Science.gov

Sample records for zinc-finger antiviral protein

  1. TRIM25 Enhances the Antiviral Action of Zinc-Finger Antiviral Protein (ZAP)

    PubMed Central

    Lau, Zerlina; Cheung, Pamela; Schneider, William M.; Bozzacco, Leonia; Buehler, Eugen; Takaoka, Akinori; Rice, Charles M.; Felsenfeld, Dan P.; MacDonald, Margaret R.

    2017-01-01

    The host factor and interferon (IFN)-stimulated gene (ISG) product, zinc-finger antiviral protein (ZAP), inhibits a number of diverse viruses by usurping and intersecting with multiple cellular pathways. To elucidate its antiviral mechanism, we perform a loss-of-function genome-wide RNAi screen to identify cellular cofactors required for ZAP antiviral activity against the prototype alphavirus, Sindbis virus (SINV). In order to exclude off-target effects, we carry out stringent confirmatory assays to verify the top hits. Important ZAP-liaising partners identified include proteins involved in membrane ion permeability, type I IFN signaling, and post-translational protein modification. The factor contributing most to the antiviral function of ZAP is TRIM25, an E3 ubiquitin and ISG15 ligase. We demonstrate here that TRIM25 interacts with ZAP through the SPRY domain, and TRIM25 mutants lacking the RING or coiled coil domain fail to stimulate ZAP’s antiviral activity, suggesting that both TRIM25 ligase activity and its ability to form oligomers are critical for its cofactor function. TRIM25 increases the modification of both the short and long ZAP isoforms by K48- and K63-linked polyubiquitin, although ubiquitination of ZAP does not directly affect its antiviral activity. However, TRIM25 is critical for ZAP’s ability to inhibit translation of the incoming SINV genome. Taken together, these data uncover TRIM25 as a bona fide ZAP cofactor that leads to increased ZAP modification enhancing its translational inhibition activity. PMID:28060952

  2. TRIM25 Enhances the Antiviral Action of Zinc-Finger Antiviral Protein (ZAP).

    PubMed

    Li, Melody M H; Lau, Zerlina; Cheung, Pamela; Aguilar, Eduardo G; Schneider, William M; Bozzacco, Leonia; Molina, Henrik; Buehler, Eugen; Takaoka, Akinori; Rice, Charles M; Felsenfeld, Dan P; MacDonald, Margaret R

    2017-01-01

    The host factor and interferon (IFN)-stimulated gene (ISG) product, zinc-finger antiviral protein (ZAP), inhibits a number of diverse viruses by usurping and intersecting with multiple cellular pathways. To elucidate its antiviral mechanism, we perform a loss-of-function genome-wide RNAi screen to identify cellular cofactors required for ZAP antiviral activity against the prototype alphavirus, Sindbis virus (SINV). In order to exclude off-target effects, we carry out stringent confirmatory assays to verify the top hits. Important ZAP-liaising partners identified include proteins involved in membrane ion permeability, type I IFN signaling, and post-translational protein modification. The factor contributing most to the antiviral function of ZAP is TRIM25, an E3 ubiquitin and ISG15 ligase. We demonstrate here that TRIM25 interacts with ZAP through the SPRY domain, and TRIM25 mutants lacking the RING or coiled coil domain fail to stimulate ZAP's antiviral activity, suggesting that both TRIM25 ligase activity and its ability to form oligomers are critical for its cofactor function. TRIM25 increases the modification of both the short and long ZAP isoforms by K48- and K63-linked polyubiquitin, although ubiquitination of ZAP does not directly affect its antiviral activity. However, TRIM25 is critical for ZAP's ability to inhibit translation of the incoming SINV genome. Taken together, these data uncover TRIM25 as a bona fide ZAP cofactor that leads to increased ZAP modification enhancing its translational inhibition activity.

  3. TRIM25 Is Required for the Antiviral Activity of Zinc Finger Antiviral Protein

    PubMed Central

    Zheng, Xiaojiao; Wang, Xinlu; Tu, Fan; Wang, Qin; Fan, Zusen

    2017-01-01

    ABSTRACT Zinc finger antiviral protein (ZAP) is a host factor that specifically inhibits the replication of certain viruses by binding to viral mRNAs and repressing the translation and/or promoting the degradation of target mRNA. In addition, ZAP regulates the expression of certain cellular genes. Here, we report that tripartite motif-containing protein 25 (TRIM25), a ubiquitin E3 ligase, is required for the antiviral activity of ZAP. Downregulation of endogenous TRIM25 abolished ZAP's antiviral activity. The E3 ligase activity of TRIM25 is required for this regulation. TRIM25 mediated ZAP ubiquitination, but the ubiquitination of ZAP itself did not seem to be required for its antiviral activity. Downregulation of endogenous ubiquitin or overexpression of the deubiquitinase OTUB1 impaired ZAP's activity. We provide evidence indicating that TRIM25 modulates the target RNA binding activity of ZAP. These results uncover a mechanism by which the antiviral activity of ZAP is regulated. IMPORTANCE ZAP is a host antiviral factor that specifically inhibits the replication of certain viruses, including HIV-1, Sindbis virus, and Ebola virus. ZAP binds directly to target mRNA, and it represses the translation and promotes the degradation of target mRNA. While the mechanisms by which ZAP posttranscriptionally inhibits target RNA expression have been extensively studied, how its antiviral activity is regulated is not very clear. Here, we report that TRIM25, a ubiquitin E3 ligase, is required for the antiviral activity of ZAP. Downregulation of endogenous TRIM25 remarkably abolished ZAP's activity. TRIM25 is required for ZAP optimal binding to target mRNA. These results help us to better understand how the antiviral activity of ZAP is regulated. PMID:28202764

  4. TRIM25 Is Required for the Antiviral Activity of Zinc Finger Antiviral Protein.

    PubMed

    Zheng, Xiaojiao; Wang, Xinlu; Tu, Fan; Wang, Qin; Fan, Zusen; Gao, Guangxia

    2017-05-01

    Zinc finger antiviral protein (ZAP) is a host factor that specifically inhibits the replication of certain viruses by binding to viral mRNAs and repressing the translation and/or promoting the degradation of target mRNA. In addition, ZAP regulates the expression of certain cellular genes. Here, we report that tripartite motif-containing protein 25 (TRIM25), a ubiquitin E3 ligase, is required for the antiviral activity of ZAP. Downregulation of endogenous TRIM25 abolished ZAP's antiviral activity. The E3 ligase activity of TRIM25 is required for this regulation. TRIM25 mediated ZAP ubiquitination, but the ubiquitination of ZAP itself did not seem to be required for its antiviral activity. Downregulation of endogenous ubiquitin or overexpression of the deubiquitinase OTUB1 impaired ZAP's activity. We provide evidence indicating that TRIM25 modulates the target RNA binding activity of ZAP. These results uncover a mechanism by which the antiviral activity of ZAP is regulated. IMPORTANCE ZAP is a host antiviral factor that specifically inhibits the replication of certain viruses, including HIV-1, Sindbis virus, and Ebola virus. ZAP binds directly to target mRNA, and it represses the translation and promotes the degradation of target mRNA. While the mechanisms by which ZAP posttranscriptionally inhibits target RNA expression have been extensively studied, how its antiviral activity is regulated is not very clear. Here, we report that TRIM25, a ubiquitin E3 ligase, is required for the antiviral activity of ZAP. Downregulation of endogenous TRIM25 remarkably abolished ZAP's activity. TRIM25 is required for ZAP optimal binding to target mRNA. These results help us to better understand how the antiviral activity of ZAP is regulated. Copyright © 2017 American Society for Microbiology.

  5. Inhibition of avian tumor virus replication by CCCH-type zinc finger antiviral protein

    PubMed Central

    Zhu, Mingjun; Ma, Xiaoqian; Cui, Xiyao; Zhou, Jing; Li, Chengui; Huang, Libo; Shang, Yingli; Cheng, Ziqiang

    2017-01-01

    CCCH type zinc finger antiviral protein (ZAP) is a host restriction factor that inhibits the replication of a variety of viruses in mammals. However, little is known about its antiviral activity on avian tumor virus. Avian leukosis virus subgroup J (ALV-J), an oncogenic retrovirus, induces myelocytomas and various other tumors in meat and egg type chickens. Here, we identified a chicken ZAP (chZAP) that increased at early stage, and subsequently decreased after infection of ALV-J in DF-1 cells, indicating the inducible feature of the endogenous chZAP. To demonstrate the inhibitory effect on ALV-J replication by chZAP, we expressed exogenous chZAP by lentivirus based vectors in DF-1 cells that infected by ALV-J. The result showed that overexpression of chZAP significantly inhibited ALV-J replication at both mRNA level and protein level. Consequently, knockdown of endogenous chZAP by RNAi facilitated ALV-J replication in DF-1 cells. Further, we demonstrated that chZAP interacts with SU protein (encode by gp85 gene) of ALV-J in cytoplasm. Taken together, our results demonstrated that chZAP inhibits ALV-J by both mRNA and protein pathway and it may shed light on a novel antiviral approach in poultry. PMID:28938603

  6. Role of zinc-finger anti-viral protein in host defense against Sindbis virus

    PubMed Central

    Kozaki, Tatsuya; Takahama, Michihiro; Misawa, Takuma; Matsuura, Yoshiharu; Saitoh, Tatsuya

    2015-01-01

    Accumulating evidence indicates that type I interferon (IFN) mediates the host protective response to RNA viruses. However, the anti-viral effector molecules involved in this response have not been fully identified. Here, we show that zinc-finger anti-viral protein (ZAP), an IFN-inducible gene, plays a critical role in the elimination of Sindbis virus (SINV) in vitro and in vivo. The loss of ZAP greatly enhances the replication of SINV but does not inhibit type I IFN production in primary mouse embryonic fibroblasts (MEFs). ZAP binds and destabilizes SINV RNA, thereby suppressing the replication of SINV. Type I IFN fails to suppress SINV replication in ZAP-deficient MEFs, whereas the ectopic expression of ZAP is sufficient to suppress the replication of SINV in MEFs lacking the expression of type I IFN and the IFN-inducible genes. ZAP-deficient mice are highly susceptible to SINV infection, although they produce sufficient amounts of type I IFN. Therefore, ZAP is an RNA-sensing anti-viral effector molecule that mediates the type-I-IFN-dependent host defense against SINV. PMID:25758257

  7. The Zinc-Finger Antiviral Protein ZAP Inhibits LINE and Alu Retrotransposition

    PubMed Central

    Moldovan, John B.; Moran, John V.

    2015-01-01

    Long INterspersed Element-1 (LINE-1 or L1) is the only active autonomous retrotransposon in the human genome. To investigate the interplay between the L1 retrotransposition machinery and the host cell, we used co-immunoprecipitation in conjunction with liquid chromatography and tandem mass spectrometry to identify cellular proteins that interact with the L1 first open reading frame-encoded protein, ORF1p. We identified 39 ORF1p-interacting candidate proteins including the zinc-finger antiviral protein (ZAP or ZC3HAV1). Here we show that the interaction between ZAP and ORF1p requires RNA and that ZAP overexpression in HeLa cells inhibits the retrotransposition of engineered human L1 and Alu elements, an engineered mouse L1, and an engineered zebrafish LINE-2 element. Consistently, siRNA-mediated depletion of endogenous ZAP in HeLa cells led to a ~2-fold increase in human L1 retrotransposition. Fluorescence microscopy in cultured human cells demonstrated that ZAP co-localizes with L1 RNA, ORF1p, and stress granule associated proteins in cytoplasmic foci. Finally, molecular genetic and biochemical analyses indicate that ZAP reduces the accumulation of full-length L1 RNA and the L1-encoded proteins, yielding mechanistic insight about how ZAP may inhibit L1 retrotransposition. Together, these data suggest that ZAP inhibits the retrotransposition of LINE and Alu elements. PMID:25951186

  8. Zinc finger proteins in cancer progression.

    PubMed

    Jen, Jayu; Wang, Yi-Ching

    2016-07-13

    Zinc finger proteins are the largest transcription factor family in human genome. The diverse combinations and functions of zinc finger motifs make zinc finger proteins versatile in biological processes, including development, differentiation, metabolism and autophagy. Over the last few decades, increasing evidence reveals the potential roles of zinc finger proteins in cancer progression. However, the underlying mechanisms of zinc finger proteins in cancer progression vary in different cancer types and even in the same cancer type under different types of stress. Here, we discuss general mechanisms of zinc finger proteins in transcription regulation and summarize recent studies on zinc finger proteins in cancer progression. In this review, we also emphasize the importance of further investigations in elucidating the underlying mechanisms of zinc finger proteins in cancer progression.

  9. Structural basis for lack of ADP-ribosyltransferase activity in poly(ADP-ribose) polymerase-13/zinc finger antiviral protein.

    PubMed

    Karlberg, Tobias; Klepsch, Mirjam; Thorsell, Ann-Gerd; Andersson, C David; Linusson, Anna; Schüler, Herwig

    2015-03-20

    The mammalian poly(ADP-ribose) polymerase (PARP) family includes ADP-ribosyltransferases with diphtheria toxin homology (ARTD). Most members have mono-ADP-ribosyltransferase activity. PARP13/ARTD13, also called zinc finger antiviral protein, has roles in viral immunity and microRNA-mediated stress responses. PARP13 features a divergent PARP homology domain missing a PARP consensus sequence motif; the domain has enigmatic functions and apparently lacks catalytic activity. We used x-ray crystallography, molecular dynamics simulations, and biochemical analyses to investigate the structural requirements for ADP-ribosyltransferase activity in human PARP13 and two of its functional partners in stress granules: PARP12/ARTD12, and PARP15/BAL3/ARTD7. The crystal structure of the PARP homology domain of PARP13 shows obstruction of the canonical active site, precluding NAD(+) binding. Molecular dynamics simulations indicate that this closed cleft conformation is maintained in solution. Introducing consensus side chains in PARP13 did not result in 3-aminobenzamide binding, but in further closure of the site. Three-dimensional alignment of the PARP homology domains of PARP13, PARP12, and PARP15 illustrates placement of PARP13 residues that deviate from the PARP family consensus. Introducing either one of two of these side chains into the corresponding positions in PARP15 abolished PARP15 ADP-ribosyltransferase activity. Taken together, our results show that PARP13 lacks the structural requirements for ADP-ribosyltransferase activity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. The Short Form of the Zinc Finger Antiviral Protein Inhibits Influenza A Virus Protein Expression and Is Antagonized by the Virus-Encoded NS1.

    PubMed

    Tang, Qiannan; Wang, Xinlu; Gao, Guangxia

    2017-01-15

    Zinc finger antiviral protein (ZAP) is a host factor that specifically inhibits the replication of certain viruses. There are two ZAP isoforms arising from alternative splicing, which differ only at the C termini. It was recently reported that the long isoform (ZAPL) promotes proteasomal degradation of influenza A virus (IAV) proteins PA and PB2 through the C-terminal poly(ADP-ribose) polymerase (PARP) domain, which is missing in the short form (ZAPS), and that this antiviral activity is antagonized by the viral protein PB1. Here, we report that ZAP inhibits IAV protein expression in a PARP domain-independent manner. Overexpression of ZAPS inhibited the expression of PA, PB2, and neuraminidase (NA), and downregulation of the endogenous ZAPS enhanced their expression. We show that ZAPS inhibited PB2 protein expression by reducing the encoding viral mRNA levels and repressing its translation. However, downregulation of ZAPS only modestly enhanced the early stage of viral replication. We provide evidence showing that the antiviral activity of ZAPS is antagonized by the viral protein NS1. A recombinant IAV carrying an NS1 mutant that lost the ZAPS-antagonizing activity replicated better in ZAPS-deficient cells. We further provide evidence suggesting that NS1 antagonizes ZAPS by inhibiting its binding to target mRNA. These results uncover a distinct mechanism underlying the interactions between ZAP and IAV. ZAP is a host antiviral factor that has been extensively reported to inhibit the replication of certain viruses by repressing the translation and promoting the degradation of the viral mRNAs. There are two ZAP isoforms, ZAPL and ZAPS. ZAPL was recently reported to promote IAV protein degradation through the PARP domain. Whether ZAPS, which lacks the PARP domain, inhibits IAV and the underlying mechanisms remained to be determined. Here, we show that ZAPS posttranscriptionally inhibits IAV protein expression. This antiviral activity of ZAP is antagonized by the viral

  11. Selective Sensitization of Zinc Finger Protein Oxidation by Reactive Oxygen Species through Arsenic Binding*

    PubMed Central

    Zhou, Xixi; Cooper, Karen L.; Sun, Xi; Liu, Ke J.; Hudson, Laurie G.

    2015-01-01

    Cysteine oxidation induced by reactive oxygen species (ROS) on redox-sensitive targets such as zinc finger proteins plays a critical role in redox signaling and subsequent biological outcomes. We found that arsenic exposure led to oxidation of certain zinc finger proteins based on arsenic interaction with zinc finger motifs. Analysis of zinc finger proteins isolated from arsenic-exposed cells and zinc finger peptides by mass spectrometry demonstrated preferential oxidation of C3H1 and C4 zinc finger configurations. C2H2 zinc finger proteins that do not bind arsenic were not oxidized by arsenic-generated ROS in the cellular environment. The findings suggest that selectivity in arsenic binding to zinc fingers with three or more cysteines defines the target proteins for oxidation by ROS. This represents a novel mechanism of selective protein oxidation and demonstrates how an environmental factor may sensitize certain target proteins for oxidation, thus altering the oxidation profile and redox regulation. PMID:26063799

  12. Light-Inducible Gene Regulation with Engineered Zinc Finger Proteins

    PubMed Central

    Polstein, Lauren R.; Gersbach, Charles A.

    2014-01-01

    The coupling of light-inducible protein-protein interactions with gene regulation systems has enabled the control of gene expression with light. In particular, heterodimer protein pairs from plants can be used to engineer a gene regulation system in mammalian cells that is reversible, repeatable, tunable, controllable in a spatiotemporal manner, and targetable to any DNA sequence. This system, Light-Inducible Transcription using Engineered Zinc finger proteins (LITEZ), is based on the blue light-induced interaction of GIGANTEA and the LOV domain of FKF1 that drives the localization of a transcriptional activator to the DNA-binding site of a highly customizable engineered zinc finger protein. This chapter provides methods for modifying LITEZ to target new DNA sequences, engineering a programmable LED array to illuminate cell cultures, and using the modified LITEZ system to achieve spatiotemporal control of transgene expression in mammalian cells. PMID:24718797

  13. Effect of the linkers between the zinc fingers in zinc finger protein 809 on gene silencing and nuclear localization

    SciT

    Ichida, Yu, E-mail: ichida-y@ncchd.go.jp; Utsunomiya, Yuko; Onodera, Masafumi

    2016-03-18

    Zinc finger protein 809 (ZFP809) belongs to the Kruppel-associated box-containing zinc finger protein (KRAB-ZFP) family and functions in repressing the expression of Moloney murine leukemia virus (MoMLV). ZFP809 binds to the primer-binding site (PBS)located downstream of the MoMLV-long terminal repeat (LTR) and induces epigenetic modifications at integration sites, such as repressive histone modifications and de novo DNA methylation. KRAB-ZFPs contain consensus TGEKP linkers between C2H2 zinc fingers. The phosphorylation of threonine residues within linkers leads to the inactivation of zinc finger binding to target sequences. ZFP809 also contains consensus linkers between zinc fingers. However, the function of ZFP809 linkers remainsmore » unknown. In the present study, we constructed ZFP809 proteins containing mutated linkers and examined their ability to silence transgene expression driven by MLV, binding ability to MLV PBS, and cellular localization. The results of the present study revealed that the linkers affected the ability of ZFP809 to silence transgene expression. Furthermore, this effect could be partly attributed to changes in the localization of ZFP809 proteins containing mutated linkers. Further characterization of ZFP809 linkers is required for understanding the functions and features of KRAB-ZFP-containing linkers. - Highlights: • ZFP809 has three consensus linkers between the zinc fingers. • Linkers are required for ZFP809 to silence transgene expression driven by MLV-LTR. • Linkers affect the precise nuclear localization of ZFP809.« less

  14. Modular synthetic inverters from zinc finger proteins and small RNAs

    DOE PAGES

    Hsia, Justin; Holtz, William J.; Maharbiz, Michel M.; ...

    2016-02-17

    Synthetic zinc finger proteins (ZFPs) can be created to target promoter DNA sequences, repressing transcription. The binding of small RNA (sRNA) to ZFP mRNA creates an ultrasensitive response to generate higher effective Hill coefficients. Here we combined three “off the shelf” ZFPs and three sRNAs to create new modular inverters in E. coli and quantify their behavior using induction fold. We found a general ordering of the effects of the ZFPs and sRNAs on induction fold that mostly held true when combining these parts. We then attempted to construct a ring oscillator using our new inverters. In conclusion, our chosenmore » parts performed insufficiently to create oscillations, but we include future directions for improvement upon our work presented here.« less

  15. Selectivity of arsenite interaction with zinc finger proteins.

    PubMed

    Zhao, Linhong; Chen, Siming; Jia, Liangyuan; Shu, Shi; Zhu, Pingping; Liu, Yangzhong

    2012-08-01

    Arsenic is a carcinogenic element also used for the treatment of acute promyelocytic leukemia. The reactivity of proteins to arsenic must be associated with the various biological functions of As. Here, we investigated the selectivity of arsenite to zinc finger proteins (ZFPs) with different zinc binding motifs (C2H2, C3H, and C4). Single ZFP domain proteins were used for the direct comparison of the reactivity of different ZFPs. The binding constants and the reaction rates have been studied quantitatively. Results show that both the binding affinity and reaction rates of single-domain ZFPs follow the trend of C4 > C3H ≫ C2H2. Compared with the C2H2 motif ZFPs, the binding affinities of C3H and C4 motif ZFPs are nearly two orders of magnitude higher and the reaction rates are approximately two-fold higher. The formation of multi-domain ZFPs significantly enhances the reactivity of C2H2 type ZFPs, but has negligible effects on C3H and C4 ZFPs. Consequently, the reactivities of the three types of multi-domain ZFPs are rather similar. The 2D NMR spectra indicate that the As(III)-bound ZFPs are also unfolded, suggesting that arsenic binding interferes with the function of ZFPs.

  16. Toward rules relating zinc finger protein sequences and DNA binding site preferences.

    PubMed

    Desjarlais, J R; Berg, J M

    1992-08-15

    Zinc finger proteins of the Cys2-His2 type consist of tandem arrays of domains, where each domain appears to contact three adjacent base pairs of DNA through three key residues. We have designed and prepared a series of variants of the central zinc finger within the DNA binding domain of Sp1 by using information from an analysis of a large data base of zinc finger protein sequences. Through systematic variations at two of the three contact positions (underlined), relatively specific recognition of sequences of the form 5'-GGGGN(G or T)GGG-3' has been achieved. These results provide the basis for rules that may develop into a code that will allow the design of zinc finger proteins with preselected DNA site specificity.

  17. A multiscale approach to simulating the conformational properties of unbound multi-C₂H₂ zinc finger proteins.

    PubMed

    Liu, Lei; Wade, Rebecca C; Heermann, Dieter W

    2015-09-01

    The conformational properties of unbound multi-Cys2 His2 (mC2H2) zinc finger proteins, in which zinc finger domains are connected by flexible linkers, are studied by a multiscale approach. Three methods on different length scales are utilized. First, atomic detail molecular dynamics simulations of one zinc finger and its adjacent flexible linker confirmed that the zinc finger is more rigid than the flexible linker. Second, the end-to-end distance distributions of mC2H2 zinc finger proteins are computed using an efficient atomistic pivoting algorithm, which only takes excluded volume interactions into consideration. The end-to-end distance distribution gradually changes its profile, from left-tailed to right-tailed, as the number of zinc fingers increases. This is explained by using a worm-like chain model. For proteins of a few zinc fingers, an effective bending constraint favors an extended conformation. Only for proteins containing more than nine zinc fingers, is a somewhat compacted conformation preferred. Third, a mesoscale model is modified to study both the local and the global conformational properties of multi-C2H2 zinc finger proteins. Simulations of the CCCTC-binding factor (CTCF), an important mC2H2 zinc finger protein for genome spatial organization, are presented. © 2015 Wiley Periodicals, Inc.

  18. Viral RNA annealing activities of human immunodeficiency virus type 1 nucleocapsid protein require only peptide domains outside the zinc fingers.

    PubMed Central

    De Rocquigny, H; Gabus, C; Vincent, A; Fournié-Zaluski, M C; Roques, B; Darlix, J L

    1992-01-01

    The nucleocapsid (NC) of human immunodeficiency virus type 1 consists of a large number of NC protein molecules, probably wrapping the dimeric RNA genome within the virion inner core. NC protein is a gag-encoded product that contains two zinc fingers flanked by basic residues. In human immunodeficiency virus type 1 virions, NCp15 is ultimately processed into NCp7 and p6 proteins. During virion assembly the retroviral NC protein is necessary for core formation and genomic RNA encapsidation, which are essential for virus infectivity. In vitro NCp15 activates viral RNA dimerization, a process most probably linked in vivo to genomic RNA packaging, and replication primer tRNA(Lys,3) annealing to the initiation site of reverse transcription. To characterize the domains of human immunodeficiency virus type 1 NC protein necessary for its various functions, the 72-amino acid NCp7 and several derived peptides were synthesized in a pure form. We show here that synthetic NCp7 with or without the two zinc fingers has the RNA annealing activities of NCp15. Further deletions of the N-terminal 12 and C-terminal 8 amino acids, leading to a 27-residue peptide lacking the finger domains, have little or no effect on NC protein activity in vitro. However deletion of short sequences containing basic residues flanking the first finger leads to a complete loss of NC protein activity. It is proposed that the basic residues and the zinc fingers cooperate to select and package the genomic RNA in vivo. Inhibition of the viral RNA binding and annealing activities associated with the basic residues flanking the first zinc finger of NC protein could therefore be used as a model for the design of antiviral agents. Images PMID:1631144

  19. Viral RNA annealing activities of human immunodeficiency virus type 1 nucleocapsid protein require only peptide domains outside the zinc fingers.

    PubMed

    De Rocquigny, H; Gabus, C; Vincent, A; Fournié-Zaluski, M C; Roques, B; Darlix, J L

    1992-07-15

    The nucleocapsid (NC) of human immunodeficiency virus type 1 consists of a large number of NC protein molecules, probably wrapping the dimeric RNA genome within the virion inner core. NC protein is a gag-encoded product that contains two zinc fingers flanked by basic residues. In human immunodeficiency virus type 1 virions, NCp15 is ultimately processed into NCp7 and p6 proteins. During virion assembly the retroviral NC protein is necessary for core formation and genomic RNA encapsidation, which are essential for virus infectivity. In vitro NCp15 activates viral RNA dimerization, a process most probably linked in vivo to genomic RNA packaging, and replication primer tRNA(Lys,3) annealing to the initiation site of reverse transcription. To characterize the domains of human immunodeficiency virus type 1 NC protein necessary for its various functions, the 72-amino acid NCp7 and several derived peptides were synthesized in a pure form. We show here that synthetic NCp7 with or without the two zinc fingers has the RNA annealing activities of NCp15. Further deletions of the N-terminal 12 and C-terminal 8 amino acids, leading to a 27-residue peptide lacking the finger domains, have little or no effect on NC protein activity in vitro. However deletion of short sequences containing basic residues flanking the first finger leads to a complete loss of NC protein activity. It is proposed that the basic residues and the zinc fingers cooperate to select and package the genomic RNA in vivo. Inhibition of the viral RNA binding and annealing activities associated with the basic residues flanking the first zinc finger of NC protein could therefore be used as a model for the design of antiviral agents.

  20. ZifBASE: a database of zinc finger proteins and associated resources.

    PubMed

    Jayakanthan, Mannu; Muthukumaran, Jayaraman; Chandrasekar, Sanniyasi; Chawla, Konika; Punetha, Ankita; Sundar, Durai

    2009-09-09

    Information on the occurrence of zinc finger protein motifs in genomes is crucial to the developing field of molecular genome engineering. The knowledge of their target DNA-binding sequences is vital to develop chimeric proteins for targeted genome engineering and site-specific gene correction. There is a need to develop a computational resource of zinc finger proteins (ZFP) to identify the potential binding sites and its location, which reduce the time of in vivo task, and overcome the difficulties in selecting the specific type of zinc finger protein and the target site in the DNA sequence. ZifBASE provides an extensive collection of various natural and engineered ZFP. It uses standard names and a genetic and structural classification scheme to present data retrieved from UniProtKB, GenBank, Protein Data Bank, ModBase, Protein Model Portal and the literature. It also incorporates specialized features of ZFP including finger sequences and positions, number of fingers, physiochemical properties, classes, framework, PubMed citations with links to experimental structures (PDB, if available) and modeled structures of natural zinc finger proteins. ZifBASE provides information on zinc finger proteins (both natural and engineered ones), the number of finger units in each of the zinc finger proteins (with multiple fingers), the synergy between the adjacent fingers and their positions. Additionally, it gives the individual finger sequence and their target DNA site to which it binds for better and clear understanding on the interactions of adjacent fingers. The current version of ZifBASE contains 139 entries of which 89 are engineered ZFPs, containing 3-7F totaling to 296 fingers. There are 50 natural zinc finger protein entries ranging from 2-13F, totaling to 307 fingers. It has sequences and structures from literature, Protein Data Bank, ModBase and Protein Model Portal. The interface is cross linked to other public databases like UniprotKB, PDB, ModBase and Protein Model

  1. The multi-zinc finger protein ZNF217 contacts DNA through a two-finger domain.

    PubMed

    Nunez, Noelia; Clifton, Molly M K; Funnell, Alister P W; Artuz, Crisbel; Hallal, Samantha; Quinlan, Kate G R; Font, Josep; Vandevenne, Marylène; Setiyaputra, Surya; Pearson, Richard C M; Mackay, Joel P; Crossley, Merlin

    2011-11-04

    Classical C2H2 zinc finger proteins are among the most abundant transcription factors found in eukaryotes, and the mechanisms through which they recognize their target genes have been extensively investigated. In general, a tandem array of three fingers separated by characteristic TGERP links is required for sequence-specific DNA recognition. Nevertheless, a significant number of zinc finger proteins do not contain a hallmark three-finger array of this type, raising the question of whether and how they contact DNA. We have examined the multi-finger protein ZNF217, which contains eight classical zinc fingers. ZNF217 is implicated as an oncogene and in repressing the E-cadherin gene. We show that two of its zinc fingers, 6 and 7, can mediate contacts with DNA. We examine its putative recognition site in the E-cadherin promoter and demonstrate that this is a suboptimal site. NMR analysis and mutagenesis is used to define the DNA binding surface of ZNF217, and we examine the specificity of the DNA binding activity using fluorescence anisotropy titrations. Finally, sequence analysis reveals that a variety of multi-finger proteins also contain two-finger units, and our data support the idea that these may constitute a distinct subclass of DNA recognition motif.

  2. The Multi-zinc Finger Protein ZNF217 Contacts DNA through a Two-finger Domain*

    PubMed Central

    Nunez, Noelia; Clifton, Molly M. K.; Funnell, Alister P. W.; Artuz, Crisbel; Hallal, Samantha; Quinlan, Kate G. R.; Font, Josep; Vandevenne, Marylène; Setiyaputra, Surya; Pearson, Richard C. M.; Mackay, Joel P.; Crossley, Merlin

    2011-01-01

    Classical C2H2 zinc finger proteins are among the most abundant transcription factors found in eukaryotes, and the mechanisms through which they recognize their target genes have been extensively investigated. In general, a tandem array of three fingers separated by characteristic TGERP links is required for sequence-specific DNA recognition. Nevertheless, a significant number of zinc finger proteins do not contain a hallmark three-finger array of this type, raising the question of whether and how they contact DNA. We have examined the multi-finger protein ZNF217, which contains eight classical zinc fingers. ZNF217 is implicated as an oncogene and in repressing the E-cadherin gene. We show that two of its zinc fingers, 6 and 7, can mediate contacts with DNA. We examine its putative recognition site in the E-cadherin promoter and demonstrate that this is a suboptimal site. NMR analysis and mutagenesis is used to define the DNA binding surface of ZNF217, and we examine the specificity of the DNA binding activity using fluorescence anisotropy titrations. Finally, sequence analysis reveals that a variety of multi-finger proteins also contain two-finger units, and our data support the idea that these may constitute a distinct subclass of DNA recognition motif. PMID:21908891

  3. Lead inhibition of DNA-binding mechanism of Cys(2)His(2) zinc finger proteins.

    PubMed

    Hanas, J S; Rodgers, J S; Bantle, J A; Cheng, Y G

    1999-11-01

    The association of lead with chromatin in cells suggests that deleterious metal effects may in part be mediated through alterations in gene function. To elucidate if and how lead may alter DNA binding of cysteine-rich zinc finger proteins, lead ions were analyzed for their ability to alter the DNA binding mechanism of the Cys(2)His(2) zinc finger protein transcription factor IIIA (TFIIIA). As assayed by DNase I protection, the interaction of TFIIIA with the 50-bp internal control region of the 5S ribosomal gene was partially inhibited by 5 microM lead ions and completely inhibited by 10 to 20 microM lead ions. Preincubation of free TFIIIA with lead resulted in DNA-binding inhibition, whereas preincubation of a TFIIIA/5S RNA complex with lead did not result in DNA-binding inhibition. Because 5S RNA binds TFIIIA zinc fingers, this result is consistent with an inhibition mechanism via lead binding to zinc fingers. The complete loss of DNase I protection on the 5S gene indicates the mechanism of inhibition minimally involves the N-terminal fingers of TFIIIA. Inhibition was not readily reversible and occurred in the presence of an excess of beta-mercaptoethanol. Inhibition kinetics were fast, progressing to completion in approximately 5 min. Millimolar concentrations of sulfhydryl-specific arsenic ions were not inhibitory for TFIIIA binding. Micromolar concentrations of lead inhibited DNA binding by Sp1, another Cys(2)His(2) finger protein, but not by the nonfinger protein AP2. Inhibition of Cys(2)His(2) zinc finger transcription factors by lead ions at concentrations near those known to have deleterious physiological effects points to new molecular mechanisms for lead toxicity in promoting disease.

  4. C terminal retroviral-type zinc finger domain from the HIV-1 nucleocapsid protein is structurally similar to the N-terminal zinc finger domain

    SciT

    South, T.L.; Blake, P.R.; Hare, D.R.

    Two-dimensional NMR spectroscopic and computational methods were employed for the structure determination of an 18-residue peptide with the amino acid sequence of the C-terminal retriviral-type (r.t.) zinc finger domain from the nucleocapsid protein (NCP) of HIV-1 (Zn(HIV1-F2)). Unlike results obtained for the first retroviral-type zinc finger peptide, Zn (HIV1-F1) broad signals indicative of confomational lability were observed in the {sup 1}H NMR spectrum of An(HIV1-F2) at 25 C. The NMR signals narrowed upon cooling to {minus}2 C, enabling complete {sup 1}H NMR signal assignment via standard two-dimensional (2D) NMR methods. Distance restraints obtained from qualitative analysis of 2D nuclear Overhausermore » effect (NOESY) data were sued to generate 30 distance geometry (DG) structures with penalties in the range 0.02-0.03 {angstrom}{sup 2}. All structures were qualitatively consistent with the experimental NOESY spectrum based on comparisons with 2D NOESY back-calculated spectra. These results indicate that the r.t. zinc finger sequences observed in retroviral NCPs, simple plant virus coat proteins, and in a human single-stranded nucleic acid binding protein share a common structural motif.« less

  5. Recruitment of mRNA-destabilizing protein TIS11 to stress granules is mediated by its zinc finger domain

    SciT

    Murata, Tomiyasu; Morita, Noriyoshi; Hikita, Kiyomi

    2005-02-15

    TIS11, a member of the CCCH zinc finger protein family, was found to be distributed throughout cells with a preferential cytoplasmic localization when transiently expressed in COS-7 cells. Upon treatment with heat shock, TIS11 became localized in discrete particles in the cytoplasm of the transfectants. We showed the TIS11-positive particles to be stress granules (SGs), which are known to be formed in the cytoplasm of eukaryotic cells in response to environmental stresses. By deletion studies using the green fluorescent protein fusion system, we mapped a functional stress granule (SG) localization signal to a region containing two tandem repeats of themore » zinc finger motif of TIS11. Site-directed mutations of Tyr105/Tyr113, Gly109/Gly 114, and Phe119 in the first zinc finger motif diminished the ability of this TIS11 domain to direct SG localization. Importantly, when the zinc-chelating Cys residues in either the first or second zinc finger were mutated to Ala residues, the recruitment of the TIS11 zinc finger region to SG was significantly inhibited by the mutation and was completely abolished by the mutation in both zinc fingers. These results suggest that recruitment of TIS11 to heat shock-induced SG is governed by the tandem zinc finger domains of this protein.« less

  6. New Protein Mimetics: The Zinc Finger Motif as a Locked-In Tertiary Fold.

    PubMed

    Tuchscherer, Gabriele; Lehmann, Christian; Mathieu, Marc

    1998-11-16

    The principle of a molecular kit is used for the covalent assembly of secondary structure forming peptide blocks to predetermined packing topologies. The resulting locked-in folds (LIFs; depicted schematically) are readily accessible and bypass the intriguing folding problem of linear peptide chains. This strategy allows, for example, mimicking of the essential structural and functional features of zinc finger proteins. © 1998 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  7. Synthetic Zinc Finger Proteins: The Advent of Targeted Gene Regulation and Genome Modification Technologies

    PubMed Central

    2015-01-01

    Conspectus The understanding of gene regulation and the structure and function of the human genome increased dramatically at the end of the 20th century. Yet the technologies for manipulating the genome have been slower to develop. For instance, the field of gene therapy has been focused on correcting genetic diseases and augmenting tissue repair for more than 40 years. However, with the exception of a few very low efficiency approaches, conventional genetic engineering methods have only been able to add auxiliary genes to cells. This has been a substantial obstacle to the clinical success of gene therapies and has also led to severe unintended consequences in several cases. Therefore, technologies that facilitate the precise modification of cellular genomes have diverse and significant implications in many facets of research and are essential for translating the products of the Genomic Revolution into tangible benefits for medicine and biotechnology. To address this need, in the 1990s, we embarked on a mission to develop technologies for engineering protein–DNA interactions with the aim of creating custom tools capable of targeting any DNA sequence. Our goal has been to allow researchers to reach into genomes to specifically regulate, knock out, or replace any gene. To realize these goals, we initially focused on understanding and manipulating zinc finger proteins. In particular, we sought to create a simple and straightforward method that enables unspecialized laboratories to engineer custom DNA-modifying proteins using only defined modular components, a web-based utility, and standard recombinant DNA technology. Two significant challenges we faced were (i) the development of zinc finger domains that target sequences not recognized by naturally occurring zinc finger proteins and (ii) determining how individual zinc finger domains could be tethered together as polydactyl proteins to recognize unique locations within complex genomes. We and others have since used

  8. Early Hematopoietic Zinc Finger Protein Prevents Tumor Cell Recognition by Natural Killer Cells1

    PubMed Central

    La Rocca, Rosanna; Fulciniti, Mariateresa; Lakshmikanth, Tadepally; Mesuraca, Maria; Ali, Talib Hassan; Mazzei, Valerio; Amodio, Nicola; Catalano, Lucio; Rotoli, Bruno; Ouerfelli, Ouathek; Grieco, Michele; Gulletta, Elio; Bond, Heather M.; Morrone, Giovanni; Ferrone, Soldano; Carbone, Ennio

    2009-01-01

    Early hematopoietic zinc finger/zinc finger protein 521 (EHZF/ZNF521) is a novel zinc finger protein expressed in hematopoietic stem and progenitor cells and is down-regulated during their differentiation. Its transcript is also abundant in some hematopoietic malignancies. Analysis of the changes in the antigenic profile of cells transfected with EHZF cDNA revealed up-regulation of HLA class I cell surface expression. This phenotypic change was associated with an increased level of HLA class I H chain, in absence of detectable changes in the expression of other Ag-processing machinery components. Enhanced resistance of target cells to NK cell-mediated cytotoxicity was induced by enforced expression of EHZF in the cervical carcinoma cell line HeLa and in the B lymphoblastoid cell line IM9. Preincubation of transfected cells with HLA class I Ag-specific mAb restored target cell susceptibility to NK cell-mediated lysis, indicating a specific role for HLA class I Ag up-regulation in the NK resistance induced by EHZF. A potential clinical significance of these findings is further suggested by the inverse correlation between EHZF and MHC class I expression levels, and autologous NK susceptibility of freshly explanted multiple myeloma cells. PMID:19342626

  9. The Cytoplasmic Zinc Finger Protein ZPR1 Accumulates in the Nucleolus of Proliferating Cells

    PubMed Central

    Galcheva-Gargova, Zoya; Gangwani, Laxman; Konstantinov, Konstantin N.; Mikrut, Monique; Theroux, Steven J.; Enoch, Tamar; Davis, Roger J.

    1998-01-01

    The zinc finger protein ZPR1 translocates from the cytoplasm to the nucleus after treatment of cells with mitogens. The function of nuclear ZPR1 has not been defined. Here we demonstrate that ZPR1 accumulates in the nucleolus of proliferating cells. The role of ZPR1 was examined using a gene disruption strategy. Cells lacking ZPR1 are not viable. Biochemical analysis demonstrated that the loss of ZPR1 caused disruption of nucleolar function, including preribosomal RNA expression. These data establish ZPR1 as an essential protein that is required for normal nucleolar function in proliferating cells. PMID:9763455

  10. Keep your fingers off my DNA: protein-protein interactions mediated by C2H2 zinc finger domains.

    PubMed

    Brayer, Kathryn J; Segal, David J

    2008-01-01

    Cys2-His2 (C2H2) zinc finger domains (ZFs) were originally identified as DNA-binding domains, and uncharacterized domains are typically assumed to function in DNA binding. However, a growing body of evidence suggests an important and widespread role for these domains in protein binding. There are even examples of zinc fingers that support both DNA and protein interactions, which can be found in well-known DNA-binding proteins such as Sp1, Zif268, and Ying Yang 1 (YY1). C2H2 protein-protein interactions (PPIs) are proving to be more abundant than previously appreciated, more plastic than their DNA-binding counterparts, and more variable and complex in their interactions surfaces. Here we review the current knowledge of over 100 C2H2 zinc finger-mediated PPIs, focusing on what is known about the binding surface, contributions of individual fingers to the interaction, and function. An accurate understanding of zinc finger biology will likely require greater insights into the potential protein interaction capabilities of C2H2 ZFs.

  11. Molecular and functional characterization of two drought-induced zinc finger proteins, ZmZnF1 and ZmZnF2 from maize kernels

    We have isolated two cDNA clones encoding Zinc Finger proteins, designated as ZmZnF1 and ZmZnF2, from water-stressed maize kernels. Sequence analyses indicates that ZmZnF1 is homologous to the A20/AN1-type zinc finger protein and contains the zinc finger motif of Cx2–Cx10–CxCx4Cx2Hx5HxC. Whereas ZmZ...

  12. Control of Hepatic Gluconeogenesis by the Promyelocytic Leukemia Zinc Finger Protein

    PubMed Central

    Chen, Siyu; Qian, Jinchun; Shi, Xiaoli; Gao, Tingting; Liang, Tingming

    2014-01-01

    The promyelocytic leukemia zinc finger (PLZF) protein is involved in major biological processes including energy metabolism, although its role remains unknown. In this study, we demonstrated that hepatic PLZF expression was induced in fasted or diabetic mice. PLZF promoted gluconeogenic gene expression and hepatic glucose output, leading to hyperglycemia. In contrast, hepatic PLZF knockdown improved glucose homeostasis in db/db mice. Mechanistically, peroxisome proliferator-activated receptor γ coactivator 1α and the glucocorticoid receptor synergistically activated PLZF expression. We conclude that PLZF is a critical regulator of hepatic gluconeogenesis. PLZF manipulation may benefit the treatment of metabolic diseases associated with gluconeogenesis. PMID:25333514

  13. The Electronic Behavior of Zinc-Finger Protein Binding Sites in the Context of the DNA Extended Ladder Model

    NASA Astrophysics Data System (ADS)

    Oiwa, Nestor; Cordeiro, Claudette; Heermann, Dieter

    2016-05-01

    Instead of ATCG letter alignments, typically used in bioinformatics, we propose a new alignment method using the probability distribution function of the bottom of the occupied molecular orbital (BOMO), highest occupied molecular orbital (HOMO) and lowest unoccupied orbital (LUMO). We apply the technique to transcription factors with Cys2His2 zinc fingers. These transcription factors search for binding sites, probing for the electronic patterns at the minor and major DNA groves. The eukaryotic Cys2His2 zinc finger proteins bind to DNA ubiquitously at highly conserved domains. They are responsible for gene regulation and the spatial organization of DNA. To study and understand these zinc finger DNA-protein interactions, we use the extended ladder in the DNA model proposed by Zhu, Rasmussen, Balatsky & Bishop (2007) te{Zhu-2007}. Considering one single spinless electron in each nucleotide π-orbital along a double DNA chain (dDNA), we find a typical pattern for the bottom of BOMO, HOMO and LUMO along the binding sites. We specifically looked at two members of zinc finger protein family: specificity protein 1 (SP1) and early grown response 1 transcription factors (EGR1). When the valence band is filled, we find electrons in the purines along the nucleotide sequence, compatible with the electric charges of the binding amino acids in SP1 and EGR1 zinc finger.

  14. Zinc finger X-chromosomal protein (ZFX) promotes solid agar colony growth of osteosarcoma cells.

    PubMed

    Jiang, Rui; Wang, Jin-cheng; Sun, Mei; Zhang, Xing-yi; Wu, Han

    2012-01-01

    Zinc finger X-chromosomal protein (ZFX) is a member of the zinc finger family of proteins. The importance of ZFX in several cancer types, including prostate cancer, laryngeal squamous cell carcinoma, and glioma, has been addressed. However, the role of ZFX in human osteosarcoma remains unknown. Here we investigated the phenotype of ZFX knockdown on cell proliferation and in vitro tumorigenesis using lentivirus-mediated loss-of-function strategy. The results demonstrated that the proliferation and colony formation ability of human osteosarcoma Saos-2 and MG63 cells was impaired by ZFX small interfering RNA (siRNA)-expressing lentivirus. Moreover, loss of ZFX led to G0/G1 phase cell cycle arrest and a significant increase of cells in the sub-G1 fraction, indicating that ZFX functions as an oncogene in the malignant proliferation process in osteosarcoma. Furthermore, ZFX siRNA may have an antitumorigenic effect on osteosarcoma cells. Our findings hold important significance for RNA interference-mediated cancer gene therapy for human osteosarcoma.

  15. The unique N-terminal zinc finger of synaptotagmin-like protein 4 reveals FYVE structure.

    PubMed

    Miyamoto, Kazuhide; Nakatani, Arisa; Saito, Kazuki

    2017-12-01

    Synaptotagmin-like protein 4 (Slp4), expressed in human platelets, is associated with dense granule release. Slp4 is comprised of the N-terminal zinc finger, Slp homology domain, and C2 domains. We synthesized a compact construct (the Slp4N peptide) corresponding to the Slp4 N-terminal zinc finger. Herein, we have determined the solution structure of the Slp4N peptide by nuclear magnetic resonance (NMR). Furthermore, experimental, chemical modification of Cys residues revealed that the Slp4N peptide binds two zinc atoms to mediate proper folding. NMR data showed that eight Cys residues coordinate zinc atoms in a cross-brace fashion. The Simple Modular Architecture Research Tool database predicted the structure of Slp4N as a RING finger. However, the actual structure of the Slp4N peptide adopts a unique C 4 C 4 -type FYVE fold and is distinct from a RING fold. To create an artificial RING finger (ARF) with specific ubiquitin-conjugating enzyme (E2)-binding capability, cross-brace structures with eight zinc-ligating residues are needed as the scaffold. The cross-brace structure of the Slp4N peptide could be utilized as the scaffold for the design of ARFs. © 2017 The Protein Society.

  16. Identification and preliminary characterization of a protein motif related to the zinc finger.

    PubMed Central

    Lovering, R; Hanson, I M; Borden, K L; Martin, S; O'Reilly, N J; Evan, G I; Rahman, D; Pappin, D J; Trowsdale, J; Freemont, P S

    1993-01-01

    We have identified a protein motif, related to the zinc finger, which defines a newly discovered family of proteins. The motif was found in the sequence of the human RING1 gene, which is proximal to the major histocompatibility complex region on chromosome six. We propose naming this motif the "RING finger" and it is found in 27 proteins, all of which have putative DNA binding functions. We have synthesized a peptide corresponding to the RING1 motif and examined a number of properties, including metal and DNA binding. We provide evidence to support the suggestion that the RING finger motif is the DNA binding domain of this newly defined family of proteins. Images Fig. 1 Fig. 4 PMID:7681583

  17. Molecular Characterization of abLIM, a Novel Actin-binding and Double Zinc Finger Protein

    PubMed Central

    Roof, Dorothy J.; Hayes, Annmarie; Adamian, Michael; Chishti, Athar H.; Li, Tiansen

    1997-01-01

    Molecules that couple the actin-based cytoskeleton to intracellular signaling pathways are central to the processes of cellular morphogenesis and differentiation. We have characterized a novel protein, the actin-binding LIM (abLIM) protein, which could mediate such interactions between actin filaments and cytoplasmic targets. abLIM protein consists of a COOH-terminal cytoskeletal domain that is fused to an NH2-terminal domain consisting of four double zinc finger motifs. The cytoskeletal domain is ∼50% identical to erythrocyte dematin, an actin-bundling protein of the red cell membrane skeleton, while the zinc finger domains conform to the LIM motif consensus sequence. In vitro expression studies demonstrate that abLIM protein can bind to F-actin through the dematin-like domain. Transcripts corresponding to three distinct isoforms have a widespread tissue distribution. However, a polypeptide corresponding to the full-length isoform is found exclusively in the retina and is enriched in biochemical extracts of retinal rod inner segments. abLIM protein also undergoes extensive phosphorylation in light-adapted retinas in vivo, and its developmental expression in the retina coincides with the elaboration of photoreceptor inner and outer segments. Based on the composite primary structure of abLIM protein, actin-binding capacity, potential regulation via phosphorylation, and isoform expression pattern, we speculate that abLIM may play a general role in bridging the actin-based cytoskeleton with an array of potential LIM protein-binding partners. The developmental time course of abLIM expression in the retina suggests that the retina-specific isoform may have a specialized role in the development or elaboration of photoreceptor inner and outer segments. PMID:9245787

  18. Activation of transcriptional activity of HSE by a novel mouse zinc finger protein ZNFD specifically expressed in testis.

    PubMed

    Xu, Fengqin; Wang, Weiping; Lei, Chen; Liu, Qingmei; Qiu, Hao; Muraleedharan, Vinaydhar; Zhou, Bin; Cheng, Hongxia; Huang, Zhongkai; Xu, Weian; Li, Bichun; Wang, Minghua

    2012-04-01

    Zinc finger proteins (ZFPs) that contain multiple cysteine and/or histidine residues perform important roles in various cellular functions, including transcriptional regulation, cell proliferation, differentiation, and apoptosis. The Cys-Cys-His-His (C(2)H(2)) type of ZFPs are the well-defined members of this super family and are the largest and most complex proteins in eukaryotic genomes. In this study, we identified a novel C(2)H(2) type of zinc finger gene ZNFD from mice which has a 1,002 bp open reading frame and encodes a protein with 333 amino acid residues. The predicted 37.4 kDa protein contains a C(2)H(2) zinc finger domain. ZNFD gene is located on chromosome 18qD1. RT-PCR analysis revealed that the ZNFD gene was specifically expressed in mouse testis but not in other tissues. Subcellular localization analysis demonstrated that ZNFD was localized in the nucleus. Reporter gene assays showed that overexpression of ZNFD in the COS7 cells activates the transcriptional activities of heat shock element (HSE). Overall, these results suggest that ZNFD is a member of the zinc finger transcription factor family and it participates in the transcriptional regulation of HSE. Many heat shock proteins regulated by HSE are involved in testicular development. Therefore, our results suggest that ZNFD may probably participate in the development of mouse testis and function as a transcription activator in HSE-mediated gene expression and signaling pathways.

  19. Engineering and Application of Zinc Finger Proteins and TALEs for Biomedical Research.

    PubMed

    Kim, Moon-Soo; Kini, Anu Ganesh

    2017-08-01

    Engineered DNA-binding domains provide a powerful technology for numerous biomedical studies due to their ability to recognize specific DNA sequences. Zinc fingers (ZF) are one of the most common DNA-binding domains and have been extensively studied for a variety of applications, such as gene regulation, genome engineering and diagnostics. Another novel DNA-binding domain known as a transcriptional activator-like effector (TALE) has been more recently discovered, which has a previously undescribed DNA-binding mode. Due to their modular architecture and flexibility, TALEs have been rapidly developed into artificial gene targeting reagents. Here, we describe the methods used to design these DNA-binding proteins and their key applications in biomedical research.

  20. A zinc finger protein Zfp521 directs neural differentiation and beyond

    PubMed Central

    2011-01-01

    Neural induction is largely considered a default process, whereas little is known about intrinsic factors that drive neural differentiation. Kamiya and colleagues now demonstrate that a transcription factor, Zfp521, is capable of directing embryonic stem (ES) cells into neural progenitors. They discovered that Zfp521 transcripts were enriched in early neural lineage of ES cell differentiation. Forced expression of Zfp521 turned ES cells into neural progenitors in culture conditions that would normally inhibit neural differentiation. Zfp521 was expressed in mouse embryos during gastrulation. The protein was shown to associate with a co-activator p300 and directly induce expression of early neural genes. Knockdown of the Zfp521 by shRNA halted cells at the epiblast stage and suppressed neural differentiation. Zfp521 is a nuclear protein with 30 Krüppel-like zinc fingers mediating multiple protein-protein interactions, and regulates transcription in diverse tissues and organs. The protein promotes proliferation, delays differentiation and reduces apoptosis. The findings by Kamiya and colleagues that Zfp521 directs and sustains early neural differentiation now opens up a series of studies to investigate roles of Zfp521 in stem cells and brain development of mice and men. PMID:21539723

  1. The alpha subunit of Go interacts with promyelocytic leukemia zinc finger protein and modulates its functions.

    PubMed

    Won, Jung Hee; Park, Jung Sik; Ju, Hyun Hee; Kim, Soyeon; Suh-Kim, Haeyoung; Ghil, Sung Ho

    2008-05-01

    Heterotrimeric GTP-binding proteins (G proteins) mediate signal transduction generated by neurotransmitters and hormones. Go, a member of the Go/Gi family, is the most abundant heterotrimeric G protein in the brain. Most mechanistic analyses on Go activation demonstrate that its action is mediated by the Gbetagamma dimer; downstream effectors for its alpha subunit (Goalpha) have not been clearly defined. Here, we employ the yeast two-hybrid system to screen for Goalpha-interacting partners in a cDNA library from human fetal brain. The transcription factor promyelocytic leukemia zinc finger protein (PLZF) specifically bound to Goalpha. Interactions between PLZF and Goalpha were confirmed using in vitro and in vivo affinity binding assays. Activated Goalpha interacted directly with PLZF, and enhanced its function as a transcriptional and cell growth suppressor. Notably, PLZF activity was additionally promoted by the Go/ialpha-coupled cannabinoid receptor (CB) in HL60 cells endogenously expressing CB and PLZF. These results collectively suggest that Goalpha modulates the function of PLZF via direct interactions. Our novel findings provide insights into the diverse cellular roles of Goalpha and its coupled receptor.

  2. Zinc finger protein 804A (ZNF804A) and verbal deficits in individuals with autism

    PubMed Central

    Anitha, Ayyappan; Thanseem, Ismail; Nakamura, Kazuhiko; Vasu, Mahesh M.; Yamada, Kazuo; Ueki, Takatoshi; Iwayama, Yoshimi; Toyota, Tomoko; Tsuchiya, Kenji J.; Iwata, Yasuhide; Suzuki, Katsuaki; Sugiyama, Toshiro; Tsujii, Masatsugu; Yoshikawa, Takeo; Mori, Norio

    2014-01-01

    Background In a genome-wide association study of autism, zinc finger protein 804A (ZNF804A) single nucleotide polymorphisms (SNPs) were found to be nominally associated in verbally deficient individuals with autism. Zinc finger protein 804A copy number variations (CNVs) have also been observed in individuals with autism. In addition, ZNF804A is known to be involved in theory of mind (ToM) tasks, and ToM deficits are deemed responsible for the communication and social challenges faced by individuals with autism. We hypothesized that ZNF804A could be a risk gene for autism. Methods We examined the genetic association and CNVs of ZNF804A in 841 families in which 1 or more members had autism. We compared the expression of ZNF804A in the postmortem brains of individuals with autism (n = 8) and controls (n = 13). We also assessed in vitro the effect of ZNF804A silencing on the expression of several genes known to be involved in verbal efficiency and social cognition. Results We found that rs7603001 was nominally associated with autism (p = 0.018). The association was stronger (p = 0.008) in the families of individuals with autism who were verbally deficient (n = 761 families). We observed ZNF804A CNVs in 7 verbally deficient boys with autism. In ZNF804A knockdown cells, the expression of synaptosomal-associated protein, 25kDa (SNAP25) was reduced compared with controls (p = 0.009). The expression of ZNF804A (p = 0.009) and SNAP25 (p = 0.009) were reduced in the anterior cingulate gyrus (ACG) of individuals with autism. There was a strong positive correlation between the expression of ZNF804A and SNAP25 in the ACG (p < 0.001). Limitations Study limitations include our small sample size of postmortem brains. Conclusion Our results suggest that ZNF804A could be a potential candidate gene mediating the intermediate phenotypes associated with verbal traits in individuals with autism. PMID:24866414

  3. Zinc finger protein 804A (ZNF804A) and verbal deficits in individuals with autism.

    PubMed

    Anitha, Ayyappan; Thanseem, Ismail; Nakamura, Kazuhiko; Vasu, Mahesh M; Yamada, Kazuo; Ueki, Takatoshi; Iwayama, Yoshimi; Toyota, Tomoko; Tsuchiya, Kenji J; Iwata, Yasuhide; Suzuki, Katsuaki; Sugiyama, Toshiro; Tsujii, Masatsugu; Yoshikawa, Takeo; Mori, Norio

    2014-09-01

    In a genome-wide association study of autism, zinc finger protein 804A (ZNF804A) single nucleotide polymorphisms (SNPs) were found to be nominally associated in verbally deficient individuals with autism. Zinc finger protein 804A copy number variations (CNVs) have also been observed in individuals with autism. In addition, ZNF804A is known to be involved in theory of mind (ToM) tasks, and ToM deficits are deemed responsible for the communication and social challenges faced by individuals with autism. We hypothesized that ZNF804A could be a risk gene for autism. We examined the genetic association and CNVs of ZNF804A in 841 families in which 1 or more members had autism. We compared the expression of ZNF804A in the postmortem brains of individuals with autism (n = 8) and controls (n = 13). We also assessed in vitro the effect of ZNF804A silencing on the expression of several genes known to be involved in verbal efficiency and social cognition. We found that rs7603001 was nominally associated with autism (p = 0.018). The association was stronger (p = 0.008) in the families of individuals with autism who were verbally deficient (n = 761 families). We observed ZNF804A CNVs in 7 verbally deficient boys with autism. In ZNF804A knockdown cells, the expression of synaptosomal-associated protein, 25kDa (SNAP25) was reduced compared with controls (p = 0.009). The expression of ZNF804A (p = 0.009) and SNAP25 (p = 0.009) were reduced in the anterior cingulate gyrus (ACG) of individuals with autism. There was a strong positive correlation between the expression of ZNF804A and SNAP25 in the ACG (p < 0.001). Study limitations include our small sample size of postmortem brains. Our results suggest that ZNF804A could be a potential candidate gene mediating the intermediate phenotypes associated with verbal traits in individuals with autism.

  4. The Effect of Salts in Promoting Specific and Competitive Interactions between Zinc Finger Proteins and Metals

    NASA Astrophysics Data System (ADS)

    Li, Gongyu; Yuan, Siming; Zheng, Shihui; Chen, Yuting; Zheng, Zhen; Liu, Yangzhong; Huang, Guangming

    2017-12-01

    Specific protein-metal interactions (PMIs) fulfill essential functions in cells and organic bodies, and activation of these functions in vivo are mostly modulated by the complex environmental factors, including pH value, small biomolecules, and salts. Specifically, the role of salts in promoting specific PMIs and their competition among various metals has remained untapped mainly due to the difficulty to distinguish nonspecific PMIs from specific PMIs by classic spectroscopic techniques. Herein, we report Hofmeister salts differentially promote the specific PMIs by combining nanoelectrospray ionization mass spectrometry and spectroscopic techniques (fluorescence measurement and circular dichroism). Furthermore, to explore the influence of salts in competitive binding between metalloproteins and various metals, we designed a series of competitive experiments and applied to a well-defined model system, the competitive binding of zinc (II) and arsenic (III) to holo-promyelocytic leukemia protein (PML). These experiments not only provided new insights at the molecular scale as complementary to previous NMR and spectroscopic results, but also deduced the relative binding ability between zinc finger proteins and metals at the molecular scale, which avoids the mass spectrometric titration-based determination of binding constants that is frequently affected and often degraded by variable solution conditions including salt contents. [Figure not available: see fulltext.

  5. Specific labeling of zinc finger proteins using noncanonical amino acids and copper-free click chemistry.

    PubMed

    Kim, Younghoon; Kim, Sung Hoon; Ferracane, Dean; Katzenellenbogen, John A; Schroeder, Charles M

    2012-09-19

    Zinc finger proteins (ZFPs) play a key role in transcriptional regulation and serve as invaluable tools for gene modification and genetic engineering. Development of efficient strategies for labeling metalloproteins such as ZFPs is essential for understanding and controlling biological processes. In this work, we engineered ZFPs containing cysteine-histidine (Cys2-His2) motifs by metabolic incorporation of the unnatural amino acid azidohomoalanine (AHA), followed by specific protein labeling via click chemistry. We show that cyclooctyne promoted [3 + 2] dipolar cycloaddition with azides, known as copper-free click chemistry, provides rapid and specific labeling of ZFPs at high yields as determined by mass spectrometry analysis. We observe that the DNA-binding activity of ZFPs labeled by conventional copper-mediated click chemistry was completely abolished, whereas ZFPs labeled by copper-free click chemistry retain their sequence-specific DNA-binding activity under native conditions, as determined by electrophoretic mobility shift assays, protein microarrays, and kinetic binding assays based on Förster resonance energy transfer (FRET). Our work provides a general framework to label metalloproteins such as ZFPs by metabolic incorporation of unnatural amino acids followed by copper-free click chemistry.

  6. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking

    PubMed Central

    Pohlmann, Thomas; Baumann, Sebastian; Haag, Carl; Albrecht, Mario; Feldbrügge, Michael

    2015-01-01

    An emerging theme in cellular logistics is the close connection between mRNA and membrane trafficking. A prominent example is the microtubule-dependent transport of mRNAs and associated ribosomes on endosomes. This coordinated process is crucial for correct septin filamentation and efficient growth of polarised cells, such as fungal hyphae. Despite detailed knowledge on the key RNA-binding protein and the molecular motors involved, it is unclear how mRNAs are connected to membranes during transport. Here, we identify a novel factor containing a FYVE zinc finger domain for interaction with endosomal lipids and a new PAM2-like domain required for interaction with the MLLE domain of the key RNA-binding protein. Consistently, loss of this FYVE domain protein leads to specific defects in mRNA, ribosome, and septin transport without affecting general functions of endosomes or their movement. Hence, this is the first endosomal component specific for mRNP trafficking uncovering a new mechanism to couple mRNPs to endosomes. DOI: http://dx.doi.org/10.7554/eLife.06041.001 PMID:25985087

  7. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking.

    PubMed

    Pohlmann, Thomas; Baumann, Sebastian; Haag, Carl; Albrecht, Mario; Feldbrügge, Michael

    2015-05-18

    An emerging theme in cellular logistics is the close connection between mRNA and membrane trafficking. A prominent example is the microtubule-dependent transport of mRNAs and associated ribosomes on endosomes. This coordinated process is crucial for correct septin filamentation and efficient growth of polarised cells, such as fungal hyphae. Despite detailed knowledge on the key RNA-binding protein and the molecular motors involved, it is unclear how mRNAs are connected to membranes during transport. Here, we identify a novel factor containing a FYVE zinc finger domain for interaction with endosomal lipids and a new PAM2-like domain required for interaction with the MLLE domain of the key RNA-binding protein. Consistently, loss of this FYVE domain protein leads to specific defects in mRNA, ribosome, and septin transport without affecting general functions of endosomes or their movement. Hence, this is the first endosomal component specific for mRNP trafficking uncovering a new mechanism to couple mRNPs to endosomes.

  8. Selection for a Zinc-Finger Protein Contributes to Seed Oil Increase during Soybean Domestication.

    PubMed

    Li, Qing-Tian; Lu, Xiang; Song, Qing-Xin; Chen, Hao-Wei; Wei, Wei; Tao, Jian-Jun; Bian, Xiao-Hua; Shen, Ming; Ma, Biao; Zhang, Wan-Ke; Bi, Ying-Dong; Li, Wei; Lai, Yong-Cai; Lam, Sin-Man; Shui, Guang-Hou; Chen, Shou-Yi; Zhang, Jin-Song

    2017-04-01

    Seed oil is a momentous agronomical trait of soybean ( Glycine max ) targeted by domestication in breeding. Although multiple oil-related genes have been uncovered, knowledge of the regulatory mechanism of seed oil biosynthesis is currently limited. We demonstrate that the seed-preferred gene GmZF351 , encoding a tandem CCCH zinc finger protein, is selected during domestication. Further analysis shows that GmZF351 facilitates oil accumulation by directly activating WRINKLED1 , BIOTIN CARBOXYL CARRIER PROTEIN2 , 3-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE III , DIACYLGLYCEROL O-ACYLTRANSFERASE1 , and OLEOSIN2 in transgenic Arabidopsis ( Arabidopsis thaliana ) seeds. Overexpression of GmZF351 in transgenic soybean also activates lipid biosynthesis genes, thereby accelerating seed oil accumulation. The ZF351 haplotype from the cultivated soybean group and the wild soybean ( Glycine soja ) subgroup III correlates well with high gene expression level, seed oil contents and promoter activity, suggesting that selection of GmZF351 expression leads to increased seed oil content in cultivated soybean. Our study provides novel insights into the regulatory mechanism for seed oil accumulation, and the manipulation of GmZF351 may have great potential in the improvement of oil production in soybean and other related crops. © 2017 American Society of Plant Biologists. All Rights Reserved.

  9. Zinc-finger protein-targeted gene regulation: Genomewide single-gene specificity

    PubMed Central

    Tan, Siyuan; Guschin, Dmitry; Davalos, Albert; Lee, Ya-Li; Snowden, Andrew W.; Jouvenot, Yann; Zhang, H. Steven; Howes, Katherine; McNamara, Andrew R.; Lai, Albert; Ullman, Chris; Reynolds, Lindsey; Moore, Michael; Isalan, Mark; Berg, Lutz-Peter; Campos, Bradley; Qi, Hong; Spratt, S. Kaye; Case, Casey C.; Pabo, Carl O.; Campisi, Judith; Gregory, Philip D.

    2003-01-01

    Zinc-finger protein transcription factors (ZFP TFs) can be designed to control the expression of any desired target gene, and thus provide potential therapeutic tools for the study and treatment of disease. Here we report that a ZFP TF can repress target gene expression with single-gene specificity within the human genome. A ZFP TF repressor that binds an 18-bp recognition sequence within the promoter of the endogenous CHK2 gene gives a >10-fold reduction in CHK2 mRNA and protein. This level of repression was sufficient to generate a functional phenotype, as demonstrated by the loss of DNA damage-induced CHK2-dependent p53 phosphorylation. We determined the specificity of repression by using DNA microarrays and found that the ZFP TF repressed a single gene (CHK2) within the monitored genome in two different cell types. These data demonstrate the utility of ZFP TFs as precise tools for target validation, and highlight their potential as clinical therapeutics. PMID:14514889

  10. Rmt1 catalyzes zinc-finger independent arginine methylation of ribosomal protein Rps2 in Saccharomyces cerevisiae

    SciT

    Lipson, Rebecca S.; Webb, Kristofor J.; Clarke, Steven G., E-mail: clarke@mbi.ucla.edu

    2010-01-22

    Rps2/rpS2 is a well conserved protein of the eukaryotic ribosomal small subunit. Rps2 has previously been shown to contain asymmetric dimethylarginine residues, the addition of which is catalyzed by zinc-finger-containing arginine methyltransferase 3 (Rmt3) in the fission yeast Schizosaccharomyces pombe and protein arginine methyltransferase 3 (PRMT3) in mammalian cells. Here, we demonstrate that despite the lack of a zinc-finger-containing homolog of Rmt3/PRMT3 in the budding yeast Saccharomyces cerevisiae, Rps2 is partially modified to generate asymmetric dimethylarginine and monomethylarginine residues. We find that this modification of Rps2 is dependent upon the major arginine methyltransferase 1 (Rmt1) in S. cerevisiae. These resultsmore » are suggestive of a role for Rmt1 in modifying the function of Rps2 in a manner distinct from that occurring in S. pombe and mammalian cells.« less

  11. Dynamics of linker residues modulate the nucleic acid binding properties of the HIV-1 nucleocapsid protein zinc fingers.

    PubMed

    Zargarian, Loussiné; Tisné, Carine; Barraud, Pierre; Xu, Xiaoqian; Morellet, Nelly; René, Brigitte; Mély, Yves; Fossé, Philippe; Mauffret, Olivier

    2014-01-01

    The HIV-1 nucleocapsid protein (NC) is a small basic protein containing two zinc fingers (ZF) separated by a short linker. It is involved in several steps of the replication cycle and acts as a nucleic acid chaperone protein in facilitating nucleic acid strand transfers occurring during reverse transcription. Recent analysis of three-dimensional structures of NC-nucleic acids complexes established a new property: the unpaired guanines targeted by NC are more often inserted in the C-terminal zinc finger (ZF2) than in the N-terminal zinc finger (ZF1). Although previous NMR dynamic studies were performed with NC, the dynamic behavior of the linker residues connecting the two ZF domains remains unclear. This prompted us to investigate the dynamic behavior of the linker residues. Here, we collected 15N NMR relaxation data and used for the first time data at several fields to probe the protein dynamics. The analysis at two fields allows us to detect a slow motion occurring between the two domains around a hinge located in the linker at the G35 position. However, the amplitude of motion appears limited in our conditions. In addition, we showed that the neighboring linker residues R29, A30, P31, R32, K33 displayed restricted motion and numerous contacts with residues of ZF1. Our results are fully consistent with a model in which the ZF1-linker contacts prevent the ZF1 domain to interact with unpaired guanines, whereas the ZF2 domain is more accessible and competent to interact with unpaired guanines. In contrast, ZF1 with its large hydrophobic plateau is able to destabilize the double-stranded regions adjacent to the guanines bound by ZF2. The linker residues and the internal dynamics of NC regulate therefore the different functions of the two zinc fingers that are required for an optimal chaperone activity.

  12. Dynamics of Linker Residues Modulate the Nucleic Acid Binding Properties of the HIV-1 Nucleocapsid Protein Zinc Fingers

    PubMed Central

    Zargarian, Loussiné; Tisné, Carine; Barraud, Pierre; Xu, Xiaoqian; Morellet, Nelly; René, Brigitte; Mély, Yves; Fossé, Philippe; Mauffret, Olivier

    2014-01-01

    The HIV-1 nucleocapsid protein (NC) is a small basic protein containing two zinc fingers (ZF) separated by a short linker. It is involved in several steps of the replication cycle and acts as a nucleic acid chaperone protein in facilitating nucleic acid strand transfers occurring during reverse transcription. Recent analysis of three-dimensional structures of NC-nucleic acids complexes established a new property: the unpaired guanines targeted by NC are more often inserted in the C-terminal zinc finger (ZF2) than in the N-terminal zinc finger (ZF1). Although previous NMR dynamic studies were performed with NC, the dynamic behavior of the linker residues connecting the two ZF domains remains unclear. This prompted us to investigate the dynamic behavior of the linker residues. Here, we collected 15N NMR relaxation data and used for the first time data at several fields to probe the protein dynamics. The analysis at two fields allows us to detect a slow motion occurring between the two domains around a hinge located in the linker at the G35 position. However, the amplitude of motion appears limited in our conditions. In addition, we showed that the neighboring linker residues R29, A30, P31, R32, K33 displayed restricted motion and numerous contacts with residues of ZF1. Our results are fully consistent with a model in which the ZF1-linker contacts prevent the ZF1 domain to interact with unpaired guanines, whereas the ZF2 domain is more accessible and competent to interact with unpaired guanines. In contrast, ZF1 with its large hydrophobic plateau is able to destabilize the double-stranded regions adjacent to the guanines bound by ZF2. The linker residues and the internal dynamics of NC regulate therefore the different functions of the two zinc fingers that are required for an optimal chaperone activity. PMID:25029439

  13. Zinc finger protein 598 inhibits cell survival by promoting UV-induced apoptosis.

    PubMed

    Yang, Qiaohong; Gupta, Romi

    2018-01-19

    UV is one of the major causes of DNA damage induced apoptosis. However, cancer cells adopt alternative mechanisms to evade UV-induced apoptosis. To identify factors that protect cancer cells from UV-induced apoptosis, we performed a genome wide short-hairpin RNA (shRNA) screen, which identified Zinc finger protein 598 (ZNF598) as a key regulator of UV-induced apoptosis. Here, we show that UV irradiation transcriptionally upregulates ZNF598 expression. Additionally, ZNF598 knockdown in cancer cells inhibited UV-induced apoptosis. In our study, we observe that ELK1 mRNA level as well as phosphorylated ELK1 levels was up regulated upon UV irradiation, which was necessary for UV irradiation induced upregulation of ZNF598. Cells expressing ELK1 shRNA were also resistant to UV-induced apoptosis, and phenocopy ZNF598 knockdown. Upon further investigation, we found that ZNF598 knockdown inhibits UV-induced apoptotic gene expression, which matches with decrease in percentage of annexin V positive cell. Similarly, ectopic expression of ZNF598 promoted apoptotic gene expression and also increased annexin V positive cells. Collectively, these results demonstrate that ZNF598 is a UV irradiation regulated gene and its loss results in resistance to UV-induced apoptosis.

  14. Identification of zinc finger transcription factor EGR2 as a novel acetylated protein.

    PubMed

    Noritsugu, Kota; Ito, Akihiro; Nakao, Yoichi; Yoshida, Minoru

    2017-08-05

    EGR2 is a zinc finger transcription factor that regulates myelination in the peripheral nervous system and T cell anergy. The transcriptional activity of EGR2 is known to be regulated by its co-activators and/or co-repressors. Although the activity of transcription factors is generally regulated not only by interactions with co-regulators but also posttranslational modifications including acetylation, little is known about posttranslational modifications of EGR2. Here we show that EGR2 is a novel acetylated protein. Through immunoblotting analyses using an antibody that specifically recognizes the acetylated form of EGR2, CBP and p300 were identified as acetyltransferases, while HDAC6, 10 and SIRT1 were identified as deacetylases of EGR2. Although the NuRD complex containing HDAC1 and HDAC2 is known to associate with EGR2, the present study suggests that acetylation of EGR2 is regulated independently of NuRD. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Zinc finger protein 274 regulates imprinted expression of transcripts in Prader-Willi syndrome neurons.

    PubMed

    Langouët, Maéva; Glatt-Deeley, Heather R; Chung, Michael S; Dupont-Thibert, Clémence M; Mathieux, Elodie; Banda, Erin C; Stoddard, Christopher E; Crandall, Leann; Lalande, Marc

    2018-02-01

    Prader-Willi syndrome (PWS) is characterized by neonatal hypotonia, developmental delay and hyperphagia/obesity and is caused by the absence of paternal contribution to chromosome 15q11-q13. Using induced pluripotent stem cell (iPSC) models of PWS, we previously discovered an epigenetic complex that is comprised of the zinc-finger protein ZNF274 and the SET domain bifurcated 1 (SETDB1) histone H3 lysine 9 (H3K9) methyltransferase and that silences the maternal alleles at the PWS locus. Here, we have knocked out ZNF274 and rescued the expression of silent maternal alleles in neurons derived from PWS iPSC lines, without affecting DNA methylation at the PWS-Imprinting Center (PWS-IC). This suggests that the ZNF274 complex is a separate imprinting mark that represses maternal PWS gene expression in neurons and is a potential target for future therapeutic applications to rescue the PWS phenotype. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Zinc finger protein rotund deficiency affects development of the thoracic leg in Bombyx mori.

    PubMed

    Zhou, Chun-Yan; Zha, Xing-Fu; Liu, Hua-Wei; Xia, Qing-You

    2017-06-01

    The insect limb develops from the imaginal disc or larval leg during metamorphosis. The molecular mechanisms involved in the development from the larval to the adult leg are poorly understood. Herein, we cloned the full length of a zinc finger gene rotund from Bombyx mori (Bmrn), which contained a 1419 bp open reading frame, and encoded a 473 amino acid protein. Reverse transcription polymerase chain reaction and Western blot analyses demonstrated that Bmrn was expressed at higher levels in the epidermis than in other tissues tested, and it showed a very high expression level during metamorphosis. Knock-down of Bmrn produced defects in the tarsus and pretarsus, including the fusion and reduction of tarsomeres, and the developmental arrest of pretarsus. Our data showed that Bmrn is involved in the formation of the tarsus and pretarsus, whereas its homologous gene in Drosophila has been shown to affect three tarsal segments (t2-t4), suggesting that the remodeling of the leg has involved changes in the patterning of gene regulation during evolution. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  17. Increased expression of zinc finger protein 267 in non-alcoholic fatty liver disease.

    PubMed

    Schnabl, Bernd; Czech, Barbara; Valletta, Daniela; Weiss, Thomas S; Kirovski, Georgi; Hellerbrand, Claus

    2011-01-01

    Hepatocellular lipid accumulation is a hallmark of non-alcoholicfatty liver disease (NAFLD), which encompasses a spectrum ranging from simple steatosis to non-alcoholic steatohepatitis (NASH) and ultimately cirrhosis. Zinc finger protein 267 (ZNF267) belongs to the family of Kruppel-like transcription factors, which regulate diverse biological processes that include development, proliferation, and differentiation. We have previously demonstrated that ZNF267 expression is up-regulated in liver cirrhosis and is further increased in hepatocellular carcinoma (HCC). Here, we analyzed the expression of ZNF267 in tissue specimens of NAFLD patients and found a significant up-regulation compared to normal liver tissue. Noteworthy, ZNF267 mRNA was already significantly increased in steatotic liver tissue without inflammation. In line with this, incubation of primary human hepatocytes with palmitic acid induced a dose-dependent lipid accumulation and corresponding dose-dependent ZNF267 induction in vitro. Furthermore, hepatocellular lipid accumulation induced formation of reactive oxygen species (ROS), and also chemically induced ROS formation increased ZNF267 mRNA expression. In summary with previous findings, which revealed ZNF267 as pro-fibrogenic and pro-cancerogenic factor in chronic liver disease, the present study further suggests ZNF267 as promising therapeutic target particularly for NAFLD patients. In addition, it further indicates that hepatic steatosis per se has pathophysiological relevance and should not be considered as benign.

  18. Increased expression of Zinc finger protein 267 in non-alcoholic fatty liver disease

    PubMed Central

    Schnabl, Bernd; Czech, Barbara; Valletta, Daniela; Weiss, Thomas S; Kirovski, Georgi; Hellerbrand, Claus

    2011-01-01

    Hepatocellular lipid accumulation is a hallmark of non-alcoholic fatty liver disease (NAFLD), which encompasses a spectrum ranging from simple steatosis to non-alcoholic steatohepatitis (NASH) and ultimately cirrhosis. Zinc finger protein 267 (ZNF267) belongs to the family of Kruppel-like transcription factors, which regulate diverse biological processes that include development, proliferation, and differentiation. We have previously demonstrated that ZNF267 expression is up-regulated in liver cirrhosis and is further increased in hepatocellular carcinoma (HCC). Here, we analyzed the expression of ZNF267 in tissue specimens of NAFLD patients and found a significant up-regulation compared to normal liver tissue. Noteworthy, ZNF267 mRNA was already significantly increased in steatotic liver tissue without inflammation. In line with this, incubation of primary human hepatocytes with palmitic acid induced a dose-dependent lipid accumulation and corresponding dose-dependent ZNF267 induction in vitro. Furthermore, hepatocellular lipid accumulation induced formation of reactive oxygen species (ROS), and also chemically induced ROS formation increased ZNF267 mRNA expression. In summary with previous findings, which revealed ZNF267 as pro-fibrogenic and pro-cancerogenic factor in chronic liver disease, the present study further suggests ZNF267 as promising therapeutic target particularly for NAFLD patients. In addition, it further indicates that hepatic steatosis per se has pathophysiological relevance and should not be considered as benign. PMID:22076166

  19. Requirement for the Murine Zinc Finger Protein ZFR in Perigastrulation Growth and Survival

    PubMed Central

    Meagher, Madeleine J.; Braun, Robert E.

    2001-01-01

    The transition from preimplantation to postimplantation development leads to the initiation of complex cellular differentiation and morphogenetic movements, a dramatic decrease in cell cycle length, and a commensurate increase in the size of the embryo. Accompanying these changes is the need for the transfer of nutrients from the mother to the embryo and the elaboration of sophisticated genetic networks that monitor genomic integrity and the homeostatic control of cellular growth, differentiation, and programmed cell death. To determine the function of the murine zinc finger protein ZFR in these events, we generated mice carrying a null mutation in the gene encoding it. Homozygous mutant embryos form normal-appearing blastocysts that implant and initiate the process of gastrulation. Mutant embryos form mesoderm but they are delayed in their development and fail to form normal anterior embryonic structures. Loss of ZFR function leads to both an increase in programmed cell death and a decrease in mitotic index, especially in the region of the distal tip of the embryonic ectoderm. Mutant embryos also have an apparent reduction in apical vacuoles in the columnar visceral endoderm cells in the extraembryonic region. Together, these cellular phenotypes lead to a dramatic development delay and embryonic death by 8 to 9 days of gestation, which are independent of p53 function. PMID:11283266

  20. White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein.

    PubMed Central

    Ballario, P; Vittorioso, P; Magrelli, A; Talora, C; Cabibbo, A; Macino, G

    1996-01-01

    The Neurospora crassa blind mutant white collar-1 (wc-1) is pleiotropically defective in all blue light-induced phenomena, establishing a role for the wc-1 gene product in the signal transduction pathway. We report the cloning of the wc-1 gene isolated by chromosome walking and mutant complementation. The elucidation of the wc-1 gene product provides a key piece of the blue light signal transduction puzzle. The wc-1 gene encodes a 125 kDa protein whose encoded motifs include a single class four, zinc finger DNA binding domain and a glutamine-rich putative transcription activation domain. We demonstrate that the wc-1 zinc finger domain, expressed in Escherichia coli, is able to bind specifically to the promoter of a blue light-regulated gene of Neurospora using an in vitro gel retardation assay. Furthermore, we show that wc-1 gene expression is autoregulated and is transcriptionally induced by blue light irradiation. Images PMID:8612589

  1. A novel zinc-finger protein with a proline-rich domain mediates ABA-regulated seed dormancy in Arabidopsis.

    PubMed

    He, Yuehui; Gan, Susheng

    2004-01-01

    Seed dormancy is an important developmental process that prevents pre-harvest sprouting in many grains and other seeds. Abscisic acid (ABA), a plant hormone, plays a crucial role in regulating dormancy but the underlying molecular regulatory mechanisms are not fully understood. An Arabidopsis zinc-finger gene, MEDIATOR OF ABA-REGULATED DORMANCY 1 ( MARD1 ) was identified and functionally analyzed. MARD1 expression is up-regulated by ABA. A T-DNA insertion in the promoter region downstream of two ABA-responsive elements (ABREs) renders MARD1 unable to respond to ABA. The mard1 seeds are less dormant and germinate in total darkness; their germination is resistant to external ABA at the stage of radicle protrusion. These results suggest that this novel zinc-finger protein with a proline-rich N-terminus is an important downstream component of the ABA signaling pathway that mediates ABA-regulated seed dormancy in Arabidopsis.

  2. Post-Transcriptional Regulation of the Trypanosome Heat Shock Response by a Zinc Finger Protein

    PubMed Central

    Droll, Dorothea; Minia, Igor; Fadda, Abeer; Singh, Aditi; Stewart, Mhairi; Queiroz, Rafael; Clayton, Christine

    2013-01-01

    In most organisms, the heat-shock response involves increased heat-shock gene transcription. In Kinetoplastid protists, however, virtually all control of gene expression is post-transcriptional. Correspondingly, Trypanosoma brucei heat-shock protein 70 (HSP70) synthesis after heat shock depends on regulation of HSP70 mRNA turnover. We here show that the T. brucei CCCH zinc finger protein ZC3H11 is a post-transcriptional regulator of trypanosome chaperone mRNAs. ZC3H11 is essential in bloodstream-form trypanosomes and for recovery of insect-form trypanosomes from heat shock. ZC3H11 binds to mRNAs encoding heat-shock protein homologues, with clear specificity for the subset of trypanosome chaperones that is required for protein refolding. In procyclic forms, ZC3H11 was required for stabilisation of target chaperone-encoding mRNAs after heat shock, and the HSP70 mRNA was also decreased upon ZC3H11 depletion in bloodstream forms. Many mRNAs bound to ZC3H11 have a consensus AUU repeat motif in the 3′-untranslated region. ZC3H11 bound preferentially to AUU repeats in vitro, and ZC3H11 regulation of HSP70 mRNA in bloodstream forms depended on its AUU repeat region. Tethering of ZC3H11 to a reporter mRNA increased reporter expression, showing that it is capable of actively stabilizing an mRNA. These results show that expression of trypanosome heat-shock genes is controlled by a specific RNA-protein interaction. They also show that heat-shock-induced chaperone expression in procyclic trypanosome enhances parasite survival at elevated temperatures. PMID:23592996

  3. Abnormal Behaviors and Developmental Disorder of Hippocampus in Zinc Finger Protein 521 (ZFP521) Mutant Mice

    PubMed Central

    Ohkubo, Nobutaka; Matsubara, Etsuko; Yamanouchi, Jun; Akazawa, Rie; Aoto, Mamoru; Suzuki, Yoji; Sakai, Ikuya; Abe, Takaya; Kiyonari, Hiroshi; Matsuda, Seiji; Yasukawa, Masaki; Mitsuda, Noriaki

    2014-01-01

    Zinc finger protein 521 (ZFP521) regulates a number of cellular processes in a wide range of tissues, such as osteoblast formation and adipose commitment and differentiation. In the field of neurobiology, it is reported to be an essential factor for transition of epiblast stem cells into neural progenitors in vitro. However, the role of ZFP521 in the brain in vivo still remains elusive. To elucidate the role of ZFP521 in the mouse brain, we generated mice lacking exon 4 of the ZFP521 gene. The birth ratio of our ZFP521 Δ/Δ mice was consistent with Mendel's laws. Although ZFP521 Δ/Δ pups had no apparent defect in the body and were indistinguishable from ZFP521+/+ and ZFP521 +/Δ littermates at the time of birth, ZFP521 Δ/Δ mice displayed significant weight reduction as they grew, and most of them died before 10 weeks of age. They displayed abnormal behavior, such as hyper-locomotion, lower anxiety and impaired learning, which correspond to the symptoms of schizophrenia. The border of the granular cell layer of the dentate gyrus in the hippocampus of the mice was indistinct and granular neurons were reduced in number. Furthermore, Sox1-positive neural progenitor cells in the dentate gyrus and cerebellum were significantly reduced in number. Taken together, these findings indicate that ZFP521 directly or indirectly affects the formation of the neuronal cell layers of the dentate gyrus in the hippocampus, and thus ZFP521 Δ/Δ mice displayed schizophrenia-relevant symptoms. ZFP521 Δ/Δ mice may be a useful research tool as an animal model of schizophrenia. PMID:24676388

  4. Zinc-finger protein 418 overexpression protects against cardiac hypertrophy and fibrosis

    PubMed Central

    Huang, Zirui; Zhu, Zhilin; Xu, Chunli; Teng, Lin; He, Ling; Gu, Chen; Yi, Cai

    2017-01-01

    Background This study aimed to investigated the effect and mechanism of zinc-finger protein 418 (ZNF418) on cardiac hypertrophy caused by aortic banding (AB), phenylephrine (PE) or angiotensin II (Ang II) in vivo and in vitro. Methods The expression of ZNF418 in hearts of patients with dilated cardiomyopathy (DCM) or hypertrophic cardiomyopathy (HCM) and AB-induced cardiac hypertrophy mice, as well as in Ang II- or PE-induced hypertrophic primary cardiomyocytes was detected by western blotting. Then, the expression of ZNF418 was up-regulated or down-regulated in AB-induced cardiac hypertrophy mice and Ang II -induced hypertrophic primary cardiomyocytes. The hypertrophic responses and fibrosis were evaluated by echocardiography and histological analysis. The mRNA levels of hypertrophy markers and fibrotic markers were detected by RT-qPCR. Furthermore, the phosphorylation and total levels of c-Jun were measured by western blotting. Results ZNF418 was markedly down-regulated in hearts of cardiac hypertrophy and hypertrophic primary cardiomyocytes. Down-regulated ZNF418 exacerbated the myocyte size and fibrosis, moreover increased the mRNA levels of ANP, BNP, β-MHC, MCIP1.4, collagen 1a, collagen III, MMP-2 and fibronection in hearts of AB-treated ZNF418 knockout mice or Ang II-treated cardiomyocytes with AdshZNF418. Conversely, these hypertrophic responses were reduced in the ZNF418 transgenic (TG) mice treated by AB and the AdZNF418-transfected primary cardiomyocytes treated by Ang II. Additionally, the deficiency of ZNF418 enhanced the phosphorylation level of c-jun, and overexpression of ZNF418 suppressed the phosphorylation level of c-jun in vivo and in vitro. Conclusion ZNF418 maybe attenuate hypertrophic responses by inhibiting the activity of c-jun/AP-1. PMID:29065170

  5. Zinc Finger Transcription Factors Displaced SREBP Proteins as the Major Sterol Regulators during Saccharomycotina Evolution

    PubMed Central

    Maguire, Sarah L.; Wang, Can; Holland, Linda M.; Brunel, François; Neuvéglise, Cécile; Nicaud, Jean-Marc; Zavrel, Martin; White, Theodore C.; Wolfe, Kenneth H.; Butler, Geraldine

    2014-01-01

    In most eukaryotes, including the majority of fungi, expression of sterol biosynthesis genes is regulated by Sterol-Regulatory Element Binding Proteins (SREBPs), which are basic helix-loop-helix transcription activators. However, in yeasts such as Saccharomyces cerevisiae and Candida albicans sterol synthesis is instead regulated by Upc2, an unrelated transcription factor with a Gal4-type zinc finger. The SREBPs in S. cerevisiae (Hms1) and C. albicans (Cph2) have lost a domain, are not major regulators of sterol synthesis, and instead regulate filamentous growth. We report here that rewiring of the sterol regulon, with Upc2 taking over from SREBP, likely occurred in the common ancestor of all Saccharomycotina. Yarrowia lipolytica, a deep-branching species, is the only genome known to contain intact and full-length orthologs of both SREBP (Sre1) and Upc2. Deleting YlUPC2, but not YlSRE1, confers susceptibility to azole drugs. Sterol levels are significantly reduced in the YlUPC2 deletion. RNA-seq analysis shows that hypoxic regulation of sterol synthesis genes in Y. lipolytica is predominantly mediated by Upc2. However, YlSre1 still retains a role in hypoxic regulation; growth of Y. lipolytica in hypoxic conditions is reduced in a Ylupc2 deletion and is abolished in a Ylsre1/Ylupc2 double deletion, and YlSre1 regulates sterol gene expression during hypoxia adaptation. We show that YlSRE1, and to a lesser extent YlUPC2, are required for switching from yeast to filamentous growth in hypoxia. Sre1 appears to have an ancestral role in the regulation of filamentation, which became decoupled from its role in sterol gene regulation by the arrival of Upc2 in the Saccharomycotina. PMID:24453983

  6. Yeast two-hybrid cloning of a novel zinc finger protein that interacts with the multifunctional transcription factor YY1.

    PubMed Central

    Kalenik, J L; Chen, D; Bradley, M E; Chen, S J; Lee, T C

    1997-01-01

    Muscle-restricted transcription of sarcomeric actin genes is negatively controlled by the zinc finger protein YY1, which is down-regulated at the protein level during myogenic differentiation. To identify cellular proteins that might mediate the function/stability of YY1 in muscle cells, we screened an adult human muscle cDNA library using the yeast two-hybrid cloning system. We report the isolation and characterization of a novel protein termed YAF2 (YY1- associated factor 2) that interacts with YY1. The YAF2 cDNA encodes a 180 amino acid basic protein (pI 10.5) containing a single N-terminal C2-X10-C2 zinc finger. Lysine clusters are present that may function as a nuclear localization signal. Domain mapping analysis shows that the first and second zinc fingers of YY1 are targeted for YAF2 protein interaction. In contrast to the down-regulation of YY1, YAF2 message levels increase during in vitro differentiation of both rat skeletal and cardiac muscle cells. YAF2 appears to have a promyogenic regulatory role, since overexpression of YAF2 in C2 myoblasts stimulates myogenic promoter activity normally restricted by YY1. Co-transfection of YY1 reverses the stimulatory effect of YAF2. YAF2 also greatly potentiates proteolytic cleavage of YY1 by the calcium- activated protease m-calpain. The isolation of YAF2 may help in understanding the mechanisms through which inhibitors of myogenic transcription may be antagonized or eliminated by proteolysis during muscle development. PMID:9016636

  7. Automatic polymerase chain reaction product detection system for food safety monitoring using zinc finger protein fused to luciferase.

    PubMed

    Yoshida, Wataru; Kezuka, Aki; Murakami, Yoshiyuki; Lee, Jinhee; Abe, Koichi; Motoki, Hiroaki; Matsuo, Takafumi; Shimura, Nobuaki; Noda, Mamoru; Igimi, Shizunobu; Ikebukuro, Kazunori

    2013-11-01

    An automatic polymerase chain reaction (PCR) product detection system for food safety monitoring using zinc finger (ZF) protein fused to luciferase was developed. ZF protein fused to luciferase specifically binds to target double stranded DNA sequence and has luciferase enzymatic activity. Therefore, PCR products that comprise ZF protein recognition sequence can be detected by measuring the luciferase activity of the fusion protein. We previously reported that PCR products from Legionella pneumophila and Escherichia coli (E. coli) O157 genomic DNA were detected by Zif268, a natural ZF protein, fused to luciferase. In this study, Zif268-luciferase was applied to detect the presence of Salmonella and coliforms. Moreover, an artificial zinc finger protein (B2) fused to luciferase was constructed for a Norovirus detection system. In the luciferase activity detection assay, several bound/free separation process is required. Therefore, an analyzer that automatically performed the bound/free separation process was developed to detect PCR products using the ZF-luciferase fusion protein. By means of the automatic analyzer with ZF-luciferase fusion protein, target pathogenic genomes were specifically detected in the presence of other pathogenic genomes. Moreover, we succeeded in the detection of 10 copies of E. coli BL21 without extraction of genomic DNA by the automatic analyzer and E. coli was detected with a logarithmic dependency in the range of 1.0×10 to 1.0×10(6) copies. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Zinc finger protein 139 expression in gastric cancer and its clinical significance.

    PubMed

    Li, Yong; Zhao, Qun; Fan, Li-Qiao; Wang, Li-Li; Tan, Bi-Bo; Leng, Yan-Li; Liu, Yu; Wang, Dong

    2014-12-28

    To investigate the expression of zinc finger protein 139 (ZNF139) in gastric cancer (GC), and to analyze its clinical significance. A total of 108 patients who were diagnosed with GC and underwent surgery between January 2005 and March 2007 were enrolled in this study. Gastric tumor specimens and paired tumor-adjacent tissues were collected and paraffin-embedded, and the clinicopathologic characteristics and prognosis were recorded. The expression of ZNF139, Bcl-2, Bax, and caspase-3 were determined by immunohistochemistry, and apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling. SPSS 13.0 software was used for data processing and analyses, and significance was determined at P < 0.05. The expression of ZNF139 was stronger in tumors than in tumor-adjacent tissues (66.67% vs 44.44%; P < 0.01). Overexpression of ZNF139 correlated with tumor differentiation, invasion depth, clinical stage, lymphatic metastasis, and blood vessel invasion (all Ps < 0.05). Patients with overexpression of ZNF139 had a poorer prognosis (P < 0.01), and overexpression of ZNF139 was an independent factor for the prognosis of GC patients by a Cox survival analysis (P = 0.02). A negative relationship between ZNF139 and the apoptosis index was observed (r = -0.686; P < 0.01). The expression of Bcl-2 in GC was stronger than in tumor-adjacent tissues (66.67% vs 41.67%), whereas the expression levels of Bax and caspase-3 were lower in primary tumors (54.63% and 47.22%, respectively) than in tumor-adjacent tissues (73.15% and 73.15%, respectively) (all Ps < 0.05). The expression of ZNF139 negatively correlated with caspase-3 (r = -0.370; P < 0.01). The expressions of Bcl-2 and Bax were also negatively correlated (r = -0.231; P = 0.02). The expressions of caspase-3 and Bax protein were positively correlated (r = 0.217; P = 0.024). ZNF139 is related to clinicopathologic characteristics and prognosis of GC. Furthermore, it is overexpressed and involved

  9. Molecular cloning and characterization of a novel RING zinc-finger protein gene up-regulated under in vitro salt stress in cassava.

    PubMed

    dos Reis, Sávio Pinho; Tavares, Liliane de Souza Conceição; Costa, Carinne de Nazaré Monteiro; Brígida, Aílton Borges Santa; de Souza, Cláudia Regina Batista

    2012-06-01

    Cassava (Manihot esculenta Crantz) is one of the world's most important food crops. It is cultivated mainly in developing countries of tropics, since its root is a major source of calories for low-income people due to its high productivity and resistance to many abiotic and biotic factors. A previous study has identified a partial cDNA sequence coding for a putative RING zinc finger in cassava storage root. The RING zinc finger protein is a specialized type of zinc finger protein found in many organisms. Here, we isolated the full-length cDNA sequence coding for M. esculenta RZF (MeRZF) protein by a combination of 5' and 3' RACE assays. BLAST analysis showed that its deduced amino acid sequence has a high level of similarity to plant proteins of RZF family. MeRZF protein contains a signature sequence motif for a RING zinc finger at its C-terminal region. In addition, this protein showed a histidine residue at the fifth coordination site, likely belonging to the RING-H2 subgroup, as confirmed by our phylogenetic analysis. There is also a transmembrane domain in its N-terminal region. Finally, semi-quantitative RT-PCR assays showed that MeRZF expression is increased in detached leaves treated with sodium chloride. Here, we report the first evidence of a RING zinc finger gene of cassava showing potential role in response to salt stress.

  10. Human ribosomal protein L37 has motifs predicting serine/threonine phosphorylation and a zinc-finger domain.

    PubMed

    Barnard, G F; Staniunas, R J; Puder, M; Steele, G D; Chen, L B

    1994-08-02

    Ribosomal protein L37 mRNA is overexpressed in colon cancer. The nucleotide sequences of human L37 from several tumor and normal, colon and liver cDNA sources were determined to be identical. L37 mRNA was approximately 375 nucleotides long encoding 97 amino acids with M(r) = 11,070, pI = 12.6, multiple potential serine/threonine phosphorylation sites and a zinc-finger domain. The human sequence is compared to other species.

  11. Two short basic sequences surrounding the zinc finger of nucleocapsid protein NCp10 of Moloney murine leukemia virus are critical for RNA annealing activity.

    PubMed

    De Rocquigny, H; Ficheux, D; Gabus, C; Allain, B; Fournie-Zaluski, M C; Darlix, J L; Roques, B P

    1993-02-25

    The 56 amino acid nucleocapsid protein (NCp10) of Moloney Murine Leukemia Virus, contains a CysX2CysX4HisX4Cys zinc finger flanked by basic residues. In vitro NCp10 promotes genomic RNA dimerization, a process most probably linked to genomic RNA packaging, and replication primer tRNA(Pro) annealing to the initiation site of reverse transcription. To characterize the amino-acid sequences involved in the various functions of NCp10, we have synthesized by solid phase method the native protein and a series of derived peptides shortened at the N- or C-terminus with or without the zinc finger domain. In the latter case, the two parts of the protein were linked by a Glycine - Glycine spacer. The in vitro studies of these peptides show that nucleic acid annealing activities of NCp10 do not require a zinc finger but are critically dependent on the presence of specific sequences located on each side of the CCHC domain and containing proline and basic residues. Thus, deletion of 11R or 49PRPQT, of the fully active 29 residue peptide 11RQGGERRRSQLDRDGGKKPRGPRGPRPQT53 leads to a complete loss of NCp10 activity. Therefore it is proposed that in NCp10, the zinc finger directs the spatial recognition of the target RNAs by the basic domains surrounding the zinc finger.

  12. Two short basic sequences surrounding the zinc finger of nucleocapsid protein NCp10 of Moloney murine leukemia virus are critical for RNA annealing activity.

    PubMed Central

    De Rocquigny, H; Ficheux, D; Gabus, C; Allain, B; Fournie-Zaluski, M C; Darlix, J L; Roques, B P

    1993-01-01

    The 56 amino acid nucleocapsid protein (NCp10) of Moloney Murine Leukemia Virus, contains a CysX2CysX4HisX4Cys zinc finger flanked by basic residues. In vitro NCp10 promotes genomic RNA dimerization, a process most probably linked to genomic RNA packaging, and replication primer tRNA(Pro) annealing to the initiation site of reverse transcription. To characterize the amino-acid sequences involved in the various functions of NCp10, we have synthesized by solid phase method the native protein and a series of derived peptides shortened at the N- or C-terminus with or without the zinc finger domain. In the latter case, the two parts of the protein were linked by a Glycine - Glycine spacer. The in vitro studies of these peptides show that nucleic acid annealing activities of NCp10 do not require a zinc finger but are critically dependent on the presence of specific sequences located on each side of the CCHC domain and containing proline and basic residues. Thus, deletion of 11R or 49PRPQT, of the fully active 29 residue peptide 11RQGGERRRSQLDRDGGKKPRGPRGPRPQT53 leads to a complete loss of NCp10 activity. Therefore it is proposed that in NCp10, the zinc finger directs the spatial recognition of the target RNAs by the basic domains surrounding the zinc finger. Images PMID:8451185

  13. Physical and Functional Interactions of Human Endogenous Retrovirus Proteins Np9 and Rec with the Promyelocytic Leukemia Zinc Finger Protein▿

    PubMed Central

    Denne, Miriam; Sauter, Marlies; Armbruester, Vivienne; Licht, Jonathan D.; Roemer, Klaus; Mueller-Lantzsch, Nikolaus

    2007-01-01

    Only few of the human endogenous retrovirus (HERV) sequences in the human genome can produce proteins. We have previously reported that (i) patients with germ cell tumors often make antibodies against proteins encoded by HERV-K elements, (ii) expression of the HERV-K rec gene in transgenic mice can interfere with germ cell development and induce carcinoma in situ, and (iii) HERV-K np9 transcript is overproduced in many tumors including breast cancers. Here we document that both Np9 and Rec physically and functionally interact with the promyelocytic leukemia zinc finger (PLZF) tumor suppressor, a transcriptional repressor and chromatin remodeler implicated in cancer and the self-renewal of spermatogonial stem cells. Interaction is mediated via two different central and C-terminal domains of Np9 and Rec and the C-terminal zinc fingers of PLZF. One major target of PLZF is the c-myc proto-oncogene. Coexpression of Np9 and Rec with PLZF abrogates the transcriptional repression of the c-myc gene promoter by PLZF and results in c-Myc overproduction, altered expression of c-Myc-regulated genes, and corresponding effects on cell proliferation and survival. Thus, the human endogenous retrovirus proteins Np9 and Rec may act oncogenically by derepressing c-myc through the inhibition of PLZF. PMID:17360752

  14. Genetic Dissection of Photoreceptor Subtype Specification by the Drosophila melanogaster Zinc Finger Proteins Elbow and No ocelli

    PubMed Central

    Wernet, Mathias F.; Meier, Kerstin M.; Baumann-Klausener, Franziska; Dorfman, Ruslan; Weihe, Ulrich; Labhart, Thomas; Desplan, Claude

    2014-01-01

    The elbow/no ocelli (elb/noc) complex of Drosophila melanogaster encodes two paralogs of the evolutionarily conserved NET family of zinc finger proteins. These transcriptional repressors share a conserved domain structure, including a single atypical C2H2 zinc finger. In flies, Elb and Noc are important for the development of legs, eyes and tracheae. Vertebrate NET proteins play an important role in the developing nervous system, and mutations in the homolog ZNF703 human promote luminal breast cancer. However, their interaction with transcriptional regulators is incompletely understood. Here we show that loss of both Elb and Noc causes mis-specification of polarization-sensitive photoreceptors in the ‘dorsal rim area’ (DRA) of the fly retina. This phenotype is identical to the loss of the homeodomain transcription factor Homothorax (Hth)/dMeis. Development of DRA ommatidia and expression of Hth are induced by the Wingless/Wnt pathway. Our data suggest that Elb/Noc genetically interact with Hth, and we identify two conserved domains crucial for this function. Furthermore, we show that Elb/Noc specifically interact with the transcription factor Orthodenticle (Otd)/Otx, a crucial regulator of rhodopsin gene transcription. Interestingly, different Elb/Noc domains are required to antagonize Otd functions in transcriptional activation, versus transcriptional repression. We propose that similar interactions between vertebrate NET proteins and Meis and Otx factors might play a role in development and disease. PMID:24625735

  15. The mouse genome displays highly dynamic populations of KRAB-zinc finger protein genes and related genetic units.

    PubMed

    Kauzlaric, Annamaria; Ecco, Gabriela; Cassano, Marco; Duc, Julien; Imbeault, Michael; Trono, Didier

    2017-01-01

    KRAB-containing poly-zinc finger proteins (KZFPs) constitute the largest family of transcription factors encoded by mammalian genomes, and growing evidence indicates that they fulfill functions critical to both embryonic development and maintenance of adult homeostasis. KZFP genes underwent broad and independent waves of expansion in many higher vertebrates lineages, yet comprehensive studies of members harbored by a given species are scarce. Here we present a thorough analysis of KZFP genes and related units in the murine genome. We first identified about twice as many elements than previously annotated as either KZFP genes or pseudogenes, notably by assigning to this family an entity formerly considered as a large group of Satellite repeats. We then could delineate an organization in clusters distributed throughout the genome, with signs of recombination, translocation, duplication and seeding of new sites by retrotransposition of KZFP genes and related genetic units (KZFP/rGUs). Moreover, we harvested evidence indicating that closely related paralogs had evolved through both drifting and shifting of sequences encoding for zinc finger arrays. Finally, we could demonstrate that the KAP1-SETDB1 repressor complex tames the expression of KZFP/rGUs within clusters, yet that the primary targets of this regulation are not the KZFP/rGUs themselves but enhancers contained in neighboring endogenous retroelements and that, underneath, KZFPs conserve highly individualized patterns of expression.

  16. The mouse genome displays highly dynamic populations of KRAB-zinc finger protein genes and related genetic units

    PubMed Central

    Kauzlaric, Annamaria; Ecco, Gabriela; Cassano, Marco; Duc, Julien; Imbeault, Michael; Trono, Didier

    2017-01-01

    KRAB-containing poly-zinc finger proteins (KZFPs) constitute the largest family of transcription factors encoded by mammalian genomes, and growing evidence indicates that they fulfill functions critical to both embryonic development and maintenance of adult homeostasis. KZFP genes underwent broad and independent waves of expansion in many higher vertebrates lineages, yet comprehensive studies of members harbored by a given species are scarce. Here we present a thorough analysis of KZFP genes and related units in the murine genome. We first identified about twice as many elements than previously annotated as either KZFP genes or pseudogenes, notably by assigning to this family an entity formerly considered as a large group of Satellite repeats. We then could delineate an organization in clusters distributed throughout the genome, with signs of recombination, translocation, duplication and seeding of new sites by retrotransposition of KZFP genes and related genetic units (KZFP/rGUs). Moreover, we harvested evidence indicating that closely related paralogs had evolved through both drifting and shifting of sequences encoding for zinc finger arrays. Finally, we could demonstrate that the KAP1-SETDB1 repressor complex tames the expression of KZFP/rGUs within clusters, yet that the primary targets of this regulation are not the KZFP/rGUs themselves but enhancers contained in neighboring endogenous retroelements and that, underneath, KZFPs conserve highly individualized patterns of expression. PMID:28334004

  17. The primary structure of L37--a rat ribosomal protein with a zinc finger-like motif.

    PubMed

    Chan, Y L; Paz, V; Olvera, J; Wool, I G

    1993-04-30

    The amino acid sequence of the rat 60S ribosomal subunit protein L37 was deduced from the sequence of nucleotides in a recombinant cDNA. Ribosomal protein L37 has 96 amino acids, the NH2-terminal methionine is removed after translation of the mRNA, and has a molecular weight of 10,939. Ribosomal protein L37 has a single zinc finger-like motif of the C2-C2 type. Hybridization of the cDNA to digests of nuclear DNA suggests that there are 13 or 14 copies of the L37 gene. The mRNA for the protein is about 500 nucleotides in length. Rat L37 is related to Saccharomyces cerevisiae ribosomal protein YL35 and to Caenorhabditis elegans L37. We have identified in the data base a DNA sequence that encodes the chicken homolog of rat L37.

  18. The Zinc-Finger Thylakoid-Membrane Protein FIP Is Involved With Abiotic Stress Response in Arabidopsis thaliana.

    PubMed

    Lopes, Karina L; Rodrigues, Ricardo A O; Silva, Marcos C; Braga, Wiliane G S; Silva-Filho, Marcio C

    2018-01-01

    Many plant genes have their expression modulated by stress conditions. Here, we used Arabidopsis FtsH5 protease, which expression is regulated by light stress, as bait in a yeast two-hybrid screen to search for new proteins involved in the stress response. As a result, we found FIP (FtsH5 Interacting Protein), which possesses an amino proximal cleavable transit peptide, a hydrophobic membrane-anchoring region, and a carboxyl proximal C 4 -type zinc-finger domain. In vivo experiments using FIP fused to green fluorescent protein (GFP) showed a plastid localization. This finding was corroborated by chloroplast import assays that showed FIP inserted in the thylakoid membrane. FIP expression was down-regulated in plants exposed to high light intensity, oxidative, salt, and osmotic stresses, whereas mutant plants expressing low levels of FIP were more tolerant to these abiotic stresses. Our data shows a new thylakoid-membrane protein involved with abiotic stress response in Arabidopsis thaliana .

  19. Arabidopsis VARIEGATED 3 encodes a chloroplast-targeted, zinc-finger protein required for chloroplast and palisade cell development.

    PubMed

    Naested, Henrik; Holm, Agnethe; Jenkins, Tom; Nielsen, H Bjørn; Harris, Cassandra A; Beale, Michael H; Andersen, Mathias; Mant, Alexandra; Scheller, Henrik; Camara, Bilal; Mattsson, Ole; Mundy, John

    2004-09-15

    The stable, recessive Arabidopsis variegated 3 (var3) mutant exhibits a variegated phenotype due to somatic areas lacking or containing developmentally retarded chloroplasts and greatly reduced numbers of palisade cells. The VAR3 gene, isolated by transposon tagging, encodes the 85.9 kDa VAR3 protein containing novel repeats and zinc fingers described as protein interaction domains. VAR3 interacts specifically in yeast and in vitro with NCED4, a putative polyene chain or carotenoid dioxygenase, and both VAR3 and NCED4 accumulate in the chloroplast stroma. Metabolic profiling demonstrates that pigment profiles are qualitatively similar in wild type and var3, although var3 accumulates lower levels of chlorophylls and carotenoids. These results indicate that VAR3 is a part of a protein complex required for normal chloroplast and palisade cell development.

  20. A plant EPF-type zinc-finger protein, CaPIF1, involved in defence against pathogens.

    PubMed

    Oh, Sang-Keun; Park, Jeong Mee; Joung, Young Hee; Lee, Sanghyeob; Chung, Eunsook; Kim, Soo-Yong; Yu, Seung Hun; Choi, Doil

    2005-05-01

    SUMMARY To understand better the defence responses of plants to pathogen attack, we challenged hot pepper plants with bacterial pathogens and identified transcription factor-encoding genes whose expression patterns were altered during the subsequent hypersensitive response. One of these genes, CaPIF1 (Capsicum annuum Pathogen-Induced Factor 1), was characterized further. This gene encodes a plant-specific EPF-type protein that contains two Cys(2)/His(2) zinc fingers. CaPIF1 expression was rapidly and specifically induced when pepper plants were challenged with bacterial pathogens to which they are resistant. In contrast, challenge with a pathogen to which the plants are susceptible only generated weak CaPIF1 expression. CaPIF1 expression was also strongly induced in pepper leaves by the exogenous application of ethephon, an ethylene-releasing compound, and salicylic acid, whereas methyl jasmonate had only moderate effects. CaPIF1 localized to the nuclei of onion epidermis when expressed as a CaPIF1-smGFP fusion protein. Transgenic tobacco plants over-expressing CaPIF1 driven by the CaMV 35S promoter showed increased resistance to challenge with a tobacco-specific pathogen or non-host bacterial pathogens. These plants also showed constitutive up-regulation of multiple defence-related genes. Moreover, virus-induced silencing of the CaPIF1 orthologue in Nicotiana benthamiana enhanced susceptibility to the same host or non-host bacterial pathogens. These observations provide evidence that an EPF-type Cys(2)/His(2) zinc-finger protein plays a crucial role in the activation of the pathogen defence response in plants.

  1. Improved ethanol production at high temperature by consolidated bioprocessing using Saccharomyces cerevisiae strain engineered with artificial zinc finger protein.

    PubMed

    Khatun, M Mahfuza; Yu, Xinshui; Kondo, Akihiko; Bai, Fengwu; Zhao, Xinqing

    2017-12-01

    In this work, the consolidated bioprocessing (CBP) yeast Saccharomyces cerevisiae MNII/cocδBEC3 was transformed by an artificial zinc finger protein (AZFP) library to improve its thermal tolerance, and the strain MNII-AZFP with superior growth at 42°C was selected. Improved degradation of acid swollen cellulose by 45.9% led to an increase in ethanol production, when compared to the control strain. Moreover, the fermentation of Jerusalem artichoke stalk (JAS) by MNII-AZFP was shortened by 12h at 42°C with a concomitant improvement in ethanol production. Comparative transcriptomics analysis suggested that the AZFP in the mutant exerted beneficial effect by modulating the expression of multiple functional genes. These results provide a feasible strategy for efficient ethanol production from JAS and other cellulosic biomass through CBP based-fermentation at elevated temperatures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Epigenetic regulation of puberty via Zinc finger protein-mediated transcriptional repression

    PubMed Central

    Lomniczi, Alejandro; Wright, Hollis; Castellano, Juan Manuel; Matagne, Valerie; Toro, Carlos A.; Ramaswamy, Suresh; Plant, Tony M.; Ojeda, Sergio R.

    2015-01-01

    In primates, puberty is unleashed by increased GnRH release from the hypothalamus following an interval of juvenile quiescence. GWAS implicates Zinc finger (ZNF) genes in timing human puberty. Here we show that hypothalamic expression of several ZNFs decreased in agonadal male monkeys in association with the pubertal reactivation of gonadotropin secretion. Expression of two of these ZNFs, GATAD1 and ZNF573, also decreases in peripubertal female monkeys. However, only GATAD1 abundance increases when gonadotropin secretion is suppressed during late infancy. Targeted delivery of GATAD1 or ZNF573 to the rat hypothalamus delays puberty by impairing the transition of a transcriptional network from an immature repressive epigenetic configuration to one of activation. GATAD1 represses transcription of two key puberty-related genes, KISS1 and TAC3, directly, and reduces the activating histone mark H3K4me2 at each promoter via recruitment of histone demethylase KDM1A. We conclude that GATAD1 epitomizes a subset of ZNFs involved in epigenetic repression of primate puberty. PMID:26671628

  3. Epigenetic regulation of puberty via Zinc finger protein-mediated transcriptional repression.

    PubMed

    Lomniczi, Alejandro; Wright, Hollis; Castellano, Juan Manuel; Matagne, Valerie; Toro, Carlos A; Ramaswamy, Suresh; Plant, Tony M; Ojeda, Sergio R

    2015-12-16

    In primates, puberty is unleashed by increased GnRH release from the hypothalamus following an interval of juvenile quiescence. GWAS implicates Zinc finger (ZNF) genes in timing human puberty. Here we show that hypothalamic expression of several ZNFs decreased in agonadal male monkeys in association with the pubertal reactivation of gonadotropin secretion. Expression of two of these ZNFs, GATAD1 and ZNF573, also decreases in peripubertal female monkeys. However, only GATAD1 abundance increases when gonadotropin secretion is suppressed during late infancy. Targeted delivery of GATAD1 or ZNF573 to the rat hypothalamus delays puberty by impairing the transition of a transcriptional network from an immature repressive epigenetic configuration to one of activation. GATAD1 represses transcription of two key puberty-related genes, KISS1 and TAC3, directly, and reduces the activating histone mark H3K4me2 at each promoter via recruitment of histone demethylase KDM1A. We conclude that GATAD1 epitomizes a subset of ZNFs involved in epigenetic repression of primate puberty.

  4. Role of protein structure and the role of individual fingers in zinc finger protein-DNA recognition: a molecular dynamics simulation study and free energy calculations

    NASA Astrophysics Data System (ADS)

    Hamed, Mazen Y.

    2018-05-01

    Molecular dynamics and MM_GBSA energy calculations on various zinc finger proteins containing three and four fingers bound to their target DNA gave insights into the role of each finger in the DNA binding process as part of the protein structure. The wild type Zif 268 (PDB code: 1AAY) gave a ΔG value of - 76.1 (14) kcal/mol. Zinc fingers ZF1, ZF2 and ZF3 were mutated in one experiment and in another experiment one finger was cut and the rest of the protein was studied for binding. The ΔΔG values for the Zinc Finger protein with both ZF1 and ZF2 mutated was + 80 kcal/mol, while mutating only ZF1 the ΔΔG value was + 52 kcal/mol (relative to the wild type). Cutting ZF3 and studying the protein consisting only of ZF1 linked to ZF2 gave a ΔΔG value of + 68 kcal/mol. Upon cutting ZF1, the resulting ZF2 linked to ZF3 protein gave a ΔΔG value of + 41 kcal/mol. The above results shed light on the importance of each finger in the binding process, especially the role of ZF1 as the anchoring finger followed in importance by ZF2 and ZF3. The energy difference between the binding of the wild type protein Zif268 (1AAY) and that for individual finger binding to DNA according to the formula: ΔΔGlinkers, otherstructuralfactors = ΔGzif268 - (ΔGF1+F2+F3) gave a value = - 44.5 kcal/mol. This stabilization can be attributed to the contribution of linkers and other structural factors in the intact protein in the DNA binding process. DNA binding energies of variant proteins of the wild type Zif268 which differ in their ZF1 amino acid sequence gave evidence of a good relationship between binding energy and recognition and specificity, this finding confirms the reported vital role of ZF1 in the ZF protein scanning and anchoring to the target DNA sequence. The role of hydrogen bonds in both specific and nonspecific amino acid-DNA contacts is discussed in relation to mutations. The binding energies of variant Zinc Finger proteins confirmed the role of ZF1 in the recognition

  5. Role of protein structure and the role of individual fingers in zinc finger protein-DNA recognition: a molecular dynamics simulation study and free energy calculations.

    PubMed

    Hamed, Mazen Y

    2018-05-03

    Molecular dynamics and MM_GBSA energy calculations on various zinc finger proteins containing three and four fingers bound to their target DNA gave insights into the role of each finger in the DNA binding process as part of the protein structure. The wild type Zif 268 (PDB code: 1AAY) gave a ΔG value of - 76.1 (14) kcal/mol. Zinc fingers ZF1, ZF2 and ZF3 were mutated in one experiment and in another experiment one finger was cut and the rest of the protein was studied for binding. The ΔΔG values for the Zinc Finger protein with both ZF1 and ZF2 mutated was + 80 kcal/mol, while mutating only ZF1 the ΔΔG value was + 52 kcal/mol (relative to the wild type). Cutting ZF3 and studying the protein consisting only of ZF1 linked to ZF2 gave a ΔΔG value of + 68 kcal/mol. Upon cutting ZF1, the resulting ZF2 linked to ZF3 protein gave a ΔΔG value of + 41 kcal/mol. The above results shed light on the importance of each finger in the binding process, especially the role of ZF1 as the anchoring finger followed in importance by ZF2 and ZF3. The energy difference between the binding of the wild type protein Zif268 (1AAY) and that for individual finger binding to DNA according to the formula: ΔΔG linkers, otherstructuralfactors  = ΔG zif268  - (ΔG F1+F2+F3 ) gave a value = - 44.5 kcal/mol. This stabilization can be attributed to the contribution of linkers and other structural factors in the intact protein in the DNA binding process. DNA binding energies of variant proteins of the wild type Zif268 which differ in their ZF1 amino acid sequence gave evidence of a good relationship between binding energy and recognition and specificity, this finding confirms the reported vital role of ZF1 in the ZF protein scanning and anchoring to the target DNA sequence. The role of hydrogen bonds in both specific and nonspecific amino acid-DNA contacts is discussed in relation to mutations. The binding energies of variant Zinc Finger proteins confirmed the

  6. Molecular Characterization of the Schistosoma mansoni Zinc Finger Protein SmZF1 as a Transcription Factor

    PubMed Central

    D'Astolfo, Diego S.; Cardoso, Fernanda C.; Rajão, Matheus A.; Mourão, Marina M.; Gava, Elisandra; Oliveira, Sérgio C.; Macedo, Andréa M.; Machado, Carlos R.; Pena, Sérgio D. J.; Kitten, Gregory T.; Franco, Glória R.

    2009-01-01

    Background During its development, the parasite Schistosoma mansoni is exposed to different environments and undergoes many morphological and physiological transformations as a result of profound changes in gene expression. Characterization of proteins involved in the regulation of these processes is of importance for the understanding of schistosome biology. Proteins containing zinc finger motifs usually participate in regulatory processes and are considered the major class of transcription factors in eukaryotes. It has already been shown, by EMSA (Eletrophoretic Mobility Shift Assay), that SmZF1, a S. mansoni zinc finger (ZF) protein, specifically binds both DNA and RNA oligonucleotides. This suggests that this protein might act as a transcription factor in the parasite. Methodology/Principal Findings In this study we extended the characterization of SmZF1 by determining its subcellular localization and by verifying its ability to regulate gene transcription. We performed immunohistochemistry assays using adult male and female worms, cercariae and schistosomula to analyze the distribution pattern of SmZF1 and verified that the protein is mainly detected in the cells nuclei of all tested life cycle stages except for adult female worms. Also, SmZF1 was heterologously expressed in mammalian COS-7 cells to produce the recombinant protein YFP-SmZF1, which was mainly detected in the nucleus of the cells by confocal microscopy and Western blot assays. To evaluate the ability of this protein to regulate gene transcription, cells expressing YFP-SmZF1 were tested in a luciferase reporter system. In this system, the luciferase gene is downstream of a minimal promoter, upstream of which a DNA region containing four copies of the SmZF1 putative best binding site (D1-3DNA) was inserted. SmZF1 increased the reporter gene transcription by two fold (p≤0.003) only when its specific binding site was present. Conclusion Taken together, these results strongly support the hypothesis

  7. Zhx2 (zinc fingers and homeoboxes 2) regulates major urinary protein gene expression in the mouse liver

    PubMed Central

    Jiang, Jieyun; Creasy, Kate Townsend; Purnell, Justin; Peterson, Martha L.; Spear, Brett T.

    2017-01-01

    The mouse major urinary proteins (Mups) are encoded by a large family of highly related genes clustered on chromosome 4. Mups, synthesized primarily and abundantly in the liver and secreted through the kidneys, exhibit male-biased expression. Mups bind a variety of volatile ligands; these ligands, and Mup proteins themselves, influence numerous behavioral traits. Although urinary Mup protein levels vary between inbred mouse strains, this difference is most pronounced in BALB/cJ mice, which have dramatically low urinary Mup levels; this BALB/cJ trait had been mapped to a locus on chromosome 15. We previously identified Zhx2 (zinc fingers and homeoboxes 2) as a regulator of numerous liver-enriched genes. Zhx2 is located on chromosome 15, and a natural hypomorphic mutation in the BALB/cJ Zhx2 allele dramatically reduces Zhx2 expression. Based on these data, we hypothesized that reduced Zhx2 levels are responsible for lower Mup expression in BALB/cJ mice. Using both transgenic and knock-out mice along with in vitro assays, our data show that Zhx2 binds Mup promoters and is required for high levels of Mup expression in the adult liver. In contrast to previously identified Zhx2 targets that appear to be repressed by Zhx2, Mup genes are positively regulated by Zhx2. These data identify Zhx2 as a novel regulator of Mup expression and indicate that Zhx2 activates as well as represses expression of target genes. PMID:28258223

  8. Specific Labeling of Zinc Finger Proteins using Non-canonical Amino Acids and Copper-free Click Chemistry

    PubMed Central

    Kim, Younghoon; Kim, Sung Hoon; Ferracane, Dean; Katzenellenbogen, John A.

    2012-01-01

    Zinc finger proteins (ZFPs) play a key role in transcriptional regulation and serve as invaluable tools for gene modification and genetic engineering. Development of efficient strategies for labeling metalloproteins such as ZFPs is essential for understanding and controlling biological processes. In this work, we engineered ZFPs containing cysteine-histidine (Cys2-His2) motifs by metabolic incorporation of the unnatural amino acid azidohomoalanine (AHA), followed by specific protein labeling via click chemistry. We show that cyclooctyne promoted [3 + 2] dipolar cycloaddition with azides, known as copper-free click chemistry, provides rapid and specific labeling of ZFPs at high yields as determined by mass spectrometry analysis. We observe that the DNA-binding activity of ZFPs labeled by conventional copper-mediated click chemistry was completely abolished, whereas ZFPs labeled by copper-free click chemistry retain their sequence-specific DNA-binding activity under native conditions, as determined by electrophoretic mobility shift assays, protein microarrays and kinetic binding assays based on Förster resonance energy transfer (FRET). Our work provides a general framework to label metalloproteins such as ZFPs by metabolic incorporation of unnatural amino acids followed by copper-free click chemistry. PMID:22871171

  9. Directing an artificial zinc finger protein to new targets by fusion to a non-DNA-binding domain.

    PubMed

    Lim, Wooi F; Burdach, Jon; Funnell, Alister P W; Pearson, Richard C M; Quinlan, Kate G R; Crossley, Merlin

    2016-04-20

    Transcription factors are often regarded as having two separable components: a DNA-binding domain (DBD) and a functional domain (FD), with the DBD thought to determine target gene recognition. While this holds true for DNA bindingin vitro, it appears thatin vivoFDs can also influence genomic targeting. We fused the FD from the well-characterized transcription factor Krüppel-like Factor 3 (KLF3) to an artificial zinc finger (AZF) protein originally designed to target the Vascular Endothelial Growth Factor-A (VEGF-A) gene promoter. We compared genome-wide occupancy of the KLF3FD-AZF fusion to that observed with AZF. AZF bound to theVEGF-Apromoter as predicted, but was also found to occupy approximately 25,000 other sites, a large number of which contained the expected AZF recognition sequence, GCTGGGGGC. Interestingly, addition of the KLF3 FD re-distributes the fusion protein to new sites, with total DNA occupancy detected at around 50,000 sites. A portion of these sites correspond to known KLF3-bound regions, while others contained sequences similar but not identical to the expected AZF recognition sequence. These results show that FDs can influence and may be useful in directing AZF DNA-binding proteins to specific targets and provide insights into how natural transcription factors operate. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. A Homozygous Mutation in a Novel Zinc-Finger Protein, ERIS, Is Responsible for Wolfram Syndrome 2

    PubMed Central

    Amr, Sami ; Heisey, Cindy ; Zhang, Min ; Xia, Xia-Juan ; Shows, Kathryn H. ; Ajlouni, Kamel ; Pandya, Arti ; Satin, Leslie S. ; El-Shanti, Hatem ; Shiang, Rita 

    2007-01-01

    A single missense mutation was identified in a novel, highly conserved zinc-finger gene, ZCD2, in three consanguineous families of Jordanian descent with Wolfram syndrome (WFS). It had been shown that these families did not have mutations in the WFS1 gene (WFS1) but were mapped to the WFS2 locus at 4q22-25. A G→C transversion at nucleotide 109 predicts an amino acid change from glutamic acid to glutamine (E37Q). Although the amino acid is conserved and the mutation is nonsynonymous, the pathogenesis for the disorder is because the mutation also causes aberrant splicing. The mutation was found to disrupt messenger RNA splicing by eliminating exon 2, and it results in the introduction of a premature stop codon. Mutations in WFS1 have also been found to cause low-frequency nonsyndromic hearing loss, progressive hearing loss, and isolated optic atrophy associated with hearing loss. Screening of 377 probands with hearing loss did not identify mutations in the WFS2 gene. The WFS1-encoded protein, Wolframin, is known to localize to the endoplasmic reticulum and plays a role in calcium homeostasis. The ZCD2-encoded protein, ERIS (endoplasmic reticulum intermembrane small protein), is also shown to localize to the endoplasmic reticulum but does not interact directly with Wolframin. Lymphoblastoid cells from affected individuals show a significantly greater rise in intracellular calcium when stimulated with thapsigargin, compared with controls, although no difference was observed in resting concentrations of intracellular calcium. PMID:17846994

  11. The sigma-1 receptor-Zinc finger protein 179 pathway protects against hydrogen peroxide-induced cell injury

    PubMed Central

    Su, Tzu-Chieh; Lin, Shu-Hui; Lee, Pin-Tse; Yeh, Shiu-Hwa; Hsieh, Tsung-Hsun; Chou, Szu-Yi; Su, Tsung-Ping; Hung, Jan-Jong; Chang, Wen-Chang; Lee, Yi-Chao; Chuang, Jian-Ying

    2017-01-01

    The accumulation of reactive oxygen species (ROS) have implicated the pathogenesis of several human diseases including neurodegenerative disorders, stroke, and traumatic brain injury, hence protecting neurons against ROS is very important. In this study, we focused on sigma-1 receptor (Sig-1R), a chaperone at endoplasmic reticulum, and investigated its protective functions. Using hydrogen peroxide (H2O2)-induced ROS accumulation model, we verified that apoptosis-signaling pathways were elicited by H2O2 treatment. However, the Sig-1R agonists, dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS), reduced the activation of apoptotic pathways significantly. By performing protein-protein interaction assays and shRNA knockdown of Sig-1R, we identified the brain Zinc finger protein 179 (Znf179) as a downstream target of Sig-1R regulation. The neuroprotective effect of Znf179 overexpression was similar to that of DHEAS treatment, and likely mediated by affecting the levels of antioxidant enzymes. We also quantified the levels of peroxiredoxin 3 (Prx3) and superoxide dismutase 2 (SOD2) in the hippocampi of wild-type and Znf179 knockout mice, and found both enzymes to be reduced in the knockout versus the wild-type mice. In summary, these results reveal that Znf179 plays a novel role in neuroprotection, and Sig-1R agonists may be therapeutic candidates to prevent ROS-induced damage in neurodegenerative and neurotraumatic diseases. PMID:26792191

  12. Selection for a Zinc-Finger Protein Contributes to Seed Oil Increase during Soybean Domestication1[OPEN

    PubMed Central

    Li, Qing-Tian; Lu, Xiang; Song, Qing-Xin; Chen, Hao-Wei; Wei, Wei; Tao, Jian-Jun; Ma, Biao; Bi, Ying-Dong; Li, Wei; Lai, Yong-Cai; Shui, Guang-Hou; Chen, Shou-Yi

    2017-01-01

    Seed oil is a momentous agronomical trait of soybean (Glycine max) targeted by domestication in breeding. Although multiple oil-related genes have been uncovered, knowledge of the regulatory mechanism of seed oil biosynthesis is currently limited. We demonstrate that the seed-preferred gene GmZF351, encoding a tandem CCCH zinc finger protein, is selected during domestication. Further analysis shows that GmZF351 facilitates oil accumulation by directly activating WRINKLED1, BIOTIN CARBOXYL CARRIER PROTEIN2, 3-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE III, DIACYLGLYCEROL O-ACYLTRANSFERASE1, and OLEOSIN2 in transgenic Arabidopsis (Arabidopsis thaliana) seeds. Overexpression of GmZF351 in transgenic soybean also activates lipid biosynthesis genes, thereby accelerating seed oil accumulation. The ZF351 haplotype from the cultivated soybean group and the wild soybean (Glycine soja) subgroup III correlates well with high gene expression level, seed oil contents and promoter activity, suggesting that selection of GmZF351 expression leads to increased seed oil content in cultivated soybean. Our study provides novel insights into the regulatory mechanism for seed oil accumulation, and the manipulation of GmZF351 may have great potential in the improvement of oil production in soybean and other related crops. PMID:28184009

  13. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants.

    PubMed

    Kim, J C; Lee, S H; Cheong, Y H; Yoo, C M; Lee, S I; Chun, H J; Yun, D J; Hong, J C; Lee, S Y; Lim, C O; Cho, M J

    2001-02-01

    Cold stress on plants induces changes in the transcription of cold response genes. A cDNA clone encoding C2H2-type zinc finger protein, SCOF-1, was isolated from soybean. The transcription of SCOF-1 is specifically induced by low temperature and abscisic acid (ABA) but not by dehydration or high salinity. Constitutive overexpression of SCOF-1 induced cold-regulated (COR) gene expression and enhanced cold tolerance of non-acclimated transgenic Arabidopsis and tobacco plants. SCOF-1 localized to the nucleus but did not bind directly to either C-repeat/dehydration (CRT/DRE) or ABA responsive element (ABRE), cis-acting DNA regulatory elements present in COR gene promoters. However, SCOF-1 greatly enhanced the DNA binding activity of SGBF-1, a soybean G-box binding bZIP transcription factor, to ABRE in vitro. SCOF-1 also interacted with SGBF-1 in a yeast two-hybrid system. The SGBF-1 transactivated the beta-glucuronidase reporter gene driven by the ABRE element in Arabidopsis leaf protoplasts. Furthermore, the SCOF-1 enhanced ABRE-dependent gene expression mediated by SGBF-1. These results suggest that SCOF-1 may function as a positive regulator of COR gene expression mediated by ABRE via protein-protein interaction, which in turn enhances cold tolerance of plants.

  14. The zinc-finger protein ZFR is critical for Staufen 2 isoform specific nucleocytoplasmic shuttling in neurons.

    PubMed

    Elvira, George; Massie, Bernard; DesGroseillers, Luc

    2006-01-01

    In mammalian neurons, transport and translation of mRNA to individual potentiated synapses is believed to occur via a heterogeneous population of RNA granules. To identify components of Staufen2-containing granules, we used the yeast two-hybrid system. A mouse fetal cDNA library was screened with the N-terminal fragment of Staufen2 as bait. ZFR, a three zinc finger protein, was identified as an interacting protein. Confocal microscopy showed that ZFR, although mainly nuclear, was also found in the somatodendritic compartment of primary hippocampal neurons where it localized as granule-like structures. Co-localization with Staufen2 was observed in several granules. Biochemical analyses (immunoprecipitation, cell fractionation) further confirmed the ZFR/Staufen2 association. ZFR was shown to interact with at least the Staufen2(62) isoform, but not with Staufen1. ZFR also co-fractionated with ribosomes and Staufen2(59) and Staufen2(52) in a sucrose gradient. Interestingly, knockdown expression of ZFR through RNA interference in neurons relocated specifically the Staufen2(62), but not the Staufen2(59), isoform to the nucleus. Our results demonstrate that ZFR is a native component of Staufen2-containing granules and likely plays its role during early steps of RNA transport and localization. They also suggest that one of these roles may be linked to Staufen2(62)-containing RNA granule formation in the nucleus and/or to their nucleo-cytoplasmic shuttling.

  15. Plant architecture and grain yield are regulated by the novel DHHC-type zinc finger protein genes in rice (Oryza sativa L.).

    PubMed

    Zhou, Bo; Lin, Jian Zhong; Peng, Dan; Yang, Yuan Zhu; Guo, Ming; Tang, Dong Ying; Tan, Xiaofeng; Liu, Xuan Ming

    2017-01-01

    In many plants, architecture and grain yield are affected by both the environment and genetics. In rice, the tiller is a vital factor impacting plant architecture and regulated by many genes. In this study, we cloned a novel DHHC-type zinc finger protein gene Os02g0819100 and its alternative splice variant OsDHHC1 from the cDNA of rice (Oryza sativa L.), which regulate plant architecture by altering the tiller in rice. The tillers increased by about 40% when this type of DHHC-type zinc finger protein gene was over-expressed in Zhong Hua 11 (ZH11) rice plants. Moreover, the grain yield of transgenic rice increased approximately by 10% compared with wild-type ZH11. These findings provide an important genetic engineering approach for increasing rice yields. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Comparison of the Structure and Expression of Odd-Skipped and Two Related Genes That Encode a New Family of Zinc Finger Proteins in Drosophila

    PubMed Central

    Hart, M. C.; Wang, L.; Coulter, D. E.

    1996-01-01

    The odd-skipped (odd) gene, which was identified on the basis of a pair-rule segmentation phenotype in mutant embryos, is initially expressed in the Drosophila embryo in seven pair-rule stripes, but later exhibits a segment polarity-like pattern for which no phenotypic correlate is apparent. We have molecularly characterized two embryonically expressed odd-cognate genes, sob and bowel (bowl), that encode proteins with highly conserved C(2)H(2) zinc fingers. While the Sob and Bowl proteins each contain five tandem fingers, the Odd protein lacks a fifth (C-terminal) finger and is also less conserved among the four common fingers. Reminiscent of many segmentation gene paralogues, the closely linked odd and sob genes are expressed during embryogenesis in similar striped patterns; in contrast, the less-tightly linked bowl gene is expressed in a distinctly different pattern at the termini of the early embryo. Although our results indicate that odd and sob are more likely than bowl to share overlapping developmental roles, some functional divergence between the Odd and Sob proteins is suggested by the absence of homology outside the zinc fingers, and also by amino acid substitutions in the Odd zinc fingers at positions that appear to be constrained in Sob and Bowl. PMID:8878683

  17. Enhanced cellulase production from Trichoderma reesei Rut-C30 by engineering with an artificial zinc finger protein library.

    PubMed

    Zhang, Fei; Bai, Fengwu; Zhao, Xinqing

    2016-10-01

    Trichoderma reesei Rut-C30 is a well-known cellulase producer, and improvement of its cellulase production is of great interest. An artificial zinc finger protein (AZFP) library is constructed for expression in T. reesei Rut-C30, and a mutant strain T. reesei U3 is selected based on its enhanced cellulase production. The U3 mutant shows a 55% rise in filter paper activity and 8.1-fold increased β-glucosidase activity, when compared to the native strain T. reesei Rut-C30. It is demonstrated that enhanced β-glucosidase activity was due to elevated transcription level of β-glucosidase gene in the U3 mutant. Moreover, significant elevation in transcription levels of several putative Azfp-U3 target genes is detected in the U3 mutant, including genes encoding hypothetical transcription factors and a putative glycoside hydrolase. Furthermore, U3 cellulase shows 115% higher glucose yield from pretreated corn stover, when compared to the cellulase of T. reesei Rut-C30. These results demonstrate that AZFP can be used to improve cellulase production in T. reesei Rut-C30. Our current work offers the establishment of an alternative strategy to develop fungal cell factories for improved production of high value industrial products. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Regulation of hippocampus-dependent memory by the zinc finger protein Zbtb20 in mature CA1 neurons.

    PubMed

    Ren, Anjing; Zhang, Huan; Xie, Zhifang; Ma, Xianhua; Ji, Wenli; He, David Z Z; Yuan, Wenjun; Ding, Yu-Qiang; Zhang, Xiao-Hui; Zhang, Weiping J

    2012-10-01

    The mammalian hippocampus harbours neural circuitry that is crucial for associative learning and memory. The mechanisms that underlie the development and regulation of this complex circuitry are not fully understood. Our previous study established an essential role for the zinc finger protein Zbtb20 in the specification of CA1 field identity in the developing hippocampus. Here, we show that conditionally deleting Zbtb20 specifically in mature CA1 pyramidal neurons impaired hippocampus-dependent memory formation, without affecting hippocampal architecture or the survival, identity and basal excitatory synaptic activity of CA1 pyramidal neurons. We demonstrate that mature CA1-specific Zbtb20 knockout mice exhibited reductions in long-term potentiation (LTP) and NMDA receptor (NMDAR)-mediated excitatory post-synaptic currents. Furthermore, we show that activity-induced phosphorylation of ERK and CREB is impaired in the hippocampal CA1 of Zbtb20 mutant mice. Collectively, these results indicate that Zbtb20 in mature CA1 plays an important role in LTP and memory by regulating NMDAR activity, and activation of ERK and CREB.

  19. Sequences homologous to the human x- and y-borne zinc finger protein genes (ZFX/Y) are autosomal in monotreme mannals

    SciT

    Watson, J.M.; Frost, C.; Graves, M.J.A.

    1993-02-01

    The human zinc finger protein genes (ZFX/Y) were identified as a result of a systematic search for the testis-determining factor gene on the human Y chromosome. Although they play no direct role in sex determination, they are of particular interest because they are highly conserved among mammals, birds, and amphibians and because, in eutherian mammals at least, they have active alleles on both the X and the Y chromosomes outside the pseudoautosomal region. We used in situ hybridization to localize the homologues of the zinc finger protein gene to chromosome 1 of the Australian echidna and to an equivalent positionmore » on chromosomes 1 and 2 of the playtpus. The localization to platypus chromosome 1 was confirmed by Southern analysis of a Chinese hamster [times] platypus cell hybrid retaining most of platypus chromosome 1. This localization is consistent with the cytological homology of chromosome 1 between the two species. The zinc finger protein gene homologues were localized to regions of platypus chromosomes 1 and 2 that included a number of other genes situated near ZFX on the short arm of the human X chromosome. These results support the hypothesis that many of the genes located on the short arm of the human X were originally autosomal and have been translocated to the X chromosome since the eutherian-metatherian divergence. 34 refs., 3 figs., 2 tabs.« less

  20. Occupancy of a C2-C2 type 'zinc-finger' protein domain by copper. Direct observation by electrospray ionization mass spectrometry.

    PubMed

    Hutchens, T W; Allen, M H; Li, C M; Yip, T T

    1992-09-07

    The metal ion specificity of most 'zinc-finger' metal binding domains is unknown. The human estrogen receptor protein contains two different C2-C2 type 'zinc-finger' sequences within its DNA-binding domain (ERDBD). Copper inhibits the function of this protein by mechanisms which remain unclear. We have used electrospray ionization mass spectrometry to evaluate directly the 71-residue ERDBD (K180-M250) in the absence and presence of Cu(II) ions. The ERDBD showed a high affinity for Cu and was completely occupied with 4 Cu bound; each Cu ion was evidently bound to only two ligand residues (net loss of only 2 Da per bound Cu). The Cu binding stoichiometry was confirmed by atomic absorption. These results (i) provide the first direct physical evidence for the ability of the estrogen receptor DNA-binding domain to bind Cu and (ii) document a twofold difference in the Zn- and Cu-binding capacity. Differences in the ERDBD domain structure with bound Zn and Cu are predicted. Given the relative intracellular contents of Zn and Cu, our findings demonstrate the need to investigate further the Cu occupancy of this and other zinc-finger domains both in vitro and in vivo.

  1. The PR/SET Domain Zinc Finger Protein Prdm4 Regulates Gene Expression in Embryonic Stem Cells but Plays a Nonessential Role in the Developing Mouse Embryo

    PubMed Central

    Bogani, Debora; Morgan, Marc A. J.; Nelson, Andrew C.; Costello, Ita; McGouran, Joanna F.; Kessler, Benedikt M.

    2013-01-01

    Prdm4 is a highly conserved member of the Prdm family of PR/SET domain zinc finger proteins. Many well-studied Prdm family members play critical roles in development and display striking loss-of-function phenotypes. Prdm4 functional contributions have yet to be characterized. Here, we describe its widespread expression in the early embryo and adult tissues. We demonstrate that DNA binding is exclusively mediated by the Prdm4 zinc finger domain, and we characterize its tripartite consensus sequence via SELEX (systematic evolution of ligands by exponential enrichment) and ChIP-seq (chromatin immunoprecipitation-sequencing) experiments. In embryonic stem cells (ESCs), Prdm4 regulates key pluripotency and differentiation pathways. Two independent strategies, namely, targeted deletion of the zinc finger domain and generation of a EUCOMM LacZ reporter allele, resulted in functional null alleles. However, homozygous mutant embryos develop normally and adults are healthy and fertile. Collectively, these results strongly suggest that Prdm4 functions redundantly with other transcriptional partners to cooperatively regulate gene expression in the embryo and adult animal. PMID:23918801

  2. Zinc finger protein designed to target 2-long terminal repeat junctions interferes with human immunodeficiency virus integration.

    PubMed

    Sakkhachornphop, Supachai; Barbas, Carlos F; Keawvichit, Rassamee; Wongworapat, Kanlaya; Tayapiwatana, Chatchai

    2012-09-01

    Integration of the human immunodeficiency virus type 1 (HIV-1) genome into the host chromosome is a vital step in the HIV life cycle. The highly conserved cytosine-adenine (CA) dinucleotide sequence immediately upstream of the cleavage site is crucial for integrase (IN) activity. As this viral enzyme has an important role early in the HIV-1 replication cycle, interference with the IN substrate has become an attractive strategy for therapeutic intervention. We demonstrated that a designed zinc finger protein (ZFP) fused to green fluorescent protein (GFP) targets the 2-long terminal repeat (2-LTR) circle junctions of HIV-1 DNA with nanomolar affinity. We report now that 2LTRZFP-GFP stably transduced into 293T cells interfered with the expression of vesicular stomatitis virus glycoprotein (VSV-G)-pseudotyped lentiviral red fluorescent protein (RFP), as shown by the suppression of RFP expression. We also used a third-generation lentiviral vector and pCEP4 expression vector to deliver the 2LTRZFP-GFP transgene into human T-lymphocytic cells, and a stable cell line for long-term expression studies was selected for HIV-1 challenge. HIV-1 integration and replication were inhibited as measured by Alu-gag real-time PCR and p24 antigen assay. In addition, the molecular activity of 2LTRZFP-GFP was evaluated in peripheral blood mononuclear cells. The results were confirmed by Alu-gag real-time PCR for integration interference. We suggest that the expression of 2LTRZFP-GFP limited viral integration on intracellular immunization, and that it has potential for use in HIV gene therapy in the future.

  3. Zinc Finger Protein Designed to Target 2-Long Terminal Repeat Junctions Interferes with Human Immunodeficiency Virus Integration

    PubMed Central

    Sakkhachornphop, Supachai; Barbas, Carlos F.; Keawvichit, Rassamee; Wongworapat, Kanlaya

    2012-01-01

    Abstract Integration of the human immunodeficiency virus type 1 (HIV-1) genome into the host chromosome is a vital step in the HIV life cycle. The highly conserved cytosine–adenine (CA) dinucleotide sequence immediately upstream of the cleavage site is crucial for integrase (IN) activity. As this viral enzyme has an important role early in the HIV-1 replication cycle, interference with the IN substrate has become an attractive strategy for therapeutic intervention. We demonstrated that a designed zinc finger protein (ZFP) fused to green fluorescent protein (GFP) targets the 2-long terminal repeat (2-LTR) circle junctions of HIV-1 DNA with nanomolar affinity. We report now that 2LTRZFP-GFP stably transduced into 293T cells interfered with the expression of vesicular stomatitis virus glycoprotein (VSV-G)-pseudotyped lentiviral red fluorescent protein (RFP), as shown by the suppression of RFP expression. We also used a third-generation lentiviral vector and pCEP4 expression vector to deliver the 2LTRZFP-GFP transgene into human T-lymphocytic cells, and a stable cell line for long-term expression studies was selected for HIV-1 challenge. HIV-1 integration and replication were inhibited as measured by Alu-gag real-time PCR and p24 antigen assay. In addition, the molecular activity of 2LTRZFP-GFP was evaluated in peripheral blood mononuclear cells. The results were confirmed by Alu-gag real-time PCR for integration interference. We suggest that the expression of 2LTRZFP-GFP limited viral integration on intracellular immunization, and that it has potential for use in HIV gene therapy in the future. PMID:22429108

  4. Salivary zinc finger protein 510 peptide as a novel biomarker for detection of oral squamous cell carcinoma in early stages.

    PubMed

    Jou, Yu-Jen; Lin, Chia-Der; Lai, Chih-Ho; Tang, Chih-Hsin; Huang, Su-Hua; Tsai, Ming-Hsui; Chen, Shih-Yin; Kao, Jung-Yie; Lin, Cheng-Wen

    2011-07-15

    Oral squamous cell carcinoma (OSCC) is one of the most frequent malignancies worldwide. Early diagnosis can mean adequate treatment and increase survival. This study uses ClinProt technique to identify salivary biomarkers for early diagnosis of OSCC. A total of 77 salivary samples from both OSCC patients (n=47) and healthy donors (n=30) were analyzed with MALDI-TOF MS technology. Salivary peptides from OSCC patients were separated, using C8-functionalized magnetic beads. Three signals (2918.57 Da, 5592.64 Da, and 4372.66 Da) distinguished OSCC patients from controls. Among them, unique peptide 2918.57 Da, identified as a 24-mer peptide of zinc finger protein 510 (ZNF510), was found in 0% of saliva from healthy individuals, versus 25.0% and 60% from OSCC patients with T1+T2 and T3+T4 stages, respectively (P<0.001). ELISA analysis with rabbit anti-ZNF510 peptide sera shows a starkly higher 24-mer ZNF510 peptide level in saliva from OSCC patients than that in controls (P<0.001). Also, in immunohistochemical analysis of oral tissues, a significantly higher level of ZNF510 was observed in OSCC tissues than in the OSCC free control tissues. Analysis of areas under receiver-operating characteristic (ROC) curves in OSCC early (T1+T2) and late stages (T3+T4) shows greater than 0.95. Identifying 24-mer ZNF510 peptide as OSCC-related salivary biomarkers via proteomic approach proved useful in adjunct diagnosis for early detection rather than specific diagnosis marker for progression of OSCC patients. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. A Novel Prokaryotic Green Fluorescent Protein Expression System for Testing Gene Editing Tools Activity Like Zinc Finger Nuclease

    PubMed Central

    Sabzehei, Faezeh; Kouhpayeh, Shirin; Dastjerdeh, Mansoureh Shahbazi; Khanahmad, Hossein; Salehi, Rasoul; Naderi, Shamsi; Taghizadeh, Razieh; Rabiei, Parisa; Hejazi, Zahra; Shariati, Laleh

    2017-01-01

    Background: Gene editing technology has created a revolution in the field of genome editing. The three of the most famous tools in gene editing technology are zinc finger nucleases (ZFNs), transcription activator-like effector nucleases, clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated systems. As their predictable nature, it is necessary to assess their efficiency. There are some methods for this purpose, but most of them are time labor and complicated. Here, we introduce a new prokaryotic reporter system, which makes it possible to evaluate the efficiency of gene editing tools faster, cheaper, and simpler than previous methods. Materials and Methods: At first, the target sites of a custom ZFN, which is designed against a segment of ampicillin resistance gene, were cloned on both sides of green fluorescent protein (GFP) gene to construct pPRO-GFP. Then pPRO-GFP was transformed into Escherichia coli TOP10F’ that contains pZFN (contains expression cassette of a ZFN against ampicillin resistant gene), or p15A-KanaR as a negative control. The transformed bacteria were cultured on three separate media that contained ampicillin, kanamycin, and ampicillin + kanamycin; then the resulted colonies were assessed by flow cytometry. Results: The results of flow cytometry showed a significant difference between the case (bacteria contain pZFN) and control (bacteria contain p15A, KanaR) in MFI (Mean Fluorescence Intensity) (P < 0.0001). Conclusion: According to ZFN efficiency, it can bind and cut the target sites, the bilateral cutting can affect the intensity of GFP fluorescence. Our flow cytometry results showed that this ZFN could reduce the intensity of GFP color and colony count of bacteria in media containing amp + kana versus control sample. PMID:29285485

  6. A Novel Prokaryotic Green Fluorescent Protein Expression System for Testing Gene Editing Tools Activity Like Zinc Finger Nuclease.

    PubMed

    Sabzehei, Faezeh; Kouhpayeh, Shirin; Dastjerdeh, Mansoureh Shahbazi; Khanahmad, Hossein; Salehi, Rasoul; Naderi, Shamsi; Taghizadeh, Razieh; Rabiei, Parisa; Hejazi, Zahra; Shariati, Laleh

    2017-01-01

    Gene editing technology has created a revolution in the field of genome editing. The three of the most famous tools in gene editing technology are zinc finger nucleases (ZFNs), transcription activator-like effector nucleases, clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated systems. As their predictable nature, it is necessary to assess their efficiency. There are some methods for this purpose, but most of them are time labor and complicated. Here, we introduce a new prokaryotic reporter system, which makes it possible to evaluate the efficiency of gene editing tools faster, cheaper, and simpler than previous methods. At first, the target sites of a custom ZFN, which is designed against a segment of ampicillin resistance gene, were cloned on both sides of green fluorescent protein (GFP) gene to construct pPRO-GFP. Then pPRO-GFP was transformed into Escherichia coli TOP10F' that contains pZFN (contains expression cassette of a ZFN against ampicillin resistant gene), or p15A-KanaR as a negative control. The transformed bacteria were cultured on three separate media that contained ampicillin, kanamycin, and ampicillin + kanamycin; then the resulted colonies were assessed by flow cytometry. The results of flow cytometry showed a significant difference between the case (bacteria contain pZFN) and control (bacteria contain p15A, KanaR) in MFI (Mean Fluorescence Intensity) ( P < 0.0001). According to ZFN efficiency, it can bind and cut the target sites, the bilateral cutting can affect the intensity of GFP fluorescence. Our flow cytometry results showed that this ZFN could reduce the intensity of GFP color and colony count of bacteria in media containing amp + kana versus control sample.

  7. Zinc finger protein 267 is up-regulated in hepatocellular carcinoma and promotes tumor cell proliferation and migration

    PubMed Central

    Schnabl, Bernd; Valletta, Daniela; Kirovski, Georgi; Hellerbrand, Claus

    2012-01-01

    Zinc finger protein 267 (ZNF267) belongs to the family of Kruppel-like transcription factors, which regulates diverse biological processes that include development, proliferation, and differentiation. We have previously demonstrated that ZNF267 mRNA is up-regulated in liver cirrhosis, which is the main risk factor for hepatocellular carcinoma (HCC). Here, we analyzed the expression of ZNF267 in human HCC cells and tissue specimens and found a significant up-regulation compared to primary human hepatocytes and corresponding non-tumorous liver tissue. Over-expression of the transcription factor Ets-1 further enhanced ZNF267 expression, and reporter gene assays revealed that mutation of the Ets-1 binding site to the ZNF267 promotor markedly inhibited ZNF267 promotor activity. Hypoxic conditions induced Ets-1 in HCC cells via HIF1alpha activation, and hypoxia induced ZNF267 expression while HIF1alpha inhibition significantly reduced both hypoxia-induced as well as basal ZNF267 expression in HCC cells. It is known that hypoxic conditions in tumorous tissues induce the formation of reactive oxygen species (ROS), and ROS have been identified as important factor in the regulation of Ets-1 expression in tumor cells. Here, we found that ROS induction induced and ROS scavenging reduced ZNF267 expression in HCC cells, respectively. Loss and gain of function analysis applying siRNA directed against ZNF267 or transient transfection revealed that ZNF267 promotes proliferation and migration of HCC cells in vitro. These findings indicate Ets-1 and HIF1alpha as critical regulators of basal and hypoxia- or ROS-induced ZNF267 expression in HCC, and further suggest that the pro-tumorigenic effect of these factors is at least in part mediated via increased ZNF267 expression in HCC. Since ZNF267 is already elevated in cirrhosis, ZNF267 appears as promising target for both prevention as well as treatment of HCC in patients with chronic liver disease. PMID:21840307

  8. Development of an electrochemical detection system for measuring DNA methylation levels using methyl CpG-binding protein and glucose dehydrogenase-fused zinc finger protein.

    PubMed

    Lee, Jinhee; Yoshida, Wataru; Abe, Koichi; Nakabayashi, Kazuhiko; Wakeda, Hironobu; Hata, Kenichiro; Marquette, Christophe A; Blum, Loïc J; Sode, Koji; Ikebukuro, Kazunori

    2017-07-15

    DNA methylation level at a certain gene region is considered as a new type of biomarker for diagnosis and its miniaturized and rapid detection system is required for diagnosis. Here we have developed a simple electrochemical detection system for DNA methylation using methyl CpG-binding domain (MBD) and a glucose dehydrogenase (GDH)-fused zinc finger protein. This analytical system consists of three steps: (1) methylated DNA collection by MBD, (2) PCR amplification of a target genomic region among collected methylated DNA, and (3) electrochemical detection of the PCR products using a GDH-fused zinc finger protein. With this system, we have successfully measured the methylation levels at the promoter region of the androgen receptor gene in 10 6 copies of genomic DNA extracted from PC3 and TSU-PR1 cancer cell lines. Since no sequence analysis or enzymatic digestion is required for this detection system, DNA methylation levels can be measured within 3h with a simple procedure. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Expression analysis of genes encoding double B-box zinc finger proteins in maize.

    PubMed

    Li, Wenlan; Wang, Jingchao; Sun, Qi; Li, Wencai; Yu, Yanli; Zhao, Meng; Meng, Zhaodong

    2017-11-01

    The B-box proteins play key roles in plant development. The double B-box (DBB) family is one of the subfamily of the B-box family, with two B-box domains and without a CCT domain. In this study, 12 maize double B-box genes (ZmDBBs) were identified through a genome-wide survey. Phylogenetic analysis of DBB proteins from maize, rice, Sorghum bicolor, Arabidopsis, and poplar classified them into five major clades. Gene duplication analysis indicated that segmental duplications made a large contribution to the expansion of ZmDBBs. Furthermore, a large number of cis-acting regulatory elements related to plant development, response to light and phytohormone were identified in the promoter regions of the ZmDBB genes. The expression patterns of the ZmDBB genes in various tissues and different developmental stages demonstrated that ZmDBBs might play essential roles in plant development, and some ZmDBB genes might have unique function in specific developmental stages. In addition, several ZmDBB genes showed diurnal expression pattern. The expression levels of some ZmDBB genes changed significantly under light/dark treatment conditions and phytohormone treatments, implying that they might participate in light signaling pathway and hormone signaling. Our results will provide new information to better understand the complexity of the DBB gene family in maize.

  10. The Zinc-finger protein ASCIZ regulates B cell development via DYNLL1 and Bim

    PubMed Central

    Jurado, Sabine; Gleeson, Kimberly; O’Donnell, Kristy; Izon, David J.; Walkley, Carl R.; Strasser, Andreas; Tarlinton, David M.

    2012-01-01

    Developing B lymphocytes expressing defective or autoreactive pre-B or B cell receptors (BCRs) are eliminated by programmed cell death, but how the balance between death and survival signals is regulated to prevent immunodeficiency and autoimmunity remains incompletely understood. In this study, we show that absence of the essential ATM (ataxia telangiectasia mutated) substrate Chk2-interacting Zn2+-finger protein (ASCIZ; also known as ATMIN/ZNF822), a protein with dual functions in the DNA damage response and as a transcription factor, leads to progressive cell loss from the pre-B stage onwards and severely diminished splenic B cell numbers in mice. This lymphopenia cannot be suppressed by deletion of p53 or complementation with a prearranged BCR, indicating that it is not caused by impaired DNA damage responses or defective V(D)J recombination. Instead, ASCIZ-deficient B cell precursors contain highly reduced levels of DYNLL1 (dynein light chain 1; LC8), a recently identified transcriptional target of ASCIZ, and normal B cell development can be restored by ectopic Dynll1 expression. Remarkably, the B cell lymphopenia in the absence of ASCIZ can also be fully suppressed by deletion of the proapoptotic DYNLL1 target Bim. Our findings demonstrate a key role for ASCIZ in regulating the survival of developing B cells by activating DYNLL1 expression, which may then modulate Bim-dependent apoptosis. PMID:22891272

  11. Separating the Role of Protein Restraints and Local Metal-Site Interaction Chemistry in the Thermodynamics of a Zinc Finger Protein

    PubMed Central

    Dixit, Purushottam D.; Asthagiri, D.

    2011-01-01

    We express the effective Hamiltonian of an ion-binding site in a protein as a combination of the Hamiltonian of the ion-bound site in vacuum and the restraints of the protein on the site. The protein restraints are described by the quadratic elastic network model. The Hamiltonian of the ion-bound site in vacuum is approximated as a generalized Hessian around the minimum energy configuration. The resultant of the two quadratic Hamiltonians is cast into a pure quadratic form. In the canonical ensemble, the quadratic nature of the resultant Hamiltonian allows us to express analytically the excess free energy, enthalpy, and entropy of ion binding to the protein. The analytical expressions allow us to separate the roles of the dynamic restraints imposed by the protein on the binding site and the temperature-independent chemical effects in metal-ligand coordination. For the consensus zinc-finger peptide, relative to the aqueous phase, the calculated free energy of exchanging Zn2+ with Fe2+, Co2+, Ni2+, and Cd2+ are in agreement with experiments. The predicted excess enthalpy of ion exchange between Zn2+ and Co2+ also agrees with the available experimental estimate. The free energy of applying the protein restraints reveals that relative to Zn2+, the Co2+, and Cd2+-site clusters are more destabilized by the protein restraints. This leads to an experimentally testable hypothesis that a tetrahedral metal binding site with minimal protein restraints will be less selective for Zn2+ over Co2+ and Cd2+ compared to a zinc finger peptide. No appreciable change is expected for Fe2+ and Ni2+. The framework presented here may prove useful in protein engineering to tune metal selectivity. PMID:21943427

  12. Methylomic Analysis Identifies Frequent DNA Methylation of Zinc Finger Protein 582 (ZNF582) in Cervical Neoplasms

    PubMed Central

    Su, Po-Hsuan; Chen, Yu-Chih; Liao, Yu-Ping; Wang, Hui-Chen; Yo, Yi-Te; Chao, Tai-Kuang; Huang, Hsuan-Cheng; Lin, Ching-Yu; Chu, Tang-Yuan; Lai, Hung-Cheng

    2012-01-01

    Background Despite of the trend that the application of DNA methylation as a biomarker for cancer detection is promising, clinically applicable genes are few. Therefore, we looked for novel hypermethylated genes for cervical cancer screening. Methods and Findings At the discovery phase, we analyzed the methylation profiles of human cervical carcinomas and normal cervixes by methylated DNA immunoprecipitation coupled to promoter tiling arrays (MeDIP-on-chip). Methylation-specific PCR (MSP), quantitative MSP and bisulfite sequencing were used to verify the methylation status in cancer tissues and cervical scrapings from patients with different severities. Immunohistochemical staining of a cervical tissue microarray was used to confirm protein expression. We narrowed to three candidate genes: DBC1, PDE8B, and ZNF582; their methylation frequencies in tumors were 93%, 29%, and 100%, respectively. At the pre-validation phase, the methylation frequency of DBC1 and ZNF582 in cervical scraping correlated significantly with disease severity in an independent cohort (n = 330, both P<0.001). For the detection of cervical intraepithelial neoplasia 3 (CIN3) and worse, the area under the receiver operating characteristic curve (AUC) of ZNF582 was 0.82 (95% confidence interval  = 0.76–0.87). Conclusions Our study shows ZNF582 is frequently methylated in CIN3 and worse lesions, and it is demonstrated as a potential biomarker for the molecular screening of cervical cancer. PMID:22815913

  13. Multifunctional Involvement of a C2H2 Zinc Finger Protein (PbZfp) in Malaria Transmission, Histone Modification, and Susceptibility to DNA Damage Response

    PubMed Central

    Gopalakrishnan, Anusha M.; Aly, Ahmed S. I.; Aravind, L.

    2017-01-01

    ABSTRACT In sexually reproducing organisms, meiosis is an essential step responsible for generation of haploid gametes from diploid somatic cells. The quest for understanding regulatory mechanisms of meiotic recombination in Plasmodium led to identification of a gene encoding a protein that contains 11 copies of C2H2 zinc fingers (ZnF). Reverse genetic approaches were used to create Plasmodium berghei parasites either lacking expression of full-length Plasmodium berghei zinc finger protein (PbZfp) (knockout [KO]) or expressing PbZfp lacking C-terminal zinc finger region (truncated [Trunc]). Mice infected with KO parasites survived two times longer (P < 0.0001) than mice infected with wild-type (WT) parasites. In mosquito transmission experiments, the infectivity of KO and Trunc parasites was severely compromised (>95% oocyst reduction). KO parasites revealed a total lack of trimethylation of histone 3 at several lysine residues (K4, K27, and K36) without any effect on acetylation patterns (H3K9, H3K14, and H4K16). Reduced DNA damage and reduced expression of topoisomerase-like Spo11 in the KO parasites with normal Rad51 expression further suggest a functional role for PbZfp during genetic recombination that involves DNA double-strand break (DSB) formation followed by DNA repair. These finding raise the possibility of some convergent similarities of PbZfp functions to functions of mammalian PRDM9, also a C2H2 ZnF protein with histone 3 lysine 4 (H3K4) methyltransferase activity. These functions include the major role played by the latter in binding recombination hotspots in the genome during meiosis and trimethylation of the associated histones and subsequent chromatin recruitment of topoisomerase-like Spo11 to catalyze DNA DSB formation and DMC1/Rad51-mediated DNA repair and homologous recombination. PMID:28851851

  14. BrRZFP1 a Brassica rapa C3HC4-type RING zinc finger protein involved in cold, salt and dehydration stress.

    PubMed

    Jung, Y J; Lee, I H; Nou, I S; Lee, K D; Rashotte, A M; Kang, K K

    2013-03-01

    C3HC4-type RING zinc finger proteins are known to be essential in the regulation of plant processes, including responses to abiotic stress. Here, we identify, clone and examine the first C3HC4-type RING zinc finger protein (BrRZFP1) from Brassica rapa under stress conditions. Phylogenetic analysis of BrRZFP1 revealed strong sequence similarity to C3HC4-type zinc finger proteins from Arabidopsis that are induced by abiotic stresses. Diverse environmental stresses, including salt and cold, were found to induce BrRZFP1 transcripts greater than eightfold in B. rapa. Additional strong induction was shown of the stress hormone abscisic acid, together suggesting that BrRZFP1 could play a role as a general stress modulator. Similar profiles of induction for each of these stresses was found in both root and shoot tissues, although at much higher levels in roots. Constitutive expression of BrRZFP1 in Nicotiana tabacum was conducted to further analyse how changes in gene expression levels would affect plant stress responses. BrRZFP1 overexpression conferred increased tolerance to cold, salt and dehydration stresses. This was observed in several assays examining growth status throughout development, including increased germination, fresh weight and length of shoots and roots, as well as enhanced chlorophyll retention. These results suggest that the transcription factor BrRZFP1 is an important determinant of stress response in plants and that changes in its expression level in plants could increase stress tolerance. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Zinc finger protein binding to DNA: an energy perspective using molecular dynamics simulation and free energy calculations on mutants of both zinc finger domains and their specific DNA bases.

    PubMed

    Hamed, Mazen Y; Arya, Gaurav

    2016-05-01

    Energy calculations based on MM-GBSA were employed to study various zinc finger protein (ZF) motifs binding to DNA. Mutants of both the DNA bound to their specific amino acids were studied. Calculated energies gave evidence for a relationship between binding energy and affinity of ZF motifs to their sites on DNA. ΔG values were -15.82(12), -3.66(12), and -12.14(11.6) kcal/mol for finger one, finger two, and finger three, respectively. The mutations in the DNA bases reduced the value of the negative energies of binding (maximum value for ΔΔG = 42Kcal/mol for F1 when GCG mutated to GGG, and ΔΔG = 22 kcal/mol for F2, the loss in total energy of binding originated in the loss in electrostatic energies upon mutation (r = .98). The mutations in key amino acids in the ZF motif in positions-1, 2, 3, and 6 showed reduced binding energies to DNA with correlation coefficients between total free energy and electrostatic was .99 and with Van der Waal was .93. Results agree with experimentally found selectivity which showed that Arginine in position-1 is specific to G, while Aspartic acid (D) in position 2 plays a complicated role in binding. There is a correlation between the MD calculated free energies of binding and those obtained experimentally for prepared ZF motifs bound to triplet bases in other reports (), our results may help in the design of ZF motifs based on the established recognition codes based on energies and contributing energies to the total energy.

  16. NbCZF1, a Novel C2H2-Type Zinc Finger Protein, as a New Regulator of SsCut-Induced Plant Immunity in Nicotiana benthamiana.

    PubMed

    Zhang, Huajian; Zhao, Tongyao; Zhuang, Peitong; Song, Zhiqiang; Du, Hui; Tang, Zhaozhao; Gao, Zhimou

    2016-12-01

    SsCut, which functions as an elicitor, can induce plant immunity. In this study, we utilized Nicotiana benthamiana and virus-induced gene silencing to decrease the expression of > 2,500 genes individually. Using this forward genetics approach, several genes were identified that, when silenced, compromised SsCut-triggered cell death based on a cell death assay. A C 2 H 2 -type zinc finger gene was isolated from N. benthamiana Sequence analysis indicated that the gene encodes a 27 kDa protein with 253 amino acids containing two typical C 2 H 2 -type zinc finger domains; this gene was named NbCZF1 We found that SsCut-induced cell death could be inhibited by virus-induced gene silencing of NbCZF1 in N. benthamiana In addition, SsCut induces stomatal closure, accompanied by reactive oxygen species (ROS) production by NADPH oxidases and nitric oxide (NO) production. NbCZF1-silenced plants showed impaired SsCut-induced stomatal closure, decreased SsCut-induced production of ROS and NO in guard cells and reduced SsCut-induced resistance against Phytophthora nicotianae Taken together, these results demonstrate that the NbCZF1-ROS-NO pathway mediates multiple SsCut-triggered responses, including stomatal closure, hypersensitive responses and defense-related gene expression. This is the first report describing the function of a C 2 H 2 -type zinc finger protein in N. benthamiana. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Zinc finger protein 267 is up-regulated in hepatocellular carcinoma and promotes tumor cell proliferation and migration.

    PubMed

    Schnabl, Bernd; Valletta, Daniela; Kirovski, Georgi; Hellerbrand, Claus

    2011-12-01

    Zinc finger protein 267 (ZNF267) belongs to the family of Kruppel-like transcription factors, which regulates diverse biological processes that include development, proliferation, and differentiation. We have previously demonstrated that ZNF267 mRNA is up-regulated in liver cirrhosis, which is the main risk factor for hepatocellular carcinoma (HCC). Here, we analyzed the expression of ZNF267 in human HCC cells and tissue specimens and found a significant up-regulation compared to primary human hepatocytes and corresponding non-tumorous liver tissue. Over-expression of the transcription factor Ets-1 further enhanced ZNF267 expression, and reporter gene assays revealed that mutation of the Ets-1 binding site to the ZNF267 promotor markedly inhibited ZNF267 promotor activity. Hypoxic conditions induced Ets-1 in HCC cells via HIF1alpha activation, and hypoxia induced ZNF267 expression while HIF1alpha inhibition significantly reduced both hypoxia-induced as well as basal ZNF267 expression in HCC cells. It is known that hypoxic conditions in tumorous tissues induce the formation of reactive oxygen species (ROS), and ROS have been identified as important factor in the regulation of Ets-1 expression in tumor cells. Here, we found that ROS induction induced and ROS scavenging reduced ZNF267 expression in HCC cells, respectively. Loss and gain of function analysis applying siRNA directed against ZNF267 or transient transfection revealed that ZNF267 promotes proliferation and migration of HCC cells in vitro. These findings indicate Ets-1 and HIF1alpha as critical regulators of basal and hypoxia- or ROS-induced ZNF267 expression in HCC, and further suggest that the pro-tumorigenic effect of these factors is at least in part mediated via increased ZNF267 expression in HCC. Since ZNF267 is already elevated in cirrhosis, ZNF267 appears as promising target for both prevention as well as treatment of HCC in patients with chronic liver disease. Copyright © 2011 Elsevier Inc. All

  18. Identification of the Zinc Finger Protein ZRANB2 as a Novel Maternal Lipopolysaccharide-binding Protein That Protects Embryos of Zebrafish against Gram-negative Bacterial Infections*

    PubMed Central

    Wang, Xia; Du, Xiaoyuan; Li, Hongyan; Zhang, Shicui

    2016-01-01

    Zinc finger ZRANB2 proteins are widespread in animals, but their functions and mechanisms remain poorly defined. Here we clearly demonstrate that ZRANB2 is a newly identified LPS-binding protein present abundantly in the eggs/embryos of zebrafish. We also show that recombinant ZRANB2 (rZRANB2) acts as a pattern recognition receptor capable of identifying the bacterial signature molecule LPS as well as binding the Gram-negative bacteria Escherichia coli, Vibrio anguilarum, and Aeromonas hydrophila and functions as an antibacterial effector molecule capable of directly killing the bacteria. Furthermore, we reveal that N-terminal residues 11–37 consisting of the first ZnF_RBZ domain are indispensable for ZRANB2 antimicrobial activity. Importantly, microinjection of rZRANB2 into early embryos significantly enhanced the resistance of the embryos against pathogenic A. hydrophila challenge, and this enhanced bacterial resistance was markedly reduced by co-injection of anti-ZRANB2 antibody. Moreover, precipitation of ZRANB2 in the embryo extracts by preincubation with anti-ZRANB2 antibody caused a marked decrease in the antibacterial activity of the extracts against the bacteria tested. In addition, the N-terminal peptide Z1/37 or Z11/37 with in vitro antibacterial activity also promoted the resistance of embryos against A. hydrophila, but the peptide Z38/198 without in vitro antibacterial activity did not. Collectively, these results indicate that ZRANB2 is a maternal LPS-binding protein that can protect the early embryos of zebrafish against pathogenic attacks, a novel role ever assigned to ZRANB2 proteins. This work also provides new insights into the immunological function of the zinc finger proteins that are widely distributed in various animals. PMID:26740623

  19. Purifying Properly Folded Cysteine-rich, Zinc Finger Containing Recombinant Proteins for Structural Drug Targeting Studies: the CH1 Domain of p300 as a Case Example

    PubMed Central

    Kim, Yong Joon; Kaluz, Stefan; Mehta, Anil; Weinert, Emily; Rivera, Shannon; Van Meir, Erwin G.

    2017-01-01

    The transcription factor Hypoxia-Inducible Factor (HIF) complexes with the coactivator p300, activating the hypoxia response pathway and allowing tumors to grow. The CH1 and CAD domains of each respective protein form the interface between p300 and HIF. Small molecule compounds are in development that target and inhibit HIF/p300 complex formation, with the goal of reducing tumor growth. High resolution NMR spectroscopy is necessary to study ligand interaction with p300-CH1, and purifying high quantities of properly folded p300-CH1 is needed for pursuing structural and biophysical studies. p300-CH1 has 3 zinc fingers and 9 cysteine residues, posing challenges associated with reagent compatibility and protein oxidation. A protocol has been developed to overcome such issues by incorporating zinc during expression and streamlining the purification time, resulting in a high yield of optimally folded protein (120 mg per 4 L expression media) that is suitable for structural NMR studies. The structural integrity of the final recombinant p300-CH1 has been verified to be optimal using onedimensional 1H NMR spectroscopy and circular dichroism. This protocol is applicable for the purification of other zinc finger containing proteins. PMID:28966947

  20. Transcriptional repression mediated by the KRAB domain of the human C2H2 zinc finger protein Kox1/ZNF10 does not require histone deacetylation.

    PubMed

    Lorenz, P; Koczan, D; Thiesen, H J

    2001-04-01

    The KRAB domain of human Kox1, a member of the KRAB C2H2 zinc finger family, confers strong transcriptional repressor activities even to remote promoter positions. Here, HDAC inhibitors were used to demonstrate that histone deacetylation is not required for mediating transcriptional repression of KRAB zinc finger proteins. Two reporter systems with either stably integrated or transiently transfected templates, both under control of strong viral promoters, were analyzed. Under all circumstances, HDAC inhibition did not alter the repression potential of the KRAB domain. In case of the stably integrated luciferase reporter gene system, neither expression levels of the KRAB fusion protein nor complex formation with its putative co-repressor TIF1beta were significantly changed. Furthermore, the TIF1beta/KRAB complex was devoid of mSin3A and HDAC1. In the transient transfection system, the transcriptional repression induced by TIF1beta and HP1alpha was not diminished by HDAC inhibitors, whereas the repressory activity of TIF1alpha was significantly affected. Thus, KRAB, TIF1beta and HP1alpha are likely to be functionally linked. In conclusion, HDAC activity is not essential for the strong transcriptional repressor activity mediated by the KRAB domain of Kox1 in particular and, presumably, by KRAB domains in general. This feature might be helpful in identifying and characterizing target genes under the control of

  1. Zinc finger protein 521 antagonizes early B-cell factor 1 and modulates the B-lymphoid differentiation of primary hematopoietic progenitors.

    PubMed

    Mega, Tiziana; Lupia, Michela; Amodio, Nicola; Horton, Sarah J; Mesuraca, Maria; Pelaggi, Daniela; Agosti, Valter; Grieco, Michele; Chiarella, Emanuela; Spina, Raffaella; Moore, Malcolm A S; Schuringa, Jan Jacob; Bond, Heather M; Morrone, Giovanni

    2011-07-01

    Zinc finger protein 521 (EHZF/ZNF521) is a multi-functional transcription co-factor containing 30 zinc fingers and an amino-terminal motif that binds to the nucleosome remodelling and histone deacetylase (NuRD) complex. ZNF521 is believed to be a relevant player in the regulation of the homeostasis of the hematopoietic stem/progenitor cell compartment, however the underlying molecular mechanisms are still largely unknown. Here, we show that this protein plays an important role in the control of B-cell development by inhibiting the activity of early B-cell factor-1 (EBF1), a master factor in B-lineage specification. In particular, our data demonstrate that: (1) ZNF521 binds to EBF1 via its carboxyl-terminal portion and this interaction is required for EBF1 inhibition; (2) NuRD complex recruitment by ZNF521 is not essential for the inhibition of transactivation of EBF1-dependent promoters; (3) ZNF521 represses EBF1 target genes in a human B-lymphoid molecular context; and (4) RNAi-mediated silencing of ZNF521/Zfp521 in primary human and murine hematopoietic progenitors strongly enhances the generation of B-lymphocytes in vitro. Taken together, our data indicate that ZNF521 can antagonize B-cell development and lend support to the notion that it may contribute to conserve the multipotency of primitive lympho-myeloid progenitors by preventing or delaying their EBF1-driven commitment toward the B-cell lineage.

  2. Regulation of trichome development in tobacco by JcZFP8, a C2H2 zinc finger protein gene from Jatropha curcas L.

    PubMed

    Shi, Xiaodong; Gu, Yuxi; Dai, Tingwei; Wu, Yang; Wu, Peng; Xu, Ying; Chen, Fang

    2018-06-05

    Trichomes are epidermal outgrowths of plant tissues that can secrete or store large quantities of secondary metabolites, which contribute to plant defense responses against stress. The use of bioengineering methods for regulating the development of trichomes and metabolism is a widely researched topic. In the present study, we demonstrate that JcZFP8, a C2H2 zinc finger protein gene from Jatropha curcas L., can regulate trichome development in transgenic tobacco. To understand the underlying mechanisms, we performed transcriptome profiling of overexpression JcZFP8 transgenic plants and wild-type tobacco. Based on the analysis of differentially expressed genes, we determined that genes of the plant hormone signal transduction pathway was significantly enriched, suggesting that these pathways were modulated in the transgenic plants. In addition, the transcript levels of the known trichome-related genes in Arabidopsis were not significantly changed, whereas CycB2 and MYB genes were differentially expressed in the transgenic plants. Despite tobacco and Arabidopsis have different types of trichomes, all the pathways were associated with C2H2 zinc finger protein genes. Our findings help us to understand the regulation of multicellular trichome formation and suggest a new metabolic engineering method for the improvement of plants. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. An A20/AN1-type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice (Oryza sativa).

    PubMed

    Zhang, Ye; Lan, Hongxia; Shao, Qiaolin; Wang, Ruqin; Chen, Hui; Tang, Haijuan; Zhang, Hongsheng; Huang, Ji

    2016-01-01

    The plant hormones gibberellins (GA) and abscisic acid (ABA) play important roles in plant development and stress responses. Here we report a novel A20/AN1-type zinc finger protein ZFP185 involved in GA and ABA signaling in the regulation of growth and stress response. ZFP185 was constitutively expressed in various rice tissues. Overexpression of ZFP185 in rice results in a semi-dwarfism phenotype, reduced cell size, and the decrease of endogenous GA3 content. By contrast, higher GA3 content was observed in RNAi plants. The application of exogenous GA3 can fully rescue the semi-dwarfism phenotype of ZFP185 overexpressing plants, suggesting the negative role of ZFP185 in GA biosynthesis. Besides GA, overexpression of ZFP185 decreased ABA content and expression of several ABA biosynthesis-related genes. Moreover, it was found that ZFP185, unlike previously known A20/AN1-type zinc finger genes, increases sensitivity to drought, cold, and salt stresses, implying the negative role of ZFP185 in stress tolerance. ZFP185 was localized in the cytoplasm and lacked transcriptional activation potential. Our study suggests that ZFP185 regulates plant growth and stress responses by affecting GA and ABA biosynthesis in rice. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Role for a Zinc Finger Protein (Zfp111) in Transformation of 208F Rat Fibroblasts by Jaagsiekte Sheep Retrovirus Envelope Protein

    PubMed Central

    Hsu, Tom; Phung, An; Choe, Kevin; Kim, Jung Woo

    2015-01-01

    ABSTRACT The native envelope gene (env) of Jaagsiekte sheep retrovirus (JSRV) also acts as an oncogene. To investigate the mechanism of transformation, we performed yeast 2-hybrid screening for cellular proteins that interact with Env. Among several candidates, we identified mouse or rat zinc finger protein 111 (zfp111). The interaction between Env and Zfp111 was confirmed through in vivo coimmunoprecipitation assays. Knockdown of endogenous Zfp111 caused a decrease in cell transformation by JSRV Env, while overexpression of Zfp111 increased overall Env transformation, supporting a role for Zfp111 in Env transformation. Knockdown of Zfp111 had no effect on the growth rate of parental rat 208F cells, while it decreased the proliferation rate of JSRV-transformed 208F cells, suggesting that JSRV-transformed cells became dependent on Zfp111. In addition, Zfp111 preferentially bound to a higher-mobility form of JSRV Env that has not been described previously. The higher-mobility form of Env (P70env) was found exclusively in the nuclear fraction, and size of its polypeptide backbone was the same as that of the cytoplasmic Env polyprotein (Pr80env). The differences in glycosylation between the two versions of Env were characterized. These results identify a novel cellular protein, Zfp111, that binds to the JSRV Env protein, and this binding plays a role in Env transformation. These results indicate that JSRV transformation also involves proteins and interactions in the nucleus. IMPORTANCE The envelope protein (Env) of Jaagsiekte sheep retrovirus (JSRV) is an oncogene, but its mechanism of cell transformation is still unclear. Here we identified seven candidate cellular proteins that can interact with JSRV Env by yeast two-hybrid screening. This study focused on one of the seven candidates, zinc finger protein 111 (Zfp111). Zfp111 was shown to interact with JSRV Env in cells and to be involved in JSRV transformation. Moreover, coexpression of JSRV Env and Zfp111 led to the

  5. A Family of Zinc Finger Proteins Is Required forChromosome-specific Pairing and Synapsis during Meiosis in C.elegans

    SciT

    Phillips, Carolyn M.; Dernburg, Abby F.

    2006-06-07

    Homologous chromosome pairing and synapsis are prerequisitefor accurate chromosome segregation during meiosis. Here, we show that afamily of four related C2H2 zinc-finger proteins plays a central role inthese events in C. elegans. These proteins are encoded within a tandemgene cluster. In addition to the X-specific HIM-8 protein, threeadditional paralogs collectively mediate the behavior of the fiveautosomes. Each chromosome relies on a specific member of the family topair and synapse with its homolog. These "ZIM" proteins concentrate atspecial regions called meiotic pairing centers on the correspondingchromosomes. These sites are dispersed along the nuclear envelope duringearly meiotic prophase, suggesting a role analogousmore » to thetelomere-mediated meiotic bouquet in other organisms. To gain insightinto the evolution of these components, wecharacterized homologs in C.briggsae and C. remanei, which revealed changes in copy number of thisgene family within the nematode lineage.« less

  6. Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity

    PubMed Central

    Görner, Wolfram; Durchschlag, Erich; Martinez-Pastor, Maria Teresa; Estruch, Francisco; Ammerer, Gustav; Hamilton, Barbara; Ruis, Helmut; Schüller, Christoph

    1998-01-01

    Msn2p and the partially redundant factor Msn4p are key regulators of stress-responsive gene expression in Saccharomyces cerevisiae. They are required for the transcription of a number of genes coding for proteins with stress-protective functions. Both Msn2p and Msn4p are Cys2His2 zinc finger proteins and bind to the stress response element (STRE). In vivo footprinting studies show that the occupation of STREs is enhanced in stressed cells and dependent on the presence of Msn2p and Msn4p. Both factors accumulate in the nucleus under stress conditions, such as heat shock, osmotic stress, carbon-source starvation, and in the presence of ethanol or sorbate. Stress-induced nuclear localization was found to be rapid, reversible, and independent of protein synthesis. Nuclear localization of Msn2p and Msn4p was shown to be correlated inversely to cAMP levels and protein kinase A (PKA) activity. A region with significant homologies shared between Msn2p and Msn4p is sufficient to confer stress-regulated localization to a SV40–NLS–GFP fusion protein. Serine to alanine or aspartate substitutions in a conserved PKA consensus site abolished cAMP-driven nuclear export and cytoplasmic localization in unstressed cells. We propose stress and cAMP-regulated intracellular localization of Msn2p to be a key step in STRE-dependent transcription and in the general stress response. PMID:9472026

  7. Discovery of a novel oocyte-specific Krüppel-associated box domain-containing zinc finger protein required for early embryogenesis in cattle.

    PubMed

    Hand, Jacqelyn M; Zhang, Kun; Wang, Lei; Koganti, Prasanthi P; Mastrantoni, Kristen; Rajput, Sandeep K; Ashry, Mohamed; Smith, George W; Yao, Jianbo

    2017-04-01

    Zinc finger (ZNF) transcription factors interact with DNA through zinc finger motifs and play important roles in a variety of cellular functions including cell growth, proliferation, development, apoptosis, and intracellular signal transduction. One-third of ZNF proteins in metazoans contain a highly conserved N-terminal motif known as the Krüppel-associated box (KRAB) domain, which acts as a potent, DNA-binding dependent transcriptional repression module. Analysis of RNA-Seq data generated from a bovine oocyte cDNA library identified a novel transcript, which encodes a KRAB-containing ZNF transcription factor (named ZNFO). Characterization of ZNFO mRNA expression revealed that it is exclusively expressed in bovine oocytes and early embryos. A GFP reporter assay demonstrated that ZNFO protein localizes specifically to the nucleus, supporting its role in transcriptional regulation. To test the role of ZNFO in early embryonic development, zygotes were generated by in vitro maturation and fertilization of oocytes, and injected with small interfering RNA (siRNA) designed to knockdown ZNFO. Cleavage rates were not affected by ZNFO siRNA injection. However, embryonic development to 8- to 16-cell stage and blastocyst stage was significantly reduced relative to the uninjected and negative control siRNA-injected embryos. Further, interaction of ZNFO with the highly conserved co-factor, KRAB-associated protein-1 (KAP1), was demonstrated, and evidence supporting transcriptional repression by ZNFO was demonstrated using a GAL4-luciferase reporter system. Results of described studies demonstrate that ZNFO is a maternally-derived oocyte-specific nuclear factor required for early embryonic development in cattle, presumably functioning by repressing transcription. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The Zinc Finger Proteins Mxr1p and Repressor of Phosphoenolpyruvate Carboxykinase (ROP) Have the Same DNA Binding Specificity but Regulate Methanol Metabolism Antagonistically in Pichia pastoris*

    PubMed Central

    Kumar, Nallani Vijay; Rangarajan, Pundi N.

    2012-01-01

    The methanol-inducible alcohol oxidase I (AOXI) promoter of the methylotrophic yeast, Pichia pastoris, is used widely for the production of recombinant proteins. AOXI transcription is regulated by the zinc finger protein Mxr1p (methanol expression regulator 1). ROP (repressor of phosphoenolpyruvate carboxykinase, PEPCK) is a methanol- and biotin starvation-inducible zinc finger protein that acts as a negative regulator of PEPCK in P. pastoris cultured in biotin-deficient, glucose-ammonium medium. The function of ROP during methanol metabolism is not known. In this study, we demonstrate that ROP represses methanol-inducible expression of AOXI when P. pastoris is cultured in a nutrient-rich medium containing yeast extract, peptone, and methanol (YPM). Deletion of the gene encoding ROP results in enhanced expression of AOXI and growth promotion whereas overexpression of ROP results in repression of AOXI and growth retardation of P. pastoris cultured in YPM medium. Surprisingly, deletion or overexpression of ROP has no effect on AOXI gene expression and growth of P. pastoris cultured in a minimal medium containing yeast nitrogen base and methanol (YNBM). Subcellular localization studies indicate that ROP translocates from cytosol to nucleus of cells cultured in YPM but not YNBM. In vitro DNA binding studies indicate that AOXI promoter sequences containing 5′ CYCCNY 3′ motifs serve as binding sites for Mxr1p as well as ROP. Thus, Mxr1p and ROP exhibit the same DNA binding specificity but regulate methanol metabolism antagonistically in P. pastoris. This is the first report on the identification of a transcriptional repressor of methanol metabolism in any yeast species. PMID:22888024

  9. Sequoia, a tramtrack-related zinc finger protein, functions as a pan-neural regulator for dendrite and axon morphogenesis in Drosophila.

    PubMed

    Brenman, J E; Gao, F B; Jan, L Y; Jan, Y N

    2001-11-01

    Morphological complexity of neurons contributes to their functional complexity. How neurons generate different dendritic patterns is not known. We identified the sequoia mutant from a previous screen for dendrite mutants. Here we report that Sequoia is a pan-neural nuclear protein containing two putative zinc fingers homologous to the DNA binding domain of Tramtrack. sequoia mutants affect the cell fate decision of a small subset of neurons but have global effects on axon and dendrite morphologies of most and possibly all neurons. In support of sequoia as a specific regulator of neuronal morphogenesis, microarray experiments indicate that sequoia may regulate downstream genes that are important for executing neurite development rather than altering a variety of molecules that specify cell fates.

  10. Activating human genes with zinc finger proteins, transcription activator-like effectors and CRISPR/Cas9 for gene therapy and regenerative medicine.

    PubMed

    Gersbach, Charles A; Perez-Pinera, Pablo

    2014-08-01

    New technologies have recently been developed to control the expression of human genes in their native genomic context by engineering synthetic transcription factors that can be targeted to any DNA sequence. The ability to precisely regulate any gene as it occurs naturally in the genome provides a means to address a variety of diseases and disorders. This approach also circumvents some of the traditional challenges of gene therapy. In this editorial, we review the technologies that have enabled targeted human gene activation, including the engineering of transcription factors based on zinc finger proteins, transcription activator-like effectors and the CRISPR/Cas9 system. Additionally, we highlight examples in which these methods have been developed for therapeutic applications and discuss challenges and opportunities.

  11. Zinc finger protein 219-like (ZNF219L) and Sox9a regulate synuclein-γ2 (sncgb) expression in the developing notochord of zebrafish.

    PubMed

    Lien, Huang-Wei; Yang, Chung-Hsiang; Cheng, Chia-Hsiung; Liao, Yung-Feng; Han, Yu-San; Huang, Chang-Jen

    2013-12-13

    Zebrafish synuclein-γ2 (sncgb) has been reported to be expressed specifically in the notochord. However, the mechanism by which the sncgb gene promoter is regulated has not been described. In this paper, we demonstrate that Zinc finger protein 219-like (ZNF219L) and sox9a are involved in the regulation of sncgb gene expression. Furthermore, we observed that over-expression of both ZNF219L and Sox9a resulted in increased sncgb expression. In addition, ZNF219L is physically associated with Sox9a, and simultaneous morpholino knockdown of znf219L and sox9a caused a synergistic decrease of sncgb expression in the notochord. Taken together, our results reveal that coordination of ZNF219L with Sox9a is involved in the regulation of notochord-specific expression of sncgb. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Structural insight into arginine methylation by the mouse protein arginine methyltransferase 7: a zinc finger freezes the mimic of the dimeric state into a single active site.

    PubMed

    Cura, Vincent; Troffer-Charlier, Nathalie; Wurtz, Jean Marie; Bonnefond, Luc; Cavarelli, Jean

    2014-09-01

    Protein arginine methyltransferase 7 (PRMT7) is a type III arginine methyltransferase which has been implicated in several biological processes such as transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation and metastasis. PRMT7 is a unique but less characterized member of the family of PRMTs. The crystal structure of full-length PRMT7 from Mus musculus refined at 1.7 Å resolution is described. The PRMT7 structure is composed of two catalytic modules in tandem forming a pseudo-dimer and contains only one AdoHcy molecule bound to the N-terminal module. The high-resolution crystal structure presented here revealed several structural features showing that the second active site is frozen in an inactive state by a conserved zinc finger located at the junction between the two PRMT modules and by the collapse of two degenerated AdoMet-binding loops.

  13. MHY1 Encodes a C2H2-Type Zinc Finger Protein That Promotes Dimorphic Transition in the Yeast Yarrowia lipolytica

    PubMed Central

    Hurtado, Cleofe A. R.; Rachubinski, Richard A.

    1999-01-01

    The yeast-to-hypha morphological transition (dimorphism) is typical of many pathogenic fungi. Dimorphism has been attributed to changes in temperature and nutritional status and is believed to constitute a mechanism of response to adverse conditions. We have isolated and characterized a gene, MHY1, whose transcription is dramatically increased during the yeast-to-hypha transition in Yarrowia lipolytica. Deletion of MHY1 is viable and has no effect on mating, but it does result in a complete inability of cells to undergo mycelial growth. MHY1 encodes a C2H2-type zinc finger protein, Mhy1p, which can bind putative cis-acting DNA stress response elements, suggesting that Mhy1p may act as a transcription factor. Interestingly, Mhy1p tagged with a hemagglutinin epitope was concentrated in the nuclei of actively growing cells found at the hyphal tip. PMID:10322005

  14. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE).

    PubMed Central

    Martínez-Pastor, M T; Marchler, G; Schüller, C; Marchler-Bauer, A; Ruis, H; Estruch, F

    1996-01-01

    The MSN2 and MSN4 genes encode homologous and functionally redundant Cys2His2 zinc finger proteins. A disruption of both MSN2 and MSN4 genes results in a higher sensitivity to different stresses, including carbon source starvation, heat shock and severe osmotic and oxidative stresses. We show that MSN2 and MSN4 are required for activation of several yeast genes such as CTT1, DDR2 and HSP12, whose induction is mediated through stress-response elements (STREs). Msn2p and Msn4p are important factors for the stress-induced activation of STRE dependent promoters and bind specifically to STRE-containing oligonucleotides. Our results suggest that MSN2 and MSN4 encode a DNA-binding component of the stress responsive system and it is likely that they act as positive transcription factors. Images PMID:8641288

  15. Zinc Finger Independent Genome-Wide Binding of Sp2 Potentiates Recruitment of Histone-Fold Protein Nf-y Distinguishing It from Sp1 and Sp3

    PubMed Central

    Finkernagel, Florian; Stiewe, Thorsten; Nist, Andrea; Suske, Guntram

    2015-01-01

    Transcription factors are grouped into families based on sequence similarity within functional domains, particularly DNA-binding domains. The Specificity proteins Sp1, Sp2 and Sp3 are paradigmatic of closely related transcription factors. They share amino-terminal glutamine-rich regions and a conserved carboxy-terminal zinc finger domain that can bind to GC rich motifs in vitro. All three Sp proteins are ubiquitously expressed; yet they carry out unique functions in vivo raising the question of how specificity is achieved. Crucially, it is unknown whether they bind to distinct genomic sites and, if so, how binding site selection is accomplished. In this study, we have examined the genomic binding patterns of Sp1, Sp2 and Sp3 in mouse embryonic fibroblasts by ChIP-seq. Sp1 and Sp3 essentially occupy the same promoters and localize to GC boxes. The genomic binding pattern of Sp2 is different; Sp2 primarily localizes at CCAAT motifs. Consistently, re-expression of Sp2 and Sp3 mutants in corresponding knockout MEFs revealed strikingly different modes of genomic binding site selection. Most significantly, while the zinc fingers dictate genomic binding of Sp3, they are completely dispensable for binding of Sp2. Instead, the glutamine-rich amino-terminal region is sufficient for recruitment of Sp2 to its target promoters in vivo. We have identified the trimeric histone-fold CCAAT box binding transcription factor Nf-y as the major partner for Sp2-chromatin interaction. Nf-y is critical for recruitment of Sp2 to co-occupied regulatory elements. Equally, Sp2 potentiates binding of Nf-y to shared sites indicating the existence of an extensive Sp2-Nf-y interaction network. Our results unveil strikingly different recruitment mechanisms of Sp1/Sp2/Sp3 transcription factor members uncovering an unexpected layer of complexity in their binding to chromatin in vivo. PMID:25793500

  16. Speckle-type POZ (pox virus and zinc finger protein) protein gene deletion in ovarian cancer: Fluorescence in situ hybridization analysis of a tissue microarray.

    PubMed

    Hu, Xiaoyu; Yang, Zhu; Zeng, Manman; Liu, Y I; Yang, Xiaotao; Li, Yanan; Li, X U; Yu, Qiubo

    2016-07-01

    The aim of the present study was to investigate the status of speckle-type POZ (pox virus and zinc finger protein) protein (SPOP) gene located on chromosome 17q21 in ovarian cancer (OC). The present study evaluated a tissue microarray, which contained 90 samples of ovarian cancer and 10 samples of normal ovarian tissue, using fluorescence in situ hybridization (FISH). FISH is a method where a SPOP-specific DNA red fluorescence probe was used for the experimental group and a centromere-specific DNA green fluorescence probe for chromosome 17 was used for the control group. The present study demonstrated that a deletion of the SPOP gene was observed in 52.27% (46/88) of the ovarian cancer tissues, but was not identified in normal ovarian tissues. Simultaneously, monosomy 17 was frequently identified in the ovarian cancer tissues, but not in the normal ovarian tissues. Furthermore, the present data revealed that the ovarian cancer histological subtype and grade were significantly associated with a deletion of the SPOP gene, which was assessed by the appearance of monosomy 17 in the ovarian cancer samples; the deletion of the SPOP gene was observed in a large proportion of serous epithelial ovarian cancer (41/61; 67.21%), particularly in grade 3 (31/37; 83.78%). In conclusion, deletion of the SPOP gene on chromosome 17 in ovarian cancer samples, which results from monosomy 17, indicates that the SPOP gene may serve as a tumor suppressor gene in ovarian cancer.

  17. The multi zinc-finger protein Trps1 acts as a regulator of histone deacetylation during mitosis.

    PubMed

    Wuelling, Manuela; Pasdziernik, Markus; Moll, Carina N; Thiesen, Andrea M; Schneider, Sabine; Johannes, Christian; Vortkamp, Andrea

    2013-07-15

    TRPS1, the gene mutated in human "Tricho-Rhino-Phalangeal syndrome," encodes a multi zinc-finger nuclear regulator of chondrocyte proliferation and differentiation. Here, we have identified a new function of Trps1 in controlling mitotic progression in chondrocytes. Loss of Trps1 in mice leads to an increased proportion of cells arrested in mitosis and, subsequently, to chromosome segregation defects. Searching for the molecular basis of the defect, we found that Trps1 acts as regulator of histone deacetylation. Trps1 interacts with two histone deacetylases, Hdac1 and Hdac4, thereby increasing their activity. Loss of Trps1 results in histone H3 hyperacetylation, which is maintained during mitosis. Consequently, chromatin condensation and binding of HP1 is impaired, and Trps1-deficient chondrocytes accumulate in prometaphase. Overexpression of Hdac4 rescues the mitotic defect of Trps1-deficient chondrocytes, identifying Trps1 as an important regulator of chromatin deacetylation during mitosis in chondrocytes. Our data provide the first evidence that the control of mitosis can be linked to the regulation of chondrocyte differentiation by epigenetic consequences of altered Hdac activity.

  18. The binding of histone deacetylases and the integrity of zinc finger-like motifs of the E7 protein are essential for the life cycle of human papillomavirus type 31.

    PubMed

    Longworth, Michelle S; Laimins, Laimonis A

    2004-04-01

    The E7 oncoprotein of high-risk human papillomaviruses (HPVs) binds to and alters the action of cell cycle regulatory proteins such as members of the retinoblastoma (Rb) family of proteins as well as the histone deacetylases (HDACs). To examine the significance of the binding of E7 to HDACs in the viral life cycle, a mutational analysis of the E7 open reading frame was performed in the context of the complete HPV type 31 (HPV-31) genome. Human foreskin keratinocytes were transfected with wild-type HPV-31 genomes or HPV-31 genomes containing mutations in HDAC binding sequences as well as in the C-terminal zinc finger-like domain, and stable cell lines were isolated. All mutant genomes, except those with E7 mutations in the HDAC binding site, were found to be stably maintained extrachromosomally at an early passage following transfection. Upon further passage in culture, genomes containing mutations to the Rb binding domain as well as the zinc finger-like region quickly lost the ability to maintain episomal genomes. Genomes containing mutations abolishing E7 binding to HDACs or to Rb or mutations to the zinc finger-like motifs failed to extend the life span of transfected keratinocytes and caused cells to arrest at the same time as the untransfected keratinocytes. When induced to differentiate by suspension in methylcellulose, cells maintaining genomes with mutations in the Rb binding domain or the zinc finger-like motifs were impaired in their abilities to activate late viral functions. This study demonstrates that the interaction of E7 with HDACs and the integrity of the zinc finger-like motifs are essential for extending the life span of keratinocytes and for stable maintenance of viral genomes.

  19. Zinc finger transcription factor CASZ1 interacts with histones, DNA repair proteins and recruits NuRD complex to regulate gene transcription.

    PubMed

    Liu, Zhihui; Lam, Norris; Thiele, Carol J

    2015-09-29

    The zinc finger transcription factor CASZ1 has been found to control neural fate-determination in flies, regulate murine and frog cardiac development, control murine retinal cell progenitor expansion and function as a tumor suppressor gene in humans. However, the molecular mechanism by which CASZ1 regulates gene transcription to exert these diverse biological functions has not been described. Here we identify co-factors that are recruited by CASZ1b to regulate gene transcription using co-immunoprecipitation (co-IP) and mass spectrometry assays. We find that CASZ1b binds to the nucleosome remodeling and histone deacetylase (NuRD) complex, histones and DNA repair proteins. Mutagenesis of the CASZ1b protein assay demonstrates that the N-terminus of CASZ1b is required for NuRD binding, and a poly(ADP-ribose) binding motif in the CASZ1b protein is required for histone H3 and DNA repair proteins binding. The N-terminus of CASZ1b fused to an artificial DNA-binding domain (GAL4DBD) causes a significant repression of transcription (5xUAS-luciferase assay), which could be blocked by treatment with an HDAC inhibitor. Realtime PCR results show that the transcriptional activity of CASZ1b mutants that abrogate NuRD or histone H3/DNA binding is significantly decreased. This indicates a model in which CASZ1b binds to chromatin and recruits NuRD complexes to orchestrate epigenetic-mediated transcriptional programs.

  20. Identification and Analysis of Mot3, a Zinc Finger Protein That Binds to the Retrotransposon Ty Long Terminal Repeat (δ) in Saccharomyces cerevisiae

    PubMed Central

    Madison, Jon M.; Dudley, Aimée M.; Winston, Fred

    1998-01-01

    Spt3 and Mot1 are two transcription factors of Saccharomyces cerevisiae that are thought to act in a related fashion to control the function of TATA-binding protein (TBP). Current models suggest that while Spt3 and Mot1 do not directly interact, they do function in a related fashion to stabilize the TBP-TATA interaction at particular promoters. Consistent with this model, certain combinations of spt3 and mot1 mutations are inviable. To identify additional proteins related to Spt3 and Mot1 functions, we screened for high-copy-number suppressors of the mot1 spt3 inviability. This screen identified a previously unstudied gene, MOT3, that encodes a zinc finger protein. We show that Mot3 binds in vitro to three sites within the retrotransposon Ty long terminal repeat (δ) sequence. One of these sites is immediately 5′ of the δ TATA region. Although a mot3 null mutation causes no strong phenotypes, it does cause some mild phenotypes, including a very modest increase in Ty mRNA levels, partial suppression of transcriptional defects caused by a mot1 mutation, and partial suppression of an spt3 mutation. These results, in conjunction with those of an independent study of Mot3 (A. Grishin, M. Rothenberg, M. A. Downs, and K. J. Blumer, Genetics, in press), suggest that this protein plays a varied role in gene expression that may be largely redundant with other factors. PMID:9528759

  1. Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1

    PubMed Central

    Pedruzzi, Ivo; Bürckert, Niels; Egger, Pascal; De Virgilio, Claudio

    2000-01-01

    The Saccharomyces cerevisiae protein kinase Rim15 was identified previously as a component of the Ras/cAMP pathway acting immediately downstream of cAMP-dependent protein kinase (cAPK) to control a broad range of adaptations in response to nutrient limitation. Here, we show that the zinc finger protein Gis1 acts as a dosage-dependent suppressor of the rim15Δ defect in nutrient limitation-induced transcriptional derepression of SSA3. Loss of Gis1 results in a defect in transcriptional derepression upon nutrient limitation of various genes that are negatively regulated by the Ras/cAMP pathway (e.g. SSA3, HSP12 and HSP26). Tests of epistasis as well as transcriptional analyses of Gis1-dependent expression indicate that Gis1 acts in this pathway downstream of Rim15 to mediate transcription from the previously identified post-diauxic shift (PDS) element. Accordingly, deletion of GIS1 partially suppresses, and overexpression of GIS1 exacerbates the growth defect of mutant cells that are compromised for cAPK activity. Moreover, PDS element-driven expression, which is negatively regulated by the Ras/cAMP pathway and which is induced upon nutrient limitation, is almost entirely dependent on the presence of Gis1. PMID:10835355

  2. A C2H2-type zinc finger protein, SGR5, is involved in early events of gravitropism in Arabidopsis inflorescence stems.

    PubMed

    Morita, Miyo T; Sakaguchi, Keitaro; Kiyose, Shin-Ichiro; Taira, Kensuke; Kato, Takehide; Nakamura, Moritaka; Tasaka, Masao

    2006-08-01

    Plants can sense the direction of gravity and change the growth orientation of their organs. To elucidate the molecular mechanisms of gravity perception and the signal transduction of gravitropism, we have characterized a number of shoot gravitropism (sgr) mutants of Arabidopsis. The sgr5-1 mutant shows reduced gravitropism in the inflorescence stem but its root and hypocotyl have normal gravitropism. SGR5 encodes a zinc finger protein with a coiled-coil motif. The SGR5-GFP fusion protein is localized in the nucleus of Arabidopsis protoplasts, suggesting that SGR5 may act as a transcription factor. Analysis of GUS expression under the control of the SGR5 promoter revealed that SGR5 is mainly expressed in the endodermis, the gravity-sensing tissue in inflorescence stems. Furthermore, the observation that endodermis-specific expression of SGR5 using the SCR promoter in the sgr5-1 mutant restores shoot gravitropism indicates that it could function in the gravity-sensing endodermal cell layer. In contrast to other sgr mutants reported previously, almost all amyloplasts in the endodermal cells of the sgr5-1 mutant sedimented in the direction of gravity. Taken together, our results suggest that SGR5 may be involved in an early event in shoot gravitropism such as gravity perception and/or a signaling process subsequent to amyloplast sedimentation as a putative transcription factor in gravity-perceptive cells.

  3. Arabidopsis JACKDAW and MAGPIE zinc finger proteins delimit asymmetric cell division and stabilize tissue boundaries by restricting SHORT-ROOT action

    PubMed Central

    Welch, David; Hassan, Hala; Blilou, Ikram; Immink, Richard; Heidstra, Renze; Scheres, Ben

    2007-01-01

    In the Arabidopsis root, the SHORT-ROOT transcription factor moves outward to the ground tissue from its site of transcription in the stele and is required for the specification of the endodermis and the stem cell organizing quiescent center cells. In addition, SHORT-ROOT and the downstream transcription factor SCARECROW control an oriented cell division in ground tissue stem cell daughters. Here, we show that the JACKDAW and MAGPIE genes, which encode members of a plant-specific family of zinc finger proteins, act in a SHR-dependent feed-forward loop to regulate the range of action of SHORT-ROOT and SCARECROW. JACKDAW expression is initiated independent of SHORT-ROOT and regulates the SCARECROW expression domain outside the stele, while MAGPIE expression depends on SHORT-ROOT and SCARECROW. We provide evidence that JACKDAW and MAGPIE regulate tissue boundaries and asymmetric cell division and can control SHORT-ROOT and SCARECROW activity in a transcriptional and protein interaction network. PMID:17785527

  4. The KRAS Promoter Responds to Myc-associated Zinc Finger and Poly(ADP-ribose) Polymerase 1 Proteins, Which Recognize a Critical Quadruplex-forming GA-element*

    PubMed Central

    Cogoi, Susanna; Paramasivam, Manikandan; Membrino, Alexandro; Yokoyama, Kazunari K.; Xodo, Luigi E.

    2010-01-01

    The murine KRAS promoter contains a G-rich nuclease hypersensitive element (GA-element) upstream of the transcription start site that is essential for transcription. Pulldown and chromatin immunoprecipitation assays demonstrate that this GA-element is bound by the Myc-associated zinc finger (MAZ) and poly(ADP-ribose) polymerase 1 (PARP-1) proteins. These proteins are crucial for transcription, because when they are knocked down by short hairpin RNA, transcription is down-regulated. This is also the case when the poly(ADP-ribosyl)ation activity of PARP-1 is inhibited by 3,4-dihydro-5-[4-(1-piperidinyl) butoxyl]-1(2H) isoquinolinone. We found that MAZ specifically binds to the duplex and quadruplex conformations of the GA-element, whereas PARP-1 shows specificity only for the G-quadruplex. On the basis of fluorescence resonance energy transfer melting and polymerase stop assays we saw that MAZ stabilizes the KRAS quadruplex. When the capacity of folding in the GA-element is abrogated by specific G → T or G → A point mutations, KRAS transcription is down-regulated. Conversely, guanidine-modified phthalocyanines, which specifically interact with and stabilize the KRAS G-quadruplex, push the promoter activity up to more than double. Collectively, our data support a transcription mechanism for murine KRAS that involves MAZ, PARP-1 and duplex-quadruplex conformational changes in the promoter GA-element. PMID:20457603

  5. A genetic method for sex determination in Ovis spp. by interruption of the zinc finger protein, Y-linked (ZFY) gene on the Y chromosome.

    PubMed

    Zhang, Yong Sheng; Du, Ying Chun; Sun, Li Rong; Wang, Xu Hai; Liu, Shuai Bing; Xi, Ji Feng; Li, Chao Cheng; Ying, Rui Wen; Jiang, Song; Wang, Xiang Zu; Shen, Hong; Jia, Bin

    2018-03-06

    The mammalian Y chromosome plays a critical role in spermatogenesis. However, the exact functions of each gene on the Y chromosome have not been completely elucidated, due, in part, to difficulties in gene targeting analysis of the Y chromosome. The zinc finger protein, Y-linked (ZFY) gene was first proposed to be a sex determination factor, although its function in spermatogenesis has recently been elucidated. Nevertheless, ZFY gene targeting analysis has not been performed to date. In the present study, RNA interference (RNAi) was used to generate ZFY-interrupted Hu sheep by injecting short hairpin RNA (shRNA) into round spermatids. The resulting spermatozoa exhibited abnormal sperm morphology, including spermatozoa without tails and others with head and tail abnormalities. Quantitative real-time polymerase chain reaction analysis showed that ZFY mRNA expression was decreased significantly in Hu sheep with interrupted ZFY compared with wild-type Hu sheep. The sex ratio of lambs also exhibited a bias towards females. Together, the experimental strategy and findings of the present study reveal that ZFY also functions in spermatogenesis in Hu sheep and facilitate the use of RNAi in the control of sex in Hu sheep.

  6. A map of human PRDM9 binding provides evidence for novel behaviors of PRDM9 and other zinc-finger proteins in meiosis

    PubMed Central

    Noor, Nudrat; Bitoun, Emmanuelle; Tumian, Afidalina; Imbeault, Michael; Chapman, J Ross; Aricescu, A Radu

    2017-01-01

    PRDM9 binding localizes almost all meiotic recombination sites in humans and mice. However, most PRDM9-bound loci do not become recombination hotspots. To explore factors that affect binding and subsequent recombination outcomes, we mapped human PRDM9 binding sites in a transfected human cell line and measured PRDM9-induced histone modifications. These data reveal varied DNA-binding modalities of PRDM9. We also find that human PRDM9 frequently binds promoters, despite their low recombination rates, and it can activate expression of a small number of genes including CTCFL and VCX. Furthermore, we identify specific sequence motifs that predict consistent, localized meiotic recombination suppression around a subset of PRDM9 binding sites. These motifs strongly associate with KRAB-ZNF protein binding, TRIM28 recruitment, and specific histone modifications. Finally, we demonstrate that, in addition to binding DNA, PRDM9's zinc fingers also mediate its multimerization, and we show that a pair of highly diverged alleles preferentially form homo-multimers. PMID:29072575

  7. OsDOG, a gibberellin-induced A20/AN1 zinc-finger protein, negatively regulates gibberellin-mediated cell elongation in rice.

    PubMed

    Liu, Yaju; Xu, Yunyuan; Xiao, Jun; Ma, Qibin; Li, Dan; Xue, Zhen; Chong, Kang

    2011-07-01

    The A20/AN1 zinc-finger proteins (ZFPs) play pivotal roles in animal immune responses and plant stress responses. From previous gibberellin (GA) microarray data and A20/AN1 ZFP family member association, we chose Oryza sativa dwarf rice with overexpression of gibberellin-induced gene (OsDOG) to examine its function in the GA pathway. OsDOG was induced by gibberellic acid (GA(3)) and repressed by the GA-synthesis inhibitor paclobutrazol. Different transgenic lines with constitutive expression of OsDOG showed dwarf phenotypes due to deficiency of cell elongation. Additional GA(1) and real-time PCR quantitative assay analyses confirmed that the decrease of GA(1) in the overexpression lines resulted from reduced expression of GA3ox2 and enhanced expression of GA2ox1 and GA2ox3. Adding exogenous GA rescued the constitutive expression phenotypes of the transgenic lines. OsDOG has a novel function in regulating GA homeostasis and in negative maintenance of plant cell elongation in rice. Copyright © 2011 Elsevier GmbH. All rights reserved.

  8. Comparative functional analysis of wheat (Triticum aestivum) zinc finger-containing glycine-rich RNA-binding proteins in response to abiotic stresses.

    PubMed

    Xu, Tao; Gu, Lili; Choi, Min Ji; Kim, Ryeo Jin; Suh, Mi Chung; Kang, Hunseung

    2014-01-01

    Although the functional roles of zinc finger-containing glycine-rich RNA-binding proteins (RZs) have been characterized in several plant species, including Arabidopsis thaliana and rice (Oryza sativa), the physiological functions of RZs in wheat (Triticum aestivum) remain largely unknown. Here, the functional roles of the three wheat RZ family members, named TaRZ1, TaRZ2, and TaRZ3, were investigated using transgenic Arabidopsis plants under various abiotic stress conditions. Expression of TaRZs was markedly regulated by salt, dehydration, or cold stress. The TaRZ1 and TaRZ3 proteins were localized to the nucleus, whereas the TaRZ2 protein was localized to the nucleus, endoplasmic reticulum, and cytoplasm. Germination of all three TaRZ-expressing transgenic Arabidopsis seeds was retarded compared with that of wild-type seeds under salt stress conditions, whereas germination of TaRZ2- or TaRZ3-expressing transgenic Arabidopsis seeds was retarded under dehydration stress conditions. Seedling growth of TaRZ1-expressing transgenic plants was severely inhibited under cold or salt stress conditions, and seedling growth of TaRZ2-expressing plants was inhibited under salt stress conditions. By contrast, expression of TaRZ3 did not affect seedling growth of transgenic plants under any of the stress conditions. In addition, expression of TaRZ2 conferred freeze tolerance in Arabidopsis. Taken together, these results suggest that different TaRZ family members play various roles in seed germination, seedling growth, and freeze tolerance in plants under abiotic stress.

  9. The role of ZFP580, a novel zinc finger protein, in TGF-mediated cytoprotection against chemical hypoxia-induced apoptosis in H9c2 cardiac myocytes

    PubMed Central

    Mao, Shi-Yun; Meng, Xiang-Yan; Xu, Zhong-Wei; Zhang, Wen-Cheng; Jin, Xiao-Han; Chen, Xi; Zhou, Xin; Li, Yu-Ming; Xu, Rui-Cheng

    2017-01-01

    Zing finger protein 580 (ZFP580) is a novel Cys2-His2 zinc-finger transcription factor that has an anti-apoptotic role in myocardial cells. It is involved in the endothelial transforming growth factor-β1 (TGF-β1) signal transduction pathway as a mothers against decapentaplegic homolog (Smad)2 binding partner. The aim of the present study was to determine the involvement of ZFP580 in TGF-β1-mediated cytoprotection against chemical hypoxia-induced apoptosis, using H9c2 cardiac myocytes. Hypoxia was chemically induced in H9c2 myocardial cells by exposure to cobalt chloride (CoCl2). In response to hypoxia, cell viability was decreased, whereas the expression levels of hypoxia inducible factor-1α and ZFP580 were increased. Pretreatment with TGF-β1 attenuated CoCl2-induced cell apoptosis and upregulated ZFP580 protein expression; however, these effects could be suppressed by SB431542, an inhibitor of TGF-β type I receptor and Smad2/3 phosphorylation. Furthermore, suppression of ZFP580 expression by RNA interference reduced the anti-apoptotic effects of TGF-β1 and thus increased CoCl2-induced apoptosis. B-cell lymphoma (Bcl)-2-associated X protein/Bcl-2 ratio, reactive oxygen species generation and caspase-3 activation were also increased following ZFP580 inactivation. In conclusion, these results indicate that ZFP580 is a component of the TGF-β1/Smad signaling pathway, and is involved in the protective effects of TGF-β1 against chemical hypoxia-induced cell apoptosis, through inhibition of the mitochondrial apoptotic pathway. PMID:28259939

  10. The C2H2 zinc-finger protein SlZF3 regulates AsA synthesis and salt tolerance by interacting with CSN5B.

    PubMed

    Li, Ying; Chu, Zhuannan; Luo, Jinying; Zhou, Yuhong; Cai, Yujing; Lu, Yongen; Xia, Junhui; Kuang, Hanhui; Ye, Zhibiao; Ouyang, Bo

    2018-06-01

    Abiotic stresses are a major cause of crop loss. Ascorbic acid (AsA) promotes stress tolerance by scavenging reactive oxygen species (ROS), which accumulate when plants experience abiotic stress. Although the biosynthesis and metabolism of AsA are well established, the genes that regulate these pathways remain largely unexplored. Here, we report on a novel regulatory gene from tomato (Solanum lycopersicum) named SlZF3 that encodes a Cys2/His2-type zinc-finger protein with an EAR repression domain. The expression of SlZF3 was rapidly induced by NaCl treatments. The overexpression of SlZF3 significantly increased the levels of AsA in tomato and Arabidopsis. Consequently, the AsA-mediated ROS-scavenging capacity of the SlZF3-overexpressing plants was increased, which enhanced the salt tolerance of these plants. Protein-protein interaction assays demonstrated that SlZF3 directly binds CSN5B, a key component of the COP9 signalosome. This interaction inhibited the binding of CSN5B to VTC1, a GDP-mannose pyrophosphorylase that contributes to AsA biosynthesis. We found that the EAR domain promoted the stability of SlZF3 but was not required for the interaction between SlZF3 and CSN5B. Our findings indicate that SlZF3 simultaneously promotes the accumulation of AsA and enhances plant salt-stress tolerance. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. The Novel Zinc Finger Protein dASCIZ Regulates Mitosis in Drosophila via an Essential Role in Dynein Light-Chain Expression

    PubMed Central

    Zaytseva, Olga; Tenis, Nora; Mitchell, Naomi; Kanno, Shin-ichiro; Yasui, Akira; Heierhorst, Jörg; Quinn, Leonie M

    2014-01-01

    The essential zinc finger protein ASCIZ (also known as ATMIN, ZNF822) plays critical roles during lung organogenesis and B cell development in mice, where it regulates the expression of dynein light chain (DYNLL1/LC8), but its functions in other species including invertebrates are largely unknown. Here we report the identification of the Drosophila ortholog of ASCIZ (dASCIZ) and show that loss of dASCIZ function leads to pronounced mitotic delays with centrosome and spindle positioning defects during development, reminiscent of impaired dynein motor functions. Interestingly, similar mitotic and developmental defects were observed upon knockdown of the DYNLL/LC8-type dynein light chain Cutup (Ctp), and dASCIZ loss-of-function phenotypes could be suppressed by ectopic Ctp expression. Consistent with a genetic function of dASCIZ upstream of Ctp, we show that loss of dASCIZ led to reduced endogenous Ctp mRNA and protein levels and dramatically reduced Ctp–LacZ reporter gene activity in vivo, indicating that dASCIZ regulates development and mitosis as a Ctp transcription factor. We speculate that the more severe mitotic defects in the absence of ASCIZ in flies compared to mice may be due to redundancy with a second, ASCIZ-independent, Dynll2 gene in mammals in contrast to a single Ctp gene in Drosophila. Altogether, our data demonstrate that ASCIZ is an evolutionary highly conserved transcriptional regulator of dynein light-chain levels and a novel regulator of mitosis in flies. PMID:24336747

  12. Luciferase-Zinc-Finger System for the Rapid Detection of Pathogenic Bacteria.

    PubMed

    Shi, Chu; Xu, Qing; Ge, Yue; Jiang, Ling; Huang, He

    2017-08-09

    Rapid and reliable detection of pathogenic bacteria is crucial for food safety control. Here, we present a novel luciferase-zinc finger system for the detection of pathogens that offers rapid and specific profiling. The system, which uses a zinc-finger protein domain to probe zinc finger recognition sites, was designed to bind the amplified conserved regions of 16S rDNA, and the obtained products were detected using a modified luciferase. The luciferase-zinc finger system not only maintained luciferase activity but also allowed the specific detection of different bacterial species, with a sensitivity as low as 10 copies and a linear range from 10 to 10 4 copies per microliter of the specific PCR product. Moreover, the system is robust and rapid, enabling the simultaneous detection of 6 species of bacteria in artificially contaminated samples with excellent accuracy. Thus, we envision that our luciferase-zinc finger system will have far-reaching applications.

  13. Tuberculate fruit gene Tu encodes a C2 H2 zinc finger protein that is required for the warty fruit phenotype in cucumber (Cucumis sativus L.).

    PubMed

    Yang, Xuqin; Zhang, Weiwei; He, Huanle; Nie, Jingtao; Bie, Beibei; Zhao, Junlong; Ren, Guoliang; Li, Yue; Zhang, Dabing; Pan, Junsong; Cai, Run

    2014-06-01

    Cucumber fruits that have tubercules and spines (trichomes) are known to possess a warty (Wty) phenotype. In this study, the tuberculate fruit gene Tu was identified by map-based cloning, and was found to encode a transcription factor (TF) with a single C2 H2 zinc finger domain. Tu was identified in all 38 Wty lines examined, and was completely absent from all 56 non-warty (nWty) lines. Cucumber plants transgenic for Tu (TCP) revealed that Tu was required for the Wty fruit phenotype. Subcellular localization showed that the fusion protein GFP-Tu was localized mainly to the nucleus. Based on analyses of semi-quantitative and quantitative reverse transcription polymerase chain reaction (RT-PCR), and mRNA in situ hybridization, we found that Tu was expressed specifically in fruit spine cells during development of fruit tubercules. Moreover, cytokinin (CTK) content measurements and cytological observations in Wty and nWty fruits revealed that the Wty fruit phenotype correlated with high endogenous CTK concentrations. As a result of further analyses on the transcriptomic profile of the nWty fruit epidermis and TCP fruit warts, expression of CTK-associated genes, and hormone content in nWty fruit epidermis, Wty fruit warts and epidermis, and TCP fruit warts and epidermis, we found that Tu probably promoted CTK biosynthesis in fruit warts. Here we show that Tu could not be expressed in the glabrous and tubercule-free mutant line gl that contained Tu, this result that futher confirmed the epistatic effect of the trichome (spine) gene Gl over Tu. Taken together, these data led us to propose a genetic pathway for the Wty fruit trait that could guide future mechanistic studies. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  14. TaCHP: a wheat zinc finger protein gene down-regulated by abscisic acid and salinity stress plays a positive role in stress tolerance.

    PubMed

    Li, Cuiling; Lv, Jian; Zhao, Xin; Ai, Xinghui; Zhu, Xinlei; Wang, Mengcheng; Zhao, Shuangyi; Xia, Guangmin

    2010-09-01

    The plant response to abiotic stresses involves both abscisic acid (ABA)-dependent and ABA-independent signaling pathways. Here we describe TaCHP, a CHP-rich (for cysteine, histidine, and proline rich) zinc finger protein family gene extracted from bread wheat (Triticum aestivum), is differentially expressed during abiotic stress between the salinity-sensitive cultivar Jinan 177 and its tolerant somatic hybrid introgression cultivar Shanrong No.3. TaCHP expressed in the roots of seedlings at the three-leaf stage, and the transcript localized within the cells of the root tip cortex and meristem. TaCHP transcript abundance was higher in Shanrong No.3 than in Jinan 177, but was reduced by the imposition of salinity or drought stress, as well as by the exogenous supply of ABA. When JN17, a salinity hypersensitive wheat cultivar, was engineered to overexpress TaCHP, its performance in the face of salinity stress was improved, and the ectopic expression of TaCHP in Arabidopsis (Arabidopsis thaliana) also improved the ability of salt tolerance. The expression level of a number of stress reporter genes (AtCBF3, AtDREB2A, AtABI2, and AtABI1) was raised in the transgenic lines in the presence of salinity stress, while that of AtMYB15, AtABA2, and AtAAO3 was reduced in its absence. The presence in the upstream region of the TaCHP open reading frame of the cis-elements ABRE, MYBRS, and MYCRS suggests that it is a component of the ABA-dependent and -independent signaling pathways involved in the plant response to abiotic stress. We suggest that TaCHP enhances stress tolerance via the promotion of CBF3 and DREB2A expression.

  15. MCP-1 causes cardiomyoblast death via autophagy resulting from ER stress caused by oxidative stress generated by inducing a novel zinc-finger protein, MCPIP.

    PubMed

    Younce, Craig W; Kolattukudy, Pappachan E

    2010-01-27

    MCP-1 (monocyte chemotactic protein-1) plays a critical role in the development of heart failure that is known to involve apoptosis. How MCP-1 contributes to cell death involved in the development of heart disease is not understood. In the present study we show that MCP-1 causes death in cardiac myoblasts, H9c2 cells, by inducing oxidative stress which causes ER stress leading to autophagy via a novel zinc-finger protein, MCPIP (MCP-1-induced protein). MCPIP expression caused cell death, and knockdown of MCPIP attenuated MCP-1-induced cell death. It caused induction of iNOS (inducible NO synthase), translocation of the NADPH oxidase subunit phox47 from the cytoplasm to the membrane, production of ROS (reactive oxygen species), and induction of ER (endoplasmic reticulum) stress markers HSP40 (heat-shock protein 40), PDI (protein disulfide-isomerase), GRP78 (guanine-nucleotide-releasing protein 78) and IRE1alpha (inositol-requiring enzyme 1alpha). It also caused autophagy, as indicated by beclin-1 induction, cleavage of LC3 (microtubule-associated protein 1 light chain 3) and autophagolysosome formation, and apoptosis, as indicated by caspase 3 activation and TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling) assay. Inhibitors of oxidative stress, including CeO2 nanoparticles, inhibited ROS formation, ER stress, autophagy and cell death. Specific inhibitors of ER stress inhibited autophagy and cell death as did knockdown of the ER stress signalling protein IRE1. Knockdown of beclin-1 and autophagy inhibitors prevented cell death. This cell death involved caspase 2 and caspase 12, as specific inhibitors of these caspases prevented MCPIP-induced cell death. Microarray analysis showed that MCPIP expression caused induction of a variety of genes known to be involved in cell death. MCPIP caused activation of JNK (c-Jun N-terminal kinase) and p38 and induction of p53 and PUMA (p53 up-regulated modulator of apoptosis). Taken together, these

  16. Modulation of Caenorhabditis elegans transcription factor activity by HIM-8 and the related Zinc-Finger ZIM proteins.

    PubMed

    Sun, Hongliu; Nelms, Brian L; Sleiman, Sama F; Chamberlin, Helen M; Hanna-Rose, Wendy

    2007-10-01

    The previously reported negative regulatory activity of HIM-8 on the Sox protein EGL-13 is shared by the HIM-8-related ZIM proteins. Furthermore, mutation of HIM-8 can modulate the effects of substitution mutations in the DNA-binding domains of at least four other transcription factors, suggesting broad regulatory activity by HIM-8.

  17. A Small Zinc Finger Thylakoid Protein Plays a Role in Maintenance of Photosystem II in Arabidopsis thaliana[W][OA

    PubMed Central

    Lu, Yan; Hall, David A.; Last, Robert L.

    2011-01-01

    This work identifies LOW QUANTUM YIELD OF PHOTOSYSTEM II1 (LQY1), a Zn finger protein that shows disulfide isomerase activity, interacts with the photosystem II (PSII) core complex, and may act in repair of photodamaged PSII complexes. Two mutants of an unannotated small Zn finger containing a thylakoid membrane protein of Arabidopsis thaliana (At1g75690; LQY1) were found to have a lower quantum yield of PSII photochemistry and reduced PSII electron transport rate following high-light treatment. The mutants dissipate more excess excitation energy via nonphotochemical pathways than wild type, and they also display elevated accumulation of reactive oxygen species under high light. After high-light treatment, the mutants have less PSII–light-harvesting complex II supercomplex than wild-type plants. Analysis of thylakoid membrane protein complexes showed that wild-type LQY1 protein comigrates with the PSII core monomer and the CP43-less PSII monomer (a marker for ongoing PSII repair and reassembly). PSII repair and reassembly involve the breakage and formation of disulfide bonds among PSII proteins. Interestingly, the recombinant LQY1 protein demonstrates a protein disulfide isomerase activity. LQY1 is more abundant in stroma-exposed thylakoids, where key steps of PSII repair and reassembly take place. The absence of the LQY1 protein accelerates turnover and synthesis of PSII reaction center protein D1. These results suggest that the LQY1 protein may be involved in maintaining PSII activity under high light by regulating repair and reassembly of PSII complexes. PMID:21586683

  18. Knockout of the CCCH zinc finger protein TcZC3H31 blocks Trypanosoma cruzi differentiation into the infective metacyclic form.

    PubMed

    Alcantara, Monica Visnieski; Kessler, Rafael Luis; Gonçalves, Rosana Elisa Gonçalves; Marliére, Newmar Pinto; Guarneri, Alessandra Aparecida; Picchi, Gisele Fernanda Assine; Fragoso, Stenio Perdigão

    2018-04-01

    In the protozoan parasite Trypanosoma cruzi - the causative agent of Chagas disease - gene expression control is mainly post-transcriptional, where RNA-binding proteins (RBPs) play a central role, by controlling mRNA stability, distribution and translation. A large variety of RBPs are encoded in the T. cruzi genome, including the CCCH-type zinc finger (CCCH ZnF) protein family, which is characterized by the presence of the C-X 7/8 -C-X 5 -C-X 3 -H (CCCH) motif. In the related parasite T. brucei, CCCH ZnF proteins have been shown to control key differentiation steps in the parasite's life cycle. However, little is known about the CCCH ZnF proteins in T. cruzi. We have worked on the generation of T. cruzi mutants for CCCH ZnF proteins in an effort to shed light on the functions of these proteins in this parasite. Here, we characterize the expression and function of the CCCH ZnF protein TcZC3H31 of T. cruzi. TcZC3H31 is almost exclusively expressed in epimastigotes and metacyclic trypomastigotes, the parasite forms found in the invertebrate host. Importantly, we show that the epimastigote form of the T. cruzi knockout for the TcZC3H31 gene (TcZC3H31 KO) is incapable, both in vitro and in vivo (in infected triatomine insects), to differentiate into the metacyclic trypomastigote form, which is responsible for infection transmission from vectors to humans. The epimastigote forms recovered from the excreta of insects infected with TcZC3H31 KO parasites do not have the typical epimastigote morphology, suggesting that parasites are arrested in a mid-differentiation step. Also, epimastigotes overexpressing TcZC3H31 differentiate into metacyclics more efficiently than wild-type epimastigotes, in vitro. These data suggest that TcZC3H31 is an essential positive regulator of T. cruzi differentiation into the human-infective metacyclic form. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. The DnaJ-Like Zinc-Finger Protein HCF222 Is Required for Thylakoid Membrane Biogenesis in Plants.

    PubMed

    Hartings, Stephanie; Paradies, Susanne; Karnuth, Bianca; Eisfeld, Sabrina; Mehsing, Jasmin; Wolff, Christian; Levey, Tatjana; Westhoff, Peter; Meierhoff, Karin

    2017-07-01

    To understand the biogenesis of the thylakoid membrane in higher plants and to identify auxiliary proteins required to build up this highly complex membrane system, we have characterized the allelic nuclear mutants high chlorophyll fluorescence222-1 ( hcf222-1 ) and hcf222-2 and isolated the causal gene by map-based cloning. In the ethyl methanesulfonate-induced mutant hcf222-1 , the accumulation of the cytochrome b 6 f (Cytb6f) complex was reduced to 30% compared with the wild type. Other thylakoid membrane complexes accumulated to normal levels. The T-DNA knockout mutant hcf222-2 showed a more severe defect with respect to thylakoid membrane proteins and accumulated only 10% of the Cytb6f complex, accompanied by a reduction in photosystem II, the photosystem II light-harvesting complex, and photosystem I. HCF222 encodes a protein of 99 amino acids in Arabidopsis ( Arabidopsis thaliana ) that has similarities to the cysteine-rich zinc-binding domain of DnaJ chaperones. The insulin precipitation assay demonstrated that HCF222 has disulfide reductase activity in vitro. The protein is conserved in higher plants and bryophytes but absent in algae and cyanobacteria. Confocal fluorescence microscopy showed that a fraction of HCF222-green fluorescent protein was detectable in the endoplasmic reticulum but that it also could be recognized in chloroplasts. A fusion construct of HCF222 containing a plastid transit peptide targets the protein into chloroplasts and was able to complement the mutational defect. These findings indicate that the chloroplast-targeted HCF222 is indispensable for the maturation and/or assembly of the Cytb6f complex and is very likely involved in thiol-disulfide biochemistry at the thylakoid membrane. © 2017 American Society of Plant Biologists. All Rights Reserved.

  20. Dissecting CNBP, a zinc-finger protein required for neural crest development, in its structural and functional domains.

    PubMed

    Armas, Pablo; Agüero, Tristán H; Borgognone, Mariana; Aybar, Manuel J; Calcaterra, Nora B

    2008-10-17

    Cellular nucleic-acid-binding protein (CNBP) plays an essential role in forebrain and craniofacial development by controlling cell proliferation and survival to mediate neural crest expansion. CNBP binds to single-stranded nucleic acids and displays nucleic acid chaperone activity in vitro. The CNBP family shows a conserved modular organization of seven Zn knuckles and an arginine-glycine-glycine (RGG) box between the first and second Zn knuckles. The participation of these structural motifs in CNBP biochemical activities has still not been addressed. Here, we describe the generation of CNBP mutants that dissect the protein into regions with structurally and functionally distinct properties. Mutagenesis approaches were followed to generate: (i) an amino acid replacement that disrupted the fifth Zn knuckle; (ii) N-terminal deletions that removed the first Zn knuckle and the RGG box, or the RGG box alone; and (iii) a C-terminal deletion that eliminated the three last Zn knuckles. Mutant proteins were overexpressed in Escherichia coli, purified, and used to analyze their biochemical features in vitro, or overexpressed in Xenopus laevis embryos to study their function in vivo during neural crest cell development. We found that the Zn knuckles are required, but not individually essential, for CNBP biochemical activities, whereas the RGG box is essential for RNA-protein binding and nucleic acid chaperone activity. Removal of the RGG box allowed CNBP to preserve a weak single-stranded-DNA-binding capability. A mutant mimicking the natural N-terminal proteolytic CNBP form behaved as the RGG-deleted mutant. By gain-of-function and loss-of-function experiments in Xenopus embryos, we confirmed the participation of CNBP in neural crest development, and we demonstrated that the CNBP mutants lacking the N-terminal region or the RGG box alone may act as dominant negatives in vivo. Based on these data, we speculate about the existence of a specific proteolytic mechanism for the

  1. Role of Su(Hw) zinc finger 10 and interaction with CP190 and Mod(mdg4) proteins in recruiting the Su(Hw) complex to chromatin sites in Drosophila.

    PubMed

    Melnikova, Larisa; Kostyuchenko, Margarita; Parshikov, Alexander; Georgiev, Pavel; Golovnin, Anton

    2018-01-01

    Su(Hw) belongs to the class of proteins that organize chromosome architecture and boundaries/insulators between regulatory domains. This protein contains a cluster of 12 zinc finger domains most of which are responsible for binding to three different modules in the consensus site. Su(Hw) forms a complex with CP190 and Mod(mdg4)-67.2 proteins that binds to well-known Drosophila insulators. To understand how Su(Hw) performs its activities and binds to specific sites in chromatin, we have examined the previously described su(Hw)f mutation that disrupts the 10th zinc finger (ZF10) responsible for Su(Hw) binding to the upstream module. The results have shown that Su(Hw)f loses the ability to interact with CP190 in the absence of DNA. In contrast, complete deletion of ZF10 does not prevent the interaction between Su(Hw)Δ10 and CP190. Having studied insulator complex formation in different mutant backgrounds, we conclude that both association with CP190 and Mod(mdg4)-67.2 partners and proper organization of DNA binding site are essential for the efficient recruitment of the Su(Hw) complex to chromatin insulators.

  2. DPL-1 DP, LIN-35 Rb and EFL-1 E2F act with the MCD-1 zinc-finger protein to promote programmed cell death in Caenorhabditis elegans.

    PubMed

    Reddien, Peter W; Andersen, Erik C; Huang, Michael C; Horvitz, H Robert

    2007-04-01

    The genes egl-1, ced-9, ced-4, and ced-3 play major roles in programmed cell death in Caenorhabditis elegans. To identify genes that have more subtle activities, we sought mutations that confer strong cell-death defects in a genetically sensitized mutant background. Specifically, we screened for mutations that enhance the cell-death defects caused by a partial loss-of-function allele of the ced-3 caspase gene. We identified mutations in two genes not previously known to affect cell death, dpl-1 and mcd-1 (modifier of cell death). dpl-1 encodes the C. elegans homolog of DP, the human E2F-heterodimerization partner. By testing genes known to interact with dpl-1, we identified roles in cell death for four additional genes: efl-1 E2F, lin-35 Rb, lin-37 Mip40, and lin-52 dLin52. mcd-1 encodes a novel protein that contains one zinc finger and that is synthetically required with lin-35 Rb for animal viability. dpl-1 and mcd-1 act with efl-1 E2F and lin-35 Rb to promote programmed cell death and do so by regulating the killing process rather than by affecting the decision between survival and death. We propose that the DPL-1 DP, MCD-1 zinc finger, EFL-1 E2F, LIN-35 Rb, LIN-37 Mip40, and LIN-52 dLin52 proteins act together in transcriptional regulation to promote programmed cell death.

  3. Stress-Responsive Mitogen-Activated Protein Kinases Interact with the EAR Motif of a Poplar Zinc Finger Protein and Mediate Its Degradation through the 26S Proteasome1[W][OA

    PubMed Central

    Hamel, Louis-Philippe; Benchabane, Meriem; Nicole, Marie-Claude; Major, Ian T.; Morency, Marie-Josée; Pelletier, Gervais; Beaudoin, Nathalie; Sheen, Jen; Séguin, Armand

    2011-01-01

    Mitogen-activated protein kinases (MAPKs) contribute to the establishment of plant disease resistance by regulating downstream signaling components, including transcription factors. In this study, we identified MAPK-interacting proteins, and among the newly discovered candidates was a Cys-2/His-2-type zinc finger protein named PtiZFP1. This putative transcription factor belongs to a family of transcriptional repressors that rely on an ERF-associated amphiphilic repression (EAR) motif for their repression activity. Amino acids located within this repression motif were also found to be essential for MAPK binding. Close examination of the primary protein sequence revealed a functional bipartite MAPK docking site that partially overlaps with the EAR motif. Transient expression assays in Arabidopsis (Arabidopsis thaliana) protoplasts suggest that MAPKs promote PtiZFP1 degradation through the 26S proteasome. Since features of the MAPK docking site are conserved among other EAR repressors, our study suggests a novel mode of defense mechanism regulation involving stress-responsive MAPKs and EAR repressors. PMID:21873571

  4. The hematopoietic tumor suppressor interferon regulatory factor 8 (IRF8) is upregulated by the antimetabolite cytarabine in leukemic cells involving the zinc finger protein ZNF224, acting as a cofactor of the Wilms' tumor gene 1 (WT1) protein.

    PubMed

    Montano, Giorgia; Ullmark, Tove; Jernmark-Nilsson, Helena; Sodaro, Gaetano; Drott, Kristina; Costanzo, Paola; Vidovic, Karina; Gullberg, Urban

    2016-01-01

    The transcription factor interferon regulatory factor-8 (IRF8) is highly expressed in myeloid progenitors, while most myeloid leukemias show low or absent expression. Loss of IRF8 in mice leads to a myeloproliferative disorder, indicating a tumor-suppressive role of IRF8. The Wilms tumor gene 1 (WT1) protein represses the IRF8-promoter. The zinc finger protein ZNF224 can act as a transcriptional co-factor of WT1 and potentiate the cytotoxic response to the cytostatic drug cytarabine. We hypothesized that cytarabine upregulates IRF8 and that transcriptional control of IRF8 involves WT1 and ZNF224. Treatment of leukemic K562 cells with cytarabine upregulated IRF8 protein and mRNA, which was correlated to increased expression of ZNF224. Knock down of ZNF224 with shRNA suppressed both basal and cytarabine-induced IRF8 expression. While ZNF224 alone did not affect IRF8 promoter activity, ZNF224 partially reversed the suppressive effect of WT1 on the IRF8 promoter, as judged by luciferase reporter experiments. Coprecipitation revealed nuclear binding of WT1 and ZNF224, and by chromatin immunoprecipitation (ChIP) experiments it was demonstrated that WT1 recruits ZNF224 to the IRF8 promoter. We conclude that cytarabine-induced upregulation of the IRF8 in leukemic cells involves increased levels of ZNF224, which can counteract the repressive activity of WT1 on the IRF8-promoter. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The artificial zinc finger coding gene 'Jazz' binds the utrophin promoter and activates transcription.

    PubMed

    Corbi, N; Libri, V; Fanciulli, M; Tinsley, J M; Davies, K E; Passananti, C

    2000-06-01

    Up-regulation of utrophin gene expression is recognized as a plausible therapeutic approach in the treatment of Duchenne muscular dystrophy (DMD). We have designed and engineered new zinc finger-based transcription factors capable of binding and activating transcription from the promoter of the dystrophin-related gene, utrophin. Using the recognition 'code' that proposes specific rules between zinc finger primary structure and potential DNA binding sites, we engineered a new gene named 'Jazz' that encodes for a three-zinc finger peptide. Jazz belongs to the Cys2-His2 zinc finger type and was engineered to target the nine base pair DNA sequence: 5'-GCT-GCT-GCG-3', present in the promoter region of both the human and mouse utrophin gene. The entire zinc finger alpha-helix region, containing the amino acid positions that are crucial for DNA binding, was specifically chosen on the basis of the contacts more frequently represented in the available list of the 'code'. Here we demonstrate that Jazz protein binds specifically to the double-stranded DNA target, with a dissociation constant of about 32 nM. Band shift and super-shift experiments confirmed the high affinity and specificity of Jazz protein for its DNA target. Moreover, we show that chimeric proteins, named Gal4-Jazz and Sp1-Jazz, are able to drive the transcription of a test gene from the human utrophin promoter.

  6. The C3H-type zinc finger protein GDS1/C3H42 is a nuclear-speckle-localized protein that is essential for normal growth and development in Arabidopsis.

    PubMed

    Kim, Dae Won; Jeon, Su Jeong; Hwang, Sung Min; Hong, Jong Chan; Bahk, Jeong Dong

    2016-09-01

    Eukaryotic C3H-type zinc finger proteins (Znfs) comprise a large family of regulatory proteins involved in many aspects of plant stress response, growth and development. However, compared to mammalian, only a few plant Znfs have been functionally characterized. Here, T-DNA inserted gds1 (growth, development and splicing 1) mutant, displayed abnormal growth throughout the lifecycle owing to the reduction of cell size and number. Inverse PCR analysis revealed that the abnormal growth was caused by the disruption of At3g47120, which encodes a C3H42 protein belonging to the C-X7-C-X5-C-X3-H class of the Znf family. GDS1 was ubiquitously transcribed, but shows high levels of expression in young seedling and unexpanded new leaves. In gds1, the transcripts of many growth- and development-related genes were down-regulated, and the auxin response was dramatically reduced. A fluorescence-based assay revealed that the GDS1 protein was localized to the nucleus, prominently in the speckle compartments. Its arginine/serine dipeptide-rich-like (RS-like) domain was essential for nuclear localization. In addition, the SR1, SRm102 and U1-70K components of the U1 spliceosome interacted with GDS1 in the nuclear speckle compartments. Taken together, these suggest that GDS1, a nuclear-speckle-associated Znf, might play a significant role in splicing during plant growth and development. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Zinc finger point mutations within the WT1 gene in Wilms tumor patients.

    PubMed Central

    Little, M H; Prosser, J; Condie, A; Smith, P J; Van Heyningen, V; Hastie, N D

    1992-01-01

    A proposed Wilms tumor gene, WT1, which encodes a zinc finger protein, has previously been isolated from human chromosome 11p13. Chemical mismatch cleavage analysis was used to identify point mutations in the zinc finger region of this gene in a series of 32 Wilms tumors. Two exonic single base changes were detected. In zinc finger 3 of a bilateral Wilms tumor patient, a constitutional de novo C----T base change was found changing an arginine to a stop codon. One tumor from this patient showed allele loss leading to 11p hemizygosity of the abnormal allele. In zinc finger 2 of a sporadic Wilms tumor patient, a C----T base change resulted in an arginine to cysteine amino acid change. To our knowledge, a WT1 gene missense mutation has not been detected previously in a Wilms tumor. By comparison with a recent NMR and x-ray crystallographic analysis of an analogous zinc finger gene, early growth response gene 1 (EGR1), this amino acid change in WT1 occurs at a residue predicted to be critical for DNA binding capacity and site specificity. The detection of one nonsense point mutation and one missense WT1 gene point mutation adds to the accumulating evidence implicating this gene in a proportion of Wilms tumor patients. Images PMID:1317572

  8. Evaluation of Novel Design Strategies for Developing Zinc Finger Nucleases Tools for Treating Human Diseases

    SciT

    Bach, Christian; Sherman, William; Pallis, Jani

    Zinc finger nucleases (ZFNs) are associated with cell death and apoptosis by binding at countless undesired locations. This cytotoxicity is associated with the binding ability of engineered zinc finger domains to bind dissimilar DNA sequences with high affinity. In general, binding preferences of transcription factors are associated with significant degenerated diversity and complexity which convolutes the design and engineering of precise DNA binding domains. Evolutionary success of natural zinc finger proteins, however, evinces that nature created specific evolutionary traits and strategies, such as modularity and rank-specific recognition to cope with binding complexity that are critical for creating clinical viable toolsmore » to precisely modify the human genome. Our findings indicate preservation of general modularity and significant alteration of the rank-specific binding preferences of the three-finger binding domain of transcription factor SP1 when exchanging amino acids in the 2nd finger.« less

  9. Sequence Discrimination by Alternatively Spliced Isoforms of a DNA Binding Zinc Finger Domain

    NASA Astrophysics Data System (ADS)

    Gogos, Joseph A.; Hsu, Tien; Bolton, Jesse; Kafatos, Fotis C.

    1992-09-01

    Two major developmentally regulated isoforms of the Drosophila chorion transcription factor CF2 differ by an extra zinc finger within the DNA binding domain. The preferred DNA binding sites were determined and are distinguished by an internal duplication of TAT in the site recognized by the isoform with the extra finger. The results are consistent with modular interactions between zinc fingers and trinucleotides and also suggest rules for recognition of AT-rich DNA sites by zinc finger proteins. The results show how modular finger interactions with trinucleotides can be used, in conjunction with alternative splicing, to alter the binding specificity and increase the spectrum of sites recognized by a DNA binding domain. Thus, CF2 may potentially regulate distinct sets of target genes during development.

  10. Evaluation of Novel Design Strategies for Developing Zinc Finger Nucleases Tools for Treating Human Diseases

    DOE PAGES

    Bach, Christian; Sherman, William; Pallis, Jani; ...

    2014-01-01

    Zinc finger nucleases (ZFNs) are associated with cell death and apoptosis by binding at countless undesired locations. This cytotoxicity is associated with the binding ability of engineered zinc finger domains to bind dissimilar DNA sequences with high affinity. In general, binding preferences of transcription factors are associated with significant degenerated diversity and complexity which convolutes the design and engineering of precise DNA binding domains. Evolutionary success of natural zinc finger proteins, however, evinces that nature created specific evolutionary traits and strategies, such as modularity and rank-specific recognition to cope with binding complexity that are critical for creating clinical viable toolsmore » to precisely modify the human genome. Our findings indicate preservation of general modularity and significant alteration of the rank-specific binding preferences of the three-finger binding domain of transcription factor SP1 when exchanging amino acids in the 2nd finger.« less

  11. The Arabidopsis tandem CCCH zinc finger proteins AtTZF4, 5 and 6 are involved in light-, abscisic acid- and gibberellic acid-mediated regulation of seed germination.

    PubMed

    Bogamuwa, Srimathi; Jang, Jyan-Chyun

    2013-08-01

    Tandem CCCH zinc finger proteins (TZFs) are post-transcriptional regulators of gene expression in animals and yeast. Genetic studies indicate that plant TZFs are involved in hormone-mediated developmental and environmental responses. We have demonstrated previously that Arabidopsis AtTZF1 can localize to processing bodies (PBs) and stress granules (SGs), and affects abscisic acid (ABA)- and gibberellic acid (GA)-mediated growth, stress and gene expression responses. Here we show that AtTZF4, 5 and 6 are specifically expressed in seeds. Consistent with the observation that their expression levels decline during seed imbibition, AtTZF4, 5 and 6 are up-regulated by ABA and down-regulated by GA. Mutant analyses indicate that AtTZF4, 5 and 6 act as positive regulators for ABA- and negative regulators for light- and GA-mediated seed germination responses. Results of gene expression analysis indicate that AtTZF4, 5 and 6 affect seed germination by controlling genes critical for ABA and GA response. Furthermore, AtTZF4, 5 and 6 can co-localize with both PB and SG markers in Arabidopsis cells. Specifically, AtTZF6 can be assembled into PBs and SGs in embryos with the induction of stress hormone methyl jasmonate under the control of native AtTZF6 promoter. © 2013 John Wiley & Sons Ltd.

  12. Genome-Wide Survey and Expression Profiling of CCCH-Zinc Finger Family Reveals a Functional Module in Macrophage Activation

    PubMed Central

    Liang, Jian; Song, Wenjun; Tromp, Gail; Kolattukudy, Pappachan E.; Fu, Mingui

    2008-01-01

    Previously, we have identified a novel CCCH zinc finger protein family as negative regulators of macrophage activation. To gain an overall insight into the entire CCCH zinc finger gene family and to evaluate their potential role in macrophage activation, here we performed a genome-wide survey of CCCH zinc finger genes in mouse and human. Totally 58 CCCH zinc finger genes in mouse and 55 in human were identified and most of them have not been reported previously. Phylogenetic analysis revealed that the mouse CCCH family was divided into 6 groups. Meanwhile, we employed quantitative real-time PCR to profile their tissue expression patterns in adult mice. Clustering analysis showed that most of CCCH genes were broadly expressed in all of tissues examined with various levels. Interestingly, several CCCH genes Mbnl3, Zfp36l2, Zfp36, Zc3h12a, Zc3h12d, Zc3h7a and Leng9 were enriched in macrophage-related organs such as thymus, spleen, lung, intestine and adipose. Consistently, a comprehensive assessment of changes in expression of the 58 members of the mouse CCCH family during macrophage activation also revealed that these CCCH zinc finger genes were associated with the activation of bone marrow-derived macrophages by lipopolysaccharide. Taken together, this study not only identified a functional module of CCCH zinc finger genes in the regulation of macrophage activation but also provided the framework for future studies to dissect the function of this emerging gene family. PMID:18682727

  13. The Polyadenosine RNA-binding Protein, Zinc Finger Cys3His Protein 14 (ZC3H14), Regulates the Pre-mRNA Processing of a Key ATP Synthase Subunit mRNA*

    PubMed Central

    Wigington, Callie P.; Morris, Kevin J.; Newman, Laura E.; Corbett, Anita H.

    2016-01-01

    Polyadenosine RNA-binding proteins (Pabs) regulate multiple steps in gene expression. This protein family includes the well studied Pabs, PABPN1 and PABPC1, as well as the newly characterized Pab, zinc finger CCCH-type containing protein 14 (ZC3H14). Mutations in ZC3H14 are linked to a form of intellectual disability. To probe the function of ZC3H14, we performed a transcriptome-wide analysis of cells depleted of either ZC3H14 or the control Pab, PABPN1. Depletion of PABPN1 affected ∼17% of expressed transcripts, whereas ZC3H14 affected only ∼1% of expressed transcripts. To assess the function of ZC3H14 in modulating target mRNAs, we selected the gene encoding the ATP synthase F0 subunit C (ATP5G1) transcript. Knockdown of ZC3H14 significantly reduced ATP5G1 steady-state mRNA levels. Consistent with results suggesting that ATP5G1 turnover increases upon depletion of ZC3H14, double knockdown of ZC3H14 and the nonsense-mediated decay factor, UPF1, rescues ATP5G1 transcript levels. Furthermore, fractionation reveals an increase in the amount of ATP5G1 pre-mRNA that reaches the cytoplasm when ZC3H14 is depleted and that ZC3H14 binds to ATP5G1 pre-mRNA in the nucleus. These data support a role for ZC3H14 in ensuring proper nuclear processing and retention of ATP5G1 pre-mRNA. Consistent with the observation that ATP5G1 is a rate-limiting component for ATP synthase activity, knockdown of ZC3H14 decreases cellular ATP levels and causes mitochondrial fragmentation. These data suggest that ZC3H14 modulates pre-mRNA processing of select mRNA transcripts and plays a critical role in regulating cellular energy levels, observations that have broad implications for proper neuronal function. PMID:27563065

  14. The structural role of the zinc ion can be dispensable in prokaryotic zinc-finger domains

    PubMed Central

    Baglivo, Ilaria; Russo, Luigi; Esposito, Sabrina; Malgieri, Gaetano; Renda, Mario; Salluzzo, Antonio; Di Blasio, Benedetto; Isernia, Carla; Fattorusso, Roberto; Pedone, Paolo V.

    2009-01-01

    The recent characterization of the prokaryotic Cys2His2 zinc-finger domain, identified in Ros protein from Agrobacterium tumefaciens, has demonstrated that, although possessing a similar zinc coordination sphere, this domain is structurally very different from its eukaryotic counterpart. A search in the databases has identified ≈300 homologues with a high sequence identity to the Ros protein, including the amino acids that form the extensive hydrophobic core in Ros. Surprisingly, the Cys2His2 zinc coordination sphere is generally poorly conserved in the Ros homologues, raising the question of whether the zinc ion is always preserved in these proteins. Here, we present a functional and structural study of a point mutant of Ros protein, Ros56–142C82D, in which the second coordinating cysteine is replaced by an aspartate, 5 previously-uncharacterized representative Ros homologues from Mesorhizobium loti, and 2 mutants of the homologues. Our results indicate that the prokaryotic zinc-finger domain, which in Ros protein tetrahedrally coordinates Zn(II) through the typical Cys2His2 coordination, in Ros homologues can either exploit a CysAspHis2 coordination sphere, previously never described in DNA binding zinc finger domains to our knowledge, or lose the metal, while still preserving the DNA-binding activity. We demonstrate that this class of prokaryotic zinc-finger domains is structurally very adaptable, and surprisingly single mutations can transform a zinc-binding domain into a nonzinc-binding domain and vice versa, without affecting the DNA-binding ability. In light of our findings an evolutionary link between the prokaryotic and eukaryotic zinc-finger domains, based on bacteria-to-eukaryota horizontal gene transfer, is discussed. PMID:19369210

  15. Mechanisms of inhibition of zinc-finger transcription factors by selenium compounds ebselen and selenite.

    PubMed

    Larabee, Jason L; Hocker, James R; Hanas, Jay S

    2009-03-01

    The anti-inflammatory selenium compounds, ebselen (2-phenyl-1,2-benzisoselenazol-3[2H]-one) and selenite, were found to alter the DNA binding mechanisms and structures of cysteine-rich zinc-finger transcription factors. As assayed by DNase I protection, DNA binding by TFIIIA (transcription factor IIIA, prototypical Cys(2)His(2) zinc finger protein), was inhibited by micromolar amounts of ebselen. In a gel shift assay, ebselen inhibited the Cys(2)His(2) zinc finger-containing DNA binding domain (DBD) of the NF-kappaB mediated transcription factor Sp1. Ebselen also inhibited DNA binding by the p50 subunit of the pro-inflammatory Cys-containing NF-kappaB transcription factor. Electrospray ionization mass spectrometry (ESI-MS) was utilized to elucidate mechanisms of chemical interaction between ebselen and a zinc-bound Cys(2)His(2) zinc finger polypeptide modeled after the third finger of Sp1 (Sp1-3). Exposing Sp1-3 to micromolar amounts of ebselen resulted in Zn(2+) release from this peptide and the formation of a disulfide bond by oxidation of zinc finger SH groups, the likely mechanism for DNA binding inhibition. Selenite was shown by ESI-MS to also eject zinc from Sp1-3 as well as induce disulfide bond formation through SH oxidation. The selenite-dependent inhibition/oxidation mechanism differed from that of ebselen by inducing the formation of a stable selenotrisulfide bond. Selenite-induced selenotrisulfide formation was dependent upon the structure of the Cys(2)His(2) zinc finger as alteration in the finger structure enhanced this reaction as well as selenite-dependent zinc release. Ebselen and selenite-dependent inhibition/oxidation of Cys-rich zinc finger proteins, with concomitant release of zinc and finger structural changes, points to mechanisms at the atomic and protein level for selenium-induced alterations in Cys-rich proteins, and possible amelioration of certain inflammatory, neurodegenerative, and oncogenic responses.

  16. BnLATE, a Cys2/His2-Type Zinc-Finger Protein, Enhances Silique Shattering Resistance by Negatively Regulating Lignin Accumulation in the Silique Walls of Brassica napus

    PubMed Central

    Tao, Zhangsheng; Huang, Yi; Zhang, Lida; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong

    2017-01-01

    Silique shattering resistance is one of the most important agricultural traits in oil crop breeding. Seed shedding from siliques prior to and during harvest causes devastating losses in oilseed yield. Lignin biosynthesis in the silique walls is thought to affect silique-shattering resistance in oil crops. Here, we identified and characterized B. napus LATE FLOWERING (BnLATE), which encodes a Cys2/His2-type zinc-finger protein. Heterologous expression of BnLATE under the double enhanced CaMV 35S promoter (D35S) in wild-type Arabidopsis plants resulted in a marked decrease in lignification in the replum, valve layer (carpel) and dehiscence zone. pBnLATE::GUS activity was strong in the yellowing silique walls of transgenic lines. Furthermore, the expression pattern of BnLATE and the lignin content gradient in the silique walls at 48 days after pollination (DAP) of 73290, a B. napus silique shattering-resistant line, are similar to those in transgenic Arabidopsis lines expressing BnLATE. Transcriptome sequencing of the silique walls revealed that genes encoding peroxidases, which polymerize monolignols and lignin in the phenylpropanoid pathway, were down-regulated at least two-fold change in the D35S::BnLATE transgenic lines. pBnLATE::BnLATE transgenic lines were further used to identify the function of BnLATE, and the results showed that lignification in the carpel and dehiscence zone of yellowing silique also remarkably decreased compared with the wild-type control, the silique shattering-resistance and expression pattern of peroxidase genes are very similar to results with D35S::BnLATE. These results suggest that BnLATE is a negative regulator of lignin biosynthesis in the yellowing silique walls, and promotes silique-shattering resistance in B. napus through restraining the polymerization of monolignols and lignin. PMID:28081140

  17. Zinc Finger-Containing Cellular Transcription Corepressor ZBTB25 Promotes Influenza Virus RNA Transcription and Is a Target for Zinc Ejector Drugs.

    PubMed

    Chen, Shu-Chuan; Jeng, King-Song; Lai, Michael M C

    2017-10-15

    Influenza A virus (IAV) replication relies on an intricate interaction between virus and host cells. How the cellular proteins are usurped for IAV replication remains largely obscure. The aim of this study was to search for novel and potential cellular factors that participate in IAV replication. ZBTB25, a transcription repressor of a variety of cellular genes, was identified by an RNA interference (RNAi) genomic library screen. Depletion of ZBTB25 significantly reduced IAV production. Conversely, overexpression of ZBTB25 enhanced it. ZBTB25 interacted with the viral RNA-dependent RNA polymerase (RdRp) protein and modulated its transcription activity. In addition, ZBTB25 also functioned as a viral RNA (vRNA)-binding protein, binding preferentially to the U-rich sequence within the 5' untranslated region (UTR) of vRNA. Both protein-protein and protein-RNA interactions involving ZBTB25 facilitated viral RNA transcription and replication. In addition, ZBTB25 suppressed interferon production, further enhancing viral replication. ZBTB25-associated functions required an intact zinc finger domain and posttranslational SUMO-1 modification of ZBTB25. Furthermore, treatment with disulfiram (a zinc ejector) of ZBTB25-overexpressing cells showed significantly reduced IAV production as a result of reduced RNA synthesis. Our findings indicate that IAV usurps ZBTB25 for IAV RNA synthesis and serves as a novel and potential therapeutic antiviral target. IMPORTANCE IAV-induced seasonal influenza causes severe illness and death in high-risk populations. However, IAV has developed resistance to current antiviral drugs due to its high mutation rate. Therefore, development of drugs targeting cellular factors required for IAV replication is an attractive alternative for IAV therapy. Here, we discovered a cellular protein, ZBTB25, that enhances viral RdRp activity by binding to both viral RdRp and viral RNA to stimulate viral RNA synthesis. A unique feature of ZBTB25 in the regulation of

  18. Zinc Finger-Containing Cellular Transcription Corepressor ZBTB25 Promotes Influenza Virus RNA Transcription and Is a Target for Zinc Ejector Drugs

    PubMed Central

    Chen, Shu-Chuan; Jeng, King-Song

    2017-01-01

    ABSTRACT Influenza A virus (IAV) replication relies on an intricate interaction between virus and host cells. How the cellular proteins are usurped for IAV replication remains largely obscure. The aim of this study was to search for novel and potential cellular factors that participate in IAV replication. ZBTB25, a transcription repressor of a variety of cellular genes, was identified by an RNA interference (RNAi) genomic library screen. Depletion of ZBTB25 significantly reduced IAV production. Conversely, overexpression of ZBTB25 enhanced it. ZBTB25 interacted with the viral RNA-dependent RNA polymerase (RdRp) protein and modulated its transcription activity. In addition, ZBTB25 also functioned as a viral RNA (vRNA)-binding protein, binding preferentially to the U-rich sequence within the 5′ untranslated region (UTR) of vRNA. Both protein-protein and protein-RNA interactions involving ZBTB25 facilitated viral RNA transcription and replication. In addition, ZBTB25 suppressed interferon production, further enhancing viral replication. ZBTB25-associated functions required an intact zinc finger domain and posttranslational SUMO-1 modification of ZBTB25. Furthermore, treatment with disulfiram (a zinc ejector) of ZBTB25-overexpressing cells showed significantly reduced IAV production as a result of reduced RNA synthesis. Our findings indicate that IAV usurps ZBTB25 for IAV RNA synthesis and serves as a novel and potential therapeutic antiviral target. IMPORTANCE IAV-induced seasonal influenza causes severe illness and death in high-risk populations. However, IAV has developed resistance to current antiviral drugs due to its high mutation rate. Therefore, development of drugs targeting cellular factors required for IAV replication is an attractive alternative for IAV therapy. Here, we discovered a cellular protein, ZBTB25, that enhances viral RdRp activity by binding to both viral RdRp and viral RNA to stimulate viral RNA synthesis. A unique feature of ZBTB25 in the

  19. The DnaJ-Like Zinc-Finger Protein HCF222 Is Required for Thylakoid Membrane Biogenesis in Plants1[OPEN

    PubMed Central

    Hartings, Stephanie; Paradies, Susanne; Karnuth, Bianca; Eisfeld, Sabrina; Mehsing, Jasmin; Wolff, Christian; Levey, Tatjana

    2017-01-01

    To understand the biogenesis of the thylakoid membrane in higher plants and to identify auxiliary proteins required to build up this highly complex membrane system, we have characterized the allelic nuclear mutants high chlorophyll fluorescence222-1 (hcf222-1) and hcf222-2 and isolated the causal gene by map-based cloning. In the ethyl methanesulfonate-induced mutant hcf222-1, the accumulation of the cytochrome b6f (Cytb6f) complex was reduced to 30% compared with the wild type. Other thylakoid membrane complexes accumulated to normal levels. The T-DNA knockout mutant hcf222-2 showed a more severe defect with respect to thylakoid membrane proteins and accumulated only 10% of the Cytb6f complex, accompanied by a reduction in photosystem II, the photosystem II light-harvesting complex, and photosystem I. HCF222 encodes a protein of 99 amino acids in Arabidopsis (Arabidopsis thaliana) that has similarities to the cysteine-rich zinc-binding domain of DnaJ chaperones. The insulin precipitation assay demonstrated that HCF222 has disulfide reductase activity in vitro. The protein is conserved in higher plants and bryophytes but absent in algae and cyanobacteria. Confocal fluorescence microscopy showed that a fraction of HCF222-green fluorescent protein was detectable in the endoplasmic reticulum but that it also could be recognized in chloroplasts. A fusion construct of HCF222 containing a plastid transit peptide targets the protein into chloroplasts and was able to complement the mutational defect. These findings indicate that the chloroplast-targeted HCF222 is indispensable for the maturation and/or assembly of the Cytb6f complex and is very likely involved in thiol-disulfide biochemistry at the thylakoid membrane. PMID:28572458

  20. Functional and Structural Insights of the Zinc-Finger HIT protein family members Involved in Box C/D snoRNP Biogenesis.

    PubMed

    Bragantini, Benoit; Tiotiu, Decebal; Rothé, Benjamin; Saliou, Jean-Michel; Marty, Hélène; Cianférani, Sarah; Charpentier, Bruno; Quinternet, Marc; Manival, Xavier

    2016-06-05

    Zf–HIT family members share the zf–HIT domain (ZHD), which is characterized by a fold in “treble-clef” through interleaved CCCC and CCHC ZnF motifs that both bind a zinc atom. Six proteins containing ZHD are present in human and three in yeast proteome, all belonging to multimodular RNA/protein complexes involved in gene regulation, chromatin remodeling, and snoRNP assembly. An interesting characteristic of the cellular complexes that ensure these functions is the presence of the RuvBL1/2/Rvb1/2 ATPases closely linked with zf–HIT proteins. Human ZNHIT6/BCD1 and its counterpart in yeast Bcd1p were previously characterized as assembly factors of the box C/D snoRNPs. Our data reveal that the ZHD of Bcd1p is necessary but not sufficient for yeast growth and that the motif has no direct RNA-binding capacity but helps Bcd1p maintain the box C/D snoRNAs level in steady state. However, we demonstrated that Bcd1p interacts nonspecifically with RNAs depending on their length. Interestingly, the ZHD of Bcd1p is functionally interchangeable with that of Hit1p, another box C/D snoRNP assembly factor belonging to the zf–HIT family. This prompted us to use NMR to solve the 3D structures of ZHD from yeast Bcd1p and Hit1p to highlight the structural similarity in the zf–HIT family. We identified structural features associated with the requirement of Hit1p and Bcd1p ZHD for cell growth and box C/D snoRNA stability under heat stress. Altogether, our data suggest an important role of ZHD could be to maintain functional folding to the rest of the protein, especially under heat stress conditions.

  1. The ANGULATA7 gene encodes a DnaJ-like zinc finger-domain protein involved in chloroplast function and leaf development in Arabidopsis.

    PubMed

    Muñoz-Nortes, Tamara; Pérez-Pérez, José Manuel; Ponce, María Rosa; Candela, Héctor; Micol, José Luis

    2017-03-01

    The characterization of mutants with altered leaf shape and pigmentation has previously allowed the identification of nuclear genes that encode plastid-localized proteins that perform essential functions in leaf growth and development. A large-scale screen previously allowed us to isolate ethyl methanesulfonate-induced mutants with small rosettes and pale green leaves with prominent marginal teeth, which were assigned to a phenotypic class that we dubbed Angulata. The molecular characterization of the 12 genes assigned to this phenotypic class should help us to advance our understanding of the still poorly understood relationship between chloroplast biogenesis and leaf morphogenesis. In this article, we report the phenotypic and molecular characterization of the angulata7-1 (anu7-1) mutant of Arabidopsis thaliana, which we found to be a hypomorphic allele of the EMB2737 gene, which was previously known only for its embryonic-lethal mutations. ANU7 encodes a plant-specific protein that contains a domain similar to the central cysteine-rich domain of DnaJ proteins. The observed genetic interaction of anu7-1 with a loss-of-function allele of GENOMES UNCOUPLED1 suggests that the anu7-1 mutation triggers a retrograde signal that leads to changes in the expression of many genes that normally function in the chloroplasts. Many such genes are expressed at higher levels in anu7-1 rosettes, with a significant overrepresentation of those required for the expression of plastid genome genes. Like in other mutants with altered expression of plastid-encoded genes, we found that anu7-1 exhibits defects in the arrangement of thylakoidal membranes, which appear locally unappressed. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  2. A novel zinc finger protein 219-like (ZNF219L) is involved in the regulation of collagen type 2 alpha 1a (col2a1a) gene expression in zebrafish notochord.

    PubMed

    Lien, Huang-Wei; Yang, Chung-Hsiang; Cheng, Chia-Hsiung; Hung, Chin-Chun; Liao, Wei-Hao; Hwang, Pung-Pung; Han, Yu-San; Huang, Chang-Jen

    2013-01-01

    The notochord is required for body plan patterning in vertebrates, and defects in notochord development during embryogenesis can lead to diseases affecting the adult. It is therefore important to elucidate the gene regulatory mechanism underlying notochord formation. In this study, we cloned the zebrafish zinc finger 219-like (ZNF219L) based on mammalian ZNF219, which contains nine C2H2-type zinc finger domains. Through whole-mount in situ hybridization, we found that znf219L mRNA is mainly expressed in the zebrafish midbrain-hindbrain boundary, hindbrain, and notochord during development. The znf219L morpholino knockdown caused partial abnormal notochord phenotype and reduced expression of endogenous col2a1a in the notochord specifically. In addition, ZNF219L could recognize binding sites with GGGGG motifs and trigger augmented activity of the col2a1a promoter in a luciferase assay. Furthermore, in vitro binding experiments revealed that ZNF219L recognizes the GGGGG motifs in the promoter region of the zebrafish col2a1a gene through its sixth and ninth zinc finger domains. Taken together, our results reveal that ZNF219L is involved in regulating the expression of col2a1a in zebrafish notochord specifically.

  3. A Novel Zinc Finger Protein 219-like (ZNF219L) is Involved in the Regulation of Collagen Type 2 Alpha 1a (col2a1a) Gene Expression in Zebrafish Notochord

    PubMed Central

    Lien, Huang-Wei; Yang, Chung-Hsiang; Cheng, Chia-Hsiung; Hung, Chin-Chun; Liao, Wei-Hao; Hwang, Pung-Pung; Han, Yu-San; Huang, Chang-Jen

    2013-01-01

    The notochord is required for body plan patterning in vertebrates, and defects in notochord development during embryogenesis can lead to diseases affecting the adult. It is therefore important to elucidate the gene regulatory mechanism underlying notochord formation. In this study, we cloned the zebrafish zinc finger 219-like (ZNF219L) based on mammalian ZNF219, which contains nine C2H2-type zinc finger domains. Through whole-mount in situ hybridization, we found that znf219L mRNA is mainly expressed in the zebrafish midbrain-hindbrain boundary, hindbrain, and notochord during development. The znf219L morpholino knockdown caused partial abnormal notochord phenotype and reduced expression of endogenous col2a1a in the notochord specifically. In addition, ZNF219L could recognize binding sites with GGGGG motifs and trigger augmented activity of the col2a1a promoter in a luciferase assay. Furthermore, in vitro binding experiments revealed that ZNF219L recognizes the GGGGG motifs in the promoter region of the zebrafish col2a1a gene through its sixth and ninth zinc finger domains. Taken together, our results reveal that ZNF219L is involved in regulating the expression of col2a1a in zebrafish notochord specifically. PMID:24155663

  4. Cloning and characterization of a novel zinc finger gene in Xp11.2

    SciT

    Derry, J.M.J.; Jess, U.; Francke, U.

    1995-11-20

    During a systematic search for open reading frames in chromosome band Xp11.2, a novel gene (ZNF157) that encodes a putative 506-amino-acid protein with the sequence characteristics of a zinc-finger-containing transcription factor was isolated. ZNF157 is encoded by four exons distributed over >20 kb of genomic DNA. The second and third exons contain sequences similar to those of the previously described KRAB-A and KRAB-B domains, motifs that have been shown to mediate transcriptional repression in other members of the protein family. A fourth exon contains 12 zinc finger DNA binding motifs and finger linking regions characteristic of ZNF proteins of themore » Krueppel family. ZNF157 maps to the telomeric end of a cluster of ZNF genes that includes ZNF21, ZNF41, and ZNF81. 19 refs., 2 figs.« less

  5. A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter.

    PubMed

    Isalan, M; Klug, A; Choo, Y

    2001-07-01

    DNA-binding domains with predetermined sequence specificity are engineered by selection of zinc finger modules using phage display, allowing the construction of customized transcription factors. Despite remarkable progress in this field, the available protein-engineering methods are deficient in many respects, thus hampering the applicability of the technique. Here we present a rapid and convenient method that can be used to design zinc finger proteins against a variety of DNA-binding sites. This is based on a pair of pre-made zinc finger phage-display libraries, which are used in parallel to select two DNA-binding domains each of which recognizes given 5 base pair sequences, and whose products are recombined to produce a single protein that recognizes a composite (9 base pair) site of predefined sequence. Engineering using this system can be completed in less than two weeks and yields proteins that bind sequence-specifically to DNA with Kd values in the nanomolar range. To illustrate the technique, we have selected seven different proteins to bind various regions of the human immunodeficiency virus 1 (HIV-1) promoter.

  6. The zinc fingers of the Small Optic Lobes (SOL) calpain bind polyubiquitin.

    PubMed

    Hastings, Margaret H; Qiu, Alvin; Zha, Congyao; Farah, Carole A; Mahdid, Yacine; Ferguson, Larissa; Sossin, Wayne S

    2018-05-28

    The Small Optic Lobes (SOL) calpain is a highly conserved member of the calpain family expressed in the nervous system. A dominant negative form of the SOL calpain inhibited consolidation of one form of synaptic plasticity, non-associative facilitation, in sensory-motor neuronal cultures in Aplysia, presumably by inhibiting cleavage of protein kinase Cs (PKCs) into constitutively active protein kinase Ms (PKMs) (Hu et al, 2017a). SOL calpains have a conserved set of 5-6 N-terminal zinc fingers. Bioinformatic analysis suggests that these zinc fingers could bind to ubiquitin. In this study, we show that both the Aplysia and mouse SOL calpain (also known as Calpain 15) zinc fingers bind ubiquitinated proteins, and we confirm that Aplysia SOL binds poly- but not mono or di-ubiquitin. No specific zinc finger is required for polyubiquitin binding. Neither polyubiquitin nor calcium was sufficient to induce purified Aplysia SOL calpain to autolyse or to cleave the atypical PKC to PKM in vitro. In Aplysia, overexpression of the atypical PKC in sensory neurons leads to an activity-dependent cleavage event and an increase in nuclear ubiquitin staining. Activity-dependent cleavage is partially blocked by a dominant negative SOL calpain, but not by a dominant negative classical calpain. The cleaved PKM was stabilized by the dominant negative classical calpain and destabilized by a dominant negative form of the PKM stabilizing proteinKIdney/BRAin protein(KIBRA). These studies provide new insight into SOL calpain's function and regulation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Role of the POZ zinc finger transcription factor FBI-1 in human and murine adipogenesis.

    PubMed

    Laudes, Matthias; Christodoulides, Constantinos; Sewter, Ciaran; Rochford, Justin J; Considine, Robert V; Sethi, Jaswinder K; Vidal-Puig, Antonio; O'Rahilly, Stephen

    2004-03-19

    Poxvirus zinc finger (POZ) zinc finger domain transcription factors have been shown to play a role in the control of growth arrest and differentiation in several types of mesenchymal cells but not, as yet, adipocytes. We found that a POZ domain protein, factor that binds to inducer of short transcripts-1 (FBI-1), was induced during both murine and human preadipocyte differentiation with maximal expression levels seen at days 2-4. FBI-1 mRNA was expressed in human adipose tissue with the highest levels found in samples from morbidly obese subjects. Murine cell lines constitutively expressing FBI-1 showed evidence for accelerated adipogenesis with earlier induction of markers of differentiation and enhanced lipid accumulation, suggesting that FBI-1 may be an active participant in the differentiation process. Consistent with the properties of this family of proteins in other cell systems, 3T3L1 cells stably overexpressing FBI-1 showed reduced DNA synthesis and reduced expression of cyclin A, cyclin-dependent kinase 2, and p107, proteins known to be involved in the regulation of mitotic clonal expansion. In addition, FBI-1 reduced the transcriptional activity of the cyclin A promoter. Thus, FBI-1, a POZ zinc finger transcription factor, is induced during the early phases of human and murine preadipocyte differentiation where it may contribute to adipogenesis through influencing the switch from cellular proliferation to terminal differentiation.

  8. Role of the POZ Zinc Finger Transcription Factor FBI-1 in Human and Murine Adipogenesis

    PubMed Central

    Laudes, Matthias; Christodoulides, Constantinos; Sewter, Ciaran; Rochford, Justin J.; Considine, Robert V.; Sethi, Jaswinder K.; Vidal-Puig, Antonio; O’Rahilly, Stephen

    2015-01-01

    Poxvirus zinc finger (POZ) zinc finger domain transcription factors have been shown to play a role in the control of growth arrest and differentiation in several types of mesenchymal cells but not, as yet, adipocytes. We found that a POZ domain protein, factor that binds to inducer of short transcripts-1 (FBI-1), was induced during both murine and human preadipocyte differentiation with maximal expression levels seen at days 2–4. FBI-1 mRNA was expressed in human adipose tissue with the highest levels found in samples from morbidly obese subjects. Murine cell lines constitutively expressing FBI-1 showed evidence for accelerated adipogenesis with earlier induction of markers of differentiation and enhanced lipid accumulation, suggesting that FBI-1 may be an active participant in the differentiation process. Consistent with the properties of this family of proteins in other cell systems, 3T3L1 cells stably overexpressing FBI-1 showed reduced DNA synthesis and reduced expression of cyclin A, cyclin-dependent kinase 2, and p107, proteins known to be involved in the regulation of mitotic clonal expansion. In addition, FBI-1 reduced the transcriptional activity of the cyclin A promoter. Thus, FBI-1, a POZ zinc finger transcription factor, is induced during the early phases of human and murine preadipocyte differentiation where it may contribute to adipogenesis through influencing the switch from cellular proliferation to terminal differentiation. PMID:14701838

  9. Targeting Ligandable Pockets on Plant Homeodomain (PHD) Zinc Finger Domains by a Fragment-Based Approach

    PubMed Central

    2018-01-01

    Plant homeodomain (PHD) zinc fingers are histone reader domains that are often associated with human diseases. Despite this, they constitute a poorly targeted class of readers, suggesting low ligandability. Here, we describe a successful fragment-based campaign targeting PHD fingers from the proteins BAZ2A and BAZ2B as model systems. We validated a pool of in silico fragments both biophysically and structurally and solved the first crystal structures of PHD zinc fingers in complex with fragments bound to an anchoring pocket at the histone binding site. The best-validated hits were found to displace a histone H3 tail peptide in competition assays. This work identifies new chemical scaffolds that provide suitable starting points for future ligand optimization using structure-guided approaches. The demonstrated ligandability of the PHD reader domains could pave the way for the development of chemical probes to drug this family of epigenetic readers. PMID:29529862

  10. Targeting Ligandable Pockets on Plant Homeodomain (PHD) Zinc Finger Domains by a Fragment-Based Approach.

    PubMed

    Amato, Anastasia; Lucas, Xavier; Bortoluzzi, Alessio; Wright, David; Ciulli, Alessio

    2018-04-20

    Plant homeodomain (PHD) zinc fingers are histone reader domains that are often associated with human diseases. Despite this, they constitute a poorly targeted class of readers, suggesting low ligandability. Here, we describe a successful fragment-based campaign targeting PHD fingers from the proteins BAZ2A and BAZ2B as model systems. We validated a pool of in silico fragments both biophysically and structurally and solved the first crystal structures of PHD zinc fingers in complex with fragments bound to an anchoring pocket at the histone binding site. The best-validated hits were found to displace a histone H3 tail peptide in competition assays. This work identifies new chemical scaffolds that provide suitable starting points for future ligand optimization using structure-guided approaches. The demonstrated ligandability of the PHD reader domains could pave the way for the development of chemical probes to drug this family of epigenetic readers.

  11. Conformational Analysis on structural perturbations of the zinc finger NEMO

    NASA Astrophysics Data System (ADS)

    Godwin, Ryan; Salsbury, Freddie; Salsbury Group Team

    2014-03-01

    The NEMO (NF-kB Essential Modulator) Zinc Finger protein (2jvx) is a functional Ubiquitin-binding domain, and plays a role in signaling pathways for immune/inflammatory responses, apoptosis, and oncogenesis [Cordier et al., 2008]. Characterized by 3 cysteines and 1 histidine residue at the active site, the biologically occurring, bound zinc configuration is a stable structural motif. Perturbations of the zinc binding residues suggest conformational changes in the 423-atom protein characterized via analysis of all-atom molecular dynamics simulations. Structural perturbations include simulations with and without a zinc ion and with and without de-protonated cysteines, resulting in four distinct configurations. Simulations of various time scales show consistent results, yet the longest, GPU driven, microsecond runs show more drastic structural and dynamic fluctuations when compared to shorter duration time-scales. The last cysteine residue (26 of 28) and the helix on which it resides exhibit a secondary, locally unfolded conformation in addition to its normal bound conformation. Combined analytics elucidate how the presence of zinc and/or protonated cysteines impact the dynamics and energetic fluctuations of NEMO. Comprehensive Cancer Center of Wake Forest University Computational Biosciences shared resource supported by NCI CCSG P30CA012197.

  12. The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation.

    PubMed

    Klug, Aaron

    2010-02-01

    A long-standing goal of molecular biologists has been to construct DNA-binding proteins for the control of gene expression. The classical Cys2His2 (C2H2) zinc finger design is ideally suited for such purposes. Discriminating between closely related DNA sequences both in vitro and in vivo, this naturally occurring design was adopted for engineering zinc finger proteins (ZFPs) to target genes specifically. Zinc fingers were discovered in 1985, arising from the interpretation of our biochemical studies on the interaction of the Xenopus protein transcription factor IIIA (TFIIIA) with 5S RNA. Subsequent structural studies revealed its three-dimensional structure and its interaction with DNA. Each finger constitutes a self-contained domain stabilized by a zinc (Zn) ion ligated to a pair of cysteines and a pair of histidines and also by an inner structural hydrophobic core. This discovery showed not only a new protein fold but also a novel principle of DNA recognition. Whereas other DNA-binding proteins generally make use of the 2-fold symmetry of the double helix, functioning as homo- or heterodimers, zinc fingers can be linked linearly in tandem to recognize nucleic acid sequences of varying lengths. This modular design offers a large number of combinatorial possibilities for the specific recognition of DNA (or RNA). It is therefore not surprising that the zinc finger is found widespread in nature, including 3% of the genes of the human genome. The zinc finger design can be used to construct DNA-binding proteins for specific intervention in gene expression. By fusing selected zinc finger peptides to repression or activation domains, genes can be selectively switched off or on by targeting the peptide to the desired gene target. It was also suggested that by combining an appropriate zinc finger peptide with other effector or functional domains, e.g. from nucleases or integrases to form chimaeric proteins, genomes could be modified or manipulated. The first example of the

  13. Binding Site Configurations Probe the Structure and Dynamics of the Zinc Finger of NEMO (NF-κB Essential Modulator).

    PubMed

    Godwin, Ryan C; Melvin, Ryan L; Gmeiner, William H; Salsbury, Freddie R

    2017-01-31

    Zinc-finger proteins are regulators of critical signaling pathways for various cellular functions, including apoptosis and oncogenesis. Here, we investigate how binding site protonation states and zinc coordination influence protein structure, dynamics, and ultimately function, as these pivotal regulatory proteins are increasingly important for protein engineering and therapeutic discovery. To better understand the thermodynamics and dynamics of the zinc finger of NEMO (NF-κB essential modulator), as well as the role of zinc, we present results of 20 μs molecular dynamics trajectories, 5 μs for each of four active site configurations. Consistent with experimental evidence, the zinc ion is essential for mechanical stabilization of the functional, folded conformation. Hydrogen bond motifs are unique for deprotonated configurations yet overlap in protonated cases. Correlated motions and principal component analysis corroborate the similarity of the protonated configurations and highlight unique relationships of the zinc-bound configuration. We hypothesize a potential mechanism for zinc binding from results of the thiol configurations. The deprotonated, zinc-bound configuration alone predominantly maintains its tertiary structure throughout all 5 μs and alludes rare conformations potentially important for (im)proper zinc-finger-related protein-protein or protein-DNA interactions.

  14. The conserved N-terminal basic residues and zinc-finger motifs of HIV-1 nucleocapsid restrict the viral cDNA synthesis during virus formation and maturation

    PubMed Central

    Didierlaurent, Ludovic; Houzet, Laurent; Morichaud, Zakia; Darlix, Jean-Luc; Mougel, Marylène

    2008-01-01

    Reverse transcription of the genomic RNA by reverse transcriptase occurs soon after HIV-1 infection of target cells. The viral nucleocapsid (NC) protein chaperones this process via its nucleic acid annealing activities and its interactions with the reverse transcriptase enzyme. To function, NC needs its two conserved zinc fingers and flanking basic residues. We recently reported a new role for NC, whereby it negatively controls reverse transcription in the course of virus formation. Indeed, deleting its zinc fingers causes reverse transcription activation in virus producer cells. To investigate this new NC function, we used viruses with subtle mutations in the conserved zinc fingers and its flanking domains. We monitored by quantitative PCR the HIV-1 DNA content in producer cells and in produced virions. Results showed that the two intact zinc-finger structures are required for the temporal control of reverse transcription by NC throughout the virus replication cycle. The N-terminal basic residues also contributed to this new role of NC, while Pro-31 residue between the zinc fingers and Lys-59 in the C-terminal region did not. These findings further highlight the importance of NC as a major target for anti-HIV-1 drugs. PMID:18641038

  15. The N-Terminal CCHC Zinc Finger Motif Mediates Homodimerization of Transcription Factor BCL11B.

    PubMed

    Grabarczyk, Piotr; Winkler, Passorn; Delin, Martin; Sappa, Praveen K; Bekeschus, Sander; Hildebrandt, Petra; Przybylski, Grzegorz K; Völker, Uwe; Hammer, Elke; Schmidt, Christian A

    2018-03-01

    The BCL11B gene encodes a Krüppel-like, sequence-specific zinc finger (ZF) transcription factor that acts as either a repressor or an activator, depending on its posttranslational modifications. The importance of BCL11B in numerous biological processes in multiple organs has been well established in mouse knockout models. The phenotype of the first de novo monoallelic germ line missense mutation in the BCL11B gene (encoding N441K) strongly implies that the mutant protein acts in a dominant-negative manner by neutralizing the unaffected protein through the formation of a nonfunctional dimer. Using a Förster resonance energy transfer-assisted fluorescence-activated cell sorting (FACS-FRET) assay and affinity purification followed by mass spectrometry (AP-MS), we show that the N-terminal CCHC zinc finger motif is necessary and sufficient for the formation of the BCL11B dimer. Mutation of the CCHC ZF in BCL11B abolishes its transcription-regulatory activity. In addition, unlike wild-type BCL11B, this mutant is incapable of inducing cell cycle arrest and protecting against DNA damage-driven apoptosis. Our results confirm the BCL11B dimerization hypothesis and prove its importance for BCL11B function. By mapping the relevant regions to the CCHC domain, we describe a previously unidentified mechanism of transcription factor homodimerization. Copyright © 2018 American Society for Microbiology.

  16. Co(II) Coordination in Prokaryotic Zinc Finger Domains as Revealed by UV-Vis Spectroscopy.

    PubMed

    Sivo, Valeria; D'Abrosca, Gianluca; Russo, Luigi; Iacovino, Rosa; Pedone, Paolo Vincenzo; Fattorusso, Roberto; Isernia, Carla; Malgieri, Gaetano

    2017-01-01

    Co(II) electronic configuration allows its use as a spectroscopic probe in UV-Vis experiments to characterize the metal coordination sphere that is an essential component of the functional structure of zinc-binding proteins and to evaluate the metal ion affinities of these proteins. Here, exploiting the capability of the prokaryotic zinc finger to use different combinations of residues to properly coordinate the structural metal ion, we provide the UV-Vis characterization of Co(II) addition to Ros87 and its mutant Ros87_C27D which bears an unusual CysAspHis 2 coordination sphere. Zinc finger sites containing only one cysteine have been infrequently characterized. We show for the CysAspHis 2 coordination an intense d - d transition band, blue-shifted with respect to the Cys 2 His 2 sphere. These data complemented by NMR and CD data demonstrate that the tetrahedral geometry of the metal site is retained also in the case of a single-cysteine coordination sphere.

  17. Co(II) Coordination in Prokaryotic Zinc Finger Domains as Revealed by UV-Vis Spectroscopy

    PubMed Central

    Sivo, Valeria; D'Abrosca, Gianluca; Russo, Luigi; Iacovino, Rosa; Pedone, Paolo Vincenzo; Fattorusso, Roberto

    2017-01-01

    Co(II) electronic configuration allows its use as a spectroscopic probe in UV-Vis experiments to characterize the metal coordination sphere that is an essential component of the functional structure of zinc-binding proteins and to evaluate the metal ion affinities of these proteins. Here, exploiting the capability of the prokaryotic zinc finger to use different combinations of residues to properly coordinate the structural metal ion, we provide the UV-Vis characterization of Co(II) addition to Ros87 and its mutant Ros87_C27D which bears an unusual CysAspHis2 coordination sphere. Zinc finger sites containing only one cysteine have been infrequently characterized. We show for the CysAspHis2 coordination an intense d-d transition band, blue-shifted with respect to the Cys2His2 sphere. These data complemented by NMR and CD data demonstrate that the tetrahedral geometry of the metal site is retained also in the case of a single-cysteine coordination sphere. PMID:29386985

  18. C2H2 type of zinc finger transcription factors in foxtail millet define response to abiotic stresses.

    PubMed

    Muthamilarasan, Mehanathan; Bonthala, Venkata Suresh; Mishra, Awdhesh Kumar; Khandelwal, Rohit; Khan, Yusuf; Roy, Riti; Prasad, Manoj

    2014-09-01

    C2H2 type of zinc finger transcription factors (TFs) play crucial roles in plant stress response and hormone signal transduction. Hence considering its importance, genome-wide investigation and characterization of C2H2 zinc finger proteins were performed in Arabidopsis, rice and poplar but no such study was conducted in foxtail millet which is a C4 Panicoid model crop well known for its abiotic stress tolerance. The present study identified 124 C2H2-type zinc finger TFs in foxtail millet (SiC2H2) and physically mapped them onto the genome. The gene duplication analysis revealed that SiC2H2s primarily expanded in the genome through tandem duplication. The phylogenetic tree classified these TFs into five groups (I-V). Further, miRNAs targeting SiC2H2 transcripts in foxtail millet were identified. Heat map demonstrated differential and tissue-specific expression patterns of these SiC2H2 genes. Comparative physical mapping between foxtail millet SiC2H2 genes and its orthologs of sorghum, maize and rice revealed the evolutionary relationships of C2H2 type of zinc finger TFs. The duplication and divergence data provided novel insight into the evolutionary aspects of these TFs in foxtail millet and related grass species. Expression profiling of candidate SiC2H2 genes in response to salinity, dehydration and cold stress showed differential expression pattern of these genes at different time points of stresses.

  19. Localized frustration and binding-induced conformational change in recognition of 5S RNA by TFIIIA zinc finger.

    PubMed

    Tan, Cheng; Li, Wenfei; Wang, Wei

    2013-12-19

    Protein TFIIIA is composed of nine tandemly arranged Cys2His2 zinc fingers. It can bind either to the 5S RNA gene as a transcription factor or to the 5S RNA transcript as a chaperone. Although structural and biochemical data provided valuable information on the recognition between the TFIIIIA and the 5S DNA/RNA, the involved conformational motions and energetic factors contributing to the binding affinity and specificity remain unclear. In this work, we conducted MD simulations and MM/GBSA calculations to investigate the binding-induced conformational changes in the recognition of the 5S RNA by the central three zinc fingers of TFIIIA and the energetic factors that influence the binding affinity and specificity at an atomistic level. Our results revealed drastic interdomain conformational changes between these three zinc fingers, involving the exposure/burial of several crucial DNA/RNA binding residues, which can be related to the competition between DNA and RNA for the binding of TFIIIA. We also showed that the specific recognition between finger 4/finger 6 and the 5S RNA introduces frustrations to the nonspecific interactions between finger 5 and the 5S RNA, which may be important to achieve optimal binding affinity and specificity.

  20. The endogenous zinc finger transcription factor, ZNF24, modulates the angiogenic potential of human microvascular endothelial cells

    PubMed Central

    Jia, Di; Huang, Lan; Bischoff, Joyce; Moses, Marsha A.

    2015-01-01

    We have previously identified a zinc finger transcription factor, ZNF24 (zinc finger protein 24), as a novel inhibitor of tumor angiogenesis and have demonstrated that ZNF24 exerts this effect by repressing the transcription of VEGF in breast cancer cells. Here we focused on the role of ZNF24 in modulating the angiogenic potential of the endothelial compartment. Knockdown of ZNF24 by siRNA in human primary microvascular endothelial cells (ECs) led to significantly decreased cell migration and invasion compared with control siRNA. ZNF24 knockdown consistently led to significantly impaired VEGF receptor 2 (VEGFR2) signaling and decreased levels of matrix metalloproteinase-2 (MMP-2), with no effect on levels of major regulators of MMP-2 activity such as the tissue inhibitors of metalloproteinases and MMP-14. Moreover, silencing ZNF24 in these cells led to significantly decreased EC proliferation. Quantitative PCR array analyses identified multiple cell cycle regulators as potential ZNF24 downstream targets which may be responsible for the decreased proliferation in ECs. In vivo, knockdown of ZNF24 specifically in microvascular ECs led to significantly decreased formation of functional vascular networks. Taken together, these results demonstrate that ZNF24 plays an essential role in modulating the angiogenic potential of microvascular ECs by regulating the proliferation, migration, and invasion of these cells.— Jia, D., Huang, L., Bischoff, J., Moses, M. A. The endogenous zinc finger transcription factor, ZNF24, modulates the angiogenic potential of human microvascular endothelial cells. PMID:25550468

  1. The prokaryotic zinc-finger: structure, function and comparison with the eukaryotic counterpart.

    PubMed

    Malgieri, Gaetano; Palmieri, Maddalena; Russo, Luigi; Fattorusso, Roberto; Pedone, Paolo V; Isernia, Carla

    2015-12-01

    Classical zinc finger (ZF) domains were thought to be confined to the eukaryotic kingdom until the transcriptional regulator Ros protein was identified in Agrobacterium tumefaciens. The Ros Cys2 His2 ZF binds DNA in a peculiar mode and folds in a domain significantly larger than its eukaryotic counterpart consisting of 58 amino acids (the 9-66 region) arranged in a βββαα topology, and stabilized by a conserved, extensive, 15-residue hydrophobic core. The prokaryotic ZF domain, then, shows some intriguing new features that make it interestingly different from its eukaryotic counterpart. This review will focus on the prokaryotic ZFs, summarizing and discussing differences and analogies with the eukaryotic domains and providing important insights into their structure/function relationships. © 2015 FEBS.

  2. In vitro selection of zinc fingers with altered DNA-binding specificity.

    PubMed

    Jamieson, A C; Kim, S H; Wells, J A

    1994-05-17

    We have used random mutagenesis and phage display to alter the DNA-binding specificity of Zif268, a transcription factor that contains three zinc finger domains. Four residues in the helix of finger 1 of Zif268 that potentially mediate DNA binding were identified from an X-ray structure of the Zif268-DNA complex. A library was constructed in which these residues were randomly mutated and the Zif268 variants were fused to a truncated version of the gene III coat protein on the surface of M13 filamentous phage particles. The phage displayed the mutant proteins in a monovalent fashion and were sorted by repeated binding and elution from affinity matrices containing different DNA sequences. When the matrix contained the natural nine base pair operator sequence 5'-GCG-TGG-GCG-3', native-like zinc fingers were isolated. New finger 1 variants were found by sorting with two different operators in which the singly modified triplets, GTG and TCG, replaced the native finger 1 triplet, GCG. Overall, the selected finger 1 variants contained a preponderance of polar residues at the four sites. Interestingly, the net charge of the four residues in any selected finger never derived more that one unit from neutrality despite the fact that about half the variants contained three or four charged residues over the four sites. Measurements of the dissociation constants for two of these purified finger 1 variants by gel-shift assay showed their specificities to vary over a 10-fold range, with the greatest affinity being for the DNA binding site for which they were sorted.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. S-nitrosation on zinc finger motif of PARP-1 as a mechanism of DNA repair inhibition by arsenite

    PubMed Central

    Zhou, Xixi; Cooper, Karen L.; Huestis, Juliana; Xu, Huan; Burchiel, Scott W.; Hudson, Laurie G.; Liu, Ke Jian

    2016-01-01

    Arsenic, a widely distributed carcinogen, is known to significantly amplify the impact of other carcinogens through inhibition of DNA repair. Our recent work suggests that reactive oxygen/nitrogen species (ROS/RNS) induced by arsenite (AsIII) play an important role in the inhibition of the DNA repair protein Poly(ADP-ribose) polymerase 1 (PARP-1). AsIII-induced ROS lead to oxidation of cysteine residues within the PARP-1 zinc finger DNA binding domain. However, the mechanism underlying RNS-mediated PARP inhibition by arsenic remains unknown. In this work, we demonstrate that AsIII treatment of normal human keratinocyte (HEKn) cells induced S-nitrosation on cysteine residues of PARP-1 protein, in a similar manner to a nitric oxide donor. S-nitrosation of PARP-1 could be reduced by 1400W (inducible nitric oxide synthase inhibitor) or c-PTIO (a nitric oxide scavenger). Furthermore, AsIII treatment of HEKn cells leads to zinc loss and inhibition of PARP-1 enzymatic activity. AsIII and 1400W/c-PTIO co-treatment demonstrate that these effects occur in an iNOS- and NO-dependent manner. Importantly, we confirmed S-nitrosation on the zinc finger DNA binding domain of PARP-1 protein. Taken together, AsIII induces S-nitrosation on PARP-1 zinc finger DNA binding domain by generating NO through iNOS activation, leading to zinc loss and inhibition of PARP-1 activity, thereby increasing retention of damaged DNA. These findings identify S-nitrosation as an important component of the molecular mechanism underlying AsIII inhibition of DNA repair, which may benefit the development of preventive and intervention strategies against AsIII co-carcinogenesis. PMID:27741521

  4. S-nitrosation on zinc finger motif of PARP-1 as a mechanism of DNA repair inhibition by arsenite.

    PubMed

    Zhou, Xixi; Cooper, Karen L; Huestis, Juliana; Xu, Huan; Burchiel, Scott W; Hudson, Laurie G; Liu, Ke Jian

    2016-12-06

    Arsenic, a widely distributed carcinogen, is known to significantly amplify the impact of other carcinogens through inhibition of DNA repair. Our recent work suggests that reactive oxygen/nitrogen species (ROS/RNS) induced by arsenite (AsIII) play an important role in the inhibition of the DNA repair protein Poly(ADP-ribose) polymerase 1 (PARP-1). AsIII-induced ROS lead to oxidation of cysteine residues within the PARP-1 zinc finger DNA binding domain. However, the mechanism underlying RNS-mediated PARP inhibition by arsenic remains unknown. In this work, we demonstrate that AsIII treatment of normal human keratinocyte (HEKn) cells induced S-nitrosation on cysteine residues of PARP-1 protein, in a similar manner to a nitric oxide donor. S-nitrosation of PARP-1 could be reduced by 1400W (inducible nitric oxide synthase inhibitor) or c-PTIO (a nitric oxide scavenger). Furthermore, AsIII treatment of HEKn cells leads to zinc loss and inhibition of PARP-1 enzymatic activity. AsIII and 1400W/c-PTIO co-treatment demonstrate that these effects occur in an iNOS- and NO-dependent manner. Importantly, we confirmed S-nitrosation on the zinc finger DNA binding domain of PARP-1 protein. Taken together, AsIII induces S-nitrosation on PARP-1 zinc finger DNA binding domain by generating NO through iNOS activation, leading to zinc loss and inhibition of PARP-1 activity, thereby increasing retention of damaged DNA. These findings identify S-nitrosation as an important component of the molecular mechanism underlying AsIII inhibition of DNA repair, which may benefit the development of preventive and intervention strategies against AsIII co-carcinogenesis.

  5. Immune-related zinc finger gene ZFAT is an essential transcriptional regulator for hematopoietic differentiation in blood islands

    PubMed Central

    Tsunoda, Toshiyuki; Takashima, Yasuo; Tanaka, Yoko; Fujimoto, Takahiro; Doi, Keiko; Hirose, Yumiko; Koyanagi, Midori; Yoshida, Yasuhiro; Okamura, Tadashi; Kuroki, Masahide; Sasazuki, Takehiko; Shirasawa, Senji

    2010-01-01

    TAL1 plays pivotal roles in vascular and hematopoietic developments through the complex with LMO2 and GATA1. Hemangioblasts, which have a differentiation potential for both endothelial and hematopoietic lineages, arise in the primitive streak and migrate into the yolk sac to form blood islands, where primitive hematopoiesis occurs. ZFAT (a zinc-finger gene in autoimmune thyroid disease susceptibility region / an immune-related transcriptional regulator containing 18 C2H2-type zinc-finger domains and one AT-hook) was originally identified as an immune-related transcriptional regulator containing 18 C2H2-type zinc-finger domains and one AT-hook, and is highly conserved among species. ZFAT is thought to be a critical transcription factor involved in immune-regulation and apoptosis; however, developmental roles for ZFAT remain unknown. Here we show that Zfat-deficient (Zfat−/−) mice are embryonic-lethal, with impaired differentiation of hematopoietic progenitor cells in blood islands, where ZFAT is exactly expressed. Expression levels of Tal1, Lmo2, and Gata1 in Zfat−/− yolk sacs are much reduced compared with those of wild-type mice, and ChIP-PCR analysis revealed that ZFAT binds promoter regions for these genes in vivo. Furthermore, profound reduction in TAL1, LMO2, and GATA1 protein expressions are observed in Zfat−/− blood islands. Taken together, these results suggest that ZFAT is indispensable for mouse embryonic development and functions as a critical transcription factor for primitive hematopoiesis through direct-regulation of Tal1, Lmo2, and Gata1. Elucidation of ZFAT functions in hematopoiesis might lead to a better understanding of transcriptional networks in differentiation and cellular programs of hematopoietic lineage and provide useful information for applied medicine in stem cell therapy. PMID:20660741

  6. OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of gibberellin biosynthesis in Oryza sativa.

    PubMed

    Wu, Jiahe; Zhu, Chuanfeng; Pang, Jinhuan; Zhang, Xiangrong; Yang, Chunlin; Xia, Guixian; Tian, Yingchuan; He, Chaozu

    2014-12-01

    Seed germination is a key developmental process in the plant life cycle that is influenced by various environmental cues and phytohormones through gene expression and a series of metabolism pathways. In the present study, we investigated a C2C2-type finger protein, OsLOL1, which promotes gibberellin (GA) biosynthesis and affects seed germination in Oryza sativa (rice). We used OsLOL1 antisense and sense transgenic lines to explore OsLOL1 functions. Seed germination timing in antisense plants was restored to wild type when exogenous GA3 was applied. The reduced expression of the GA biosynthesis gene OsKO2 and the accumulation of ent-kaurene were observed during germination in antisense plants. Based on yeast two-hybrid and firefly luciferase complementation analyses, OsLOL1 interacted with the basic leucine zipper protein OsbZIP58. The results from electrophoretic mobility shift and dual-luciferase reporter assays showed that OsbZIP58 binds the G-box cis-element of the OsKO2 promoter and activates LUC reporter gene expression, and that interaction between OsLOL1 and OsbZIP58 activates OsKO2 gene expression. In addition, OsLOL1 decreased SOD1 gene expression and accelerated programmed cell death (PCD) in the aleurone layer of rice grains. These findings demonstrate that the interaction between OsLOL1 and OsbZIP58 influences GA biosynthesis through the activation of OsKO2 via OsbZIP58, thereby stimulating aleurone PCD and seed germination. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  7. The pro1(+) gene from Sordaria macrospora encodes a C6 zinc finger transcription factor required for fruiting body development.

    PubMed Central

    Masloff, S; Pöggeler, S; Kück, U

    1999-01-01

    During sexual morphogenesis, the filamentous ascomycete Sordaria macrospora differentiates into multicellular fruiting bodies called perithecia. Previously it has been shown that this developmental process is under polygenic control. To further understand the molecular mechanisms involved in fruiting body formation, we generated the protoperithecia forming mutant pro1, in which the normal development of protoperithecia into perithecia has been disrupted. We succeeded in isolating a cosmid clone from an indexed cosmid library, which was able to complement the pro1(-) mutation. Deletion analysis, followed by DNA sequencing, subsequently demonstrated that fertility was restored to the pro1 mutant by an open reading frame encoding a 689-amino-acid polypeptide, which we named PRO1. A region from this polypeptide shares significant homology with the DNA-binding domains found in fungal C6 zinc finger transcription factors, such as the GAL4 protein from yeast. However, other typical regions of C6 zinc finger proteins, such as dimerization elements, are absent in PRO1. The involvement of the pro1(+) gene in fruiting body development was further confirmed by trying to complement the mutant phenotype with in vitro mutagenized and truncated versions of the pro1 open reading frame. Southern hybridization experiments also indicated that pro1(+) homologues are present in other sexually propagating filamentous ascomycetes. PMID:10224253

  8. The pro1(+) gene from Sordaria macrospora encodes a C6 zinc finger transcription factor required for fruiting body development.

    PubMed

    Masloff, S; Pöggeler, S; Kück, U

    1999-05-01

    During sexual morphogenesis, the filamentous ascomycete Sordaria macrospora differentiates into multicellular fruiting bodies called perithecia. Previously it has been shown that this developmental process is under polygenic control. To further understand the molecular mechanisms involved in fruiting body formation, we generated the protoperithecia forming mutant pro1, in which the normal development of protoperithecia into perithecia has been disrupted. We succeeded in isolating a cosmid clone from an indexed cosmid library, which was able to complement the pro1(-) mutation. Deletion analysis, followed by DNA sequencing, subsequently demonstrated that fertility was restored to the pro1 mutant by an open reading frame encoding a 689-amino-acid polypeptide, which we named PRO1. A region from this polypeptide shares significant homology with the DNA-binding domains found in fungal C6 zinc finger transcription factors, such as the GAL4 protein from yeast. However, other typical regions of C6 zinc finger proteins, such as dimerization elements, are absent in PRO1. The involvement of the pro1(+) gene in fruiting body development was further confirmed by trying to complement the mutant phenotype with in vitro mutagenized and truncated versions of the pro1 open reading frame. Southern hybridization experiments also indicated that pro1(+) homologues are present in other sexually propagating filamentous ascomycetes.

  9. Classification of the treble clef zinc finger: noteworthy lessons for structure and function evolution

    NASA Astrophysics Data System (ADS)

    Kaur, Gurmeet; Subramanian, Srikrishna

    2016-08-01

    Treble clef (TC) zinc fingers constitute a large fold-group of structural zinc-binding protein domains that mediate numerous cellular functions. We have analysed the sequence, structure, and function relationships among all TCs in the Protein Data Bank. This led to the identification of novel TCs, such as lsr2, YggX and TFIIIC τ 60 kDa subunit, and prediction of a nuclease-like function for the DUF1364 family. The structural malleability of TCs is evident from the many examples with variations to the core structural elements of the fold. We observe domains wherein the structural core of the TC fold is circularly permuted, and also some examples where the overall fold resembles both the TC motif and another unrelated fold. All extant TC families do not share a monophyletic origin, as several TC proteins are known to have been present in the last universal common ancestor and the last eukaryotic common ancestor. We identify several TCs where the zinc-chelating site and residues are not merely responsible for structure stabilization but also perform other functions, such as being redox active in C1B domain of protein kinase C, a nucleophilic acceptor in Ada and catalytic in organomercurial lyase, MerB.

  10. Classification of the treble clef zinc finger: noteworthy lessons for structure and function evolution.

    PubMed

    Kaur, Gurmeet; Subramanian, Srikrishna

    2016-08-26

    Treble clef (TC) zinc fingers constitute a large fold-group of structural zinc-binding protein domains that mediate numerous cellular functions. We have analysed the sequence, structure, and function relationships among all TCs in the Protein Data Bank. This led to the identification of novel TCs, such as lsr2, YggX and TFIIIC τ 60 kDa subunit, and prediction of a nuclease-like function for the DUF1364 family. The structural malleability of TCs is evident from the many examples with variations to the core structural elements of the fold. We observe domains wherein the structural core of the TC fold is circularly permuted, and also some examples where the overall fold resembles both the TC motif and another unrelated fold. All extant TC families do not share a monophyletic origin, as several TC proteins are known to have been present in the last universal common ancestor and the last eukaryotic common ancestor. We identify several TCs where the zinc-chelating site and residues are not merely responsible for structure stabilization but also perform other functions, such as being redox active in C1B domain of protein kinase C, a nucleophilic acceptor in Ada and catalytic in organomercurial lyase, MerB.

  11. An antiviral protein from Bougainvillea spectabilis roots; purification and characterisation.

    PubMed

    Balasaraswathi, R; Sadasivam, S; Ward, M; Walker, J M

    1998-04-01

    An antiviral protein active against mechanical transmission of tomato spotted wilt virus was identified in the root tissues of Bougainvillea spectabilis Willd. Bougainvillea Antiviral Protein I (BAP I) was purified to apparent homogeneity from the roots of Bougainvillea by ammonium sulphate precipitation, CM- and DEAE-Sepharose chromatography and reverse phase HPLC. BAP I is a highly basic protein (pI value > 8.6) with an Mr of 28,000. The N-terminal sequence of BAP I showed homology with other plant antiviral proteins. Preliminary tests suggest that purified BAP I is capable of interfering with in vitro protein synthesis.

  12. Zinc Fingers, TALEs, and CRISPR Systems: A Comparison of Tools for Epigenome Editing.

    PubMed

    Waryah, Charlene Babra; Moses, Colette; Arooj, Mahira; Blancafort, Pilar

    2018-01-01

    The completion of genome, epigenome, and transcriptome mapping in multiple cell types has created a demand for precision biomolecular tools that allow researchers to functionally manipulate DNA, reconfigure chromatin structure, and ultimately reshape gene expression patterns. Epigenetic editing tools provide the ability to interrogate the relationship between epigenetic modifications and gene expression. Importantly, this information can be exploited to reprogram cell fate for both basic research and therapeutic applications. Three different molecular platforms for epigenetic editing have been developed: zinc finger proteins (ZFs), transcription activator-like effectors (TALEs), and the system of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) proteins. These platforms serve as custom DNA-binding domains (DBDs), which are fused to epigenetic modifying domains to manipulate epigenetic marks at specific sites in the genome. The addition and/or removal of epigenetic modifications reconfigures local chromatin structure, with the potential to provoke long-lasting changes in gene transcription. Here we summarize the molecular structure and mechanism of action of ZF, TALE, and CRISPR platforms and describe their applications for the locus-specific manipulation of the epigenome. The advantages and disadvantages of each platform will be discussed with regard to genomic specificity, potency in regulating gene expression, and reprogramming cell phenotypes, as well as ease of design, construction, and delivery. Finally, we outline potential applications for these tools in molecular biology and biomedicine and identify possible barriers to their future clinical implementation.

  13. Promyelocytic leukaemia zinc finger maintains self-renewal of male germline stem cells (mGSCs) and its expression pattern in dairy goat testis.

    PubMed

    Song, W; Zhu, H; Li, M; Li, N; Wu, J; Mu, H; Yao, X; Han, W; Liu, W; Hua, J

    2013-08-01

    Previous studies have shown that promyelocytic leukaemia zinc finger (PLZF) is a spermatogonia-specific transcription factor in the testis, required to regulate self-renewal and maintenance of the spermatogonia stem cell. Up to now, expression and function of PLZF in the goat testis has not been known. The objectives of this study were to investigate PLZF expression pattern in the dairy goat and its effect on male goat germline stem cell (mGSC) self-renewal and differentiation. Testis development and expression patterns of PLZF in the dairy goat were analysed by haematoxylin and eosin staining, immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR). Furthermore, effects of PLZF overexpression on mGSC self-renewal and differentiation were evaluated by quantitative RT-PCR (QRT-PCR), immunofluorescence and BrdU incorporation assay. Promyelocytic leukaemia zinc finger was essential for dairy goat testis development and expression of several proliferation and pluripotency-associated proteins including OCT4, C-MYC were upregulated by PLZF overexpression. The study demonstrated that PLZF played a key role in maintaining self-renewal of mGSCs and its overexpression enhanced expression of proliferation-associated genes. Promyelocytic leukaemia zinc finger could function in the dairy goat as well as in other species in maintaining self-renewal of germline stem cells and this study provides a model to study the mechanism on self-renewal and differentiation of mGSCs in livestock. © 2013 John Wiley & Sons Ltd.

  14. The zinc-finger transcription factor Hindsight regulates ovulation competency of Drosophila follicles

    PubMed Central

    Deady, Lylah D; Li, Wei

    2017-01-01

    Follicle rupture, the final step in ovulation, utilizes conserved molecular mechanisms including matrix metalloproteinases (Mmps), steroid signaling, and adrenergic signaling. It is still unknown how follicles become competent for follicle rupture/ovulation. Here, we identify a zinc-finger transcription factor Hindsight (Hnt) as the first transcription factor regulating follicle’s competency for ovulation in Drosophila. Hnt is not expressed in immature stage-13 follicle cells but is upregulated in mature stage-14 follicle cells, which is essential for follicle rupture/ovulation. Hnt upregulates Mmp2 expression in posterior follicle cells (essential for the breakdown of the follicle wall) and Oamb expression in all follicle cells (the receptor for receiving adrenergic signaling and inducing Mmp2 activation). Hnt’s role in regulating Mmp2 and Oamb can be replaced by its human homolog Ras-responsive element-binding protein 1 (RREB-1). Our data suggest that Hnt/RREB-1 plays conserved role in regulating follicle maturation and competency for ovulation. PMID:29256860

  15. Efficient targeted mutagenesis in the monarch butterfly using zinc-finger nucleases

    PubMed Central

    Merlin, Christine; Beaver, Lauren E.; Taylor, Orley R.; Wolfe, Scot A.; Reppert, Steven M.

    2013-01-01

    The development of reverse-genetic tools in “nonmodel” insect species with distinct biology is critical to establish them as viable model systems. The eastern North American monarch butterfly (Danaus plexippus), whose genome is sequenced, has emerged as a model to study animal clocks, navigational mechanisms, and the genetic basis of long-distance migration. Here, we developed a highly efficient gene-targeting approach in the monarch using zinc-finger nucleases (ZFNs), engineered nucleases that generate mutations at targeted genomic sequences. We focused our ZFN approach on targeting the type 2 vertebrate-like cryptochrome gene of the monarch (designated cry2), which encodes a putative transcriptional repressor of the monarch circadian clockwork. Co-injections of mRNAs encoding ZFNs targeting the second exon of monarch cry2 into “one nucleus” stage embryos led to high-frequency nonhomologous end-joining-mediated, mutagenic lesions in the germline (up to 50%). Heritable ZFN-induced lesions in two independent lines produced truncated, nonfunctional CRY2 proteins, resulting in the in vivo disruption of circadian behavior and the molecular clock mechanism. Our work genetically defines CRY2 as an essential transcriptional repressor of the monarch circadian clock and provides a proof of concept for the use of ZFNs for manipulating genes in the monarch butterfly genome. Importantly, this approach could be used in other lepidopterans and “nonmodel” insects, thus opening new avenues to decipher the molecular underpinnings of a variety of biological processes. PMID:23009861

  16. Identification and Structure-Activity Relationship of HDAC6 Zinc-Finger Ubiquitin Binding Domain Inhibitors.

    PubMed

    Ferreira de Freitas, Renato; Harding, Rachel J; Franzoni, Ivan; Ravichandran, Mani; Mann, Mandeep K; Ouyang, Hui; Lautens, Mark; Santhakumar, Vijayaratnam; Arrowsmith, Cheryl H; Schapira, Matthieu

    2018-05-24

    HDAC6 plays a central role in the recruitment of protein aggregates for lysosomal degradation and is a promising target for combination therapy with proteasome inhibitors in multiple myeloma. Pharmacologically displacing ubiquitin from the zinc-finger ubiquitin-binding domain (ZnF-UBD) of HDAC6 is an underexplored alternative to catalytic inhibition. Here, we present the discovery of an HDAC6 ZnF-UBD-focused chemical series and its progression from virtual screening hits to low micromolar inhibitors. A carboxylate mimicking the C-terminal extremity of ubiquitin, and an extended aromatic system stacking with W1182 and R1155, are necessary for activity. One of the compounds induced a conformational remodeling of the binding site where the primary binding pocket opens up onto a ligand-able secondary pocket that may be exploited to increase potency. The preliminary structure-activity relationship accompanied by nine crystal structures should enable further optimization into a chemical probe to investigate the merit of targeting the ZnF-UBD of HDAC6 in multiple myeloma and other diseases.

  17. Zinc finger nuclease technology: advances and obstacles in modelling and treating genetic disorders.

    PubMed

    Jabalameli, Hamid Reza; Zahednasab, Hamid; Karimi-Moghaddam, Amin; Jabalameli, Mohammad Reza

    2015-03-01

    Zinc finger nucleases (ZFNs) are engineered restriction enzymes designed to target specific DNA sequences within the genome. Assembly of zinc finger DNA-binding domain to a DNA-cleavage domain enables the enzyme machinery to target unique locus in the genome and invoke endogenous DNA repair mechanisms. This machinery offers a versatile approach in allele editing and gene therapy. Here we discuss the architecture of ZFNs and strategies for generating targeted modifications within the genome. We review advances in gene therapy and modelling of the disease using these enzymes and finally, discuss the practical obstacles in using this technology. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Expression of Zinc Finger and BTB Domain-containing 7A in Colorectal Carcinoma.

    PubMed

    Joo, Jin Woo; Kim, Hyun-Soo; Do, Sung-Im; Sung, Ji-Youn

    2018-05-01

    Previous studies have revealed that zinc finger and BTB domain-containing 7A (ZBTB7A), an important proto-oncogene, plays multiple roles in carcinogenesis and is up-regulated in several human malignancies. However, the expression of ZBTB7A in colorectal carcinoma (CRC) has seldom been documented. In this study, we investigated the differential expression of ZBTB7A in CRC cell lines and tissues. Expression levels of ZBTB7A mRNA and protein were examined in CRC cell lines. ZBTB7A protein expression was also evaluated in tissue samples of normal colonic mucosa, high-grade dysplasia, and CRC using immunohistochemical staining. All CRC cell lines exhibited significantly higher ZBTB7A mRNA expression levels than did normal colonic epithelial cells. The ZBTB7A protein expression levels were clearly higher in the CRC cell lines than in the normal colonic epithelial cells. Consistent with the cell line data, immunostaining revealed that there were significant differences in ZBTB7A protein expression between tissue samples of CRC and normal colonic mucosa (p=0.048) and high-grade dysplasia (p=0.015). In addition, metastatic CRC exhibited significantly higher ZBTB7A protein expression levels than primary CRC (p=0.027). We demonstrated that ZBTB7A expression is up-regulated in CRC cell lines and tissues. Our data suggest that ZBTB7A is involved in the development and progression of CRC. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  19. Revisiting and re-engineering the classical zinc finger peptide: consensus peptide-1 (CP-1).

    PubMed

    Besold, Angelique N; Widger, Leland R; Namuswe, Frances; Michalek, Jamie L; Michel, Sarah L J; Goldberg, David P

    2016-04-01

    Zinc plays key structural and catalytic roles in biology. Structural zinc sites are often referred to as zinc finger (ZF) sites, and the classical ZF contains a Cys2His2 motif that is involved in coordinating Zn(II). An optimized Cys2His2 ZF, named consensus peptide 1 (CP-1), was identified more than 20 years ago using a limited set of sequenced proteins. We have reexamined the CP-1 sequence, using our current, much larger database of sequenced proteins that have been identified from high-throughput sequencing methods, and found the sequence to be largely unchanged. The CCHH ligand set of CP-1 was then altered to a CAHH motif to impart hydrolytic activity. This ligand set mimics the His2Cys ligand set of peptide deformylase (PDF), a hydrolytically active M(II)-centered (M = Zn or Fe) protein. The resultant peptide [CP-1(CAHH)] was evaluated for its ability to coordinate Zn(II) and Co(II) ions, adopt secondary structure, and promote hydrolysis. CP-1(CAHH) was found to coordinate Co(II) and Zn(II) and a pentacoordinate geometry for Co(II)-CP-1(CAHH) was implicated from UV-vis data. This suggests a His2Cys(H2O)2 environment at the metal center. The Zn(II)-bound CP-1(CAHH) was shown to adopt partial secondary structure by 1-D (1)H NMR spectroscopy. Both Zn(II)-CP-1(CAHH) and Co(II)-CP-1(CAHH) show good hydrolytic activity toward the test substrate 4-nitrophenyl acetate, exhibiting faster rates than most active synthetic Zn(II) complexes.

  20. Evolutionary expansion and divergence in a large family of primate-specific zinc finger transcription factor genes

    SciT

    Hamilton, A T; Huntley, S; Tran-Gyamfi, M

    Although most genes are conserved as one-to-one orthologs in different mammalian orders, certain gene families have evolved to comprise different numbers and types of protein-coding genes through independent series of gene duplications, divergence and gene loss in each evolutionary lineage. One such family encodes KRAB-zinc finger (KRAB-ZNF) genes, which are likely to function as transcriptional repressors. One KRAB-ZNF subfamily, the ZNF91 clade, has expanded specifically in primates to comprise more than 110 loci in the human genome, yielding large gene clusters in human chromosomes 19 and 7 and smaller clusters or isolated copies at other chromosomal locations. Although phylogenetic analysismore » indicates that many of these genes arose before the split between old world monkeys and new world monkeys, the ZNF91 subfamily has continued to expand and diversify throughout the evolution of apes and humans. The paralogous loci are distinguished by sequence divergence within their zinc finger arrays indicating a selection for proteins with different DNA binding specificities. RT-PCR and in situ hybridization data show that some of these ZNF genes can have tissue-specific expression patterns, however many KRAB-ZNFs that are near-ubiquitous could also be playing very specific roles in halting target pathways in all tissues except for a few, where the target is released by the absence of its repressor. The number of variant KRAB-ZNF proteins is increased not only because of the large number of loci, but also because many loci can produce multiple splice variants, which because of the modular structure of these genes may have separate and perhaps even conflicting regulatory roles. The lineage-specific duplication and rapid divergence of this family of transcription factor genes suggests a role in determining species-specific biological differences and the evolution of novel primate traits.« less

  1. The C. elegans che-1 gene encodes a zinc finger transcription factor required for specification of the ASE chemosensory neurons.

    PubMed

    Uchida, Okiko; Nakano, Hiroyuki; Koga, Makoto; Ohshima, Yasumi

    2003-04-01

    Chemotaxis to water-soluble chemicals such as NaCl is an important behavior of C. elegans when seeking food. ASE chemosensory neurons have a major role in this behavior. We show that che-1, defined by chemotaxis defects, encodes a zinc-finger protein similar to the GLASS transcription factor required for photoreceptor cell differentiation in Drosophila, and that che-1 is essential for specification and function of ASE neurons. Expression of a che-1::gfp fusion construct was predominant in ASE. In che-1 mutants, expression of genes characterizing ASE such as seven-transmembrane receptors, guanylate cyclases and a cyclic-nucleotide gated channel is lost. Ectopic expression of che-1 cDNA induced expression of ASE-specific marker genes, a dye-filling defect in neurons other than ASE and dauer formation.

  2. Gene repair of an Usher syndrome causing mutation by zinc-finger nuclease mediated homologous recombination.

    PubMed

    Overlack, Nora; Goldmann, Tobias; Wolfrum, Uwe; Nagel-Wolfrum, Kerstin

    2012-06-26

    Human Usher syndrome (USH) is the most frequent cause of inherited deaf-blindness. It is clinically and genetically heterogeneous, assigned to three clinical types of which the most severe type is USH1. No effective treatment for the ophthalmic component of USH exists. Gene augmentation is an attractive strategy for hereditary retinal diseases. However, several USH genes, like USH1C, are expressed in various isoforms, hampering gene augmentation. As an alternative treatment strategy, we applied the zinc-finger nuclease (ZFN) technology for targeted gene repair of an USH1C, causing mutation by homologous recombination. We designed ZFNs customized for the p.R31X nonsense mutation in Ush1c. We evaluated ZFNs for DNA cleavage capability and analyzed ZFNs biocompatibilities by XTT assays. We demonstrated ZFNs mediated gene repair on genomic level by digestion assays and DNA sequencing, and on protein level by indirect immunofluorescence and Western blot analyses. The specifically designed ZFNs did not show cytotoxic effects in a p.R31X cell line. We demonstrated that ZFN induced cleavage of their target sequence. We showed that simultaneous application of ZFN and rescue DNA induced gene repair of the disease-causing mutation on the genomic level, resulting in recovery of protein expression. In our present study, we analyzed for the first time ZFN-activated gene repair of an USH gene. The data highlight the ability of ZFNs to induce targeted homologous recombination and mediate gene repair in USH. We provide further evidence that the ZFN technology holds great potential to recover disease-causing mutations in inherited retinal disorders.

  3. Zebrafish foxP2 Zinc Finger Nuclease Mutant Has Normal Axon Pathfinding

    PubMed Central

    Xing, Lingyan; Hoshijima, Kazuyuki; Grunwald, David J.; Fujimoto, Esther; Quist, Tyler S.; Sneddon, Jacob; Chien, Chi-Bin; Stevenson, Tamara J.; Bonkowsky, Joshua L.

    2012-01-01

    foxP2, a forkhead-domain transcription factor, is critical for speech and language development in humans, but its role in the establishment of CNS connectivity is unclear. While in vitro studies have identified axon guidance molecules as targets of foxP2 regulation, and cell culture assays suggest a role for foxP2 in neurite outgrowth, in vivo studies have been lacking regarding a role for foxP2 in axon pathfinding. We used a modified zinc finger nuclease methodology to generate mutations in the zebrafish foxP2 gene. Using PCR-based high resolution melt curve analysis (HRMA) of G0 founder animals, we screened and identified three mutants carrying nonsense mutations in the 2nd coding exon: a 17 base-pair (bp) deletion, an 8bp deletion, and a 4bp insertion. Sequence analysis of cDNA confirmed that these were frameshift mutations with predicted early protein truncations. Homozygous mutant fish were viable and fertile, with unchanged body morphology, and no apparent differences in CNS apoptosis, proliferation, or patterning at embryonic stages. There was a reduction in expression of the known foxP2 target gene cntnap2 that was rescued by injection of wild-type foxP2 transcript. When we examined axon pathfinding using a pan-axonal marker or transgenic lines, including a foxP2-neuron-specific enhancer, we did not observe any axon guidance errors. Our findings suggest that foxP2 is not necessary for axon pathfinding during development. PMID:22937139

  4. Zebrafish foxP2 zinc finger nuclease mutant has normal axon pathfinding.

    PubMed

    Xing, Lingyan; Hoshijima, Kazuyuki; Grunwald, David J; Fujimoto, Esther; Quist, Tyler S; Sneddon, Jacob; Chien, Chi-Bin; Stevenson, Tamara J; Bonkowsky, Joshua L

    2012-01-01

    foxP2, a forkhead-domain transcription factor, is critical for speech and language development in humans, but its role in the establishment of CNS connectivity is unclear. While in vitro studies have identified axon guidance molecules as targets of foxP2 regulation, and cell culture assays suggest a role for foxP2 in neurite outgrowth, in vivo studies have been lacking regarding a role for foxP2 in axon pathfinding. We used a modified zinc finger nuclease methodology to generate mutations in the zebrafish foxP2 gene. Using PCR-based high resolution melt curve analysis (HRMA) of G0 founder animals, we screened and identified three mutants carrying nonsense mutations in the 2(nd) coding exon: a 17 base-pair (bp) deletion, an 8bp deletion, and a 4bp insertion. Sequence analysis of cDNA confirmed that these were frameshift mutations with predicted early protein truncations. Homozygous mutant fish were viable and fertile, with unchanged body morphology, and no apparent differences in CNS apoptosis, proliferation, or patterning at embryonic stages. There was a reduction in expression of the known foxP2 target gene cntnap2 that was rescued by injection of wild-type foxP2 transcript. When we examined axon pathfinding using a pan-axonal marker or transgenic lines, including a foxP2-neuron-specific enhancer, we did not observe any axon guidance errors. Our findings suggest that foxP2 is not necessary for axon pathfinding during development.

  5. Generation of Esr1-Knockout Rats Using Zinc Finger Nuclease-Mediated Genome Editing

    PubMed Central

    Dhakal, Pramod; Kubota, Kaiyu; Chakraborty, Damayanti; Lei, Tianhua; Larson, Melissa A.; Wolfe, Michael W.; Roby, Katherine F.; Vivian, Jay L.

    2014-01-01

    Estrogens play pivotal roles in development and function of many organ systems, including the reproductive system. We have generated estrogen receptor 1 (Esr1)-knockout rats using zinc finger nuclease (ZFN) genome targeting. mRNAs encoding ZFNs targeted to exon 3 of Esr1 were microinjected into single-cell rat embryos and transferred to pseudopregnant recipients. Of 17 live births, 5 had biallelic and 1 had monoallelic Esr1 mutations. A founder with monoallelic mutations was backcrossed to a wild-type rat. Offspring possessed only wild-type Esr1 alleles or wild-type alleles and Esr1 alleles containing either 482 bp (Δ482) or 223 bp (Δ223) deletions, indicating mosaicism in the founder. These heterozygous mutants were bred for colony expansion, generation of homozygous mutants, and phenotypic characterization. The Δ482 Esr1 allele yielded altered transcript processing, including the absence of exon 3, aberrant splicing of exon 2 and 4, and a frameshift that generated premature stop codons located immediately after the codon for Thr157. ESR1 protein was not detected in homozygous Δ482 mutant uteri. ESR1 disruption affected sexually dimorphic postnatal growth patterns and serum levels of gonadotropins and sex steroid hormones. Both male and female Esr1-null rats were infertile. Esr1-null males had small testes with distended and dysplastic seminiferous tubules, whereas Esr1-null females possessed large polycystic ovaries, thread-like uteri, and poorly developed mammary glands. In addition, uteri of Esr1-null rats did not effectively respond to 17β-estradiol treatment, further demonstrating that the Δ482 Esr1 mutation created a null allele. This rat model provides a new experimental tool for investigating the pathophysiology of estrogen action. PMID:24506075

  6. Generation of Esr1-knockout rats using zinc finger nuclease-mediated genome editing.

    PubMed

    Rumi, M A Karim; Dhakal, Pramod; Kubota, Kaiyu; Chakraborty, Damayanti; Lei, Tianhua; Larson, Melissa A; Wolfe, Michael W; Roby, Katherine F; Vivian, Jay L; Soares, Michael J

    2014-05-01

    Estrogens play pivotal roles in development and function of many organ systems, including the reproductive system. We have generated estrogen receptor 1 (Esr1)-knockout rats using zinc finger nuclease (ZFN) genome targeting. mRNAs encoding ZFNs targeted to exon 3 of Esr1 were microinjected into single-cell rat embryos and transferred to pseudopregnant recipients. Of 17 live births, 5 had biallelic and 1 had monoallelic Esr1 mutations. A founder with monoallelic mutations was backcrossed to a wild-type rat. Offspring possessed only wild-type Esr1 alleles or wild-type alleles and Esr1 alleles containing either 482 bp (Δ482) or 223 bp (Δ223) deletions, indicating mosaicism in the founder. These heterozygous mutants were bred for colony expansion, generation of homozygous mutants, and phenotypic characterization. The Δ482 Esr1 allele yielded altered transcript processing, including the absence of exon 3, aberrant splicing of exon 2 and 4, and a frameshift that generated premature stop codons located immediately after the codon for Thr157. ESR1 protein was not detected in homozygous Δ482 mutant uteri. ESR1 disruption affected sexually dimorphic postnatal growth patterns and serum levels of gonadotropins and sex steroid hormones. Both male and female Esr1-null rats were infertile. Esr1-null males had small testes with distended and dysplastic seminiferous tubules, whereas Esr1-null females possessed large polycystic ovaries, thread-like uteri, and poorly developed mammary glands. In addition, uteri of Esr1-null rats did not effectively respond to 17β-estradiol treatment, further demonstrating that the Δ482 Esr1 mutation created a null allele. This rat model provides a new experimental tool for investigating the pathophysiology of estrogen action.

  7. Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases

    SciT

    Watanabe, Masahito; Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571; Umeyama, Kazuhiro

    2010-11-05

    Research highlights: {yields} EGFP gene integrated in porcine somatic cells could be knocked out using the ZFN-KO system. {yields} ZFNs induced targeted mutations in porcine primary cultured cells. {yields} Complete absence of EGFP fluorescence was confirmed in ZFN-treated cells. -- Abstract: Zinc-finger nucleases (ZFNs) are expected as a powerful tool for generating gene knockouts in laboratory and domestic animals. Currently, it is unclear whether this technology can be utilized for knocking-out genes in pigs. Here, we investigated whether knockout (KO) events in which ZFNs recognize and cleave a target sequence occur in porcine primary cultured somatic cells that harbor themore » exogenous enhanced green fluorescent protein (EGFP) gene. ZFN-encoding mRNA designed to target the EGFP gene was introduced by electroporation into the cell. Using the Surveyor nuclease assay and flow cytometric analysis, we confirmed ZFN-induced cleavage of the target sequence and the disappearance of EGFP fluorescence expression in ZFN-treated cells. In addition, sequence analysis revealed that ZFN-induced mutations such as base substitution, deletion, or insertion were generated in the ZFN cleavage site of EGFP-expression negative cells that were cloned from ZFN-treated cells, thereby showing it was possible to disrupt (i.e., knock out) the function of the EGFP gene in porcine somatic cells. To our knowledge, this study provides the first evidence that the ZFN-KO system can be applied to pigs. These findings may open a new avenue to the creation of gene KO pigs using ZFN-treated cells and somatic cell nuclear transfer.« less

  8. Mitochondrial damage elicits a TCDD-inducible poly(ADP-ribose) polymerase-mediated antiviral response

    PubMed Central

    Kozaki, Tatsuya; Komano, Jun; Kanbayashi, Daiki; Takahama, Michihiro; Misawa, Takuma; Satoh, Takashi; Takeuchi, Osamu; Kawai, Taro; Shimizu, Shigeomi; Matsuura, Yoshiharu; Akira, Shizuo; Saitoh, Tatsuya

    2017-01-01

    The innate immune system senses RNA viruses by pattern recognition receptors (PRRs) and protects the host from virus infection. PRRs mediate the production of immune modulatory factors and direct the elimination of RNA viruses. Here, we show a unique PRR that mediates antiviral response. Tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly(ADP ribose) polymerase (TIPARP), a Cysteine3 Histidine (CCCH)-type zinc finger-containing protein, binds to Sindbis virus (SINV) RNA via its zinc finger domain and recruits an exosome to induce viral RNA degradation. TIPARP typically localizes in the nucleus, but it accumulates in the cytoplasm after SINV infection, allowing targeting of cytoplasmic SINV RNA. Redistribution of TIPARP is induced by reactive oxygen species (ROS)-dependent oxidization of the nuclear pore that affects cytoplasmic-nuclear transport. BCL2-associated X protein (BAX) and BCL2 antagonist/killer 1 (BAK1), B-cell leukemia/lymphoma 2 (BCL2) family members, mediate mitochondrial damage to generate ROS after SINV infection. Thus, TIPARP is a viral RNA-sensing PRR that mediates antiviral responses triggered by BAX- and BAK1-dependent mitochondrial damage. PMID:28213497

  9. First large scale chemical synthesis of the 72 amino acid HIV-1 nucleocapsid protein NCp7 in an active form.

    PubMed

    de Rocquigny, H; Ficheux, D; Gabus, C; Fournié-Zaluski, M C; Darlix, J L; Roques, B P

    1991-10-31

    The nucleocapsid protein (NC) of the human immunodeficiency virus type 1 plays a crucial role in the formation of infectious viral particles and therefore should be a major target for the development of antiviral agents. This requires an investigation of NC protein structure and of its interactions with both primer tRNA(Lys,3) and genomic RNA. Nucleocapsid protein NCp7, which results from the maturation of NCp15, contains two zinc fingers flanked by sequences rich in basic and proline residues. Here we report the first synthesis of large quantities of NCp7 able to activate HIV-1 RNA dimerization and replication primer tRNA(Lys,3) annealing to the initiation site of reverse transcription. In addition UV spectroscopic analyses performed to characterize the Co2+ binding properties of each zinc finger suggest that the two fingers probably interact in NCp7.

  10. POZ domain transcription factor, FBI-1, represses transcription of ADH5/FDH by interacting with the zinc finger and interfering with DNA binding activity of Sp1.

    PubMed

    Lee, Dong-Kee; Suh, Dongchul; Edenberg, Howard J; Hur, Man-Wook

    2002-07-26

    The POZ domain is a protein-protein interaction motif that is found in many transcription factors, which are important for development, oncogenesis, apoptosis, and transcription repression. We cloned the POZ domain transcription factor, FBI-1, that recognizes the cis-element (bp -38 to -22) located just upstream of the core Sp1 binding sites (bp -22 to +22) of the ADH5/FDH minimal promoter (bp -38 to +61) in vitro and in vivo, as revealed by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. The ADH5/FDH minimal promoter is potently repressed by the FBI-1. Glutathione S-transferase fusion protein pull-down showed that the POZ domains of FBI-1, Plzf, and Bcl-6 directly interact with the zinc finger DNA binding domain of Sp1. DNase I footprinting assays showed that the interaction prevents binding of Sp1 to the GC boxes of the ADH5/FDH promoter. Gal4-POZ domain fusions targeted proximal to the GC boxes repress transcription of the Gal4 upstream activator sequence-Sp1-adenovirus major late promoter. Our data suggest that POZ domain represses transcription by interacting with Sp1 zinc fingers and by interfering with the DNA binding activity of Sp1.

  11. Genome editing with CompoZr custom zinc finger nucleases (ZFNs).

    PubMed

    Hansen, Keith; Coussens, Matthew J; Sago, Jack; Subramanian, Shilpi; Gjoka, Monika; Briner, Dave

    2012-06-14

    Genome editing is a powerful technique that can be used to elucidate gene function and the genetic basis of disease. Traditional gene editing methods such as chemical-based mutagenesis or random integration of DNA sequences confer indiscriminate genetic changes in an overall inefficient manner and require incorporation of undesirable synthetic sequences or use of aberrant culture conditions, potentially confusing biological study. By contrast, transient ZFN expression in a cell can facilitate precise, heritable gene editing in a highly efficient manner without the need for administration of chemicals or integration of synthetic transgenes. Zinc finger nucleases (ZFNs) are enzymes which bind and cut distinct sequences of double-stranded DNA (dsDNA). A functional CompoZr ZFN unit consists of two individual monomeric proteins that bind a DNA "half-site" of approximately 15-18 nucleotides (see Figure 1). When two ZFN monomers "home" to their adjacent target sites the DNA-cleavage domains dimerize and create a double-strand break (DSB) in the DNA. Introduction of ZFN-mediated DSBs in the genome lays a foundation for highly efficient genome editing. Imperfect repair of DSBs in a cell via the non-homologous end-joining (NHEJ) DNA repair pathway can result in small insertions and deletions (indels). Creation of indels within the gene coding sequence of a cell can result in frameshift and subsequent functional knockout of a gene locus at high efficiency. While this protocol describes the use of ZFNs to create a gene knockout, integration of transgenes may also be conducted via homology-directed repair at the ZFN cut site. The CompoZr Custom ZFN Service represents a systematic, comprehensive, and well-characterized approach to targeted gene editing for the scientific community with ZFN technology. Sigma scientists work closely with investigators to 1) perform due diligence analysis including analysis of relevant gene structure, biology, and model system pursuant to the

  12. WRNIP1 accumulates at laser light irradiated sites rapidly via its ubiquitin-binding zinc finger domain and independently from its ATPase domain

    SciT

    Nomura, Hironoshin; Yoshimura, Akari, E-mail: akari_yo@musashino-u.ac.jp; Edo, Takato

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer WRNIP1 accumulates in laser light irradiated sites very rapidly via UBZ domain. Black-Right-Pointing-Pointer The ATPase domain of WRNIP1 is dispensable for its accumulation. Black-Right-Pointing-Pointer The accumulation of WRNIP1 seems not to be dependent on the interaction with WRN. -- Abstract: WRNIP1 (Werner helicase-interacting protein 1) was originally identified as a protein that interacts with the Werner syndrome responsible gene product. WRNIP1 contains a ubiquitin-binding zinc-finger (UBZ) domain in the N-terminal region and two leucine zipper motifs in the C-terminal region. In addition, it possesses an ATPase domain in the middle of the molecule and the lysine residues servingmore » as ubiquitin acceptors in the entire of the molecule. Here, we report that WRNIP1 accumulates in laser light irradiated sites very rapidly via its ubiquitin-binding zinc finger domain, which is known to bind polyubiquitin and to be involved in ubiquitination of WRNIP1 itself. The accumulation of WRNIP1 in laser light irradiated sites also required the C-terminal region containing two leucine zippers, which is reportedly involved in the oligomerization of WRNIP1. Mutated WRNIP1 with a deleted ATPase domain or with mutations in lysine residues, which serve as ubiquitin acceptors, accumulated in laser light irradiated sites, suggesting that the ATPase domain of WRNIP1 and ubiquitination of WRNIP1 are dispensable for the accumulation.« less

  13. At-MINI ZINC FINGER2 and Sl-INHIBITOR OF MERISTEM ACTIVITY, a Conserved Missing Link in the Regulation of Floral Meristem Termination in Arabidopsis and Tomato.

    PubMed

    Bollier, Norbert; Sicard, Adrien; Leblond, Julie; Latrasse, David; Gonzalez, Nathalie; Gévaudant, Frédéric; Benhamed, Moussa; Raynaud, Cécile; Lenhard, Michael; Chevalier, Christian; Hernould, Michel; Delmas, Frédéric

    2018-01-01

    In angiosperms, the gynoecium is the last structure to develop within the flower due to the determinate fate of floral meristem (FM) stem cells. The maintenance of stem cell activity before its arrest at the stage called FM termination affects the number of carpels that develop. The necessary inhibition at this stage of WUSCHEL ( WUS ), which is responsible for stem cell maintenance, involves a two-step mechanism. Direct repression mediated by the MADS domain transcription factor AGAMOUS (AG), followed by indirect repression requiring the C2H2 zinc-finger protein KNUCKLES (KNU), allow for the complete termination of floral stem cell activity. Here, we show that Arabidopsis thaliana MINI ZINC FINGER2 (AtMIF2) and its homolog in tomato ( Solanum lycopersicum ), INHIBITOR OF MERISTEM ACTIVITY (SlIMA), participate in the FM termination process by functioning as adaptor proteins. AtMIF2 and SlIMA recruit AtKNU and SlKNU, respectively, to form a transcriptional repressor complex together with TOPLESS and HISTONE DEACETYLASE19. AtMIF2 and SlIMA bind to the WUS and SlWUS loci in the respective plants, leading to their repression. These results provide important insights into the molecular mechanisms governing (FM) termination and highlight the essential role of AtMIF2/SlIMA during this developmental step, which determines carpel number and therefore fruit size. © 2018 American Society of Plant Biologists. All rights reserved.

  14. SUMOylation of the KRAB zinc-finger transcription factor PARIS/ZNF746 regulates its transcriptional activity.

    PubMed

    Nishida, Tamotsu; Yamada, Yoshiji

    2016-05-13

    Parkin-interacting substrate (PARIS), a member of the family of Krüppel-associated box (KRAB)-containing zinc-finger transcription factors, is a substrate of the ubiquitin E3 ligase parkin. PARIS represses the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), although the underlying mechanisms remain largely unknown. In the present study, we demonstrate that PARIS can be SUMOylated, and its SUMOylation plays a role in the repression of PGC-1a promoter activity. Protein inhibitor of activated STAT y (PIASy) was identified as an interacting protein of PARIS and shown to enhance its SUMOylation. PIASy repressed PGC-1a promoter activity, and this effect was attenuated by PARIS in a manner dependent on its SUMOylation status. Co-expression of SUMO-1 with PIASy completely repressed PGC-1a promoter activity independently of PARIS expression. PARIS-mediated PGC-1a promoter repression depended on the activity of histone deacetylases (HDAC), whereas PIASy repressed the PGC-1a promoter in an HDAC-independent manner. Taken together, these results suggest that PARIS and PIASy modulate PGC-1a gene transcription through distinct molecular mechanisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Transcriptional activation is a conserved feature of the early embryonic factor Zelda that requires a cluster of four zinc fingers for DNA binding and a low-complexity activation domain.

    PubMed

    Hamm, Danielle C; Bondra, Eliana R; Harrison, Melissa M

    2015-02-06

    Delayed transcriptional activation of the zygotic genome is a nearly universal phenomenon in metazoans. Immediately following fertilization, development is controlled by maternally deposited products, and it is not until later stages that widespread activation of the zygotic genome occurs. Although the mechanisms driving this genome activation are currently unknown, the transcriptional activator Zelda (ZLD) has been shown to be instrumental in driving this process in Drosophila melanogaster. Here we define functional domains of ZLD required for both DNA binding and transcriptional activation. We show that the C-terminal cluster of four zinc fingers mediates binding to TAGteam DNA elements in the promoters of early expressed genes. All four zinc fingers are required for this activity, and splice isoforms lacking three of the four zinc fingers fail to activate transcription. These truncated splice isoforms dominantly suppress activation by the full-length, embryonically expressed isoform. We map the transcriptional activation domain of ZLD to a central region characterized by low complexity. Despite relatively little sequence conservation within this domain, ZLD orthologs from Drosophila virilis, Anopheles gambiae, and Nasonia vitripennis activate transcription in D. melanogaster cells. Transcriptional activation by these ZLD orthologs suggests that ZLD functions through conserved interactions with a protein cofactor(s). We have identified distinct DNA-binding and activation domains within the critical transcription factor ZLD that controls the initial activation of the zygotic genome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. The zinc finger gene Krox20 regulates HoxB2 (Hox2.8) during hindbrain segmentation.

    PubMed

    Sham, M H; Vesque, C; Nonchev, S; Marshall, H; Frain, M; Gupta, R D; Whiting, J; Wilkinson, D; Charnay, P; Krumlauf, R

    1993-01-29

    The zinc finger gene Krox20 and many Hox homeobox genes are expressed in segment-restricted domains in the hindbrain. The restricted expression patterns appear before morphological segmentation, suggesting that these transcription factors may play an early role in the establishment and identity of rhombomeric segments. In this paper, we show that the HoxB2 (Hox2.8) gene is normally upregulated in rhombomeres (r) 3, 4, and 5, and we identify an enhancer region upstream of the gene that imposes r3/r5 expression in transgenic mice. This enhancer contains three Krox20-binding sites required in vitro for complex formation with Krox20 protein and in vivo for rhombomere-restricted expression. In transgenic mice, Krox20 expressed in ectopic domains can transactivate a reporter construct containing the HoxB2 r3/r5 enhancer. These data demonstrate that Krox20 is a part of the upstream transcriptional cascade that directly regulates HoxB2 expression during hindbrain segmentation.

  17. Sequence-specific DNA binding activity of the cross-brace zinc finger motif of the piggyBac transposase

    PubMed Central

    Morellet, Nelly; Li, Xianghong; Wieninger, Silke A; Taylor, Jennifer L; Bischerour, Julien; Moriau, Séverine; Lescop, Ewen; Bardiaux, Benjamin; Mathy, Nathalie; Assrir, Nadine; Bétermier, Mireille; Nilges, Michael; Hickman, Alison B; Dyda, Fred; Craig, Nancy L; Guittet, Eric

    2018-01-01

    Abstract The piggyBac transposase (PB) is distinguished by its activity and utility in genome engineering, especially in humans where it has highly promising therapeutic potential. Little is known, however, about the structure–function relationships of the different domains of PB. Here, we demonstrate in vitro and in vivo that its C-terminal Cysteine-Rich Domain (CRD) is essential for DNA breakage, joining and transposition and that it binds to specific DNA sequences in the left and right transposon ends, and to an additional unexpectedly internal site at the left end. Using NMR, we show that the CRD adopts the specific fold of the cross-brace zinc finger protein family. We determine the interaction interfaces between the CRD and its target, the 5′-TGCGT-3′/3′-ACGCA-5′ motifs found in the left, left internal and right transposon ends, and use NMR results to propose docking models for the complex, which are consistent with our site-directed mutagenesis data. Our results provide support for a model of the PB/DNA interactions in the context of the transpososome, which will be useful for the rational design of PB mutants with increased activity. PMID:29385532

  18. Chemical-controlled Activation of Antiviral Myxovirus Resistance Protein 1.

    PubMed

    Verhelst, Judith; Van Hoecke, Lien; Spitaels, Jan; De Vlieger, Dorien; Kolpe, Annasaheb; Saelens, Xavier

    2017-02-10

    The antiviral myxovirus resistance protein 1 (MX1) is an interferon-induced GTPase that plays an important role in the defense of mammalian cells against influenza A viruses. Mouse MX1 interacts with the influenza ribonucleoprotein complexes (vRNPs) and can prevent the interaction between polymerase basic 2 (PB2) and the nucleoprotein (NP) of influenza A viruses. However, it is unclear whether mouse MX1 disrupts the PB2-NP interaction in the context of pre-existing vRNPs or prevents the assembly of new vRNP components. Here, we describe a conditionally active mouse MX1 variant that only exerts antiviral activity in the presence of a small molecule drug. Once activated, this MX1 construct phenocopies the antiviral and NP binding activity of wild type MX1. The interaction between PB2 and NP is disrupted within minutes after the addition of the small molecule activator. These findings support a model in which mouse MX1 interacts with the incoming influenza A vRNPs and inhibits their activity by disrupting the PB2-NP interaction. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Chemical-controlled Activation of Antiviral Myxovirus Resistance Protein 1*

    PubMed Central

    Verhelst, Judith; Van Hoecke, Lien; Spitaels, Jan; De Vlieger, Dorien; Kolpe, Annasaheb

    2017-01-01

    The antiviral myxovirus resistance protein 1 (MX1) is an interferon-induced GTPase that plays an important role in the defense of mammalian cells against influenza A viruses. Mouse MX1 interacts with the influenza ribonucleoprotein complexes (vRNPs) and can prevent the interaction between polymerase basic 2 (PB2) and the nucleoprotein (NP) of influenza A viruses. However, it is unclear whether mouse MX1 disrupts the PB2-NP interaction in the context of pre-existing vRNPs or prevents the assembly of new vRNP components. Here, we describe a conditionally active mouse MX1 variant that only exerts antiviral activity in the presence of a small molecule drug. Once activated, this MX1 construct phenocopies the antiviral and NP binding activity of wild type MX1. The interaction between PB2 and NP is disrupted within minutes after the addition of the small molecule activator. These findings support a model in which mouse MX1 interacts with the incoming influenza A vRNPs and inhibits their activity by disrupting the PB2-NP interaction. PMID:28011636

  20. Targeted Mutagenesis of Duplicated Genes in Soybean with Zinc-Finger Nucleases1[W][OA

    PubMed Central

    Curtin, Shaun J.; Zhang, Feng; Sander, Jeffry D.; Haun, William J.; Starker, Colby; Baltes, Nicholas J.; Reyon, Deepak; Dahlborg, Elizabeth J.; Goodwin, Mathew J.; Coffman, Andrew P.; Dobbs, Drena; Joung, J. Keith; Voytas, Daniel F.; Stupar, Robert M.

    2011-01-01

    We performed targeted mutagenesis of a transgene and nine endogenous soybean (Glycine max) genes using zinc-finger nucleases (ZFNs). A suite of ZFNs were engineered by the recently described context-dependent assembly platform—a rapid, open-source method for generating zinc-finger arrays. Specific ZFNs targeting DICER-LIKE (DCL) genes and other genes involved in RNA silencing were cloned into a vector under an estrogen-inducible promoter. A hairy-root transformation system was employed to investigate the efficiency of ZFN mutagenesis at each target locus. Transgenic roots exhibited somatic mutations localized at the ZFN target sites for seven out of nine targeted genes. We next introduced a ZFN into soybean via whole-plant transformation and generated independent mutations in the paralogous genes DCL4a and DCL4b. The dcl4b mutation showed efficient heritable transmission of the ZFN-induced mutation in the subsequent generation. These findings indicate that ZFN-based mutagenesis provides an efficient method for making mutations in duplicate genes that are otherwise difficult to study due to redundancy. We also developed a publicly accessible Web-based tool to identify sites suitable for engineering context-dependent assembly ZFNs in the soybean genome. PMID:21464476

  1. A comprehensive catalog of human KRAB-associated zinc finger genes: Insights into the evolutionary history of a large family of transcriptional repressors

    PubMed Central

    Huntley, Stuart; Baggott, Daniel M.; Hamilton, Aaron T.; Tran-Gyamfi, Mary; Yang, Shan; Kim, Joomyeong; Gordon, Laurie; Branscomb, Elbert; Stubbs, Lisa

    2006-01-01

    Krüppel-type zinc finger (ZNF) motifs are prevalent components of transcription factor proteins in all eukaryotes. KRAB-ZNF proteins, in which a potent repressor domain is attached to a tandem array of DNA-binding zinc-finger motifs, are specific to tetrapod vertebrates and represent the largest class of ZNF proteins in mammals. To define the full repertoire of human KRAB-ZNF proteins, we searched the genome sequence for key motifs and then constructed and manually curated gene models incorporating those sequences. The resulting gene catalog contains 423 KRAB-ZNF protein-coding loci, yielding alternative transcripts that altogether predict at least 742 structurally distinct proteins. Active rounds of segmental duplication, involving single genes or larger regions and including both tandem and distributed duplication events, have driven the expansion of this mammalian gene family. Comparisons between the human genes and ZNF loci mined from the draft mouse, dog, and chimpanzee genomes not only identified 103 KRAB-ZNF genes that are conserved in mammals but also highlighted a substantial level of lineage-specific change; at least 136 KRAB-ZNF coding genes are primate specific, including many recent duplicates. KRAB-ZNF genes are widely expressed and clustered genes are typically not coregulated, indicating that paralogs have evolved to fill roles in many different biological processes. To facilitate further study, we have developed a Web-based public resource with access to gene models, sequences, and other data, including visualization tools to provide genomic context and interaction with other public data sets. PMID:16606702

  2. Differing roles for zinc fingers in DNA recognition: Structure of a six-finger transcription factor IIIA complex

    PubMed Central

    Nolte, Robert T.; Conlin, Rachel M.; Harrison, Stephen C.; Brown, Raymond S.

    1998-01-01

    The crystal structure of the six NH2-terminal zinc fingers of Xenopus laevis transcription factor IIIA (TFIIIA) bound with 31 bp of the 5S rRNA gene promoter has been determined at 3.1 Å resolution. Individual zinc fingers are positioned differently in the major groove and across the minor groove of DNA to span the entire length of the duplex. These results show how TFIIIA can recognize several separated DNA sequences by using fewer fingers than necessary for continuous winding in the major groove. PMID:9501194

  3. The Rice B-Box Zinc Finger Gene Family: Genomic Identification, Characterization, Expression Profiling and Diurnal Analysis

    PubMed Central

    Huang, Jianyan; Zhao, Xiaobo; Weng, Xiaoyu; Wang, Lei; Xie, Weibo

    2012-01-01

    Background The B-box (BBX) -containing proteins are a class of zinc finger proteins that contain one or two B-box domains and play important roles in plant growth and development. The Arabidopsis BBX gene family has recently been re-identified and renamed. However, there has not been a genome-wide survey of the rice BBX (OsBBX) gene family until now. Methodology/Principal Findings In this study, we identified 30 rice BBX genes through a comprehensive bioinformatics analysis. Each gene was assigned a uniform nomenclature. We described the chromosome localizations, gene structures, protein domains, phylogenetic relationship, whole life-cycle expression profile and diurnal expression patterns of the OsBBX family members. Based on the phylogeny and domain constitution, the OsBBX gene family was classified into five subfamilies. The gene duplication analysis revealed that only chromosomal segmental duplication contributed to the expansion of the OsBBX gene family. The expression profile of the OsBBX genes was analyzed by Affymetrix GeneChip microarrays throughout the entire life-cycle of rice cultivar Zhenshan 97 (ZS97). In addition, microarray analysis was performed to obtain the expression patterns of these genes under light/dark conditions and after three phytohormone treatments. This analysis revealed that the expression patterns of the OsBBX genes could be classified into eight groups. Eight genes were regulated under the light/dark treatments, and eleven genes showed differential expression under at least one phytohormone treatment. Moreover, we verified the diurnal expression of the OsBBX genes using the data obtained from the Diurnal Project and qPCR analysis, and the results indicated that many of these genes had a diurnal expression pattern. Conclusions/Significance The combination of the genome-wide identification and the expression and diurnal analysis of the OsBBX gene family should facilitate additional functional studies of the OsBBX genes. PMID:23118960

  4. Zinc-finger nucleases-based genome engineering to generate isogenic human cell lines.

    PubMed

    Dreyer, Anne-Kathrin; Cathomen, Toni

    2012-01-01

    Customized zinc-finger nucleases (ZFNs) have developed into a promising technology to precisely alter mammalian genomes for biomedical research, biotechnology, or human gene therapy. In the context of synthetic biology, the targeted integration of a transgene or reporter cassette into a "neutral site" of the human genome, such as the AAVS1 locus, permits the generation of isogenic human cell lines with two major advantages over standard genetic manipulation techniques: minimal integration site-dependent effects on the transgene and, vice versa, no functional perturbation of the host-cell transcriptome. Here we describe in detail how ZFNs can be employed to target integration of a transgene cassette into the AAVS1 locus and how to characterize the targeted cells by PCR-based genotyping.

  5. The zinc finger gene Xblimp1 controls anterior endomesodermal cell fate in Spemann's organizer.

    PubMed Central

    de Souza, F S; Gawantka, V; Gómez, A P; Delius, H; Ang, S L; Niehrs, C

    1999-01-01

    The anterior endomesoderm of the early Xenopus gastrula is a part of Spemann's organizer and is important for head induction. Here we describe Xblimp1, which encodes a zinc finger transcriptional repressor expressed in the anterior endomesoderm. Xblimp1 represses trunk mesoderm and induces anterior endomesoderm in a cooperative manner with the pan-endodermal gene Mix.1. Furthermore, Xblimp1 can cooperate with the BMP inhibitor chordin to induce ectopic heads, while a dominant-negative Xblimp1 inhibits head formation. The head inducer cerberus is positively regulated by Xblimp1 and is able to rescue microcephalic embryos caused by dominant-negative Xblimp1. Our results indicate that Xblimp1 is required for anterior endomesodermal cell fate and head induction. PMID:10545117

  6. Site-Specific Editing of the Plasmodium falciparum Genome Using Engineered Zinc-Finger Nucleases

    PubMed Central

    Straimer, Judith; Lee, Marcus CS; Lee, Andrew H; Zeitler, Bryan; Williams, April E; Pearl, Jocelynn R; Zhang, Lei; Rebar, Edward J; Gregory, Philip D; Llinás, Manuel; Urnov, Fyodor D; Fidock, David A

    2013-01-01

    Malaria afflicts over 200 million people worldwide and its most lethal etiologic agent, Plasmodium falciparum, is evolving to resist even the latest-generation therapeutics. Efficient tools for genome-directed investigations of P. falciparum pathogenesis, including drug resistance mechanisms, are clearly required. Here we report rapid and targeted genetic engineering of this parasite, using zinc-finger nucleases (ZFNs) that produce a double-strand break in a user-defined locus and trigger homology-directed repair. Targeting an integrated egfp locus, we obtained gene deletion parasites with unprecedented speed (two weeks), both with and without direct selection. ZFNs engineered against the endogenous parasite gene pfcrt, responsible for chloroquine treatment escape, rapidly produced parasites that carried either an allelic replacement or a panel of specified point mutations. The efficiency, versatility and precision of this method will enable a diverse array of genome editing approaches to interrogate this human pathogen. PMID:22922501

  7. Design of a colicin E7 based chimeric zinc-finger nuclease

    NASA Astrophysics Data System (ADS)

    Németh, Eszter; Schilli, Gabriella K.; Nagy, Gábor; Hasenhindl, Christoph; Gyurcsik, Béla; Oostenbrink, Chris

    2014-08-01

    Colicin E7 is a natural bacterial toxin. Its nuclease domain (NColE7) enters the target cell and kills it by digesting the nucleic acids. The HNH-motif as the catalytic centre of NColE7 at the C-terminus requires the positively charged N-terminal loop for the nuclease activity—offering opportunities for allosteric control in a NColE7-based artificial nuclease. Accordingly, four novel zinc finger nucleases were designed by computational methods exploiting the special structural features of NColE7. The constructed models were subjected to MD simulations. The comparison of structural stability and functional aspects showed that these models may function as safely controlled artificial nucleases. This study was complemented by random mutagenesis experiments identifying potentially important residues for NColE7 function outside the catalytic region.

  8. Generation of SNCA Cell Models Using Zinc Finger Nuclease (ZFN) Technology for Efficient High-Throughput Drug Screening.

    PubMed

    Dansithong, Warunee; Paul, Sharan; Scoles, Daniel R; Pulst, Stefan M; Huynh, Duong P

    2015-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by loss of dopaminergic neurons of the substantia nigra. The hallmark of PD is the appearance of neuronal protein aggregations known as Lewy bodies and Lewy neurites, of which α-synuclein forms a major component. Familial PD is rare and is associated with missense mutations of the SNCA gene or increases in gene copy number resulting in SNCA overexpression. This suggests that lowering SNCA expression could be therapeutic for PD. Supporting this hypothesis, SNCA reduction was neuroprotective in cell line and rodent PD models. We developed novel cell lines expressing SNCA fused to the reporter genes luciferase (luc) or GFP with the objective to enable high-throughput compound screening (HTS) for small molecules that can lower SNCA expression. Because SNCA expression is likely regulated by far-upstream elements (including the NACP-REP1 located at 8852 bp upstream of the transcription site), we employed zinc finger nuclease (ZFN) genome editing to insert reporter genes in-frame downstream of the SNCA gene in order to retain native SNCA expression control. This ensured full retention of known and unknown up- and downstream genetic elements controlling SNCA expression. Treatment of cells with the histone deacetylase inhibitor valproic acid (VPA) resulted in significantly increased SNCA-luc and SNCA-GFP expression supporting the use of our cell lines for identifying small molecules altering complex modes of expression control. Cells expressing SNCA-luc treated with a luciferase inhibitor or SNCA siRNA resulted in Z'-scores ≥ 0.75, suggesting the suitability of these cell lines for use in HTS. This study presents a novel use of genome editing for the creation of cell lines expressing α-synuclein fusion constructs entirely under native expression control. These cell lines are well suited for HTS for compounds that lower SNCA expression directly or by acting at long-range sites to the SNCA

  9. Role of Bmznf-2, a Bombyx mori CCCH zinc finger gene, in masculinisation and differential splicing of Bmtra-2.

    PubMed

    Gopinath, Gajula; Arunkumar, Kallare P; Mita, Kazuei; Nagaraju, Javaregowda

    2016-08-01

    Deciphering the regulatory factors involved in Bombyx mori sex determination has been a puzzle, challenging researchers for nearly a century now. The pre-mRNA of B. mori doublesex (Bmdsx), a master regulator gene of sexual differentiation, is differentially spliced, producing Bmdsxm and Bmdsxf transcripts in males and females respectively. The putative proteins encoded by these differential transcripts orchestrate antagonistic functions, which lead to sexual differentiation. A recent study in B. mori illustrated the role of a W-derived fem piRNA in conferring femaleness. In females, the fem piRNA was shown to suppress the activity of a Z-linked CCCH type zinc finger (znf) gene, Masculiniser (masc), which indirectly promotes the Bmdsxm type of splicing. In this study, we report a novel autosomal (Chr 25) CCCH type znf motif encoding gene Bmznf-2 as one of the potential factors in the Bmdsx sex specific differential splicing, and we also provide insights into its role in the alternative splicing of Bmtra2 by using ovary derived BmN cells. Over-expression of Bmznf-2 induced Bmdsxm type of splicing (masculinisation) with a correspondingly reduced expression of Bmdsxf type isoform in BmN cells. Further, the site-directed mutational studies targeting the tandem CCCH znf motifs revealed their indispensability in the observed phenotype of masculinisation. Additionally, the dual luciferase assays in BmN cells using 5' UTR region of the Bmznf-2 strongly implied the existence of a translational repression over this gene. From these findings, we propose Bmznf-2 to be one of the potential factors of masculinisation similar to Masc. From the growing number of Bmdsx splicing regulators, we assume that the sex determination cascade of B. mori is quite intricate in nature; hence, it has to be further investigated for its comprehensive understanding. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The antiviral protein Viperin suppresses T7 promoter dependent RNA synthesis-possible implications for its antiviral activity.

    PubMed

    Dukhovny, Anna; Shlomai, Amir; Sklan, Ella H

    2018-05-25

    Viperin is a multifunctional interferon-inducible broad-spectrum antiviral protein. Viperin belongs to the S-Adenosylmethionine (SAM) superfamily of enzymes known to catalyze a wide variety of radical-mediated reactions. However, the exact mechanism by which viperin exerts its functions is still unclear. Interestingly, for many RNA viruses viperin was shown to inhibit viral RNA accumulation by interacting with different viral non-structural proteins. Here, we show that viperin inhibits RNA synthesis by bacteriophage T7 polymerase in mammalian cells. This inhibition is specific and occurs at the RNA level. Viperin expression significantly reduced T7-mediated cytoplasmic RNA levels. The data showing that viperin inhibits the bacteriophage T7 polymerase supports the conservation of viperin's antiviral activity between species. These results highlight the possibility that viperin might utilize a broader mechanism of inhibition. Accordingly, our results suggest a novel mechanism involving polymerase inhibition and provides a tractable system for future mechanistic studies of viperin.

  11. A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice.

    PubMed

    Yamaji, Naoki; Huang, Chao Feng; Nagao, Sakiko; Yano, Masahiro; Sato, Yutaka; Nagamura, Yoshiaki; Ma, Jian Feng

    2009-10-01

    Aluminum (Al) toxicity is the major limiting factor of crop production on acid soils, but some plant species have evolved ways of detoxifying Al. Here, we report a C2H2-type zinc finger transcription factor ART1 (for Al resistance transcription factor 1), which specifically regulates the expression of genes related to Al tolerance in rice (Oryza sativa). ART1 is constitutively expressed in the root, and the expression level is not affected by Al treatment. ART1 is localized in the nucleus of all root cells. A yeast one-hybrid assay showed that ART1 has a transcriptional activation potential and interacts with the promoter region of STAR1, an important factor in rice Al tolerance. Microarray analysis revealed 31 downstream transcripts regulated by ART1, including STAR1 and 2 and a couple of homologs of Al tolerance genes in other plants. Some of these genes were implicated in both internal and external detoxification of Al at different cellular levels. Our findings shed light on comprehensively understanding how plants detoxify aluminum to survive in an acidic environment.

  12. Analysis of an artificial zinc finger epigenetic modulator: widespread binding but limited regulation

    PubMed Central

    Grimmer, Matthew R.; Stolzenburg, Sabine; Ford, Ethan; Lister, Ryan; Blancafort, Pilar; Farnham, Peggy J.

    2014-01-01

    Artificial transcription factors (ATFs) and genomic nucleases based on a DNA binding platform consisting of multiple zinc finger domains are currently being developed for clinical applications. However, no genome-wide investigations into their binding specificity have been performed. We have created six-finger ATFs to target two different 18 nt regions of the human SOX2 promoter; each ATF is constructed such that it contains or lacks a super KRAB domain (SKD) that interacts with a complex containing repressive histone methyltransferases. ChIP-seq analysis of the effector-free ATFs in MCF7 breast cancer cells identified thousands of binding sites, mostly in promoter regions; the addition of an SKD domain increased the number of binding sites ∼5-fold, with a majority of the new sites located outside of promoters. De novo motif analyses suggest that the lack of binding specificity is due to subsets of the finger domains being used for genomic interactions. Although the ATFs display widespread binding, few genes showed expression differences; genes repressed by the ATF-SKD have stronger binding sites and are more enriched for a 12 nt motif. Interestingly, epigenetic analyses indicate that the transcriptional repression caused by the ATF-SKD is not due to changes in active histone modifications. PMID:25122745

  13. Zinc-finger Nuclease-induced Gene Repair With Oligodeoxynucleotides: Wanted and Unwanted Target Locus Modifications

    PubMed Central

    Radecke, Sarah; Radecke, Frank; Cathomen, Toni; Schwarz, Klaus

    2010-01-01

    Correcting a mutated gene directly at its endogenous locus represents an alternative to gene therapy protocols based on viral vectors with their risk of insertional mutagenesis. When solely a single-stranded oligodeoxynucleotide (ssODN) is used as a repair matrix, the efficiency of the targeted gene correction is low. However, as shown with the homing endonuclease I-SceI, ssODN-mediated gene correction can be enhanced by concomitantly inducing a DNA double-strand break (DSB) close to the mutation. Because I-SceI is hardly adjustable to cut at any desired position in the human genome, here, customizable zinc-finger nucleases (ZFNs) were used to stimulate ssODN-mediated repair of a mutated single-copy reporter locus stably integrated into human embryonic kidney-293 cells. The ZFNs induced faithful gene repair at a frequency of 0.16%. Six times more often, ZFN-induced DSBs were found to be modified by unfaithful addition of ssODN between the termini and about 60 times more often by nonhomologous end joining-related deletions and insertions. Additionally, ZFN off-target activity based on binding mismatch sites at the locus of interest was detected in in vitro cleavage assays and also in chromosomal DNA isolated from treated cells. Therefore, the specificity of ZFN-induced ssODN-mediated gene repair needs to be improved, especially regarding clinical applications. PMID:20068556

  14. Pokeweed Antiviral Protein, a Ribosome Inactivating Protein: Activity, Inhibition and Prospects

    PubMed Central

    Domashevskiy, Artem V.; Goss, Dixie J.

    2015-01-01

    Viruses employ an array of elaborate strategies to overcome plant defense mechanisms and must adapt to the requirements of the host translational systems. Pokeweed antiviral protein (PAP) from Phytolacca americana is a ribosome inactivating protein (RIP) and is an RNA N-glycosidase that removes specific purine residues from the sarcin/ricin (S/R) loop of large rRNA, arresting protein synthesis at the translocation step. PAP is thought to play an important role in the plant’s defense mechanism against foreign pathogens. This review focuses on the structure, function, and the relationship of PAP to other RIPs, discusses molecular aspects of PAP antiviral activity, the novel inhibition of this plant toxin by a virus counteraction—a peptide linked to the viral genome (VPg), and possible applications of RIP-conjugated immunotoxins in cancer therapeutics. PMID:25635465

  15. Analysis of illegitimate genomic integration mediated by zinc-finger nucleases: implications for specificity of targeted gene correction

    PubMed Central

    2010-01-01

    Background Formation of site specific genomic double strand breaks (DSBs), induced by the expression of a pair of engineered zinc-finger nucleases (ZFNs), dramatically increases the rates of homologous recombination (HR) between a specific genomic target and a donor plasmid. However, for the safe use of ZFN induced HR in practical applications, possible adverse effects of the technology such as cytotoxicity and genotoxicity need to be well understood. In this work, off-target activity of a pair of ZFNs has been examined by measuring the ratio between HR and illegitimate genomic integration in cells that are growing exponentially, and in cells that have been arrested in the G2/M phase. Results A reporter cell line that contained consensus ZFN binding sites in an enhanced green fluorescent protein (EGFP) reporter gene was used to measure ratios between HR and non-homologous integration of a plasmid template. Both in human cells (HEK 293) containing the consensus ZFN binding sites and in cells lacking the ZFN binding sites, a 3.5 fold increase in the level of illegitimate integration was observed upon ZFN expression. Since the reporter gene containing the consensus ZFN target sites was found to be intact in cells where illegitimate integration had occurred, increased rates of illegitimate integration most likely resulted from the formation of off-target genomic DSBs. Additionally, in a fraction of the ZFN treated cells the co-occurrence of both specific HR and illegitimate integration was observed. As a mean to minimize unspecific effects, cell cycle manipulation of the target cells by induction of a transient G2/M cell cycle arrest was shown to stimulate the activity of HR while having little effect on the levels of illegitimate integration, thus resulting in a nearly eight fold increase in the ratio between the two processes. Conclusions The demonstration that ZFN expression, in addition to stimulating specific gene targeting by HR, leads to increased rates of

  16. The Phytochrome-Interacting VASCULAR PLANT ONE–ZINC FINGER1 and VOZ2 Redundantly Regulate Flowering in Arabidopsis[C][W

    PubMed Central

    Yasui, Yukiko; Mukougawa, Keiko; Uemoto, Mitsuhiro; Yokofuji, Akira; Suzuri, Ryota; Nishitani, Aiko; Kohchi, Takayuki

    2012-01-01

    The timing of the transition to flowering in plants is regulated by various environmental factors, including daylength and light quality. Although the red/far-red photoreceptor phytochrome B (phyB) represses flowering by indirectly regulating the expression of a key flowering regulator, FLOWERING LOCUS T (FT), the mechanism of phyB signaling for flowering is largely unknown. Here, we identified two Arabidopsis thaliana genes, VASCULAR PLANT ONE–ZINC FINGER1 (VOZ1) and VOZ2, which are highly conserved throughout land plant evolution, as phyB-interacting factors. voz1 voz2 double mutants, but neither single mutant, showed a late-flowering phenotype under long-day conditions, which indicated that VOZ1 and VOZ2 redundantly promote flowering. voz1 voz2 mutations suppressed the early-flowering phenotype of the phyB mutant, and FT expression was repressed in the voz1 voz2 mutant. Green fluorescent protein–VOZ2 signal was observed in the cytoplasm, and interaction of VOZ proteins with phyB was indicated to occur in the cytoplasm under far-red light. However, VOZ2 protein modified to localize constitutively in the nucleus promoted flowering. In addition, the stability of VOZ2 proteins in the nucleus was modulated by light quality in a phytochrome-dependent manner. We propose that partial translocation of VOZ proteins from the cytoplasm to the nucleus mediates the initial step of the phyB signal transduction pathway that regulates flowering. PMID:22904146

  17. Correction of Dystrophin Expression in Cells From Duchenne Muscular Dystrophy Patients Through Genomic Excision of Exon 51 by Zinc Finger Nucleases

    PubMed Central

    Ousterout, David G; Kabadi, Ami M; Thakore, Pratiksha I; Perez-Pinera, Pablo; Brown, Matthew T; Majoros, William H; Reddy, Timothy E; Gersbach, Charles A

    2015-01-01

    Duchenne muscular dystrophy (DMD) is caused by genetic mutations that result in the absence of dystrophin protein expression. Oligonucleotide-induced exon skipping can restore the dystrophin reading frame and protein production. However, this requires continuous drug administration and may not generate complete skipping of the targeted exon. In this study, we apply genome editing with zinc finger nucleases (ZFNs) to permanently remove essential splicing sequences in exon 51 of the dystrophin gene and thereby exclude exon 51 from the resulting dystrophin transcript. This approach can restore the dystrophin reading frame in ~13% of DMD patient mutations. Transfection of two ZFNs targeted to sites flanking the exon 51 splice acceptor into DMD patient myoblasts led to deletion of this genomic sequence. A clonal population was isolated with this deletion and following differentiation we confirmed loss of exon 51 from the dystrophin mRNA transcript and restoration of dystrophin protein expression. Furthermore, transplantation of corrected cells into immunodeficient mice resulted in human dystrophin expression localized to the sarcolemmal membrane. Finally, we quantified ZFN toxicity in human cells and mutagenesis at predicted off-target sites. This study demonstrates a powerful method to restore the dystrophin reading frame and protein expression by permanently deleting exons. PMID:25492562

  18. Cancer translocations in human cells induced by zinc finger and TALE nucleases

    PubMed Central

    Piganeau, Marion; Ghezraoui, Hind; De Cian, Anne; Guittat, Lionel; Tomishima, Mark; Perrouault, Loic; René, Oliver; Katibah, George E.; Zhang, Lei; Holmes, Michael C.; Doyon, Yannick; Concordet, Jean-Paul; Giovannangeli, Carine; Jasin, Maria; Brunet, Erika

    2013-01-01

    Chromosomal translocations are signatures of numerous cancers and lead to expression of fusion genes that act as oncogenes. The wealth of genomic aberrations found in cancer, however, makes it challenging to assign a specific phenotypic change to a specific aberration. In this study, we set out to use genome editing with zinc finger (ZFN) and transcription activator-like effector (TALEN) nucleases to engineer, de novo, translocation-associated oncogenes at cognate endogenous loci in human cells. Using ZFNs and TALENs designed to cut precisely at relevant translocation breakpoints, we induced cancer-relevant t(11;22)(q24;q12) and t(2;5)(p23;q35) translocations found in Ewing sarcoma and anaplastic large cell lymphoma (ALCL), respectively. We recovered both translocations with high efficiency, resulting in the expression of the EWSR1–FLI1 and NPM1–ALK fusions. Breakpoint junctions recovered after ZFN cleavage in human embryonic stem (ES) cell–derived mesenchymal precursor cells fully recapitulated the genomic characteristics found in tumor cells from Ewing sarcoma patients. This approach with tailored nucleases demonstrates that expression of fusion genes found in cancer cells can be induced from the native promoter, allowing interrogation of both the underlying mechanisms and oncogenic consequences of tumor-related translocations in human cells. With an analogous strategy, the ALCL translocation was reverted in a patient cell line to restore the integrity of the two participating chromosomes, further expanding the repertoire of genomic rearrangements that can be engineered by tailored nucleases. PMID:23568838

  19. Generation and genetic engineering of human induced pluripotent stem cells using designed zinc finger nucleases.

    PubMed

    Ramalingam, Sivaprakash; London, Viktoriya; Kandavelou, Karthikeyan; Cebotaru, Liudmila; Guggino, William; Civin, Curt; Chandrasegaran, Srinivasan

    2013-02-15

    Zinc finger nucleases (ZFNs) have become powerful tools to deliver a targeted double-strand break at a pre-determined chromosomal locus in order to insert an exogenous transgene by homology-directed repair. ZFN-mediated gene targeting was used to generate both single-allele chemokine (C-C motif) receptor 5 (CCR5)-modified human induced pluripotent stem cells (hiPSCs) and biallele CCR5-modified hiPSCs from human lung fibroblasts (IMR90 cells) and human primary cord blood mononuclear cells (CBMNCs) by site-specific insertion of stem cell transcription factor genes flanked by LoxP sites into the endogenous CCR5 locus. The Oct4 and Sox2 reprogramming factors, in combination with valproic acid, induced reprogramming of human lung fibroblasts to form CCR5-modified hiPSCs, while 5 factors, Oct4/Sox2/Klf4/Lin28/Nanog, induced reprogramming of CBMNCs. Subsequent Cre recombinase treatment of the CCR5-modified IMR90 hiPSCs resulted in the removal of the Oct4 and Sox2 transgenes. Further genetic engineering of the single-allele CCR5-modified IMR90 hiPSCs was achieved by site-specific addition of the large CFTR transcription unit to the remaining CCR5 wild-type allele, using CCR5-specific ZFNs and a donor construct containing tdTomato and CFTR transgenes flanked by CCR5 homology arms. CFTR was expressed efficiently from the endogenous CCR5 locus of the CCR5-modified tdTomato/CFTR hiPSCs. These results suggest that it might be feasible to use ZFN-evoked strategies to (1) generate precisely targeted genetically well-defined patient-specific hiPSCs, and (2) then to reshape their function by targeted addition and expression of therapeutic genes from the CCR5 chromosomal locus for autologous cell-based transgene-correction therapy to treat various recessive monogenic human diseases in the future.

  20. Regulation of nitrogen metabolism by GATA zinc finger transcription factors in Yarrowia lipolytica

    DOE PAGES

    Pomraning, Kyle R.; Bredeweg, Erin L.; Baker, Scott E.; ...

    2017-02-15

    Here, fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeast Yarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors on lipid metabolism in Y. lipolytica. Deletion of the GATA transcription factor genes gzf3 and gzf2 resulted in nitrogen source-specific growth defects and greatermore » accumulation of lipids when the cells were growing on a simple nitrogen source. Deletion of gzf1, which is most similar to activators of genes repressed by nitrogen catabolite repression in filamentous ascomycetes, did not affect growth on the nitrogen sources tested. We examined gene expression of wild-type and GATA transcription factor mutants on simple and complex nitrogen sources and found that expression of enzymes involved in malate metabolism, beta-oxidation, and ammonia utilization are strongly upregulated on a simple nitrogen source. Deletion of gzf3 results in overexpression of genes with GATAA sites in their promoters, suggesting that it acts as a repressor, while gzf2 is required for expression of ammonia utilization genes but does not grossly affect the transcription level of genes predicted to be controlled by nitrogen catabolite repression. Both GATA transcription factor mutants exhibit decreased expression of genes controlled by carbon catabolite repression via the repressor mig1, including genes for beta-oxidation, highlighting the complex interplay between regulation of carbon, nitrogen, and lipid metabolism.« less

  1. Regulation of nitrogen metabolism by GATA zinc finger transcription factors in Yarrowia lipolytica

    SciT

    Pomraning, Kyle R.; Bredeweg, Erin L.; Baker, Scott E.

    Here, fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeast Yarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors on lipid metabolism in Y. lipolytica. Deletion of the GATA transcription factor genes gzf3 and gzf2 resulted in nitrogen source-specific growth defects and greatermore » accumulation of lipids when the cells were growing on a simple nitrogen source. Deletion of gzf1, which is most similar to activators of genes repressed by nitrogen catabolite repression in filamentous ascomycetes, did not affect growth on the nitrogen sources tested. We examined gene expression of wild-type and GATA transcription factor mutants on simple and complex nitrogen sources and found that expression of enzymes involved in malate metabolism, beta-oxidation, and ammonia utilization are strongly upregulated on a simple nitrogen source. Deletion of gzf3 results in overexpression of genes with GATAA sites in their promoters, suggesting that it acts as a repressor, while gzf2 is required for expression of ammonia utilization genes but does not grossly affect the transcription level of genes predicted to be controlled by nitrogen catabolite repression. Both GATA transcription factor mutants exhibit decreased expression of genes controlled by carbon catabolite repression via the repressor mig1, including genes for beta-oxidation, highlighting the complex interplay between regulation of carbon, nitrogen, and lipid metabolism.« less

  2. Targeting Serous Epithelial Ovarian Cancer with Designer Zinc Finger Transcription Factors*

    PubMed Central

    Lara, Haydee; Wang, Yuhua; Beltran, Adriana S.; Juárez-Moreno, Karla; Yuan, Xinni; Kato, Sumie; Leisewitz, Andrea V.; Cuello Fredes, Mauricio; Licea, Alexei F.; Connolly, Denise C.; Huang, Leaf; Blancafort, Pilar

    2012-01-01

    Ovarian cancer is the leading cause of death among gynecological malignancies. It is detected at late stages when the disease is spread through the abdominal cavity in a condition known as peritoneal carcinomatosis. Thus, there is an urgent need to develop novel therapeutic interventions to target advanced stages of ovarian cancer. Mammary serine protease inhibitor (Maspin) represents an important metastasis suppressor initially identified in breast cancer. Herein we have generated a sequence-specific zinc finger artificial transcription factor (ATF) to up-regulate the Maspin promoter in aggressive ovarian cancer cell lines and to interrogate the therapeutic potential of Maspin in ovarian cancer. We found that although Maspin was expressed in some primary ovarian tumors, the promoter was epigenetically silenced in cell lines derived from ascites. Transduction of the ATF in MOVCAR 5009 cells derived from ascitic cultures of a TgMISIIR-TAg mouse model of ovarian cancer resulted in tumor cell growth inhibition, impaired cell invasion, and severe disruption of actin cytoskeleton. Systemic delivery of lipid-protamine-RNA nanoparticles encapsulating a chemically modified ATF mRNA resulted in inhibition of ovarian cancer cell growth in nude mice accompanied with Maspin re-expression in the treated tumors. Gene expression microarrays of ATF-transduced cells revealed an exceptional specificity for the Maspin promoter. These analyses identified novel targets co-regulated with Maspin in human short-term cultures derived from ascites, such as TSPAN12, that could mediate the anti-metastatic phenotype of the ATF. Our work outlined the first targeted, non-viral delivery of ATFs into tumors with potential clinical applications for metastatic ovarian cancers. PMID:22782891

  3. Myostatin knockout using zinc-finger nucleases promotes proliferation of ovine primary satellite cells in vitro.

    PubMed

    Salabi, Fatemeh; Nazari, Mahmood; Chen, Qing; Nimal, Jonathan; Tong, Jianming; Cao, Wen G

    2014-12-20

    Myostatin (MSTN) has previously been shown to negatively regulate the proliferation and differentiation of skeletal muscle cells. Satellite cells are quiescent muscle stem cells that promote muscle growth and repair. Because the mechanism of MSTN in the biology of satellite cells is not well understood, this study was conducted to generate MSTN mono-allelic knockout satellite cells using the zinc-finger nuclease mRNA (MSTN-KO ZFN mRNA) and also to investigate the effect of this disruption on the proliferation and differentiation of sheep primary satellite cells (PSCs). Nineteen biallelic and four mono-allelic knockout cell clones were obtained after sequence analysis. The homologous mono-allelic knockout cells with 5-bp deletion were used to further evaluations. The results demonstrated that mono-allelic knockout of MSTN gene leads to translation inhibition. Real-time quantitative PCR results indicated that knockout of MSTN contributed to an increase in CDK2 and follistatin and a decrease in p21 at the transcript level in proliferation conditions. Moreover, MSTN knockout significantly increased the proliferation of mutant clones (P < 0.01). Consistent with the observed increase in CDK2 and decrease in p21 in cells lacking MSTN, cell cycle analysis showed that MSTN negatively regulated the G1 to S progression. In addition, knockout of myostatin resulted in a remarkable increase in MyoD and MyoG expression under differentiating conditions but had no effect on Myf5 expression. These results expanded our understanding of the regulation mechanism of MSTN. Furthermore, the MSTN-KO ZFN mRNA system in PSCs could be used to generate transgenic sheep in the future.

  4. The zinc fingers of YY1 bind single-stranded RNA with low sequence specificity.

    PubMed

    Wai, Dorothy C C; Shihab, Manar; Low, Jason K K; Mackay, Joel P

    2016-11-02

    Classical zinc fingers (ZFs) are traditionally considered to act as sequence-specific DNA-binding domains. More recently, classical ZFs have been recognised as potential RNA-binding modules, raising the intriguing possibility that classical-ZF transcription factors are involved in post-transcriptional gene regulation via direct RNA binding. To date, however, only one classical ZF-RNA complex, that involving TFIIIA, has been structurally characterised. Yin Yang-1 (YY1) is a multi-functional transcription factor involved in many regulatory processes, and binds DNA via four classical ZFs. Recent evidence suggests that YY1 also interacts with RNA, but the molecular nature of the interaction remains unknown. In the present work, we directly assess the ability of YY1 to bind RNA using in vitro assays. Systematic Evolution of Ligands by EXponential enrichment (SELEX) was used to identify preferred RNA sequences bound by the YY1 ZFs from a randomised library over multiple rounds of selection. However, a strong motif was not consistently recovered, suggesting that the RNA sequence selectivity of these domains is modest. YY1 ZF residues involved in binding to single-stranded RNA were identified by NMR spectroscopy and found to be largely distinct from the set of residues involved in DNA binding, suggesting that interactions between YY1 and ssRNA constitute a separate mode of nucleic acid binding. Our data are consistent with recent reports that YY1 can bind to RNA in a low-specificity, yet physiologically relevant manner. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Targeted mutagenesis using zinc-finger nucleases in perennial fruit trees.

    PubMed

    Peer, Reut; Rivlin, Gil; Golobovitch, Sara; Lapidot, Moshe; Gal-On, Amit; Vainstein, Alexander; Tzfira, Tzvi; Flaishman, Moshe A

    2015-04-01

    Targeting a gene in apple or fig with ZFN, introduced by transient or stable transformation, should allow genome editing with high precision to advance basic science and breeding programs. Genome editing is a powerful tool for precise gene manipulation in any organism; it has recently been shown to be of great value for annual plants. Classical breeding strategies using conventional cross-breeding and induced mutations have played an important role in the development of new cultivars in fruit trees. However, fruit-tree breeding is a lengthy process with many limitations. Efficient and widely applied methods for targeted modification of fruit-tree genomes are not yet available. In this study, transgenic apple and fig lines carrying a zinc-finger nuclease (ZFNs) under the control of a heat-shock promoter were developed. Editing of a mutated uidA gene, following expression of the ZFN genes by heat shock, was confirmed by GUS staining and PCR product sequencing. Finally, whole plants with a repaired uidA gene due to deletion of a stop codon were regenerated. The ZFN-mediated gene modifications were stable and passed onto regenerants from ZFN-treated tissue cultures. This is the first demonstration of efficient and precise genome editing, using ZFN at a specific genomic locus, in two different perennial fruit trees-apple and fig. We conclude that targeting a gene in apple or fig with a ZFN introduced by transient or stable transformation should allow knockout of a gene of interest. Using this technology for genome editing allows for marker gene-independent and antibiotic selection-free genome engineering with high precision in fruit trees to advance basic science as well as nontransgenic breeding programs.

  6. X-ray Absorption Spectroscopy Combined with Time-Dependent Density Functional Theory Elucidates Differential Substitution Pathways of Au(I) and Au(III) with Zinc Fingers.

    PubMed

    Abbehausen, Camilla; de Paiva, Raphael Enoque Ferraz; Bjornsson, Ragnar; Gomes, Saulo Quintana; Du, Zhifeng; Corbi, Pedro Paulo; Lima, Frederico Alves; Farrell, Nicholas

    2018-01-02

    A combination of two elements' (Au, Zn) X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TD-DFT) allowed the elucidation of differential substitution pathways of Au(I) and Au(III) compounds reacting with biologically relevant zinc fingers (ZnFs). Gold L 3 -edge XAS probed the interaction of gold and the C-terminal Cys 2 HisCys finger of the HIV-1 nucleocapsid protein NCp7, and the Cys 2 His 2 human transcription factor Sp1. The use of model compounds helped assign oxidation states and the identity of the gold-bound ligands. The computational studies accurately reproduced the experimental XAS spectra and allowed the proposition of structural models for the interaction products at early time points. The direct electrophilic attack on the ZnF by the highly thiophilic Au(I) resulted in a linear P-Au-Cys coordination sphere after zinc ejection whereas for the Sp1, loss of PEt 3 results in linear Cys-Au-Cys or Cys-Au-His arrangements. Reactions with Au(III) compounds, on the other hand, showed multiple binding modes. Prompt reaction between [AuCl(dien)] 2+ and [Au(dien)(DMAP)] 3+ with Sp1 showed a partially reduced Au center and a final linear His-Au-His coordination. Differently, in the presence of NCp7, [AuCl(dien)] 2+ readily reduces to Au(I) and changes from square-planar to linear geometry with Cys-Au-His coordination, while [Au(dien)(DMAP)] 3+ initially maintains its Au(III) oxidation state and square-planar geometry and the same first coordination sphere. The latter is the first observation of a "noncovalent" interaction of a Au(III) complex with a zinc finger and confirms early hypotheses that stabilization of Au(III) occurs with N-donor ligands. Modification of the zinc coordination sphere, suggesting full or partial zinc ejection, is observed in all cases, and for [Au(dien)(DMAP)] 3+ this represents a novel mechanism for nucleocapsid inactivation. The combination of XAS and TD-DFT presents the first direct experimental

  7. Regulation of Nitrogen Metabolism by GATA Zinc Finger Transcription Factors in Yarrowia lipolytica

    SciT

    Pomraning, Kyle R.; Bredeweg, Erin L.; Baker, Scott E.

    ABSTRACT Fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeastYarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors on lipid metabolism inY. lipolytica. Deletion of the GATA transcription factor genesgzf3andgzf2resulted in nitrogen source-specific growth defects and greater accumulation of lipids when the cells weremore » growing on a simple nitrogen source. Deletion ofgzf1, which is most similar to activators of genes repressed by nitrogen catabolite repression in filamentous ascomycetes, did not affect growth on the nitrogen sources tested. We examined gene expression of wild-type and GATA transcription factor mutants on simple and complex nitrogen sources and found that expression of enzymes involved in malate metabolism, beta-oxidation, and ammonia utilization are strongly upregulated on a simple nitrogen source. Deletion ofgzf3results in overexpression of genes with GATAA sites in their promoters, suggesting that it acts as a repressor, whilegzf2is required for expression of ammonia utilization genes but does not grossly affect the transcription level of genes predicted to be controlled by nitrogen catabolite repression. Both GATA transcription factor mutants exhibit decreased expression of genes controlled by carbon catabolite repression via the repressormig1, including genes for beta-oxidation, highlighting the complex interplay between regulation of carbon, nitrogen, and lipid metabolism. IMPORTANCENitrogen source is commonly used to control lipid production in industrial fungi. Here we identified regulators of nitrogen catabolite repression in the oleaginous yeast

  8. Zinc Finger Nuclease: A New Approach to Overcome Beta-Lactam Antibiotic Resistance

    PubMed Central

    Shahbazi Dastjerdeh, Mansoureh; Kouhpayeh, Shirin; Sabzehei, Faezeh; Khanahmad, Hossein; Salehi, Mansour; Mohammadi, Zahra; Shariati, Laleh; Hejazi, Zahra; Rabiei, Parisa; Manian, Mostafa

    2016-01-01

    Background: The evolution of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) has been accelerated recently by the indiscriminate application of antibiotics. Antibiotic resistance has challenged the success of medical interventions and therefore is considered a hazardous threat to human health. Objectives: The present study aimed to describe the use of zinc finger nuclease (ZFN) technology to target and disrupt a plasmid-encoded β-lactamase, which prevents horizontal gene transfer-mediated evolution of ARBs. Materials and Methods: An engineered ZFN was designed to target a specific sequence in the ampicillin resistance gene (ampR) of the pTZ57R plasmid. The Escherichia coli bacteria already contained the pZFN kanamycin-resistant (kanaR) plasmid as the case or the pP15A, kanaR empty vector as the control, were transformed with the pTZ57R; the ability of the designed ZFN to disrupt the β-lactamase gene was evaluated with the subsequent disturbed ability of the bacteria to grow on ampicillin (amp) and ampicillin-kanamycin (amp-kana)-containing media. The effect of mild hypothermia on the ZFN gene targeting efficiency was also evaluated. Results: The growth of bacteria in the case group on the amp and amp-kana-containing media was significantly lower compared with the control group at 37°C (P < 0.001). Despite being more efficient in hypothermic conditions at 30°C (P < 0.001), there were no significant associations between the incubation temperature and the ZFN gene targeting efficiency. Conclusions: Our findings revealed that the ZFN technology could be employed to overcome ampicillin resistance by the targeted disruption of the ampicillin resistance gene, which leads to inactivation of β-lactam synthesis. Therefore, ZFN technology could be engaged to decrease the antibiotic resistance issue with the construction of a ZFN archive against different ARGs. To tackle the resistance issue at the environmental level, recombinant phages

  9. Zinc finger-inspired nanohydrogels with glutathione/pH triggered degradation based on coordination substitution for highly efficient delivery of anti-cancer drugs.

    PubMed

    Zhang, Zihao; Wan, Jiaxun; Sun, Luyan; Li, Yongjing; Guo, Jia; Wang, Changchun

    2016-03-10

    Biodegradable materials used for drug delivery are of great demand due to their ability to degrade into low molecular weight species and further excrete from the body by metabolism. Herein, we report a new kind of zinc(II) crosslinked poly(methacrylic acid) nanohydrogels (ZCLNs) inspired by zinc finger proteins with dual stimuli-triggered degradation (glutathione and pH) for the first time. Compared with the disulfide bond crosslinked nanohydrogels, this new kind of ZCLNs is beneficial to the degradation of a wide range of cells, including normal cells. Ex vivo fluorescence images showed that the DOX-loaded folate-PEG conjugated zinc(II)-crosslinked polymeric nanohydrogels (FPZCLNs-15) preferentially accumulated in tumor tissue and the accumulation in normal tissues was much less compared with DOX-loaded PZCLNs-15 (non-targeted nanohydrogels) and free DOX, the FPZCLNs-15 (targeting system) delivered DOX to the tumor site with approximately 3.6- and 1.6-fold higher than free DOX and PZCLNs-15, respectively. Meanwhile, the PZCLNs-15 and FPZCLNs-15 reduced the concentration of DOX in the heart by 3.2- and 5.0-fold respectively, as compared to the free DOX. Moreover, a superior tumor growth inhibition and negligible damage to normal organs like the heart and kidney, which is reported to be vulnerable to DOX-associated side effects, are further demonstrated. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A Zinc-Finger-Family Transcription Factor, AbVf19, Is Required for the Induction of a Gene Subset Important for Virulence in Alternaria brassicicola

    SciT

    Srivastava, Akhil; Ohm, Robin A.; Oxiles, Lindsay

    2011-10-26

    Alternaria brassicicola is a successful saprophyte and necrotrophic plant pathogen with a broad host range within the family Brassicaceae. It produces secondary metabolites that marginally affect virulence. Cell wall degrading enzymes (CDWE) have been considered important for pathogenesis but none of them individually have been identified as significant virulence factors in A. brassicicola. In this study, knockout mutants of a gene, AbVf19, were created and produced considerably smaller lesions than the wild type on inoculated host plants. The presence of tandem zinc-finger domains in the predicted amino acid sequence and nuclear localization of AbVf19- reporter protein suggested that it wasmore » a transcription factor. Gene expression comparisons using RNA-seq identified 74 genes being downregulated in the mutant during a late stage of infection. Among the 74 downregulated genes, 28 were putative CWDE genes. These were hydrolytic enzyme genes that composed a small fraction of genes within each family of cellulases, pectinases, cutinases, and proteinases. The mutants grew slower than the wild type on an axenic medium with pectin as a major carbon source. This study demonstrated the existence and the importance of a transcription factor that regulates a suite of genes that are important for decomposing and utilizing plant material during the late stage of plant infection.« less

  11. The novel 19q13 KRAB zinc-finger tumour suppressor ZNF382 is frequently methylated in oesophageal squamous cell carcinoma and antagonises Wnt/β-catenin signalling.

    PubMed

    Zhang, Chong; Xiang, Tingxiu; Li, Shuman; Ye, Lin; Feng, Yixiao; Pei, Lijiao; Li, Lili; Wang, Xiangyu; Sun, Ran; Tao, Qian; Ren, Guosheng

    2018-05-14

    Zinc finger proteins (ZFPs) are the largest transcription factor family in mammals. About one-third of ZFPs are Krüppel-associated box domain (KRAB)-ZFPs and involved in the regulation of cell differentiation/proliferation/apoptosis and neoplastic transformation. We recently identified ZNF382 as a novel KRAB-ZFP epigenetically inactivated in multiple cancers due to frequent promoter CpG methylation. However, its epigenetic alterations, biological functions/mechanism and clinical significance in oesophageal squamous cell carcinoma (ESCC) are still unknown. Here, we demonstrate that ZNF382 expression was suppressed in ESCC due to aberrant promoter methylation, but highly expressed in normal oesophagus tissues. ZNF382 promoter methylation is correlated with ESCC differentiation levels. Restoration of ZNF382 expression in silenced ESCC cells suppressed tumour cell proliferation and metastasis through inducing cell apoptosis. Importantly, ZNF382 suppressed Wnt/β-catenin signalling and downstream target gene expression, likely through binding directly to FZD1 and DVL2 promoters. In summary, our findings demonstrate that ZNF382 functions as a bona fide tumour suppressor inhibiting ESCC pathogenesis through inhibiting the Wnt/β-catenin signalling pathway.

  12. Dissecting the mechanism of histone deacetylase inhibitors to enhance the activity of zinc finger nucleases delivered by integrase-defective lentiviral vectors.

    PubMed

    Joglekar, Alok V; Stein, Libby; Ho, Michelle; Hoban, Megan D; Hollis, Roger P; Kohn, Donald B

    2014-07-01

    Integrase-defective lentiviral vectors (IDLVs) have been of limited success in the delivery of zinc finger nucleases (ZFNs) to human cells, due to low expression. A reason for reduced gene expression has been proposed to involve the epigenetic silencing of vector genomes, carried out primarily by histone deacetylases (HDACs). In this study, we tested valproic acid (VPA), a known HDAC inhibitor (HDACi), for its ability to increase transgene expression from IDLVs, especially in the context of ZFN delivery. Using ZFNs targeting the human adenosine deaminase (ADA) gene in K562 cells, we demonstrated that treatment with VPA enhanced ZFN expression by up to 3-fold, resulting in improved allelic disruption at the ADA locus. Furthermore, three other U.S. Food and Drug Administration-approved HDACis (vorinostat, givinostat, and trichostatin-A) exhibited a similar effect on the activity of ZFN-IDLVs in K562 cells. In primary human CD34(+) cells, VPA- and vorinostat-treated cells showed higher levels of expression of both green fluorescent protein (GFP) as well as ZFNs from IDLVs. A major mechanism for the effects of HDAC inhibitors on improving expression was from their modulation of the cell cycle, and the influence of heterochromatinization was determined to be a lesser contributing factor.

  13. Control of dissected leaf morphology by a Cys(2)His(2) zinc finger transcription factor in the model legume Medicago truncatula

    PubMed Central

    Yu, Jianbin; Ge, Liangfa; Wang, Hongliang; Berbel, Ana; Liu, Yu; Chen, Yuhui; Li, Guangming; Tadege, Million; Wen, Jiangqi; Cosson, Viviane; Mysore, Kirankumar S.; Ratet, Pascal; Madueño, Francisco; Bai, Guihua; Chen, Rujin

    2010-01-01

    Plant leaves are diverse in their morphology, reflecting to a large degree the plant diversity in the natural environment. How different leaf morphology is determined is not yet understood. The leguminous plant Medicago truncatula exhibits dissected leaves with three leaflets at the tip. We show that development of the trifoliate leaves is determined by the Cys(2)His(2) zinc finger transcription factor PALM1. Loss-of-function mutants of PALM1 develop dissected leaves with five leaflets clustered at the tip. We demonstrate that PALM1 binds a specific promoter sequence and down-regulates the expression of the M. truncatula LEAFY/UNIFOLIATA orthologue SINGLE LEAFLET1 (SGL1), encoding an indeterminacy factor necessary for leaflet initiation. Our data indicate that SGL1 is required for leaflet proliferation in the palm1 mutant. Interestingly, ectopic expression of PALM1 effectively suppresses the lobed leaf phenotype from overexpression of a class 1 KNOTTED1-like homeobox protein in Arabidopsis plants. Taken together, our results show that PALM1 acts as a determinacy factor, regulates the spatial-temporal expression of SGL1 during leaf morphogenesis and together with the LEAFY/UNIFOLIATA orthologue plays an important role in orchestrating the compound leaf morphology in M. truncatula. PMID:20498057

  14. Synergistic effects in the antiviral activity of the three Mx proteins from gilthead seabream (Sparus aurata).

    PubMed

    Fernández-Trujillo, M A; García-Rosado, E; Alonso, M C; Álvarez, M C; Béjar, J

    2015-11-15

    Due to their direct antiviral activity, Mx proteins play a main role in the response mediated by type I interferon against viral infections. The study on gilthead seabream Mx proteins is especially interesting, since this species is unusually resistant to viral diseases, being asymptomatic carrier of several viruses pathogenic to other fish species. Gilthead seabream has three Mx proteins (Mx1, Mx2 and Mx3) that, separately, display antiviral activity against a wide range of viruses, showing interesting differences in their antiviral specificities. In this work, the possible synergy between the three Mx isoforms has been studied using in vitro systems consisting of CHSE-214 cells stably expressing two or the three gilthead seabream Mx proteins. The antiviral activity of these Mx combinations has been tested against the Infectious Pancreatic Necrosis Virus (IPNV), the Viral Haemorrhagic Septicaemia Virus (VHSV), the European Sheatfish Virus (ESV) and the Lymphocystis Disease Virus (LCDV). A synergistic effect of the Mx proteins was only detected against ESV, no synergy was observed against LCDV, and a negative interference was detected against the two RNA viruses tested, IPNV and VHSV, as viral replication was higher in cells expressing certain Mx combinations than in cells expressing these proteins separately. These results suggest a functional interaction between gilthead seabream Mx isoforms, which results in a higher or lower antiviral activity depending on the virus tested, thus supporting the idea of complex virus-host interactions and finely tuned mechanisms controlling the antiviral activity of Mx proteins. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Promyelocytic leukemia zinc finger turns on the effector T cell program without requirement for agonist TCR signaling.

    PubMed

    Savage, Adam K; Constantinides, Michael G; Bendelac, Albert

    2011-05-15

    Thymocytes expressing the NKT cell semi-invariant αβ TCR are thought to undergo agonist interactions with CD1d ligands prior to expressing promyelocytic leukemia zinc finger (PLZF), a broad complex, tramtrack, bric-a-brac, poxvirus, and zinc finger transcription factor that directs acquisition of the effector program of these innate-like T cells. Whether PLZF can mediate this effector conversion independently of agonist signaling has not been investigated. We demonstrated that transgenic (Tg) expression of PLZF under the CD4 promoter induced the innate effector program in two different MHC class II-restricted TCR-Tg Rag1(-/-) models examined. In CD4 thymocytes expressing a fixed Tg TCR β-chain, the associated TCRα sequences in wild-type and PLZF-Tg mice overlapped extensively, further demonstrating that PLZF could induce the effector program in most CD4 T cells that would normally be selected as naive cells. In contrast, PLZF altered the negative selection of thymocytes expressing TCR β-chains reactive against several retroviral superantigens. Thus, PLZF is remarkable in that it is a transcription factor capable of inducing an effector program in the absence of T cell agonist interactions or cell division. Its expression may also enhance the survival of agonist-signaled thymocytes.

  16. ExpandplusCrystal Structures of Poly(ADP-ribose) Polymerase-1 (PARP-1) Zinc Fingers Bound to DNA

    SciT

    M Langelier; J Planck; S Roy

    2011-12-31

    Poly(ADP-ribose) polymerase-1 (PARP-1) has two homologous zinc finger domains, Zn1 and Zn2, that bind to a variety of DNA structures to stimulate poly(ADP-ribose) synthesis activity and to mediate PARP-1 interaction with chromatin. The structural basis for interaction with DNA is unknown, which limits our understanding of PARP-1 regulation and involvement in DNA repair and transcription. Here, we have determined crystal structures for the individual Zn1 and Zn2 domains in complex with a DNA double strand break, providing the first views of PARP-1 zinc fingers bound to DNA. The Zn1-DNA and Zn2-DNA structures establish a novel, bipartite mode of sequence-independent DNAmore » interaction that engages a continuous region of the phosphodiester backbone and the hydrophobic faces of exposed nucleotide bases. Biochemical and cell biological analysis indicate that the Zn1 and Zn2 domains perform distinct functions. The Zn2 domain exhibits high binding affinity to DNA compared with the Zn1 domain. However, the Zn1 domain is essential for DNA-dependent PARP-1 activity in vitro and in vivo, whereas the Zn2 domain is not strictly required. Structural differences between the Zn1-DNA and Zn2-DNA complexes, combined with mutational and structural analysis, indicate that a specialized region of the Zn1 domain is re-configured through the hydrophobic interaction with exposed nucleotide bases to initiate PARP-1 activation.« less

  17. [Research Progress on Antiviral Activity of Interferon-induced Transmembrane Proteins].

    PubMed

    Chen, Yongkun; Zhu, Wenfei; Shu, Yuelong

    2016-03-01

    Interferon-induced Transmembrane Proteins (IFITMs) were identified through small interference RNA (siRNA) screening method in 1980s. The antiviral properties of the IFITMs were firstly discovered in 1996. Recently, its antiviral effect and mechanism have become a research hotspot. Many studies have shown that IFITM can inhibit the replication of multiple pathogenic viruses, including influenza A virus (IAV), Human Immunodeficiency Virus (HIV-1), hepatitis C virus (HCV), Ebola virus (EBOV), West Nile virus and so on. IFITMs inhibit the replication of virus in the early stage of the viral life cycle, which occurred before the release of viral genomes into the cytosol. Recent studies indicate that IFITM proteins could block viral replication by mediate viral membrane fusion. However, the mechanism is still under investigation. Here we review the discovery and characterization of the IFITM proteins, elucidate their antiviral activities and the potential mechanisms.

  18. Zinc Finger Protein 451 Is a Novel Smad Corepressor in Transforming Growth Factor-β Signaling*

    PubMed Central

    Feng, Yili; Wu, Hongxing; Xu, Yongxian; Zhang, Zhengmao; Liu, Ting; Lin, Xia; Feng, Xin-Hua

    2014-01-01

    ZNF451 is a transcriptional cofactor localized to promyelocytic leukemia bodies. Here, we present evidence demonstrating that ZNF451 physically interacts with Smad3/4 and functionally inhibits TGF-β signaling. Increased expression of ZNF451 attenuates TGF-β-induced growth inhibitory and gene transcriptional responses, whereas depletion of ZNF451 enhances TGF-β responses. Mechanistically, ZNF451 blocks the ability of Smad3/4 to recruit p300 in response to TGF-β, which causes reduction of histone H3K9 acetylation on the promoters of TGF-β target genes. Taken together, ZNF451 acts as a transcriptional corepressor for Smad3/4 and negatively regulates TGF-β signaling. PMID:24324267

  19. Protein-Protein Interactions of Viroporins in Coronaviruses and Paramyxoviruses: New Targets for Antivirals?

    PubMed Central

    Torres, Jaume; Surya, Wahyu; Li, Yan; Liu, Ding Xiang

    2015-01-01

    Viroporins are members of a rapidly growing family of channel-forming small polypeptides found in viruses. The present review will be focused on recent structural and protein-protein interaction information involving two viroporins found in enveloped viruses that target the respiratory tract; (i) the envelope protein in coronaviruses and (ii) the small hydrophobic protein in paramyxoviruses. Deletion of these two viroporins leads to viral attenuation in vivo, whereas data from cell culture shows involvement in the regulation of stress and inflammation. The channel activity and structure of some representative members of these viroporins have been recently characterized in some detail. In addition, searches for protein-protein interactions using yeast-two hybrid techniques have shed light on possible functional roles for their exposed cytoplasmic domains. A deeper analysis of these interactions should not only provide a more complete overview of the multiple functions of these viroporins, but also suggest novel strategies that target protein-protein interactions as much needed antivirals. These should complement current efforts to block viroporin channel activity. PMID:26053927

  20. Structural analysis of the recognition of the negative regulator NmrA and DNA by the zinc finger from the GATA-type transcription factor AreA.

    PubMed

    Kotaka, Masayo; Johnson, Christopher; Lamb, Heather K; Hawkins, Alastair R; Ren, Jingshan; Stammers, David K

    2008-08-29

    Amongst the most common protein motifs in eukaryotes are zinc fingers (ZFs), which, although largely known as DNA binding modules, also can have additional important regulatory roles in forming protein:protein interactions. AreA is a transcriptional activator central to nitrogen metabolism in Aspergillus nidulans. AreA contains a GATA-type ZF that has a competing dual recognition function, binding either DNA or the negative regulator NmrA. We report the crystal structures of three AreA ZF-NmrA complexes including two with bound NAD(+) or NADP(+). The molecular recognition of AreA ZF-NmrA involves binding of the ZF to NmrA via hydrophobic and hydrogen bonding interactions through helices alpha1, alpha6 and alpha11. Comparison with an earlier NMR solution structure of AreA ZF-DNA complex by overlap of the AreA ZFs shows that parts of helices alpha6 and alpha11 of NmrA are positioned close to the GATA motif of the DNA, mimicking the major groove of DNA. The extensive overlap of DNA with NmrA explains their mutually exclusive binding to the AreA ZF. The presence of bound NAD(+)/NADP(+) in the NmrA-AreaA ZF complex, however, causes minimal structural changes. Thus, any regulatory effects on AreA function mediated by the binding of oxidised nicotinamide dinucleotides to NmrA in the NmrA-AreA ZF complex appear not to be modulated via protein conformational rearrangements.

  1. Inhibition of HIV replication by pokeweed antiviral protein targeted to CD4+ cells by monoclonal antibodies

    NASA Astrophysics Data System (ADS)

    Zarling, Joyce M.; Moran, Patricia A.; Haffar, Omar; Sias, Joan; Richman, Douglas D.; Spina, Celsa A.; Myers, Dorothea E.; Kuebelbeck, Virginia; Ledbetter, Jeffrey A.; Uckun, Fatih M.

    1990-09-01

    FUNCTIONAL impairment and selective depletion of CD4+ T cells, the hallmark of AIDS, are at least partly caused by human immunodeficiency virus (HIV-1) type 1 binding to the CD4 molecule and infecting CD4+ cells1,2. It may, therefore, be of therapeutic value to target an antiviral agent to CD4+ cells to prevent infection and to inhibit HIV-1 production in patients' CD4+ cells which contain proviral DNA3,4. We report here that HIV-1 replication in normal primary CD4+ T cells can be inhibited by pokeweed antiviral protein, a plant protein of relative molecular mass 30,000 (ref. 5), which inhibits replication of certain plant RNA viruses6-8, and of herpes simplex virus, poliovirus and influenza virus9-11. Targeting pokeweed antiviral protein to CD4+ T cells by conjugating it to monoclonal antibodies reactive with CDS, CD7 or CD4 expressed on CD4+ cells, increased its anti-HIV potency up to 1,000-fold. HIV-1 replication is inhibited at picomolar concentrations of conjugates of pokeweed antiviral protein and monoclonal antibodies, which do not inhibit proliferation of normal CD4+ T cells or CD4-dependent responses. These conjugates inhibit HIV-1 protein synthesis and also strongly inhibit HIV-1 production in activated CD4+ T cells from infected patients.

  2. Genomic Knockout of Endogenous Canine P-Glycoprotein in Wild-Type, Human P-Glycoprotein and Human BCRP Transfected MDCKII Cell Lines by Zinc Finger Nucleases.

    PubMed

    Gartzke, Dominik; Delzer, Jürgen; Laplanche, Loic; Uchida, Yasuo; Hoshi, Yutaro; Tachikawa, Masanori; Terasaki, Tetsuya; Sydor, Jens; Fricker, Gert

    2015-06-01

    To investigate whether it is possible to specifically suppress the expression and function of endogenous canine P-glycoprotein (cPgp) in Madin-Darby canine kidney type II cells (MDCKII) transfected with hPGP and breast cancer resistance protein (hBCRP) by zinc finger nuclease (ZFN) producing sequence specific DNA double strand breaks. Wild-type, hPGP-transfected, and hBCRP-transfected MDCKII cells were transfected with ZFN targeting for cPgp. Net efflux ratios (NER) of Pgp and Bcrp substrates were determined by dividing efflux ratios (basal-to-apical / apical-to-basal) in over-expressing cell monolayers by those in wild-type ones. From ZFN-transfected cells, cell populations (ko-cells) showing knockout of cPgp were selected based on genotyping by PCR. qRT-PCR analysis showed the significant knock-downs of cPgp and interestingly also cMrp2 expressions. Specific knock-downs of protein expression for cPgp were shown by western blotting and quantitative targeted absolute proteomics. Endogenous canine Bcrp proteins were not detected. For PGP-transfected cells, NERs of 5 Pgp substrates in ko-cells were significantly greater than those in parental cells not transfected with ZFN. Similar result was obtained for BCRP-transfected cells with a dual Pgp and Bcrp substrate. Specific efflux mediated by hPGP or hBCRP can be determined with MDCKII cells where cPgp has been knocked out by ZFN.

  3. Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein

    SciT

    Lee, Na-Rae; Shin, Han-Bo; Kim, Hye-In

    2013-07-19

    Highlights: •TRK-fused gene product (TFG) interacts with TRIM25 upon viral infection. •TFG negatively regulates RIG-I mediated antiviral signaling. •TFG depletion leads to enhanced viral replication. •TFG act downstream of MAVS. -- Abstract: RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediatedmore » IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways.« less

  4. Production of Mutated Porcine Embryos Using Zinc Finger Nucleases and a Reporter-based Cell Enrichment System.

    PubMed

    Koo, Ok Jae; Park, Sol Ji; Lee, Choongil; Kang, Jung Taek; Kim, Sujin; Moon, Joon Ho; Choi, Ji Yei; Kim, Hyojin; Jang, Goo; Kim, Jin-Soo; Kim, Seokjoong; Lee, Byeong-Chun

    2014-03-01

    To facilitate the construction of genetically-modified pigs, we produced cloned embryos derived from porcine fibroblasts transfected with a pair of engineered zinc finger nuclease (ZFN) plasmids to create targeted mutations and enriched using a reporter plasmid system. The reporter expresses RFP and eGFP simultaneously when ZFN-mediated site-specific mutations occur. Thus, double positive cells (RFP(+)/eGFP(+)) were selected and used for somatic cell nuclear transfer. Two types of reporter based enrichment systems were used in this study; the cloned embryos derived from cells enriched using a magnetic sorting-based system showed better developmental competence than did those derived from cells enriched by flow cytometry. Mutated sequences, such as insertions, deletions, or substitutions, together with the wild-type sequence, were found in the cloned porcine blastocysts. Therefore, genetic mutations can be achieved in cloned porcine embryos reconstructed with ZFN-treated cells that were enriched by a reporter-based system.

  5. Diversity of Prdm9 Zinc Finger Array in Wild Mice Unravels New Facets of the Evolutionary Turnover of this Coding Minisatellite

    PubMed Central

    Buard, Jérôme; Rivals, Eric; Dunoyer de Segonzac, Denis; Garres, Charlotte; Caminade, Pierre; de Massy, Bernard; Boursot, Pierre

    2014-01-01

    In humans and mice, meiotic recombination events cluster into narrow hotspots whose genomic positions are defined by the PRDM9 protein via its DNA binding domain constituted of an array of zinc fingers (ZnFs). High polymorphism and rapid divergence of the Prdm9 gene ZnF domain appear to involve positive selection at DNA-recognition amino-acid positions, but the nature of the underlying evolutionary pressures remains a puzzle. Here we explore the variability of the Prdm9 ZnF array in wild mice, and uncovered a high allelic diversity of both ZnF copy number and identity with the caracterization of 113 alleles. We analyze features of the diversity of ZnF identity which is mostly due to non-synonymous changes at codons −1, 3 and 6 of each ZnF, corresponding to amino-acids involved in DNA binding. Using methods adapted to the minisatellite structure of the ZnF array, we infer a phylogenetic tree of these alleles. We find the sister species Mus spicilegus and M. macedonicus as well as the three house mouse (Mus musculus) subspecies to be polyphyletic. However some sublineages have expanded independently in Mus musculus musculus and M. m. domesticus, the latter further showing phylogeographic substructure. Compared to random genomic regions and non-coding minisatellites, none of these patterns appears exceptional. In silico prediction of DNA binding sites for each allele, overlap of their alignments to the genome and relative coverage of the different families of interspersed repeated elements suggest a large diversity between PRDM9 variants with a potential for highly divergent distributions of recombination events in the genome with little correlation to evolutionary distance. By compiling PRDM9 ZnF protein sequences in Primates, Muridae and Equids, we find different diversity patterns among the three amino-acids most critical for the DNA-recognition function, suggesting different diversification timescales. PMID:24454780

  6. Effects of HAb18G/CD147 knockout on hepatocellular carcinoma cells in vitro using a novel zinc-finger nuclease-targeted gene knockout approach.

    PubMed

    Li, Hong-Wei; Yang, Xiang-Min; Tang, Juan; Wang, Shi-Jie; Chen, Zhi-Nan; Jiang, Jian-Li

    2015-03-01

    HAb18G/CD147 belongs to the immunoglobulin superfamily and predominantly functions as an inducer of matrix metalloproteinase secretion for tumor invasion and metastasis. This study was designed to investigate the effects of HAb18G/CD147 knockout on hepatocellular carcinoma cells using zinc-finger nuclease (ZFNs)-targeted gene knockout approach. The HCC cell line SMMC-7721 was used for ZFNs-targeted cleavage of the HAb18G/CD147 gene. RT-PCR and Western blot assays were used to detect HAb18G/CD147 expression. HAb18G phenotypic changes following HAb18G/CD147 knockout in SMMC-K7721 cells were assessed using tumor cell adhesion, invasion, migration and colony formation and flow cytometric assays. These data demonstrated that tumor cell adhesion, invasion, migration, and colony formation capabilities of SMMC-K7721 were significantly reduced compared to parental cells or SMMC-7721 with re-expression of HAb18G/CD147 protein transfected with HAb18G/CD147 cDNA. Moreover, knockout of HAb18G/CD147 expression also induced SMMC-K7721 cells to undergo apoptosis compared to SMMC-7721 and SMMC-R7721 (P < 0.01). Molecularly, protein expression of p53 was induced in these cells, but re-expression of HAb18G/CD147 reduced p53 levels in SMMC-R7721 cells, possibly through inhibition of the PI3K-Akt-MDM2 signaling pathway. The findings provide a novel insight into the mechanisms underlying HAb18G/CD147-induced progression of HCC cells.

  7. The CCCH-type zinc finger transcription factor Zc3h8 represses NF-κB-mediated inflammation in digestive organs in zebrafish.

    PubMed

    Zou, Qingliang; Gang, Kai; Yang, Qifen; Liu, Xiaolin; Tang, Xuemei; Lu, Huiqiang; He, Jianbo; Luo, Lingfei

    2018-06-05

    Degenerative diseases of organs lead to their impaired function. The cellular and molecular mechanisms underlying organ degeneration are therefore of great research and clinical interest but are currently incompletely characterized. Here, using a forward-genetic screen for genes regulating liver development and function in zebrafish, we identified a cq5 mutant that exhibited a liver-degeneration phenotype at 5 days post-fertilization, the developmental stage at which a functional liver develops. Positional cloning revealed that the liver degeneration was caused by a single point mutation in the gene zinc finger CCCH-type containing 8 (zc3h8), changing a highly conserved histidine to glutamine at position 353 of the Zc3h8 protein. The zc3h8 mutation-induced liver degeneration in the mutant was accompanied by reduced proliferation, increased apoptosis, and macrophage phagocytosis of hepatocytes. Transcriptional profile analyses revealed up-regulation and activation of both pro-inflammatory cytokines and the NF-κB signaling pathway in the zc3h8 mutant. Suppression of NF-κB signaling activity efficiently rescued the pro-inflammatory cytokine response as well as the inflammation-mediated liver degeneration phenotype of the mutant. Of note, the zc3h8 mutation induced degeneration of several other organs, including the gut and exocrine pancreas, indicating that Zc3h8 is a general repressor of inflammation in zebrafish. Collectively, our findings demonstrate that Zc3h8 maintains organ homeostasis by inhibiting the NF-κB-mediated inflammatory response in zebrafish and that Zc3h8 dysfunction causes degeneration of multiple organs, including the liver, gut, and pancreas. Copyright © 2018, The American Society for Biochemistry and Molecular Biology.

  8. Developmental and Wound-, Cold-, Desiccation-, Ultraviolet-B-Stress-Induced Modulations in the Expression of the Petunia Zinc Finger Transcription Factor Gene ZPT2-21

    PubMed Central

    van der Krol, Alexander R.; van Poecke, Remco M.P.; Vorst, Oscar F.J.; Voogt, Charlotte; van Leeuwen, Wessel; Borst-Vrensen, Tanja W.M.; Takatsuji, Hiroshi; van der Plas, Linus H.W.

    1999-01-01

    The ZPT2-2 gene belongs to the EPF gene family in petunia (Petunia hybrida), which encodes proteins with TFIIIA-type zinc-finger DNA-binding motifs. To elucidate a possible function for ZPT2-2, we analyzed its pattern of expression in relation to different developmental and physiological stress signals. The activity of the ZPT2-2 promoter was analyzed using a firefly luciferase (LUC) reporter gene, allowing for continuous measurements of transgene activity in planta. We show that ZPT2-2::LUC is active in all plant tissues, but is strongly modulated in cotyledons upon germination, in leaves in response to desiccation, cold treatment, wounding, or ultraviolet-B light, and in petal tissue in response to pollination of the stigma. Analysis of mRNA levels indicated that the modulations in ZPT2-2::LUC expression reflect modulations in endogenous ZPT2-2 gene expression. The change in ZPT2-2::LUC activity by cold treatment, wounding, desiccation, and ultraviolet-B light suggest that the phytohormones ethylene and jasmonic acid are involved in regulating the expression of ZPT2-2. Although up-regulation of expression of ZPT2-2 can be blocked by inhibitors of ethylene perception, expression in plants is not induced by exogenously applied ethylene. The application of jasmonic acid does result in an up-regulation of gene activity and, thus, ZPT2-2 may play a role in the realization of the jasmonic acid hormonal responses in petunia. PMID:10594102

  9. 20-hydroxyecdysone enhances the expression of the chitinase 5 via Broad-Complex Zinc-Finger 4 during metamorphosis in silkworm, Bombyx mori.

    PubMed

    Zhang, X; Zheng, S

    2017-04-01

    Insect chitinases are hydrolytic enzymes required for the degradation of chitin. They are essential for insect moulting and metamorphosis. In this study, the regulation mechanism of a chitinase gene, Bombyx mori chitinase 5 (BmCHT5), was studied. Quantitative reverse transcription PCR (qRT-PCR) analysis showed that BmCHT5 was up-regulated during the larval-larval and larval-pupa transitions and notably induced by 20-hydroxyecdysone (20E). Analysis of the BmCHT5 promoter revealed the presence of one Bombyx mori Broad-Complex Zinc-Finger Isoform 4 (BR-C Z4), two BR-C Z2 and two ecdysone-induced protein 74A (E74A) cis-regulatory elements (CREs) that are related to 20E. qRT-PCR showed that the expression of both BmBR-C Z4 and BmBR-C Z2 during metamorphosis, and when induced by 20E, was anastomotic with the variations in BmCHT5 mRNA level. In contrast, BmE74A did not follow this trend. An electrophoretic mobility shift assay did not retrieve a binding partner for the two BR-C Z2 CREs in the BmN cell line nuclear extract, whereas BR-C Z4 CRE specifically bound to BmBR-C Z4. Besides, luciferase activity analysis confirmed that BmBR-C Z4 could enhance the activity of the BmCHT5 promoter with BR-C Z4 CRE and could not enhance the promoter activity by mutating BR-C Z4 CRE. Taken together, these data suggest that the transcription factor BmBR-C Z4 enhances the expression of BmCHT5 during metamorphosis. © 2016 The Royal Entomological Society.

  10. Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance.

    PubMed

    Ma, Cui; Wei, Xiaowen; Sun, Cuihuan; Zhang, Fei; Xu, Jianren; Zhao, Xinqing; Bai, Fengwu

    2015-03-01

    Acetic acid is present in cellulosic hydrolysate as a potent inhibitor, and the superior acetic acid tolerance of Saccharomyces cerevisiae ensures good cell viability and efficient ethanol production when cellulosic raw materials are used as substrates. In this study, a mutant strain of S. cerevisiae ATCC4126 (Sc4126-M01) with improved acetic acid tolerance was obtained through screening strains transformed with an artificial zinc finger protein transcription factor (ZFP-TF) library. Further analysis indicated that improved acetic acid tolerance was associated with improved catalase (CAT) activity. The ZFP coding sequence associated with the improved phenotype was identified, and real-time RT-PCR analysis revealed that three of the possible genes involved in the enhanced acetic acid tolerance regulated by this ZFP-TF, namely YFL040W, QDR3, and IKS1, showed decreased transcription levels in Sc4126-M01 in the presence of acetic acid, compared to those in the control strain. Sc4126-M01 mutants having QDR3 and IKS1 deletion (ΔQDR3 and ΔIKS1) exhibited higher acetic acid tolerance than the wild-type strain under acetic acid treatment. Glucose consumption rate and ethanol productivity in the presence of 5 g/L acetic acid were improved in the ΔQDR3 mutant compared to the wild-type strain. Our studies demonstrated that the synthetic ZFP-TF library can be used to improve acetic acid tolerance of S. cerevisiae and that the employment of an artificial transcription factor can facilitate the exploration of novel functional genes involved in stress tolerance of S. cerevisiae.

  11. Two-sided Ubiquitin Binding of NF-κB Essential Modulator (NEMO) Zinc Finger Unveiled by a Mutation Associated with Anhidrotic Ectodermal Dysplasia with Immunodeficiency Syndrome*

    PubMed Central

    Ngadjeua, Flora; Chiaravalli, Jeanne; Traincard, François; Raynal, Bertrand; Fontan, Elisabeth; Agou, Fabrice

    2013-01-01

    Hypomorphic mutations in the X-linked human NEMO gene result in various forms of anhidrotic ectodermal dysplasia with immunodeficiency. NEMO function is mediated by two distal ubiquitin binding domains located in the regulatory C-terminal domain of the protein: the coiled-coil 2-leucine zipper (CC2-LZ) domain and the zinc finger (ZF) domain. Here, we investigated the effect of the D406V mutation found in the NEMO ZF of an ectodermal dysplasia with immunodeficiency patients. This point mutation does not impair the folding of NEMO ZF or mono-ubiquitin binding but is sufficient to alter NEMO function, as NEMO-deficient fibroblasts and Jurkat T lymphocytes reconstituted with full-length D406V NEMO lead to partial and strong defects in NF-κB activation, respectively. To further characterize the ubiquitin binding properties of NEMO ZF, we employed di-ubiquitin (di-Ub) chains composed of several different linkages (Lys-48, Lys-63, and linear (Met-1-linked)). We showed that the pathogenic mutation preferentially impairs the interaction with Lys-63 and Met-1-linked di-Ub, which correlates with its ubiquitin binding defect in vivo. Furthermore, sedimentation velocity and gel filtration showed that NEMO ZF, like other NEMO related-ZFs, binds mono-Ub and di-Ub with distinct stoichiometries, indicating the presence of a new Ub site within the NEMO ZF. Extensive mutagenesis was then performed on NEMO ZF and characterization of mutants allowed the proposal of a structural model of NEMO ZF in interaction with a Lys-63 di-Ub chain. PMID:24100029

  12. The BTB-zinc Finger Transcription Factor Abrupt Acts as an Epithelial Oncogene in Drosophila melanogaster through Maintaining a Progenitor-like Cell State

    PubMed Central

    Turkel, Nezaket; Sahota, Virender K.; Bolden, Jessica E.; Goulding, Karen R.; Doggett, Karen; Willoughby, Lee F.; Blanco, Enrique; Martin-Blanco, Enrique; Corominas, Montserrat; Ellul, Jason; Aigaki, Toshiro; Richardson, Helena E.; Brumby, Anthony M.

    2013-01-01

    The capacity of tumour cells to maintain continual overgrowth potential has been linked to the commandeering of normal self-renewal pathways. Using an epithelial cancer model in Drosophila melanogaster, we carried out an overexpression screen for oncogenes capable of cooperating with the loss of the epithelial apico-basal cell polarity regulator, scribbled (scrib), and identified the cell fate regulator, Abrupt, a BTB-zinc finger protein. Abrupt overexpression alone is insufficient to transform cells, but in cooperation with scrib loss of function, Abrupt promotes the formation of massive tumours in the eye/antennal disc. The steroid hormone receptor coactivator, Taiman (a homologue of SRC3/AIB1), is known to associate with Abrupt, and Taiman overexpression also drives tumour formation in cooperation with the loss of Scrib. Expression arrays and ChIP-Seq indicates that Abrupt overexpression represses a large number of genes, including steroid hormone-response genes and multiple cell fate regulators, thereby maintaining cells within an epithelial progenitor-like state. The progenitor-like state is characterised by the failure to express the conserved Eyes absent/Dachshund regulatory complex in the eye disc, and in the antennal disc by the failure to express cell fate regulators that define the temporal elaboration of the appendage along the proximo-distal axis downstream of Distalless. Loss of scrib promotes cooperation with Abrupt through impaired Hippo signalling, which is required and sufficient for cooperative overgrowth with Abrupt, and JNK (Jun kinase) signalling, which is required for tumour cell migration/invasion but not overgrowth. These results thus identify a novel cooperating oncogene, identify mammalian family members of which are also known oncogenes, and demonstrate that epithelial tumours in Drosophila can be characterised by the maintenance of a progenitor-like state. PMID:23874226

  13. Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein.

    PubMed

    Lee, Na-Rae; Shin, Han-Bo; Kim, Hye-In; Choi, Myung-Soo; Inn, Kyung-Soo

    2013-07-19

    RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediated IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Twenty-seven nonoverlapping zinc finger cDNAs from human T cells map to nine different chromosomes with apparent clustering.

    PubMed Central

    Huebner, K; Druck, T; Croce, C M; Thiesen, H J

    1991-01-01

    cDNA clones encoding zinc finger structures were isolated by screening Molt4 and Jurkat cDNA libraries with zinc finger consensus sequences. Candidate clones were partially sequenced to verify the presence of zinc finger-encoding regions; nonoverlapping cDNA clones were chosen on the basis of sequences and genomic hybridization pattern. Zinc finger structure-encoding clones, which were designated by the term "Kox" and a number from 1 to 32 and which were apparently unique (i.e., distinct from each other and distinct from those isolated by other laboratories), were chosen for mapping in the human genome. DNAs from rodent-human somatic cell hybrids retaining defined complements of human chromosomes were analyzed for the presence of each of the Kox genes. Correlation between the presence of specific human chromosome regions and specific Kox genes established the chromosomal locations. Multiple Kox loci were mapped to 7q (Kox 18 and 25 and a locus detected by both Kox 8 cDNA and Kox 27 cDNA), 8q24 5' to the myc locus (Kox 9 and 32), 10cen----q24 (Kox 2, 15, 19, 21, 30, and 31), 12q13-qter (Kox 1 and 20), 17p13 (Kox 11 and 26), and 19q (Kox 5, 6, 10, 22, 24, and 28). Single Kox loci were mapped to 7p22 (Kox 3), 18q12 (Kox 17), 19p (Kox 13), 22q11 between IG lambda and BCR-1 (locus detected by both Kox 8 cDNA and Kox 27 cDNA), and Xp (Kox 14). Several of the Kox loci map to regions in which other zinc finger structure-encoding loci have already been localized, indicating possible zinc finger gene clusters. In addition, Kox genes at 8q24, 17p13, and 22q11--and perhaps other Kox genes--are located near recurrent chromosomal translocation breakpoints. Others, such as those on 7p and 7q, may be near regions specifically active in T cells. Images Figure 4 Figure 5 Figure 2 Figure 3 PMID:2014798

  15. Antiviral RNA silencing suppression activity of Tomato spotted wilt virus NSs protein.

    PubMed

    Ocampo Ocampo, T; Gabriel Peralta, S M; Bacheller, N; Uiterwaal, S; Knapp, A; Hennen, A; Ochoa-Martinez, D L; Garcia-Ruiz, H

    2016-06-17

    In addition to regulating gene expression, RNA silencing is an essential antiviral defense system in plants. Triggered by double-stranded RNA, silencing results in degradation or translational repression of target transcripts. Viruses are inducers and targets of RNA silencing. To condition susceptibility, most plant viruses encode silencing suppressors that interfere with this process, such as the Tomato spotted wilt virus (TSWV) NSs protein. The mechanism by which NSs suppresses RNA silencing and its role in viral infection and movement remain to be determined. We cloned NSs from the Hawaii isolate of TSWV and using two independent assays show for the first time that this protein restored pathogenicity and supported the formation of local infection foci by suppressor-deficient Turnip mosaic virus and Turnip crinkle virus. Demonstrating the suppression of RNA silencing directed against heterologous viruses establishes the foundation to determine the means used by NSs to block this antiviral process.

  16. RIOK3 Is an Adaptor Protein Required for IRF3-Mediated Antiviral Type I Interferon Production

    PubMed Central

    Feng, Jun; De Jesus, Paul D.; Su, Victoria; Han, Stephanie; Gong, Danyang; Wu, Nicholas C.; Tian, Yuan; Li, Xudong; Wu, Ting-Ting; Chanda, Sumit K.

    2014-01-01

    ABSTRACT Detection of cytosolic nucleic acids by pattern recognition receptors leads to the induction of type I interferons (IFNs) and elicits the innate immune response. We report here the identification of RIOK3 as a novel adaptor protein that is essential for the cytosolic nucleic acid-induced type I IFN production and for the antiviral response to gammaherpesvirus through two independent kinome-wide RNA interference screens. RIOK3 knockdown blocks both cytosolic double-stranded B-form DNA and double-stranded RNA-induced IRF3 activation and IFN-β production. In contrast, the overexpression of RIOK3 activates IRF3 and induces IFN-β. RIOK3 functions downstream of TBK1 and upstream of IRF3 activation. Furthermore, RIOK3 physically interacts with both IRF3 and TBK1 and is necessary for the interaction between TBK1 and IRF3. In addition, global transcriptome analysis shows that the expression of many gene involved antiviral responses is dependent on RIOK3. Thus, knockdown of RIOK3 inhibits cellular antiviral responses against both DNA and RNA viruses (herpesvirus and influenza A virus). Our data suggest that RIOK3 plays a critical role in the antiviral type I IFN pathway by bridging TBK1 and IRF3. IMPORTANCE The innate immune response, such as the production of type I interferons, acts as the first line of defense, limiting infectious pathogens directly and shaping the adaptive immune response. In this study, we identified RIOK3 as a novel regulator of the antiviral type I interferon pathway. Specifically, we found that RIOK3 physically interacts with TBK1 and IRF3 and bridges the functions between TBK1 and IRF3 in the activation of type I interferon pathway. The identification of a cellular kinase that plays a role the type I interferon pathway adds another level of complexity in the regulation of innate immunity and will have implications for developing novel strategies to combat viral infection. PMID:24807708

  17. Structure of the antiviral assembly inhibitor CAP-1 complex with the HIV-1 CA protein.

    PubMed

    Kelly, Brian N; Kyere, Sampson; Kinde, Isaac; Tang, Chun; Howard, Bruce R; Robinson, Howard; Sundquist, Wesley I; Summers, Michael F; Hill, Christopher P

    2007-10-19

    The CA domain of the human immunodeficiency virus type 1 (HIV-1) Gag polyprotein plays critical roles in both the early and late phases of viral replication and is therefore an attractive antiviral target. Compounds with antiviral activity were recently identified that bind to the N-terminal domain of CA (CA N) and inhibit capsid assembly during viral maturation. We have determined the structure of the complex between CA N and the antiviral assembly inhibitor N-(3-chloro-4-methylphenyl)-N'-{2-[({5-[(dimethylamino)-methyl]-2-furyl}-methyl)-sulfanyl]ethyl}-urea) (CAP-1) using a combination of NMR spectroscopy and X-ray crystallography. The protein undergoes a remarkable conformational change upon CAP-1 binding, in which Phe32 is displaced from its buried position in the protein core to open a deep hydrophobic cavity that serves as the ligand binding site. The aromatic ring of CAP-1 inserts into the cavity, with the urea NH groups forming hydrogen bonds with the backbone oxygen of Val59 and the dimethylamonium group interacting with the side-chains of Glu28 and Glu29. Elements that could be exploited to improve binding affinity are apparent in the structure. The displacement of Phe32 by CAP-1 appears to be facilitated by a strained main-chain conformation, which suggests a potential role for a Phe32 conformational switch during normal capsid assembly.

  18. The Solanum lycopersicum Zinc Finger2 Cysteine-2/Histidine-2 Repressor-Like Transcription Factor Regulates Development and Tolerance to Salinity in Tomato and Arabidopsis1[W

    PubMed Central

    Hichri, Imène; Muhovski, Yordan; Žižková, Eva; Dobrev, Petre I.; Franco-Zorrilla, Jose Manuel; Solano, Roberto; Lopez-Vidriero, Irene; Motyka, Vaclav; Lutts, Stanley

    2014-01-01

    The zinc finger superfamily includes transcription factors that regulate multiple aspects of plant development and were recently shown to regulate abiotic stress tolerance. Cultivated tomato (Solanum lycopersicum Zinc Finger2 [SIZF2]) is a cysteine-2/histidine-2-type zinc finger transcription factor bearing an ERF-associated amphiphilic repression domain and binding to the ACGTCAGTG sequence containing two AGT core motifs. SlZF2 is ubiquitously expressed during plant development, and is rapidly induced by sodium chloride, drought, and potassium chloride treatments. Its ectopic expression in Arabidopsis (Arabidopsis thaliana) and tomato impaired development and influenced leaf and flower shape, while causing a general stress visible by anthocyanin and malonyldialdehyde accumulation. SlZF2 enhanced salt sensitivity in Arabidopsis, whereas SlZF2 delayed senescence and improved tomato salt tolerance, particularly by maintaining photosynthesis and increasing polyamine biosynthesis, in salt-treated hydroponic cultures (125 mm sodium chloride, 20 d). SlZF2 may be involved in abscisic acid (ABA) biosynthesis/signaling, because SlZF2 is rapidly induced by ABA treatment and 35S::SlZF2 tomatoes accumulate more ABA than wild-type plants. Transcriptome analysis of 35S::SlZF2 revealed that SlZF2 both increased and reduced expression of a comparable number of genes involved in various physiological processes such as photosynthesis, polyamine biosynthesis, and hormone (notably ABA) biosynthesis/signaling. Involvement of these different metabolic pathways in salt stress tolerance is discussed. PMID:24567191

  19. Genome-Wide Identification, Evolution and Expression Analysis of the Grape (Vitis vinifera L.) Zinc Finger-Homeodomain Gene Family

    PubMed Central

    Wang, Hao; Yin, Xiangjing; Li, Xiaoqin; Wang, Li; Zheng, Yi; Xu, Xiaozhao; Zhang, Yucheng; Wang, Xiping

    2014-01-01

    Plant zinc finger-homeodomain (ZHD) genes encode a family of transcription factors that have been demonstrated to play an important role in the regulation of plant growth and development. In this study, we identified a total of 13 ZHD genes (VvZHD) in the grape genome that were further classified into at least seven groups. Genome synteny analysis revealed that a number of VvZHD genes were present in the corresponding syntenic blocks of Arabidopsis, indicating that they arose before the divergence of these two species. Gene expression analysis showed that the identified VvZHD genes displayed distinct spatiotemporal expression patterns, and were differentially regulated under various stress conditions and hormone treatments, suggesting that the grape VvZHDs might be also involved in plant response to a variety of biotic and abiotic insults. Our work provides insightful information and knowledge about the ZHD genes in grape, which provides a framework for further characterization of their roles in regulation of stress tolerance as well as other aspects of grape productivity. PMID:24705465

  20. Specific insertions of zinc finger domains into Gag-Pol yield engineered retroviral vectors with selective integration properties

    PubMed Central

    Lim, Kwang-il; Klimczak, Ryan; Yu, Julie H.; Schaffer, David V.

    2010-01-01

    Retroviral vectors offer benefits of efficient delivery and stable gene expression; however, their clinical use raises the concerns of insertional mutagenesis and potential oncogenesis due to genomic integration preferences in transcriptional start sites (TSS). We have shifted the integration preferences of retroviral vectors by generating a library of viral variants with a DNA-binding domain inserted at random positions throughout murine leukemia virus Gag-Pol, then selecting for variants that are viable and exhibit altered integration properties. We found seven permissive zinc finger domain (ZFD) insertion sites throughout Gag-Pol, including within p12, reverse transcriptase, and integrase. Comprehensive genome integration analysis showed that several ZFD insertions yielded retroviral vector variants with shifted integration patterns that did not favor TSS. Furthermore, integration site analysis revealed selective integration for numerous mutants. For example, two retroviral variants with a given ZFD at appropriate positions in Gag-Pol strikingly integrated primarily into four common sites out of 3.1 × 109 possible human genome locations (P = 4.6 × 10-29). Our findings demonstrate that insertion of DNA-binding motifs into multiple locations in Gag-Pol can make considerable progress toward engineering safer retroviral vectors that integrate into a significantly narrowed pool of sites on human genome and overcome the preference for TSS. PMID:20616052

  1. Expression and function of the zinc finger transcription factor Sp6-9 in the spider Parasteatoda tepidariorum.

    PubMed

    Königsmann, Tatiana; Turetzek, Natascha; Pechmann, Matthias; Prpic, Nikola-Michael

    2017-11-01

    Zinc finger transcription factors of the Sp6-9 group are evolutionarily conserved in all metazoans and have important functions in, e.g., limb formation and heart development. The function of Sp6-9-related genes has been studied in a number of vertebrates and invertebrates, but data from chelicerates (spiders and allies) was lacking so far. We have isolated the ortholog of Sp6-9 from the common house spider Parasteatoda tepidariorum and the cellar spider Pholcus phalangioides. We show that the Sp6-9 gene in these spider species is expressed in the developing appendages thus suggesting a conserved role in limb formation. Indeed, RNAi with Sp6-9 in P. tepidariorum leads not only to strong limb defects, but also to the loss of body segments and head defects in more strongly affected animals. Together with a new expression domain in the early embryo, these data suggest that Sp6-9 has a dual role P. tepidariorum. The early role in head and body segment formation is not known from other arthropods, but the role in limb formation is evolutionarily highly conserved.

  2. Zinc finger nuclease: a new approach for excising HIV-1 proviral DNA from infected human T cells.

    PubMed

    Qu, Xiying; Wang, Pengfei; Ding, Donglin; Wang, Xiaohui; Zhang, Gongmin; Zhou, Xin; Liu, Lin; Zhu, Xiaoli; Zeng, Hanxian; Zhu, Huanzhang

    2014-09-01

    A major reason that Acquired Immune Deficiency Syndrome (AIDS) cannot be completely cured is the human immunodeficiency virus 1 (HIV-1) provirus integrated into the human genome. Though existing therapies can inhibit replication of HIV-1, they cannot eradicate it. A molecular therapy gains popularity due to its specifically targeting to HIV-1 infected cells and effectively removing the HIV-1, regardless of viral genes being active or dormant. Now, we propose a new method which can excellently delete the HIV provirus from the infected human T cell genome. First, we designed zinc-finger nucleases (ZFNs) that target a sequence within the long terminal repeat (LTR) U3 region that is highly conserved in whole clade. Then, we screened out one pair of ZFN and named it as ZFN-U3. We discovered that ZFN-U3 can exactly target and eliminate the full-length HIV-1 proviral DNA after the infected human cell lines treated with it, and the frequency of its excision was about 30 % without cytotoxicity. These results prove that ZFN-U3 can efficiently excise integrated HIV-1 from the human genome in infected cells. This method to delete full length HIV-1 in human genome can therefore provide a novel approach to cure HIV-infected individuals in the future.

  3. NSs protein of Schmallenberg virus counteracts the antiviral response of the cell by inhibiting its transcriptional machinery.

    PubMed

    Barry, Gerald; Varela, Mariana; Ratinier, Maxime; Blomström, Anne-Lie; Caporale, Marco; Seehusen, Frauke; Hahn, Kerstin; Schnettler, Esther; Baumgärtner, Wolfgang; Kohl, Alain; Palmarini, Massimo

    2014-08-01

    Bunyaviruses have evolved a variety of strategies to counteract the antiviral defence systems of mammalian cells. Here we show that the NSs protein of Schmallenberg virus (SBV) induces the degradation of the RPB1 subunit of RNA polymerase II and consequently inhibits global cellular protein synthesis and the antiviral response. In addition, we show that the SBV NSs protein enhances apoptosis in vitro and possibly in vivo, suggesting that this protein could be involved in SBV pathogenesis in different ways. © 2014 The Authors.

  4. ZFP580, a Novel Zinc-Finger Transcription Factor, Is Involved in Cardioprotection of Intermittent High-Altitude Hypoxia against Myocardial Ischemia-Reperfusion Injury

    PubMed Central

    Zhang, Wen-cheng; Wang, Tian-hui; Mai, Xia; Liu, Hong-tao; Xu, Rui-cheng

    2014-01-01

    Background ZFP580 is a novel C2H2 type zinc-finger transcription factor recently identified by our laboratory. We previously showed that ZFP580 may be involved in cell survival and growth. The aim of this study was to elucidate whether ZFP580 is involved in the cardioprotective effects of intermittent high-altitude (IHA) hypoxia against myocardial ischemia-reperfusion (I/R) injury. Methods and Results After rats were subjected to myocardial ischemia for 30 min followed by reperfusion, ZFP580 expression in the left ventricle was measured. ZFP580 protein expression was found to be up-regulated within 1 h and decreased at 2 h after reperfusion. Comparing normoxic and IHA hypoxia-adapted rats (5000 m, 6 h day−1, 6 weeks) following I/R injury (30 min ischemia and 2 h reperfusion), we found that adaptation to IHA hypoxia attenuated infarct size and plasma leakage of lactate dehydrogenase and creatine kinase-MB. In addition, ZFP580 expression in the myocardium was up-regulated by IHA hypoxia. Consistent with this result, ZFP580 expression was found to be significantly increased in cultured H9c2 myocardial cells in the hypoxic preconditioning group compared with those in the control group following simulated I/R injury (3 h simulated ischemic hypoxia and 2 h reoxygenation). To determine the role of ZFP580 in apoptosis, lentivirus-mediated gene transfection was performed in H9c2 cells 72 h prior to simulated I/R exposure. The results showed that ZFP580 overexpression significantly inhibited I/R-induced apoptosis and caspase-3 activation. H9c2 cells were pretreated with or without PD98059, an inhibitor of ERK1/2 phosphorylation, and Western blot results showed that PD98059 (10 µM) markedly suppressed I/R-induced up-regulation of ZFP580 expression. Conclusions Our findings demonstrate that the cardioprotective effect of IHA hypoxia against I/R injury is mediated via ZFP580, a downstream target of ERK1/2 signaling with anti-apoptotic roles in myocardial cells. PMID:24722354

  5. Zinc Finger Nuclease Mediated Knockout of ADP-Dependent Glucokinase in Cancer Cell Lines: Effects on Cell Survival and Mitochondrial Oxidative Metabolism

    PubMed Central

    Richter, Susan; Morrison, Shona; Connor, Tim; Su, Jiechuang; Print, Cristin G.; Ronimus, Ron S.; McGee, Sean L.; Wilson, William R.

    2013-01-01

    Zinc finger nucleases (ZFN) are powerful tools for editing genes in cells. Here we use ZFNs to interrogate the biological function of ADPGK, which encodes an ADP-dependent glucokinase (ADPGK), in human tumour cell lines. The hypothesis we tested is that ADPGK utilises ADP to phosphorylate glucose under conditions where ATP becomes limiting, such as hypoxia. We characterised two ZFN knockout clones in each of two lines (H460 and HCT116). All four clones had frameshift mutations in all alleles at the target site in exon 1 of ADPGK, and were ADPGK-null by immunoblotting. ADPGK knockout had little or no effect on cell proliferation, but compromised the ability of H460 cells to survive siRNA silencing of hexokinase-2 under oxic conditions, with clonogenic survival falling from 21±3% for the parental line to 6.4±0.8% (p = 0.002) and 4.3±0.8% (p = 0.001) for the two knockouts. A similar increased sensitivity to clonogenic cell killing was observed under anoxia. No such changes were found when ADPGK was knocked out in HCT116 cells, for which the parental line was less sensitive than H460 to anoxia and to hexokinase-2 silencing. While knockout of ADPGK in HCT116 cells caused few changes in global gene expression, knockout of ADPGK in H460 cells caused notable up-regulation of mRNAs encoding cell adhesion proteins. Surprisingly, we could discern no consistent effect on glycolysis as measured by glucose consumption or lactate formation under anoxia, or extracellular acidification rate (Seahorse XF analyser) under oxic conditions in a variety of media. However, oxygen consumption rates were generally lower in the ADPGK knockouts, in some cases markedly so. Collectively, the results demonstrate that ADPGK can contribute to tumour cell survival under conditions of high glycolytic dependence, but the phenotype resulting from knockout of ADPGK is cell line dependent and appears to be unrelated to priming of glycolysis in these lines. PMID:23799003

  6. Genome-Wide Analysis of C2H2 Zinc-Finger Family Transcription Factors and Their Responses to Abiotic Stresses in Poplar (Populus trichocarpa)

    PubMed Central

    Liu, Quangang; Wang, Zhanchao; Xu, Xuemei; Zhang, Haizhen; Li, Chenghao

    2015-01-01

    Background C2H2 zinc-finger (C2H2-ZF) proteins are a large gene family in plants that participate in various aspects of normal plant growth and development, as well as in biotic and abiotic stress responses. To date, no overall analysis incorporating evolutionary history and expression profiling of the C2H2-ZF gene family in model tree species poplar (Populus trichocarpa) has been reported. Principal Findings Here, we identified 109 full-length C2H2-ZF genes in P. trichocarpa, and classified them into four groups, based on phylogenetic analysis. The 109 C2H2-ZF genes were distributed unequally on 19 P. trichocarpa linkage groups (LGs), with 39 segmental duplication events, indicating that segmental duplication has been important in the expansion of the C2H2-ZF gene family. Promoter cis-element analysis indicated that most of the C2H2-ZF genes contain phytohormone or abiotic stress-related cis-elements. The expression patterns of C2H2-ZF genes, based on heatmap analysis, suggested that C2H2-ZF genes are involved in tissue and organ development, especially root and floral development. Expression analysis based on quantitative real-time reverse transcription polymerase chain reaction indicated that C2H2-ZF genes are significantly involved in drought, heat and salt response, possibly via different mechanisms. Conclusions This study provides a thorough overview of the P. trichocarpa C2H2-ZF gene family and presents a new perspective on the evolution of this gene family. In particular, some C2H2-ZF genes may be involved in environmental stress tolerance regulation. PtrZFP2, 19 and 95 showed high expression levels in leaves and/or roots under environmental stresses. Additionally, this study provided a solid foundation for studying the biological roles of C2H2-ZF genes in Populus growth and development. These results form the basis for further investigation of the roles of these candidate genes and for future genetic engineering and gene functional studies in Populus. PMID

  7. Evasion of Antiviral Innate Immunity by Theiler's Virus L* Protein through Direct Inhibition of RNase L

    PubMed Central

    Sorgeloos, Frédéric; Jha, Babal Kant; Silverman, Robert H.; Michiels, Thomas

    2013-01-01

    Theiler's virus is a neurotropic picornavirus responsible for chronic infections of the central nervous system. The establishment of a persistent infection and the subsequent demyelinating disease triggered by the virus depend on the expression of L*, a viral accessory protein encoded by an alternative open reading frame of the virus. We discovered that L* potently inhibits the interferon-inducible OAS/RNase L pathway. The antagonism of RNase L by L* was particularly prominent in macrophages where baseline oligoadenylate synthetase (OAS) and RNase L expression levels are elevated, but was detectable in fibroblasts after IFN pretreatment. L* mutations significantly affected Theiler's virus replication in primary macrophages derived from wild-type but not from RNase L-deficient mice. L* counteracted the OAS/RNase L pathway through direct interaction with the ankyrin domain of RNase L, resulting in the inhibition of this enzyme. Interestingly, RNase L inhibition was species-specific as Theiler's virus L* protein blocked murine RNase L but not human RNase L or RNase L of other mammals or birds. Direct RNase L inhibition by L* and species specificity were confirmed in an in vitro assay performed with purified proteins. These results demonstrate a novel viral mechanism to elude the antiviral OAS/RNase L pathway. By targeting the effector enzyme of this antiviral pathway, L* potently inhibits RNase L, underscoring the importance of this enzyme in innate immunity against Theiler's virus. PMID:23825954

  8. The ZNF75 zinc finger gene subfamily: Isolation and mapping of the four members in humans and great apes

    SciT

    Villa, A.; Strina, D.; Frattini, A.

    We have previously reported the characterization of the human ZNF75 gene located on Xq26, which has only limited homology (less than 65%) to other ZF genes in the databases. Here, we describe three human zinc finger genes with 86 to 95% homology to ZNF75 at the nucleotide level, which represent all the members of the human ZNF75 subfamily. One of these, ZNF75B, is a pseudogene mapped to chromosome 12q13. The other two, ZNF75A and ZNF75C, maintain on ORF in the sequenced region, and at least the latter is expressed in the U937 cell line. They were mapped to chromosomes 16more » and 11, respectively. All these genes are conserved in chimpanzees, gorillas, and orangutans. The ZNF75B homologue is a pseudogene in all three great apes, and in chimpanzee it is located on chromosome 10 (phylogenetic XII), at p13 (corresponding to the human 12q13). The chimpanzee homologue of ZNF75 is also located on the Xq26 chromosome, in the same region, as detected by in situ hybridization. As expected, nucleotide changes were clearly more abundant between human and organutan than between human and chimpanzee or gorilla homologues. Members of the same class were more similar to each other than to the other homologues within the same species. This suggests that the duplication and/or retrotranscription events occurred in a common ancestor long before great ape speciation. This, together with the existance of at least two genes in cows and horses, suggests a relatively high conservation of this gene family. 20 refs., 5 figs., 1 tab.« less

  9. Conformational heterogeneity in the C-terminal zinc fingers of human MTF-1: an NMR and zinc-binding study.

    PubMed

    Giedroc, D P; Chen, X; Pennella, M A; LiWang, A C

    2001-11-09

    The human metalloregulatory transcription factor, metal-response element (MRE)-binding transcription factor-1 (MTF-1), contains six TFIIIA-type Cys(2)-His(2) motifs, each of which was projected to form well-structured betabetaalpha domains upon Zn(II) binding. In this report, the structure and backbone dynamics of a fragment containing the unusual C-terminal fingers F4-F6 has been investigated. (15)N heteronuclear single quantum coherence (HSQC) spectra of uniformly (15)N-labeled hMTF-zf46 show that Zn(II) induces the folding of hMTF-zf46. Analysis of the secondary structure of Zn(3) hMTF-zf46 determined by (13)Calpha chemical shift indexing and the magnitude of (3)J(Halpha-HN) clearly reveal that zinc fingers F4 and F6 adopt typical betabetaalpha structures. An analysis of the heteronuclear backbone (15)N relaxation dynamics behavior is consistent with this picture and further reveals independent tumbling of the finger domains in solution. Titration of apo-MTF-zf46 with Zn(II) reveals that the F4 domain binds Zn(II) significantly more tightly than do the other two finger domains. In contrast to fingers F4 and F6, the betabetaalpha fold of finger F5 is unstable and only partially populated at substoichiometric Zn(II); a slight molar excess of zinc results in severe conformational exchange broadening of all F5 NH cross-peaks. Finally, although Cd(II) binds to apo-hMTF-zf46 as revealed by intense S(-)-->Cd(II) absorption, a non-native structure results; addition of stoichiometric Zn(II) to the Cd(II) complex results in quantitative refolding of the betabetaalpha structure in F4 and F6. The functional implications of these results are discussed.

  10. Expression of Arabidopsis FCS-Like Zinc finger genes is differentially regulated by sugars, cellular energy level, and abiotic stress

    PubMed Central

    Jamsheer K, Muhammed; Laxmi, Ashverya

    2015-01-01

    Cellular energy status is an important regulator of plant growth, development, and stress mitigation. Environmental stresses ultimately lead to energy deficit in the cell which activates the SNF1-RELATED KINASE 1 (SnRK1) signaling cascade which eventually triggering a massive reprogramming of transcription to enable the plant to survive under low-energy conditions. The role of Arabidopsis thaliana FCS-Like Zinc finger (FLZ) gene family in energy and stress signaling is recently come to highlight after their interaction with kinase subunits of SnRK1 were identified. In a detailed expression analysis in different sugars, energy starvation, and replenishment series, we identified that the expression of most of the FLZ genes is differentially modulated by cellular energy level. It was found that FLZ gene family contains genes which are both positively and negatively regulated by energy deficit as well as energy-rich conditions. Genetic and pharmacological studies identified the role of HEXOKINASE 1- dependent and energy signaling pathways in the sugar-induced expression of FLZ genes. Further, these genes were also found to be highly responsive to different stresses as well as abscisic acid. In over-expression of kinase subunit of SnRK1, FLZ genes were found to be differentially regulated in accordance with their response toward energy fluctuation suggesting that these genes may work downstream to the established SnRK1 signaling under low-energy stress. Taken together, the present study provides a conceptual framework for further studies related to SnRK1-FLZ interaction in relation to sugar and energy signaling and stress response. PMID:26442059

  11. Expression of Arabidopsis FCS-Like Zinc finger genes is differentially regulated by sugars, cellular energy level, and abiotic stress.

    PubMed

    Jamsheer K, Muhammed; Laxmi, Ashverya

    2015-01-01

    Cellular energy status is an important regulator of plant growth, development, and stress mitigation. Environmental stresses ultimately lead to energy deficit in the cell which activates the SNF1-RELATED KINASE 1 (SnRK1) signaling cascade which eventually triggering a massive reprogramming of transcription to enable the plant to survive under low-energy conditions. The role of Arabidopsis thaliana FCS-Like Zinc finger (FLZ) gene family in energy and stress signaling is recently come to highlight after their interaction with kinase subunits of SnRK1 were identified. In a detailed expression analysis in different sugars, energy starvation, and replenishment series, we identified that the expression of most of the FLZ genes is differentially modulated by cellular energy level. It was found that FLZ gene family contains genes which are both positively and negatively regulated by energy deficit as well as energy-rich conditions. Genetic and pharmacological studies identified the role of HEXOKINASE 1- dependent and energy signaling pathways in the sugar-induced expression of FLZ genes. Further, these genes were also found to be highly responsive to different stresses as well as abscisic acid. In over-expression of kinase subunit of SnRK1, FLZ genes were found to be differentially regulated in accordance with their response toward energy fluctuation suggesting that these genes may work downstream to the established SnRK1 signaling under low-energy stress. Taken together, the present study provides a conceptual framework for further studies related to SnRK1-FLZ interaction in relation to sugar and energy signaling and stress response.

  12. The Zinc Finger Transcription Factor SlZFP2 Negatively Regulates Abscisic Acid Biosynthesis and Fruit Ripening in Tomato1

    PubMed Central

    Weng, Lin; Zhao, Fangfang; Li, Rong; Xu, Changjie; Chen, Kunsong

    2015-01-01

    Abscisic acid (ABA) regulates plant development and adaptation to environmental conditions. Although the ABA biosynthesis pathway in plants has been thoroughly elucidated, how ABA biosynthetic genes are regulated at the molecular level during plant development is less well understood. Here, we show that the tomato (Solanum lycopersicum) zinc finger transcription factor SlZFP2 is involved in the regulation of ABA biosynthesis during fruit development. Overexpression of SlZFP2 resulted in multiple phenotypic changes, including more branches, early flowering, delayed fruit ripening, lighter seeds, and faster seed germination, whereas down-regulation of its expression caused problematic fruit set, accelerated ripening, and inhibited seed germination. SlZFP2 represses ABA biosynthesis during fruit development through direct suppression of the ABA biosynthetic genes NOTABILIS, SITIENS, and FLACCA and the aldehyde oxidase SlAO1. We also show that SlZFP2 regulates fruit ripening through transcriptional suppression of the ripening regulator COLORLESS NON-RIPENING. Using bacterial one-hybrid screening and a selected amplification and binding assay, we identified the (A/T)(G/C)TT motif as the core binding sequence of SlZFP2. Furthermore, by RNA sequencing profiling, we found that 193 genes containing the SlZFP2-binding motifs in their promoters were differentially expressed in 2 d post anthesis fruits between the SlZFP2 RNA interference line and its nontransgenic sibling. We propose that SlZFP2 functions as a repressor to fine-tune ABA biosynthesis during fruit development and provides a potentially valuable tool for dissecting the role of ABA in fruit ripening. PMID:25637453

  13. Histone deacetylase inhibition rescues gene knockout levels achieved with integrase-defective lentiviral vectors encoding zinc-finger nucleases.

    PubMed

    Pelascini, Laetitia P L; Maggio, Ignazio; Liu, Jin; Holkers, Maarten; Cathomen, Toni; Gonçalves, Manuel A F V

    2013-12-01

    Zinc-finger nucleases (ZFNs) work as dimers to induce double-stranded DNA breaks (DSBs) at predefined chromosomal positions. In doing so, they constitute powerful triggers to edit and to interrogate the function of genomic sequences in higher eukaryotes. A preferred route to introduce ZFNs into somatic cells relies on their cotransduction with two integrase-defective lentiviral vectors (IDLVs) each encoding a monomer of a functional heterodimeric pair. The episomal nature of IDLVs diminishes the risk of genotoxicity and ensures the strict transient expression profile necessary to minimize deleterious effects associated with long-term ZFN activity. However, by deploying IDLVs and conventional lentiviral vectors encoding HPRT1- or eGFP-specific ZFNs, we report that DSB formation at target alleles is limited after IDLV-mediated ZFN transfer. This IDLV-specific underperformance stems, to a great extent, from the activity of chromatin-remodeling histone deacetylases (HDACs). Importantly, the prototypic and U.S. Food and Drug Administration-approved inhibitors of metal-dependent HDACs, trichostatin A and vorinostat, respectively, did not hinder illegitimate recombination-mediated repair of targeted chromosomal DSBs. This allowed rescuing IDLV-mediated site-directed mutagenesis to levels approaching those achieved by using their isogenic chromosomally integrating counterparts. Hence, HDAC inhibition constitutes an efficacious expedient to incorporate in genome-editing strategies based on transient IDLV-mediated ZFN expression. Finally, we compared two of the most commonly used readout systems to measure targeted gene knockout activities based on restriction and mismatch-sensitive endonucleases. These experiments indicate that these enzymatic assays display a similar performance.

  14. The zinc finger E-box-binding homeobox 1 (Zeb1) promotes the conversion of mouse fibroblasts into functional neurons.

    PubMed

    Yan, Long; Li, Yue; Shi, Zixiao; Lu, Xiaoyin; Ma, Jiao; Hu, Baoyang; Jiao, Jianwei; Wang, Hongmei

    2017-08-04

    The zinc finger E-box-binding transcription factor Zeb1 plays a pivotal role in the epithelial-mesenchymal transition. Numerous studies have focused on the molecular mechanisms by which Zeb1 contributes to this process. However, the functions of Zeb1 beyond the epithelial-mesenchymal transition remain largely elusive. Using a transdifferentiation system to convert mouse embryonic fibroblasts (MEFs) into functional neurons via the neuronal transcription factors achaete-scute family bHLH (basic helix-loop-helix) transcription factor1 ( Ascl1 ), POU class 3 homeobox 2 (POU3F2/ Brn2 ), and neurogenin 2 (Neurog2, Ngn2 ) (ABN), we found that Zeb1 was up-regulated during the early stages of transdifferentiation. Knocking down Zeb1 dramatically attenuated the transdifferentiation efficiency, whereas Zeb1 overexpression obviously increased the efficiency of transdifferentiation from MEFs to neurons. Interestingly, Zeb1 improved the transdifferentiation efficiency induced by even a single transcription factor ( e.g. Asc1 or Ngn2 ). Zeb1 also rapidly promoted the maturation of induced neuron cells to functional neurons and improved the formation of neuronal patterns and electrophysiological characteristics. Induced neuron cells could form functional synapse in vivo after transplantation. Genome-wide RNA arrays showed that Zeb1 overexpression up-regulated the expression of neuron-specific genes and down-regulated the expression of epithelial-specific genes during conversion. Taken together, our results reveal a new role for Zeb1 in the transdifferentiation of MEFs into neurons. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Inhibition of enterovirus 71 (EV-71) infections by a novel antiviral peptide derived from EV-71 capsid protein VP1.

    PubMed

    Tan, Chee Wah; Chan, Yoke Fun; Sim, Kooi Mow; Tan, Eng Lee; Poh, Chit Laa

    2012-01-01

    Enterovirus 71 (EV-71) is the main causative agent of hand, foot and mouth disease (HFMD). In recent years, EV-71 infections were reported to cause high fatalities and severe neurological complications in Asia. Currently, no effective antiviral or vaccine is available to treat or prevent EV-71 infection. In this study, we have discovered a synthetic peptide which could be developed as a potential antiviral for inhibition of EV-71. Ninety five synthetic peptides (15-mers) overlapping the entire EV-71 capsid protein, VP1, were chemically synthesized and tested for antiviral properties against EV-71 in human Rhabdomyosarcoma (RD) cells. One peptide, SP40, was found to significantly reduce cytopathic effects of all representative EV-71 strains from genotypes A, B and C tested, with IC(50) values ranging from 6-9.3 µM in RD cells. The in vitro inhibitory effect of SP40 exhibited a dose dependent concentration corresponding to a decrease in infectious viral particles, total viral RNA and the levels of VP1 protein. The antiviral activity of SP40 peptide was not restricted to a specific cell line as inhibition of EV-71 was observed in RD, HeLa, HT-29 and Vero cells. Besides inhibition of EV-71, it also had antiviral activities against CV-A16 and poliovirus type 1 in cell culture. Mechanism of action studies suggested that the SP40 peptide was not virucidal but was able to block viral attachment to the RD cells. Substitutions of arginine and lysine residues with alanine in the SP40 peptide at positions R3A, R4A, K5A and R13A were found to significantly decrease antiviral activities, implying the importance of positively charged amino acids for the antiviral activities. The data demonstrated the potential and feasibility of SP40 as a broad spectrum antiviral agent against EV-71.

  16. Prediction of antiviral peptides derived from viral fusion proteins potentially active against herpes simplex and influenza A viruses

    PubMed Central

    Jesús, Torres; Rogelio, López; Abraham, Cetina; Uriel, López; J- Daniel, García; Alfonso, Méndez-Tenorio; Lilia, Barrón Blanca

    2012-01-01

    There are very few antiviral drugs available to fight viral infections and the appearance of viral strains resistant to these antivirals is not a rare event. Hence, the design of new antiviral drugs is important. We describe the prediction of peptides with antiviral activity (AVP) derived from the viral glycoproteins involved in the entrance of herpes simplex (HSV) and influenza A viruses into their host cells. It is known, that during this event viral glycoproteins suffer several conformational changes due to protein-protein interactions, which lead to membrane fusion between the viral envelope and the cellular membrane. Our hypothesis is that AVPs can be derived from these viral glycoproteins, specifically from regions highly conserved in amino acid sequences, which at the same time have the physicochemical properties of being highly exposed (antigenic), hydrophilic, flexible, and charged, since these properties are important for protein-protein interactions. For that, we separately analyzed the HSV glycoprotein H and B, and influenza A viruses hemagglutinin (HA), using several bioinformatics tools. A set of multiple alignments was carried out, to find the most conserved regions in the amino acid sequences. Then, the physicochemical properties indicated above were analyzed. We predicted several peptides 12-20 amino acid length which by docking analysis were able to interact with the fusion viral glycoproteins and thus may prevent conformational changes in them, blocking the viral infection. Our strategy to design AVPs seems to be very promising since the peptides were synthetized and their antiviral activities have produced very encouraging results. PMID:23144542

  17. Re-engineering the zinc fingers of PRDM9 reverses hybrid sterility in mice.

    PubMed

    Davies, Benjamin; Hatton, Edouard; Altemose, Nicolas; Hussin, Julie G; Pratto, Florencia; Zhang, Gang; Hinch, Anjali Gupta; Moralli, Daniela; Biggs, Daniel; Diaz, Rebeca; Preece, Chris; Li, Ran; Bitoun, Emmanuelle; Brick, Kevin; Green, Catherine M; Camerini-Otero, R Daniel; Myers, Simon R; Donnelly, Peter

    2016-02-11

    The DNA-binding protein PRDM9 directs positioning of the double-strand breaks (DSBs) that initiate meiotic recombination in mice and humans. Prdm9 is the only mammalian speciation gene yet identified and is responsible for sterility phenotypes in male hybrids of certain mouse subspecies. To investigate PRDM9 binding and its role in fertility and meiotic recombination, we humanized the DNA-binding domain of PRDM9 in C57BL/6 mice. This change repositions DSB hotspots and completely restores fertility in male hybrids. Here we show that alteration of one Prdm9 allele impacts the behaviour of DSBs controlled by the other allele at chromosome-wide scales. These effects correlate strongly with the degree to which each PRDM9 variant binds both homologues at the DSB sites it controls. Furthermore, higher genome-wide levels of such 'symmetric' PRDM9 binding associate with increasing fertility measures, and comparisons of individual hotspots suggest binding symmetry plays a downstream role in the recombination process. These findings reveal that subspecies-specific degradation of PRDM9 binding sites by meiotic drive, which steadily increases asymmetric PRDM9 binding, has impacts beyond simply changing hotspot positions, and strongly support a direct involvement in hybrid infertility. Because such meiotic drive occurs across mammals, PRDM9 may play a wider, yet transient, role in the early stages of speciation.

  18. The Antiviral Alkaloid Berberine Reduces Chikungunya Virus-Induced Mitogen-Activated Protein Kinase Signaling

    PubMed Central

    Thaa, Bastian; Amrun, Siti Naqiah; Simarmata, Diane; Rausalu, Kai; Nyman, Tuula A.; Merits, Andres; McInerney, Gerald M.; Ng, Lisa F. P.

    2016-01-01

    ABSTRACT Chikungunya virus (CHIKV) has infected millions of people in the tropical and subtropical regions since its reemergence in the last decade. We recently identified the nontoxic plant alkaloid berberine as an antiviral substance against CHIKV in a high-throughput screen. Here, we show that berberine is effective in multiple cell types against a variety of CHIKV strains, also at a high multiplicity of infection, consolidating the potential of berberine as an antiviral drug. We excluded any effect of this compound on virus entry or on the activity of the viral replicase. A human phosphokinase array revealed that CHIKV infection specifically activated the major mitogen-activated protein kinase (MAPK) signaling pathways extracellular signal-related kinase (ERK), p38 and c-Jun NH2-terminal kinase (JNK). Upon treatment with berberine, this virus-induced MAPK activation was markedly reduced. Subsequent analyses with specific inhibitors of these kinases indicated that the ERK and JNK signaling cascades are important for the generation of progeny virions. In contrast to specific MAPK inhibitors, berberine lowered virus-induced activation of all major MAPK pathways and resulted in a stronger reduction in viral titers. Further, we assessed the in vivo efficacy of berberine in a mouse model and measured a significant reduction of CHIKV-induced inflammatory disease. In summary, we demonstrate the efficacy of berberine as a drug against CHIKV and highlight the importance of the MAPK signaling pathways in the alphavirus infectious cycle. IMPORTANCE Chikungunya virus (CHIKV) is a mosquito-borne virus that causes severe and persistent muscle and joint pain and has recently spread to the Americas. No licensed drug exists to counter this virus. In this study, we report that the alkaloid berberine is antiviral against different CHIKV strains and in multiple human cell lines. We demonstrate that berberine collectively reduced the virus-induced activation of cellular mitogen

  19. Polyacrylamide Gel-Contained Zinc Finger Peptide as the "Lock" and Zinc Ions as the "Key" for Construction of Ultrasensitive Prostate-Specific Antigen SERS Immunosensor.

    PubMed

    Xie, Linglin; Yang, Xia; He, Yi; Yuan, Ruo; Chai, Yaqin

    2018-05-02

    In this work, we adopted polyacrylamide gel-contained zinc finger peptide (PZF) as a "lock" of Raman signal and zinc ions (Zn 2+ ) as a sensitive "key", which was converted from target-captured ZnO NPs, to achieve the measurement of prostate-specific antigen (PSA). Owing to the lock effect from PZF, the surface-enhanced Raman scattering (SERS) tag toluidine blue (TB) connected on Ag NP-coating silica wafer was sheltered leading to low Raman response. Meanwhile, target PSA can specifically connect with antibody 2-coupled ZnO nanocomplexes (ZnO@Au@Ab 2 ) and antibody 1-coupled magnetic (CoFe 2 O 4 @Au@Ab 1 ) nanocomposite through sandwich immunoassay. In the presence of HCl, the ZnO NPs would convert into Zn 2+ to open the PZF because Zn 2+ can specifically react with zinc finger peptide to destroy the PZF structure forming abundant pores. In this way, Zn 2+ could act as the key of Raman signal to open the PZF structure obtaining a strong Raman signal of TB. The proposed SERS sensor can have a quantitative detection of PSA within the range of 1 pg mL -1 to 10 ng mL -1 with a detection limit of 0.65 pg mL -1 . The interaction between zinc finger peptide and Zn 2+ was firstly applied in SERS sensor for the sensitive detection of PSA. These results demonstrated that the new designed SERS biosensor could be a promising tool in biomarker diagnosis.

  20. Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats.

    PubMed

    Mashimo, Tomoji

    2014-01-01

    The laboratory rat has been widely used as an animal model in biomedical science for more than 150 years. Applying zinc-finger nucleases or transcription activator-like effector nucleases to rat embryos via microinjection is an efficient genome editing tool for generating targeted knockout rats. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated endonucleases have been used as an effective tool for precise and multiplex genome editing in mice and rats. In this review, the advantages and disadvantages of these site-specific nuclease technologies for genetic analysis and manipulation in rats are discussed. © 2013 The Author Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  1. Immunoproteomic Profiling of Antiviral Antibodies in New-Onset Type 1 Diabetes Using Protein Arrays

    PubMed Central

    Bian, Xiaofang; Wallstrom, Garrick; Davis, Amy; Wang, Jie; Park, Jin; Throop, Andrea; Steel, Jason; Yu, Xiaobo; Wasserfall, Clive; Schatz, Desmond; Atkinson, Mark

    2016-01-01

    The rapid rise in the incidence of type 1 diabetes (T1D) suggests the involvement of environmental factors including viral infections. We evaluated the association between viral infections and T1D by profiling antiviral antibodies using a high-throughput immunoproteomics approach in patients with new-onset T1D. We constructed a viral protein array comprising the complete proteomes of seven viruses associated with T1D and open reading frames from other common viruses. Antibody responses to 646 viral antigens were assessed in 42 patients with T1D and 42 age- and sex-matched healthy control subjects (mean age 12.7 years, 50% males). Prevalence of antiviral antibodies agreed with known infection rates for the corresponding virus based on epidemiological studies. Antibody responses to Epstein-Barr virus (EBV) were significantly higher in case than control subjects (odds ratio 6.6; 95% CI 2.0–25.7), whereas the other viruses showed no differences. The EBV and T1D association was significant in both sex and age subgroups (≤12 and >12 years), and there was a trend toward early EBV infections among the case subjects. These results suggest a potential role for EBV in T1D development. We believe our innovative immunoproteomics platform is useful for understanding the role of viral infections in T1D and other disorders where associations between viral infection and disease are unclear. PMID:26450993

  2. Proliferation and osteo/odontogenic differentiation of stem cells from apical papilla regulated by Zinc fingers and homeoboxes 2: An in vitro study

    SciT

    Wan, Fang; VIP Center, Shandong Provincial Key Laboratory of Oral Biomedicine, School and Hospital of Stomatology, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012; Gao, Lifen

    In the process of tooth root development, stem cells from the apical papilla (SCAPs) can differentiate into odontoblasts and form root dentin, however, molecules regulating SCAPs differentiation have not been elucidated. Zinc fingers and homeoboxes 2 (ZHX2) is a novel transcriptional inhibitor. It is reported to modulate the development of nerve cells, liver cells, B cells, red blood cells, and so on. However, the role of ZHX2 in tooth root development remains unclear. In this study, we explored the potential role of ZHX2 in the process of SCAPs differentiation. The results showed that overexpression of ZHX2 upregulated the expression ofmore » osteo/odontogenic related genes and ALP activity, inhibited the proliferation of SCAPs. Consistently, ZHX2 knockdown reduced SCAPs mineralization and promoted SCAPs proliferation. These results indicated that ZHX2 plays a critical role in the proliferation and osteo/odontogenic differentiation of SCAPs. - Highlights: • Zinc fingers and homeoboxes 2 (ZHX2) is a novel transcriptional inhibitor. • we found another new biological function of ZHX2 for the first time. • ZHX2 inhibit SCAPs proliferation. • ZHX2 promote the osteo/odontogenic differentiation of SCAPs.« less

  3. A zinc finger domain gene in the lizard, Calotes versicolor, shows extensive homology with the mammalian ZFX and is expressed embryonically.

    PubMed

    Ganesh, S; Choudhary, B; Raman, R

    1998-01-01

    A 590-bp long zinc finger domain DNA fragment has been isolated by polymerase chain reaction from the lizard, Calotes versicolor, employing the primers used for amplifying the zinc finger domain of the human Y-chromosomal gene, ZFY. Cloned in pUC18, the fragment, called CvZfa, was sequenced and its expression during development was studied. At the nucleotide and amino acid level CvZfa shows respectively 83% and 90% identity with the human ZFY, but its extent of homology is greater with the ZFX of human (86% at nucleotide and 92% at amino acid level) and the ZFY-like genes of turtle and chick. Similarly its homology with the mouse Zfx and Zfa is much greater than that with Zfy-1 and Zfy-2. It appears that the mammalian ZFX (Zfx) evolved from reptilian ancestors with a considerable degree of conservation, but the ZFX to ZFY divergence within the class mammalia was more rapid. The CvZfa transcripts were seen in all the embryonic stages from which RNA was analysed. The whole mount in situ hybridization with the posteriorly placed mesonephros and the gonadal primordia of 10 to 25 day old embryos showed signal selectively in mesonephros of the 20 and 25 day embryos. There was no signal in the genital ridge. Thus CvZfa may not have a direct role in gonadogenesis of C. versicolor, but the possibility of its inductive role in the formation of adreno-gonadal axis through mesonephros cannot be discounted.

  4. Which Plant Proteins Are Involved in Antiviral Defense? Review on In Vivo and In Vitro Activities of Selected Plant Proteins against Viruses.

    PubMed

    Musidlak, Oskar; Nawrot, Robert; Goździcka-Józefiak, Anna

    2017-11-01

    Plants have evolved a variety of defense mechanisms to tackle virus attack. Endogenous plant proteins can function as virus suppressors. Different types of proteins mediate defense responses against plant viruses. Pathogenesis-related (PR) proteins are activated upon pathogen infections or in different stress situations and their production is one of many components in plant defense. Ribosome-inactivating proteins (RIPs) suppress translation by enzymatically damaging ribosomes and they have been found to have antiviral activity. RNA-binding proteins (RBPs) bind to target RNAs via specialized RNA-binding domain and can directly or indirectly function in plant defense system against RNA viruses. Proteins involved in silencing machinery, namely Dicer-like (DCL) proteins, Argonaute (AGO) proteins, and RNA-dependent RNA polymerases (RDRs) confer innate antiviral defense in plants as they are able to degrade foreign RNA of viral origin. This review aims to provide a comprehensive and up-to-date picture of plant proteins participating in antiviral defense. As a result we discuss proteins conferring plant antiviral resistance and their potential future applications in different fields of life including agriculture and medicine.

  5. Which Plant Proteins Are Involved in Antiviral Defense? Review on In Vivo and In Vitro Activities of Selected Plant Proteins against Viruses

    PubMed Central

    Goździcka-Józefiak, Anna

    2017-01-01

    Plants have evolved a variety of defense mechanisms to tackle virus attack. Endogenous plant proteins can function as virus suppressors. Different types of proteins mediate defense responses against plant viruses. Pathogenesis-related (PR) proteins are activated upon pathogen infections or in different stress situations and their production is one of many components in plant defense. Ribosome-inactivating proteins (RIPs) suppress translation by enzymatically damaging ribosomes and they have been found to have antiviral activity. RNA-binding proteins (RBPs) bind to target RNAs via specialized RNA-binding domain and can directly or indirectly function in plant defense system against RNA viruses. Proteins involved in silencing machinery, namely Dicer-like (DCL) proteins, Argonaute (AGO) proteins, and RNA-dependent RNA polymerases (RDRs) confer innate antiviral defense in plants as they are able to degrade foreign RNA of viral origin. This review aims to provide a comprehensive and up-to-date picture of plant proteins participating in antiviral defense. As a result we discuss proteins conferring plant antiviral resistance and their potential future applications in different fields of life including agriculture and medicine. PMID:29104238

  6. Genome editing and the next generation of antiviral therapy

    PubMed Central

    Stone, Daniel; Niyonzima, Nixon

    2016-01-01

    Engineered endonucleases such as homing endonucleases (HEs), zinc finger nucleases (ZFNs), Tal-effector nucleases (TALENS) and the RNA-guided engineered nucleases (RGENs or CRISPR/Cas9) can target specific DNA sequences for cleavage, and are proving to be valuable tools for gene editing. Recently engineered endonucleases have shown great promise as therapeutics for the treatment of genetic disease and infectious pathogens. In this review, we discuss recent efforts to use the HE, ZFN, TALEN and CRISPR/Cas9 gene-editing platforms as antiviral therapeutics. We also discuss the obstacles facing gene-editing antiviral therapeutics as they are tested in animal models of disease and transition towards human application. PMID:27272125

  7. Polyubiquitin conjugation to NEMO by triparite motif protein 23 (TRIM23) is critical in antiviral defense

    PubMed Central

    Arimoto, Kei-ichiro; Funami, Kenji; Saeki, Yasushi; Tanaka, Keiji; Okawa, Katsuya; Takeuchi, Osamu; Akira, Shizuo; Murakami, Yoshiki; Shimotohno, Kunitada

    2010-01-01

    The rapid induction of type I IFN is a central event of the innate defense against viral infections and is tightly regulated by a number of cellular molecules. Viral components induce strong type I IFN responses through the activation of toll-like receptors (TLRs) and intracellular cytoplasmic receptors such as an RNA helicase RIG-I and/or MDA5. According to recent studies, the NF-κB essential modulator (NEMO, also called IKKγ) is crucial for this virus-induced antiviral response. However, the precise roles of signal activation by NEMO adaptor have not been elucidated. Here, we show that virus-induced IRF3 and NF-κB activation depends on the K(lys)-27-linked polyubiquitination to NEMO by the novel ubiquitin E3 ligase triparite motif protein 23 (TRIM23). Virus-induced IRF3 and NF-κB activation, as well as K27-linked NEMO polyubiquitination, were abrogated in TRIM23 knockdown cells, whereas TRIM23 knockdown had no effect on TNFα-mediated NF-κB activation. Furthermore, in NEMO-deficient mouse embryo fibroblast cells, IFN-stimulated response element-driven reporter activity was restored by ectopic expression of WT NEMO, as expected, but only partial recovery by NEMO K165/309/325/326/344R multipoints mutant on which TRIM23-mediated ubiquitin conjugation was substantially reduced. Thus, we conclude that TRIM23-mediated ubiquitin conjugation to NEMO is essential for TLR3- and RIG-I/MDA5-mediated antiviral innate and inflammatory responses. PMID:20724660

  8. Immunoproteomic Profiling of Antiviral Antibodies in New-Onset Type 1 Diabetes Using Protein Arrays.

    PubMed

    Bian, Xiaofang; Wallstrom, Garrick; Davis, Amy; Wang, Jie; Park, Jin; Throop, Andrea; Steel, Jason; Yu, Xiaobo; Wasserfall, Clive; Schatz, Desmond; Atkinson, Mark; Qiu, Ji; LaBaer, Joshua

    2016-01-01

    The rapid rise in the incidence of type 1 diabetes (T1D) suggests the involvement of environmental factors including viral infections. We evaluated the association between viral infections and T1D by profiling antiviral antibodies using a high-throughput immunoproteomics approach in patients with new-onset T1D. We constructed a viral protein array comprising the complete proteomes of seven viruses associated with T1D and open reading frames from other common viruses. Antibody responses to 646 viral antigens were assessed in 42 patients with T1D and 42 age- and sex-matched healthy control subjects (mean age 12.7 years, 50% males). Prevalence of antiviral antibodies agreed with known infection rates for the corresponding virus based on epidemiological studies. Antibody responses to Epstein-Barr virus (EBV) were significantly higher in case than control subjects (odds ratio 6.6; 95% CI 2.0-25.7), whereas the other viruses showed no differences. The EBV and T1D association was significant in both sex and age subgroups (≤12 and >12 years), and there was a trend toward early EBV infections among the case subjects. These results suggest a potential role for EBV in T1D development. We believe our innovative immunoproteomics platform is useful for understanding the role of viral infections in T1D and other disorders where associations between viral infection and disease are unclear. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  9. Chemical Synthesis of the Highly Hydrophobic Antiviral Membrane-Associated Protein IFITM3 and Modified Variants.

    PubMed

    Harmand, Thibault J; Pattabiraman, Vijaya R; Bode, Jeffrey W

    2017-10-02

    Interferon-induced transmembrane protein 3 (IFITM3) is an antiviral transmembrane protein that is thought to serve as the primary factor for inhibiting the replication of a large number of viruses, including West Nile virus, Dengue virus, Ebola virus, and Zika virus. Production of this 14.5 kDa, 133-residue transmembrane protein, especially with essential posttranslational modifications, by recombinant expression is challenging. In this report, we document the chemical synthesis of IFTIM3 in multi-milligram quantities (>15 mg) and the preparation of phosphorylated and fluorescent variants. The synthesis was accomplished by using KAHA ligations, which operate under acidic aqueous/organic mixtures that excel at solubilizing even the exceptionally hydrophobic C-terminal region of IFITM3. The synthetic material is readily incorporated into model vesicles and forms the basis for using synthetic, homogenous IFITM3 and its derivatives for further studying its structure and biological mode of action. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Cloning and function analysis of an alfalfa (Medicago sativa L.) zinc finger protein promoter MsZPP.

    PubMed

    Li, Yan; Sun, Yan; Yang, Qingchuan; Kang, Junmei; Zhang, Tiejun; Gruber, Margaret Yvonne; Fang, Feng

    2012-08-01

    A 1272 bp upstream sequence of MsZFN gene was cloned from alfalfa, which was designed as MsZPP (Genbank accession number: FJ 161979.2) using an adaptor-mediated genome walking method. A sole transcription start site was located 69 bp upstream of the translation start site. Its pattern of expression included roots, stem vascular tissues, floral reproductive organs, and leaves, but the promoter did not express in seeds, petals or sepals. Transcription levels can be stimulated by dark, MeJA, and IAA. However, GUS fusion activities had no change by treatments of GA, ABA, drought and high salt for 3 days. Deletion analysis revealed that all sections of the promoter can drive gus gene expression in the root, stem, leaves and floral reproductive organs; however, only fragments longer than the -460 bp promoter can stimulate strong gus gene expression in these organs. In addition, the -460 bp promoter fragment can drive gus expression not only in the vascular tissue, but also in leaf guard cells. The results suggest that the promoter MsZPP plays roles in the regulation of transgene expression, particularly due to its darkness, MeJA, and IAA responsiveness.

  11. Critical role of zinc finger protein 521 in the control of growth, clonogenicity and tumorigenic potential of medulloblastoma cells

    PubMed Central

    Iaccino, Enrico; Scicchitano, Stefania; Lupia, Michela; Chiarella, Emanuela; Mega, Tiziana; Bernaudo, Francesca; Pelaggi, Daniela; Mesuraca, Maria; Pazzaglia, Simonetta; Semenkow, Samantha; Bar, Eli E.; Kool, Marcel; Pfister, Stefan; Bond, Heather M.; Eberhart, Charles G.; Steinkühler, Christian; Morrone, Giovanni

    2013-01-01

    The stem cell-associated transcription co-factor ZNF521 has been implicated in the control of hematopoietic, osteo-adipogenic and neural progenitor cells. ZNF521 is highly expressed in cerebellum and in particular in the neonatal external granule layer that contains candidate medulloblastoma cells-of-origin, and in the majority of human medulloblastomas. Here we have explored its involvement in the control of human and murine medulloblastoma cells. The effect of ZNF521 on growth and tumorigenic potential of human medulloblastoma cell lines as well as primary Ptc1−/+ mouse medulloblastoma cells was investigated in a variety of in vitro and in vivo assays, by modulating its expression using lentiviral vectors carrying the ZNF521 cDNA, or shRNAs that silence its expression. Enforced overexpression of ZNF521 in DAOY medulloblastoma cells significantly increased their proliferation, growth as spheroids and ability to generate clones in single-cell cultures and semisolid media, and enhanced their migratory ability in wound-healing assays. Importantly, ZNF521-expressing cells displayed a greatly enhanced tumorigenic potential in nude mice. All these activities required the ZNF521 N-terminal motif that recruits the nucleosome remodeling and histone deacetylase complex, which might therefore represent an appealing therapeutic target. Conversely, silencing of ZNF521 in human UW228 medulloblastoma cells that display high baseline expression decreased their proliferation, clonogenicity, sphere formation and wound-healing ability. Similarly, Zfp521 silencing in mouse Ptc1−/+ medulloblastoma cells drastically reduced their growth and tumorigenic potential. Our data strongly support the notion that ZNF521, through the recruitment of the NuRD complex, contributes to the clonogenic growth, migration and tumorigenicity of medulloblastoma cells. PMID:23907569

  12. Critical role of zinc finger protein 521 in the control of growth, clonogenicity and tumorigenic potential of medulloblastoma cells.

    PubMed

    Spina, Raffaella; Filocamo, Gessica; Iaccino, Enrico; Scicchitano, Stefania; Lupia, Michela; Chiarella, Emanuela; Mega, Tiziana; Bernaudo, Francesca; Pelaggi, Daniela; Mesuraca, Maria; Pazzaglia, Simonetta; Semenkow, Samantha; Bar, Eli E; Kool, Marcel; Pfister, Stefan; Bond, Heather M; Eberhart, Charles G; Steinkühler, Christian; Morrone, Giovanni

    2013-08-01

    The stem cell-associated transcription co-factor ZNF521 has been implicated in the control of hematopoietic, osteo-adipogenic and neural progenitor cells. ZNF521 is highly expressed in cerebellum and in particular in the neonatal external granule layer that contains candidate medulloblastoma cells-of-origin, and in the majority of human medulloblastomas. Here we have explored its involvement in the control of human and murine medulloblastoma cells. The effect of ZNF521 on growth and tumorigenic potential of human medulloblastoma cell lines as well as primary Ptc1-/+ mouse medulloblastoma cells was investigated in a variety of in vitro and in vivo assays, by modulating its expression using lentiviral vectors carrying the ZNF521 cDNA, or shRNAs that silence its expression. Enforced overexpression of ZNF521 in DAOY medulloblastoma cells significantly increased their proliferation, growth as spheroids and ability to generate clones in single-cell cultures and semisolid media, and enhanced their migratory ability in wound-healing assays. Importantly, ZNF521-expressing cells displayed a greatly enhanced tumorigenic potential in nude mice. All these activities required the ZNF521 N-terminal motif that recruits the nucleosome remodeling and histone deacetylase complex, which might therefore represent an appealing therapeutic target. Conversely, silencing of ZNF521 in human UW228 medulloblastoma cells that display high baseline expression decreased their proliferation, clonogenicity, sphere formation and wound-healing ability. Similarly, Zfp521 silencing in mouse Ptc1-/+ medulloblastoma cells drastically reduced their growth and tumorigenic potential. Our data strongly support the notion that ZNF521, through the recruitment of the NuRD complex, contributes to the clonogenic growth, migration and tumorigenicity of medulloblastoma cells.

  13. A Novel Strategy for Controlling the Metastatic Phenotype: Targeting the SNAG Repression Domain in the SNAIL Zinc-Finger Protein

    DTIC Science & Technology

    2007-07-01

    interacts with nuclear receptors and can inhibit betaFTZ-F1-dependent transcription. Mol. Cell, 7, 753–765. 29. Dupont , S., Zacchigna, L., Cordenonsi, M...Washington University/ Pfizer Biomedical Research Program to GDL. GDL was an Established Investigator of the American Heart Association. 26...Cell 11, 1043-1054. Hecker, C. M., Rabiller, M., Haglund, K., Bayer , P., and Dikic, I. (2006). Specification of SUMO1- and SUMO2-interacting motifs. J

  14. Phosphorylation of the Antiviral Protein Interferon-inducible Transmembrane Protein 3 (IFITM3) Dually Regulates Its Endocytosis and Ubiquitination*

    PubMed Central

    Chesarino, Nicholas M.; McMichael, Temet M.; Hach, Jocelyn C.; Yount, Jacob S.

    2014-01-01

    Interferon-inducible transmembrane protein 3 (IFITM3) is essential for innate defense against influenza virus in mice and humans. IFITM3 localizes to endolysosomes where it prevents virus fusion, although mechanisms controlling its trafficking to this cellular compartment are not fully understood. We determined that both mouse and human IFITM3 are phosphorylated by the protein-tyrosine kinase FYN on tyrosine 20 (Tyr20) and that mouse IFITM3 is also phosphorylated on the non-conserved Tyr27. Phosphorylation led to a cellular redistribution of IFITM3, including plasma membrane accumulation. Mutation of Tyr20 caused a similar redistribution of IFITM3 and resulted in decreased antiviral activity against influenza virus, whereas Tyr27 mutation of mouse IFITM3 showed minimal effects on localization or activity. Using FYN knockout cells, we also found that IFITM3 phosphorylation is not a requirement for its antiviral activity. Together, these results indicate that Tyr20 is part of an endocytosis signal that can be blocked by phosphorylation or by mutation of this residue. Further mutagenesis narrowed this endocytosis-controlling region to four residues conforming to a YXXΦ (where X is any amino acid and Φ is Val, Leu, or Ile) endocytic motif that, when transferred to CD4, resulted in its internalization from the cell surface. Additionally, we found that phosphorylation of IFITM3 by FYN and mutagenesis of Tyr20 both resulted in decreased IFITM3 ubiquitination. Overall, these results suggest that modification of Tyr20 may serve in a cellular checkpoint controlling IFITM3 trafficking and degradation and demonstrate the complexity of posttranslational regulation of IFITM3. PMID:24627473

  15. Proliferation and osteo/odontogenic differentiation of stem cells from apical papilla regulated by Zinc fingers and homeoboxes 2: An in vitro study.

    PubMed

    Wan, Fang; Gao, Lifen; Lu, Yating; Ma, Hongxin; Wang, Hongxing; Liang, Xiaohong; Wang, Yan; Ma, Chunhong

    2016-01-15

    In the process of tooth root development, stem cells from the apical papilla (SCAPs) can differentiate into odontoblasts and form root dentin, however, molecules regulating SCAPs differentiation have not been elucidated. Zinc fingers and homeoboxes 2 (ZHX2) is a novel transcriptional inhibitor. It is reported to modulate the development of nerve cells, liver cells, B cells, red blood cells, and so on. However, the role of ZHX2 in tooth root development remains unclear. In this study, we explored the potential role of ZHX2 in the process of SCAPs differentiation. The results showed that overexpression of ZHX2 upregulated the expression of osteo/odontogenic related genes and ALP activity, inhibited the proliferation of SCAPs. Consistently, ZHX2 knockdown reduced SCAPs mineralization and promoted SCAPs proliferation. These results indicated that ZHX2 plays a critical role in the proliferation and osteo/odontogenic differentiation of SCAPs. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Molecular Imaging of Human Embryonic Stem Cells Stably Expressing Human PET Reporter Genes After Zinc Finger Nuclease-Mediated Genome Editing.

    PubMed

    Wolfs, Esther; Holvoet, Bryan; Ordovas, Laura; Breuls, Natacha; Helsen, Nicky; Schönberger, Matthias; Raitano, Susanna; Struys, Tom; Vanbilloen, Bert; Casteels, Cindy; Sampaolesi, Maurilio; Van Laere, Koen; Lambrichts, Ivo; Verfaillie, Catherine M; Deroose, Christophe M

    2017-10-01

    Molecular imaging is indispensable for determining the fate and persistence of engrafted stem cells. Standard strategies for transgene induction involve the use of viral vectors prone to silencing and insertional mutagenesis or the use of nonhuman genes. Methods: We used zinc finger nucleases to induce stable expression of human imaging reporter genes into the safe-harbor locus adeno-associated virus integration site 1 in human embryonic stem cells. Plasmids were generated carrying reporter genes for fluorescence, bioluminescence imaging, and human PET reporter genes. Results: In vitro assays confirmed their functionality, and embryonic stem cells retained differentiation capacity. Teratoma formation assays were performed, and tumors were imaged over time with PET and bioluminescence imaging. Conclusion: This study demonstrates the application of genome editing for targeted integration of human imaging reporter genes in human embryonic stem cells for long-term molecular imaging. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  17. Histophilus somni Stimulates Expression of Antiviral Proteins and Inhibits BRSV Replication in Bovine Respiratory Epithelial Cells

    PubMed Central

    Lin, C.; Agnes, J. T.; Behrens, N.; Tagawa, Y.; Gershwin, L. J.; Corbeil, L. B.

    2016-01-01

    Our previous studies showed that bovine respiratory syncytial virus (BRSV) followed by Histophilus somni causes more severe bovine respiratory disease and a more permeable alveolar barrier in vitro than either agent alone. However, microarray analysis revealed the treatment of bovine alveolar type 2 (BAT2) epithelial cells with H. somni concentrated culture supernatant (CCS) stimulated up-regulation of four antiviral protein genes as compared with BRSV infection or dual treatment. This suggested that inhibition of viral infection, rather than synergy, may occur if the bacterial infection occurred before the viral infection. Viperin (or radical S-adenosyl methionine domain containing 2—RSAD2) and ISG15 (IFN-stimulated gene 15—ubiquitin-like modifier) were most up-regulated. CCS dose and time course for up-regulation of viperin protein levels were determined in treated bovine turbinate (BT) upper respiratory cells and BAT2 lower respiratory cells by Western blotting. Treatment of BAT2 cells with H. somni culture supernatant before BRSV infection dramatically reduced viral replication as determined by qRT PCR, supporting the hypothesis that the bacterial infection may inhibit viral infection. Studies of the role of the two known H. somni cytotoxins showed that viperin protein expression was induced by endotoxin (lipooligosaccharide) but not by IbpA, which mediates alveolar permeability and H. somni invasion. A naturally occurring IbpA negative asymptomatic carrier strain of H. somni (129Pt) does not cause BAT2 cell retraction or permeability of alveolar cell monolayers, so lacks virulence in vitro. To investigate initial steps of pathogenesis, we showed that strain 129Pt attached to BT cells and induced a strong viperin response in vitro. Thus colonization of the bovine upper respiratory tract with an asymptomatic carrier strain lacking virulence may decrease viral infection and the subsequent enhancement of bacterial respiratory infection in vivo. PMID:26859677

  18. Histophilus somni Stimulates Expression of Antiviral Proteins and Inhibits BRSV Replication in Bovine Respiratory Epithelial Cells.

    PubMed

    Lin, C; Agnes, J T; Behrens, N; Shao, M; Tagawa, Y; Gershwin, L J; Corbeil, L B

    2016-01-01

    Our previous studies showed that bovine respiratory syncytial virus (BRSV) followed by Histophilus somni causes more severe bovine respiratory disease and a more permeable alveolar barrier in vitro than either agent alone. However, microarray analysis revealed the treatment of bovine alveolar type 2 (BAT2) epithelial cells with H. somni concentrated culture supernatant (CCS) stimulated up-regulation of four antiviral protein genes as compared with BRSV infection or dual treatment. This suggested that inhibition of viral infection, rather than synergy, may occur if the bacterial infection occurred before the viral infection. Viperin (or radical S-adenosyl methionine domain containing 2--RSAD2) and ISG15 (IFN-stimulated gene 15--ubiquitin-like modifier) were most up-regulated. CCS dose and time course for up-regulation of viperin protein levels were determined in treated bovine turbinate (BT) upper respiratory cells and BAT2 lower respiratory cells by Western blotting. Treatment of BAT2 cells with H. somni culture supernatant before BRSV infection dramatically reduced viral replication as determined by qRT PCR, supporting the hypothesis that the bacterial infection may inhibit viral infection. Studies of the role of the two known H. somni cytotoxins showed that viperin protein expression was induced by endotoxin (lipooligosaccharide) but not by IbpA, which mediates alveolar permeability and H. somni invasion. A naturally occurring IbpA negative asymptomatic carrier strain of H. somni (129Pt) does not cause BAT2 cell retraction or permeability of alveolar cell monolayers, so lacks virulence in vitro. To investigate initial steps of pathogenesis, we showed that strain 129Pt attached to BT cells and induced a strong viperin response in vitro. Thus colonization of the bovine upper respiratory tract with an asymptomatic carrier strain lacking virulence may decrease viral infection and the subsequent enhancement of bacterial respiratory infection in vivo.

  19. Zinc-finger nuclease-mediated targeted insertion of reporter genes for quantitative imaging of gene expression in sea urchin embryos

    PubMed Central

    Ochiai, Hiroshi; Sakamoto, Naoaki; Fujita, Kazumasa; Nishikawa, Masatoshi; Suzuki, Ken-ichi; Matsuura, Shinya; Miyamoto, Tatsuo; Sakuma, Tetsushi; Shibata, Tatsuo; Yamamoto, Takashi

    2012-01-01

    To understand complex biological systems, such as the development of multicellular organisms, it is important to characterize the gene expression dynamics. However, there is currently no universal technique for targeted insertion of reporter genes and quantitative imaging in multicellular model systems. Recently, genome editing using zinc-finger nucleases (ZFNs) has been reported in several models. ZFNs consist of a zinc-finger DNA-binding array with the nuclease domain of the restriction enzyme FokI and facilitate targeted transgene insertion. In this study, we successfully inserted a GFP reporter cassette into the HpEts1 gene locus of the sea urchin, Hemicentrotus pulcherrimus. We achieved this insertion by injecting eggs with a pair of ZFNs for HpEts1 with a targeting donor construct that contained ∼1-kb homology arms and a 2A-histone H2B–GFP cassette. We increased the efficiency of the ZFN-mediated targeted transgene insertion by in situ linearization of the targeting donor construct and cointroduction of an mRNA for a dominant-negative form of HpLig4, which encodes the H. pulcherrimus homolog of DNA ligase IV required for error-prone nonhomologous end joining. We measured the fluorescence intensity of GFP at the single-cell level in living embryos during development and found that there was variation in HpEts1 expression among the primary mesenchyme cells. These findings demonstrate the feasibility of ZFN-mediated targeted transgene insertion to enable quantification of the expression levels of endogenous genes during development in living sea urchin embryos. PMID:22711830

  20. ATRX binds to atypical chromatin domains at the 3′ exons of zinc finger genes to preserve H3K9me3 enrichment

    PubMed Central

    Chowdhury, Asif H.; Hasson, Dan; Dyer, Michael A.

    2016-01-01

    ABSTRACT ATRX is a SWI/SNF chromatin remodeler proposed to govern genomic stability through the regulation of repetitive sequences, such as rDNA, retrotransposons, and pericentromeric and telomeric repeats. However, few direct ATRX target genes have been identified and high-throughput genomic approaches are currently lacking for ATRX. Here we present a comprehensive ChIP-sequencing study of ATRX in multiple human cell lines, in which we identify the 3′ exons of zinc finger genes (ZNFs) as a new class of ATRX targets. These 3′ exonic regions encode the zinc finger motifs, which can range from 1–40 copies per ZNF gene and share large stretches of sequence similarity. These regions often contain an atypical chromatin signature: they are transcriptionally active, contain high levels of H3K36me3, and are paradoxically enriched in H3K9me3. We find that these ZNF 3′ exons are co-occupied by SETDB1, TRIM28, and ZNF274, which form a complex with ATRX. CRISPR/Cas9-mediated loss-of-function studies demonstrate (i) a reduction of H3K9me3 at the ZNF 3′ exons in the absence of ATRX and ZNF274 and, (ii) H3K9me3 levels at atypical chromatin regions are particularly sensitive to ATRX loss compared to other H3K9me3-occupied regions. As a consequence of ATRX or ZNF274 depletion, cells with reduced levels of H3K9me3 show increased levels of DNA damage, suggesting that ATRX binds to the 3′ exons of ZNFs to maintain their genomic stability through preservation of H3K9me3. PMID:27029610

  1. ZFP36 RNA-binding proteins restrain T-cell activation and anti-viral immunity.

    PubMed

    Moore, Michael J; Blachere, Nathalie E; Fak, John J; Park, Christopher Y; Sawicka, Kirsty; Parveen, Salina; Zucker-Scharff, Ilana; Moltedo, Bruno; Rudensky, Alexander Y; Darnell, Robert B

    2018-05-31

    Dynamic post-transcriptional control of RNA expression by RNA-binding proteins (RBPs) is critical during immune response. ZFP36 RBPs are prominent inflammatory regulators linked to autoimmunity and cancer, but functions in adaptive immunity are less clear. We used HITS-CLIP to define ZFP36 targets in mouse T cells, revealing unanticipated actions in regulating T cell activation, proliferation, and effector functions. Transcriptome and ribosome profiling showed that ZFP36 represses mRNA target abundance and translation, notably through novel AU-rich sites in coding sequence. Functional studies revealed that ZFP36 regulates early T cell activation kinetics cell autonomously, by attenuating activation marker expression, limiting T cell expansion, and promoting apoptosis. Strikingly, loss of ZFP36 in vivo accelerated T cell responses to acute viral infection and enhanced anti-viral immunity. These findings uncover a critical role for ZFP36 RBPs in restraining T cell expansion and effector functions, and suggest ZFP36 inhibition as a strategy to enhance immune-based therapies. © 2018, Moore et al.

  2. Hepatitis C virus core protein subverts the antiviral activities of human Kupffer cells.

    PubMed

    Tu, Zhengkun; Pierce, Robert H; Kurtis, Jonathan; Kuroki, Yoshio; Crispe, I Nicholas; Orloff, Mark S

    2010-01-01

    Kupffer cells (KC) are important innate immune cells of the liver, functioning as scavenging sinusoidal phagocytes and transducers of pattern recognition signals, including those of toll-like receptors (TLRs). The hepatitis C virus core protein (HCVc) engages TLR2 on peripheral blood monocytes and induces production of multiple inflammatory cytokines. We examined the effects of HCVc on human primary KC functions. KC were isolated from living donor allografts and stimulated with HCVc and/or ligands for TLRs. KC were examined for production of cytokines, expression of programmed death-ligand 1 (PD-L1), secretion of type 1 interferons (IFNs), and expression of the apoptosis-inducing protein tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL). HCVc acts as a ligand for TLR2 on human KC, inducing them to secrete interleukin (IL)-1beta, TNF-alpha, and IL-10 and up-regulate cell surface PD-L1. HCVc blocked TLR3-mediated secretion of IFN-alpha, IFN-beta, and cell surface expression of the cytotoxic molecule TRAIL. Inhibition of phosphoinositide 3 kinase with LY294002 blocked the up-regulation of PD-L1 by TLR ligands and the TLR3-specific induction of TRAIL and type 1 IFNs. KC are intravascular macrophages that are continuously exposed to, and tolerant of, bacterial TLR ligands, which are delivered via the portal circulation. By mimicking a bacterial TLR2 ligand and effectively blocking the TLR3-mediated, double-stranded RNA-induced antiviral response, HCVc might appear to exploit this unique aspect of immunity in the liver. Copyright 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.

  3. Multifunctional roles of leader protein of foot-and-mouth disease viruses in suppressing host antiviral responses.

    PubMed

    Liu, Yingqi; Zhu, Zixiang; Zhang, Miaotao; Zheng, Haixue

    2015-10-28

    Foot-and-mouth disease virus (FMDV) leader protein (L(pro)) is a papain-like proteinase, which plays an important role in FMDV pathogenesis. L(pro) exists as two forms, Lab and Lb, due to translation being initiated from two different start codons separated by 84 nucleotides. L(pro) self-cleaves from the nascent viral polyprotein precursor as the first mature viral protein. In addition to its role as a viral proteinase, L(pro) also has the ability to antagonize host antiviral effects. To promote FMDV replication, L(pro) can suppress host antiviral responses by three different mechanisms: (1) cleavage of eukaryotic translation initiation factor 4 γ (eIF4G) to shut off host protein synthesis; (2) inhibition of host innate immune responses through restriction of interferon-α/β production; and (3) L(pro) can also act as a deubiquitinase and catalyze deubiquitination of innate immune signaling molecules. In the light of recent functional and biochemical findings regarding L(pro), this review introduces the basic properties of L(pro) and the mechanisms by which it antagonizes host antiviral responses.

  4. Evolution and Antiviral Specificities of Interferon-Induced Mx Proteins of Bats against Ebola, Influenza, and Other RNA Viruses.

    PubMed

    Fuchs, Jonas; Hölzer, Martin; Schilling, Mirjam; Patzina, Corinna; Schoen, Andreas; Hoenen, Thomas; Zimmer, Gert; Marz, Manja; Weber, Friedemann; Müller, Marcel A; Kochs, Georg

    2017-08-01

    Bats serve as a reservoir for various, often zoonotic viruses, including significant human pathogens such as Ebola and influenza viruses. However, for unknown reasons, viral infections rarely cause clinical symptoms in bats. A tight control of viral replication by the host innate immune defense might contribute to this phenomenon. Transcriptomic studies revealed the presence of the interferon-induced antiviral myxovirus resistance (Mx) proteins in bats, but detailed functional aspects have not been assessed. To provide evidence that bat Mx proteins might act as key factors to control viral replication we cloned Mx1 cDNAs from three bat families, Pteropodidae, Phyllostomidae, and Vespertilionidae. Phylogenetically these bat Mx1 genes cluster closely with their human ortholog MxA. Using transfected cell cultures, minireplicon systems, virus-like particles, and virus infections, we determined the antiviral potential of the bat Mx1 proteins. Bat Mx1 significantly reduced the polymerase activity of viruses circulating in bats, including Ebola and influenza A-like viruses. The related Thogoto virus, however, which is not known to infect bats, was not inhibited by bat Mx1. Further, we provide evidence for positive selection in bat Mx1 genes that might explain species-specific antiviral activities of these proteins. Together, our data suggest a role for Mx1 in controlling these viruses in their bat hosts. IMPORTANCE Bats are a natural reservoir for various viruses that rarely cause clinical symptoms in bats but are dangerous zoonotic pathogens, like Ebola or rabies virus. It has been hypothesized that the interferon system might play a key role in controlling viral replication in bats. We speculate that the interferon-induced Mx proteins might be key antiviral factors of bats and have coevolved with bat-borne viruses. This study evaluated for the first time a large set of bat Mx1 proteins spanning three major bat families for their antiviral potential, including activity

  5. Evolution and Antiviral Specificities of Interferon-Induced Mx Proteins of Bats against Ebola, Influenza, and Other RNA Viruses

    PubMed Central

    Fuchs, Jonas; Hölzer, Martin; Schilling, Mirjam; Patzina, Corinna; Schoen, Andreas; Zimmer, Gert; Marz, Manja; Müller, Marcel A.

    2017-01-01

    ABSTRACT Bats serve as a reservoir for various, often zoonotic viruses, including significant human pathogens such as Ebola and influenza viruses. However, for unknown reasons, viral infections rarely cause clinical symptoms in bats. A tight control of viral replication by the host innate immune defense might contribute to this phenomenon. Transcriptomic studies revealed the presence of the interferon-induced antiviral myxovirus resistance (Mx) proteins in bats, but detailed functional aspects have not been assessed. To provide evidence that bat Mx proteins might act as key factors to control viral replication we cloned Mx1 cDNAs from three bat families, Pteropodidae, Phyllostomidae, and Vespertilionidae. Phylogenetically these bat Mx1 genes cluster closely with their human ortholog MxA. Using transfected cell cultures, minireplicon systems, virus-like particles, and virus infections, we determined the antiviral potential of the bat Mx1 proteins. Bat Mx1 significantly reduced the polymerase activity of viruses circulating in bats, including Ebola and influenza A-like viruses. The related Thogoto virus, however, which is not known to infect bats, was not inhibited by bat Mx1. Further, we provide evidence for positive selection in bat Mx1 genes that might explain species-specific antiviral activities of these proteins. Together, our data suggest a role for Mx1 in controlling these viruses in their bat hosts. IMPORTANCE Bats are a natural reservoir for various viruses that rarely cause clinical symptoms in bats but are dangerous zoonotic pathogens, like Ebola or rabies virus. It has been hypothesized that the interferon system might play a key role in controlling viral replication in bats. We speculate that the interferon-induced Mx proteins might be key antiviral factors of bats and have coevolved with bat-borne viruses. This study evaluated for the first time a large set of bat Mx1 proteins spanning three major bat families for their antiviral potential, including

  6. Antiviral Defenses in Plants through Genome Editing

    PubMed Central

    Romay, Gustavo; Bragard, Claude

    2017-01-01

    Plant–virus interactions based-studies have contributed to increase our understanding on plant resistance mechanisms, providing new tools for crop improvement. In the last two decades, RNA interference, a post-transcriptional gene silencing approach, has been used to induce antiviral defenses in plants with the help of genetic engineering technologies. More recently, the new genome editing systems (GES) are revolutionizing the scope of tools available to confer virus resistance in plants. The most explored GES are zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats/Cas9 endonuclease. GES are engineered to target and introduce mutations, which can be deleterious, via double-strand breaks at specific DNA sequences by the error-prone non-homologous recombination end-joining pathway. Although GES have been engineered to target DNA, recent discoveries of GES targeting ssRNA molecules, including virus genomes, pave the way for further studies programming plant defense against RNA viruses. Most of plant virus species have an RNA genome and at least 784 species have positive ssRNA. Here, we provide a summary of the latest progress in plant antiviral defenses mediated by GES. In addition, we also discuss briefly the GES perspectives in light of the rebooted debate on genetic modified organisms (GMOs) and the current regulatory frame for agricultural products involving the use of such engineering technologies. PMID:28167937

  7. Cooperative roles of fish protein kinase containing Z-DNA binding domains and double-stranded RNA-dependent protein kinase in interferon-mediated antiviral response.

    PubMed

    Liu, Ting-Kai; Zhang, Yi-Bing; Liu, Ying; Sun, Fan; Gui, Jian-Fang

    2011-12-01

    The double-stranded RNA (dsRNA)-dependent protein kinase (PKR) inhibits protein synthesis by phosphorylating eukaryotic translation initiation factor 2α (eIF2α). In fish species, in addition to PKR, there exists a PKR-like protein kinase containing Z-DNA binding domains (PKZ). However, the antiviral role of fish PKZ and the functional relationship between fish PKZ and PKR remain unknown. Here we confirmed the coexpression of fish PKZ and PKR proteins in Carassius auratus blastula embryonic (CAB) cells and identified them as two typical interferon (IFN)-inducible eIF2α kinases, both of which displayed an ability to inhibit virus replication. Strikingly, fish IFN or all kinds of IFN stimuli activated PKZ and PKR to phosphorylated eIF2α. Overexpression of both fish kinases together conferred much more significant inhibition of virus replication than overexpression of either protein, whereas morpholino knockdown of both made fish cells more vulnerable to virus infection than knockdown of either. The antiviral ability of fish PKZ was weaker than fish PKR, which correlated with its lower ability to phosphorylate eIF2α than PKR. Moreover, the independent association of fish PKZ or PKR reveals that each of them formed homodimers and that fish PKZ phosphorylated eIF2α independently on fish PKR and vice versa. These results suggest that fish PKZ and PKR play a nonredundant but cooperative role in IFN antiviral response.

  8. Novel Role for Protein Inhibitor of Activated STAT 4 (PIAS4) in the Restriction of Herpes Simplex Virus 1 by the Cellular Intrinsic Antiviral Immune Response.

    PubMed

    Conn, Kristen L; Wasson, Peter; McFarlane, Steven; Tong, Lily; Brown, James R; Grant, Kyle G; Domingues, Patricia; Boutell, Chris

    2016-05-01

    Small ubiquitin-like modifier (SUMO) is used by the intrinsic antiviral immune response to restrict viral pathogens, such as herpes simplex virus 1 (HSV-1). Despite characterization of the host factors that rely on SUMOylation to exert their antiviral effects, the enzymes that mediate these SUMOylation events remain to be defined. We show that unconjugated SUMO levels are largely maintained throughout infection regardless of the presence of ICP0, the HSV-1 SUMO-targeted ubiquitin ligase. Moreover, in the absence of ICP0, high-molecular-weight SUMO-conjugated proteins do not accumulate if HSV-1 DNA does not replicate. These data highlight the continued importance for SUMO signaling throughout infection. We show that the SUMO ligase protein inhibitor of activated STAT 4 (PIAS4) is upregulated during HSV-1 infection and localizes to nuclear domains that contain viral DNA. PIAS4 is recruited to sites associated with HSV-1 genome entry through SUMO interaction motif (SIM)-dependent mechanisms that are destabilized by ICP0. In contrast, PIAS4 accumulates in replication compartments through SIM-independent mechanisms irrespective of ICP0 expression. Depletion of PIAS4 enhances the replication of ICP0-null mutant HSV-1, which is susceptible to restriction by the intrinsic antiviral immune response. The mechanisms of PIAS4-mediated restriction are synergistic with the restriction mechanisms of a characterized intrinsic antiviral factor, promyelocytic leukemia protein, and are antagonized by ICP0. We provide the first evidence that PIAS4 is an intrinsic antiviral factor. This novel role for PIAS4 in intrinsic antiviral immunity contrasts with the known roles of PIAS proteins as suppressors of innate immunity. Posttranslational modifications with small ubiquitin-like modifier (SUMO) proteins regulate multiple aspects of host immunity and viral replication. The protein inhibitor of activated STAT (PIAS) family of SUMO ligases is predominantly associated with the suppression of

  9. Novel Role for Protein Inhibitor of Activated STAT 4 (PIAS4) in the Restriction of Herpes Simplex Virus 1 by the Cellular Intrinsic Antiviral Immune Response

    PubMed Central

    Conn, Kristen L.; Wasson, Peter; McFarlane, Steven; Tong, Lily; Brown, James R.; Grant, Kyle G.; Domingues, Patricia

    2016-01-01

    ABSTRACT Small ubiquitin-like modifier (SUMO) is used by the intrinsic antiviral immune response to restrict viral pathogens, such as herpes simplex virus 1 (HSV-1). Despite characterization of the host factors that rely on SUMOylation to exert their antiviral effects, the enzymes that mediate these SUMOylation events remain to be defined. We show that unconjugated SUMO levels are largely maintained throughout infection regardless of the presence of ICP0, the HSV-1 SUMO-targeted ubiquitin ligase. Moreover, in the absence of ICP0, high-molecular-weight SUMO-conjugated proteins do not accumulate if HSV-1 DNA does not replicate. These data highlight the continued importance for SUMO signaling throughout infection. We show that the SUMO ligase protein inhibitor of activated STAT 4 (PIAS4) is upregulated during HSV-1 infection and localizes to nuclear domains that contain viral DNA. PIAS4 is recruited to sites associated with HSV-1 genome entry through SUMO interaction motif (SIM)-dependent mechanisms that are destabilized by ICP0. In contrast, PIAS4 accumulates in replication compartments through SIM-independent mechanisms irrespective of ICP0 expression. Depletion of PIAS4 enhances the replication of ICP0-null mutant HSV-1, which is susceptible to restriction by the intrinsic antiviral immune response. The mechanisms of PIAS4-mediated restriction are synergistic with the restriction mechanisms of a characterized intrinsic antiviral factor, promyelocytic leukemia protein, and are antagonized by ICP0. We provide the first evidence that PIAS4 is an intrinsic antiviral factor. This novel role for PIAS4 in intrinsic antiviral immunity contrasts with the known roles of PIAS proteins as suppressors of innate immunity. IMPORTANCE Posttranslational modifications with small ubiquitin-like modifier (SUMO) proteins regulate multiple aspects of host immunity and viral replication. The protein inhibitor of activated STAT (PIAS) family of SUMO ligases is predominantly associated

  10. The Ubiquitin Ligase RNF125 Targets Innate Immune Adaptor Protein TRIM14 for Ubiquitination and Degradation.

    PubMed

    Jia, Xue; Zhou, Hongli; Wu, Chao; Wu, Qiankun; Ma, Shichao; Wei, Congwen; Cao, Ye; Song, Jingdong; Zhong, Hui; Zhou, Zhuo; Wang, Jianwei

    2017-06-15

    Tripartite motif-containing 14 (TRIM14) is a mitochondrial adaptor that facilitates innate immune signaling. Upon virus infection, the expression of TRIM14 is significantly induced, which stimulates the production of type-I IFNs and proinflammatory cytokines. As excessive immune responses lead to harmful consequences, TRIM14-mediated signaling needs to be tightly balanced. In this study, we identify really interesting new gene-type zinc finger protein 125 (RNF125) as a negative regulator of TRIM14 in the innate antiviral immune response. Overexpression of RNF125 inhibits TRIM14-mediated antiviral response, whereas knockdown of RNF125 has the opposite effect. RNF125 interacts with TRIM14 and acts as an E3 ubiquitin ligase that catalyzes TRIM14 ubiquitination. RNF125 promotes K48-linked polyubiquitination of TRIM14 and mediates its degradation via the ubiquitin-proteasome pathway. Consequently, wild-type mouse embryonic fibroblasts show significantly reduced TRIM14 protein levels in late time points of viral infection, whereas TRIM14 protein is retained in RNF125-deficient mouse embryonic fibroblasts. Collectively, our data suggest that RNF125 plays a new role in innate immune response by regulating TRIM14 ubiquitination and degradation. Copyright © 2017 by The American Association of Immunologists, Inc.

  11. A single WAP domain (SWD)-containing protein with antiviral activity from Pacific white shrimp Litopenaeus vannamei.

    PubMed

    Yang, Linwei; Niu, Shengwen; Gao, Jiefeng; Zuo, Hongliang; Yuan, Jia; Weng, Shaoping; He, Jianguo; Xu, Xiaopeng

    2018-02-01

    The single whey acidic protein (WAP) domain (SWD)-containing proteins, also called type III crustins, are a group of antimicrobial peptides (AMPs) in crustaceans. At present, a number of SWDs have been identified in shrimp, which showed essential antibacterial activities. However, the roles of SWDs in antiviral immune responses have not been reported up to now. In this study, a novel SWD (LvSWD3) was identified from Pacific white shrimp, Litopenaeus vannamei, which contained a typical single WAP domain homologous to those of other crustacean SWDs. Although lacking the pro and arg-rich region between the signal peptide and the WAP domain, LvSWD3 was closely clustered with other shrimp SWDs in the phylogenetic tree. Similar to many shrimp SWDs, the highest expression of LvSWD3 was detected in hemocytes. The LvSWD3 expression exhibited only limited changes after challenges with Vibrio parahaemolyticus, Poly (I:C) and lipopolysaccharide, but was significantly up-regulated after white spot syndrome virus (WSSV) infection. Silencing of LvSWDs significantly accelerated the death of the WSSV-infected but not the V. parahaemolyticus-infected shrimp. The recombinant LvSWD3 protein did not show proteinase inhibitory and antibacterial activities but could significantly postpone the death of WSSV-infected shrimp and reduce the viral load in tissues. These suggested that LvSWD3 was a novel SWD with antiviral activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. MiRNA-101 inhibits oral squamous-cell carcinoma growth and metastasis by targeting zinc finger E-box binding homeobox 1

    PubMed Central

    Wu, Baolei; Lei, Delin; Wang, Lei; Yang, Xinjie; Jia, Sen; Yang, Zihui; Shan, Chun; Yang, Xi; Zhang, Chenping; Lu, Bin

    2016-01-01

    MicroRNAs (miRNAs) are implicated in the pathogenesis of oral squamous-cell carcinoma (OSCC). miR-101 is involved in the development and progression of OSCC, but the biological functions and underlying molecular mechanisms of this miRNA remain largely unknown. In this study, we showed that miR-101 was underexpressed in OSCC tissues and cell lines. miR-101 downregulation was inversely correlated with zinc finger E-box binding homeobox 1 (ZEB1) expression, lymph-node metastasis, and poor prognosis in OSCC patients. Enhanced expression of miR-101 significantly inhibited OSCC cell proliferation, apoptosis resistance, migration and invasion in vitro, and suppressed tumor growth and lung metastasis in vivo. Bioinformatics analyses showed that miR-101 directly targeted ZEB1, as confirmed by a dual-luciferase reporter assay. The inhibitory effects of miR-101 on OSCC growth and metastasis were attenuated and phenocopied by ZEB1 overexpression and knockdown, respectively. Overall, our findings indicated that miRNA-101 reduced OSCC growth and metastasis by targeting ZEB1 and provided new evidence of miR-101 as a potential therapeutic target for OSCC patients. PMID:27429852

  13. In Vivo Zinc Finger Nuclease-mediated Targeted Integration of a Glucose-6-phosphatase Transgene Promotes Survival in Mice With Glycogen Storage Disease Type IA

    PubMed Central

    Landau, Dustin J; Brooks, Elizabeth Drake; Perez-Pinera, Pablo; Amarasekara, Hiruni; Mefferd, Adam; Li, Songtao; Bird, Andrew; Gersbach, Charles A; Koeberl, Dwight D

    2016-01-01

    Glycogen storage disease type Ia (GSD Ia) is caused by glucose-6-phosphatase (G6Pase) deficiency in association with severe, life-threatening hypoglycemia that necessitates lifelong dietary therapy. Here we show that use of a zinc-finger nuclease (ZFN) targeted to the ROSA26 safe harbor locus and a ROSA26-targeting vector containing a G6PC donor transgene, both delivered with adeno-associated virus (AAV) vectors, markedly improved survival of G6Pase knockout (G6Pase-KO) mice compared with mice receiving the donor vector alone (P < 0.04). Furthermore, transgene integration has been confirmed by sequencing in the majority of the mice treated with both vectors. Targeted alleles were 4.6-fold more common in livers of mice with GSD Ia, as compared with normal littermates, at 8 months following vector administration (P < 0.02). This suggests a selective advantage for vector-transduced hepatocytes following ZFN-mediated integration of the G6Pase vector. A short-term experiment also showed that 3-month-old mice receiving the ZFN had significantly-improved biochemical correction, in comparison with mice that received the donor vector alone. These data suggest that the use of ZFNs to drive integration of G6Pase at a safe harbor locus might improve vector persistence and efficacy, and lower mortality in GSD Ia. PMID:26865405

  14. Sda1, a Cys2-His2 Zinc Finger Transcription Factor, Is Involved in Polyol Metabolism and Fumonisin B1 Production in Fusarium verticillioides

    PubMed Central

    Malapi-Wight, Martha; Smith, Jonathon; Campbell, Jacquelyn; Bluhm, Burton H.; Shim, Won-Bo

    2013-01-01

    The ubiquitous ascomycete Fusarium verticillioides causes ear rot and stalk rot of maize, both of which reduce grain quality and yield. Additionally, F. verticillioides produces the mycotoxin fumonisin B1 (FB1) during infection of maize kernels, and thus potentially compromises human and animal health. The current knowledge is fragmentary regarding the regulation of FB1 biosynthesis, particularly when considering interplay with environmental factors such as nutrient availability. In this study, SDA1 of F. verticillioides, predicted to encode a Cys-2 His-2 zinc finger transcription factor, was shown to play a key role in catabolizing select carbon sources. Growth of the SDA1 knock-out mutant (Δsda1) was completely inhibited when sorbitol was the sole carbon source and was severely impaired when exclusively provided mannitol or glycerol. Deletion of SDA1 unexpectedly increased FB1 biosynthesis, but reduced arabitol and mannitol biosynthesis, as compared to the wild-type progenitor. Trichoderma reesei ACE1, a regulator of cellulase and xylanase expression, complemented the F. verticillioides Δsda1 mutant, which indicates that Ace1 and Sda1 are functional orthologs. Taken together, the data indicate that Sda1 is a transcriptional regulator of carbon metabolism and toxin production in F. verticillioides. PMID:23844049

  15. Clinical Scale Zinc Finger Nuclease-mediated Gene Editing of PD-1 in Tumor Infiltrating Lymphocytes for the Treatment of Metastatic Melanoma

    PubMed Central

    Beane, Joal D; Lee, Gary; Zheng, Zhili; Mendel, Matthew; Abate-Daga, Daniel; Bharathan, Mini; Black, Mary; Gandhi, Nimisha; Yu, Zhiya; Chandran, Smita; Giedlin, Martin; Ando, Dale; Miller, Jeff; Paschon, David; Guschin, Dmitry; Rebar, Edward J; Reik, Andreas; Holmes, Michael C; Gregory, Philip D; Restifo, Nicholas P; Rosenberg, Steven A; Morgan, Richard A; Feldman, Steven A

    2015-01-01

    Programmed cell death-1 (PD-1) is expressed on activated T cells and represents an attractive target for gene-editing of tumor targeted T cells prior to adoptive cell transfer (ACT). We used zinc finger nucleases (ZFNs) directed against the gene encoding human PD-1 (PDCD-1) to gene-edit melanoma tumor infiltrating lymphocytes (TIL). We show that our clinical scale TIL production process yielded efficient modification of the PD-1 gene locus, with an average modification frequency of 74.8% (n = 3, range 69.9–84.1%) of the alleles in a bulk TIL population, which resulted in a 76% reduction in PD-1 surface-expression. Forty to 48% of PD-1 gene-edited cells had biallelic PD-1 modification. Importantly, the PD-1 gene-edited TIL product showed improved in vitro effector function and a significantly increased polyfunctional cytokine profile (TNFα, GM-CSF, and IFNγ) compared to unmodified TIL in two of the three donors tested. In addition, all donor cells displayed an effector memory phenotype and expanded approximately 500–2,000-fold in vitro. Thus, further study to determine the efficiency and safety of adoptive cell transfer using PD-1 gene-edited TIL for the treatment of metastatic melanoma is warranted. PMID:25939491

  16. Palmate-like pentafoliata1 encodes a novel Cys(2)His(2) zinc finger transcription factor essential for compound leaf morphogenesis in Medicago truncatula

    PubMed Central

    2010-01-01

    As the primary site for photosynthetic carbon fixation and the interface between plants and the environment, plant leaves play a key role in plant growth, biomass production and survival, and global carbon and oxygen cycles. Leaves can be simple with a single blade or compound with multiple units of blades known as leaflets. In a palmate-type compound leaf, leaflets are clustered at the tip of the leaf. In a pinnate-type compound leaf, on the other hand, leaflets are placed on a rachis in distance from each other. Higher orders of complexities such as bipinnate compound leaves of the “sensitive” plant, Mimosa pudica, also occur in nature. However, how different leaf morphologies are determined is still poorly understood. Medicago truncatula is a model legume closely related to alfalfa and soybean with trifoliate compound leaves. Recently, we have shown that Palmate-like Pentafoliata1 (PALM1) encodes a putative Cys(2) His(2) zinc finger transcription factor essential for compound leaf morphogenesis in M. truncatula. Here, we present our phylogenetic relationship analysis of PALM1 homologs from different species and demonstrate that PALM1 has transcriptional activity in the transactivation assay in yeast. PMID:20724826

  17. Zinc finger nuclease-mediated precision genome editing of an endogenous gene in hexaploid bread wheat (Triticum aestivum) using a DNA repair template.

    PubMed

    Ran, Yidong; Patron, Nicola; Kay, Pippa; Wong, Debbie; Buchanan, Margaret; Cao, Ying-Ying; Sawbridge, Tim; Davies, John P; Mason, John; Webb, Steven R; Spangenberg, German; Ainley, William M; Walsh, Terence A; Hayden, Matthew J

    2018-05-07

    Sequence-specific nucleases have been used to engineer targeted genome modifications in various plants. While targeted gene knockouts resulting in loss of function have been reported with relatively high rates of success, targeted gene editing using an exogenously supplied DNA repair template and site-specific transgene integration has been more challenging. Here, we report the first application of zinc finger nuclease (ZFN)-mediated, nonhomologous end-joining (NHEJ)-directed editing of a native gene in allohexaploid bread wheat to introduce, via a supplied DNA repair template, a specific single amino acid change into the coding sequence of acetohydroxyacid synthase (AHAS) to confer resistance to imidazolinone herbicides. We recovered edited wheat plants having the targeted amino acid modification in one or more AHAS homoalleles via direct selection for resistance to imazamox, an AHAS-inhibiting imidazolinone herbicide. Using a cotransformation strategy based on chemical selection for an exogenous marker, we achieved a 1.2% recovery rate of edited plants having the desired amino acid change and a 2.9% recovery of plants with targeted mutations at the AHAS locus resulting in a loss-of-function gene knockout. The latter results demonstrate a broadly applicable approach to introduce targeted modifications into native genes for nonselectable traits. All ZFN-mediated changes were faithfully transmitted to the next generation. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Antiviral RNA Silencing Initiated in the Absence of RDE-4, a Double-Stranded RNA Binding Protein, in Caenorhabditis elegans

    PubMed Central

    Guo, Xunyang; Zhang, Rui; Wang, Jeffrey

    2013-01-01

    Small interfering RNAs (siRNAs) processed from double-stranded RNA (dsRNA) of virus origins mediate potent antiviral defense through a process referred to as RNA interference (RNAi) or RNA silencing in diverse organisms. In the simple invertebrate Caenorhabditis elegans, the RNAi process is initiated by a single Dicer, which partners with the dsRNA binding protein RDE-4 to process dsRNA into viral siRNAs (viRNAs). Notably, in C. elegans this RNA-directed viral immunity (RDVI) also requires a number of worm-specific genes for its full antiviral potential. One such gene is rsd-2 (RNAi spreading defective 2), which was implicated in RDVI in our previous studies. In the current study, we first established an antiviral role by showing that rsd-2 null mutants permitted higher levels of viral RNA accumulation, and that this enhanced viral susceptibility was reversed by ectopic expression of RSD-2. We then examined the relationship of rsd-2 with other known components of RNAi pathways and established that rsd-2 functions in a novel pathway that is independent of rde-4 but likely requires the RNA-dependent RNA polymerase RRF-1, suggesting a critical role for RSD-2 in secondary viRNA biogenesis, likely through coordinated action with RRF-1. Together, these results suggest that RDVI in the single-Dicer organism C. elegans depends on the collective actions of both RDE-4-dependent and RDE-4-independent mechanisms to produce RNAi-inducing viRNAs. Our study reveals, for the first time, a novel siRNA-producing mechanism in C. elegans that bypasses the need for a dsRNA-binding protein. PMID:23885080

  19. Antiviral RNA silencing initiated in the absence of RDE-4, a double-stranded RNA binding protein, in Caenorhabditis elegans.

    PubMed

    Guo, Xunyang; Zhang, Rui; Wang, Jeffrey; Lu, Rui

    2013-10-01

    Small interfering RNAs (siRNAs) processed from double-stranded RNA (dsRNA) of virus origins mediate potent antiviral defense through a process referred to as RNA interference (RNAi) or RNA silencing in diverse organisms. In the simple invertebrate Caenorhabditis elegans, the RNAi process is initiated by a single Dicer, which partners with the dsRNA binding protein RDE-4 to process dsRNA into viral siRNAs (viRNAs). Notably, in C. elegans this RNA-directed viral immunity (RDVI) also requires a number of worm-specific genes for its full antiviral potential. One such gene is rsd-2 (RNAi spreading defective 2), which was implicated in RDVI in our previous studies. In the current study, we first established an antiviral role by showing that rsd-2 null mutants permitted higher levels of viral RNA accumulation, and that this enhanced viral susceptibility was reversed by ectopic expression of RSD-2. We then examined the relationship of rsd-2 with other known components of RNAi pathways and established that rsd-2 functions in a novel pathway that is independent of rde-4 but likely requires the RNA-dependent RNA polymerase RRF-1, suggesting a critical role for RSD-2 in secondary viRNA biogenesis, likely through coordinated action with RRF-1. Together, these results suggest that RDVI in the single-Dicer organism C. elegans depends on the collective actions of both RDE-4-dependent and RDE-4-independent mechanisms to produce RNAi-inducing viRNAs. Our study reveals, for the first time, a novel siRNA-producing mechanism in C. elegans that bypasses the need for a dsRNA-binding protein.

  20. C-Myc Protein-Protein and Protein-DNA Interactions: Targets for Therapeutic Intervention.

    DTIC Science & Technology

    1997-09-01

    including those of the Myc family. In fact, members of different bHLH protein subgroups, including the Myc proteins, are characterized by conserved BR...important functional consequences, and they provide insights into how different bHLH proteins can act on different targets. The zinc finger protein...roles for a number of BR residues which do not contact bases, yet are conserved within different bHLH protein sub- families (Benezra et al. 1990), and

  1. A multi-scale mathematical modeling framework to investigate anti-viral therapeutic opportunities in targeting HIV-1 accessory proteins

    PubMed Central

    Suryawanshi, Gajendra W.; Hoffmann, Alexander

    2015-01-01

    Human immunodeficiency virus-1 (HIV-1) employs accessory proteins to evade innate immune responses by neutralizing the anti-viral activity of host restriction factors. Apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G, A3G) and bone marrow stromal cell antigen 2 (BST2) are host resistance factors that potentially inhibit HIV-1 infection. BST2 reduces viral production by tethering budding HIV-1 particles to virus producing cells, while A3G inhibits the reverse transcription (RT) process and induces viral genome hypermutation through cytidine deamination, generating fewer replication competent progeny virus. Two HIV-1 proteins counter these cellular restriction factors: Vpu, which reduces surface BST2, and Vif, which degrades cellular A3G. The contest between these host and viral proteins influences whether HIV-1 infection is established and progresses towards AIDS. In this work, we present an age-structured multi-scale viral dynamics model of in vivo HIV-1 infection. We integrated the intracellular dynamics of anti-viral activity of the host factors and their neutralization by HIV-1 accessory proteins into the virus/cell population dynamics model. We calculate the basic reproductive ratio (Ro) as a function of host-viral protein interaction coefficients, and numerically simulated the multi-scale model to understand HIV-1 dynamics following host factor-induced perturbations. We found that reducing the influence of Vpu triggers a drop in Ro, revealing the impact of BST2 on viral infection control. Reducing Vif’s effect reveals the restrictive efficacy of A3G in blocking RT and in inducing lethal hypermutations, however, neither of these factors alone is sufficient to fully restrict HIV-1 infection. Interestingly, our model further predicts that BST2 and A3G function synergistically, and delineates their relative contribution in limiting HIV-1 infection and disease progression. We provide a robust modeling framework for devising novel combination therapies that

  2. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research.

    PubMed

    Simmons, Graham; Zmora, Pawel; Gierer, Stefanie; Heurich, Adeline; Pöhlmann, Stefan

    2013-12-01

    The severe acute respiratory syndrome (SARS) pandemic revealed that zoonotic transmission of animal coronaviruses (CoV) to humans poses a significant threat to public health and warrants surveillance and the development of countermeasures. The activity of host cell proteases, which cleave and activate the SARS-CoV spike (S) protein, is essential for viral infectivity and constitutes a target for intervention. However, the identities of the proteases involved have been unclear. Pioneer studies identified cathepsins and type II transmembrane serine proteases as cellular activators of SARS-CoV and demonstrated that several emerging viruses might exploit these enzymes to promote their spread. Here, we will review the proteolytic systems hijacked by SARS-CoV for S protein activation, we will discuss their contribution to viral spread in the host and we will outline antiviral strategies targeting these enzymes. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses.'' Copyright © 2013 Elsevier B.V. All rights reserved.

  3. NSs Virulence Factor of Rift Valley Fever Virus Engages the F-Box Proteins FBXW11 and β-TRCP1 To Degrade the Antiviral Protein Kinase PKR.

    PubMed

    Kainulainen, Markus; Lau, Simone; Samuel, Charles E; Hornung, Veit; Weber, Friedemann

    2016-07-01

    Rift Valley fever virus (RVFV, family Bunyaviridae, genus Phlebovirus) is a relevant pathogen of both humans and livestock in Africa. The nonstructural protein NSs is a major virulence factor known to suppress the type I interferon (IFN) response by inhibiting host cell transcription and by proteasomal degradation of a major antiviral IFN effector, the translation-inhibiting protein kinase PKR. Here, we identified components of the modular SCF (Skp1, Cul1, F-box protein)-type E3 ubiquitin ligases as mediators of PKR destruction by NSs. Small interfering RNAs (siRNAs) against the conserved SCF subunit Skp1 protected PKR from NSs-mediated degradation. Consequently, RVFV replication was severely reduced in Skp1-depleted cells when PKR was present. SCF complexes have a variable F-box protein subunit that determines substrate specificity for ubiquitination. We performed an siRNA screen for all (about 70) human F-box proteins and found FBXW11 to be involved in PKR degradation. The partial stabilization of PKR by FBXW11 depletion upregulated PKR autophosphorylation and phosphorylation of the PKR substrate eIF2α and caused a shutoff of host cell protein synthesis in RVFV-infected cells. To maximally protect PKR from the action of NSs, knockdown of structurally and functionally related FBXW1 (also known as β-TRCP1), in addition to FBXW11 deletion, was necessary. Consequently, NSs was found to interact with both FBXW11 and β-TRCP1. Thus, NSs eliminates the antiviral kinase PKR by recruitment of SCF-type E3 ubiquitin ligases containing FBXW11 and β-TRCP1 as substrate recognition subunits. This antagonism of PKR by NSs is essential for efficient RVFV replication in mammalian cells. Rift Valley fever virus is a pathogen of humans and animals that has the potential to spread from Africa and the Arabian Peninsula to other regions. A major virulence mechanism is the proteasomal degradation of the antiviral kinase PKR by the viral protein NSs. Here, we demonstrate that NSs

  4. NSs Virulence Factor of Rift Valley Fever Virus Engages the F-Box Proteins FBXW11 and β-TRCP1 To Degrade the Antiviral Protein Kinase PKR

    PubMed Central

    Kainulainen, Markus; Lau, Simone; Samuel, Charles E.; Hornung, Veit

    2016-01-01

    ABSTRACT Rift Valley fever virus (RVFV, family Bunyaviridae, genus Phlebovirus) is a relevant pathogen of both humans and livestock in Africa. The nonstructural protein NSs is a major virulence factor known to suppress the type I interferon (IFN) response by inhibiting host cell transcription and by proteasomal degradation of a major antiviral IFN effector, the translation-inhibiting protein kinase PKR. Here, we identified components of the modular SCF (Skp1, Cul1, F-box protein)-type E3 ubiquitin ligases as mediators of PKR destruction by NSs. Small interfering RNAs (siRNAs) against the conserved SCF subunit Skp1 protected PKR from NSs-mediated degradation. Consequently, RVFV replication was severely reduced in Skp1-depleted cells when PKR was present. SCF complexes have a variable F-box protein subunit that determines substrate specificity for ubiquitination. We performed an siRNA screen for all (about 70) human F-box proteins and found FBXW11 to be involved in PKR degradation. The partial stabilization of PKR by FBXW11 depletion upregulated PKR autophosphorylation and phosphorylation of the PKR substrate eIF2α and caused a shutoff of host cell protein synthesis in RVFV-infected cells. To maximally protect PKR from the action of NSs, knockdown of structurally and functionally related FBXW1 (also known as β-TRCP1), in addition to FBXW11 deletion, was necessary. Consequently, NSs was found to interact with both FBXW11 and β-TRCP1. Thus, NSs eliminates the antiviral kinase PKR by recruitment of SCF-type E3 ubiquitin ligases containing FBXW11 and β-TRCP1 as substrate recognition subunits. This antagonism of PKR by NSs is essential for efficient RVFV replication in mammalian cells. IMPORTANCE Rift Valley fever virus is a pathogen of humans and animals that has the potential to spread from Africa and the Arabian Peninsula to other regions. A major virulence mechanism is the proteasomal degradation of the antiviral kinase PKR by the viral protein NSs. Here, we

  5. Human DDX3 protein is a valuable target to develop broad spectrum antiviral agents

    PubMed Central

    Brai, Annalaura; Fazi, Roberta; Tintori, Cristina; Zamperini, Claudio; Bugli, Francesca; Sanguinetti, Maurizio; Stigliano, Egidio; Esté, José; Badia, Roger; Franco, Sandra; Martinez, Javier P.; Meyerhans, Andreas; Saladini, Francesco; Zazzi, Maurizio; Garbelli, Anna; Botta, Maurizio

    2016-01-01

    Targeting a host factor essential for the replication of different viruses but not for the cells offers a higher genetic barrier to the development of resistance, may simplify therapy regimens for coinfections, and facilitates management of emerging viral diseases. DEAD-box polypeptide 3 (DDX3) is a human host factor required for the replication of several DNA and RNA viruses, including some of the most challenging human pathogens currently circulating, such as HIV-1, Hepatitis C virus, Dengue virus, and West Nile virus. Herein, we showed for the first time, to our knowledge, that the inhibition of DDX3 by a small molecule could be successfully exploited for the development of a broad spectrum antiviral agent. In addition to the multiple antiviral activities, hit compound 16d retained full activity against drug-resistant HIV-1 strains in the absence of cellular toxicity. Pharmacokinetics and toxicity studies in rats confirmed a good safety profile and bioavailability of 16d. Thus, DDX3 is here validated as a valuable therapeutic target. PMID:27118832

  6. Genome-wide analysis of the DNA-binding with one zinc finger (Dof) transcription factor family in bananas.

    PubMed

    Dong, Chen; Hu, Huigang; Xie, Jianghui

    2016-12-01

    DNA-binding with one finger (Dof) domain proteins are a multigene family of plant-specific transcription factors involved in numerous aspects of plant growth and development. In this study, we report a genome-wide search for Musa acuminata Dof (MaDof) genes and their expression profiles at different developmental stages and in response to various abiotic stresses. In addition, a complete overview of the Dof gene family in bananas is presented, including the gene structures, chromosomal locations, cis-regulatory elements, conserved protein domains, and phylogenetic inferences. Based on the genome-wide analysis, we identified 74 full-length protein-coding MaDof genes unevenly distributed on 11 chromosomes. Phylogenetic analysis with Dof members from diverse plant species showed that MaDof genes can be classified into four subgroups (StDof I, II, III, and IV). The detailed genomic information of the MaDof gene homologs in the present study provides opportunities for functional analyses to unravel the exact role of the genes in plant growth and development.

  7. Zinc finger AN1-type containing 4 is a novel marker for predicting metastasis and poor prognosis in oral squamous cell carcinoma.

    PubMed

    Kurihara-Shimomura, Miyako; Sasahira, Tomonori; Nakamura, Hiroshi; Nakashima, Chie; Kuniyasu, Hiroki; Kirita, Tadaaki

    2018-05-01

    Head and neck cancer, including oral squamous cell carcinoma (OSCC), is the sixth most common cancer worldwide and has a high potential for locoregional invasion and nodal metastasis. Therefore, discovery of a useful molecular biomarker capable of predicting tumour progression and metastasis of OSCC is crucial. We have previously reported zinc finger AN1-type containing 4 (ZFAND4) as one of the most upregulated genes in recurrent OSCC using a cDNA microarray analysis. Although ZFAND4 has been shown to promote cell proliferation of gastric cancer, its expression and clinicopathological roles in OSCC remain unclear. In this study, we examined ZFAND4 expression by immunohistochemistry in 214 cases of OSCC. High cytoplasmic expression of ZFAND4 was observed in 45 out of 214 (21%) patients with OSCC. Expression levels of ZFAND4 were strongly associated with metastasis to the lymph nodes (p=0.0429) and distant organs (p=0.0068). Cases with high expression of ZFAND4 had a significantly unfavourable prognosis compared with patients with low expression of ZFAND4 (p<0.0001). Furthermore, ZFAND4 overexpression was an independent poor prognostic factor for OSCC as determined by multivariate analysis using the Cox proportional hazards model (p<0.0001). These results suggest that ZFAND4 is a useful marker for predicting metastasis and poor prognosis in patients with OSCC. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. KLF5/BTEB2, a Krüppel-like zinc-finger type transcription factor, mediates both smooth muscle cell activation and cardiac hypertrophy.

    PubMed

    Nagai, Ryozo; Shindo, Takayuki; Manabe, Ichiro; Suzuki, Toru; Kurabayashi, Masahiko

    2003-01-01

    Cardiac and vascular biology need to be approached interactively because they share many common biological features as seen in activation of the local renin-angiotensin system, angiogenesis, and extracellular matrix production. We previously reported KLF5/BTEB2, a Krüppel-like zinc-finger type transcription factor, to activate various gene promoters that are activated in phenotypically modulated smooth muscle cells, such as a nonmuscle type myosin heavy chain gene SMemb, plasminogen activator inhibitor-1 (PAI-1), iNOS, PDGF-A, Egr-1 and VEGF receptors at least in vitro. KLF5/BTEB2 mRNA levels are downregulated with vascular development but upregulated in neointima that is produced in response to vascular injury. Mitogenic stimulation activates KLF5/BTEB2 gene expression through MEK1 and Egr-1. Chromatin immunoprecipitation assay showed KLF5/BTEB2 to be induced and to bind the promoter of the PDGF-A gene in response to angiotensin II stimulation. In order to define the role of KLF5/BTEB2 in cardiovascular remodeling, we targeted the KLF5/BTEB2 gene in mice. Homozygous mice resulted in early embryonic lethality whereas heterozygous mice were apparently normal. However, in response to external stress, arteries of heterozygotes exhibited diminished levels of smooth muscle and adventitial cell activation. Furthermore, cardiac fibrosis and hypertrophy induced by continuous angiotensin II infusion. We also found that RARa binds KLF5/BTEB2, and that Am80, a potent synthetic RAR agonist, inhibits angiotensin II-induced cardiac hypertrophy. These results indicate that KLF5/BTEB2 is an essential transcription factor that causes not only smooth muscle phenotypic modulation but also cardiac hypertrophy and fibrosis.

  9. In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases.

    PubMed

    Sebastiano, Vittorio; Maeder, Morgan L; Angstman, James F; Haddad, Bahareh; Khayter, Cyd; Yeo, Dana T; Goodwin, Mathew J; Hawkins, John S; Ramirez, Cherie L; Batista, Luis F Z; Artandi, Steven E; Wernig, Marius; Joung, J Keith

    2011-11-01

    The combination of induced pluripotent stem cell (iPSC) technology and targeted gene modification by homologous recombination (HR) represents a promising new approach to generate genetically corrected, patient-derived cells that could be used for autologous transplantation therapies. This strategy has several potential advantages over conventional gene therapy including eliminating the need for immunosuppression, avoiding the risk of insertional mutagenesis by therapeutic vectors, and maintaining expression of the corrected gene by endogenous control elements rather than a constitutive promoter. However, gene targeting in human pluripotent cells has remained challenging and inefficient. Recently, engineered zinc finger nucleases (ZFNs) have been shown to substantially increase HR frequencies in human iPSCs, raising the prospect of using this technology to correct disease causing mutations. Here, we describe the generation of iPSC lines from sickle cell anemia patients and in situ correction of the disease causing mutation using three ZFN pairs made by the publicly available oligomerized pool engineering method (OPEN). Gene-corrected cells retained full pluripotency and a normal karyotype following removal of reprogramming factor and drug-resistance genes. By testing various conditions, we also demonstrated that HR events in human iPSCs can occur as far as 82 bps from a ZFN-induced break. Our approach delineates a roadmap for using ZFNs made by an open-source method to achieve efficient, transgene-free correction of monogenic disease mutations in patient-derived iPSCs. Our results provide an important proof of principle that ZFNs can be used to produce gene-corrected human iPSCs that could be used for therapeutic applications. Copyright © 2011 AlphaMed Press.

  10. Zinc-finger nuclease-mediated gene correction using single AAV vector transduction and enhancement by Food and Drug Administration-approved drugs

    PubMed Central

    Ellis, BL; Hirsch, ML; Porter, SN; Samulski, RJ; Porteus, MH

    2016-01-01

    An emerging strategy for the treatment of monogenic diseases uses genetic engineering to precisely correct the mutation(s) at the genome level. Recent advancements in this technology have demonstrated therapeutic levels of gene correction using a zinc-finger nuclease (ZFN)-induced DNA double-strand break in conjunction with an exogenous DNA donor substrate. This strategy requires efficient nucleic acid delivery and among viral vectors, recombinant adeno-associated virus (rAAV) has demonstrated clinical success without pathology. However, a major limitation of rAAV is the small DNA packaging capacity and to date, the use of rAAV for ZFN gene delivery has yet to be reported. Theoretically, an ideal situation is to deliver both ZFNs and the repair substrate in a single vector to avoid inefficient gene targeting and unwanted mutagenesis, both complications of a rAAV co-transduction strategy. Therefore, a rAAV format was generated in which a single polypeptide encodes the ZFN monomers connected by a ribosome skipping 2A peptide and furin cleavage sequence. On the basis of this arrangement, a DNA repair substrate of 750 nucleotides was also included in this vector. Efficient polypeptide processing to discrete ZFNs is demonstrated, as well as the ability of this single vector format to stimulate efficient gene targeting in a human cell line and mouse model derived fibroblasts. Additionally, we increased rAAV-mediated gene correction up to sixfold using a combination of Food and Drug Administration-approved drugs, which act at the level of AAV vector transduction. Collectively, these experiments demonstrate the ability to deliver ZFNs and a repair substrate by a single AAV vector and offer insights for the optimization of rAAV-mediated gene correction using drug therapy. PMID:22257934

  11. Intrinsic functional defects of type 2 innate lymphoid cells impair innate allergic inflammation in promyelocytic leukemia zinc finger (PLZF)-deficient mice.

    PubMed

    Verhoef, Philip A; Constantinides, Michael G; McDonald, Benjamin D; Urban, Joseph F; Sperling, Anne I; Bendelac, Albert

    2016-02-01

    The transcription factor promyelocytic leukemia zinc finger (PLZF) is transiently expressed during development of type 2 innate lymphoid cells (ILC2s) but is not present at the mature stage. We hypothesized that PLZF-deficient ILC2s have functional defects in the innate allergic response and represent a tool for studying innate immunity in a mouse with a functional adaptive immune response. We determined the consequences of PLZF deficiency on ILC2 function in response to innate and adaptive immune stimuli by using PLZF(-/-) mice and mixed wild-type:PLZF(-/-) bone marrow chimeras. PLZF(-/-) mice, wild-type littermates, or mixed bone marrow chimeras were treated with the protease allergen papain or the cytokines IL-25 and IL-33 or infected with the helminth Nippostrongylus brasiliensis to induce innate type 2 allergic responses. Mice were sensitized with intraperitoneal ovalbumin-alum, followed by intranasal challenge with ovalbumin alone, to induce adaptive TH2 responses. Lungs were analyzed for immune cell subsets, and alveolar lavage fluid was analyzed for ILC2-derived cytokines. In addition, ILC2s were stimulated ex vivo for their capacity to release type 2 cytokines. PLZF-deficient lung ILC2s exhibit a cell-intrinsic defect in the secretion of IL-5 and IL-13 in response to innate stimuli, resulting in defective recruitment of eosinophils and goblet cell hyperplasia. In contrast, the adaptive allergic inflammatory response to ovalbumin and alum was unimpaired. PLZF expression at the innate lymphoid cell precursor stage has a long-range effect on the functional properties of mature ILC2s and highlights the importance of these cells for innate allergic responses in otherwise immunocompetent mice. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  12. Molecular dynamics of zinc-finger ubiquitin binding domains: a comparative study of histone deacetylase 6 and ubiquitin-specific protease 5.

    PubMed

    Dos Santos Passos, Carolina; Simões-Pires, Claudia A; Carrupt, Pierre-Alain; Nurisso, Alessandra

    2016-12-01

    HDAC6 is a unique cytoplasmic histone deacetylase characterized by two deacetylase domains, and by a zinc-finger ubiquitin binding domain (ZnF-UBP) able to recognize ubiquitin (Ub). The latter has recently been demonstrated to be involved in the progression of neurodegenerative diseases and in mediating infection by the influenza A virus. Nowadays, understanding the dynamic and energetic features of HDAC6 ZnF-UBP-Ub recognition is considered as a crucial step for the conception of HDAC6 potential modulators. In this study, the atomic, solvent-related, and thermodynamic features behind HDAC6 ZnF-UBP-Ub recognition have been analyzed through molecular dynamics simulations. The behavior was then compared to the prototypical ZnF-UBP from ubiquitin-specific protease 5 (USP5) in order to spot relevant differences useful for selective drug design. Principal component analysis highlighted flapping motions of the L2A loop which were lowered down upon Ub binding in both systems. While polar and nonpolar interactions involving Ub G75 and G76 residues were also common features stabilizing both complexes, salt bridges showed a different pattern, more significant in HDAC6 ZnF-UBP-Ub, whose energetic contribution in USP5 ZnF-UBP-Ub was compensated by the presence of a more stable bridging water molecule. Whereas molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) free energies of binding were comparable for both systems, in agreement with experiments, computational alanine scanning and free energy decomposition data revealed that HDAC6 E1141 and D1178 are potential hotspots for the design of selective HDAC6 modulators.

  13. VOZ; isolation and characterization of novel vascular plant transcription factors with a one-zinc finger from Arabidopsis thaliana.

    PubMed

    Mitsuda, Nobutaka; Hisabori, Toru; Takeyasu, Kunio; Sato, Masa H

    2004-07-01

    A 38-bp pollen-specific cis-acting region of the AVP1 gene is involved in the expression of the Arabidopsis thaliana V-PPase during pollen development. Here, we report the isolation and structural characterization of AtVOZ1 and AtVOZ2, novel transcription factors that bind to the 38-bp cis-acting region of A. thaliana V-PPase gene, AVP1. AtVOZ1 and AtVOZ2 show 53% amino acid sequence similarity. Homologs of AtVOZ1 and AtVOZ2 are found in various vascular plants as well as a moss, Physcomitrella patens. Promoter-beta-glucuronidase reporter analysis shows that AtVOZ1 is specifically expressed in the phloem tissue and AtVOZ2 is strongly expressed in the root. In vivo transient effector-reporter analysis in A. thaliana suspension-cultured cells demonstrates that AtVOZ1 and AtVOZ2 function as transcriptional activators in the Arabidopsis cell. Two conserved regions termed Domain-A and Domain-B were identified from an alignment of AtVOZ proteins and their homologs of O. sativa and P. patens. AtVOZ2 binds as a dimer to the specific palindromic sequence, GCGTNx7ACGC, with Domain-B, which is comprised of a functional novel zinc coordinating motif and a conserved basic region. Domain-B is shown to function as both the DNA-binding and the dimerization domains of AtVOZ2. From highly the conservative nature among all identified VOZ proteins, we conclude that Domain-B is responsible for the DNA binding and dimerization of all VOZ-family proteins and designate it as the VOZ-domain.

  14. Identification of the zinc finger 216 (ZNF216) in human carcinoma cells: a potential regulator of EGFR activity

    PubMed Central

    Mincione, Gabriella; Di Marcantonio, Maria Carmela; Tarantelli, Chiara; Savino, Luca; Ponti, Donatella; Marchisio, Marco; Lanuti, Paola; Sancilio, Silvia; Calogero, Antonella; Di Pietro, Roberta; Muraro, Raffaella

    2016-01-01

    Epidermal Growth Factor Receptor (EGFR), a member of the ErbB family of receptor tyrosine kinase (RTK) proteins, is aberrantly expressed or deregulated in tumors and plays pivotal roles in cancer onset and metastatic progression. ZNF216 gene has been identified as one of Immediate Early Genes (IEGs) induced by RTKs. Overexpression of ZNF216 protein sensitizes 293 cell line to TNF-α induced apoptosis. However, ZNF216 overexpression has been reported in medulloblastomas and metastatic nasopharyngeal carcinomas. Thus, the role of this protein is still not clearly understood. In this study, the inverse correlation between EGFR and ZNF216 expression was confirmed in various human cancer cell lines differently expressing EGFR. EGF treatment of NIH3T3 cells overexpressing both EGFR and ZNF216 (NIH3T3-EGFR/ZNF216), induced a long lasting activation of EGFR in the cytosolic fraction and an accumulation of phosphorylated EGFR (pEGFR) more in the nuclear than in the cytosolic fraction compared to NIH3T3-EGFR cells. Moreover, EGF was able to stimulate an increased expression of ZNF216 in the cytosolic compartment and its nuclear translocation in a time-dependent manner in NIH3T3-EGFR/ZNF216. A similar trend was observed in A431 cells endogenously expressing the EGFR and transfected with Znf216. The increased levels of pEGFR and ZNF216 in the nuclear fraction of NIH3T3-EGFR/ZNF216 cells were paralleled by increased levels of phospho-MAPK and phospho-Akt. Surprisingly, EGF treatment of NIH3T3-EGFR/ZNF216 cells induced a significant increase of apoptosis thus indicating that ZNF216 could sensitize cells to EGF-induced apoptosis and suggesting that it may be involved in the regulation and effects of EGFR signaling. PMID:27732953

  15. Regulation of the human ascorbate transporter SVCT2 exon 1b gene by zinc-finger transcription factors

    PubMed Central

    Qiao, Huan; May, James M.

    2011-01-01

    The sodium-dependent vitamin C transporter (SVCT) 2 is crucial for ascorbate uptake in metabolically active and specialized tissues. The present study focused on the gene regulation of the SVCT2 exon 1b, which is ubiquitously expressed in human and mouse tissues. Although the human SVCT2 exon 1b promoter doesn’t contain a classical TATA-box, we found that it does contain a functional initiator (Inr) that binds YY1 and interacts with upstream Sp1/Sp3 elements in the proximal promoter region. These elements in turn play a critical role in regulating YY1-mediated transcription of the exon 1b gene. Formation of YY1/Sp complexes on the promoter is required for its optional function. YY1 with Sp1 or Sp3 synergistically enhanced exon 1b promoter activity as well as the endogenous SVCT2 protein expression. Further, in addition to Sp1/Sp3 both EGR-1 and -2 were detected in the protein complexes that bound the three GC boxes bearing overlapping binding sites for EGR/WT1 and Sp1/3. The EGR family factors, WT1 and MAZ were found to differentially regulate exon 1b promoter activity. These results show that differential occupancy of transcription factors on the GC-rich consensus sequences in SVCT2 exon 1b promoter contributes to the regulation of cell and tissue expression of SVCT2. PMID:21335086

  16. Arabidopsis thaliana VOZ (Vascular plant One-Zinc finger) transcription factors are required for proper regulation of flowering time

    PubMed Central

    Celesnik, Helena; Ali, Gul S.; Robison, Faith M.; Reddy, Anireddy S. N.

    2013-01-01

    Summary Transition to flowering in plants is tightly controlled by environmental cues, which regulate the photoperiod and vernalization pathways, and endogenous signals, which mediate the autonomous and gibberellin pathways. In this work, we investigated the role of two Zn2+-finger transcription factors, the paralogues AtVOZ1 and AtVOZ2, in Arabidopsis thaliana flowering. Single atvoz1-1 and atvoz2-1 mutants showed no significant phenotypes as compared to wild type. However, atvoz1-1 atvoz2-1 double mutant plants exhibited several phenotypes characteristic of flowering-time mutants. The double mutant displayed a severe delay in flowering, together with additional pleiotropic phenotypes. Late flowering correlated with elevated expression of FLOWERING LOCUS C (FLC), which encodes a potent floral repressor, and decreased expression of its target, the floral promoter FD. Vernalization rescued delayed flowering of atvoz1-1 atvoz2-1 and reversed elevated FLC levels. Accumulation of FLC transcripts in atvoz1-1 atvoz2-1 correlated with increased expression of several FLC activators, including components of the PAF1 and SWR1 chromatin-modifying complexes. Additionally, AtVOZs were shown to bind the promoter of MOS3/SAR3 and directly regulate expression of this nuclear pore protein, which is known to participate in the regulation of flowering time, suggesting that AtVOZs exert at least some of their flowering regulation by influencing the nuclear pore function. Complementation of atvoz1-1 atvoz2-1 with AtVOZ2 reversed all double mutant phenotypes, confirming that the observed morphological and molecular changes arise from the absence of functional AtVOZ proteins, and validating the functional redundancy between AtVOZ1 and AtVOZ2. PMID:23616927

  17. Selected topics from forty years of natural products research: betalains to flavonoids, antiviral proteins, and neurotoxic nonprotein amino acids.

    PubMed

    Mabry, T J

    2001-12-01

    The elucidation by NMR and chemical methods of the unique structure of betanidin, the aglycon of the red-violet beet pigment betanin, forty years ago at the University of Zürich, Switzerland, was the beginning of my plant chemistry research program. Many of the same chemical and spectral techniques developed in Zürich have been used at The University of Texas at Austin for the structure analysis of members of many other classes of natural products including especially flavonoids, terpenoids, and alkaloids. Investigations at UT-Austin have concerned many topics such as biochemical and molecular systematics, biosynthetic pathways, structure-activity relationships, and the medicinal importance of natural products and included studies of antiviral proteins in the genus Phytolacca and neurotoxic nonprotein amino acids from cycads and other sources. Following the betalain story and an account of the early development of my UT-Austin biochemical systematic program, the Phytolacca and neurotoxin investigations are discussed herein.

  18. The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival

    NASA Technical Reports Server (NTRS)

    Wallis, Deeann; Hamblen, Melanie; Zhou, Yi; Venken, Koen J T.; Schumacher, Armin; Grimes, H. Leighton; Zoghbi, Huda Y.; Orkin, Stuart H.; Bellen, Hugo J.

    2003-01-01

    Gfi1 was first identified as causing interleukin 2-independent growth in T cells and lymphomagenesis in mice. Much work has shown that Gfi1 and Gfi1b, a second mouse homolog, play pivotal roles in blood cell lineage differentiation. However, neither Gfi1 nor Gfi1b has been implicated in nervous system development, even though their invertebrate homologues, senseless in Drosophila and pag-3 in C. elegans are expressed and required in the nervous system. We show that Gfi1 mRNA is expressed in many areas that give rise to neuronal cells during embryonic development in mouse, and that Gfi1 protein has a more restricted expression pattern. By E12.5 Gfi1 mRNA is expressed in both the CNS and PNS as well as in many sensory epithelia including the developing inner ear epithelia. At later developmental stages, Gfi1 expression in the ear is refined to the hair cells and neurons throughout the inner ear. Gfi1 protein is expressed in a more restricted pattern in specialized sensory cells of the PNS, including the eye, presumptive Merkel cells, the lung and hair cells of the inner ear. Gfi1 mutant mice display behavioral defects that are consistent with inner ear anomalies, as they are ataxic, circle, display head tilting behavior and do not respond to noise. They have a unique inner ear phenotype in that the vestibular and cochlear hair cells are differentially affected. Although Gfi1-deficient mice initially specify inner ear hair cells, these hair cells are disorganized in both the vestibule and cochlea. The outer hair cells of the cochlea are improperly innervated and express neuronal markers that are not normally expressed in these cells. Furthermore, Gfi1 mutant mice lose all cochlear hair cells just prior to and soon after birth through apoptosis. Finally, by five months of age there is also a dramatic reduction in the number of cochlear neurons. Hence, Gfi1 is expressed in the developing nervous system, is required for inner ear hair cell differentiation, and its loss

  19. Detection of the antiviral activity of epicatechin isolated from Salacia crassifolia (Celastraceae) against Mayaro virus based on protein C homology modelling and virtual screening.

    PubMed

    Ferreira, P G; Ferraz, A C; Figueiredo, J E; Lima, C F; Rodrigues, V G; Taranto, A G; Ferreira, J M S; Brandão, G C; Vieira-Filho, S A; Duarte, L P; de Brito Magalhães, C L; de Magalhães, J C

    2018-06-01

    Mayaro fever, caused by Mayaro virus (MAYV) is a sub-lethal disease with symptoms that are easily confused with those of dengue fever, except for polyarthralgia, which may culminate in physical incapacitation. Recently, outbreaks of MAYV have been documented in metropolitan areas, and to date, there is no therapy or vaccine available. Moreover, there is no information regarding the three-dimensional structure of the viral proteins of MAYV, which is important in the search for antivirals. In this work, we constructed a three-dimensional model of protein C of MAYV by homology modelling, and this was employed in a manner similar to that of receptors in virtual screening studies to evaluate 590 molecules as prospective antiviral agents. In vitro bioassays were utilized to confirm the potential antiviral activity of the flavonoid epicatechin isolated from Salacia crassifolia (Celastraceae). The virtual screening showed that six flavonoids were promising ligands for protein C. The bioassays showed potent antiviral action of epicatechin, which protected the cells from almost all of the effects of viral infection. An effective concentration (EC 50 ) of 0.247 μmol/mL was observed with a selectivity index (SI) of 7. The cytotoxicity assay showed that epicatechin has low toxicity, with a 50% cytotoxic concentration (CC 50 ) greater than 1.723 µmol/mL. Epicatechin was found to be twice as potent as the reference antiviral ribavirin. Furthermore, a replication kinetics assay showed a strong inhibitory effect of epicatechin on MAYV growth, with a reduction of at least four logs in virus production. Our results indicate that epicatechin is a promising candidate for further testing as an antiviral agent against Mayaro virus and other alphaviruses.

  20. Depletion of elongation initiation factor 4E binding proteins by CRISPR/Cas9 genome editing enhances antiviral response in porcine cells

    Type I interferons (IFN) are key mediators of the innate antiviral response in mammalian cells. Elongation initiation factor 4E binding proteins (4E-BPs) are translational controllers of interferon regulatory factor 7 (IRF7), the master regulator of IFN transcription. The role of 4EBPs in the negat...

  1. Transmissible gastroenteritis virus; identification of M protein-binding peptide ligands with antiviral and diagnostic potential

    The membrane (M) protein is one of the major structural proteins of coronavirus particles. In this study, the M protein of transmissible gastroenteritis virus (TGEV) was used to biopan a 12-mer phage display random peptide library. Three phages expressing TGEV-M-binding peptides were identified and ...

  2. Stop codons in the hepatitis B surface proteins are enriched during antiviral therapy and are associated with host cell apoptosis

    SciT

    Colledge, Danielle; Soppe, Sally; Yuen, Lilly

    Premature stop codons in the hepatitis B virus (HBV) surface protein can be associated with nucleos(t)ide analogue resistance due to overlap of the HBV surface and polymerase genes. The aim of this study was to determine the effect of the replication of three common surface stop codon variants on the hepatocyte. Cell lines were transfected with infectious HBV clones encoding surface stop codons rtM204I/sW196*, rtA181T/sW172*, rtV191I/sW182*, and a panel of substitutions in the surface proteins. HBsAg was measured by Western blotting. Proliferation and apoptosis were measured using flow cytometry. All three surface stop codon variants were defective in HBsAg secretion.more » Cells transfected with these variants were less proliferative and had higher levels of apoptosis than those transfected with variants that did not encode surface stop codons. The most cytopathic variant was rtM204I/sW196*. Replication of HBV encoding surface stop codons was toxic to the cell and promoted apoptosis, exacerbating disease progression. - Highlights: •Under normal circumstances, HBV replication is not cytopathic. •Premature stop codons in the HBV surface protein can be selected and enriched during nucleos(t)ide analogue therapy. •Replication of these variants can be cytopathic to the cell and promote apoptosis. •Inadequate antiviral therapy may actually promote disease progression.« less

  3. Mx1, Mx2 and Mx3 proteins from the gilthead seabream (Sparus aurata) show in vitro antiviral activity against RNA and DNA viruses.

    PubMed

    Fernández-Trujillo, M A; García-Rosado, E; Alonso, M C; Castro, D; Álvarez, M C; Béjar, J

    2013-12-01

    Mx proteins are important components of the antiviral innate immune response mediated by type I interferon. Classically, these proteins have been considered to be triggered by viral RNA, thus showing activity against RNA viruses. Actually, three Mx proteins (SauMx1, SauMx2 and SauMx3) from gilthead seabream (Sparus aurata) have previously shown antiviral activity against a dsRNA virus: the infectious pancreatic necrosis virus (IPNV) in vitro. For further characterizing their antiviral spectrum, the activity of SauMx proteins were tested against three different viral pathogens of fish: the lymphocystis disease virus (LCDV, a dsDNA virus), a pathogen of gilthead seabream; the viral haemorrhagic septicaemia virus (VHSV, a ssRNA virus), to which gilthead seabream is considered a reservoir species; and the European sheatfish virus (ESV, a dsDNA virus), that has not been detected in gilthead seabream to date. Three clonal populations of CHSE-214 cells developed in a previous study, stably expressing SauMx1, SauMx2 and SauMx3, respectively, were challenged with the three viruses. Results combining cytopathic effects and virus yield reduction assays showed that SauMx1 protected the cells against VHSV and LCDV, SauMx2 protected against ESV and LCDV, and SauMx3 showed activity only against VHSV. This study, besides confirming the antiviral activity of the three gilthead seabream Mx proteins, is the first report of the protective effect of a fish Mx against DNA viruses. Additionally, it discloses a clear specificity between Mx proteins and virus targets, supporting the idea that the relationship between virus and Mx proteins is finely tuned. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Depletion of elongation initiation factor 4E binding proteins by CRISPR/Cas9 enhances the antiviral response in porcine cells.

    PubMed

    Ramírez-Carvajal, Lisbeth; Singh, Neetu; de los Santos, Teresa; Rodríguez, Luis L; Long, Charles R

    2016-01-01

    Type I interferons (IFNs) are key mediators of the innate antiviral response in mammalian cells. Elongation initiation factor 4E binding proteins (4E-BPs) are translational controllers of interferon regulatory factor 7 (IRF-7), the "master regulator" of IFN transcription. Previous studies have suggested that mouse cells depleted of 4E-BPs are more sensitive to IFNβ treatment and had lower viral loads as compared to wild type (WT) cells. However, such approach has not been tested as an antiviral strategy in livestock species. In this study, we tested the antiviral activity of porcine cells depleted of 4E-BP1 by a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) genome engineering system. We found that 4E-BP1 knockout (KO) porcine cells had increased expression of IFNα and β, IFN stimulated genes, and significant reduction in vesicular stomatitis virus titer as compare to WT cells. No phenotypical changes associated with CRISPR/Cas9 manipulation were observed in 4E-BP1 KO cells. This work highlights the use of the CRISPR/Cas9 system to enhance the antiviral response in porcine cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Host Translation Shutoff Mediated by Non-structural Protein 2 is a Critical Factor in the Antiviral State Resistance of Venezuelan Equine Encephalitis Virus

    PubMed Central

    Bhalla, Nishank; Sun, Chengqun; Lam, L. K. Metthew; Gardner, Christina L.; Ryman, Kate D.; Klimstra, William B.

    2016-01-01

    Most previous studies of interferon-alpha/beta (IFN-α/β) response antagonism by alphaviruses have focused upon interruption of IFN-α/β induction and/or receptor signaling cascades. Infection of mice with Venezuelan equine encephalitis alphavirus (VEEV) or Sindbis virus (SINV) induces serum IFN-α/β, that elicits a systemic antiviral state in uninfected cells successfully controlling SINV but not VEEV replication. Furthermore, VEEV replication is more resistant than that of SINV to a pre-existing antiviral state in vitro. While host macromolecular shutoff is proposed as a major antagonist of IFN-α/β induction, the underlying mechanisms of alphavirus resistance to a pre-existing antiviral state are not fully defined, nor is the mechanism for the greater resistance of VEEV. Here, we have separated viral transcription and translation shutoff with multiple alphaviruses, identified the viral proteins that induce each activity, and demonstrated that VEEV nonstructural protein 2-induced translation shutoff is likely a critical factor in enhanced antiviral state resistance of this alphavirus. PMID:27318152

  6. The cysteine2/histidine2-type transcription factor ZINC FINGER OF ARABIDOPSIS THALIANA 6-activated C-REPEAT-BINDING FACTOR pathway is essential for melatonin-mediated freezing stress resistance in Arabidopsis.

    PubMed

    Shi, Haitao; Chan, Zhulong

    2014-09-01

    Melatonin (N-acetyl-5-methoxytryptamine) is not only a widely known animal hormone, but also an important regulator in plant development and multiple abiotic stress responses. Recently, it has been revealed that melatonin alleviated cold stress through mediating several cold-related genes, including C-REPEAT-BINDING FACTORs (CBFs)/Drought Response Element Binding factors (DREBs), COR15a, and three transcription factors (CAMTA1, ZINC FINGER OF ARABIDOPSIS THALIANA 10 (ZAT10), and ZAT12). In this study, we quantified the endogenous melatonin level in Arabidopsis plant leaves and found the endogenous melatonin levels were significantly induced by cold stress (4 °C) treatment. In addition, we found one cysteine2/histidine2-type zinc finger transcription factor, ZAT6, was involved in melatonin-mediated freezing stress response in Arabidopsis. Interestingly, exogenous melatonin enhanced freezing stress resistance was largely alleviated in AtZAT6 knockdown plants, but was enhanced in AtZAT6 overexpressing plants. Moreover, the expression levels of AtZAT6 and AtCBFs were commonly upregulated by cold stress (4 °C) and exogenous melatonin treatments, and modulation of AtZAT6 expression significantly affected the induction AtCBFs transcripts by cold stress (4 °C) and exogenous melatonin treatments. Taken together, AtZAT6-activated CBF pathway might be essential for melatonin-mediated freezing stress response in Arabidopsis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Structural Features of Antiviral APOBEC3 Proteins are Linked to Their Functional Activities

    PubMed Central

    Kitamura, Shingo; Ode, Hirotaka; Iwatani, Yasumasa

    2011-01-01

    Human APOBEC3 (A3) proteins are cellular cytidine deaminases that potently restrict the replication of retroviruses by hypermutating viral cDNA and/or inhibiting reverse transcription. There are seven members of this family including A3A, B, C, DE, F, G, and H, all encoded in a tandem array on human chromosome 22. A3F and A3G are the most potent inhibitors of HIV-1, but only in the absence of the virus-encoded protein, Vif. HIV-1 utilizes Vif to abrogate A3 functions in the producer cells. More specifically, Vif, serving as a substrate receptor, facilitates ubiquitination of A3 proteins by forming a Cullin5 (Cul5)-based E3 ubiquitin ligase complex, which targets A3 proteins for rapid proteasomal degradation. The specificity of A3 degradation is determined by the ability of Vif to bind to the target. Several lines of evidence have suggested that three distinct regions of A3 proteins are involved in the interaction with Vif. Here, we review the biological functions of A3 family members with special focus on A3G and base our analysis on the available structural information. PMID:22203821

  8. Dianthins, ribosome-damaging proteins with anti-viral properties from Dianthus caryophyllus L. (carnation).

    PubMed Central

    Stirpe, F; Williams, D G; Onyon, L J; Legg, R F; Stevens, W A

    1981-01-01

    1. Dianthin 30 and dianthin 32, two proteins isolated from the leaves of Diathus caryophyllus (carnation), were purified to homogeneity by chromatography on CM-cellulose. 2. The mol.wt. of dianthin 30 is 29 500 and that of dianthin 32 is 31 700. Both dianthins are glycoproteins containing mannose. 3. Dianthins inhibit protein synthesis in a lysate of rabbit reticulocytes, with an ID50 (concentration giving 50% inhibition) of 9.15 ng/ml (dianthin 30) and 3.6 ng/ml (dianthin 32). They act by damaging ribosomes in a less-than-equimolar ratio. Protein synthesis by intact cells is partially inhibited by dianthins at a concentration of 100 microgram/ml. 4. Dianthins mixed with tobacco-mosaic virus strongly decrease the number of local lesions on leaves of Nicotiana glutinosa. Images Fig. 2. PMID:7316958

  9. An N-terminal fragment of yeast ribosomal protein L3 inhibits the cytotoxicity of pokeweed antiviral protein in Saccharomyces cerevisiae.

    PubMed

    Di, Rong; Tumer, Nilgun E

    2014-04-11

    We have previously shown that ribosomal protein L3 is required for pokeweed antiviral protein (PAP), a type I ribosome inactivating protein, to bind to ribosomes and depurinate the α-sarcin/ricin loop (SRL) in yeast. Co-expression of the N-terminal 99 amino acids of yeast L3 (L3Δ99) with PAP in transgenic tobacco plants completely abolished the toxicity of PAP. In this study, we investigated the interaction between PAP and L3Δ99 in Saccharomyces cerevisiae. Yeast cells co-transformed with PAP and L3Δ99 showed markedly reduced growth inhibition and reduced rRNA depurination by PAP, compared to cells transformed with PAP alone. Co-transformation of yeast with PAP and L3Δ21 corresponding to the highly conserved N-terminal 21 amino acids of L3Δ99, reduced the cytotoxicity of PAP. PAP mRNA and protein levels were elevated and L3Δ99 or L3Δ21 mRNA and protein levels were reduced in yeast co-transformed with PAP and L3Δ99 or with PAP and L3Δ21, respectively. PAP interacted with L3Δ21 in yeast cells in vivo and by Biacore analysis in vitro, suggesting that the interaction between L3Δ21 and PAP may inhibit PAP-mediated depurination of the SRL, leading to a reduction in the cytotoxicity of PAP.

  10. Lopinavir up-regulates expression of the antiviral protein ribonuclease L in human papillomavirus-positive cervical carcinoma cells.

    PubMed

    Batman, Gavin; Oliver, Anthony W; Zehbe, Ingeborg; Richard, Christina; Hampson, Lynne; Hampson, Ian N

    2011-01-01

    We have previously shown that the HIV protease inhibitor lopinavir has selective toxicity against human papillomavirus (HPV)-positive cervical carcinoma cells via an unknown mechanism. SiHa cervical carcinoma cells were stably transfected with the proteasome sensor vector pZsProSensor-1 to confirm lopinavir inhibits the proteasome in these cells. The Panorama Xpress profiler 725 antibody array was then used to analyse specific changes in protein expression in lopinavir-treated versus control untreated SiHa cells followed by PCR and western blotting. Colorimetric growth assays of lopinavir-treated E6/E7 immortalised versus control human keratinocytes were performed. Targeted small interfering RNA gene silencing followed by growth assay comparison of lopinavir-treated/untreated SiHa cells was also used. Lopinavir induced an increase in the fluorescence of pZsProSensor-1 transfected SiHa cells, indicative of proteasomal inhibition. Ribonuclease L (RNASEL) protein was shown to be up-regulated in lopinavir-treated SiHa cells, which was confirmed by PCR and western blot. Targeted silencing of RNASEL reduced the sensitivity of SiHa cells to lopinavir. Selective toxicity against E6/E7 immortalised keratinocytes versus control cells was also seen with lopinavir and was associated with up-regulated RNASEL expression. These data are consistent with the toxicity of lopinavir against HPV-positive cervical carcinoma cells being related to its ability to block viral proteasome activation and induce an up-regulation of the antiviral protein RNASEL. This is supported by the drug's selective toxicity and up-regulation of RNASEL in E6/E7 immortalised keratinocytes combined with the increased resistance to lopinavir observed in SiHa cells following silencing of RNASEL gene expression.

  11. Human Antiviral Protein IFIX Suppresses Viral Gene Expression during Herpes Simplex Virus 1 (HSV-1) Infection and Is Counteracted by Virus-induced Proteasomal Degradation.

    PubMed

    Crow, Marni S; Cristea, Ileana M

    2017-04-01

    The interferon-inducible protein X (IFIX), a member of the PYHIN family, was recently recognized as an antiviral factor against infection with herpes simplex virus 1 (HSV-1). IFIX binds viral DNA upon infection and promotes expression of antiviral cytokines. How IFIX exerts its host defense functions and whether it is inhibited by the virus remain unknown. Here, we integrated live cell microscopy, proteomics, IFIX domain characterization, and molecular virology to investigate IFIX regulation and antiviral functions during HSV-1 infection. We find that IFIX has a dynamic localization during infection that changes from diffuse nuclear and nucleoli distribution in uninfected cells to discrete nuclear puncta early in infection. This is rapidly followed by a reduction in IFIX protein levels. Indeed, using immunoaffinity purification and mass spectrometry, we define IFIX interactions during HSV-1 infection, finding an association with a proteasome subunit and proteins involved in ubiquitin-proteasome processes. Using synchronized HSV-1 infection, microscopy, and proteasome-inhibition experiments, we demonstrate that IFIX co-localizes with nuclear proteasome puncta shortly after 3 h of infection and that its pyrin domain is rapidly degraded in a proteasome-dependent manner. We further demonstrate that, in contrast to several other host defense factors, IFIX degradation is not dependent on the E3 ubiquitin ligase activity of the viral protein ICP0. However, we show IFIX degradation requires immediate-early viral gene expression, suggesting a viral host suppression mechanism. The IFIX interactome also demonstrated its association with transcriptional regulatory proteins, including the 5FMC complex. We validate this interaction using microscopy and reciprocal isolations and determine it is mediated by the IFIX HIN domain. Finally, we show IFIX suppresses immediate-early and early viral gene expression during infection. Altogether, our study demonstrates that IFIX antiviral

  12. Antiviral activity of double-stranded RNA-binding protein PACT against influenza A virus mediated via suppression of viral RNA polymerase.

    PubMed

    Chan, Chi-Ping; Yuen, Chun-Kit; Cheung, Pak-Hin Hinson; Fung, Sin-Yee; Lui, Pak-Yin; Chen, Honglin; Kok, Kin-Hang; Jin, Dong-Yan

    2018-03-07

    PACT is a double-stranded RNA-binding protein that has been implicated in host-influenza A virus (IAV) interaction. PACT facilitates the action of RIG-I in the activation of the type I IFN response, which is suppressed by the viral nonstructural protein NS1. PACT is also known to interact with the IAV RNA polymerase subunit PA. Exactly how PACT exerts its antiviral activity during IAV infection remains to be elucidated. In the current study, we demonstrated the interplay between PACT and IAV polymerase. Induction of IFN-β by the IAV RNP complex was most robust when both RIG-I and PACT were expressed. PACT-dependent activation of IFN-β production was suppressed by the IAV polymerase subunits, polymerase acidic protein, polymerase basic protein 1 (PB1), and PB2. PACT associated with PA, PB1, and PB2. Compromising PACT in IAV-infected A549 cells resulted in the augmentation of viral RNA (vRNA) transcription and replication and IFN-β production. Furthermore, vRNA replication was boosted by knockdown of PACT in both A549 cells and IFN-deficient Vero cells. Thus, the antiviral activity of PACT is mediated primarily via its interaction with and inhibition of IAV polymerase. Taken together, our findings reveal a new facet of the host-IAV interaction in which the interplay between PACT and IAV polymerase affects the outcome of viral infection and antiviral response.-Chan, C.-P., Yuen, C.-K., Cheung, P.-H. H., Fung, S.-Y., Lui, P.-Y., Chen, H., Kok, K.-H., Jin, D.-Y. Antiviral activity of double-stranded RNA-binding protein PACT against influenza A virus mediated via suppression of viral RNA polymerase.

  13. A ruler protein in a complex for antiviral defense determines the length of small interfering CRISPR RNAs.

    PubMed

    Hatoum-Aslan, Asma; Samai, Poulami; Maniv, Inbal; Jiang, Wenyan; Marraffini, Luciano A

    2013-09-27

    Small RNAs undergo maturation events that precisely determine the length and structure required for their function. CRISPRs (clustered regularly interspaced short palindromic repeats) encode small RNAs (crRNAs) that together with CRISPR-associated (cas) genes constitute a sequence-specific prokaryotic immune system for anti-viral and anti-plasmid defense. crRNAs are subject to multiple processing events during their biogenesis, and little is known about the mechanism of the final maturation step. We show that in the Staphylococcus epidermidis type III CRISPR-Cas system, mature crRNAs are measured in a Cas10·Csm ribonucleoprotein complex to yield discrete lengths that differ by 6-nucleotide increments. We looked for mutants that impact this crRNA size pattern and found that an alanine substitution of a conserved aspartate residue of Csm3 eliminates the 6-nucleotide increments in the length of crRNAs. In vitro, recombinant Csm3 binds RNA molecules at multiple sites, producing gel-shift patterns that suggest that each protein binds 6 nucleotides of substrate. In vivo, changes in the levels of Csm3 modulate the crRNA size distribution without disrupting the 6-nucleotide periodicity. Our data support a model in which multiple Csm3 molecules within the Cas10·Csm complex bind the crRNA with a 6-nucleotide periodicity to function as a ruler that measures the extent of crRNA maturation.

  14. A Ruler Protein in a Complex for Antiviral Defense Determines the Length of Small Interfering CRISPR RNAs

    PubMed Central

    Hatoum-Aslan, Asma; Samai, Poulami; Maniv, Inbal; Jiang, Wenyan; Marraffini, Luciano A.

    2013-01-01

    Small RNAs undergo maturation events that precisely determine the length and structure required for their function. CRISPRs (clustered regularly interspaced short palindromic repeats) encode small RNAs (crRNAs) that together with CRISPR-associated (cas) genes constitute a sequence-specific prokaryotic immune system for anti-viral and anti-plasmid defense. crRNAs are subject to multiple processing events during their biogenesis, and little is known about the mechanism of the final maturation step. We show that in the Staphylococcus epidermidis type III CRISPR-Cas system, mature crRNAs are measured in a Cas10·Csm ribonucleoprotein complex to yield discrete lengths that differ by 6-nucleotide increments. We looked for mutants that impact this crRNA size pattern and found that an alanine substitution of a conserved aspartate residue of Csm3 eliminates the 6-nucleotide increments in the length of crRNAs. In vitro, recombinant Csm3 binds RNA molecules at multiple sites, producing gel-shift patterns that suggest that each protein binds 6 nucleotides of substrate. In vivo, changes in the levels of Csm3 modulate the crRNA size distribution without disrupting the 6-nucleotide periodicity. Our data support a model in which multiple Csm3 molecules within the Cas10·Csm complex bind the crRNA with a 6-nucleotide periodicity to function as a ruler that measures the extent of crRNA maturation. PMID:23935102

  15. Targeting the latent cytomegalovirus reservoir with an antiviral fusion toxin protein

    PubMed Central

    Krishna, B. A.; Spiess, K.; Poole, E. L.; Lau, B.; Voigt, S.; Kledal, T. N.; Rosenkilde, M. M.; Sinclair, J. H.

    2017-01-01

    Reactivation of human cytomegalovirus (HCMV) in transplant recipients can cause life-threatening disease. Consequently, for transplant recipients, killing latently infected cells could have far-reaching clinical benefits. In vivo, myeloid cells and their progenitors are an important site of HCMV latency, and one viral gene expressed by latently infected myeloid cells is US28. This viral gene encodes a cell surface G protein-coupled receptor (GPCR) that binds chemokines, triggering its endocytosis. We show that the expression of US28 on the surface of latently infected cells allows monocytes and their progenitor CD34+ cells to be targeted and killed by F49A-FTP, a highly specific fusion toxin protein that binds this viral GPCR. As expected, this specific targeting of latently infected cells by F49A-FTP also robustly reduces virus reactivation in vitro. Consequently, such specific fusion toxin proteins could form the basis of a therapeutic strategy for eliminating latently infected cells before haematopoietic stem cell transplantation. PMID:28148951

  16. In silico screening of small molecule libraries using the dengue virus envelope E protein has identified compounds with antiviral activity against multiple flaviviruses.

    PubMed

    Kampmann, Thorsten; Yennamalli, Ragothaman; Campbell, Phillipa; Stoermer, Martin J; Fairlie, David P; Kobe, Bostjan; Young, Paul R

    2009-12-01

    The flaviviruses comprise a large group of related viruses, many of which pose a significant global human health threat, most notably the dengue viruses (DENV), West Nile virus (WNV) and yellow fever virus (YFV). Flaviviruses enter host cells via fusion of the viral and cellular membranes, a process mediated by the major viral envelope protein E as it undergoes a low pH induced conformational change in the endosomal compartment of the host cell. This essential entry stage in the flavivirus life cycle provides an attractive target for the development of antiviral agents. We performed an in silico docking screen of the Maybridge chemical database within a previously described ligand binding pocket in the dengue E protein structure that is thought to play a key role in the conformational transitions that lead to membrane fusion. The biological activity of selected compounds identified from this screen revealed low micromolar antiviral potency against dengue virus for two of the compounds. Our results also provide the first evidence that compounds selected to bind to this ligand binding site on the flavivirus E protein abrogate fusion activity. Interestingly, one of these compounds also has antiviral activity against both WNV (kunjin strain) and YFV.

  17. Glucose-regulated protein 78 is an intracellular antiviral factor against hepatitis B virus.

    PubMed

    Ma, Yan; Yu, Jun; Chan, Henry L Y; Chen, Yang-chao; Wang, Hua; Chen, Ying; Chan, Chu-yan; Go, Minnie Y Y; Tsai, Sau-na; Ngai, Sai-ming; To, Ka-fai; Tong, Joanna H M; He, Qing-Yu; Sung, Joseph J Y; Kung, Hsiang-fu; Cheng, Christopher H K; He, Ming-liang

    2009-11-01

    Hepatitis B virus (HBV) infection is a global public health problem that plays a crucial role in the pathogenesis of chronic hepatitis, cirrhosis, and hepatocellular carcinoma. However, the pathogenesis of HBV infection and the mechanisms of host-virus interactions are still elusive. In this study, two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomics were applied to analyze the host response to HBV using an inducible HBV-producing cell line, HepAD38. Twenty-three proteins were identified as differentially expressed with glucose-regulated protein 78 (GRP78) as one of the most significantly up-regulated proteins induced by HBV replication. This induction was further confirmed in both HepAD38 and HepG2 cells transfected with HBV-producing plasmids by real time RT-PCR and Western blotting as well as in HBV-infected human liver biopsies by immunohistochemistry. Knockdown of GRP78 expression by RNA interference resulted in a significant increase of both intracellular and extracellular HBV virions in the transient HBV-producing HepG2 cells concomitant with enhanced levels of hepatitis B surface antigen and e antigen in the culture medium. Conversely overexpression of GRP78 in HepG2 cells led to HBV suppression concomitant with induction of the positive regulatory circuit of GRP78 and interferon-beta1 (IFN-beta1). In this connection, the IFN-beta1-mediated 2',5'-oligoadenylate synthetase and RNase L signaling pathway was noted to be activated in GRP78-overexpressing HepG2 cells. Moreover GRP78 was significantly down-regulated in the livers of chronic hepatitis B patients after effective anti-HBV treatment (p = 0.019) as compared with their counterpart pretreatment liver biopsies. In conclusion, the present study demonstrates for the first time that GRP78 functions as an endogenous anti-HBV factor via the IFN-beta1-2',5'-oligoadenylate synthetase-RNase L pathway in hepatocytes. Induction of hepatic GRP78 may provide a novel therapeutic

  18. Glucose-regulated Protein 78 Is an Intracellular Antiviral Factor against Hepatitis B Virus*

    PubMed Central

    Ma, Yan; Yu, Jun; Chan, Henry L. Y.; Chen, Yang-chao; Wang, Hua; Chen, Ying; Chan, Chu-yan; Go, Minnie Y. Y.; Tsai, Sau-na; Ngai, Sai-ming; To, Ka-fai; Tong, Joanna H. M.; He, Qing-Yu; Sung, Joseph J. Y.; Kung, Hsiang-fu; Cheng, Christopher H. K.; He, Ming-liang

    2009-01-01

    Hepatitis B virus (HBV) infection is a global public health problem that plays a crucial role in the pathogenesis of chronic hepatitis, cirrhosis, and hepatocellular carcinoma. However, the pathogenesis of HBV infection and the mechanisms of host-virus interactions are still elusive. In this study, two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomics were applied to analyze the host response to HBV using an inducible HBV-producing cell line, HepAD38. Twenty-three proteins were identified as differentially expressed with glucose-regulated protein 78 (GRP78) as one of the most significantly up-regulated proteins induced by HBV replication. This induction was further confirmed in both HepAD38 and HepG2 cells transfected with HBV-producing plasmids by real time RT-PCR and Western blotting as well as in HBV-infected human liver biopsies by immunohistochemistry. Knockdown of GRP78 expression by RNA interference resulted in a significant increase of both intracellular and extracellular HBV virions in the transient HBV-producing HepG2 cells concomitant with enhanced levels of hepatitis B surface antigen and e antigen in the culture medium. Conversely overexpression of GRP78 in HepG2 cells led to HBV suppression concomitant with induction of the positive regulatory circuit of GRP78 and interferon-β1 (IFN-β1). In this connection, the IFN-β1-mediated 2′,5′-oligoadenylate synthetase and RNase L signaling pathway was noted to be activated in GRP78-overexpressing HepG2 cells. Moreover GRP78 was significantly down-regulated in the livers of chronic hepatitis B patients after effective anti-HBV treatment (p = 0.019) as compared with their counterpart pretreatment liver biopsies. In conclusion, the present study demonstrates for the first time that GRP78 functions as an endogenous anti-HBV factor via the IFN-β1-2′,5′-oligoadenylate synthetase-RNase L pathway in hepatocytes. Induction of hepatic GRP78 may provide a novel therapeutic

  19. Mx1 and Mx2 key antiviral proteins are surprisingly lost in toothed whales

    PubMed Central

    Braun, Benjamin A.; Marcovitz, Amir; Camp, J. Gray; Jia, Robin; Bejerano, Gill

    2015-01-01

    Viral outbreaks in dolphins and other Delphinoidea family members warrant investigation into the integrity of the cetacean immune system. The dynamin-like GTPase genes Myxovirus 1 (Mx1) and Mx2 defend mammals against a broad range of viral infections. Loss of Mx1 function in human and mice enhances infectivity by multiple RNA and DNA viruses, including orthomyxoviruses (influenza A), paramyxoviruses (measles), and hepadnaviruses (hepatitis B), whereas loss of Mx2 function leads to decreased resistance to HIV-1 and other viruses. Here we show that both Mx1 and Mx2 have been rendered nonfunctional in Odontoceti cetaceans (toothed whales, including dolphins and orcas). We discovered multiple exon deletions, frameshift mutations, premature stop codons, and transcriptional evidence of decay in the coding sequence of both Mx1 and Mx2 in four species of Odontocetes. We trace the likely loss event for both proteins to soon after the divergence of Odontocetes and Mystocetes (baleen whales) ∼33–37 Mya. Our data raise intriguing questions as to what drove the loss of both Mx1 and Mx2 genes in the Odontoceti lineage, a double loss seen in none of 56 other mammalian genomes, and suggests a hitherto unappreciated fundamental genetic difference in the way these magnificent mammals respond to viral infections. PMID:26080416

  20. Mx1 and Mx2 key antiviral proteins are surprisingly lost in toothed whales.

    PubMed

    Braun, Benjamin A; Marcovitz, Amir; Camp, J Gray; Jia, Robin; Bejerano, Gill

    2015-06-30

    Viral outbreaks in dolphins and other Delphinoidea family members warrant investigation into the integrity of the cetacean immune system. The dynamin-like GTPase genes Myxovirus 1 (Mx1) and Mx2 defend mammals against a broad range of viral infections. Loss of Mx1 function in human and mice enhances infectivity by multiple RNA and DNA viruses, including orthomyxoviruses (influenza A), paramyxoviruses (measles), and hepadnaviruses (hepatitis B), whereas loss of Mx2 function leads to decreased resistance to HIV-1 and other viruses. Here we show that both Mx1 and Mx2 have been rendered nonfunctional in Odontoceti cetaceans (toothed whales, including dolphins and orcas). We discovered multiple exon deletions, frameshift mutations, premature stop codons, and transcriptional evidence of decay in the coding sequence of both Mx1 and Mx2 in four species of Odontocetes. We trace the likely loss event for both proteins to soon after the divergence of Odontocetes and Mystocetes (baleen whales) ∼33-37 Mya. Our data raise intriguing questions as to what drove the loss of both Mx1 and Mx2 genes in the Odontoceti lineage, a double loss seen in none of 56 other mammalian genomes, and suggests a hitherto unappreciated fundamental genetic difference in the way these magnificent mammals respond to viral infections.

  1. The PB2 Subunit of the Influenza Virus RNA Polymerase Affects Virulence by Interacting with the Mitochondrial Antiviral Signaling Protein and Inhibiting Expression of Beta Interferon▿

    PubMed Central

    Graef, Katy M.; Vreede, Frank T.; Lau, Yuk-Fai; McCall, Amber W.; Carr, Simon M.; Subbarao, Kanta; Fodor, Ervin

    2010-01-01

    The PB2 subunit of the influenza virus RNA polymerase is a major virulence determinant of influenza viruses. However, the molecular mechanisms involved remain unknown. It was previously shown that the PB2 protein, in addition to its nuclear localization, also accumulates in the mitochondria. Here, we demonstrate that the PB2 protein interacts with the mitochondrial antiviral signaling protein, MAVS (also known as IPS-1, VISA, or Cardif), and inhibits MAVS-mediated beta interferon (IFN-β) expression. In addition, we show that PB2 proteins of influenza viruses differ in their abilities to associate with the mitochondria. In particular, the PB2 proteins of seasonal human influenza viruses localize to the mitochondria while PB2 proteins of avian influenza viruses are nonmitochondrial. This difference in localization is caused by a single amino acid polymorphism in the PB2 mitochondrial targeting signal. In order to address the functional significance of the mitochondrial localization of the PB2 protein in vivo, we have generated two recombinant human influenza viruses encoding either mitochondrial or nonmitochondrial PB2 proteins. We found that the difference in the mitochondrial localization of the PB2 proteins does not affect the growth of these viruses in cell culture. However, the virus encoding the nonmitochondrial PB2 protein induces higher levels of IFN-β and, in an animal model, is attenuated compared to the isogenic virus encoding a mitochondrial PB2. Overall this study implicates the PB2 protein in the regulation of host antiviral innate immune pathways and suggests an important role for the mitochondrial association of the PB2 protein in determining virulence. PMID:20538852

  2. SUMO Ligase Protein Inhibitor of Activated STAT1 (PIAS1) Is a Constituent Promyelocytic Leukemia Nuclear Body Protein That Contributes to the Intrinsic Antiviral Immune Response to Herpes Simplex Virus 1.

    PubMed

    Brown, James R; Conn, Kristen L; Wasson, Peter; Charman, Matthew; Tong, Lily; Grant, Kyle; McFarlane, Steven; Boutell, Chris

    2016-07-01

    Aspects of intrinsic antiviral immunity are mediated by promyelocytic leukemia nuclear body (PML-NB) constituent proteins. During herpesvirus infection, these antiviral proteins are independently recruited to nuclear domains that contain infecting viral genomes to cooperatively promote viral genome silencing. Central to the execution of this particular antiviral response is the small ubiquitin-like modifier (SUMO) signaling pathway. However, the participating SUMOylation enzymes are not fully characterized. We identify the SUMO ligase protein inhibitor of activated STAT1 (PIAS1) as a constituent PML-NB protein. We show that PIAS1 localizes at PML-NBs in a SUMO interaction motif (SIM)-dependent manner that requires SUMOylated or SUMOylation-competent PML. Following infection with herpes simplex virus 1 (HSV-1), PIAS1 is recruited to nuclear sites associated with viral genome entry in a SIM-dependent manner, consistent with the SIM-dependent recruitment mechanisms of other well-characterized PML-NB proteins. In contrast to that of Daxx and Sp100, however, the recruitment of PIAS1 is enhanced by PML. PIAS1 promotes the stable accumulation of SUMO1 at nuclear sites associated with HSV-1 genome entry, whereas the accumulation of other evaluated PML-NB proteins occurs independently of PIAS1. We show that PIAS1 cooperatively contributes to HSV-1 restriction through mechanisms that are additive to those of PML and cooperative with those of PIAS4. The antiviral mechanisms of PIAS1 are counteracted by ICP0, the HSV-1 SUMO-targeted ubiquitin ligase, which disrupts the recruitment of PIAS1 to nuclear domains that contain infecting HSV-1 genomes through mechanisms that do not directly result in PIAS1 degradation. Adaptive, innate, and intrinsic immunity cooperatively and efficiently restrict the propagation of viral pathogens. Intrinsic immunity mediated by constitutively expressed cellular proteins represents the first line of intracellular defense against infection. PML

  3. SUMO Ligase Protein Inhibitor of Activated STAT1 (PIAS1) Is a Constituent Promyelocytic Leukemia Nuclear Body Protein That Contributes to the Intrinsic Antiviral Immune Response to Herpes Simplex Virus 1

    PubMed Central

    Brown, James R.; Conn, Kristen L.; Wasson, Peter; Charman, Matthew; Tong, Lily; Grant, Kyle; McFarlane, Steven

    2016-01-01

    ABSTRACT Aspects of intrinsic antiviral immunity are mediated by promyelocytic leukemia nuclear body (PML-NB) constituent proteins. During herpesvirus infection, these antiviral proteins are independently recruited to nuclear domains that contain infecting viral genomes to cooperatively promote viral genome silencing. Central to the execution of this particular antiviral response is the small ubiquitin-like modifier (SUMO) signaling pathway. However, the participating SUMOylation enzymes are not fully characterized. We identify the SUMO ligase protein inhibitor of activated STAT1 (PIAS1) as a constituent PML-NB protein. We show that PIAS1 localizes at PML-NBs in a SUMO interaction motif (SIM)-dependent manner that requires SUMOylated or SUMOylation-competent PML. Following infection with herpes simplex virus 1 (HSV-1), PIAS1 is recruited to nuclear sites associated with viral genome entry in a SIM-dependent manner, consistent with the SIM-dependent recruitment mechanisms of other well-characterized PML-NB proteins. In contrast to that of Daxx and Sp100, however, the recruitment of PIAS1 is enhanced by PML. PIAS1 promotes the stable accumulation of SUMO1 at nuclear sites associated with HSV-1 genome entry, whereas the accumulation of other evaluated PML-NB proteins occurs independently of PIAS1. We show that PIAS1 cooperatively contributes to HSV-1 restriction through mechanisms that are additive to those of PML and cooperative with those of PIAS4. The antiviral mechanisms of PIAS1 are counteracted by ICP0, the HSV-1 SUMO-targeted ubiquitin ligase, which disrupts the recruitment of PIAS1 to nuclear domains that contain infecting HSV-1 genomes through mechanisms that do not directly result in PIAS1 degradation. IMPORTANCE Adaptive, innate, and intrinsic immunity cooperatively and efficiently restrict the propagation of viral pathogens. Intrinsic immunity mediated by constitutively expressed cellular proteins represents the first line of intracellular defense against

  4. Innate Sensing of Influenza A Virus Hemagglutinin Glycoproteins by the Host Endoplasmic Reticulum (ER) Stress Pathway Triggers a Potent Antiviral Response via ER-Associated Protein Degradation.

    PubMed

    Frabutt, Dylan A; Wang, Bin; Riaz, Sana; Schwartz, Richard C; Zheng, Yong-Hui

    2018-01-01

    Innate immunity provides an immediate defense against infection after host cells sense danger signals from microbes. Endoplasmic reticulum (ER) stress arises from accumulation of misfolded/unfolded proteins when protein load overwhelms the ER folding capacity, which activates the unfolded protein response (UPR) to restore ER homeostasis. Here, we show that a mechanism for antiviral innate immunity is triggered after the ER stress pathway senses viral glycoproteins. When hemagglutinin (HA) glycoproteins from influenza A virus (IAV) are expressed in cells, ER stress is induced, resulting in rapid HA degradation via proteasomes. The ER-associated protein degradation (ERAD) pathway, an important UPR function for destruction of aberrant proteins, mediates HA degradation. Three class I α-mannosidases were identified to play a critical role in the degradation process, including EDEM1, EDEM2, and ERManI. HA degradation requires either ERManI enzymatic activity or EDEM1/EDEM2 enzymatic activity when ERManI is not expressed, indicating that demannosylation is a critical step for HA degradation. Silencing of EDEM1, EDEM2, and ERManI strongly increases HA expression and promotes IAV replication. Thus, the ER stress pathway senses influenza HA as "nonself" or misfolded protein and sorts HA to ERAD for degradation, resulting in inhibition of IAV replication. IMPORTANCE Viral nucleic acids are recognized as important inducers of innate antiviral immune responses that are sensed by multiple classes of sensors, but other inducers and sensors of viral innate immunity need to be identified and characterized. Here, we used IAV to investigate how host innate immunity is activated. We found that IAV HA glycoproteins induce ER stress, resulting in HA degradation via ERAD and consequent inhibition of IAV replication. In addition, we have identified three class I α-mannosidases, EDEM1, EDEM2, and ERManI, which play a critical role in initiating HA degradation. Knockdown of these proteins

  5. The diverse functions of the hepatitis B core/capsid protein (HBc) in the viral life cycle: Implications for the development of HBc-targeting antivirals.

    PubMed

    Diab, Ahmed; Foca, Adrien; Zoulim, Fabien; Durantel, David; Andrisani, Ourania

    2018-01-01

    Virally encoded proteins have evolved to perform multiple functions, and the core protein (HBc) of the hepatitis B virus (HBV) is a perfect example. While HBc is the structural component of the viral nucleocapsid, additional novel functions for the nucleus-localized HBc have recently been described. These results extend for HBc, beyond its structural role, a regulatory function in the viral life cycle and potentially a role in pathogenesis. In this article, we review the diverse roles of HBc in HBV replication and pathogenesis, emphasizing how the unique structure of this protein is key to its various functions. We focus in particular on recent advances in understanding the significance of HBc phosphorylations, its interaction with host proteins and the role of HBc in regulating the transcription of host genes. We also briefly allude to the emerging niche for new direct-acting antivirals targeting HBc, known as Core (protein) Allosteric Modulators (CAMs). Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Type I and Type III Interferons Display Different Dependency on Mitogen-Activated Protein Kinases to Mount an Antiviral State in the Human Gut.

    PubMed

    Pervolaraki, Kalliopi; Stanifer, Megan L; Münchau, Stephanie; Renn, Lynnsey A; Albrecht, Dorothee; Kurzhals, Stefan; Senís, Elena; Grimm, Dirk; Schröder-Braunstein, Jutta; Rabin, Ronald L; Boulant, Steeve

    2017-01-01

    Intestinal epithelial cells (IECs) are constantly exposed to commensal flora and pathogen challenges. How IECs regulate their innate immune response to maintain gut homeostasis remains unclear. Interferons (IFNs) are cytokines produced during infections. While type I IFN receptors are ubiquitously expressed, type III IFN receptors are expressed only on epithelial cells. This epithelium specificity strongly suggests exclusive functions at epithelial surfaces, but the relative roles of type I and III IFNs in the establishment of an antiviral innate immune response in human IECs are not clearly defined. Here, we used mini-gut organoids to define the functions of types I and III IFNs to protect the human gut against viral infection. We show that primary non-transformed human IECs, upon viral challenge, upregulate the expression of both type I and type III IFNs at the transcriptional level but only secrete type III IFN in the supernatant. However, human IECs respond to both type I and type III IFNs by producing IFN-stimulated genes that in turn induce an antiviral state. Using genetic ablation of either type I or type III IFN receptors, we show that either IFN can independently restrict virus infection in human IECs. Importantly, we report, for the first time, differences in the mechanisms by which each IFN establishes the antiviral state. Contrary to type I IFN, the antiviral activity induced by type III IFN is strongly dependent on the mitogen-activated protein kinases signaling pathway, suggesting a pathway used by type III IFNs that non-redundantly contributes to the antiviral state. In conclusion, we demonstrate that human intestinal epithelial cells specifically regulate their innate immune response favoring type III IFN-mediated signaling, which allows for efficient protection against pathogens without producing excessive inflammation. Our results strongly suggest that type III IFN constitutes the frontline of antiviral response in the human gut. We propose that

  7. Glycosaminoglycans mediate retention of the poxvirus type I interferon binding protein at the cell surface to locally block interferon antiviral responses

    PubMed Central

    Montanuy, Imma; Alejo, Ali; Alcami, Antonio

    2011-01-01

    Eradication of smallpox was accomplished 30 yr ago, but poxviral infections still represent a public health concern due to the potential release of variola virus or the emergence of zoonotic poxviruses, such as monkeypox virus. A critical determinant of poxvirus virulence is the inhibition of interferons (IFNs) by the virus-encoded type I IFN-binding protein (IFNα/βBP). This immunomodulatory protein is secreted and has the unique property of interacting with the cell surface in order to prevent IFN-mediated antiviral responses. However, the mechanism of its attachment to the cell surface remains unknown. Using surface plasmon resonance and cell-binding assays, we report that the IFNα/βBP from vaccinia virus, the smallpox vaccine, interacts with cell surface glycosaminoglycans (GAGs). Analysis of the contribution of different regions of the protein to cell surface binding demonstrated that clusters of basic residues in the first immunoglobulin domain mediate GAG interactions. Furthermore, mutation of the GAG-interaction motifs does not affect its IFN-binding and -blocking capacity. Functional conservation of GAG-binding sites is demonstrated for the IFNα/βBP from variola and monkeypox viruses, extending our understanding of immune modulation by the most virulent human poxviruses. These results are relevant for the design of improved vaccines and intervention strategies.—Montanuy, I., Alejo, A., Alcami, A. Glycosaminoglycans mediate retention of the poxvirus type I interferon binding protein at the cell surface to locally block interferon antiviral responses. PMID:21372110

  8. Investigation of antiviral state mediated by interferon-inducible transmembrane protein 1 induced by H9N2 virus and inactivated viral particle in human endothelial cells.

    PubMed

    Feng, Bo; Zhao, Lihong; Wang, Wei; Wang, Jianfang; Wang, Hongyan; Duan, Huiqin; Zhang, Jianjun; Qiao, Jian

    2017-11-03

    Endothelial cells are believed to play an important role in response to virus infection. Our previous microarray analysis showed that H9N2 virus infection and inactivated viral particle inoculation increased the expression of interferon-inducible transmembrane protein 1 (IFITM1) in human umbilical vein endothelial cells (HUVECs). In present study, we deeply investigated the expression patterns of IFITM1 and IFITM1-mediated antiviral response induced by H9N2 virus infection and inactivated viral particle inoculation in HUVECs. Epithelial cells that are considered target cells of the influenza virus were selected as a reference control. First, we quantified the expression levels of IFITM1 in HUVECs induced by H9N2 virus infection or viral particle inoculation using quantitative real-time PCR and western blot. Second, we observed whether hemagglutinin or neuraminidase affected IFITM1 expression in HUVECs. Finally, we investigated the effect of induced-IFITM1 on the antiviral state in HUVECs by siRNA and activation plasmid transfection. Both H9N2 virus infection and viral particle inoculation increased the expression of IFITM1 without elevating the levels of interferon-ɑ/β in HUVECs. HA or NA protein binding alone is not sufficient to increase the levels of IFITM1 and interferon-ɑ/β in HUVECs. IFITM1 induced by viral particle inoculation significantly decreased the virus titers in culture supernatants of HUVECs. Our results showed that inactivated viral particle inoculation increased the expression of IFITM1 at mRNA and protein levels. Moreover, the induction of IFITM1 expression mediated the antiviral state in HUVECs.

  9. Influenza A Virus Encoding Secreted Gaussia Luciferase as Useful Tool to Analyze Viral Replication and Its Inhibition by Antiviral Compounds and Cellular Proteins

    PubMed Central

    Palanisamy, Navaneethan; Goedecke, Ulrike; Jäger, Nils; Pöhlmann, Stefan; Winkler, Michael

    2014-01-01

    Reporter genes inserted into viral genomes enable the easy and rapid quantification of virus replication, which is instrumental to efficient in vitro screening of antiviral compounds or in vivo analysis of viral spread and pathogenesis. Based on a published design, we have generated several replication competent influenza A viruses carrying either fluorescent proteins or Gaussia luciferase. Reporter activity could be readily quantified in infected cultures, but the virus encoding Gaussia luciferase was more stable than viruses bearing fluorescent proteins and was therefore analyzed in detail. Quantification of Gaussia luciferase activity in the supernatants of infected culture allowed the convenient and highly sensitive detection of viral spread, and enzymatic activity correlated with the number of infectious particles released from infected cells. Furthermore, the Gaussia luciferase encoding virus allowed the sensitive quantification of the antiviral activity of the neuraminidase inhibitor (NAI) zanamivir and the host cell interferon-inducible transmembrane (IFITM) proteins 1–3, which are known to inhibit influenza virus entry. Finally, the virus was used to demonstrate that influenza A virus infection is sensitive to a modulator of endosomal cholesterol, in keeping with the concept that IFITMs inhibit viral entry by altering cholesterol levels in the endosomal membrane. In sum, we report the characterization of a novel influenza A reporter virus, which allows fast and sensitive detection of viral spread and its inhibition, and we show that influenza A virus entry is sensitive to alterations of endosomal cholesterol levels. PMID:24842154

  10. Paramyxovirus V Protein Interaction with the Antiviral Sensor LGP2 Disrupts MDA5 Signaling Enhancement but Is Not Relevant to LGP2-Mediated RLR Signaling Inhibition

    PubMed Central

    Rodriguez, Kenny R.

    2014-01-01

    ABSTRACT The interferon antiviral system is a primary barrier to virus replication triggered upon recognition of nonself RNAs by the cytoplasmic sensors encoded by retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and laboratory of genetics and physiology gene 2 (LGP2). Paramyxovirus V proteins are interferon antagonists that can selectively interact with MDA5 and LGP2 through contact with a discrete helicase domain region. Interaction with MDA5, an activator of antiviral signaling, disrupts interferon gene expression and antiviral responses. LGP2 has more diverse reported roles as both a coactivator of MDA5 and a negative regulator of both RIG-I and MDA5. This functional dichotomy, along with the concurrent interference with both cellular targets, has made it difficult to assess the unique consequences of V protein interaction with LGP2. To directly evaluate the impact of LGP2 interference, MDA5 and LGP2 variants unable to be recognized by measles virus and parainfluenza virus 5 (PIV5) V proteins were tested in signaling assays. Results indicate that interaction with LGP2 specifically prevents coactivation of MDA5 signaling and that LGP2's negative regulatory capacity was not affected. V proteins only partially antagonize RIG-I at high concentrations, and their expression had no additive effects on LGP2-mediated negative regulation. However, conversion of RIG-I to a direct V protein target was accomplished by only two amino acid substitutions that allowed both V protein interaction and efficient interference. These results clarify the unique consequences of MDA5 and LGP2 interference by paramyxovirus V proteins and help resolve the distinct roles of LGP2 in both activation and inhibition of antiviral signal transduction. IMPORTANCE Paramyxovirus V proteins interact with two innate immune receptors, MDA5 and LGP2, but not RIG-I. V proteins prevent MDA5 from signaling to the beta interferon promoter, but the consequences of

  11. Paramyxovirus V protein interaction with the antiviral sensor LGP2 disrupts MDA5 signaling enhancement but is not relevant to LGP2-mediated RLR signaling inhibition.

    PubMed

    Rodriguez, Kenny R; Horvath, Curt M

    2014-07-01

    The interferon antiviral system is a primary barrier to virus replication triggered upon recognition of nonself RNAs by the cytoplasmic sensors encoded by retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and laboratory of genetics and physiology gene 2 (LGP2). Paramyxovirus V proteins are interferon antagonists that can selectively interact with MDA5 and LGP2 through contact with a discrete helicase domain region. Interaction with MDA5, an activator of antiviral signaling, disrupts interferon gene expression and antiviral responses. LGP2 has more diverse reported roles as both a coactivator of MDA5 and a negative regulator of both RIG-I and MDA5. This functional dichotomy, along with the concurrent interference with both cellular targets, has made it difficult to assess the unique consequences of V protein interaction with LGP2. To directly evaluate the impact of LGP2 interference, MDA5 and LGP2 variants unable to be recognized by measles virus and parainfluenza virus 5 (PIV5) V proteins were tested in signaling assays. Results indicate that interaction with LGP2 specifically prevents coactivation of MDA5 signaling and that LGP2's negative regulatory capacity was not affected. V proteins only partially antagonize RIG-I at high concentrations, and their expression had no additive effects on LGP2-mediated negative regulation. However, conversion of RIG-I to a direct V protein target was accomplished by only two amino acid substitutions that allowed both V protein interaction and efficient interference. These results clarify the unique consequences of MDA5 and LGP2 interference by paramyxovirus V proteins and help resolve the distinct roles of LGP2 in both activation and inhibition of antiviral signal transduction. Importance: Paramyxovirus V proteins interact with two innate immune receptors, MDA5 and LGP2, but not RIG-I. V proteins prevent MDA5 from signaling to the beta interferon promoter, but the consequences of LGP2

  12. Vaccinia Virus C9 Ankyrin Repeat/F-Box Protein Is a Newly Identified Antagonist of the Type I Interferon-Induced Antiviral State.

    PubMed

    Liu, Ruikang; Moss, Bernard

    2018-05-01

    Type I interferons (IFNs) induce expression of more than 300 cellular genes that provide protection against viruses and other pathogens. For survival, viruses evolved defenses to prevent the IFN response or counteract the IFN-induced antiviral state. However, because viruses and cells coevolved, the dynamic relationship between virus and host is difficult to discern. In the present study, we demonstrated that vaccinia virus with a large deletion near the left end of the genome had a diminished ability to replicate in cells that had been pretreated with beta interferon (IFN-β), suggesting that one or more of the missing 17 open reading frames (ORFs) encode an antagonist of the IFN-induced antiviral state. By systematically deleting groups of ORFs and then individual ORFs, the C9L gene was shown to be required for IFN resistance. Replication of the C9L deletion mutant (vΔC9) was impaired in human cells that had been pretreated with IFN-β. Expression of viral early genes occurred, but subsequent events, including genome uncoating, genome replication, and postreplicative gene expression, were inhibited. Expression of the C9 protein occurred prior to genome replication, consistent with an early role in counteracting the IFN-induced antiviral state. C9 contains six ankyrin repeat motifs and a near C-terminal F-box. Mass spectrometry and immunoblotting identified host proteins that copurified with a functional epitope-tagged C9. The most abundant proteins were components of the SCF (CUL1, SKP1, F-box) and signalosome/deneddylation complexes, which interact with each other, suggesting a possible role in proteolysis of one or more interferon-induced proteins. IMPORTANCE Poxviruses comprise a family of large DNA viruses that replicate in the cytoplasm of vertebrate and insect hosts and cause human and zoonotic diseases. In most cases the primary infection is moderated by innate immune defenses. Vertebrates, including fish, amphibians, reptiles, birds, and mammals, all

  13. NLRX1 prevents mitochondrial induced apoptosis and enhances macrophage antiviral immunity by interacting with influenza virus PB1-F2 protein

    PubMed Central

    Jaworska, Joanna; Coulombe, François; Downey, Jeffrey; Tzelepis, Fanny; Shalaby, Karim; Tattoli, Ivan; Berube, Julie; Rousseau, Simon; Martin, James G.; Girardin, Stephen E.; McCullers, Jonathan A.; Divangahi, Maziar

    2014-01-01

    To subvert host immunity, influenza A virus (IAV) induces early apoptosis in innate immune cells by disrupting mitochondria membrane potential via its polymerase basic protein 1-frame 2 (PB1-F2) accessory protein. Whether immune cells have mechanisms to counteract PB1-F2–mediated apoptosis is currently unknown. Herein, we define that the host mitochondrial protein nucleotide-binding oligomerization domain-like receptor (NLR)X1 binds to viral protein PB1-F2, preventing IAV-induced macrophage apoptosis and promoting both macrophage survival and type I IFN signaling. We initially observed that Nlrx1-deficient mice infected with IAV exhibited increased pulmonary viral replication, as well as enhanced inflammatory-associated pulmonary dysfunction and morbidity. Analysis of the lungs of IAV-infected mice revealed markedly enhanced leukocyte recruitment but impaired production of type I IFN in Nlrx1−/− mice. Impaired type I IFN production and enhanced viral replication was recapitulated in Nlrx1−/− macrophages and was associated with increased mitochondrial mediated apoptosis. Through gain- and loss-of-function strategies for protein interaction, we identified that NLRX1 directly bound PB1-F2 in the mitochondria of macrophages. Using a recombinant virus lacking PB1-F2, we confirmed that deletion of PB1-F2 abrogated NLRX1-dependent macrophage type I IFN production and apoptosis. Thus, our results demonstrate that NLRX1 acts as a mitochondrial sentinel protecting macrophages from PB1-F2–induced apoptosis and preserving their antiviral function. We further propose that NLRX1 is critical for macrophage immunity against IAV infection by sensing the extent of viral replication and maintaining a protective balance between antiviral immunity and excessive inflammation within the lungs. PMID:24799673

  14. A Kinome-Wide Small Interfering RNA Screen Identifies Proviral and Antiviral Host Factors in Severe Acute Respiratory Syndrome Coronavirus Replication, Including Double-Stranded RNA-Activated Protein Kinase and Early Secretory Pathway Proteins

    PubMed Central

    de Wilde, Adriaan H.; Wannee, Kazimier F.; Scholte, Florine E. M.; Goeman, Jelle J.; ten Dijke, Peter; Snijder, Eric J.

    2015-01-01

    ABSTRACT To identify host factors relevant for severe acute respiratory syndrome-coronavirus (SARS-CoV) replication, we performed a small interfering RNA (siRNA) library screen targeting the human kinome. Protein kinases are key regulators of many cellular functions, and the systematic knockdown of their expression should provide a broad perspective on factors and pathways promoting or antagonizing coronavirus replication. In addition to 40 proteins that promote SARS-CoV replication, our study identified 90 factors exhibiting an antiviral effect. Pathway analysis grouped subsets of these factors in specific cellular processes, including the innate immune response and the metabolism of complex lipids, which appear to play a role in SARS-CoV infection. Several factors were selected for in-depth validation in follow-up experiments. In cells depleted for the β2 subunit of the coatomer protein complex (COPB2), the strongest proviral hit, we observed reduced SARS-CoV protein expression and a >2-log reduction in virus yield. Knockdown of the COPB2-related proteins COPB1 and Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1) also suggested that COPI-coated vesicles and/or the early secretory pathway are important for SARS-CoV replication. Depletion of the antiviral double-stranded RNA-activated protein kinase (PKR) enhanced virus replication in the primary screen, and validation experiments confirmed increased SARS-CoV protein expression and virus production upon PKR depletion. In addition, cyclin-dependent kinase 6 (CDK6) was identified as a novel antiviral host factor in SARS-CoV replication. The inventory of pro- and antiviral host factors and pathways described here substantiates and expands our understanding of SARS-CoV replication and may contribute to the identification of novel targets for antiviral therapy. IMPORTANCE Replication of all viruses, including SARS-CoV, depends on and is influenced by cellular pathways. Although

  15. Inhibition of CRM1-mediated nuclear export of influenza A nucleoprotein and nuclear export protein as a novel target for antiviral drug development.

    PubMed

    Chutiwitoonchai, Nopporn; Mano, Takafumi; Kakisaka, Michinori; Sato, Hirotaka; Kondoh, Yasumitsu; Osada, Hiroyuki; Kotani, Osamu; Yokoyama, Masaru; Sato, Hironori; Aida, Yoko

    2017-07-01

    An anti-influenza compound, DP2392-E10 based on inhibition of the nuclear export function of the viral nucleoprotein-nuclear export signal 3 (NP-NES3) domain was successfully identified by our previous high-throughput screening system. Here, we demonstrated that DP2392-E10 exerts its antiviral effect by inhibiting replication of a broad range of influenza A subtypes. In regard to the molecular mechanism, we revealed that DP2392-E10 inhibits nuclear export of both viral NP and nuclear export protein (NEP). More specifically, in vitro pull-down assays revealed that DP2392-E10 directly binds cellular CRM1, which mediates nuclear export of NP and NEP. In silico docking suggested that DP2392-E10 binds at a region close to the HEAT9 and HEAT10 domains of CRM1. Together, these results indicate that the CRM1-mediated nuclear export function of influenza virus represents a new potential target for antiviral drug development, and also provide a core structure for a novel class of inhibitors that target this function. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Inhibition of CRM1-mediated nuclear export of influenza A nucleoprotein and nuclear export protein as a novel target for antiviral drug development

    SciT

    Chutiwitoonchai, Nopporn; Mano, Takafumi; Kakisaka

    An anti-influenza compound, DP2392-E10 based on inhibition of the nuclear export function of the viral nucleoprotein-nuclear export signal 3 (NP-NES3) domain was successfully identified by our previous high-throughput screening system. Here, we demonstrated that DP2392-E10 exerts its antiviral effect by inhibiting replication of a broad range of influenza A subtypes. In regard to the molecular mechanism, we revealed that DP2392-E10 inhibits nuclear export of both viral NP and nuclear export protein (NEP). More specifically, in vitro pull-down assays revealed that DP2392-E10 directly binds cellular CRM1, which mediates nuclear export of NP and NEP. In silico docking suggested that DP2392-E10 bindsmore » at a region close to the HEAT9 and HEAT10 domains of CRM1. Together, these results indicate that the CRM1-mediated nuclear export function of influenza virus represents a new potential target for antiviral drug development, and also provide a core structure for a novel class of inhibitors that target this function. - Highlights: •DP2392-E10 inhibits replication of a broad range of influenza A subtypes. •DP2392-E10 inhibits nuclear exports of NP and NEP via their NP-NES3 and NEP-NES2 domains, respectively. •DP2392-E10 is predicted to directly bind CRM1 in the region near the HEAT9 and HEAT10 repeats.« less

  17. The Matrix Protein of Nipah Virus Targets the E3-Ubiquitin Ligase TRIM6 to Inhibit the IKKε Kinase-Mediated Type-I IFN Antiviral Response.

    PubMed

    Bharaj, Preeti; Wang, Yao E; Dawes, Brian E; Yun, Tatyana E; Park, Arnold; Yen, Benjamin; Basler, Christopher F; Freiberg, Alexander N; Lee, Benhur; Rajsbaum, Ricardo

    2016-09-01

    For efficient replication, viruses have developed mechanisms to evade innate immune responses, including the antiviral type-I interferon (IFN-I) system. Nipah virus (NiV), a highly pathogenic member of the Paramyxoviridae family (genus Henipavirus), is known to encode for four P gene-derived viral proteins (P/C/W/V) with IFN-I antagonist functions. Here we report that NiV matrix protein (NiV-M), which is important for virus assembly and budding, can also inhibit IFN-I responses. IFN-I production requires activation of multiple signaling components including the IκB kinase epsilon (IKKε). We previously showed that the E3-ubiquitin ligase TRIM6 catalyzes the synthesis of unanchored K48-linked polyubiquitin chains, which are not covalently attached to any protein, and activate IKKε for induction of IFN-I mediated antiviral responses. Using co-immunoprecipitation assays and confocal microscopy we show here that the NiV-M protein interacts with TRIM6 and promotes TRIM6 degradation. Consequently, NiV-M expression results in reduced levels of unanchored K48-linked polyubiquitin chains associated with IKKε leading to impaired IKKε oligomerization, IKKε autophosphorylation and reduced IFN-mediated responses. This IFN antagonist function of NiV-M requires a conserved lysine residue (K258) in the bipartite nuclear localization signal that is found in divergent henipaviruses. Consistent with this, the matrix proteins of Ghana, Hendra and Cedar viruses were also able to inhibit IFNβ induction. Live NiV infection, but not a recombinant NiV lacking the M protein, reduced the levels of endogenous TRIM6 protein expression. To our knowledge, matrix proteins of paramyxoviruses have never been reported to be involved in innate immune antagonism. We report here a novel mechanism of viral innate immune evasion by targeting TRIM6, IKKε and unanchored polyubiquitin chains. These findings expand the universe of viral IFN antagonism strategies and provide a new potential target for

  18. The Matrix Protein of Nipah Virus Targets the E3-Ubiquitin Ligase TRIM6 to Inhibit the IKKε Kinase-Mediated Type-I IFN Antiviral Response

    PubMed Central

    Dawes, Brian E.; Yun, Tatyana E.; Park, Arnold; Yen, Benjamin; Basler, Christopher F.; Freiberg, Alexander N.; Lee, Benhur; Rajsbaum, Ricardo

    2016-01-01

    For efficient replication, viruses have developed mechanisms to evade innate immune responses, including the antiviral type-I interferon (IFN-I) system. Nipah virus (NiV), a highly pathogenic member of the Paramyxoviridae family (genus Henipavirus), is known to encode for four P gene-derived viral proteins (P/C/W/V) with IFN-I antagonist functions. Here we report that NiV matrix protein (NiV-M), which is important for virus assembly and budding, can also inhibit IFN-I responses. IFN-I production requires activation of multiple signaling components including the IκB kinase epsilon (IKKε). We previously showed that the E3-ubiquitin ligase TRIM6 catalyzes the synthesis of unanchored K48-linked polyubiquitin chains, which are not covalently attached to any protein, and activate IKKε for induction of IFN-I mediated antiviral responses. Using co-immunoprecipitation assays and confocal microscopy we show here that the NiV-M protein interacts with TRIM6 and promotes TRIM6 degradation. Consequently, NiV-M expression results in reduced levels of unanchored K48-linked polyubiquitin chains associated with IKKε leading to impaired IKKε oligomerization, IKKε autophosphorylation and reduced IFN-mediated responses. This IFN antagonist function of NiV-M requires a conserved lysine residue (K258) in the bipartite nuclear localization signal that is found in divergent henipaviruses. Consistent with this, the matrix proteins of Ghana, Hendra and Cedar viruses were also able to inhibit IFNβ induction. Live NiV infection, but not a recombinant NiV lacking the M protein, reduced the levels of endogenous TRIM6 protein expression. To our knowledge, matrix proteins of paramyxoviruses have never been reported to be involved in innate immune antagonism. We report here a novel mechanism of viral innate immune evasion by targeting TRIM6, IKKε and unanchored polyubiquitin chains. These findings expand the universe of viral IFN antagonism strategies and provide a new potential target for

  19. Antigen presentation under the influence of 'immune evasion' proteins and its modulation by interferon-gamma: implications for immunotherapy of cytomegalovirus infection with antiviral CD8 T cells.

    PubMed

    Fink, Annette; Lemmermann, Niels A W; Gillert-Marien, Dorothea; Thomas, Doris; Freitag, Kirsten; Böhm, Verena; Wilhelmi, Vanessa; Reifenberg, Kurt; Reddehase, Matthias J; Holtappels, Rafaela

    2012-11-01

    Cytomegalovirus (CMV) disease with multiple organ manifestations is the most feared viral complication limiting the success of hematopoietic cell transplantation as a therapy of hematopoietic malignancies. A timely endogenous reconstitution of CD8 T cells controls CMV infection, and adoptive transfer of antiviral CD8 T cells is a therapeutic option to prevent CMV disease by bridging the gap between an early CMV reactivation and delayed endogenous reconstitution of protective immunity. Preclinical research in murine models has provided 'proof of concept' for CD8 T-cell therapy of CMV disease. Protection by CD8 T cells appears to be in conflict with the finding that CMVs encode proteins that inhibit antigen presentation to CD8 T cells by interfering with the constitutive trafficking of peptide-loaded MHC class I molecules (pMHC-I complexes) to the cell surface. Here, we have systematically explored antigen presentation in the presence of the three currently noted immune evasion proteins of murine CMV in all possible combinations and its modulation by pre-treatment of cells with interferon-gamma (IFN-γ). The data reveal improvement in antigen processing by pre-treatment with IFN-γ can almost overrule the inhibitory function of immune evasion molecules in terms of pMHC-I expression levels capable of triggering most of the specific CD8 T cells, though the intensity of stimulation did not retrieve their full functional capacity. Notably, an in vivo conditioning of host tissue cells with IFN-γ in adoptive cell transfer recipients constitutively overexpressing IFN-γ (B6-SAP-IFN-γ mice) enhanced the antiviral efficiency of CD8 T cells in this transgenic cytoimmunotherapy model.

  20. Characterization of domain-specific interaction of synthesized dye with serum proteins by spectroscopic and docking approaches along with determination of in vitro cytotoxicity and antiviral activity.

    PubMed

    Rudra, Suparna; Dasmandal, Somnath; Patra, Chiranjit; Patel, Biman Kumar; Paul, Suvendu; Mahapatra, Ambikesh

    2017-11-20

    The interaction between a synthesized dye with proteins, bovine, and human serum albumin (BSA, HSA, respectively) under physiological conditions has been characterized in detail, by means of steady-state and time-resolved fluorescence, UV-vis absorption, and circular dichroism (CD) techniques. An extensive time-resolved fluorescence spectroscopic characterization of the quenching process has been undertaken in conjugation with temperature-dependent fluorescence quenching studies to divulge the actual quenching mechanism. From the thermodynamic observations, it is clear that the binding process is a spontaneous molecular interaction, in which van der Waals and hydrogen bonding interactions play the major roles. The UV-vis absorption and CD results confirm that the dye can induce conformational and micro-environmental changes of both the proteins. In addition, the dye binding provokes the functionality of the native proteins in terms of esterase-like activity. The average binding distance (r) between proteins and dye has been calculated using FRET. Cytotoxicity and antiviral effects of the dye have been found using Vero cell and HSV-1F virus by performing MTT assay. The AutoDock-based docking simulation reveals the probable binding location of dye within the sub-domain IIA of HSA and IB of BSA.

  1. Novel activation domain derived from Che-1 cofactor coupled with the artificial protein Jazz drives utrophin upregulation.

    PubMed

    Desantis, Agata; Onori, Annalisa; Di Certo, Maria Grazia; Mattei, Elisabetta; Fanciulli, Maurizio; Passananti, Claudio; Corbi, Nicoletta

    2009-02-01

    Our aim is to upregulate the expression level of the dystrophin related gene utrophin in Duchenne muscular dystrophy, thus complementing the lack of dystrophin functions. To this end, we have engineered synthetic zinc finger based transcription factors. We have previously shown that the artificial three-zinc finger protein named Jazz fused with the Vp16 activation domain, is able to bind utrophin promoter A and to increase the endogenous level of utrophin in transgenic mice. Here, we report on an innovative artificial protein, named CJ7, that consists of Jazz DNA binding domain fused to a novel activation domain derived from the regulatory multivalent adaptor protein Che-1/AATF. This transcriptional activation domain is 100 amino acids in size and it is very powerful as compared to the Vp16 activation domain. We show that CJ7 protein efficiently promotes transcription and accumulation of the acetylated form of histone H3 on the genomic utrophin promoter locus.

  2. Antiviral Lectins: Selective Inhibitors of Viral Entry

    PubMed Central

    Mitchell, Carter A.; Ramessar, Koreen; O’Keefe, Barry R.

    2017-01-01

    Many natural lectins have been reported to have antiviral activity. As some of these have been put forward as potential development candidates for preventing or treating viral infections, we have set out in this review to survey the literature on antiviral lectins. The review groups lectins by structural class and class of source organism we also detail their carbohydrate specificity and their reported antiviral activities. The review concludes with a brief discussion of several of the pertinent hurdles that heterologous proteins must clear to be useful clinical candidates and cites examples where such studies have been reported for antiviral lectins. Though the clearest path currently being followed is the use of antiviral lectins as anti-HIV microbicides via topical mucosal administration, some investigators have also found systemic efficacy against acute infections following subcutaneous administration. PMID:28322922

  3. Conventional protein kinase C-α (PKC-α) and PKC-β negatively regulate RIG-I antiviral signal transduction.

    PubMed

    Maharaj, Natalya P; Wies, Effi; Stoll, Andrej; Gack, Michaela U

    2012-02-01

    Retinoic acid-inducible gene I (RIG-I) is a key sensor for viral RNA in the cytosol, and it initiates a signaling cascade that leads to the establishment of an interferon (IFN)-mediated antiviral state. Because of its integral role in immune signaling, RIG-I activity must be precisely controlled. Recent studies have shown that RIG-I CARD-dependent signaling function is regulated by the dynamic balance between phosphorylation and TRIM25-induced K₆₃-linked ubiquitination. While ubiquitination of RIG-I is critical for RIG-I's ability to induce an antiviral IFN response, phosphorylation of RIG-I at S₈ or T₁₇₀ suppresses RIG-I signal-transducing activity under normal conditions. Here, we not only further define the roles of S₈ and T₁₇₀ phosphorylation for controlling RIG-I activity but also identify conventional protein kinase C-α (PKC-α) and PKC-β as important negative regulators of the RIG-I signaling pathway. Mutational analysis indicated that while the phosphorylation of S₈ or T₁₇₀ potently inhibits RIG-I downstream signaling, the dephosphorylation of RIG-I at both residues is necessary for optimal TRIM25 binding and ubiquitination-mediated RIG-I activation. Furthermore, exogenous expression, gene silencing, and specific inhibitor treatment demonstrated that PKC-α/β are the primary kinases responsible for RIG-I S₈ and T₁₇₀ phosphorylation. Coimmunoprecipitation showed that PKC-α/β interact with RIG-I under normal conditions, leading to its phosphorylation, which suppresses TRIM25 binding, RIG-I CARD ubiquitination, and thereby RIG-I-mediated IFN induction. PKC-α/β double-knockdown cells exhibited markedly decreased S₈/T₁₇₀ phosphorylation levels of RIG-I and resistance to infection by vesicular stomatitis virus. Thus, these findings demonstrate that PKC-α/β-induced RIG-I phosphorylation is a critical regulatory mechanism for controlling RIG-I antiviral signal transduction under normal conditions.

  4. Conventional Protein Kinase C-α (PKC-α) and PKC-β Negatively Regulate RIG-I Antiviral Signal Transduction

    PubMed Central

    Maharaj, Natalya P.; Wies, Effi; Stoll, Andrej

    2012-01-01

    Retinoic acid-inducible gene I (RIG-I) is a key sensor for viral RNA in the cytosol, and it initiates a signaling cascade that leads to the establishment of an interferon (IFN)-mediated antiviral state. Because of its integral role in immune signaling, RIG-I activity must be precisely controlled. Recent studies have shown that RIG-I CARD-dependent signaling function is regulated by the dynamic balance between phosphorylation and TRIM25-induced K63-linked ubiquitination. While ubiquitination of RIG-I is critical for RIG-I's ability to induce an antiviral IFN response, phosphorylation of RIG-I at S8 or T170 suppresses RIG-I signal-transducing activity under normal conditions. Here, we not only further define the roles of S8 and T170 phosphorylation for controlling RIG-I activity but also identify conventional protein kinase C-α (PKC-α) and PKC-β as important negative regulators of the RIG-I signaling pathway. Mutational analysis indicated that while the phosphorylation of S8 or T170 potently inhibits RIG-I downstream signaling, the dephosphorylation of RIG-I at both residues is necessary for optimal TRIM25 binding and ubiquitination-mediated RIG-I activation. Furthermore, exogenous expression, gene silencing, and specific inhibitor treatment demonstrated that PKC-α/β are the primary kinases responsible for RIG-I S8 and T170 phosphorylation. Coimmunoprecipitation showed that PKC-α/β interact with RIG-I under normal conditions, leading to its phosphorylation, which suppresses TRIM25 binding, RIG-I CARD ubiquitination, and thereby RIG-I-mediated IFN induction. PKC-α/β double-knockdown cells exhibited markedly decreased S8/T170 phosphorylation levels of RIG-I and resistance to infection by vesicular stomatitis virus. Thus, these findings demonstrate that PKC-α/β-induced RIG-I phosphorylation is a critical regulatory mechanism for controlling RIG-I antiviral signal transduction under normal conditions. PMID:22114345

  5. SARS-CoV ORF1b-encoded nonstructural proteins 12-16: replicative enzymes as antiviral targets.

    PubMed

    Subissi, Lorenzo; Imbert, Isabelle; Ferron, François; Collet, Axelle; Coutard, Bruno; Decroly, Etienne; Canard, Bruno

    2014-01-01

    The SARS (severe acute respiratory syndrome) pandemic caused ten years ago by the SARS-coronavirus (SARS-CoV) has stimulated a number of studies on the molecular biology of coronaviruses. This research has provided significant new insight into many mechanisms used by the coronavirus replication-transcription complex (RTC). The RTC directs and coordinates processes in order to replicate and transcribe the coronavirus genome, a single-stranded, positive-sense RNA of outstanding length (∼27-32kilobases). Here, we review the up-to-date knowledge on SARS-CoV replicative enzymes encoded in the ORF1b, i.e., the main RNA-dependent RNA polymerase (nsp12), the helicase/triphosphatase (nsp13), two unusual ribonucleases (nsp14, nsp15) and RNA-cap methyltransferases (nsp14, nsp16). We also review how these enzymes co-operate with other viral co-factors (nsp7, nsp8, and nsp10) to regulate their activity. These last ten years of research on SARS-CoV have considerably contributed to unravel structural and functional details of one of the most fascinating replication/transcription machineries of the RNA virus world. This paper