Å), wherein Br - is oxidized to Br 2 , which forms a Br 2 complex with the complexing agent immediately and is then entrapped in the cage via pore size exclusion. In addition, the active sites produced during the carbon dioxide activation process dramatically accelerate the reaction rate of Br 2 /Br - . In this way, combining a high Br 2 -entrapping-capability and high specific surface areas, the CPC shows very impressive performance. The zinc bromine flow battery assembled with the prepared CPC shows a Coulombic efficiency of 98% and an energy efficiency of 81% at the current density of 80 mA cm -2 , which are among the highest values ever reported. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Long Life, High Energy Silver-Zinc Batteries

    NASA Technical Reports Server (NTRS)

    Kainthla, Ramesh; Coffey, Brendan

    2003-01-01

    This viewgraph presentation includes: 1) an introduction to RBC Technologies; 2) Rechargeable Zinc Alkaline (RZA(tm)) Systems which include MnO2/Zn, Ni/Zn, Ag/Zn, and Zn/Air; and 3) RZA Silver/Zinc Battery Developments. Conclusions include the following: 1)Issues with long term wet life and cycle life of the silver/zinc battery system are being overcome through the use of new anode formulations and separator designs; 2) Performance may exceed 200 cycles to 80% of initial capacity and ultimate wet-life of > 36 months; and 3) Rechargeable silver/zinc batteries available in prismatic and cylindrical formats may provide a high energy, high power alternative to lithium-ion in military/aerospace applications.

  13. A Dual-Stimuli-Responsive Sodium-Bromine Battery with Ultrahigh Energy Density.

    PubMed

    Wang, Faxing; Yang, Hongliu; Zhang, Jian; Zhang, Panpan; Wang, Gang; Zhuang, Xiaodong; Cuniberti, Gianaurelio; Feng, Xinliang

    2018-06-01

    Stimuli-responsive energy storage devices have emerged for the fast-growing popularity of intelligent electronics. However, all previously reported stimuli-responsive energy storage devices have rather low energy densities (<250 Wh kg -1 ) and single stimuli-response, which seriously limit their application scopes in intelligent electronics. Herein, a dual-stimuli-responsive sodium-bromine (Na//Br 2 ) battery featuring ultrahigh energy density, electrochromic effect, and fast thermal response is demonstrated. Remarkably, the fabricated Na//Br 2 battery exhibits a large operating voltage of 3.3 V and an energy density up to 760 Wh kg -1 , which outperforms those for the state-of-the-art stimuli-responsive electrochemical energy storage devices. This work offers a promising approach for designing multi-stimuli-responsive and high-energy rechargeable batteries without sacrificing the electrochemical performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Improved zinc electrode and rechargeable zinc-air battery

    DOEpatents

    Ross, P.N. Jr.

    1988-06-21

    The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

  15. Recent advances in zinc-air batteries.

    PubMed

    Li, Yanguang; Dai, Hongjie

    2014-08-07

    Zinc-air is a century-old battery technology but has attracted revived interest recently. With larger storage capacity at a fraction of the cost compared to lithium-ion, zinc-air batteries clearly represent one of the most viable future options to powering electric vehicles. However, some technical problems associated with them have yet to be resolved. In this review, we present the fundamentals, challenges and latest exciting advances related to zinc-air research. Detailed discussion will be organized around the individual components of the system - from zinc electrodes, electrolytes, and separators to air electrodes and oxygen electrocatalysts in sequential order for both primary and electrically/mechanically rechargeable types. The detrimental effect of CO2 on battery performance is also emphasized, and possible solutions summarized. Finally, other metal-air batteries are briefly overviewed and compared in favor of zinc-air.

  16. Primary battery design and safety guidelines handbook

    NASA Technical Reports Server (NTRS)

    Bragg, Bobby J.; Casey, John E.; Trout, J. Barry

    1994-01-01

    This handbook provides engineers and safety personnel with guidelines for the safe design or selection and use of primary batteries in spaceflight programs. Types of primary batteries described are silver oxide zinc alkaline, carbon-zinc, zinc-air alkaline, manganese dioxide-zionc alkaline, mercuric oxide-zinc alkaline, and lithium anode cells. Along with typical applications, the discussions of the individual battery types include electrochemistry, construction, capacities and configurations, and appropriate safety measures. A chapter on general battery safety covers hazard sources and controls applicable to all battery types. Guidelines are given for qualification and acceptance testing that should precede space applications. Permissible failure levels for NASA applications are discussed.

  17. High performance zinc anode for battery applications

    NASA Technical Reports Server (NTRS)

    Casey, John E., Jr. (Inventor)

    1998-01-01

    An improved zinc anode for use in a high density rechargeable alkaline battery is disclosed. A process for making the zinc electrode comprises electrolytic loading of the zinc active material from a slightly acidic zinc nitrate solution into a substrate of nickel, copper or silver. The substrate comprises a sintered plaque having very fine pores, a high surface area, and 80-85 percent total initial porosity. The residual porosity after zinc loading is approximately 25-30%. The electrode of the present invention exhibits reduced zinc mobility, shape change and distortion, and demonstrates reduced dendrite buildup cycling of the battery. The disclosed battery is useful for applications requiring high energy density and multiple charge capability.

  18. Selective Acidic Leaching of Spent Zinc-Carbon Batteries Followed by Zinc Electrowinning

    NASA Astrophysics Data System (ADS)

    Shalchian, Hossein; Rafsanjani-Abbasi, Ali; Vahdati-Khaki, Jalil; Babakhani, Abolfazl

    2015-02-01

    In this work, a selective acidic leaching procedure was employed for recycling zinc from spent zinc-carbon batteries. Leaching experiments were carried out in order to maximize zinc recovery and minimize manganese recovery in diluted sulfuric acid media. Response surface methodology and analysis of variance were employed for experimental design, data analysis, and leaching optimization. The experimental design has 28 experiments that include 24 main runs and four replicate in center point. The optimal conditions obtained from the selective acidic leaching experiments, were sulfuric acid concentration of 1 pct v/v, leaching temperature of 343 K (70 °C), pulp density of 8 pct w/v, and stirring speed of 300 rpm. The results show that the zinc and manganese recoveries after staged selective leaching are about 92 and 15 pct, respectively. Finally, metallic zinc with purity of 99.9 pct and electrolytic manganese dioxide were obtained by electrowinning.

  19. Zinc-chloride battery technology - Status 1983

    NASA Astrophysics Data System (ADS)

    Rowan, J. W.; Carr, P.; Warde, C. J.; Henriksen, G. L.

    Zinc-chloride batteries are presently under development at Energy Development Associates (EDA) for load-leveling, electric-vehicle, and specialty applications. A 500-kWh battery system has been built at Detroit Edison's Charlotte substation near downtown Detroit. Following shakedown testing, this system will be installed at the Battery Energy Storage Test (BEST) Facility in Hillsborough, New Jersey, in July 1983. Data is presented also for a prototype 50-kWh battery which has successfully operated through 150 cycles. EDA has built and tested three 4-passenger automobiles. The maximum range achieved on a single charge was 200 miles at 40 mph. Recently, the electric-vehicle battery program at EDA has focused on commercial vehicles. Two vans, each powered with a 45-kWh zinc-chloride battery, have been built and track tested. These vehicles, which carry a payload of 1,000 pounds, have a top speed of 55 mph and an operational range in excess of 80 miles. In the specialty battery area, two 6-kWh 12-V reserve batteries have been built and tested. This type of battery offers the prospect of long shelf life and an energy density in excess of 100 Wh/lb.

  20. Morphology control of zinc regeneration for zinc-air fuel cell and battery

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Pei, Pucheng; Ma, Ze; Xu, Huachi; Li, Pengcheng; Wang, Xizhong

    2014-12-01

    Morphology control is crucial both for zinc-air batteries and for zinc-air fuel cells during zinc regeneration. Zinc dendrite should be avoided in zinc-air batteries and zinc pellets are yearned to be formed for zinc-air fuel cells. This paper is mainly to analyze the mechanism of shape change and to control the zinc morphology during charge. A numerical three-dimensional model for zinc regeneration is established with COMSOL software on the basis of ionic transport theory and electrode reaction electrochemistry, and some experiments of zinc regeneration are carried out. The deposition process is qualitatively analyzed by the kinetics Monte Carlo method to study the morphological change from the electrocrystallization point of view. Morphological evolution of deposited zinc under different conditions of direct currents and pulse currents is also investigated by simulation. The simulation shows that parametric variables of the flowing electrolyte, the surface roughness and the structure of the electrode, the charging current and mode affect morphological evolution. The uniform morphology of deposited zinc is attained at low current, pulsating current or hydrodynamic electrolyte, and granular morphology is obtained by means of an electrode of discrete columnar structure in combination with high current and flowing electrolyte.

  1. A novel rechargeable zinc-air battery with molten salt electrolyte

    NASA Astrophysics Data System (ADS)

    Liu, Shuzhi; Han, Wei; Cui, Baochen; Liu, Xianjun; Zhao, Fulin; Stuart, Jessica; Licht, Stuart

    2017-02-01

    Zinc-air batteries have been proposed for EV applications and large-scale electricity storage such as wind and solar power. Although zinc-air batteries are very promising, there are numerous technological barriers to overcome. We demonstrate for the first time, a new rechargeable zinc-air battery that utilizes a molten Li0.87Na0.63K0.50CO3 eutectic electrolyte with added NaOH. Cyclic voltammetry reveals that a reversible deposition/dissolution of zinc occurs in the molten Li0.87Na0.63K0.50CO3 eutectic. At 550 °C, this zinc-air battery performs with a coulombic efficiency of 96.9% over 110 cycles, having an average charging potential of ∼1.43 V and discharge potential of ∼1.04 V. The zinc-air battery uses cost effective steel and nickel electrodes without the need for any precious metal catalysts. Moreover, the molten salt electrolyte offers advantages over aqueous electrolytes, avoiding the common aqueous alkaline electrolyte issues of hydrogen evolution, Zn dendrite formation, "drying out", and carbonate precipitation.

  2. Zinc composite anode for batteries with solid electrolyte

    NASA Astrophysics Data System (ADS)

    Tedjar, F.; Melki, T.; Zerroual, L.

    A new negative composite anode for batteries with a solid electrolyte is studied. Using a complex of zinc ammonium chloride mixed with zinc metal powder, the advantage of the Zn/Zn 2+ electrode ( e = -760 mV) is kept while the energy density and the shelf-life of the battery are increased.

  3. Recovery of zinc and manganese from alkaline and zinc-carbon spent batteries

    NASA Astrophysics Data System (ADS)

    De Michelis, I.; Ferella, F.; Karakaya, E.; Beolchini, F.; Vegliò, F.

    This paper concerns the recovery of zinc and manganese from alkaline and zinc-carbon spent batteries. The metals were dissolved by a reductive-acid leaching with sulphuric acid in the presence of oxalic acid as reductant. Leaching tests were realised according to a full factorial design, then simple regression equations for Mn, Zn and Fe extraction were determined from the experimental data as a function of pulp density, sulphuric acid concentration, temperature and oxalic acid concentration. The main effects and interactions were investigated by the analysis of variance (ANOVA). This analysis evidenced the best operating conditions of the reductive acid leaching: 70% of manganese and 100% of zinc were extracted after 5 h, at 80 °C with 20% of pulp density, 1.8 M sulphuric acid concentration and 59.4 g L -1 of oxalic acid. Both manganese and zinc extraction yields higher than 96% were obtained by using two sequential leaching steps.

  4. Proper battery system design for GAS experiments

    NASA Astrophysics Data System (ADS)

    Calogero, Stephen A.

    1992-10-01

    The purpose of this paper is to help the GAS experimenter to design a battery system that meets mission success requirements while at the same time reducing the hazards associated with the battery system. Lead-acid, silver-zinc and alkaline chemistry batteries will be discussed. Lithium batteries will be briefly discussed with emphasis on back-up power supply capabilities. The hazards associated with different battery configurations will be discussed along with the controls necessary to make the battery system two-fault tolerant.

  5. Proper battery system design for GAS experiments

    NASA Technical Reports Server (NTRS)

    Calogero, Stephen A.

    1992-01-01

    The purpose of this paper is to help the GAS experimenter to design a battery system that meets mission success requirements while at the same time reducing the hazards associated with the battery system. Lead-acid, silver-zinc and alkaline chemistry batteries will be discussed. Lithium batteries will be briefly discussed with emphasis on back-up power supply capabilities. The hazards associated with different battery configurations will be discussed along with the controls necessary to make the battery system two-fault tolerant.

  6. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion

    NASA Astrophysics Data System (ADS)

    1980-06-01

    The feasibility of the nickel zinc battery for electric vehicle propulsion is discussed. The program is divided into seven distinct but highly interactive tasks collectively aimed at the development and commercialization of nickel zinc technology. These basic technical tasks are separator development, electrode development, product design and analysis, cell/module battery testing, process development, pilot manufacturing, and thermal manufacturing, and thermal management. Significant progress has been made in the understanding of separator failure mechanisms, and a generic category of materials has been specified for the 300+ deep discharge applications. Shape change has been reduced significantly. Progress in the area of thermal management was significant, with the development of a model that accurately represents heat generation and rejection rates during battery operation.

  7. Low-Earth-Orbit (LEO) Life Cycle Evaluation of Nickel-Zinc Batteries

    NASA Technical Reports Server (NTRS)

    Coates, D.; Ferreira, E.; Nyce, M.; Charkey, A.

    1997-01-01

    The conclusion of the Low-Earth-Orbit (LEO) life cycle evaluation of nickel-zinc batteries are: that composite nickel electrode provide excellent performance at a reduced weight and lower cost; calcium / zinc electrode minimizes shape change; unioptimized cell designs yield 60 Wh/kg; nickel-zinc delivers 600 cycles at 80% DOD; long cycle life obtainable at low DOD; high rate capability power density; long-term failure mechanism is stack dry; and anomalous overcharge (1120%) greatly affected cell performance but did not induce failure and was recoverable.

  8. Use of PIXE to measure serum copper, zinc, selenium, and bromine in patients with hematologic malignancies

    NASA Astrophysics Data System (ADS)

    Beguin, Y.; Bours, V.; Delbrouck, J.-M.; Robaye, G.; Roelandts, I.; Fillet, G.; Weber, G.

    1990-04-01

    The use of PIXE allowed for a simultaneous determination of serum copper (Cu), zinc (Zn), selenium (Se) and bromine (Br), in various groups of patients with hematologic malignancies. In 78 patients with acute nonlymphocytic leukemia, it was observed that (1) serum Se was significantly lower than in healthy controls and correlated inversely with the tumor burden; (2) serum bromine was normal at diagnosis but dropped dramatically after intensive chemotherapy, before recovering progressively over a period of months; and (3) pretreatment serum copper and zinc were significant prognostic factors of the chance to achieve a complete remission. In 50 patients with chronic lymphocytic leukemia, it was observed that (1) serum Cu and Cu/Zn ratio were useful indices of the disease activity, which were independent of a nonspecific acute phase reaction; and (2) Zn deficiency could contribute to immune dysfunction. In 119 patients with myeloproliferative disorders or myelodysplasic syndromes, serum Cu and Zn levels were mostly dependent on nonspecific factors, such as age and inflammation.

  9. Continuous fabrication of a MnS/Co nanofibrous air electrode for wide integration of rechargeable zinc-air batteries.

    PubMed

    Wang, Yang; Fu, Jing; Zhang, Yining; Li, Matthew; Hassan, Fathy Mohamed; Li, Guang; Chen, Zhongwei

    2017-10-26

    Exploring highly efficient bifunctional electrocatalysts toward the oxygen reduction and evolution reactions is essential for the realization of high-performance rechargeable zinc-air batteries. Herein, a novel nanofibrous bifunctional electrocatalyst film, consisting of metallic manganese sulfide and cobalt encapsulated by nitrogen-doped carbon nanofibers (CMS/NCNF), is prepared through a continuous electrospinning method followed by carbonization treatment. The CMS/NCNF bifunctional catalyst shows both comparable ORR and OER performances to those of commercial precious metal-based catalysts. Furthermore, the free-standing CMS/NCNF fibrous thin film is directly used as the air electrode in a solid-state zinc-air battery, which exhibits superior flexibility while retaining stable battery performance at different bending angles. This study provides a versatile design route for the rational design of free-standing bifunctional catalysts for direct use as the air electrode in rechargeable zinc-air batteries.

  10. Zinc halogen battery electrolyte composition with lead additive

    DOEpatents

    Henriksen, Gary L.

    1981-01-01

    This disclosure relates to a zinc halogen battery electrolyte composition containing an additive providing improved zinc-on-zinc recyclability. The improved electrolyte composition involves the use of a lead additive to inhibit undesirable irregular plating and reduce nodular or dendritic growth on the electrode surface. The lead-containing electrolyte composition of the present invention appears to influence not only the morphology of the base plate zinc, but also the morphology of the zinc-on-zinc replate. In addition, such lead-containing electrolyte compositions appear to reduce hydrogen formation.

  11. Rated Temperature Of Silver/Zinc Batteries Is Increased

    NASA Technical Reports Server (NTRS)

    Hill, Derek P.

    1992-01-01

    Report shows silver-zinc batteries of specific commercial type (28 V, 20 A*h, Eagle-Picher Battery MAR 4546-5) operated safely at higher temperature than previously thought possible. Batteries operated to 239 degrees F (115 degrees C) without going into sustained thermal runaway. Operated 49 degrees F (27 degrees C) above previous maximum.

  12. Highly Reversible Zinc-ion Intercalation with Chevrel Phase Mo6S8 Nanocubes and Applications for Advanced Zinc-ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yingwen; Luo, Langli; Zhong, Li

    We demonstrate the application of the Chevrel phase Mo6S8 nanocubes as the anode material for rechargeable Zn-ion batteries. Mo6S8 can host Zn2+ ions reversibility both in aqueous and nonaqueous electrolytes with specific capacities around 90 mAh/g and exhibited remarkable intercalation kinetics as well as stability. Furthermore, we assembled full cells by integrating Mo6S8 anode with zinc-polyiodide (I-/I3-) based catholytes, and demonstrated that such fuel cells was also able to deliver outstanding rate performance and cyclic stability. This first demonstration of zinc intercalating anode could inspire the design of advanced Zn ion batteries.

  13. Secondary battery containing zinc electrode with modified separator and method

    DOEpatents

    Poa, David S.; Yao, Neng-Ping

    1985-01-01

    A battery containing a zinc electrode with a porous separator between the anode and cathode. The separator is a microporous substrate carrying therewith an organic solvent of benzene, toluene or xylene with a tertiary organic amine therein, wherein the tertiary amine has three carbon chains each containing from six to eight carbon atoms. The separator reduces the rate of zinc dentrite growth in the separator during battery operation prolonging battery life by preventing short circuits. A method of making the separator is also disclosed.

  14. Secondary battery containing zinc electrode with modified separator and method

    DOEpatents

    Poa, D.S.

    1984-02-16

    A battery containing a zinc electrode with a porous separator between the anode and cathode. The separator is a microporous substrate carrying therewith an organic solvent of benzene, toluene or xylene with a tertiary organic amine therein, wherein the tertiary amine has three carbon chains each containing from six to eight carbon atoms. The separator reduces the rate of zinc dentrite growth in the separator during battery operation prolonging battery life by preventing short circuits. A method of making the separator is also disclosed.

  15. High-cycle-life, high-energy-density nickel-zinc batteries

    NASA Astrophysics Data System (ADS)

    Wagner, O. C.

    1982-02-01

    The ERADCOM nickel-zinc program, resulted in the development of 5 ampere-hour nickel-zinc cells that maintained 79% to 86% of initial capacity after 650 cycles on the C/3 80% DOD cycling regime. One cell is still delivering 70% of initial capacity after 880 cycles. This achievement is primarily due to the employment of an interrupted current (IC) charging mode on every cycle, the optimum frequency being 5 to 8 Hertz at a rest-to-pulse-ratio of 3/1, with charge control being by means of a GRL pressure switch attached to each cell at a cutoff pressure of 8 psig, and venting means at 10 psig. Design and performance characteristics of the battery are reported.

  16. Zinc-chlorine battery plant system and method

    DOEpatents

    Whittlesey, Curtis C.; Mashikian, Matthew S.

    1981-01-01

    A zinc-chlorine battery plant system and method of redirecting the electrical current around a failed battery module. The battery plant includes a power conditioning unit, a plurality of battery modules connected electrically in series to form battery strings, a plurality of battery strings electrically connected in parallel to the power conditioning unit, and a bypass switch for each battery module in the battery plant. The bypass switch includes a normally open main contact across the power terminals of the battery module, and a set of normally closed auxiliary contacts for controlling the supply of reactants electrochemically transformed in the cells of the battery module. Upon the determination of a failure condition, the bypass switch for the failed battery module is energized to close the main contact and open the auxiliary contacts. Within a short time, the electrical current through the battery module will substantially decrease due to the cutoff of the supply of reactants, and the electrical current flow through the battery string will be redirected through the main contact of the bypass switch.

  17. Refractory concentrate gold leaching: Cyanide vs. bromine

    NASA Astrophysics Data System (ADS)

    Dadgar, Ahmad

    1989-12-01

    Gold extraction, recovery and economics for two refractory concentrates were investigated using cyanide and bromine reagents. Gold extractions for cyanide leaching (24-48 hours) and bromine leaching (six hours) were the same and ranged from 94 to 96%. Gold recoveries from bromine pregnant solutions using carbon adsorption, ion exchange, solvent extraction, and zinc and aluminum precipitation methods were better than 99.9%. A preliminary economic analysis indicates that chemical costs for cyanidation and bromine process are 11.70 and 11.60 respectively, per tonne of calcine processed.

  18. Preliminary investigation of a sealed, remotely activated silver-zinc battery

    NASA Technical Reports Server (NTRS)

    Wheat, C. G.

    1977-01-01

    Methods necessary to provide a remotely activated, silver zinc battery capable of an extended activated stand while in a sealed condition were investigated. These requirements were to be accomplished in a battery package demonstrating an energy density of at least 35 watt hours per pound. Several methods of gas suppression were considered in view of the primary nature of this unit and utilized the electroplated dendritic zinc electrode. Amalgamation of the electrode provided the greatest suppression of gas at the zinc electrode. The approach to extending the activated stand capability of the remotely activated battery was through evaluation of three basic methods of remote, multi-cell activation; 1) the electrolyte manifold, 2) the gas manifold and 3) the individual cell. All three methods of activation can be incorporated into units which will meet the minimum energy density requirement.

  19. Recovery of Metal Values from Spent Zinc-Carbon Dry Cell Batteries

    NASA Astrophysics Data System (ADS)

    Khan, Majharul Haque; Gulshan, Fahmida; Kurny, A. S. W.

    2013-04-01

    Spent zinc-carbon dry cell batteries were characterized in the process of recovery of metal values. Zinc, manganese and steel were the major metallic materials constituting 63 % of the weight of spent batteries. Different components of the spent batteries were separately processed to extract the metallic values. A maximum of 92 % of total amount of zinc contained in the anodes could be extracted with a purity of over 99.0 % from the anodes by heating at 600 °C for 10 min in presence of 12 % NH4Cl flux. Spent electrolyte paste containing manganese and zinc as major metallic elements, was leached in sulfuric acid solution in presence of hydrogen peroxide as a reducing agent. The optimum condition for leaching was found to be concentration of sulfuric acid: 2.5 M, concentration of hydrogen peroxide: 10 %, temperature: 60 °C, stirring speed: 600 rpm and solid/liquid ratio 1:12. A maximum of 88 % manganese contained in the paste could be dissolved within 27 min of leaching under the optimized conditions. Dissolution of zinc under the same conditions was 97 %. A maximum of 69.89 % of manganese and 83.29 % of zinc contained in the leach liquor could be precipitated in the form of manganese carbonate and zinc oxalate.

  20. X-ray tomography as a powerful method for zinc-air battery research

    NASA Astrophysics Data System (ADS)

    Franke-Lang, Robert; Arlt, Tobias; Manke, Ingo; Kowal, Julia

    2017-12-01

    X-ray tomography is used to investigate material redistribution and effects of electrochemical reactions in a zinc-air battery in-situ. For this, a special battery set-up is developed which meets tomographic and electrochemical requirements. The prepared batteries are discharged and some of them have partially been charged. To analyse the three-dimensional structure of the zinc and air electrode a tomographic measurement is made in charge and discharge condition without disassembling the battery. X-ray tomography gives the opportunity to detect and analyse three different effects within the cell operation: tracking the morphology and transformation of zinc and air electrode, monitoring electrolyte decomposition and movement, finding electrical misbehaviour by parasitic reactions. Therefore, it is possible to identify the loss of capacity and major problems of cyclability. The electrolyte strongly reacts with the pure zinc that leads to gassing and a loss of electrolyte. The loss prevents a charge carrier exchange between the anode and the cathode and reduces the theoretical capacity. One of the chemical reaction produces hydroxylated zinc, namely zincate. The most crucial problems with cyclability are affected by zincate movement into the catalyst layer. This assumption is confirmed by finding pure zinc areas within the catalyst layer.

  1. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers.

    PubMed

    Wan, Fang; Zhang, Linlin; Dai, Xi; Wang, Xinyu; Niu, Zhiqiang; Chen, Jun

    2018-04-25

    Rechargeable aqueous zinc-ion batteries are promising energy storage devices due to their high safety and low cost. However, they remain in their infancy because of the limited choice of positive electrodes with high capacity and satisfactory cycling performance. Furthermore, their energy storage mechanisms are not well established yet. Here we report a highly reversible zinc/sodium vanadate system, where sodium vanadate hydrate nanobelts serve as positive electrode and zinc sulfate aqueous solution with sodium sulfate additive is used as electrolyte. Different from conventional energy release/storage in zinc-ion batteries with only zinc-ion insertion/extraction, zinc/sodium vanadate hydrate batteries possess a simultaneous proton, and zinc-ion insertion/extraction process that is mainly responsible for their excellent performance, such as a high reversible capacity of 380 mAh g -1 and capacity retention of 82% over 1000 cycles. Moreover, the quasi-solid-state zinc/sodium vanadate hydrate battery is also a good candidate for flexible energy storage device.

  2. Selection of organic acid leaching reagent for recovery of zinc and manganese from zinc-carbon and alkaline spent batteries

    NASA Astrophysics Data System (ADS)

    Yuliusman; Amiliana, R. A.; Wulandari, P. T.; Ramadhan, I. T.; Kusumadewi, F. A.

    2018-03-01

    Zinc-carbon and alkaline batteries are often used in electronic equipment that requires small quantities of power. The waste from these batteries contains valuable metals, such as zinc and manganese, that are needed in many industries and can pollute the environment if not treated properly. This paper concerns the recovery of zinc and manganese metals from zinc-carbon and alkaline spent batteries with leaching method and using organic acid as the environmental friendly leaching reagent. Three different organic acids, namely citric acid, malic acid and aspartic acid, were used as leaching reagents and compared with sulfuric acid as non-organic acid reagents that often used for leaching. The presence of hydrogen peroxide as manganese reducers was investigated for both organic and non-organic leaching reagents. The result showed that citric acid can recover 64.37% Zinc and 51.32% Manganese, while malic acid and aspartic acid could recover less than these. Hydrogen peroxide gave the significant effect for leaching manganese with non-organic acid, but not with organic acid.

  3. Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion.

    PubMed

    Parker, Joseph F; Chervin, Christopher N; Pala, Irina R; Machler, Meinrad; Burz, Michael F; Long, Jeffrey W; Rolison, Debra R

    2017-04-28

    The next generation of high-performance batteries should include alternative chemistries that are inherently safer to operate than nonaqueous lithium-based batteries. Aqueous zinc-based batteries can answer that challenge because monolithic zinc sponge anodes can be cycled in nickel-zinc alkaline cells hundreds to thousands of times without undergoing passivation or macroscale dendrite formation. We demonstrate that the three-dimensional (3D) zinc form-factor elevates the performance of nickel-zinc alkaline cells in three fields of use: (i) >90% theoretical depth of discharge (DOD Zn ) in primary (single-use) cells, (ii) >100 high-rate cycles at 40% DOD Zn at lithium-ion-commensurate specific energy, and (iii) the tens of thousands of power-demanding duty cycles required for start-stop microhybrid vehicles. Copyright © 2017, American Association for the Advancement of Science.

  4. Process for the recycling of alkaline and zinc-carbon spent batteries

    NASA Astrophysics Data System (ADS)

    Ferella, Francesco; De Michelis, Ida; Vegliò, Francesco

    In this paper a recycling process for the recovery of zinc and manganese from spent alkaline and zinc-carbon batteries is proposed. Laboratory tests are performed to obtain a purified pregnant solution from which metallic zinc (purity 99.6%) can be recovered by electrolysis; manganese is recovered as a mixture of oxides by roasting of solid residue coming from the leaching stage. Nearly 99% of zinc and 20% of manganese are extracted after 3 h, at 80 °C with 10% w/v pulp density and 1.5 M sulphuric acid concentration. The leach liquor is purified by a selective precipitation of iron, whereas metallic impurities, such as copper, nickel and cadmium are removed by cementation with zinc powder. The solid residue of leaching is roasted for 30 min at 900 °C, removing graphite completely and obtaining a mixture of Mn 3O 4 and Mn 2O 3 with 70% grade of Mn. After that a technical-economic assessment is carried out for a recycling plant with a feed capacity of 5000 t y -1 of only alkaline and zinc-carbon batteries. This analysis shows the economic feasibility of that plant, supposing a battery price surcharge of 0.5 € kg -1, with a return on investment of 34.5%, gross margin of 35.8% and around 3 years payback time.

  5. Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery.

    PubMed

    Ma, Longtao; Chen, Shengmei; Pei, Zengxia; Huang, Yan; Liang, Guojin; Mo, Funian; Yang, Qi; Su, Jun; Gao, Yihua; Zapien, Juan Antonio; Zhi, Chunyi

    2018-02-27

    The exploitation of a high-efficient, low-cost, and stable non-noble-metal-based catalyst with oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) simultaneously, as air electrode material for a rechargeable zinc-air battery is significantly crucial. Meanwhile, the compressible flexibility of a battery is the prerequisite of wearable or/and portable electronics. Herein, we present a strategy via single-site dispersion of an Fe-N x species on a two-dimensional (2D) highly graphitic porous nitrogen-doped carbon layer to implement superior catalytic activity toward ORR/OER (with a half-wave potential of 0.86 V for ORR and an overpotential of 390 mV at 10 mA·cm -2 for OER) in an alkaline medium. Furthermore, an elastic polyacrylamide hydrogel based electrolyte with the capability to retain great elasticity even under a highly corrosive alkaline environment is utilized to develop a solid-state compressible and rechargeable zinc-air battery. The creatively developed battery has a low charge-discharge voltage gap (0.78 V at 5 mA·cm -2 ) and large power density (118 mW·cm -2 ). It could be compressed up to 54% strain and bent up to 90° without charge/discharge performance and output power degradation. Our results reveal that single-site dispersion of catalytic active sites on a porous support for a bifunctional oxygen catalyst as cathode integrating a specially designed elastic electrolyte is a feasible strategy for fabricating efficient compressible and rechargeable zinc-air batteries, which could enlighten the design and development of other functional electronic devices.

  6. Advanced silver zinc battery development for the SRB and ET range safety subsystems

    NASA Technical Reports Server (NTRS)

    Adamedes, Zoe

    1994-01-01

    This document presents in viewgraph format the design and development of silver zinc (AgZn) batteries for the solid rocket booster (SRB) and external tank (ET) range safety subsystems. Various engineering techniques, including composite separator systems, new electrode processing techniques, and new restraint techniques, were used to meet difficult requirements.

  7. Sulfur dioxide leaching of spent zinc-carbon-battery scrap

    NASA Astrophysics Data System (ADS)

    Avraamides, J.; Senanayake, G.; Clegg, R.

    Zinc-carbon batteries, which contain around 20% zinc, 35% manganese oxides and 10% steel, are currently disposed after use as land fill or reprocessed to recover metals or oxides. Crushed material is subjected to magnetic separation followed by hydrometallurgical treatment of the non-magnetic material to recover zinc metal and manganese oxides. The leaching with 2 M sulfuric acid in the presence of hydrogen peroxide recovers 93% Zn and 82% Mn at 25 °C. Alkaline leaching with 6 M NaOH recovers 80% zinc. The present study shows that over 90% zinc and manganese can be leached in 20-30 min at 30 °C using 0.1-1.0 M sulfuric acid in the presence of sulfur dioxide. The iron extraction is sensitive to both acid concentration and sulfur dioxide flow rate. The effect of reagent concentration and particle size on the extraction of zinc, manganese and iron are reported. It is shown that the iron and manganese leaching follow a shrinking core kinetic model due to the formation of insoluble metal salts/oxides on the solid surface. This is supported by (i) the decrease in iron and manganese extraction from synthetic Fe(III)-Mn(IV)-Zn(II) oxide mixtures with increase in acid concentration from 1 M to 2 M, and (ii) the low iron dissolution and re-precipitation of dissolved manganese and zinc during prolonged leaching of battery scrap with low sulfur dioxide.

  8. Exploring Faraday's Law of Electrolysis Using Zinc-Air Batteries with Current Regulative Diodes

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Paku, Miei

    2007-01-01

    Current regulative diodes (CRDs) are applied to develop new educational experiments on Faraday's law by using a zinc-air battery (PR2330) and a resistor to discharge it. The results concluded that the combination of zinc-air batteries and the CRD array is simpler, less expensive, and quantitative and gives accurate data.

  9. The effect of zinc on the aluminum anode of the aluminum-air battery

    NASA Astrophysics Data System (ADS)

    Tang, Yougen; Lu, Lingbin; Roesky, Herbert W.; Wang, Laiwen; Huang, Baiyun

    Aluminum is an ideal material for batteries, due to its excellent electrochemical performance. Herein, the effect of zinc on the aluminum anode of the aluminum-air battery, as an additive for aluminum alloy and electrolytes, has been studied. The results show that zinc can decrease the anodic polarization, restrain the hydrogen evolution and increase the anodic utilization rate.

  10. Primary zinc-air batteries for space power

    NASA Technical Reports Server (NTRS)

    Bragg, Bobby J.; Bourland, Deborah S.; Merry, Glenn; Putt, Ron

    1992-01-01

    Prismatic HR and LC cells and batteries were built and tested, and they performed well with respect to the program goals of high capacity and high rate capability at specific energies. The HR batteries suffered reduced utilizations owing to dryout at the 2 and 3 A rates for the 50 C tests owing to the requirement for forced convection. The LC batteries suffered reduced utilizations under all conditions owing to the chimney effect at 1 G, although this effect would not occur at 0 G. An empirical model was developed which accurately predicted utilizations and average voltages for single cells, although thermal effects encountered during battery testing caused significant deviations, both positive and negative, from the model. Based on the encouraging results of the test program, we believe that the zinc-air primary battery of a flat, stackable configuration can serve as a high performance and safe power source for a range of space applications.

  11. High-capacity aqueous zinc batteries using sustainable quinone electrodes

    PubMed Central

    Zhao, Qing; Huang, Weiwei; Luo, Zhiqiang; Liu, Luojia; Lu, Yong; Li, Yixin; Li, Lin; Hu, Jinyan; Ma, Hua; Chen, Jun

    2018-01-01

    Quinones, which are ubiquitous in nature, can act as sustainable and green electrode materials but face dissolution in organic electrolytes, resulting in fast fading of capacity and short cycle life. We report that quinone electrodes, especially calix[4]quinone (C4Q) in rechargeable metal zinc batteries coupled with a cation-selective membrane using an aqueous electrolyte, exhibit a high capacity of 335 mA h g−1 with an energy efficiency of 93% at 20 mA g−1 and a long life of 1000 cycles with a capacity retention of 87% at 500 mA g−1. The pouch zinc batteries with a respective depth of discharge of 89% (C4Q) and 49% (zinc anode) can deliver an energy density of 220 Wh kg−1 by mass of both a C4Q cathode and a theoretical Zn anode. We also develop an electrostatic potential computing method to demonstrate that carbonyl groups are active centers of electrochemistry. Moreover, the structural evolution and dissolution behavior of active materials during discharge and charge processes are investigated by operando spectral techniques such as IR, Raman, and ultraviolet-visible spectroscopies. Our results show that batteries using quinone cathodes and metal anodes in aqueous electrolyte are reliable approaches for mass energy storage. PMID:29511734

  12. High-capacity aqueous zinc batteries using sustainable quinone electrodes.

    PubMed

    Zhao, Qing; Huang, Weiwei; Luo, Zhiqiang; Liu, Luojia; Lu, Yong; Li, Yixin; Li, Lin; Hu, Jinyan; Ma, Hua; Chen, Jun

    2018-03-01

    Quinones, which are ubiquitous in nature, can act as sustainable and green electrode materials but face dissolution in organic electrolytes, resulting in fast fading of capacity and short cycle life. We report that quinone electrodes, especially calix[4]quinone (C4Q) in rechargeable metal zinc batteries coupled with a cation-selective membrane using an aqueous electrolyte, exhibit a high capacity of 335 mA h g -1 with an energy efficiency of 93% at 20 mA g -1 and a long life of 1000 cycles with a capacity retention of 87% at 500 mA g -1 . The pouch zinc batteries with a respective depth of discharge of 89% (C4Q) and 49% (zinc anode) can deliver an energy density of 220 Wh kg -1 by mass of both a C4Q cathode and a theoretical Zn anode. We also develop an electrostatic potential computing method to demonstrate that carbonyl groups are active centers of electrochemistry. Moreover, the structural evolution and dissolution behavior of active materials during discharge and charge processes are investigated by operando spectral techniques such as IR, Raman, and ultraviolet-visible spectroscopies. Our results show that batteries using quinone cathodes and metal anodes in aqueous electrolyte are reliable approaches for mass energy storage.

  13. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    PubMed Central

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei

    2015-01-01

    Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l−1). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l−1 is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from −20 to 50 °C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications. PMID:25709083

  14. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery.

    PubMed

    Li, Bin; Nie, Zimin; Vijayakumar, M; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei

    2015-02-24

    Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l(-1)). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l(-1) is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from -20 to 50 °C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications.

  15. A concentrated electrolyte for zinc hexacyanoferrate electrodes in aqueous rechargeable zinc-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, D.; Lee, C.; Jeong, S.

    2018-01-01

    In this study, a concentrated electrolyte was applied in an aqueous rechargeable zinc-ion battery system with a zinc hexacyanoferrate (ZnHCF) electrode to improve the electrochemical performance by changing the hydration number of the zinc ions. To optimize the active material, ZnHCF was synthesized using aqueous solutions of zinc nitrate with three different concentrations. The synthesized materials exhibited some differences in structure, crystallinity, and particle size, as observed by X-ray diffraction and scanning electron microscopy. Subsequently, these well-structured materials were applied in electrochemical tests. A more than two-fold improvement in the charge/discharge capacities was observed when the concentrated electrolyte was used instead of the dilute electrolyte. Additionally, the cycling performance observed in the concentrated electrolyte was superior to that in the dilute electrolyte. This improvement in the electrochemical performance may result from a decrease in the hydration number of the zinc ions in the concentrated electrolyte.

  16. Lifetime estimates for sterilizable silver-zinc battery separators

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Walmsley, D. E.; Moacanin, J.

    1972-01-01

    The lifetime of separator membranes currently employed in the electrolyte environment of silver-zinc batteries was estimated at 3 to 5 years. The separator membranes are crosslinked polyethylene film containing grafted poly (potassium acrylate)(PKA), the latter being the hydrophilic agent which promotes electrolyte ion transport. The lifetime was estimated by monitoring the rate of loss of PKA from the separators, caused by chemical attack of the electrolyte, and relating this loss rate to a known relationship between battery performance and PKA concentration in the separators.

  17. Production of zinc and manganese oxide particles by pyrolysis of alkaline and Zn-C battery waste.

    PubMed

    Ebin, Burçak; Petranikova, Martina; Steenari, Britt-Marie; Ekberg, Christian

    2016-05-01

    Production of zinc and manganese oxide particles from alkaline and zinc-carbon battery black mass was studied by a pyrolysis process at 850-950°C with various residence times under 1L/minN2(g) flow rate conditions without using any additive. The particular and chemical properties of the battery waste were characterized to investigate the possible reactions and effects on the properties of the reaction products. The thermodynamics of the pyrolysis process were studied using the HSC Chemistry 5.11 software. The carbothermic reduction reaction of battery black mass takes place and makes it possible to produce fine zinc particles by a rapid condensation, after the evaporation of zinc from a pyrolysis batch. The amount of zinc that can be separated from the black mass is increased by both pyrolysis temperature and residence time. Zinc recovery of 97% was achieved at 950°C and 1h residence time using the proposed alkaline battery recycling process. The pyrolysis residue is mainly MnO powder with a low amount of zinc, iron and potassium impurities and has an average particle size of 2.9μm. The obtained zinc particles have an average particle size of about 860nm and consist of hexagonal crystals around 110nm in size. The morphology of the zinc particles changes from a hexagonal shape to s spherical morphology by elevating the pyrolysis temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Status of nickel/zinc and nickel/iron battery technology for electric vehicle applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, N.P.; Christianson, C.C.; Elliott, R.C.

    1980-01-01

    Significant progress in nickel/zinc and nickel/iron technology has been made towards achieving the battery technical performance goals necessary for widespread use of these battery systems in electric vehicle applications. This progress is reviewed. Nickel/zinc module test data have shown a specific energy of nearly 70 Whr/kg and a specific power of 130 W/kg. However, cycle life improvements are still needed (presently demonstrated capability of 120 cycles) and are expected to be demonstrated during 1980. Nickel/iron modules have demonstrated a specific energy of nearly 50 Wh/kg and a specific power of 100 W/kg. Indications are that improved performance in these areasmore » can be shown during 1980. Nickel/iron modules cycle lives of 300 have been achieved during early 1980 and testing continues. Energy efficiency has been improved from less than 50% to over 65%. Cost reduction (both initial and operating) continues to receive major emphasis at developers of both nickel/zinc and nickel/iron batteries in order to achieve the lowest possible life cycle cost to the battery user.« less

  19. Charge-discharge characteristics of nickel/zinc battery with polymer hydrogel electrolyte

    NASA Astrophysics Data System (ADS)

    Iwakura, Chiaki; Murakami, Hiroki; Nohara, Shinji; Furukawa, Naoji; Inoue, Hiroshi

    A new nickel/zinc (Ni/Zn) battery was assembled by using polymer hydrogel electrolyte prepared from cross-linked potassium poly(acrylate) and KOH aqueous solution, and its charge-discharge characteristics were investigated. The experimental Ni/Zn cell with the polymer hydrogel electrolyte exhibited well-defined charge-discharge curves and remarkably improved charge-discharge cycle performance, compared to that with a KOH aqueous solution. Moreover, it was found that dendritic growth hardly occurred on the zinc electrode surface during charge-discharge cycles in the polymer hydrogel electrolyte. These results indicate that the polymer hydrogel electrolyte can successfully be used in Ni/Zn batteries as an electrolyte with excellent performance.

  20. Facilitated Oxygen Chemisorption in Heteroatom-Doped Carbon for Improved Oxygen Reaction Activity in All-Solid-State Zinc-Air Batteries.

    PubMed

    Liu, Sisi; Wang, Mengfan; Sun, Xinyi; Xu, Na; Liu, Jie; Wang, Yuzhou; Qian, Tao; Yan, Chenglin

    2018-01-01

    Driven by the intensified demand for energy storage systems with high-power density and safety, all-solid-state zinc-air batteries have drawn extensive attention. However, the electrocatalyst active sites and the underlying mechanisms occurring in zinc-air batteries remain confusing due to the lack of in situ analytical techniques. In this work, the in situ observations, including X-ray diffraction and Raman spectroscopy, of a heteroatom-doped carbon air cathode are reported, in which the chemisorption of oxygen molecules and oxygen-containing intermediates on the carbon material can be facilitated by the electron deficiency caused by heteroatom doping, thus improving the oxygen reaction activity for zinc-air batteries. As expected, solid-state zinc-air batteries equipped with such air cathodes exhibit superior reversibility and durability. This work thus provides a profound understanding of the reaction principles of heteroatom-doped carbon materials in zinc-air batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Battery Safety Basics

    ERIC Educational Resources Information Center

    Roy, Ken

    2010-01-01

    Batteries commonly used in flashlights and other household devices produce hydrogen gas as a product of zinc electrode corrosion. The amount of gas produced is affected by the batteries' design and charge rate. Dangerous levels of hydrogen gas can be released if battery types are mixed, batteries are damaged, batteries are of different ages, or…

  2. A high-energy-density redox flow battery based on zinc/polyhalide chemistry.

    PubMed

    Zhang, Liqun; Lai, Qinzhi; Zhang, Jianlu; Zhang, Huamin

    2012-05-01

    Zn and the Art of Battery Development: A zinc/polyhalide redox flow battery employs Br(-) /ClBr(2-) and Zn/Zn(2+) redox couples in its positive and negative half-cells, respectively. The performance of the battery is evaluated by charge-discharge cycling tests and reveals a high energy efficiency of 81%, based on a Coulombic efficiency of 96% and voltage efficiency of 84%. The new battery technology can provide high performance and energy density at an acceptable cost. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Recovery of zinc and manganese from spent alkaline batteries by liquid-liquid extraction with Cyanex 272

    NASA Astrophysics Data System (ADS)

    Salgado, Aline L.; Veloso, Aline M. O.; Pereira, Daniel D.; Gontijo, Glayson S.; Salum, Adriane; Mansur, Marcelo B.

    A hydrometallurgical route based on the liquid-liquid extraction technique using Cyanex 272 as extractant is investigated for the selective separation of metal values, in particular, zinc and manganese from spent alkaline batteries. The recycling route consists of following steps: (1) cryogenic dismantling of the spent batteries, (2) pre-treatment of the internal material consisting of drying, grinding and screening steps in order to produce a dry homogeneous powder, (3) leaching of the powder with sulphuric acid and (4) metal separation by liquid-liquid extraction. Bench scale experiments have shown that zinc and manganese are easily separated (ΔpH 1/2≈2.0) using 20% (v/v) Cyanex 272 dissolved in Escaid 110 at 50 °C. Therefore, the proposed route can treat residues from both zinc-carbon and alkaline batteries because metal composition of these batteries is quite similar. The metal content of other batteries such as Ni-Cd and nickel-metal hydride (NiMH) has been also determined in order to include them in future investigations.

  4. Production of zinc pellets

    DOEpatents

    Cooper, J.F.

    1996-11-26

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries. 6 figs.

  5. Production of zinc pellets

    DOEpatents

    Cooper, John F.

    1996-01-01

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries.

  6. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    DOE PAGES

    Li, Bin; Nie, Zimin; Vijayakumar, M.; ...

    2015-02-24

    Large-scale energy storage systems are crucial for substantial deployment of renewable energy sources. Energy storage systems with high energy density, high safety, and low cost and environmental friendliness are desired. To overcome the major limitations of the current aqueous redox flow battery systems, namely lower energy density (~25 Wh L -1) and presence of strong acids and/or other hazardous, a high energy density aqueous zinc/polyiodide flow battery (ZIB) is designed with near neutral ZnI 2 solutions as catholytes. The energy density of ZIB could reach 322 Wh L -1 at the solubility limit of ZnI 2 in water (~7 M).more » We demonstrate charge and discharge energy densities of 245.9 Wh/L and 166.7 Wh L-1 with ZnI 2 electrolyte at 5.0 M, respectively. The addition of ethanol (EtOH) in ZnI 2 electrolyte can effectively mitigate the growth of zinc dendrite at the anode and improve the stability of catholytes with wider temperature window (-20 to 50°C), which enable ZIB system to be a promising alternative as a high-energy and high- safety stationary energy storage system.« less

  7. A Long Cycle Life, Self-Healing Zinc-Iodine Flow Battery with High Power Density.

    PubMed

    Xie, Congxin; Zhang, Huamin; Xu, Wenbin; Wang, Wei; Li, Xianfeng

    2018-05-01

    A zinc-iodine flow battery (ZIFB) with long cycle life, high energy, high power density, and self-healing behavior is prepared. The long cycle life was achieved by employing a low-cost porous polyolefin membrane and stable electrolytes. The pores in the membrane can be filled with a solution containing I 3 - that can react with zinc dendrite. Therefore, by consuming zinc dendrite, the battery can self-recover from micro-short-circuiting resulting from overcharging. By using KI, ZnBr 2 , and KCl as electrolytes and a high ion-conductivity porous membrane, a very high power density can be achieved. As a result, a ZIFB exhibits an energy efficiency (EE) of 82 % at 80 mA cm -2 , which is 8 times higher than the currently reported ZIFBs. Furthermore, a stack with an output of 700 W was assembled and continuously run for more than 300 cycles. We believe this ZIFB can lead the way to development of new-generation, high-performance flow batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Nonleaking battery terminals.

    NASA Technical Reports Server (NTRS)

    Snider, W. E.; Nagle, W. J.

    1972-01-01

    Three different terminals were designed for usage in a 40 ampere/hour silver zinc battery which has a 45% KOH by weight electrolyte in a plastic battery case. Life tests, including thermal cycling, electrical charge and discharge for up to three years duration, were conducted on these three different terminal designs. Tests for creep rate and tensile strength were conducted on the polyphenylene oxide plastic battery cases. Some cases were unused and others containing KOH electrolyte were placed on life tests. The design and testing of nonleaking battery terminals for use with a KOH electrolyte in a plastic case are considered.

  9. Reserve lithium-thionyl chloride battery for missile applications

    NASA Astrophysics Data System (ADS)

    Planchat, J. P.; Descroix, J. P.; Sarre, G.

    A comparative performance study has been conducted for silver-zinc, thionyl chloride, and thermal batteries designed for such missile applications as ICBM guidance system power supplies. Attention is given to each of the three candidates' conformity to requirements concerning mechanical configuration, electrochemical design, electrolyte reservoir, external case, and gas generator. The silver-zinc and Li-SOCl2 candidates employ similar cell configurations and yield comparable performance. The thermal battery is found to be incapable of meeting battery case temperature-related requirements.

  10. Factors influence flexibility resistivity and zinc dendrite penetration rate of inorganic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1975-01-01

    Developmental work resulted in a formulation which can improve the flexibility of the inorganic-organic-type separator for silver-zinc and nickel-zinc alkaline batteries. The effects of various fillers and reactive organic additives on separator volume resistivity are described. The effects of various inert fillers on the zinc dendrite penetration rate of the separator are shown. Conclusions regarding the operating mechanism of the separator are presented.

  11. The Extravehicular Maneuvering Unit's New Long Life Battery and Lithium Ion Battery Charger

    NASA Technical Reports Server (NTRS)

    Russell, Samuel P.; Elder, Mark A.; Williams, Anthony G.; Dembeck, Jacob

    2010-01-01

    The Long Life (Lithium Ion) Battery is designed to replace the current Extravehicular Mobility Unit Silver/Zinc Increased Capacity Battery, which is used to provide power to the Primary Life Support Subsystem during Extravehicular Activities. The Charger is designed to charge, discharge, and condition the battery either in a charger-strapped configuration or in a suit-mounted configuration. This paper will provide an overview of the capabilities and systems engineering development approach for both the battery and the charger

  12. Designing Hydrolytic Zinc Metalloenzymes

    PubMed Central

    2015-01-01

    Zinc is an essential element required for the function of more than 300 enzymes spanning all classes. Despite years of dedicated study, questions regarding the connections between primary and secondary metal ligands and protein structure and function remain unanswered, despite numerous mechanistic, structural, biochemical, and synthetic model studies. Protein design is a powerful strategy for reproducing native metal sites that may be applied to answering some of these questions and subsequently generating novel zinc enzymes. From examination of the earliest design studies introducing simple Zn(II)-binding sites into de novo and natural protein scaffolds to current studies involving the preparation of efficient hydrolytic zinc sites, it is increasingly likely that protein design will achieve reaction rates previously thought possible only for native enzymes. This Current Topic will review the design and redesign of Zn(II)-binding sites in de novo-designed proteins and native protein scaffolds toward the preparation of catalytic hydrolytic sites. After discussing the preparation of Zn(II)-binding sites in various scaffolds, we will describe relevant examples for reengineering existing zinc sites to generate new or altered catalytic activities. Then, we will describe our work on the preparation of a de novo-designed hydrolytic zinc site in detail and present comparisons to related designed zinc sites. Collectively, these studies demonstrate the significant progress being made toward building zinc metalloenzymes from the bottom up. PMID:24506795

  13. Investigation of zinc recovery by hydrogen reduction assisted pyrolysis of alkaline and zinc-carbon battery waste.

    PubMed

    Ebin, Burçak; Petranikova, Martina; Steenari, Britt-Marie; Ekberg, Christian

    2017-10-01

    Zinc (Zn) recovery from alkaline and zinc-carbon (Zn-C) battery waste were studied by a laboratory scale pyrolysis process at a reaction temperature of 950°C for 15-60min residence time using 5%H 2(g) -N 2(g) mixture at 1.0L/min gas flow rate. The effect of different cooling rates on the properties of pyrolysis residue, manganese oxide particles, were also investigated. Morphological and structural characterization of the produced Zn particles were performed. The battery black mass was characterized with respect to the properties and chemical composition of the waste battery particles. The thermodynamics of the pyrolysis process was studied using the HSC Chemistry 5.11 software. A hydrogen reduction reaction of the battery black mass (washed with Milli-Q water) takes place at the chosen temperature and makes it possible to produce fine Zn particles by rapid condensation following the evaporation of Zn from the pyrolysis batch. The amount of Zn that can be separated from the black mass increases by extending the residence time. Recovery of 99.8% of the Zn was achieved at 950°C for 60min residence time using 1.0L/min gas flow rate. The pyrolysis residue contains MnO and Mn 2 O 3 compounds, and the oxidation state of manganese can be controlled by cooling rate and atmosphere. The Zn particles exhibit spherical and hexagonal particle morphology with a particle size varying between 200nm and 3µm. However the particles were formed by aggregation of nanoparticles which are primarily nucleated from the gas phase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Preliminary study on zinc-air battery using zinc regeneration electrolysis with propanol oxidation as a counter electrode reaction

    NASA Astrophysics Data System (ADS)

    Wen, Yue-Hua; Cheng, Jie; Ning, Shang-Qi; Yang, Yu-Sheng

    A zinc-air battery using zinc regeneration electrolysis with propanol oxidation as a counter electrode reaction is reported in this paper. It possesses functions of both zincate reduction and electrochemical preparation, showing the potential for increasing the electronic energy utilization. Charge/discharge tests and scanning electron microscopy (SEM) micrographs reveal that when a nickel sheet plated with the high-H 2-overpotential metal, cadmium, was used as the negative substrate electrode, the dendritic formation and hydrogen evolution are suppressed effectively, and granular zinc deposits become larger but relatively dense with the increase of charge time. The performance of batteries is favorable even if the charge time is as long as 5 h at the current density of 20 mA cm -2. Better discharge performance is achieved using a 'cavity-opening' configuration for the discharge cell rather than a 'gas-introducing' configuration. The highest energy efficiency is up to 59.2%. That is, the energy consumed by organic electro-synthesis can be recovered by 59.2%. Cyclic voltammograms show that the sintered nickel electrode exhibits a good electro-catalysis activity for the propanol oxidation. The increase of propanol concentration conduces to an enhancement in the organic electro-synthesis efficiency. The organic electro-synthesis current efficiency of 82% can be obtained.

  15. Nonleaking battery terminals

    NASA Technical Reports Server (NTRS)

    Snider, W. E.; Nagle, W. J.

    1972-01-01

    Three different terminals were designed for usage in a 40 ampere/hour silver zinc battery which has a 45 percent KOH by weight electrolyte in a plastic battery case. Life tests, including thermal cycling, electrical charge and discharge for up to three years duration, were conducted on these three different terminal designs. Tests for creep rate and tensile strength were conducted on the polyphenylene oxide (PPO) plastic battery cases. Some cases were unused and others containing KOH electrolyte were placed on life tests. The design and testing of nonleaking battery terminals for use with a potassium hydroxide (KOH) electrolyte in a plastic case are discussed.

  16. Electrochemical behavior of zinc particles with silica based coatings as anode material for zinc air batteries with improved discharge capacity

    NASA Astrophysics Data System (ADS)

    Schmid, M.; Willert-Porada, M.

    2017-05-01

    Silica coatings on zinc particles as anode material for alkaline zinc air batteries are expected to reduce early formation of irreversible ZnO passivation layers during discharge by controlling zinc dissolution and precipitation of supersaturated zincates, Zn(OH)42-. Zinc particles were coated with SiO2 (thickness: 15 nm) by chemical solution deposition and with Zn2SiO4 (thickness: 20 nm) by chemical vapor deposition. These coatings formed a Si(OH)4 gel in aqueous KOH and retarded hydrogen evolution by 40%. By treatment in aqueous KOH and drying afterwards, the silica coatings were changed into ZnO-K2O·SiO2 layers. In this work, the electrochemical performance of such coated zinc particles is investigated by different electrochemical methods in order to gain a deeper understanding of the mechanisms of the coatings, which reduce zinc passivation. In particular, zinc utilization and changes in internal resistance are investigated. Moreover, methods for determination of diffusion coefficients, charge carrier numbers and activation energies for electrochemical oxidation are determined. SiO2-coated zinc particles show improved discharge capacity (CVD-coated zinc: 69% zinc utilization, CSD-coated zinc: 62% zinc utilization) as compared to as-received zinc (57% zinc utilization) at C/20 rate, by reducing supersaturation of zincates. Additionally, KOH-modified SiO2-coated zinc particles enhance rechargeability after 100% depth-of-discharge.

  17. Effect of inhibitors on Zn-dendrite formation for zinc-polyaniline secondary battery

    NASA Astrophysics Data System (ADS)

    Kan, Jinqing; Xue, Huaiguo; Mu, Shaolin

    The effects of Pb 2+, sodium lauryl sulfate and Triton X-100 on inhibition of Zn-dendrite growth in Zn-polyaniline batteries were studied by scanning electron micrograph and cyclic voltammetry. The results show that Triton X-100 in the region of 0.02-500 ppm in the electrolyte containing 2.5 M ZnCl 2 and 2.0 M NH 4Cl with pH 4.40 can effectively inhibit zinc-dendrite growth during charge-discharge cycles of the battery and yield longer cycles.

  18. Development and evaluation of sulfonated polysulfone membranes for the zinc-ferricyanide battery

    NASA Astrophysics Data System (ADS)

    Arnold, C., Jr.; Assink, R. A.

    1985-03-01

    The successful commercialization of the zinc/ferricyanide battery being developed by Lockheed depends in part on the availability of an inexpensive, chemically stable membrane. Other essential membrane properties include low area resistivity (1 - 5 (UC OMEGA) cm(2)) and a low rate of iron permeation (4 x 10(-5) millimoles Fe(cm (2))h). A cast membrane which contained one sulfonate group per repeating unit in th backbone exhibited good stability in the alkaline ferricyanide electrolyte and satisfied the membrane requirements cited above. In ongoing single cell cycling tests, average energy efficiencies of 77% were achieved over 85 charge discharge cycles with this membrane. If sulfonate polysulfone membranes can be mass produced by extrusion, they can be considered as viable candidates to replace the expensive perfluorsulfonate membranes that were used to demonstrate the technical feasibility of the zinc/ferricyanide battery. The feasibility of preparing composite sulfonated polysulfone membranes by impregnation of microporous PTFE was also demonstrated. The manufacture of composite membranes should be possible using chemical coating equipment.

  19. Utilization of automotive shredder residues in a thermal process for recovery of manganese and zinc from zinc-carbon and alkaline spent batteries.

    PubMed

    Ippolito, N M; Belardi, G; Medici, F; Piga, L

    2016-05-01

    The aim of the study is the recovery by thermal treatment of manganese and zinc from a mixture of zinc-carbon and alkaline spent batteries, on the basis of the different phase change temperatures of the two metal-bearing phases. ASR (Automotive Shredder Residue), containing 68% of carbon, was added to the mixture to act as a reductant to metallic Zn of the zinc-bearing phases. The mixture was subsequently heated in different atmospheres (air, CO2 and N2) and at different temperatures (900°C, 1000°C and 1200°C) and stoichiometric excess of ASR (300%, 600% and 900%). Characterization of the mixture and of the residues of thermal treatment was carried out by chemical analysis, TGA/DTA, SEM and XRD. The results show that recovery of 99% of zinc (grade 97%) is achieved at 1000°C in N2 with a stoichiometric excess of car-fluff of 900%. This product could be suitable for production of new batteries after refining by hydrometallurgical way. Recovery of Mn around 98% in the residue of the treatment is achieved at any temperature and atmosphere tested with a grade of 57% at 900% excess of car-fluff. This residue is enriched in manganese oxide and could be used in the production of iron-manganese alloys. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Co3O4/MnO2/Hierarchically Porous Carbon as Superior Bifunctional Electrodes for Liquid and All-Solid-State Rechargeable Zinc-Air Batteries.

    PubMed

    Li, Xuemei; Dong, Fang; Xu, Nengneng; Zhang, Tao; Li, Kaixi; Qiao, Jinli

    2018-05-09

    The design of efficient, durable, and affordable catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is very indispensable in liquid-type and flexible all-solid-state zinc-air batteries. Herein, we present a high-performance bifunctional catalyst with cobalt and manganese oxides supported on porous carbon (Co 3 O 4 /MnO 2 /PQ-7). The optimized Co 3 O 4 /MnO 2 /PQ-7 exhibited a comparable ORR performance with commercial Pt/C and a more superior OER performance than all of the other prepared catalysts, including commercial Pt/C. When applied to practical aqueous (6.0 M KOH) zinc-air batteries, the Co 3 O 4 /MnO 2 /porous carbon hybrid catalysts exhibited exceptional performance, such as a maximum discharge peak power density as high as 257 mW cm -2 and the most stable charge-discharge durability over 50 h with negligible deactivation to date. More importantly, a series of flexible all-solid-state zinc-air batteries can be fabricated by the Co 3 O 4 /MnO 2 /porous carbon with a layer-by-layer method. The optimal catalyst (Co 3 O 4 /MnO 2 /PQ-7) exhibited an excellent peak power density of 45 mW cm -2 . The discharge potentials almost remained unchanged for 6 h at 5 mA cm -2 and possessed a long cycle life (2.5 h@5 mA cm -2 ). These results make the optimized Co 3 O 4 /MnO 2 /PQ-7 a promising cathode candidate for both liquid-type and flexible all-solid-state zinc-air batteries.

  1. Bromine

    USGS Publications Warehouse

    Ober, J.A.

    2013-01-01

    The element bromine is found principally as a dissolved species in seawater, evaporitic (salt) lakes and underground brines associated with petroleum deposits. Seawater contains about 65 parts per million of bromine or an estimated 907 Gt (100 trillion st). In the Middle East, the highly saline waters of the Dead Sea are estimated to contain 907 Mt (1 billion st) of bromine. Bromine also may be recovered from seawater as a coproduct during evaporation to produce salt.

  2. Fundamentally Addressing Bromine Storage through Reversible Solid-State Confinement in Porous Carbon Electrodes: Design of a High-Performance Dual-Redox Electrochemical Capacitor.

    PubMed

    Yoo, Seung Joon; Evanko, Brian; Wang, Xingfeng; Romelczyk, Monica; Taylor, Aidan; Ji, Xiulei; Boettcher, Shannon W; Stucky, Galen D

    2017-07-26

    Research in electric double-layer capacitors (EDLCs) and rechargeable batteries is converging to target systems that have battery-level energy density and capacitor-level cycling stability and power density. This research direction has been facilitated by the use of redox-active electrolytes that add faradaic charge storage to increase energy density of the EDLCs. Aqueous redox-enhanced electrochemical capacitors (redox ECs) have, however, performed poorly due to cross-diffusion of soluble redox couples, reduced cycle life, and low operating voltages. In this manuscript, we propose that these challenges can be simultaneously met by mechanistically designing a liquid-to-solid phase transition of oxidized catholyte (or reduced anolyte) with confinement in the pores of electrodes. Here we demonstrate the realization of this approach with the use of bromide catholyte and tetrabutylammonium cation that induces reversible solid-state complexation of Br 2 /Br 3 - . This mechanism solves the inherent cross-diffusion issue of redox ECs and has the added benefit of greatly stabilizing the reactive bromine generated during charging. Based on this new mechanistic insight on the utilization of solid-state bromine storage in redox ECs, we developed a dual-redox EC consisting of a bromide catholyte and an ethyl viologen anolyte with the addition of tetrabutylammonium bromide. In comparison to aqueous and organic electric double-layer capacitors, this system enhances energy by factors of ca. 11 and 3.5, respectively, with a specific energy of ∼64 W·h/kg at 1 A/g, a maximum power density >3 kW/kg, and cycling stability over 7000 cycles.

  3. Reclaiming the spent alkaline zinc manganese dioxide batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ya; Cui, Yan; Zuo, Xiaoxi

    2014-10-15

    Highlights: • The spent Zn–Mn batteries collected from manufacturers is the target waste. • A facile reclaiming process is presented. • The zinc is reclaimed to valuable electrolytic zinc by electrodepositing method. • The manganese elements are to produce valuable LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} battery material. • The reclamation process features environmental friendliness and saving resource. - Abstract: A process for reclaiming the materials in spent alkaline zinc manganese dioxide (Zn–Mn) batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} materials is presented. After dismantling battery cans, the iron cans, covers, electric rods, organicmore » separator, label, sealing materials, and electrolyte are separated through the washing, magnetic separation, filtrating, and sieving operations. Then, the powder residues react with H{sub 2}SO{sub 4} (2 mol L{sup −1}) solution to dissolve zinc under a liquid/solid ratio of 3:1 at room temperature, and subsequently, the electrolytic Zn with purity of ⩾99.8% is recovered in an electrolytic cell with a cathode efficiency of ⩾85% under the conditions of 37–40 °C and 300 A m{sup −2}. The most of MnO{sub 2} and a small quantity of electrolytic MnO{sub 2} are recovered from the filtration residue and the electrodeposit on the anode of electrolytic cell, respectively. The recovered manganese oxides are used to synthesize LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} material of lithium-ion battery. The as-synthesized LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} discharges 118.3 mAh g{sup −1} capacity and 4.7 V voltage plateau, which is comparable to the sample synthesized using commercial electrolytic MnO{sub 2}. This process can recover the substances in the spent Zn–Mn batteries and innocuously treat the wastewaters, indicating that it is environmentally acceptable and applicable.« less

  4. Nitrogen, Fluorine, and Boron Ternary Doped Carbon Fibers as Cathode Electrocatalysts for Zinc-Air Batteries.

    PubMed

    Wang, Lei; Wang, Yueqing; Wu, Mingguang; Wei, Zengxi; Cui, Chunyu; Mao, Minglei; Zhang, Jintao; Han, Xiaopeng; Liu, Quanhui; Ma, Jianmin

    2018-05-01

    Zinc-air batteries with high-density energy are promising energy storage devices for the next generation of energy storage technologies. However, the battery performance is highly dependent on the efficiency of oxygen electrocatalyst in the air electrode. Herein, the N, F, and B ternary doped carbon fibers (TD-CFs) are prepared and exhibited higher catalytic properties via the efficient 4e - transfer mechanism for oxygen reduction in comparison with the single nitrogen doped CFs. More importantly, the primary and rechargeable Zn-air batteries using TD-CFs as air-cathode catalysts are constructed. When compared to batteries with Pt/C + RuO 2 and Vulcan XC-72 carbon black catalysts, the TD-CFs catalyzed batteries exhibit remarkable battery reversibility and stability over long charging/discharging cycles. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Highly Durable Na2V6O16·1.63H2O Nanowire Cathode for Aqueous Zinc-Ion Battery.

    PubMed

    Hu, Ping; Zhu, Ting; Wang, Xuanpeng; Wei, Xiujuan; Yan, Mengyu; Li, Jiantao; Luo, Wen; Yang, Wei; Zhang, Wencui; Zhou, Liang; Zhou, Zhiqiang; Mai, Liqiang

    2018-03-14

    Rechargeable aqueous zinc-ion batteries are highly desirable for grid-scale applications due to their low cost and high safety; however, the poor cycling stability hinders their widespread application. Herein, a highly durable zinc-ion battery system with a Na 2 V 6 O 16 ·1.63H 2 O nanowire cathode and an aqueous Zn(CF 3 SO 3 ) 2 electrolyte has been developed. The Na 2 V 6 O 16 ·1.63H 2 O nanowires deliver a high specific capacity of 352 mAh g -1 at 50 mA g -1 and exhibit a capacity retention of 90% over 6000 cycles at 5000 mA g -1 , which represents the best cycling performance compared with all previous reports. In contrast, the NaV 3 O 8 nanowires maintain only 17% of the initial capacity after 4000 cycles at 5000 mA g -1 . A single-nanowire-based zinc-ion battery is assembled, which reveals the intrinsic Zn 2+ storage mechanism at nanoscale. The remarkable electrochemical performance especially the long-term cycling stability makes Na 2 V 6 O 16 ·1.63H 2 O a promising cathode for a low-cost and safe aqueous zinc-ion battery.

  6. Thermal management of batteries

    NASA Astrophysics Data System (ADS)

    Gibbard, H. F.; Chen, C.-C.

    Control of the internal temperature during high rate discharge or charge can be a major design problem for large, high energy density battery systems. A systematic approach to the thermal management of such systems is described for different load profiles based on: thermodynamic calculations of internal heat generation; calorimetric measurements of heat flux; analytical and finite difference calculations of the internal temperature distribution; appropriate system designs for heat removal and temperature control. Examples are presented of thermal studies on large lead-acid batteries for electrical utility load levelling and nickel-zinc and lithium-iron sulphide batteries for electric vehicle propulsion.

  7. Chrysanthemum flower-like NiCo2O4-nitrogen doped graphene oxide composite: an efficient electrocatalyst for lithium-oxygen and zinc-air batteries.

    PubMed

    Moni, Prabu; Hyun, Suyeon; Vignesh, Ahilan; Shanmugam, Sangaraju

    2017-07-06

    Chrysanthemum flower-like NiCo 2 O 4 -nitrogen doped graphene oxide composite material has been explored as a bifunctional cathode electrocatalyst for aqueous zinc-air and non-aqueous lithium-oxygen batteries. This cathode exhibits maximum discharge capacities of 712 and 15 046 mA h g -1 for zinc-air and lithium-oxygen batteries, respectively, with stable cycling over 50 cycles.

  8. Battery Pack Thermal Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pesaran, Ahmad

    This presentation describes the thermal design of battery packs at the National Renewable Energy Laboratory. A battery thermal management system essential for xEVs for both normal operation during daily driving (achieving life and performance) and off-normal operation during abuse conditions (achieving safety). The battery thermal management system needs to be optimized with the right tools for the lowest cost. Experimental tools such as NREL's isothermal battery calorimeter, thermal imaging, and heat transfer setups are needed. Thermal models and computer-aided engineering tools are useful for robust designs. During abuse conditions, designs should prevent cell-to-cell propagation in a module/pack (i.e., keep themore » fire small and manageable). NREL's battery ISC device can be used for evaluating the robustness of a module/pack to cell-to-cell propagation.« less

  9. Highly reversible zinc metal anode for aqueous batteries

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Borodin, Oleg; Gao, Tao; Fan, Xiulin; Sun, Wei; Han, Fudong; Faraone, Antonio; Dura, Joseph A.; Xu, Kang; Wang, Chunsheng

    2018-06-01

    Metallic zinc (Zn) has been regarded as an ideal anode material for aqueous batteries because of its high theoretical capacity (820 mA h g-1), low potential (-0.762 V versus the standard hydrogen electrode), high abundance, low toxicity and intrinsic safety. However, aqueous Zn chemistry persistently suffers from irreversibility issues, as exemplified by its low coulombic efficiency (CE) and dendrite growth during plating/ stripping, and sustained water consumption. In this work, we demonstrate that an aqueous electrolyte based on Zn and lithium salts at high concentrations is a very effective way to address these issues. This unique electrolyte not only enables dendrite-free Zn plating/stripping at nearly 100% CE, but also retains water in the open atmosphere, which makes hermetic cell configurations optional. These merits bring unprecedented flexibility and reversibility to Zn batteries using either LiMn2O4 or O2 cathodes—the former deliver 180 W h kg-1 while retaining 80% capacity for >4,000 cycles, and the latter deliver 300 W h kg-1 (1,000 W h kg-1 based on the cathode) for >200 cycles.

  10. Ag-Cu nanoalloyed film as a high-performance cathode electrocatalytic material for zinc-air battery

    NASA Astrophysics Data System (ADS)

    Lei, Yimin; Chen, Fuyi; Jin, Yachao; Liu, Zongwen

    2015-04-01

    A novel Ag50Cu50 film electrocatalyst for oxygen reduction reaction (ORR) was prepared by pulsed laser deposition (PLD) method. The electrocatalyst actually is Ag-Cu alloyed nanoparticles embedded in amorphous Cu film, based on transmission electron microscopy (TEM) characterization. The rotating disk electrode (RDE) measurements provide evidence that the ORR proceed via a four-electron pathway on the electrocatalysts in alkaline solution. And it is much more efficient than pure Ag catalyst. The catalytic layer has maximum power density of 67 mW cm-2 and an acceptable cell voltage at 0.863 V when current densities increased up to 100 mA cm-2 in the Ag50Cu50-based primary zinc-air battery. The resulting rechargeable zinc-air battery exhibits low charge-discharge voltage polarization of 1.1 V at 20 mAcm-2 and high durability over 100 cycles in natural air.

  11. Bromine

    USGS Publications Warehouse

    Apodaca, Lori E.

    2010-01-01

    The entire U.S. production of bromine in 2009 came from underground brines in Arkansas, where it was the leading mineral commodity produced in terms of value. Two companies, Albermarle Corp. and Chemtura Corp., were responsible for bromine recovery. Worldwide, the United States is still the leading producer. However, U.S. dominance has decreased, as countries like China, Israel, Japan and Jordan have strengthened their positions as world producers of elemental bromine.

  12. Bipolar nickel-hydrogen battery design

    NASA Technical Reports Server (NTRS)

    Koehler, C. W.; Applewhite, A. Z.; Kuo, Y.

    1985-01-01

    The initial design for the NASA-Lewis advanced nickel-hydrogen battery is discussed. Fabrication of two 10-cell boilerplate battery stacks will soon begin. The test batteries will undergo characterization testing and low Earth orbit life cycling. The design effectively deals with waste heat generated in the cell stack. Stack temperatures and temperature gradients are maintained to acceptable limits by utilizing the bipolar conduction plate as a heat path to the active cooling fluid panel external to the edge of the cell stack. The thermal design and mechanical design of the battery stack together maintain a materials balance within the cell. An electrolyte seal on each cell frame prohibits electrolyte bridging. An oxygen recombination site and electrolyte reservoir/separator design does not allow oxygen to leave the cell in which it was generated.

  13. Bromination of Phenol

    ERIC Educational Resources Information Center

    Talbot, Christopher

    2013-01-01

    This "Science note" examines the bromination of phenol, a reaction that is commonly taught at A-level and IB (International Baccalaureate) as an example of electrophilic substitution. Phenol undergoes bromination with bromine or bromine water at room temperature. A white precipitate of 2,4,6-tribromophenol is rapidly formed. This…

  14. Stabilized nickel-zinc battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Himy, A.; Wagner, O.C.

    An alkaline nickel-zinc cell which has (1) a nickel-nickel hydroxide cathode; (2) a zinc-zinc oxide anode containing (A) a corrosion inhibitor such as PBO, SNO2, Tl2O3, in(OH)3 or mixtures thereof; (B) a slight corrosion accelerator such as cdo, bi2o3, ga2o3, or mixtures thereof; and (C) a zinc active material; (3) a mass-transport separator; (4) an alkaline electrolyte; and (5) means for charging the cell with an interrupted current having a frequency of from more than zero to 16 hertz with a rest period of not less than 60 milliseconds. Another desirable feature is the use of a pressure-cutoff switch tomore » terminate charging when the internal pressure of the cell reaches a selected value in the range of from 5 to 8 psig.« less

  15. Reclaiming the spent alkaline zinc manganese dioxide batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi0.5Mn1.5O4 materials.

    PubMed

    Ma, Ya; Cui, Yan; Zuo, Xiaoxi; Huang, Shanna; Hu, Keshui; Xiao, Xin; Nan, Junmin

    2014-10-01

    A process for reclaiming the materials in spent alkaline zinc manganese dioxide (Zn-Mn) batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi0.5Mn1.5O4 materials is presented. After dismantling battery cans, the iron cans, covers, electric rods, organic separator, label, sealing materials, and electrolyte are separated through the washing, magnetic separation, filtrating, and sieving operations. Then, the powder residues react with H2SO4 (2 mol L(-1)) solution to dissolve zinc under a liquid/solid ratio of 3:1 at room temperature, and subsequently, the electrolytic Zn with purity of ⩾99.8% is recovered in an electrolytic cell with a cathode efficiency of ⩾85% under the conditions of 37-40°C and 300 A m(-2). The most of MnO2 and a small quantity of electrolytic MnO2 are recovered from the filtration residue and the electrodeposit on the anode of electrolytic cell, respectively. The recovered manganese oxides are used to synthesize LiNi0.5Mn1.5O4 material of lithium-ion battery. The as-synthesized LiNi0.5Mn1.5O4 discharges 118.3 mAh g(-1) capacity and 4.7 V voltage plateau, which is comparable to the sample synthesized using commercial electrolytic MnO2. This process can recover the substances in the spent Zn-Mn batteries and innocuously treat the wastewaters, indicating that it is environmentally acceptable and applicable. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Microstructure Applications for Battery Design | Transportation Research |

    Science.gov Websites

    NREL Microstructure Applications for Battery Design Microstructure Applications for Battery Design NREL's Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) work includes simulating physics at the electrode microstructure level and created a virtual design tool for battery

  17. Development of a combined pyro- and hydro-metallurgical route to treat spent zinc-carbon batteries.

    PubMed

    Baba, A A; Adekola, A F; Bale, R B

    2009-11-15

    The potential of solvent extraction using Cynanex272 for the recovery of zinc from spent zinc carbon batteries after a prior leaching in hydrochloric acid has been investigated. The elemental analysis of the spent material was carried out by ICP-MS. The major metallic elements are: ZnO (41.30%), Fe(2)O(3) (4.38%), MnO(2) (2.69%), Al(2)O(3) (1.01%), CaO (0.36%) and PbO (0.11%). The quantitative leaching by hydrochloric acid showed that the dissolution rates are significantly influenced by temperature and concentration of the acid solutions. The experimental data for the dissolution rates have been analyzed and were found to follow the shrinking core model for mixed control reaction with surface chemical reaction as the rate-determining step. About 90.3% dissolution was achieved with 4M HCl solution at 80 degrees C with 0.050-0.063 mm particle size within 120 min at 360 rpm. Activation energy value of 22.78 kJ/mol and a reaction order of 0.74 with respect to H(+) ion concentration were obtained for the dissolution process. An extraction yield of 94.23% zinc by 0.032M Cyanex272 in kerosene was obtained from initial 10 g/L spent battery leach liquor at 25+/-2 degrees C and at optimal stirring time of 25 min. Iron has been effectively separated by precipitation prior to extraction using ammoniacal solution at pH 3.5, while lead and other trace elements were firstly separated from Zn and Fe by cementation prior to iron removal and zinc extraction. Finally, the stripping study showed that 0.1M HCl led to the stripping of about 95% of zinc from the organic phase.

  18. Zinc naphthalenedicarboxylate coordination complex: A promising anode material for lithium and sodium-ion batteries with good cycling stability.

    PubMed

    Fei, Hailong; Feng, Wenjing; Xu, Tan

    2017-02-15

    It is important to discover new, cheap and environmental friendly electrode materials with high capacity and good cycling stability for lithium and sodium-ion batteries. Zinc 1,4-naphthalenedicarboxylate was firstly found to be stable anode materials for lithium and sodium-ion batteries. The discharge capacity can be up to 468.9mAhg -1 after 100 cycles at a current density of 100mAg -1 for lithium-ion batteries, while the second discharge capacity of 320.7mAhg -1 was achieved as anode materials for sodium-ion batteries. A possible electrochemical reaction mechanism was discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Mechanically refuelable zinc/air electric vehicle cells

    NASA Astrophysics Data System (ADS)

    Noring, J.; Gordon, S.; Maimoni, A.; Spragge, M.; Cooper, J. F.

    1992-12-01

    Refuelable zinc/air batteries have long been considered for motive as well as stationary power because of a combination of high specific energy, low initial cost, and the possibility of mechanical recharge by electrolyte exchange and additions of metallic zinc. In this context, advanced slurry batteries, stationary packed bed cells, and batteries offering replaceable cassettes have been reported recently. The authors are developing self-feeding, particulate-zinc/air batteries for electric vehicle applications. Emissionless vehicle legislation in California motivated efforts to consider a new approach to providing an electric vehicle with long range (400 km), rapid refueling (10 minutes) and highway safe acceleration - factors which define the essential functions of common automobiles. Such an electric vehicle would not compete with emerging secondary battery vehicles in specialized applications (commuting vehicles, delivery trucks). Rather, different markets would be sought where long range or rapid range extension are important. Examples are: taxis, continuous-duty fork-lift trucks and shuttle busses, and general purpose automobiles having modest acceleration capabilities. In the long range, a mature fleet would best use regional plants to efficiently recover zinc from battery reaction products. One option would be to use chemical/thermal reduction to recover the zinc. The work described focuses on development of battery configurations which efficiently and completely consume zinc particles, without clogging or changing discharge characteristics.

  20. Study of oxygen gas production phenomenon during stand and discharge in silver-zinc batteries

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Standard production procedures for manufacturing silver zinc batteries are evaluated and modified to reduce oxygen generation during open circuit stand and discharge. Production predictions of several variable combinations using analysis models are listed for minimum gassing, with emphasis on the concentration of potassium hydroxide in plate formation. A recommendation for work optimizing the variables involved in plate processing is included.

  1. Dendrite-Free Nanocrystalline Zinc Electrodeposition from an Ionic Liquid Containing Nickel Triflate for Rechargeable Zn-Based Batteries.

    PubMed

    Liu, Zhen; Cui, Tong; Pulletikurthi, Giridhar; Lahiri, Abhishek; Carstens, Timo; Olschewski, Mark; Endres, Frank

    2016-02-18

    Metallic zinc is a promising anode material for rechargeable Zn-based batteries. However, the dendritic growth of zinc has prevented practical applications. Herein it is demonstrated that dendrite-free zinc deposits with a nanocrystalline structure can be obtained by using nickel triflate as an additive in a zinc triflate containing ionic liquid. The formation of a thin layer of Zn-Ni alloy (η- and γ-phases) on the surface and in the initial stages of deposition along with the formation of an interfacial layer on the electrode strongly affect the nucleation and growth of zinc. A well-defined and uniform nanocrystalline zinc deposit with particle sizes of about 25 nm was obtained in the presence of Ni(II) . Further, it is shown that the nanocrystalline Zn exhibits a high cycling stability even after 50 deposition/stripping cycles. This strategy of introducing an inorganic metal salt in ionic liquid electrolytes can be considered as an efficient way to obtain dendrite-free zinc. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Rubberized, Brominated Epoxies

    NASA Technical Reports Server (NTRS)

    Gilwee, W.; Kourtides, D.; Parker, J.; Nir, Z.

    1985-01-01

    Graphite/epoxy composite materials made with resins containing bromine and rubber additives. New composites tougher and more resistant to fire. Flame resistance increased by introducing bromine via commercial brominated flame-retartant polymeric additives.

  3. Composite substrate for bipolar electrodes

    DOEpatents

    Tekkanat, B.; Bolstad, J.J.

    1992-12-22

    Substrates for electrode systems, particularly those to be used for bipolar electrodes in zinc-bromine batteries, are disclosed. The substrates preferably include carbon-black as a conductive filler in a polymeric matrix, with reinforcing materials such as glass fibers. Warpage of the zinc-bromine electrodes which was experienced in the prior art and which was believed to be caused by physical expansion of the electrodes due to bromine absorption by the carbon-black, is substantially eliminated when new substrate fabrication techniques are employed. In the present invention, substrates are prepared using a lamination process known as glass mat reinforced thermoplastics technology or, in an alternate embodiment, the substrate is made using a slurry process. 4 figs.

  4. Composite substrate for bipolar electrodes

    DOEpatents

    Tekkanat, Bora; Bolstad, James J.

    1992-12-22

    Substrates for electrode systems, particularly those to be used for bipolar electrodes in zinc-bromine batteries, are disclosed. The substrates preferably include carbon-black as a conductive filler in a polymeric matrix, with reinforcing materials such as glass fibers. Warpage of the zinc-bromine electrodes which was experienced in the prior art and which was believed to be caused by physical expansion of the electrodes due to bromine absorption by the carbon-black, is substantially eliminated when new substrate fabrication techniques are employed. In the pesent invention, substrates are prepared using a lamination process known as glass mat reinforced thermoplastics technology or, in an alternate embodiment, the substrate is made using a slurry process.

  5. Novel Rechargeable M3V2(PO4)3//Zinc (M = Li, Na) Hybrid Aqueous Batteries with Excellent Cycling Performance

    PubMed Central

    Zhao, H. B.; Hu, C. J.; Cheng, H. W.; Fang, J. H.; Xie, Y. P.; Fang, W. Y.; Doan, T. N. L.; Hoang, T. K. A.; Xu, J. Q.; Chen, P.

    2016-01-01

    A rechargeable hybrid aqueous battery (ReHAB) containing NASICON-type M3V2(PO4)3 (M = Li, Na) as the cathodes and Zinc metal as the anode, working in Li2SO4-ZnSO4 aqueous electrolyte, has been studied. Both of Li3V2(PO4)3 and Na3V2(PO4)3 cathodes can be reversibly charge/discharge with the initial discharge capacity of 128 mAh g−1 and 96 mAh g−1 at 0.2C, respectively, with high up to 84% of capacity retention ratio after 200 cycles. The electrochemical assisted ex-XRD confirm that Li3V2(PO4)3 and Na3V2(PO4)3 are relative stable in aqueous electrolyte, and Na3V2(PO4)3 showed more complicated electrochemical mechanism due to the co-insertion of Li+ and Na+. The effect of pH of aqueous electrolyte and the dendrite of Zn on the cycling performance of as designed MVP/Zn ReHABs were investigated, and weak acidic aqueous electrolyte with pH around 4.0–4.5 was optimized. The float current test confirmed that the designed batteries are stable in aqueous electrolytes. The MVP//Zn ReHABs could be a potential candidate for future rechargeable aqueous battery due to their high safety, fast dynamic speed and adaptable electrochemical window. Moreover, this hybrid battery broadens the scope of battery material research from single-ion-involving to double-ions -involving rechargeable batteries. PMID:27174224

  6. Novel Rechargeable M3V2(PO4)3//Zinc (M = Li, Na) Hybrid Aqueous Batteries with Excellent Cycling Performance

    NASA Astrophysics Data System (ADS)

    Zhao, H. B.; Hu, C. J.; Cheng, H. W.; Fang, J. H.; Xie, Y. P.; Fang, W. Y.; Doan, T. N. L.; Hoang, T. K. A.; Xu, J. Q.; Chen, P.

    2016-05-01

    A rechargeable hybrid aqueous battery (ReHAB) containing NASICON-type M3V2(PO4)3 (M = Li, Na) as the cathodes and Zinc metal as the anode, working in Li2SO4-ZnSO4 aqueous electrolyte, has been studied. Both of Li3V2(PO4)3 and Na3V2(PO4)3 cathodes can be reversibly charge/discharge with the initial discharge capacity of 128 mAh g-1 and 96 mAh g-1 at 0.2C, respectively, with high up to 84% of capacity retention ratio after 200 cycles. The electrochemical assisted ex-XRD confirm that Li3V2(PO4)3 and Na3V2(PO4)3 are relative stable in aqueous electrolyte, and Na3V2(PO4)3 showed more complicated electrochemical mechanism due to the co-insertion of Li+ and Na+. The effect of pH of aqueous electrolyte and the dendrite of Zn on the cycling performance of as designed MVP/Zn ReHABs were investigated, and weak acidic aqueous electrolyte with pH around 4.0-4.5 was optimized. The float current test confirmed that the designed batteries are stable in aqueous electrolytes. The MVP//Zn ReHABs could be a potential candidate for future rechargeable aqueous battery due to their high safety, fast dynamic speed and adaptable electrochemical window. Moreover, this hybrid battery broadens the scope of battery material research from single-ion-involving to double-ions -involving rechargeable batteries.

  7. Software Tools for Battery Design | Transportation Research | NREL

    Science.gov Websites

    battery designers, developers, and manufacturers create affordable, high-performance lithium-ion (Li-ion Software Tools for Battery Design Software Tools for Battery Design Under the Computer-Aided ) batteries for next-generation electric-drive vehicles (EDVs). An image of a simulation of a battery pack

  8. Long life, rechargeable nickel-zinc battery

    NASA Technical Reports Server (NTRS)

    Luksha, E.

    1974-01-01

    A production version of the inorganic separator was evaluated for improving the life of the nickel-zinc system. Nickel-zinc cells (7-10 Ah capacities) of different electrode separator configurations were constructed and tested. The nickel-zinc cells using the inorganic separator encasing the zinc electrode, the nickel electrode, or both electrodes had shorter lives than cells using Visking and cellophane separation. Cells with the inorganic separation all fell below 70% of their theoretical capacity within 30 cycles, but the cells constructed with organic separation required 80 cycles. Failure of the cells using the ceramic separator was irreversible capacity degradation due to zinc loss through cracks developed in the inorganic separator. Zinc loss through the separator was minimized with the use of combinations of the inorganic separator with Visking and cellophane. Cells using the combined separation operated 130 duty cycles before degrading to 70% of their theoretical capacity.

  9. Batteries for Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Conover, R. A.

    1985-01-01

    Report summarizes results of test on "near-term" electrochemical batteries - (batteries approaching commercial production). Nickel/iron, nickel/zinc, and advanced lead/acid batteries included in tests and compared with conventional lead/acid batteries. Batteries operated in electric vehicles at constant speed and repetitive schedule of accerlerating, coasting, and braking.

  10. Rational Development of Neutral Aqueous Electrolytes for Zinc-Air Batteries.

    PubMed

    Clark, Simon; Latz, Arnulf; Horstmann, Birger

    2017-12-08

    Neutral aqueous electrolytes have been shown to extend both the calendar life and cycling stability of secondary zinc-air batteries (ZABs). Despite this promise, there are currently no modeling studies investigating the performance of neutral ZABs. Traditional continuum models are numerically insufficient to simulate the dynamic behavior of these complex systems because of the rapid, orders-of-magnitude concentration shifts that occur. In this work, we present a novel framework for modeling the cell-level performance of pH-buffered aqueous electrolytes. We apply our model to conduct the first continuum-scale simulation of secondary ZABs using aqueous ZnCl 2 -NH 4 Cl as electrolyte. We first use our model to interpret the results of two recent experimental studies of neutral ZABs, showing that the stability of the pH value is a significant factor in cell performance. We then optimize the composition of the electrolyte and the design of the cell considering factors including pH stability, final discharge product, and overall energy density. Our simulations predict that the effectiveness of the pH buffer is limited by slow mass transport and that chlorine-containing solids may precipitate in addition to ZnO. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Miniature fuel cells relieve gas pressure in sealed batteries

    NASA Technical Reports Server (NTRS)

    Frank, H. A.

    1971-01-01

    Miniature fuel cells within sealed silver zinc batteries consume evolved hydrogen and oxygen rapidly, preventing pressure rupturing. They do not significantly increase battery weight and they operate in all battery life phases. Complete gas pressure control requires two fuel cells during all phases of operation of silver zinc batteries.

  12. Battery selection for space experiments

    NASA Technical Reports Server (NTRS)

    Francisco, David R.

    1992-01-01

    This paper will delineate the criteria required for the selection of batteries as a power source for space experiments. Four basic types of batteries will be explored, lead acid, silver zinc, alkaline manganese and nickel cadmium. A detailed description of the lead acid and silver zinc cells while a brief exploration of the alkaline manganese and nickel cadmium will be given. The factors involved in battery selection such as packaging, energy density, discharge voltage regulation, and cost will be thoroughly examined. The pros and cons of each battery type will be explored. Actual laboratory test data acquired for the lead acid and silver zinc cell will be discussed. This data will include discharging under various temperature conditions, after three months of storage and with different types of loads. A description of the required maintenance for each type of battery will be investigated. The lifetime and number of charge/discharge cycles will be discussed.

  13. Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration

    PubMed Central

    Higashi, Shougo; Lee, Seok Woo; Lee, Jang Soo; Takechi, Kensuke; Cui, Yi

    2016-01-01

    Portable power sources and grid-scale storage both require batteries combining high energy density and low cost. Zinc metal battery systems are attractive due to the low cost of zinc and its high charge-storage capacity. However, under repeated plating and stripping, zinc metal anodes undergo a well-known problem, zinc dendrite formation, causing internal shorting. Here we show a backside-plating configuration that enables long-term cycling of zinc metal batteries without shorting. We demonstrate 800 stable cycles of nickel–zinc batteries with good power rate (20 mA cm−2, 20 C rate for our anodes). Such a backside-plating method can be applied to not only zinc metal systems but also other metal-based electrodes suffering from internal short circuits. PMID:27263471

  14. Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration

    NASA Astrophysics Data System (ADS)

    Higashi, Shougo; Lee, Seok Woo; Lee, Jang Soo; Takechi, Kensuke; Cui, Yi

    2016-06-01

    Portable power sources and grid-scale storage both require batteries combining high energy density and low cost. Zinc metal battery systems are attractive due to the low cost of zinc and its high charge-storage capacity. However, under repeated plating and stripping, zinc metal anodes undergo a well-known problem, zinc dendrite formation, causing internal shorting. Here we show a backside-plating configuration that enables long-term cycling of zinc metal batteries without shorting. We demonstrate 800 stable cycles of nickel-zinc batteries with good power rate (20 mA cm-2, 20 C rate for our anodes). Such a backside-plating method can be applied to not only zinc metal systems but also other metal-based electrodes suffering from internal short circuits.

  15. The electrical performance of Ag Zn batteries for the Venus multi-probe mission

    NASA Technical Reports Server (NTRS)

    Palandati, C.

    1975-01-01

    An evaluation of 5 Ah and 21 Ah Silver-Zinc batteries was made to determine their suitability to meet the energy storage requirements of the bus vehicle, 3 small probes and large probe for the Venus multi-probe mission. The evaluation included a 4 Ah battery for the small probe, a 21 Ah battery for the large probe, one battery of each size for the bus vehicle power, a periodic cycling test on each size battery and a wet stand test of charged and discharged cells of both cell designs. The study on the probe batteries and bus vehicle batteries included both electrical and thermal simulation for the entire mission. The effects on silver migration and zinc penetration of the cellophane separators caused by the various test parameters were determined by visual and X-ray fluorescence analysis. The 5 Ah batteries supported the power requirements for the bus vehicle and small probe. The 21 Ah large probe battery supplied the required mission power. Both probe batteries delivered in excess of 132 percent of rated capacity at the completion of the mission simulation.

  16. A Low-Cost Neutral Zinc-Iron Flow Battery with High Energy Density for Stationary Energy Storage.

    PubMed

    Xie, Congxin; Duan, Yinqi; Xu, Wenbin; Zhang, Huamin; Li, Xianfeng

    2017-11-20

    Flow batteries (FBs) are one of the most promising stationary energy-storage devices for storing renewable energy. However, commercial progress of FBs is limited by their high cost and low energy density. A neutral zinc-iron FB with very low cost and high energy density is presented. By using highly soluble FeCl 2 /ZnBr 2 species, a charge energy density of 56.30 Wh L -1 can be achieved. DFT calculations demonstrated that glycine can combine with iron to suppress hydrolysis and crossover of Fe 3+ /Fe 2+ . The results indicated that an energy efficiency of 86.66 % can be obtained at 40 mA cm -2 and the battery can run stably for more than 100 cycles. Furthermore, a low-cost porous membrane was employed to lower the capital cost to less than $ 50 per kWh, which was the lowest value that has ever been reported. Combining the features of low cost, high energy density and high energy efficiency, the neutral zinc-iron FB is a promising candidate for stationary energy-storage applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Bipolar Ag-Zn battery

    NASA Astrophysics Data System (ADS)

    Giltner, L. John

    1994-02-01

    The silver-zinc (AgZn) battery system has been unique in its ability to safely satisfy high power demand applications with low mass and volume. However, a new generation of defense, aerospace, and commercial applications will impose even higher power demands. These new power demands can be satisfied by the development of a bipolar battery design. In this configuration the power consuming, interelectrode current conductors are eliminated while the current is then conducted via the large cross-section electrode substrate. Negative and positive active materials are applied to opposite sides of a solid silver foil substrate. In addition to reducing the weight and volume required for a specified power level, the output voltage performance is also improved as follows. Reduced weight through: elimination of the plastic cell container; elimination of plate leads and intercell connector; and elimination of internal plate current collector. Increased voltage through: elimination of resistance of current collector; elimination of resistance of plate lead; and elimination of resistance of intercell connector. EPI worked previously on development of a secondary bipolar silver zinc battery. This development demonstrated the electrical capability of the system and manufacturing techniques. One difficulty with this development was mechanical problems with the seals. However, recent improvements in plastics and adhesives should eliminate the major problem of maintaining a seal around the periphery of the bipolar module. The seal problem is not as significant for a primary battery application or for a requirement for only a few discharge cycles. A second difficulty encountered was with activation (introducing electrolyte into the cell) and with venting gas from the cell without loss of electrolyte. During previous work, the following projections for energy density were made from test data for a high power system which demonstrated in excess of 50 discharge/charge cycles. Projected

  18. Bipolar Ag-Zn battery

    NASA Technical Reports Server (NTRS)

    Giltner, L. John

    1994-01-01

    The silver-zinc (AgZn) battery system has been unique in its ability to safely satisfy high power demand applications with low mass and volume. However, a new generation of defense, aerospace, and commercial applications will impose even higher power demands. These new power demands can be satisfied by the development of a bipolar battery design. In this configuration the power consuming, interelectrode current conductors are eliminated while the current is then conducted via the large cross-section electrode substrate. Negative and positive active materials are applied to opposite sides of a solid silver foil substrate. In addition to reducing the weight and volume required for a specified power level, the output voltage performance is also improved as follows. Reduced weight through: elimination of the plastic cell container; elimination of plate leads and intercell connector; and elimination of internal plate current collector. Increased voltage through: elimination of resistance of current collector; elimination of resistance of plate lead; and elimination of resistance of intercell connector. EPI worked previously on development of a secondary bipolar silver zinc battery. This development demonstrated the electrical capability of the system and manufacturing techniques. One difficulty with this development was mechanical problems with the seals. However, recent improvements in plastics and adhesives should eliminate the major problem of maintaining a seal around the periphery of the bipolar module. The seal problem is not as significant for a primary battery application or for a requirement for only a few discharge cycles. A second difficulty encountered was with activation (introducing electrolyte into the cell) and with venting gas from the cell without loss of electrolyte. During previous work, the following projections for energy density were made from test data for a high power system which demonstrated in excess of 50 discharge/charge cycles. Projected

  19. 14 CFR 27.1353 - Storage battery design and installation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Storage battery design and installation. 27... Equipment § 27.1353 Storage battery design and installation. (a) Each storage battery must be designed and... result when the battery is recharged (after previous complete discharge)— (1) At maximum regulated...

  20. 14 CFR 27.1353 - Storage battery design and installation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Storage battery design and installation. 27... Equipment § 27.1353 Storage battery design and installation. (a) Each storage battery must be designed and... result when the battery is recharged (after previous complete discharge)— (1) At maximum regulated...

  1. 14 CFR 27.1353 - Storage battery design and installation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Storage battery design and installation. 27... Equipment § 27.1353 Storage battery design and installation. (a) Each storage battery must be designed and... result when the battery is recharged (after previous complete discharge)— (1) At maximum regulated...

  2. 14 CFR 27.1353 - Storage battery design and installation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Storage battery design and installation. 27... Equipment § 27.1353 Storage battery design and installation. (a) Each storage battery must be designed and... result when the battery is recharged (after previous complete discharge)— (1) At maximum regulated...

  3. 14 CFR 27.1353 - Storage battery design and installation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Storage battery design and installation. 27... Equipment § 27.1353 Storage battery design and installation. (a) Each storage battery must be designed and... result when the battery is recharged (after previous complete discharge)— (1) At maximum regulated...

  4. Lithium Ion Battery Design and Safety

    NASA Technical Reports Server (NTRS)

    Au, George; Locke, Laura

    2001-01-01

    This viewgraph presentation makes several recommendations to ensure the safe and effective design of Lithium ion cell batteries. Large lithium ion cells require pressure switches and small cells require pressure disconnects and other safety devices with the ability to instantly interrupt flow. Other suggestions include specifications for batteries and battery chargers.

  5. Characterization of the products attained from a thermal treatment of a mix of zinc-carbon and alkaline batteries.

    PubMed

    Kuo, Yi-Ming; Lin, Chitsan; Wang, Jian-Wen; Huang, Kuo-Lin; Tsai, Cheng-Hsien; Wang, Chih-Ta

    2016-01-01

    This study applies a thermal separation process (TSP) to recover Fe, Mn, and Zn from hazardous spent zinc-carbon and alkaline batteries. In the TSP, the batteries were heated together with a reducing additive and the metals in batteries, according to their boiling points and densities, were found to move into three major output materials: slag, ingot (mainly Fe and Mn), and particulate (particularly Zn). The slag well encapsulated the heavy metals of interest and can be recycled for road pavement or building materials. The ingot had high levels of Fe (522,000 mg/kg) and Mn (253,000 mg/kg) and can serve as an additive for stainless steel-making processes. The particulate phase had a Zn level of 694,000 mg/kg which is high enough to be directly sold for refinement. Overall, the TSP effectively recovered valuable metals from the hazardous batteries.

  6. Plasma in-liquid method for reduction of zinc oxide in zinc nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Amaliyah, Novriany; Mukasa, Shinobu; Nomura, Shinfuku; Toyota, Hiromichi; Kitamae, Tomohide

    2015-02-01

    Metal air-batteries with high-energy density are expected to be increasingly applied in electric vehicles. This will require a method of recycling air batteries, and reduction of metal oxide by generating plasma in liquid has been proposed as a possible method. Microwave-induced plasma is generated in ethanol as a reducing agent in which zinc oxide is dispersed. Analysis by energy-dispersive x-ray spectrometry (EDS) and x-ray diffraction (XRD) reveals the reduction of zinc oxide. According to images by transmission electron microscopy (TEM), cubic and hexagonal metallic zinc particles are formed in sizes of 30 to 200 nm. Additionally, spherical fiber flocculates approximately 180 nm in diameter are present.

  7. Design Evaluation of High Reliability Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Buchman, R. C.; Helgeson, W. D.; Istephanous, N. S.

    1985-01-01

    Within one year, a lithium battery design can be qualified for device use through the application of accelerated discharge testing, calorimetry measurements, real time tests and other supplemental testing. Materials and corrosion testing verify that the battery components remain functional during expected battery life. By combining these various methods, a high reliability lithium battery can be manufactured for applications which require zero defect battery performance.

  8. Measurements of zinc absorption: application and interpretation in research designed to improve human zinc nutriture.

    PubMed

    Hambidge, K Michael; Miller, Leland V; Tran, Cuong D; Krebs, Nancy F

    2005-11-01

    The focus of this paper is on the application of measurements of zinc absorption in human research, especially studies designed to assess the efficacy of intervention strategies to prevent and manage zinc deficiency in populations. Emphasis is given to the measurement of quantities of zinc absorbed rather than restricting investigations to measurements of fractional absorption of zinc. This is especially important when determining absorption of zinc from the diet, whether it be the habitual diet or an intervention diet under evaluation. Moreover, measurements should encompass all meals for a minimum of one day with the exception of some pilot studies. Zinc absorption is primarily via an active saturable transport process into the enterocytes of the proximal small intestine. The relationship between quantity of zinc absorbed and the quantity ingested is best characterized by saturable binding models. When applied to human studies that have sufficient data to examine dose-response relationships, efficiency of absorption is high until approximately 50-60% maximal absorption is achieved, even with moderate phytate intakes. This also coincides approximately with the quantity of absorbed zinc necessary to meet physiologic requirements. Efficiency of absorption with intakes that exceed this level is low or very low. These observations have important practical implications for the design and interpretation of intervention studies to prevent zinc deficiency. They also suggest the potential utility of measurements of the quantity of zinc absorbed when evaluating the zinc status of populations.

  9. Battery selection for Space Shuttle experiments

    NASA Technical Reports Server (NTRS)

    Francisco, David R.

    1993-01-01

    This paper will delineate the criteria required for the selection of batteries as a power source for space experiments. Four basic types of batteries will be explored, lead acid, silver zinc, alkaline manganese, and nickel cadmium. A detailed description of the lead acid and silver zinc cells and a brief exploration of the alkaline manganese and nickel cadmium will be given. The factors involved in battery selection such as packaging, energy density, discharge voltage regulation, and cost will be thoroughly examined. The pros and cons of each battery type will be explored. Actual laboratory test data acquired for the lead acid and silver zinc cell will be discussed. This data will include discharging under various temperature conditions, after three months of storage, and with different types of loads. The lifetime and number of charge/discharge cycles will also be discussed. A description of the required maintenance for each type of battery will be investigated.

  10. The NASA Aerospace Battery Safety Handbook

    NASA Technical Reports Server (NTRS)

    Halpert, Gerald; Subbarao, Surampudi; Rowlette, John J.

    1986-01-01

    This handbook has been written for the purpose of acquainting those involved with batteries with the information necessary for the safe handling, storage, and disposal of these energy storage devices. Included in the document is a discussion of the cell and battery design considerations and the role of the components within a cell. The cell and battery hazards are related to user- and/or manufacturer-induced causes. The Johnson Space Center (JSC) Payload Safety Guidelines for battery use in Shuttle applications are also provided. The electrochemical systems are divided into zinc anode and lithium anode primaries, secondary cells, and fuel cells. Each system is briefly described, typical applications are given, advantages and disadvantages are tabulated, and most importantly, safety hazards associated with its use are given.

  11. The 1997 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C. (Compiler)

    1998-01-01

    This document contains the proceedings of the 30th annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on November 18-20, 1997. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world. The subjects covered included nickel-cadmium, nickel-hydrogen, nickel-metal hydride, lithium, lithium-ion, and silver-zinc technologies, as well as various aspects of nickel electrode design.

  12. Organic electrolyte-based rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate as a cathode material

    NASA Astrophysics Data System (ADS)

    Chae, Munseok S.; Heo, Jongwook W.; Kwak, Hunho H.; Lee, Hochun; Hong, Seung-Tae

    2017-01-01

    This study demonstrates an organic electrolyte-based rechargeable zinc-ion battery (ZIB) using Prussian blue (PB) analogue potassium nickel hexacyanoferrate K0.86Ni[Fe(CN)6]0.954(H2O)0.766 (KNF-086) as the cathode material. KNF-086 is prepared via electrochemical extraction of potassium ions from K1.51Ni[Fe(CN)6]0.954(H2O)0.766 (KNF-151). The cell is composed of a KNF-086 cathode, a zinc metal anode, and a 0.5 M Zn(ClO4)2 acetonitrile electrolyte. This cell shows a reversible discharge capacity of 55.6 mAh g-1 at 0.2 C rate with the discharge voltage at 1.19 V (vs. Zn2+/Zn). As evidenced by Fourier electron density analysis with powder XRD data, the zinc-inserted phase is confirmed as Zn0.32K0.86Ni[Fe(CN)6]0.954(H2O)0.766 (ZKNF-086), and the position of the zinc ion in ZKNF-086 is revealed as the center of the large interstitial cavities of the cubic PB. Compared to KNF-086, ZKNF-086 exhibits a decreased unit cell parameter (0.9%) and volume (2.8%) while the interatomic distance of d(Fe-C) increased (from 1.84 to 1.98 Å), and the oxidation state of iron decreases from 3 to 2.23. The organic electrolyte system provides higher zinc cycling efficiency (>99.9%) than the aqueous system (ca. 80%). This result demonstrates an organic electrolyte-based ZIB, and offers a crucial basis for understanding the electrochemical intercalation chemistry of zinc ions in organic electrolytes.

  13. Response of nickel to zinc cells to electric vehicle chopper discharge waveforms

    NASA Technical Reports Server (NTRS)

    Cataldo, R. L.

    1981-01-01

    The preliminary results of simulated electric vehicle chopper controlled discharge of a Nickel/Zinc battery shows delivered energy increases of 5 to 25 percent compared to constant current discharges of the same average current. The percentage increase was a function of chopper frequency, the ratio of peak to average current, and the magnitude of the discharge current. Because the chopper effects are of a complex nature, electric vehicle battery/speed controller interaction must be carefully considered in vehicle design to optimize battery performance.

  14. Chelating ionic liquids for reversible zinc electrochemistry.

    PubMed

    Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R

    2013-05-21

    Advanced, high energy-density, metal-air rechargeable batteries, such as zinc-air, are of intense international interest due to their important role in energy storage applications such as electric and hybrid vehicles, and to their ability to deal with the intermittency of renewable energy sources such as solar and wind. Ionic liquids offer a number of ideal thermal and physical properties as potential electrolytes in such large-scale energy storage applications. We describe here the synthesis and characterisation of a family of novel "chelating" ILs designed to chelate and solubilize the zinc ions to create electrolytes for this type of battery. These are based on quaternary alkoxy alkyl ammonium cations of varying oligo-ether side chains and anions such as p-toluene sulfonate, bis(trifluoromethylsulfonyl)amide and dicyanoamides. This work shows that increasing the ether chain length in the cation from two to four oxygens can increase the ionic conductivity and reduce the melting point from 67 °C to 15 °C for the tosylate system. Changing the anion also plays a significant role in the nature of the zinc deposition electrochemistry. We show that zinc can be reversibly deposited from [N(222(20201))][NTf2] and [N(222(202020201))][NTf2] beginning at -1.4 V and -1.7 V vs. SHE, respectively, but not in the case of tosylate based ILs. This indicates that the [NTf2] is a weaker coordinating anion with the zinc cation, compared to the tosylate anion, allowing the coordination of the ether chain to dominate the behavior of the deposition and stripping of zinc ions.

  15. Development of single cell protectors for sealed silver-zinc cells, phase 1

    NASA Technical Reports Server (NTRS)

    Imamura, M. S.; Donovan, R. L.; Lear, J. W.; Murray, B.

    1976-01-01

    A single cell protector (SCP) assembly capable of protecting a single silver-zinc (Ag Zn) battery cell was designed, fabricated, and tested. The SCP provides cell-level protection against overcharge and overdischarge by a bypass circuit. The bypass circuit consists of a magnetic-latching relay that is controlled by the high and low-voltage limit comparators. Although designed specifically for secondary Ag-Zn cells, the SCP is flexible enough to be adapted to other rechargeable cells. Eighteen SCPs were used in life testing of an 18-cell battery. The cells were sealed Ag-Zn system with inorganic separators. For comparison, another 18-cell battery was subjected to identical life test conditions, but with battery-level protection rather than cell-level. An alternative approach to the SCP design in the form of a microprocessor-based system was conceptually designed. The comparison of SCP and microprocessor approaches is also presented and a preferred approach for Ag-Zn battery protection is discussed.

  16. Mathematical modeling of a primary zinc/air battery

    NASA Technical Reports Server (NTRS)

    Mao, Z.; White, R. E.

    1992-01-01

    The mathematical model developed by Sunu and Bennion has been extended to include the separator, precipitation of both solid ZnO and K2Zn(OH)4, and the air electrode, and has been used to investigate the behavior of a primary Zn-Air battery with respect to battery design features. Predictions obtained from the model indicate that anode material utilization is predominantly limited by depletion of the concentration of hydroxide ions. The effect of electrode thickness on anode material utilization is insignificant, whereas material loading per unit volume has a great effect on anode material utilization; a higher loading lowers both the anode material utilization and delivered capacity. Use of a thick separator will increase the anode material utilization, but may reduce the cell voltage.

  17. Chlorine hazard evaluation for the zinc-chlorine electric vehicle battery. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zalosh, R.G.; Bajpai, S.N.; Short, T.P.

    1980-04-01

    An evaluation of the hazards associated with conceivable accidental chlorine releases from zinc-chlorine electric vehicle batteries is presented. Since commercial batteries are not yet available, this hazard assessment is based both on theoretical chlorine dispersion models and small-scale and large-scale spill tests with chlorine hydrate. Six spill tests involving chlorine hydrate indicate that the danger zone in which chlorine vapor concentrations intermittently exceed 100 ppM extends at least 23 m directly downwind of a spill onto a warm road surface. Chlorine concentration data from the hydrate spill tests compare favorably with calculations based on a quasi-steady area source dispersion modelmore » and empirical estimates of the hydrate decomposition rate. The theoretical dispersion model has been combined with assumed hydrate spill probabilities and current motor vehicle accident statistics in order to project expected chlorine-induced fatality rates. These calculations indicate that expected chlorine fatality rates are several times higher in a city with a warm and calm climate than in a colder and windier city. Calculated chlorine-induced fatality rate projections for various climates are presented as a function of hydrate spill probability in order to illustrate the degree of vehicle/battery crashworthiness required to maintain chlorine-induced fatality rates below current vehicle fatility rates due to fires and asphyxiations.« less

  18. Design optimization of GaAs betavoltaic batteries

    NASA Astrophysics Data System (ADS)

    Chen, Haiyanag; Jiang, Lan; Chen, Xuyuan

    2011-06-01

    GaAs junctions are designed and fabricated for betavoltaic batteries. The design is optimized according to the characteristics of GaAs interface states and the diffusion length in the depletion region of GaAs carriers. Under an illumination of 10 mCi cm-2 63Ni, the open circuit voltage of the optimized batteries is about ~0.3 V. It is found that the GaAs interface states induce depletion layers on P-type GaAs surfaces. The depletion layer along the P+PN+ junction edge isolates the perimeter surface from the bulk junction, which tends to significantly reduce the battery dark current and leads to a high open circuit voltage. The short circuit current density of the optimized junction is about 28 nA cm-2, which indicates a carrier diffusion length of less than 1 µm. The overall results show that multi-layer P+PN+ junctions are the preferred structures for GaAs betavoltaic battery design.

  19. Nickel-based rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Shukla, A. K.; Venugopalan, S.; Hariprakash, B.

    Nickel-iron (Ni-Fe), nickel-cadmium (Ni-Cd), nickel-hydrogen (Ni-H 2), nickel-metal hydride (Ni-MH) and nickel-zinc (Ni-Zn) batteries employ nickel oxide electrodes as the positive plates, and are hence, categorised as nickel-based batteries. This article highlights the operating principles and advances made in these battery systems during the recent years. In particular, significant improvements have been made in the Ni-MH batteries which are slowly capturing the market occupied by the ubiquitous Ni-Cd batteries.

  20. Recovery of zinc and manganese, and other metals (Fe, Cu, Ni, Co, Cd, Cr, Na, K) from Zn-MnO2 and Zn-C waste batteries: Hydroxyl and carbonate co-precipitation from solution after reducing acidic leaching with use of oxalic acid

    NASA Astrophysics Data System (ADS)

    Sobianowska-Turek, A.; Szczepaniak, W.; Maciejewski, P.; Gawlik-Kobylińska, M.

    2016-09-01

    The article discusses the current situation of the spent batteries and portable accumulators management. It reviews recycling technologies of the spent batteries and portable accumulators which are used in the manufacturing installations in the world. Also, it presents the authors' research results on the reductive acidic leaching of waste material of the zinc-carbon batteries (Zn-C) and zinc-manganese batteries (alkaline Zn-MnO2) delivered by a company dealing with mechanical treatment of this type of waste stream. The research data proved that the reductive acidic leaching (H2SO4 + C2H2O4) of the battery's black mass allows to recover 85.0% of zinc and 100% of manganese. Moreover, it was found that after the reductive acidic leaching it is possible to recover nearly 100% of manganese, iron, cadmium, and chromium, 98.0% of cobalt, 95.5% of zinc, and 85.0% of copper and nickel from the solution with carbonate method. On the basis of the results, it is possible to assume that the carbonate method can be used for the preparation of manganese-zinc ferrite.

  1. Zinc-oxygen battery development program

    NASA Technical Reports Server (NTRS)

    Bourland, Deborah S.

    1991-01-01

    The purpose of this Zinc-Oxygen development program is to incorporate the improved air/oxygen cathode and zinc anode technology developed in recent years into relatively large cells (150-200 amp/hr, 25-100 hour rate) and smaller high rate cells (9-12 amp/hr, 3-12 hour rate). Existing commercial cells manufactured by Duracell and Rayovac are currently being utilized on the Space Shuttle Orbiter in a mini-oscilloscope, the crew radio, and other crew equipment. These applications provide a basis for other Orbiter systems that require portable, storable, electrical power as well as emergency power for the Space Station major payload systems power and for Space Station equipment applications.

  2. Initial testing of two DEMI (Driesbach Electromotive Inc. ) Model 4E zinc-air rechargeable cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, J.E.; Martin, M.E.

    1989-10-23

    The purpose of this document is to report the results of INEL laboratory testing of two DEMI 4E Aerobic Power Battery Cells (collectively designated Pack 46 in INEL records). The 4E Aerobic Power Battery is a secondary battery developed privately by Driesbach Electromotive Inc. (DEMI). The battery employs zinc as the anode and a bifunctional air cathode. This testing was performed as the first phase of a cooperative agreement between INEL and DEMI leading to the construction and testing of electric vehicle-size cells, to be followed eventually by a battery pack. 3 refs., 3 figs., 5 tabs.

  3. Applications technology satellites battery and power system design

    NASA Technical Reports Server (NTRS)

    Ford, F. E.; Bemis, B.

    1977-01-01

    A summary of the ATS battery design which is onboard the Applications Technology Satellite (ATS) is provided. The 15 ampere hour nickel cadmium cells were manufactured by Gulton, 19 series connected cells per battery, and there are two batteries in each spacecraft. The operating design life was two years in a synchronous orbit, and a maximum depth of discharge of 50 percent. The design temperature for the batteries in the spacecraft was 0 to 25 C, and the charge control consisted of 1 volt versus temperature on a constant percentage voltage. Also, C/10 current limit, and a commandable trickle charge rate, using C/20 or C/60. The undervoltage was sent across a 9 cell and a 10 cell group, and it was set at one volt average per group on either group.

  4. New Lithium-ion Polymer Battery for the Extravehicular Mobility Unit Suit

    NASA Technical Reports Server (NTRS)

    Jeevarajan, J. A.; Darcy, E. C.

    2004-01-01

    The Extravehicular Mobility Unit (EMU) suit currently has a silver-zinc battery that is 20.5 V and 45 Ah capacity. The EMU's portable life support system (PLSS) will draw power from the battery during the entire period of an EVA. Due to the disadvantages of using the silver-zinc battery in terms of cost and performance, a new high energy density battery is being developed for future use, The new battery (Lithium-ion battery or LIB) will consist of Li-ion polymer cells that will provide power to the EMU suit. The battery design consists of five 8 Ah cells in parallel to form a single module of 40 Ah and five such modules will be placed in series to give a 20.5 V, 40 Ah battery. Charging will be accomplished on the Shuttle or Station using the new LIB charger or the existing ALPS (Air Lock Power Supply) charger. The LIB delivers a maximum of 3.8 A on the average, for seven continuous hours, at voltages ranging from 20.5 V to 16.0 V and it should be capable of supporting transient pulses during start up and once every hour to support PLSS fan and pump operation. Figure 1 shows the placement of the battery in the backpack area of the EMU suit. The battery and cells will undergo testing under different conditions to understand its performance and safety characteristics.

  5. Rechargeable Zinc Alkaline Anodes for Long-Cycle Energy Storage

    DOE PAGES

    Turney, Damon E.; Gallaway, Joshua W.; Yadav, Gautam G.; ...

    2017-05-03

    Zinc alkaline anodes command significant share of consumer battery markets and are a key technology for the emerging grid-scale battery market. Improved understanding of this electrode is required for long-cycle deployments at kWh and MWh scale due to strict requirements on performance, cost, and safety. For this article, we give a modern literature survey of zinc alkaline anodes with levelized performance metrics and also present an experimental assessment of leading formulations. Long-cycle materials characterization, performance metrics, and failure analysis are reported for over 25 unique anode formulations with up to 1500 cycles and ~1.5 years of shelf life per test.more » Statistical repeatability of these measurements is made for a baseline design (fewest additives) via 15 duplicates. Baseline design capacity density is 38 mAh per mL of anode volume, and lifetime throughput is 72 Ah per mL of anode volume. We then report identical measurements for anodes with improved material properties via additives and other perturbations, some of which achieve capacity density over 192 mAh per mL of anode volume and lifetime throughput of 190 Ah per mL of anode volume. Novel in operando X-ray microscopy of a cycling zinc paste anode reveals the formation of a nanoscale zinc material that cycles electrochemically and replaces the original anode structure over long-cycle life. Ex situ elemental mapping and other materials characterization suggest that the key physical processes are hydrogen evolution reaction (HER), growth of zinc oxide nanoscale material, concentration deficits of OH – and ZnOH 4 2–, and electrodeposition of Zn growths outside and through separator membranes.« less

  6. Rechargeable Zinc Alkaline Anodes for Long-Cycle Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turney, Damon E.; Gallaway, Joshua W.; Yadav, Gautam G.

    Zinc alkaline anodes command significant share of consumer battery markets and are a key technology for the emerging grid-scale battery market. Improved understanding of this electrode is required for long-cycle deployments at kWh and MWh scale due to strict requirements on performance, cost, and safety. For this article, we give a modern literature survey of zinc alkaline anodes with levelized performance metrics and also present an experimental assessment of leading formulations. Long-cycle materials characterization, performance metrics, and failure analysis are reported for over 25 unique anode formulations with up to 1500 cycles and ~1.5 years of shelf life per test.more » Statistical repeatability of these measurements is made for a baseline design (fewest additives) via 15 duplicates. Baseline design capacity density is 38 mAh per mL of anode volume, and lifetime throughput is 72 Ah per mL of anode volume. We then report identical measurements for anodes with improved material properties via additives and other perturbations, some of which achieve capacity density over 192 mAh per mL of anode volume and lifetime throughput of 190 Ah per mL of anode volume. Novel in operando X-ray microscopy of a cycling zinc paste anode reveals the formation of a nanoscale zinc material that cycles electrochemically and replaces the original anode structure over long-cycle life. Ex situ elemental mapping and other materials characterization suggest that the key physical processes are hydrogen evolution reaction (HER), growth of zinc oxide nanoscale material, concentration deficits of OH – and ZnOH 4 2–, and electrodeposition of Zn growths outside and through separator membranes.« less

  7. Effect of temperature on the performances and in situ polarization analysis of zinc-nickel single flow batteries

    NASA Astrophysics Data System (ADS)

    Cheng, Yuanhui; Zhang, Huamin; Lai, Qinzhi; Li, Xianfeng; Zheng, Qiong; Xi, Xiaoli; Ding, Cong

    2014-03-01

    The recently proposed high power density zinc-nickel single flow batteries (ZNBs) exhibit great potential for larger scale energy storage. The urgent needs are in the research into temperature adaptability of ZNBs before practical utilization. Furthermore, making clear their polarization distribution is essential to direct the further improvement of battery performance. Here, we focus on the trends in the polarization distribution and effect of temperature on the performance of ZNBs. The result shows that ZNBs can operate in the temperature range from 0 °C to 40 °C with acceptable energy efficiency (53%-79.1%) at 80 mA cm-2. The temperature sensitivity of coulombic efficiency and energy efficiency are 0.65% °C-1 and 0.98% °C-1 at 0 °C-20 °C, respectively. The positive polarization is much larger than the negative polarization at all studied temperatures. The charge overpotential of the positive electrode is more sensitive to temperature. These results enable us to better evaluate the application prospect of ZNBs and point a clear struggling orientation to further improve the battery performance.

  8. Galileo probe battery systems design

    NASA Technical Reports Server (NTRS)

    Dagarin, B. P.; Van Ess, J. S.; Marcoux, L. S.

    1986-01-01

    NASA's Galileo mission to Jupiter will consist of a Jovian orbiter and an atmospheric entry probe. The power for the probe will be derived from two primary power sources. The main source is composed of three Li-SO2 battery modules containing 13 D-size cell strings per module. These are required to retain capacity for 7.5 years, support a 150 day clock, and a 7 hour mission sequence of increasing loads from 0.15 to 9.5 amperes for the last 30 minutes. This main power source is supplemented by two thermal batteries (CaCrO4-Ca) for use in firing the pyrotechnic initiators during the atmospheric staging events. This paper describes design development and testing of these batteries at the system level.

  9. Process optimization and leaching kinetics of zinc and manganese metals from zinc-carbon and alkaline spent batteries using citric acid reagent

    NASA Astrophysics Data System (ADS)

    Yuliusman; Amiliana, R. A.; Wulandari, P. T.; Huda, M.; Kusumadewi, F. A.

    2018-03-01

    Zn-Carbon and Alkaline spent batteries contains heavy metals, such as zinc and manganese, which can causes environmental problem if not handled properly. Usually the recovery of these metals were done by leaching method using strong acid, but the use of strong acids as leaching reagents can be harmful to the environment. This paper concerns the recovery of Zn and Mn metals from Zn-C and alkaline spent batteries with leaching method using citric acid as the environmental friendly leaching reagent. The leaching conditions using citric acid were optimized and the leaching kinetics of Zn and Mn in citric acid solution was investigated. The leaching of 89.62% Zn and 63.26% Mn was achieved with 1.5 M citric acid, 90°C temperature, and 90 minutes stirring time. Kinetics data for the dissolution of Zn showed the best fit to chemical control shrinking core model, while the diffusion controlled model was suitable for the dissolution of Mn kinetics data. The activation energy of 6.12 and 1.73 kcal/mol was acquired for the leaching of Zn and Mn in the temperature range 60°C-90°C.

  10. JPL's electric and hybrid vehicles project: Project activities and preliminary test results. [power conditioning and battery charge efficiency

    NASA Technical Reports Server (NTRS)

    Barber, T. A.

    1980-01-01

    Efforts to achieve a 100 mile urban range, to reduce petroleum usage 40% to 70%, and to commercialize battery technology are discussed with emphasis on an all plastic body, four passenger car that is flywheel assisted and battery powered, and on an all metal body, four passenger car with front wheel drive and front motor. For the near term case, a parallel hybrid in which the electric motor and the internal combustion engine may directly power the drive wheels, is preferred to a series design. A five passenger car in which the electric motor and the gasoline engine both feed into the same transmission is discussed. Upgraded demonstration vehicles were tested using advanced lead acid, nickel zinc, nickel iron, and zinc chloride batteries to determine maximum acceleration, constant speed, and battery behavior. The near term batteries demonstrated significant improvement relative to current lead acid batteries. The increase in range was due to improved energy density, and ampere hour capacity, with relatively 1 small weight and volume differences.

  11. Design considerations for rechargeable lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, D. H.; Huang, C.-K.; Davies, E.; Perrone, D.; Surampudi, S.; Halpert, Gerald

    1993-01-01

    Viewgraphs of a discussion of design considerations for rechargable lithium batteries. The objective is to determine the influence of cell design parameters on the performance of Li-TiS2 cells. Topics covered include cell baseline design and testing, cell design and testing, cell design parameters studies, and cell cycling performance.

  12. Gravitational effects on electrochemical batteries

    NASA Technical Reports Server (NTRS)

    Meredith, R. E.; Juvinall, G. L.; Uchiyama, A. A.

    1972-01-01

    The existing work on gravitational effects on electrochemical batteries is summarized, certain conclusions are drawn, and recommendations are made for future activities in this field. The effects of sustained high-G environments on cycle silver-zinc and nickel-cadmium cells have been evaluated over four complete cycles in the region of 10 to 75 G. Although no effects on high current discharge performances or on ampere-hour capacity were noted, severe zinc migration and sloughing of active material from the zinc electrode were observed. This latter effect constitutes real damage, and over a long period of time would result in loss of capacity. It is recommended that a zero-G battery experiment be implemented. Both an orbiting satellite and a sounding rocket approach are being considered.

  13. Advanced Dependent Pressure Vessel (DPV) nickel-hydrogen spacecraft cell and battery design

    NASA Technical Reports Server (NTRS)

    Coates, Dwaine; Wright, Doug; Repplinger, Ron

    1995-01-01

    The dependent pressure vessel (DPV) nickel-hydrogen (NiH2) battery is being developed as a potential spacecraft battery design for both military and commercial satellites. Individual pressure vessel (IPV) NiH2 batteries are currently flying on more than 70 Earth orbital satellites and have accumulated more than 140,000,000 cell-hours in actual spacecraft operation. The limitations of standard NiH2 IPV flight battery technology are primarily related to the internal cell design and the battery packaging issues associated with grouping multiple cylindrical cells. The DPV cell design offers higher specific energy and reduced cost, while retaining the established IPV NiH2 technology flight heritage and database. The advanced cell design offers a more efficient mechanical, electrical and thermal cell configuration and a reduced parts count. The internal electrode stack is a prismatic flat-plate arrangement. The flat individual cell pressure vessel provides a maximum direct thermal path for removing heat from the electrode stack. The cell geometry also minimizes multiple-cell battery packaging constraints by using an established end-plateltie-rod battery design. A major design advantage is that the battery support structure is efficiently required to restrain only the force applied to a portion of the end cell. As the cells are stacked in series to achieve the desired system voltage, this increment of the total battery weight becomes small. The geometry of the DPV cell promotes compact, minimum volume packaging and places all cell terminals along the length of the battery. The resulting ability to minimize intercell wiring offers additional design simplicity and significant weight savings. The DPV battery design offers significant cost and weight savings advantages while providing minimal design risks. Cell and battery level design issues will be addressed including mechanical, electrical and thermal design aspects. A design performance analysis will be presented at both

  14. Economic considerations of battery recycling based on the Recytec process

    NASA Astrophysics Data System (ADS)

    Ammann, Pierre

    The Recytec process is successfully operated on a continuous industrial base since autumn 1994. All the products are regularly re-used without any problems and environmental limits are fully respected. The European Community Battery Directive is valid since many years and only a few countries like Switzerland and The Netherlands have implemented it in national guidelines. In the meantime, battery producers have accepted the necessity of the recycling of mercury-free batteries in order to prevent the contamination of municipal waste streams by other heavy metals, such as zinc and cadmium. Recycling processes like the Recytec process are considered by the battery producers as highly expensive and they are looking for cheaper alternatives. Steel works are confronted with a market change and have to produce less quantities of better quality steels with more stringent environmental limits. The electric arc furnace (EAF), one of the chosen battery destruction techniques, is producing 20% of the European steel. Even if the battery mixes contain only mercury-free batteries, the residual mercury content and the zinc concentration will be too high to insure a good steel quality, if all collected batteries will be fed in EAF. In Waelz kilns (production of zinc oxide concentrates for zinc producers) the situation is the same with regard to the residual mercury concentration and environmental limits. Sorting technologies for the separation of battery mixes into the different battery chemistries will presently fail because the re-users of these sorted mercury-free batteries are not able to accept raw waste batteries but they are interested in some fractions of them. This means that in any case pretreatment is an unavoidable step before selective reclamation of waste batteries. The Recytec process is the low-cost partner in a global strategy for battery recycling. This process is very flexible and will be able to follow, with slight and inexpensive adaptations of the equipment

  15. Mineral Resource of the Month: Bromine

    USGS Publications Warehouse

    Schnebele, Emily

    2015-01-01

    Bromine, along with mercury, is one of only two elements that are liquid at room temperature. Bromine is a highly volatile and corrosive reddish-brown liquid that evaporates easily and converts to a metal at extreme pressures — above about 540,000 times atmospheric pressure. Bromine occurs in seawater, evaporitic (salt) lakes and underground brines associated with petroleum deposits. 

  16. End-of-life Zn-MnO2 batteries: electrode materials characterization.

    PubMed

    Cabral, Marta; Pedrosa, F; Margarido, F; Nogueira, C A

    2013-01-01

    Physical and chemical characterization of several sizes and shapes of alkaline and saline spent Zn-MnO2 batteries was carried out, aiming at contributing for a better definition of the applicable recycling processes. The characterization essays included the mass balance of the components, cathode and anode elemental analysis, the identification of zinc and manganese bearing phases and the morphology analysis of the electrode particles. The electrode materials correspond to 64-79% of the total weigh of the batteries, with the cathodes having clearly the highest contribution (usually more than 50%). The steel components, mainly from the cases, are also important (17-30%). Elemental analysis showed that the electrodes are highly concentrated in zinc (from 48-87% in anodes) and manganese (from 35-50% in cathodes). X-Ray powder diffraction allowed for identifying several phases in the electrodes, namely zinc oxide, in the anodes of all the types of saline and alkaline batteries tested, while zinc hydroxide chloride and ammine zinc chloride only appear in some types of saline batteries. The manganese found in the cathode materials is present as two main phases, MnO x Mn2O3 and ZnO x Mn2O3, the latter corroborating that zinc migration from anode to cathode occurs during the batteries lifespan. A unreacted MnO2 phase was also found presenting a low crystalline level. Leaching trials with diluted HCI solutions of alkaline and saline battery samples showed that all zinc species are reactive attaining easily over than 90% leaching yields, and about 30% of manganese, present as Mn(II/III) forms. The MnO2 phase is less reactive and requires higher temperatures to achieve a more efficient solubilization.

  17. Heavy Atom Effect of Bromine Significantly Enhances Exciton Utilization of Delayed Fluorescence Luminogens.

    PubMed

    Gan, Shifeng; Hu, Shimin; Li, Xiang-Long; Zeng, Jiajie; Zhang, Dongdong; Huang, Tianyu; Luo, Wenwen; Zhao, Zujin; Duan, Lian; Su, Shi-Jian; Tang, Ben Zhong

    2018-05-23

    Raising triplet exciton utilization of pure organic luminescent materials is of significant importance for efficiency advancement of organic light-emitting diodes (OLEDs). Herein, by introducing bromine atom(s) onto a typical molecule (bis(carbazol-9-yl)-4,5-dicyanobenzene) with thermally activated delayed fluorescence, we demonstrate that the heavy atom effect of bromine can increase spin-orbit coupling and promote the reverse intersystem crossing, which endow the molecules with more distinct delayed fluorescence. In consequence, the triplet exciton utilization is improved greatly with the increase of bromine atoms, affording apparently advanced external quantum efficiencies of OLEDs. Utilizing the enhancement effect of bromine atoms on delayed fluorescence should be a simple and promising design concept for efficient organic luminogens with high exciton utilization.

  18. New separators for nickel-zinc batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1976-01-01

    Flexible separators consisting of a substrate coated with a mixture of a polymer and organic and inorganic additives were cycle tested in nickel-zinc cells. By substituting a rubber-based resin for polyphenylene oxide in the standard inorganic-organic separator, major improvements in both cell life and flexibility were made. Substituting newsprint for asbestos as the substrate shows promise for use on the zinc electrode and reduces separator cost. The importance of ample electrolyte in the cells was noted. Cycle lives and the characteristics of these flexible, low-cost separators were compared with those of a standard microporous polypropylene separator.

  19. Fail-safe designs for large capacity battery systems

    DOEpatents

    Kim, Gi-Heon; Smith, Kandler; Ireland, John; Pesaran, Ahmad A.; Neubauer, Jeremy

    2016-05-17

    Fail-safe systems and design methodologies for large capacity battery systems are disclosed. The disclosed systems and methodologies serve to locate a faulty cell in a large capacity battery, such as a cell having an internal short circuit, determine whether the fault is evolving, and electrically isolate the faulty cell from the rest of the battery, preventing further electrical energy from feeding into the fault.

  20. Hydrophobic, Porous Battery Boxes

    NASA Technical Reports Server (NTRS)

    Bragg, Bobby J.; Casey, John E., Jr.

    1995-01-01

    Boxes made of porous, hydrophobic polymers developed to contain aqueous potassium hydroxide electrolyte solutions of zinc/air batteries while allowing air to diffuse in as needed for operation. Used on other types of batteries for in-cabin use in which electrolytes aqueous and from which gases generated during operation must be vented without allowing electrolytes to leak out.

  1. Design, Build and Qualification of 28 Volt Lithium-Ion battery

    NASA Technical Reports Server (NTRS)

    Curzon, D.; Spurrett, R.; Rao, G.

    2003-01-01

    Contents include the following: 1. GSFC performance specifications requirements. 2. AEA philosophy: battery configuration. 3. AEA battery design: SONY cell, cell screening, 20Ah and 60Ah. 4. Testing: 20Ah battery qualification (environmental); 60Ah battery LEO life cycle. 5. Conclusion.: summary and lessons learned.

  2. Nickelzinc Batteries for RPV Applications.

    DTIC Science & Technology

    1981-06-01

    batteries used in the BQM-34A target drones are: 1) The secondary nickel-zinc system is able to provide superior Amp-Hr capacity with respect to volume as...7) MAR-5013 Flight Test batteries, have been constructed and shipped to Tyndall AFB for testing in the BQM- 34A remotely piloted target drone . The...ditioning.The seventh battery was lost on a flight mission when the target drone was shot down. Refer to Table 16 for a summary of battery history prior

  3. Electrode pattern design for GaAs betavoltaic batteries

    NASA Astrophysics Data System (ADS)

    Haiyang, Chen; Jianhua, Yin; Darang, Li

    2011-08-01

    The sensitivities of betavoltaic batteries and photovoltaic batteries to series and parallel resistance are studied. Based on the study, an electrode pattern design principle of GaAs betavoltaic batteries is proposed. GaAs PIN junctions with and without the proposed electrode pattern are fabricated and measured under the illumination of 63Ni. Results show that the proposed electrode can reduce the backscattering and shadowing for the beta particles from 63Ni to increase the GaAs betavoltaic battery short circuit currents effectively but has little impact on the fill factors and ideal factors.

  4. Limiting factors to advancing thermal battery technology for naval applications

    NASA Astrophysics Data System (ADS)

    Davis, Patrick B.; Winchester, Clinton S.

    1991-10-01

    Thermal batteries are primary reserve electrochemical power sources using molten salt electrolyte which experience little effective aging while in storage or dormant deployment. Thermal batteries are primarily used in military applications, and are currently used in a wide variety of Navy devices such as missiles, torpedoes, decays, and training targets, usually as power supplies in guidance, propulsion, and Safe/Arm applications. Technology developments have increased the available energy and power density ratings by an order of magnitude in the last ten years. Present thermal batteries, using lithium anodes and metal sulfide cathodes, are capable of performing applications where only less rugged and more expensive silver oxide/zinc or silver/magnesium chloride seawater batteries could serve previously. Additionally, these batteries are capable of supplanting lithium/thionyl chloride reserve batteries in a variety of specifically optimized designs. Increases in thermal battery energy and power density capabilities are not projected to continue with the current available technology. Several battery designs are now at the edge of feasibility and safety. Since future naval systems are likely to require continued growth of battery energy and power densities, there must be significant advances in battery technology. Specifically, anode alloy composition and new cathode materials must be investigated to allow for safe development and deployment of these high power, higher energy density batteries.

  5. 40 CFR 721.3085 - Brominated phthalate ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Brominated phthalate ester. 721.3085... Substances § 721.3085 Brominated phthalate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as brominated phthalate ester (PMN P-90-581) is...

  6. 40 CFR 721.3085 - Brominated phthalate ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Brominated phthalate ester. 721.3085... Substances § 721.3085 Brominated phthalate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as brominated phthalate ester (PMN P-90-581) is...

  7. 40 CFR 721.3085 - Brominated phthalate ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Brominated phthalate ester. 721.3085... Substances § 721.3085 Brominated phthalate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as brominated phthalate ester (PMN P-90-581) is...

  8. Horizontal and vertical structure of reactive bromine events probed by bromine monoxide MAX-DOAS

    NASA Astrophysics Data System (ADS)

    Simpson, William R.; Peterson, Peter K.; Frieß, Udo; Sihler, Holger; Lampel, Johannes; Platt, Ulrich; Moore, Chris; Pratt, Kerri; Shepson, Paul; Halfacre, John; Nghiem, Son V.

    2017-08-01

    Heterogeneous photochemistry converts bromide (Br-) to reactive bromine species (Br atoms and bromine monoxide, BrO) that dominate Arctic springtime chemistry. This phenomenon has many impacts such as boundary-layer ozone depletion, mercury oxidation and deposition, and modification of the fate of hydrocarbon species. To study environmental controls on reactive bromine events, the BRomine, Ozone, and Mercury EXperiment (BROMEX) was carried out from early March to mid-April 2012 near Barrow (Utqiaġvik), Alaska. We measured horizontal and vertical gradients in BrO with multiple-axis differential optical absorption spectroscopy (MAX-DOAS) instrumentation at three sites, two mobile and one fixed. During the campaign, a large crack in the sea ice (an open lead) formed pushing one instrument package ˜ 250 km downwind from Barrow (Utqiaġvik). Convection associated with the open lead converted the BrO vertical structure from a surface-based event to a lofted event downwind of the lead influence. The column abundance of BrO downwind of the re-freezing lead was comparable to upwind amounts, indicating direct reactions on frost flowers or open seawater was not a major reactive bromine source. When these three sites were separated by ˜ 30 km length scales of unbroken sea ice, the BrO amount and vertical distributions were highly correlated for most of the time, indicating the horizontal length scales of BrO events were typically larger than ˜ 30 km in the absence of sea ice features. Although BrO amount and vertical distribution were similar between sites most of the time, rapid changes in BrO with edges significantly smaller than this ˜ 30 km length scale episodically transported between the sites, indicating BrO events were large but with sharp edge contrasts. BrO was often found in shallow layers that recycled reactive bromine via heterogeneous reactions on snowpack. Episodically, these surface-based events propagated aloft when aerosol extinction was higher (> 0.1 km

  9. Graphite fiber intercalation: Dynamics of the bromine intercalation process

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Zinolabedini, R.

    1985-01-01

    The resistance of pitch-based graphite fibers was monitored, in situ, during a series of bromine intercalation experiments. The threshold pressure for the bromine intercalation of pitch-based fibers was estimated to be 102 torr. When the bromine atmosphere was removed from the reaction chamber, the resistivity of the intercalated graphite fibers increased consistently. This increase was attributed to loss of bromine from the perimeter of the fiber. The loss was confirmed by mapping the bromine concentration across the diameter of single intercalated fibers with either energy dispersive spectroscopy or scanning Auger microscopy. A statistical study comparing fibers intercalated in bromine vapor with fibers intercalated in bromine liquid showed that similar products were obtained with both methods of intercalation.

  10. Hydrogen-bromine fuel cell advance component development

    NASA Technical Reports Server (NTRS)

    Charleston, Joann; Reed, James

    1988-01-01

    Advanced cell component development is performed by NASA Lewis to achieve improved performance and longer life for the hydrogen-bromine fuel cells system. The state-of-the-art hydrogen-bromine system utilizes the solid polymer electrolyte (SPE) technology, similar to the SPE technology developed for the hydrogen-oxygen fuel cell system. These studies are directed at exploring the potential for this system by assessing and evaluating various types of materials for cell parts and electrode materials for Bromine-hydrogen bromine environment and fabricating experimental membrane/electrode-catalysts by chemical deposition.

  11. 21 CFR 180.30 - Brominated vegetable oil.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES PERMITTED IN FOOD OR IN CONTACT WITH FOOD ON AN INTERIM BASIS PENDING ADDITIONAL STUDY Specific Requirements for Certain Food Additives § 180.30 Brominated vegetable oil. The food additive brominated... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Brominated vegetable oil. 180.30 Section 180.30...

  12. Self-Assembled NiO/Ni(OH)2 Nanoflakes as Active Material for High-Power and High-Energy Hybrid Rechargeable Battery.

    PubMed

    Lee, Dong Un; Fu, Jing; Park, Moon Gyu; Liu, Hao; Ghorbani Kashkooli, Ali; Chen, Zhongwei

    2016-03-09

    Herein, a proof-of-concept of novel hybrid rechargeable battery based on electrochemical reactions of both nickel-zinc and zinc-air batteries is demonstrated using NiO/Ni(OH)2 nanoflakes self-assembled into mesoporous spheres as the active electrode material. The hybrid battery operates on two sets of fundamentally different battery reactions combined at the cell level, unlike in other hybrid systems where batteries of different reactions are simply connected through an external circuitry. As a result of combining nickel-zinc and zinc-air reactions, the hybrid battery demonstrates both remarkably high power density (volumetric, 14 000 W L(-1); gravimetric, 2700 W kg(-1)) and energy density of 980 W h kg(-1), significantly outperforming the performances of a conventional zinc-air battery. Furthermore, the hybrid battery demonstrates excellent charge rate capability up to 10 times faster than the rate of discharge without any capacity and voltage degradations, which makes it highly suited for large-scale applications such as electric vehicle propulsion and smart-grid energy storage.

  13. Metal-Organic Frameworks as Highly Active Electrocatalysts for High-Energy Density, Aqueous Zinc-Polyiodide Redox Flow Batteries.

    PubMed

    Li, Bin; Liu, Jian; Nie, Zimin; Wang, Wei; Reed, David; Liu, Jun; McGrail, Pete; Sprenkle, Vincent

    2016-07-13

    The new aqueous zinc-polyiodide redox flow battery (RFB) system with highly soluble active materials as well as ambipolar and bifunctional designs demonstrated significantly enhanced energy density, which shows great potential to reduce RFB cost. However, the poor kinetic reversibility and electrochemical activity of the redox reaction of I3(-)/I(-) couples on graphite felts (GFs) electrode can result in low energy efficiency. Two nanoporous metal-organic frameworks (MOFs), MIL-125-NH2 and UiO-66-CH3, that have high surface areas when introduced to GF surfaces accelerated the I3(-)/I(-) redox reaction. The flow cell with MOF-modified GFs serving as a positive electrode showed higher energy efficiency than the pristine GFs; increases of about 6.4% and 2.7% occurred at the current density of 30 mA/cm(2) for MIL-125-NH2 and UiO-66-CH3, respectively. Moreover, UiO-66-CH3 is more promising due to its excellent chemical stability in the weakly acidic electrolyte. This letter highlights a way for MOFs to be used in the field of RFBs.

  14. 40 CFR 461.70 - Applicability; description of the zinc subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Applicability; description of the zinc...) EFFLUENT GUIDELINES AND STANDARDS BATTERY MANUFACTURING POINT SOURCE CATEGORY Zinc Subcategory § 461.70 Applicability; description of the zinc subcategory. This subpart applies to discharges to waters of the United...

  15. 40 CFR 461.70 - Applicability; description of the zinc subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the zinc...) EFFLUENT GUIDELINES AND STANDARDS BATTERY MANUFACTURING POINT SOURCE CATEGORY Zinc Subcategory § 461.70 Applicability; description of the zinc subcategory. This subpart applies to discharges to waters of the United...

  16. An advanced Ni-Cd battery cell design

    NASA Technical Reports Server (NTRS)

    Miller, L.

    1986-01-01

    The evolution of an advanced Ni-Cd space battery cell design continues to prove very promising. High oxygen/hydrogen gas recombination rates (currently up to a C/5 charge rate) and increased electrolyte activation level tolerance (currently up to 5.6 grams Ah of positive capacity) were demonstrated by test. A superior performance, extended life battery cell offering advantages should soon be available for mission applications

  17. A facile synthesis of zinc oxide/multiwalled carbon nanotube nanocomposite lithium ion battery anodes by sol-gel method

    NASA Astrophysics Data System (ADS)

    Köse, Hilal; Karaal, Şeyma; Aydın, Ali Osman; Akbulut, Hatem

    2015-11-01

    Free standing zinc oxide (ZnO) and multiwalled carbon nanotube (MWCNT) nanocomposite materials are prepared by a sol gel technique giving a new high capacity anode material for lithium ion batteries. Free-standing ZnO/MWCNT nanocomposite anodes with two different chelating agent additives, triethanolamine (TEA) and glycerin (GLY), yield different electrochemical performances. Field emission gun scanning electron microscopy (FEG-SEM), energy dispersive X-ray spectrometer (EDS), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) analyses reveal the produced anode electrodes exhibit a unique structure of ZnO coating on the MWCNT surfaces. Li-ion cell assembly using a ZnO/MWCNT/GLY free-standing anode and Li metal cathode possesses the best discharge capacity, remaining as high as 460 mAh g-1 after 100 cycles. This core-shell structured anode can offer increased energy storage and performance over conventional anodes in Li-ion batteries.

  18. Electrolyte Loss Tendencies of Primary Silver-Zinc Cells

    NASA Technical Reports Server (NTRS)

    Thaller, Lawrence H.; Juvinall, Gordon L.

    1997-01-01

    Since silver zinc cells are not hermetically sealed, care must be taken to prevent the loss of electrolyte which can result in shorting paths within the battery box. Prelaunch battery processing is important in being able to minimize any problems with expelled electrolyte.

  19. Overview of the Design, Development, and Application of Nickel-hydrogen Batteries

    NASA Technical Reports Server (NTRS)

    Thaller, Lawrence H.; Zimmerman, Albert H.

    2003-01-01

    This document provides an overview of the design, development, and application of nickel-hydrogen (Ni-H2) battery technology for aerospace applications. It complements and updates the information presented in NASA RP-1314, NASA Handbook for Nickel- Hydrogen Batteries, published in 1993. Since that time, nickel-hydrogen batteries have become widely accepted for aerospace energy storage requirements and much more has been learned. The intent of this document is to capture some of that additional knowledge. This document addresses various aspects of nickel-hydrogen technology including the electrochemical reactions, cell component design, and selection considerations; overall cell and battery design considerations; charge control considerations; and manufacturing issues that have surfaced over the years that nickel-hydrogen battery technology has been the major energy storage technology for geosynchronous and low-Earth-orbiting satellites.

  20. EMU Battery/module Service Tool Characterization Study

    NASA Technical Reports Server (NTRS)

    Palandati, C. F.

    1984-01-01

    The power tool which will be used to replace the attitude control system in the SMM spacecraft is being modified to operate from a self contained battery. The extravehicular mobility unit (EMU) battery, a silver zinc battery, was tested for the power tool application. The results obtained during show the EMU battery is capable of operating the power tool within the pulse current range of 2.0 to 15.0 amperes and battery temperature range of -10 to 40 degrees Celsius.

  1. Design and simulation of liquid cooled system for power battery of PHEV

    NASA Astrophysics Data System (ADS)

    Wang, Jianpeng; Xu, Haijun; Xu, Xiaojun; Pan, Cunyun

    2017-09-01

    Various battery chemistries have different responses to failure, but the most common failure mode of a cell under abusive conditions is the generation of heat and gas. To prevent battery thermal abuse, a battery thermal management system is essential. An excellent design of battery thermal management system can ensure that the battery is working at a suitable temperature and keeps the battery temperature diffenence at 2-3 °C. This paper presents a thermal-elcetric coupling model for a 37Ah lithium battery using AMESim. A liquid cooled system of hybrid electric vehicle power battery is designed to control the battery temperature.A liquid cooled model of thermal management system is built using AMESim, the simulation results showed that the temperature difference within 3°C of cell in the pack.

  2. Systems Maturity Assessment of the Lithium Ion Battery for Extravehicular Mobility Unit Project

    NASA Technical Reports Server (NTRS)

    Russell, Samuel P.

    2011-01-01

    The Long Life (Lithium Ion) Battery (LLB/LIB) is designed to replace the current Extravehicular Mobility Unit (EMU) Silver/Zinc (Ag/Zn) Increased Capacity Battery (ICB), which is used to provide power to the Primary Life Support Subsystem (PLSS) during Extravehicular Activities (EVAs). The LLB (a battery based on commercial lithium ion cell technology) is designed to have the same electrical and mechanical interfaces as the current ICB. The EMU LIB Charger is designed to charge, discharge, and condition the LLB either in a charger-strapped configuration or in an EMU-mounted configuration. This paper will retroactively apply the principles of Systems Maturity Assessment to the LLB project through use of the Integration Readiness Level and Earned Readiness Management. The viability of this methodology will be considered for application to new and existing technology development projects.

  3. Mariner Mars 1971 battery design, test, and flight performance

    NASA Technical Reports Server (NTRS)

    Bogner, R. S.

    1973-01-01

    The design, integration, fabrication, test results, and flight performance of the battery system for the Mariner Mars spacecraft launched in May 1971 are presented. The battery consists of 26 20-Ah hermetically sealed nickel-cadmium cells housed in a machined magnesium chassis. The battery package weighs 29.5 kg and is unique in that the chassis also serves as part of the spacecraft structure. Active thermal control is accomplished by louvers mounted to the battery baseplate. Battery charge is accomplished by C/10 and C/30 constant current chargers. The switch from the high-rate to low-rate charge is automatic, based on terminal voltage. Additional control is possible by ground command or onboard computer. The performance data from the flight battery is compared to the data from various battery tests in the laboratory. Flight battery data was predictable based on ground test data.

  4. Bromine accumulation in acidic black colluvial soils

    NASA Astrophysics Data System (ADS)

    Martínez Cortizas, Antonio; Ferro Vázquez, Cruz; Kaal, Joeri; Biester, Harald; Costa Casais, Manuela; Taboada Rodríguez, Teresa; Rodríguez Lado, Luis

    2016-02-01

    Recent investigations showed that bromine is incorporated to soil organic matter (SOM), its content increasing with humification. But few research was done on its long-term accumulation and the role played by pedogenetic processes, as those involved in organic matter stabilization. We investigated bromine content and distribution in four deep, acidic, organic-rich, Holocene soils from an oceanic area of Western Europe. Bromine concentrations (93-778 μg g-1) in the silt + clay (<50 μm) fraction were on average 3-times higher than those (17-250 μg g-1) in the fine earth (<2 mm), the former containing almost all bromine (90 ± 5%). Inventories were between 148 and 314 g m-2, indicating a rather large variability in a small area, and total estimated retention was low (6-16%). The degree of SOM bromination, expressed as the Br/C molar ratio, varied between 0.03 and 1.20 mmol Br/mol C. The ratio was highly correlated (n = 23, r2 0.88, p < 0.01) with the age of the SOM for the last ∼12 ka. Partial least squares modeling indicates that bromine concentration depends on the amount of organic matter stabilized as aluminium-OM associations, and to a lesser extent on soil acidity (pH) and iron-OM associations. Thus, at scales of thousands of years, bromine accumulation in acidic soils is linked to the pool of metal-clay-stabilized organic matter.

  5. The milling of pristine and brominated P-100 graphite fibers

    NASA Technical Reports Server (NTRS)

    Dillehay, M. E.; Gaier, J. R.

    1986-01-01

    Techniques were developed for the ball milling of pristine and brominated P-100 graphite fibers. Because of the lubrication properties of graphite, large ball loads (50 percent by volume) were required. Use of 2-propanol as a milling medium enhanced the efficiency of the process. Milled brominated P-100 fibers had resistivities which were indistinguishable from milled pristine P-100 fibers. Apparent loss of bromine from the brominated fibers suggests that bromine would not be the intercalate of choice in applications where milled fibers of this type are required. Other intercalates which do not degas may be more appropriate for a milled fiber application. These same results, however, do provide evidence that bromine molecules leave the fiber surface when removed from overpressure of bromine. While exploring possible solvent media for milling purposes, it was found that brominated fibers are stable in a wide variety of organic solvents.

  6. A high power lithium thionyl chloride battery for space applications

    NASA Technical Reports Server (NTRS)

    Shah, Pinakin M.

    1993-01-01

    A high power, 28 V, 330 A h, active lithium thionyl chloride battery has been developed for use as main and payload power sources on an expendable launch vehicle. Nine prismatic cells, along with the required electrical components and a built-in heater system, are efficiently packaged resulting in significant weight savings over presently used silver-zinc batteries. The high rate capability is achieved by designing the cells with a large electrochemical surface area and impregnating an electrocatalyst, polymeric phthalocyanine, into the carbon cathodes. Passivation effects are reduced with the addition of sulfur dioxide into the thionyl chloride electrolyte solution. The results of conducting a detailed thermal analysis are utilized to establish the heater design parameters and the thermal insulation requirements of the battery. An analysis of cell internal pressure and vent characteristics clearly illustrates the margins of safety under different operating conditions. Performance of fresh cells is discussed using polarization scan and discharge data at different rates and temperatures. Self-discharge rate is estimated based upon test results on cells after storage. Results of testing a complete prototype battery are described.

  7. Exploring the Model Design Space for Battery Health Management

    NASA Technical Reports Server (NTRS)

    Saha, Bhaskar; Quach, Cuong Chi; Goebel, Kai Frank

    2011-01-01

    Battery Health Management (BHM) is a core enabling technology for the success and widespread adoption of the emerging electric vehicles of today. Although battery chemistries have been studied in detail in literature, an accurate run-time battery life prediction algorithm has eluded us. Current reliability-based techniques are insufficient to manage the use of such batteries when they are an active power source with frequently varying loads in uncertain environments. The amount of usable charge of a battery for a given discharge profile is not only dependent on the starting state-of-charge (SOC), but also other factors like battery health and the discharge or load profile imposed. This paper presents a Particle Filter (PF) based BHM framework with plug-and-play modules for battery models and uncertainty management. The batteries are modeled at three different levels of granularity with associated uncertainty distributions, encoding the basic electrochemical processes of a Lithium-polymer battery. The effects of different choices in the model design space are explored in the context of prediction performance in an electric unmanned aerial vehicle (UAV) application with emulated flight profiles.

  8. Abiotic Bromination of Soil Organic Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leri, Alessandra C.; Ravel, Bruce

    Biogeochemical transformations of plant-derived soil organic matter (SOM) involve complex abiotic and microbially mediated reactions. One such reaction is halogenation, which occurs naturally in the soil environment and has been associated with enzymatic activity of decomposer organisms. Building on a recent finding that naturally produced organobromine is ubiquitous in SOM, we hypothesized that inorganic bromide could be subject to abiotic oxidations resulting in bromination of SOM. Through lab-based degradation treatments of plant material and soil humus, we have shown that abiotic bromination of particulate organic matter occurs in the presence of a range of inorganic oxidants, including hydrogen peroxide andmore » assorted forms of ferric iron, producing both aliphatic and aromatic forms of organobromine. Bromination of oak and pine litter is limited primarily by bromide concentration. Fresh plant material is more susceptible to bromination than decayed litter and soil humus, due to a labile pool of mainly aliphatic compounds that break down during early stages of SOM formation. As the first evidence of abiotic bromination of particulate SOM, this study identifies a mechanistic source of the natural organobromine in humic substances and the soil organic horizon. Formation of organobromine through oxidative treatments of plant material also provides insights into the relative stability of aromatic and aliphatic components of SOM.« less

  9. Abiotic Bromination of Soil Organic Matter.

    PubMed

    Leri, Alessandra C; Ravel, Bruce

    2015-11-17

    Biogeochemical transformations of plant-derived soil organic matter (SOM) involve complex abiotic and microbially mediated reactions. One such reaction is halogenation, which occurs naturally in the soil environment and has been associated with enzymatic activity of decomposer organisms. Building on a recent finding that naturally produced organobromine is ubiquitous in SOM, we hypothesized that inorganic bromide could be subject to abiotic oxidations resulting in bromination of SOM. Through lab-based degradation treatments of plant material and soil humus, we have shown that abiotic bromination of particulate organic matter occurs in the presence of a range of inorganic oxidants, including hydrogen peroxide and assorted forms of ferric iron, producing both aliphatic and aromatic forms of organobromine. Bromination of oak and pine litter is limited primarily by bromide concentration. Fresh plant material is more susceptible to bromination than decayed litter and soil humus, due to a labile pool of mainly aliphatic compounds that break down during early stages of SOM formation. As the first evidence of abiotic bromination of particulate SOM, this study identifies a mechanistic source of the natural organobromine in humic substances and the soil organic horizon. Formation of organobromine through oxidative treatments of plant material also provides insights into the relative stability of aromatic and aliphatic components of SOM.

  10. Bromine-Chlorine Coupling in the Antarctic Ozone Hole

    NASA Technical Reports Server (NTRS)

    Danilin, Michael Y.; Sze, Nien-Dak; Ko, Malcolm K. W.; Rodriquez, Jose M.; Prather, Michael J.

    1996-01-01

    The contribution from the chlorine and bromine species in the formation of the Antarctic ozone hole is evaluated. Since chlorine and bromine compounds are of different industrial origin, it is desirable, from a policy point of view, to be able to attribute chlorine-catalyzed loss of ozone with those reactions directly involving chlorine species, and likewise for bromine-catalyzed loss. In the stratosphere, however, most of the chemical families are highly coupled, and, for example, changes in the chlorine abundance will alter the partitioninig in other families and thus the rate of ozone loss. This modeling study examines formation of the Antarctic ozone hole for a wide range of bromine concentrations (5 - 25 pptv) and for chlorine concentrations typical of the last two decades (1.5, 2.5 and 3.5 ppbv). We follow the photochemical evolution of a single parcel of air, typical of the inner Antarctic vortex (50 mbar, 70 deg. S, NO(sub y) = 2 ppbv, with Polar Stratospheric Clouds(PSC)) from August 1 to November 1. For all of these ranges of chlorine and bromine loading, we would predict a substantial ozone hole (local depletion greater than 90%) within the de-nitrified, PSC- perturbed vortex. The contributions of the different catalytic cycles responsible for ozone loss are tabulated. The deep minimum in ozone is driven primarily by the chlorine abundance. As bromine levels decrease, the magnitude of the chlorine-catalyzed ozone loss increases to take up the slack. This is because bromine suppresses ClO by accelerating the conversion of ClO an Cl2O2 back to HCI. For this range of conditions, the local relative efficiency of ozone destruction per bromine atom to that per chlorine atom (alpha-factor) ranges from 33 to 55, decreasing with increase of bromine.

  11. Development and testing of a high cycle life 30 A-h sealed AgO-Zn battery

    NASA Technical Reports Server (NTRS)

    Bogner, R. S.

    1972-01-01

    A two-phase program was initiated to investigate design parameters and technology to develop an improved AgO-Zn battery. The basic performance goal was 100 charge/discharge cycles (22 h/2 h) at 50 percent depth of discharge following a six-month period of charged stand at room temperature. Phase 1, cell evaluation, involved testing 70 cells in five-cell groups. The major design variables were active material ratios, electrolyte concentrations, separator systems, and negative plate shape. Phase 1 testing showed that cycle life could be improved 10 percent to 20 percent by using greater ratios of zinc to silver oxide and higher electrolyte concentrations. Wedge-shaped negatives increased cycle life by nearly 100 percent. Phase 2 battery evaluation, which was initiated before the Phase 1 results were known completely, involved evaluation of six designs as 19-cell batteries. Only one battery exceeded 100 cycles following nine months charged stand.

  12. Design of a 1-kWh bipolar nickel hydrogen battery

    NASA Technical Reports Server (NTRS)

    Cataldo, R. L.

    1984-01-01

    The design of a nickel hydrogen battery utilizing bipolar construction in a common pressure vessel is discussed. Design features are as follows: 40 ampere-hour capcity, 1 kWh stored energy as a 24 cell battery, 1.8 kW delivered in a LEO Cycle and maximum pulse power of 18.0 kW.

  13. Real-Time X-ray Imaging Reveals Interfacial Growth, Suppression, and Dissolution of Zinc Dendrites Dependent on Anions of Ionic Liquid Additives for Rechargeable Battery Applications.

    PubMed

    Song, Yuexian; Hu, Jiugang; Tang, Jia; Gu, Wanmiao; He, Lili; Ji, Xiaobo

    2016-11-23

    The dynamic interfacial growth, suppression, and dissolution of zinc dendrites have been studied with the imidazolium ionic liquids (ILs) as additives on the basis of in situ synchrotron radiation X-ray imaging. The phase contrast difference of real-time images indicates that zinc dendrites are preferentially developed on the substrate surface in the ammoniacal electrolytes. After adding imidazolium ILs, both nucleation overpotential and polarization extent increase in the order of additive-free < EMI-Cl < EMI-PF 6 < EMI-TFSA < EMI-DCA. The real-time X-ray images show that the EMI-Cl can suppress zinc dendrites, but result in the formation of the loose deposits. The EMI-PF 6 and EMI-TFSA additives can smooth the deposit morphology through suppressing the initiation and growth of dendritic zinc. The addition of EMI-DCA increases the number of dendrite initiation sites, whereas it decreases the growth rate of dendrites. Furthermore, the dissolution behaviors of zinc deposits are compared. The zinc dendrites show a slow dissolution process in the additive-free electrolyte, whereas zinc deposits are easily detached from the substrate in the presence of EMI-Cl, EMI-PF 6 , or EMI-TFSA due to the formation of the loose structure. Hence, the dependence of zinc dendrites on anions of imidazolium IL additives during both electrodeposition and dissolution processes has been elucidated. These results could provide the valuable information in perfecting the performance of zinc-based rechargeable batteries.

  14. Nucleation and growth in alkaline zinc electrodeposition An Experimental and Theoretical study

    NASA Astrophysics Data System (ADS)

    Desai, Divyaraj

    The current work seeks to investigate the nucleation and growth of zinc electrodeposition in alkaline electrolyte, which is of commercial interest to alkaline zinc batteries for energy storage. The morphology of zinc growth places a severe limitation on the typical cycle life of such batteries. The formation of mossy zinc leads to a progressive deterioration of battery performance while zinc dendrites are responsible for sudden catastrophic battery failure. The problems are identified as the nucleation-controlled formation of mossy zinc and the transport-limited formation of dendritic zinc. Consequently, this thesis work seeks to investigate and accurately simulate the conditions under which such morphologies are formed. The nucleation and early-stage growth of Zn electrodeposits is studied on carbon-coated TEM grids. At low overpotentials, the morphology develops by aggregation at two distinct length scales: ~5 nm diameter monocrystalline nanoclusters form ~50nm diameter polycrystalline aggregates, and second, the aggregates form a branched network. Epitaxial (0002) growth above a critical overpotential leads to the formation of hexagonal single-crystals. A kinetic model is provided using the rate equations of vapor solidification to simulate the evolution of the different morphologies. On solving these equations, we show that aggregation is attributed to cluster impingement and cluster diffusion while single-crystal formation is attributed to direct attachment. The formation of dendritic zinc is investigated using in-operando transmission X-ray microscopy which is a unique technique for imaging metal electrodeposits. The nucleation density of zinc nuclei is lowered using polyaniline films to cover the active nucleation sites. The effect of overpotential is investigated and the morphology shows beautiful in-operando formation of symmetric zinc crystals. A linear perturbation model was developed to predict the growth and formation of these crystals to first

  15. Brominated dibenzofurans

    Integrated Risk Information System (IRIS)

    Brominated dibenzofurans ; no CASRN Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  16. Design concepts of high power bipolar rechargeable lithium battery

    NASA Technical Reports Server (NTRS)

    Shen, David H.; Halpert, Gerald

    1993-01-01

    The present study shows that current bipolar Li/TiS2 batteries using a 0.38 mm thick TiS2 bipolar plate can yield moderate specific power and also high specific energy battery. The computer design studies project that a 100 V, 10 A h bipolar Li/TiS2 battery can achieve 150 W h/kg, 210 W h/l, and 150 W/kg. The unoptimized experimental bipolar Li/TiS2 batteries (3 cells, 90 mA h) exhibited 47 W h/kg, 90 W h/l, and 140 W/kg. Preliminary results on the cycleability of the bipolar batteries are demonstrated. The results also show that enhanced rate capability can be achieved by using pulse discharge and longer rest period between pulses.

  17. Preliminary design of 1 kW bipolar Ni-MH battery for LEO-satellite application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, J.H.; Reisner, D.E.; Klein, M.G.

    1996-12-31

    Electro Energy, Inc. (EEI) is developing a bipolar nickel-metal hydride rechargeable battery based upon the use of stackable wafer cells. The key to viable bipolar operation has been this unique modular (unitized) approach. The patented unit wafer-cell construct exploits the chemical and thermal properties of a proprietary electrically conductive plastic film. Characteristic of bipolar batteries, current flows across the cell interfaces-perpendicular to the electrode plane. EEI has recently contracted with NASA Lewis Research Center (LeRC) to develop an optimized design 1 kW flightweight battery, for low-earth-orbit (LEO) satellite applications, over a 4-year period with a deliverable flightweight design package. Themore » contract includes an option for EEI to deliver up to three flight quality batteries in an 18-month follow-on program. NASA LeRC has promulgated that the program steps include the design, fabrication, and evaluation of four evolutionary stages of the final battery design which have been designated Preliminary, Improved, Optimized, and Flightweight Design. Initial results from the Preliminary Stage are presented including a 1 kW battery design, thermal design, parameter study, and component development in subscale bipolar batteries.« less

  18. Smoke alarm and battery function 42 months after installation: a randomized trial.

    PubMed

    Peek-Asa, Corinne; Yang, Jingzhen; Hamann, Cara; Jones, Michael P; Young, Tracy; Zwerling, Craig

    2010-10-01

    This randomized trial presents findings from the longest follow-up study of smoke alarm and battery function to date. The purpose of this study is to examine differences in long-term function of smoke alarm and battery combinations. A total of 691 households in an ongoing cohort study were randomly allocated into smoke alarm groups of ionizing and photoelectric and battery groups of zinc and lithium. Smoke alarm function was measured in 633 (91.6%) households from January 2007 through February 2008, 42 months following original smoke alarm/battery installation. Data analyses were conducted in 2009. After 3.5 years, 81.9% of the 1898 smoke alarms were functional. Ionizing alarms with zinc batteries were the least likely to function (72.7%). In comparison, photoelectric alarms with lithium batteries were 2.9 times (95% CI=1.8, 4.5) more likely to function; ionizing alarms with lithium batteries were 2.0 times (95% CI=1.3, 3.1) more likely to function; and photoelectric alarms with zinc batteries were 1.7 times (95% CI=1.1, 2.5) more likely to function. Functionality was strongly tied to number of reports of nuisance alarms, which was higher for ionizing than photoelectric alarms. Photoelectric smoke alarms and lithium batteries are the most likely to function long after smoke alarm installation, and may be worthwhile investments despite their increased cost. Copyright © 2010 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  19. A high energy-density nickel-hydrogen battery design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, L.

    1982-09-01

    A light-weight Ni-H/sub 2/ battery design concept (projected energy-density 46.7 Whr/Kg or 21.2 Whr/Lb) suitable for immediate or near-term spacecraft integration is described. The proposed design does not violate proven and qualified design concepts, or critical electrochemical component designs or functions.

  20. Sea water rope batteries

    NASA Astrophysics Data System (ADS)

    Walsh, M.

    1984-05-01

    This research demonstrated the feasibility of supplying approximately 1 watt of electrical power for one year on the sea bed with a novel battery, the rope battery. The proposed battery would look very much like a small diameter wire rope, possibly hundreds of feet long. This unusual shape permits the rope battery to take full advantage of the vastness of the ocean floor and permits at great pressure the steady diffusion of reaction products away from the battery itself. A sea water battery is described consisting of an inner bundle of coated wires which slowly corrode and an outer layer of fine wires which simultaneously provides strength, armor and surface area for slow hydrogen evolution. Two variations are examined. The fuse utilizes magnesium wires and burns slowly from the end. The rope utilizes lithium-zinc alloys and is slowly consumed along its entire length.

  1. Advances in the design of common pressure vessel nickel hydrogen batteries for aerospace applications

    NASA Technical Reports Server (NTRS)

    Zagrodnik, Jeffrey P.; Jones, Kenneth R.

    1991-01-01

    Over 7000 low-earth-orbit (LEO) cycles were demonstrated on a full-size aerospace common pressure vessel (CPV) prototype. The battery demonstrated the capability of the basic CPV design to meet the life and reliability requirements of aerospace missions. Subsequent design modifications have been employed to address the shortcomings of the original design and several new prototypes have been fabricated. These include a 12-cell 125 amp-hour geosynchronous earth-orbit (GEO) battery and a 22-cell 10.5 amp-hour LEO battery. Cells for an 80-cell battery intended to demonstrate the high voltage capability of the CPV design have also been fabricated. In addition, assembly of a 20-cell aircraft starting battery prototype is in progress, and testing of a group of 12-volt, 160 amp-hour terrestrial batteries is continuing.

  2. Design and research on discharge performance for aluminum-air battery

    NASA Astrophysics Data System (ADS)

    Liu, Zu; Zhao, Junhong; Cai, Yanping; Xu, Bin

    2017-01-01

    As a kind of clean energy, the research of aluminum air battery is carried out because aluminum-air battery has advantages of high specific energy, silence and low infrared. Based on the research on operating principle of aluminum-air battery, a novel aluminum-air battery system was designed composed of aluminum-air cell and the circulation system of electrolyte. A system model is established to analyze the polarization curve, the constant current discharge performance and effect of electrolyte concentration on the performance of monomer. The experimental results show that the new energy aluminum-air battery has good discharge performance, which lays a foundation for its application.

  3. Brominated carbon black: An EDXD study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbone, Marilena; Gontrani, Lorenzo, E-mail: lorenzo.gontrani@uniroma1.it

    2014-06-19

    An energy dispersive X-Ray study of pure and brominated carbon black was carried out. The analysis of the diffraction patterns reveals that the low bromine load (ca.1% mol) is trapped into the structure, without significantly modifying it. This allows the application of the difference methods, widely tested for electrolyte solutions, inorganic matrices containing metals and isomorphic substitutions.

  4. Resist Rolymers. 8. Thermolysis of Bromine Containing Acrylate Polymers.

    DTIC Science & Technology

    1987-06-01

    bromine containing polymers is particularly interesting because of their role as proven flame retardants . The bromine ...BrI IC COOH I -co2 (1 CH MeI I Br --- CH 2 ---- The presence of bromine on ester units apparently alters the principal mode of degradation of the...CH2---C C--- I I I I C-O C-O C C=O 0’ OCH2CH2Br 0 0 + ’OCH2CH 2Br (6) As described earlier6 bromoethoxy radical loose bromine atom at

  5. Deriving an atmospheric budget of total organic bromine using airborne in-situ measurements of brominated hydrocarbons in the Western Pacific during SHIVA

    NASA Astrophysics Data System (ADS)

    Sala, Stephan; Bönisch, Harald; Keber, Timo; Oram, Dave; Mills, Graham; Engel, Andreas

    2014-05-01

    Halogenated hydrocarbons play a major role as precursors for stratospheric ozone depletion. Released from the surface in the troposphere, the halocarbons reach the stratosphere via transport through the tropical tropopause layer. The contribution of the so called very short lived species (VSLS), having atmospheric lifetimes of less than half a year as sources gases for stratospheric bromine is significant. Source gas observations of long-lived bromine compounds and VSLS have so far not been able to explain the amount of bromine derived in the stratosphere from observations of BrO and modeling of the ratio of BrO to total bromine. Due to the short lifetimes and the high atmospheric variability, the representativeness of the available observations of VSLS source gases remains unclear, as these may vary with region and display seasonal variability. During the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) project an extensive dataset with over 700 samples of ambient air of all halogen species relevant for the atmospheric budget of total organic bromine (long lived halocarbons: H-1301, H-1211, H-1202, H-2402 and CH3Br, very short lived substances: CHBr3, CH2Br2, CHBr2Cl, CHBrCl2 and CHBrCl) have been collected from onboard the FALCON aircraft in the West Pacific region. Measurements were performed with the newly developed fully-automated in-situ instrument GHOST-MS (Gas chromatograph for the Observation of Tracers - coupled with a Mass Spectrometer) by the Goethe University of Frankfurt and with the onboard whole-air sampler WASP with subsequent ground based state-of-the-art GC/MS analysis by the University of East Anglia. We will present the datasets, compare these to other observation, derive a bromine budget for the West Pacific and derive an estimate of the amount of bromine from VSLS reaching the stratosphere. Using the mean mixing ratios in the upper troposphere of the halocarbons mentioned above, the calculated budget of the total organic

  6. 40 CFR 461.70 - Applicability; description of the zinc subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Applicability; description of the zinc subcategory. 461.70 Section 461.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) BATTERY MANUFACTURING POINT SOURCE CATEGORY Zinc Subcategory § 461.70 Applicability; description...

  7. 40 CFR 461.70 - Applicability; description of the zinc subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability; description of the zinc subcategory. 461.70 Section 461.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) BATTERY MANUFACTURING POINT SOURCE CATEGORY Zinc Subcategory § 461.70 Applicability; description...

  8. 40 CFR 461.70 - Applicability; description of the zinc subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability; description of the zinc subcategory. 461.70 Section 461.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) BATTERY MANUFACTURING POINT SOURCE CATEGORY Zinc Subcategory § 461.70 Applicability; description...

  9. Application of electrochemical energy storage in solar thermal electric generation systems

    NASA Technical Reports Server (NTRS)

    Das, R.; Krauthamer, S.; Frank, H.

    1982-01-01

    This paper assesses the status, cost, and performance of existing electrochemical energy storage systems, and projects the cost, performance, and availability of advanced storage systems for application in terrestrial solar thermal electric generation. A 10 MWe solar plant with five hours of storage is considered and the cost of delivered energy is computed for sixteen different storage systems. The results indicate that the five most attractive electrochemical storage systems use the following battery types: zinc-bromine (Exxon), iron-chromium redox (NASA/Lewis Research Center, LeRC), sodium-sulfur (Ford), sodium-sulfur (Dow), and zinc-chlorine (Energy Development Associates, EDA).

  10. Design principles for electrolytes and interfaces for stable lithium-metal batteries

    NASA Astrophysics Data System (ADS)

    Tikekar, Mukul D.; Choudhury, Snehashis; Tu, Zhengyuan; Archer, Lynden A.

    2016-09-01

    The future of electrochemical energy storage hinges on the advancement of science and technology that enables rechargeable batteries that utilize reactive metals as anodes. With specific capacity more than ten times that of the LiC6 anode used in present-day lithium-ion batteries, cells based on Li-metal anodes are of particular interest. Effective strategies for stabilizing the anode in such cells are now understood to be a requirement for progress on exceptional storage technologies, including Li-S and Li-O2 batteries. Multiple challenges—parasitic reactions of Li-metal with liquid electrolytes, unstable and dendritic electrodeposition, and dendrite-induced short circuits—derailed early efforts to commercialize such lithium-metal batteries. Here we consider approaches for rationally designing electrolytes and Li-metal/electrolyte interfaces for stable, dendrite-free operation of lithium-metal batteries. On the basis of fundamental understanding of the failure modes of reactive metal anodes, we discuss the key variables that govern the stability of electrodeposition at the Li anode and propose a universal framework for designing stable electrolytes and interfaces for lithium-metal batteries.

  11. 21 CFR 180.30 - Brominated vegetable oil.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED IN FOOD OR IN CONTACT WITH FOOD ON AN INTERIM BASIS PENDING ADDITIONAL STUDY Specific Requirements for Certain Food Additives § 180.30 Brominated vegetable oil. The food additive brominated vegetable oil may be safely used in accordance with...

  12. The 2001 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeff C. (Compiler)

    2002-01-01

    This document contains the proceedings of the 34th annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center, November 27-29, 2001. The workshop was attended by scientists and engineers from various agencies of the US Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind. The subjects covered included nickel-hydrogen, nickel-cadmium, lithium-ion, and silver-zinc technologies.

  13. Novel thermal management system design methodology for power lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Nieto, Nerea; Díaz, Luis; Gastelurrutia, Jon; Blanco, Francisco; Ramos, Juan Carlos; Rivas, Alejandro

    2014-12-01

    Battery packs conformed by large format lithium-ion cells are increasingly being adopted in hybrid and pure electric vehicles in order to use the energy more efficiently and for a better environmental performance. Safety and cycle life are two of the main concerns regarding this technology, which are closely related to the cell's operating behavior and temperature asymmetries in the system. Therefore, the temperature of the cells in battery packs needs to be controlled by thermal management systems (TMSs). In the present paper an improved design methodology for developing TMSs is proposed. This methodology involves the development of different mathematical models for heat generation, transmission, and dissipation and their coupling and integration in the battery pack product design methodology in order to improve the overall safety and performance. The methodology is validated by comparing simulation results with laboratory measurements on a single module of the battery pack designed at IK4-IKERLAN for a traction application. The maximum difference between model predictions and experimental temperature data is 2 °C. The models developed have shown potential for use in battery thermal management studies for EV/HEV applications since they allow for scalability with accuracy and reasonable simulation time.

  14. New Developments in Nickel-Hydrogen Dependent Pressure Vessel (DPV) Cell and Battery Design

    NASA Technical Reports Server (NTRS)

    Caldwell, Dwight B.; Fox, Chris L.; Miller, Lee E.

    1997-01-01

    THe Dependent Pressure Vessel (DPV) Nickel-Hydrogen (NiH2) design is being developed as an advanced battery for military and commercial, aerospace and terrestrial applications. The DPV cell design offers high specific energy and energy density as well as reduced cost, while retaining the established Individual Pressure Vessel (IPV) technology flight heritage and database. This advanced DPV design also offers a more efficient mechanical, electrical and thermal cell and battery configuration and a reduced part count. The DPV battery design promotes compact, minimum volume packaging and weight efficiency, and delivers cost and weight savings with minimal design risk.

  15. Coupled Mechanical-Electrochemical-Thermal Modeling for Accelerated Design of EV Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santhanagopalan, Shriram; Zhang, Chao; Kim, Gi-Heon

    2015-05-03

    This presentation provides an overview of the mechanical electrochemical-thermal (M-ECT) modeling efforts. The physical phenomena occurring in a battery are many and complex and operate at different scales (particle, electrodes, cell, and pack). A better understanding of the interplay between different physics occurring at different scales through modeling could provide insight to design improved batteries for electric vehicles. Work funded by the U.S. DOE has resulted in development of computer-aided engineering (CAE) tools to accelerate electrochemical and thermal design of batteries; mechanical modeling is under way. Three competitive CAE tools are now commercially available.

  16. NASA Alternative Orion Small Cell Battery Design Support

    NASA Technical Reports Server (NTRS)

    Haynes, Chuck

    2016-01-01

    The NASA Orion Crew Module Reference Design was produced to address large scale thermal runaway (TR) hazard with specific safety controls for the Orion Spacecraft. The design presented provides the description of a full scale battery design reference for implementation as a drop in replacement to meet all spacecraft energy requirements with compatible 120 Vdc electrical and mechanical interface using small cell technology (18650) packaging. The 32V SuperBrick incorporates unique support features and an electrical bus bar arrangement that allows cells negative can insertion into heat sink that is compressively coupled to the battery enclosure to promote good thermal management. The housing design also provides an internal flame suppression "filter tray" and positive venting path internal to the enclosure to allow hot effluent ejecta to escape in the event of single cell TR. Virtual cells (14P Banks) that are supported to provide cell spacing with interstitial materials to prevent side can failures that can produce cell to cell TR propagation. These features were successfully test in four separate TR run with the full scale DTA1 test article in February 2016. Successfully Completed Test Objectives - Four separate TR test runs with Full-Scale DTA1 housing with Two SuperBricks, Two SuperBrick Emulators All Tests resulted in "clean" gas with less than 6 C rise at Battery vent All Tests resulted in less than 2 C temperature rise on cold-plate outlet All Tests resulted in less than 6 psi pressure rise in the battery housing Test Run 1 -One neighbor cell TR, highest remaining neighbor 139 C. Ejecta shorted to bus caused prolonged additional heating, One shorted cell did experience TR after 12 minutes, remaining cells had adequate thermal margin Test Run 2 - No cell to cell propagation, highest neighbor cell 112 C; Test Run 3 - No cell to cell propagation, highest neighbor cell 96 C; Test Run 4 - No cell to cell propagation, highest neighbor cell 101 C; Primary TR testing

  17. Design principles for nickel hydrogen cells and batteries

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1985-01-01

    Nickel hydrogen cells, and more recently, bipolar batteries have been built by a variety of organizations. The design principles that have been used by the technology group at the Lewis Research Center draw upon their extensive background in separator technology, alkaline fuel cell technology, and several alkaline cell technology areas. These design principles have been incorporated into both the more contemporary individual pressure vessel (IPV) designs that were pioneered by other groups, as well as the more recent bipolar battery designs using active cooling that are being developed at LeRC and their contractors. These principles are rather straightforward applications of capillary force formalisms, coupled with the slowly developing data base resulting from careful post test analyses. The objective of this overall effort is directed towards the low Earth orbit (LEO) application where the cycle life requirements are much more severe than the geosynchronous orbit (GEO) application. Nickel hydrogen cells have already been successfully flown in an increasing number of GEO missions.

  18. 40 CFR 721.775 - Brominated aromatic com-pound (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Brominated aromatic com-pound (generic... Specific Chemical Substances § 721.775 Brominated aromatic com-pound (generic name). (a) Chemical... as a brominated aromatic compound (PMN P-84-824) is subject to reporting under this section for the...

  19. Design principles for electrolytes and interfaces for stable lithium-metal batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikekar, Mukul D.; Choudhury, Snehashis; Tu, Zhengyuan

    2016-09-08

    The future of electrochemical energy storage hinges on the advancement of science and technology that enables rechargeable batteries that utilize reactive metals as anodes. With specific capacity more than ten times that of the LiC6 anode used in present-day lithium-ion batteries, cells based on Li-metal anodes are of particular interest. Effective strategies for stabilizing the anode in such cells are now understood to be a requirement for progress on exceptional storage technologies, including Li–S and Li–O2 batteries. Multiple challenges—parasitic reactions of Li-metal with liquid electrolytes, unstable and dendritic electrodeposition, and dendrite-induced short circuits—derailed early efforts to commercialize such lithium-metal batteries.more » Here we consider approaches for rationally designing electrolytes and Li-metal/electrolyte interfaces for stable, dendrite-free operation of lithium-metal batteries. On the basis of fundamental understanding of the failure modes of reactive metal anodes, we discuss the key variables that govern the stability of electrodeposition at the Li anode and propose a universal framework for designing stable electrolytes and interfaces for lithium-metal batteries.« less

  20. Sulfonated polysulfone battery membrane for use in corrosive environments

    DOEpatents

    Arnold, Jr., Charles; Assink, Roger

    1987-01-01

    For batteries containing strong oxidizing electrolyte and a membrane separating two electrolyte solutions, e.g., a zinc ferricyanide battery, an improved membrane is provided comprising an oxidative resistant, conductive, ion-selective membrane fabricated from a catenated aromatic polymer having an absence of tertiary hydrogens, e.g., a sulfonated polysulfone.

  1. Fate of higher brominated PBDEs in lactating cows.

    PubMed

    Kierkegaard, Amelie; Asplund, Lillemor; de Wit, Cynthia A; McLachlan, Michael S; Thomas, Gareth O; Sweetman, Andrew J; Jones, Kevin C

    2007-01-15

    Dietary intake studies of lower brominated diphenyl ethers (BDEs) have shown that fish and animal products are important vectors of human exposure, but almost no data exist for higher brominated BDEs. Therefore, the fate of hepta- to decaBDEs was studied in lactating cows exposed to a naturally contaminated diet by analyzing feed, feces, and milk samples from a previous mass balance study of PCB. Tissue distribution was studied in one cow slaughtered after the experiment. BDE-209 was the dominant congener in feed, organs, adipose tissues, and feces, but not in milk. In contrast to PCBs and lower brominated BDEs, concentrations of hepta- to decaBDEs in adipose tissue were 9-80 times higher than in milk fat and the difference increased with degree of bromination/log K(OW). The congener profiles in adipose tissue and feed differed; BDE-207, BDE-196, BDE-197, and BDE-182 accumulated to a surprisingly greater extent in the fat compared to their isomers, suggesting metabolic debromination of BDE-209 to these BDEs. The results indicate that meat rather than dairy product consumption may be an important human exposure route to higher brominated BDEs.

  2. Weavable, Conductive Yarn-Based NiCo//Zn Textile Battery with High Energy Density and Rate Capability.

    PubMed

    Huang, Yan; Ip, Wing Shan; Lau, Yuen Ying; Sun, Jinfeng; Zeng, Jie; Yeung, Nga Sze Sea; Ng, Wing Sum; Li, Hongfei; Pei, Zengxia; Xue, Qi; Wang, Yukun; Yu, Jie; Hu, Hong; Zhi, Chunyi

    2017-09-26

    With intrinsic safety and much higher energy densities than supercapacitors, rechargeable nickel/cobalt-zinc-based textile batteries are promising power sources for next generation personalized wearable electronics. However, high-performance wearable nickel/cobalt-zinc-based batteries are rarely reported because there is a lack of industrially weavable and knittable highly conductive yarns. Here, we use scalably produced highly conductive yarns uniformly covered with zinc (as anode) and nickel cobalt hydroxide nanosheets (as cathode) to fabricate rechargeable yarn batteries. They possess a battery level capacity and energy density, as well as a supercapacitor level power density. They deliver high specific capacity of 5 mAh cm -3 and energy densities of 0.12 mWh cm -2 and 8 mWh cm -3 (based on the whole solid battery). They exhibit ultrahigh rate capabilities of 232 C (liquid electrolyte) and 116 C (solid electrolyte), which endows the batteries excellent power densities of 32.8 mW cm -2 and 2.2 W cm -3 (based on the whole solid battery). These are among the highest values reported so far. A wrist band battery is further constructed by using a large conductive cloth woven from the conductive yarns by a commercial weaving machine. It powers various electronic devices successfully, enabling dual functions of wearability and energy storage.

  3. Waste battery treatment options: comparing their environmental performance.

    PubMed

    Briffaerts, K; Spirinckx, C; Van der Linden, A; Vrancken, K

    2009-08-01

    Waste consumer batteries are recycled using different routes based on hydrometallurgical and pyrometallurgical processes. Two hydrometallurgical and two pyrometallurgical treatment scenarios are compared starting from an average composition of Belgian waste batteries. The environmental performance is compared using life cycle analysis (LCA). The recycling rate is studied through mass balance calculation. Each treatment scenario results in a specific recycling rate. The environmental impact and benefits also vary between the treatment options. There is no such thing as a typical hydrometallurgical or pyrometallurgical treatment. When applying a hydrometallurgical treatment scenario, the focus lies on zinc and iron recycling. When allowing manganese recycling, the energy demand of the hydrometallurgical process increases considerably. Both pyrometallurgical options recycle zinc, iron and manganese. According to the LCA, none of the treatment scenarios performs generally better or worse than the others. Each option has specific advantages and disadvantages. The Batteries Directive 2006/66/EC sets out a recycling rate of 50% for consumer waste batteries. Based on metal recycling alone, the mass balances show that the target is difficult to obtain.

  4. Design of a nickel-hydrogen battery simulator for the NASA EOS testbed

    NASA Technical Reports Server (NTRS)

    Gur, Zvi; Mang, Xuesi; Patil, Ashok R.; Sable, Dan M.; Cho, Bo H.; Lee, Fred C.

    1992-01-01

    The hardware and software design of a nickel-hydrogen (Ni-H2) battery simulator (BS) with application to the NASA Earth Observation System (EOS) satellite is presented. The battery simulator is developed as a part of a complete testbed for the EOS satellite power system. The battery simulator involves both hardware and software components. The hardware component includes the capability of sourcing and sinking current at a constant programmable voltage. The software component includes the capability of monitoring the battery's ampere-hours (Ah) and programming the battery voltage according to an empirical model of the nickel-hydrogen battery stored in a computer.

  5. Structure and functionality of bromine doped graphite.

    PubMed

    Hamdan, Rashid; Kemper, A F; Cao, Chao; Cheng, H P

    2013-04-28

    First-principles calculations are used to study the enhanced in-plane conductivity observed experimentally in Br-doped graphite, and to study the effect of external stress on the structure and functionality of such systems. The model used in the numerical calculations is that of stage two doped graphite. The band structure near the Fermi surface of the doped systems with different bromine concentrations is compared to that of pure graphite, and the charge transfer between carbon and bromine atoms is analyzed to understand the conductivity change along different high symmetry directions. Our calculations show that, for large interlayer separation between doped graphite layers, bromine is stable in the molecular form (Br2). However, with increased compression (decreased layer-layer separation) Br2 molecules tend to dissociate. While in both forms, bromine is an electron acceptor. The charge exchange between the graphite layers and Br atoms is higher than that with Br2 molecules. Electron transfer to the Br atoms increases the number of hole carriers in the graphite sheets, resulting in an increase of conductivity.

  6. In situ Zn/ZnO mapping elucidating for "shape change" of zinc electrode

    NASA Astrophysics Data System (ADS)

    Nakata, Akiyoshi; Arai, Hajime; Murayama, Haruno; Fukuda, Katsutoshi; Yamane, Tomokazu; Hirai, Toshiro; Uchimoto, Yoshiharu; Yamaki, Jun-ichi; Ogumi, Zempachi

    2018-04-01

    For the use of the zinc anode in secondary batteries, it is necessary to solve the "shape change" deterioration issue in that zinc species agglomerate in the center of the electrode to fade the available capacity. The local chemical compositions of the zinc electrodes during "shape change" were precisely analyzed using the synchrotron X-ray diffraction mapping analysis of practical zinc-nickel cells in a non-destructive manner. The in situ Zn/ZnO mapping shows that metallic Zn deposition chiefly occurs in the periphery of ZnO while ZnO are left in the center of electrode like a hill on charging. On discharging, the ZnO hill grows to the perpendicular direction on the electrode while metallic zinc is oxidized and dissolved. These findings allow us to propose a mechanism for the shape change; thus dissolved zincate species are decomposed on the ZnO hill during discharging to be accumulated in the center of the electrode. It is suggested that suppressing zincate dissolution and non-uniform zinc deposition slow the growth rate of the ZnO hill to enhance the cyclability of zinc-based secondary batteries.

  7. Brominated Flame Retardants

    EPA Science Inventory

    Brominated flame retardants (BFRs) belong to a large class of compounds known as organohalogens. BFRs are currently the largest marketed flame retardant group due to their high performance efficiency and low cost. In the commercial market, more than 75 different BFRs are recogniz...

  8. Design options for automotive batteries in advanced car electrical systems

    NASA Astrophysics Data System (ADS)

    Peters, K.

    The need to reduce fuel consumption, minimize emissions, and improve levels of safety, comfort and reliability is expected to result in a much higher demand for electric power in cars within the next 5 years. Forecasts vary, but a fourfold increase in starting power to 20 kW is possible, particularly if automatic stop/start features are adopted to significantly reduce fuel consumption and exhaust emissions. Increases in the low-rate energy demand are also forecast, but the use of larger alternators may avoid unacceptable high battery weights. It is also suggested from operational models that the battery will be cycled more deeply. In examining possible designs, the beneficial features of valve-regulated lead-acid batteries made with compressed absorbent separators are apparent. Several of their attributes are considered. They offer higher specific power, improved cycling capability and greater vibration resistance, as well as more flexibility in packaging and installation. Optional circuits considered for dual-voltage supplies are separate batteries for engine starting (36 V) and low-power duties (12 V), and a universal battery (36 V) coupled to a d.c.-d.c. converter for a 12-V equipment. Battery designs, which can be made on commercially available equipment with similar manufacturing costs (per W h and per W) to current products, are discussed. The 36-V battery, made with 0.7 mm thick plates, in the dual-battery system weighs 18.5 kg and has a cold-cranking amp (CCA) rating of 790 A at -18°C to 21.6 V (1080 W kg -1 at a mean voltage of 25.4 V). The associated, cycleable 12-V battery, provides 1.5 kW h and weighs 24.6 kg. Thus, the combined battery weight is 43.1 kg. The single universal battery, with cycling capability, weighs 45.4 kg, has a CCA rating of 810 A (441 W kg -1 at a mean voltage of 24.7 V), and when connected to the d.c.-d.c. converter at 75% efficiency provides a low-power capacity of 1.5 kW h.

  9. Fail-Safe Design for Large Capacity Lithium-Ion Battery Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, G. H.; Smith, K.; Ireland, J.

    2012-07-15

    A fault leading to a thermal runaway in a lithium-ion battery is believed to grow over time from a latent defect. Significant efforts have been made to detect lithium-ion battery safety faults to proactively facilitate actions minimizing subsequent losses. Scaling up a battery greatly changes the thermal and electrical signals of a system developing a defect and its consequent behaviors during fault evolution. In a large-capacity system such as a battery for an electric vehicle, detecting a fault signal and confining the fault locally in the system are extremely challenging. This paper introduces a fail-safe design methodology for large-capacity lithium-ionmore » battery systems. Analysis using an internal short circuit response model for multi-cell packs is presented that demonstrates the viability of the proposed concept for various design parameters and operating conditions. Locating a faulty cell in a multiple-cell module and determining the status of the fault's evolution can be achieved using signals easily measured from the electric terminals of the module. A methodology is introduced for electrical isolation of a faulty cell from the healthy cells in a system to prevent further electrical energy feed into the fault. Experimental demonstration is presented supporting the model results.« less

  10. Airborne measurements of organic bromine compounds in the Pacific tropical tropopause layer

    PubMed Central

    Navarro, Maria A.; Atlas, Elliot L.; Saiz-Lopez, Alfonso; Rodriguez-Lloveras, Xavier; Kinnison, Douglas E.; Lamarque, Jean-Francois; Tilmes, Simone; Filus, Michal; Harris, Neil R. P.; Meneguz, Elena; Ashfold, Matthew J.; Manning, Alistair J.; Cuevas, Carlos A.; Schauffler, Sue M.; Donets, Valeria

    2015-01-01

    Very short-lived brominated substances (VSLBr) are an important source of stratospheric bromine, an effective ozone destruction catalyst. However, the accurate estimation of the organic and inorganic partitioning of bromine and the input to the stratosphere remains uncertain. Here, we report near-tropopause measurements of organic brominated substances found over the tropical Pacific during the NASA Airborne Tropical Tropopause Experiment campaigns. We combine aircraft observations and a chemistry−climate model to quantify the total bromine loading injected to the stratosphere. Surprisingly, despite differences in vertical transport between the Eastern and Western Pacific, VSLBr (organic + inorganic) contribute approximately similar amounts of bromine [∼6 (4−9) parts per thousand] to the stratospheric input at the tropical tropopause. These levels of bromine cause substantial ozone depletion in the lower stratosphere, and any increases in future abundances (e.g., as a result of aquaculture) will lead to larger depletions. PMID:26504212

  11. Electrical and galvanomagnetic properties of nanoporous carbon samples impregnated with bromine

    NASA Astrophysics Data System (ADS)

    Danishevskii, A. M.; Popov, V. V.; Kyutt, R. N.; Gordeev, S. K.

    2013-07-01

    Nanoporous carbon samples with a large specific surface area can be filled with heavier elements or their compounds, which makes it possible to investigate the interaction of their electronic subsystems with carbon. One of the elements convenient for filling pores of carbon materials is bromine. Impregnation of nanoporous carbon samples with bromine causes the occurrence of the processes of micropore filling, monolayer adsorption, and intercalation. It has been found that samples impregnated with bromine substantially change their electrical and galvanomagnetic properties, and these changes depend on the structure of the samples. It has been shown that, if in the skeleton of a porous carbon sample there is a fraction of graphite clusters, the impregnation of the sample with bromine increases the concentration of charged carriers (holes). But when the sample has a quasi-amorphous structure, the injection of bromine into the sample leads to the appearance of a certain concentration of electrons in addition to charged mobile holes of the initial sample; i.e., the electrical conductivity becomes bipolar. In the former case, bromine molecules intercalate graphite clusters and, since bromine is an acceptor during intercalation of graphite, the hole concentration in the carbon skeleton network increases. In the latter case, bromine molecules can only be adsorbed on pore walls. As a result, the adsorption interaction between the electron shells of bromine molecules and the carbon surface leads to the formation of a donor layer near the surface and to the generation of electrons in the carbon skeleton network.

  12. Preliminary study of high energy density Zn/Ni flow batteries

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Wang, Yan

    2015-10-01

    The escalation of power system promotes the development of energy storage technologies (ESTs). Among all of ESTs, battery technologies develop quickly and diversely because of its huge application market. Aqueous redox flow batteries (RFBs) are very attractive to customers in the energy grid system, and their noticeable technological innovations in past decades are driving them to gradually replace the conventional ESTs under certain circumstance. Here, the first fully-flow-able zinc-nickel flow battery (ZNFB) is preliminary reported in this paper, and its superior performance is supposed to be suitable for both large-scale storage need and carry-on powertrain in cars. Through using semi-solid fuel cell (SSFC) technology, we incorporates the beneficial features of Zn/Ni chemistry (essentially sustainable, eco-friendly and deposit-abundant) into RFB structure to make a ;hybrid; flow battery system, which can take the advantage of both. The relationship between carbon loading and suspension conductivity is determined. Electrochemical properties of ZNFB as static test, cycling test, and fully flowing test are studied to demonstrate our design.

  13. Na-Zn liquid metal battery

    NASA Astrophysics Data System (ADS)

    Xu, Junli; Kjos, Ole Sigmund; Osen, Karen Sende; Martinez, Ana Maria; Kongstein, Ole Edvard; Haarberg, Geir Martin

    2016-11-01

    A new kind of membrane free liquid metal battery was developed. The battery employs liquid sodium and zinc as electrodes both in liquid state, and NaCl-CaCl2 molten salts as electrolyte. The discharge flat voltage is in the range of about 1.4 V-1.8 V, and the cycle efficiency achieved is about 90% at low discharge current densities (below 40 mA cm-2). Moreover, this battery can also be charged and discharged at high current density with good performance. The discharge flat voltage is above 1.1 V when it is discharged at 100 mA cm-2, while it is about 0.8 V with 100% cycle efficiency when it is discharged at 200 mA cm-2. Compared to other reported liquid metal battery, this battery has lower cost, which suggests broad application prospect in energy storage systems for power grid.

  14. Interplay of metals and bromine with dioxin-related compounds concentrated in e-waste open burning soil from Agbogbloshie in Accra, Ghana.

    PubMed

    Fujimori, Takashi; Itai, Takaaki; Goto, Akitoshi; Asante, Kwadwo A; Otsuka, Masanari; Takahashi, Shin; Tanabe, Shinsuke

    2016-02-01

    Open burning of electronic waste (e-waste) releases various metals and organohalogen compounds in the environment. Here we investigated the interplay of metals (Cu, Pb, Zn, Fe, Co, and Sr) and bromine (Br) in the formation of dioxin-related compounds (DRCs), including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs), as well as non-regulated DRCs such as polybrominated dibenzo-p-dioxins/furans (PBDD/Fs) and their monobrominated PCDD/Fs in soils sampled from open burning e-waste sites at Agbogbloshie in Accra, Ghana. The predominant DRCs were PBDFs, PCDFs, PCDDs, and DL-PCBs. Statistical analyzes, X-ray absorption spectroscopy, and the PCDF/PCDD ratio suggested possible formation paths of PCDD/Fs and DL-PCBs by catalytic behaviors of copper chlorides (CuCl, CuCl2, and Cu2(OH)3Cl) and thermal breakdown of polyvinyl chloride. Predominant formation of brominated furans may be derived from electron transfer from intermediates of PBDE to copper, Cu(II) → Cu(I). Lead chloride also contributed to generate DRCs and may become highly bioaccessible through the open burning of e-waste. The main zinc species (ZnCl2 and ZnS) suggested a possible relationship to generate DRCs and specific zinc source such as tire burning. Cu, Pb, Zn, and Br contained in various e-wastes, wires/cables, plastics, and tires strongly influenced generation of many DRCs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Zinc-based electrolyte compositions, and related electrochemical processes and articles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kniajanski, Sergei; Soloveichik, Grigorii Lev

    An aqueous electrolyte composition is described, including a zinc salt based on zinc acetate or zinc glocolate. The saturation concentration of zinc in the electrolyte composition is in the range of about 2.5M to about 3.5M. The composition also contains at least one salt of a monovalent cation. The molar ratio of zinc to the monovalent cation is about 1:2. An aqueous zinc electroplating bath, containing the aqueous electrolyte composition, is also disclosed, along with a method for the electrochemical deposition of zinc onto a substrate surface, using the electroplating bath. Related flow batteries are also described, including a catholyte,more » as well as an anolyte based on the aqueous electrolyte composition, with a membrane between the catholyte and the anolyte.« less

  16. Design considerations for advanced battery concepts

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; Thaller, L. H.

    1986-01-01

    A mathematical representation for the charge and discharge of a sodium-sulfur cell is developed. These equations are then used as the basis for a computerized model to examine the effects of cell arrangement in the design of a large multi-kilowatt battery from a group of hypothetical individual cells with known variations in their ampere hour capacity and internal resistance. The cycling characteristics of 216 individual cells arranged in six different configurations are evaluated with the view towards minimizing the adverse effects that are introduced due to the stochastic aspects of groupings of cells, as well as the possibility of cell failures in both the open and shorted mode. Although battery systems based on sodium-sulfur cells are described in this example, any of the newer electrochemical systems can be fitted into this framework by making appropriate modifications to the basic equations.

  17. Design considerations for advanced battery concepts

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; Thaller, L. H.

    1986-01-01

    A mathematical representation for the charge and discharge of a sodium-sulfur cell is developed. These equations are then used as the basis for a computerized model to examine the effects of cell arrangement in the design of a large multi-kilowatt battery from a group of hypothetical individual cells with known variations in their ampere hour capacity and internal resistance. The cycling characteristics of 216 individual cells arranged in six different configurations are evaluated with the view towards minimizing the adverse effects that are introduced due to the stoichastic aspects of groupings of cells, as well as the possibility of cell failures in both the open and shorted mode. Although battery systems based on sodium-sulfur cells are described in this example, any of the newer electrochemical systems can be fitted into this framework by making appropriate modifications to the basic equations.

  18. Rational design of hierarchical ZnO@Carbon nanoflower for high performance lithium ion battery anodes

    NASA Astrophysics Data System (ADS)

    liu, Huichao; Shi, Ludi; Li, Dongzhi; Yu, Jiali; Zhang, Han-Ming; Ullah, Shahid; Yang, Bo; Li, Cuihua; Zhu, Caizhen; Xu, Jian

    2018-05-01

    The rational structure design and strong interfacial bonding are crucially desired for high performance zinc oxide (ZnO)/carbon composite electrodes. In this context, micro-nano secondary structure design and strong dopamine coating strategies are adopted for the fabrication of flower-like ZnO/carbon (ZnO@C nanoflowers) composite electrodes. The results show the ZnO@C nanoflowers (2-6 μm) are assembled by hierarchical ZnO nanosheets (∼27 nm) and continuous carbon framework. The micro-nano secondary architecture can facilitate the penetration of electrolyte, shorten lithium ions diffusion length, and hinder the aggregation of the nanosheets. Moreover, the strong chemical interaction between ZnO and coating carbon layer via C-Zn bond improves structure stability as well as the electronic conductivity. As a synergistic result, when evaluated as lithium ion batteries (LIBs) anode, the ZnO@C nanoflower electrodes show high reversible capacity of ca. 1200 mA h g-1 at 0.1 A g-1 after 80 cycles. As well as good long-cycling stability (638 and 420 mA h g-1 at 1 and 5 A g-1 after 500 cycles, respectively) and excellent rate capability. Therefore, this rational design of ZnO@C nanoflowers electrode is a promising anode for high-performance LIBs.

  19. Observations of Inland Snowpack-driven Bromine Chemistry near the Brooks Range, Alaska

    NASA Astrophysics Data System (ADS)

    Peterson, P.; Pöhler, D.; Sihler, H.; Zielcke, J.; S., General; Friess, U.; Platt, U.; Simpson, W. R.; Nghiem, S. V.; Shepson, P. B.; Stirm, B. H.; Pratt, K.

    2017-12-01

    The snowpack produces high amounts of reactive bromine in the polar regions during spring. The resulting atmospheric bromine chemistry depletes boundary layer ozone to near-zero levels and alters oxidation of atmospheric pollutants, particularly elemental mercury. To improve our understanding of the spatial extent of this bromine chemistry in Arctic coastal regions, the Purdue Airborne Laboratory for Atmospheric Research (ALAR), equipped with the Heidelberg Imaging differential optical absorption spectroscopy (DOAS) instrument, measured the spatial distribution of BrO, an indicator of active bromine chemistry, over northern Alaska during the March 2012 BRomine Ozone Mercury Experiment (BROMEX). Here we show that this bromine chemistry, commonly associated with snow-covered sea ice regions in the Arctic Ocean, is active 200 km inland in the foothills of the Brooks Range. Profiles retrieved from limb-viewing measurements show this event was located near the snowpack surface, with measured BrO mole ratios of 20 pmol mol-1 in a 500 m thick layer. This observed bromine chemistry is likely enabled by deposition of transported sea salt aerosol or gas phase bromine species from prior activation events to the snowpack. These observations of halogen activation hundreds of km from the coast suggest the impacts of this springtime bromine chemistry are not restricted to sea ice regions and directly adjacent coastal regions.

  20. Joint optimisation of arbitrage profits and battery life degradation for grid storage application of battery electric vehicles

    NASA Astrophysics Data System (ADS)

    Kies, Alexander

    2018-02-01

    To meet European decarbonisation targets by 2050, the electrification of the transport sector is mandatory. Most electric vehicles rely on lithium-ion batteries, because they have a higher energy/power density and longer life span compared to other practical batteries such as zinc-carbon batteries. Electric vehicles can thus provide energy storage to support the system integration of generation from highly variable renewable sources, such as wind and photovoltaics (PV). However, charging/discharging causes batteries to degradate progressively with reduced capacity. In this study, we investigate the impact of the joint optimisation of arbitrage revenue and battery degradation of electric vehicle batteries in a simplified setting, where historical prices allow for market participation of battery electric vehicle owners. It is shown that the joint optimisation of both leads to stronger gains then the sum of both optimisation strategies and that including battery degradation into the model avoids state of charges close to the maximum at times. It can be concluded that degradation is an important aspect to consider in power system models, which incorporate any kind of lithium-ion battery storage.

  1. The 1996 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C. (Compiler)

    1997-01-01

    The 1996 Workshop was held on three consecutive days and was divided into five sessions. The first day consisted of a General Primary Battery Session and a Nickel-Hydrogen Battery On-Orbit Reconditioning Experience Focused Session. The second day consisted of a Nickel-Hydrogen Session and a Nickel-Cadmium Session. The third and final day was devoted to an Other Secondary Technologies Session which covered sodium-sulfur, nickel-zinc, nickel-metal hydride, and lithium ion technologies.

  2. The 1999 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, J. C. (Compiler)

    2000-01-01

    This document contains the proceedings of the 32nd annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on November 16-18, 1999. The workshop was attended by scientists and engineers from various agencies of the US Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world. The subjects covered included nickel-hydrogen, nickel-cadmium, lithium-ion, and silver-zinc technologies.

  3. The 2000 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, J. C. (Compiler)

    2001-01-01

    This document contains the proceedings of the 33nd annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on November 14-16, 2000. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world. The subjects covered included nickel-hydrogen, lithium-ion, lithium-sulfur, and silver-zinc technologies.

  4. A Fundamental Electrochemical Investigation of Bromoaluminate and Mixed Chloro-Bromoaluminate Room Temperature Molten Salt Systems

    DTIC Science & Technology

    1989-03-01

    Non-Aqueous Bromide Research In the late 1950s, Alexander I. Popov and David H. Geske , published a series of papers dealing with the electrochemistry... Geske has also helped to illuminate the electrochemistry occurring in the Zinc-Bromine battery systems. In 1987 Adanuvor et al. studied the effects of the...oxidation waves present in the basic bromide melt system are due to some form of the bromide anion. While Popov and Geske 7 have attributed the first of

  5. A new paradigm on battery powered embedded system design based on User-Experience-Oriented method

    NASA Astrophysics Data System (ADS)

    Wang, Zhuoran; Wu, Yue

    2014-03-01

    The battery sustainable time has been an active research topic recently for the development of battery powered embedded products such as tablets and smart phones, which are determined by the battery capacity and power consumption. Despite numerous efforts on the improvement of battery capacity in the field of material engineering, the power consumption also plays an important role and easier to ameliorate in delivering a desirable user-experience, especially considering the moderate advancement on batteries for decades. In this study, a new Top-Down modelling method, User-Experience-Oriented Battery Powered Embedded System Design Paradigm, is proposed to estimate the target average power consumption, to guide the hardware and software design, and eventually to approach the theoretical lowest power consumption that the application is still able to provide the full functionality. Starting from the 10-hour sustainable time standard, average working current is defined with battery design capacity and set as a target. Then an implementation is illustrated from both hardware perspective, which is summarized as Auto-Gating power management, and from software perspective, which introduces a new algorithm, SleepVote, to guide the system task design and scheduling.

  6. Detection of bromine monoxide in a volcanic plume.

    PubMed

    Bobrowski, N; Hönninger, G; Galle, B; Platt, U

    2003-05-15

    The emission of volcanic gases usually precedes eruptive activity, providing both a warning signal and an indication of the nature of the lava soon to be erupted. Additionally, volcanic emissions are a significant source of gases and particles to the atmosphere, influencing tropospheric and stratospheric trace-gas budgets. Despite some halogen species having been measured in volcanic plumes (mainly HCl and HF), little is known about bromine compounds and, in particular, gas-phase reactive bromine species. Such species are especially important in the stratosphere, as reactive bromine-despite being two orders of magnitude less abundant than chlorine-accounts for about one-third of halogen-catalysed ozone depletion. In the troposphere, bromine-catalysed complete ozone destruction has been observed to occur regularly during spring in the polar boundary layers as well as in the troposphere above the Dead Sea basin. Here we report observations of BrO and SO2 abundances in the plume of the Soufrière Hills volcano (Montserrat) in May 2002 by ground-based multi-axis differential optical absorption spectroscopy. Our estimate of BrO emission leads us to conclude that local ozone depletion and small ozone 'holes' may occur in the vicinity of active volcanoes, and that the amount of bromine emitted from volcanoes might be sufficiently large to play a role not only in the stratosphere, but also in tropospheric chemistry.

  7. Design principles for nickel-hydrogen cells and batteries

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1985-01-01

    Nickel-hydrogen cells and, more recently, bipolar batteries have been built by a variety of organizations. The design principles that have been used by the technology group at the NASA Lewis Research Center draw upon their extensive background in separator technology, alkaline fuel cell technology, and several alkaline cell technology areas. These design principles have been incorporated into both the more contemporary individual pressure vessel (IPV) designs that were pioneered by other groups, as well as the more recent bipolar battery designs using active cooling that are being developed at NASA Lewis Research Center and under contract. These principles are rather straightforward applications of capillary force formalisms, coupled with the slowly developing data base resulting from careful post test analyses. The objective of this overall effort is directed towards the low-Earth-orbit (LEO) application where the cycle life requirements are much more severe than the geosynchronous-orbit (GEO) application. A summary of the design principles employed is presented along with a discussion of the recommendations for component pore sizes and pore size distributions, as well as suggested materials of construction. These will be made based on our experience in these areas to show how these design principles have been translated into operating hardware.

  8. Design principles for nickel-hydrogen cells and batteries

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1985-01-01

    Nickel-hydrogen cells and, more recently, bipolar batteries have been built by a variety of organizations. The design principles that have been used by the technology group at the NASA Lewis Research Center draw upon their extensive background in separator technology, alkaline fuel cell technology, and several alkaline cell technology areas. These design principles have been incorporated into both the more contemporary individual pressure vessel (IPV) designs that were pioneered by other groups, as well as the more recent bipolar battery designs using active cooling that are being developed at NASA Lewis Research Center and under contract. These principles are rather straightforward applications of capillary force formalisms, coupled with the slowly developing data base resulting from careful post test analyses. The objective of this overall effort is directed towards the low-earth-orbit (LEO) application where the cycle life requirements are much more severe than the geosynchronous-orbit (GEO) application. A summary of the design principles employed is presented along with a discussion of the recommendations for component pore sizes and pore size distributions, as well as suggested materials of construction. These will be made based on our experience in these areas to show how these design principles have been translated into operating hardware.

  9. Toxic effects of brominated indoles and phenols on zebrafish embryos.

    PubMed

    Kammann, U; Vobach, M; Wosniok, W

    2006-07-01

    Organobromine compounds in the marine environment have been the focus of growing attention in past years. In contrast to anthropogenic brominated flame retardants, other brominated compounds are produced naturally, e.g., by common polychaete worms and algae. Brominated phenols and indoles assumed to be of biogenic origin have been detected in water and sediment extracts from the German Bight. These substances as well as some of their isomers have been tested with the zebrafish embryo test and were found to cause lethal as well as nonlethal malformations. The zebrafish test was able to detect a log K(OW)-related toxicity for bromophenols, suggesting nonpolar narcosis as a major mode of action. Different effect patterns could be observed for brominated indoles and bromophenols. The comparison of effective concentrations in the zebrafish embryo test with the concentrations determined in water samples suggests the possibility that brominated indoles may affect early life stages of marine fish species in the North Sea.

  10. Design and Flight Performance of NOAA-K Spacecraft Batteries

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Chetty, P. R. K.; Spitzer, Tom; Chilelli, P.

    1999-01-01

    The US National Oceanic and Atmospheric Administration (NOAA) operates the Polar Operational Environmental Satellite (POES) spacecraft (among others) to support weather forecasting, severe storm tracking, and meteorological research by the National Weather Service (NWS). The latest in the POES series of spacecraft, named as NOAA-KLMNN, is in orbit and four more are in various phases of development. The NOAA-K spacecraft was launched on May 13, 1998. Each of these spacecraft carry three Nickel-Cadmium batteries designed and manufactured by Lockheed Martin. The battery, which consists of seventeen 40 Ah cells manufactured by SAFT, provides the spacecraft power during the ascent phase, orbital eclipse and when the power demand is in excess of the solar array capability. The NOAA-K satellite is in a 98 degree inclination, 7:30AM ascending node orbit. In this orbit the satellite experiences earth occultation only 25% of the year. This paper provides a brief overview of the power subsystem, followed by the battery design and qualification, the cell life cycle test data, and the performance during launch and in orbit.

  11. Design and Flight Performance of NOAA-K Spacecraft Batteries

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Chetty, P. R. K.; Spitzer, Tom; Chilelli, P.

    1998-01-01

    The US National Oceanic and Atmospheric Administration (NOAA) operates the Polar Operational Environmental Satellite (POES) spacecraft (among others) to support weather forecasting, severe storm tracking, and meteorological research by the National Weather Service (NWS). The latest in the POES series of spacecraft, named as NOAA-KLMNN', one is in orbit and four more are in various phases of development. The NOAA-K spacecraft was launched on May 13, 1998. Each of these spacecraft carry three Nickel-Cadmium batteries designed and manufactured by Lockheed Martin. The battery, which consists of seventeen 40 Ah cells manufactured by SAFT, provides the spacecraft power during the ascent phase, orbital eclipse and when the power demand is in excess of the solar array capability. The NOAA-K satellite is in a 98 degree inclination, 7:30AM ascending node orbit. In this orbit the satellite experiences earth occultation only 25% of the year. This paper provides a brief overview of the power subsystem, followed by the battery design and qualification, the cell life cycle test data, and the performance during launch and in orbit.

  12. Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process.

    PubMed

    Tanong, Kulchaya; Coudert, Lucie; Mercier, Guy; Blais, Jean-Francois

    2016-10-01

    Spent batteries contain hazardous materials, including numerous metals (cadmium, lead, nickel, zinc, etc.) that are present at high concentrations. Therefore, proper treatment of these wastes is necessary to prevent their harmful effects on human health and the environment. Current recycling processes are mainly applied to treat each type of spent battery separately. In this laboratory study, a hydrometallurgical process has been developed to simultaneously and efficiently solubilize metals from spent batteries. Among the various chemical leaching agents tested, sulfuric acid was found to be the most efficient and cheapest reagent. A Box-Behnken design was used to identify the influence of several parameters (acid concentration, solid/liquid ratio, retention time and number of leaching steps) on the removal of metals from spent batteries. According to the results, the solid/liquid ratio and acid concentration seemed to be the main parameters influencing the solubilization of zinc, manganese, nickel, cadmium and cobalt from spent batteries. According to the results, the highest metal leaching removals were obtained under the optimal leaching conditions (pulp density = 180 g/L (w/v), [H2SO4] = 1 M, number of leaching step = 3 and leaching time = 30 min). Under such optimum conditions, the removal yields obtained were estimated to be 65% for Mn, 99.9% for Cd, 100% for Zn, 74% for Co and 68% for Ni. Further studies will be performed to improve the solubilization of Mn and to selectively recover the metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Batteries for storage of wind-generated energy

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1973-01-01

    Cost effectiveness characteristics of conventional-, metal gas-, and high energy alkali metal-batteries for wind generated energy storage are considered. A lead-acid battery with a power density of 20 to 30 watt/hours per pound is good for about 1500 charge-discharge cycles at a cost of about $80 per kilowatt hour. A zinc-chlorine battery that stores chlorine as solid chlorine hydrate at temperatures below 10 C eliminates the need to handle gaseous chlorine; its raw material cost are low and inexpensive carbon can be used for the chlorine electrode. This system has the best chance to replace lead-acid. Exotic alkali metal batteries are deemed too costly at the present stage of development.

  14. A Robust Hybrid Zn-Battery with Ultralong Cycle Life.

    PubMed

    Li, Bing; Quan, Junye; Loh, Adeline; Chai, Jianwei; Chen, Ye; Tan, Chaoliang; Ge, Xiaoming; Hor, T S Andy; Liu, Zhaolin; Zhang, Hua; Zong, Yun

    2017-01-11

    Advanced batteries with long cycle life and capable of harnessing more energies from multiple electrochemical reactions are both fundamentally interesting and practically attractive. Herein, we report a robust hybrid zinc-battery that makes use of transition-metal-based redox reaction (M-O-OH → M-O, M = Ni and Co) and oxygen reduction reaction (ORR) to deliver more electrochemical energies of comparably higher voltage with much longer cycle life. The hybrid battery was constructed using an integrated electrode of NiCo 2 O 4 nanowire arrays grown on carbon-coated nickel foam, coupled with a zinc plate anode in alkaline electrolyte. Benefitted from the M-O/M-O-OH redox reactions and rich ORR active sites in NiCo 2 O 4 , the battery has concurrently exhibited high working voltage (by M-O-OH → M-O) and high energy density (by ORR). The good oxygen evolution reaction (OER) activity of the electrode and the reversible M-O ↔ M-O-OH reactions also enabled smooth recharging of the batteries, leading to excellent cycling stabilities. Impressively, the hybrid batteries maintained highly stable charge-discharge voltage profile under various testing conditions, for example, almost no change was observed over 5000 cycles at a current density of 5 mA cm -2 after some initial stabilization. With merits of higher working voltage, high energy density, and ultralong cycle life, such hybrid batteries promise high potential for practical applications.

  15. Brominated Luciferins Are Versatile Bioluminescent Probes

    DOE PAGES

    Steinhardt, Rachel C.; Rathbun, Colin M.; Krull, Brandon T.; ...

    2016-12-08

    Here, we report a set of brominated luciferins for bioluminescence imaging. These regioisomeric scaffolds were accessed by using a common synthetic route. All analogues produced light with firefly luciferase, although varying levels of emission were observed. Differences in photon output were analyzed by computation and photophysical measurements. The brightest brominated luciferin was further evaluated in cell and animal models. At low doses, the analogue outperformed the native substrate in cells. The remaining luciferins, although weak emitters with firefly luciferase, were inherently capable of light production and thus potential substrates for orthogonal mutant enzymes.

  16. A Hollow-Structured Manganese Oxide Cathode for Stable Zn-MnO₂ Batteries.

    PubMed

    Guo, Xiaotong; Li, Jianming; Jin, Xu; Han, Yehu; Lin, Yue; Lei, Zhanwu; Wang, Shiyang; Qin, Lianjie; Jiao, Shuhong; Cao, Ruiguo

    2018-05-05

    Aqueous rechargeable zinc-manganese dioxide (Zn-MnO₂) batteries are considered as one of the most promising energy storage devices for large scale-energy storage systems due to their low cost, high safety, and environmental friendliness. However, only a few cathode materials have been demonstrated to achieve stable cycling for aqueous rechargeable Zn-MnO₂ batteries. Here, we report a new material consisting of hollow MnO₂ nanospheres, which can be used for aqueous Zn-MnO₂ batteries. The hollow MnO₂ nanospheres can achieve high specific capacity up to ~405 mAh g −1 at 0.5 C. More importantly, the hollow structure of birnessite-type MnO₂ enables long-term cycling stability for the aqueous Zn-MnO₂ batteries. The excellent performance of the hollow MnO₂ nanospheres should be due to their unique structural properties that enable the easy intercalation of zinc ions.

  17. Computational design and refinement of self-heating lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-Guang; Zhang, Guangsheng; Wang, Chao-Yang

    2016-10-01

    The recently discovered self-heating lithium ion battery has shown rapid self-heating from subzero temperatures and superior power thereafter, delivering a practical solution to poor battery performance at low temperatures. Here, we describe and validate an electrochemical-thermal coupled model developed specifically for computational design and improvement of the self-heating Li-ion battery (SHLB) where nickel foils are embedded in its structure. Predicting internal cell characteristics, such as current, temperature and Li-concentration distributions, the model is used to discover key design factors affecting the time and energy needed for self-heating and to explore advanced cell designs with the highest self-heating efficiency. It is found that ohmic heat generated in the nickel foil accounts for the majority of internal heat generation, resulting in a large internal temperature gradient from the nickel foil toward the outer cell surface. The large through-plane temperature gradient leads to highly non-uniform current distribution, and more importantly, is found to be the decisive factor affecting the heating time and energy consumption. A multi-sheet cell design is thus proposed and demonstrated to substantially minimize the temperature gradient, achieving 30% more rapid self-heating with 27% less energy consumption than those reported in the literature.

  18. Hyper-dendritic nanoporous zinc foam anodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrastmore » to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn⁰/Zn²⁺ showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.« less

  19. Hyper-dendritic nanoporous zinc foam anodes

    DOE PAGES

    Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya; ...

    2015-04-24

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrastmore » to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn⁰/Zn²⁺ showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.« less

  20. Taking Battery Technology from the Lab to the Big City

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Sanjoy; Shmukler, Michael; Martin, Cheryl

    2013-07-29

    Urban Electric Power, a startup formed by researchers from the City University of New York (CUNY) Energy Institute, is taking breakthroughs in battery technology from the lab to the market. With industry and government funding, including a grant from the Energy Department, Urban Electric Power developed a zinc-nickel oxide battery electrolyte that circulates constantly, eliminating dendrite formation and preventing battery shortages. Their new challenge is to take this technology to the market, where they can scale up the batteries for reducing peak energy demand in urban areas and storing variable renewable electricity.

  1. Taking Battery Technology from the Lab to the Big City

    ScienceCinema

    Banerjee, Sanjoy; Shmukler, Michael; Martin, Cheryl

    2018-02-02

    Urban Electric Power, a startup formed by researchers from the City University of New York (CUNY) Energy Institute, is taking breakthroughs in battery technology from the lab to the market. With industry and government funding, including a grant from the Energy Department, Urban Electric Power developed a zinc-nickel oxide battery electrolyte that circulates constantly, eliminating dendrite formation and preventing battery shortages. Their new challenge is to take this technology to the market, where they can scale up the batteries for reducing peak energy demand in urban areas and storing variable renewable electricity.

  2. Battery using a metal particle bed electrode

    DOEpatents

    Evans, James V.; Savaskan, Gultekin

    1991-01-01

    A zinc-air battery in a case including a zinc particle bed supported adjacent the current feeder and diaphragm on a porous support plate which holds the particles but passes electrolyte solution. Electrolyte is recycled through a conduit between the support plate and top of the bed by convective forces created by a density of differential caused by a higher concentration of high density discharge products in the interstices of the bed than in the electrolyte recycle conduit.

  3. A flexible Li-ion battery with design towards electrodes electrical insulation

    NASA Astrophysics Data System (ADS)

    Vieira, E. M. F.; Ribeiro, J. F.; Sousa, R.; Correia, J. H.; Goncalves, L. M.

    2016-08-01

    The application of micro electromechanical systems (MEMS) technology in several consumer electronics leads to the development of micro/nano power sources with high power and MEMS integration possibility. This work presents the fabrication of a flexible solid-state Li-ion battery (LIB) (~2.1 μm thick) with a design towards electrodes electrical insulation, using conventional, low cost and compatible MEMS fabrication processes. Kapton® substrate provides flexibility to the battery. E-beam deposited 300 nm thick Ge anode was coupled with LiCoO2/LiPON (cathode/solid-state electrolyte) in a battery system. LiCoO2 and LiPON films were deposited by RF-sputtering with a power source of 120 W and 100 W, respectively. LiCoO2 film was annealed at 400 °C after deposition. The new design includes Si3N4 and LiPO thin-films, providing electrode electrical insulation and a battery chemical stability safeguard, respectively. Microstructure and battery performance were investigated by scanning electron microscopy, electric resistivity and electrochemical measurements (open circuit potential, charge/discharge cycles and electrochemical impedance spectroscopy). A rechargeable thin-film and lightweight flexible LIB using MEMS processing compatible materials and techniques is reported.

  4. Temporal effects in porcine skin following bromine vapor exposure.

    PubMed

    Price, Jennifer A; Rogers, James V; Wendling, Morgan Q S; Plahovinsak, Jennifer L; Perry, Mark R; Reid, Frances M; Kiser, Robyn C; Graham, John S

    2011-09-01

    Bromine is an industrial chemical that causes severe cutaneous burns. When selecting or developing effective treatments for bromine burns, it is important to understand the molecular mechanisms of tissue damage and wound healing. This study investigated the effect of cutaneous bromine vapor exposure on gene expression using a weanling swine burn model by microarray analysis. Ventral abdominal sites were exposed to a mean calculated bromine vapor concentration of 0.51 g/L for 7 or 17 min. At 6 h, 48 h, and 7 days post-exposure, total RNA from skin samples was isolated, processed, and analyzed with Affymetrix GeneChip® Porcine Genome Arrays (N = 3 per experimental group). Differences in gene expression were observed with respect to exposure duration and sampling time. Ingenuity Pathways Analysis (IPA) revealed four common biological functions (cancer, cellular movement, cell-to-cell signaling and interaction, and tissue development) among the top ten functions of each experimental group, while canonical pathway analysis revealed 9 genes (ARG2, CCR1, HMOX1, ATF2, IL-8, TIMP1, ESR1, HSPAIL, and SELE) that were commonly shared among four significantly altered signaling pathways. Among these, the transcripts encoding HMOX1 and ESR1 were identified using IPA as common potential therapeutic targets for Phase II/III clinical trial or FDA-approved drugs. The present study describes the transcriptional responses to cutaneous bromine vapor exposure identifying molecular networks and genes that could serve as targets for developing therapeutics for bromine-induced skin injury.

  5. Built-in electric field thickness design for betavoltaic batteries

    NASA Astrophysics Data System (ADS)

    Haiyang, Chen; Darang, Li; Jianhua, Yin; Shengguo, Cai

    2011-09-01

    Isotope source energy deposition along the thickness direction of a semiconductor is calculated, based upon which an ideal short current is evaluated for betavoltaic batteries. Electron-hole pair recombination and drifting length in a PN junction built-in electric field are extracted by comparing the measured short currents with the ideal short currents. A built-in electric field thickness design principle is proposed for betavoltaic batteries: after measuring the energy deposition depth and the carrier drift length, the shorter one should then be chosen as the built-in electric field thickness. If the energy deposition depth is much larger than the carrier drift length, a multi-junction is preferred in betavoltaic batteries and the number of the junctions should be the value of the deposition depth divided by the drift length.

  6. 40 CFR 180.519 - Bromide ion and residual bromine; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bromide ion and residual bromine... Tolerances § 180.519 Bromide ion and residual bromine; tolerances for residues. (a) General. The food additives, bromide ion and residual bromine, may be present in water, potable in accordance with the...

  7. 40 CFR 180.519 - Bromide ion and residual bromine; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Bromide ion and residual bromine... Tolerances § 180.519 Bromide ion and residual bromine; tolerances for residues. (a) General. The food additives, bromide ion and residual bromine, may be present in water, potable in accordance with the...

  8. The 1990 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Kennedy, Lewis M. (Compiler)

    1991-01-01

    This document contains the proceedings of the 21st annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on December 4-6, 1990. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers as well as participation in like kind from the European Space Agency member nations. The subjects covered included nickel-cadmium, nickel-hydrogen, silver-zinc, lithium based chemistries, and advanced technologies as they relate to high reliability operations in aerospace applications.

  9. UV-Vis spectrophotometry of quinone flow battery electrolyte for in situ monitoring and improved electrochemical modeling of potential and quinhydrone formation.

    PubMed

    Tong, Liuchuan; Chen, Qing; Wong, Andrew A; Gómez-Bombarelli, Rafael; Aspuru-Guzik, Alán; Gordon, Roy G; Aziz, Michael J

    2017-12-06

    Quinone-based aqueous flow batteries provide a potential opportunity for large-scale, low-cost energy storage due to their composition from earth abundant elements, high aqueous solubility, reversible redox kinetics and their chemical tunability such as reduction potential. In an operating flow battery utilizing 9,10-anthraquinone-2,7-disulfonic acid, the aggregation of an oxidized quinone and a reduced hydroquinone to form a quinhydrone dimer causes significant variations from ideal solution behavior and of optical absorption from the Beer-Lambert law. We utilize in situ UV-Vis spectrophotometry to establish (a), quinone, hydroquinone and quinhydrone molar attenuation profiles and (b), an equilibrium constant for formation of the quinhydrone dimer (K QHQ ) ∼ 80 M -1 . We use the molar optical attenuation profiles to identify the total molecular concentration and state of charge at arbitrary mixtures of quinone and hydroquinone. We report density functional theory calculations to support the quinhydrone UV-Vis measurements and to provide insight into the dimerization conformations. We instrument a quinone-bromine flow battery with a Pd-H reference electrode in order to demonstrate how complexation in both the negative (quinone) and positive (bromine) electrolytes directly impacts measured half-cell and full-cell voltages. This work shows how accounting for electrolyte complexation improves the accuracy of electrochemical modeling of flow battery electrolytes.

  10. The BATENUS process for recycling mixed battery waste

    NASA Astrophysics Data System (ADS)

    Fröhlich, Siegmund; Sewing, Dirk

    The first large-scale battery recycling facility implementing the hydrometallurgical BATENUS technology is expected to go into operation by 1996. The plant will be situated in Schönebeck/Sachsen-Anhalt, and has a projected maximum capacity of 7500 tons of spent batteries per year. The engineering is being carried out by Keramchemie GmbH and the plant will be operated by Batterierecycling Schönebeck GmbH. The BATENUS process was developed by Pira GmbH, a research institute in Stühlingen, Germany, during a period of five years. This new process combines hydrometallurgical operations in a nearly closed reagent cycle that involves electrochemical and membrane techniques. Effluent emissions are minimized to the greatest possible extent. Process validity has been proven in a series of pilot plant testings. After mechanical separation of the casing materials like ferrous and nonferrous metals, paper and plastics, the subsequent hydrometallurgical recovery yields zinc, copper, nickel and cadmium. The other products are manganese carbonate and a mixture of manganese oxide with carbon black. Mercury is immobilized by absorption on a selective ion-exchange resin. The BATENUS process is a master process for the hydrometallurgical reclamation of metals from secondary raw materials. It has found its first application in the treatment of spent consumer batteries (i.e., mixtures of zinc-carbon, alkaline manganese, lithium, nickel-cadmium cells, etc.). As a result of its modular process design, the individual steps can be modified easily and adapted to accommodate variations in the contents of the secondary raw materials. Further applications of this highly flexible technology are planned for the future.

  11. Battery using a metal particle bed electrode

    DOEpatents

    Evans, J.V.; Savaskan, G.

    1991-04-09

    A zinc-air battery in a case is described including a zinc particle bed supported adjacent the current feeder and diaphragm on a porous support plate which holds the particles but passes electrolyte solution. Electrolyte is recycled through a conduit between the support plate and top of the bed by convective forces created by a density of differential caused by a higher concentration of high density discharge products in the interstices of the bed than in the electrolyte recycle conduit. 7 figures.

  12. Piezoelectric power generation for sensor applications: design of a battery-less wireless tire pressure sensor

    NASA Astrophysics Data System (ADS)

    Makki, Noaman; Pop-Iliev, Remon

    2011-06-01

    An in-wheel wireless and battery-less piezo-powered tire pressure sensor is developed. Where conventional battery powered Tire Pressure Monitoring Systems (TPMS) are marred by the limited battery life, TPMS based on power harvesting modules provide virtually unlimited sensor life. Furthermore, the elimination of a permanent energy reservoir simplifies the overall sensor design through the exclusion of extra circuitry required to sense vehicle motion and conserve precious battery capacity during vehicle idling periods. In this paper, two design solutions are presented, 1) with very low cost highly flexible piezoceramic (PZT) bender elements bonded directly to the tire to generate power required to run the sensor and, 2) a novel rim mounted PZT harvesting unit that can be used to power pressure sensors incorporated into the valve stem requiring minimal change to the presently used sensors. While both the designs eliminate the use of environmentally unfriendly battery from the TPMS design, they offer advantages of being very low cost, service free and easily replaceable during tire repair and replacement.

  13. Design and analysis of aluminum/air battery system for electric vehicles

    NASA Astrophysics Data System (ADS)

    Yang, Shaohua; Knickle, Harold

    Aluminum (Al)/air batteries have the potential to be used to produce power to operate cars and other vehicles. These batteries might be important on a long-term interim basis as the world passes through the transition from gasoline cars to hydrogen fuel cell cars. The Al/air battery system can generate enough energy and power for driving ranges and acceleration similar to gasoline powered cars. From our design analysis, it can be seen that the cost of aluminum as an anode can be as low as US 1.1/kg as long as the reaction product is recycled. The total fuel efficiency during the cycle process in Al/air electric vehicles (EVs) can be 15% (present stage) or 20% (projected) comparable to that of internal combustion engine vehicles (ICEs) (13%). The design battery energy density is 1300 Wh/kg (present) or 2000 Wh/kg (projected). The cost of battery system chosen to evaluate is US 30/kW (present) or US$ 29/kW (projected). Al/air EVs life-cycle analysis was conducted and compared to lead/acid and nickel metal hydride (NiMH) EVs. Only the Al/air EVs can be projected to have a travel range comparable to ICEs. From this analysis, Al/air EVs are the most promising candidates compared to ICEs in terms of travel range, purchase price, fuel cost, and life-cycle cost.

  14. Lead/acid battery design and operation

    NASA Astrophysics Data System (ADS)

    Manders, J. E.; Bui, N.; Lambert, D. W. H.; Navarette, J.; Nelson, R. F.; Valeriote, E. M.

    In keeping with the tradition of previous meetings, the Seventh Asian Battery Conference closed with the delegates putting questions to an expert panel of battery scientists and technologies. The proceedings were lively and the subjects were as follows. Grid alloys: gassing characteristics; influence of minor constituents on metallurgical and electrochemical characteristics; latest trends in composition; alloys for cast-on straps. Battery manufacture and operation: plate formation ( α-PbO 2: β-PbO 2 ratio); dendritic shorts. Separators: contribution to battery internal resistance; influence of negative-plate enveloping; reduced backweb. Valve-regulated lead/acid batteries: positive active-material: negative active-material ratio; hydrogen evolution and dry-out; negative-plate self-discharge; tank vs. box formation.

  15. Trends in Cardiac Pacemaker Batteries

    PubMed Central

    Mallela, Venkateswara Sarma; Ilankumaran, V; Rao, N.Srinivasa

    2004-01-01

    Batteries used in Implantable cardiac pacemakers-present unique challenges to their developers and manufacturers in terms of high levels of safety and reliability. In addition, the batteries must have longevity to avoid frequent replacements. Technological advances in leads/electrodes have reduced energy requirements by two orders of magnitude. Micro-electronics advances sharply reduce internal current drain concurrently decreasing size and increasing functionality, reliability, and longevity. It is reported that about 600,000 pacemakers are implanted each year worldwide and the total number of people with various types of implanted pacemaker has already crossed 3 million. A cardiac pacemaker uses half of its battery power for cardiac stimulation and the other half for housekeeping tasks such as monitoring and data logging. The first implanted cardiac pacemaker used nickel-cadmium rechargeable battery, later on zinc-mercury battery was developed and used which lasted for over 2 years. Lithium iodine battery invented and used by Wilson Greatbatch and his team in 1972 made the real impact to implantable cardiac pacemakers. This battery lasts for about 10 years and even today is the power source for many manufacturers of cardiac pacemakers. This paper briefly reviews various developments of battery technologies since the inception of cardiac pacemaker and presents the alternative to lithium iodine battery for the near future. PMID:16943934

  16. Estimation of the residual bromine concentration after disinfection of cooling water by statistical evaluation.

    PubMed

    Megalopoulos, Fivos A; Ochsenkuehn-Petropoulou, Maria T

    2015-01-01

    A statistical model based on multiple linear regression is developed, to estimate the bromine residual that can be expected after the bromination of cooling water. Make-up water sampled from a power plant in the Greek territory was used for the creation of the various cooling water matrices under investigation. The amount of bromine fed to the circuit, as well as other important operational parameters such as concentration at the cooling tower, temperature, organic load and contact time are taken as the independent variables. It is found that the highest contribution to the model's predictive ability comes from cooling water's organic load concentration, followed by the amount of bromine fed to the circuit, the water's mean temperature, the duration of the bromination period and finally its conductivity. Comparison of the model results with the experimental data confirms its ability to predict residual bromine given specific bromination conditions.

  17. Design and Performance of Tropical Rainfall Measuring Mission (TRMM) Super NiCd Batteries

    NASA Technical Reports Server (NTRS)

    Ahmad, Anisa J.; Rao, Gopalakrishna M.; Jallice, Doris E.; Moran Vickie E.

    1999-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is a joint mission between NASA and the National Space Development Agency (NASDA) of Japan. The observatory is designed to monitor and study tropical rainfall and the associated release of energy that helps to power the global atmospheric circulation shaping both weather and climate around the globe. The spacecraft was launched from Japan on November 27,1997 via the NASDA H-2 launch vehicle. The TRMM Power Subsystem is a Peak Power Tracking system that can support the maximum TRMM load of 815 watts at the end of its three year life. The Power Subsystem consists of two 50 Ampere Hour Super NiCd batteries, Gallium Arsenide Solar Array and the Power System Electronics. This paper describes the TRMM Power Subsystem, battery design, cell and battery ground test performance, and in-orbit battery operations and performance.

  18. Reductive atmospheric acid leaching of spent alkaline batteries in H2SO4/Na2SO3 solutions

    NASA Astrophysics Data System (ADS)

    Morcali, Mehmet Hakan

    2015-07-01

    This work studies the optimum reductive leaching process for manganese and zinc recovery from spent alkaline battery paste. The effects of reducing agents, acid concentration, pulp density, reaction temperature, and leaching time on the dissolution of manganese and zinc were investigated in detail. Manganese dissolution by reductive acidic media is an intermediate-controlled process with an activation energy of 12.28 kJ·mol-1. After being leached, manganese and zinc were selectively precipitated with sodium hydroxide. The zinc was entirely converted into zincate (Zn(OH){4/2-}) ions and thus did not co-precipitate with manganese hydroxide during this treatment (2.0 M NaOH, 90 min, 200 r/min, pH > 13). After the manganese was removed from the solution, the Zn(OH){4/2-} was precipitated as zinc sulfate in the presence of sulfuric acid. The results indicated that this process could be effective in recovering manganese and zinc from alkaline batteries.

  19. Metal | polypyrrole battery with the air regenerated positive electrode

    NASA Astrophysics Data System (ADS)

    Grgur, Branimir N.

    2014-12-01

    Recharge characteristics of the battery based on the electrochemically synthesized polypyrrole cathode and aluminum, zinc, or magnesium anode in 2 M NH4Cl are investigated. It is shown that polypyrrole electrode can be regenerated by the reoxidation with the dissolved oxygen from the air. Using the polypyrrole synthesized on high surface graphite-felt electrode under modest discharge conditions, stable discharge voltage of 1.1 V is obtained. Such behavior is explained by the complex interaction of polypyrrole and hydrogen peroxide produced by the oxygen reduction reaction. The electrochemical characteristics are compared with the zinc-manganese dioxide and zinc-air systems.

  20. Design approach for solar cell and battery of a persistent solar powered GPS tracker

    NASA Astrophysics Data System (ADS)

    Sahraei, Nasim; Watson, Sterling M.; Pennes, Anthony; Marius Peters, Ian; Buonassisi, Tonio

    2017-08-01

    Sensors with wireless communication can be powered by photovoltaic (PV) devices. However, using solar power requires thoughtful design of the power system, as well as a careful management of the power consumption, especially for devices with cellular communication (because of their higher power consumption). A design approach can minimize system size, weight, and/or cost, while maximizing device performance (data transmission rate and persistence). In this contribution, we describe our design approach for a small form-factor, solar-powered GPS tracker with cellular communication. We evaluate the power consumption of the device in different stages of operation. Combining measured power consumption and the calculated energy-yield of a solar cell, we estimate the battery capacity and solar cell area required for 5 years of continuous operation. We evaluate trade-offs between PV and battery size by simulating the battery state of charge. The data show a trade-off between battery capacity and solar-cell area for given target data transmission rate and persistence. We use this analysis to determine the combination of solar panel area and battery capacity for a given application and the data transmission rate that results in minimum cost or total weight of the system.

  1. One hundred ampere-hour nickel-cadmium battery cells of improved design

    NASA Technical Reports Server (NTRS)

    Kantner, E.

    1972-01-01

    Nickel cadmium battery cells with 100 ampere hour capacity were developed. The design features, notably extension of the current collector tab to the full width of the battery plate, and the location of the cell terminals on the opposite ends, resulted in a reduction of internal impedance, and improved electrical performance with expected improvement in thermal performance. Tables of data and performance curves are included to support the theoretical considerations.

  2. A method to remove intercalates from bromine and iodine intercalated carbon fibers

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1993-01-01

    Upon exposure to room-temperature fluorine, intercalated carbon fibers (containing either bromine alone or iodine and bromine together) become heavier and less stable. For Amoco P-100 graphitized carbon fibers which were intercalated with 18 percent bromine by weight, 1 hr of fluorine exposure results in a large weight increase, but causes only a small decrease in thermal stability. More than l hr of fluorine exposure time results in small additional increases in fiber weight, but significant further decreases in fiber thermal stability. Such phenomena do not occur if the fluorine exposure is at 250 C. These observations suggest the mechanism that at room temperature, fluorine is absorbed quickly by the intercalated fibers and intercalated slowly into the fibers. Most of the original intercalates are replaced by fluorine in the process of fluorine intercalation. Under an inert environment, the bromine intercalated fibers are much more thermally stable. After 800 C vacuum heating for two weeks, the brominated fibers lost about 45 percent of their bromine, and their resistivity increased from 64 omega-cm to a range of 95 to 170 micro omega-cm. This is still much lower than the 300 micro omega-cm value for pristine P-100. For practical purposes, in order to preserve their thermal stability, brominated fibers need to be protected from exposure to fluorine at room temperature, or to any intercalate at a temperature where, upon direct contact to graphite, an intercalation compound can easily be formed.

  3. A Simulation of Bromoform's Contribution to Stratospheric Bromine

    NASA Technical Reports Server (NTRS)

    Nielsen, J. Eric; Douglass, Anne R.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Many chlorinated and brominated compounds that are inert in the troposphere are destroyed in the stratosphere and act as an in-situ source of stratospheric reactive chlorine and bromine. Other halogenated compounds that are reactive in the troposphere might contribute to the stratosphere's halogen budget in two ways. First, like their unreactive companions, rapid convective transport might carry them to the upper troposphere and make them available for subsequent advection by the mean circulation into the stratosphere before they are oxidized or photolyzed. Second, it is more likely that they are destroyed in the troposphere, and the chlorine and bromine that is released might then be transported to the stratosphere. We evaluate the relative influence of these processes on stratospheric bromine in a three-dimensional chemistry and transport model which simulates the distribution of bromoform (CHBr3). CHBr3 is parameterized as a short-lived, ocean-surface source gas whose destruction by photolysis and reaction with hydroxyl (OH) in the troposphere and stratosphere yields inorganic bromine (Br(sub y)). Many of the observed features of CHBr3 are simulated well, and comparisons with observations are used to show that the model represents aspects of transport in the upper troposphere and lower stratosphere that are critical to the evaluation. In particular, the model maintains the observed troposphere-stratosphere distinctness in transport pathways and reproduces the observed seasonal dependence of the mixture of air in the middle- and high-latitude lowermost stratosphere. We estimate that adding CHBr3 to models which already include the long-lived organic brominated compounds (halons and methyl bromide) will increase the simulated stratospheric mass of Br(sub y) by about 15 percent. In-situ stratospheric destruction of CHBr3 produces Br(sub y) in amounts which are comparable to that transported into the stratosphere after photolysis and oxidation of CHBr3 in the

  4. INTRODUCTION TO BROMINATED FLAME RETARDANTS

    EPA Science Inventory

    Brominated flame retardants (BFRs) are a large and diverse class of major industrial products used to provide fire safety. Tetrabromobisphenol A (TBBPA), Hexabromocylocodecane (HBCD), and Polybrominated Diphenyl Ethers (PBDEs) are the major commercial compounds. TBBPA is a react...

  5. Controllably Designed "Vice-Electrode" Interlayers Harvesting High Performance Lithium Sulfur Batteries.

    PubMed

    Hao, Youchen; Xiong, Dongbin; Liu, Wen; Fan, Linlin; Li, Dejun; Li, Xifei

    2017-11-22

    An interlayer has been regarded as a promising mediator to prolong the life span of lithium sulfur batteries because its excellent absorbability to soluble polysulfide efficiently hinders the shuttle effect. Herein, we designed various interlayers and understand the working mechanism of an interlayer for lithium sulfur batteries in detail. It was found that the electrochemical performance of a S electrode for an interlayer located in cathode side is superior to the pristine one without interlayers. Surprisingly, the performance of the S electrode for an interlayer located in anode side is poorer than that of pristine one. For comparison, glass fibers were also studied as a nonconductive interlayer for lithium sulfur batteries. Unlike the two interlayers above, these nonconductive interlayer did displays significant capacity fading because polysulfides were adsorbed onto insulated interlayer. Thus, the nonconductive interlayer function as a "dead zone" upon cycling. Based on our findings, it was for the first time proposed that a controllably optimized interlayer, with electrical conductivity as well as the absorbability of polysulfides, may function as a "vice-electrode" of the anode or cathode upon cycling. Therefore, the cathodic conductive interlayer can enhance lithium sulfur battery performance, and the anodic conductive interlayer may be helpful for the rational design of 3D networks for the protection of lithium metal.

  6. Storage battery comprising negative plates of a wedge shaped configuration. [for preventing shape change induced malfunctions

    NASA Technical Reports Server (NTRS)

    Bogner, R. S.; Farris, C. D. (Inventor)

    1974-01-01

    An improved silver-zinc battery particularly suited for use in an environment where battery operation is subjected to multiple charge/discharge cycling over extended periods is described. The battery seperator system, containing a highly absorbent material continguous with the surfaces of the plates and multiple semi-permeable membranes interposed between the plates, is also characterized.

  7. Secondary batteries with multivalent ions for energy storage

    PubMed Central

    Xu, Chengjun; Chen, Yanyi; Shi, Shan; Li, Jia; Kang, Feiyu; Su, Dangsheng

    2015-01-01

    The use of electricity generated from clean and renewable sources, such as water, wind, or sunlight, requires efficiently distributed electrical energy storage by high-power and high-energy secondary batteries using abundant, low-cost materials in sustainable processes. American Science Policy Reports state that the next-generation “beyond-lithium” battery chemistry is one feasible solution for such goals. Here we discover new “multivalent ion” battery chemistry beyond lithium battery chemistry. Through theoretic calculation and experiment confirmation, stable thermodynamics and fast kinetics are presented during the storage of multivalent ions (Ni2+, Zn2+, Mg2+, Ca2+, Ba2+, or La3+ ions) in alpha type manganese dioxide. Apart from zinc ion battery, we further use multivalent Ni2+ ion to invent another rechargeable battery, named as nickel ion battery for the first time. The nickel ion battery generally uses an alpha type manganese dioxide cathode, an electrolyte containing Ni2+ ions, and Ni anode. The nickel ion battery delivers a high energy density (340 Wh kg−1, close to lithium ion batteries), fast charge ability (1 minute), and long cycle life (over 2200 times). PMID:26365600

  8. Performance of alkaline battery cells used in emergency locator transmitters

    NASA Technical Reports Server (NTRS)

    Haynes, G. A.; Sokol, S.; Motley, W. R., III; Mcclelland, E. L.

    1984-01-01

    The characteristics of battery power supplies for emergency locator transmitters (ELT's) were investigated by testing alkaline zinc/manganese dioxide cells of the type typically used in ELT's. Cells from four manufacturers were tested. The cells were subjected to simulated environmental and load conditions representative of those required for survival and operation. Battery cell characteristics that may contribute to ELT malfunctions and limitations were evaluated. Experimental results from the battery cell study are discussed, and an evaluation of ELT performance while operating under a representative worst-case environmental condition is presented.

  9. Design of an efficient electrolyte circulation system for the lead-acid battery

    NASA Astrophysics Data System (ADS)

    Thuerk, D.

    The design and operation of an electrolyte circulation system are described. Application of lead acid batteries to electric vehicle and other repetitive deep cycle services produces a nondesirable state in the battery cells, electrolyte stratification. This stratification is the result of acid and water generation at the electrodes during cycling. With continued cycling, the extent of the stratification increases and prevents complete charging with low percentages of overcharge. Ultimately this results in extremely short life for the battery system. The stratification problem was overcome by substantially overcharging the battery. This abusive overcharge produces gassing rates sufficient to mix the electrolyte during the end portion of the charge. Overcharge, even though it is required to eliminate stratification, produces the undesirable results related to high voltage and gassing rates.

  10. 40 CFR 721.775 - Brominated aromatic com-pound (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Requirements as specified in § 721.80 (j) (use as an additive flame retardant for plastics) and (q). (iv... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Brominated aromatic com-pound (generic... Specific Chemical Substances § 721.775 Brominated aromatic com-pound (generic name). (a) Chemical...

  11. 40 CFR 721.775 - Brominated aromatic com-pound (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Requirements as specified in § 721.80 (j) (use as an additive flame retardant for plastics) and (q). (iv... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Brominated aromatic com-pound (generic... Specific Chemical Substances § 721.775 Brominated aromatic com-pound (generic name). (a) Chemical...

  12. 40 CFR 721.775 - Brominated aromatic com-pound (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Requirements as specified in § 721.80 (j) (use as an additive flame retardant for plastics) and (q). (iv... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Brominated aromatic com-pound (generic... Specific Chemical Substances § 721.775 Brominated aromatic com-pound (generic name). (a) Chemical...

  13. Battery collection in municipal waste management in Japan: Challenges for hazardous substance control and safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terazono, Atsushi, E-mail: terazono@nies.go.jp; Oguchi, Masahiro; Iino, Shigenori

    Highlights: • Consumers need to pay attention to the specific collection rules for each type of battery in each municipality in Japan. • 6–10% of zinc carbon and alkaline batteries discarded in Japan currently could be regarded as containing mercury. • Despite announcements by producers and municipalities, only 2.0% of discarded cylindrical dry batteries were insulated. • Batteries made up an average of 4.6% of the total collected small WEEE under the small WEEE recycling scheme in Japan. • Exchangeable batteries were used in almost all of mobile phones, but the removal rate was as low as 22% for mobilemore » phones. - Abstract: To clarify current collection rules of waste batteries in municipal waste management in Japan and to examine future challenges for hazardous substance control and safety, we reviewed collection rules of waste batteries in the Tokyo Metropolitan Area. We also conducted a field survey of waste batteries collected at various battery and small waste electric and electronic equipment (WEEE) collection sites in Tokyo. The different types of batteries are not collected in a uniform way in the Tokyo area, so consumers need to pay attention to the specific collection rules for each type of battery in each municipality. In areas where small WEEE recycling schemes are being operated after the enforcement of the Act on Promotion of Recycling of Small Waste Electrical and Electronic Equipment in Japan in 2013, consumers may be confused about the need for separating batteries from small WEEE (especially mobile phones). Our field survey of collected waste batteries indicated that 6–10% of zinc carbon and alkaline batteries discarded in Japan currently could be regarded as containing mercury. More than 26% of zinc carbon dry batteries currently being discarded may have a lead content above the labelling threshold of the EU Batteries Directive (2006/66/EC). In terms of safety, despite announcements by producers and municipalities about using

  14. Controlling Solid–Liquid Conversion Reactions for a Highly Reversible Aqueous Zinc–Iodine Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Huilin; Li, Bin; Mei, Donghai

    Aqueous rechargeable batteries are desirable for many energy storage applications due to their low cost and high safety. However, low capacity and short cycle life are the significant obstacles to their practical applications. Here, we demonstrate a highly reversible aqueous zinc-iodine battery using encapsulated iodine in microporous active carbon fibers (ACFs) as cathode materials through the rational control of solid-liquid conversion reactions. The experiments and density function theory (DFT) calculations were employed to investigate the effects of solvents and properties of carbon hosts, e.g. pore size, surface chemistries, on the adsorption of iodine species. The rational manipulation of the competitionmore » between the adsorption in carbon and solvation in electrolytes for iodine species is responsible for the high reversibility and cycling stability. The zinc-iodine batteries deliver a high capacity of 180 mAh g-1 at 1C and a stable cycle life over 3000 cycles with ~90% capacity retention as well as negligible self-discharge. We believe the principles for stabilizing the zinc-iodine system could provide new insight into conversion systems such as Li-S systems.« less

  15. Analysis of a hydrometallurgical route to recover base metals from spent rechargeable batteries by liquid-liquid extraction with Cyanex 272

    NASA Astrophysics Data System (ADS)

    Mantuano, Danuza Pereira; Dorella, Germano; Elias, Renata Cristina Alves; Mansur, Marcelo Borges

    A hydrometallurgical route is proposed to recover zinc and manganese from spent alkaline batteries in order to separate base metals such as nickel, copper, aluminium, cadmium, lithium and cobalt which constitute the main metallic species of spent NiCd, NiMH and Li-ion rechargeable batteries. The route comprises the following main steps: (1) sorting batteries by type, (2) battery dismantling to separate the spent battery dust from plastic, iron scrap and paper, (3) leaching of the dust with sulphuric acid and (4) metal separation by a liquid-liquid extraction using Cyanex 272 (bis-2,4,4-trimethylpentyl phosphinic acid) as extractant. The metal content of NiCd, NiMH and Li-ion batteries from three distinct manufacturers has been evaluated. A factorial design of experiments was used to investigate the leaching step using operational variables such as temperature, H 2SO 4 concentration, S/L ratio and H 2O 2 concentration. Analysis of metal separation by the liquid-liquid extraction with Cyanex 272 identified a pH 1/2 2.5-3.0 for zinc and aluminium, pH 1/2 4.0-4.5 for manganese, cadmium, copper and cobalt, pH 1/2 6.5 for nickel and pH 1/2 8.0 for lithium. These results indicate that batteries must be previously sorted by type and treated separately. In addition, data fitting to an equilibrium model proposed for the reactive test system by the European Federation of Chemical Engineering (EFChE) have indicated that MR 2(RH) 2 and MR 2 complexes (where M = Zn, Mn, Co, Cd and Cu) co-exist in the organic phase with Cyanex 272 depending on the loading conditions. The route has been found technically viable to separate the main metallic species of all batteries considered in this study.

  16. Sodium-oxygen batteries with alkyl-carbonate and ether based electrolytes.

    PubMed

    Kim, Jinsoo; Lim, Hee-Dae; Gwon, Hyeokjo; Kang, Kisuk

    2013-03-14

    Recently, metal-air batteries, such as lithium-air and zinc-air systems, have been studied extensively as potential candidates for ultra-high energy density storage devices because of their exceptionally high capacities. Here, we report such an electrochemical system based on sodium, which is abundant and inexpensive. Two types of sodium-oxygen batteries were introduced and studied, i.e. with carbonate and non-carbonate electrolytes. Both types could deliver specific capacities (2800 and 6000 mA h g(-1)) comparable to that of lithium-oxygen batteries but with slightly lower discharge voltages (2.3 V and 2.0 V). The reaction mechanisms of sodium-oxygen batteries in carbonate and non-carbonate electrolytes were investigated and compared with those of lithium-oxygen batteries.

  17. Mechanics analysis and design of fractal interconnects for stretchable batteries

    NASA Astrophysics Data System (ADS)

    Huang, Yonggang

    2014-03-01

    An important trend in electronics involves the development of materials, mechanical designs and manufacturing strategies that enable the use of unconventional substrates, such as polymer films, metal foils, paper sheets or rubber slabs. The last possibility is particularly challenging because the systems must accommodate not only bending but also stretching. Although several approaches are available for the electronics, a persistent difficulty is in power supplies that have similar mechanical properties, to allow their co-integration with the electronics. Here we introduce a set of materials and design concepts for a rechargeable lithium ion battery technology that exploits thin, low modulus silicone elastomers as substrates, with a segmented design in the active materials, and unusual ``self-similar'' interconnect structures between them. The result enables reversible levels of stretchability up to 300%, while maintaining capacity densities of ~1.1 mAh cm-2. Stretchable wireless power transmission systems provide the means to charge these types of batteries, without direct physical contact.

  18. Design Principles for Nickel/Hydrogen Cells and Batteries

    NASA Technical Reports Server (NTRS)

    Thaller, Lawrence H.; Manzo, Michelle A.; Gonzalez-Sanabria, Olga D.

    1987-01-01

    Individual-pressure-vessel (IPV) nickel/hydrogen cells and bipolar batteries developed for use as energy-storage subsystems for satelite applications. Design principles applied draw upon extensive background in separator technology, alkaline-fuel-cell technology and several alkaline-cell technology areas. Principals are rather straightforward applications of capillary-force formalisms, coupled with slowly developing data base resulting from careful post-test analyses. Based on preconceived assumptions relative to how devices work and how to be designed so they display longer cycle lives at deep discharge.

  19. Theoretical and Experimental Flow Cell Studies of a Hydrogen-Bromine Fuel Cell, Part 1. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Savinell, R. F.; Fritts, S. D.

    1986-01-01

    There is increasing interest in hydrogen-bromine fuel cells as both primary and regenerative energy storage systems. One promising design for a hydrogen-bromine fuel cell is a negative half cell having only a gas phase, which is separated by a cationic exchange membrane from a positive half cell having an aqueous electrolyte. The hydrogen gas and the aqueous bromide solution are stored external to the cell. In order to calculate the energy storage capacity and to predict and assess the performance of a single cell, the open circuit potential (OCV) must be estimated for different states of change, under various conditions. Theoretical expressions were derived to estimate the OCV of a hydrogen-bromine fuel cell. In these expressions temperature, hydrogen pressure, and bromine and hydrobromic acid concentrations were taken into consideration. Also included are the effects of the Nafion membrance separator and the various bromide complex species. Activity coefficients were taken into account in one of the expressions. The sensitivity of these parameters on the calculated OCV was studied.

  20. Fabrication and test of inorganic/organic separators. [for silver zinc batteries

    NASA Technical Reports Server (NTRS)

    Smatko, J. S.

    1974-01-01

    Completion of testing and failure analysis of MDC 40 Ahr silver zinc cells containing largely inorganic separators was accomplished. The results showed that the wet stand and cycle life objectives of the silver zinc cell development program were accomplished. Building, testing and failure analysis of two plate cells employing three optimum separators selected on the basis of extensive screening tests, was performed. The best separator material as a result of these tests was doped calcium zirconate.

  1. Water-Lubricated Intercalation in V2 O5 ·nH2 O for High-Capacity and High-Rate Aqueous Rechargeable Zinc Batteries.

    PubMed

    Yan, Mengyu; He, Pan; Chen, Ying; Wang, Shanyu; Wei, Qiulong; Zhao, Kangning; Xu, Xu; An, Qinyou; Shuang, Yi; Shao, Yuyan; Mueller, Karl T; Mai, Liqiang; Liu, Jun; Yang, Jihui

    2018-01-01

    Low-cost, environment-friendly aqueous Zn batteries have great potential for large-scale energy storage, but the intercalation of zinc ions in the cathode materials is challenging and complex. Herein, the critical role of structural H 2 O on Zn 2+ intercalation into bilayer V 2 O 5 ·nH 2 O is demonstrated. The results suggest that the H 2 O-solvated Zn 2+ possesses largely reduced effective charge and thus reduced electrostatic interactions with the V 2 O 5 framework, effectively promoting its diffusion. Benefited from the "lubricating" effect, the aqueous Zn battery shows a specific energy of ≈144 Wh kg -1 at 0.3 A g -1 . Meanwhile, it can maintain an energy density of 90 Wh kg -1 at a high power density of 6.4 kW kg -1 (based on the cathode and 200% Zn anode), making it a promising candidate for high-performance, low-cost, safe, and environment-friendly energy-storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Design and construction of coke battery 1A at Radlin coke plant, Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A.M. Kravchenko; D.P. Yarmoshik; V.B. Kamenyuka

    In the design and construction of coke battery 1A at Radlin coke plant (Poland), coking of rammed coke with a stationary system was employed for the first time. The coke batteries are grouped in blocks. Safety railings are provided on the coke and machine sides of the maintenance areas.

  3. Zinc Absorption by Young Adults from Supplemental Zinc Citrate Is Comparable with That from Zinc Gluconate and Higher than from Zinc Oxide123

    PubMed Central

    Wegmüller, Rita; Tay, Fabian; Zeder, Christophe; Brnić, Marica; Hurrell, Richard F.

    2014-01-01

    The water-soluble zinc salts gluconate, sulfate, and acetate are commonly used as supplements in tablet or syrup form to prevent zinc deficiency and to treat diarrhea in children in combination with oral rehydration. Zinc citrate is an alternative compound with high zinc content, slightly soluble in water, which has better sensory properties in syrups but no absorption data in humans. We used the double-isotope tracer method with 67Zn and 70Zn to measure zinc absorption from zinc citrate given as supplements containing 10 mg of zinc to 15 healthy adults without food and compared absorption with that from zinc gluconate and zinc oxide (insoluble in water) using a randomized, double-masked, 3-way crossover design. Median (IQR) fractional absorption of zinc from zinc citrate was 61.3% (56.6–71.0) and was not different from that from zinc gluconate with 60.9% (50.6–71.7). Absorption from zinc oxide at 49.9% (40.9–57.7) was significantly lower than from both other supplements (P < 0.01). Three participants had little or no absorption from zinc oxide. We conclude that zinc citrate, given as a supplement without food, is as well absorbed by healthy adults as zinc gluconate and may thus be a useful alternative for preventing zinc deficiency and treating diarrhea. The more insoluble zinc oxide is less well absorbed when given as a supplement without food and may be minimally absorbed by some individuals. This trial was registered at clinicaltrials.gov as NCT01576627. PMID:24259556

  4. Printed batteries and conductive patterns in technical textiles

    NASA Astrophysics Data System (ADS)

    Willert, Andreas; Meuser, Carmen; Baumann, Reinhard R.

    2018-05-01

    Various applications of functional devices need a tailored and reliable supply of electrical energy. Batteries are electrochemical systems that deliver energy for functional devices and applications. Due to the common use, several rigid types of batteries have been standardized. To fully integrate the battery into a product that is bendable, free in geometry and less than 1 mm thick, printing of power adaptable batteries is a challenging area of research. Therefore, the well-known zinc-manganese system, which is very promising due to its environmental sustainability and its simplicity, has been used to manufacture battery solutions on a new kind of substrate: technical textiles. Another challenge is the deposition of conductive patterns. At present, embroidery with metallic yarn is the only possibility to provide conducting paths on technical textiles, a time-consuming and elaborate process. Screen printed conductive pathways will generate a new momentum in the manufacturing of conductivity on textiles.

  5. Metal-Air Batteries: (Latest citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The bibliography contains citations concerning applications of metal-air batteries. Topics include systems that possess different practical energy densities at specific powers. Coverage includes the operation of air electrodes at different densities and performance results. The systems are used in electric vehicles as a cost-effective method to achieve reliability and efficiency. Zinc-air batteries are covered more thoroughly in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.)

  6. Bromine species fluxes from Lake Constance’s catchment, and a preliminary lake mass balance

    NASA Astrophysics Data System (ADS)

    Gilfedder, B. S.; Petri, M.; Wessels, M.; Biester, H.

    2011-06-01

    Bromine was historically termed a cyclic salt in terrestrial freshwater environments due to its perceived conservative cycling between the oceans and the continents. This basic assumption has been challenged recently, with evidence that bromine is involved in dynamic chemical cycles in soils and freshwaters. We present here a study on dissolved bromine species (bromide, organically bound bromine, DOBr) concentrations and fluxes as well as sediment trap bromine levels and fluxes in Lake Constance, a large lake in southern Germany. Water samples were obtained from all major and some minor inflows and outflows over one year, where-after dissolved bromine species were measured by a combination of ICP-MS and ion chromatography coupled to an ICP-MS (IC-ICP-MS). Sediment traps were deployed at two locations for two years with Br, Ti and Zr levels being measured by μ-XRF. 190 t yr -1 of total dissolved bromine (TDBr) was delivered to the lake via 14 rivers and precipitation, with the rivers Alpenrhein (84 t TDBr yr -1) and the Schussen (50 t TDBr yr -1) providing the largest sources. The estimated particulate bromine flux contributed an extra 24-26 t Br yr -1. In comparison, only 40 t TDBr yr -1 was deposited to the lake's catchment by precipitation, and thus ˜80% of the riverine TDBr flux came from soils and rocks. Bromide was the dominant species accounting for, on average, 78% of TDBr concentrations and 93% of TDBr flux to the lake. Despite some high concentrations in the smaller lowland rivers, DOBr was only a minor component of the total riverine bromine flux (˜12 t yr -1, 7%), most of which came from the rivers Schussen, Bregenzer Ach and Argen. In contrast, most of the bromine in the sediment traps was bound to organic matter, and showed a clear seasonal pattern in concentrations, with a maximum in winter and minimum in summer. The summer minimum is thought to be due to dilution of a high Br autochthonous component by low bromine mineral and organic material from

  7. Oxidation of mercury by bromine in the subtropical Pacific free troposphere

    NASA Astrophysics Data System (ADS)

    Gratz, L. E.; Ambrose, J. L.; Jaffe, D. A.; Shah, V.; Jaeglé, L.; Stutz, J.; Festa, J.; Spolaor, M.; Tsai, C.; Selin, N. E.; Song, S.; Zhou, X.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Flocke, F. M.; Campos, T. L.; Apel, E.; Hornbrook, R.; Blake, N. J.; Hall, S.; Tyndall, G. S.; Reeves, M.; Stechman, D.; Stell, M.

    2015-12-01

    Mercury is a global toxin that can be introduced to ecosystems through atmospheric deposition. Mercury oxidation is thought to occur in the free troposphere by bromine radicals, but direct observational evidence for this process is currently unavailable. During the 2013 Nitrogen, Oxidants, Mercury and Aerosol Distributions, Sources and Sinks campaign, we measured enhanced oxidized mercury and bromine monoxide in a free tropospheric air mass over Texas. We use trace gas measurements, air mass back trajectories, and a chemical box model to confirm the origin and chemical history of the sampled air mass. We find the presence of elevated oxidized mercury to be consistent with oxidation of elemental mercury by bromine atoms in this subsiding upper tropospheric air mass within the subtropical Pacific High, where dry atmospheric conditions are conducive to oxidized mercury accumulation. Our results support the role of bromine as the dominant oxidant of mercury in the upper troposphere.

  8. Bromine, chlorine and sulfur emission into the free troposphere from a Rift volcano

    NASA Astrophysics Data System (ADS)

    Bobrowski, N.; Giuffrida, G. B.; Tedeso, D.; Yalire, M. M.; Galle, B.

    2007-12-01

    In June 2007 spectroscopic measurements were carried out at the crater rim of the Niyragongo volcano located 15 km north of the city Goma, North Kivu region (DRC). Niyragongo volcano belongs to the Virunga volcanic chain and it is associated with the Western branch of the Great Rift Valley. The volcanism at Niyragongo is caused by the rifting of the Earth's crust where two parts of the African plates are breaking apart. Niyragongo is a 3470 m high stratovolcano, which a large summit crater usually containing a lava lake inside and it is considered one of the most active volcanoes in Africa. Satellite measurements show an extremely large sulphur dioxide plume since May 2002, and it is considered one of the biggest sulphur dioxide sources on Earth. The ground - based remote sensing technique - MAX-DOAS (Multi Axis Differential Optical Absorption Spectroscopy) using scattered sunlight has been applied during a one week field trip on top of the crater rim of Niyragongo volcano to measure nitrogen oxide, halogen oxides and sulphur dioxide. The used Mini-MAX-DOAS is a lightweight, compact, robust instrument and has very low power consumption which allows to be deployed over several days with some small lead batteries. The measurements provide valuable information of the chemical composition as well its variability within the volcanic plume of the lava lake and allowed also studying chemical transformation processes of the halogens inside the plume. Bromine-sulphur and chlorine-sulphur ratios were investigated and a minimal bromine and chlorine emission flux estimation will be presented.

  9. A cross-fostering analysis of bromine ion concentration in rats that inhaled 1-bromopropane vapor.

    PubMed

    Ishidao, Toru; Fueta, Yukiko; Ueno, Susumu; Yoshida, Yasuhiro; Hori, Hajime

    2016-06-16

    Inhaled 1-bromopropane decomposes easily and releases bromine ion. However, the kinetics and transfer of bromine ion into the next generation have not been clarified. In this work, the kinetics of bromine ion transfer to the next generation was investigated by using cross-fostering analysis and a one-compartment model. Pregnant Wistar rats were exposed to 700 ppm of 1-bromopropane vapor for 6 h per day during gestation days (GDs) 1-20. After birth, cross-fostering was performed between mother exposure groups and mother control groups, and the pups were subdivided into the following four groups: exposure group, postnatal exposure group, gestation exposure group, and control group. Bromine ion concentrations in the brain were measured temporally. Bromine ion concentrations in mother rats were lower than those in virgin rats, and the concentrations in fetuses were higher than those in mothers on GD20. In the postnatal period, the concentrations in the gestation exposure group decreased with time, and the biological half-life was 3.1 days. Conversely, bromine ion concentration in the postnatal exposure group increased until postnatal day 4 and then decreased. This tendency was also observed in the exposure group. A one-compartment model was applied to analyze the behavior of bromine ion concentration in the brain. By taking into account the increase of body weight and change in the bromine ion uptake rate in pups, the bromine ion concentrations in the brains of the rats could be estimated with acceptable precision.

  10. Mutagenic Azo Dyes, Rather Than Flame Retardants, Are the Predominant Brominated Compounds in House Dust.

    PubMed

    Peng, Hui; Saunders, David M V; Sun, Jianxian; Jones, Paul D; Wong, Chris K C; Liu, Hongling; Giesy, John P

    2016-12-06

    Characterization of toxicological profiles by use of traditional targeted strategies might underestimate the risk of environmental mixtures. Unbiased identification of prioritized compounds provides a promising strategy for meeting regulatory needs. In this study, untargeted screening of brominated compounds in house dust was conducted using a data-independent precursor isolation and characteristic fragment (DIPIC-Frag) approach, which used data-independent acquisition (DIA) and a chemometric strategy to detect peaks and align precursor ions. A total of 1008 brominated compound peaks were identified in 23 house dust samples. Precursor ions and formulas were identified for 738 (73%) of the brominated compounds. A correlation matrix was used to cluster brominated compounds; three large groups were found for the 140 high-abundance brominated compounds, and only 24 (17%) of these compounds were previously known flame retardants. The predominant class of unknown brominated compounds was predicted to consist of nitrogen-containing compounds. Following further validation by authentic standards, these compounds (56%) were determined to be novel brominated azo dyes. The mutagenicity of one major component was investigated, and mutagenicity was observed at environmentally relevant concentrations. Results of this study demonstrated the existence of numerous unknown brominated compounds in house dust, with mutagenic azo dyes unexpectedly being identified as the predominant compounds.

  11. Battery with a microcorrugated, microthin sheet of highly porous corroded metal

    DOEpatents

    LaFollette, Rodney M.

    2005-09-27

    Microthin sheet technology is disclosed by which superior batteries are constructed which, among other things, accommodate the requirements for high load rapid discharge and recharge, mandated by electric vehicle criteria. The microthin sheet technology has process and article overtones and can be used to form thin electrodes used in batteries of various kinds and types, such as spirally-wound batteries, bipolar batteries, lead acid batteries silver/zinc batteries, and others. Superior high performance battery features include: (a) minimal ionic resistance; (b) minimal electronic resistance; (c) minimal polarization resistance to both charging and discharging; (d) improved current accessibility to active material of the electrodes; (e) a high surface area to volume ratio; (f) high electrode porosity (microporosity); (g) longer life cycle; (h) superior discharge/recharge characteristics; (i) higher capacities (A.multidot.hr); and (j) high specific capacitance.

  12. Nickel hydrogen bipolar battery electrode design

    NASA Technical Reports Server (NTRS)

    Puglisi, V. J.; Russell, P.; Verrier, D.; Hall, A.

    1985-01-01

    The preferred approach of the NASA development effort in nickel hydrogen battery design utilizes a bipolar plate stacking arrangement to obtain the required voltage-capacity configuration. In a bipolar stack, component designs must take into account not only the typical design considerations such as voltage, capacity and gas management, but also conductivity to the bipolar (i.e., intercell) plate. The nickel and hydrogen electrode development specifically relevant to bipolar cell operation is discussed. Nickel oxide electrodes, having variable type grids and in thicknesses up to .085 inch are being fabricated and characterized to provide a data base. A selection will be made based upon a system level tradeoff. Negative (hydrpogen) electrodes are being screened to select a high performance electrode which can function as a bipolar electrode. Present nickel hydrogen negative electrodes are not capable of conducting current through their cross-section. An electrode was tested which exhibits low charge and discharge polarization voltages and at the same time is conductive. Test data is presented.

  13. Utilization of oxidation reactions for the spectrophotometric determination of captopril using brominating agents

    NASA Astrophysics Data System (ADS)

    El-Didamony, Akram M.; Erfan, Eman A. H.

    2010-03-01

    Three simple, accurate and sensitive methods (A-C) for the spectrophotometric assay of captopril (CPL) in bulk drug, in dosage forms and in the presence of its oxidative degradates have been described. The methods are based on the bromination of captopril with a solution of excess brominating mixture in hydrochloric acid medium. After bromination, the excess brominating mixture is followed by the estimation of surplus bromine by three different reaction schemes. In the first method (A), the determination of the residual bromine is based on its ability to bleach the indigo carmine dye and measuring the absorbance at 610 nm. Method B, involves treating the unreacted bromine with a measured excess of iron(II) and the remaining iron(II) is complexed with 1,10-phenanthroline and the increase in absorbance is measured at 510 nm. In method (C), the surplus bromine is treated with excess of iron(II) and the resulting iron(III) is complexed with thiocyanate and the absorbance is measured at 478 nm. In all the methods, the amount of bromine reacted corresponds to the drug content. The different experimental parameters affecting the development and stability of the color are carefully studied and optimized. Beer's law is valid within a concentration range of 0.4-6.0, 0.4-2.8 and 1.2-4.8 μg mL -1 for methods A, B and C, respectively. The calculated apparent molar absorptivity was found to be 5.16 × 10 4, 9.95 × 10 4 and 1.74 × 10 5 L mol -1 cm -1, for methods A, B and C, respectively. Sandell's sensitivity, correlation coefficients, detection and quantification limits are also reported. No interference was observed from common additives found in pharmaceutical preparations. The proposed methods are successfully applied to the determination of CPL in the tablet formulations with mean recoveries of 99.94-100.11% and the results were statistically compared with those of a reference method by applying Student's t- and F-test.

  14. Utilization of oxidation reactions for the spectrophotometric determination of captopril using brominating agents.

    PubMed

    El-Didamony, Akram M; Erfan, Eman A H

    2010-03-01

    Three simple, accurate and sensitive methods (A-C) for the spectrophotometric assay of captopril (CPL) in bulk drug, in dosage forms and in the presence of its oxidative degradates have been described. The methods are based on the bromination of captopril with a solution of excess brominating mixture in hydrochloric acid medium. After bromination, the excess brominating mixture is followed by the estimation of surplus bromine by three different reaction schemes. In the first method (A), the determination of the residual bromine is based on its ability to bleach the indigo carmine dye and measuring the absorbance at 610 nm. Method B, involves treating the unreacted bromine with a measured excess of iron(II) and the remaining iron(II) is complexed with 1,10-phenanthroline and the increase in absorbance is measured at 510 nm. In method (C), the surplus bromine is treated with excess of iron(II) and the resulting iron(III) is complexed with thiocyanate and the absorbance is measured at 478 nm. In all the methods, the amount of bromine reacted corresponds to the drug content. The different experimental parameters affecting the development and stability of the color are carefully studied and optimized. Beer's law is valid within a concentration range of 0.4-6.0, 0.4-2.8 and 1.2-4.8 microg mL(-1) for methods A, B and C, respectively. The calculated apparent molar absorptivity was found to be 5.16x10(4), 9.95x10(4) and 1.74x10(5)L mol(-1) cm(-1), for methods A, B and C, respectively. Sandell's sensitivity, correlation coefficients, detection and quantification limits are also reported. No interference was observed from common additives found in pharmaceutical preparations. The proposed methods are successfully applied to the determination of CPL in the tablet formulations with mean recoveries of 99.94-100.11% and the results were statistically compared with those of a reference method by applying Student's t- and F-test. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Experimental verification of Space Platform battery discharger design optimization

    NASA Astrophysics Data System (ADS)

    Sable, Dan M.; Deuty, Scott; Lee, Fred C.; Cho, Bo H.

    The detailed design of two candidate topologies for the Space Platform battery discharger, a four module boost converter (FMBC) and a voltage-fed push-pull autotransformer (VFPPAT), is presented. Each has unique problems. The FMBC requires careful design and analysis in order to obtain good dynamic performance. This is due to the presence of a right-half-plane (RHP) zero in the control-to-output transfer function. The VFPPAT presents a challenging power stage design in order to yield high efficiency and light component weight. The authors describe the design of each of these converters and compare their efficiency, weight, and dynamic characteristics.

  16. Experimental verification of Space Platform battery discharger design optimization

    NASA Technical Reports Server (NTRS)

    Sable, Dan M.; Deuty, Scott; Lee, Fred C.; Cho, Bo H.

    1991-01-01

    The detailed design of two candidate topologies for the Space Platform battery discharger, a four module boost converter (FMBC) and a voltage-fed push-pull autotransformer (VFPPAT), is presented. Each has unique problems. The FMBC requires careful design and analysis in order to obtain good dynamic performance. This is due to the presence of a right-half-plane (RHP) zero in the control-to-output transfer function. The VFPPAT presents a challenging power stage design in order to yield high efficiency and light component weight. The authors describe the design of each of these converters and compare their efficiency, weight, and dynamic characteristics.

  17. An electric vehicle propulsion system's impact on battery performance: An overview

    NASA Technical Reports Server (NTRS)

    Bozek, J. M.; Smithrick, J. J.; Cataldo, R. C.; Ewashinka, J. G.

    1980-01-01

    The performance of two types of batteries, lead-acid and nickel-zinc, was measured as a function of the charging and discharging demands anticipated from electric vehicle propulsion systems. The benefits of rapid high current charging were mixed: although it allowed quick charges, the energy efficiency was reduced. For low power (overnight) charging the current wave shapes delivered by the charger to the battery tended to have no effect on the battery cycle life. The use of chopper speed controllers with series traction motors resulted in a significant reduction in the energy available from a battery whenever the motor operates at part load. The demand placed on a battery by an electric vehicle propulsion system containing electrical regenerative braking confirmed significant improvment in short term performance of the battery.

  18. Advanced batteries for load-leveling - The utility perspective on system integration

    NASA Astrophysics Data System (ADS)

    Delmonaco, J. L.; Lewis, P. A.; Roman, H. T.; Zemkoski, J.

    1982-09-01

    Rechargeable battery systems for applications as utility load-leveling units, particularly in urban areas, are discussed. Particular attention is given to advanced lead-acid, zinc-halogen, sodium-sulfer, and lithium-iron sulfide battery systems, noting that battery charging can proceed at light load hours and requires no fuel on-site. Each battery site will have a master site controller and related subsystems necessary for ensuring grid-quality power output from the batteries and charging when feasible. The actual interconnection with the grid is envisioned as similar to transmission, subtransmission, or distribution systems similar to cogeneration or wind-derived energy interconnections. Analyses are presented of factors influencing the planning economics, impacts on existing grids through solid-state converters, and operational and maintenance considerations. Finally, research directions towards large scale battery implementation are outlined.

  19. PCBs, PBBs and Brominated Flame Retardants

    EPA Science Inventory

    This chapter introduces selected organohalogen chemicals such as polychlorinated biphenyls (PCB5), polychiorinated biphenyls (PBBs), and brominated flame retardants (BFRs) with emphasis on the background, physicochemical properties, environmental levels, health effects and possib...

  20. Marine bacterial degradation of brominated methanes

    USGS Publications Warehouse

    Goodwin, K.D.; Lidstrom, M.E.; Oremland, R.S.

    1997-01-01

    Brominated methanes are ozone-depleting compounds whose natural sources include marine algae such as kelp. Brominated methane degradation by bacteria was investigated to address whether bacterial processes might effect net emission of these compounds to the atmosphere. Bacteria in seawater collected from California kelp beds degraded CH2Br2 but not CHBr3. Specific inhibitors showed that methanotrophs and nitrifiers did not significantly contribute to CH2Br2 removal. A seawater enrichment culture oxidized 14CH2Br2 to 14CO2 as well as 14CH3Br to 14CO2. The rates of CH2Br2 degradation in laboratory experiments suggest that bacterial degradation of CH2Br2 in a kelp bed accounts for <1% of the CH2Br2 produced by the kelp. However, the half-life of CH2Br2 due to bacterial removal appears faster than hydrolysis and within an order of magnitude of volatilization to the atmosphere.Brominated methanes are ozone-depleting compounds whose natural sources include marine algae such as kelp. Brominated methane degradation by bacteria was investigated to address whether bacterial processes might effect net emission of these compounds to the atmosphere. Bacteria in seawater collected from California kelp beds degraded CH2Br2 but not CHBr3. Specific inhibitors showed that methanotrophs and nitrifiers did not significantly contribute to CH2Br2 removal. A seawater enrichment culture oxidized 14CH2Br2 to 14CO2 as well as 14CH3Br to 14CO2. The rates of CH2Br2 degradation in laboratory experiments suggest that bacterial degradation of CH2Br2 in a kelp bed accounts for <1% of the CH2Br2 produced by the kelp. However, the half-life of CH2Br2 due to bacterial removal appears faster than hydrolysis and within an order of magnitude of volatilization to the atmosphere.

  1. 40 CFR 721.10416 - Brominated polyphenyl ether (generic) (P-11-264).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) (P-11-264). 721.10416 Section 721.10416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10416 Brominated polyphenyl ether (generic) (P-11-264). (a) Chemical... as brominated polyphenyl ether (PMN P-11-264) is subject to reporting under this section for the...

  2. 40 CFR 721.10416 - Brominated polyphenyl ether (generic) (P-11-264).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) (P-11-264). 721.10416 Section 721.10416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10416 Brominated polyphenyl ether (generic) (P-11-264). (a) Chemical... as brominated polyphenyl ether (PMN P-11-264) is subject to reporting under this section for the...

  3. 40 CFR 721.10416 - Brominated polyphenyl ether (generic) (P-11-264).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) (P-11-264). 721.10416 Section 721.10416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10416 Brominated polyphenyl ether (generic) (P-11-264). (a) Chemical... as brominated polyphenyl ether (PMN P-11-264) is subject to reporting under this section for the...

  4. Soldier-Portable Battery Supply: Foreign Dependence and Policy Options

    DTIC Science & Technology

    2014-01-01

    Manganese), Ni (Nickel), O (Oxygen), S (Sulfur), and Zn ( Zinc ). CFx and MH represent Carbon monoouride and Metal-hydride, while O2 and S2 are referred to...mentioned earlier, the military makes use of nickel-based cells, as well as air- breathing batteries that pull oxygen from the outside air. In this section...performance. An “air- breathing ” battery structure has long been a goal of the R&D community, and has great potential for use in military applications. The

  5. A Multistep Synthesis Incorporating a Green Bromination of an Aromatic Ring

    ERIC Educational Resources Information Center

    Cardinal, Pascal; Greer, Brandon; Luong, Horace; Tyagunova, Yevgeniya

    2012-01-01

    Electrophilic aromatic substitution is a fundamental topic taught in the undergraduate organic chemistry curriculum. A multistep synthesis that includes a safer and greener method for the bromination of an aromatic ring than traditional bromination methods is described. This experiment is multifaceted and can be used to teach students about…

  6. Influence of operating conditions on the optimum design of electric vehicle battery cooling plates

    NASA Astrophysics Data System (ADS)

    Jarrett, Anthony; Kim, Il Yong

    2014-01-01

    The efficiency of cooling plates for electric vehicle batteries can be improved by optimizing the geometry of internal fluid channels. In practical operation, a cooling plate is exposed to a range of operating conditions dictated by the battery, environment, and driving behaviour. To formulate an efficient cooling plate design process, the optimum design sensitivity with respect to each boundary condition is desired. This determines which operating conditions must be represented in the design process, and therefore the complexity of designing for multiple operating conditions. The objective of this study is to determine the influence of different operating conditions on the optimum cooling plate design. Three important performance measures were considered: temperature uniformity, mean temperature, and pressure drop. It was found that of these three, temperature uniformity was most sensitive to the operating conditions, especially with respect to the distribution of the input heat flux, and also to the coolant flow rate. An additional focus of the study was the distribution of heat generated by the battery cell: while it is easier to assume that heat is generated uniformly, by using an accurate distribution for design optimization, this study found that cooling plate performance could be significantly improved.

  7. Preliminary design of betavoltaic battery using Co-60 and Pm-147 with GaAs substrate

    NASA Astrophysics Data System (ADS)

    Waris, A.; Kusumawati, Y.; Alfarobi, A. S.; Aji, I. K.; Basar, K.

    2016-03-01

    Battery is very important for the present daily life, especially for portable devices. The longer utilization time the better performance of battery. Betavoltaic battery is a device that converts energy from beta decays of radioactive nuclide into electric current. One of merits of the later battery is the life time that can be more than ten years without recharging. To develop the betavoltaic battery for energy source of portable devices we have performed a preliminary simulation design of betavoltaic battery using Pm-147 and Co-60 a beta emitter radionuclides with n-GaAs substrate. From the results we found that the combination of Pm-147 with n-GaAs substrate results in 9.0% of efficiency and higher output current compared to references.

  8. Double-membrane triple-electrolyte redox flow battery design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yushan, Yan; Gu, Shuang; Gong, Ke

    A redox flow battery is provided having a double-membrane (one cation exchange membrane and one anion exchange membrane), triple-electrolyte (one electrolyte in contact with the negative electrode, one electrolyte in contact with the positive electrode, and one electrolyte positioned between and in contact with the two membranes). The cation exchange membrane is used to separate the negative or positive electrolyte and the middle electrolyte, and the anion exchange membrane is used to separate the middle electrolyte and the positive or negative electrolyte. This design physically isolates, but ionically connects, the negative electrolyte and positive electrolyte. The physical isolation offers greatmore » freedom in choosing redox pairs in the negative electrolyte and positive electrolyte, making high voltage of redox flow batteries possible. The ionic conduction drastically reduces the overall ionic crossover between negative electrolyte and positive one, leading to high columbic efficiency.« less

  9. Laboratory study on the behaviour of spent AA household alkaline batteries in incineration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almeida, Manuel F.; Xara, Susana M.; Delgado, Julanda

    2009-01-15

    The quantitative evaluation of emissions from incineration is essential when Life Cycle Assessment (LCA) studies consider this process as an end-of-life solution for some wastes. Thus, the objective of this work is to quantify the main gaseous emissions produced when spent AA alkaline batteries are incinerated. With this aim, batteries were kept for 1 h at 1273 K in a refractory steel tube hold in a horizontal electric furnace with temperature control. At one end of the refractory steel tube, a constant air flow input assures the presence of oxygen in the atmosphere and guides the gaseous emissions to amore » filter system followed by a set of two bubbler flasks having an aqueous solution of 10% (v/v) nitric acid. After each set of experiments, sulphur, chlorides and metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Tl and Zn) were analyzed in both the solutions obtained from the steel tube washing and from the bubblers. Sulphur, chlorides and metals were quantified, respectively, using barium sulfate gravimetry, the Volhard method and atomic absorption spectrometry (AAS). The emissions of zinc, the most emitted metal, represent about 6.5% of the zinc content in the batteries. Emissions of manganese (whose oxide is the main component of the cathode) and iron (from the cathode collector) are negligible when compared with their amount in AA alkaline batteries. Mercury is the metal with higher volatility in the composition of the batteries and was collected even in the second bubbler flask. The amount of chlorides collected corresponds to about 36% of the chlorine in the battery sleeve that is made from PVC. A considerable part of the HCl formed in PVC plastic sleeve incineration is neutralized with KOH, zinc and manganese oxides and, thus, it is not totally released in the gas. Some of the emissions are predictable through a thermodynamic data analysis at temperatures in the range of 1200-1300 K taking into account the composition of the batteries. This analysis

  10. Biodegradation of brominated and organophosphorus flame retardants.

    PubMed

    Waaijers, Susanne L; Parsons, John R

    2016-04-01

    Brominated flame retardants account for about 21% of the total production of flame retardants and many of these have been identified as persistent, bioaccumulative and toxic. Nevertheless, debromination of these chemicals under anaerobic conditions is well established, although this can increase their toxicity. Consequently, the production and use of these chemicals has been restricted and alternative products have been developed. Many of these are brominated compounds and share some of the disadvantages of the chemicals they are meant to replace. Therefore, other, nonbrominated, flame retardants such as organophosphorus compounds are also being used in increasing quantities, despite the fact that knowledge of their biodegradation and environmental fate is often lacking. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Combinatorial electrochemical cell array for high throughput screening of micro-fuel-cells and metal/air batteries.

    PubMed

    Jiang, Rongzhong

    2007-07-01

    An electrochemical cell array was designed that contains a common air electrode and 16 microanodes for high throughput screening of both fuel cells (based on polymer electrolyte membrane) and metal/air batteries (based on liquid electrolyte). Electrode materials can easily be coated on the anodes of the electrochemical cell array and screened by switching a graphite probe from one cell to the others. The electrochemical cell array was used to study direct methanol fuel cells (DMFCs), including high throughput screening of electrode catalysts and determination of optimum operating conditions. For screening of DMFCs, there is about 6% relative standard deviation (percentage of standard deviation versus mean value) for discharge current from 10 to 20 mAcm(2). The electrochemical cell array was also used to study tin/air batteries. The effect of Cu content in the anode electrode on the discharge performance of the tin/air battery was investigated. The relative standard deviations for screening of metal/air battery (based on zinc/air) are 2.4%, 3.6%, and 5.1% for discharge current at 50, 100, and 150 mAcm(2), respectively.

  12. Nitrogen-doped micropore-dominant carbon derived from waste pine cone as a promising metal-free electrocatalyst for aqueous zinc/air batteries

    NASA Astrophysics Data System (ADS)

    Lei, Xiaoke; Wang, Mengran; Lai, Yanqing; Hu, Langtao; Wang, Hao; Fang, Zhao; Li, Jie; Fang, Jing

    2017-10-01

    The exploitation for highly effective and low-cost metal-free catalysts with facile and environmental friendly method for oxygen reduction reaction is still a great challenge. To find an effective method for catalyst synthesis, in this manuscript, waste biomass pine cone is employed as raw material and nitrogen-doped micropore-dominant carbon material with excellent ORR catalytic activity is successfully synthesized. The as-prepared N-doped micropore-dominant carbon possesses a high surface area of 1556 m2 g-1. In addition, this carbon electrocatalyst loaded electrode exhibits a high discharge voltage 1.07 V at the current density of 50 mA cm-2, which can be ascribed to the rich micropores and high content of pyridinic N of the prepared carbon, indicative of great potential in the application of zinc/air batteries.

  13. Fundamental mechanisms of DNA radiosensitization: damage induced by low-energy electrons in brominated oligonucleotide trimers.

    PubMed

    Park, Yeunsoo; Polska, Katarzyna; Rak, Janusz; Wagner, J Richard; Sanche, Léon

    2012-08-16

    The replacement of nucleobases with brominated analogs enhances DNA radiosensitivity. We examine the chemistry of low-energy electrons (LEEs) in this sensitization process by experiments with thin films of the oligonucleotide trimers TBrXT, where BrX = 5-BrU (5-bromouracil), 5-BrC (5-bromocytosine), 8-BrA (8-bromoadenine), or 8-BrG (8-bromoguanine). The products induced from irradiation of thin (∼ 2.5 nm) oligonucleotide films, with 10 eV electrons, under ultrahigh vacuum (UHV) are analyzed by HPLC-UV. The number of damaged brominated trimers ranges from about 12 to 15 × 10(-3) molecules per incident electron, whereas under the identical conditions, these numbers drop to 4-7 × 10(-3) for the same, but nonbrominated oligonucleotides. The results of HPLC analysis show that the main degradation pathway of trinucleotides containing brominated bases involve debromination (i.e., loss of the bromine atom and its replacement with a hydrogen atom). The electron-induced sum of products upon bromination increases by factors of 2.1 for the pyrimidines and 3.2 for the purines. Thus, substitution of any native nucleobase with a brominated one in simple models of DNA increases LEE-induced damage to DNA and hence its radiosensitivity. Furthermore, besides the brominated pyrimidines that have already been tested in clinical trials, brominated purines not only appear to be promising sensitizers for radiotherapy, but could provide a higher degree of radiosensitization.

  14. Complete Reductive Dehalogenation of Brominated Biphenyls by Anaerobic Microorganisms in Sediment

    PubMed Central

    Bedard, Donna L.; Van Dort, Heidi M.

    1998-01-01

    We sought to determine whether microorganisms from the polychlorinated biphenyl (PCB)-contaminated sediment in Woods Pond (Lenox, Mass.) could dehalogenate brominated biphenyls. The PCB dechlorination specificities for the microorganisms in this sediment have been well characterized. This allowed us to compare the dehalogenation specificities for brominated biphenyls and chlorinated biphenyls within a single sediment. Anaerobic sediment microcosms were incubated separately at 25°C with 16 different mono- to tetrabrominated biphenyls (350 μM) and disodium malate (10 mM). Samples were extracted and analyzed by gas chromatography with an electron capture detector and a mass spectrometer detector at various times for up to 54 weeks. All of the tested brominated biphenyls were dehalogenated. For most congeners, including 2,6-dibromobiphenyl (26-BB) and 24-25-BB, the dehalogenation began within 1 to 2 weeks. However, for 246-BB and 2-2-BB, debromination was first observed at 7 and 14 weeks, respectively. Most intermediate products did not persist, but when 2-2-BB was produced as a dehalogenation product, it persisted for at least 15 weeks before it was dehalogenated to 2-BB and then to biphenyl. The dehalogenation specificities for brominated and chlorinated biphenyls were similar: meta and para substituents were generally removed first, and ortho substituents were more recalcitrant. However, the brominated biphenyls were better dehalogenation substrates than the chlorinated biphenyls. All of the tested bromobiphenyls, including those with ortho and unflanked meta and para substituents, were ultimately dehalogenated to biphenyl, whereas their chlorinated counterparts either were not dehalogenation substrates or were only partially dehalogenated. Our data suggest that PCB-dechlorinating microorganisms may be able to dehalogenate brominated biphenyls and may exhibit a relaxed specificity for these substrates. PMID:16349530

  15. Preliminary design of betavoltaic battery using Co-60 and Pm-147 with GaAs substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waris, A., E-mail: awaris@fi.itb.ac.id; Basar, K.; Kusumawati, Y.

    Battery is very important for the present daily life, especially for portable devices. The longer utilization time the better performance of battery. Betavoltaic battery is a device that converts energy from beta decays of radioactive nuclide into electric current. One of merits of the later battery is the life time that can be more than ten years without recharging. To develop the betavoltaic battery for energy source of portable devices we have performed a preliminary simulation design of betavoltaic battery using Pm-147 and Co-60 a beta emitter radionuclides with n-GaAs substrate. From the results we found that the combination ofmore » Pm-147 with n-GaAs substrate results in 9.0% of efficiency and higher output current compared to references.« less

  16. Modeling, Analysis, and Impedance Design of Battery Energy Stored Single-Phase Quasi-Z Source Photovoltaic Inverter System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Yaosuo

    The battery energy stored quasi-Z-source (BES-qZS) based photovoltaic (PV) power generation system combines advantages of the qZS inverter and the battery energy storage system. However, the second harmonic (2 ) power ripple will degrade the system's performance and affect the system's design. An accurate model to analyze the 2 ripple is very important. The existing models did not consider the battery, and with the assumption L1=L2 and C1=C2, which causes the non-optimized design for the impedance parameters of qZS network. This paper proposes a comprehensive model for single-phase BES-qZS-PV inverter system, where the battery is considered and without any restrictionmore » of L1, L2, C1, and C2. A BES-qZS impedance design method based on the built model is proposed to mitigate the 2 ripple. Simulation and experimental results verify the proposed 2 ripple model and design method.« less

  17. Ultrastable α phase nickel hydroxide as energy storage materials for alkaline secondary batteries

    NASA Astrophysics Data System (ADS)

    Huang, Haili; Guo, Yinjian; Cheng, Yuanhui

    2018-03-01

    α Phase nickel hydroxide (α-Ni(OH)2) has higher theoretical capacity than that of commercial β phase Ni(OH)2. But the low stability inhibits its wide application in alkaline rechargeable batteries. Here, we propose a totally new idea to stabilize α phase Ni(OH)2 by introducing large organic molecule into the interlayer spacing together with doping multivalent cobalt into the layered Ni(OH)2 host. Ethylene glycol is served as neutral stabilizer in the interlayer spacing. Nickel is substituted by cobalt to increase the electrostatic attraction between layered Ni(OH)2 host and anion ions in the interlayer spacing. Polyethylene glycol (PEG-200) is utilized to design a three-dimensional network structure. This prepared α-Ni(OH)2-20 exhibits specific capacity as high as 334 mAh g-1and good structural stability even after immersing into strong alkaline zincate solution for 20 days. Ni(OH)2 electrode with a specific capacity of 35 mAh cm-2 is fabricated and used as positive electrode in zinc-nickel single flow batteries, which also shows good cycling stability. This result can provide an important guideline for the rational design and preparation of highly active and stable α phase Ni(OH)2 for alkaline secondary battery.

  18. Brominated flame retardant: environmental and exposed individuals' health impact.

    PubMed

    Dufour, Patrice; Charlier, Corinne

    2017-04-01

    Since Antiquity, men have used chemicals to protect their goods against fire. Effective and easy to use, brominated flame retardants are used since decades massively in plastic industry. Such like other organohalogenated compounds, brominated flame retardants are very persistent in the environment and able to accumulate along the food chain. Many authors highlight their presence in the environment, in many animal species and in the human serum. Worryingly, man is exposed as soon as the pregnancy and then by the breastfeeding. This exposition may have consequence on our health. Many studies (in vitro, in vivo or epidemiologic) highlight brominated flame retardant negative effects on the endocrine system, mainly on the thyroid function but also on the reproduction, the neurodevelopment in the children and on the metabolism with increasing diabetes risk. If authorities and some big enterprises are aware about the problematic, new studies are needed to confirm previous results, elucidate endocrine disrupting mechanisms and highlight hypothetical synergies with other pollutants such like PCBs.

  19. Separator Materials Used in Secondary Alkaline Batteries Characterized and Evaluated

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Nickel-cadmium (Ni/Cd) and nickel-hydrogen (Ni/H2) secondary alkaline batteries are vital to aerospace applications. Battery performance and cycle life are significantly affected by the type of separators used in those batteries. A team from NASA Lewis Research Center's Electrochemical Technology Branch developed standardized testing procedures to characterize and evaluate new and existing separator materials to improve performance and cycle life of secondary alkaline batteries. Battery separators must function as good electronic insulators and as efficient electrolyte reservoirs. At present, new types of organic and inorganic separator materials are being developed for Ni/Cd and Ni/H2 batteries. The separator material previously used in the NASA standard Ni/Cd was Pellon 2505, a 100-percent nylon-6 polymer that must be treated with zinc chloride (ZnCl2) to bond the fibers. Because of stricter Environmental Protection Agency regulation of ZnCl2 emissions, the battery community has been searching for new separators to replace Pellon 2505. As of today, two candidate separator materials have been identified; however, neither of the two materials have performed as well as Pellon 2505. The separator test procedures that were devised at Lewis are being implemented to expedite the search for new battery separators. The new test procedures, which are being carried out in the Separator Laboratory at Lewis, have been designed to guarantee accurate evaluations of the properties that are critical for sustaining proper battery operation. These properties include physical and chemical stability, chemical purity, gas permeability, electrolyte retention and distribution, uniformity, porosity, and area resistivity. A manual containing a detailed description of 12 separator test procedures has been drafted and will be used by the battery community to evaluate candidate separator materials for specific applications. These standardized procedures will allow for consistent, uniform

  20. Zinc Signals and Immunity.

    PubMed

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-10-24

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as "zinc waves", and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.

  1. Zinc Signals and Immunity

    PubMed Central

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-01-01

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as “zinc waves”, and late homeostatic zinc signals regarding prolonged changes in intracellular zinc. PMID:29064429

  2. Brominated Flame Retardants and Perfluorinated Chemicals

    EPA Science Inventory

    Brominated flame retardants (BFRs) and perfluorinated chemicals (PFCs) belong to a large class of chemicals known as organohalogens. It is believed that both BFRs and PFCs saved lives by reducing flammability of materials commonly used and bactericidal (biocidal) properties. Thes...

  3. Brominated flame retardants as food contaminants

    USDA-ARS?s Scientific Manuscript database

    This book chapter reviews analytical methods for the three major brominated flame retardant (BFR) classes in use today, tetrabromobisphenol-A (TBBP-A), hexabromocyclododecanes (HBCDs), and polybrominated diphenyl ethers (PBDEs), a "legacy" BFR no longer in use, polybrominated biphenyls (PBBs), and a...

  4. Towards Synergistic Electrode-Electrolyte Design Principles for Nonaqueous Li-O[Formula: see text] batteries.

    PubMed

    Khetan, Abhishek; Krishnamurthy, Dilip; Viswanathan, Venkatasubramanian

    2018-03-20

    One route toward sustainable land and aerial transportation is based on electrified vehicles. To enable electrification in transportation, there is a need for high-energy-density batteries, and this has led to an enormous interest in lithium-oxygen batteries. Several critical challenges remain with respect to realizing a practical lithium-oxygen battery. In this article, we present a detailed overview of theoretical efforts to formulate design principles for identifying stable electrolytes and electrodes with the desired functionality and stability. We discuss design principles relating to electrolytes and the additional stability challenges that arise at the cathode-electrolyte interface. Based on a thermodynamic analysis, we discuss two important requirements for the cathode: the ability to nucleate the desired discharge product, Li[Formula: see text]O[Formula: see text], and the ability to selectively activate only this discharge product while suppressing lithium oxide, the undesired secondary discharge product. We propose preliminary guidelines for determining the chemical stability of the electrode and illustrate the challenge associated with electrode selection using the examples of carbon cathodes and transition metals. We believe that a synergistic design framework for identifying electrolyte-electrode formulations is needed to realize a practical Li-O[Formula: see text] battery.

  5. A comparison of the bromination dynamics of various carbon and graphite fibers

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1987-01-01

    The electrical resistance of four grades of pitch-based graphite fibers and three experimental organic vapor-derived fibers was determined in situ during bromination and subsequent exposure to ambient laboratory air. The results show that the least graphitic pitch-based fiber does not brominate significantly, and that bromination and debrominaton reactions proceed much slower for vapor-derived fibers than for pitch-based ones. It is suggested that this decreased reacton rate is primarily due to the differences in graphene plane orientation between the fiber types. The results also imply that the vapor-derived and pitch-based fibers produce true intercalation compounds.

  6. 40 CFR 721.10625 - Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... benzene by-product, brominated and bromo diphenyl alkane (generic). 721.10625 Section 721.10625 Protection... Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic). (a... generically as distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (PMNs...

  7. 40 CFR 721.10625 - Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... benzene by-product, brominated and bromo diphenyl alkane (generic). 721.10625 Section 721.10625 Protection... Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic). (a... generically as distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (PMNs...

  8. Recent Progress in the Design of Advanced Cathode Materials and Battery Models for High-Performance Lithium-X (X = O2 , S, Se, Te, I2 , Br2 ) Batteries.

    PubMed

    Xu, Jiantie; Ma, Jianmin; Fan, Qinghua; Guo, Shaojun; Dou, Shixue

    2017-07-01

    Recent advances and achievements in emerging Li-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) batteries with promising cathode materials open up new opportunities for the development of high-performance lithium-ion battery alternatives. In this review, we focus on an overview of recent important progress in the design of advanced cathode materials and battery models for developing high-performance Li-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) batteries. We start with a brief introduction to explain why Li-X batteries are important for future renewable energy devices. Then, we summarize the existing drawbacks, major progress and emerging challenges in the development of cathode materials for Li-O 2 (S) batteries. In terms of the emerging Li-X (Se, Te, I 2 , Br 2 ) batteries, we systematically summarize their advantages/disadvantages and recent progress. Specifically, we review the electrochemical performance of Li-Se (Te) batteries using carbonate-/ether-based electrolytes, made with different electrode fabrication techniques, and of Li-I 2 (Br 2 ) batteries with various cell designs (e.g., dual electrolyte, all-organic electrolyte, with/without cathode-flow mode, and fuel cell/solar cell integration). Finally, the perspective on and challenges for the development of cathode materials for the promising Li-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) batteries is presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Survey of mercury, cadmium and lead content of household batteries.

    PubMed

    Recknagel, Sebastian; Radant, Hendrik; Kohlmeyer, Regina

    2014-01-01

    The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline-manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc-carbon batteries, on average, contained the highest levels. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Electrolyte additive for improved battery performance

    DOEpatents

    Bellows, Richard J.; Kantner, Edward

    1989-04-04

    In one embodiment of the present invention, there is provided an electrochemical cell having a metal bromine couple. The cell includes an electrode structure on which to deposit the metal of the couple and a counterelectrode at which to generate bromine. A microporous membrane separates the electrode and counterelectrode. Importantly, the aqueous electrolyte comprises an aqueous metal bromide solution containing a water soluble bromine complexing agent capable of forming a water immiscible complex with bromine and an additive capable of decreasing the wettability of the microporous separators employed in such cells by such water immiscible bromine complexes.

  11. Design factors for a super high energy density Ni-MH battery for military uses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, J.T.; Klein, M.G.

    1997-12-01

    The nickel-metal hydride battery is a relatively new commercial product which meets the needs for a more environmentally friendly battery than either the lead-acid or nickel-cadmium couples. While the presently available product also provides significantly improved performance over these other batteries, it is believed possible to develop a new generation of Ni-MH batteries with perhaps 80% greater density by using improved hydrogen storage alloys with the capability to store up to 2% by weight hydrogen, improved nickel electrodes which can stably cycle with an electron transfer of greater than 1.5 per nickel atom, and utilizing improved new cell and batterymore » packaging designs which minimize inactive battery weight and volume. This could raise the energy density of today`s commercial product (55--70 Wh/kg) to greater than 120 Wh/kg.« less

  12. Bromine partitioning between olivine and melt at OIB source conditions: Indication for volatile recycling

    NASA Astrophysics Data System (ADS)

    Joachim, Bastian; Ruzié, Lorraine; Burgess, Ray; Pawley, Alison; Clay, Patricia L.; Ballentine, Christopher J.

    2016-04-01

    Halogens play a key role in our understanding of volatile transport processes in the Earth's mantle. Their moderate (fluorine) to highly (iodine) incompatible and volatile behavior implies that their distribution is influenced by partial melting, fractionation and degassing processes as well as fluid mobilities. The heavy halogens, particularly bromine and iodine, are far more depleted in the Earth's mantle than expected from their condensation temperature (Palme and O'Neill 2014), so that their very low abundances in basalts and peridotites (ppb-range) make it analytically challenging to investigate their concentrations in Earth's mantle reservoirs and their behavior during transport processes (Pyle and Mather, 2009). We used a new experimental technique, which combines the irradiation technique (Johnson et al. 2000), laser ablation and conventional mass spectrometry. This enables us to present the first experimentally derived bromine partition coefficient between olivine and melt. Partitioning experiments were performed at 1500° C and 2.3 GPa, a P-T condition that is representative for partial melting processes in the OIB source region (Davis et al. 2011). The bromine partition coefficient between olivine and silicate melt at this condition has been determined to DBrol/melt = 4.37•10-4± 1.96•10-4. Results show that bromine is significantly more incompatible than chlorine (˜1.5 orders of magnitude) and fluorine (˜2 orders of magnitude) due to its larger ionic radius. We have used our bromine partitioning data to estimate minimum bromine abundances in EM1 and EM2 source regions. We used minimum bromine bulk rock concentrations determined in an EM1 (Pitcairn: 1066 ppb) and EM2 (Society: 2063 ppb) basalt (Kendrick et al. 2012), together with an estimated minimum melt fraction of 0.01 in OIB source regions (Dasgupta et al. 2007). The almost perfect bromine incompatibility results in minimum bromine abundances in EM1 and EM2 OIB source regions of 11 ppb and 20

  13. Battery Thermal Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyser, Matthew A

    The operating temperature is critical in achieving the right balance between performance, cost, and life for both Li-ion batteries and ultracapacitors. The chemistries of advanced energy-storage devices - such as lithium-based batteries - are very sensitive to operating temperature. High temperatures degrade batteries faster while low temperatures decrease their power and capacity, affecting vehicle range, performance, and cost. Understanding heat generation in battery systems - from the individual cells within a module, to the inter-connects between the cells, and across the entire battery system - is imperative for designing effective thermal-management systems and battery packs. At NREL, we have developedmore » unique capabilities to measure the thermal properties of cells and evaluate thermal performance of battery packs (air or liquid cooled). We also use our electro-thermal finite element models to analyze the thermal performance of battery systems in order to aid battery developers with improved thermal designs. NREL's tools are used to meet the weight, life, cost, and volume goals set by the U.S. Department of Energy for electric drive vehicles.« less

  14. BROMINATED FLAME RETARDANTS: CAUSE FOR CONCERN?

    EPA Science Inventory

    Brominated flame retardants (BFRs) have routinely been added to consumer products for several decades in a successful effort to reduce fire-related injury and property damage. Recently, concern for this emerging class of chemicals has risen due to the occurrence of several class...

  15. Nickel-Hydrogen Batteries - An Overview

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; ODonnell, Patricia M.

    1996-01-01

    This article on nickel-hydrogen batteries is an overview of the various nickel-hydrogen battery design options, technical accomplishments, validation test results, and trends. There is more than one nickel-hydrogen battery design, each having its advantage for specific applications. The major battery designs are Individual Pressure Vessel (IPV), Common Pressure Vessel (CPV), bipolar, and low-pressure metal hydride. State-of-the-art nickel-hydrogen batteries are replacing nickel-cadmium batteries in almost all geosynchronous Earth orbit applications requiring power above 1 kW. However, for the more severe Low-Earth Orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000-10,000 cycles at 60 - 80 % DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel-hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep Depths of Discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low-cost satellites. Hence, the challenge is to reduce battery mass, volume, and cost. A key is to develop a lightweight nickel electrode and alternate battery designs. A CPV nickel-hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume, and manufacturing costs. A 10-A-h CPV battery has successfully provided power on the relatively short-lived Clementine spacecraft. A bipolar nickel -hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 % DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high-pulse power capability. A low-pressure aerospace nickel-metal-hydride battery cell has been developed and is on the market. It is a prismatic design that has the advantage of a significant reduction in volume and a reduction in manufacturing cost.

  16. Nickel hydrogen batteries: An overview

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Odonnell, Patricia M.

    1994-01-01

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A LeRC innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass,volume, and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market. It is a prismatic design which has the advantage of a significant reduction in volume and a reduction in

  17. Theoretical performance of hydrogen-bromine rechargeable SPE fuel cell

    NASA Technical Reports Server (NTRS)

    Savinell, Robert F.; Fritts, S. D.

    1987-01-01

    A mathematical model was formulated to describe the performance of a hydrogen-bromine fuel cell. Porous electrode theory was applied to the carbon felt flow-by electrode and was coupled to theory describing the solid polymer electrolyte (SPE) system. Parametric studies using the numerical solution to this model were performed to determine the effect of kinetic, mass transfer, and design parameters on the performance of the fuel cell. The results indicate that the cell performance is most sensitive to the transport properties of the SPE membrane. The model was also shown to be a useful tool for scale-up studies.

  18. Battery collection in municipal waste management in Japan: challenges for hazardous substance control and safety.

    PubMed

    Terazono, Atsushi; Oguchi, Masahiro; Iino, Shigenori; Mogi, Satoshi

    2015-05-01

    To clarify current collection rules of waste batteries in municipal waste management in Japan and to examine future challenges for hazardous substance control and safety, we reviewed collection rules of waste batteries in the Tokyo Metropolitan Area. We also conducted a field survey of waste batteries collected at various battery and small waste electric and electronic equipment (WEEE) collection sites in Tokyo. The different types of batteries are not collected in a uniform way in the Tokyo area, so consumers need to pay attention to the specific collection rules for each type of battery in each municipality. In areas where small WEEE recycling schemes are being operated after the enforcement of the Act on Promotion of Recycling of Small Waste Electrical and Electronic Equipment in Japan in 2013, consumers may be confused about the need for separating batteries from small WEEE (especially mobile phones). Our field survey of collected waste batteries indicated that 6-10% of zinc carbon and alkaline batteries discarded in Japan currently could be regarded as containing mercury. More than 26% of zinc carbon dry batteries currently being discarded may have a lead content above the labelling threshold of the EU Batteries Directive (2006/66/EC). In terms of safety, despite announcements by producers and municipalities about using insulation (tape) on waste batteries to prevent fires, only 2.0% of discarded cylindrical dry batteries were insulated. Our field study of small WEEE showed that batteries made up an average of 4.6% of the total collected small WEEE on a weight basis. Exchangeable batteries were used in almost all of mobile phones, digital cameras, radios, and remote controls, but the removal rate was as low as 22% for mobile phones. Given the safety issues and the rapid changes occurring with mobile phones or other types of small WEEE, discussion is needed among stakeholders to determine how to safely collect and recycle WEEE and waste batteries. Copyright

  19. Observations of Bromine Chloride (BrCl) at an Arctic Coastal Site

    NASA Astrophysics Data System (ADS)

    McNamara, S. M.; Garner, N.; Wang, S.; Raso, A. R. W.; Thanekar, S.; Fuentes, J. D.; Shepson, P. B.; Pratt, K.

    2017-12-01

    Chlorine and bromine chemistry in the Arctic boundary layer have significant impacts on tropospheric ozone depletion and the fates of atmospheric pollutants such as methane, a greenhouse gas, and mercury. However, there is sparse understanding of halogen production and removal pathways due to a lack of observations. Here, we report chemical ionization mass spectrometry measurements of bromine chloride (BrCl) observed at Utqiaġvik (Barrow), AK during March-May 2016. Over the course of the three-month study, two distinct BrCl diurnal trends were identified, and production mechanisms were explored using 0-dimensional modeling, constrained by a suite of reactive halogen measurements. The findings in this work highlight coupled chlorine and bromine chemistry, as well as halogen activation pathways in the Arctic.

  20. Crewed Space Vehicle Battery Safety Requirements

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Darcy, Eric C.

    2014-01-01

    This requirements document is applicable to all batteries on crewed spacecraft, including vehicle, payload, and crew equipment batteries. It defines the specific provisions required to design a battery that is safe for ground personnel and crew members to handle and/or operate during all applicable phases of crewed missions, safe for use in the enclosed environment of a crewed space vehicle, and safe for use in launch vehicles, as well as in unpressurized spaces adjacent to the habitable portion of a space vehicle. The required provisions encompass hazard controls, design evaluation, and verification. The extent of the hazard controls and verification required depends on the applicability and credibility of the hazard to the specific battery design and applicable missions under review. Evaluation of the design and verification program results shall be completed prior to certification for flight and ground operations. This requirements document is geared toward the designers of battery systems to be used in crewed vehicles, crew equipment, crew suits, or batteries to be used in crewed vehicle systems and payloads (or experiments). This requirements document also applies to ground handling and testing of flight batteries. Specific design and verification requirements for a battery are dependent upon the battery chemistry, capacity, complexity, charging, environment, and application. The variety of battery chemistries available, combined with the variety of battery-powered applications, results in each battery application having specific, unique requirements pertinent to the specific battery application. However, there are basic requirements for all battery designs and applications, which are listed in section 4. Section 5 includes a description of hazards and controls and also includes requirements.

  1. Thermally Regenerative Battery with Intercalatable Electrodes and Selective Heating Means

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor); Narayanan, Sekharipuram R. (Inventor); Hickey, Gregory S. (Inventor)

    2000-01-01

    The battery contains at least one electrode such as graphite that intercalates a first species from the electrolyte disposed in a first compartment such as bromine to form a thermally decomposable complex during discharge. The other electrode can also be graphite which supplies another species such as lithium to the electrolyte in a second electrode compartment. The thermally decomposable complex is stable at room temperature but decomposes at elevated temperatures such as 50 C. to 150 C. The electrode compartments are separated by a selective ion permeable membrane that is impermeable to the first species. Charging is effected by selectively heating the first electrode.

  2. Brominated flame retardants and perfluorinated chemicals

    EPA Science Inventory

    Brominated flame retardants (BFRs) and perfluorinated chemicals (PFCs) belong to a class of chemicals known as organohalogens. It is believed that use of both BFRs and PFCs has resulted in lives saved by reducing flammability of materials commonly used and also due to their bacte...

  3. Battery designs with high capacity anode materials and cathode materials

    DOEpatents

    Masarapu, Charan; Anguchamy, Yogesh Kumar; Han, Yongbong; Deng, Haixia; Kumar, Sujeet; Lopez, Herman A.

    2017-10-03

    Improved high energy capacity designs for lithium ion batteries are described that take advantage of the properties of high specific capacity anode active compositions and high specific capacity cathode active compositions. In particular, specific electrode designs provide for achieving very high energy densities. Furthermore, the complex behavior of the active materials is used advantageously in a radical electrode balancing design that significantly reduced wasted electrode capacity in either electrode when cycling under realistic conditions of moderate to high discharge rates and/or over a reduced depth of discharge.

  4. Fabrication of aerogel capsule, bromine-doped capsule, and modified gold cone in modified target for the Fast Ignition Realization Experiment (FIREX) Project

    NASA Astrophysics Data System (ADS)

    Nagai, Keiji; Yang, H.; Norimatsu, T.; Azechi, H.; Belkada, F.; Fujimoto, Y.; Fujimura, T.; Fujioka, K.; Fujioka, S.; Homma, H.; Ito, F.; Iwamoto, A.; Jitsuno, T.; Kaneyasu, Y.; Nakai, M.; Nemoto, N.; Saika, H.; Shimoyama, T.; Suzuki, Y.; Yamanaka, K.; Mima, K.

    2009-09-01

    The development of target fabrication for the Fast Ignition Realization EXperiment (FIREX) Project is described in this paper. For the first stage of the FIREX Project (FIREX-I), the previously designed target has been modified by using a bromine-doped ablator and coating the inner gold cone with a low-density material. A high-quality bromine-doped capsule without vacuoles was fabricated from bromine-doped deuterated polystyrene. The gold surface was coated with a low-density material by electrochemical plating. For the cryogenic fuel target, a brand new type of aerogel material, phloroglucinol/formaldehyde (PF), was investigated and encapsulated to meet the specifications of 500 µm diameter and 20 µm thickness, with 30 nm nanopores. Polystyrene-based low-density materials were investigated and the relationship between the crosslinker content and the nanopore structure was observed.

  5. Hyper-dendritic nanoporous zinc foam anodes, methods of producing the same, and methods for their use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steingart, Daniel A.; Chamoun, Mylad; Hertzberg, Benjamin

    Disclosed are hyper-dendritic nanoporous zinc foam electrodes, viz., anodes, methods of producing the same, and methods for their use in electrochemical cells, especially in rechargeable electrical batteries.

  6. Batteries: Overview of Battery Cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doeff, Marca M

    2010-07-12

    hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can

  7. Thermal Analysis of the Vulnerability of the Spacesuit Battery Design to Short-Circuit Conditions (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, G. H.; Chaney, L.; Smith, K.

    2010-04-22

    NREL researchers created a mathematical model of a full 16p-5s spacesuit battery for NASA that captures electrical/thermal behavior during shorts to assess the vulnerability of the battery to pack-internal (cell-external) shorts. They found that relocating the short from battery pack-external (experimental validation) to pack-internal (modeling study) causes substantial additional heating of cells, which can lead to cell thermal runaway. All three layers of the bank-to-bank separator must fail for the pack-internal short scenario to occur. This finding emphasizes the imperative of battery pack assembly cleanliness. The design is tolerant to pack-internal shorts when stored at 0% state of charge.

  8. Micro Calorimeter for Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santhanagopalan, Shriram

    2017-08-01

    As battery technology forges ahead and consumer demand for safer, more affordable, high-performance batteries grows, the National Renewable Energy Laboratory (NREL) has added a patented Micro Calorimeter to its existing family of R&D 100 Award-winning Isothermal Battery Calorimeters (IBCs). The Micro Calorimeter examines the thermal signature of battery chemistries early on in the design cycle using popular coin cell and small pouch cell designs, which are simple to fabricate and study.

  9. NREL Multiphysics Modeling Tools and ISC Device for Designing Safer Li-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pesaran, Ahmad A.; Yang, Chuanbo

    2016-03-24

    The National Renewable Energy Laboratory has developed a portfolio of multiphysics modeling tools to aid battery designers better understand the response of lithium ion batteries to abusive conditions. We will discuss this portfolio, which includes coupled electrical, thermal, chemical, electrochemical, and mechanical modeling. These models can simulate the response of a cell to overheating, overcharge, mechanical deformation, nail penetration, and internal short circuit. Cell-to-cell thermal propagation modeling will be discussed.

  10. 40 CFR 721.10280 - Benzene ethenyl-, polymer with 1,3-butadiene, brominated.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzene ethenyl-, polymer with 1,3... Specific Chemical Substances § 721.10280 Benzene ethenyl-, polymer with 1,3-butadiene, brominated. (a... benzene ethenyl-, polymer with 1,3-butadiene, brominated (PMN P-10-476; CAS No. 1195978-93-8)) is subject...

  11. 40 CFR 721.10280 - Benzene ethenyl-, polymer with 1,3-butadiene, brominated.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzene ethenyl-, polymer with 1,3... Specific Chemical Substances § 721.10280 Benzene ethenyl-, polymer with 1,3-butadiene, brominated. (a... benzene ethenyl-, polymer with 1,3-butadiene, brominated (PMN P-10-476; CAS No. 1195978-93-8)) is subject...

  12. Durable rechargeable zinc-air batteries with neutral electrolyte and manganese oxide catalyst

    NASA Astrophysics Data System (ADS)

    Sumboja, Afriyanti; Ge, Xiaoming; Zheng, Guangyuan; Goh, F. W. Thomas; Hor, T. S. Andy; Zong, Yun; Liu, Zhaolin

    2016-11-01

    Neutral chloride-based electrolyte and directly grown manganese oxide on carbon paper are used as the electrolyte and air cathode respectively for rechargeable Zn-air batteries. Oxygen reduction and oxygen evolution reactions on manganese oxide show dependence of activities on the pH of the electrolyte. Zn-air batteries with chloride-based electrolyte and manganese oxide catalyst exhibit satisfactory voltage profile (discharge and charge voltage of 1 and 2 V at 1 mA cm-2) and excellent cycling stability (≈90 days of continuous cycle test), which is attributed to the reduced carbon corrosion on the air cathode and decreased carbonation in neutral electrolyte. This work describes a robust electrolyte system that improves the cycle life of rechargeable Zn-air batteries.

  13. Battery Cell Balancing Optimisation for Battery Management System

    NASA Astrophysics Data System (ADS)

    Yusof, M. S.; Toha, S. F.; Kamisan, N. A.; Hashim, N. N. W. N.; Abdullah, M. A.

    2017-03-01

    Battery cell balancing in every electrical component such as home electronic equipment and electric vehicle is very important to extend battery run time which is simplified known as battery life. The underlying solution to equalize the balance of cell voltage and SOC between the cells when they are in complete charge. In order to control and extend the battery life, the battery cell balancing is design and manipulated in such way as well as shorten the charging process. Active and passive cell balancing strategies as a unique hallmark enables the balancing of the battery with the excellent performances configuration so that the charging process will be faster. The experimental and simulation covers an analysis of how fast the battery can balance for certain time. The simulation based analysis is conducted to certify the use of optimisation in active or passive cell balancing to extend battery life for long periods of time.

  14. Development and characterization of textile batteries

    NASA Astrophysics Data System (ADS)

    Normann, M.; Grethe, T.; Schwarz-Pfeiffer, A.; Ehrmann, A.

    2017-02-01

    During the past years, smart textiles have gained more and more attention. Products cover a broad range of possible applications, from fashion items such as LED garments to sensory shirts detecting vital signs to clothes with included electrical stimulation of muscles. For all electrical or electronic features included in garments, a power supply is needed - which is usually the bottleneck in the development of smart textiles, since common power supplies are not flexible and often not lightweight, prohibiting their unobtrusive integration in electronic textiles. In a recent project, textile-based batteries are developed. For this, metallized woven fabrics (e.g. copper, zinc, or silver) are used in combinations with carbon fabrics. The article gives an overview of our recent advances in optimizing power storage capacity and durability of the textile batteries by tailoring the gel-electrolyte. The gel-electrolyte is modified with respect to thickness and electrolyte concentration; additionally, the influence of additives on the long-time stability of the batteries is examined.

  15. Levels of brominated diphenylether, dibenzo-P-dioxin, and dibenzofuran in flue gases of a municipal waste combustor

    EPA Science Inventory

    Due to the extensive use of brominated flame retardants (BFRs), including brominated diphenylether (BDE) formulations, for various domestic and industrial applications, the presence of brominated chemicals in the waste stream is to be expected for decades. As much as 40% to 50% o...

  16. Predictive models for water sources with high susceptibility for bromine-containing disinfection by-product formation: implications for water treatment.

    PubMed

    Watson, Kalinda; Farré, Maria José; Birt, James; McGree, James; Knight, Nicole

    2015-02-01

    This study examines a matrix of synthetic water samples designed to include conditions that favour brominated disinfection by-product (Br-DBP) formation, in order to provide predictive models suitable for high Br-DBP forming waters such as salinity-impacted waters. Br-DBPs are known to be more toxic than their chlorinated analogues, in general, and their formation may be favoured by routine water treatment practices such as coagulation/flocculation under specific conditions; therefore, circumstances surrounding their formation must be understood. The chosen factors were bromide concentration, mineral alkalinity, bromide to dissolved organic carbon (Br/DOC) ratio and Suwannee River natural organic matter concentration. The relationships between these parameters and DBP formation were evaluated by response surface modelling of data generated using a face-centred central composite experimental design. Predictive models for ten brominated and/or chlorinated DBPs are presented, as well as models for total trihalomethanes (tTHMs) and total dihaloacetonitriles (tDHANs), and bromide substitution factors for the THMs and DHANs classes. The relationships described revealed that increasing alkalinity and increasing Br/DOC ratio were associated with increasing bromination of THMs and DHANs, suggesting that DOC lowering treatment methods that do not also remove bromide such as enhanced coagulation may create optimal conditions for Br-DBP formation in waters in which bromide is present.

  17. Bromine release from blowing snow and its impact on tropospheric chemistry

    NASA Astrophysics Data System (ADS)

    Griffiths, Paul; Yang, Xin; Abraham, N. Luke; Archibald, Alexander; Pyle, John

    2016-04-01

    In the last two decades, significant depletion of boundary layer ozone (ozone depletion events, ODEs) has been observed in both Arctic and Antarctic spring. ODEs are attributed to catalytic destruction by bromine radicals (Br plus BrO), especially during bromine explosion events (BEs), when high concentrations of BrO periodically occur. The source of bromine and the mechanism that sustains the high BrO levels are still the subject of study. Recent work by Pratt et al. (2013) posits Br2 production within saline snow and sea ice which leads to sudden ODEs. Previously, Yang et al. (2008) suggested snow could provide a source of (depleted) sea-salt aerosol if wicked from the surface of ice. They suggest that rapid depletion of bromide from the aerosol will constitute a source of photochemical Bry. Given the large sea ice extent in polar regions, this may constitute a significant source of sea salt and bromine in the polar lower atmosphere. While bromine release from blowing snow is perhaps less likely to trigger sudden ODEs, it may make a contribution to regional scale processes affecting ozone levels. Currently, the model parameterisations of Yang et al. assumes that rapid release of bromine occurs from fresh snow on sea ice during periods of strong wind. The parameterisation depends on an assumed sea-salt aerosol distribution generated via sublimation of the snow above the boundary layer, as well as taking into account the salinity of the snow. In this work, we draw on recent measurements by scientists from the British Antarctic Survey during a cruise aboard the Polarstern in the southern oceans. This has provided an extensive set of measurements of the chemical and physical characteristics of blowing snow over sea ice, and of the aerosol associated with it. Based on the observations, we have developed an improved parameterisation of the release of bromine from blowing snow. The paper presents results from the simulation performed using the United Kingdom Chemistry

  18. Room-Temperature Fluorine-Induced Decrease in the Stability of Bromine and Iodine Intercalated Carbon Fibers

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1995-01-01

    Upon exposure to room-temperature fluorine, intercalated carbon fibers (containing either bromine alone or iodine and bromine together) become heavier and less stable. For Amoco P-100 graphitized carbon fibers, which were intercalated with 18 wt percent bromine, 1 hour of fluorine exposure resulted in a large weight increase but caused only a small decrease in thermal stability. An additional 89 hours of fluorine exposure time resulted in small additional increases in fiber weight, but significant further decreases in fiber thermal stability. Such phenomena of weight increase and stability decrease do not occur if the intercalated fibers are exposed to 250 C fluorine. These observations suggest that, at room temperature, fluorine is absorbed quickly by the intercalated fibers and is intercalated slowly into the fibers. Most of the original intercalates are replaced by fluorine in the process of fluorine intercalation. In an inert environment, the bromine intercalated fibers are much more thermally stable. After 800 C vacuum heating for 2 weeks, the brominated fibers lost about 45% of their bromine, and their resistivity increased from 64 mu(Omega)-cm to a range of 95-170 mu(Omega)-cm. This is still much lower than the value of 300 mu(Omega)-cm for pristine P-100. For practical purposes, to preserve their thermal stability, brominated fibers need to be protected from exposure to fluorine at room temperature or to any intercalate at a temperature where, upon direct contact with graphite, an intercalation compound can easily be formed.

  19. Recovery of zinc and cadmium from spent batteries using Cyphos IL 102 via solvent extraction route and synthesis of Zn and Cd oxide nanoparticles.

    PubMed

    Singh, Rashmi; Mahandra, Harshit; Gupta, Bina

    2017-09-01

    The overall aim of this study is to separate and recover zinc and cadmium from spent batteries. For this purpose Cyphos IL 102 diluted in toluene was employed for the extraction and recovery of Zn and Cd from Zn-C and Ni-Cd batteries leach liquor. The influence of extractant concentration for the leach liquors of Zn-C (0.01-0.05mol/L) and Ni-Cd (0.04-0.20mol/L) batteries has been investigated. Composition of the leach liquor obtained from Zn-C/Ni-Cd spent batteries is Zn - 2.18g/L, Mn - 4.59g/L, Fe - 4.0×10 -3 g/L, Ni - 0.2×10 -3 g/L/Cd - 4.28g/L, Ni - 0.896×10 -1 g/L, Fe - 0.148g/L, Co - 3.77×10 -3 g/L, respectively. Two stage counter current extraction at A/O 1:1 and 3:2 with 0.04mol/L and 0.2mol/L Cyphos IL 102 for Zn and Cd, respectively provide more than 99.0% extraction of both the metal ions with almost negligible extraction of associated metal ions. A stripping efficiency of around 99.0% for Zn and Cd was obtained at O/A 1:1 using 1.0mol/L HNO 3 in two and three counter current stages, respectively. ZnO and CdO were also synthesized using the loaded organic phase and characterized using XRD, FE-SEM and EDX techniques. XRD peaks of ZnO and CdO correspond to zincite and monteponite, respectively. The average particle size was ∼27.0nm and ∼37.0nm for ZnO and CdO, respectively. The EDX analysis of ZnO and CdO shows almost 1:1 atomic percentage. Copyright © 2017. Published by Elsevier Ltd.

  20. Surface Response of Brominated Carbon Media on Laser and Thermal Excitation: Optical and Thermal Analysis Study.

    PubMed

    Multian, Volodymyr V; Kinzerskyi, Fillip E; Vakaliuk, Anna V; Grishchenko, Liudmyla M; Diyuk, Vitaliy E; Boldyrieva, Olga Yu; Kozhanov, Vadim O; Mischanchuk, Oleksandr V; Lisnyak, Vladyslav V; Gayvoronsky, Volodymyr Ya

    2017-12-01

    The present study is objected to develop an analytical remote optical diagnostics of the functionalized carbons surface. Carbon composites with up to 1 mmol g -1 of irreversibly adsorbed bromine were produced by the room temperature plasma treatment of an activated carbon fabric (ACF) derived from polyacrylonitrile textile. The brominated ACF (BrACF) was studied by elastic optical scattering indicatrix analysis at wavelength 532 nm. The obtained data were interpreted within results of the thermogravimetric analysis, X-ray photoelectron spectroscopy and temperature programmed desorption mass spectrometry. The bromination dramatically reduces the microporosity producing practically non-porous material, while the incorporated into the micropores bromine induces the dielectric and structural impact on surface polarizability and conductivity due to the charging effect. We have found that the elastic optical scattering in proper solid angles in the forward and the backward hemispheres is sensitive to the kind of the bromine bonding, e.g., physical adsorption or chemisorption, and the bromination level, respectively, that can be utilized for the express remote fabrication control of the nanoscale carbons with given interfaces.

  1. Obtaining the Iodine Value of Various Oils via Bromination with Pyridinium Tribromide

    ERIC Educational Resources Information Center

    Simurdiak, Michael; Olukoga, Olushola; Hedberg, Kirk

    2016-01-01

    A laboratory exercise was devised that allows students to rapidly and fairly accurately determine the iodine value of oleic acid. This method utilizes the addition of elemental bromine to the unsaturated bonds in oleic acid, due to bromine's relatively fast reaction rate compared to that of the traditional Wijs solution method. This method also…

  2. Remarkable Regioselective Position-10 Bromination of Bacteriopyropheophorbide-a and Ring-B Reduced Pyropheophorbide-a

    PubMed Central

    Ethirajan, Manivannan; Joshi, Penny; William, White H.; Ohkubo, Kei; Fukuzumi, Shunichi; Pandey, Ravindra K.

    2011-01-01

    Both bacteriopyropheophorbide-a and ring-B reduced pyropheophorbide-a on reacting with NBS (N-bromosuccinamide) undergo electrophilic bromination to provide 10-bromo analogs. The electronic nature of the substituents present at position-3 did not make any difference in regioselective outcome of the brominated products. These relatively stable brominated chlorins and bacteriochlorins provide an easy way of introducing a wide variety of functionalities, which could be extremely useful in developing improved agents for biomedical applications and supramolecular chemistry. PMID:21417431

  3. Electrochemical performance and transport properties of a Nafion membrane in a hydrogen-bromine cell environment

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.

    1987-01-01

    The overall energy conversion efficiency of a hydrogen-bromine energy storage system is highly dependent upon the characteristics and performance of the ion-exchange membrane utilized as a half-cell separator. The electrochemical performance and transport properties of a duPont Nafion membrane in an aqueous HBr-Br2 environment were investigated. Membrane conductivity data are presented as a function of HBr concentration and temperature for the determination of ohmic voltage losses across the membrane in an operational cell. Diffusion-controlled bromine permeation rates and permeabilities are presented as functions of solution composition and temperature. Relationships between the degree of membrane hydration and the membrane transport characteristics are discussed. The solution chemistry of an operational hydrogen-bromine cell undergoing charge from 45% HBr to 5% HBr is discussed, and, based upon the experimentally observed bromine permeation behavior, predicted cell coulombic losses due to bromine diffusion through the membrane are presented as a function of the cell state-of-charge.

  4. Grace DAKASEP alkaline battery separator

    NASA Technical Reports Server (NTRS)

    Giovannoni, R. T.; Lundquist, J. T.; Choi, W. M.

    1987-01-01

    The Grace DAKASEP separator was originally developed as a wicking layer for nickel-zinc alkaline batteries. The DAKASEP is a filled non-woven separator which is flexible and heat sealable. Through modification of formulation and processing variables, products with a variety of properties can be produced. Variations of DAKASEP were tested in Ni-H2, Ni-Zn, Ni-Cd, and primary alkaline batteries with good results. The properties of DAKASEP which are optimized for Hg-Zn primary batteries are shown in tabular form. This separator has high tensile strength, 12 micron average pore size, relatively low porosity at 46-48 percent, and consequently moderately high resistivity. Versions were produced with greater than 70 percent porosity and resistivities in 33 wt percent KOH as low as 3 ohm cm. Performance data for Hg-Zn E-1 size cells containing DAKASEP with the properties shown in tabular form, are more reproducible than data obtained with a competitive polypropylene non-woven separator. In addition, utilization of active material is in general considerably improved.

  5. Battery thermal management unit

    NASA Astrophysics Data System (ADS)

    Sanders, Nicholas A.

    1989-03-01

    A battery warming device has been designed which uses waste heat from an operating internal combustion engine to warm a battery. A portion of the waste heat is stored in the sensible and latent heat of a phase change type material for use in maintaining the battery temperature after the engine is shut off. The basic design of the device consists of a Phase Change Material (PCM) reservoir and a simple heat exchanger connected to the engineer's cooling system. Two types of units were built, tested and field trialed. A strap-on type which was strapped to the side of an automotive battery and was intended for the automotive after-market and a tray type on which a battery or batteries sat. This unit was intended for the heavy duty truck market. It was determined that both types of units increased the average cranking power of the batteries they were applied to. Although there were several design problems with the units such as the need for an automatic thermostatically controlled bypass valve, the overall feeling is that there is a market opportunity for both the strap-on and tray type battery warming units.

  6. FAST Spacecraft Battery Design and Performance

    NASA Technical Reports Server (NTRS)

    Jung, David S.; Rao, Gopalakrishna; Ahmad, Anisa

    1997-01-01

    The Fast Auroral Snapshot (FAST) Explorer spacecraft is to study the physical processes that produce the aurora borealis and aurora australis. It is a unique plasma physics experiment that will take fundamental measurements of the magnetic and electrical fields. This investigation will add significantly to our understanding of the near-earth space environments and its effect. The FAST has a 1 year requirement and 3-year goal for its mission life in low earth orbit. The FAST power power system topology is a Direct Energy Transfer (DET) system based on the SAMPEX design. The FAST flight battery supplies power to the satellite during pre-launch operations, the launch phase, the eclipse periods for all mission phases, and when the load is about 50 watts.

  7. Integrating a dual-silicon photoelectrochemical cell into a redox flow battery for unassisted photocharging

    PubMed Central

    Liao, Shichao; Zong, Xu; Seger, Brian; Pedersen, Thomas; Yao, Tingting; Ding, Chunmei; Shi, Jingying; Chen, Jian; Li, Can

    2016-01-01

    Solar rechargeable flow cells (SRFCs) provide an attractive approach for in situ capture and storage of intermittent solar energy via photoelectrochemical regeneration of discharged redox species for electricity generation. However, overall SFRC performance is restricted by inefficient photoelectrochemical reactions. Here we report an efficient SRFC based on a dual-silicon photoelectrochemical cell and a quinone/bromine redox flow battery for in situ solar energy conversion and storage. Using narrow bandgap silicon for efficient photon collection and fast redox couples for rapid interface charge injection, our device shows an optimal solar-to-chemical conversion efficiency of ∼5.9% and an overall photon–chemical–electricity energy conversion efficiency of ∼3.2%, which, to our knowledge, outperforms previously reported SRFCs. The proposed SRFC can be self-photocharged to 0.8 V and delivers a discharge capacity of 730 mAh l−1. Our work may guide future designs for highly efficient solar rechargeable devices. PMID:27142885

  8. Integrating a dual-silicon photoelectrochemical cell into a redox flow battery for unassisted photocharging.

    PubMed

    Liao, Shichao; Zong, Xu; Seger, Brian; Pedersen, Thomas; Yao, Tingting; Ding, Chunmei; Shi, Jingying; Chen, Jian; Li, Can

    2016-05-04

    Solar rechargeable flow cells (SRFCs) provide an attractive approach for in situ capture and storage of intermittent solar energy via photoelectrochemical regeneration of discharged redox species for electricity generation. However, overall SFRC performance is restricted by inefficient photoelectrochemical reactions. Here we report an efficient SRFC based on a dual-silicon photoelectrochemical cell and a quinone/bromine redox flow battery for in situ solar energy conversion and storage. Using narrow bandgap silicon for efficient photon collection and fast redox couples for rapid interface charge injection, our device shows an optimal solar-to-chemical conversion efficiency of ∼5.9% and an overall photon-chemical-electricity energy conversion efficiency of ∼3.2%, which, to our knowledge, outperforms previously reported SRFCs. The proposed SRFC can be self-photocharged to 0.8 V and delivers a discharge capacity of 730 mAh l(-1). Our work may guide future designs for highly efficient solar rechargeable devices.

  9. Nickel-Cadmium Battery Operation Management Optimization Using Robust Design

    NASA Technical Reports Server (NTRS)

    Blosiu, Julian O.; Deligiannis, Frank; DiStefano, Salvador

    1996-01-01

    In recent years following several spacecraft battery anomalies, it was determined that managing the operational factors of NASA flight NiCd rechargeable battery was very important in order to maintain space flight battery nominal performance. The optimization of existing flight battery operational performance was viewed as something new for a Taguchi Methods application.

  10. Remarkable regioselective position-10 bromination of bacteriopyropheophorbide-a and ring-B reduced pyropheophorbide-a.

    PubMed

    Ethirajan, Manivannan; Joshi, Penny; William, White H; Ohkubo, Kei; Fukuzumi, Shunichi; Pandey, Ravindra K

    2011-04-15

    Both bacteriopyropheophorbide-a and ring-B reduced pyropheophorbide-a on reacting with NBS (N-bromosuccinamide) undergo electrophilic bromination to provide 10-bromo analogs. The electronic nature of the substituents present at position-3 did not make any difference in the regioselective outcome of the brominated products. These relatively stable brominated chlorins and bacteriochlorins provide an easy way of introducing a wide variety of functionalities, which could be extremely useful in developing improved agents for biomedical applications and supramolecular chemistry. © 2011 American Chemical Society

  11. Improving the interlaminar shear strength of carbon fiber-epoxy composites through carbon fiber bromination

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Maciag, Carolyn

    1987-01-01

    The use of bromine to improve the interlaminar shear strength of PAN-based carbon fibers was investigated. Composite test specimens fabicated from brominated T-300 fibers and a MY720 matrix exhibited on average a 30% improvement in ILSS over their pristine counterparts. Mass, electrical resistivity, density, contact angle, and scanning Auger microscopy results suggested a mechanism in which the bromine was covalently bonded to the surface of the fiber, and this resulted in an increased van der Waal's adhesion between fiber and matrix.

  12. Enhanced ozone loss by active inorganic bromine chemistry in the tropical troposphere

    NASA Astrophysics Data System (ADS)

    Le Breton, Michael; Bannan, Thomas J.; Shallcross, Dudley E.; Khan, M. Anwar; Evans, Mathew J.; Lee, James; Lidster, Richard; Andrews, Stephen; Carpenter, Lucy J.; Schmidt, Johan; Jacob, Daniel; Harris, Neil R. P.; Bauguitte, Stephane; Gallagher, Martin; Bacak, Asan; Leather, Kimberley E.; Percival, Carl J.

    2017-04-01

    Bromine chemistry, particularly in the tropics, has been suggested to play an important role in tropospheric ozone loss although a lack of measurements of active bromine species impedes a quantitative understanding of its impacts. Recent modelling and measurements of bromine monoxide (BrO) by Wang et al. (2015) have shown current models under predict BrO concentrations over the Pacific Ocean and allude to a missing source of BrO. Here, we present the first simultaneous aircraft measurements of atmospheric bromine monoxide, BrO (a radical that along with atomic Br catalytically destroys ozone) and the inorganic Br precursor compounds HOBr, BrCl and Br2 over the Western Pacific Ocean from 0.5 to 7 km. The presence of 0.17-1.64 pptv BrO and 3.6-8 pptv total inorganic Br from these four species throughout the troposphere causes 10-20% of total ozone loss, and confirms the importance of bromine chemistry in the tropical troposphere; contributing to a 6 ppb decrease in ozone levels due to halogen chemistry. Observations are compared with a global chemical transport model and find that the observed high levels of BrO, BrCl and HOBr can be reconciled by active multiphase oxidation of halide (Br- and Cl-) by HOBr and ozone in cloud droplets and aerosols. Measurements indicate that 99% of the instantaneous free Br in the troposphere up to 8 km originates from inorganic halogen photolysis rather than from photolysis of organobromine species.

  13. Bromine incorporation factors for trihalomethane formation for the Mississippi, Missouri, and Ohio Rivers

    USGS Publications Warehouse

    Rathbun, R.E.

    1996-01-01

    The bromine incorporation factor describes the distribution of the four trihalomethane compounds in the mixture formed when a natural water is chlorinated. This factor was determined for the Mississippi, Missouri, and Ohio Rivers by chlorinating water samples at three levels each of pH and free chlorine concentration. Samples were collected during the summer, fall, and spring seasons of the year at 12 sites on the Mississippi River from Minneapolis, MN, to New Orleans, LA, and on the Missouri and Ohio Rivers 1.6 kilometers upstream from their confluences with the Mississippi. The bromine incorporation factor increased as the bromide concentration increased, and decreased as the pH, initial free-chlorine and dissolved organic-carbon concentrations increased. Variation of the bromine incorporation factor with distance along the Mississippi River approximately paralleled the variation of the bromide concentration with distance along the river, with the Missouri River samples having the highest bromine incorporation factors for all combinations of pH and free-chlorine concentration.

  14. Design of State-of-the-art Flow Cells for Energy Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ping

    The worldwide energy demand is increasing every day and it necessitates rational and efficient usage of renewable energy. Undoubtedly, utilization of renewable energy can address various environmental challenges. However, all current renewable energy resources (wind, solar, and hydroelectric power) are intermittent and fluctuating in their nature that raises an important question of introducing effective energy storage solutions. Utilization of redox flow cells (RFCs) has recently been recognized as a viable technology for large-scale energy storage and, hence, is well suited for integrating renewable energy and balancing electricity grids. In brief, RFC is an electrochemical storage device (Fig. 1), where energymore » is stored in chemical bonds, similar to a battery, but with reactants external to the cell. The state-of-the-art in flow cell technology uses an aqueous acidic electrolyte and simple metal redox couples. Several of these systems have been commercialized although current technologies, such as vanadium (V) and zinc-bromine (Zn-Br 2) RFCs, for grid level energy storage, suffer from a number of drawbacks, i.e. expensive and resource-limited active materials (vanadium RFCc), and low current performance (Zn-Br 2 RFCs due to Zn dendrite formation). Thus, there is an urgent call to develop efficient (high-energy density) and low-cost RFCs to meet the efflorescent energy storage demands. Approach: To address the first challenge of achieving high-energy density, we plan to design and further modify complexes composed of bifunctional multidentate ligands and specific metal centers, capable of storing as many electrons as possible.« less

  15. Study of the factors influencing the metals solubilisation from a mixture of waste batteries by response surface methodology.

    PubMed

    Tanong, Kulchaya; Coudert, Lucie; Chartier, Myriam; Mercier, Guy; Blais, Jean-François

    2017-12-01

    This paper presents an innovative process for the recovery of valuable metals from a mixture of spent batteries. Different types of batteries, including alkaline, zinc-carbon (Zn-C), nickel cadmium (Ni-Cd), nickel metal hydride (Ni-MH), lithium ion (Li-ion) and lithium metallic (Li-M) batteries, were mixed according to the proportion of the Canadian sales of batteries. A Box-Behnken design was applied to find the optimum leaching conditions allowing a maximum of valuable metal removals from a mixture of spent batteries in the presence of an inorganic acid and a reducing agent. The results highlighted the positive effect of sodium metabisulfite on the performance of metals removal, especially for Mn. The solid/liquid ratio and the concentration of H 2 SO 4 were the main factors affecting the leaching behavior of valuable metals (Zn, Mn, Cd, Ni) present in spent batteries. Finally, the optimum leaching conditions were found as follows: one leaching step, solid/liquid ratio = 10.9%, [H 2 SO 4 ] = 1.34 M, sodium metabisulfite (Na 2 S 2 O 5 ) = 0.45 g/g of battery powder and retention time = 45 min. Under such conditions, the removal yields achieved were 94% for Mn, 81% for Cd, 99% for Zn, 96% for Co and 68% for Ni.

  16. Progress in electrochemical storage for battery systems

    NASA Technical Reports Server (NTRS)

    Ford, F. E.; Hennigan, T. J.; Palandati, C. F.; Cohn, E.

    1972-01-01

    Efforts to improve electrochemical systems for space use relate to: (1) improvement of conventional systems; (2) development of fuel cells to practical power systems; and (3) a search for new systems that provide gains in energy density but offer comparable life and performance as conventional systems. Improvements in sealed conventional systems resulted in the areas of materials, charge control methods, cell operations and battery control, and specific process controls required during cell manufacture. Fuel-cell systems have been developed for spacecraft but the use of these power plants is limited. For present and planned flights, nickel-cadmium, silver-zinc, and silver-cadmium systems will be used. Improvements in nickel-cadmium batteries have been applied in medical and commercial areas.

  17. Occupational health programme for lead workers in battery plants

    NASA Astrophysics Data System (ADS)

    Lee, Byung-Kook

    The realization of problems resulting from the exposure to undue high lead levels of workers in lead-using industries, particularly in storage battery plants, has given rise to a new occupational health service, the so-called type specific (harmful agent specific) group occupational health. In 1988, the Korean Ministry of Labor designated the Institute of Industrial Medicine, Soonchunhyang University, as an authorized organization to take care of lead workers in lead industries. The following occupational health services are provided by the Institute: (i) physical health examination; (ii) biological monitoring with zinc protoporphyrin, urine δ-aminolevulinic acid and blood lead; (iii) respiratory protection with maintenance-free respirators; (iv) measurement of the environmental condition of workplaces; (v) health education. A three-year occupational health programme for lead workers has contributed to improvements in the working conditions of lead industries, particularly in large-scale battery plants, and has decreased the unnecessary high lead burden of workers through on-going medical surveillance with biological monitoring and health education schemes. The strong commitment of both employers and the government to improve the working conditions of lead industries, together with the full cooperation of lead workers, has served to reduce the high lead burdens of lead workers. This decreases the number of lead-poisoning cases and provides more comfortable workplaces, particularly in battery plants.

  18. Analysis of Bromination of Ethylbenzene Using a 45 MHz NMR Spectrometer: An Undergraduate Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Isaac-Lam, Meden F.

    2014-01-01

    A 45 MHz benchtop NMR spectrometer is used to identify the structures and determine the amount of 1-bromoethylbenzene and 1,1-dibromoethylbenzene produced from free-radical bromination of ethylbenzene. The experiment is designed for nonchemistry majors, specifically B.S. Biology students, in a predominantly undergraduate institution with…

  19. Bromination of Marine Dissolved Organic Matter following Full Scale Electrochemical Ballast Water Disinfection.

    PubMed

    Gonsior, Michael; Mitchelmore, Carys; Heyes, Andrew; Harir, Mourad; Richardson, Susan D; Petty, William Tyler; Wright, David A; Schmitt-Kopplin, Philippe

    2015-08-04

    An extensively diverse array of brominated disinfection byproducts (DBPs) were generated following electrochemical disinfection of natural coastal/estuarine water, which is one of the main treatment methods currently under consideration for ballast water treatment. Ultra-high-resolution mass spectrometry revealed 462 distinct brominated DBPs at a relative abundance in the mass spectra of more than 1%. A brominated DBP with a relative abundance of almost 22% was identified as 2,2,4-tribromo-5-hydroxy-4-cyclopentene-1,3-dione, which is an analogue to several previously described 2,2,4-trihalo-5-hydroxy-4-cyclopentene-1,3-diones in drinking water. Several other brominated molecular formulas matched those of other known brominated DBPs, such as dibromomethane, which could be generated by decarboxylation of dibromoacetic acid during ionization, dibromophenol, dibromopropanoic acid, dibromobutanoic acid, bromohydroxybenzoic acid, bromophenylacetic acid, bromooxopentenoic acid, and dibromopentenedioic acid. Via comparison to previously described chlorine-containing analogues, bromophenylacetic acid, dibromooxopentenoic acid, and dibromopentenedioic acid were also identified. A novel compound at a 4% relative abundance was identified as tribromoethenesulfonate. This compound has not been previously described as a DBP, and its core structure of tribromoethene has been demonstrated to show toxicological implications. Here we show that electrochemical disinfection, suggested as a candidate for successful ballast water treatment, caused considerable production of some previously characterized DBPs in addition to novel brominated DBPs, although several hundred compounds remain structurally uncharacterized. Our results clearly demonstrate that electrochemical and potentially direct chlorination of ballast water in estuarine and marine systems should be approached with caution and the concentrations, fate, and toxicity of DBP need to be further characterized.

  20. Electrochemical performance of CuNCN for sodium ion batteries and comparison with ZnNCN and lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Eguia-Barrio, A.; Castillo-Martínez, E.; Klein, F.; Pinedo, R.; Lezama, L.; Janek, J.; Adelhelm, P.; Rojo, T.

    2017-11-01

    Transition metal carbodiimides (TMNCN) undergo conversion reactions during electrochemical cycling in lithium and sodium ion batteries. Micron sized copper and zinc carbodiimide powders have been prepared as single phase as confirmed by PXRD and IR and their thermal stability has been studied in air and nitrogen atmosphere. CuNCN decomposes at ∼250 °C into CuO or Cu while ZnNCN can be stable until 400 °C and 800 °C in air and nitrogen respectively. Both carbodiimides were electrochemically analysed for sodium and lithium ion batteries. The electrochemical Na+ insertion in CuNCN exhibits a relatively high reversible capacity (300 mAh·g-1) which still indicates an incomplete conversion reaction. This incomplete reaction confirmed by ex-situ EPR analysis, is partly due to kinetic limitations as evidenced in the rate capability experiments and in the constant potential measurements. On the other hand, ZnNCN shows incomplete conversion reaction but with good capacity retention and lower hysteresis as negative electrode for sodium ion batteries. The electrochemical performance of these materials is comparable to that of other materials which operate through displacement reactions and is surprisingly better in sodium ion batteries in comparison with lithium ion batteries.

  1. Hydroxylated polybrominated diphenyl ethers exhibit different activities on thyroid hormone receptors depending on their degree of bromination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Xiao-Min, E-mail: rxm200318@gmail.com; Guo, Liang-Hong, E-mail: LHGuo@rcees.ac.cn; Gao, Yu, E-mail: francesscototti@gmail.com

    2013-05-01

    Polybrominated diphenyl ethers (PBDEs) have been shown to disrupt thyroid hormone (TH) functions in experimental animals, and one of the proposed disruption mechanisms is direct binding of hydroxylated PBDE (OH-PBDE) to TH receptors (TRs). However, previous data on TH receptor binding and TH activity of OH-PBDEs were very limited and sometimes inconsistent. In the present paper, we examined the binding potency of ten OH-PBDEs with different degrees of bromination to TR using a fluorescence competitive binding assay. The results showed that the ten OH-PBDEs bound to TR with potency that correlated to their bromination level. We further examined their effectmore » on TR using a coactivator binding assay and GH3 cell proliferation assay. Different TR activities of OH-PBDEs were observed depending on their degree of bromination. Four low-brominated OH-PBDEs (2′-OH-BDE-28, 3′-OH-BDE-28, 5-OH-BDE-47, 6-OH-BDE-47) were found to be TR agonists, which recruited the coactivator peptide and enhanced GH3 cell proliferation. However, three high-brominated OH-PBDEs (3-OH-BDE-100, 3′-OH-BDE-154, 4-OH-BDE-188) were tested to be antagonists. Molecular docking was employed to simulate the interactions of OH-PBDEs with TR and identify the structural determinants for TR binding and activity. According to the docking results, low-brominated OH-PBDEs, which are weak binders but TR agonists, bind with TR at the inner side of its binding pocket, whereas high-brominated compounds, which are potent binders but TR antagonists, reside at the outer region. These results indicate that OH-PBDEs have different activities on TR (agonistic or antagonistic), possibly due to their different binding geometries with the receptor. - Highlights: ► Thyroid hormone (TH) activity of OH-PBDEs with different Br number was evaluated. ► Four different experimental approaches were employed to investigate the mechanism. ► Low-brominated OH-PBDEs were agonists, but high-brominated ones were

  2. Electrolyte management considerations in modern nickel/hydrogen and nickel/cadmium cell and battery designs

    NASA Astrophysics Data System (ADS)

    Thaller, Lawrence H.; Zimmerman, Albert H.

    In the early 1980s, the battery group at the NASA Lewis Research Center (LeRC) reviewed the design issues associated with nickel/hydrogen cells for low-earth orbit applications. In 1984, these issues included gas management, liquid management, plate expansion, and the recombination of oxygen during overcharge. The design effort by that group followed principles set forth in an earlier LeRC paper that introduced the topic of pore size engineering. Also in 1984, the beneficial effect of lower electrolyte concentrations on cycle life was verified by Hughes Aircraft as part of a LeRC-funded study. Subsequent life cycle tests of these concepts have been carried out that essentially have verified all of this earlier work. During the past decade, some of the mysteries involved in the active material of the nickel electrode have been resolved by careful research done at several laboratories. While attention has been paid to understanding and modeling abnormal nickel/hydrogen cell behaviors, not enough attention has been paid to the potassium ion content in these cells, and more recently, in batteries. Examining the potassium ion content of different portions of the cell or battery is a convenient way of following the conductivity, mass transport properties, and electrolyte volume in each of the cell or battery portions under consideration. Several of the consequences of solvent and solute changes within fuel cells have been well known for some time. However, only recently have these consequences been applied to nickel/hydrogen and nickel/cadmium cell designs. As a result of these studies, several unusual cell performance signatures can now be satisfactorily explained in terms of movement of the solvent and solute components in the electrolyte. This paper will review three general areas where the potassium ion content can impact the performance and life of nickel/hydrogen and nickel/cadmium cells. Sample calculations of the concentration or volume changes that can take

  3. HEALTH EFFECTS OF BROMINATED FLAME RETARDANTS (BFRS)

    EPA Science Inventory

    Abstract Brominated flame retardant use has increased dramatically in order to provide fire safety to consumers. However, there is growing concern about widespread environmental contamination and potential health risks from some of these products. The most used products...

  4. Utilization of household organic compost in zinc adsorption system

    NASA Astrophysics Data System (ADS)

    Cundari, Lia; Isvaringga, Nyiayu Dita; Arinda, Yesica Maharani

    2017-11-01

    Zinc (Zn) is one of the heavy metals which is polluted to the environment in an amount greater than 15 mg/L [1]. Zinc contamination caused by the disposal of industrial waste such as batteries, electroplating, paint and other industries. One of the Zinc recovery technique that is relatively inexpensive, simple, high effectiveness and efficiency, and can be regenerated is adsorption using compost. This study has been carried out the preparation of compost from organic household waste and cow manure and its application to Zinc recovery. In this research, the raw material of compost is varied. There is an organic household waste (A1) and a mixture of organic household waste and cow manure with ratio 7:6 (A2). Decomposition of A1 and A2 with addition Effective Microorganism (EM4) requires 21 days, with 3 times inversion. Zinc adsorption is done by using a compost variation of 0.5 g, 1 g, and 2 g in every 100 and 200 mg/L Zn concentration solution. The batch process is applied to analyze the capacity of adsorption. Determination of capacity of adsorption based on the Langmuir, Freundlich, and Temkin isotherm model. Direct observation and spectrophotometry are applied in research methodology. The results show that compost A1 and A2 have fulfilled Indonesian Standart of compost and have the ability to reduce Zinc concentration to 94-96%. It indicates highly recommended biosorbent that can be applied to Zinc adsorption.

  5. Functionalized Poly(3-hexylthiophene)s via Lithium–Bromine Exchange

    PubMed Central

    2015-01-01

    Poly(3-hexylthiophene) (P3HT) is one of the most extensively investigated conjugated polymers and has been employed as the active material in many devices including field-effect transistors, organic photovoltaics and sensors. As a result, methods to further tune the properties of P3HT are desirable for specific applications. Herein, we report a facile postpolymerization modification strategy to functionalize the 4-position of commercially available P3HT in two simple steps–bromination of the 4-position of P3HT (Br–P3HT) followed by lithium−bromine exchange and quenching with an electrophile. We achieved near quantitative lithium–bromine exchange with Br–P3HT, which requires over 100 thienyl lithiates to be present on a single polymer chain. The lithiated-P3HT is readily combined with functional electrophiles, resulting in P3HT derivatives with ketones, secondary alcohols, trimethylsilyl (TMS) group, fluorine, or an azide at the 4-position. We demonstrated that the azide-modified P3HT could undergo Cu-catalyzed or Cu-free click chemistry, significantly expanding the complexity of the structures that can be appended to P3HT using this method. PMID:25620811

  6. Electromechanical battery design suitable for back-up power applications

    DOEpatents

    Post, Richard F.

    2002-01-01

    The windings that couple energy into and out of the rotor of an electro-mechanical battery are modified. The normal stator windings of the generator/motor have been replaced by two orthogonal sets of windings. Because of their orthogonality, they are decoupled from each other electrically, though each can receive (or deliver) power flows from the rotating field produced by the array of permanent magnets. Due to the orthogonal design of the stator windings and the high mechanical inertia of the flywheel rotor, the resulting power delivered to the computer system is completely insensitive to any and all electrical transients and variabilities of the power from the main power source. This insensitivity includes complete failure for a period determined only by the amount of stored kinetic energy in the E-M battery modules that are supplied. Furthermore there is no need whatsoever for fast-acting, fractional-cycle switches, such as are employed in conventional systems, and which are complicated to implement.

  7. Characterization of unknown brominated disinfection byproducts during chlorination using ultrahigh resolution mass spectrometry.

    PubMed

    Zhang, Haifeng; Zhang, Yahe; Shi, Quan; Zheng, Hongdie; Yang, Min

    2014-03-18

    Brominated disinfection byproducts (Br-DBPs), formed from the reaction of disinfectant(s) with natural organic matter in the presence of bromide in raw water, are generally more cytotoxic and genotoxic than their chlorinated analogues. To date, only a few Br-DBPs in drinking water have been identified, while a significant portion of Br-DBPs in drinking water is still unknown. In this study, negative ion electrospray ionization ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) was used to characterize unknown Br-DBPs in artificial drinking water. In total, 441 formulas for one-bromine-containing products and 37 formulas for two-bromine-containing products, most of which had not been previously reported, were detected in the chlorinated sample. Most Br-DBPs have corresponding chlorine-containing analogues with identical CHO composition. In addition, on-resonance collision-induced dissociation (CID) of single ultrahigh resolved bromine containing mass peaks was performed in the ICR cell to isolate single bromine-containing components in a very complex natural organic matter spectrum and provide structure information. Relatively abundant neutral loss of CO2 was observed in MS-MS spectra, indicating that the unknown Br-DBPs are rich in carboxyl groups. The results demonstrate that the ESI FT-ICR MS method could provide valuable molecular composition and structure information on unknown Br-DBPs.

  8. Sea ice and pollution-modulated changes in Greenland ice core methanesulfonate and bromine

    NASA Astrophysics Data System (ADS)

    Maselli, Olivia J.; Chellman, Nathan J.; Grieman, Mackenzie; Layman, Lawrence; McConnell, Joseph R.; Pasteris, Daniel; Rhodes, Rachael H.; Saltzman, Eric; Sigl, Michael

    2017-01-01

    Reconstruction of past changes in Arctic sea ice extent may be critical for understanding its future evolution. Methanesulfonate (MSA) and bromine concentrations preserved in ice cores have both been proposed as indicators of past sea ice conditions. In this study, two ice cores from central and north-eastern Greenland were analysed at sub-annual resolution for MSA (CH3SO3H) and bromine, covering the time period 1750-2010. We examine correlations between ice core MSA and the HadISST1 ICE sea ice dataset and consult back trajectories to infer the likely source regions. A strong correlation between the low-frequency MSA and bromine records during pre-industrial times indicates that both chemical species are likely linked to processes occurring on or near sea ice in the same source regions. The positive correlation between ice core MSA and bromine persists until the mid-20th century, when the acidity of Greenland ice begins to increase markedly due to increased fossil fuel emissions. After that time, MSA levels decrease as a result of declining sea ice extent but bromine levels increase. We consider several possible explanations and ultimately suggest that increased acidity, specifically nitric acid, of snow on sea ice stimulates the release of reactive Br from sea ice, resulting in increased transport and deposition on the Greenland ice sheet.

  9. Designing and Diagnosing Novel Electrode Materials for Na-ion Batteries: Potential Alternatives to Current Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    Xu, Jing

    Owing to outstanding energy density, Li-ion batteries have dominated the portable electronic industry for the past 20 years and they are now moving forward powering electric vehicles. In light of concerns over limited lithium reserve and rising lithium costs in the future, Na-ion batteries have re-emerged as potential alternatives for large scale energy storage. On the other hand, though both sodium and lithium are alkali metals sharing many chemical similarities, research on Na-ion batteries is still facing many challenges due to the larger size and unique bonding characteristics of Na ions. In this thesis, a series of sodium transition metal oxides are investigated as cathode materials for Na-ion batteries. P2 - Na2/3[Ni1/3 Mn2/3]O2 is firstly studied with a combination of first principles calculation and experiment, and battery performance is improved by excluding the phase transformation region. Li substituted compound, P2-Na0.8[Li0.12Ni0.22Mn0.66]O 2, is then explored. Its crystal / electronic structure evolution upon cycling is tracked by combing in situ synchrotron X-ray diffraction, ex situ X-ray absorption spectroscopy and solid state NMR. It is revealed that the presence of Li-ions in the transition metal layer allows increased amount of Na-ions to maintain the P2 structure during cycling. The design principles for the P2 type Na cathodes are devised based on this in-depth understanding and an optimized composition is proposed. The idea of Li substitution is then transferred to O3 type cathode. The new material, O3 - Na0.78 Li0.18Ni0.25Mn0.583O2, shows discharge capacity of 240 mAh/g, which is the highest capacity and highest energy density so far among cathode materials in Na-ion batteries. With significant progress on cathode materials, a comprehensive understanding of Na2Ti3O7 as anode for Na-ion batteries is discussed. The electrochemical performance is enhanced, due to increased electronic conductivity and reduced SEI formation with carbon coating

  10. Lithium Ion Battery (LIB) Charger: Spacesuit Battery Charger Design with 2-Fault Tolerance to Catastrophic Hazards

    NASA Technical Reports Server (NTRS)

    Darcy, Eric; Davies, Frank

    2009-01-01

    Charger design that is 2-fault tolerant to catastrophic has been achieved for the Spacesuit Li-ion Battery with key features. Power supply control circuit and 2 microprocessors independently control against overcharge. 3 microprocessor control against undercharge (false positive: Go for EVA) conditions. 2 independent channels provide functional redundancy. Capable of charge balancing cell banks in series. Cell manufacturing and performance uniformity is excellent with both designs. Once a few outliers are removed, LV cells are slightly more uniform than MoliJ cells. If cell balance feature of charger is ever invoked, it will be an indication of a significant degradation issue, not a nominal condition.

  11. METHOD OF SEPARATING URANIUM, PLUTONIUM AND FISSION PRODUCTS BY BROMINATION AND DISTILLATION

    DOEpatents

    Jaffey, A.H.; Seaborg, G.T.

    1958-12-23

    The method for separation of plutonium from uranium and radioactive fission products obtained by neutron irradiation of uranlum consists of reacting the lrradiated material with either bromine, hydrogen bromide, alumlnum bromide, or sulfur and bromine at an elevated temperature to form the bromides of all the elements, then recovering substantlally pure plutonium bromide by dlstillatlon in combinatlon with selective condensatlon at prescribed temperature and pressure.

  12. Design optimization of electric vehicle battery cooling plates for thermal performance

    NASA Astrophysics Data System (ADS)

    Jarrett, Anthony; Kim, Il Yong

    The performance of high-energy battery cells utilized in electric vehicles (EVs) is greatly improved by adequate temperature control. An efficient thermal management system is also desirable to avoid diverting excessive power from the primary vehicle functions. In a battery cell stack, cooling can be provided by including cooling plates: thin metal fabrications which include one or more internal channels through which a coolant is pumped. Heat is conducted from the battery cells into the cooling plate, and transported away by the coolant. The operating characteristics of the cooling plate are determined in part by the geometry of the channel; its route, width, length, etc. In this study, a serpentine-channel cooling plate is modeled parametrically and its characteristics assessed using computational fluid dynamics (CFD). Objective functions of pressure drop, average temperature, and temperature uniformity are defined and numerical optimization is carried out by allowing the channel width and position to vary. The optimization results indicate that a single design can satisfy both pressure and average temperature objectives, but at the expense of temperature uniformity.

  13. Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-08-01

    BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Today’s EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Airmore » batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.« less

  14. Release of Oxidized Bromine Species From Diatoms: Implication for the Polar Troposphere and Oceanic Polyhalomethane Production

    NASA Astrophysics Data System (ADS)

    Manley, S. L.; Hill, V. L.

    2006-12-01

    Marine and ice diatoms are known producers of polybromomethanes. These trace gases produced from ice algae have been implicated as a source of photochemically active bromine involved in polar surface ozone depletion events. A more dominant source of reactive bromine, however, has been attributed to the reaction on ice particles and in sea spray aerosols of atmospherically derived HOBr with bromide and chloride to produce the dihalogens Br2 and BrCl. We have measured the release of oxidized bromine species (Brox = HOBr, Br2, Br3-1) from polar and temperate diatoms. The highest rates were measured from Porosira glaciales (CCMP 651). Release rates are range from 0.84 to 180 fmoles bromine/hour/cell depending on the species or an approximate maximum of 950 nmoles bromine/mg chl a/hr (P. glaciales). The flux from the diatoms is 0.1 to 7.5 nmoles bromine/cm2 diatom surface/hr. This release occurs from an extracellular bromoperoxidase when a suitable organic substrate is absent. At 0.84 mM bromide (average seawater concentration), the optimal pH for Brox release is 6.5, which is the putative pH of the apoplastic space, and the optimal H2O2 concentration is 250 nM. Based on these results, it is estimated that the amount of bromine released from ice algae as Brox is 10 to 200 times greater than the release of bromine as bromoform from ice algae. The Brox so produced could participate in the abiotic formation of dihalogens in sea ice. Also, Brox released from diatoms may react with specific components of DOC, if present, to indirectly produce polybromomethanes both in sea ice and seawater. The amount of polyhalomethanes produced is not only dependent on the algal species present but also on the composition of DOC.

  15. WEEE and portable batteries in residual household waste: quantification and characterisation of misplaced waste.

    PubMed

    Bigum, Marianne; Petersen, Claus; Christensen, Thomas H; Scheutz, Charlotte

    2013-11-01

    A total of 26.1Mg of residual waste from 3129 households in 12 Danish municipalities was analysed and revealed that 89.6kg of Waste Electrical and Electronic Equipment (WEEE), 11kg of batteries, 2.2kg of toners and 16kg of cables had been wrongfully discarded. This corresponds to a Danish household discarding 29g of WEEE (7 items per year), 4g of batteries (9 batteries per year), 1g of toners and 7g of unidentifiable cables on average per week, constituting 0.34% (w/w), 0.04% (w/w), 0.01% (w/w) and 0.09% (w/w), respectively, of residual waste. The study also found that misplaced WEEE and batteries in the residual waste constituted 16% and 39%, respectively, of what is being collected properly through the dedicated special waste collection schemes. This shows that a large amount of batteries are being discarded with the residual waste, whereas WEEE seems to be collected relatively successfully through the dedicated special waste collection schemes. Characterisation of the misplaced batteries showed that 20% (w/w) of the discarded batteries were discarded as part of WEEE (built-in). Primarily alkaline batteries, carbon zinc batteries and alkaline button cell batteries were found to be discarded with the residual household waste. Characterisation of WEEE showed that primarily small WEEE (WEEE directive categories 2, 5a, 6, 7 and 9) and light sources (WEEE directive category 5b) were misplaced. Electric tooth brushes, watches, clocks, headphones, flashlights, bicycle lights, and cables were items most frequently found. It is recommended that these findings are taken into account when designing new or improving existing special waste collection schemes. Improving the collection of WEEE is also recommended as one way to also improve the collection of batteries due to the large fraction of batteries found as built-in. The findings in this study were comparable to other western European studies, suggesting that the recommendations made in this study could apply to other

  16. Anodes for rechargeable lithium batteries

    DOEpatents

    Thackeray, Michael M.; Kepler, Keith D.; Vaughey, John T.

    2003-01-01

    A negative electrode (12) for a non-aqueous electrochemical cell (10) with an intermetallic host structure containing two or more elements selected from the metal elements and silicon, capable of accommodating lithium within its crystallographic host structure such that when the host structure is lithiated it transforms to a lithiated zinc-blende-type structure. Both active elements (alloying with lithium) and inactive elements (non-alloying with lithium) are disclosed. Electrochemical cells and batteries as well as methods of making the negative electrode are disclosed.

  17. Design Safety Used in NASA's Human-rated Primary Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Jeevarajan, J.

    2013-01-01

    Single cell tests were benign for external short, inadvertent charge and overdischarge into reversal up to 4.5 A. At lower current loads cells die (may be due to excessive dendrite formation) benignly. String level external short circuits lead to an unbalanced overdischarge, with one cell going into reversal. The result is catastrophic violent venting. Unbalanced string overdischarges at different currents causes catastrophic violent venting also. Heat-to-vent is very dramatic displaying violent venting Simulated internal short is also catastrophic and displays violent venting. Battery is not UL-rated; hence does not have dual-fault tolerance or tolerance to inherent cell tolerance to failures Battery Design for NASA JSC's human-rated application for use on ISS was changed to include two bypass diodes per cell to provide for two-failure tolerance to overdischarge into reversal (and external short) hazards.

  18. HEALTH ASPECTS OF BROMINATED FLAME RETARDANTS (BFRS)

    EPA Science Inventory

    In order to reduce the societal costs of fires, flammability standards have been set for consumer products and equipment. Flame retardants containing bromine have constituted the largest share of this market due both to their efficiency and cost. While there are at least 75 dif...

  19. Alkaline battery operational methodology

    DOEpatents

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  20. Solar-rechargeable battery based on photoelectrochemical water oxidation: Solar water battery.

    PubMed

    Kim, Gonu; Oh, Misol; Park, Yiseul

    2016-09-15

    As an alternative to the photoelectrochemical water splitting for use in the fuel cells used to generate electrical power, this study set out to develop a solar energy rechargeable battery system based on photoelectrochemical water oxidation. We refer to this design as a "solar water battery". The solar water battery integrates a photoelectrochemical cell and battery into a single device. It uses a water oxidation reaction to simultaneously convert and store solar energy. With the solar water battery, light striking the photoelectrode causes the water to be photo-oxidized, thus charging the battery. During the discharge process, the solar water battery reduces oxygen to water with a high coulombic efficiency (>90%) and a high average output voltage (0.6 V). Because the reduction potential of oxygen is more positive [E(0) (O2/H2O) = 1.23 V vs. NHE] than common catholytes (e.g., iodide, sulfur), a high discharge voltage is produced. The solar water battery also exhibits a superior storage ability, maintaining 99% of its specific discharge capacitance after 10 h of storage, without any evidence of self-discharge. The optimization of the cell design and configuration, taking the presence of oxygen in the cell into account, was critical to achieving an efficient photocharge/discharge.

  1. Crewed Space Vehicle Battery Safety Requirements Revision D

    NASA Technical Reports Server (NTRS)

    Russell, Samuel

    2017-01-01

    The Crewed Space Vehicle Battery Safety Requirements document has been prepared for use by designers of battery-powered vehicles, portable equipment, and experiments intended for crewed spaceflight. The purpose of the requirements document is to provide battery designers with information on design provisions to be incorporated in and around the battery and on the verification to be undertaken to demonstrate a safe battery is provided. The term "safe battery" means that the battery is safe for ground personnel and crew members to handle and use; safe to be used in the enclosed environment of a crewed space vehicle; and safe to be mounted or used in unpressurized spaces adjacent to habitable areas. Battery design review, approval, and certification is required before the batteries can be used for ground operations and be certified for flight.

  2. BROMINATED FLAME RETARDANTS: WHY DO WE CARE?

    EPA Science Inventory

    Brominated flame retardants (BFRs) save lives and property by preventing the spread of fires or delaying the time of flashover, enhancing the time people have to escape. The worldwide production of BFRs exceeded 200,000 metric tons in 2003 placing them in the high production vol...

  3. Gene toxicity studies on titanium dioxide and zinc oxide nanomaterials used for UV-protection in cosmetic formulations.

    PubMed

    Landsiedel, Robert; Ma-Hock, Lan; Van Ravenzwaay, Ben; Schulz, Markus; Wiench, Karin; Champ, Samantha; Schulte, Stefan; Wohlleben, Wendel; Oesch, Franz

    2010-12-01

    Titanium dioxide and zinc oxide nanomaterials, used as UV protecting agents in sunscreens, were investigated for their potential genotoxicity in in vitro and in vivo test systems. Since standard OECD test methods are designed for soluble materials and genotoxicity testing for nanomaterials is still under revision, a battery of standard tests was used, covering different endpoints. Additionally, a procedure to disperse the nanomaterials in the test media and careful characterization of the dispersed test item was added to the testing methods. No genotoxicity was observed in vitro (Ames' Salmonella gene mutation test and V79 micronucleus chromosome mutation test) or in vivo (mouse bone marrow micronucleus test and Comet DNA damage assay in lung cells from rats exposed by inhalation). These results add to the still limited data base on genotoxicity test results with nanomaterials and provide congruent results of a battery of standard OECD test methods applied to nanomaterials.

  4. Design and cost study of a 15 kWh hydrogen/nickel oxide battery for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Sindorf, J. F.; Burant, L. J.; Dunlop, J. D.

    1985-12-01

    A 7.5 volt (6-cell) 100 AH Hydrogen-Nickel Oxide battery has been built which exhibits the potential for long cycle life and zero maintenance, characteristics similar to those of aerospace cells, but at a significantly lower cost. The approach used in the design of this battery was to incorporate, in a prismatic configuration, less expensive raw materials and fabrication processes to reduce manufacturing costs. In particular, the use of mass production techniques with economics similar to those used in the assembly of lead/acid SLI batteries were investigated.

  5. Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Ye; Zhou, Xingyi; Yu, Guihua

    Developing high-performance battery systems requires the optimization of every battery component, from electrodes and electrolyte to binder systems. However, the conventional strategy to fabricate battery electrodes by casting a mixture of active materials, a nonconductive polymer binder, and a conductive additive onto a metal foil current collector usually leads to electronic or ionic bottlenecks and poor contacts due to the randomly distributed conductive phases. When high-capacity electrode materials are employed, the high stress generated during electrochemical reactions disrupts the mechanical integrity of traditional binder systems, resulting in decreased cycle life of batteries. Thus, it is critical to design novel bindermore » systems that can provide robust, low-resistance, and continuous internal pathways to connect all regions of the electrode. Here in this Account, we review recent progress on material and structural design of novel binder systems. Nonconductive polymers with rich carboxylic groups have been adopted as binders to stabilize ultrahigh-capacity inorganic electrodes that experience large volume or structural change during charge/discharge, due to their strong binding capability to active particles. To enhance the energy density of batteries, different strategies have been adopted to design multifunctional binder systems based on conductive polymers because they can play dual functions of both polymeric binders and conductive additives. We first present that multifunctional binder systems have been designed by tailoring the molecular structures of conductive polymers. Different functional groups are introduced to the polymeric backbone to enable multiple functionalities, allowing separated optimization of the mechanical and swelling properties of the binders without detrimental effect on electronic property. Then, we describe the design of multifunctional binder systems via rationally controlling their nano- and molecular structures

  6. Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries

    DOE PAGES

    Shi, Ye; Zhou, Xingyi; Yu, Guihua

    2017-10-05

    Developing high-performance battery systems requires the optimization of every battery component, from electrodes and electrolyte to binder systems. However, the conventional strategy to fabricate battery electrodes by casting a mixture of active materials, a nonconductive polymer binder, and a conductive additive onto a metal foil current collector usually leads to electronic or ionic bottlenecks and poor contacts due to the randomly distributed conductive phases. When high-capacity electrode materials are employed, the high stress generated during electrochemical reactions disrupts the mechanical integrity of traditional binder systems, resulting in decreased cycle life of batteries. Thus, it is critical to design novel bindermore » systems that can provide robust, low-resistance, and continuous internal pathways to connect all regions of the electrode. Here in this Account, we review recent progress on material and structural design of novel binder systems. Nonconductive polymers with rich carboxylic groups have been adopted as binders to stabilize ultrahigh-capacity inorganic electrodes that experience large volume or structural change during charge/discharge, due to their strong binding capability to active particles. To enhance the energy density of batteries, different strategies have been adopted to design multifunctional binder systems based on conductive polymers because they can play dual functions of both polymeric binders and conductive additives. We first present that multifunctional binder systems have been designed by tailoring the molecular structures of conductive polymers. Different functional groups are introduced to the polymeric backbone to enable multiple functionalities, allowing separated optimization of the mechanical and swelling properties of the binders without detrimental effect on electronic property. Then, we describe the design of multifunctional binder systems via rationally controlling their nano- and molecular structures

  7. NASA/Marshall's lithium battery applications

    NASA Technical Reports Server (NTRS)

    Paschal, L. E.

    1980-01-01

    A general lithium battery is described and a summary of lithium battery applications is presented. Four aspects of a particular lithium battery, the inducement environmental contamination monitoring battery, are discussed-design and construction details, thermal vacuum tests, projection tests, and acceptance tests.

  8. The 1975 GSFC Battery Workshop

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The proceedings of the 1975 Goddard Space Flight Center Battery Workshop are presented. The major topics of discussion were nickel cadmium batteries and, to a lesser extent, nickel hydrogen batteries. Battery design, manufacturing techniques, testing programs, and electrochemical characteristics were considered. The utilization of these batteries for spacecraft power supplies was given particular attention.

  9. NASA Handbook for Nickel-Hydrogen Batteries

    NASA Technical Reports Server (NTRS)

    Dunlop, James D.; Gopalakrishna, M. Rao; Yi, Thomas Y.

    1993-01-01

    Nickel-hydrogen (NiH2) batteries are finding more applications in the aerospace energy storage. Since 1983, NiH2 batteries have become the primary energy storage system used for Geosynchronous-Orbit (GEO) Satellites. The first NASA application for NiH2 batteries was the Low Earth Orbit (LEO) Hubble Space Telescope Satellite launched in 1990. The handbook was prepared as a reference book to aid in the application of this technology. That is, to aid in the cell and battery design, procurement, testing, and handling of NiH2 batteries. The design of individual pressure vessel NiH2 cells is covered in Chapter l. LEO and GEO applications and their requirements are discussed in Chapter 2. The design of NiH2 batteries for both GEO and LEO applications is discussed in Chapter 3. Advanced design concepts such as the common pressure vessel and bipolar NiH2 batteries are described in Chapter 4. Performance data are presented in Chapter 5. Storage and handling of the NiH2 cells and batteries are discussed in Chapter 6. Standard test procedures are presented in Chapter 7. Cell and battery procurements are discussed in Chapter 8. Finally, safety procedures are discussed in Chapter 9.

  10. A review of nickel hydrogen battery technology

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Odonnell, Patricia M.

    1995-01-01

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market. It is a prismatic design which has the advantage of a significant reduction in volume and a

  11. Biologically enhanced cathode design for improved capacity and cycle life for lithium-oxygen batteries

    NASA Astrophysics Data System (ADS)

    Oh, Dahyun; Qi, Jifa; Lu, Yi-Chun; Zhang, Yong; Shao-Horn, Yang; Belcher, Angela M.

    2013-11-01

    Lithium-oxygen batteries have a great potential to enhance the gravimetric energy density of fully packaged batteries by two to three times that of lithium ion cells. Recent studies have focused on finding stable electrolytes to address poor cycling capability and improve practical limitations of current lithium-oxygen batteries. In this study, the catalyst electrode, where discharge products are deposited and decomposed, was investigated as it has a critical role in the operation of rechargeable lithium-oxygen batteries. Here we report the electrode design principle to improve specific capacity and cycling performance of lithium-oxygen batteries by utilizing high-efficiency nanocatalysts assembled by M13 virus with earth-abundant elements such as manganese oxides. By incorporating only 3-5 wt% of palladium nanoparticles in the electrode, this hybrid nanocatalyst achieves 13,350 mAh g-1c (7,340 mAh g-1c+catalyst) of specific capacity at 0.4 A g-1c and a stable cycle life up to 50 cycles (4,000 mAh g-1c, 400 mAh g-1c+catalyst) at 1 A g-1c.

  12. Physicochemical properties of selected polybrominated diphenyl ethers and extension of the UNIFAC model to brominated aromatic compounds.

    PubMed

    Kuramochi, Hidetoshi; Maeda, Kouji; Kawamoto, Katsuya

    2007-04-01

    The aqueous solubilities (S(w)) at various temperatures from 283 K to 308 K and 1-octanol/water partition coefficients (K(ow)) for four polybrominated diphenyl ethers (PBDEs: 4,4'-dibromodiphenyl ether (BDE-15), 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), and 2,2',4,4',5,5'-hexabromodiphenyl ether (BDE-153)) were measured by the generator column method. The S(w) and K(ow) data revealed the effect of bromine substitution and basic structure on S(w) and K(ow). To estimate the infinite dilution activity coefficients (gamma(i)(w,infinity)) of the PBDEs in water from the S(w) data, enthalpies of fusion and melting points for those compounds were measured with a differential scanning calorimeter. Henry's Law constants (H(w)) of the PBDEs were derived from the determined gamma(i)(w,infinity) and literature vapor pressure data. Some physicochemical characteristics of PBDEs were also suggested by comparing the present property data with that of polychlorinated dibenzo-p-dioxins, brominated phenols and brominated benzenes in past studies. Furthermore, in order to represent different phase equilibria including solubility and partition equilibrium for other brominated aromatic compounds using the UNIFAC model, a pair of UNIFAC group interaction parameters between the bromine and water group were determined from the S(w) and K(ow) data of PBDEs and brominated benzenes. The ability of the determined parameters to represent both properties of brominated aromatics was evaluated.

  13. Evaluation of Novel Design Strategies for Developing Zinc Finger Nucleases Tools for Treating Human Diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bach, Christian; Sherman, William; Pallis, Jani

    Zinc finger nucleases (ZFNs) are associated with cell death and apoptosis by binding at countless undesired locations. This cytotoxicity is associated with the binding ability of engineered zinc finger domains to bind dissimilar DNA sequences with high affinity. In general, binding preferences of transcription factors are associated with significant degenerated diversity and complexity which convolutes the design and engineering of precise DNA binding domains. Evolutionary success of natural zinc finger proteins, however, evinces that nature created specific evolutionary traits and strategies, such as modularity and rank-specific recognition to cope with binding complexity that are critical for creating clinical viable toolsmore » to precisely modify the human genome. Our findings indicate preservation of general modularity and significant alteration of the rank-specific binding preferences of the three-finger binding domain of transcription factor SP1 when exchanging amino acids in the 2nd finger.« less

  14. Evaluation of Novel Design Strategies for Developing Zinc Finger Nucleases Tools for Treating Human Diseases

    DOE PAGES

    Bach, Christian; Sherman, William; Pallis, Jani; ...

    2014-01-01

    Zinc finger nucleases (ZFNs) are associated with cell death and apoptosis by binding at countless undesired locations. This cytotoxicity is associated with the binding ability of engineered zinc finger domains to bind dissimilar DNA sequences with high affinity. In general, binding preferences of transcription factors are associated with significant degenerated diversity and complexity which convolutes the design and engineering of precise DNA binding domains. Evolutionary success of natural zinc finger proteins, however, evinces that nature created specific evolutionary traits and strategies, such as modularity and rank-specific recognition to cope with binding complexity that are critical for creating clinical viable toolsmore » to precisely modify the human genome. Our findings indicate preservation of general modularity and significant alteration of the rank-specific binding preferences of the three-finger binding domain of transcription factor SP1 when exchanging amino acids in the 2nd finger.« less

  15. Modeling, design, fabrication and experimentation of a GaN-based, 63Ni betavoltaic battery

    NASA Astrophysics Data System (ADS)

    E Munson, C., IV; Gaimard, Q.; Merghem, K.; Sundaram, S.; Rogers, D. J.; de Sanoit, J.; Voss, P. L.; Ramdane, A.; Salvestrini, J. P.; Ougazzaden, A.

    2018-01-01

    GaN is a durable, radiation hard and wide-bandgap semiconductor material, making it ideal for usage with betavoltaic batteries. This paper describes the design, fabrication and experimental testing of 1 cm2 GaN-based betavoltaic batteries (that achieve an output power of 2.23 nW) along with a full model that accurately simulates the device performance which is the highest to date (to the best of our knowledge) for GaN-based devices with a 63Ni source.

  16. Determination of brominated flame retardants and brominated dioxins in fish collected from three regions of Japan.

    PubMed

    Ashizuka, Yuki; Nakagawa, Reiko; Hori, Tsuguhide; Yasutake, Daisuke; Tobiishi, Kazuhiro; Sasaki, Kumiko

    2008-02-01

    The concentrations of brominated dioxins which are polybrominated dibenzo-p-dioxins/polybrominated dibenzofurans (PBDD/DFs) and mono-bromo polychlorinated dibenzo-p-dioxins/dibenzofurans, polybrominated diphenyl ethers (PBDEs) and tetrabromobisphenol A (TBBPA) were investigated in a total of 45 fish samples collected from three regions in Japan. In the brominated dioxins, 1,2,3,4,6,7,8-heptabromodibenzofuran (HpBDF) was the most abundant congener, and it was found in seven fish samples at 0.10-25.6 pg/g wet weight (ww). The highest concentration of 1,2,3,4,6,7,8-HpBDF was found in the pike eel. Regarding other congeners, 2,3,7,8-tetrabromodibenzo-p-dioxin was detected in the sea bream at 0.02 pg/g ww, and 2,3,7,8-tetrabromodibenzofuran was detected in the conger eel at 0.03 pg/g ww. 3-Bromo-2,7,8-trichlorodibenzofuran was detected in the Sardinella zunasi and the conger eel at 0.01 pg/g ww and 0.02 pg/g ww, respectively. Using toxic equivalency factors of chlorinated dioxins, we calculated the PBDD/DFs concentrations of these fish samples at 0.001-0.256 pg TEQ/g ww. PBDEs were detected in all of the fish samples. The concentrations of total PBDEs were 0.01-2.88 ng/g ww. The seerfish and the yellowtail containd PBDEs in high concentrations. The most dominant congener in most of the fish was 2,2',4,4'-tetrabromo diphenyl ether. TBBPA was detected in 29 fish samples at 0.01-0.11 ng/g ww. The mean level of TBBPA was about one-tenth or less of the total level of PBDEs. A good correlation was obtained between total PBDEs and fat content. On the other hand, no correlation was obtained between TBBPA and fat content. The daily intakes from fish were estimated to be 0.58 ng/kg body weight (bw)/day for total PBDEs, 0.03 ng/kg bw/day for TBBPA, and 0.01 pg TEQ/kg bw/day for brominated dioxins in the case assuming that the average bw of a Japanese adult person is 50 kg and that the average fish consumption is 82 g/day. For PBDEs, the provisionally calculated value was much less

  17. Design and simulation of betavoltaic battery using large-grain polysilicon.

    PubMed

    Yao, Shulin; Song, Zijun; Wang, Xiang; San, Haisheng; Yu, Yuxi

    2012-10-01

    In this paper, we present the design and simulation of a p-n junction betavoltaic battery based on large-grain polysilicon. By the Monte Carlo simulation, the average penetration depth were obtained, according to which the optimal depletion region width was designed. The carriers transport model of large-grain polysilicon is used to determine the diffusion length of minority carrier. By optimizing the doping concentration, the maximum power conversion efficiency can be achieved to be 0.90% with a 10 mCi/cm(2) Ni-63 source radiation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Design of a 10.8 kWh, 28V Ni-MH Battery Using Commercial Ni-MH Cells

    NASA Technical Reports Server (NTRS)

    Hellen, Robert M.; Darcy, Eric C.

    2000-01-01

    This paper describes the design of a 10.8 kWh, 28V, Ni-MH battery using commercial off-the shelf (COTS) 4/3A Ni-MH cells for the X-38 vehicle, an experimental version of the Crew Return Vehicle (CRY). This will be an autonomous vehicle that will enable International Space Station crews to return to earth in the event of a medical, or other, emergency. The X-38 will be powered by 3 batteries: a 32 V primary battery, which will power the vehicle avionics for up to 7 hours for a loiter and de-orbit phase of the descent; a 28 V Ni-MH battery which will take over for the primary battery after de-orbit until landing, and a 270V Ni-Cd battery, which will be used to power electromechanical actuators and the winches controlling a parachute for landing.

  19. Eosinophils generate brominating oxidants in allergen-induced asthma

    PubMed Central

    Wu, Weijia; Samoszuk, Michael K.; Comhair, Suzy A.A.; Thomassen, Mary Jane; Farver, Carol F.; Dweik, Raed A.; Kavuru, Mani S.; Erzurum, Serpil C.; Hazen, Stanley L.

    2000-01-01

    Eosinophils promote tissue injury and contribute to the pathogenesis of allergen-triggered diseases like asthma, but the chemical basis of damage to eosinophil targets is unknown. We now demonstrate that eosinophil activation in vivo results in oxidative damage of proteins through bromination of tyrosine residues, a heretofore unrecognized pathway for covalent modification of biologic targets in human tissues. Mass spectrometric studies demonstrated that 3-bromotyrosine serves as a specific “molecular fingerprint” for proteins modified through the eosinophil peroxidase-H2O2 system in the presence of plasma levels of halides. We applied a localized allergen challenge to model the effects of eosinophils and brominating oxidants in human lung injury. Endobronchial biopsy specimens from allergen-challenged lung segments of asthmatic, but not healthy control, subjects demonstrated significant enrichments in eosinophils and eosinophil peroxidase. Baseline levels of 3-bromotyrosine in bronchoalveolar lavage (BAL) proteins from mildly allergic asthmatic individuals were modestly but not statistically significantly elevated over those in control subjects. After exposure to segmental allergen challenge, lung segments of asthmatics, but not healthy control subjects, exhibited a >10-fold increase in BAL 3-bromotyrosine content, but only two- to threefold increases in 3-chlorotyrosine, a specific oxidation product formed by neutrophil- and monocyte-derived myeloperoxidase. These results identify reactive brominating species produced by eosinophils as a distinct class of oxidants formed in vivo. They also reveal eosinophil peroxidase as a potential therapeutic target for allergen-triggered inflammatory tissue injury in humans. PMID:10811853

  20. The toxicity of brominated and mixed-halogenated dibenzo-p-dioxins and dibenzofurans: An overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, L.W.D.; Greim, H.

    1997-02-21

    Brominated dibenzo-p-dioxins and dibenzofurans can be formed under laboratory conditions by pyrolysis of flame retardants based on polybrominated biphenyls and biphenyl ethers. Their occurrence in the environment, however, is due to combustion processes such as municipal waste incineration and internal combustion engines. As these processes generally take place in the presence of an excess of chlorine, predominantly mixed brominated and chlorinated compounds have been identified so far in environmental samples. Brominated dibenzo-p-dioxins or dibenzofurans bind to the cytosolic Ah receptor about as avidly as their chlorinated congeners and induce hepatic microsomal enzymes with comparable potency. The same holds true formore » mixed brominated-chlorinated compounds. Gross pathologic symptoms-hypothyroidism, thymic atrophy, wasting of body mass, lethality-also occur at doses that, on a molar concentration basis, are virtually identical to those seen with the chlorinated compounds. Their potency to induce malformations in mice following prenatal exposure is equivalent to that of chlorinated dibenzo-p-dioxins and dibenzofurans. Possible activities as (co)carcinogens and endocrine disrupters have not been evaluated, but are likely to exist. Considering the overall similarity in action of chlorinated and brominated dibenzo-p-dioxins and dibenzofurans, environmental and health assessment should be based on molar body burdens without discrimination for the nature of the halogen. 107 refs., 1 fig., 7 tabs.« less

  1. Study concerning the recovery of zinc and manganese from spent batteries by hydrometallurgical processes.

    PubMed

    Buzatu, Traian; Popescu, Gabriela; Birloaga, Ionela; Săceanu, Simona

    2013-03-01

    Used batteries contain numerous metals in high concentrations and if not disposed of with proper care, they can negatively affect our environment. These metals represent 83% of all spent batteries and therefore it is important to recover metals such as Zn and Mn, and reuse them for the production of new batteries. The recovery of Zn and Mn from used batteries, in particular from Zn-C and alkaline ones has been researched using hydrometallurgical methods. After comminution and classification of elemental components, the electrode paste resulting from these processes was treated by chemical leaching. Prior to the leaching process the electrode paste has been subjected to two washing steps, in order to remove the potassium, which is an inconvenient element in this type of processes. To simultaneously extract Zn and Mn from this paste, the leaching method in alkaline medium (NaOH solution) and acid medium (sulphuric acid solution) was used. Also, to determine the efficiency of extraction of Zn and Mn from used batteries, the following variables were studied: reagents concentration, S/L ratio, temperature, time. The best results for extraction yield of Zn and Mn were obtained under acid leaching conditions (2M H2SO4, 1h, 80°C). Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Room Temperature Sulfur Battery Cathode Design and Processing Techniques

    NASA Astrophysics Data System (ADS)

    Carter, Rachel

    As the population grows and energy demand increases, climate change threatens causing energy storage research to focus on fulfilling the requirements of two major energy sectors with next generation batteries: (1) portable energy and (2) stationary storage.1 Where portable energy can decrease transportation-related harmful emissions and enable advanced next-generation technologies,1 and stationary storage can facilitate widespread deployment of renewable energy sources, alleviating the demand on fossil fuels and lowering emissions. Portable energy can enable zero-emission transportation and can deploy portable power in advanced electronics across fields including medical and defense. Currently fully battery powered cars are limited in driving distance, which is dictated by the energy density and weight of the state-of-the-art Li-ion battery, and similarly advancement of portable electronics is significantly hindered by heavy batteries with short charge lives. In attempt to enable advanced portable energy, significant research is aiming to improve the conventional Li-ion batteries and explore beyond Li-ion battery chemistries with the primary goal of demonstrating higher energy density to enable lighter weight cells with longer battery life. Further, with the inherent intermittency challenges of our most prominent renewable energy sources, wind and solar, discovery of batteries capable of cost effectively and reliably balancing the generation of the renewable energy sources with the real-time energy demand is required for grid scale viability. Stationary storage will provide load leveling to renewable resources by storing excess energy at peak generation and delivering stored excess during periods of lower generation. This application demands highly abundant, low-cost active materials and long-term cycle stability, since infrastructure costs (combined with the renewable) must compete with burning natural gas. Development of a battery with these characteristics will

  3. Ultrasound-assisted green bromination of N-cinnamoyl amino acid amides - Structural characterization and antimicrobial evaluation

    NASA Astrophysics Data System (ADS)

    Stoykova, Boyka; Chochkova, Maya; Ivanova, Galya; Markova, Nadezhda; Enchev, Venelin; Tsvetkova, Iva; Najdenski, Hristo; Štícha, Martin; Milkova, Tsenka

    2017-05-01

    N-phenylpropenoyl amino acid amides have been brominated using two alternative sonochemically activated green chemistry procedures. The first synthetic procedure has involved an ultrasound assisted bromination in an aqueous medium using ionic liquid as a catalyst of the reaction, whereas in the second one an in situ formation of Br2 via oxidation of HBr by H2O2 has been used. For comparison, the conventional bromination procedure was also used. The newly brominated compounds were characterized by appropriate analytical techniques. A detailed NMR spectroscopic analysis and quantum chemical calculations using Density Functional Theory (DFT) methods have been used to define the stereochemistry of the products. The results confirmed the physicochemical identity and similar yields of the products obtained by the three synthetic procedures employed, and reveal the co-existence of two diastereoisomeric forms of the newly synthesized products. The antibacterial and antifungal activities of the dibrominated amides were evaluated.

  4. Electron stimulated desorption of anions from native and brominated single stranded oligonucleotide trimers

    PubMed Central

    Polska, Katarzyna; Rak, Janusz; Bass, Andrew D.; Cloutier, Pierre; Sanche, Léon

    2013-01-01

    We measured the low energy electron stimulated desorption (ESD) of anions from thin films of native (TXT) and bromine monosubstituted (TBrXT) oligonucleotide trimers deposited on a gold surface (T = thymidine, X = T, deoxycytidine (C), deoxyadenosine (A) or deoxyguanosine (G), Br = bromine). The desorption of H−, CH3−/NH−, O−/NH2−, OH−, CN−, and Br− was induced by 0 to 20 eV electrons. Dissociative electron attachment, below 12 eV, and dipolar dissociation, above 12 eV, are responsible for the formation of these anions. The comparison of the results obtained for the native and brominated trimers suggests that the main pathways of TBrXT degradation correspond to the release of the hydride and bromide anions. Significantly, the presence of bromine in oligonucleotide trimers blocks the electron-induced degradation of nuclobases as evidenced by a dramatic decrease in CN− desorption. An increase in the yields of OH− is also observed. The debromination yield of particular oligonucleotides diminishes in the following order: BrdU > BrdA > BrdG > BrdC. Based on these results, 5-bromo-2′-deoxyuridine appears to be the best radiosensitizer among the studied bromonucleosides. PMID:22360262

  5. Electron stimulated desorption of anions from native and brominated single stranded oligonucleotide trimers.

    PubMed

    Polska, Katarzyna; Rak, Janusz; Bass, Andrew D; Cloutier, Pierre; Sanche, Léon

    2012-02-21

    We measured the low energy electron stimulated desorption (ESD) of anions from thin films of native (TXT) and bromine monosubstituted (TBrXT) oligonucleotide trimers deposited on a gold surface (T = thymidine, X = T, deoxycytidine (C), deoxyadenosine (A) or deoxyguanosine (G), Br = bromine). The desorption of H(-), CH(3)(-)/NH(-), O(-)/NH(2)(-), OH(-), CN(-), and Br(-) was induced by 0 to 20 eV electrons. Dissociative electron attachment, below 12 eV, and dipolar dissociation, above 12 eV, are responsible for the formation of these anions. The comparison of the results obtained for the native and brominated trimers suggests that the main pathways of TBrXT degradation correspond to the release of the hydride and bromide anions. Significantly, the presence of bromine in oligonucleotide trimers blocks the electron-induced degradation of nuclobases as evidenced by a dramatic decrease in CN(-) desorption. An increase in the yields of OH(-) is also observed. The debromination yield of particular oligonucleotides diminishes in the following order: BrdU > BrdA > BrdG > BrdC. Based on these results, 5-bromo-2(')-deoxyuridine appears to be the best radiosensitizer among the studied bromonucleosides. © 2012 American Institute of Physics

  6. Electron stimulated desorption of anions from native and brominated single stranded oligonucleotide trimers

    NASA Astrophysics Data System (ADS)

    Polska, Katarzyna; Rak, Janusz; Bass, Andrew D.; Cloutier, Pierre; Sanche, Léon

    2012-02-01

    We measured the low energy electron stimulated desorption (ESD) of anions from thin films of native (TXT) and bromine monosubstituted (TBrXT) oligonucleotide trimers deposited on a gold surface (T = thymidine, X = T, deoxycytidine (C), deoxyadenosine (A) or deoxyguanosine (G), Br = bromine). The desorption of H-, CH3-/NH-, O-/NH2-, OH-, CN-, and Br- was induced by 0 to 20 eV electrons. Dissociative electron attachment, below 12 eV, and dipolar dissociation, above 12 eV, are responsible for the formation of these anions. The comparison of the results obtained for the native and brominated trimers suggests that the main pathways of TBrXT degradation correspond to the release of the hydride and bromide anions. Significantly, the presence of bromine in oligonucleotide trimers blocks the electron-induced degradation of nuclobases as evidenced by a dramatic decrease in CN- desorption. An increase in the yields of OH- is also observed. The debromination yield of particular oligonucleotides diminishes in the following order: BrdU > BrdA > BrdG > BrdC. Based on these results, 5-bromo-2'-deoxyuridine appears to be the best radiosensitizer among the studied bromonucleosides.

  7. International Ultraviolet Explorer (IUE) Battery History and Performance

    NASA Technical Reports Server (NTRS)

    Rao, Gopalskrishna M.; Tiller, Smith E.

    1999-01-01

    The "International Ultraviolet Explorer (IUE) Battery History and Performance" report provides the information on the cell/battery design, battery performance during the thirty eight (38) solar eclipse seasons and the end-of-life test data. It is noteworthy that IUE spacecraft was an in-house project and that the batteries were designed, fabricated and tested (Qualification and Acceptance) at the Goddard Space Flight Center. A detailed information is given on the cell and battery design criteria and the designs, on the Qualification and the Acceptance tests, and on the cell life cycling tests. The environmental, thermal, and vibration tests were performed on the batteries at the battery level as well as with the interface on the spacecraft. The telemetry data were acquired, analyzed, and trended for various parameters over the mission life. Rigorous and diligent battery management programs were developed and implemented from time to time to extend the mission life over eighteen plus years. Prior to the termination of spacecraft operation, special tests were conducted to check the battery switching operation, battery residual capacity, third electrode performance and battery impedance.

  8. International Space Station Lithium-Ion Battery

    NASA Technical Reports Server (NTRS)

    Dalton, Penni J.; Balcer, Sonia

    2016-01-01

    The International Space Station (ISS) Electric Power System (EPS) currently uses Nickel-Hydrogen (Ni-H2) batteries to store electrical energy. The batteries are charged during insolation and discharged during eclipse. The Ni-H2 batteries are designed to operate at a 35 depth of discharge (DOD) maximum during normal operation in a Low Earth Orbit. Since the oldest of the 48 Ni-H2 battery Orbital Replacement Units (ORUs) has been cycling since September 2006, these batteries are now approaching their end of useful life. In 2010, the ISS Program began the development of Lithium-Ion (Li-ion) batteries to replace the Ni-H2 batteries and concurrently funded a Li-ion cell life testing project. This paper will include an overview of the ISS Li-Ion battery system architecture and the progress of the Li-ion battery design and development.

  9. New Cathode Material for High Energy-Density Batteries

    DTIC Science & Technology

    1974-07-31

    Lithium Anodes LINK A ROLK LINK B LINK C INSTRUCTIONS I. ORIGINATING ACTIVITY: Enter the name and oddM-ss of the contractor...theoretical energy density of 399 whr/lb when paired with a lithium anode. Results of related, but less extensive, work on zinc fluoride and...a) The semiconductor was cathodically passi- vated in the presence of lithium ions, which would normally exist in lithium battery electrolytes

  10. 21 CFR 180.30 - Brominated vegetable oil.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Brominated vegetable oil. 180.30 Section 180.30 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED IN FOOD OR IN CONTACT WITH FOOD ON AN...

  11. Electrochemistry of the Zinc-Silver Oxide System. Part 2: Practical Measurements of Energy Conversion Using Commercial Miniature Cells.

    ERIC Educational Resources Information Center

    Smith, Michael J.; Vincent, Colin A.

    1989-01-01

    Summarizes the quantitative relationships pertaining to the operation of electrochemical cells. Energy conversion efficiency, cycle efficiency, battery power, and energy/power density of two types of zinc-silver oxide cells are discussed. (YP)

  12. Battery Thermal Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyser, Matthew; Saxon, Aron; Powell, Mitchell

    2016-06-07

    This poster shows the progress in battery thermal characterization over the previous year. NREL collaborated with U.S. DRIVE and USABC battery developers to obtain thermal properties of their batteries, obtained heat capacity and heat generation of cells under various power profiles, obtained thermal images of the cells under various drive cycles, and used the measured results to validate thermal models. Thermal properties are used for the thermal analysis and design of improved battery thermal management systems to support achieve life and performance targets.

  13. Design and test of a 100 ampere-hour nickel cadmium battery module

    NASA Technical Reports Server (NTRS)

    Gaston, S.; Wertheim, M.; Burgess, F. S.; Lehrfeld, D.; Winegard, A.

    1973-01-01

    A feasibility study was conducted on the design and construction of a flight-worthy replaceable battery module consisting of four 100 A.H. nickel-cadmium rechargeable cells for large manned space vehicles. The module is planned to weigh less than 43 pounds and be fully maintainable in a zero-g environment by one man without use of special tools. An active environmental control system was designed for the temperature control of the module.

  14. Hubble Space Telescope 2004 Battery Update

    NASA Technical Reports Server (NTRS)

    Hollandsworth, Roger; Armantrout, Jon; Whitt, Tom; Rao, Gopalakrishna M.

    2006-01-01

    Battery cell wear out mechanisms and signatures are examined and compared to orbital data from the six on-orbit Hubble Space Telescope (HST) batteries, and the Flight Spare Battery (FSB) Test Bed at Marshall Space Flight Center (MSFC), which is instrumented with individual cell voltage monitoring. The on-orbit HST batteries were manufactured on an expedited basis after the Challenger Shuttle Disaster in 1986. The original design called for the HST to be powered by six 50 Ah Nickel Cadmium batteries, which would have required a shuttle mission every 5 years for battery replacement. The decision to use NiH2 instead has resulted in a longer life battery set which was launched with HST in April 1990, with a design life of 7 years that has now exceeded 14+ years of orbital cycling. This chart details the specifics of the original HST NiH2 cell design. The HST replacement batteries for Service Mission 4, originally scheduled for Spring 2005, are currently in cold storage at NASA Goddard Space Flight Center (GSFC). The SM4 battery cells utilize slurry process electrodes having 80% porosity.

  15. Battery cell feedthrough apparatus

    DOEpatents

    Kaun, Thomas D.

    1995-01-01

    A compact, hermetic feedthrough apparatus comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance.

  16. Oxygen solubility and transport in Li–air battery electrolytes: Establishing criteria and strategies for electrolyte design

    DOE PAGES

    Gittleson, Forrest S.; Jones, Reese E.; Ward, Donald K.; ...

    2017-02-15

    Li–air or Li–oxygen batteries promise significantly higher energies than existing commercial battery technologies, yet their development has been hindered by a lack of suitable electrolytes. In this article, we evaluate the physical properties of varied electrolyte compositions to form generalized criteria for electrolyte design. We show that oxygen transport through non-aqueous electrolytes has a critical impact on the discharge rate and capacity of Li–air batteries. Through experiments and molecular dynamics simulations, we highlight that the choice of salt species and concentration have an outsized influence on oxygen solubility, while solvent choice is the major influence on oxygen diffusivity. The stabilitymore » of superoxide reaction intermediates, key to the oxygen reduction mechanism, is also affected by variations in salt concentration and the choice of solvent. The importance of reactant transport is confirmed through Li–air cell discharge, which demonstrates good agreement between the observed and calculated mass transport-limited currents. Furthermore, these results showcase the impact of electrolyte composition on transport in metal–air batteries and provide guiding principles and simulation-based tools for future electrolyte design.« less

  17. The effect of cell design and test criteria on the series/parallel performance of nickel cadmium cells and batteries

    NASA Technical Reports Server (NTRS)

    Halpert, G.; Webb, D. A.

    1983-01-01

    Three batteries were operated in parallel from a common bus during charge and discharge. SMM utilized NASA Standard 20AH cells and batteries, and LANDSAT-D NASA 50AH cells and batteries of a similar design. Each battery consisted of 22 series connected cells providing the nominal 28V bus. The three batteries were charged in parallel using the voltage limit/current taper mode wherein the voltage limit was temperature compensated. Discharge occurred on the demand of the spacecraft instruments and electronics. Both flights were planned for three to five year missions. The series/parallel configuration of cells and batteries for the 3-5 yr mission required a well controlled product with built-in reliability and uniformity. Examples of how component, cell and battery selection methods affect the uniformity of the series/parallel operation of the batteries both in testing and in flight are given.

  18. Degradation of brominated flame retardant in computer housing plastic by supercritical fluids.

    PubMed

    Wang, Yanmin; Zhang, Fu-Shen

    2012-02-29

    The degradation process of brominated flame retardant (BFR) and BFR-containing waste computer housing plastic in various supercritical fluids (water, methanol, isopropanol and acetone) was investigated. The results showed that the debromination and degradation efficiencies, final products were greatly affected by the solvent type. Among the four tested solvents, isopropanol was the most suitable solvent for the recovery of oil from BFR-containing plastic for its (1) excellent debromination effectiveness (debromination efficiency 95.7%), (2) high oil production (60.0%) and (3) mild temperature and pressure requirements. However, in this case, the removed bromine mostly existed in the oil. Introduction of KOH into the sc-isopropanol could capture almost all the inorganic bromine from the oil thus bromine-free oil could be obtained. Furthermore, KOH could enhance the depolymerization of the plastic. The obtained oil mainly consisted of single- and duplicate-ringed aromatic compounds in a carbon range of C9-C17, which had alkyl substituents or aliphatic bridges, such as butyl-benzene, (3-methylbutyl)-benzene, 1,1'-(1,3-propanediyl)bis benzene. Phenol, alkyl phenols and esters were the major oxygen-containing compounds in the oil. This study provides an efficient approach for debromination and simultaneous recovering valuable chemicals from BFR-containing plastic in e-waste. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. The UltraBattery-A new battery design for a new beginning in hybrid electric vehicle energy storage

    NASA Astrophysics Data System (ADS)

    Cooper, A.; Furakawa, J.; Lam, L.; Kellaway, M.

    The UltraBattery, developed by CSIRO Energy Technology in Australia, is a hybrid energy storage device which combines an asymmetric super-capacitor and a lead-acid battery in single unit cells. This takes the best from both technologies without the need for extra, expensive electronic controls. The capacitor enhances the power and lifespan of the lead-acid battery as it acts as a buffer during high-rate discharging and charging, thus enabling it to provide and absorb charge rapidly during vehicle acceleration and braking. The initial performance of the prototype UltraBatteries was evaluated according to the US FreedomCAR targets and was shown to meet or exceed these in terms of power, available energy, cold cranking and self-discharge set for both minimum and maximum power-assist hybrid electric vehicles (HEVs). Other laboratory cycling tests showed a fourfold improvement over previous state-of-the-art lead-acid batteries under the RHOLAB test profile and better life than commercial nickel/metal hydride (NiMH) cells used in a Honda Insight when tested under the EUCAR HEV profile. As a result of this work, a set of twelve 12 V modules was built by The Furukawa Battery Co., Ltd. in Japan and were fitted into a Honda Insight instead of the NiMH battery by Provector Ltd. The battery pack was fitted with full monitoring and control capabilities and the car was tested at Millbrook Proving Ground under a General Motors road test simulation cycle for an initial target of 50 000 miles which was extended to 100 000 miles. This was completed on 15th January 2008 without any battery problems. Furthermore, the whole test was completed without the need for any conditioning or equalisation of the battery pack.

  20. A primary battery-on-a-chip using monolayer graphene.

    PubMed

    Iost, Rodrigo M; Crespilho, Frank N; Kern, Klaus; Balasubramanian, Kannan

    2016-06-14

    We present here a bottom-up approach for realizing on-chip on-demand batteries starting out with chemical vapor deposition-grown graphene. Single graphene monolayers contacted by electrode lines on a silicon chip serve as electrodes. The anode and cathode are realized by electrodeposition of zinc and copper respectively onto graphene, leading to the realization of a miniature graphene-based Daniell cell on a chip. The electrolyte is housed partly in a gel and partly in liquid form in an on-chip enclosure molded using a 3d printer or made out of poly(dimethylsiloxane). The realized batteries provide a stable voltage (∼1.1 V) for many hours and exhibit capacities as high as 15 μAh, providing enough power to operate a pocket calculator. The realized batteries show promise for deployment as on-chip power sources for autonomous systems in lab-on-a-chip or biomedical applications.

  1. A primary battery-on-a-chip using monolayer graphene

    NASA Astrophysics Data System (ADS)

    Iost, Rodrigo M.; Crespilho, Frank N.; Kern, Klaus; Balasubramanian, Kannan

    2016-07-01

    We present here a bottom-up approach for realizing on-chip on-demand batteries starting out with chemical vapor deposition-grown graphene. Single graphene monolayers contacted by electrode lines on a silicon chip serve as electrodes. The anode and cathode are realized by electrodeposition of zinc and copper respectively onto graphene, leading to the realization of a miniature graphene-based Daniell cell on a chip. The electrolyte is housed partly in a gel and partly in liquid form in an on-chip enclosure molded using a 3d printer or made out of poly(dimethylsiloxane). The realized batteries provide a stable voltage (∼1.1 V) for many hours and exhibit capacities as high as 15 μAh, providing enough power to operate a pocket calculator. The realized batteries show promise for deployment as on-chip power sources for autonomous systems in lab-on-a-chip or biomedical applications.

  2. Magnet Design and Analysis of a 40 Tesla Long Pulse System Energized by a Battery Bank

    NASA Astrophysics Data System (ADS)

    Lv, Y. L.; Peng, T.; Wang, G. B.; Ding, T. H.; Han, X. T.; Pan, Y.; Li, L.

    2013-03-01

    A 40 tesla long pulse magnet and a battery bank as the power supply have been designed. This is now under construction at the Wuhan National High Magnetic Field Center. The 22 mm bore magnet will generate smooth pulses with duration 1 s and rise time 0.5 s. The battery bank consists of 945 12V/200 Ah lead-acid battery cells. The magnet and battery bank were optimized by codes developed in-house and by ANSYS. The coil was made from soft copper with internal reinforcement by fiber-epoxy composite; it is divided into two sections connected in series. The inner section consists of helix coils with each layer reinforced by Zylon composite. The outer section will be wound from copper sheet and externally reinforced by carbon fiber composite.

  3. Bromine atom production and chain propagation during springtime Arctic ozone depletion events in Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Thompson, Chelsea R.; Shepson, Paul B.; Liao, Jin; Huey, L. Greg; Cantrell, Chris; Flocke, Frank; Orlando, John

    2017-03-01

    Ozone depletion events (ODEs) in the Arctic are primarily controlled by a bromine radical-catalyzed destruction mechanism that depends on the efficient production and recycling of Br atoms. Numerous laboratory and modeling studies have suggested the importance of heterogeneous recycling of Br through HOBr reaction with bromide on saline surfaces. On the other hand, the gas-phase regeneration of bromine atoms through BrO-BrO radical reactions has been assumed to be an efficient, if not dominant, pathway for Br reformation and thus ozone destruction. Indeed, it has been estimated that the rate of ozone depletion is approximately equal to twice the rate of the BrO self-reaction. Here, we use a zero-dimensional, photochemical model, largely constrained to observations of stable atmospheric species from the 2009 Ocean-Atmosphere-Sea Ice-Snowpack (OASIS) campaign in Barrow, Alaska, to investigate gas-phase bromine radical propagation and recycling mechanisms of bromine atoms for a 7-day period during late March. This work is a continuation of that presented in Thompson et al. (2015) and utilizes the same model construct. Here, we use the gas-phase radical chain length as a metric for objectively quantifying the efficiency of gas-phase recycling of bromine atoms. The gas-phase bromine chain length is determined to be quite small, at < 1.5, and highly dependent on ambient O3 concentrations. Furthermore, we find that Br atom production from photolysis of Br2 and BrCl, which is predominately emitted from snow and/or aerosol surfaces, can account for between 30 and 90 % of total Br atom production. This analysis suggests that condensed-phase production of bromine is at least as important as, and at times greater than, gas-phase recycling for the occurrence of Arctic ODEs. Therefore, the rate of the BrO self-reaction is not a sufficient estimate for the rate of O3 depletion.

  4. Effects of sequential treatment with fluorine and bromine on graphite fibers

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Stahl, Mark; Maciag, Carolyn; Slabe, Melissa

    1987-01-01

    Three pitch based graphite fibers with different degrees of graphitization and one polyacryonitrile (PAN) based carbon fiber from Amoco Corporation were treated with 1 atm, room temperature fluorine gas for 90 hrs. Fluorination resulted in higher electrical conductivity for all pitch fibers. Further bromination after ambient condition defluorination resulted in further increases in electrical defluorination conductivity for less graphitized, less structurally ordered pitch fibers (P-55) which contain about 3% fluorine by weight before bromination. This product can be stable in 200 C air, or 100% humidity at 60 C. Due to its low cost, this less graphitized fiber may be useful for industrial application, such as airfoil deicer materials. The same bromination process, however, resulted in conductivity decreases for fluorine rich, more graphitized, structurally oriented pitch fibers (P-100 and P-75). Such decreases in electrical conductivity were partially reversed by heating the fibers at 185 C in air. Differential scanning calorimetric (DSC) data indicated that the more graphitized fibers (P-100) contained BrF3, whereas the less graphitized fibers (P-55) did not.

  5. [Total dietary exposure assessment of emerging brominated flame retardants in Beijing].

    PubMed

    Lü, Surong; Niu, Yumin; Zhang, Jing; Shao, Bing; Du, Zhenxia

    2016-05-01

    To estimate the exposure characteristic of six emerging brominated flame retardant for Beijing residents by dietary intake. 2,3,5,6-tetrabromo-p-xylene (pTBX), pentabromotoluene (PBT), 1, 2, 3, 4, 5-pentabromo-6- ethylbenzene (PBEB), hexahromobenzene (HBB), hexachlorocyclopentadienyl- dibromocyclooctane (DBHCTD) and 1,2-bis(2 ,4 ,6-tribromo phenoxy) ethane (BTBPE) were detected by atmospheric pressure gas chromatography tandem mass spectrometry (APGC-MS/MS) in total dietary samples from Beijing. Dietary intake assessments of human exposure were carried out according to results of determination. PBT, PBEB, HBB and BTBPE were occurred with concentration between 1.2-29.4 pg/g wet weight. The detection rates of HBB and BTBPE in animal--origin samples were higher than those in plant-origin samples, and there were significant differences (P < 0.05). The exposure level of Beijing residents to six emerging brominated flame retardants were 296.8 pg/(kg-d). The exposure level of emerging brominated flame retardants by dietary intake in Beijing is relatively low, and meat is the main source of BTBPE dietary intake.

  6. Brominating activity of the seaweed Ascophyllum nodosum: Impact on the biosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wever, R.; Tromp, M.G.M.; Krenn, B.E.

    Macroalgae are an important source of volatile halogenated organic compounds, such as bromoform and dibromomethane. The mechanism by which these compounds are formed is still elusive. The authors report that the brown seaweeds Laminaria saccharina, Laminaria digitata, Fucus vesiculosis, Pelvetia canaliculata, and Ascophyllum nodosum and the red seaweeds Chondrus crispus and Plocamium hamatum contain bromoperoxidases. The intact plants are able to brominate exogeneous organic compounds when H{sub 2}O{sub 2} and Br{sup {minus}} are added to seawater. Further, the authors show that the brominating activity of the brown macroalga A. nodosum, which contains a vanadium bromoperoxidase located on the thallus surface,more » occurs when the plant is exposed to light and not in the dark. The rate of bromination of exogenous organic compounds in seawater by this plant is 68 nmol (g of wet alga){sup {minus}1} h{sup {minus}1}. HOBr is a strong biocidal agent and the authors propose that the formation of HOBr by this seaweed is part of a host defense system.« less

  7. Microwave assisted extraction of iodine and bromine from edible seaweed for inductively coupled plasma-mass spectrometry determination.

    PubMed

    Romarís-Hortas, Vanessa; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Pilar

    2009-08-15

    The feasibility of microwave energy to assist the solubilisation of edible seaweed samples by tetramethylammonium hydroxide (TMAH) has been investigated to extract iodine and bromine. Inductively coupled plasma-mass spectrometry (ICP-MS) has been used as a multi-element detector. Variables affecting the microwave assisted extraction/solubilisation (temperature, TMAH volume, ramp time and hold time) were firstly screened by applying a fractional factorial design (2(5-1)+2), resolution V and 2 centre points. When extracting both halogens, results showed statistical significance (confidence interval of 95%) for TMAH volume and temperature, and also for the two order interaction between both variables. Therefore, these two variables were finally optimized by a 2(2)+star orthogonal central composite design with 5 centre points and 2 replicates, and optimum values of 200 degrees C and 10 mL for temperature and TMAH volume, respectively, were found. The extraction time (ramp and hold times) was found statistically non-significant, and values of 10 and 5 min were chosen for the ramp time and the hold time, respectively. This means a fast microwave heating cycle. Repeatability of the over-all procedure has been found to be 6% for both elements, while iodine and bromine concentrations of 24.6 and 19.9 ng g(-1), respectively, were established for the limit of detection. Accuracy of the method was assessed by analyzing the NIES-09 (Sargasso, Sargassum fulvellum) certified reference material (CRM) and the iodine and bromine concentrations found have been in good agreement with the indicative values for this CRM. Finally, the method was applied to several edible dried and canned seaweed samples.

  8. Guided Inquiry Learning With Sea Water Battery Project

    NASA Astrophysics Data System (ADS)

    Mashudi, A.

    2017-02-01

    Science learning process is expected to produce valuable product, innovative and real learning environment, and provide memorable learning experience. That orientation can be contained in Inquiry Based Learning. SMP N 4 Juwana is located close to the beach. That’s why, Sea Water Battery Project is very suitable to be applied in learning activity as an effort to fulfill the renewable energy based on local wisdom. This study aims to increase interest, activity and achievement of students. Learning implementation stage, namely : Constructing Sea Water Battery project, observation, group presentations, and feedback. Sea Water Battery is renewable energy battery from materials easily found around the learner. The materials used are copper plate as the anode, zinc plate as the cathode and sea water as the electrolyte. Average score of students Interest on the first cycle 76, while on the second cycle 85. Average score of students Activity on the first cycle 76 and on the second cycle 86. Average score of students achievement on the first cycle 75, while on the second cycle 84. This learning process gave nurturant effect for students to keep innovating and construct engineering technology for the future.

  9. Electrochemical synthesis and characterization of zinc oxalate nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com; Roushani, Mahmoud; Department of Chemistry, Ilam University, Ilam

    2013-03-15

    Highlights: ► Synthesis of zinc oxalate nanoparticles via electrolysis of a zinc plate anode in sodium oxalate solutions. ► Design of a Taguchi orthogonal array to identify the optimal experimental conditions. ► Controlling the size and shape of particles via applied voltage and oxalate concentration. ► Characterization of zinc oxalate nanoparticles by SEM, UV–vis, FT-IR and TG–DTA. - Abstract: A rapid, clean and simple electrodeposition method was designed for the synthesis of zinc oxalate nanoparticles. Zinc oxalate nanoparticles in different size and shapes were electrodeposited by electrolysis of a zinc plate anode in sodium oxalate aqueous solutions. It was foundmore » that the size and shape of the product could be tuned by electrolysis voltage, oxalate ion concentration, and stirring rate of electrolyte solution. A Taguchi orthogonal array design was designed to identify the optimal experimental conditions. The morphological characterization of the product was carried out by scanning electron microscopy. UV–vis and FT-IR spectroscopies were also used to characterize the electrodeposited nanoparticles. The TG–DTA studies of the nanoparticles indicated that the main thermal degradation occurs in two steps over a temperature range of 350–430 °C. In contrast to the existing methods, the present study describes a process which can be easily scaled up for the production of nano-sized zinc oxalate powder.« less

  10. Bromine monoxide emissions from Kilauea volcano - Hawai`i

    NASA Astrophysics Data System (ADS)

    Salerno, G. G.; Oppenheimer, C.; Tsanev, V. I.; Sutton, A. J.; Elias, T.

    2009-12-01

    Since the first detection of bromine monoxide (BrO) in volcanic plumes, there has been considerable interest in the atmospheric synthesis and impact of reactive halogens in volcanic plumes. We report here the first observations of BrO in the volcanic plume emitted from the summit of Kilauea volcano. We present data collected in 2007, 2008 and 2009 at Pu`u`O`o and Halema`uma`u crater by ground-based Differential Optical Absorption Spectroscopy (DOAS). In 2007, we did not detect any bromine compounds either from the summit or from the Pu`u`O`o plume. However, in 2008 and 2009, we found a good correlation between BrO and SO2 (SO2/BrO molar ratios of ~2000 and ~400) in the plume emitted by the new vent opened at Halema`uma`u crater in March 2008. We discuss the observed variations in BrO production and SO2/BrO ratios over time and contrasting the volcano summit and the east rift zone emissions (with respect to the two-stage degassing long recognized at Kilauea). Factors accounting for the variability include plume age and eruptive style. The presence of BrO in the plume from the new vent in Halema`uma`u crater might depend either on the high temperature from near-surface magma or vent geometry, combined with strong ultraviolet radiation promoting the ”bromine explosion”. Our BrO results significantly extend the global catalogue of volcanic reactive halogen degassing including, for the first time, data representing a hot-spot setting.

  11. Monitoring of WEEE plastics in regards to brominated flame retardants using handheld XRF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldrian, Alexia, E-mail: alexia.aldrian@unileoben.ac.at; Ledersteger, Alfred, E-mail: a.ledersteger@saubermacher.at; Pomberger, Roland, E-mail: roland.pomberger@unileoben.ac.at

    Highlights: • Specification of an empirical factor for conversion from bromine to PBB and PBDE. • The handheld XRF device was validated for this particular application. • A very large number of over 4600 pieces of monitor housings was analysed. • The recyclable fraction mounts up to 85% for TV but only 53% of PC waste plastics. • A high percentage of pieces with bromine contents of over 50,000 ppm was obtained. - Abstract: This contribution is focused on the on-site determination of the bromine content in waste electrical and electronic equipment (WEEE), in particular waste plastics from television setsmore » (TV) and personal computer monitors (PC) using a handheld X-ray fluorescence (XRF) device. The described approach allows the examination of samples in regards to the compliance with legal specifications for polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs) directly after disassembling and facilitates the sorting out of plastics with high contents of brominated flame retardants (BFRs). In all, over 3000 pieces of black (TV) and 1600 pieces of grey (PC) plastic waste were analysed with handheld XRF technique for this study. Especially noticeable was the high percentage of pieces with a bromine content of over 50,000 ppm for TV (7%) and PC (39%) waste plastics. The applied method was validated by comparing the data of handheld XRF with results obtained by GC–MS. The results showed the expected and sufficiently accurate correlation between these two methods. It is shown that handheld XRF technique is an effective tool for fast monitoring of large volumes of WEEE plastics in regards to BFRs for on-site measurements.« less

  12. Electron stimulated desorption of anions from native and brominated single stranded oligonucleotide trimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polska, Katarzyna; Rak, Janusz; Bass, Andrew D.

    2012-02-21

    We measured the low energy electron stimulated desorption (ESD) of anions from thin films of native (TXT) and bromine monosubstituted (TBrXT) oligonucleotide trimers deposited on a gold surface (T = thymidine, X = T, deoxycytidine (C), deoxyadenosine (A) or deoxyguanosine (G), Br = bromine). The desorption of H{sup -}, CH{sub 3}{sup -}/NH{sup -}, O{sup -}/NH{sub 2}{sup -}, OH{sup -}, CN{sup -}, and Br{sup -} was induced by 0 to 20 eV electrons. Dissociative electron attachment, below 12 eV, and dipolar dissociation, above 12 eV, are responsible for the formation of these anions. The comparison of the results obtained for themore » native and brominated trimers suggests that the main pathways of TBrXT degradation correspond to the release of the hydride and bromide anions. Significantly, the presence of bromine in oligonucleotide trimers blocks the electron-induced degradation of nuclobases as evidenced by a dramatic decrease in CN{sup -} desorption. An increase in the yields of OH{sup -} is also observed. The debromination yield of particular oligonucleotides diminishes in the following order: BrdU > BrdA > BrdG > BrdC. Based on these results, 5-bromo-2{sup '}-deoxyuridine appears to be the best radiosensitizer among the studied bromonucleosides.« less

  13. Kinetics of aerobic cometabolic biodegradation of chlorinated and brominated aliphatic hydrocarbons: A review.

    PubMed

    Jesus, João; Frascari, Dario; Pozdniakova, Tatiana; Danko, Anthony S

    2016-05-15

    This review analyses kinetic studies of aerobic cometabolism (AC) of halogenated aliphatic hydrocarbons (HAHs) from 2001-2015 in order to (i) compare the different kinetic models proposed, (ii) analyse the estimated model parameters with a focus on novel HAHs and the identification of general trends, and (iii) identify further research needs. The results of this analysis show that aerobic cometabolism can degrade a wide range of HAHs, including HAHs that were not previously tested such as chlorinated propanes, highly chlorinated ethanes and brominated methanes and ethanes. The degree of chlorine mineralization was very high for the chlorinated HAHs. Bromine mineralization was not determined for studies with brominated aliphatics. The examined research period led to the identification of novel growth substrates of potentially high interest. Decreasing performance of aerobic cometabolism were found with increasing chlorination, indicating the high potential of aerobic cometabolism in the presence of medium- and low-halogenated HAHs. Further research is needed for the AC of brominated aliphatic hydrocarbons, the potential for biofilm aerobic cometabolism processes, HAH-HAH mutual inhibition and the identification of the enzymes responsible for each aerobic cometabolism process. Lastly, some indications for a possible standardization of future kinetic studies of HAH aerobic cometabolism are provided. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Battery cell feedthrough apparatus

    DOEpatents

    Kaun, T.D.

    1995-03-14

    A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

  15. Validation of Modified Wine-Rack Thermal Design for Nickel-Hydrogen Batteries in Landsat-7 Spacecraft Thermal Vacuum Test and in Flight

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    1999-01-01

    A heritage wine-rack thermal/mechanical design for the nickel-hydrogen batteries was the baseline at the Landsat-7 Preliminary Design Review. An integrated thermal and power analysis of the batteries performed by the author in 1994 revealed that the maximum cell-to-cell gradient was 6.6 C. The author proposed modifying the heritage wine-rack design by enhancing heat conduction from cells to cells, and from cells to battery frame. At the 1995 Intersociety Energy Conversion Engineering Conference (IECEC), the author presented a paper on methods of modifying the wine-rack design. It showed that the modified wine-rack option, which uses a metallic filler, could reduce the maximum cell-to-cell temperature gradient to 1.30 C, and could also reduce the maximum cell temperature by as much as 80 C. That design concept was adopted by the Landsat7 Project Office, and a design change was made at the Critical Design Review. Results of the spacecraft thermal vacuum and thermal balance tests, and temperature data in flight show that the temperatures of the battery cells are very uniform. The maximum cell-to-cell gradient is 1.50 C. They validate the modified wine-rack thermal design.

  16. Brominated flame retardants and perfluorinated chemicals- Vet Tox

    EPA Science Inventory

    Brominated flame retardants (BFRs) and perfluorinated chemicals (PFCs) belong to a class of chemicals known as organohalogens. It is believed that use of both BFRs and PFCs has resulted in lives saved by reducing flammability of materials commonly used and also due to their bacte...

  17. Solar-rechargeable battery based on photoelectrochemical water oxidation: Solar water battery

    PubMed Central

    Kim, Gonu; Oh, Misol; Park, Yiseul

    2016-01-01

    As an alternative to the photoelectrochemical water splitting for use in the fuel cells used to generate electrical power, this study set out to develop a solar energy rechargeable battery system based on photoelectrochemical water oxidation. We refer to this design as a “solar water battery”. The solar water battery integrates a photoelectrochemical cell and battery into a single device. It uses a water oxidation reaction to simultaneously convert and store solar energy. With the solar water battery, light striking the photoelectrode causes the water to be photo-oxidized, thus charging the battery. During the discharge process, the solar water battery reduces oxygen to water with a high coulombic efficiency (>90%) and a high average output voltage (0.6 V). Because the reduction potential of oxygen is more positive [E0 (O2/H2O) = 1.23 V vs. NHE] than common catholytes (e.g., iodide, sulfur), a high discharge voltage is produced. The solar water battery also exhibits a superior storage ability, maintaining 99% of its specific discharge capacitance after 10 h of storage, without any evidence of self-discharge. The optimization of the cell design and configuration, taking the presence of oxygen in the cell into account, was critical to achieving an efficient photocharge/discharge. PMID:27629362

  18. A reliability design method for a lithium-ion battery pack considering the thermal disequilibrium in electric vehicles

    NASA Astrophysics Data System (ADS)

    Xia, Quan; Wang, Zili; Ren, Yi; Sun, Bo; Yang, Dezhen; Feng, Qiang

    2018-05-01

    With the rapid development of lithium-ion battery technology in the electric vehicle (EV) industry, the lifetime of the battery cell increases substantially; however, the reliability of the battery pack is still inadequate. Because of the complexity of the battery pack, a reliability design method for a lithium-ion battery pack considering the thermal disequilibrium is proposed in this paper based on cell redundancy. Based on this method, a three-dimensional electric-thermal-flow-coupled model, a stochastic degradation model of cells under field dynamic conditions and a multi-state system reliability model of a battery pack are established. The relationships between the multi-physics coupling model, the degradation model and the system reliability model are first constructed to analyze the reliability of the battery pack and followed by analysis examples with different redundancy strategies. By comparing the reliability of battery packs of different redundant cell numbers and configurations, several conclusions for the redundancy strategy are obtained. More notably, the reliability does not monotonically increase with the number of redundant cells for the thermal disequilibrium effects. In this work, the reliability of a 6 × 5 parallel-series configuration is the optimal system structure. In addition, the effect of the cell arrangement and cooling conditions are investigated.

  19. Brominated plastic equation of state measurements using laser driven shocks

    NASA Astrophysics Data System (ADS)

    Koenig, M.; Benuzzi, A.; Faral, B.; Krishnan, J.; Boudenne, J. M.; Jalinaud, T.; Rémond, C.; Decoster, A.; Batani, D.; Beretta, D.; Hall, T. A.

    1998-03-01

    In order for brominated plastic (CHBr) to be used in future large lasers, such as the National Ignition Facility, capsule design, and equation of state (EOS) data are needed to address uncertainties in modeling. We have performed CHBr EOS measurements using the impedance matching technique. Laser beams spatially smoothed, and giving a spot size of 400 μm and intensities ⩽5×1013W/cm2, produced high-quality shock waves allowing the simultaneous measurements of the shock velocities in two materials, one used as reference. Results are compared to other experiments and to EOS calculations. We obtained very good agreement with the theoretical curve for pressures ranging from 1 to 3 Mbar.

  20. High-Energy-Density Metal-Oxygen Batteries: Lithium-Oxygen Batteries vs Sodium-Oxygen Batteries.

    PubMed

    Song, Kyeongse; Agyeman, Daniel Adjei; Park, Mihui; Yang, Junghoon; Kang, Yong-Mook

    2017-12-01

    The development of next-generation energy-storage devices with high power, high energy density, and safety is critical for the success of large-scale energy-storage systems (ESSs), such as electric vehicles. Rechargeable sodium-oxygen (Na-O 2 ) batteries offer a new and promising opportunity for low-cost, high-energy-density, and relatively efficient electrochemical systems. Although the specific energy density of the Na-O 2 battery is lower than that of the lithium-oxygen (Li-O 2 ) battery, the abundance and low cost of sodium resources offer major advantages for its practical application in the near future. However, little has so far been reported regarding the cell chemistry, to explain the rate-limiting parameters and the corresponding low round-trip efficiency and cycle degradation. Consequently, an elucidation of the reaction mechanism is needed for both lithium-oxygen and sodium-oxygen cells. An in-depth understanding of the differences and similarities between Li-O 2 and Na-O 2 battery systems, in terms of thermodynamics and a structural viewpoint, will be meaningful to promote the development of advanced metal-oxygen batteries. State-of-the-art battery design principles for high-energy-density lithium-oxygen and sodium-oxygen batteries are thus reviewed in depth here. Major drawbacks, reaction mechanisms, and recent strategies to improve performance are also summarized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A Step-by-Step Design Methodology for a Base Case Vanadium Redox-Flow Battery

    ERIC Educational Resources Information Center

    Moore, Mark; Counce, Robert M.; Watson, Jack S.; Zawodzinski, Thomas A.; Kamath, Haresh

    2012-01-01

    The purpose of this work is to develop an evolutionary procedure to be used by Chemical Engineering students for the base-case design of a Vanadium Redox-Flow Battery. The design methodology is based on the work of Douglas (1985) and provides a profitability analysis at each decision level so that more profitable alternatives and directions can be…

  2. Evaluation of some heavy metals residues in batteries and deep litter rearing systems in Japanese quail meat and offal in Egypt

    PubMed Central

    Ahmed, Ali M.; Hamed, Dalia M.; Elsharawy, Nagwa T.

    2017-01-01

    Aim: The main objectives of this study were for comparing the effect of batteries and deep litter rearing systems of domesticated Japanese quail, Coturnix coturnix japonica, on the concentration levels of cadmium, copper, lead, and zinc from the quail meat and offal in Ismailia, Egypt. Materials and Methods: A total of 40 quail meat and their offal samples were randomly collected from two main quail rearing systems: Battery (Group I) and deep litter system (Group II) for determination of concentration levels of cadmium, copper, lead, and zinc. In addition, 80 water and feed samples were randomly collected from water and feeders of both systems in the Food Hygiene Laboratory, Faculty of Veterinary Medicine, Suez Canal University for heavy metals determination. Results: The mean concentration levels of cadmium, copper, lead, and zinc in Group I were 0.010, 0.027, 1.137, and 0.516 ppm and for Group II were 0.093, 0.832, 0.601, and 1.651 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc in quail feed in Group I were 1.114, 1.606, 5.822, and 35.11 ppm and for Group II were 3.010, 2.576, 5.852, and 23.616 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc in quail meat for Group I were 0.058, 5.902, 10.244, and 290 ppm and for Group II were 0.086, 6.092, 0.136, and 1.280 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc for liver samples in Group I were 0.15, 8.32, 1.05, and 3.41 ppm and for Group II were 0.13, 8.88, 0.95, and 4.21 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc in kidney samples for the Group I were 0.24, 4.21, 1.96, and 4.03 ppm and for Group II were 0.20, 5.00, 1.56, and 3.78 ppm, respectively. Kidney had the highest concentration levels of heavy metals followed by liver then muscles. The highest concentration levels of copper were observed in liver samples. The order of the levels of these trace elements obtained

  3. Evaluation of some heavy metals residues in batteries and deep litter rearing systems in Japanese quail meat and offal in Egypt.

    PubMed

    Ahmed, Ali M; Hamed, Dalia M; Elsharawy, Nagwa T

    2017-02-01

    The main objectives of this study were for comparing the effect of batteries and deep litter rearing systems of domesticated Japanese quail, Coturnix coturnix japonica , on the concentration levels of cadmium, copper, lead, and zinc from the quail meat and offal in Ismailia, Egypt. A total of 40 quail meat and their offal samples were randomly collected from two main quail rearing systems: Battery (Group I) and deep litter system (Group II) for determination of concentration levels of cadmium, copper, lead, and zinc. In addition, 80 water and feed samples were randomly collected from water and feeders of both systems in the Food Hygiene Laboratory, Faculty of Veterinary Medicine, Suez Canal University for heavy metals determination. The mean concentration levels of cadmium, copper, lead, and zinc in Group I were 0.010, 0.027, 1.137, and 0.516 ppm and for Group II were 0.093, 0.832, 0.601, and 1.651 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc in quail feed in Group I were 1.114, 1.606, 5.822, and 35.11 ppm and for Group II were 3.010, 2.576, 5.852, and 23.616 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc in quail meat for Group I were 0.058, 5.902, 10.244, and 290 ppm and for Group II were 0.086, 6.092, 0.136, and 1.280 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc for liver samples in Group I were 0.15, 8.32, 1.05, and 3.41 ppm and for Group II were 0.13, 8.88, 0.95, and 4.21 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc in kidney samples for the Group I were 0.24, 4.21, 1.96, and 4.03 ppm and for Group II were 0.20, 5.00, 1.56, and 3.78 ppm, respectively. Kidney had the highest concentration levels of heavy metals followed by liver then muscles. The highest concentration levels of copper were observed in liver samples. The order of the levels of these trace elements obtained from the four different quail organs

  4. Simulation-based design of energy management system with storage battery for a refugee shelter in Japan

    NASA Astrophysics Data System (ADS)

    Kaji, K.; Zhang, J.; Horie, H.; Akimoto, H.; Tanaka, K.

    2013-12-01

    Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugees with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery.

  5. Battery Technology Stores Clean Energy

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Headquartered in Fremont, California, Deeya Energy Inc. is now bringing its flow batteries to commercial customers around the world after working with former Marshall Space Flight Center scientist, Lawrence Thaller. Deeya's liquid-cell batteries have higher power capability than Thaller's original design, are less expensive than lead-acid batteries, are a clean energy alternative, and are 10 to 20 times less expensive than nickel-metal hydride batteries, lithium-ion batteries, and fuel cell options.

  6. Intelligent automotive battery systems

    NASA Astrophysics Data System (ADS)

    Witehira, P.

    A single power-supply battery is incompatible with modern vehicles. A one-cmbination 12 cell/12 V battery, developed by Power Beat International Limited (PBIL), is described. The battery is designed to be a 'drop in' replacement for existing batteries. The cell structures, however, are designed according to load function, i.e., high-current shallow-discharge cycles and low-current deep-discharge cycles. The preferred energy discharge management logic and integration into the power distribution network of the vehicle to provide safe user-friendly usage is described. The system is designed to operate transparent to the vehicle user. The integrity of the volatile high-current cells is maintained by temperature-sensitive voltage control and discharge management. The deep-cycle cells can be fully utilized without affecting startability under extreme conditions. Electric energy management synchronization with engine starting will provide at least 6% overall reduction in hydrocarbon emissions using an intelligent on-board power-supply technology developed by PBIL.

  7. International Space Station Lithium-Ion Battery

    NASA Technical Reports Server (NTRS)

    Dalton, Penni J.; Schwanbeck, Eugene; North, Tim; Balcer, Sonia

    2016-01-01

    The International Space Station (ISS) primary Electric Power System (EPS) currently uses Nickel-Hydrogen (Ni-H2) batteries to store electrical energy. The electricity for the space station is generated by its solar arrays, which charge batteries during insolation for subsequent discharge during eclipse. The Ni-H2 batteries are designed to operate at a 35 depth of discharge (DOD) maximum during normal operation in a Low Earth Orbit. Since the oldest of the 48 Ni-H2 battery Orbital Replacement Units (ORUs) has been cycling since September 2006, these batteries are now approaching their end of useful life. In 2010, the ISS Program began the development of Lithium-Ion (Li-Ion) batteries to replace the Ni-H2 batteries and concurrently funded a Li-Ion ORU and cell life testing project. When deployed, they will be the largest Li-Ion batteries ever utilized for a human-rated spacecraft. This paper will include an overview of the ISS Li-Ion battery system architecture, the Li-Ion battery design and development, controls to limit potential hazards from the batteries, and the status of the Li-Ion cell and ORU life cycle testing.

  8. Theoretical performance of hydrogen-bromine rechargeable SPE fuel cell. [Solid Polymer Electrolyte

    NASA Technical Reports Server (NTRS)

    Savinell, R. F.; Fritts, S. D.

    1988-01-01

    A mathematical model was formulated to describe the performance of a hydrogen-bromine fuel cell. Porous electrode theory was applied to the carbon felt flow-by electrode and was coupled to theory describing the solid polymer electrolyte (SPE) system. Parametric studies using the numerical solution to this model were performed to determine the effect of kinetic, mass transfer, and design parameters on the performance of the fuel cell. The results indicate that the cell performance is most sensitive to the transport properties of the SPE membrane. The model was also shown to be a useful tool for scale-up studies.

  9. Active Salt/Silica-Templated 2D Mesoporous FeCo-Nx -Carbon as Bifunctional Oxygen Electrodes for Zinc-Air Batteries.

    PubMed

    Li, Shuang; Cheng, Chong; Zhao, Xiaojia; Schmidt, Johannes; Thomas, Arne

    2018-02-12

    Two types of templates, an active metal salt and silica nanoparticles, are used concurrently to achieve the facile synthesis of hierarchical meso/microporous FeCo-N x -carbon nanosheets (meso/micro-FeCo-N x -CN) with highly dispersed metal sites. The resulting meso/micro-FeCo-N x -CN shows high and reversible oxygen electrocatalytic performances for both ORR and OER, thus having potential for applications in rechargeable Zn-air battery. Our approach creates a new pathway to fabricate 2D meso/microporous structured carbon architectures for bifunctional oxygen electrodes in rechargeable Zn-air battery as well as opens avenues to the scale-up production of rationally designed heteroatom-doped catalytic materials for a broad range of applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Commercial aerospace and terrestrial applications of nickel-hydrogen batteries

    NASA Astrophysics Data System (ADS)

    Caldwell, Dwight B.; Coates, Dwaine K.; Fox, Chris L.; Miller, Lee E.

    1996-03-01

    The nickel-hydrogen battery system, used extensively in the aerospace industry to supply electrical power to earth-orbital satellites for communications, observation, and military applications, is being developed for commercial, terrestrial applications. Low-cost components, electrodes, cell designs, and battery designs are currently being tested. Catalytic hydrogen electrodes have been developed which are compatible with commercial nickel battery cost. Prismatic and spiral-wound cell designs have been built and tested. Common pressure vessel and dependent pressure vessel battery designs are also being evaluated. The nickel-hydrogen battery offers potential cycle life unequaled by any other battery system. This makes the battery ideal for many commercial and terrestrial energy storage applications such as telecommunication, remote stand-alone power systems, utility load-leveling, and other applications which require long life and a truly maintenance-free and abuse-tolerant battery system.

  11. WEEE and portable batteries in residual household waste: Quantification and characterisation of misplaced waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bigum, Marianne, E-mail: mkkb@env.dtu.dk; Petersen, Claus, E-mail: claus_petersen@econet.dk; Christensen, Thomas H., E-mail: thho@env.dtu.dk

    2013-11-15

    Highlights: • We analyse 26.1 Mg of residual waste from 3129 Danish households. • We quantify and characterise misplaced WEEE and portable batteries. • We compare misplaced WEEE and batteries to collection through dedicated schemes. • Characterisation showed that primarily small WEEE and light sources are misplaced. • Significant amounts of misplaced batteries were discarded as built-in WEEE. - Abstract: A total of 26.1 Mg of residual waste from 3129 households in 12 Danish municipalities was analysed and revealed that 89.6 kg of Waste Electrical and Electronic Equipment (WEEE), 11 kg of batteries, 2.2 kg of toners and 16 kgmore » of cables had been wrongfully discarded. This corresponds to a Danish household discarding 29 g of WEEE (7 items per year), 4 g of batteries (9 batteries per year), 1 g of toners and 7 g of unidentifiable cables on average per week, constituting 0.34% (w/w), 0.04% (w/w), 0.01% (w/w) and 0.09% (w/w), respectively, of residual waste. The study also found that misplaced WEEE and batteries in the residual waste constituted 16% and 39%, respectively, of what is being collected properly through the dedicated special waste collection schemes. This shows that a large amount of batteries are being discarded with the residual waste, whereas WEEE seems to be collected relatively successfully through the dedicated special waste collection schemes. Characterisation of the misplaced batteries showed that 20% (w/w) of the discarded batteries were discarded as part of WEEE (built-in). Primarily alkaline batteries, carbon zinc batteries and alkaline button cell batteries were found to be discarded with the residual household waste. Characterisation of WEEE showed that primarily small WEEE (WEEE directive categories 2, 5a, 6, 7 and 9) and light sources (WEEE directive category 5b) were misplaced. Electric tooth brushes, watches, clocks, headphones, flashlights, bicycle lights, and cables were items most frequently found. It is recommended that

  12. Anti-Inflammatory Activity and Structure-Activity Relationships of Brominated Indoles from a Marine Mollusc

    PubMed Central

    Ahmad, Tarek B.; Rudd, David; Smith, Joshua; Kotiw, Michael; Mouatt, Peter; Seymour, Lisa M.; Liu, Lei; Benkendorff, Kirsten

    2017-01-01

    Marine molluscs are rich in biologically active natural products that provide new potential sources of anti-inflammatory agents. Here we used bioassay guided fractionation of extracts from the muricid Dicathais orbita to identify brominated indoles with anti-inflammatory activity, based on the inhibition of nitric oxide (NO) and tumour necrosis factor α (TNFα) in lipopolysaccharide (LPS) stimulated RAW264.7 macrophages and prostaglandin E2 (PGE2) in calcium ionophore-stimulated 3T3 ccl-92 fibroblasts. Muricid brominated indoles were then compared to a range of synthetic indoles to determine structure-activity relationships. Both hypobranchial gland and egg extracts inhibited the production of NO significantly with IC50 of 30.8 and 40 μg/mL, respectively. The hypobranchial gland extract also inhibited the production of TNFα and PGE2 with IC50 of 43.03 µg/mL and 34.24 µg/mL, respectively. The purified mono-brominated indole and isatin compounds showed significant inhibitory activity against NO, TNFα, and PGE2, and were more active than dimer indoles and non-brominated isatin. The position of the bromine atom on the isatin benzene ring significantly affected the activity, with 5Br > 6Br > 7Br. The mode of action for the active hypobranchial gland extract, 6-bromoindole, and 6-bromoisatin was further tested by the assessment of the translocation of nuclear factor kappa B (NFκB) in LPS-stimulated RAW264.7 mouse macrophage. The extract (40 µg/mL) significantly inhibited the translocation of NFκB in the LPS-stimulated RAW264.7 macrophages by 48.2%, whereas 40 µg/mL of 6-bromoindole and 6-bromoistain caused a 60.7% and 63.7% reduction in NFκB, respectively. These results identify simple brominated indoles as useful anti-inflammatory drug leads and support the development of extracts from the Australian muricid D. orbita, as a new potential natural remedy for the treatment of inflammation. PMID:28481239

  13. Pulse radiolysis studies of the reactions of bromine atoms and dimethyl sulfoxide bromine atom complexes with alcohols

    NASA Astrophysics Data System (ADS)

    Sumiyoshi, Takashi; Fujiyoshi, Ryoko; Katagiri, Miho; Sawamura, Sadashi

    2007-05-01

    Dimethylsulfoxide (DMSO)-Br complexes were generated by pulse radiolysis of DMSO/bromomethane mixtures and the formation mechanism and spectral characteristics of the formed complexes were investigated in detail. The rate constant for the reaction of bromine atoms with DMSO and the extinction coefficient of the complex were obtained to be 4.6×10 9 M -1 s -1 and 6300 M -1 cm -1 at the absorption maximum of 430 nm. Rate constants for the reaction of bromine atoms with a series of alcohols were determined in CBrCl 3 solutions applying a competitive kinetic method using the DMSO-Br complex as the reference system. The obtained rate constants were ˜10 8 M -1 s -1, one or two orders larger than those reported for highly polar solvents. Rate constants of DMSO-Br complexes with alcohols were determined to be ˜ 10 7 M -1 s -1. A comparison of the reactivities of Br atoms and DMSO-Br complexes with those of chlorine atoms and chlorine atom complexes which are ascribed to hydrogen abstracting reactants strongly indicates that hydrogen abstraction from alcohols is not the rate determining step in the case of Br atoms and DMSO-Br complexes.

  14. Hydroxylated polybrominated diphenyl ethers exhibit different activities on thyroid hormone receptors depending on their degree of bromination.

    PubMed

    Ren, Xiao-Min; Guo, Liang-Hong; Gao, Yu; Zhang, Bin-Tian; Wan, Bin

    2013-05-01

    Polybrominated diphenyl ethers (PBDEs) have been shown to disrupt thyroid hormone (TH) functions in experimental animals, and one of the proposed disruption mechanisms is direct binding of hydroxylated PBDE (OH-PBDE) to TH receptors (TRs). However, previous data on TH receptor binding and TH activity of OH-PBDEs were very limited and sometimes inconsistent. In the present paper, we examined the binding potency of ten OH-PBDEs with different degrees of bromination to TR using a fluorescence competitive binding assay. The results showed that the ten OH-PBDEs bound to TR with potency that correlated to their bromination level. We further examined their effect on TR using a coactivator binding assay and GH3 cell proliferation assay. Different TR activities of OH-PBDEs were observed depending on their degree of bromination. Four low-brominated OH-PBDEs (2'-OH-BDE-28, 3'-OH-BDE-28, 5-OH-BDE-47, 6-OH-BDE-47) were found to be TR agonists, which recruited the coactivator peptide and enhanced GH3 cell proliferation. However, three high-brominated OH-PBDEs (3-OH-BDE-100, 3'-OH-BDE-154, 4-OH-BDE-188) were tested to be antagonists. Molecular docking was employed to simulate the interactions of OH-PBDEs with TR and identify the structural determinants for TR binding and activity. According to the docking results, low-brominated OH-PBDEs, which are weak binders but TR agonists, bind with TR at the inner side of its binding pocket, whereas high-brominated compounds, which are potent binders but TR antagonists, reside at the outer region. These results indicate that OH-PBDEs have different activities on TR (agonistic or antagonistic), possibly due to their different binding geometries with the receptor. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Distribution of copper, silver and gold during thermal treatment with brominated flame retardants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oleszek, Sylwia, E-mail: sylwia_oleszek@yahoo.com; Institute of Environmental Engineering of the Polish Academy of Sciences, 34 M. Sklodowska-Curie St., 41-819 Zabrze; Grabda, Mariusz, E-mail: mariusz@mail.tagen.tohoku.ac.jp

    2013-09-15

    Highlights: • Copper, silver and gold during thermal treatment with brominated flame retardants. • Distribution of copper, silver and gold during thermal processing. • Thermodynamic considerations of the bromination reactions. - Abstract: The growing consumption of electric and electronic equipment results in creating an increasing amount of electronic waste. The most economically and environmentally advantageous methods for the treatment and recycling of waste electric and electronic equipment (WEEE) are the thermal techniques such as direct combustion, co-combustion with plastic wastes, pyrolysis and gasification. Nowadays, this kind of waste is mainly thermally treated in incinerators (e.g. rotary kilns) to decompose themore » plastics present, and to concentrate metals in bottom ash. The concentrated metals (e.g. copper, precious metals) can be supplied as a secondary raw material to metal smelters, while the pyrolysis of plastics allows the recovery of fuel gases, volatilising agents and, eventually, energy. Indeed, WEEE, such as a printed circuit boards (PCBs) usually contains brominated flame retardants (BFRs). From these materials, hydrobromic acid (HBr) is formed as a product of their thermal decomposition. In the present work, the bromination was studied of copper, silver and gold by HBr, originating from BFRs, such as Tetrabromobisphenol A (TBBPA) and Tetrabromobisphenol A-Tetrabromobisophenol A diglycidyl ether (TTDE) polymer; possible volatilization of the bromides formed was monitored using a thermo-gravimetric analyzer (TGA) and a laboratory-scale furnace for treating samples of metals and BFRs under an inert atmosphere and at a wide range of temperatures. The results obtained indicate that up to about 50% of copper and silver can evolve from sample residues in the form of volatile CuBr and AgBr above 600 and 1000 °C, respectively. The reactions occur in the molten resin phase simultaneously with the decomposition of the brominated resin

  16. Electrophilic aromatic substitution of catechins: Bromination and benzylation

    Treesearch

    G.W. McGraw; Richard W. Hemingway

    1982-01-01

    Relative yields of C-6, C-8. and C-6 and C-8 substituted catechins obtained from the reaction of (+)-catechin or 3',4',5-7-tetra-O-methyl-(+)-catechin with pyridinium hydrobromide-perbromide, bromine, p-hydroxybenzyl alcohol, or o-hydroxybenzyl alcohol showed differing selectivities depending upon the...

  17. Design and Comparative Study of O3/P2 Hybrid Structures for Room Temperature Sodium-Ion Batteries.

    PubMed

    Qi, Xingguo; Liu, Lilu; Song, Ningning; Gao, Fei; Yang, Kai; Lu, Yaxiang; Yang, Haitao; Hu, Yong-Sheng; Cheng, Zhao-Hua; Chen, Liquan

    2017-11-22

    Rechargeable sodium-ion batteries have drawn increasing attention as candidates for the post lithium-ion batteries in large-scale energy storage systems. Layered oxides are the most promising cathode materials and their pure phases (e.g., P2, O3) have been widely investigated. Here we report a series of cathode materials with O3/P2 hybrid phase for sodium-ion batteries, which possesses advantages of both P2 and O3 structures. The designed material, Na 0.78 Ni 0.2 Fe 0.38 Mn 0.42 O 2 , can deliver a capacity of 86 mAh g -1 with great rate capability and cycling performance. 66% capacity is still maintained when the current rate reaches as high as 10C, and the capacity retention is 90% after 1500 cycles. Moreover, in situ XRD was performed to examine the structure change during electrochemical testing in different voltage ranges, and the results demonstrate 4 V as the optimized upper voltage limit, with which smaller polarization, better structural stability, and better cycling performance are achieved. The results obtained here provide new insights in designing cathode materials with optimal structure and improved performance for sodium-ion batteries.

  18. Sealed nickel cadmium batteries

    NASA Astrophysics Data System (ADS)

    Raudszus, W.; Kiehne, H. A.; Cloke, F. R.

    1982-10-01

    The design, manufacture, and application of maintenance-free sealed NiCd batteries are surveyed. The principles of electrochemical power supplies and the history of the development of NiCd cells are reviewed. The batteries produced by Varta Batterie AG are presented; topics discussed include design parameters, electrical and physical characteristics, performance under adverse conditions, type range, production, and quality control. Application techniques, including cell-type choice, charging units and charging circuits, and the construction of standby power supplies, are considered, with reference to national and international standards of performance and classification. No individual items are abstracted in this volume

  19. Design and Development of a Composite Battery Box for Corrosion Control for Marine Corps Vehicles

    DTIC Science & Technology

    1989-11-01

    available from Owens - Corning Fiberglas Corporation and is designated as ECDE 751/0. DESIGN OF COMPOSITE BATTERY BOX After the material system and...fiberglass used was 2.57 g/cc, according to the manufacturer ( Owens - Corning Fiberglas Corp.)." The value used for the matrix density was 1.21. The

  20. Mitigating mechanical failure of crystalline silicon electrodes for lithium batteries by morphological design [Morphological design of silicon electrode with anisotropic interface reaction rate for lithium ion batteries

    DOE PAGES

    An, Yonghao; Wood, Brandon C.; Ye, Jianchao; ...

    2015-06-08

    Although crystalline silicon (c-Si) anodes promise very high energy densities in Li-ion batteries, their practical use is complicated by amorphization, large volume expansion and severe plastic deformation upon lithium insertion. Recent experiments have revealed the existence of a sharp interface between crystalline Si (c-Si) and the amorphous Li xSi alloy during lithiation, which propagates with a velocity that is orientation dependent; the resulting anisotropic swelling generates substantial strain concentrations that initiate cracks even in nanostructured Si. Here we describe a novel strategy to mitigate lithiation-induced fracture by using pristine c-Si structures with engineered anisometric morphologies that are deliberately designed tomore » counteract the anisotropy in the crystalline/amorphous interface velocity. This produces a much more uniform volume expansion, significantly reducing strain concentration. Based on a new, validated methodology that improves previous models of anisotropic swelling of c-Si, we propose optimal morphological designs for c-Si pillars and particles. The advantages of the new morphologies are clearly demonstrated by mesoscale simulations and verified by experiments on engineered c-Si micropillars. The results of this study illustrate that morphological design is effective in improving the fracture resistance of micron-sized Si electrodes, which will facilitate their practical application in next-generation Li-ion batteries. In conclusion, the model and design approach present in this paper also have general implications for the study and mitigation of mechanical failure of electrode materials that undergo large anisotropic volume change upon ion insertion and extraction.« less