Sample records for zincii complexes derived

  1. An in vitro study of interactions between insulin-mimetic zinc(II) complexes and selected plasma components.

    PubMed

    Enyedy, Eva Anna; Horváth, László; Gajda-Schrantz, Krisztina; Galbács, Gábor; Kiss, Tamás

    2006-12-01

    The speciations of some potent insulin-mimetic zinc(II) complexes of bidentate ligands: maltol and 1,2-dimethyl-3-hydroxypyridinone with (O,O) and picolinic acid with (N,O) coordination modes, were studied via solution equilibrium investigations of the ternary complex formation in the presence of small relevant bioligands of the blood serum such as cysteine, histidine and citric acid. Results show that formation of the ternary complexes, especially with cysteine, is favoured at physiological pH range in almost all systems studied. Besides these low molecular mass binders, serum proteins among others albumin and transferrin can bind zinc(II) or its complexes. Accordingly, the distribution of zinc(II) between the small and high molecular mass fractions of the serum was also studied by ultrafiltration. Modelling calculations relating to the distribution of zinc(II), using the stability constants of the ternary complexes studied and those of the serum proteins reported in the literature, confirmed the ultrafiltration results, namely, the primary role of albumin in zinc(II) binding among the low and high molecular mass components of the serum.

  2. Structural basis for bifunctional zinc(II) macrocyclic complex recognition of thymine bulges in DNA.

    PubMed

    del Mundo, Imee Marie A; Siters, Kevin E; Fountain, Matthew A; Morrow, Janet R

    2012-05-07

    The zinc(II) complex of 1-(4-quinoylyl)methyl-1,4,7,10-tetraazacyclododecane (cy4q) binds selectively to thymine bulges in DNA and to a uracil bulge in RNA. Binding constants are in the low-micromolar range for thymine bulges in the stems of hairpins, for a thymine bulge in a DNA duplex, and for a uracil bulge in an RNA hairpin. Binding studies of Zn(cy4q) to a series of hairpins containing thymine bulges with different flanking bases showed that the complex had a moderate selectivity for thymine bulges with neighboring purines. The dissociation constants of the most strongly bound Zn(cy4q)-DNA thymine bulge adducts were 100-fold tighter than similar sequences with fully complementary stems or than bulges containing cytosine, guanine, or adenine. In order to probe the role of the pendent group, three additional zinc(II) complexes containing 1,4,7,10-tetraazacyclododecane (cyclen) with aromatic pendent groups were studied for binding to DNA including 1-(2-quinolyl)methyl-1,4,7,10-tetraazacyclododecane (cy2q), 1-(4-biphenyl)methyl-1,4,7,10-tetraazacyclododecane (cybp), and 5-(1,4,7,10-tetraazacyclododecan-1-ylsulfonyl)-N,N-dimethylnaphthalen-1-amine (dsc). The Zn(cybp) complex binds with moderate affinity but little selectivity to DNA hairpins with thymine bulges and to DNA lacking bulges. Similarly, Zn(dsc) binds weakly both to thymine bulges and hairpins with fully complementary stems. The zinc(II) complex of cy2q has the 2-quinolyl moiety bound to the Zn(II) center, as shown by (1)H NMR spectroscopy and pH-potentiometric titrations. As a consequence, only weak (500 μM) binding is observed to DNA with no appreciable selectivity. An NMR structure of a thymine-bulge-containing hairpin shows that the thymine is extrahelical but rotated toward the major groove. NMR data for Zn(cy4q) bound to DNA containing a thymine bulge is consistent with binding of the zinc(II) complex to the thymine N3(-) and stacking of the quinoline on top of the thymine. The thymine-bulge bound

  3. Zinc(II) complexes with potent cyclin-dependent kinase inhibitors derived from 6-benzylaminopurine: synthesis, characterization, X-ray structures and biological activity.

    PubMed

    Trávnícek, Zdenek; Krystof, Vladimír; Sipl, Michal

    2006-02-01

    The synthesis, characterization and biological activity of the first zinc(II) complexes with potent inhibitors of cyclin-dependent kinases (CDKs) derived from 6-benzylaminopurine are described. Based on the results following from elemental analyses, infrared, NMR and ES+MS (electrospray mass spectra in the positive ion mode) spectroscopies, conductivity data, thermal analysis and X-ray structures, the tetrahedral Zn(II) complexes of the compositions [Zn(Olo)Cl(2)](n) (1), [Zn(iprOlo)Cl(2)](n) (2), [Zn(BohH(+))Cl(3)] x H(2)O (3) and [Zn(iprOloH(+))Cl(3)] x H(2)O (4) have been prepared, where Olo=2-(2-hydroxyethylamino)-6-benzylamino-9-methylpurine (Olomoucine), iprOlo=2-(2-hydroxyethylamino)-6-benzylamino-9-isopropylpurine (i-propyl-Olomoucine), Boh=2-(3-hydroxypropylamino)-6-benzylamino-9-isopropylpurine (Bohemine). The 1D-polymeric chain structure for [Zn(Olo)Cl(2)](n) (1) as well as the monomeric one for [Zn(BohH(+))Cl(3)] x H(2)O (3) and [Zn(iprOloH(+))Cl(3)] x H(2)O (4) have been revealed unambiguously by single crystal X-ray analyses. The 1D-polymeric chain of 1 consists of Zn(Olo)Cl(2) monomeric units in which the Zn(II) ion is coordinated by two chlorine atoms and one oxygen atom of the 2-hydroxyethylamino group of Olomoucine. The next monomeric unit is bonded to Zn(II) through the N7 atom of a purine ring. Thus, each of Zn(II) ions is tetrahedrally coordinated and a ZnCl(2)NO chromophore occurs in the complex 1. The complexes 3 and 4 are mononuclear species with a distorted tetrahedral arrangement of donor atoms around the Zn(II) ion with a ZnCl(3)N chromophore. The corresponding CDK inhibitor, i.e., both Boh and iprOlo, is coordinated to Zn(II) via the N7 atom of the purine ring in 3 and 4. The cytotoxicity of the zinc(II) complexes against human melanoma, sarcoma, leukaemia and carcinoma cell lines has been determined as well as the inhibition of the CDK2/cyclin E kinase. A relationship between the structure and biological activity of the complexes is

  4. Design, Synthesis, and Biological Evaluation of Benzimidazole-Derived Biocompatible Copper(II) and Zinc(II) Complexes as Anticancer Chemotherapeutics

    PubMed Central

    AlAjmi, Mohamed F.; Hussain, Afzal; Khan, Azmat Ali; Shaikh, Perwez Alam; Khan, Rais Ahmad

    2018-01-01

    Herein, we have synthesized and characterized a new benzimidazole-derived “BnI” ligand and its copper(II) complex, [Cu(BnI)2], 1, and zinc(II) complex, [Zn(BnI)2], 2, using elemental analysis and various spectroscopic techniques. Interaction of complexes 1 and 2 with the biomolecules viz. HSA (human serum albumin) and DNA were studied using absorption titration, fluorescence techniques, and in silico molecular docking studies. The results exhibited the significant binding propensity of both complexes 1 and 2, but complex 1 showed more avid binding to HSA and DNA. Also, the nuclease activity of 1 and 2 was analyzed for pBR322 DNA, and the results obtained confirmed the potential of the complexes to cleave DNA. Moreover, the mechanistic pathway was studied in the presence of various radical scavengers, which revealed that ROS (reactive oxygen species) are responsible for the nuclease activity in complex 1, whereas in complex 2, the possibility of hydrolytic cleavage also exists. Furthermore, the cytotoxicity of the ligand and complexes 1 and 2 were studied on a panel of five different human cancer cells, namely: HepG2, SK-MEL-1, HT018, HeLa, and MDA-MB 231, and compared with the standard drug, cisplatin. The results are quite promising against MDA-MB 231 (breast cancer cell line of 1), with an IC50 value that is nearly the same as the standard drug. Apoptosis was induced by complex 1 on MDA-MB 231 cells predominantly as studied by flow cytometry (FACS). The adhesion and migration of cancer cells were also examined upon treatment of complexes 1 and 2. Furthermore, the in vivo chronic toxicity profile of complexes 1 and 2 was also studied on all of the major organs of the mice, and found them to be less toxic. Thus, the results warrant further investigations of complex 1. PMID:29772746

  5. Design, Synthesis, and Biological Evaluation of Benzimidazole-Derived Biocompatible Copper(II) and Zinc(II) Complexes as Anticancer Chemotherapeutics.

    PubMed

    AlAjmi, Mohamed F; Hussain, Afzal; Rehman, Md Tabish; Khan, Azmat Ali; Shaikh, Perwez Alam; Khan, Rais Ahmad

    2018-05-16

    Herein, we have synthesized and characterized a new benzimidazole-derived "BnI" ligand and its copper(II) complex, [Cu(BnI)₂], 1 , and zinc(II) complex, [Zn(BnI)₂], 2 , using elemental analysis and various spectroscopic techniques. Interaction of complexes 1 and 2 with the biomolecules viz. HSA (human serum albumin) and DNA were studied using absorption titration, fluorescence techniques, and in silico molecular docking studies. The results exhibited the significant binding propensity of both complexes 1 and 2 , but complex 1 showed more avid binding to HSA and DNA. Also, the nuclease activity of 1 and 2 was analyzed for pBR322 DNA, and the results obtained confirmed the potential of the complexes to cleave DNA. Moreover, the mechanistic pathway was studied in the presence of various radical scavengers, which revealed that ROS (reactive oxygen species) are responsible for the nuclease activity in complex 1 , whereas in complex 2 , the possibility of hydrolytic cleavage also exists. Furthermore, the cytotoxicity of the ligand and complexes 1 and 2 were studied on a panel of five different human cancer cells, namely: HepG2, SK-MEL-1, HT018, HeLa, and MDA-MB 231, and compared with the standard drug, cisplatin. The results are quite promising against MDA-MB 231 (breast cancer cell line of 1 ), with an IC 50 value that is nearly the same as the standard drug. Apoptosis was induced by complex 1 on MDA-MB 231 cells predominantly as studied by flow cytometry (FACS). The adhesion and migration of cancer cells were also examined upon treatment of complexes 1 and 2 . Furthermore, the in vivo chronic toxicity profile of complexes 1 and 2 was also studied on all of the major organs of the mice, and found them to be less toxic. Thus, the results warrant further investigations of complex 1 .

  6. Spectral characterization of novel ternary zinc(II) complexes containing 1,10-phenanthroline and Schiff bases derived from amino acids and salicylaldehyde-5-sulfonates

    NASA Astrophysics Data System (ADS)

    Boghaei, Davar M.; Gharagozlou, Mehrnaz

    2007-07-01

    A series of new ternary zinc(II) complexes [Zn(L 1-10)(phen)], where phen is 1,10-phenanthroline and H 2L 1-10 = tridentate Schiff base ligands derived from the condensation of amino acids (glycine, L-phenylalanine, L-valine, L-alanine, and L-leucine) and salicylaldehyde-5-sulfonates (sodium salicylaldehyde-5-sulfonate and sodium 3-methoxy-salicylaldehyde-5-sulfonate), have been synthesized. The complexes were characterized by elemental analysis, IR, UV-vis, 1H NMR, and 13C NMR spectra. The IR spectra of the complexes showed large differences between νas(COO) and νs(COO), Δ ν ( νas(COO) - νs(COO)) of 191-225 cm -1, indicating a monodentate coordination of the carboxylate group. Spectral data showed that in these ternary complexes the zinc atom is coordinated with the Schiff base ligand acts as a tridentate ONO moiety, coordinating to the metal through its phenolic oxygen, imine nitrogen, and carboxyl oxygen, and also with the neutral planar chelating ligand, 1,10-phenanthroline, coordinating through nitrogens.

  7. Mononuclear zinc(II) complexes of 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols: Synthesis, structural characterization, DNA binding and cheminuclease activities

    NASA Astrophysics Data System (ADS)

    Ravichandran, J.; Gurumoorthy, P.; Karthick, C.; Kalilur Rahiman, A.

    2014-03-01

    Four new zinc(II) complexes [Zn(HL1-4)Cl2] (1-4), where HL1-4 = 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols, have been isolated and fully characterized using various spectro-analytical techniques. The X-ray crystal structure of complex 4 shows the distorted trigonal-bipyramidal coordination geometry around zinc(II) ion. The crystal packing is stabilized by intermolecular NH⋯O hydrogen bonding interaction. The complexes display no d-d electronic band in the visible region due to d10 electronic configuration of zinc(II) ion. The electrochemical properties of the synthesized ligands and their complexes exhibit similar voltammogram at reduction potential due to electrochemically innocent Zn(II) ion, which evidenced that the electron transfer is due to the nature of the ligand. Binding interaction of complexes with calf thymus DNA was studied by UV-Vis absorption titration, viscometric titration and cyclic voltammetry. All complexes bind with CT DNA by intercalation, giving the binding affinity in the order of 2 > 1 ≫ 3 > 4. The prominent cheminuclease activity of complexes on plasmid DNA (pBR322 DNA) was observed in the absence and presence of H2O2. Oxidative pathway reveals that the underlying mechanism involves hydroxyl radical.

  8. Steric Effects on the Binding of Phosphate and Polyphosphate Anions by Zinc(II) and Copper(II) Dinuclear Complexes of m-Xylyl-bis-cyclen.

    PubMed

    Esteves, Catarina V; Esteban-Gómez, David; Platas-Iglesias, Carlos; Tripier, Raphaël; Delgado, Rita

    2018-05-11

    The triethylbenzene-bis-cyclen (cyclen = 1,4,7,10-tetraazacyclododecane) compound (tbmce) was designed with an imposed structural rigidity at the m-xylyl spacer to be compared to a less restrained and known parent compound (bmce). The framework of both compounds differs only in the substituents of the m-xylyl spacer. The study was centered in the differences observed in the acid-base reactions of both compounds, their copper(II) and zinc(II) complexation behaviors, as well as in the uptake of phosphate and polyphosphate anions (HPPi 3- , ATP 4- , ADP 3- , AMP 2- , PhPO 4 2- , and HPO 4 2- ). On the one hand, the acid-base reactions showed lower values for the third and fourth protonation constants of tbmce than for bmce, suggesting that the ethyl groups of the spacer in tbmce force the two cyclen units to more conformational restricted positions. On the other hand, the stability constant values for copper(II) and zinc(II) complexes revealed that bmce is a better chelator than tbmce pointing out to additional conformational restraints imposed by the triethylbenzene spacer. The binding studies of phosphates by the dinuclear copper(II) and zinc(II) complexes showed much smaller effective association constants for the dicopper complexes. Single-crystal X-ray and computational (density functional theory) studies suggest that anion binding promotes the formation of tetranuclear entities in which anions are bridging the metal centers. Our studies also revealed the dinuclear zinc(II) complex of bmce as a promising receptor for phosphate anions, with the largest effective association constant of 5.94 log units being observed for the formation of [Zn 2 bmce(HPPi)] + . Accordingly, a colorimetric study via an indicator displacement assay to detect phosphates in aqueous solution found that the [Zn 2 bmce] 4+ complex acts as the best receptor for pyrophosphate displaying a detection limit of 2.5 nM by changes visible to naked eye.

  9. Synthesis and characterization of a new zinc(II) complex with tetradentate azo-thioether ligand: X-ray structure, DNA binding study and DFT calculation

    NASA Astrophysics Data System (ADS)

    Mondal, Apurba Sau; Pramanik, Ajoy Kumar; Patra, Lakshman; Manna, Chandan Kumar; Mondal, Tapan Kumar

    2017-10-01

    A new zinc(II) complex, [Zn(L)(H2O)](ClO4) (1) with azo-thioether containing NSNO donor ligand, 3-(2-(2-((pyridin-2-ylmethyl)thio)phenyl)hydrazono)pentane-2,4-dione (HL) is synthesized and characterized by several spectroscopic techniques. The distorted square based pyramidal (DSBP) geometry is confirmed by single crystal X-ray structure. The ability of the complex to bind with CT DNA is investigated by UV-vis method and the binding constant is found to be 4.16 × 104 M-1. Competitive binding study with ethidium bromide (EB) by fluorescence method suggests that the zinc(II) complex efficiently displaces EB from EB-DNA. The Stern-Volmer dynamic quenching constant, Ksv is found to be 1.2 × 104 M-1. Theoretical calculations by DFT and TDDFT/CPCM methods are used to interpret the electronic structure and UV-vis spectrum of the complex.

  10. Luminescent zinc(ii) and copper(i) complexes for high-performance solution-processed monochromic and white organic light-emitting devices.

    PubMed

    Cheng, Gang; So, Gary Kwok-Ming; To, Wai-Pong; Chen, Yong; Kwok, Chi-Chung; Ma, Chensheng; Guan, Xiangguo; Chang, Xiaoyong; Kwok, Wai-Ming; Che, Chi-Ming

    2015-08-01

    The synthesis and spectroscopic properties of luminescent tetranuclear zinc(ii) complexes of substituted 7-azaindoles and a series of luminescent copper(i) complexes containing 7,8-bis(diphenylphosphino)-7,8-dicarba- nido -undecaborate ligand are described. These complexes are stable towards air and moisture. Thin film samples of the luminescent copper(i) complexes in 2,6-dicarbazolo-1,5-pyridine and zinc(ii) complexes in poly(methyl methacrylate) showed emission quantum yields of up to 0.60 (for Cu-3 ) and 0.96 (for Zn-1 ), respectively. Their photophysical properties were examined by ultrafast time-resolved emission spectroscopy, temperature dependent emission lifetime measurements and density functional theory calculations. Monochromic blue and orange solution-processed OLEDs with these Zn(ii) and Cu(i) complexes as light-emitting dopants have been fabricated, respectively. Maximum external quantum efficiency (EQE) of 5.55% and Commission Internationale de l'Eclairage (CIE) coordinates of (0.16, 0.19) were accomplished with the optimized Zn-1 -OLED while these values were, respectively 15.64% and (0.48, 0.51) for the optimized Cu-3 -OLED. Solution-processed white OLEDs having maximum EQE of 6.88%, CIE coordinates of (0.42, 0.44), and colour rendering index of 81 were fabricated by using these luminescent Zn(ii) and Cu(i) complexes as blue and orange light-emitting dopant materials, respectively.

  11. Two zinc(II) coordination complexes based on an asymmetric multidentate ligand: syntheses, structures, selective fluorescence sensing of iron(III) ions and thermal analyses.

    PubMed

    Liu, Yaru; Liu, Lan; Zhang, Xiao; Liang, Guorui; Gong, Xuebing

    2018-01-01

    The rational selection of ligands is vitally important in the construction of coordination complexes. Two novel Zn II complexes, namely bis(acetato-κO)bis[1-(1H-benzotriazol-1-ylmethyl)-2-propyl-1H-imidazole-κN 3 ]zinc(II) monohydrate, [Zn(C 13 H 15 N 5 ) 2 (C 2 H 3 O 2 ) 2 ]·H 2 O, (1), and bis(azido-κN 1 )bis[1-(1H-benzotriazol-1-ylmethyl)-2-propyl-1H-imidazole-κN 3 ]zinc(II), [Zn(C 13 H 15 N 5 ) 2 (N 3 ) 2 ], (2), constructed from the asymmetric multidentate imidazole ligand, have been synthesized under mild conditions and characterized by elemental analyses, IR spectroscopy and single-crystal X-ray diffraction analysis. Both complexes exhibit a three-dimensional supramolecular network directed by different intermolecular interactions between discrete mononuclear units. The complexes were also investigated by fluorescence and thermal analyses. The experimental results show that (1) is a promising fluorescence sensor for detecting Fe 3+ ions and (2) is effective as an accelerator of the thermal decomposition of ammonium perchlorate.

  12. Investigation of the photophysical and photochemical properties of peripherally tetra-substituted water-soluble zwitterionic and cationic zinc(ii) phthalocyanines.

    PubMed

    Çolak, Senem; Durmuş, Mahmut; Yıldız, Salih Zeki

    2016-06-21

    In this study, 4-{4-[N-((3-dimethylamino)propyl)amide]phenoxy}phthalonitrile () and its zinc(ii) phthalocyanine derivative () were synthesized for the first time. 4-(N-((3-Dimethylamino)propyl)amide)phenoxy substituted zinc(ii) phthalocyanine () was converted to its water-soluble sulfobetaine (), betaine () and N-oxide () containing zwitterionic and quaternized cationic () derivatives. All newly synthesized compounds () were characterized by the combination of UV-vis, FT-IR, (1)H NMR, mass spectroscopy techniques and elemental analysis. The photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen quantum yields) properties were investigated in DMSO for all the synthesized zinc(ii) phthalocyanines () and in both DMSO and aqueous solutions for zwitterionic and cationic phthalocyanines () for the specification of their capability as photosensitizers in photodynamic therapy (PDT). The binding behavior of water soluble phthalocyanines () to the bovine serum albumin protein was also examined for the determination of their transportation ability in the blood stream.

  13. Comparisons of the spectroscopic and microbiological activities among coumarin-3-carboxylate, o-phenanthroline and zinc(II) complexes

    NASA Astrophysics Data System (ADS)

    Islas, María S.; Martínez Medina, Juan J.; Piro, Oscar E.; Echeverría, Gustavo A.; Ferrer, Evelina G.; Williams, Patricia A. M.

    2018-06-01

    Coumarins (2H-chromen-2-one) are oxygen-containing heterocyclic compounds that belong to the benzopyranones family. In this work we have synthesized different coordination complexes with coumarin-3-carboxylic acid (HCCA), o-phenanthroline (phen) and zinc(II). In the reported [Zn(CCA)2(H2O)2] complex, coumarin-3-carboxylate (CCA) is acting as a bidentate ligand while in the two prepared complexes, [Zn(phen)3]CCA(NO3) (obtained as a single crystal) and [Zn(CCA)2phen].4H2O, CCA is acting as a counterion of the complex cation [Zn(phen)3]+2 or coordinated to the metal center along with phen, respectively. These compounds were characterized on the basis of elemental analysis and thermogravimetry. NMR, FTIR and Raman spectroscopies of the compounds and the CCA potassium salt (KCCA) allow to determine several similarities and differences among them. Finally, their behavior against alkaline phosphatase enzyme and their antimicrobial activities were also measured.

  14. Mixed-ligand complexes of zinc(II) with 1,1-dicyanoethylene-2,2-dithiolate and N-donor ligands: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Singh, Mahesh Kumar; Sutradhar, Sanjit; Paul, Bijaya; Adhikari, Suman; Laskar, Folguni; Acharya, Sandeep; Chakraborty, Debabrata; Biswas, Surajit; Das, Arijit; Roy, Subhadip; Frontera, Antonio

    2018-07-01

    The fascinating structural chemistry of zinc(II) with 1,1-dicyanoethylene- 2,2-dithiolate [i-MNT2- = {S2C:C(CN)2}2-] ligand is presented. To elaborate, the reactivity of zinc(II) salt towards potassium salt of 1,1-dicyanoethylene-2,2-dithiolate (K2i-MNT) and 1,3-diaminopropane (dap) was studied in the presence of two distinct N-donor ligands, α-picoline (2-Methylpyridine) and γ-picoline (4-Methylpyridine), respectively. As a result, two different Zn(II) coordination complexes of formule [Zn2(dap)2(i-MNT)2] (1) and {[Zn(dap)(i-MNT)(4-MePy)]·2H2O}n (2) were obtained. They were isolated as stable crystalline solids and fully characterized, including by single crystal X-ray diffraction. Complex 1 is a discrete 0D dimer, whereas 2 is a 1D coordination polymer. Although α-picoline was used during the synthesis of 1, it is not involved in the metal coordination. Aiming at rationalizing the influence of the different noncovalent interactions, such as H-bonding, unconventional Nsbnd H···π and anion-π, on the crystal packing of 1 and 2, DFT calculations (M06-2X/def2-TZVP) were performed. Moreover, luminescence property of the complex 2 was investigated. Finally, in vitro antifungal activity of complex 2 was also screened against five fungi viz. Synchitrium endobioticum, Pyricularia oryzae, Helminthosporium oryzae, Candida albicans (ATCC10231) and Trichophyton mentagrophytes by the disc diffusion method and found to be effective when compared to K2i-MNT.H2O.

  15. Synthesis of a zinc(II) complex with hexadentate N4S2 donor thioether ligand: X-ray structure, DNA binding study and DFT computation

    NASA Astrophysics Data System (ADS)

    Mondal, Apurba Sau; Jana, Mahendra Sekhar; Manna, Chandan Kumar; Naskar, Rahul; Mondal, Tapan Kumar

    2018-07-01

    A new zinc(II) complex, [Zn(L)](ClO4) with hexadentate N4S2 donor azo-thioether ligand (HL) was synthesized and characterized by several spectroscopic techniques. The structure was confirmed by single crystal X-ray analysis. The interaction of the complex with CT DNA was investigated by UV-vis method and binding constant is found to be 6.6 × 104 M-1. Competitive binding titration with ethidium bromide (EB) by fluorescence titration method reveals that the complex efficiently displaces EB from EB-DNA system and the Stern-Volmer dynamic quenching constant, Ksv is found to be 2.6 × 104 M-1. DFT and TDDFT calculations were carried out to interpret the electronic structure and electronic spectra of the complex.

  16. Adsorption and photocatalytic properties of transition metal Zinc(II) complex based on 5-(4-(tetrazol-5-yl)phenyl)isophthalic acid

    NASA Astrophysics Data System (ADS)

    Qiao, Yu; Ren, Shan-Shan; Liu, Li-Hui; Guan, Wei-Sheng; Li, Zhi-Min; Che, Guang-Bo; Liu, Chun-Bo; Wang, Yan-Yan; Wang, Qing-Wei; Li, Xiu-Ying; Zhu, En-Wei

    2018-06-01

    A new coordination polymeric zinc(II) complex, namely, [Zn2(L)(H2O)3]n·nNO3(1), (H3L = 5-(4-(tetrazol-5-yl)phenyl)isophthalic acid) has been synthesized under solvothermal conditions and structurally characterized by elemental analysis, IR spectroscopy, single-crystal X-ray diffraction analysis and powder X-ray diffraction. Complex 1 exhibits a three-dimensional structure with a Schläfli symbol of 44•69•82 topologies, constructed from two crystallographically independent five and six coordinated mode with metal center and connected H3L ligands. The complex has good thermal stability and excellent photoluminescent property. Furthermore, by comparing the photoluminescent and photocatalytic mutation results induced by interconversion of metal ions, we confirm that the properties mutation induced by metal ions is much controllable and obvious. In addition, the complex exhibits significantly enhanced photocatalytic activity for methylene blue (MB) under UV light irradiation (λ < 400 nm), and the degradation rate could reach 75% in 80 min. Meanwhile trapping experiments indicated that the •O2- and h+ are the main activated species.

  17. Synthesis of 6-alkyluridines from 6-cyanouridine via zinc(II) chloride-catalyzed nucleophilic substitution with alkyl Grignard reagents.

    PubMed

    Shih, Yu-Chiao; Yang, Ya-Ying; Lin, Chun-Chi; Chien, Tun-Cheng

    2013-04-19

    6-Cyanouracil derivatives underwent a direct nucleophilic substitution reaction with alkyl Grignard reagents in the presence of zinc(II) chloride as a catalyst to form the corresponding 6-alkyluracils. This methodology is applicable to sugar-protected 6-cyanouridine and 6-cyano-2'-deoxyuridine without the protection at the N(3)-imide and provides a facile and general access to versatile 6-alkyluracil and 6-alkyluridine derivatives.

  18. Elementary sulfur in effluent from denitrifying sulfide removal process as adsorbent for zinc(II).

    PubMed

    Chen, Chuan; Zhou, Xu; Wang, Aijie; Wu, Dong-hai; Liu, Li-hong; Ren, Nanqi; Lee, Duu-Jong

    2012-10-01

    The denitrifying sulfide removal (DSR) process can simultaneously convert sulfide, nitrate and organic compounds into elementary sulfur (S(0)), di-nitrogen gas and carbon dioxide, respectively. However, the S(0) formed in the DSR process are micro-sized colloids with negatively charged surface, making isolation of S(0) colloids from other biological cells and metabolites difficult. This study proposed the use of S(0) in DSR effluent as a novel adsorbent for zinc removal from wastewaters. Batch and continuous tests were conducted for efficient zinc removal with S(0)-containing DSR effluent. At pH<7.5, removal rates of zinc(II) were increased with increasing pH. The formed S(0) colloids carried negative charge onto which zinc(II) ions could be adsorbed via electrostatic interactions. The zinc(II) adsorbed S(0) colloids further enhanced coagulation-sedimentation efficiency of suspended solids in DSR effluents. The DSR effluent presents a promising coagulant for zinc(II) containing wastewaters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Cobalt Ion Promoted Redox Cascade: A Route to Spiro Oxazine-Oxazepine Derivatives and a Dinuclear Cobalt(III) Complex of an N-(1,4-Naphthoquinone)-o-aminophenol Derivative.

    PubMed

    Mondal, Sandip; Bera, Sachinath; Maity, Suvendu; Ghosh, Prasanta

    2017-11-06

    The study discloses that the redox activity of N-(1,4-naphthoquinone)-o-aminophenol derivatives (L R H 2 ) containing a (phenol)-NH-(1,4-naphthoquinone) fragment is notably different from that of a (phenol)-NH-(phenol) precursor. The former is a platform for a redox cascade. L R H 2 is redox noninnocent and exists in Cat-N-(1,4-naphthoquinone)(2-) (L R 2- ) and SQ-N-(1,4-naphthoquinone) (L R •- ) states in the complexes. Reactions of L R H 2 with cobalt(II) salts in MeOH in air promote a cascade affording spiro oxazine-oxazepine derivatives ( OX L R ) in good yields, when R = H, Me, t Bu. Spiro oxazine-oxazepine derivatives are bioactive, and such a molecule has so far not been isolated by a schematic route. In this context this cascade is significant. Dimerization of L R H 2 → OX L R in MeOH is a (6H + + 6e) oxidation reaction and is composed of formations of four covalent bonds and 6-exo-trig and 7-endo-trig cyclization based on C-O coupling reactions, where MeOH is the source of a proton and the ester function. It was established that the active cascade precursor is [(L Me •- )Co III Cl 2 ] (A). Notably, formation of a spiro derivative was not detected in CH 3 CN and the reaction ends up furnishing A. The route of the reaction is tunable by R, when R = NO 2 , it is a (2e + 4H + ) oxidation reaction affording a dinuclear L R 2- complex of cobalt(III) of the type [(L NO2 2- ) 2 Co III 2 (OMe) 2 (H 2 O) 2 ] (1) in good yields. No cascade occurs with zinc(II) ion even in MeOH and produces a L Me •- complex of type [(L Me •- )Zn II Cl 2 ] (2). The intermediate A and 2 exhibit strong EPR signals at g = 2.008 and 1.999, confrming the existence of L Me •- coordinated to low-spin cobalt(III) and zinc(II) ions. The intermediates of L R H 2 → OX L R conversion were analyzed by ESI mass spectrometry. The molecular geometries of OX L R and 1 were confirmed by X-ray crystallography, and the spectral features were elucidated by TD DFT calculations.

  20. The speciation of aqueous zinc(II) bromide solutions to 500 °C and 900 MPa determined using Raman spectroscopy

    USGS Publications Warehouse

    Mibe, Kenji; Chou, I-Ming; Anderson, Alan J.; Mayanovic, Robert A.; Bassett, William A.

    2009-01-01

    A Raman spectral study was carried out on 3 solutions of varying concentration and bromide/zinc ratios. Spectra were collected at 11 different temperature-pressure conditions ranging from ambient to 500????C-0.9??GPa. Raman band assignments for zinc(II) bromide species reported in previous studies were used to determine the relative concentrations of ZnBr42-, ZnBr3-, ZnBr2, and ZnBr+ species at various temperatures and pressures. Our results are in close agreement with X-ray absorption spectroscopic (XAS) data, and confirm that the tetrabromo zinc(II) complex, ZnBr42-, is the predominant species up to 500????C in solutions having high Zn concentrations (1??m) and high bromide/zinc molar ratios ([Br]/[Zn] = 8). In agreement with previous solubility and Raman spectroscopic experiments, our measurements indicate that species with a lower number of halide ligands and charge are favored with increasing temperature in dilute solutions, and solutions with low bromide/zinc ratios ([Br]/[Zn] < 2.5). The Raman technique provides an independent experimental means of evaluating the quality of XAS analyses of data obtained from high temperature disordered systems. The combination of these two techniques provides complementary data on speciation and the structure of zinc(II) bromide complexes. The preponderance of the ZnBr42- species in highly saline brines at high temperature is consistent with the predominance of ZnCl42- in chloride-rich brines reported in previous XAS studies. Knowledge of Zn complexing in metal-rich highly saline brines is important for numerical models of ore deposition in high temperature systems such as skarns and porphyry-type deposits. ?? 2008 Elsevier B.V.

  1. Structure and Stability of Carboxylate Complexes. 20. Diaqua Bis(methoxyacetato) Complexes of Nickel(II), Copper(II), and Zinc(II): A Structural Study of the Dynamic Pseudo-Jahn-Teller Effect.

    PubMed

    Prout, Keith; Edwards, Alison; Mtetwa, Victor; Murray, Jon; Saunders, John F.; Rossotti, Francis J. C.

    1997-06-18

    The crystal structure of trans-diaquabis(methoxyacetato)copper(II), C(6)H(14)O(8)Cu, has been determined by neutron diffraction at 4.2 K (monoclinic, P2(1)/n, a = 6.88(1), b = 7.19(1), c = 9.77(2) Å, gamma = 95.7(1) degrees, (Z = 2)) and by X-ray diffraction at 125, 165, 205, 240, 265, 295, and 325 K. These measurements show that there is no phase change in the temperature range 4.2-325 K. The copper(II) coordination at 4.2 K is a tetragonally distorted elongated rhombic octahedron (Cu-OOC 1.955(1), Cu-OMe 2.209(1), and Cu-OH(2) 2.031(2) Å). As the temperature increases to 325 K, the Cu-OOC bonds shorten slightly to 1.934(5) Å, the Cu-OMe bonds shorten more markedly to 2.137(4) Å, and Cu-OH(2) lengthens to 2.155(6) Å to give a tetragonally distorted compressed rhombic octahedron. For comparison the structure of the isomorphous nickel(II) complex (monoclinic, P2(1)/n, a = 6.633(1), b = 7.192(1), c = 10.016(2) Å, gamma = 98.30(2) degrees, (Z = 2)) has been redetermined at 295 K and the structure of the analogous zinc(II) complex (orthorhombic, F2dd, a = 7.530(1), b = 13.212(1), c = 21.876(2) Å (Z = 8)) has also been determined. The nickel(II) complex has an almost regular trans (centrosymmetric) octahedral coordination (Ni-OOC 2.022(1), Ni-OMe 2.043(1), and Ni-OH(2) 2.077(2) Å). However, zinc(II) has a very distorted octahedral coordination with the zinc atom on a 2-fold axis with the water molecules and the methoxy ligators cis and the carboxylate ligators trans (Zn-OOC 1.985(1), Zn-OMe 2.304(2), and Zn-OH(2) 2.038(2) Å). The variation in the dimensions of the copper(II) coordination sphere is discussed in terms of static (low temperature) and planar dynamic (high temperature) pseudo-Jahn-Teller effects.

  2. Exploitation of knowledge databases in the synthesis of zinc(II) malonates with photo-sensitive and photo-insensitive N,N'-containing linkers.

    PubMed

    Zorina-Tikhonova, Ekaterina N; Chistyakov, Aleksandr S; Kiskin, Mikhail A; Sidorov, Aleksei A; Dorovatovskii, Pavel V; Zubavichus, Yan V; Voronova, Eugenia D; Godovikov, Ivan A; Korlyukov, Alexander A; Eremenko, Igor L; Vologzhanina, Anna V

    2018-05-01

    Photoinitiated solid-state reactions are known to affect the physical properties of coordination polymers, such as fluorescence and sorption behaviour, and also afford extraordinary architectures ( e.g. three-periodic structures with polyorganic ligands). However, the construction of novel photo-sensitive coordination polymers requires an understanding of the factors which govern the mutual disposition of reactive fragments. A series of zinc(II) malonate complexes with 1,2-bis(pyridin-4-yl)ethylene and its photo-insensitive analogues has been synthesized for the purpose of systematic analysis of their underlying nets and mutual disposition of N -donor ligands. The application of a big data-set analysis for the prediction of a variety of possible complex compositions, coordination environments and networks for a four-component system has been demonstrated for the first time. Seven of the nine compounds possess one of the highly probable topologies for their underlying nets; in addition, two novel closely related four-coordinated networks were obtained. Complexes containing 1,2-bis(pyridin-4-yl)ethylene and 1,2-bis(pyridin-4-yl)ethane form isoreticular compounds more readily than those with 4,4'-bipyridine and 1,2-bis(pyridin-4-yl)ethylene. The effects of the precursor, either zinc(II) nitrate or zinc(II) acetate, on the composition and dimensionality of the resulting architecture are discussed. For three of the four novel complexes containing 1,2-bis(pyridin-4-yl)ethylene, the single-crystal-to-single-crystal [2 + 2] cycloaddition reactions were carried out. UV irradiation of these crystals afforded either the 0D→1D or the 3D→3D transformations, with and without network changes. One of the two 3D→3D transformations was accompanied by solvent (H 2 O) cleavage.

  3. Synthesis, characterization and investigation of the photophysical and photochemical properties of highly soluble novel metal-free, zinc(II), and indium(III) phthalocyanines substituted with 2,3,6-trimethylphenoxy moieties.

    PubMed

    Gürel, Ekrem; Pişkin, Mehmet; Altun, Selçuk; Odabaş, Zafer; Durmuş, Mahmut

    2015-04-07

    This work presents the synthesis and characterization of metal-free, zinc(II), and indium(III)acetate phthalocyanines substituted with 2,3,6-trimethylphenoxy groups at the peripheral and non-peripheral positions. The photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen generation and photodegradation under light irradiation) properties of these novel phthalocyanines and unsubstituted zinc(II) and indium(III)acetate phthalocyanines were investigated in dimethylformamide solution. The effects of the types of substituents and their positions and the variety of central metal ions on the phthalocyanine core on their spectroscopic, photophysical and photochemical properties were also determined. The studied 2,3,6-trimethylphenoxy substituted metal-free, zinc(II) and indium(III)acetate phthalocyanines especially indium(III)acetate derivatives exhibited appropriate photophysical and photochemical properties such as high singlet oxygen generation and these phthalocyanines can be potential Type II photosensitizers for photodynamic therapy in cancer applications.

  4. Theoretical investigation, biological evaluation and VEGFR2 kinase studies of metal(II) complexes derived from hydrotris(methimazolyl)borate.

    PubMed

    Jayakumar, S; Mahendiran, D; Srinivasan, T; Mohanraj, G; Kalilur Rahiman, A

    2016-02-01

    The reaction of soft tripodal scorpionate ligand, sodium hydrotris(methimazolyl)borate with M(ClO4)2·6H2O [MMn(II), Ni(II), Cu(II) or Zn(II)] in methanol leads to the cleavage of B-N bond followed by the formation of complexes of the type [M(MeimzH)4](ClO4)2·H2O (1-4), where MeimzH=methimazole. All the complexes were fully characterized by spectro-analytical techniques. The molecular structure of the zinc(II) complex (4) was determined by X-ray crystallography, which supports the observed deboronation reaction in the scorpionate ligand with tetrahedral geometry around zinc(II) ion. The electronic spectra of complexes suggested tetrahedral geometry for manganese(II) and nickel(II) complexes, and square-planar geometry for copper(II) complex. Frontier molecular orbital analysis (HOMO-LUMO) was carried out by B3LYP/6-31G(d) to understand the charge transfer occurring in the molecules. All the complexes exhibit significant antimicrobial activity against Gram (-ve) and Gram (+ve) bacterial as well as fungal strains, which are quite comparable to standard drugs streptomycin and clotrimazole. The copper(II) complex (3) showed excellent free radical scavenging activity against DPPH in all concentration with IC50 value of 30μg/mL, when compared to the other complexes. In the molecular docking studies, all the complexes showed hydrophobic, π-π and hydrogen bonding interactions with BSA. The cytotoxic activity of the complexes against human hepatocellular liver carcinoma (HepG2) cells was assessed by MTT assay, which showed exponential responses toward increasing concentration of complexes. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Synthesis, crystal structures and luminescent properties of zinc(II) metal–organic frameworks constructed from terpyridyl derivative ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiao-Le; Shangguan, Yi-Qing; Hu, Huai-Ming, E-mail: ChemHu1@NWU.EDU.CN

    2014-08-15

    Five zinc(II) metal–organic frameworks, [Zn{sub 3}(344-pytpy){sub 2}Cl{sub 6}]{sub n}·n(H{sub 2}O) (1), [Zn(344-pytpy)(ox)]{sub n} (2), [Zn{sub 2}(344-pytpy)(bdc){sub 2}]{sub n}·1.5n(H{sub 2}O) (3), [Zn{sub 2}(344-pytpy){sub 2} (sfdb){sub 2}]{sub n}·1.5n(H{sub 2}O) (4) and [Zn{sub 3}(344-pytpy){sub 2}(btc){sub 2}]{sub n}·2n(H{sub 2}O) (5), (344-pytpy=4′-(3-pyridyl)-4,2′:6′,4″-terpyridine, H{sub 2}ox=oxalic acid, H{sub 2}bdc=1,4-benzenedi-carboxylic acid, H{sub 2}sfdb=4,4′-sulfonyldibenzoic acid and H{sub 3}btc=1,3,5-benzene-tricarboxylic acid) have been prepared by hydrothermal reactions. Compound 1 is a 1D chain structure, in which 344-pytpy ligand links three Zn{sup II} centers through three of terminal N-donors. Compound 2 is a 4-connected 3D framework with the dia topological net and the Schläfli symbol of 6{sup 6}. Compound 3 displays amore » unusual 3-fold interpenetrating 3D coordination network which exhibits a new intriguing (3,3,4)-connected topological net with the Schläfli symbol of (4.8{sup 2})(4.8{sup 5})(8{sup 3}). Compound 4 features a two-fold interpenetrating 4-connected 2D framework with the sql topological net and the Schläfli symbol of (4{sup 4}.6{sup 2}). Compound 5 is a new self-interpenetrating (3,3,4,4)-connected topological net with the Schläfli symbol of (6.8{sup 2}){sub 2}(6{sup 2}.8{sup 2}.10.12)(6{sup 2}.8{sup 3}.10){sub 2}(6{sup 2}.8){sub 2}. The luminescence properties of 1–5 have been investigated by emission spectra and they possess great thermal stabilities which can be stable up to around 400 °C. - Graphical abstract: Five new Zn(II) metal–organic frameworks based on dicarboxylate and terpyridyl derivative ligands have been synthesized by hydrothermal reactions, giving networks from 1D to 3D structures. The thermal stability and luminescent property have been investigated. - Highlights: • Five zinc(II) metal–organic frameworks have been prepared under hydrothermal conditions. • Their crystal and

  6. Zinc complexes as fluorescent chemosensors for nucleic acids: new perspectives for a "boring" element.

    PubMed

    Terenzi, Alessio; Lauria, Antonino; Almerico, Anna Maria; Barone, Giampaolo

    2015-02-28

    Zinc(II) complexes are effective and selective nucleic acid-binders and strongly fluorescent molecules in the low energy range, from the visible to the near infrared. These two properties have often been exploited to quantitatively detect nucleic acids in biological samples, in both in vitro and in vivo models. In particular, the fluorescent emission of several zinc(II) complexes is drastically enhanced or quenched by the binding to nucleic acids and/or upon visible light exposure, in a different fashion in bulk solution and when bound to DNA. The twofold objective of this perspective is (1) to review recent utilisations of zinc(II) complexes as selective fluorescent probes for nucleic acids and (2) to highlight their novel potential applications as diagnostic tools based on their photophysical properties.

  7. Synthesis, characterization, spectroscopic and theoretical studies of new zinc(II), copper(II) and nickel(II) complexes based on imine ligand containing 2-aminothiophenol moiety

    NASA Astrophysics Data System (ADS)

    Shafaatian, Bita; Mousavi, S. Sedighe; Afshari, Sadegh

    2016-11-01

    New dimer complexes of zinc(II), copper(II) and nickel(II) were synthesized using the Schiff base ligand which was formed by the condensation of 2-aminothiophenol and 2-hydroxy-5-methyl benzaldehyde. This tridentate Schiff base ligand was coordinated to the metal ions through the NSO donor atoms. In order to prevent the oxidation of the thiole group during the formation of Schiff base and its complexes, all of the reactions were carried out under an inert atmosphere of argon. The X-ray structure of the Schiff base ligand showed that in the crystalline form the SH groups were oxidized to produce a disulfide Schiff base as a new double Schiff base ligand. The molar conductivity values of the complexes in dichloromethane implied the presence of non-electrolyte species. The fluorescence properties of the Schiff base ligand and its complexes were also studied in dichloromethane. The products were characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis, and conductometry. The crystal structure of the double Schiff base was determined by single crystal X-ray diffraction. Furthermore, the density functional theory (DFT) calculations were performed at the B3LYP/6-31G(d,p) level of theory for the determination of the optimized structures of Schiff base complexes.

  8. Studies on Some Biologically Cobalt(II), Copper(II) and Zinc(II) Complexes With ONO, NNO and SNO Donor Pyrazinoylhydrazine-Derived Ligands

    PubMed Central

    Praveen, Marapaka; Sherazi, Syed K. A.

    1998-01-01

    Biologically active complexes of Co(II), Ni(II), Cu(II) and Zn(II) with novel ONO, NNO and SNO donor pyrazinoylhydrazine-derived compounds have been prepared and characterized on the basis of analytical data and various physicochemical studies. Distorted octahedral structures for all the complexes have been proposed. The synthesized ligands and their complexes have been screened for their antibacterial activity against bacterial species Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Klebsiella pneumonae. The activity data show the metal complexes to be more active than the parent free ligands against one or more bacterial species. PMID:18475857

  9. Synthesis of asymmetric zinc(II) phthalocyanines with two different functional groups & spectroscopic properties and photodynamic activity for photodynamic therapy.

    PubMed

    Göksel, Meltem

    2016-09-15

    Zinc(II) phthalocyanine containing [2-(tert-butoxycarbonyl)amino]ethoxy and iodine groups (A and B), as well as their deprotected mono-amino and tri-iodine zinc(II) phthalocyanine (2) were obtained. This structure surrounds by substituents with functional groups. From this perspective it can be used a starting material for many reactions and applications, such as sonogashira coupling, carbodiimide coupling. An example of a first diversification reaction of this compound was obtained with conjugation of a biotin. Asymmetrically biotin conjugated and heavy atom bearing zinc(II) phthalocyanine (3) were synthesized characterized for the first time and photophysical, photochemical and photobiological properties of these phthalocyanines were compared in this study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Synthesis, characterization and investigation of electrochemical and spectroelectrochemical properties of peripherally tetra 4-phenylthiazole-2-thiol substituted metal-free, zinc(II), copper(II) and cobalt(II) phthalocyanines

    NASA Astrophysics Data System (ADS)

    Demirbaş, Ümit; Akçay, Hakkı Türker; Koca, Atıf; Kantekin, Halit

    2017-08-01

    In this study novel peripherally tetra 4-phenylthiazole-2-thiol substituted metal-free phthalocyanine (4) and its zinc(II) (5), copper(II) (6) and cobalt(II) (7) derivatives were synthesized and characterized by a combination of various spectroscopic techniques such as FT-IR, 1H-NMR, UV-vis and MALDI-TOF mass. Electrochemical characterizations of metallo-phthalocyanine complexes were conducted by voltammetric and in situ spectroelectrochemical measurements. CoIIPc went [CoIIPc-2]/[CoIPc-2]1-, [CoIPc-2]1-/[CoIPc-3]2-, [CoIPc-3]2-/[CoIPc-4]3- and [CoIIPc-2]/[CoIIPc-2]1+ reduction and oxidation processes respectively. Differently ZnIIPc only showed four ligand-based reductions and two ligand based oxidation processes.

  11. Synthesis and characterization of two new zinc(II) coordination polymers with bidentate flexible ligands: Formation of a 2D structure with (44.62)-sql topology

    NASA Astrophysics Data System (ADS)

    Lalegani, Arash; Khaledi Sardashti, Mohammad; Gajda, Roman; Woźniak, Krzysztof

    2017-12-01

    Zinc(II) coordination polymers [Zn(bip)2(NCS)2]n (1) and [Zn(μ-bbd)(N3)2]n (2) were synthesized by using the neutral flexible bidentate N-donor ligands 1,4-bis(3,5-dimethylpyrazolyl)butane (bbd) and 1,3-bis(imidazolyl)propane (bip), mono-anionic NCS- or N3-ligand and zinc(II) chloride salts. The results of the X-ray analyses demonstrate that in the structure of 1, the zinc(II) ion is located on an inversion center and exhibits an ZnN6 octahedral arrangement while, in the structure of 2, the zinc(II) ion adopts an ZnN4 tetrahedral geometry. In the polymer 1, the NCS groups are terminally N-bonded to the metal center and the each bip with anti-gauche conformation acts as bridging connecting four zinc(II) ions to form a two-dimensional network with a sql [point symbol (44.62)] topology while, in the polymer 1, the N3 groups are terminally bonded to the metal center and each bbd with anti-anti-anti conformation acts as bridging ligand connecting two zinc(II) ions to form a one-dimensional zig-zag chain. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction. Thermal analyses of polymers were also presented.

  12. Concomitant polymorphism of an octahedral, homoleptic zinc(II) bis complex of an N,N,O donor hydrazone

    NASA Astrophysics Data System (ADS)

    Patra, Shanti G.; Shee, Nirmal K.; Mitra, Partha; Drew, Michael G. B.; Datta, Dipankar

    2018-03-01

    Using the 1:1 condensate of benzil and 2-hydrazinopyridine as the ligand HL (H: a dissociable proton), a new zinc(II) complex ZnL2 is synthesized. It is obtained as a mixture of three types of deep red crystals - diamond shaped (1a), rectangular (1b) and pointed tetragonal (1c) which can be separated manually. Their different crystal structures have been determined. 1a crystallizes in the space group P21/c, 1b in Pbca and 1c in P-1. The asymmetric unit of 1c contains two independent molecules labeled A and B. Thus ZnL2 can assume at least four different molecular conformations in the solid state, namely 1a, 1b, 1c-A and 1c-B. But in the DFT calculations at the B3LYP/6-311++G (2d,p) and BP86/LanL2DZ levels 1a, 1b, 1c-A and 1c-B converge to a single structure in the gas phase. The DFT structure is found to possess a C2 axis though no symmetry constraint was imposed in the calculations. Interestingly 1a, 1b, 1c-A and 1c-B yield the same NMR spectra in solution revealing a C2 axis. So it is concluded that the gas phase DFT structure is realized experimentally only in solution. Further, our DFT calculations show that the four species are distributed along a "potential energy curve" of ZnL2. Anyway, our ZnL2 presents a case of concomitant polymorphism.

  13. A Fluorescent Indicator for Imaging Lysosomal Zinc(II) with Förster Resonance Energy Transfer (FRET)-Enhanced Photostability and a Narrow Band of Emission

    PubMed Central

    Sreenath, Kesavapillai; Yuan, Zhao; Allen, John R.

    2015-01-01

    We demonstrate a strategy to transfer the zinc(II) sensitivity of a fluoroionophore with low photostability and a broad emission band to a bright and photostable fluorophore with a narrow emission band. The two fluorophores are covalently connected to afford an intramolecular Förster resonance energy transfer (FRET) conjugate. The FRET donor in the conjugate is a zinc(II)-sensitive arylvinylbipyridyl fluoroionophore, the absorption and emission of which undergo bathochromic shifts upon zinc(II) coordination. When the FRET donor is excited, efficient intramolecular energy transfer occurs to result in the emission of the acceptor boron dipyrromethene (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene or BODIPY) as a function of zinc(II) concentration. The broad emission band of the donor/zinc(II) complex is transformed into the strong, narrow emission band of the BODIPY acceptor in the FRET conjugates, which can be captured within the narrow emission window that is preferred for multicolor imaging experiments. In addition to competing with other nonradiative decay processes of the FRET donor, the rapid intramolecular FRET of the excited FRET-conjugate molecule protects the donor fluorophore from photobleaching, thus enhancing the photostability of the indicator. FRET conjugates 3 and 4 contain aliphatic amino groups, which selectively target lysosomes in mammalian cells. This subcellular localization preference was verified by using confocal fluorescence microscopy, which also shows the zinc(II)-enhanced emission of 3 and 4 in lysosomes. It was further shown using two-color structured illumination microscopy (SIM), which is capable of extending the lateral resolution over the Abbe diffraction limit by a factor of two, that the morpholino-functionalized compound 4 localizes in the interior of lysosomes, rather than anchoring on the lysosomal membranes, of live HeLa cells. PMID:25382395

  14. Syntheses of vanadyl and zinc(II) complexes of 1-hydroxy-4,5,6-substituted 2(1H)-pyrimidinones and their insulin-mimetic activities.

    PubMed

    Yamaguchi, Mika; Wakasugi, Kei; Saito, Ryota; Adachi, Yusuke; Yoshikawa, Yutaka; Sakurai, Hiromu; Katoh, Akira

    2006-02-01

    Control of the glucose level in the blood plasma has been achieved in vitro and in vivo by administration of vanadium and zinc in form of inorganic salts. It has been shown that elements are poorly absorbed in their inorganic forms and required high doses which have been associated with undesirable side effects. Many researchers, therefore, have focused on metal complexes that were prepared from VOSO(4) or ZnSO(4) and low-molecular-weight bidentate ligands. Seven kinds of 1-hydroxy-4,6-disubstituted and 1-hydroxy-4,5,6-trisubstituted-2(1H)-pyrimidinones were synthesized by reaction of N-benzyloxyurea and beta-diketones and subsequent removal of the protecting group. Six kinds of 1-hydroxy-4-(substituted)amino-2(1H)-pyrimidinones were synthesized by the substitution reaction of 1-benzyloxy-4-(1',2',4'-triazol-1'-yl)-2(1H)-pyrimidinone with various alkyl amines or amino acids. Treatment with VOSO(4) and ZnSO(4) or Zn(OAc)(2) afforded vanadyl(IV) and zinc(II) complexes which were characterized by means of (1)H NMR, IR, EPR, and UV-vis spectroscopies, and combustion analysis. The in vitro insulin-mimetic activity of these complexes was evaluated from 50% inhibitory concentrations (IC(50)) on free fatty acid (FFA) release from isolated rat adipocytes treated with epinephrine. Vanadyl complexes of 4,6-disubstituted-2(1H)-pyrimidinones showed higher insulin-mimetic activities than those of 4,5,6-trisubstituted ones. On the other hand, Zn(II) complexes showed lower insulin-mimetic activities than VOSO(4) and ZnSO(4) as positive controls. It was found that the balance of the hydrophilicity and/or hydrophobicity is important for higher insulin-mimetic activity. The in vivo insulin-mimetic activity was evaluated with streptozotocin (STZ)-induced diabetic rats. Blood glucose levels were lowered from hyperglycemic to normal levels after the treatment with bis(1,2-dihydro-4,6-dimethyl-2-oxo-1-pyrimidinolato)oxovanadium(IV) by daily intraperitoneal injections. The improvement in

  15. In vitro photodynamic activity of lipid vesicles with zinc phthalocyanine derivative against Enterococcus faecalis.

    PubMed

    Sobotta, Lukasz; Dlugaszewska, Jolanta; Kasprzycki, Piotr; Lijewski, Sebastian; Teubert, Anna; Mielcarek, Jadwiga; Gdaniec, Maria; Goslinski, Tomasz; Fita, Piotr; Tykarska, Ewa

    2018-06-01

    Zinc(II) phthalocyanine bearing eight non-peripheral 2-propoxy substituents was subjected to physicochemical study and, after incorporation in lipid vesicles, assessed as a potential photosensitizer for antibacterial photodynamic therapy. The phthalocyanine derivative obtained in the macrocyclization reaction was characterized by MS and NMR techniques. Moreover, its chemical purity was confirmed by HPLC analysis. X-ray structural analysis revealed that overcrowding of the phthalocyanine derivative leads to a strong out-of-plane distortion of the π-system of the macrocycle core. In the UV-Vis absorption spectra of zinc(II) phthalocyanine two characteristic bands were found: the Soret (300-450 nm) and the Q band (600-800 nm). Photophysical properties of mono- and diprotonated forms of phthalocyanine derivative were studied with time-resolved fluorescence spectroscopy. Its tri- and tetraprotonated forms could not be obtained, because compound decomposes in higher acid concentrations. The presented zinc(II) phthalocyanine showed values of singlet oxygen generation Φ Δ  = 0.18 and 0.16, the quantum yield of the photodecomposition Φ P  = 3.06∙10 -4 and 1.23∙10 -5 and the quantum yield of fluorescence Φ FL  = 0.005 and 0.004, designated in DMF and DMSO, respectively. For biological studies, phthalocyanine has been incorporated into modified liposome vesicles containing ethanol. In vitro bacteria photoinactivation study revealed no activity against Escherichia coli and 5.7 log reduction of the Enterococcus faecalis growth. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Luminescent zinc(ii) and copper(i) complexes for high-performance solution-processed monochromic and white organic light-emitting devices† †Electronic supplementary information (ESI) available: Experimental procedures, device performances, and computational details. CCDC 1054456, 1400003 and 1400004. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4sc03161j Click here for additional data file. Click here for additional data file.

    PubMed Central

    Cheng, Gang; So, Gary Kwok-Ming; To, Wai-Pong; Chen, Yong; Kwok, Chi-Chung; Ma, Chensheng; Guan, Xiangguo; Chang, Xiaoyong; Kwok, Wai-Ming

    2015-01-01

    The synthesis and spectroscopic properties of luminescent tetranuclear zinc(ii) complexes of substituted 7-azaindoles and a series of luminescent copper(i) complexes containing 7,8-bis(diphenylphosphino)-7,8-dicarba-nido-undecaborate ligand are described. These complexes are stable towards air and moisture. Thin film samples of the luminescent copper(i) complexes in 2,6-dicarbazolo-1,5-pyridine and zinc(ii) complexes in poly(methyl methacrylate) showed emission quantum yields of up to 0.60 (for Cu-3) and 0.96 (for Zn-1), respectively. Their photophysical properties were examined by ultrafast time-resolved emission spectroscopy, temperature dependent emission lifetime measurements and density functional theory calculations. Monochromic blue and orange solution-processed OLEDs with these Zn(ii) and Cu(i) complexes as light-emitting dopants have been fabricated, respectively. Maximum external quantum efficiency (EQE) of 5.55% and Commission Internationale de l'Eclairage (CIE) coordinates of (0.16, 0.19) were accomplished with the optimized Zn-1-OLED while these values were, respectively 15.64% and (0.48, 0.51) for the optimized Cu-3-OLED. Solution-processed white OLEDs having maximum EQE of 6.88%, CIE coordinates of (0.42, 0.44), and colour rendering index of 81 were fabricated by using these luminescent Zn(ii) and Cu(i) complexes as blue and orange light-emitting dopant materials, respectively. PMID:29142704

  17. Synthesis, supramolecular behavior, and in vitro photodynamic activities of novel zinc(II) phthalocyanines "side-strapped" with crown ether bridges.

    PubMed

    Chen, Xing-Wei; Ke, Mei-Rong; Li, Xing-Shu; Lan, Wen-Liang; Zhang, Miao-Fen; Huang, Jian-Dong

    2013-12-01

    Two new tetra- or di-α-substituted zinc(II) phthalocyanines 5 and 6 have been prepared through a "side-strapped" method. In the molecules, the adjacent benzene rings of the phthalocyanine core are linked at α-position through a triethylene glycol bridge to form a hybrid aza-/oxa-crown ether. The tetra-α-substituted phthalocyanine 5 shows an eclipsed self-assembly property in CH2Cl2 and the effect on the di-α-substituted analogue 6 is significantly weakened. Furthermore, the crown ethers of these compounds can selectively complex with Fe(3+) or Cu(2+) ion in DMF, leading to formation of J-aggregated nano-assemblies, which can be disaggregated in the presence of some organic or inorganic ligands, such as triethylamine, tetramethylethylenediamine, CH3COO(-), or OH(-). In addition, both compounds are efficient singlet oxygen generators with the singlet oxygen quantum yields (Φ(Δ)) of 0.54-0.74 in DMF relative to unsubstituted zinc(II) phthalocyanine (Φ(Δ)=0.56). They exhibit photodynamic activities toward HepG2 human hepatocarcinoma cells, but the compound 6, which has more than 40-fold lower IC50 value (0.08 μM) compared to the analogue 5 (IC50=3.31 μM), shows remarkablely higher in vitro photocytotoxicity due to its significantly higher cellular uptake and singlet oxygen generation efficiency. The results suggest that these compounds can serve as promising multifunctional materials both in (opto)electronic field and photodynamic therapy. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Cyclam Derivatives with a Bis(phosphinate) or a Phosphinato-Phosphonate Pendant Arm: Ligands for Fast and Efficient Copper(II) Complexation for Nuclear Medical Applications.

    PubMed

    David, Tomáš; Kubíček, Vojtěch; Gutten, Ondrej; Lubal, Přemysl; Kotek, Jan; Pietzsch, Hans-Jürgen; Rulíšek, Lubomír; Hermann, Petr

    2015-12-21

    Cyclam derivatives bearing one geminal bis(phosphinic acid), -CH2PO2HCH2PO2H2 (H2L(1)), or phosphinic-phosphonic acid, -CH2PO2HCH2PO3H2 (H3L(2)), pendant arm were synthesized and studied as potential copper(II) chelators for nuclear medical applications. The ligands showed good selectivity for copper(II) over zinc(II) and nickel(II) ions (log KCuL = 25.8 and 27.7 for H2L(1) and H3L(2), respectively). Kinetic study revealed an unusual three-step complex formation mechanism. The initial equilibrium step leads to out-of-cage complexes with Cu(2+) bound by the phosphorus-containing pendant arm. These species quickly rearrange to an in-cage complex with cyclam conformation II, which isomerizes to another in-cage complex with cyclam conformation I. The first in-cage complex is quantitatively formed in seconds (pH ≈5, 25 °C, Cu:L = 1:1, cM ≈ 1 mM). At pH >12, I isomers undergo nitrogen atom inversion, leading to III isomers; the structure of the III-[Cu(HL(2))] complex in the solid state was confirmed by X-ray diffraction analysis. In an alkaline solution, interconversion of the I and III isomers is mutual, leading to the same equilibrium isomeric mixture; such behavior has been observed here for the first time for copper(II) complexes of cyclam derivatives. Quantum-chemical calculations showed small energetic differences between the isomeric complexes of H3L(2) compared with analogous data for isomeric complexes of cyclam derivatives with one or two methylphosphonic acid pendant arm(s). Acid-assisted dissociation proved the kinetic inertness of the complexes. Preliminary radiolabeling of H2L(1) and H3L(2) with (64)Cu was fast and efficient, even at room temperature, giving specific activities of around 70 GBq of (64)Cu per 1 μmol of the ligand (pH 6.2, 10 min, ca. 90 equiv of the ligand). These specific activities were much higher than those of H3nota and H4dota complexes prepared under identical conditions. The rare combination of simple ligand synthesis, very

  19. Mono- and tetra-substituted zinc(II) phthalocyanines containing morpholinyl moieties: Synthesis, antifungal photodynamic activities, and structure-activity relationships.

    PubMed

    Zheng, Bi-Yuan; Ke, Mei-Rong; Lan, Wen-Liang; Hou, Lu; Guo, Jun; Wan, Dong-Hua; Cheong, Ling-Zhi; Huang, Jian-Dong

    2016-05-23

    A series of zinc(II) phthalocyanines (ZnPcs) mono-substituted and tetra-substituted with morpholinyl moieties and their quaternized derivatives have been synthesized and evaluated for their antifungal photodynamic activities toward Candida albicans. The α-substituted, quaternized, and mono-substituted ZnPcs are found to have higher antifungal photoactivity than β-substituted, neutral, and tetra-substituted counterparts. The cationic α-mono-substituted ZnPc (6a) exhibits the highest photocytotoxicity. Moreover, it is more potent than axially di-substituted analogue. The different photocytotoxicities of these compounds have also been rationalized by investigating their spectroscopic and photochemical properties, aggregation trend, partition coefficients, and cellular uptake. The IC90 value of 6a against C. albicans cells is as low as 3.3 μM with a light dose of 27 J cm(-2), meaning that 6a is a promising candidate as the antifungal photosensitizer for future investigations. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Quantum-chemical, NMR, FT IR, and ESI MS studies of complexes of colchicine with Zn(II).

    PubMed

    Jankowski, Wojciech; Kurek, Joanna; Barczyński, Piotr; Hoffmann, Marcin

    2017-04-01

    Colchicine is a tropolone alkaloid from Colchicinum autumnale. It shows antifibrotic, antimitotic, and anti-inflammatory activities, and is used to treat gout and Mediterranean fever. In this work, complexes of colchicine with zinc(II) nitrate were synthesized and investigated using DFT, 1 H and 13 C NMR, FT IR, and ESI MS. The counterpoise-corrected and uncorrected interaction energies of these complexes were calculated. We also calculated their 1 H, 13 C NMR, and IR spectra and compared them with the corresponding experimentally obtained data. According to the ESI MS mass spectra, colchicine forms stable complexes with zinc(II) nitrate that have various stoichiometries: 2:1, 1:1:1, and 2:1:1 with respect to colchichine, Zn(II), and nitrate ion. All of the complexes were investigated using the quantum theory of atoms in molecules (QTAIM). The calculated and the measured spectra showed differences before and after the complexation process. Calculated electron densities and bond critical points indicated the presence of bonds between the ligands and the central cation in the investigated complexes that satisfied the quantum theory of atoms in molecules. Graphical Abstract DFT, NMR, FT IR, ESI MS, QTAIM and puckering studies of complexes of colchicine with Zn(II).

  1. Syntheses, structures, and properties of two new zinc(II) metal-organic frameworks based on flexible 1,6-bis(2-methyl-imidazole-1-yl)hexane ligand

    NASA Astrophysics Data System (ADS)

    Jin, Jun-Cheng; Fu, Ai-Yun; Li, Dian; Chang, Wen-Gui; Wu, Ju; Yang, Mei; Xie, Cheng-Gen; Xu, Guang-Nian; Cai, An-Xing; Wu, Ai-Hua

    2014-11-01

    Two new zinc(II) metal-organic compounds of [Zn(ADC)(bimh)]n (1) and [Zn(ADA)(bimh)]n (2) (H2ADC = 1,3-adamantanedicarboxylic acid, H2ADA = 1,3-adamantanediacetic acid, bimh = 1,6-bis(2-methyl-imidazole-1-yl)-hexane, have been structurally characterized by X-ray diffraction analysis. In compound 1, the zinc(II) ions are bridged by ADC and bimh ligands to form a 1D looped chain. In compound 2, the ADA molecules alternately bridge Zn(II) atoms to form infinite chains, and then the 1D chain is connected through the bimh ligand resulting in an undulating infinite two-dimensional (2D) polymeric network. Additionally, TG analysis, XRPD and fluorescent properties for compounds 1 and 2 are also measured and discussed.

  2. Template engineered biopotent macrocyclic complexes involving furan moiety: Molecular modeling and molecular docking

    NASA Astrophysics Data System (ADS)

    Rathi, Parveen; Singh, D. P.

    2015-08-01

    Bioactive cobalt(II), nickel(II), copper(II) and zinc(II) complexes of octaazamacrocycle, 19, 20-dioxa-2,3,5,6,11,12,14,15-octaazatricyclo[14.2.1.1]icosa-1,6,8,10,15,17-hexaene-4,13-dithione, derived from furan-2,5-dione and thiocarbonohydrazide in the mole ratio 2:2:1 have been engineered via template methodology. The synthesized metal complexes have also been structurally characterized in the light of various physicochemical techniques and evaluated for antimicrobial and antioxidant activities. All these studies point toward the formation of divalent macrocyclic complexes possessing distorted octahedral geometry and having significant antimicrobial and antioxidant properties as compared to the starting precursors. Virtual screening of a representative complex was done through docking to the binding site of COX-2 to evaluate the anti-inflammatory activity of the series. Non-electrolytic nature of the complexes has been predicted on the basis of low value of molar conductivity in DMSO. All the complexes were having notable activities against pathogenic microbes as compared to precursors-thiocarbonohydrazide and furan-2,5-dione however, the complex 5, [Ni (C10H8N8O2S2) (NO3)2], shows the best antimicrobial activity.

  3. Palladium(II) and zinc(II) complexes of neutral [N2O2] donor Schiff bases derived from furfuraldehyde: synthesis, characterization, fluorescence and corrosion inhibitors of ligands.

    PubMed

    Ali, Omyma A M

    2014-11-11

    Metal complexes of Schiff bases derived from furfuraldehyde and 4,5-dimethyl-1,2-phenylendiamine (L1) or 4,5-dichloro-1,2-phenylendiamine (L2) have been reported and characterized based on elemental analyses, IR, 1H NMR, UV-Vis, magnetic moment, molar conductance and thermal analysis. The complexes are found to have the formulae [PdL1-2]Cl2 and [ZnL1-2](AcO)2·H2O. The molar conductance data reveal that Pd(II) and Zn(II) chelates are ionic in nature and are of the type 2:1 electrolytes. The spectral data are consistent with a square planar and tetrahedral geometry around Pd(II) and Zn(II), respectively, in which the ligands act as tetradentate ligands. The thermal behavior of some chelates is studied and the activation thermodynamic parameters are calculated using Coats-Redfern method. The corrosion inhibition of stainless steel types 410 and 304 in 1 M HCl using the synthesized Schiff bases as inhibitors have been studied by weight loss method. The obtained data considered these ligands as efficient corrosion inhibitors. The ligands and their metal complexes exhibited considerable antibacterial activity against Staphylococcusaureus, and Escherichiacoli and antifungal activity against Candida albicans. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Copper(II) and zinc(II) dinuclear enzymes model compounds: The nature of the metal ion in the biological function

    NASA Astrophysics Data System (ADS)

    Ferraresso, L. G.; de Arruda, E. G. R.; de Moraes, T. P. L.; Fazzi, R. B.; Da Costa Ferreira, A. M.; Abbehausen, C.

    2017-12-01

    First series transition metals are used abundantly by nature to perform catalytic transformations of several substrates. Furthermore, the cooperative activity of two proximal metal ions is common and represents a highly efficient catalytic system in living organisms. In this work three dinuclear μ-phenolate bridged metal complexes were prepared with copper(II) and zinc(II), resulting in a ZnZn, CuCu and CuZn with the ligand 2-ethylaminodimethylamino phenol (saldman) as model compounds of superoxide dismutase (CuCu and CuZn) and metallo-β-lactamases (ZnZn). Metals are coordinated in a μ-phenolate bridged symmetric system. Cu(II) presents a more distorted structure, while zinc is very symmetric. For this reason, [CuCu(saldman)] shows higher water solubility and also higher lability of the bridge. The antioxidant and hydrolytic beta-lactamase-like activity of the complexes were evaluated. The lability of the bridge seems to be important for the antioxidant activity and is suggested to because of [CuCu(saldman)] presents a lower antioxidant capacity than [CuZn(saldman)], which showed to present a more stable bridge in solution. The hydrolytic activity of the bimetallic complexes was assayed using nitrocefin as substrate and showed [ZnZn(saldman)] as a better catalyst than the Cu(II) analog. The series demonstrates the importance of the nature of the metal center for the biological function and how the reactivity of the model complex can be modulated by coordination chemistry.

  5. The water soluble peripherally tetra-substituted zinc(ii), manganese(iii) and copper(ii) phthalocyanines as new potential anticancer agents.

    PubMed

    Barut, Burak; Sofuoğlu, Ayşenur; Biyiklioglu, Zekeriya; Özel, Arzu

    2016-09-28

    In this study, [2-(2-morpholin-4-ylethoxy)ethoxy] group substituted zinc(ii), manganese(iii) and copper(ii) phthalocyanines 2-4 and their water soluble derivatives 2a, 3a and 4a were synthesized and the interactions of compounds 2a, 3a and 4a with CT-DNA and supercoiled pBR322 plasmid DNA were investigated. The results of binding experiments showed that these compounds were able to interact with CT-DNA via intercalative mode with a strong binding affinity in the order 3a > 2a > 4a. DNA-photocleavage activities of compounds 2a, 3a and 4a were determined. These compounds cleaved supercoiled pBR322 plasmid DNA efficiently under irradiation at 650 nm for 2a and 4a, and at 750 nm for 3a. These compounds displayed remarkable inhibitory activities against topoisomerase I enzyme in a dose-dependent manner. All of these results suggest that these phthalocyanines might be suitable anticancer agents due to their strong binding affinities, significant cleavage activities and effective topoisomerase I inhibition.

  6. Location of Varying Hydrophobicity Zinc(II) Phthalocyanine-Type Photosensitizers in Methoxy Poly(ethylene oxide) and Poly(l-lactide) Block Copolymer Micelles Using 1H NMR and XPS Techniques.

    PubMed

    Lamch, Łukasz; Tylus, Włodzimierz; Jewgiński, Michał; Latajka, Rafał; Wilk, Kazimiera A

    2016-12-15

    Hydrophobic zinc(II) phthalocyanine-type derivatives, solubilized in polymeric micelles (PMs), provide a befitting group of so-called nanophotosensitizers, suitable for a variety of photodynamic therapy (PDT) protocols. The factors that influence the success of such products in PDT are the location of the active cargo in the PMs and the nanocarrier-enhanced ability to safely interact with biological systems and fulfill their therapeutic functions. Therefore, the aim of this work was to determine the solubilization loci of three phthalocyanines of varying hydrophobicity, i.e., zinc(II) phthalocyanine (ZnPc), along with its tetrasulfonic acid (ZnPc-sulfo 4 ) and perfluorinated (ZnPcF 16 ) derivatives, loaded in polymeric micelles of methoxy poly(ethylene oxide)-b-poly(l-lactide) (mPEG-b-PLLA), by means of 1 H nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) combined with ion sputtering. Furthermore, the microenvironment influence upon the chemical and physical status of the solubilized cargo in PMs, expressed by photobleaching and reactive oxygen species (ROS) generation comparing to the same properties of native cargoes in solution, was also evaluated and discussed in regards to the probing location data. The studied phthalocyanine-loaded PMs exhibited good physical stability, high drug-loading efficiency, and a size of less than ca. 150 nm with low polydispersity indices. The formation of polymeric micelles and the solubilization locus were investigated by 1 H NMR and XPS. ZnPc localized within the PM core, whereas both ZnPcF 16 and ZnPc-sulfo 4 - in the corona of PMs. We proved that the cargo locus is crucial for the photochemical properties of the studied phthalocyanines; the increase in photostability and ability to generate ROS in micellar solution compared to free photosensitizer was most significant for the photosensitizer in the PM core. Our results indicate the role of the cargo location in the PM microenvironment and demonstrate

  7. Preparation and sonodynamic activities of water-soluble tetra-α-(3-carboxyphenoxyl) zinc(II) phthalocyanine and its bovine serum albumin conjugate.

    PubMed

    Xu, He-Nan; Chen, Hai-Jun; Zheng, Bi-Yuan; Zheng, Yun-Quan; Ke, Mei-Rong; Huang, Jian-Dong

    2015-01-01

    Sonodynamic therapy (SDT) is a new approach for cancer treatment, involving the synergistic effect of ultrasound and certain chemical compounds termed as sonosensitizers. A water-soluble phthalocyanine, namely tetra-α-(3-carboxyphenoxyl) zinc(II) phthalocyanine (ZnPcC4), has been prepared and characterized. The interactions between ZnPcC4 and bovine serum albumin (BSA) were also investigated by absorption and fluorescence spectroscopy. It was found that there were strong interactions between ZnPcC4 and BSA with a binding constant of 6.83×10(7)M(-1). A non-covalent BSA conjugate of ZnPcC4 (ZnPcC4-BSA) was prepared. Both ZnPcC4 and ZnPcC4-BSA exhibited efficient sonodynamic activities against HepG2 human hepatocarcinoma cells. Compared with ZnPcC4, conjugate ZnPcC4-BSA showed a higher sonodynamic activity with an IC50 value of 7.5μM. Upon illumination with ultrasound, ZnPcC4-BSA can induce an increase of intracellular reactive oxygen species (ROS) level, resulting in cellular apoptosis. The results suggest that the albumin conjugates of zinc(II) phthalocyanines functionalized with carboxyls can serve as promising sonosensitizers for sonodynamic therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Spectroscopic investigation of the noncovalent association of the nerve agent simulant diisopropyl methylphosphonate (DIMP) with zinc(II) porphyrins.

    PubMed

    Maza, William A; Vetromile, Carissa M; Kim, Chungsik; Xu, Xue; Zhang, X Peter; Larsen, Randy W

    2013-11-07

    Organophosphonates pose a significant threat as chemical warfare agents, as well as environmental toxins in the form of pesticides. Thus, methodologies to sense and decontaminate these agents are of significant interest. Porphyrins and metalloporphyrins offer an excellent platform to develop chemical threat sensors and photochemical degradation systems. These highly conjugated planar molecules exhibit relatively long-lived singlet and triplet states with high quantum yields and also form self-associated complexes with a wide variety of molecules. A significant aspect of porphyrins is the ability to functionalize the peripheral ring system either directly to the pyrrole rings or to the bridging methine carbons. In this report, steady-state absorption and fluorescence are utilized to probe binding affinities of a series of symmetric and asymmetric zinc(II) metalloporphyrins for the nerve agent simulant diisopropyl methylphosphonate (DIMP) in hexane. The red shifts in the absorption and emission spectra observed for all of the metalloporphyrins probed are discussed in the frame of Gouterman's four orbital model and a common binding motif involving coordination between the metalloporphyrin and DIMP via interaction between the zinc metal center of the porphyrin and phosphoryl oxygen of DIMP (Zn-O═P) is proposed.

  9. Synthesis, spectral and magnetic studies of mono- and bi-nuclear metal complexes of a new bis(tridentate NO2) Schiff base ligand derived from 4,6-diacetylresorcinol and ethanolamine.

    PubMed

    Shebl, Magdy

    2009-07-15

    A new bis(tridentate NO2) Schiff base ligand, H(4)L, was prepared by the reaction of the bifunctional carbonyl compound; 4,6-diacetylresorcinol (DAR) with ethanolamine. The ligand reacted with iron(III), cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II), cerium(III) and uranyl(VI) ions, in absence and in presence of LiOH, to yield mono- and bi-nuclear complexes with different coordinating sites. The ligand and its metal complexes were characterized by elemental analyses, IR, (1)H NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. In absence of LiOH, mononuclear complexes (2, 3 and 5-9) as well as binuclear complexes (1 and 4) were obtained. In mononuclear complexes, the ligand acted as a neutral, mono- and di-basic/bi- and tetra-dentate ligand while in binuclear complexes (1 and 4), the ligand acted as a bis(mono- or di-basic/tridentate) ligand. On the other hand, in presence of LiOH, only binuclear complexes (10-15) were obtained in which the ligand acted as a bis(dibasic tridentate) ligand. The metal complexes exhibited different geometrical arrangements such as octahedral, tetrahedral, square planar, square pyramidal and pentagonal bipyramidal arrangements.

  10. Synthesis and binding properties of arylethyne-linked porphyrin-zinc complexes for organic electronics applications.

    PubMed

    Reainthippayasakul, W; Paosawatyanyong, B; Bhanthumnavin, W

    2013-05-01

    Conjugated meso-alkynyl 5,15-dimesitylporphyrin metal complexes have been synthesized by Sonogashira coupling reaction in good yields. Alkynyl groups were chosen as a link at the meso positions in order to extend the pi-conjugated length of porphyrin rings. These synthesized porphyrin derivatives were characterized by 1H NMR spectroscopy and MALDI-TOF mass spectrometry. Moreover, UV-visible spectroscopy and fluorescence spectroscopy were also used to investigate their photophysical properties. It has been demonstrated that central metal ions as well as meso substituents on porphyrin rings affected the electronic absorption and emission spectra of the compounds. Spectroscopic results revealed that alkyne-linked porphyrin metal complexes showed higher pi-conjugation compared with porphyrin building blocks resulting in red shifts in both absorption and emission spectra. Coordination properties of synthesized porphyrins were preliminarily investigated by UV-visible absorption and fluorescence emission spectroscopic titration with pyridine as axial ligand. The formation of porphyrin-pyridine complexes resulted in significant red shifts in absorption spectra and decrease of fluorescence intensity in emission spectra. Moreover, the 1H NMR titration experiments suggested that central metal ions play an important role to coordinate with pyridine and the coordination of porphyrin zinc(II) complex with pyridine occur in a 1:1 ratio. From these spectroscopic results, alkyne-linked porphyrin metal complexes offer potential applications as materials for optical organic nanosensors.

  11. Complexation of phytochemicals with cyclodextrin derivatives - An insight.

    PubMed

    Suvarna, Vasanti; Gujar, Parul; Murahari, Manikanta

    2017-04-01

    Natural compounds have been attracting huge attention because of their broad therapeutic properties with specificity in their action in human health care as functional foods, pharmaceuticals and nutraceuticals. However poor bioavailability and reduced bioactivity attributed to poor solubility and instability is the major drawback hindering the incorporation of these therapeutically potential molecules in novel drug delivery systems. Based on the findings of reported research investigations; complexation of poorly water soluble phytochemicals with cyclodextrins has emerged to be a promising approach to improve their aqueous solubility, stability, rate of dissolution and bioavailability. The present article summarizes the encapsulation of natural compounds ranging from various flavonoids, phenolic derivatives, coumestans to triterpenes, with cyclodextrin and their derivatives. Also the article highlights the method of complexation, complexation ability, drug solubility, stability, bioavailability and safety aspects of reported natural compounds. Additionally we present the glimpses of patents published in recent 10-15 years to highlight the significance of inclusion of phytochemicals in cyclodextrins. In patents narrated, improvement in stability and solubility of curcumin by complexation with alkyl ether derivative of gamma-cyclodextrin is claimed. Another patent mentioned, complexation of artemisinins with β-cyclodextrin, improved the stability and integrity of peroxide part of artemisinins for long period. On the other hand the complex of dihydromyricetin with γ-CD has shown improved solubility, stability and bioavailability. Thus it can be concluded that phytochemicals have multiple biological activities with broader safety index and improvement of their solubility will be truly beneficial to aid their effective delivery in healthcare. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Synthesis and spectral characterization of Zn(II) microsphere series for antimicrobial application

    NASA Astrophysics Data System (ADS)

    Singh, Ajay K.; Pandey, Sarvesh K.; Pandey, O. P.; Sengupta, S. K.

    2014-09-01

    Microsphere series have been synthesized by reacting zinc(II) acetate dihydrate with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole/oxadiazole/triazole with salicylaldehyde. Elemental analysis suggests that the complexes have 1:2 and 1:1 stoichiometry of the type [Zn(L)2(H2O)2] and [Zn(L‧)(H2O)2]; LH = Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thia/oxadiazole with salicylaldehyde; L‧H2 = Schiff bases derived from 3-(substituted phenyl)-4-amino-5-hydrazino-1,2,4-triazole and salicylaldehyde and were characterized by elemental analyses, IR, 1H NMR and 13C NMR spectral data. Scanning electron microscopy (SEM) showed that synthesized materials have microsphere like structure and there EDX analysis comparably matches with elemental analysis. For the antimicrobial application Schiff bases and their zinc(II) complexes were screened for four bacteria e.g. Bacillus subtilis, Pseudomonas aeruginosa, Salmonella typhi, Streptococcus pyogenes and four fungi e.g. Cyrtomium falcatum, Aspergillus niger, Fusarium oxysporium and Curvularia pallescence by the reported method. Schiff base and Zn(II) compounds showed significant antimicrobial activities. However, activities increase upon chelation. Thermal analysis (TGA) data of compound (10) showed its stability up to 300 °C.

  13. Triamine chelants, their derivatives, complexes and conjugates

    DOEpatents

    Troutner, David E.; John, Christy S.; Pillai, Maroor R. A.

    1995-01-01

    A group of functionalized triamine chelants and their derivatives that form complexes with radioactive metal ions are disclosed. The complexes can be covalently attached to a protein or an antibody or antibody fragment and used for therapeutic and/or diagnostic purposes. The chelants are of the formula: ##STR1## wherein n, m, R, R.sup.1, R.sup.2 and L are defined in the specification.

  14. Synthesis, structure and photoluminescence of (PLAGH){sub 2}[ZnCl{sub 4}] and comparative analysis of photoluminescence properties with tris(2,2′-bipyridine)ruthenium(II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radanović, Mirjana M.; Jelić, Miodrag G., E-mail: jelicmgm@uns.ac.rs; Romčević, Nebojša Ž.

    Highlights: • New zinc(II) complex with pyridoxalaminoguanidine was synthesized. • The enhancement of the photoluminescence due to the compound formation was achieved. • Very high photoluminescence of Zn(II) compound was noticed. • Comparative analysis of photoluminescence with tris(2,2′-bipyridine) ruthenium(II) was provided. - Abstract: The first compound of zinc(II) containing pyridoxalaminoguanidine has been synthesized and characterized by elemental analysis, infrared spectra, conductometric measurements and X-ray crystallography. Single crystals of the compound were obtained in the reaction of methanolic solution of zinc(II) chloride and pyridoxalaminoguanidine hydrochloride. In this compound the coordination of chelate ligand is absent and tetrachlorido complex of zinc(II) withmore » pyridoxalaminuguanidinium cation as contraion is obtained. Photoluminescence spectra were measured. Lorentzian multipeak technique was used to determine peak wavelengths and their intensities. Photoluminescence spectroscopy upon 325, 488 and 514 nm laser excitation light was used to obtain results. This novel compound of zinc(II) was compared to the well-known organic light emitting diode material—ruthenium(II) complex with bypiridine i.e., tris(2,2′-bipyridine)ruthenium(II), under the same circumstances and the identical experimental setup. A scheme of energy levels and transitions is proposed to explain the obtained experimental results.« less

  15. Triamine chelants, their derivatives, complexes and conjugates

    DOEpatents

    Troutner, D.E.; John, C.S.; Pillai, M.R.A.

    1995-03-07

    A group of functionalized triamine chelants and their derivatives that form complexes with radioactive metal ions are disclosed. The complexes can be covalently attached to a protein or an antibody or antibody fragment and used for therapeutic and/or diagnostic purposes. The chelants are of the formula, as shown in the accompanying diagrams, wherein n, m, R, R{sup 1}, R{sup 2} and L are defined in the specification.

  16. Synthesis, characterization, crystal structure, DNA- and HSA-binding studies of a dinuclear Schiff base Zn(II) complex derived from 2-hydroxynaphtaldehyde and 2-picolylamine

    NASA Astrophysics Data System (ADS)

    Kazemi, Zahra; Rudbari, Hadi Amiri; Mirkhani, Valiollah; Sahihi, Mehdi; Moghadam, Majid; Tangestaninejad, Sharam; Mohammadpoor-Baltork, Iraj

    2015-09-01

    A tridentate Schiff base ligand NNO donor (HL: 1-((E)-((pyridin-2-yl)methylimino)methyl)naphthalen-2-ol was synthesized from condensation of 2-hydroxynaphtaldehyde and 2-picolylamine. Zinc complex, Zn2L2(NO3)2, was prepared from reaction of Zn(NO3)2 and HL at ambient temperature. The ligand and complex were characterized by FT-IR, 1H NMR, 13C NMR and elemental analysis (CHN). Furthermore, the structure of dinuclear Zn(II) complex was determined by single crystal X-ray analysis. The complex, Zn2L2(NO3)2, is centrosymmetric dimer in which deprotonated phenolates bridge the two Zn(II) atoms and link the two halves of the dimer. In the structure, Zinc(II) ions have a highly distorted six-coordinate structure bonded to two oxygen atoms from a bidentate nitrate group, the pyridine nitrogen, an amine nitrogen and phenolate oxygens. The interaction of dinuclear Zn(II) complex with fish sperm DNA (FS-DNA) and HSA was investigated under physiological conditions using fluorescence quenching, UV-Vis spectroscopy, molecular dynamics simulation and molecular docking methods. The estimated binding constants for the DNA-complex and HSA-complex were (3.60 ± 0.18) × 104 M-1 and (1.35 ± 0.24) × 104 M-1, respectively. The distance between dinuclear Zn(II) complex and HSA was obtained based on the Förster's theory of non-radiative energy transfer. Molecular docking studies revealed the binding of dinuclear Zn(II) complex to the major groove of FS-DNA and IIA site of protein by formation of hydrogen bond, π-cation and hydrophobic interactions.

  17. The binding of manganese(II) and zinc(II) to the synthetic oligonucleotide d(C-G-C-G-A-A-T-T-C-G-C-G)2. A 1H NMR study.

    PubMed

    Frøystein, N A; Sletten, E

    1991-03-01

    The interaction of the synthetic oligonucleotide d(C-G-C-G-A-A-T-T-C-G-C-G)2 with two different transition-metal ions has been investigated in aqueous solution by means of 1H NMR spectroscopy. The effects on the DNA due to the presence of manganese(II) or zinc(II) have been monitored by observing the paramagnetic broadening and diamagnetic shifts of the non-exchangeable proton resonance lines, respectively. The 1H NMR spectra acquired during the course of the manganese(II) titration show very distinct broadening effects on certain DNA resonance lines. Primarily, the H8 resonance of G4 is affected, but also the H5 and H6 resonances of C3 are clearly affected by the metal. The results imply that the binding of manganese(II) to DNA is sequence specific. The 1H spectra obtained during the zinc(II) titration reveal diamagnetic shift effects which largely conform with the paramagnetic broadening effects due to the presence of manganese(II), although this picture is somewhat more complex. The H8 resonance of G4 displays a clearly visible high-field shift, while for the other guanosine H8 protons this effect is absent. The H1' and H2' protons of C3 show an effect of similar strength, although in the opposite direction, while H5 and H6 of C3 are only slightly affected. Local differences in the structure of the DNA and the basicities of potential binding sites on different base steps in the sequence might account for the observed sequence selectivity.

  18. Synthesis Characterization and DNA Interaction Studies of a New Zn(II) Complex Containing Different Dinitrogen Aromatic Ligands

    PubMed Central

    Shahabadi, Nahid; Mohammadi, Somaye

    2012-01-01

    A mononuclear complex of Zn(II), [Zn(DIP)2 (DMP)] (NO3)2 ·2H2O in which DIP is 4,7-diphenyl-1,10-phenanthroline and DMP is 4,4′-dimethyl-2,2′-bipyridine has been prepared and characterized by 1HNMR spectroscopy, FT-IR, UV-Vis and elemental analysis techniques. DNA-binding properties of the complex were studied using UV-vis spectra, circular dichroism (CD) spectra, fluorescence, cyclic voltammetry (CV), and viscosity measurements. The results indicate that this zinc(II) complex can intercalate into the stacked base pairs of DNA and compete with the strong intercalator ethidium bromide for the intercalative binding sites. PMID:22956919

  19. Virus inactivation under the photodynamic effect of phthalocyanine zinc(II) complexes.

    PubMed

    Remichkova, Mimi; Mukova, Luchia; Nikolaeva-Glomb, Lubomira; Nikolova, Nadya; Doumanova, Lubka; Mantareva, Vanya; Angelov, Ivan; Kussovski, Veselin; Galabov, Angel S

    2017-03-01

    Various metal phthalocyanines have been studied for their capacity for photodynamic effects on viruses. Two newly synthesized water-soluble phthalocyanine Zn(II) complexes with different charges, cationic methylpyridyloxy-substituted Zn(II)- phthalocyanine (ZnPcMe) and anionic sulfophenoxy-substituted Zn(II)-phthalocyanine (ZnPcS), were used for photoinactivation of two DNA-containing enveloped viruses (herpes simplex virus type 1 and vaccinia virus), two RNA-containing enveloped viruses (bovine viral diarrhea virus and Newcastle disease virus) and two nude viruses (the enterovirus Coxsackie B1, a RNA-containing virus, and human adenovirus 5, a DNA virus). These two differently charged phthalocyanine complexes showed an identical marked virucidal effect against herpes simplex virus type 1, which was one and the same at an irradiation lasting 5 or 20 min (Δlog=3.0 and 4.0, respectively). Towards vaccinia virus this effect was lower, Δlog=1.8 under the effect of ZnPcMe and 2.0 for ZnPcS. Bovine viral diarrhea virus manifested a moderate sensitivity to ZnPcMe (Δlog=1.8) and a pronounced one to ZnPcS at 5- and 20-min irradiation (Δlog=5.8 and 5.3, respectively). The complexes were unable to inactivate Newcastle disease virus, Coxsackievirus B1 and human adenovirus type 5.

  20. Synthesis, crystal structure and DFT studies of a Zinc(II) complex of 1,3-diaminopropane (Dap), [Zn(Dap)(NCS)2][Zn(Dap)(NCS)2]n. The additional stabilizing role of S⋯π chalcogen bond

    NASA Astrophysics Data System (ADS)

    Alotaibi, Mshari A.; Alharthi, Abdulrahman I.; Zierkiewicz, Wiktor; Akhtar, Muhammad; Tahir, Muhammad Nawaz; Mazhar, Muhammad; Isab, Anvarhusein A.; Ahmad, Saeed

    2017-04-01

    A zinc(II) complex of 1,3-diaminopropane (Dap), [Zn(Dap)(NCS)2][Zn(Dap)(NCS)2]n (1) has been prepared and characterized by elemental analysis, IR, 1H &13C NMR spectroscopy, and its crystal structure was determined by X-ray crystallography. The crystal structure of 1 consists of two types of molecules, a discrete monomer and a polymeric one. In the monomeric unit, the zinc atom is bound to one terminal Dap molecule and to two N-bound thiocyanate ions, while in the polymeric unit, Dap acts as a bridging ligand forming a linear chain. The Zn(II) ions in both assume a slightly distorted tetrahedral geometry. The structures of two systems: the [Zn(Dap)(NCS)2][Zn(Dap)(NCS)2]3 complex as a model of 1 and [Zn(Dap)(NCS)2]4 as a simple polymeric structure were optimized with the B3LYP-D3 method. The DFT results support that the experimentally determined structure (1) is more stable in comparison to a simple polymeric structure, [Zn(Dap)(NCS)2]n (2). The interaction energies (ΔE) for NCS anions obtained by B3LYP-D3 method are about -145 kcal mol-1, while the calculated ΔE values for neutral organic ligands are about twice smaller. The X-ray structure of 1 shows that the complex is stabilized mainly by hydrogen bonds. We also found that weak chalcogen bonds play an additional role in stabilization of compound 1. Some of the intermolecular S⋯N distances are smaller than the sum of the van der Waals radii of the corresponding atoms. To the best of our knowledge, this is the first study that shows the structure where the trivalent sulfur is involved in formation of a S⋯π chalcogen bond. The NBO and NCI analyses confirm the existence of this kind of interactions.

  1. Cytotoxicity of copper(II)-complexes with some S-alkyl derivatives of thiosalicylic acid. Crystal structure of the binuclear copper(II)-complex with S-ethyl derivative of thiosalicylic acid

    NASA Astrophysics Data System (ADS)

    Nikolić, Miloš V.; Mijajlović, Marina Ž.; Jevtić, Verica V.; Ratković, Zoran R.; Novaković, Slađana B.; Bogdanović, Goran A.; Milovanović, Jelena; Arsenijević, Aleksandar; Stojanović, Bojana; Trifunović, Srećko R.; Radić, Gordana P.

    2016-07-01

    The spectroscopically predicted structure of the obtained copper(II)-complex with S-ethyl derivative of thiosalicylic acid was confirmed by X-ray structural study and compared to previously reported crystal structure of the Cu complex with S-methyl derivative. Single crystals suitable for X-ray measurements were obtained by slow crystallization from a water solution. Cytotoxic effects of S-alkyl (R = benzyl (L1), methyl (L2), ethyl (L3), propyl (L4) and butyl (L5)) derivatives of thiosalicylic acid and the corresponding binuclear copper(II)-complexes on murine colon carcinoma cell lines, CT26 and CT26.CL25 and human colon carcinoma cell line HCT-116 were reported here. The analysis of cancer cell viability showed that all the tested complexes had low cytotoxic effect on murine colon carcinoma cell lines, but several times higher cytotoxicity on normal human colon carcinoma cells.

  2. Neurophysiological evidence for whole form retrieval of complex derived words: a mismatch negativity study.

    PubMed

    Hanna, Jeff; Pulvermüller, Friedemann

    2014-01-01

    Complex words can be seen as combinations of elementary units, decomposable into stems and affixes according to morphological rules. Alternatively, complex forms may be stored as single lexical entries and accessed as whole forms. This study uses an event-related potential brain response capable of indexing both whole-form retrieval and combinatorial processing, the Mismatch Negativity (MMN), to investigate early brain activity elicited by morphologically complex derived words in German. We presented complex words consisting of stems "sicher" (secure), or "sauber" (clean) combined with abstract nominalizing derivational affixes -heit or -keit, to form either congruent derived words: "Sicherheit" (security) and "Sauberkeit" (cleanliness), or incongruent derived pseudowords: *"Sicherkeit", and *"Sauberheit". Using this orthogonal design, it was possible to record brain responses for -heit and -keit in both congruent and incongruent contexts, therefore balancing acoustic variance. Previous research has shown that incongruent combinations of symbols elicit a stronger MMN than congruent combinations, but that single words or constructions stored as whole forms elicit a stronger MMN than pseudowords or non-existent constructions. We found that congruent derived words elicited a stronger MMN than incongruent derived words, beginning about 150 ms after perception of the critical morpheme. This pattern of results is consistent with whole-form storage of morphologically complex derived words as lexical units, or mini-constructions. Using distributed source localization methods, the MMN enhancement for well-formed derivationally complex words appeared to be most prominent in the left inferior anterior-temporal, bilateral superior parietal and bilateral post-central, supra-marginal areas. In addition, neurophysiological results reflected the frequency of derived forms, thus providing further converging evidence for whole form storage and against a combinatorial mechanism.

  3. Neurophysiological evidence for whole form retrieval of complex derived words: a mismatch negativity study

    PubMed Central

    Hanna, Jeff; Pulvermüller, Friedemann

    2014-01-01

    Complex words can be seen as combinations of elementary units, decomposable into stems and affixes according to morphological rules. Alternatively, complex forms may be stored as single lexical entries and accessed as whole forms. This study uses an event-related potential brain response capable of indexing both whole-form retrieval and combinatorial processing, the Mismatch Negativity (MMN), to investigate early brain activity elicited by morphologically complex derived words in German. We presented complex words consisting of stems “sicher” (secure), or “sauber” (clean) combined with abstract nominalizing derivational affixes -heit or -keit, to form either congruent derived words: “Sicherheit” (security) and “Sauberkeit” (cleanliness), or incongruent derived pseudowords: *“Sicherkeit”, and *“Sauberheit”. Using this orthogonal design, it was possible to record brain responses for -heit and -keit in both congruent and incongruent contexts, therefore balancing acoustic variance. Previous research has shown that incongruent combinations of symbols elicit a stronger MMN than congruent combinations, but that single words or constructions stored as whole forms elicit a stronger MMN than pseudowords or non-existent constructions. We found that congruent derived words elicited a stronger MMN than incongruent derived words, beginning about 150 ms after perception of the critical morpheme. This pattern of results is consistent with whole-form storage of morphologically complex derived words as lexical units, or mini-constructions. Using distributed source localization methods, the MMN enhancement for well-formed derivationally complex words appeared to be most prominent in the left inferior anterior-temporal, bilateral superior parietal and bilateral post-central, supra-marginal areas. In addition, neurophysiological results reflected the frequency of derived forms, thus providing further converging evidence for whole form storage and against a

  4. Quantification of acidic compounds in complex biomass-derived streams

    DOE PAGES

    Karp, Eric M.; Nimlos, Claire T.; Deutch, Steve; ...

    2016-05-10

    Biomass-derived streams that contain acidic compounds from the degradation of lignin and polysaccharides (e.g. black liquor, pyrolysis oil, pyrolytic lignin, etc.) are chemically complex solutions prone to instability and degradation during analysis, making quantification of compounds within them challenging. Here we present a robust analytical method to quantify acidic compounds in complex biomass-derived mixtures using ion exchange, sample reconstitution in pyridine and derivatization with BSTFA. The procedure is based on an earlier method originally reported for kraft black liquors and, in this work, is applied to identify and quantify a large slate of acidic compounds in corn stover derived alkalinemore » pretreatment liquor (APL) as a function of pretreatment severity. Analysis of the samples is conducted with GCxGC-TOFMS to achieve good resolution of the components within the complex mixture. The results reveal the dominant low molecular weight components and their concentrations as a function of pretreatment severity. Application of this method is also demonstrated in the context of lignin conversion technologies by applying it to track the microbial conversion of an APL substrate. Here as well excellent results are achieved, and the appearance and disappearance of compounds is observed in agreement with the known metabolic pathways of two bacteria, indicating the sample integrity was maintained throughout analysis. Finally, it is shown that this method applies more generally to lignin-rich materials by demonstrating its usefulness in analysis of pyrolysis oil and pyrolytic lignin.« less

  5. Antimicrobial and mutagenic activity of some carbono- and thiocarbonohydrazone ligands and their copper(II), iron(II) and zinc(II) complexes.

    PubMed

    Bacchi, A; Carcelli, M; Pelagatti, P; Pelizzi, C; Pelizzi, G; Zani, F

    1999-06-15

    Several mono- and bis- carbono- and thiocarbonohydrazone ligands have been synthesised and characterised; the X-ray diffraction analysis of bis(phenyl 2-pyridyl ketone) thiocarbonohydrazone is reported. The coordinating properties of the ligands have been studied towards Cu(II), Fe(II), and Zn(II) salts. The ligands and the metal complexes were tested in vitro against Gram positive and Gram negative bacteria, yeasts and moulds. In general, the bisthiocarbonohydrazones possess the best antimicrobial properties and Gram positive bacteria are the most sensitive microorganisms. Bis(ethyl 2-pyridyl ketone) thiocarbonohydrazone, bis(butyl 2-pyridyl ketone)thiocarbonohydrazone and Cu(H2nft)Cl2 (H2nft, bis(5-nitrofuraldehyde)thiocarbonohydrazone) reveal a strong activity with minimum inhibitory concentrations of 0.7 microgram ml-1 against Bacillus subtilis and of 3 micrograms ml-1 against Staphylococcus aureus. Cu(II) complexes are more effective than Fe(II) and Zn(II) ones. All bisthiocarbono- and carbonohydrazones are devoid of mutagenic properties, with the exception of the compounds derived from 5-nitrofuraldehyde. On the contrary a weak mutagenicity, that disappears in the copper complexes, is exhibited by monosubstituted thiocarbonohydrazones.

  6. Comparative Investigation of Peripheral and Nonperipheral Zinc Phthalocyanine-Based Polycarbazoles in Terms of Optical, Electrical, and Sensing Properties.

    PubMed

    Soganci, Tugba; Baygu, Yasemin; Kabay, Nilgün; Gök, Yaşar; Ak, Metin

    2018-06-15

    In this study, nonperipherally alkyl-linked carbazole conjugated novel zinc(II) phthalocyanine was synthesized by cyclotetramerization reaction of 6-(9 H-carbazol-9-yl)hexane-1-thiol and 3,6-bis(tosyloxy) phthalonitrile in a one-step reaction. Optical, electrical, and sensing properties of this super structured polycarbazole obtained by electropolymerization are compared with peripherally alkyl-linked polycarbazole-based zinc(II) phthalocyanine. It has been found that the attachment of alkyl-linked carbazoles to the phthalocyanine molecule in either peripheral or nonperipheral positions has a great effect on the optical and electrical properties and sensing ability of the resulting polycarbazole derivatives. P(n-ZnPc) has the highest electrochromic contrast (70.5%) among the derivatives of zinc(II) phthalocyanines in the literature. In addition to these, the sensor platform has been successfully established, and analytical optimizations have been carried out. When the sensors prepared with zinc(II) phthalocyanine are examined, it was specified that the n-ZnPc- co-TP/GOx was ranked first in the literature with high sensor response and stability. As a result, by changing of the peripheral and nonperipheral position of phthalocyanines, their physical properties can be tuned to meet the requirements of desired technological application.

  7. Zinc(II) and lead(II) metal-organic networks driven by a multifunctional pyridine-carboxylate building block: Hydrothermal synthesis, structural and topological features, and luminescence properties

    NASA Astrophysics Data System (ADS)

    Yang, Ling; Li, Yu; You, Ao; Jiang, Juan; Zou, Xun-Zhong; Chen, Jin-Wei; Gu, Jin-Zhong; Kirillov, Alexander M.

    2016-09-01

    4-(5-Carboxypyridin-2-yl)isophthalic acid (H3L) was applied as a flexible, multifunctional N,O-building block for the hydrothermal self-assembly synthesis of two novel coordination compounds, namely 2D [Zn(μ3-HL)(H2O)]n·nH2O (1) and 3D [Pb2(μ5-HL)(μ6-HL)]n (2) coordination polymers (CPs). These compounds were obtained in aqueous medium from a mixture containing zinc(II) or lead(II) nitrate, H3L, and sodium hydroxide. The products were isolated as stable crystalline solids and were characterized by IR spectroscopy, elemental, thermogravimetric (TGA), powder (PXRD) and single-crystal X-ray diffraction analyses. Compound 1 possesses a 2D metal-organic layer with the fes topology, which is further extended into a 3D supramolecular framework via hydrogen bonds. In contrast, compound 2 features a very complex network structure, which was topologically classified as a binodal 5,6-connected net with the unique topology defined by the point symbol of (47.63)(49.66). Compounds 1 and 2 disclose an intense blue or green luminescent emission at room temperature.

  8. 1,3,4-Thiadiazole-based diamides: Synthesis and complexation properties

    NASA Astrophysics Data System (ADS)

    Łukasik, Natalia; Luboch, Elżbieta; Chojnacki, Jarosław; Wagner-Wysiecka, Ewa

    2017-10-01

    Aromatic diamides, derivative of 2,6-pyridinedicarboxylic acid and isophthalic acid, bearing 1,3,4-thiadiazole residue were prepared with satisfactory yields in conventional procedures and microwave stimulated reactions. X-ray structure of N,N‧-bis(1,3,4-thiadiazol-2-yl)-2,6-pyridinedicarboxamide (2) DMSO solvate (2·DMSO) was described. Selective zinc(II), lanthanum(III), terbium(III) and L-tyrosine recognition was found for N,N‧-bis(1,3,4-thiadiazol-2-yl)-2,6-pyridinedicarboxamide in DMSO and its mixture with water. The IDA (Indicator Displacement Assay) system for metal cations sensing was proposed. The binding properties of 2 were compared with newly synthesized N,N‧-bis(1,3,4-thiadiazol-2-yl)-1,3-benzenedicarboxamide 1.

  9. Antibacterial and antifungal metal based triazole Schiff bases.

    PubMed

    Chohan, Zahid H; Hanif, Muhammad

    2013-10-01

    A new series of four biologically active triazole derived Schiff base ligands (L(1)-L(4)) and their cobalt(II), nickel(II), copper(II) and zinc(II) complexes (1-16) have been synthesized and characterized. The ligands were prepared by the condensation reaction of 3-amino-5-methylthio-1H-1,2,4-triazole with chloro-, bromo- and nitro-substituted 2-hydroxybenzaldehyde in an equimolar ratio. The antibacterial and antifungal bioactivity data showed the metal(II) complexes to be more potent antibacterial and antifungal than the parent Schiff bases against one or more bacterial and fungal species.

  10. Antibacterial, antibiofilm and antioxidant screening of copper(II)-complexes with some S-alkyl derivatives of thiosalicylic acid. Crystal structure of the binuclear copper(II)-complex with S-propyl derivative of thiosalicylic acid

    NASA Astrophysics Data System (ADS)

    Bukonjić, Andriana M.; Tomović, Dušan Lj.; Nikolić, Miloš V.; Mijajlović, Marina Ž.; Jevtić, Verica V.; Ratković, Zoran R.; Novaković, Slađana B.; Bogdanović, Goran A.; Radojević, Ivana D.; Maksimović, Jovana Z.; Vasić, Sava M.; Čomić, Ljiljana R.; Trifunović, Srećko R.; Radić, Gordana P.

    2017-01-01

    The spectroscopically predicted structure of the obtained copper(II)-complex with S-propyl derivative of thiosalicylic acid was confirmed by X-ray structural study. The binuclear copper(II)-complex with S-propyl derivative of thiosalicylic acid crystallized in two polymorphic forms with main structural difference in the orientation of phenyl rings relative to corresponding carboxylate groups. The antibacterial activity was tested determining the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) by using microdilution method. The influence on bacterial biofilm formation was determined by tissue culture plate method. In general, the copper(II)-complexes manifested a selective and moderate activity. The most sensitive bacteria to the effects of Cu(II)-complexes was a clinical isolate of Pseudomonas aeruginosa. For this bacteria MIC and biofilm inhibitory concentration (BIC) values for all tested complexes were in the range or better than the positive control, doxycycline. Also, for the established biofilm of clinical isolate Staphylococcus aureus, BIC values for the copper(II)-complex with S-ethyl derivative of thiosalicylic acid,[Cu2(S-et-thiosal)4(H2O)2] (C3) and copper(II)-complex with S-butyl derivative of thiosalicylic acid, [Cu2(S-bu-thiosal)4(H2O)2] (C5) were in range or better than the positive control. All the complexes acted better against Gram-positive bacteria (Staphylococcus aureus and Staphylococcus aureus ATCC 25923) than Gram-negative bacteria (Proteus mirabilis ATCC 12453, Pseudomonas aeruginosa, and P. aeruginosa ATCC 27855). The complexes showed weak antioxidative properties tested by two methods (1,1-diphenyl-2-picrylhydrazyl (DPPH) and reducing power assay).

  11. Chemical and biosynthetic studies of chlorophylls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huster, M.S.

    1988-01-01

    Chlorophyll occurrence, structure, biosynthesis, and degradation are discussed. Degradation and ring cleavage of heme is also discussed. The author examines the formation of dihydrobiliverdins by alkaline hydrolysis of zinc(II) meso-trifluoroacetoxypheophoribides, as a possible model for chlorophyll catabolism. {sup 18}O{sub 2}-labelling experiments show that the dihydrobiliverdin terminal lactam oxygens are derived from two different dioxygen molecules, also analogous to the Two Oxygen Molecular mechanism observed in heme degradation. The initially obtained dihydrobiliverdin readily undergoes an isomeric structural transformation, which is proposed as a model for the P{sub R}-P{sub FR} interconversion of the light sensor pigment phytochrome. The generality of the ring-openingmore » reaction is demonstrated with various chlorophyll-derived zinc(II) trifluoroacetoxychlorins, and side reactions of the isocyclic ring are discussed. The synthesis and properties of a chlorophyll-derived meso-oxochlorin are described. Facile one-electron oxidation, and its inhibition by protonation, is demonstrated by NMR, ESR, and cyclic voltammetry studies. Cyclic voltammetry is also used to measure redox potentials of a range of pheophorbide and meso-trifluoroacetoxypheophorbide metal complexes, including an oxochlorin nickel(II) complex. The results are presented of biosynthetic feeding studies of green sulfur bacteria with {sup 13}C- and {sup 14}C-labelled glutamate, glycine, and methionine. This study examines an unusual oxidation of a bacteriomethylpheophorbide 5-ethyl substituent, and describes attempts to elucidate the mechanism by {sup 18}O-labelling studies. Attempts to similarily derivatize a pyropheophorbide 5-methyl substituent are discussed.« less

  12. Synthesis, characterization and solid-state properties of [Zn(Hdmmthiol)2]\\cdot2H2O complex

    NASA Astrophysics Data System (ADS)

    Dagdelen, Fethi; Aydogdu, Yildirim; Dey, Kamalendu; Biswas, Susobhan

    2016-05-01

    The zinc(II) complex with tridentate thiohydrazone ligand have been prepared by metal template reaction. The metal template reaction was used to prepare the zinc (II) complex with tridentate thiohydrazone ligand. The reaction of diacetylmonoxime and, morpholine N-thiohydrazidewith Zn(OAc)2 \\cdot2H2O under reflux yielded the formation of the [Zn(Hdmmthiol )2]\\cdot2H2O complex. The complex was characterized by a combination of protocols including elemental analysis, UV+vis, FT-IR, TG and PXRD. The temperature dependence of the electrical conductivity and the optical property of the [Zn(Hdmmthiol )2] \\cdot2H2O complex is called H2dammthiol was studied. Powder X-ray diffraction (PXRD) method was used to investigate the crystal structure of the sample. The zinc complex was shown to be a member of the triclinic system. The zinc complex was determined to have n-type conductivity as demonstrated in the hot probe measurements. The complex was determined to display direct optical transition with band gaps of 2.52eV as determined by the optical absorption analysis.

  13. Enhanced brain penetration of hexamethonium in complexes with derivatives of fullerene C60.

    PubMed

    Piotrovskiy, L B; Litasova, E V; Dumpis, M A; Nikolaev, D N; Yakovleva, E E; Dravolina, O A; Bespalov, A Yu

    2016-05-01

    The present report describes development of hexamethonium complexes based on fullerene C60. Hexamethonium has a limited penetration into CNS and therefore can antagonize central effects of nicotine only when given at high doses. In the present studies conducted in laboratory rodents, intraperitoneal administration of hexamethonium-fullerene complexes blocked effects of nicotine (convulsions and locomotor stimulation). When compared to equimolar doses of hexamethonium, complexes of hexamethonium with derivatives of fullerene C60 were 40 times more potent indicating an enhanced ability to interact with central nicotine receptors. Thus, fullerene C60 derivatives should be explored further as potential carrier systems for polar drug delivery into CNS.

  14. Complex-valued derivative propagation method with approximate Bohmian trajectories: Application to electronic nonadiabatic dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Chou, Chia-Chun

    2018-05-01

    The coupled complex quantum Hamilton-Jacobi equations for electronic nonadiabatic transitions are approximately solved by propagating individual quantum trajectories in real space. Equations of motion are derived through use of the derivative propagation method for the complex actions and their spatial derivatives for wave packets moving on each of the coupled electronic potential surfaces. These equations for two surfaces are converted into the moving frame with the same grid point velocities. Excellent wave functions can be obtained by making use of the superposition principle even when nodes develop in wave packet scattering.

  15. Structure and reactivity of boron-ate complexes derived from primary and secondary boronic esters.

    PubMed

    Feeney, Kathryn; Berionni, Guillaume; Mayr, Herbert; Aggarwal, Varinder K

    2015-06-05

    Boron-ate complexes derived from primary and secondary boronic esters and aryllithiums have been isolated, and the kinetics of their reactions with carbenium ions studied. The second-order rate constants have been used to derive nucleophilicity parameters for the boron-ate complexes, revealing that nucleophilicity increased with (i) electron-donating aromatics on boron, (ii) neopentyl glycol over pinacol boronic esters, and (iii) 12-crown-4 ether.

  16. Preparation and In Vitro Photodynamic Activity of Glucosylated Zinc(II) Phthalocyanines as Underlying Targeting Photosensitizers.

    PubMed

    Liu, Jian-Yong; Wang, Chen; Zhu, Chun-Hui; Zhang, Zhi-Hong; Xue, Jin-Ping

    2017-05-19

    Two novel glucosylated zinc(ІІ) phthalocyanines 7a-7b, as well as the acetyl-protected counterparts 6a-6b, have been synthesized by the Cu(I)-catalyzed 1,3-dipolar cycloaddition between the propargylated phthalocyanine and azide-substituted glucoses. All of these phthalocyanines were characterized with various spectroscopic methods and studied for their photo-physical, photo-chemical, and photo-biological properties. With glucose as the targeting unit, phthalocyanines 7a-7b exhibit a specific affinity to MCF-7 breast cancer cells over human embryonic lung fibroblast (HELF) cells, showing higher cellular uptake. Upon illumination, both photosensitizers show high cytotoxicity with IC 50 as low as 0.032 µM toward MCF-7 cells, which are attributed to their high cellular uptake and low aggregation tendency in the biological media, promoting the generation of intracellular reactive oxygen species (ROS). Confocal laser fluorescence microscopic studies have also revealed that they have high and selective affinities to the lysosomes, but not the mitochondria, of MCF-7 cells. The results show that these two glucosylated zinc(II) phthalocyanines are potential anticancer agents for targeting photodynamic therapy.

  17. Structural characterization and antioxidant properties of Cu(II) and Ni(II) complexes derived from dicyandiamide

    NASA Astrophysics Data System (ADS)

    Kertmen, Seda Nur; Gonul, Ilyas; Kose, Muhammet

    2018-01-01

    New Cu(II) and Ni(II) complexes derived from dicyandiamide were synthesized and characterised by spectroscopic and analytical methods. Molecular structures of the complexes were determined by single crystal X-ray diffraction studies. In the complexes, the Cu(II) or Ni(II) ions are four-coordinate with a slight distorted square planar geometry. The ligands (L-nPen and L-iPen) derived from dicyandiamide formed via nucleophilic addition of alcohol solvent molecule in the presence Cu(II) or Ni(II) ions. Complexes were stabilised by intricate array of hydrogen bonding interactions. Antioxidant activity of the complexes was evaluated by DPPH radical scavenging and CUPRAC methods. The complexes exhibit antioxidant activity, however, their activities were much lower than standard antioxidants (Vitamin C and trolox).

  18. Spectroscopic study of intermolecular complexes between FAD and some β-carboline derivatives

    NASA Astrophysics Data System (ADS)

    Codoñer, Armando; Monzó, Isidro S.; Tomás, Francisco; Valero, Rosa

    The formation of molecular complexes between flavine adenine dinucleotide (FAD) and some β-carboline derivatives [antidepressant drugs that have a pronounced inhibition of monoamine oxidase (MAO)] has been studied by using electronic absorption and fluorescence spectroscopic methods. Thermodynamic parameters have been determined from the values of association constants for the molecular complexes at various temperatures. The influence of substituents in the β-carboline molecule on the stability of the complexes formed was also investigated.

  19. Design of Chitosan and Its Water Soluble Derivatives-Based Drug Carriers with Polyelectrolyte Complexes

    PubMed Central

    Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing

    2014-01-01

    Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail. PMID:25532565

  20. Design of chitosan and its water soluble derivatives-based drug carriers with polyelectrolyte complexes.

    PubMed

    Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing

    2014-12-19

    Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail.

  1. Derivative Free Optimization of Complex Systems with the Use of Statistical Machine Learning Models

    DTIC Science & Technology

    2015-09-12

    AFRL-AFOSR-VA-TR-2015-0278 DERIVATIVE FREE OPTIMIZATION OF COMPLEX SYSTEMS WITH THE USE OF STATISTICAL MACHINE LEARNING MODELS Katya Scheinberg...COMPLEX SYSTEMS WITH THE USE OF STATISTICAL MACHINE LEARNING MODELS 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-11-1-0239 5c.  PROGRAM ELEMENT...developed, which has been the focus of our research. 15. SUBJECT TERMS optimization, Derivative-Free Optimization, Statistical Machine Learning 16. SECURITY

  2. A Luminescent Zinc(II) Metal-Organic Framework (MOF) with Conjugated π-Electron Ligand for High Iodine Capture and Nitro-Explosive Detection.

    PubMed

    Yao, Ru-Xin; Cui, Xin; Jia, Xiao-Xia; Zhang, Fu-Qiang; Zhang, Xian-Ming

    2016-09-19

    A porous luminescent zinc(II) metal-organic framework (MOF) with a NbO net [Zn2(tptc)(apy)2-x(H2O)x]·H2O (1) (where x ≈ 1, apy = aminopyridine, H4tptc = terphenyl-3,3″,5,5″-tetracarboxylic acid), constructed using paddlewheel [Zn2(COO)4] clusters and π-electron-rich terphenyl-tetracarboxylic acid, has been solvothermally synthesized and characterized. Interestingly, the material displays efficient, reversible adsorption of radioactive I2 in vapor and in solution (up to 216 wt %). The strong affinity for I2 is mainly due to it having large porosity, a conjugated π-electron aromatic system, halogen bonds, and electron-donating aminos. Furthermore, luminescent study indicated that 1 exhibits high sensitivity to electron-deficient nitrobenzene explosives via fluorescence quenching.

  3. Clinical Variants of New Delhi Metallo-β-Lactamase Are Evolving To Overcome Zinc Scarcity.

    PubMed

    Stewart, Alesha C; Bethel, Christopher R; VanPelt, Jamie; Bergstrom, Alex; Cheng, Zishuo; Miller, Callie G; Williams, Cameron; Poth, Robert; Morris, Matthew; Lahey, Olivia; Nix, Jay C; Tierney, David L; Page, Richard C; Crowder, Michael W; Bonomo, Robert A; Fast, Walter

    2017-12-08

    Use and misuse of antibiotics have driven the evolution of serine β-lactamases to better recognize new generations of β-lactam drugs, but the selective pressures driving evolution of metallo-β-lactamases are less clear. Here, we present evidence that New Delhi metallo-β-lactamase (NDM) is evolving to overcome the selective pressure of zinc(II) scarcity. Studies of NDM-1, NDM-4 (M154L), and NDM-12 (M154L, G222D) demonstrate that the point mutant M154L, contained in 50% of clinical NDM variants, selectively enhances resistance to the penam ampicillin at low zinc(II) concentrations relevant to infection sites. Each of the clinical variants is shown to be progressively more thermostable and to bind zinc(II) more tightly than NDM-1, but a selective enhancement of penam turnover at low zinc(II) concentrations indicates that most of the improvement derives from catalysis rather than stability. X-ray crystallography of NDM-4 and NDM-12, as well as bioinorganic spectroscopy of dizinc(II), zinc(II)/cobalt(II), and dicobalt(II) metalloforms probe the mechanism of enhanced resistance and reveal perturbations of the dinuclear metal cluster that underlie improved catalysis. These studies support the proposal that zinc(II) scarcity, rather than changes in antibiotic structure, is driving the evolution of new NDM variants in clinical settings.

  4. The Role of Derivative Suffix Productivity in the Visual Word Recognition of Complex Words

    ERIC Educational Resources Information Center

    Lázaro, Miguel; Sainz, Javier; Illera, Víctor

    2015-01-01

    In this article we present two lexical decision experiments that examine the role of base frequency and of derivative suffix productivity in visual recognition of Spanish words. In the first experiment we find that complex words with productive derivative suffixes result in lower response times than those with unproductive derivative suffixes.…

  5. Co-complexes Derived from Alkene Insertion to Alkyne-dicobaltpentacarbonyl complexes: Insight into the Regioselectivity of Pauson-Khand Reactions of Cyclopropenes

    PubMed Central

    Pallerla, Mahesh K.; Yap, Glenn P. A.; Fox, Joseph M.

    2009-01-01

    Described are the X-ray crystallographic and spectral properties of Co-complexes that were isolated from two Pauson-Khand reactions of chiral cyclopropenes. These are the first examples of isolated Co-complexes derived from the putative alkene-insertion intermediates of Pauson-Khand reactions. The binuclear Co-complexes are coordinated to μ-bonded, five-carbon “flyover” carbene ligands. It is proposed that the complexes result from cyclopropane fragmentation subsequent to alkene insertion. The observation of these metal complexes provides a rationale for the origin of regioselectivity in Pauson-Khand reactions of cyclopropenes. PMID:18637694

  6. Co-complexes derived from alkene insertion to alkyne-dicobaltpentacarbonyl complexes: insight into the regioselectivity of pauson-khand reactions of cyclopropenes.

    PubMed

    Pallerla, Mahesh K; Yap, Glenn P A; Fox, Joseph M

    2008-08-15

    Described are the X-ray crystallographic and spectral properties of Co-complexes that were isolated from two Pauson-Khand reactions of chiral cyclopropenes. These are the first examples of isolated Co-complexes derived from the putative alkene-insertion intermediates of Pauson-Khand reactions. The binuclear Co-complexes are coordinated to mu-bonded, five-carbon "flyover" carbene ligands. It is proposed that the complexes result from cyclopropane fragmentation subsequent to alkene insertion. The observation of these metal complexes provides a rationale for the origin of regioselectivity in Pauson-Khand reactions of cyclopropenes.

  7. Complexation of triptycene-derived macrotricyclic polyether with paraquat derivatives, diquat, and a 2,7-diazapyrenium salt: guest-induced conformational changes of the host.

    PubMed

    Han, Ying; Cao, Jing; Li, Peng-Fei; Zong, Qian-Shou; Zhao, Jian-Min; Guo, Jia-Bin; Xiang, Jun-Feng; Chen, Chuan-Feng

    2013-04-05

    Complexation between a triptycene-derived macrotricyclic polyether containing two dibenzo-[30]-crown-10 cavities and different functionalized paraquat derivatives, diquat, and a 2,7-diazapyrenium salt in both solution and solid state was investigated in detail. It was found that depending on the guests with different terminal functional groups and structures, the macrotricyclic polyether could form 1:1 or 1:2 complexes with the guests in different complexation modes in solution and also in the solid state. Especially, the conformation of the macrotricyclic polyether was efficiently adjusted by the encapsulated guests, which was to some extent similar to substrate-induced fit of enzymes. Moreover, the binding and releasing of the guests in the complexes could be controlled by potassium ions.

  8. Challenges and complexity of functionality evaluation of flavan-3-ol derivatives.

    PubMed

    Saito, Akiko

    2017-06-01

    Flavan-3-ol derivatives are common plant-derived bioactive compounds. In particular, (-)-epigallocatechin-3-O-gallate shows various moderate biological activities without severe toxicity, and its health-promoting effects have been widely studied because it is a main ingredient in green tea and is commercially available at low cost. Although various biologically active flavan-3-ol derivatives are present as minor constituents in plants as well as in green tea, their biological activities have yet to be revealed, mainly due to their relative unavailability. Here, I outline the major factors contributing to the complexity of functionality studies of flavan-3-ol derivatives, including proanthocyanidins and oligomeric flavan-3-ols. I emphasize the importance of conducting structure-activity relationship studies using synthesized flavan-3-ol derivatives that are difficult to obtain from plant extracts in pure form to overcome this challenge. Further discovery of these minor constituents showing strong biological activities is expected to produce useful information for the development of functional health foods.

  9. An Octanuclear Metallosupramolecular Cage Designed To Exhibit Spin-Crossover Behavior.

    PubMed

    Struch, Niklas; Bannwarth, Christoph; Ronson, Tanya K; Lorenz, Yvonne; Mienert, Bernd; Wagner, Norbert; Engeser, Marianne; Bill, Eckhard; Puttreddy, Rakesh; Rissanen, Kari; Beck, Johannes; Grimme, Stefan; Nitschke, Jonathan R; Lützen, Arne

    2017-04-24

    By employing the subcomponent self-assembly approach utilizing 5,10,15,20-tetrakis(4-aminophenyl)porphyrin or its zinc(II) complex, 1H-4-imidazolecarbaldehyde, and either zinc(II) or iron(II) salts, we were able to prepare O-symmetric cages having a confined volume of ca. 1300 Å 3 . The use of iron(II) salts yielded coordination cages in the high-spin state at room temperature, manifesting spin-crossover in solution at low temperatures, whereas corresponding zinc(II) salts led to the corresponding diamagnetic analogues. The new cages were characterized by synchrotron X-ray crystallography, high-resolution mass spectrometry, and NMR, Mössbauer, IR, and UV/Vis spectroscopy. The cage structures and UV/Vis spectra were independently confirmed by state-of-the-art DFT calculations. A remarkably high-spin-stabilizing effect through encapsulation of C 70 was observed. The spin-transition temperature T 1/2 is lowered by 20 K in the host-guest complex. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Dual Nuclear/Fluorescence Imaging Potantial of Zinc(II) Phthalocyanine in MIA PaCa-2 Cell Line.

    PubMed

    Lambrecht, Fatma Yurt; Ince, Mine; Er, Ozge; Ocakoglu, Kasim; Sarı, Fatma Aslıhan; Kayabasi, Cagla; Gunduz, Cumhur

    2016-01-01

    Pancreatic cancer is very common and difficult to diagnose in early stage. Imaging systems for diagnosing cancer have many disadvantages. However, combining different imaging modalities offers synergistic advantages. Optical imaging is the most multidirectional and widely used imaging modality in both clinical practice and research. In present study, Zinc(II) phthalocyanine [Zn(II)Pc] was synthesized, labeled with iodine- 131 and in vitro study was carried out. The intracellular uptake studies of radiolabeled Zn(II)Pc were performed in WI-38 [ATCC CCL-75™, tissue: human fibroblast lung] and MIA PaCa-2 [ATCC CRL-1420™, tissue: human epithelial pancreas carcinoma] cell lines. The intracellular uptake efficiency of radiolabeled Zn(II)Pc in MIA PaCa-2 cells was determined two times higher than WI-38 cells. Also, fluorescence imaging (FI) efficiency of synthesized Zn(II)Pc was investigated in MIA PaCa-2 cells and significant uptake was observed. Zn(II)Pc might be used as a new agent for dual fluorescence/nuclear imaging for pancreatic cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Redox and complexation interactions of neptunium(V) with quinonoid-enriched humic derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shcherbina, Natalia S.; Perminova, Irina V.; Kalmykov, Stephan N.

    2007-01-01

    Actinides in their higher valence states (e.g., MO{sub 2}{sup +} and MO{sub 2}{sup 2+}, where M can be Np, Pu, etc) possess a higher potential for migration and in turn pose a substantial environmental threat. To minimize this potential for migration, reducing them to lower oxidation states (e.g., their tetravalent state) can be an attractive and efficient remedial process. These lower oxidation states are often much less soluble in natural aqueous media and are, therefore, less mobile in the environment. The research presented here focuses on assessing the performance of quinonoid-enriched humic derivatives with regards to complexing and/or reducing Np(V)more » present in solution. These 'designer' humics are essentially derived reducing agents that can serve as reactive components of a novel humic-based remediation technology. The derivatives are obtained by incorporating different quinonoid-moieties into leonardite humic acids. Five quinonoid-derivatives are tested in this work and all five prove more effective as reducing agents for selected actinides than the parent leonardite humic acid, and the hydroquinone derivatives are better than the catechol derivatives. The reduction kinetics and the Np(V) species formed with the different derivatives are studied via a batch mode using near-infrared (NIR)-spectroscopy. Np(V) reduction by the humic derivatives under anoxic conditions at 293 K and at pH 4.7 obeys first-order kinetics. Rate constants range from 1.70 x 10{sup -6} (parent humic acid) to 1.06 x 10{sup -5} sec{sup -1} (derivative with maximum hydroquinone content). Stability constants for Np(V)-humic complexes calculated from spectroscopic data produce corresponding Log{beta} values of 2.3 for parent humic acid and values ranging from 2.5 to 3.2 at pH 4.7 and from 3.3 to 3.7 at pH 7.4 for humic derivatives. Maximum constants are observed for hydroquinone-enriched derivatives. It is concluded that among the humic derivatives tested, the hydroquinone

  12. A photofunctional bottom-up bis(dipyrrinato)zinc(II) complex nanosheet

    PubMed Central

    Sakamoto, Ryota; Hoshiko, Ken; Liu, Qian; Yagi, Toshiki; Nagayama, Tatsuhiro; Kusaka, Shinpei; Tsuchiya, Mizuho; Kitagawa, Yasutaka; Wong, Wai-Yeung; Nishihara, Hiroshi

    2015-01-01

    Two-dimensional polymeric nanosheets have recently gained much attention, particularly top-down nanosheets such as graphene and metal chalcogenides originating from bulk-layered mother materials. Although molecule-based bottom-up nanosheets manufactured directly from molecular components can exhibit greater structural diversity than top-down nanosheets, the bottom-up nanosheets reported thus far lack useful functionalities. Here we show the design and synthesis of a bottom-up nanosheet featuring a photoactive bis(dipyrrinato)zinc(II) complex motif. A liquid/liquid interfacial synthesis between a three-way dipyrrin ligand and zinc(II) ions results in a multi-layer nanosheet, whereas an air/liquid interfacial reaction produces a single-layer or few-layer nanosheet with domain sizes of >10 μm on one side. The bis(dipyrrinato)zinc(II) metal complex nanosheet is easy to deposit on various substrates using the Langmuir–Schäfer process. The nanosheet deposited on a transparent SnO2 electrode functions as a photoanode in a photoelectric conversion system, and is thus the first photofunctional bottom-up nanosheet. PMID:25831973

  13. Complexation of molecular clips containing fragments of diphenylglycoluril and benzocrown ethers with paraquat and its derivatives

    PubMed Central

    Kikot', Leonid S; Kulygina, Catherine Yu; Lyapunov, Alexander Yu; Shishkina, Svetlana V; Zubatyuk, Roman I; Bogaschenko, Tatiana Yu

    2017-01-01

    The complexation of molecular clips containing fragments of diphenylglycoluril and benzocrown ethers with paraquat and its derivatives has been studied both in solution and in the solid state. In this paper we studied the influence of the crown ether ring size and the nature of the substituents at the nitrogen atoms of the paraquat derivatives on the composition and stability of these complexes. PMID:29062427

  14. FISH analysis in the derivation of a 12, 15, 21 complex chromosomal rearrangement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, C.K.; Muscolino, D.; Baird, N.

    Cytogenetic analysis was performed for a couple referred for recurrent pregnancy loss. Routine GTG banded studies revealed a 46,XY karyotype for the husband, but in the woman, an apparently balanced complex rearrangement involving chromosomes 12, 15, and 21 was detected. The 46,XX,t(12;15)(q13.3;q23),t(12;21)(q21;q11.2) karyotype is the consequence of 2 translocation events resulting in 3 rearranged chromosomes: (1) a derivative 12 arising from the exchange of the short arms of 12 and 21; (2) a derivative chromosome 15 consisting of segments of the long arms of chromosomes 12 and 15; and (3) a complex derivative chromosome 21 which includes the short armmore » and centromere of 21, and portions of the long arms of both chromosomes 12 and 15. Because the 12;21 translocation occurred at the centromeric region on both chromosomes, it was not possible to cytogenetically differentiate the derivative chromosomes 12 and 21. To clarify this issue, fluorescence in situ hybridization (FISH) was performed utilizing a 13/21 alpha-satellite probe. The location of the FITC signal clearly indicated a chromosome 21 centromere present on the derivative containing portions of all three chromosomes. A family history of spontaneous fetal losses suggested the possibility of a familial translocation. However, the likelihood of transmission of such a complex set of translocations is low, leading to the hypothesis that only one of the translocations was inherited with the second a de novo event in this individual. Karyotype analysis of both parents revealed no cytogenetic anomalies. Therefore, the extremely unusual occurrence of two independent translocations involving 3 chromosomes arose de novo in this patient.« less

  15. The synthesis, lipophilicity and cytotoxic effects of new ruthenium(II) arene complexes with chromone derivatives.

    PubMed

    Pastuszko, Adam; Majchrzak, Kinga; Czyz, Malgorzata; Kupcewicz, Bogumiła; Budzisz, Elzbieta

    2016-06-01

    A series of arene ruthenium(II) complexes with the general formula [(η(6)-arene)Ru(L)X2] (where arene=p-cymene, benzene, hexamethylbenzene or mesitylene, L=aminoflavone or aminochromone derivatives and X=Cl, I) were synthesized and characterized by elemental analysis, MS, IR and (1)H NMR spectroscopy. The stability of the selected complexes was assessed by UV-Vis spectroscopy in 24-hour period. The lipophilicity of the synthesized complexes was determined by the shake-flask method, and their cytotoxicity evaluated in vitro on patient-derived melanoma populations. The most active complexes against melanoma cells contain 7-aminoflavone and 6-aminoflavone as a ligand. The relationship between the cytotoxicity of all the obtained compounds and their logP values was determined and briefly analyzed with two different patterns observed. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Hydrogenation of imines catalysed by ruthenium(II) complexes based on lutidine-derived CNC pincer ligands.

    PubMed

    Hernández-Juárez, Martín; Vaquero, Mónica; Álvarez, Eleuterio; Salazar, Verónica; Suárez, Andrés

    2013-01-14

    The preparation of new Ru(II) complexes incorporating fac-coordinated lutidine-derived CNC ligands is reported. These derivatives are selectively deprotonated by (t)BuOK at one of the methylene arms of the pincer, leading to catalytically active species in the hydrogenation of imines.

  17. Efficiently computing and deriving topological relation matrices between complex regions with broad boundaries

    NASA Astrophysics Data System (ADS)

    Du, Shihong; Guo, Luo; Wang, Qiao; Qin, Qimin

    The extended 9-intersection matrix is used to formalize topological relations between uncertain regions while it is designed to satisfy the requirements at a concept level, and to deal with the complex regions with broad boundaries (CBBRs) as a whole without considering their hierarchical structures. In contrast to simple regions with broad boundaries, CBBRs have complex hierarchical structures. Therefore, it is necessary to take into account the complex hierarchical structure and to represent the topological relations between all regions in CBBRs as a relation matrix, rather than using the extended 9-intersection matrix to determine topological relations. In this study, a tree model is first used to represent the intrinsic configuration of CBBRs hierarchically. Then, the reasoning tables are presented for deriving topological relations between child, parent and sibling regions from the relations between two given regions in CBBRs. Finally, based on the reasoning, efficient methods are proposed to compute and derive the topological relation matrix. The proposed methods can be incorporated into spatial databases to facilitate geometric-oriented applications.

  18. Inhibition of cyclin-dependent kinase CDK1 by oxindolimine ligands and corresponding copper and zinc complexes.

    PubMed

    Miguel, Rodrigo Bernardi; Petersen, Philippe Alexandre Divina; Gonzales-Zubiate, Fernando A; Oliveira, Carla Columbano; Kumar, Naresh; do Nascimento, Rafael Rodrigues; Petrilli, Helena Maria; da Costa Ferreira, Ana Maria

    2015-10-01

    Oxindolimine-copper(II) and zinc(II) complexes that previously have shown to induce apoptosis, with DNA and mitochondria as main targets, exhibit here significant inhibition of kinase CDK1/cyclin B protein. Copper species are more active than the corresponding zinc, and the free ligand shows to be less active, indicating a major influence of coordination in the process, and a further modulation by the coordinated ligand. Molecular docking and classical molecular dynamics provide a better understanding of the effectiveness and kinase inhibition mechanism by these compounds, showing that the metal complex provides a stronger interaction than the free ligand with the ATP-binding site. The metal ion introduces charge in the oxindole species, giving it a more rigid conformation that then becomes more effective in its interactions with the protein active site. Analogous experiments resulted in no significant effect regarding phosphatase inhibition. These results can explain the cytotoxicity of these metal complexes towards different tumor cells, in addition to its capability of binding to DNA, and decreasing membrane potential of mitochondria.

  19. Zinc(II) complexes with heterocyclic ether, acid and amide. Crystal structure, spectral, thermal and antibacterial activity studies

    NASA Astrophysics Data System (ADS)

    Jabłońska-Wawrzycka, Agnieszka; Rogala, Patrycja; Czerwonka, Grzegorz; Hodorowicz, Maciej; Stadnicka, Katarzyna

    2016-02-01

    The reaction of zinc salts with heterocyclic ether (1-ethoxymethyl-2-methylimidazole (1-ExMe-2-MeIm)), acid (pyridine-2,3-dicarboxylic acid (2,3-pydcH2)) and amide (3,5-dimethylpyrazole-1-carboxamide (3,5-DMePzCONH2)) yielded three new zinc complexes formulated as [Zn(1-ExMe-2-MeIm)2Cl2] 1, fac-[Zn(H2O)6][Zn(2,3-pydcH)3]22 and [Zn(3,5-DMePz)2(NCO)2] 3. Complexes of 1 and 3 are four-coordinated with a tetrahedron as coordination polyhedron. However, compound 2 forms an octahedral cation-anion complex. The complex 3 was prepared by eliminating of the carboxamide group from the ligand and then the 3,5-dimethylpyrazole (3,5-DMePz) and isocyanates formed were employed as new ligands. The IR and X-ray studies have confirmed a bidentate fashion of coordination of the 2,3-pydcH and monodentate fashion of coordination of the 1-ExMe-2-MeIm and 3,5-DMePz to the Zn(II) ions. The crystal packing of Zn(II) complexes are stabilized by intermolecular classical hydrogen bonds of O-H⋯O and N-H⋯O types. The most interesting feature of the supramolecular architecture of complexes is the existence of C-H⋯O, C-H⋯Cl and C-H⋯π interactions and π⋯π stacking, which also contributes to structural stabilisation. The correlation between crystal structure and thermal stability of zinc complexes is observed. In all compounds the fragments of ligands donor-atom containing go in the last steps. Additionally, antimicrobial activities of compounds were carried out against certain Gram-positive and Gram-negative bacteria and counts of CFU (colony forming units) were also determined. The achieved results confirmed a significant antibacterial activity of some tested zinc complexes. On the basis of the Δ log CFU values the antibacterial activity of zinc complexes follows the order: 3 > 2 > 1. Influence a number of N-donor atoms in zinc environment on antibacterial activity is also observed.

  20. Synthesis, characterization and biological studies of copper(II) complexes with 2-aminobenzimidazole derivatives

    NASA Astrophysics Data System (ADS)

    Joseph, J.; Suman, A.; Nagashri, K.; Joseyphus, R. Selwin; Balakrishnan, Nisha

    2017-06-01

    Novel series of four copper(II) complexes with 2-aminobenzimidazole derivatives (obtained from the Knoevenagel condensate of acetylacetone (obtained from acetylacetone and halogen substituted benzaldehydes) and 2-aminobenzimidazole) were synthesized. They were structurally characterized using elemental analysis, molar conductance, FAB mass, FT- IR, 1H &13C-NMR, UV-Vis., and EPR techniques. On the basis of analytical and spectral studies, the distorted square planar geometry was assigned for all the complexes. The antibacterial screening of the ligands and their copper complexes indicated that all the complexes showed higher anti microbial activities than the free ligands. Superoxide dismutase and antioxidant activities of the copper complexes have also been performed. In the electrochemical technique, the shift in ΔEp, E1/2 and Ipc values were explored for the interaction of the complexes with CT-DNA. During the electrolysis process, the present ligand system stabilizes unusual oxidation state of copper in the complexes. It is believed that the copper complexes with curcumin analogs may enhance chemotherapeutic behavior.

  1. Fine-tuning the nucleophilic reactivities of boron ate complexes derived from aryl and heteroaryl boronic esters.

    PubMed

    Berionni, Guillaume; Leonov, Artem I; Mayer, Peter; Ofial, Armin R; Mayr, Herbert

    2015-02-23

    Boron ate complexes derived from thienyl and furyl boronic esters and aryllithium compounds have been isolated and characterized by X-ray crystallography. Products and mechanisms of their reactions with carbenium and iminium ions have been analyzed. Kinetics of these reactions were monitored by UV/Vis spectroscopy, and the influence of the aryl substituents, the diol ligands (pinacol, ethylene glycol, neopentyl glycol, catechol), and the counterions on the nucleophilic reactivity of the boron ate complexes were examined. A Hammett correlation confirmed the polar nature of their reactions with benzhydrylium ions, and the correlation lg k(20 °C)=sN (E+N) was employed to determine the nucleophilicities of the boron ate complexes and to compare them with those of other borates and boronates. The neopentyl and ethylene glycol derivatives were found to be 10(4) times more reactive than the pinacol and catechol derivatives. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Characterization of complexes between phenethylamine enantiomers and β-cyclodextrin derivatives by capillary electrophoresis-Determination of binding constants and complex mobilities.

    PubMed

    Wahl, Joachim; Furuishi, Takayuki; Yonemochi, Etsuo; Meinel, Lorenz; Holzgrabe, Ulrike

    2017-04-01

    To optimize chiral separation conditions and to improve the knowledge of enantioseparation, it is important to know the binding constants K between analytes and cyclodextrins and the electrophoretic mobilities of the temporarily formed analyte-cyclodextrin-complexes. K values for complexes between eight phenethylamine enantiomers, namely ephedrine, pseudoephedrine, methylephedrine and norephedrine, and four different β-cyclodextrin derivatives were determined by affinity capillary electrophoresis. The binding constants were calculated from the electrophoretic mobility values of the phenethylamine enantiomers at increasing concentrations of cyclodextrins in running buffer. Three different linear plotting methods (x-reciprocal, y-reciprocal, double reciprocal) and nonlinear regression were used for the determination of binding constants with β-cyclodextrin, (2-hydroxypropyl)-β-cyclodextrin, methyl-β-cyclodextrin and 6-O-α-maltosyl-β-cyclodextrin. The cyclodextrin concentration in a 50 mM phosphate buffer pH 3.0 was varied from 0 to 12 mM. To investigate the influence of the binding constant values on the enantioseparation the observed electrophoretic selectivities were compared with the obtained K values and the calculated enantiomer-cyclodextrin-complex mobilities. The different electrophoretic mobilities of the temporarily formed complexes were crucial factors for the migration order and enantioseparation of ephedrine derivatives. To verify the apparent binding constants determined by capillary electrophoresis, a titration process using ephedrine enantiomers and β-cyclodextrin was carried out. Furthermore, the isothermal titration calorimetry measurements gave information about the thermal properties of the complexes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Synthesis, spectral, thermal and structural characterization of two complexes containing [N-(2-hydroxyethyl)-ethylenediamine] with carboxylate

    NASA Astrophysics Data System (ADS)

    Aycan, Tuǧba; Paşaoǧlu, Hümeyra

    2018-02-01

    Compounds based on the [Zn(hydet-en)2].(tpht).(H2O) (1) (tpht=dianion of terephthalic acid, hydet-en=N-(2-hydroxyethyl)ethylenediamine) has been synthesized which is characterized by single crystal X-ray determination, IR and thermal analysis. In 1, the Zinc(II) ion is six-coordinated that sandwiched by two hydet-en ligands which lies each hydeten ligand adopts a tripodal conformation and acts as tridentate ligand, carboxylate is uncoordinated. The coordination monomer is connected by C(13) chains and linear chains are connected by O-H...O H-bonds formed by DA:AD type 4 organization of aqua ligands and tpa2- ions resulting in R44(12 ) synthons to 3D structure. The FT-IR investigation of the complex were performed within the mid-IR region, mainly focusing on the characteristic vibrations of its free state and ligand behaviour in the case of complex formation. Thermal behaviours of 1 were followed using TG, DTA and DTG techniques.

  4. Experimental and theoretical study on free 5-nitroquinoline, 5-nitroisoquinoline, and their zinc(II) halide complexes

    NASA Astrophysics Data System (ADS)

    Yurdakul, Şenay; Badoğlu, Serdar; Güleşci, Yeliz

    2015-02-01

    In this study where the interpretations of the experimental IR and Raman spectra recorded at room temperature for the ligands 5-nitroquinoline (5NQ) and 5-nitroisoquinoline (5NIQ) and also for their Zn(II) halide (halogen: chlorine, bromine, iodine) complexes were first reported, the assignments of the observed fundamental bands were achieved in the light of the vibrational spectral data and total energy distribution (TED) values calculated at B3LYP/6-311++G(d,p) and B3LYP/LANL2DZ levels of theory. The equilibrium geometrical parameters, Natural Bond Orbital (NBO) charges and frontier orbital (HOMO, LUMO) energies of these molecular structures were also calculated at the same level of theory. Comparisons over the corresponding experimental and theoretical data obtained for the title ligands and their complexes revealed that in complex form both ligands bond to Zn(II) ion through their ring nitrogen atoms and NO2 groups at the same time.

  5. Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands.

    PubMed

    Hubin, Timothy J; Amoyaw, Prince N-A; Roewe, Kimberly D; Simpson, Natalie C; Maples, Randall D; Carder Freeman, TaRynn N; Cain, Amy N; Le, Justin G; Archibald, Stephen J; Khan, Shabana I; Tekwani, Babu L; Khan, M O Faruk

    2014-07-01

    Using transition metals such as manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and zinc(II), several new metal complexes of cross-bridged tetraazamacrocyclic chelators namely, cyclen- and cyclam-analogs with benzyl groups, were synthesized and screened for in vitro antimalarial activity against chloroquine-resistant (W2) and chloroquine-sensitive (D6) strains of Plasmodium falciparum. The metal-free chelators tested showed little or no antimalarial activity. All the metal complexes of the dibenzyl cross-bridged cyclam ligand exhibited potent antimalarial activity. The Mn(2+) complex of this ligand was the most potent with IC50s of 0.127 and 0.157μM against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) P. falciparum strains, respectively. In general, the dibenzyl hydrophobic ligands showed better anti-malarial activity compared to the activity of monobenzyl ligands, potentially because of their higher lipophilicity and thus better cell penetration ability. The higher antimalarial activity displayed by the manganese complex for the cyclam ligand in comparison to that of the cyclen, correlates with the larger pocket of cyclam compared to that of cyclen which produces a more stable complex with the Mn(2+). Few of the Cu(2+) and Fe(2+) complexes also showed improvement in activity but Ni(2+), Co(2+) and Zn(2+) complexes did not show any improvement in activity upon the metal-free ligands for anti-malarial development. Published by Elsevier Ltd.

  6. Zn(II) and Cd(II) coordination polymers with tri-tert-butoxysilanethiol and bipyridines. Synthesis, crystal structure and spectroscopy

    NASA Astrophysics Data System (ADS)

    Pladzyk, Agnieszka; Ponikiewski, Łukasz; Stanulewicz, Natalia; Hnatejko, Zbigniew

    2013-12-01

    Three new zinc(II) and cadmium(II) silanethiolate complexes [Zn{SSi(OtBu)3}2(μ-bpea)ṡCH3CN]n1, [Cd{SSi(OtBu)3}2(μ-bpea)ṡ2CHCl3]n2 and [Cd{SSi(OtBu)3}2(μ-bpey)ṡC7H8]n3 with two bypiridine derivatives, [bpea = 1,2-bis(4-pyridyl)ethane and bpey = 1,2-bis(4-pyridyl)ethylene] have been synthesized and structurally characterized by X-ray crystallography. Their structures and properties have also been established with elemental analysis, IR, TGA and photoluminescent studies. Complexes 1-3 exhibit one-dimensional (1D) chain structures in which [M{SSi(OtBu)3}2] (M = Zn, Cd) units are held together by bpea or bpey bridges, respectively. Complexes are stable up to 300 °C and display blue emissions.

  7. Study on the inclusion complex between β-cyclodextrin derivatives and flurbiprofen by spectrofluorometric

    NASA Astrophysics Data System (ADS)

    Miao, Jiabing; Guo, Zhaohua; Wang, Yongwang; Chen, Dong; Li, Yifan; Zhang, Feng

    2017-08-01

    The inclusion behavior between β-cyclodextrin derivatives (β-CDs) and flurbiprofen had been studied by fluorescence spectrophotometry. The effects of type and concentration of β-CDs; ionic strength; pH as well as temperature on inclusion behavior were investigated. And then the thermodynamic parameters ΔH/ΔS and ΔG of the inclusion complex of flurbiprofen and HP-β-CD were calculated, the driving force of the inclusion reaction had been also certified. The experimental results indicate, the fluorescence intensity (F) of flurbiprofen increases with the raising of β-CDs concentration, among the studied types of β-cyclodextrin derivatives, hydroxypropy l-β-cyclodextrin (HP-β-CD) has the most obvious enhancement, namely HP-β-CD has the strongest ability to complex with flurbiprofen. Plot of 1/ (F-F0) against 1/ [β-CD] yields a straight line, indicating 1:1 stoichiometric complex formed between β-CDs and flurbiprofen. Inclusion constant is enhanced with the increase in ionic strength of solution, whereas followes an opposite tendency with the rise of pH value. In the inclusive process, under normal temperature ΔG<0, it illustrates that this process is spontaneous, and the driving force is the change of enthalpy.

  8. [Study on solid phase extraction spectrophotometric determination of zinc with 2-(2-quinolylazo)-5-dimthylaminophenol].

    PubMed

    Zhou, Shi-ping; Duan, Chang-qun; Liu, Hong-cheng; Hu, Qiu-fen

    2005-10-01

    A highly sensitive, selective and rapid method for the determination of zinc based on the rapid reaction of zinc(II) with 2-(2-quinolylazo)-5-dimthylaminophenol (QADMAP) and the solid phase extraction of zinc ion with anion exchange resin cartridge was developed. In the presence of pH 8.5 buffer solution and Triton X-100 medium, QADMAP can react with zinc(II) to form a stable 2 :1 complex (QADMAP:Zn(II)). The molar absorptivity is 1.22 x 10(5)L x moL(-1) x cm(-1) at 590 nm. Beer's law is obeyed in the range of 0-1.0 microg x mL(-1). The zinc ions in the samples can be enriched and separated by solid phase extraction with anion exchange resincartridge. Testing results show that recovery for zinc(II) was from 95% to 104%, and RSD was below 3%. This method was applied to the determination of zinc in water and food with good results.

  9. A method for deriving lower bounds for the complexity of monotone arithmetic circuits computing real polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gashkov, Sergey B; Sergeev, Igor' S

    2012-10-31

    This work suggests a method for deriving lower bounds for the complexity of polynomials with positive real coefficients implemented by circuits of functional elements over the monotone arithmetic basis {l_brace}x+y, x {center_dot} y{r_brace} Union {l_brace}a {center_dot} x | a Element-Of R{sub +}{r_brace}. Using this method, several new results are obtained. In particular, we construct examples of polynomials of degree m-1 in each of the n variables with coefficients 0 and 1 having additive monotone complexity m{sup (1-o(1))n} and multiplicative monotone complexity m{sup (1/2-o(1))n} as m{sup n}{yields}{infinity}. In this form, the lower bounds derived here are sharp. Bibliography: 72 titles.

  10. How Linearity and Structural Complexity Interact and Affect the Recognition of Italian Derived Words.

    PubMed

    Bridgers, Franca Ferrari; Kacinik, Natalie

    2017-02-01

    The majority of words in most languages consist of derived poly-morphemic words but a cross-linguistic review of the literature (Amenta and Crepaldi in Front Psychol 3:232-243, 2012) shows a contradictory picture with respect to how such words are represented and processed. The current study examined the effects of linearity and structural complexity on the processing of Italian derived words. Participants performed a lexical decision task on three types of prefixed and suffixed words and nonwords differing in the complexity of their internal structure. The processing of these words was indeed found to vary according to the nature of the affixes, the order in which they appear, and the type of information the affix encodes. The results thus indicate that derived words are not a uniform class and the best account of these findings appears to be a constraint-based or probabilistic multi-route processing model (e.g., Kuperman et al. in Lang Cogn Process 23:1089-1132, 2008; J Exp Psychol Hum Percept Perform 35:876-895, 2009; J Mem Lang 62:83-97, 2010).

  11. Parkin Mutations Reduce the Complexity of Neuronal Processes in iPSC-derived Human Neurons

    PubMed Central

    Ren, Yong; Jiang, Houbo; Hu, Zhixing; Fan, Kevin; Wang, Jun; Janoschka, Stephen; Wang, Xiaomin; Ge, Shaoyu; Feng, Jian

    2015-01-01

    Parkinson’s disease (PD) is characterized by the degeneration of nigral dopaminergic (DA) neurons and non-DA neurons in many parts of the brain. Mutations of parkin, an E3 ubiquitin ligase that strongly binds to microtubules, are the most frequent cause of recessively inherited Parkinson’s disease. The lack of robust PD phenotype in parkin knockout mice suggests a unique vulnerability of human neurons to parkin mutations. Here, we show that the complexity of neuronal processes as measured by total neurite length, number of terminals, number of branch points and Sholl analysis, was greatly reduced in induced pluripotent stem cell (iPSC)-derived TH+ or TH− neurons from PD patients with parkin mutations. Consistent with these, microtubule stability was significantly decreased by parkin mutations in iPSC-derived neurons. Overexpression of parkin, but not its PD-linked mutant nor GFP, restored the complexity of neuronal processes and the stability of microtubules. Consistent with these, the microtubule-depolymerizing agent colchicine mimicked the effect of parkin mutations by decreasing neurite length and complexity in control neurons while the microtubule-stabilizing drug taxol mimicked the effect of parkin overexpression by enhancing the morphology of parkin-deficient neurons. The results suggest that parkin maintains the morphological complexity of human neurons by stabilizing microtubules. PMID:25332110

  12. Chiral discrimination in cyclodextrin complexes of amino acid derivatives: beta-cyclodextrin/N-acetyl-L-phenylalanine and N-acetyl-D-phenylalanine complexes.

    PubMed

    Alexander, Jennifer M; Clark, Joanna L; Brett, Tom J; Stezowski, John J

    2002-04-16

    In a systematic study of molecular recognition of amino acid derivatives in solid-state beta-cyclodextrin (beta-CD) complexes, we have determined crystal structures for complexes of beta-cyclodextrin/N-acetyl-L-phenylalanine at 298 and 20 K and for N-acetyl-D-phenylalanine at 298 K. The crystal structures for the N-acetyl-L-phenylalanine complex present disordered inclusion complexes for which the distribution of guest molecules at room temperature is not resolvable; however, they can be located with considerable confidence at low temperature. In contrast, the complex with N-acetyl-D-phenylalanine is well ordered at room temperature. The latter complex presents an example of a complex in this series in which a water molecule is included deeply in the hydrophobic torus of the extended dimer host. In an effort to understand the mechanisms of molecular recognition giving rise to the dramatic differences in crystallographic order in these crystal structures, we have examined the intermolecular interactions in detail and have examined insertion of the enantiomer of the D-complex into the chiral beta-CD complex crystal lattice.

  13. pH-Responsive Dimeric Zinc(II) Phthalocyanine in Mesoporous Silica Nanoparticles as an Activatable Nanophotosensitizing System for Photodynamic Therapy.

    PubMed

    Wong, Roy C H; Chow, Sun Y S; Zhao, Shirui; Fong, Wing-Ping; Ng, Dennis K P; Lo, Pui-Chi

    2017-07-19

    An acid-cleavable acetal-linked zinc(II) phthalocyanine dimer with an azido terminal group (cPc) was prepared and conjugated to alkyne-modified mesoporous silica nanoparticles via copper(I)-catalyzed alkyne-azide cycloaddition reaction. For comparison, an amine-linked analogue (nPc) was also prepared as a non-acid-cleavable counterpart. These dimeric phthalocyanines were significantly self-quenched due to the close proximity of the phthalocyanine units inside the mesopores, resulting in much weaker fluorescence emission and singlet oxygen generation, both in N,N-dimethylformamide and in phosphate-buffered saline (PBS), compared with the free molecular counterparts. Under acidic conditions in PBS, the cPc-encapsulated nanosystem was activated in terms of fluorescence emission and singlet oxygen production. After internalization into human colon adenocarcinoma HT29 cells, it exhibited much higher intracellular fluorescence and photocytotoxicity compared to the nanosystem entrapped with nPc. The activation of this nanosystem was also demonstrated in tumor-bearing nude mice. The intratumoral fluorescence intensity increased gradually over 24 h, while for the nPc counterpart the fluorescence remained very weak. The results suggest that this nanosystem serves as a promising activatable nanophotosensitizing agent for photodynamic therapy.

  14. Molecular docking studies of curcumin natural derivatives with DNA topoisomerase I and II-DNA complexes.

    PubMed

    Kumar, Anil; Bora, Utpal

    2014-12-01

    DNA topoisomerase I (topo I) and II (topo II) are essential enzymes that solve the topological problems of DNA by allowing DNA strands or double helices to pass through each other during cellular processes such as replication, transcription, recombination, and chromatin remodeling. Their critical roles make topoisomerases an attractive drug target against cancer. The present molecular docking study provides insights into the inhibition of topo I and II by curcumin natural derivatives. The binding modes suggested that curcumin natural derivatives docked at the site of DNA cleavage parallel to the axis of DNA base pairing. Cyclocurcumin and curcumin sulphate were predicted to be the most potent inhibitors amongst all the curcumin natural derivatives docked. The binding modes of cyclocurcumin and curcumin sulphate were similar to known inhibitors of topo I and II. Residues like Arg364, Asn722 and base A113 (when docked to topo I-DNA complex) and residues Asp479, Gln778 and base T9 (when docked to topo II-DNA complex) seem to play important role in the binding of curcumin natural derivatives at the site of DNA cleavage.

  15. Ruthenium(II) Complexes Containing Lutidine-Derived Pincer CNC Ligands: Synthesis, Structure, and Catalytic Hydrogenation of C-N bonds.

    PubMed

    Hernández-Juárez, Martín; López-Serrano, Joaquín; Lara, Patricia; Morales-Cerón, Judith P; Vaquero, Mónica; Álvarez, Eleuterio; Salazar, Verónica; Suárez, Andrés

    2015-05-11

    A series of Ru complexes containing lutidine-derived pincer CNC ligands have been prepared by transmetalation with the corresponding silver-carbene derivatives. Characterization of these derivatives shows both mer and fac coordination of the CNC ligands depending on the wingtips of the N-heterocyclic carbene fragments. In the presence of tBuOK, the Ru-CNC complexes are active in the hydrogenation of a series of imines. In addition, these complexes catalyze the reversible hydrogenation of phenantridine. Detailed NMR spectroscopic studies have shown the capability of the CNC ligand to be deprotonated and get involved in ligand-assisted activation of dihydrogen. More interestingly, upon deprotonation, the Ru-CNC complex 5 e(BF4 ) is able to add aldimines to the metal-ligand framework to yield an amido complex. Finally, investigation of the mechanism of the hydrogenation of imines has been carried out by means of DFT calculations. The calculated mechanism involves outer-sphere stepwise hydrogen transfer to the C-N bond assisted either by the pincer ligand or a second coordinated H2 molecule. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A multi-target caffeine derived rhodium(i) N-heterocyclic carbene complex: evaluation of the mechanism of action.

    PubMed

    Zhang, Jing-Jing; Muenzner, Julienne K; Abu El Maaty, Mohamed A; Karge, Bianka; Schobert, Rainer; Wölfl, Stefan; Ott, Ingo

    2016-08-16

    A rhodium(i) and a ruthenium(ii) complex with a caffeine derived N-heterocyclic carbene (NHC) ligand were biologically investigated as organometallic conjugates consisting of a metal center and a naturally occurring moiety. While the ruthenium(ii) complex was largely inactive, the rhodium(i) NHC complex displayed selective cytotoxicity and significant anti-metastatic and in vivo anti-vascular activities and acted as both a mammalian and an E. coli thioredoxin reductase inhibitor. In HCT-116 cells it increased the reactive oxygen species level, leading to DNA damage, and it induced cell cycle arrest, decreased the mitochondrial membrane potential, and triggered apoptosis. This rhodium(i) NHC derivative thus represents a multi-target compound with promising anti-cancer potential.

  17. Carboxylate derivatives of tributyltin (IV) complexes as anticancer and antileishmanial agents.

    PubMed

    Waseem, Durdana; Butt, Arshad Farooq; Haq, Ihsan-Ul; Bhatti, Moazzam Hussain; Khan, Gul Majid

    2017-04-04

    Tributyltin (IV) compounds are promising candidates for drug development. In the current study, we evaluated in-vitro and in-silico profile of carboxylate derivatives of tributyltin (IV) complexes. ADMET and drug-likeliness properties were predicted using MetaPrint2D React, preADMET, SwissADME and Molsoft tools. SwissTargetPrediction predicted molecular targets for compounds. In-vitro bioactivity was evaluated by quantifying cytotoxicity against HepG2, THP-1 cell lines, isolated lymphocytes and leishmania promastigotes as well as measuring protein kinase (PK) inhibition activity. Results indicate partial compliance of compounds with drug-likeliness rules. Ch-409 complies with WDI and Lipinski rules. ADMET profile prediction shows strong plasma protein binding except for Ch-409, low to high GI absorption and BBB penetration (C brain /C blood  = 0.942-11; caco-2 cells permeability 20.13-26.75 nm/sec), potential efflux by P-glycoprotein, metabolism by CYP3A4, medium inhibition of hERG, mutagenicity and capacity to be detoxified by glutathionation and glucuronidation. Molecular targets include proteases, enzymes, membrane receptors, transporters and ion channels where Ch-409 targets membrane receptors only. Compounds are significantly (p < 0.05) cytotoxic against HepG2 cell line and leishmania as compared with normal isolated lymphocytes. Ch-459 indicates highest toxicity against leishmania (mortality 97.9 ± 3.99%; LC50 0.323 ± 0.002 μg/mL) whereas Ch-409 possesses maximum cytotoxicity against HepG2 cell line (IC50 0.08 ± 0.001 μg/mL) as well as 97.5 ± 1.98% (LC50 0.954 ± 0.158 μg/mL) mortality of leishmania promastigotes. It was observed that antileishmanial effect was reduced by 16.38%-34.38% and 15-38.2% in the presence of NaN 3 and mannitol respectively. PK inhibition and reactive oxygen species production are possible mechanisms for cytotoxicity. Selected carboxylate derivatives of tributyltin (IV) complexes possess

  18. A threefold interpenetrated two-dimensional zinc(II) supramolecular architecture based on 3-nitrobenzoic acid and 4,4'-bipyridine.

    PubMed

    Tang, Long; Wang, Ji-Jiang; Fu, Feng; Wang, Sheng-Wen; Liu, Qi-Rui

    2016-02-01

    With regard to crystal engineering, building block or modular assembly methodologies have shown great success in the design and construction of metal-organic coordination polymers. The critical factor for the construction of coordination polymers is the rational choice of the organic building blocks and the metal centre. The reaction of Zn(OAc)2·2H2O (OAc is acetate) with 3-nitrobenzoic acid (HNBA) and 4,4'-bipyridine (4,4'-bipy) under hydrothermal conditions produced a two-dimensional zinc(II) supramolecular architecture, catena-poly[[bis(3-nitrobenzoato-κ(2)O,O')zinc(II)]-μ-4,4'-bipyridine-κ(2)N:N'], [Zn(C7H4NO4)2(C10H8N2)]n or [Zn(NBA)2(4,4'-bipy)]n, which was characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single-crystal X-ray diffraction analysis. The Zn(II) ions are connected by the 4,4'-bipy ligands to form a one-dimensional zigzag chain and the chains are decorated with anionic NBA ligands which interact further through aromatic π-π stacking interactions, expanding the structure into a threefold interpenetrated two-dimensional supramolecular architecture. The solid-state fluorescence analysis indicates a slight blue shift compared with pure 4,4'-bipyridine and HNBA.

  19. Cytotoxic properties of a new organometallic platinum(II) complex and its gold(I) heterobimetallic derivatives.

    PubMed

    Serratrice, Maria; Maiore, Laura; Zucca, Antonio; Stoccoro, Sergio; Landini, Ida; Mini, Enrico; Massai, Lara; Ferraro, Giarita; Merlino, Antonello; Messori, Luigi; Cinellu, Maria Agostina

    2016-01-14

    A novel platinum(ii) organometallic complex, [Pt(pbi)(Me)(DMSO)], bearing the 2-(2'-pyridyl)-benzimidazole (pbiH) ligand, was synthesized and fully characterized. Interestingly, the reaction of this organometallic platinum(ii) complex with two distinct gold(i) phosphane compounds afforded the corresponding heterobimetallic derivatives with the pbi ligand bridging the two metal centers. The antiproliferative properties in vitro of [Pt(pbi)(Me)(DMSO)] and its gold(i) derivatives as well as those of the known coordination platinum(ii) and palladium(ii) complexes with the same ligand, of the general formula [MCl2(pbiH)], were comparatively evaluated against A2780 cancer cells, either sensitive or resistant to cisplatin. A superior biological activity of the organometallic compound clearly emerged compared to the corresponding platinum(ii) complex; the antiproliferative effects are further enhanced upon attaching the gold(i) triphenylphosphine moiety to the organometallic Pt compound. Remarkably, these novel metal species are able to overcome nearly complete resistance to cisplatin. Significant mechanistic insight into the study compounds was gained after investigating their reactions with a few representative biomolecules by electrospray mass spectrometry and X-ray crystallography. The obtained results are comprehensively discussed.

  20. Thermodynamic stability, kinetic inertness and relaxometric properties of monoamide derivatives of lanthanide(III) DOTA complexes.

    PubMed

    Tei, Lorenzo; Baranyai, Zsolt; Gaino, Luca; Forgács, Attila; Vágner, Adrienn; Botta, Mauro

    2015-03-28

    A complete thermodynamic and kinetic solution study on lanthanide(III) complexes with monoacetamide (DOTAMA, L1) and monopropionamide (DOTAMAP, L2) derivatives of DOTA (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) was undertaken with the aim to elucidate their stability and inertness in aqueous media. The stability constants of GdL1 and GdL2 are comparable, whereas a more marked difference is found in the kinetic inertness of the two complexes. The formation of the Eu(III) and Ce(III) complexes takes place via the formation of the protonated intermediates which can deprotonate and transform into the final complex through a OH(-) assisted pathway. GdL2 shows faster rates of acid catalysed decomplexation with respect to GdL1, which has a kinetic inertness comparable to GdDOTA. Nevertheless, GdL2 is one order of magnitude more inert than GdDO3A. A novel DOTAMAP-based bifunctional chelating ligand and its deoxycholic acid derivative (L5) were also synthesized. Since the coordinated water molecule in GdL2 is characterized by an exchange rate ca. two orders of magnitude greater than in GdL1, the relaxivity of the macromolecular derivatives of L5 should not be limited by the slow water exchange process. The relaxometric properties of the supramolecular adduct of GdL5 with human serum albumin (HSA) were investigated in aqueous solution by measuring the magnetic field dependence of the (1)H relaxivity which, at 20 MHz and 298 K, shows a 430% increase over that of the unbound GdL5 chelate. Thus, Gd(III) complexes with DOTAMAP macrocyclic ligands can represent good candidates for the development of stable and highly effective bioconjugate systems for molecular imaging applications.

  1. Nickel-quinolones interaction. Part 4. Structure and biological evaluation of nickel(II)-enrofloxacin complexes compared to zinc(II) analogues.

    PubMed

    Skyrianou, Kalliopi C; Psycharis, Vassilis; Raptopoulou, Catherine P; Kessissoglou, Dimitris P; Psomas, George

    2011-01-01

    The nickel(II) complexes with the second-generation quinolone antibacterial agent enrofloxacin in the presence or absence of the nitrogen-donor heterocyclic ligands 1,10-phenanthroline, 2,2'-bipyridine or pyridine have been synthesized and characterized. Enrofloxacin acts as bidentate ligand coordinated to Ni(II) ion through the ketone oxygen and a carboxylato oxygen. The crystal structure of (1,10-phenanthroline)bis(enrofloxacinato)nickel(II) has been determined by X-ray crystallography. UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that they bind to CT DNA and bis(pyridine)bis(enrofloxacinato)nickel(II) exhibits the highest binding constant to CT DNA. The cyclic voltammograms of the complexes have shown that in the presence of CT DNA the complexes can bind to CT DNA by the intercalative binding mode which has also been verified by DNA solution viscosity measurements. Competitive study with ethidium bromide (EB) has shown that the complexes can displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB. The complexes exhibit good binding propensity to human or bovine serum albumin protein having relatively high binding constant values. The biological properties of the complexes have been evaluated in comparison to the corresponding Zn(II) enrofloxacinato complexes as well as Ni(II) complexes with the first-generation quinolone oxolinic acid. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Polysaccharide-derived mesoporous materials (Starbon®) for sustainable separation of complex mixtures.

    PubMed

    Zuin, Vânia G; Budarin, Vitaliy L; De Bruyn, Mario; Shuttleworth, Peter S; Hunt, Andrew J; Pluciennik, Camille; Borisova, Aleksandra; Dodson, Jennifer; Parker, Helen L; Clark, James H

    2017-09-21

    The recovery and separation of high value and low volume extractives are a considerable challenge for the commercial realisation of zero-waste biorefineries. Using solid-phase extractions (SPE) based on sustainable sorbents is a promising method to enable efficient, green and selective separation of these complex extractive mixtures. Mesoporous carbonaceous solids derived from renewable polysaccharides are ideal stationary phases due to their tuneable functionality and surface structure. In this study, the structure-separation relationships of thirteen polysaccharide-derived mesoporous materials and two modified types as sorbents for ten naturally-occurring bioactive phenolic compounds were investigated. For the first time, a comprehensive statistical analysis of the key molecular and surface properties influencing the recovery of these species was carried out. The obtained results show the possibility of developing tailored materials for purification, separation or extraction, depending on the molecular composition of the analyte. The wide versatility and application span of these polysaccharide-derived mesoporous materials offer new sustainable and inexpensive alternatives to traditional silica-based stationary phases.

  3. Antiobesity, antioxidant and cytotoxicity activities of newly synthesized chalcone derivatives and their metal complexes.

    PubMed

    El Sayed Aly, Mohamed Ramadan; Abd El Razek Fodah, Hamadah Hamadah; Saleh, Sherif Yousef

    2014-04-09

    Four sets of rationally designed chalcones were prepared for evaluation of their antiobesity, antioxidant and cytotoxicity activities. These sets include nine oleoyl chalcones as mimics of oleoyl estrone, three monohydroxy chalcones (chalcone ligands), Schiff base-derived chalcones and four copper as well as zinc complexes. Oleoyl chalcones 4d, 4e and particularly 6a as an isosteric isomer of oleoyl estrone, were as active as Orlistat on weight loss and related metabolic parameters using male SD rats in vivo. Chalcone ligands 10a-c and Schiff base-derived chalcones 11 and 14a,b were weakly antioxidants, while, the copper and zinc complexes 15a-d were good antioxidants with zinc chelates 15b,d being more active than their copper analogues 15a,cin vitro. Compounds 10c and 14a showed good cytotoxicity activities as Doxorubicin against PC3 cancer cell line in vitro, while, the copper complex 15c showed promising activity with IC₅₀ value of 5.95 μM. The estimated IC₅₀ value for Doxorubicin was 8.7 μM. Chalcones 14a,b are bifunctional probes for potential investigations in cancer diagnosis and radiotherapy by complexation with Gd(3+) or metal radioisotopes followed by posttranslation of Shiga toxin B-subunits that target globotriosyl ceramide expressing cancer cells. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Airway management through submental derivation: a safe and easily reproduced alternative for patients with complex facial trauma

    PubMed Central

    2018-01-01

    Objectives Airway management in patients with panfacial trauma is complicated. In addition to involving facial lesions, such trauma compromises the airway, and the use of intermaxillary fixation makes it difficult to secure ventilation by usual approaches (nasotracheal or endotracheal intubation). Submental airway derivation is an alternative to tracheostomy and nasotracheal intubation, allowing a permeable airway with minimal complications in complex patients. Materials and Methods This is a descriptive, retrospective study based on a review of medical records of all patients with facial trauma from January 2003 to May 2015. In total, 31 patients with complex factures requiring submental airway derivation were included. No complications such as bleeding, infection, vascular, glandular, or nervous lesions were presented in any of the patients. Results The use of submental airway derivation is a simple, safe, and easy method to ensure airway management. Moreover, it allows an easier reconstruction. Conclusion Based on these results, we concluded that, if the relevant steps are followed, the use of submental intubation in the treatment of patients with complex facial trauma is a safe and effective option. PMID:29535964

  5. Spectroscopic evaluation of Co(II), Ni(II) and Cu(II) complexes derived from thiosemicarbazone and semicarbazone

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Kumar, Anil

    2007-12-01

    Co(II), Ni(II) and Cu(II) complexes were synthesized with thiosemicarbazone (L 1) and semicarbazone (L 2) derived from 2-acetyl furan. These complexes were characterized by elemental analysis, molar conductance, magnetic moment, mass, IR, electronic and EPR spectral studies. The molar conductance measurement of the complexes in DMSO corresponds to non-electrolytic nature. All the complexes are of high-spin type. On the basis of different spectral studies six coordinated geometry may be assigned for all the complexes except Co(L) 2(SO 4) and Cu(L) 2(SO 4) [where L = L 1 and L 2] which are of five coordinated square pyramidal geometry.

  6. Fluorescence in complexes based on quinolines-derivatives: a search for better fluorescent probes.

    PubMed

    Mecca, Carolina Z P; Fonseca, Fernando L A; Bagatin, Izilda A

    2016-11-05

    Quinoline-derived fluorescent complexes were designed; synthesized by the reaction of 5-nitro-8-hydroxyquinoline and 5-chloro-8-hydroxyquinoline with Al(3+), Mg(2+), Zn(2+), and Cd(2+) salts (1-8); and characterized. The (1)H NMR spectra of complexes 1 and 5, containing Al(3+), were consistent with an octahedral structure having approximate D3 symmetry, and the results supported the favored facial isomer (fac). Data for complexes 2-4 and 6-8 supported the formation of tetrahedral structures. Intense luminescence was detected for complexes 5-8, even with the naked eye, as indicated by quantum yield values of 0.087, 0.094, 0.051, and 0.021, respectively. Furthermore, in contrast to 5-nitro-8-hydroxyquinoline, the 5-chloro-8-hydroxyquinoline ligand exhibited bands at different energies depending on the coordinated metal, which supported its potential application in ionic and biological probes, as well as in cell imaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Electroreduction of CO2 Catalyzed by a Heterogenized Zn–Porphyrin Complex with a Redox-Innocent Metal Center

    PubMed Central

    2017-01-01

    Transition-metal-based molecular complexes are a class of catalyst materials for electrochemical CO2 reduction to CO that can be rationally designed to deliver high catalytic performance. One common mechanistic feature of these electrocatalysts developed thus far is an electrogenerated reduced metal center associated with catalytic CO2 reduction. Here we report a heterogenized zinc–porphyrin complex (zinc(II) 5,10,15,20-tetramesitylporphyrin) as an electrocatalyst that delivers a turnover frequency as high as 14.4 site–1 s–1 and a Faradaic efficiency as high as 95% for CO2 electroreduction to CO at −1.7 V vs the standard hydrogen electrode in an organic/water mixed electrolyte. While the Zn center is critical to the observed catalysis, in situ and operando X-ray absorption spectroscopic studies reveal that it is redox-innocent throughout the potential range. Cyclic voltammetry indicates that the porphyrin ligand may act as a redox mediator. Chemical reduction of the zinc–porphyrin complex further confirms that the reduction is ligand-based and the reduced species can react with CO2. This represents the first example of a transition-metal complex for CO2 electroreduction catalysis with its metal center being redox-innocent under working conditions. PMID:28852698

  8. Electroreduction of CO 2 Catalyzed by a Heterogenized Zn–Porphyrin Complex with a Redox-Innocent Metal Center

    DOE PAGES

    Wu, Yueshen; Jiang, Jianbing; Weng, Zhe; ...

    2017-07-26

    Transition-metal-based molecular complexes are a class of catalyst materials for electrochemical CO 2 reduction to CO that can be rationally designed to deliver high catalytic performance. One common mechanistic feature of these electrocatalysts developed thus far is an electrogenerated reduced metal center associated with catalytic CO 2 reduction. Here in this paper, we report a heterogenized zinc–porphyrin complex (zinc(II) 5,10,15,20-tetramesitylporphyrin) as an electrocatalyst that delivers a turnover frequency as high as 14.4 site –1 s –1 and a Faradaic efficiency as high as 95% for CO 2 electroreduction to CO at -1.7 V vs the standard hydrogen electrode in anmore » organic/water mixed electrolyte. While the Zn center is critical to the observed catalysis, in situ and operando X-ray absorption spectroscopic studies reveal that it is redox-innocent throughout the potential range. Cyclic voltammetry indicates that the porphyrin ligand may act as a redox mediator. Chemical reduction of the zinc–porphyrin complex further confirms that the reduction is ligand-based and the reduced species can react with CO 2. This represents the first example of a transition-metal complex for CO 2 electroreduction catalysis with its metal center being redox-innocent under working conditions.« less

  9. Electroreduction of CO 2 Catalyzed by a Heterogenized Zn–Porphyrin Complex with a Redox-Innocent Metal Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yueshen; Jiang, Jianbing; Weng, Zhe

    Transition-metal-based molecular complexes are a class of catalyst materials for electrochemical CO 2 reduction to CO that can be rationally designed to deliver high catalytic performance. One common mechanistic feature of these electrocatalysts developed thus far is an electrogenerated reduced metal center associated with catalytic CO 2 reduction. Here in this paper, we report a heterogenized zinc–porphyrin complex (zinc(II) 5,10,15,20-tetramesitylporphyrin) as an electrocatalyst that delivers a turnover frequency as high as 14.4 site –1 s –1 and a Faradaic efficiency as high as 95% for CO 2 electroreduction to CO at -1.7 V vs the standard hydrogen electrode in anmore » organic/water mixed electrolyte. While the Zn center is critical to the observed catalysis, in situ and operando X-ray absorption spectroscopic studies reveal that it is redox-innocent throughout the potential range. Cyclic voltammetry indicates that the porphyrin ligand may act as a redox mediator. Chemical reduction of the zinc–porphyrin complex further confirms that the reduction is ligand-based and the reduced species can react with CO 2. This represents the first example of a transition-metal complex for CO 2 electroreduction catalysis with its metal center being redox-innocent under working conditions.« less

  10. Electroreduction of CO 2 Catalyzed by a Heterogenized Zn–Porphyrin Complex with a Redox-Innocent Metal Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yueshen; Jiang, Jianbing; Weng, Zhe

    Transition-metal-based molecular complexes are a class of catalyst materials for electrochemical CO2 reduction to CO that can be rationally designed to deliver high catalytic performance. One common mechanistic feature of these electrocatalysts developed thus far is an electrogenerated reduced metal center associated with catalytic CO2 reduction. Here we report a heterogenized zinc–porphyrin complex (zinc(II) 5,10,15,20-tetramesitylporphyrin) as an electrocatalyst that delivers a turnover frequency as high as 14.4 site–1 s–1 and a Faradaic efficiency as high as 95% for CO2 electroreduction to CO at -1.7 V vs the standard hydrogen electrode in an organic/water mixed electrolyte. While the Zn center ismore » critical to the observed catalysis, in situ and operando X-ray absorption spectroscopic studies reveal that it is redox-innocent throughout the potential range. Cyclic voltammetry indicates that the porphyrin ligand may act as a redox mediator. Chemical reduction of the zinc–porphyrin complex further confirms that the reduction is ligand-based and the reduced species can react with CO2. This represents the first example of a transition-metal complex for CO2 electroreduction catalysis with its metal center being redox-innocent under working conditions.« less

  11. Thiophene-based terpyridine and its zinc halide complexes: third-order nonlinear optical properties in the near-infrared region.

    PubMed

    Tan, Jingyun; Li, Rui; Li, Dandan; Zhang, Qiong; Li, Shengli; Zhou, Hongping; Yang, Jiaxiang; Wu, Jieying; Tian, Yupeng

    2015-01-21

    A novel 4'-(4-(diphenylamino)thienyl)-2,2':6',2''-terpyridine ligand () based on thiophene and its complexes (X = Cl, Br, I, SCN) was designed, synthesized and characterized by elemental analysis, far-IR, MALDI-TOF-MS, and single crystal X-ray diffraction analysis. Structural studies revealed that the central zinc(ii) atom adopted a distorted trigonal bipyramidal coordination model. However, there were different hydrogen bonds and stacking models with different counter anions in the crystals. The absorption properties of the compounds were investigated with the aid of TD-DFT computational methods. Furthermore, the third-order nonlinear optical (NLO) properties were systematically studied via open-aperture Z-scan methods using a tunable wavelength femtosecond laser. The results from photophysical property investigations suggested that the complexation of the thiophene-based terpyridine ligand with zinc halides resulted in strong ICT/LLCT bands of about 450 nm, and the complexes exhibited strong nonlinear optical response in the near-infrared range around 850 nm. Above all, the two-photon absorption (2PA) cross-section values (σ) were enhanced by coordination with zinc and influenced by halide ions, reaching up to 2583 GM (X = Br).

  12. Selective hydroxylation of benzene derivatives and alkanes with hydrogen peroxide catalysed by a manganese complex incorporated into mesoporous silica-alumina.

    PubMed

    Aratani, Yusuke; Yamada, Yusuke; Fukuzumi, Shunichi

    2015-03-18

    Selective hydroxylation of benzene derivatives and alkanes to the corresponding phenol and alcohol derivatives with hydrogen peroxide was efficiently catalysed by a manganese tris(2-pyridylmethyl)amine (tpa) complex ([(tpa)Mn(II)](2+)) incorporated into mesoporous silica-alumina with highly acidic surfaces in contrast to the reactions in a homogeneous solution where [(tpa)Mn(II)](2+) was converted catalytically to a much less active bis(μ-oxo)dimanganese(III,IV) complex.

  13. Solvation Effect on Complexation of Alkali Metal Cations by a Calix[4]arene Ketone Derivative.

    PubMed

    Požar, Josip; Nikšić-Franjić, Ivana; Cvetnić, Marija; Leko, Katarina; Cindro, Nikola; Pičuljan, Katarina; Borilović, Ivana; Frkanec, Leo; Tomišić, Vladislav

    2017-09-14

    The medium effect on the complexation of alkali metal cations with a calix[4]arene ketone derivative (L) was systematically examined in methanol, ethanol, N-methylformamide, N,N-dimethylformamide, dimethyl sulfoxide, and acetonitrile. In all solvents the binding of Na + cation by L was rather efficient, whereas the complexation of other alkali metal cations was observed only in methanol and acetonitrile. Complexation reactions were enthalpically controlled, while ligand dissolution was endothermic in all cases. A notable influence of the solvent on NaL + complex stability could be mainly attributed to the differences in complexation entropies. The higher NaL + stability in comparison to complexes with other alkali metal cations in acetonitrile was predominantly due to a more favorable complexation enthalpy. The 1 H NMR investigations revealed a relatively low affinity of the calixarene sodium complex for inclusion of the solvent molecule in the calixarene hydrophobic cavity, with the exception of acetonitrile. Differences in complex stabilities in the explored solvents, apart from N,N-dimethylformamide and acetonitrile, could be mostly explained by taking into account solely the cation and complex solvation. A considerable solvent effect on the complexation equilibria was proven to be due to an interesting interplay between the transfer enthalpies and entropies of the reactants and the complexes formed.

  14. Designing molecular complexes using free-energy derivatives from liquid-state integral equation theory

    NASA Astrophysics Data System (ADS)

    Mrugalla, Florian; Kast, Stefan M.

    2016-09-01

    Complex formation between molecules in solution is the key process by which molecular interactions are translated into functional systems. These processes are governed by the binding or free energy of association which depends on both direct molecular interactions and the solvation contribution. A design goal frequently addressed in pharmaceutical sciences is the optimization of chemical properties of the complex partners in the sense of minimizing their binding free energy with respect to a change in chemical structure. Here, we demonstrate that liquid-state theory in the form of the solute-solute equation of the reference interaction site model provides all necessary information for such a task with high efficiency. In particular, computing derivatives of the potential of mean force (PMF), which defines the free-energy surface of complex formation, with respect to potential parameters can be viewed as a means to define a direction in chemical space toward better binders. We illustrate the methodology in the benchmark case of alkali ion binding to the crown ether 18-crown-6 in aqueous solution. In order to examine the validity of the underlying solute-solute theory, we first compare PMFs computed by different approaches, including explicit free-energy molecular dynamics simulations as a reference. Predictions of an optimally binding ion radius based on free-energy derivatives are then shown to yield consistent results for different ion parameter sets and to compare well with earlier, orders-of-magnitude more costly explicit simulation results. This proof-of-principle study, therefore, demonstrates the potential of liquid-state theory for molecular design problems.

  15. Designing molecular complexes using free-energy derivatives from liquid-state integral equation theory.

    PubMed

    Mrugalla, Florian; Kast, Stefan M

    2016-09-01

    Complex formation between molecules in solution is the key process by which molecular interactions are translated into functional systems. These processes are governed by the binding or free energy of association which depends on both direct molecular interactions and the solvation contribution. A design goal frequently addressed in pharmaceutical sciences is the optimization of chemical properties of the complex partners in the sense of minimizing their binding free energy with respect to a change in chemical structure. Here, we demonstrate that liquid-state theory in the form of the solute-solute equation of the reference interaction site model provides all necessary information for such a task with high efficiency. In particular, computing derivatives of the potential of mean force (PMF), which defines the free-energy surface of complex formation, with respect to potential parameters can be viewed as a means to define a direction in chemical space toward better binders. We illustrate the methodology in the benchmark case of alkali ion binding to the crown ether 18-crown-6 in aqueous solution. In order to examine the validity of the underlying solute-solute theory, we first compare PMFs computed by different approaches, including explicit free-energy molecular dynamics simulations as a reference. Predictions of an optimally binding ion radius based on free-energy derivatives are then shown to yield consistent results for different ion parameter sets and to compare well with earlier, orders-of-magnitude more costly explicit simulation results. This proof-of-principle study, therefore, demonstrates the potential of liquid-state theory for molecular design problems.

  16. Pyrrolidine dithiocarbamate-zinc(II) and -copper(II) complexes induce apoptosis in tumor cells by inhibiting the proteasomal activity☆

    PubMed Central

    Milacic, Vesna; Chen, Di; Giovagnini, Lorena; Diez, Alejandro; Fregona, Dolores; Dou, Q. Ping

    2013-01-01

    Zinc and copper are trace elements essential for proper folding, stabilization and catalytic activity of many metalloenzymes in living organisms. However, disturbed zinc and copper homeostasis is reported in many types of cancer. We have previously demonstrated that copper complexes induced proteasome inhibition and apoptosis in cultured human cancer cells. In the current study we hypothesized that zinc complexes could also inhibit the proteasomal chymotrypsin-like activity responsible for subsequent apoptosis induction. We first showed that zinc(II) chloride was able to inhibit the chymotrypsin-like activity of a purified 20S proteasome with an IC50 value of 13.8 μM, which was less potent than copper(II) chloride (IC50 5.3 μM). We then compared the potencies of a pyrrolidine dithiocarbamate (PyDT)-zinc(II) complex and a PyDT-copper(II) complex to inhibit cellular proteasomal activity, suppress proliferation and induce apoptosis in various human breast and prostate cancer cell lines. Consistently, zinc complex was less potent than copper complex in inhibiting the proteasome and inducing apoptosis. Additionally, zinc and copper complexes appear to use somewhat different mechanisms to kill tumor cells. Zinc complexes were able to activate calpain-, but not caspase-3-dependent pathway, while copper complexes were able to induce activation of both proteases. Furthermore, the potencies of these PyDT-metal complexes depend on the nature of metals and also on the ratio of PyDT to the metal ion within the complex, which probably affects their stability and availability for interacting with and inhibiting the proteasome in tumor cells. PMID:18501397

  17. Copper(II) and zinc(II) as metal-carboxylate coordination complexes based on (1-methyl-1H-benzo[d]imidazol-2-yl) methanol derivative: Synthesis, crystal structure, spectroscopy, DFT calculations and antioxidant activity

    NASA Astrophysics Data System (ADS)

    Benhassine, Anfel; Boulebd, Houssem; Anak, Barkahem; Bouraiou, Abdelmalek; Bouacida, Sofiane; Bencharif, Mustapha; Belfaitah, Ali

    2018-05-01

    This work presents a combined experimental and theoretical study of two new metal-carboxylate coordination compounds. These complexes were prepared from (1-methyl-1H-benzimidazol-2-yl)methanol under mild conditions. The structures of the prepared compounds were characterized by single-crystal X-ray analysis, FTIR and UV-Vis spectroscopy. In the Cupper complex, the Cu(II) ion is coordinated by two ligands, which act as bidentate chelator through the non-substituted N and O atoms, and two carboxylicg oxygen atoms, displaying a hexa-coordinated compound in a distorted octahedral geometry, while in the Zinc complex the ligand is ligated to the Zn(II) ion in monodentate fashion through the N atom, and the metal ion is also bonded to carboxylic oxygen atoms. The tetra-coordinated compound displays a distorted tetrahedral shape. The density functional theory calculations are carried out for the determination of the optimized structures. The electronic transitions and fundamental vibrational wave numbers are calculated and are in good agreement with experimental. In addition, the ligand and its Cu(II) and Zn(II) complexes were screened and evaluated for their potential as DPPH radical scavenger.

  18. Gradient elution moving boundary electrophoresis enables rapid analysis of acids in complex biomass-derived streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munson, Matthew S.; Karp, Eric M.; Nimlos, Claire T.

    Biomass conversion processes such as pretreatment, liquefaction, and pyrolysis often produce complex mixtures of intermediates that are a substantial challenge to analyze rapidly and reliably. To characterize these streams more comprehensively and efficiently, new techniques are needed to track species through biomass deconstruction and conversion processes. Here, we present the application of an emerging analytical method, gradient elution moving boundary electrophoresis (GEMBE), to quantify a suite of acids in a complex, biomass-derived streams from alkaline pretreatment of corn stover. GEMBE offers distinct advantages over common chromatography-spectrometry analytical approaches in terms of analysis time, sample preparation requirements, and cost of equipment.more » As demonstrated here, GEMBE is able to track 17 distinct compounds (oxalate, formate, succinate, malate, acetate, glycolate, protocatechuate, 3-hydroxypropanoate, lactate, glycerate, 2-hydroxybutanoate, 4-hydroxybenzoate, vanillate, p-coumarate, ferulate, sinapate, and acetovanillone). The lower limit of detection was compound dependent and ranged between 0.9 and 3.5 umol/L. Results from GEMBE were similar to recent results from an orthogonal method based on GCxGC-TOF/MS. Altogether, GEMBE offers a rapid, robust approach to analyze complex biomass-derived samples, and given the ease and convenience of deployment, may offer an analytical solution for online tracking of multiple types of biomass streams.« less

  19. Gradient elution moving boundary electrophoresis enables rapid analysis of acids in complex biomass-derived streams

    DOE PAGES

    Munson, Matthew S.; Karp, Eric M.; Nimlos, Claire T.; ...

    2016-09-27

    Biomass conversion processes such as pretreatment, liquefaction, and pyrolysis often produce complex mixtures of intermediates that are a substantial challenge to analyze rapidly and reliably. To characterize these streams more comprehensively and efficiently, new techniques are needed to track species through biomass deconstruction and conversion processes. Here, we present the application of an emerging analytical method, gradient elution moving boundary electrophoresis (GEMBE), to quantify a suite of acids in a complex, biomass-derived streams from alkaline pretreatment of corn stover. GEMBE offers distinct advantages over common chromatography-spectrometry analytical approaches in terms of analysis time, sample preparation requirements, and cost of equipment.more » As demonstrated here, GEMBE is able to track 17 distinct compounds (oxalate, formate, succinate, malate, acetate, glycolate, protocatechuate, 3-hydroxypropanoate, lactate, glycerate, 2-hydroxybutanoate, 4-hydroxybenzoate, vanillate, p-coumarate, ferulate, sinapate, and acetovanillone). The lower limit of detection was compound dependent and ranged between 0.9 and 3.5 umol/L. Results from GEMBE were similar to recent results from an orthogonal method based on GCxGC-TOF/MS. Altogether, GEMBE offers a rapid, robust approach to analyze complex biomass-derived samples, and given the ease and convenience of deployment, may offer an analytical solution for online tracking of multiple types of biomass streams.« less

  20. Vibrational analysis and quantum chemical calculations of 2,2‧-bipyridine Zinc(II) halide complexes

    NASA Astrophysics Data System (ADS)

    Ozel, Aysen E.; Kecel, Serda; Akyuz, Sevim

    2007-05-01

    In this study the molecular structure and vibrational spectra of Zn(2,2'-bipyridine)X 2 (X = Cl and Br) complexes were studied in their ground states by computational vibrational study and scaled quantum mechanical (SQM) analysis. The geometry optimization, vibrational wavenumber and intensity calculations of free and coordinated 2,2'-bipyridine were carried out with the Gaussian03 program package by using Hartree-Fock (HF) and Density Functional Theory (DFT) with B3LYP functional and 6-31G (d,p) basis set. The total energy distributions (TED) of the vibrational modes were calculated by using Scaled Quantum Mechanical (SQM) analysis. Fundamentals were characterised by their total energy distributions. Coordination sensitive modes of 2,2'-bipyridine were determined.

  1. Formation and antimicrobial activity of complexes of beta-cyclodextrin and some antimycotic imidazole derivatives.

    PubMed

    Van Doorne, H; Bosch, E H; Lerk, C F

    1988-04-22

    Complex formation between beta-cyclodextrin and six antimycotic imidazole derivatives has been studied. The solubility of all drugs was increased in the presence of beta-cyclodextrin. The smallest increase (approx. 5-fold) was observed for miconazol, and the largest increase (approx. 160-fold) was observed for bifonazol. Apparent 1:1-complex constants were measured and found to decrease in the order: bifonazol greater than ketoconazol greater than tioconazol greater than miconazol greater than itraconazol greater than clotrimazol. The complexes appeared to possess a low, if any, antimicrobial activity. Measurement of inhibition zone sizes, with four test organisms was used to study the release of the antimycotic drugs from topical preparations. The antimycotic drugs were more readily released from topical preparations containing beta-cyclodextrin than from the same vehicles without beta-cyclodextrin. The rationale of beta-cyclodextrin addition to antimycotic topical preparations is discussed.

  2. Multi-spectroscopic investigation on the complexation of tetracycline with dissolved organic matter derived from algae and macrophyte.

    PubMed

    Bai, Leilei; Zhao, Zhen; Wang, Chunliu; Wang, Changhui; Liu, Xin; Jiang, Helong

    2017-11-01

    Interactions of antibiotics with algae-derived dissolved organic matter (ADOM) and macrophyte-derived dissolved organic matter (MDOM) are of vital importance to the transport and ecotoxicity of antibiotics in eutrophic freshwater lakes. Multi-spectroscopic techniques were used to investigate the complexation of tetracycline (TTC) with ADOM and MDOM collected from Lake Taihu (China). The 3 fluorescent components, tyrosine-, tryptophan-, and humic-like component, were identified by excitation emission matrix spectra with parallel factor analysis. Their fluorescence was quenched at different degree by TTC titration through static quenching. The complexation of TTC induced conformational changes in DOM fractions. Synchronous fluorescence spectra combined with two dimensional correlation spectroscopy further suggested that the formation of TTC-DOM complexes occurred on the sequential order of tryptophan-like→tyrosine-like→humic-like component. The effective quenching constants of tryptophan- and tyrosine-like component were similar, higher than those of humic-like component. The strong binding ability and abundant content of protein-like substances indicated their prominent role in the TTC-DOM complexation. Fourier transform infrared spectroscopy further revealed that the heterogeneous functional groups, including amide I and II, aromatics, and aliphatics, were responsible for the complexation. These results highlight the significant impact of the overgrowth of algae and macrophyte on the environmental behavior of antibiotics in waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Structural and Spectral Properties of Curcumin and Metal- Curcumin Complex Derived from Turmeric (Curcuma longa)

    NASA Astrophysics Data System (ADS)

    Bich, Vu Thi; Thuy, Nguyen Thi; Binh, Nguyen Thanh; Huong, Nguyen Thi Mai; Yen, Pham Nguyen Dong; Luong, Tran Thanh

    Structural and spectral properties of curcumin and metal- curcumin complex derived from turmeric (Curcuma longa) were studied by SEM and vibrational (FTIR and Raman) techniques. By comparison between curcumin commercial, fresh turmeric and a yellow powder obtained via extraction and purification of turmeric, we have found that this insoluble powder in water is curcumin. The yellow compound could complex with certain ion metal and this metal-curcumin coloring complex is water soluble and capable of producing varying hues of the same colors and having antimicrobial, cytotoxicity activities for use in foodstuffs and pharmacy. The result also demonstrates that Micro-Raman spec-troscopy is a valuable non-destructive tool and fast for investigation of a natural plant even when occurring in low concentrations.

  4. Synthesis, characterization, cytotoxic and antitubercular activities of new gold(I) and gold(III) complexes containing ligands derived from carbohydrates.

    PubMed

    Chaves, Joana Darc Souza; Damasceno, Jaqueline Lopes; Paula, Marcela Cristina Ferreira; de Oliveira, Pollyanna Francielli; Azevedo, Gustavo Chevitarese; Matos, Renato Camargo; Lourenço, Maria Cristina S; Tavares, Denise Crispim; Silva, Heveline; Fontes, Ana Paula Soares; de Almeida, Mauro Vieira

    2015-10-01

    Novel gold(I) and gold(III) complexes containing derivatives of D-galactose, D-ribose and D-glucono-1,5-lactone as ligands were synthesized and characterized by IR, (1)H, and (13)C NMR, high resolution mass spectra and cyclic voltammetry. The compounds were evaluated in vitro for their cytotoxicity against three types of tumor cells: cervical carcinoma (HeLa) breast adenocarcinoma (MCF-7) and glioblastoma (MO59J) and one non-tumor cell line: human lung fibroblasts (GM07492A). Their antitubercular activity was evaluated as well expressed as the minimum inhibitory concentration (MIC90) in μg/mL. In general, the gold(I) complexes were more active than gold(III) complexes, for example, the gold(I) complex (1) was about 8.8 times and 7.6 times more cytotoxic than gold(III) complex (8) in MO59J and MCF-7 cells, respectively. Ribose and alkyl phosphine derivative complexes were more active than galactose and aryl phosphine complexes. The presence of a thiazolidine ring did not improve the cytotoxicity. The study of the cytotoxic activity revealed effective antitumor activities for the gold(I) complexes, being more active than cisplatin in all the tested tumor cell lines. Gold(I) compounds (1), (2), (3), (4) and (6) exhibited relevant antitubercular activity even when compared with first line drugs such as rifampicin.

  5. Bifunctional Platinum(II) Complexes with Bisphosphonates Substituted Diamine Derivatives: Synthesis and In vitro Cytotoxicity.

    PubMed

    Sun, Yanyan; Zhao, Jian; Ji, Zhongling

    2017-12-01

    A series of N,N'-dibisphosphonate-containing 1,3-propanediamine derivatives (L1 - L6) and their corresponding dichloridoplatinum(II) complexes (1 - 6) have been synthesized and characterized by elemental analysis, 1 H-NMR, 13 C-NMR, 31 P-NMR and HR-MS spectra. The in vitro antitumor activities of compounds L1 - L6 and 1 - 6 were tested by WST-8 assay with Cell Counting Kit-8, indicating that platinum-based complexes 1 - 6 showed higher cytotoxicity than corresponding ligands L1 - L6 against A549 and MG-63, especially complex 2 which displayed comparable cytotoxicity to those of cisplatin and zoledronate after 48 h incubation. In addition, complexes 1 - 6 were more active in vitro on osteosarcoma cell line MG-63 than normal osteoblast cell line hFOB 1.19. The structure-activity relationship has been summarized based on the in vitro cytotoxicity of three series of platinum complexes from this and our previous studies. The in vitro bone affinity of platinum complexes was also tested by hydroxyapatite (HAP) chromatography in terms of capacity factor K'. Besides, in this paper, representative complex 2, which has been proved to be a promising antitumor agent with high cytotoxicity and bone HAP binding property, was investigated for its mechanism of action producing cell death against MG-63. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  6. Bioassay of complex mixtures derived from fossil fuels.

    PubMed Central

    Bingham, E; Barkley, W

    1979-01-01

    The conversion or processing of shale, coal, or petroleum involves elevated temperatures and altered pressures, and under these conditions polynuclear aromatic hydrocarbons are likely to form. Certain compounds of this type exhibit carcinogenic activity for a variety of organ sites in experimental animals and epidemiological evidence strongly implicates their role as carcinogens in man. It is then not unexpected that many liquid fractions derived from shale and coal are carcinogenic when subjected to bioassay. Benzo(a)pyrene, [B(a)P], is frequently considered to be an indicator substance. It is clear that when a small quantity of B(a)P is present in a fraction, the fraction will exhibit carcinogenic activity in a bioassay (mouse skin). However, it does not follow that the lack of detectable B(a)P insures that the fraction will be noncarcinogenic. Several fractions have been analyzed for their content of B(a)P and then subjected to bioassay. A method for testing complex mixtures for their carcinogenic potential is described. The carcinogenic potency of these fractions are compared to petroleum fractions. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. FIGURE 5. FIGURE 6. FIGURE 7. FIGURE 8. FIGURE 9. PMID:446446

  7. Synthesis, characterization and antibacterial activity of new sulfonyl hydrazone derivatives and their nickel(II) complexes

    NASA Astrophysics Data System (ADS)

    Özmen, Ümmühan Özdemir; Olgun, Gülçin

    2008-08-01

    Prophane sulfonic acid hydrazide (psh: CH 3CH 2CH 2SO 2NHNH 2) derivatives as salicylaldehydeprophanesulfonylhydrazone (salpsh), 5-methylsalicylaldehydeprophanesulfonylhydrazone (5-msalpsh), 2-hydroxyacetophenoneprophanesulfonylhydrazone (afpsh), 5-methyl-2-hydroxyacetophenoneprophanesulfonylhydrazone (5-mafpsh) and their Ni(II) complexes have been synthesized. The structure of these compounds has been investigated by using elemental analysis, FTIR, 1H NMR, LC/MS, UV-vis spectrophotometric method, magnetic susceptibility and conductivity measurements. The complexes were found to have general compositions [NiL2]. Square-planer structures are proposed for the Ni(II) complexes on the basis of magnetic evidence, electronic spectra and TGA data. Bacterial activities of sulfonyl hydrazone compounds were studied against gram-positive bacteria: Staphylococcus aureus, Bacillus subtilis, Bacillus magaterium and gram-negative bacteria: Salmonella enteritidis, Escherichia coli by using minimum inhibitory concentrations (MICs) method.

  8. Synthesis, characterization and toxicity studies of pyridinecarboxaldehydes and L-tryptophan derived Schiff bases and corresponding copper (II) complexes

    PubMed Central

    Malakyan, Margarita; Babayan, Nelly; Grigoryan, Ruzanna; Sarkisyan, Natalya; Tonoyan, Vahan; Tadevosyan, Davit; Matosyan, Vladimir; Aroutiounian, Rouben; Arakelyan, Arsen

    2016-01-01

    Schiff bases and their metal-complexes are versatile compounds exhibiting a broad range of biological activities and thus actively used in the drug development process. The aim of the present study was the synthesis and characterization of new Schiff bases and their copper (II) complexes, derived from L-tryptophan and isomeric (2-; 3-; 4-) pyridinecarboxaldehydes, as well as the assessment of their toxicity in vitro. The optimal conditions of the Schiff base synthesis resulting in up to 75-85% yield of target products were identified. The structure-activity relationship analysis indicated that the location of the carboxaldehyde group at 2-, 3- or 4-position with regard to nitrogen of the pyridine ring in aldehyde component of the L-tryptophan derivative Schiff bases and corresponding copper complexes essentially change the biological activity of the compounds. The carboxaldehyde group at 2- and 4-positions leads to the higher cytotoxic activity, than that of at 3-position, and the presence of the copper in the complexes increases the cytotoxicity. Based on toxicity classification data, the compounds with non-toxic profile were identified, which can be used as new entities in the drug development process using Schiff base scaffold. PMID:28344771

  9. Synthesis, characterization and toxicity studies of pyridinecarboxaldehydes and L-tryptophan derived Schiff bases and corresponding copper (II) complexes.

    PubMed

    Malakyan, Margarita; Babayan, Nelly; Grigoryan, Ruzanna; Sarkisyan, Natalya; Tonoyan, Vahan; Tadevosyan, Davit; Matosyan, Vladimir; Aroutiounian, Rouben; Arakelyan, Arsen

    2016-01-01

    Schiff bases and their metal-complexes are versatile compounds exhibiting a broad range of biological activities and thus actively used in the drug development process. The aim of the present study was the synthesis and characterization of new Schiff bases and their copper (II) complexes, derived from L-tryptophan and isomeric (2-; 3-; 4-) pyridinecarboxaldehydes, as well as the assessment of their toxicity in vitro . The optimal conditions of the Schiff base synthesis resulting in up to 75-85% yield of target products were identified. The structure-activity relationship analysis indicated that the location of the carboxaldehyde group at 2-, 3- or 4-position with regard to nitrogen of the pyridine ring in aldehyde component of the L-tryptophan derivative Schiff bases and corresponding copper complexes essentially change the biological activity of the compounds. The carboxaldehyde group at 2- and 4-positions leads to the higher cytotoxic activity, than that of at 3-position, and the presence of the copper in the complexes increases the cytotoxicity. Based on toxicity classification data, the compounds with non-toxic profile were identified, which can be used as new entities in the drug development process using Schiff base scaffold.

  10. Synthesis and strong photooxidation power of a supramolecular hybrid comprising a polyoxometalate and Ru(II) polypyridyl complex with zinc(II).

    PubMed

    Ohashi, Kenji; Takeda, Hiroyuki; Koike, Kazuhide; Ishitani, Osamu

    2015-01-01

    A novel method for constructing supramolecular hybrids composed of polyoxometalates and photofunctional metal complexes was developed. A Ru(II) complex with phosphonate groups (RuP) strongly interacted with Zn(II) to afford a 2 : 1 trinuclear metal complex ([(RuP)2Zn](3+)). In dimethylsulfoxide, [(RuP)2Zn](3+) strongly interacted with a Keggin-type heteropolyoxometalate (Si-WPOM) to form a 1 : 1 hybrid ([(RuP)2Zn]-POM). Irradiation of [(RuP)2Zn]-POM in the presence of diethanolamine caused rapid accumulation of the one-electron reduced hybrid with a quantum yield of 0.99.

  11. Anticancer, antibacterial and antifungal activity of new ni (ii) and cu (ii) complexes of imidazole-phenanthroline derivatives.

    PubMed

    Moghadam, Mahboube Eslami; Divsalar, Adeleh; Zare, Marziye Shahraki; Gholizadeh, Roghayeh; Mahalleh, Doran; Saghatforosh, Lotfali; Sanati, Soheila

    2017-11-02

    Two new nickel(II) and copper(II) complexes of 2-(Furan-2-yl)-1H-Imidazo[4,5-f][1,10]Phenanthroline (FIP) and 2-(thiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (TIP), imidazophen derivatives were synthesized. The structures of the compounds were determined by UV-visible and FT-IR spectroscopic methods and elemental analysis. The biological activities of Ni and Cu complexes, as anticancer agents, were tested against chronic myelogenous leukemia cell line, K562, at micromolar concentration. The MTT studies showed Cc 50 values are 21 and 160 µM for Cu and Ni(II) complexes, respectively; suggesting that Ni (II) complex has Cc 50 almost seven times of that obtained for cisplatin. Biological activity of the Ni(II) and Cu(II) complexes were also assayed against selective microorganisms by disc diffusion method. These results showed that the Cu(II) complex is antifungal agent but Ni(II) complex has antibacterial activity.

  12. Acute Oral Toxicity Evaluations of Some Zinc(II) Complexes Derived from 1-(2-Salicylaldiminoethyl)piperazine Schiff Bases in Rats

    PubMed Central

    Salga, Muhammad Saleh; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen; Abdelwahab, Siddig Ibrahim

    2012-01-01

    The current study described the synthesis and the in vivo acute oral toxicity evaluations in Sprague Dawley rats. The compounds were characterized by elemental analyses, LC-MS, FTIR, 1H NMR, 13C NMR and UV-visible spectroscopy. In the acute toxicity study, a single administration of the compounds was performed orally to the rats at the single doses of 2000 mg/kg and they were then monitored for possible side effects, mortality or behavioral changes up to 14 days. The serum level of aspartate (AST), alanine aminotransferases (ALT), alkaline phosphate (ALP), triglyceride, high density lipoprotein (HDL), immunoglobulins (GAM) and the C-reactive proteins did not significantly change. The hematological indices white blood cells (WBC), haematocrit (HCT), red blood cells (RBC), mean corpuscular volume (MCV), mean corpuscular haemoglobin concentration (MCHC), and mean corpuscular hemoglobin (MCH) were within the normal range. The renal function indices examined were also within the reference range. Generally, the compounds exhibited low toxic effects as required for further in vivo therapeutic studies. PMID:22408397

  13. Mononuclear mercury(II) complexes containing bipyridine derivatives and thiocyanate ligands: Synthesis, characterization, crystal structure determination, and luminescent properties

    NASA Astrophysics Data System (ADS)

    Amani, Vahid; Alizadeh, Robabeh; Alavije, Hanieh Soleimani; Heydari, Samira Fadaei; Abafat, Marzieh

    2017-08-01

    A series of mercury(II) complexes, [Hg(Nsbnd N)(SCN)2] (Nsbnd N is 4,4‧-dimethyl-2,2‧-bipyridine in 1, 5,5‧-dimethyl-2,2‧-bipyridine in 2, 6,6‧-dimethyl-2,2‧-bipyridine in 3 and 6-methyl-2,2‧-bipyridine in 4), were prepared from the reactions of Hg(SCN)2 with mentioned ligands in methanol. Suitable crystals of these complexes were obtained for X-ray diffraction measurement by methanol diffusion into a DMSO solution. The four complexes were thoroughly characterized by spectral methods (IR, UV-Vis, 13C{1H}NMR, 1H NMR and luminescence), elemental analysis (CHNS) and single crystal X-ray diffraction. The X-ray structural analysis indicated that in the structures of these complexes, the mercury(II) cation is four-coordinated in a distorted tetrahedral configuration by two S atoms from two thiocyanate anions and two N atoms from one chelating 2,2‧-bipyridine derivative ligand. Also, in these complexes intermolecular interactions, for example Csbnd H⋯N hydrogen bonds (in 1-4), Csbnd H⋯S hydrogen bonds (in 1, 2 and 4), π … π interactions (in 2-4), Hg⋯N interactions (in 2) and S⋯S interactions (in 4), are effective in the stabilization of the crystal structures and the formation of the 3D supramolecular complexes. Furthermore, the luminescence spectra of the title complexes show that the intensity of their emission bands are stronger than the emission bands for the free bipyridine derivative ligands.

  14. Spectroscopic and biological activities studies of bivalent transition metal complexes of Schiff bases derived from condensation of 1,4-phenylenediamine and benzopyrone derivatives.

    PubMed

    Sherif, Omaima E; Abdel-Kader, Nora S

    2014-01-03

    Many tools of analysis such as elemental analyses, infrared, ultraviolet-visible, electron spin resonance (ESR) and thermal analysis, as well as conductivity and magnetic susceptibility measurements were used to elucidate the structures of the newly prepared Co(II), Ni(II) and Cu(II) complexes with Schiff bases derived from the condensation of 1,4-phenylenediamine with 6-formyl-7-hydroxy-5-methoxy-2-methylbenzo-pyran-4-one (H2L) or 5,7-dihydroxy-6-formyl-2-methylbenzopyran-4-one (H4L). The data showed that all formed complexes are 1:1 or 2:2 (M:L) and non-electrolyte chelates. The Co(II) and Cu(II) complexes of the two Schiff bases were screened for antibacterial activities by the disk diffusion method. The antibacterial activity was screened using Escherichia coli and Staphylococcus capitis but the antifungal activity was examined by using Aspergillus flavus and Candida albicans. The Results showed that the tested complexes have antibacterial, except CuH4L, but not antifungal activities. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Phase solubility, 1H NMR and molecular modelling studies of bupivacaine hydrochloride complexation with different cyclodextrin derivates

    NASA Astrophysics Data System (ADS)

    Jug, Mario; Mennini, Natascia; Melani, Fabrizio; Maestrelli, Francesca; Mura, Paola

    2010-11-01

    A novel method, which simultaneously exploits experimental (NMR) and theoretically calculated data obtained by a molecular modelling technique, was proposed, to obtain deeper insight into inclusion geometry and possible stereoselective binding of bupivacaine hydrochloride with selected cyclodextrin derivatives. Sulphobuthylether-β-cyclodextrin and water soluble polymeric β-cyclodextrin demonstrated to be the best complexing agents for the drug, resulting in formation of the most stable inclusion complexes with the highest increase in aqueous drug solubility. The drug-carrier binding modes with these cyclodextrins and phenomena which may be directly related to the higher stability and better aqueous solubility of complexes formed were discussed in details.

  16. Copper (II) and zinc (II) complexes with flavanone derivatives: Identification of potential cholinesterase inhibitors by on-flow assays.

    PubMed

    Sarria, André Lucio Franceschini; Vilela, Adriana Ferreira Lopes; Frugeri, Bárbara Mammana; Fernandes, João Batista; Carlos, Rose Maria; da Silva, Maria Fátima das Graças Fernandes; Cass, Quezia Bezerra; Cardoso, Carmen Lúcia

    2016-11-01

    Metal chelates strongly influence the nature and magnitude of pharmacological activities in flavonoids. In recent years, studies have shown that a promising class of flavanone-metal ion complexes can act as selective cholinesterase inhibitors (ChEIs), which has led our group to synthesize a new series of flavanone derivatives (hesperidin, hesperetin, naringin, and naringenin) complexed to either copper (II) or zinc (II) and to evaluate their potential use as selective ChEIs. Most of the synthesized complexes exhibited greater inhibitory activity against acetylcholinesterase (AChE) than against butyrylcholinesterase (BChE). Nine of these complexes constituted potent, reversible, and selective ChEIs with inhibitory potency (IC 50 ) and inhibitory constant (K i ) ranging from 0.02 to 4.5μM. Copper complexes with flavanone-bipyridine derivatives afforded the best inhibitory activity against AChE and BChE. The complex Cu(naringin)(2,2'-bipyridine) (11) gave IC 50 and K i values of 0.012±0.002 and 0.07±0.01μM for huAChE, respectively, which were lower than the inhibitory values obtained for standard galanthamine (IC 50 =206±30.0 and K i =126±18.0μM). Evaluation of the inhibitory activity of this complex against butyrylcholinesterase from human serum (huBChE) gave IC 50 and K i values of 8.0±1.4 and 2.0±0.1μM, respectively. A Liquid Chromatography-Immobilized Capillary Enzyme Reactor by UV detection (LC-ICER-UV) assay allowed us to determine the IC 50 and K i values and the type of mechanism for the best inhibitors. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Structure-activity relationships in cytotoxic Au(I)/Au(III) complexes derived from 2-(2'-pyridyl)benzimidazole.

    PubMed

    Maiore, Laura; Aragoni, Maria Carla; Deiana, Carlo; Cinellu, Maria Agostina; Isaia, Francesco; Lippolis, Vito; Pintus, Anna; Serratrice, Maria; Arca, Massimiliano

    2014-04-21

    Gold(I) and gold(III) complexes derived from 2-(2'-pyridyl)benzimidazole (pbiH) were proven to be a promising class of in vitro antitumor agents against A2780 human ovarian cancer cells. In this paper, a comparative electrochemical, UV-vis absorption, and emission spectroscopic investigation is reported on pbiH, the two mononuclear Au(III) complexes [(pbi)AuX2] (X = Cl (1), AcO (2)), the four mononuclear Au(I) derivatives [(pbiH)AuCl] (3), [(pbiH)Au(PPh3)]PF6 ((4(+))(PF6(-))), [(pbi)Au(PPh3)] (5), and [(pbi)Au(TPA)] (6), the three mixed-valence Au(III)/Au(I) complexes [(μ-pbi)Au2Cl3] (7), [(Ph3P)Au(μ-pbi)AuX2]PF6 (X = Cl ((8(+))(PF6(-))), AcO ((9(+))(PF6(-)))), and the binuclear Au(I)-Au(I) compound [(μ-pbi)Au2(PPh3)2]PF6 ((10(+))(PF6(-))). All complexes feature irreversible reduction processes related to the Au(III)/Au(I) or Au(I)/Au(0) processes and peculiar luminescent emission at about 360-370 nm in CH2Cl2, with quantum yields that are remarkably lower ((0.7-14.5) × 10(-2)) in comparison to that determined for the free pbiH ligand (31.5 × 10(-2)) in the same solvent. The spectroscopic and electrochemical properties of all complexes were interpreted on the grounds of time-dependent PBE0/DFT calculations carried out both in the gas phase and in CH2Cl2 implicitly considered within the IEF-PCM SCRF approach. The electronic structure of the complexes, and in particular the energy and composition of the Kohn-Sham LUMOs, can be related to the antiproliferative properties against the A2780 ovarian carcinoma cell line, providing sound quantitative structure-activity relationships and shedding a light on the role played by the global charge and nature of ancillary ligands in the effectiveness of Au-based antitumor drugs.

  18. Effective cleavage of phosphodiester promoted by the zinc(II) and copper(II) inclusion complexes of β-cyclodextrin.

    PubMed

    Zhou, Ying-Hua; Chen, Li-Qing; Tao, Jun; Shen, Jun-Li; Gong, Dao-Yu; Yun, Rui-Rui; Cheng, Yong

    2016-10-01

    To construct the model of metallohydrolase, two inclusion complexes [MLCl 2 (β-CD)] (1, M=Zn(II); 2, M=Cu(II); L=N,N'-bis(2-pyridylmethyl)amantadine; β-CD=β-cyclodextrin) were synthesized by mixing β-CDs with the pre-synthesized complexes G1, [ZnLCl 2 ] and G2, [CuLCl 2 ]. Structures of G1, G2, 1 and 2 were characterized by X-ray crystallography, respectively. In solution, two chloride anions of G1 and G2 underwent ligand exchange with solvent molecules according to ESI-MS analysis. The chemical equilibrium constants were determined by potentiometric pH titration. The kinetics of bis(4-nitrophenyl) phosphate (BNPP) hydrolysis catalyzed by G1, G2, 1 and 2 were examined at pHs ranging from 7.50 to 10.50 at 308±0.1K. The pH profile of rate constant of BNPP hydrolysis catalyzed by 1 exhibited an exponential increase with the second-order rate constant of 2.68×10 -3 M -1 s -1 assigned to the di-hydroxo species, which was approximately an order of magnitude higher than those of reported mono-Zn(II)-hydroxo species. The high reactivity was presumably hydroxyl-rich microenvironment provided by β-CDs, which might effect in stabilizing either the labile zinc-hydroxo species or the catalytic transition state. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Bidentate urea derivatives of p-tert-butyldihomooxacalix[4]arene: neutral receptors for anion complexation.

    PubMed

    Marcos, Paula M; Teixeira, Filipa A; Segurado, Manuel A P; Ascenso, José R; Bernardino, Raul J; Michel, Sylvia; Hubscher-Bruder, Véronique

    2014-01-17

    Three new bidentate ureidodihomooxacalix[4]arene derivatives (phenyl 5a, n-propyl 5b, and tert-butyl 5c) were synthesized in four steps from the parent compound p-tert-butyldihomooxacalix[4]arene and obtained in the cone conformation, as shown by NMR studies. The binding ability of these neutral receptors toward spherical, linear, trigonal planar, and tetrahedrical anions was assessed by (1)H NMR and UV-vis titrations. The structures and complexation energies of some complexes were also studied by DFT methods. The data showed that the association constants are strongly dependent on the nature of the substituent (aryl/alkyl) at the urea moiety. In general, for all the receptors, the association constants decrease with decrease of anion basicity. Ph-urea 5a is the best anion receptor, showing the strongest complexation for F(-) (log K(assoc) = 3.10 in CDCl3) and also high binding affinity for the carboxylates AcO(-) and BzO(-). Similar results were obtained by UV-vis studies and were also corroborated by DFT calculations.

  20. Zinc complexation in chloride-rich hydrothermal fluids (25-600 °C): A thermodynamic model derived from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Mei, Yuan; Sherman, David M.; Liu, Weihua; Etschmann, Barbara; Testemale, Denis; Brugger, Joël

    2015-02-01

    The solubility of zinc minerals in hydrothermal fluids is enhanced by chloride complexation of Zn2+. Thermodynamic models of these complexation reactions are central to models of Zn transport and ore formation. However, existing thermodynamic models, derived from solubility measurements, are inconsistent with spectroscopic measurements of Zn speciation. Here, we used ab initio molecular dynamics simulations (with the PBE exchange-correlation functional) to predict the speciation of Zn-Cl complexes from 25 to 600 °C. We also obtained in situ XAS measurements of Zn-Cl solutions at 30-600 °C. Qualitatively, the simulations reproduced the main features derived from in situ XANES and EXAFS measurements: octahedral to tetrahedral transition with increasing temperature and salinity, stability of ZnCl42- at high chloride concentration up to ⩾500 °C, and increasing stability of the trigonal planar [ZnCl3]- complex at high temperature. Having confirmed the dominant species, we directly determined the stability constants for the Zn-Cl complexes using thermodynamic integration along constrained Zn-Cl distances in a series of MD simulations. We corrected our stability constants to infinite dilution using the b-dot model for the activity coefficients of the solute species. In order to compare the ab initio results with experiments, we need to re-model the existing solubility data using the species we identified in our MD simulations. The stability constants derived from refitting published experimental data are in reasonable agreement with those we obtained using ab initio MD simulations. Our new thermodynamic model accurately predicts the experimentally observed changes in ZnO(s) and ZnCO3(s) solubility as a function of chloride concentration from 200 (Psat) to 600 °C (2000 bar). This study demonstrates that metal speciation and geologically useful stability constants can be derived for species in hydrothermal fluids from ab initio MD simulations even at the generalized

  1. Synthesis of Some "Cobaloxime" Derivatives: A Demonstration of "Umpolung" in the Reactivity of an Organometallic Complex

    NASA Astrophysics Data System (ADS)

    Jameson, Donald L.; Grzybowski, Joseph J.; Hammels, Deb E.; Castellano, Ronald K.; Hoke, Molly E.; Freed, Kimberly; Basquill, Sean; Mendel, Angela; Shoemaker, William J.

    1998-04-01

    This article describes a four-reaction sequence for the synthesis of two organometallic "cobaloxime" derivatives. The concept of "Umpolung" or reversal of reactivity is demonstrated in the preparation of complexes. The complex Co(dmgH)2(4-t-BuPy)Et is formed by the reaction of a cobalt (I) intermediate (cobalt in the role of nucleophile) with ethyl iodide. The complex Co(dmgH)2(4-t-BuPy)Ph is formed by the reaction of PhMgBr with a cobalt (III) intermediate (cobalt in the role of electrophile). All the products contain cobalt in the diamagnetic +3 oxidation state and are readily characterized by proton and carbon NMR. The four reaction sequence may be completed in two 4-hour lab periods. Cobaloximes are well known as model complexes for Vitamin B-12 and the experiment exposes students to aspects of classical coordination chemistry, organometallic chemistry and bioinorganic chemistry. The experiment also illustrates an important reactivity parallel between organic and organometallic chemistry.

  2. Quantitative determination of some pharmaceutical piperazine derivatives through complexation with iron(III) chloride.

    PubMed

    Abou-Attia, F M; Issa, Y M; Abdel-Gawad, F M; Abdel-Hamid, S M

    2003-08-01

    A simple, accurate and sensitive spectrophotometric method has been developed for the determination of three pharmaceutical piperazine derivatives, namely ketoconazole (KC), trimetazidine hydrochloride (TMH) and piribedil (PD). This method is based on the formation of yellow orange complexes between iron(III) chloride and the investigated drugs. The optimum reaction conditions, spectral characteristics, conditional stability constants and composition of the water soluble complexes have been established. The method permits the determination of KC, TMH and PD over a concentration range 1-15, 1-12 and 1-12 microg ml(-1), respectively. Sandell sensitivity is found to be 0.016, 0.013 and 0.013 microg cm(-2) for KC, TMH and PD, respectively. The method was sensitive, simple, reproducible and accurate within +/-1.5%. The method is applicable to the assay of the three drugs under investigation in different dosage forms and the results are in good agreement with those obtained by the official methods (USP and JP).

  3. Differential recall of derived and inflected word forms in working memory: examining the role of morphological information in simple and complex working memory tasks

    PubMed Central

    Service, Elisabet; Maury, Sini

    2015-01-01

    Working memory (WM) has been described as an interface between cognition and action, or a system for access to a limited amount of information needed in complex cognition. Access to morphological information is needed for comprehending and producing sentences. The present study probed WM for morphologically complex word forms in Finnish, a morphologically rich language. We studied monomorphemic (boy), inflected (boy+’s), and derived (boy+hood) words in three tasks. Simple span, immediate serial recall of words, in Experiment 1, is assumed to mainly rely on information in the focus of attention. Sentence span, a dual task combining sentence reading with recall of the last word (Experiment 2) or of a word not included in the sentence (Experiment 3) is assumed to involve establishment of a search set in long-term memory for fast activation into the focus of attention. Recall was best for monomorphemic and worst for inflected word forms with performance on derived words in between. However, there was an interaction between word type and experiment, suggesting that complex span is more sensitive to morphological complexity in derivations than simple span. This was explored in a within-subjects Experiment 4 combining all three tasks. An interaction between morphological complexity and task was replicated. Both inflected and derived forms increased load in WM. In simple span, recall of inflectional forms resulted in form errors. Complex span tasks were more sensitive to morphological load in derived words, possibly resulting from interference from morphological neighbors in the mental lexicon. The results are best understood as involving competition among inflectional forms when binding words from input into an output structure, and competition from morphological neighbors in secondary memory during cumulative retrieval-encoding cycles. Models of verbal recall need to be able to represent morphological as well as phonological and semantic information. PMID:25642181

  4. Mononuclear nickel (II) and copper (II) coordination complexes supported by bispicen ligand derivatives: Experimental and computational studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Nirupama; Niklas, Jens; Poluektov, Oleg

    2017-01-01

    The synthesis, characterization and density functional theory calculations of mononuclear Ni and Cu complexes supported by the N,N’-Dimethyl-N,N’-bis-(pyridine-2-ylmethyl)-1,2-diaminoethane ligand and its derivatives are reported. The complexes were characterized by X-ray crystallography as well as by UV-visible absorption spectroscopy and EPR spectroscopy. The solid state structure of these coordination complexes revealed that the geometry of the complex depended on the identity of the metal center. Solution phase characterization data are in accord with the solid phase structure, indicating minimal structural changes in solution. Optical spectroscopy revealed that all of the complexes exhibit color owing to d-d transition bands in the visiblemore » region. Magnetic parameters obtained from EPR spectroscopy with other structural data suggest that the Ni(II) complexes are in pseudo-octahedral geometry and Cu(II) complexes are in a distorted square pyramidal geometry. In order to understand in detail how ligand sterics and electronics affect complex topology detailed computational studies were performed. The series of complexes reported in this article will add significant value in the field of coordination chemistry as Ni(II) and Cu(II) complexes supported by tetradentate pyridyl based ligands are rather scarce.« less

  5. Synthesis, spectral, thermal and antimicrobial studies on cobalt(II), nickel(II), copper(II), zinc(II) and palladium(II) complexes containing thiosemicarbazone ligand

    NASA Astrophysics Data System (ADS)

    El-Sawaf, Ayman K.; El-Essawy, Farag; Nassar, Amal A.; El-Samanody, El-Sayed A.

    2018-04-01

    The coordination characteristic of new N4-morpholinyl isatin-3-thiosemicarbazone (HL) towards Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) has been studies. The structures of the complexes were described by elemental analyses, molar conductivity, magnetic, thermal and spectral (IR, UV-Vis, 1H and 13C NMR and ESR) studies. On the basis of analytical and spectral studies the ligand behaves as monobasic tridentate ONS donor forming two five membered rings towards cobalt, copper and palladium and afforded complexes of the kind [M(L)X], (Mdbnd Co, Cu or Pd; Xdbnd Cl, Br or OAc). Whereas the ligand bound to NiCl2 as neutral tridentate ONS donor and with ZnCl2 as neutral bidentate NS donor. The newly synthesized thiosemicarbazone ligand and some of its complexes were examined for antimicrobial activity against 2 gram negative bacterial strains (Escherichia coli Pseudomonas and aeruginosa), 2 gram positive bacterial strains (Streptococcus pneumoniae and Staphylococcus aureus)} and two Pathogenic fungi (Aspergillus fumigatus and Candida albicans). All metal complexes possess higher antimicrobial activity comparing with the free thiosemicarbazone ligand. The high potent activities of the complexes may arise from the coordination and chelation, which tends to make metal complexes act as more controlling and potent antimicrobial agents, thus hindering the growing of the microorganisms. The antimicrobial results also show that copper bromide complex is better antimicrobial agent as compared to the Schiff base and its metal complexes.

  6. Enhancing cadmium bioremediation by a complex of water-hyacinth derived pellets immobilized with Chlorella sp.

    PubMed

    Shen, Ying; Zhu, Wenzhe; Li, Huan; Ho, Shih-Hsin; Chen, Jianfeng; Xie, Youping; Shi, Xinguo

    2018-06-01

    A complex of water-hyacinth derived pellets immobilized with Chlorella sp. was applied, for the first time, in the bioremediation of Cadmium (Cd). The Cd(II) removal efficiency of the complex was optimized by investigating several parameters, including the pellet materials, algal culture age, and light intensity. Results showed that the Cd(II) removal efficiency was positively related to the algal immobilization efficiency and the algal bioaccumulation capacity. Since higher surface hydrophilicity leads to higher immobilization efficiency, the water-hyacinth leaf biochar pellet (WLBp) was selected as the optimal carrier. A maximum Cd(II) removal efficiency of 92.45% was obtained by the complex of WLBp immobilized with algal cells in stationary growth phase and illuminated with a light intensity of 119 μmol m -2  s -1 . Recovery tests on both microalgal cells and the WLBp demonstrated that the algal cells and the biochar pellet can be economically recycled and reused. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Further aspects of ochratoxin A-cation interactions: complex formation with zinc ions and a novel analytical application of ochratoxin A-magnesium interaction in the HPLC-FLD system.

    PubMed

    Poór, Miklós; Kuzma, Mónika; Matisz, Gergely; Li, Yin; Perjési, Pál; Kunsági-Máté, Sándor; Kőszegi, Tamás

    2014-04-10

    Ochratoxin A (OTA) is a mycotoxin produced by different Aspergillus and Penicillium species. Since its mechanism of action is not fully understood yet, it is important to gain further insight into different interactions of OTA at the molecular level. OTA is found worldwide in many foods and drinks. Moreover, it can also be detected in human and animal tissues and body fluids, as well. Therefore, the development of highly sensitive quantitative methods for the determination of OTA is of utmost importance. OTA most likely forms complexes with divalent cations, both in cells and body fluids. In the present study, the OTA-zinc interaction was investigated and compared to OTA-magnesium complex formation using fluorescence spectroscopy and molecular modeling. Our results show that zinc(II) ion forms a two-fold higher stable complex with OTA than magnesium(II) ion. In addition, based on the enhanced fluorescence emission of OTA in its magnesium-bound form, a novel RP-HPLC-fluorescence detector (FLD) method was also established. Our results highlight that the application of magnesium chloride in alkaline eluents results in an approximately two-fold increase in sensitivity using the HPLC-FLD technique.

  8. A comprehensive study of the complexation of alkali metal cations by lower rim calix[4]arene amide derivatives.

    PubMed

    Horvat, Gordan; Frkanec, Leo; Cindro, Nikola; Tomišić, Vladislav

    2017-09-13

    The complexation of alkali metal cations by lower rim N,N-dihexylacetamide (L1) and newly synthesized N-hexyl-N-methylacetamide (L2) calix[4]arene tertiary-amide derivatives was thoroughly studied at 25 °C in acetonitrile (MeCN), benzonitrile (PhCN), and methanol (MeOH) by means of direct and competitive microcalorimetric titrations, and UV and 1 H NMR spectroscopies. In addition, by measuring the ligands' solubilities, the solution (transfer) Gibbs energies of the ligands and their alkali metal complexes were obtained. The inclusion of solvent molecules in the free and complexed calixarene hydrophobic cavities was also investigated. Computational (classical molecular dynamics) investigations of the studied systems were also carried out. The obtained results were compared with those previously obtained by studying the complexation ability of an N-hexylacetamidecalix[4]arene secondary-amide derivative (L3). The stability constants of 1 : 1 complexes were determined in all solvents used (the values obtained by different methods being in excellent agreement), as were the corresponding complexation enthalpies and entropies. Almost all of the examined reactions were enthalpically controlled. The most striking exceptions were reactions of Li + with both ligands in methanol, for which the entropic contribution to the reaction Gibbs energy was substantial due the entropically favourable desolvation of the smallest lithium cation. The thermodynamic stabilities of the complexes were quite solvent dependent (the stability decreased in the solvent order: MeCN > PhCN ≫ MeOH), which could be accounted for by considering the differences in the solvation of the ligand and free and complexed alkali metal cations in the solvents used. Comparison of the stability constants of the ligand L1 and L2 complexes clearly revealed that the higher electron-donating ability of the hexyl with respect to the methyl group is of considerable importance in determining the equilibria of the

  9. Synthetic chromanol derivatives and their interaction with complex III in mitochondria from bovine, yeast, and Leishmania.

    PubMed

    Monzote, L; Stamberg, W; Patel, A; Rosenau, T; Maes, L; Cos, P; Gille, L

    2011-10-17

    Synthetic chromanol derivatives (TMC4O, 6-hydroxy-2,2,7,8-tetramethyl-chroman-4-one; TMC2O, 6-hydroxy-4,4,7,8-tetramethyl-chroman-2-one; and Twin, 1,3,4,8,9,11-hexamethyl-6,12-methano-12H-dibenzo[d,g][1,3]dioxocin-2,10-diol) share structural elements with the potent inhibitor of the mitochondrial cytochrome (cyt) bc(1) complex stigmatellin. Studies with isolated bovine cyt bc(1) complex demonstrated that these compounds partially inhibit the mammalian enzyme. The aim of this work was to comparatively investigate these toxicological aspects of synthetic vitamin E derivatives in mitochondria of different species. The chromanols and atovaquone as reference compound were evaluated for their inhibition of the cyt bc(1) activity in mitochondrial fractions from bovine hearts, yeast, and Leishmania. In addition, compounds were evaluated in vitro for their inhibitory activity against whole-cell Leishmania and mouse peritoneal macrophages. In these organisms, the chromanols showed a species-selective inhibition of the cyt bc(1) activity different from that of atovaquone. While in atovaquone the side chain mediates species-selectivity, the marked differences for TMC2O and TMC4O in cyt bc(1) inhibition suggests that direct substitution of the chromanol headgroup will control selectivity in these compounds. Low micromolar concentrations of TMC2O (IC(50) = 9.5 ± 0.5 μM) inhibited the growth of Leishmania, and an esterified TMC2CO derivative inhibited the cyt bc(1) activity with an IC(50) of 4.9 ± 0.9 μM. These findings suggest that certain chromanols also exhibit beyond their antioxidative properties antileishmanial activities and that TMC2O derivatives could be useful toward the development of highly active antiprotozoal compounds.

  10. Different zinc(II) complex species and binding modes at Aβ N-terminus drive distinct long range cross-talks in the Aβ monomers.

    PubMed

    Pietropaolo, Adriana; Satriano, Cristina; Strano, Gaetano; La Mendola, Diego; Rizzarelli, Enrico

    2015-12-01

    The present study addresses the reconstruction of the free-energy landscapes of amyloid-beta1-42 (Aβ42) coordinated respectively with one and two zinc ions, to scrutinize whether different Aβ-zinc complex species, i.e., mononuclear and dinuclear metal complexes, induce different Aβ conformation features. We found a subtle switch of intramolecular interactions, depending both on the zinc coordination environment and on the peptide to zinc stoichiometric ratio. On the one side, hairpin-like structures are predominant in mononuclear complexes, where a salt-bridge that involves Lys28-Glu22 and Lys16-Asp23 is stabilized. On the other side, elongated conformations are instead stabilized in the dinuclear zinc complexes. Experimental studies of atomic force microscopy as well as of zinc-Aβ complex species distribution diagrams provide evidence that the theoretical calculations can be rationalized in terms of the correlation between the increased amount of amorphous aggregates and the Aβ/Zn(2+) ratio. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Co(II) and Cd(II) Complexes Derived from Heterocyclic Schiff-Bases: Synthesis, Structural Characterisation, and Biological Activity

    PubMed Central

    Ahmed, Riyadh M.; Yousif, Enaam I.; Al-Jeboori, Mohamad J.

    2013-01-01

    New monomeric cobalt and cadmium complexes with Schiff-bases, namely, N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]furan-2-carbohydrazide (L1) and N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]thiophene-2-carbohydrazide (L2) are reported. Schiff-base ligands L1 and L2 were derived from condensation of 3-hydroxy-4-methoxybenzaldehyde (iso-vanillin) with furan-2-carboxylic acid hydrazide and thiophene-2-carboxylic acid hydrazide, respectively. Complexes of the general formula [M(L)2]Cl2 (where M = Co(II) or Cd(II), L = L1 or L2) have been obtained from the reaction of the corresponding metal chloride with the ligands. The ligands and their metal complexes were characterised by spectroscopic methods (FTIR, UV-Vis, 1H, and 13C NMR spectra), elemental analysis, metal content, magnetic measurement, and conductance. These studies revealed the formation of four-coordinate complexes in which the geometry about metal ion is tetrahedral. Biological activity of the ligands and their metal complexes against gram positive bacterial strain Bacillus (G+) and gram negative bacteria Pseudomonas (G−) revealed that the metal complexes become less resistive to the microbial activities as compared to the free ligands. PMID:24027449

  12. Macrophage cell lines derived from major histocompatibility complex II-negative mice

    NASA Technical Reports Server (NTRS)

    Beharka, A. A.; Armstrong, J. W.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1998-01-01

    Two bone-marrow-derived macrophage cell lines, C2D and C2Dt, were isolated from major histocompatibility class II negative knock-out mice. The C2D cell line was stabilized by continuous culture in colony-stimulating factor-1 and the C2Dt cell line was transformed with SV40 virus large T antigen. These cells exhibited phenotypic properties of macrophages including morphology and expression of Mac 1 and Mac 2 cell surface molecules. These cells also had comparable growth to the bone-marrow-derived macrophage cell line B6MP102. These new cell lines were not spontaneously cytotoxic and were only capable of modest killing of F5b tumor cells when stimulated with LPS and interferon-gamma, but not when stimulated with LPS alone or with staphylococcal exotoxin. C2D and C2Dt cells phagocytosed labeled Staphylococcus aureus similarly to B6MP102 cells but less well than C2D peritoneal macrophages. These cell lines secreted interleukin-6, but not tumor necrosis factor or nitric oxide in response to LPS or staphlococcal enterotoxins A or B C2D(t) cells were tumorigenic in C2D and C57BL/6J mice but C2D cells were not. These data suggest that macrophage cell lines can be established from bone marrow cells of major histocompatibility complex II-negative mice.

  13. NMR assignment of a PDZ domain in complex with a HPV51 E6 derived N-terminally pyroglutamic acid modified peptide.

    PubMed

    Mischo, André; Ohlenschläger, Oliver; Ramachandran, Ramadurai; Görlach, Matthias

    2013-04-01

    The resonance assignment of an amino-terminal pyroglutamic acid containing peptide derived from the E6 protein of human papillomavirus (HPV) type 51 in complex with PDZ domain 2 of hDlg/SAP-97 is reported. The assignments include (1)H, (13)C and (15)N resonances for the protein and peptide in the complex and all of the peptide's pyroglutamic acid nuclei.

  14. Application of FDA-Approved Memantine and Newer NitroMemantine Derivatives to Treat Neurological Manifestations in Rodent Models of Tuberous Sclerosis Complex

    DTIC Science & Technology

    2014-05-01

    Memantine and Newer NitroMemantine Derivatives to Treat Neurological Manifestations in Rodent Models of Tuberous Sclerosis Complex PRINCIPAL...Approved Memantine and Newer NitroMemantine Derivatives to Treat 5a. CONTRACT NUMBER W81XWH-13-1-0053 Neurological Manifestations in Rodent Models of...to investigate if administration of the FDA-approved drug, Memantine , an uncompetitive/fast off-rate antagonist of the N- methyl-D-aspartate-type

  15. Synthesis, characterization, X-ray crystal structure, DFT calculation and antibacterial activities of new vanadium(IV, V) complexes containing chelidamic acid and novel thiourea derivatives.

    PubMed

    Farzanfar, Javad; Ghasemi, Khaled; Rezvani, Ali Reza; Delarami, Hojat Samareh; Ebrahimi, Ali; Hosseinpoor, Hona; Eskandari, Amir; Rudbari, Hadi Amiri; Bruno, Giuseppe

    2015-06-01

    Three new thiourea ligands derived from the condensation of aroyl- and aryl-isothiocyanate derivatives with 2,6-diaminopyridine, named 1,1'-(pyridine-2,6-diyl)bis(3-(benzoyl)thiourea) (L1), 1,1'-(pyridine-2,6-diyl)bis(3-(2-chlorobenzoyl)thiourea) (L2) and 1,1'-(pyridine-2,6-diyl)bis(3-(4-chlorophenyl)thiourea) (L3), their oxido-vanadium(IV) complexes, namely [VO(L1('))(H2O)] (C1), [VO(L2('))(H2O)] (C2) and [VO(L3('))(H2O)] (C3), and also, dioxo-vanadium(V) complex containing 4-hydroxy-2,6-pyridine dicarboxylic acid (chelidamic acid, H2dipic-OH) and metformin (N,N-dimethylbiguanide, Met), named [H2Met][VO2(dipic-OH)]2·H2O (C4), were synthesized and characterized by elemental analysis, FTIR and (1)H NMR and UV-visible spectroscopies. Proposed structures for free thiourea ligands and their vanadium complexes were corroborated by applying geometry optimization and conformational analysis. Solid state structure of complex [H2Met][VO2(dipic-OH)]2·H2O (triclinic, Pī) was fully determined by single crystal X-ray diffraction analysis. In this complex, metformin is double protonated and acted as counter ion. The antibacterial properties of these compounds were investigated in vitro against standard Gram-positive and Gram-negative bacterial strains. The experiments showed that vanadium(IV) complexes had the superior antibacterial activities than novel thiourea derivatives and vanadium(V) complex against all Gram-positive and Gram-negative bacterial strains. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Synthesis, characterization and biological properties of thienyl derived triazole Schiff bases and their oxovanadium(IV) complexes.

    PubMed

    Chohan, Zahid H; Sumrra, Sajjad H

    2012-04-01

    A new series of biologically active thienyl derived triazole Schiff bases and their oxovanadium(IV) complexes have been synthesized and characterized on the basis of physical (m.p., magnetic susceptibility and conductivity), spectral (IR, ¹H and ¹³C NMR, electronic and mass spectrometry) and microanalytical data. All the Schiff base ligands and their oxovanadium(IV) complexes have been subjected to in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa, Salmonella enterica serover typhi) and two Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacterial strains and, for in vitro antifungal activity against Trichophyton longifucus, Candida albican, Aspergillus flavus, Microscopum canis, Fusarium solani and Candida glabrata. Brine shrimp bioassay was also carried out to check the cytotoxic nature of these compounds.

  17. Cytotoxicity and cellular response mechanisms of water-soluble platinum(II) complexes of lidocaine and phenylcyanamide derivatives.

    PubMed

    Tabrizi, Leila; Chiniforoshan, Hossein

    2017-02-01

    Three new platinum(II) complexes of lidocaine and phenylcyanamide derivative ligands of formula K[Pt(3,5-(NO 2 ) 2 pcyd) 2 (LC)], 1, K[Pt(3,5-(CF 3 ) 2 pcyd) 2 (LC)], 2, K[Pt(3,5-Cl 2 pcyd) 2 (LC)], 3 (LC: lidocaine, 3,5-(NO 2 ) 2 pcyd: 3,5-dinitro phenylcyanamide, 3,5-(CF 3 ) 2 pcyd: 3,5-bis(trifluoromethyl) phenylcyanamide, 3,5-Cl 2 pcyd: 3,5-dichloro phenylcyanamide) have been synthesized and fully characterized. Cellular uptake, DNA platination and cytotoxicity against a panel of human tumor cell lines were evaluated. The complexes 1-3 revealed a significant in vitro antiproliferative activity against human ovarian carcinoma (A2780), colorectal adenocarcinoma (HT29), breast (MCF-7), liver hepatocellular carcinoma (HepG-2) and lung adenocarcinoma (A549) cancer cell lines. All the complexes are more active than cisplatin and follow the trend 1 > 2 > 3. Mechanistic studies showed that the trend in cytotoxicity of the Pt(II) complexes is mainly consistent with their ability to accumulate into cancer cells and to increase intracellular basal reactive oxygen species levels, which consequently results in the loss of mitochondrial membrane potential and apoptosis induction. The complex 1 caused to approximately 80-fold higher DNA platination level with respect to cisplatin. The complexes 1-3 can considerably stimulate the production of hydrogen peroxide in a time-dependent manner. Also, the complexes 1-3 induced an increase in reactive oxygen species (ROS) production that was superior to that induced by antimycin. The complex 1 had the most effect on ROS production in comparison with other complexes.

  18. Synthesis, structural characterization and DNA interaction of zinc complex from 2,6-diacetylpyridine dihydrazone and {4-[(2E)-2-(hydroxyimino)acetyl]phenoxy} acetic acid.

    PubMed

    Gup, Ramazan; Gökçe, Cansu; Dilek, Nefise

    2015-03-01

    A new water soluble zinc complex has been prepared and structurally characterized. The Zn(II) complex was synthesized by the reaction of 2,6-diacetylpyridine dihydrazone (dph) with {4-[(2E)-2-(hydroxyimino)acetyl]phenoxy} acetic acid (H₂L) in the presence of zinc(II) acetate. Single crystal X-ray diffraction study revealed that the zinc ion is situated in distorted trigonal-bipyramidal environment where the equatorial position is occupied by the nitrogen atom of pyridine ring and the oxygen atoms of acetate groups of two oxime ligands (H₂L) whereas the axial positions of the zinc complex are occupied by the imine nitrogen atoms of dph ligand. Characterization of the complex with FTIR, (1)H and (13)C NMR, UV-vis and elemental analysis also confirmed the proposed structure. Interaction of the Zn(II) complex with calf-thymus DNA (CT-DNA) was investigated through UV-vis spectroscopy and viscosity measurements. The results suggest that the complex preferably bind to DNA through the groove binding mode. The zinc complex cleaves plasmid pBR 322 DNA in the presence and absence of an oxidative agent (H₂O₂), possibly through a hydrolytic pathway which is also supported by DNA cleave experiments in the presence of different radical scavengers. The nuclease activity of the zinc complex significantly depends on concentration of the complex and incubation time both in the presence and absence of H₂O₂. DNA cleave activity is inhibited in the presence of methyl green indicating that the zinc complex seems to bind the major groove of DNA. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Zinc(II) complexation by some biologically relevant pH buffers.

    PubMed

    Wyrzykowski, D; Tesmar, A; Jacewicz, D; Pranczk, J; Chmurzyński, L

    2014-12-01

    The isothermal titration calorimetry (ITC) technique supported by potentiometric titration data was used to study the interaction of zinc ions with pH buffer substances, namely 2-(N-morpholino)ethanesulfonic acid (Mes), piperazine-N,N'-bis(2-ethanesulfonic acid) (Pipes), and dimethylarsenic acid (Caco). The displacement ITC titration method with nitrilotriacetic acid as a strong, competitive ligand was applied to determine conditional-independent thermodynamic parameters for the binding of Zn(II) to Mes, Pipes, and Caco. Furthermore, the relationship between the proposed coordination mode of the buffers and the binding enthalpy has been discussed. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Evaluation of exchange-correlation functionals for time-dependent density functional theory calculations on metal complexes.

    PubMed

    Holland, Jason P; Green, Jennifer C

    2010-04-15

    The electronic absorption spectra of a range of copper and zinc complexes have been simulated by using time-dependent density functional theory (TD-DFT) calculations implemented in Gaussian03. In total, 41 exchange-correlation (XC) functionals including first-, second-, and third-generation (meta-generalized gradient approximation) DFT methods were compared in their ability to predict the experimental electronic absorption spectra. Both pure and hybrid DFT methods were tested and differences between restricted and unrestricted calculations were also investigated by comparison of analogous neutral zinc(II) and copper(II) complexes. TD-DFT calculated spectra were optimized with respect to the experimental electronic absorption spectra by use of a Matlab script. Direct comparison of the performance of each XC functional was achieved both qualitatively and quantitatively by comparison of optimized half-band widths, root-mean-squared errors (RMSE), energy scaling factors (epsilon(SF)), and overall quality-of-fit (Q(F)) parameters. Hybrid DFT methods were found to outperform all pure DFT functionals with B1LYP, B97-2, B97-1, X3LYP, and B98 functionals providing the highest quantitative and qualitative accuracy in both restricted and unrestricted systems. Of the functionals tested, B1LYP gave the most accurate results with both average RMSE and overall Q(F) < 3.5% and epsilon(SF) values close to unity (>0.990) for the copper complexes. The XC functional performance in spin-restricted TD-DFT calculations on the zinc complexes was found to be slightly worse. PBE1PBE, mPW1PW91 and B1LYP gave the most accurate results with typical RMSE and Q(F) values between 5.3 and 7.3%, and epsilon(SF) around 0.930. These studies illustrate the power of modern TD-DFT calculations for exploring excited state transitions of metal complexes. 2009 Wiley Periodicals, Inc.

  1. Synthesis, structure and stability of a chiral imine-based Schiff-based ligand derived from L-glutamic acid and its [Cu4] complex

    NASA Astrophysics Data System (ADS)

    Muche, Simon; Levacheva, Irina; Samsonova, Olga; Biernasiuk, Anna; Malm, Anna; Lonsdale, Richard; Popiołek, Łukasz; Bakowsky, Udo; Hołyńska, Małgorzata

    2017-01-01

    Studies of the stability of a ligand derived from L-glutamic acid and ortho-vanillin and its new [Cu4] complex are presented. The [Cu4] complex contains a heterocubane [CuII4O4] core and pendant carboxylic groups increasing its solubility in water, also under basic conditions. The stability of the complex in different solvents is confirmed with ESI-MS studies and such experiments as successful recrystallization. The complex is stable also under physiological conditions whereas the ligand is partly decomposed to L-glutamic acid and ortho-vanillin.

  2. Stereochemical investigations of a novel class of chiral phosphapalladacycle complexes derived from 1-[(2,5-dimethyl)phenyl]ethyldiphenylphosphine.

    PubMed

    Ng, Joseph Kok-Peng; Li, Yongxin; Tan, Geok-Kheng; Koh, Lip-Lin; Vittal, Jagadese J; Leung, Pak-Hing

    2005-12-26

    The phosphapalladacycle derived from 1-(2',5'-dimethylphenyl)ethyldiphenylphosphine has been prepared in the optically active and racemic forms. The phosphine was synthesized as a racemate by the treatment of 1-chloro-1-(2',5'-dimethylphenyl)ethane with sodium diphenylphosphide in THF. The racemic phosphapalladacycle was subsequently obtained as the chloro-bridged dimer by the treatment of the phosphine with palladium(II) acetate followed by anion metathesis with lithium chloride. Alternatively, the phosphine could be optically resolved via metal complexation using (R,R)-bis(mu-chloro)bis{1-[1-(N,N-dimethylamino)ethyl]naphthyl-C(2),N}dipalladium(II) as the resolving agent. An efficient separation of the resulting diastereomeric complexes was achieved by silica gel chromatography. The obtained optically resolved diastereomers were next subject to chemoselective removal of the (R)-N,N-(dimethylamino)-1-(1-naphthyl)ethylaminate auxiliary by treatment with concentrated hydrochloric acid. This process yielded the binuclear dimer complexes containing the resolved eta(1)-P ligand. Cyclopalladation of the coordinated phosphine could next be performed by treatment of its eta(1)-P binuclear dimer with silver(I) hexafluorophosphate(V) in a dichloromethane/water mixture followed by treatment with lithium chloride, giving rise to a pair of optically pure enantiomeric dimers with [alpha](D) -322 and +319 degrees in CH(2)Cl(2). Despite the possibilities of the phosphine to attain a five- membered structure by ortho-palladation or a six-membered ring formation by aliphatic C-H bond activation, only the former was observed. X-ray crystallographic data of the meso dimer and an acetylacetonate derivative indicated that the phosphapalladacycle alpha-C methyl substituent was axially located. The 2-D (1)H-(1)H ROESY spectrum of the acetylacetonate derivative further revealed that the phosphapalladacycle was conformationally rigid in CDCl(3).

  3. Seasonal oscillation of liver-derived hibernation protein complex in the central nervous system of non-hibernating mammals

    PubMed Central

    Seldin, Marcus M.; Byerly, Mardi S.; Petersen, Pia S.; Swanson, Roy; Balkema-Buschmann, Anne; Groschup, Martin H.; Wong, G. William

    2014-01-01

    Mammalian hibernation elicits profound changes in whole-body physiology. The liver-derived hibernation protein (HP) complex, consisting of HP-20, HP-25 and HP-27, was shown to oscillate circannually, and this oscillation in the central nervous system (CNS) was suggested to play a role in hibernation. The HP complex has been found in hibernating chipmunks but not in related non-hibernating tree squirrels, leading to the suggestion that hibernation-specific genes may underlie the origin of hibernation. Here, we show that non-hibernating mammals express and regulate the conserved homologous HP complex in a seasonal manner, independent of hibernation. Comparative analyses of cow and chipmunk HPs revealed extensive biochemical and structural conservations. These include liver-specific expression, assembly of distinct heteromeric complexes that circulate in the blood and cerebrospinal fluid, and the striking seasonal oscillation of the HP levels in the blood and CNS. Central administration of recombinant HPs affected food intake in mice, without altering body temperature, physical activity levels or energy expenditure. Our results demonstrate that HP complex is not unique to the hibernators and suggest that the HP-regulated liver–brain circuit may couple seasonal changes in the environment to alterations in physiology. PMID:25079892

  4. Structural-conformational aspects of tRNA complexation with chloroethyl nitrosourea derivatives: A molecular modeling and spectroscopic investigation.

    PubMed

    Agarwal, Shweta; Tyagi, Gunjan; Chadha, Deepti; Mehrotra, Ranjana

    2017-01-01

    Chloroethyl nitrosourea derivatives (CENUs) represent an important family of anticancer chemotherapeutic agents, which are used in the treatment of different types of cancer such as brain tumors, resistant or relapsed Hodgkin's disease, small cell lung cancer and malignant melanoma. This work focuses towards understanding the interaction of chloroethyl nitrosourea derivatives; lomustine, nimustine and semustine with tRNA using spectroscopic approach in order to elucidate their auxiliary anticancer action mechanism inside the cell. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), Fourier transform infrared difference spectroscopy, circular dichroism spectroscopy and UV-visible spectroscopy were employed to investigate the binding parameters of tRNA-CENUs complexation. Results of present study demonstrate that all CENUs, studied here, interact with tRNA through guanine nitrogenous base residues and possibly further crosslink cytosine residues in paired region of tRNA. Moreover, spectral data collected for nimustine-tRNA and semustine-tRNA complex formation indicates towards the groove-directed-alkylation as their anti-malignant action, which involves the participation of uracil moiety located in major groove of tRNA. Besides this, tRNA-CENUs adduct formation did not alter the native conformation of biopolymer and tRNA remains in A-form after its interaction with all three nitrosourea derivatives studied. The binding constants (K a ) estimated for tRNA complexation with lomustine, nimustine and semustine are 2.55×10 2 M -1 , 4.923×10 2 M -1 and 4.223×10 2 M -1 respectively, which specify weak type of CENU's binding with tRNA. Moreover, molecular modeling simulations were also performed to predict preferential binding orientation of CENUs with tRNA that corroborates well with spectral outcomes. The findings, presented here, recognize tRNA binding properties of CENUs that can further help in rational designing of more specific and

  5. Synthesis, spectroscopic, coordination and biological activities of some organometallic complexes derived from thio-Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Abou-Hussein, Azza A.; Linert, Wolfgang

    2014-01-01

    Two series of mono- and binuclear complexes cyclic or acyclic thio-ferocine Schiff base ligands, derived from the condensation of 2-aminobenzenthiol (L) with monoacetyl ferrocene in the molar ratio 1:1 or in the molar ratio 1:2 for diacetyl ferocine have been prepared. The condensation reactions yield the corresponding Schiff Base ligands, HLa-Maf and H2Lb-Daf. The chelation of the ligands to metal ions occurs through the sulfur of the thiol group as well as the nitrogen atoms of the azomethine group of the ligands. HLa-Maf acts as monobasic bidentate or dibasic tetradentate, while H2Lb-Daf behaves as twice negatively cargend tetradentate ligand. The structures of these ligands were elucidated by elemental analysis, infrared, ultraviolet-visible spectra, as well as 1H NMR spectra. Reactions of the Schiff bases ligands with ruthenium(III), oxovanadium(IV) and dioxouranium(VI) afforded the corresponding transition metal complexes. The properties of the newly prepared complexes were analyse by elemental analyses, infrared, electronic spectra, 1H NMR as well as the magnetic susceptibility and conductivity measurement. The metal complexes exhibits different geometrical arrangements such as octahedral and square pyramidal coordination. Schiff base ligands and their metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi to study their biological activity. All the complexes exhibit antibacterial and antifungal activities against these organisms.

  6. Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters.

    PubMed

    György, Bence; Módos, Károly; Pállinger, Eva; Pálóczi, Krisztina; Pásztói, Mária; Misják, Petra; Deli, Mária A; Sipos, Aron; Szalai, Anikó; Voszka, István; Polgár, Anna; Tóth, Kálmán; Csete, Mária; Nagy, György; Gay, Steffen; Falus, András; Kittel, Agnes; Buzás, Edit I

    2011-01-27

    Numerous diseases, recently reported to associate with elevated microvesicle/microparticle (MP) counts, have also long been known to be characterized by accelerated immune complex (IC) formation. The goal of this study was to investigate the potential overlap between parameters of protein complexes (eg, ICs or avidin-biotin complexes) and MPs, which might perturb detection and/or isolation of MPs. In this work, after comprehensive characterization of MPs by electron microscopy, atomic force microscopy, dynamic light-scattering analysis, and flow cytometry, for the first time, we drive attention to the fact that protein complexes, especially insoluble ICs, overlap in biophysical properties (size, light scattering, and sedimentation) with MPs. This, in turn, affects MP quantification by flow cytometry and purification by differential centrifugation, especially in diseases in which IC formation is common, including not only autoimmune diseases, but also hematologic disorders, infections, and cancer. These data may necessitate reevaluation of certain published data on patient-derived MPs and contribute to correct the clinical laboratory assessment of the presence and biologic functions of MPs in health and disease.

  7. Cellulosome-based, Clostridium-derived multi-functional enzyme complexes for advanced biotechnology tool development: advances and applications.

    PubMed

    Hyeon, Jeong Eun; Jeon, Sang Duck; Han, Sung Ok

    2013-11-01

    The cellulosome is one of nature's most elegant and elaborate nanomachines and a key biological and biotechnological macromolecule that can be used as a multi-functional protein complex tool. Each protein module in the cellulosome system is potentially useful in an advanced biotechnology application. The high-affinity interactions between the cohesin and dockerin domains can be used in protein-based biosensors to improve both sensitivity and selectivity. The scaffolding protein includes a carbohydrate-binding module (CBM) that attaches strongly to cellulose substrates and facilitates the purification of proteins fused with the dockerin module through a one-step CBM purification method. Although the surface layer homology (SLH) domain of CbpA is not present in other strains, replacement of the cell surface anchoring domain allows a foreign protein to be displayed on the surface of other strains. The development of a hydrolysis enzyme complex is a useful strategy for consolidated bioprocessing (CBP), enabling microorganisms with biomass hydrolysis activity. Thus, the development of various configurations of multi-functional protein complexes for use as tools in whole-cell biocatalyst systems has drawn considerable attention as an attractive strategy for bioprocess applications. This review provides a detailed summary of the current achievements in Clostridium-derived multi-functional complex development and the impact of these complexes in various areas of biotechnology. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Isolation of metallothionein from cells derived from aggressive form of high-grade prostate carcinoma using paramagnetic antibody-modified microbeads off-line coupled with electrochemical and electrophoretic analysis.

    PubMed

    Masarik, Michal; Gumulec, Jaromir; Sztalmachova, Marketa; Hlavna, Marian; Babula, Petr; Krizkova, Sona; Ryvolova, Marketa; Jurajda, Michal; Sochor, Jiri; Adam, Vojtech; Kizek, Rene

    2011-12-01

    Prostate cancer with altered zinc(II) cell metabolism is the second most frequently diagnosed cancer in developed countries. The alterations of zinc(II) metabolism can influence metabolism of other metal ions and can also be associated with the expression and translation of metal-binding proteins including metallothioneins. The aim of this article was to optimize immunoseparation protocol based on paramagnetic beads conjugated with protein G for the isolation of metallothionein. Isolated metallothionein was determined by differential pulse voltammetry Brdicka reaction and SDS-PAGE. Optimal conditions: antigen-binding time - 60 min, temperature - 70°C, and buffer composition and pH - acetate buffer, pH 4.3, were determined. Under the optimized conditions, lysates from 22Rv1 prostate cancer cells treated with various concentrations of cadmium(II) and copper(II) ions were analyzed. We observed strong correlation in all experimental groups and all lysate types (r>0.83 at p<0.041) between metallothionein concentration related to viability and concentration of copper(II) ions and cadmium(II) ions in medium. Moreover, the results were compared with standard sample preparation as heat treatment and SDS-PAGE analysis. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Expanding the Library of Uranyl Amide Derivatives: New Complexes Featuring the tert-Butyldimethylsilylamide Ligand.

    PubMed

    Pattenaude, Scott A; Coughlin, Ezra J; Collins, Tyler S; Zeller, Matthias; Bart, Suzanne C

    2018-04-16

    New uranyl derivatives featuring the amide ligand, -N(SiHMe 2 ) t Bu, were synthesized and characterized by X-ray crystallography, multinuclear NMR spectroscopy, and absorption spectroscopies. Steric properties of these complexes were also quantified using the computational program Solid-G. The increased basicity of the free ligand -N(SiHMe 2 ) t Bu was demonstrated by direct comparison to -N(SiMe 3 ) 2 , a popular supporting ligand for uranyl. Substitutional lability on a uranyl center was also demonstrated by exchange with the -N(SiMe 3 ) 2 ligand. The increased basicity of this ligand and diverse characterization handles discussed here will make these compounds useful synthons for future reactivity.

  10. 1H NMR study of the complexation of aromatic drugs with dimethylxanthine derivatives

    NASA Astrophysics Data System (ADS)

    Hernandez Santiago, A. A.; Gonzalez Flores, M.; Rosas Castilla, S. A.; Cervantes Tavera, A. M.; Gutierrez Perez, R.; Khomich, V. V.; Ovchinnikov, D. V.; Parkes, H. G.; Evstigneev, M. P.

    2012-02-01

    With an aim of searching efficient interceptors of aromatic drugs, the self- and hetero-association of dimethylxanthine derivatives with different structures, selected according to Strategy 1 (variation of the position of methyl groups) and Strategy 2 (variation of the length of sbnd (CH2)nsbnd COOH group), with aromatic drug molecules: Ethidium Bromide, Proflavine and Daunomycin, were studied using 1H NMR spectroscopy. It was found that the association proceeds in a form of stacking-type complexation and its energetics is relatively independent on the structure of the dimethylxanthines. However, on average, the dimethylxanthines possess higher hetero-association constant and, hence, higher interceptor ability as compared to the trimethylxanthine, Caffeine, used during the past two decades as a typical interceptor molecule.

  11. Ribonucleotide reductase inhibition by metal complexes of Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone): A combined experimental and theoretical study

    PubMed Central

    Popović-Bijelić, Ana; Kowol, Christian R.; Lind, Maria E.S.; Luo, Jinghui; Himo, Fahmi; Enyedy, Éva A.; Arion, Vladimir B.; Gräslund, Astrid

    2012-01-01

    Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone, 3-AP) is currently the most promising chemotherapeutic compound among the class of α-N-heterocyclic thiosemicarbazones. Here we report further insights into the mechanism(s) of anticancer drug activity and inhibition of mouse ribonucleotide reductase (RNR) by Triapine. In addition to the metal-free ligand, its iron(III), gallium(III), zinc(II) and copper (II) complexes were studied, aiming to correlate their cytotoxic activities with their effects on the diferric/tyrosyl radical center of the RNR enzyme in vitro. In this study we propose for the first time a potential specific binding pocket for Triapine on the surface of the mouse R2 RNR protein. In our mechanistic model, interaction with Triapine results in the labilization of the diferric center in the R2 protein. Subsequently the Triapine molecules act as iron chelators. In the absence of external reductants, and in presence of the mouse R2 RNR protein, catalytic amounts of the iron(III)–Triapine are reduced to the iron(II)–Triapine complex. In the presence of an external reductant (dithiothreitol), stoichiometric amounts of the potently reactive iron (II)–Triapine complex are formed. Formation of the iron(II)–Triapine complex, as the essential part of the reaction outcome, promotes further reactions with molecular oxygen, which give rise to reactive oxygen species (ROS) and thereby damage the RNR enzyme. Triapine affects the diferric center of the mouse R2 protein and, unlike hydroxyurea, is not a potent reductant, not likely to act directly on the tyrosyl radical. PMID:21955844

  12. Ruthenium complexes with phenylterpyridine derivatives target cell membrane and trigger death receptors-mediated apoptosis in cancer cells.

    PubMed

    Deng, Zhiqin; Gao, Pan; Yu, Lianling; Ma, Bin; You, Yuanyuan; Chan, Leung; Mei, Chaoming; Chen, Tianfeng

    2017-06-01

    Elucidation of the communication between metal complexes and cell membrane may provide useful information for rational design of metal-based anticancer drugs. Herein we synthesized a novel class of ruthenium (Ru) complexes containing phtpy derivatives (phtpy = phenylterpyridine), analyzed their structure-activity relationship and revealed their action mechanisms. The result showed that, the increase in the planarity of hydrophobic Ru complexes significantly enhanced their lipophilicity and cellular uptake. Meanwhile, the introduction of nitro group effectively improved their anticancer efficacy. Further mechanism studies revealed that, complex (2c), firstly accumulated on cell membrane and interacted with death receptors to activate extrinsic apoptosis signaling pathway. The complex was then transported into cell cytoplasm through transferrin receptor-mediated endocytosis. Most of the intracellular 2c accumulated in cell plasma, decreasing the level of cellular ROS, inducing the activation of caspase-9 and thus intensifying the apoptosis. At the same time, the residual 2c can translocate into cell nucleus to interact with DNA, induce DNA damage, activate p53 pathway and enhance apoptosis. Comparing with cisplatin, 2c possesses prolonged circulation time in blood, comparable antitumor ability and importantly, much lower toxicity in vivo. Taken together, this study uncovers the role of membrane receptors in the anticancer actions of Ru complexes, and provides fundamental information for rational design of membrane receptor targeting anticancer drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Propionibacterium acnes-derived insoluble immune complexes in sinus macrophages of lymph nodes affected by sarcoidosis.

    PubMed

    Suzuki, Yoshimi; Uchida, Keisuke; Takemura, Tamiko; Sekine, Masaki; Tamura, Tomoki; Furukawa, Asuka; Hebisawa, Akira; Sakakibara, Yumi; Awano, Nobuyasu; Amano, Tomonari; Kobayashi, Daisuke; Negi, Mariko; Kakegawa, Tomoya; Wada, Yuriko; Ito, Takashi; Suzuki, Takashige; Akashi, Takumi; Eishi, Yoshinobu

    2018-01-01

    Propionibacterium acnes is thought to be a causative agent of sarcoidosis. Patients with sarcoidosis have circulating immune complexes. We attempted to detect P. acnes-derived immune complexes in sarcoid lesions. We evaluated formalin-fixed and paraffin-embedded lymph node samples from 38 sarcoidosis patients and 90 non-sarcoidosis patients (27 patients with necrotizing lymphadenitis, 28 patients with reactive lymphadenitis, 16 patients with colon cancer, 19 patients with gastric cancer) by immunohistochemistry using anti-human immunoglobulins (IgG, IgA, and IgM) and complement (C1q and C3c) antibodies, and a P. acnes-specific monoclonal antibody (PAB antibody) that reacts with the membrane-bound lipoteichoic acid of P. acnes. Small round bodies (SRBs) bound to IgA, IgM, or IgG were detected in sinus macrophages, in 32 (84%), 32 (84%), or 11 (29%) sarcoid samples, respectively, and in 19 (21%), 26 (29%), or no (0%) control samples, respectively. Some of these insoluble immune complexes (IICs) also bound to C1q and C3c. We developed a microwave treatment followed by brief trypsin digestion (MT treatment) to detect PAB-reactive SRBs bound to immunoglobulins (IIC-forming P. acnes). MT treatment revealed abundant IIC-forming P. acnes in most (89%) of the sarcoid samples and sparse distribution in some (20%) of the control samples with lymphadenitis, but no IIC-forming P. acnes was detected in control samples without inflammation. IIC-forming P. acnes were mostly bound to both IgA and IgM. The PAB-reactive antigen and immunoglobulins were both located at the peripheral rim of the IIC-forming P. acnes. Conventional electron microscopy identified many SRBs (0.5-2.0 μm diameter) in sinus macrophages of sarcoid lymph nodes with many IIC-forming P. acnes, some of which were in phagolysosomes with a degraded and lamellar appearance. P. acnes-derived IICs in sinus macrophages were frequent and abundant in sarcoid lymph nodes, suggesting a potential etiologic link between

  14. New insights into the coordination chemistry of Schiff bases derived from amino acids: Planar [Ni4] complexes with tyrosine side-chains

    NASA Astrophysics Data System (ADS)

    Muche, Simon; Hołyńska, Małgorzata

    2017-08-01

    Structure and properties of a rare metal complex of the chiral Schiff base ligand derived from ortho-vanillin and L-tyrosine are presented. This study is a continuation of research on ligands containing biologically compatible moieties. The ligand is also fully characterized in form of a sodium salt, in particular in solution, for the first time. The metal complex contains a unique bowl-shaped [Ni4] core. Its structure is investigated both in solution (ESI-MS, NMR) and in solid state (X-ray diffraction studies). Under certain conditions the complex can be isolated as crystalline DMF solvate which is studied in solid state.

  15. Structural and Biological Behaviour of Co(II), Cu(II) and Ni(II) Metal Complexes of Some Amino Acid Derived Schiff-Bases

    PubMed Central

    Chohan, Zahid H.; Praveen, M.; Ghaffar, A.

    1997-01-01

    Biologically active tridentate amino acid (Alanine, Glycine & Tyrosine) derived Schiff-bases and their Co(II), Cu(II) & Ni(II) complexes have been synthesised and characterised on the basis of their conductance and magnetic measurements, elemental analysis and 13C-NMR, 1H-NMR, IR and electronic spectral data. These Schiff-bases and their complexes have been evaluated for their antibacterial activity against bacterial species such as Staphylococcus aureus, Escherichia coli, Klebsiella pneumonae, Proteus vulgarus and Pseudomonas aeruginosa and this activity data show the metal complexes to be more antibacterial than the Schiff-bases against one or more bacterial species. PMID:18475798

  16. Synthesis, characterization and biological activity of some platinum(II) complexes with Schiff bases derived from salicylaldehyde, 2-furaldehyde and phenylenediamine.

    PubMed

    Gaballa, Akmal S; Asker, Mohsen S; Barakat, Atiat S; Teleb, Said M

    2007-05-01

    Four platinum(II) complexes of Schiff bases derived from salicylaldehyde and 2-furaldehyde with o- and p-phenylenediamine were reported and characterized based on their elemental analyses, IR and UV-vis spectroscopy and thermal analyses (TGA). The complexes were found to have the general formula [Pt(L)(H(2)O)(2)]Cl(2) x nH(2)O (where n=0 for complexes 1, 3, 4; n=1 for complex 2. The data obtained show that Schiff bases were interacted with Pt(II) ions in the neutral form as a bidentate ligand and the oxygens rather than the nitrogens are the most probable coordination sites. Square planar geometrical structure with two coordinated water molecules were proposed for all complexes The free ligands, and their metal complexes were screened for their antimicrobial activities against the following bacterial species: E. coli, B. subtilis, P. aereuguinosa, S. aureus; fungus A. niger, A. fluves; and the yeasts C. albican, S. cervisiea. The activity data show that the platinum(II) complexes are more potent antimicrobials than the parent Schiff base ligands against one or more microorganisms.

  17. Antineoplastic and cytogenetic effects of complexes of Pd (II) with 4N-substituted derivatives of 2-acetyl-pyridine-thiosemicarbazone.

    PubMed

    Papageorgiou, A; Iakovidou, Z; Mourelatos, D; Mioglou, E; Boutis, L; Kotsis, A; Kovala-Demertzi, D; Domopoulou, A; West, D X; Dermetzis, M A

    1997-01-01

    The effect of novel Pd(II) complexes with derivatives of 2-acetyl-pyridinethisemicarbazone, N4-ethyl (HAc4Et) and 3-hexamethyleneiminylthiosemicarbazone (HAchexim), on Sister Chromatid Exchange (SCE) rates and human lymphocyte proliferation kinetics was studied. Also, the effect of Pd(II) complexes on DNA synthesis of P388 and L1210 cell cultures and against Leukemia P388 was investigated. Among these compounds, the compound Bis(3-hexamethyleneiminyl-2-acetylpyridine-thisemicarbazonato++ +) palladium (II) was found to be distinctly effective against Leukemia P388, in inhibiting incorporation of 3H-thymidine into DNA and in inducing SCEs and cell division delays.

  18. Gas Phase Reactions of Ions Derived from Anionic Uranyl Formate and Uranyl Acetate Complexes

    NASA Astrophysics Data System (ADS)

    Perez, Evan; Hanley, Cassandra; Koehler, Stephen; Pestok, Jordan; Polonsky, Nevo; Van Stipdonk, Michael

    2016-12-01

    The speciation and reactivity of uranium are topics of sustained interest because of their importance to the development of nuclear fuel processing methods, and a more complete understanding of the factors that govern the mobility and fate of the element in the environment. Tandem mass spectrometry can be used to examine the intrinsic reactivity (i.e., free from influence of solvent and other condensed phase effects) of a wide range of metal ion complexes in a species-specific fashion. Here, electrospray ionization, collision-induced dissociation, and gas-phase ion-molecule reactions were used to create and characterize ions derived from precursors composed of uranyl cation (UVIO2 2+) coordinated by formate or acetate ligands. Anionic complexes containing UVIO2 2+ and formate ligands fragment by decarboxylation and elimination of CH2=O, ultimately to produce an oxo-hydride species [UVIO2(O)(H)]-. Cationic species ultimately dissociate to make [UVIO2(OH)]+. Anionic complexes containing acetate ligands exhibit an initial loss of acetyloxyl radical, CH3CO2•, with associated reduction of uranyl to UVO2 +. Subsequent CID steps cause elimination of CO2 and CH4, ultimately to produce [UVO2(O)]-. Loss of CH4 occurs by an intra-complex H+ transfer process that leaves UVO2 + coordinated by acetate and acetate enolate ligands. A subsequent dissociation step causes elimination of CH2=C=O to leave [UVO2(O)]-. Elimination of CH4 is also observed as a result of hydrolysis caused by ion-molecule reaction with H2O. The reactions of other anionic species with gas-phase H2O create hydroxyl products, presumably through the elimination of H2.

  19. Food-derived carbohydrates--structural complexity and functional diversity.

    PubMed

    Tharanathan, Rudrapatnam N

    2002-01-01

    Carbohydrates are biomolecules abundantly available in nature. They are found in bewildering types ranging from simple sugars through oligo- and polysaccharides to glycoconjugates and saccharide complexes, each exhibiting characteristic bio-physiological and/or nutritional functions both in in vivo and in vitro systems. For example, their presence or inclusion in food dictates the texture (body) and gives desirable customer appeal (satisfaction), or their inclusion in the diet offers beneficial effects of great therapeutic value. Thus, carbohydrates are integrally involved in a multitude of biological functions such as regulation of the immune system, cellular signaling (communication), cell malignancy, antiinfection responses, host-pathogen interactions, etc. If starch is considered the major energy storage carbohydrate, the gums/mucilages and other non-starch carbohydrates are of structural significance. The most investigated properties of starch are its gelatinization and melting behavior, especially during food processing. This has led to the development of the food polymer science approach, which has enabled a new interpretive and experimental frame work for the study of the plasticizing influence of simple molecules such as water, sugars, etc. on food systems that are kinetically constrained. Starch, although considered fully digestible, has been challenged, and starch is found to be partly indigestible in the GI tract of humans. This fraction of starch-resisting digestion in vivo is known as resistant starch (RS). The latter, due to its excellent fermentative capacity in the gut, especially yielding butyric acid is considered a new tool for the creation of fiber-rich foods, which are of nutraceutical importance. By a careful control of the processing conditions the content of RS, a man-made fiber, can be increased to as high as 30%. Arabinoxylans are the major endospermic cell wall polysaccharides of cereals. In wheat they are found complexed with ferulic

  20. Uniqueness of Zinc as a Bioelement: Principles and Applications in Bioinorganic Chemistry--III.

    ERIC Educational Resources Information Center

    Ochiai, Ei-Ichiro

    1988-01-01

    Attempts to delineate certain basic principles and applications of bioinorganic chemistry to oxidation-reduction reactions. Examines why zinc(II) is so uniquely suited to enzymated reactions of the acid-base type. Suggests the answer may be in the natural abundance and the basic physicochemical properties of zinc(II). (MVL)

  1. Thermal, dielectric characteristics and conduction mechanism of azodyes derived from quinoline and their copper complexes.

    PubMed

    El-Ghamaz, N A; Diab, M A; El-Bindary, A A; El-Sonbati, A Z; Nozha, S G

    2015-05-15

    A novel series of (5-(4'-derivatives phenyl azo)-8-hydroxy-7-quinolinecarboxaldehyde) (AQLn) (n=1, p-OCH3; n=2, R=H; and n=3; p-NO2) and their complexes [Cu(AQLn)2]·5H2O are synthesized and investigated. The optimized bond lengths, bond angles and the calculated quantum chemical parameters for AQLn are investigated. HOMO-LUMO energy gap, absolute electronegativities, chemical potentials, and absolute hardness are also calculated. The thermal properties, dielectric properties, alternating current conductivity (σac) and conduction mechanism are investigated in the frequency range 0.1-100kHz and temperature range 293-568K for AQL1-3 and 318-693K for [Cu(AQL1-3)2]·5H2O complexes. The thermal properties are of ligands (AQLn) and their Cu(II) complexes investigated by thermogravimetric analysis (TGA). The temperature and frequency dependence of the real and the imaginary part of the dielectric constant are studied. The values of the thermal activation energy of conduction mechanism for AQLn and their complexes [Cu(AQLn)2]·5H2O under investigation are calculated at different test frequencies. The values of thermal activation energies ΔE1 and ΔE2 for AQLn and [Cu(AQLn)2]·5H2O decrease with increasing the values of frequency. The ac conductivity is found to be depending on the chemical structure of the compounds. Different conduction mechanisms have been proposed to explain the obtained experimental data. The small polaron tunneling (SPT) is the dominant conduction mechanism for AQL1 and its complex [Cu(AQL1)2]·5H2O. The quantum mechanical tunneling (QMT) is the dominant conduction mechanism for AQL2 and its complex [Cu(AQL2)2]·5H2O. The correlated barrier hopping (CBH) is the dominant conduction mechanism for AQL3 and its complex [Cu(AQL3)2]·5H2O, and the values of the maximum barrier height (Wm) are calculated. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Bio-important antipyrine derived Schiff bases and their transition metal complexes: Synthesis, spectroscopic characterization, antimicrobial, anthelmintic and DNA cleavage investigation

    NASA Astrophysics Data System (ADS)

    Manjunath, M.; Kulkarni, Ajaykumar D.; Bagihalli, Gangadhar B.; Malladi, Shridhar; Patil, Sangamesh A.

    2017-01-01

    Spectroscopic (IR, NMR, UV-vis, ESR, ESI-mass), magnetic and TGA studies suggests octahedral geometry for all the CoII, NiII and CuII complexes of the Schiff bases, derived from 4-aminoantipyrine and 8-formyl-7-Hydroxy-4-methylcoumarin/5-formyl-6-hydroxycoumarin, coordinated through ONO donor sites. Antibacterial (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi), antifungal (Aspergillus niger, Aspergillus flavus and Cladosporium) and DNA cleavage properties of the metal complexes are investigated. The results suggested that some of the synthesized compounds are potential antimicrobials. The synthesized compounds tested for their anthelmintic activities and it was found that CoII and NiII complexes exhibited good anthelmintic properties.

  3. Acetate-Bridged Platinum(III) Complexes Derived from Cisplatin

    PubMed Central

    Wilson, Justin J.

    2012-01-01

    Oxidation of the acetate-bridged half-lantern platinum(II) complex, cis-[PtII(NH3)2(µ-OAc)2PtII(NH3)2](NO3)2, [1](NO3)2, with iodobenzene dichloride or bromine generates the halide-capped platinum(III) species, cis-[XPtIII(NH3)2(µ-OAc)2PtIII(NH3)2X](NO3)2, where X is Cl in [2](NO3)2, or Br in [3](NO3)2, respectively. These three complexes, characterized structurally by X-ray crystallography, feature short (≈ 2.6 Å) Pt–Pt separations, consistent with formation of a formal metal-metal bond upon oxidation. Elongated axial Pt–X distances occur, reflecting the strong trans influence of the metal-metal bond. The three structures are compared to those of other known dinuclear platinum complexes. A combination of 1H, 13C, 14N, and 195Pt NMR spectroscopy was used to characterize [1]2+–[3]2+ in solution. All resonances shift downfield upon oxidation of [1]2+ to [2]2+ and [3]2+. For the platinum(III) complexes, the 14N and 195Pt resonances exhibit decreased linewidths by comparison to those of [1]2+. Density functional theory (DFT) calculations suggest that the decrease in 14N linewidth arises from a diminished electric field gradient (EFG) at the 14N nuclei in the higher valent compounds. The oxidation of [1](NO3)2 with the alternative oxidizing agent, bis(trifluoroacetoxy) iodobenzene, affords the novel tetranuclear complex, cis-[(O2CCF3)PtIII(NH3)2(µ-OAc)2PtIII(NH3)(µ-NH2)]2(NO3)4, [4](NO3)4, also characterized structurally by X-ray crystallography. In solution, this complex exists as a mixture of species, the identities of which are proposed. PMID:22946515

  4. Synthesis, spectroscopic, molecular orbital calculation, cytotoxic, molecular docking of DNA binding and DNA cleavage studies of transition metal complexes with N-benzylidene-N'-salicylidene-1,1-diaminopropane

    NASA Astrophysics Data System (ADS)

    Al-Mogren, Muneerah M.; Alaghaz, Abdel-Nasser M. A.; Elbohy, Salwa A. H.

    2013-10-01

    Eight mononuclear chromium(III), manganese(II), iron(III), cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) complexes of Schiff's base ligand were synthesized and determined by different physical techniques. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMSO indicate that the complexes are non-electrolytic in nature. All the eight metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic data. The analytical data helped to elucidate the structure of the metal complexes. The Schiff base is found to act as tridentate ligand using N2O donor set of atoms leading to an octahedral geometry for the complexes around all the metal ions. Quantum chemical calculations were performed with semi-empirical method to find the optimum geometry of the ligand and its complexes. Additionally in silico, the docking studies and the calculated pharmacokinetic parameters show promising futures for application of the ligand and complexes as high potency agents for DNA binding activity. The interaction of the complexes with calf thymus DNA (CT-DNA) has been investigated by UV absorption method, and the mode of CT-DNA binding to the complexes has been explored. Furthermore, the DNA cleavage activity by the complexes was performed. The Schiff base and their complexes have been screened for their antibacterial activity against bacterial strains [Staphylococcus aureus (RCMB010027), Staphylococcus epidermidis (RCMB010024), Bacillis subtilis (RCMB010063), Proteous vulgaris (RCMB 010085), Klebsiella pneumonia (RCMB 010093) and Shigella flexneri (RCMB 0100542)] and fungi [(Aspergillus fumigates (RCMB 02564), Aspergillus clavatus (RCMB 02593) and Candida albicans (RCMB05035)] by disk diffusion method. All the metal complexes have potent biocidal activity than the free ligand.

  5. Gold(I)-Triphenylphosphine Complexes with Hypoxanthine-Derived Ligands: In Vitro Evaluations of Anticancer and Anti-Inflammatory Activities

    PubMed Central

    Křikavová, Radka; Hošek, Jan; Vančo, Ján; Hutyra, Jakub; Dvořák, Zdeněk; Trávníček, Zdeněk

    2014-01-01

    A series of gold(I) complexes involving triphenylphosphine (PPh3) and one N-donor ligand derived from deprotonated mono- or disubstituted hypoxanthine (HLn) of the general composition [Au(Ln)(PPh3)] (1–9) is reported. The complexes were thoroughly characterized, including multinuclear high resolution NMR spectroscopy as well as single crystal X-ray analysis (for complexes 1 and 3). The complexes were screened for their in vitro cytotoxicity against human cancer cell lines MCF7 (breast carcinoma), HOS (osteosarcoma) and THP-1 (monocytic leukaemia), which identified the complexes 4–6 as the most promising representatives, who antiproliferative activity was further tested against A549 (lung adenocarcinoma), G-361 (melanoma), HeLa (cervical cancer), A2780 (ovarian carcinoma), A2780R (ovarian carcinoma resistant to cisplatin), 22Rv1 (prostate cancer) cell lines. Complexes 4–6 showed a significantly higher in vitro anticancer effect against the employed cancer cells, except for G-361, as compared with the commercially used anticancer drug cisplatin, with IC50 ≈ 1–30 µM. Anti-inflammatory activity was evaluated in vitro by the assessment of the ability of the complexes to modulate secretion of the pro-inflammatory cytokines, i.e. tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), in the lipopolysaccharide-activated macrophage-like THP-1 cell model. The results of this study identified the complexes as auspicious anti-inflammatory agents with similar or better activity as compared with the clinically applied gold-based antiarthritic drug Auranofin. In an effort to explore the possible mechanisms responsible for the biological effect, the products of interactions of selected complexes with sulfur-containing biomolecules (L-cysteine and reduced glutathione) were studied by means of the mass-spectrometry study. PMID:25226034

  6. Optimization of complex slater-type functions with analytic derivative methods for describing photoionization differential cross sections.

    PubMed

    Matsuzaki, Rei; Yabushita, Satoshi

    2017-05-05

    The complex basis function (CBF) method applied to various atomic and molecular photoionization problems can be interpreted as an L2 method to solve the driven-type (inhomogeneous) Schrödinger equation, whose driven term being dipole operator times the initial state wave function. However, efficient basis functions for representing the solution have not fully been studied. Moreover, the relation between their solution and that of the ordinary Schrödinger equation has been unclear. For these reasons, most previous applications have been limited to total cross sections. To examine the applicability of the CBF method to differential cross sections and asymmetry parameters, we show that the complex valued solution to the driven-type Schrödinger equation can be variationally obtained by optimizing the complex trial functions for the frequency dependent polarizability. In the test calculations made for the hydrogen photoionization problem with five or six complex Slater-type orbitals (cSTOs), their complex valued expansion coefficients and the orbital exponents have been optimized with the analytic derivative method. Both the real and imaginary parts of the solution have been obtained accurately in a wide region covering typical molecular regions. Their phase shifts and asymmetry parameters are successfully obtained by extrapolating the CBF solution from the inner matching region to the asymptotic region using WKB method. The distribution of the optimized orbital exponents in the complex plane is explained based on the close connection between the CBF method and the driven-type equation method. The obtained information is essential to constructing the appropriate basis sets in future molecular applications. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Surface complexation modeling of zinc sorption onto ferrihydrite.

    PubMed

    Dyer, James A; Trivedi, Paras; Scrivner, Noel C; Sparks, Donald L

    2004-02-01

    A previous study involving lead(II) [Pb(II)] sorption onto ferrihydrite over a wide range of conditions highlighted the advantages of combining molecular- and macroscopic-scale investigations with surface complexation modeling to predict Pb(II) speciation and partitioning in aqueous systems. In this work, an extensive collection of new macroscopic and spectroscopic data was used to assess the ability of the modified triple-layer model (TLM) to predict single-solute zinc(II) [Zn(II)] sorption onto 2-line ferrihydrite in NaNO(3) solutions as a function of pH, ionic strength, and concentration. Regression of constant-pH isotherm data, together with potentiometric titration and pH edge data, was a much more rigorous test of the modified TLM than fitting pH edge data alone. When coupled with valuable input from spectroscopic analyses, good fits of the isotherm data were obtained with a one-species, one-Zn-sorption-site model using the bidentate-mononuclear surface complex, (triple bond FeO)(2)Zn; however, surprisingly, both the density of Zn(II) sorption sites and the value of the best-fit equilibrium "constant" for the bidentate-mononuclear complex had to be adjusted with pH to adequately fit the isotherm data. Although spectroscopy provided some evidence for multinuclear surface complex formation at surface loadings approaching site saturation at pH >/=6.5, the assumption of a bidentate-mononuclear surface complex provided acceptable fits of the sorption data over the entire range of conditions studied. Regressing edge data in the absence of isotherm and spectroscopic data resulted in a fair number of surface-species/site-type combinations that provided acceptable fits of the edge data, but unacceptable fits of the isotherm data. A linear relationship between logK((triple bond FeO)2Zn) and pH was found, given by logK((triple bond FeO)2Znat1g/l)=2.058 (pH)-6.131. In addition, a surface activity coefficient term was introduced to the model to reduce the ionic strength

  8. Post-synthetic modifications of cadmium-based knots and links.

    PubMed

    Prakasam, Thirumurugan; Bilbeisi, Rana A; Lusi, Matteo; Olsen, John-Carl; Platas-Iglesias, Carlos; Trabolsi, Ali

    2016-05-31

    Three topologically non-trivial cadmium(ii)-based complexes-Cd-[2]C, Cd-TK and Cd-SL-were simultaneously self-assembled in a dynamic library, individually isolated and fully characterized using solid-state, gas-phase and solution-phase techniques. Post-synthetic modifications, including reduction and transmetalation, were subsequently achieved. Imine bond reduction followed by demetallation led to the isolation of the corresponding organic molecules [2]C, TK and SL. Transmetalation of Cd-TK and Cd-SL with the zinc(ii) cation resulted in isolation of the corresponding zinc(ii)-containing complexes Zn-TK and Zn-SL.

  9. Gas Phase Reactions of Ions Derived from Anionic Uranyl Formate and Uranyl Acetate Complexes.

    PubMed

    Perez, Evan; Hanley, Cassandra; Koehler, Stephen; Pestok, Jordan; Polonsky, Nevo; Van Stipdonk, Michael

    2016-12-01

    The speciation and reactivity of uranium are topics of sustained interest because of their importance to the development of nuclear fuel processing methods, and a more complete understanding of the factors that govern the mobility and fate of the element in the environment. Tandem mass spectrometry can be used to examine the intrinsic reactivity (i.e., free from influence of solvent and other condensed phase effects) of a wide range of metal ion complexes in a species-specific fashion. Here, electrospray ionization, collision-induced dissociation, and gas-phase ion-molecule reactions were used to create and characterize ions derived from precursors composed of uranyl cation (U VI O 2 2+ ) coordinated by formate or acetate ligands. Anionic complexes containing U VI O 2 2+ and formate ligands fragment by decarboxylation and elimination of CH 2 =O, ultimately to produce an oxo-hydride species [U VI O 2 (O)(H)] - . Cationic species ultimately dissociate to make [U VI O 2 (OH)] + . Anionic complexes containing acetate ligands exhibit an initial loss of acetyloxyl radical, CH 3 CO 2 •, with associated reduction of uranyl to U V O 2 + . Subsequent CID steps cause elimination of CO 2 and CH 4 , ultimately to produce [U V O 2 (O)] - . Loss of CH 4 occurs by an intra-complex H + transfer process that leaves U V O 2 + coordinated by acetate and acetate enolate ligands. A subsequent dissociation step causes elimination of CH 2 =C=O to leave [U V O 2 (O)] - . Elimination of CH 4 is also observed as a result of hydrolysis caused by ion-molecule reaction with H 2 O. The reactions of other anionic species with gas-phase H 2 O create hydroxyl products, presumably through the elimination of H 2 . Graphical Abstract ᅟ.

  10. Synthesis, characterization and extraction studies of some metal (II) complexes containing (hydrazoneoxime and bis-acylhydrazone) moieties

    NASA Astrophysics Data System (ADS)

    Al-Ne'aimi, Mohammed Mahmmod; Al-Khuder, Mohammed Moudar

    2013-03-01

    In this study, diacetylmonoximebenzoylhydrazone (L1H2) and 1,4-diacetylbenzene bis(benzoyl hydrazone) (L2H2) were synthesized by the condensation of benzohydrazide with diacetyl monoxime and 1,4-diacetylbenzene, respectively. Complexes of these ligands with Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) inos were prepared with a metal:ligand ratio of 1:2 for L1H2 ligand, and 1:1 for L2H2 ligand. The ligands and their complexes were elucidated on the basis of elemental analyses CHN, AAS, FT-IR, 1H- and 13C NMR spectra, UV-vis spectra and magnetic susceptibility measurements. Results show the L1H2 ligand act as monoanionic O,N,N-tridentate and coordination takes place in the enol form through the oxime nitrogen, the imine nitrogen and the enolate oxygen atoms with a N4O2 donor environment, while the L2H2 ligand act as a dianionic O,N,N,O-tetradentate and coordination takes place in the enol form through the enolate oxygen and the azomethine nitrogen atoms with a N2O2 donor environment. These results are consistent with the formation of mononuclear metal (II) complexes [M(L1H)2], and binuclear polymeric metal (II) complexes [{M2(L2)}n]. The extraction ability of both ligands were examined in chloroform by the liquid-liquid extraction of selected transition metal [Co2+, Ni2+, Cu2+, Zn2+ and Pb2+] cations. The effects of pH and contact time on the percentage extraction of metal (II) ions were studied under the optimum extraction conditions. The (L1H2) ligand shows strong binding ability toward copper(II) and lead(II) ions, while the (L2H2) ligand shows strong binding ability toward nickel(II) and zinc(II) ions.

  11. 5-Nitroimidazole-derived Schiff bases and their copper(II) complexes exhibit potent antimicrobial activity against pathogenic anaerobic bacteria.

    PubMed

    Oliveira, Alexandre A; Oliveira, Ana P A; Franco, Lucas L; Ferencs, Micael O; Ferreira, João F G; Bachi, Sofia M P S; Speziali, Nivaldo L; Farias, Luiz M; Magalhães, Paula P; Beraldo, Heloisa

    2018-05-07

    In the present work a family of novel secnidazole-derived Schiff base compounds and their copper(II) complexes were synthesized. The antimicrobial activities of the compounds were evaluated against clinically important anaerobic bacterial strains. The compounds exhibited in vitro antibacterial activity against Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides vulgatus, Bacteroides ovatus, Parabacteroides distasonis and Fusubacterium nucleatum pathogenic anaerobic bacteria. Upon coordination to copper(II) the antibacterial activity significantly increased in several cases. Some derivatives were even more active than the antimicrobial drugs secnidazole and metronidazole. Therefore, the compounds under study are suitable for in vivo evaluation and the microorganisms should be classified as susceptible to them. Electrochemical studies on the reduction of the nitro group revealed that the compounds show comparable reduction potentials, which are in the same range of the bio-reducible drugs secnidazole and benznidazole. The nitro group reduction potential is more favorable for the copper(II) complexes than for the starting ligands. Hence, the antimicrobial activities of the compounds under study might in part be related to intracellular bio-reduction activation. Considering the increasing resistance rates of anaerobic bacteria against a wide range of antimicrobial drugs, the present work constitutes an important contribution to the development of new antibacterial drug candidates.

  12. Applications of several spectral techniques to characterize coordination compounds derived from 2,6-diacetylpyridine derivative

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Sharma, Amit Kumar

    2009-09-01

    The coordination compounds of Cr III, Mn II and Co II metal ions derived from quinquedentate 2,6-diacetylpyridine derivative have been synthesized and characterized by using the various physicochemical studies like stoichiometric, molar conductivity and magnetic, and spectral techniques like IR, NMR, mass, UV and EPR. The general stoichiometries of the complexes are found to be [Cr(H 2L)X] and [M(HL)X], where M = Mn(II) and Co(II); H 2L = dideprotonated ligand, HL = monodeprotonated ligand and X = NO 3-, Cl - and OAc -. The studies reveal that the complexes possess monomeric compositions with six coordinated octahedral geometry (Cr III and Mn II complexes) and six coordinated tetragonal geometry (Co II complexes).

  13. Synthesis, characterization and anti-microbial evaluation of Cu(II), Ni(II), Pt(II) and Pd(II) sulfonylhydrazone complexes; 2D-QSAR analysis of Ni(II) complexes of sulfonylhydrazone derivatives

    NASA Astrophysics Data System (ADS)

    Özbek, Neslihan; Alyar, Saliha; Alyar, Hamit; Şahin, Ertan; Karacan, Nurcan

    2013-05-01

    Copper(II), nickel(II), platinum(II) and palladium(II) complexes with 2-hydroxy-1-naphthaldehyde-N-methylpropanesulfonylhydrazone (nafpsmh) derived from propanesulfonic acid-1-methylhydrazide (psmh) were synthesized, their structure were identified, and antimicrobial activity of the compounds was screened against three Gram-positive and three Gram-negative bacteria. The results of antimicrobial studies indicate that Pt(II) and Pd(II) complexes showed the most activity against all bacteria. The crystal structure of 2-hydroxy-1-naphthaldehyde-N-methylpropanesulfonylhydrazone (nafpsmh) was also investigated by X-ray analysis. A series of Ni(II) sulfonyl hydrazone complexes (1-33) was synthesized and tested in vitro against Escherichia coli and Staphylococcus aureus. Their antimicrobial activities were used in the QSAR analysis. Four-parameter QSAR models revealed that nucleophilic reaction index for Ni and O atoms, and HOMO-LUMO energy gap play key roles in the antimicrobial activity.

  14. Diverse roles of hydrogen in rhenium carbonyl chemistry: hydrides, dihydrogen complexes, and a formyl derivative.

    PubMed

    Li, Nan; Xie, Yaoming; King, R Bruce; Schaefer, Henry F

    2010-11-04

    Rhenium carbonyl hydride chemistry dates back to the 1959 synthesis of HRe(CO)₅ by Hieber and Braun. The binuclear H₂Re₂(CO)₈ was subsequently synthesized as a stable compound with a central Re₂(μ-H)₂ unit analogous to the B₂(μ-H)₂ unit in diborane. The complete series of HRe(CO)(n) (n = 5, 4, 3) and H₂Re₂(CO)(n) (n = 9, 8, 7, 6) derivatives have now been investigated by density functional theory. In contrast to the corresponding manganese derivatives, all of the triplet rhenium structures are found to lie at relatively high energies compared with the corresponding singlet structures consistent with the higher ligand field splitting of rhenium relative to manganese. The lowest energy HRe(CO)₅ structure is the expected octahedral structure. Low-energy structures for HRe(CO)(n) (n = 4, 3) are singlet structures derived from the octahedral HRe(CO)₅ structure by removal of one or two carbonyl groups. For H₂Re₂(CO)₉ a structure HRe₂(CO)₉(μ-H), with one terminal and one bridging hydrogen atom, lies within 3 kcal/mol of the structure Re₂(CO)₉(η²-H₂), similar to that of Re₂(CO)₁₀. For H₂Re₂(CO)(n) (n = 8, 7, 6) the only low-energy structures are doubly bridged singlet Re₂(μ-H)₂(CO)(n) structures. Higher energy dihydrogen complex structures are also found.

  15. Effect of acetate and nitrate anions on the molecular structure of 3-(hydroxyimino)-2-butanone-2-(1H-benzimidazol-2-yl)hydrazone

    NASA Astrophysics Data System (ADS)

    Kamat, Vinayak; Naik, Krishna; Revankar, Vidyanand K.

    2017-04-01

    A novel Schiff base ligand 3-(hydroxyimino)-2-butanone-2-(1H-benzimidazol-2-yl)hydrazone has been synthesized by the condensation reaction of 2-Hydrazinobenzimidazole with diacetyl monoxime in presence of acetic acid catalyst. The ligand has crystallized as its acetate salt, due to the charge-assisted hydrogen bonding between protonated benzimidazole ring and acetate anion. Efforts to synthesize the zinc(II) complex of the title compound, has resulted in the formation of a nitrate salt of the ligand, instead of coordination complex of zinc(II). Acetate salt has crystallized in monoclinic P 21/n, while the nitrate salt has crystallized in a triclinic crystal system with P -1 space group. Hirshfeld surface analysis is presented for both of the crystal structures. Structures of synthesized molecules are even computationally optimized using DFT. A comparative structural approach between the synthesized molecules and DFT optimized structure of bare ligand without any counterions is analyzed in terms of bond parameters. Hydrogen bonding is explained keeping the anions as the central dogma. Mass fragmentation pattern of the organic molecule and comparative account of IR, 1H and 13C NMR chemical shifts are also presented. Compounds are screened for their antibacterial and antifungal potencies against few pathogenic microorganisms. The organic motif is found be an excellent antifungal agent.

  16. Novel thiourea derivative and its complexes: Synthesis, characterization, DFT computations, thermal and electrochemical behavior, antioxidant and antitumor activities

    NASA Astrophysics Data System (ADS)

    Yeşilkaynak, Tuncay; Muslu, Harun; Özpınar, Celal; Emen, Fatih Mehmet; Demirdöğen, Ruken Esra; Külcü, Nevzat

    2017-08-01

    A novel thiourea derivative, N-((2-chloropyridin-3-yl)carbamothioyl) thiophene-2-carboxamide,C11H8ClN3OS2 (HL) and its Co(II), Ni(II) and Cu(II) complexes (ML2 type) were prepared and characterized by elemental analysis, FT-IR,1H NMR and HR-MS methods. The crystal structure of HL was also investigated by single crystal X-ray diffraction study. The HL crystallizes in the orthorhombic crystal system with P 21 21 21 space group, Z = 4, a = 3.8875(3) Å, b = 14.6442(13) Å, c = 21.8950(19) Å. The [ML2] complex structures were optimized by using B97D/TZVP level. Molecular orbitals of HL ligand were calculated at the same level. Thermal and electrochemical behaviors of the complexes were investigated. Anticancer and antioxidant activities of the complexes were also investigated. Antioxidant activities were determined by using DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2‧-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) assays. Anticancer activities were studied via MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay in MCF-7 (Michigan Cancer Foundation-7) breast cancer cells.

  17. Powder X-ray diffraction, infrared and 13C NMR spectroscopic studies of the homologous series of some solid-state zinc(II) and sodium(I) n-alkanoates

    NASA Astrophysics Data System (ADS)

    Nelson, Peter N.; Taylor, Richard A.

    2015-03-01

    A comparative study of the room temperature molecular packing and lattice structures for the homologous series of zinc(II) and sodium(I) n-alkanoates adduced from Fourier transform infrared and solid-state 13C NMR spectroscopic data in conjunction with X-ray powder diffraction measurements is carried out. For zinc carboxylates, metal-carboxyl bonding is via asymmetric bridging bidentate coordination whilst for the sodium adducts, coordination is via asymmetric chelating bidentate bonding. All compounds are packed in a monoclinic crystal system. Furthermore, the fully extended all-trans hydrocarbon chains are arranged as lamellar bilayers. For zinc compounds, there is bilayer overlap, for long chain adducts (nc > 8) but not for sodium compounds where methyl groups from opposing layers in the lamellar are only closely packed. Additionally, the hydrocarbon chains are extended along the a-axis of the unit cell for zinc compounds whilst for sodium carboxylates they are extended along the c-axis. These packing differences are responsible for different levels of Van der Waals effects in the lattices of these two series of compounds, hence, observed odd-even alternation is different. The significant difference in lattice packing observed for these two series of compounds is proposed to be due to the difference in metal-carboxyl coordination mode, arising from the different electronic structure of the central metal ions.

  18. Spectral, thermal and optical-electrical properties of the layer-by-layer deposited thin film of nano Zn(II)-8-hydroxy-5-nitrosoquinolate complex.

    PubMed

    Haggag, Sawsan M S; Farag, A A M; Abdelrafea, Mohamed

    2013-06-01

    Zinc(II)-8-hydroxy-5-nitrosoquinolate, [Zn(II)-(HNOQ)2], was synthesized and assembled as a deposited thin film of nano-metal complex by a rapid, direct, simple and efficient procedure based on layer-by-layer chemical deposition technique. Stoichiometric identification and structural characterization of [Zn(II)-(HNOQ)2] were confirmed by electron impact mass spectrometry (EI-MS) and Fourier Transform infrared spectroscopy (FT-IR). Surface morphology was studied by using a scanning electron microscope imaging (SEM) and the particle size was found to be in the range of 23-49 nm. Thermal stability of [Zn(II)-(HNOQ)2] was studied and the thermal parameters were evaluated using thermal gravimetric analysis (TGA). The current density-voltage measurements showed that the current flow is dominated by a space charge limited and influenced by traps under high bias. The optical properties of [Zn(II)-(HNOQ)2] thin films were found to exhibit two direct allowed transitions at 2.4 and 1.0 eV, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Synthesis and evaluation of copper(II) complexes with isoniazid-derived hydrazones as anticancer and antitubercular agents.

    PubMed

    Firmino, Gisele S S; de Souza, Marcus V N; Pessoa, Claudia; Lourenco, Maria C S; Resende, Jackson A L C; Lessa, Josane A

    2016-12-01

    In this study, the N,N,O metal chelator 2-pyridinecarboxaldehydeisonicotinoyl hydrazone (HPCIH, 1) and its derivatives 2-acetylpyridine-(HAPIH 2), 2-pyridineformamide-(HPAmIH, 3) and pyrazineformamide-(HPzAmIH, 4) were employed in the synthesis of four copper(II) complexes, [Cu(HPCIH)Cl 2 ]·0.4H 2 O (5), [Cu(HAPIH)Cl 2 ]·1.25H 2 O (6), [Cu(HPAmIH)Cl 2 ]·H 2 O (7) and [Cu(HPzAmIH)Cl 2 ]·1.25H 2 O (8). The compounds were assayed for their action toward Mycobacterium tuberculosis H37Rv ATCC 27294 strain and the human tumor cell lines OVCAR-8 (ovarian cancer), SF-295 (glioblastoma multiforme) and HCT-116 (colon adenocarcinoma). All copper(II) complexes were more effective in reducing growth of HCT-116 and SF-295 cells than the respective free hydrazones at 5 µg/mL, whereas only complex 7 was more cytotoxic toward OVCAR-8 lines than its ligand HPAmIH. 6 proved to be cytotoxic at submicromolar doses, whose IC 50 values (0.39-0.86 µM) are similar to those ones found for doxorubicin (0.23-0.43 µM). Complexes 5 and 6 displayed high activity against M. tuberculosis (MIC = 0.85 and 1.58 µM, respectively), as compared with isoniazid (MIC = 2.27 µM), which suggests the compounds are attractive candidates as antitubercular drugs.

  20. Subnanosecond spectrofluorimetry of new indolocarbazole derivatives in solutions and protein complexes and their dipole moments

    NASA Astrophysics Data System (ADS)

    Nemkovich, N. A.; Kruchenok, Yu. V.; Sobchuk, A. N.; Detert, H.; Wrobel, N.; Chernyavskiĭ, E. A.

    2009-08-01

    The spectral and temporal characteristics of new 6,12-dimethoxyindolo[3,2- b]carbazole, 5,11-dimethyl-6,12-dimethoxyindolo[3,2- b]carbazole, and 5,11-dihexyl-6,12-di(hexyloxy)indolo[3,2- b]carbazole fluorescence probes in organic solvents and protein complexes are studied. The dipole moments of indolocarbazoles in 1,4-dioxane were measured by electrooptical absorption method. The measured dipole moments have values within the range of (3.1-3.6) × 10-30 C m in the equilibrium ground state and increase to (4.8-5.6) × 10-30 C m after excitation. The excited state lifetime of indolocarbazole derivatives increases with increasing polarity and viscosity of the environment. The binding of indolocarbazoles with trypsinogen and human serum albumin increases the fluorescence intensity, changes the intensity ratio of fluorescence bands, and increases the average excited state lifetime of indolocarbazoles. The analysis of the instantaneous fluorescence spectra and fluorescence decay parameters at different wavelengths revealed the existence of several types of probe binding sites in proteins. It is found that the fluorescence characteristics of indolocarbazole derivatives depend on the conformation rearrangements of trypsinogen due to its thermal denaturation.

  1. Crystalline sulfur dioxide: Crystal field splittings, absolute band intensities and complex refractive indices derived from infrared spectra

    NASA Technical Reports Server (NTRS)

    Khanna, R. K.; Zhao, Guizhi

    1986-01-01

    The infrared absorption spectra of thin crystalline films of sulfur dioxide at 90 K are reported in the 2700 to 450/cm region. The observed multiplicity of the spectral features in the regions of fundamentals is attributed to factor group splittings of the modes in a biaxial crystal lattice and the naturally present minor S-34, S-36, and O-18 isotopic species. Complex refractive indices determined by an iterative Kramers-Kronig analysis of the extinction data, and absolute band strengths derived from them, are also reported in this region.

  2. C-1311 (Symadex), a potential anti-cancer drug, intercalates into DNA between A and G moieties. NMR-derived and MD-refined stereostructure of the d(GAGGCCTC)2:C-1311 complex

    NASA Astrophysics Data System (ADS)

    Laskowski, Tomasz; Borzyszkowska, Julia; Grynda, Jakub; Mazerski, Jan

    2017-08-01

    Imidazoacridinone C-1311 (Symadex®) is an antitumor agent which has been recommended for Phase II clinical trials a few years ago. Previously, it was shown experimentally that during the initial stage of its action C-1311 forms stable intercalation complexes with DNA duplexes. Herein, a NMR-derived stereostructure of d(GAGGCCTC)2:C-1311 complex was reported. The ligand was found locating itself between A and G moieties, forming symmetrical DNA:drug 1:2 mol/mol complex. Intercalation site was located upon the DNA-ligand proton/proton dipolar couplings observed in the NOESY spectrum and the performed MD simulations. NMR-derived stereostructure was hence refined by restrained MD using distance restraints obtained from the NOESY data and the result was compared with MD-derived structure of the proposed complex, obtained from the calculations performed with distance restraints applied only for hydrogen bonds in the terminal GC base pairs. The results of both simulations were coherent. Basing on the observed C-1311's intercalation sites and on our previous results concerning the d(CGATCG)2:C-1311 complex, we stated that AG/GA sequences are the preferred binding sites of imidazoacridinone C-1311.

  3. Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis

    PubMed Central

    Chen, Hsi-Chuan; Li, Quanzi; Shuford, Christopher M.; Liu, Jie; Muddiman, David C.; Sederoff, Ronald R.; Chiang, Vincent L.

    2011-01-01

    The hydroxylation of 4- and 3-ring carbons of cinnamic acid derivatives during monolignol biosynthesis are key steps that determine the structure and properties of lignin. Individual enzymes have been thought to catalyze these reactions. In stem differentiating xylem (SDX) of Populus trichocarpa, two cinnamic acid 4-hydroxylases (PtrC4H1 and PtrC4H2) and a p-coumaroyl ester 3-hydroxylase (PtrC3H3) are the enzymes involved in these reactions. Here we present evidence that these hydroxylases interact, forming heterodimeric (PtrC4H1/C4H2, PtrC4H1/C3H3, and PtrC4H2/C3H3) and heterotrimeric (PtrC4H1/C4H2/C3H3) membrane protein complexes. Enzyme kinetics using yeast recombinant proteins demonstrated that the enzymatic efficiency (Vmax/km) for any of the complexes is 70–6,500 times greater than that of the individual proteins. The highest increase in efficiency was found for the PtrC4H1/C4H2/C3H3-mediated p-coumaroyl ester 3-hydroxylation. Affinity purification-quantitative mass spectrometry, bimolecular fluorescence complementation, chemical cross-linking, and reciprocal coimmunoprecipitation provide further evidence for these multiprotein complexes. The activities of the recombinant and SDX plant proteins demonstrate two protein-complex–mediated 3-hydroxylation paths in monolignol biosynthesis in P. trichocarpa SDX; one converts p-coumaric acid to caffeic acid and the other converts p-coumaroyl shikimic acid to caffeoyl shikimic acid. Cinnamic acid 4-hydroxylation is also mediated by the same protein complexes. These results provide direct evidence for functional involvement of membrane protein complexes in monolignol biosynthesis. PMID:22160716

  4. Cysteine-Zn2+ complexes: unique molecular switches for inducible nitric oxide synthase-derived NO.

    PubMed

    Kröncke, K D

    2001-11-01

    Nitric oxide (NO) in the low nanomolar range acts as a transcellular messenger molecule to initiate regulatory and physiological responses in nearby target cells via binding to the soluble guanylate cyclase heme moiety. Higher NO concentrations, as synthesized by the inducible NO synthase (iNOS) during inflammatory processes, show additional effects: NO may react with O2, yielding nitrogen oxides like N2O3 that are able to nitrosate thiols. A variety of proteins involved in very different functions of the cell contain cysteine-Zn2+ complexes. Effects of NO on different proteins containing cysteine-Zn2+ domains and playing essential roles during transcription, protein folding, and proteolysis are discussed. It is suggested that iNOS-derived NO acts as a signal molecule targeting cysteine-Zn2+ linkages, thus enabling cells to react toward nitrosative stress.

  5. Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity.

    PubMed

    Banerjee, Samya; Chakravarty, Akhil R

    2015-07-21

    Curcumin is a polyphenolic species. As an active ingredient of turmeric, it is well-known for its traditional medicinal properties. The therapeutic values include antioxidant, anti-inflammatory, antiseptic, and anticancer activity with the last being primarily due to inhibition of the transcription factor NF-κB besides affecting several biological pathways to arrest tumor growth and its progression. Curcumin with all these positive qualities has only remained a potential candidate for cancer treatment over the years without seeing any proper usage because of its hydrolytic instability involving the diketo moiety in a cellular medium and its poor bioavailability. The situation has changed considerably in recent years with the observation that curcumin in monoanionic form could be stabilized on binding to a metal ion. The reports from our group and other groups have shown that curcumin in the metal-bound form retains its therapeutic potential. This has opened up new avenues to develop curcumin-based metal complexes as anticancer agents. Zinc(II) complexes of curcumin are shown to be stable in a cellular medium. They display moderate cytotoxicity against prostate cancer and neuroblastoma cell lines. A similar stabilization and cytotoxic effect is reported for (arene)ruthenium(II) complexes of curcumin against a variety of cell lines. The half-sandwich 1,3,5-triaza-7-phosphatricyclo-[3.3.1.1]decane (RAPTA)-type ruthenium(II) complexes of curcumin are shown to be promising cytotoxic agents with low micromolar concentrations for a series of cancer cell lines. In a different approach, cobalt(III) complexes of curcumin are used for its cellular delivery in hypoxic tumor cells using intracellular agents that reduce the metal and release curcumin as a cytotoxin. Utilizing the photophysical and photochemical properties of the curcumin dye, we have designed and synthesized photoactive curcumin metal complexes that are used for cellular imaging by fluorescence microscopy and

  6. Some biologically active oxovanadium(IV) complexes of triazole derived Schiff bases: their synthesis, characterization and biological properties.

    PubMed

    Chohan, Zahid H; Sumrra, Sajjad H

    2010-10-01

    A series of biologically active oxovanadium(IV) complexes of triazole derived Schiff bases L(1)-L(5) have been synthesized and characterized by their physical, analytical, and spectral data. The synthesized ligands potentially act as bidentate, in which the oxygen of furfural and nitrogen of azomethine coordinate with the oxovanadium atom to give a stoichiometry of vanadyl complexes 1:2 (M:L) in a square-pyramidal geometry. In vitro antibacterial and antifungal activities on different species of pathogenic bacteria (E. coli, S. flexneri, P. aeruginosa, S. typhi, S. aureus, and B. subtilis) and fungi (T. longifusus, C. albicans, A. flavus, M. canis, F. solani, and C. glabrata) have been studied. All compounds showed moderate to significant antibacterial activity against one or more bacterial strains and good antifungal activity against most of the fungal strains. The brine shrimp bioassay was also carried out to check the cytotoxicity of coordinated and uncoordinated synthesized compounds.

  7. 5-Arylvinyl-2,2′-bipyridyls: Bright “push–pull” dyes as components in fluorescent indicators for zinc ions

    PubMed Central

    Zhu, Lei; Younes, Ali H.; Yuan, Zhao; Clark, Ronald J.

    2015-01-01

    This article reviews the zinc(II)-dependent photophysical properties of arylvinylbipyridines (AVBs), a class of fluoroionophores in which 2,2′-bipyridyl and an aryl moiety are electronically conjugated. Zinc(II) binding of an AVB may lead to an emission bathochromic shift of the fluoroionophore without diminishing its fluorescence quantum yield. This observation can be explained using the excited state model of electron donor–π bridge–electron acceptor “push–pull” fluorophores, in which the bipy moiety acts as an electron acceptor, and zinc(II)-coordination strengthens its electron affinity. The spectral sensitivity of bipy-containing fluoroionophores, such as AVBs, to zinc(II) can be exploited to prepare fluorescent indicators for this ion. In several cases, AVB moieties are incorporated in fluorescent heteroditopic ligands, so that the variation of zinc(II) concentration over a relatively large range can be correlated to fluorescence changes in either intensity or color. AVB fluoroionophores are also used to introduce an intramolecular Förster resonance energy transfer (FRET) strategy for creating zinc(II) indicators with high photostability and a narrow emission band, two desired characteristics of dyes used in fluorescence microscopy. PMID:26190906

  8. Novel Organotin(IV) Schiff Base Complexes with Histidine Derivatives: Synthesis, Characterization, and Biological Activity

    PubMed Central

    Garza-Ortiz, Ariadna; Camacho-Camacho, Carlos; Sainz-Espuñes, Teresita; Rojas-Oviedo, Irma; Gutiérrez-Lucas, Luis Raúl; Gutierrez Carrillo, Atilano; Vera Ramirez, Marco A.

    2013-01-01

    Five novel tin Schiff base complexes with histidine analogues (derived from the condensation reaction between L-histidine and 3,5-di-tert-butyl-2-hydroxybenzaldehyde) have been synthesized and characterized. Characterization has been completed by IR and high-resolution mass spectroscopy, 1D and 2D solution NMR (1H, 13C  and 119Sn), as well as solid state 119Sn NMR. The spectroscopic evidence shows two types of structures: a trigonal bipyramidal stereochemistry with the tin atom coordinated to five donating atoms (two oxygen atoms, one nitrogen atom, and two carbon atoms belonging to the alkyl moieties), where one molecule of ligand is coordinated in a three dentate fashion. The second structure is spectroscopically described as a tetrahedral tin complex with four donating atoms (one oxygen atom coordinated to the metal and three carbon atoms belonging to the alkyl or aryl substituents), with one molecule of ligand attached. The antimicrobial activity of the tin compounds has been tested against the growth of bacteria in vitro to assess their bactericidal properties. While pentacoordinated compounds 1, 2, and 3 are described as moderate effective to noneffective drugs against both Gram-positive and Gram-negative bacteria, tetracoordinated tin(IV) compounds 4 and 5 are considered as moderate effective and most effective compounds, respectively, against the methicillin-resistant Staphylococcus aureus strains (Gram-positive). PMID:23864839

  9. Synthesis, spectral characterization and DNA binding of Schiff-base metal complexes derived from 2-amino-3-hydroxyprobanoic acid and acetylacetone

    NASA Astrophysics Data System (ADS)

    Hosny, Nasser Mohammed; Hussien, Mostafa A.; Radwan, Fatima M.; Nawar, Nagwa

    2014-11-01

    Four new metal complexes derived from the reaction of Cu(II), Co(II), Ni(II) and Zn(II) acetates with the Schiff-base ligand (H3L) resulted from the condensation of the amino acid 2-amino-3-hydroxyprobanoic acid (serine) and acetylacetone have been synthesized and characterized by, elemental analyses, ES-MS, IR, UV-Vis., 1H NMR, 13C NMR, ESR, thermal analyses (TGA and DTG) and magnetic measurements. The results showed that the Schiff-base ligand acts as bi-negative tridentate through the azomethine nitrogen, the deprotonated carboxylate oxygen and the enolic carbonyl oxygen. The optical band gaps measurements indicated the semi-conducting nature of these complexes. Molecular docking was used to predict the binding between the Schiff base ligand with the receptor of prostate cancer mutant H874Y. The interactions between the Cu(II) complex and calf thymus DNA (CT-DNA) have been studied by UV spectra. The results confirm that the Cu(II) complex binds to CT-DNA in an intercalative mode.

  10. Synthesis and structure of tetranuclear orthometallated Pd(II) complexes derived from bis-iminophosphoranes.

    PubMed

    Bielsa, Raquel; Navarro, Rafael; Soler, Tatiana; Urriolabeitia, Esteban P

    2008-04-07

    The reaction of Pd(OAc)2 with bis-iminophosphoranes Ph3P=NCH2CH2CH2N=PPh3 (1a), [C6H4(C(O)N=PPh3)2-1,3] (1b) and [C6H4(C(O)N=PPh3)2-1,2] (1c), gives the orthopalladated tetranuclear complexes [{Pd(mu-Cl){C6H4(PPh2=NCH2-kappa-C,N)-2}}2CH2]2 (2a) [{Pd(mu-OAc){C6H4(PPh2=NC(O)-kappa-C,N)-2}}2C6H4-1',3']2 (2b) and [{Pd(mu-OAc){C6H4(PPh2=NC(O)-kappa-C,N)-2}}2C6H4-1',2']2 (2c). The reaction takes place in CH2Cl2 for 1a, but must be performed in glacial acetic acid for 1b and 1c. The process implies in all cases the activation of a C-H bond on a Ph ring of the phosphonium group, with concomitant formation of endo complexes. This is the expected behaviour for 1a, but for 1b and 1c reverses the exo orientation observed in other ketostabilized iminophosphoranes. The influence of the solvent in the orientation of the reaction is discussed. The dinuclear acetylacetonate complexes [{Pd(acac-O,O'){C6H4(PPh2=NCH2-kappa-C,N)-2}}2CH2] (3a), [{Pd(acac-O,O'){C6H4(PPh2=NC(O)-kappa-C,N)-2}}2C6H4-1',3'] (3b) and [{Pd(acac-O,O'){C6H4(PPh2=NC(O)-kappa-C,N)-2}}2C6H4-1',2'] (3c) have been obtained from the halide-bridging tetranuclear derivatives. The X-ray crystal structure of [3c.4CHCl3] is also reported.

  11. Designing Complexity

    ERIC Educational Resources Information Center

    Glanville, Ranulph

    2007-01-01

    This article considers the nature of complexity and design, as well as relationships between the two, and suggests that design may have much potential as an approach to improving human performance in situations seen as complex. It is developed against two backgrounds. The first is a world view that derives from second order cybernetics and radical…

  12. Impaired activity of CCA-adding enzyme TRNT1 impacts OXPHOS complexes and cellular respiration in SIFD patient-derived fibroblasts.

    PubMed

    Liwak-Muir, Urszula; Mamady, Hapsatou; Naas, Turaya; Wylie, Quinlan; McBride, Skye; Lines, Matthew; Michaud, Jean; Baird, Stephen D; Chakraborty, Pranesh K; Holcik, Martin

    2016-06-18

    SIFD (Sideroblastic anemia with B-cell immunodeficiency, periodic fevers, and developmental delay) is a novel form of congenital sideroblastic anemia associated with B-cell immunodeficiency, periodic fevers, and developmental delay caused by mutations in the CCA-adding enzyme TRNT1, but the precise molecular pathophysiology is not known. We show that the disease causing mutations in patient-derived fibroblasts do not affect subcellular localization of TRNT1 and show no gross morphological differences when compared to control cells. Analysis of cellular respiration and oxidative phosphorylation (OXPHOS) complexes demonstrates that both basal and maximal respiration rates are decreased in patient cells, which may be attributed to an observed decrease in the abundance of select proteins of the OXPHOS complexes. Our data provides further insight into cellular pathophysiology of SIFD.

  13. An assessment of the information content of likelihood ratios derived from complex mixtures.

    PubMed

    Marsden, Clare D; Rudin, Norah; Inman, Keith; Lohmueller, Kirk E

    2016-05-01

    With the increasing sensitivity of DNA typing methodologies, as well as increasing awareness by law enforcement of the perceived capabilities of DNA typing, complex mixtures consisting of DNA from two or more contributors are increasingly being encountered. However, insufficient research has been conducted to characterize the ability to distinguish a true contributor (TC) from a known non-contributor (KNC) in these complex samples, and under what specific conditions. In order to investigate this question, sets of six 15-locus Caucasian genotype profiles were simulated and used to create mixtures containing 2-5 contributors. Likelihood ratios were computed for various situations, including varying numbers of contributors and unknowns in the evidence profile, as well as comparisons of the evidence profile to TCs and KNCs. This work was intended to illustrate the best-case scenario, in which all alleles from the TC were detected in the simulated evidence samples. Therefore the possibility of drop-out was not modeled in this study. The computer program DNAMIX was then used to compute LRs comparing the evidence profile to TCs and KNCs. This resulted in 140,000 LRs for each of the two scenarios. These complex mixture simulations show that, even when all alleles are detected (i.e. no drop-out), TCs can generate LRs less than 1 across a 15-locus profile. However, this outcome was rare, 7 of 140,000 replicates (0.005%), and associated only with mixtures comprising 5 contributors in which the numerator hypothesis includes one or more unknown contributors. For KNCs, LRs were found to be greater than 1 in a small number of replicates (75 of 140,000 replicates, or 0.05%). These replicates were limited to 4 and 5 person mixtures with 1 or more unknowns in the numerator. Only 5 of these 75 replicates (0.004%) yielded an LR greater than 1,000. Thus, overall, these results imply that the weight of evidence that can be derived from complex mixtures containing up to 5 contributors

  14. Electrodeposited-film electrodes derived from a precursor dinitrosyl iron complex for electrocatalytic water splitting.

    PubMed

    Li, Wei-Liang; Chiou, Tzung-Wen; Chen, Chien-Hong; Yu, Yi-Ju; Chu, Li-Kang; Liaw, Wen-Feng

    2018-05-29

    In artificial photosynthesis, water splitting plays an important role for the conversion and storage of renewable energy sources. Here, we report a study on the electrocatalytic properties of the electrodeposited-film electrodes derived from irreversible electro-reduction/-oxidation of a molecular dinitrosyl iron complex (DNIC) {Fe(NO)2}9 [(Me6tren)Fe(NO)2]+ (Me6tren = tris[2-(dimethylamino)ethyl]amine) for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in alkaline solution, individually. For HER, the overpotential and Tafel slope for the electrodeposited-film cathode are lower than those of the equiv.-weight Pt/C electrode. The electrodeposited-film anode for the OER is stable for 139 h. Integration of the electrodeposited-film cathode and anode into a single electrode-pair device for electrocatalytic water splitting exhibits an onset voltage of 1.77 V, achieving a geometrical current density of 10 mA cm-2.

  15. E-Cadherin/β-Catenin Complex: A Target for Anticancer and Antimetastasis Plants/Plant-derived Compounds.

    PubMed

    Tafrihi, Majid; Nakhaei Sistani, Roohollah

    2017-07-01

    Plants reputed to have cancer-inhibiting potential and putative active components derived from those plants have emerged as an exciting new field in cancer study. Some of these compounds have cancer-inhibiting potential in different clinical staging levels, especially metastasis. A few of them which stabilize cell-cell adhesions are controversial topics. This review article introduces some effective herbal compounds that target E-cadherin/β-catenin protein complex. In this article, at first, we briefly review the structure and function of E-cadherin and β-catenin proteins, Wnt signaling pathway, and its target genes. Then, effective compounds of the Teucrium persicum, Teucrium polium, Allium sativum (garlic), Glycine max (soy), and Brassica oleracea (broccoli) plants, which influence stability and cellular localization of E-cadherin/β-catenin complex, were studied. Based on literature review, there are some compounds in these plants, including genistein of soy, sulforaphane of broccoli, organosulfur compounds of garlic, and the total extract of Teucrium genus that change the expression of variety of Wnt target genes such as MMPs, E-cadherin, p21, p53, c-myc, and cyclin D1. So they may induce cell-cycle arrest, apoptosis and/or inhibition of Epithelial-Mesenchymal Transition (EMT) and metastasis.

  16. VOSalophen: a vanadium complex with a stilbene derivative-induction of apoptosis, autophagy, and efficiency in experimental cutaneous leishmaniasis.

    PubMed

    Machado, Patrícia de A; Morais, Jessica O F; Carvalho, Gustavo S G; Lima, Wallace P; Macedo, Gilson C; Britta, Elizandra A; Nakamura, Celso V; da Silva, Adilson D; Cuin, Alexandre; Coimbra, Elaine S

    2017-08-01

    In our previous work, we demonstrated the promising in vitro effect of VOSalophen, a vanadium complex with a stilbene derivative, against Leishmania amazonensis. Its antileishmanial activity has been associated with oxidative stress in L. amazonensis promastigotes and L. amazonensis-infected macrophages. In the present study, the mechanism involved in the death of parasites after treatment with VOSalophen, as well as in vivo effect in the murine model cutaneous leishmaniasis, has been investigated. Promastigotes of L. amazonensis treated with VOSalophen presented apoptotic cells features, such as cell volume decrease, phosphatidylserine externalization, and DNA fragmentation. An increase in autophagic vacuoles formation in treated promastigotes was also observed, showing that autophagy also may be involved in the death of these parasites. In intracellular amastigotes, DNA fragmentation was observed after treatment with VOSalophen, but this effect was not observed in host cells, highlighting the selective effect of this vanadium complex. In addition, VOSalophen showed activity in the murine model of cutaneous leishmaniasis, without hepatic and renal damages. The outcome described here points out that VOSalophen had promising antileishmanial properties and these data also contribute to the understanding of the mechanisms involved in the death of protozoa induced by metal complexes.

  17. Synthesis and Crystal Structure of Dibromido{2-[(4-tert-butylmethylphenyl) iminomethyl]pyridine-κ2 N, N'}Zinc

    NASA Astrophysics Data System (ADS)

    Khalaj, M.; Ghazanfarpour-Darjani, M.; Seftejani, F. B.; Lalegani, A.

    2017-12-01

    The title compound [Zn( dip)Br2] was synthesized using the Schiff base bidentate ligand (E)-4- tert-butyl- N-(pyridine-2-ylmethylene)benzeneamine ( dip) and zinc(II) bromide salts. It has been characterized by elemental analysis, X-ray diffraction, and optical spectroscopy. The X-ray diffraction analysis demonstrates that in this structure, the zinc(II) ion is located on an inversion center and exhibits a ZnN2Br2 tetrahedral geometry. In this structure the dip ligand is coordinated with zinc(II) ion in a cyclic-bidentate fashion forming a five-membered metallocyclic ring. The compound crystallizes in the monoclinic sp. gr. P21/ m with a = 9.2700(13) Å, b = 7.6128(11) Å, c = 12.3880(17) Å, and β = 97.021(3)°.

  18. Characterization of the complex formed between a potent neutralizing ovine-derived polyclonal anti-TNFα Fab fragment and human TNFα

    PubMed Central

    Abbott, W. Mark; Snow, Melanie; Eckersley, Sonia; Renshaw, Jonathan; Davies, Gareth; Norman, Richard A.; Ceuppens, Peter; Slootstra, Jerry; Benschop, Joris J.; Hamuro, Yoshitomo; Lee, Jessica E.; Newham, Peter

    2013-01-01

    TNFα (tumour necrosis factor α) is an early mediator in the systemic inflammatory response to infection and is therefore a therapeutic target in sepsis. AZD9773 is an ovine-derived, polyclonal anti-TNFα Fab fragment derived from a pool of serum and currently being developed as a treatment for severe sepsis and septic shock. In the present study, we show that although AZD9773 has a modest affinity for TNFα in a binding assay, the Ki in a cell-based assay is approximately four orders of magnitude lower. We show using SEC (size exclusion chromatography) that the maximum size of the complex between AZD9773 and TNFα is consistent with approximately 12 Fabs binding to one TNFα trimer. A number of approaches were taken to map the epitopes recognized by AZD9773. These revealed that a number of different regions on TNFα are involved in binding to the polyclonal Fab. The data suggest that there are probably three epitopes per monomer that are responsible for most of the inhibition by AZD9773 and that all three can be occupied at the same time in the complex. We conclude that AZD9773 is clearly demonstrated to bind to multiple epitopes on TNFα and suggest that the polyclonal nature may account, at least in part, for the very high potency observed in cell-based assays. PMID:23863106

  19. Supramolecular Complexes Formed by the Self-assembly of Hydrophobic Bis(Zn(2+)-cyclen) Complexes, Copper, and Di- or Triimide Units for the Hydrolysis of Phosphate Mono- and Diesters in Two-Phase Solvent Systems (Cyclen=1,4,7,10-Tetraazacyclododecane).

    PubMed

    Hisamatsu, Yosuke; Miyazawa, Yuya; Yoneda, Kakeru; Miyauchi, Miki; Zulkefeli, Mohd; Aoki, Shin

    2016-01-01

    We previously reported on supramolecular complexes 4 and 5, formed by the 4 : 4 : 4 or 2 : 2 : 2 assembly of a dimeric zinc(II) complex (Zn2L(1)) having 2,2'-bipyridyl linker, dianion of cyanuric acid (CA) or 5,5-diethylbarbituric acid (Bar), and copper(II) ion (Cu(2+)) in an aqueous solution. The supermolecule 4 possesses Cu2(μ-OH)2 centers and catalyzes hydrolysis of phosphate monoester dianion, mono(4-nitrophenyl)phosphate (MNP), at neutral pH. In this manuscript, we report on design and synthesis of hydrophobic supermolecules 9 and 10 by 4 : 4 : 4 and 2 : 2 : 2 self-assembly of hydrophobic Zn2L(2) and Zn2L(3) containing long alkyl chains, CA or Bar, and Cu(2+) and their phosphatase activity for the hydrolysis of MNP and bis(4-nitrophenyl)phosphate (BNP) in two-phase solvent systems. We assumed that the Cu2(μ-OH)2 active sites of 9 and 10 would be more stable in organic solvent than in aqueous solution and that product inhibition of the supermolecules might be avoided by the release of HPO4(2-) into the aqueous layer. The findings indicate that 9 and 10 exhibit phosphatase activity in the two-phase solvent system, although catalytic turnover was not observed. Furthermore, the hydrolysis of BNP catalyzed by the hydrophobic 2 : 2 : 2 supermolecules in the two-phase solvent system is described.

  20. Synthesis, spectral and antimicrobial activity of Zn(II) complexes with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and benzaldehyde/2-hydroxyacetophenone/indoline-2,3-dione

    NASA Astrophysics Data System (ADS)

    Singh, Ajay K.; Pandey, O. P.; Sengupta, S. K.

    2013-09-01

    Zn(II) complexes have been synthesized by reacting zinc acetate with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and 2-hydroxyacetophenone/benzaldehyde/indoline-2,3-dione. All these complexes are soluble in DMF and DMSO; low molar conductance values indicate that they are non electrolytes. Elemental analyses suggest that the complexes have 1:2 metal to ligands stoichiometry of the types [ZnL2(H2O)2](L = monoanionic Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and 2-hydroxyacetophenone/indoline-2,3-dione) [ZnL2‧(OOCCH3)2(H2O)2](L‧ = neutral Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and benzaldehyde), and they were characterized by IR, 1H NMR, and 13C NMR. Particle sizes of synthesized compounds were measured with dynamic light scattering (DLS) analyser which indicates that particle diameter are of the range ca. 100-200 nm. All these Schiff bases and their complexes have also been screened for their antibacterial (Bacillus subtilis (B. subtilis), Escherichia coli (E. coli) and antifungal activities (Colletotrichum falcatum (C. falcatum), Aspergillus niger (A. niger), Fusarium oxysporium (F. oxysporium) Curvularia pallescence (C. pallescence). The antimicrobial activities have shown that upon complexation the activity increases.

  1. Adenovirus virus-associated RNAII-derived small RNAs are efficiently incorporated into the rna-induced silencing complex and associate with polyribosomes.

    PubMed

    Xu, Ning; Segerman, Bo; Zhou, Xiaofu; Akusjärvi, Göran

    2007-10-01

    Adenovirus type 5 encodes two highly structured short RNAs, the virus-associated (VA) RNAI and RNAII. Both are processed by Dicer into small RNAs that are incorporated into the RNA-induced silencing complex (RISC). We show here, by cloning of small RNAs, that approximately 80% of Ago2-containing RISC immunopurified from late-infected cells is associated with VA RNA-derived small RNAs (mivaRNAs). Most surprisingly, VA RNAII, which is expressed at 20-fold lower levels compared to that of VA RNAI, appears to be the preferred substrate for Dicer and accounts for approximately 60% of all small RNAs in RISC. The mivaRNAs are derived from the 3' strand of the terminal stems of the VA RNAs, with the major fraction of VA RNAII starting at position 138. The small RNAs derived from VA RNAI were more heterogeneous in size, with the two predominant small RNAs starting at positions 137 and 138. Collectively, our results suggest that the mivaRNAs are efficiently used for RISC assembly in late-infected cells. Potentially, they function as miRNAs, regulating translation of cellular mRNAs. In support of this hypothesis, we detected a fraction of the VA RNAII-derived mivaRNAs on polyribosomes.

  2. Synthesis and Biological Evaluation of New Hydrazone Derivatives of Quinoline and Their Cu(II) and Zn(II) Complexes against Mycobacterium tuberculosis

    PubMed Central

    Mandewale, Mustapha C.; Thorat, Bapu; Shelke, Dnyaneshwar; Yamgar, Ramesh

    2015-01-01

    A new series of quinoline hydrazone derivatives and their metal complexes have been synthesized and their biological properties have been evaluated against Mycobacterium tuberculosis (H37 RV strain). Most of the newly synthesized compounds displayed 100% inhibitory activity at a concentration of 6.25–25 μg/mL, against Mycobacterium tuberculosis. Fluorescence properties of all the synthesized compounds have been studied. PMID:26759537

  3. Photophysicochemical, calf thymus DNA binding and in vitro photocytotoxicity properties of tetra-morpholinoethoxy-substituted phthalocyanines and their water-soluble quaternized derivatives.

    PubMed

    Koçan, Halit; Kaya, Kerem; Özçeşmeci, İbrahim; Sesalan, B Şebnem; Göksel, Meltem; Durmuş, Mahmut; Burat, Ayfer Kalkan

    2017-12-01

    In this study, morpholinoethoxy-substituted metal-free (3), zinc(II) (4) and indium(III) (5) phthalocyanines were synthesized. These phthalocyanines were converted to their water-soluble quaternized derivatives (3Q-5Q) using excess methyl iodide as a quaternization agent. All these phthalocyanines (Pcs) were characterized by elemental analysis and different spectroscopic methods such as FT-IR, 1 H NMR, UV-Vis and mass spectrometry. The photophysical and photochemical properties such as fluorescence and generation of singlet oxygen were investigated for determination of these phthalocyanines as photosensitizers in photodynamic therapy (PDT) applications. The binding properties of quaternized phthalocyanines (3Q-5Q) to calf thymus DNA (CT-DNA) were investigated by UV-Vis and fluorescence spectrophotometric methods. The quenching effect of all quaternized phthalocyanines on the fluorescence intensity of SYBR Green-DNA complex was determined. The mixtures of 3Q, 4Q or 5Q and DNA solutions were used to determine the change in T m of double helix DNA with thermal denaturation profile. In addition, thermodynamic parameters considering their aggregation in buffer solution, which shows the spontaneity of the reactions between DNA and quaternized Pcs were investigated. On the other hand, in vitro phototoxicity and cytotoxicity behavior of the quaternized water-soluble phthalocyanine photosensitizers (3Q-5Q) were tested against the cervical cancer cell line named HeLa for evaluation of their suitability for treatment of cancer by PDT method. Peripherally tetra-substituted neutral and quaternized metal-free and metallophthalocyanines (MPcs) (Zn, In) bearing morpholinoethoxy groups were prepared. The binding of quaternized compounds (3Q-5Q) to CT-DNA were examined using UV-Vis, fluorescence spectra, thermal denaturation profiles and K SV values. Besides, thermodynamic studies indicated that binding of 3Q-5Q to DNA was spontaneous. On the other hand, in vitro phototoxicity and

  4. Preparation of Rhodium(III) complexes with 2(1H)-quinolinone derivatives and evaluation of their in vitro and in vivo antitumor activity.

    PubMed

    Lu, Xing; Wu, Yi-Ming; Yang, Jing-Mei; Ma, Feng-E; Li, Liang-Ping; Chen, Sheng; Zhang, Ye; Ni, Qing-Ling; Pan, Ying-Ming; Hong, Xue; Peng, Yan

    2018-05-10

    A series of 2(1H)-quinolinone derivatives and their rhodium (III) complexes were designed and synthesized. All the rhodium (III) complexes exhibited higher in vitro cytotoxicity for Hep G2, HeLa 229, MGC80-3, and NCI-H460 human tumor cell lines than their ligands and cisplatin, and among them complex 9 was found to be selectively cytotoxic to tumor cells. Further investigation revealed that complex 9 caused cell cycle arrest at the G2/M phase and induced apoptosis, and inhibited the proliferation of Hep G2 cells by impeding the phosphorylation of epidermal growth factor receptor (EGFR) and its downstream enzymes. Complex 9 also up-regulated the proapoptotic proteins Bak, Bax, and Bim, which altogether activated caspase-3/9 to initiate cell apoptosis. Notably, complex 9 effectively inhibited tumor growth in the NCI-H460 xenograft mouse model with less adverse effect than cisplatin. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. The Application of Curve Fitting on the Voltammograms of Various Isoforms of Metallothioneins–Metal Complexes

    PubMed Central

    Merlos Rodrigo, Miguel Angel; Molina-López, Jorge; Jimenez Jimenez, Ana Maria; Planells Del Pozo, Elena; Adam, Pavlina; Eckschlager, Tomas; Zitka, Ondrej; Richtera, Lukas; Adam, Vojtech

    2017-01-01

    The translation of metallothioneins (MTs) is one of the defense strategies by which organisms protect themselves from metal-induced toxicity. MTs belong to a family of proteins comprising MT-1, MT-2, MT-3, and MT-4 classes, with multiple isoforms within each class. The main aim of this study was to determine the behavior of MT in dependence on various externally modelled environments, using electrochemistry. In our study, the mass distribution of MTs was characterized using MALDI-TOF. After that, adsorptive transfer stripping technique with differential pulse voltammetry was selected for optimization of electrochemical detection of MTs with regard to accumulation time and pH effects. Our results show that utilization of 0.5 M NaCl, pH 6.4, as the supporting electrolyte provides a highly complicated fingerprint, showing a number of non-resolved voltammograms. Hence, we further resolved the voltammograms exhibiting the broad and overlapping signals using curve fitting. The separated signals were assigned to the electrochemical responses of several MT complexes with zinc(II), cadmium(II), and copper(II), respectively. Our results show that electrochemistry could serve as a great tool for metalloproteomic applications to determine the ratio of metal ion bonds within the target protein structure, however, it provides highly complicated signals, which require further resolution using a proper statistical method, such as curve fitting. PMID:28287470

  6. Spectroscopic and electrochemical investigation with coordination stabilities: Mononuclear manganese(II) complexes derived from different constituents macrocyclic ligands

    NASA Astrophysics Data System (ADS)

    Kumar, Rajiv; Chnadra, S.; Mishra, Parashuram

    2007-12-01

    Since the manganese(II) complexes are known as having a high degree of stability, some of them may be able to play a very important role in biosystems. We prepared manganese(II) complexes with different chromospheres containing macrocyclic ligands bearing N, S and O like functional donor atoms in order to obtain different models of compounds. So these new manganese(II) complexes were derived from macrocyclic ligands by chelating them with metal ions. Thus, two macrocyclic ligands, L 1: 2,4-diphenyl-1,5-diaza-8,12-dioxo-6,7:13,14-dibenzocyclo tetradeca-1,4-diene[N 2O 2]ane; L 2: 2,4,9,11-tetraphenyl-6,13-dimethyl-1,5,8,12-traazacyclotertr-adeca-1,4,8,11-tetraene[N 4]ane; and two more different form first one viz.—L 3: 1,7-diaza-4-monothia-10,14-dioxo-8,9:15,16-cyclohexadecane[N 2O 2S]ane and L 4: 4,13-diaoxa-1,7,10,16-hexazacyclooctadecane[N 4O 2]ane were prepared and their capacity to retain the manganese(II) ion in solid as well as aqueous solution was determined from various physiochemical techniques viz: characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, mass, IR, electronic, ESR spectral studies and cyclic voltammetric measurements.

  7. Synthesis, characterization and extraction studies of some metal (II) complexes containing (hydrazoneoxime and bis-acylhydrazone) moieties.

    PubMed

    Al-Ne'aimi, Mohammed Mahmmod; Al-Khuder, Mohammed Moudar

    2013-03-15

    In this study, diacetylmonoximebenzoylhydrazone (L(1)H(2)) and 1,4-diacetylbenzene bis(benzoyl hydrazone) (L(2)H(2)) were synthesized by the condensation of benzohydrazide with diacetyl monoxime and 1,4-diacetylbenzene, respectively. Complexes of these ligands with Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) inos were prepared with a metal:ligand ratio of 1:2 for L(1)H(2) ligand, and 1:1 for L(2)H(2) ligand. The ligands and their complexes were elucidated on the basis of elemental analyses CHN, AAS, FT-IR, (1)H- and (13)C NMR spectra, UV-vis spectra and magnetic susceptibility measurements. Results show the L(1)H(2) ligand act as monoanionic O,N,N-tridentate and coordination takes place in the enol form through the oxime nitrogen, the imine nitrogen and the enolate oxygen atoms with a N(4)O(2) donor environment, while the L(2)H(2) ligand act as a dianionic O,N,N,O-tetradentate and coordination takes place in the enol form through the enolate oxygen and the azomethine nitrogen atoms with a N(2)O(2) donor environment. These results are consistent with the formation of mononuclear metal (II) complexes [M(L(1)H)(2)], and binuclear polymeric metal (II) complexes [{M(2)(L(2))}(n)]. The extraction ability of both ligands were examined in chloroform by the liquid-liquid extraction of selected transition metal [Co(2+), Ni(2+), Cu(2+), Zn(2+) and Pb(2+)] cations. The effects of pH and contact time on the percentage extraction of metal (II) ions were studied under the optimum extraction conditions. The (L(1)H(2)) ligand shows strong binding ability toward copper(II) and lead(II) ions, while the (L(2)H(2)) ligand shows strong binding ability toward nickel(II) and zinc(II) ions. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...

  9. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...

  10. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...

  11. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...

  12. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...

  13. Charge-transfer complexes of phenylephrine with nitrobenzene derivatives

    NASA Astrophysics Data System (ADS)

    El-Mossalamy, E. H.

    2004-04-01

    The molecular charge-transfer complexes of phenylephrine with picric acid and m-dinitrobenzene have been studied and investigated by IR, 1H NMR electronic spectra in organic solvents and buffer solutions, respectively. Simple and selective methods are proposed for the determination of phenylephrine hydrochloride in bulk form and in tablets. The two methods are based on the formation of charge-transfer complexes between drug base as a n-donor (D) and picric acid, m-dinitrobenzene as π-acceptor (A). The products exhibit absorption maxima at 497 and 560 nm in acetonitrile for picric acid and m-dinitrobenzene, respectively. The coloured product exhibits an absorption maximum at 650 nm in dioxane. The sensitive kinetic methods for the determination phynylephrine hydrochloride are described. The method is based upon a kinetic investigation of the oxidation reaction of the drug with alkaline potassium permanganate at room temperature for a fixed time at 20 min.

  14. How multiplicity determines entropy and the derivation of the maximum entropy principle for complex systems.

    PubMed

    Hanel, Rudolf; Thurner, Stefan; Gell-Mann, Murray

    2014-05-13

    The maximum entropy principle (MEP) is a method for obtaining the most likely distribution functions of observables from statistical systems by maximizing entropy under constraints. The MEP has found hundreds of applications in ergodic and Markovian systems in statistical mechanics, information theory, and statistics. For several decades there has been an ongoing controversy over whether the notion of the maximum entropy principle can be extended in a meaningful way to nonextensive, nonergodic, and complex statistical systems and processes. In this paper we start by reviewing how Boltzmann-Gibbs-Shannon entropy is related to multiplicities of independent random processes. We then show how the relaxation of independence naturally leads to the most general entropies that are compatible with the first three Shannon-Khinchin axioms, the (c,d)-entropies. We demonstrate that the MEP is a perfectly consistent concept for nonergodic and complex statistical systems if their relative entropy can be factored into a generalized multiplicity and a constraint term. The problem of finding such a factorization reduces to finding an appropriate representation of relative entropy in a linear basis. In a particular example we show that path-dependent random processes with memory naturally require specific generalized entropies. The example is to our knowledge the first exact derivation of a generalized entropy from the microscopic properties of a path-dependent random process.

  15. Perchlorate mixed-ligand copper(II) complexes of beta-diketone and ethylene diamine derivatives: thermal, spectroscopic and biochemical studies.

    PubMed

    El-Ayaan, Usama; El-Metwally, Nashwa M; Youssef, Magdy M; El Bialy, Serry A A

    2007-12-31

    The present work carried out a study on perchlorate mixed-ligand copper(II) complexes which have been synthesized from ethylenediamine derivatives (3a-c) and beta-diketones. These complexes, namely [Cu(DA-Cl)(acac)H(2)O]ClO(4)4, [Cu(DA-Cl)(bzac)H(2)O]H(2)O.ClO(4)5, [Cu(DA-OMe)(acac)H(2)O]ClO(4)6, [Cu(DA-OMe)(bzac)H(2)O]ClO(4)7, [Cu(DA-H)(acac)H(2)O]2H(2)O.ClO(4)8 and [Cu(DA-H)(bzac)H(2)O]ClO(4)9 (where acac, acetylacetonate and bzac, benzoylacetonate) were characterized by elemental analysis, spectral (IR and UV-vis) and magnetic moment measurements. Thermal properties and decomposition kinetics of all complexes are investigated. The interpretation, mathematical analysis and evaluation of kinetic parameters (E, A, DeltaH, DeltaS and DeltaG) of all thermal decomposition stages have been evaluated using Coats-Redfern equation. The biochemical studies showed that, the diamines 3a-c have powerful effects on degradation of DNA and protein. The antibacterial screening demonstrated that, the diamine (DA-Cl), 3b has the maximum and broad activities against Gram +ve and Gram -ve bacterial strains.

  16. Computation of Sensitivity Derivatives of Navier-Stokes Equations using Complex Variables

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.

    2004-01-01

    Accurate computation of sensitivity derivatives is becoming an important item in Computational Fluid Dynamics (CFD) because of recent emphasis on using nonlinear CFD methods in aerodynamic design, optimization, stability and control related problems. Several techniques are available to compute gradients or sensitivity derivatives of desired flow quantities or cost functions with respect to selected independent (design) variables. Perhaps the most common and oldest method is to use straightforward finite-differences for the evaluation of sensitivity derivatives. Although very simple, this method is prone to errors associated with choice of step sizes and can be cumbersome for geometric variables. The cost per design variable for computing sensitivity derivatives with central differencing is at least equal to the cost of three full analyses, but is usually much larger in practice due to difficulty in choosing step sizes. Another approach gaining popularity is the use of Automatic Differentiation software (such as ADIFOR) to process the source code, which in turn can be used to evaluate the sensitivity derivatives of preselected functions with respect to chosen design variables. In principle, this approach is also very straightforward and quite promising. The main drawback is the large memory requirement because memory use increases linearly with the number of design variables. ADIFOR software can also be cumber-some for large CFD codes and has not yet reached a full maturity level for production codes, especially in parallel computing environments.

  17. Theoretical insights into the π-hole interactions in the complexes containing triphosphorus hydride (P3H3) and its derivatives.

    PubMed

    Wang, Yuehong; Li, Xiaoyan; Zeng, Yanli; Meng, Lingpeng; Zhang, Xueying

    2017-04-01

    The π-hole of triphosphorus hydride (P 3 H 3 ) and its derivatives Z 3 X 3 (Z = P, As; X = H, F, Cl, Br) was discovered and analyzed. MP2/aug-cc-pVDZ calculations were performed on the π-hole interactions in the HCN...Z 3 X 3 complexes and the mutual influence between π-hole interactions and the hydrogen bond in the HCN...HCN...Z 3 X 3 and HCN...Z 3 X 3 ...HCN complexes studied. The π-hole interaction belongs to the typical closed-shell noncovalent interaction. The linear relationship was found between the most positive electrostatic potential of the π-hole (V S,max ) and the interaction energy. Moreover, the V S,max of the π-hole was also found to be linearly correlated to the electrostatic energy term, indicating the important contribution of the electrostatic energy term to the π-hole interaction. There is positive cooperativity between the π-hole interaction and the hydrogen bond in the termolecular complexes. The π-hole interaction has a greater influence on the hydrogen bond than vice versa. The mutual enhancing effect between the π-hole interaction and the hydrogen bond in the HCN...HCN...Z 3 X 3 complexes is greater than that in the HCN...Z 3 X 3 ...HCN complexes.

  18. Hybrid copper complex-derived conductive patterns printed on polyimide substrates

    NASA Astrophysics Data System (ADS)

    Lee, Byoungyoon; Jeong, Sooncheol; Kim, Yoonhyun; Jeong, Inbum; Woo, Kyoohee; Moon, Jooho

    2012-06-01

    We synthesized new copper complexes that can be readily converted into highly conductive Cu film. Mechanochemical milling of copper (I) oxide suspended in formic acid resulted in the submicron-sized Cu formate together Cu nanoparticles. The submicrometer-sized Cu formates are reactive toward inter-particle sintering and metallic Cu seeds present in the Cu complexes assist their decomposition and the nucleation of Cu. The hybrid copper complex film printed on polyimide substrate is decomposed into dense and uniform Cu layer after annealing at 250 °C for 30 min under nitrogen atmosphere. The resulting Cu film exhibited a low resistivity of 8.2 μΩ·cm and good adhesion characteristics.

  19. Synthesis, spectral and antimicrobial activity of Zn(II) complexes with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and benzaldehyde/2-hydroxyacetophenone/indoline-2,3-dione.

    PubMed

    Singh, Ajay K; Pandey, O P; Sengupta, S K

    2013-09-01

    Zn(II) complexes have been synthesized by reacting zinc acetate with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and 2-hydroxyacetophenone/benzaldehyde/indoline-2,3-dione. All these complexes are soluble in DMF and DMSO; low molar conductance values indicate that they are non electrolytes. Elemental analyses suggest that the complexes have 1:2 metal to ligands stoichiometry of the types [ZnL2(H2O)2](L=monoanionic Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and 2-hydroxyacetophenone/indoline-2,3-dione) [ZnL2(')(OOCCH3)2(H2O)2](L'=neutral Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and benzaldehyde), and they were characterized by IR, (1)H NMR, and (13)C NMR. Particle sizes of synthesized compounds were measured with dynamic light scattering (DLS) analyser which indicates that particle diameter are of the range ca. 100-200nm. All these Schiff bases and their complexes have also been screened for their antibacterial (Bacillus subtilis (B. subtilis), Escherichia coli (E. coli) and antifungal activities (Colletotrichum falcatum (C. falcatum), Aspergillus niger (A. niger), Fusarium oxysporium (F. oxysporium) Curvularia pallescence (C. pallescence). The antimicrobial activities have shown that upon complexation the activity increases. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Synthesis, characterization of α-amino acid Schiff base derived Ru/Pt complexes: Induces cytotoxicity in HepG2 cell via protein binding and ROS generation

    NASA Astrophysics Data System (ADS)

    Alsalme, Ali; Laeeq, Sameen; Dwivedi, Sourabh; Khan, Mohd. Shahnawaz; Al Farhan, Khalid; Musarrat, Javed; Khan, Rais Ahmad

    2016-06-01

    We have synthesized two new complexes of platinum (1) and ruthenium (2) with α-amino acid, L-alanine, and 2,3-dihydroxybenzaldehyde derived Schiff base (L). The ligand and both complexes were characterized by using elemental analysis and several other spectroscopic techniques viz; IR, 1H, 13C NMR, EPR, and ESI-MS. Furthermore, the protein-binding ability of synthesized complexes was monitored by UV-visible, fluorescence and circular dichroism techniques with a model protein, human serum albumin (HSA). Both the PtL2 and RuL2 complexes displayed significant binding towards HSA. Also, in vitro cytotoxicity assay for both complexes was carried out on human hepatocellular carcinoma cancer (HepG2) cell line. The results showed concentration-dependent inhibition of cell viability. Moreover, the generation of reactive oxygen species was also evaluated, and results exhibited substantial role in cytotoxicity.

  1. Characterization of aspartame-cyclodextrin complexation.

    PubMed

    Sohajda, Tamás; Béni, Szabolcs; Varga, Erzsébet; Iványi, Róbert; Rácz, Akos; Szente, Lajos; Noszál, Béla

    2009-12-05

    The inclusion complex formation of aspartame (guest) and various cyclodextrins (host) were examined using 1H NMR titration and capillary electrophoresis. Initially the protonation constants of aspartame were determined by NMR-pH titration with in situ pH measurement to yield log K1=7.83 and log K2=2.96. Based on these values the stability of the complexes formed by aspartame and 21 different cyclodextrins (CDs) were studied at pH 2.5, pH 5.2 and pH 9.0 values where aspartame exists predominantly in monocationic, zwitterionic and monoanionic form, respectively. The host cyclodextrin derivatives differed in various sidechains, degree of substitution, charge and purity so that the effect of these properties could be examined systematically. Concerning size, the seven-membered beta-cyclodextrin and its derivatives have been found to be the most suitable host molecules for complexation. Highest stability was observed for the acetylated derivative with a degree of substitution of 7. The purity of the CD enhanced the complexation while the degree of substitution did not provide obvious consequences. Finally, geometric aspects of the inclusion complex were assessed by 2D ROESY NMR and molecular modelling which proved that the guest's aromatic ring enters the wider end of the host cavity.

  2. In vitro transfection of plasmid DNA by amine derivatives of gelatin accompanied with ultrasound irradiation.

    PubMed

    Hosseinkhani, Hossein; Aoyama, Ternyoshi; Yamamoto, Shingo; Ogawa, Osamu; Tabata, Yasuhiko

    2002-10-01

    The purpose of this study is to examine the ultrasound (US)-enhanced gene expression by the complexes of a plasmid DNA with gelatin derivatives of aminization. Gelatin derivatives with different introduced extents of ethylenediamine (Ed), spermidine (Sd), and spermine (Sm) were prepared with a water-soluble carbodiimide. The molecular size and zeta potential of the gelatin derivatives before and after complexation with the plasmid DNA were examined. After incubation with the complexes with or without US exposure, the DNA expression of rat gastric mucosal cells was measured to evaluate the effect of the type of gelatin derivatives on their gene expression. The cell uptake of the complexes, the cell viability, and the buffering effect of gelatin derivatives were examined. The apparent molecular size and zeta potential of gelatin derivatives became larger as their aminization extent increased although the Sm gelatin derivative of higher aminization showed a larger value than other corresponding derivatives. Irrespective of the type of gelatin derivatives, the apparent molecular size of plasmid DNA was reduced by increasing the gelatin-DNA mixing ratio to attain a saturated value of about 150 nm. The condensed gelatin-DNA complexes showed the zeta potential of 10-15 mV. The cells incubated with the complex exhibited significantly stronger luciferase activities than free plasmid DNA, and the activity was further enhanced by US irradiation. The enhancement was significant for the Sm derivative compared with the corresponding Ed and Sd derivatives. The amount of plasmid DNA internalized into the cells was significantly increased by the complexation with every gelatin derivative, whereas US irradiation did not significantly increase the DNA internalization. US irradiation had no effect on the viability of cells incubated with every gelatin derivative-plasmid DNA complex, although the viability was decreased by the complex incubation. The buffering capacity of Sm derivative

  3. Synthesis, spectroscopic, thermal and antimicrobial studies of neodymium(III) and samarium(III) complexes derived from tetradentate ligands containing N and S donor atoms

    NASA Astrophysics Data System (ADS)

    Ain, Qurratul; Pandey, S. K.; Pandey, O. P.; Sengupta, S. K.

    2015-04-01

    Trivalent lanthanide complexes of the type [Ln(L)Cl(H2O)2] (where Ln = Nd(III) or Sm(III) and LH2 = Schiff bases derived by the condensation of 3-(phenyl/substitutedphenyl)-4-amino-5-mercapto-1,2,4-triazole with diacetyl/benzil) have been synthesized by the reactions of anhydrous lanthanide(III) chloride with Schiff bases in methanol. The structures of the complexes have been proposed on the basis of elemental analysis, electrical conductance, magnetic moment, spectroscopic measurements (IR, 1H, 13C NMR and UV-vis spectra) and X-ray diffraction studies. The spectral data reveal that the Schiff base ligands behave as dibasic tetradentate chelating agents having coordination sites at two thiol sulfur atoms and two azomethine nitrogen atoms. The presence of coordinated water in metal complexes was confirmed by thermal and IR data of the complexes. All the Schiff bases and their metal complexes have also been screened for their antibacterial activity against Bacillus subtilis, Staphylococcus aureus and antifungal activities against Aspergillus niger, Curvularia pallescens and Colletotrichum capsici.

  4. Evaluation of the Intramolecular Charge-Transfer Properties in Solvatochromic and Electrochromic Zinc Octa(carbazolyl)phthalocyanines.

    PubMed

    Majeed, Shereen A; Ghazal, Basma; Nevonen, Dustin E; Goff, Philip C; Blank, David A; Nemykin, Victor N; Makhseed, Saad

    2017-10-02

    2,3,9,10,16,17,23·24-Octakis-(9H-carbazol-9-yl) phthalocyaninato zinc(II) (3) and 2,3,9,10,16,17,23·24-octakis-(3,6-di-tert-butyl-9H-carbazole) phthalocyaninato zinc(II) (4) complexes were prepared and characterized by NMR and UV-vis spectroscopies, magnetic circular dichroism (MCD), matrix-assisted laser desorption ionization mass spectrometry, and X-ray crystallography. UV-vis and MCD data are indicative of the interligand charge-transfer nature of the broad band observed in 450-500 nm range for 3 and 4. The redox properties of 3 and 4 were probed by electrochemical and spectro-electrochemical methods, which are suggestive of phthalocyanine-centered first oxidation and reduction processes. Photophysics of 3 and 4 were investigated by steady-state fluorescence and time-resolved transient absorption spectroscopy demonstrating the influence of the carbazole substituents on deactivation from the first excited state in 3 and 4. Protonation of the meso-nitrogen atoms in 3 results in much faster deactivation kinetics from the first excited state. Spectroscopic data were correlated with density functional theory (DFT) and time-dependent DFT calculations on 3 and 4.

  5. Synthesis, characterization, and antimicrobial activity of silver(I) and copper(II) complexes of phosphate derivatives of pyridine and benzimidazole.

    PubMed

    Kalinowska-Lis, Urszula; Szewczyk, Eligia M; Chęcińska, Lilianna; Wojciechowski, Jakub M; Wolf, Wojciech M; Ochocki, Justyn

    2014-01-01

    Two silver(I) complexes--[Ag(4-pmOpe)]NO₃}(n) and [Ag(2-bimOpe)₂]NO₃--and three copper(II) complexes--[Cu₄Cl₆O(2-bimOpe)₄], [CuCl₂(4-pmOpe)₂], and [CuCl₂(2-bis(pm)Ope]--were synthesized by reaction of silver(I) nitrate or copper(II) chloride with phosphate derivatives of pyridine and benzimidazole, namely diethyl (pyridin-4-ylmethyl)phosphate (4-pmOpe), 1H-benzimidazol-2-ylmethyl diethyl phosphate (2-bimOpe), and ethyl bis(pyridin-2-ylmethyl)phosphate (2-bis(pm)Ope). These compounds were characterized by ¹H, ¹³C, and ³¹P NMR as well as IR spectroscopy, elemental analysis, and ESIMS spectrometry. Additionally, molecular and crystal structures of {[Ag(4-pmOpe)]NO₃}n and [Cu₄Cl₆O(2-bimOpe)₄] were determined by single-crystal X-ray diffraction analysis. The antimicrobial profiles of synthesized complexes and free ligands against test organisms from the ATCC and clinical sources were determined. Silver(I) complexes showed good antimicrobial activities against Candida albicans strains (MIC values of ∼19 μM). [Ag(2-bimOpe)₂]NO₃ was particularly active against Pseudomonas aeruginosa and methicillin-resistant Staphylococcus epidermidis, with MIC values of ∼5 and ∼10 μM, respectively. Neither copper(II) complexes nor the free ligands inhibited the growth of test organisms at concentrations below 500 μg mL⁻¹. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Molecular hyperpolarizabilities of new bimetallic ferrocenyl derivatives

    NASA Astrophysics Data System (ADS)

    Loucif-Saïbi, R.; Delaire, J. A.; Bonazzola, L.; Doisneau, G.; Balavoine, G.; Fillebeen-Khan, T.; Ledoux, I.; Puccetti, G.

    1992-11-01

    We have investigated the influence of complexation of ferrocenyl derivatives on the second-order hyperpolarizabilities β. This was performed using dc electric field induced second harmonic generation (EFISHG) technique at 1.34 and 1.9 μm. For these new bimetallic ferrocenyl derivatives, significantly increased β values were observed. Our best β value (123.5 × 10 -30 esu at 1.34 μm) is comparable to the highest reported values for organometallic complexes. The nature of the second metal ion has a weak influence on the β values, in consequence to the change of geometry of the associated complex. The validity of the two-level model has been examined in detail: we found that it applies fairly well for the monometallic complexes if one takes into account only the low energy MLCT transition but the contribution of upper levels cannot be ruled out for bimetallic complexes.

  7. Adenovirus Virus-Associated RNAII-Derived Small RNAs Are Efficiently Incorporated into the RNA-Induced Silencing Complex and Associate with Polyribosomes▿ §

    PubMed Central

    Xu, Ning; Segerman, Bo; Zhou, Xiaofu; Akusjärvi, Göran

    2007-01-01

    Adenovirus type 5 encodes two highly structured short RNAs, the virus-associated (VA) RNAI and RNAII. Both are processed by Dicer into small RNAs that are incorporated into the RNA-induced silencing complex (RISC). We show here, by cloning of small RNAs, that approximately 80% of Ago2-containing RISC immunopurified from late-infected cells is associated with VA RNA-derived small RNAs (mivaRNAs). Most surprisingly, VA RNAII, which is expressed at 20-fold lower levels compared to that of VA RNAI, appears to be the preferred substrate for Dicer and accounts for approximately 60% of all small RNAs in RISC. The mivaRNAs are derived from the 3′ strand of the terminal stems of the VA RNAs, with the major fraction of VA RNAII starting at position 138. The small RNAs derived from VA RNAI were more heterogeneous in size, with the two predominant small RNAs starting at positions 137 and 138. Collectively, our results suggest that the mivaRNAs are efficiently used for RISC assembly in late-infected cells. Potentially, they function as miRNAs, regulating translation of cellular mRNAs. In support of this hypothesis, we detected a fraction of the VA RNAII-derived mivaRNAs on polyribosomes. PMID:17652395

  8. Mononuclear Copper Complex Catalyzed Four-Electron Reduction of Oxygen

    PubMed Central

    Fukuzumi, Shunichi; Kotani, Hiroaki; Lucas, Heather R.; Doi, Kaoru; Suenobu, Tomoyoshi; Peterson, Ryan L.; Karlin, Kenneth D.

    2010-01-01

    A mononuclear CuII complex acts as an efficient catalyst for four-electron reduction of O2 to H2O by a ferrocene derivative via formation of the dinuclear CuII peroxo complex that is further reduced in the presence of protons by a ferrocene derivative to regenerate the CuII complex. PMID:20443560

  9. Modulation of Cellular Stress Response via the Erythropoietin/CD131 Heteroreceptor Complex in Mouse Mesenchymal-Derived Cells

    PubMed Central

    Bohr, Stefan; Patel, Suraj J; Vasko, Radovan; Shen, Keyue; Iracheta-Vellve, Arvin; Lee, Jungwoo; Bale, Shyam Sundhar; Chakraborty, Nilay; Brines, Michael; Cerami, Anthony; Berthiaume, Francois; Yarmush, Martin L

    2014-01-01

    Tissue protective properties of erythropoietin (EPO) have let to the discovery of an alternative EPO-signaling via an EPO-R/CD131 receptor complex which can now be specifically targeted through pharmaceutically designed short sequence peptides such as ARA290. However, little is still known about specific functions of alternative EPO-signaling in defined cell populations. In this study we investigated effects of signaling through EPO-R/CD131 complex on cellular stress responses and pro-inflammatory activation in different mesenchymal-derived phenotypes. We show that anti-apoptotic, anti-inflammatory effects of ARA290 and EPO coincide with the externalization of CD131 receptor component as an immediate response to cellular stress. In addition, alternative EPO-signaling strongly modulated transcriptional, translational or metabolic responses after stressor removal. Specifically, we saw that ARA290 was able overcome a TNFα-mediated inhibition of transcription factor activation related to cell stress responses, most notably of serum response factor (SRF), heat shock transcription factor protein 1 (HSF1) and activator protein 1 (AP1). We conclude that alternative EPO-signaling acts as a modulator of pro-inflammatory signaling pathways and likely plays a role in restoring tissue homeostasis. PMID:25373867

  10. Naphthalocyanine-complexes as potential photosensitizers for PDT of tumors

    NASA Astrophysics Data System (ADS)

    Shopova, Maria; Woehrle, Dieter; Mantareva, Vanya; Mueller, Silke

    1999-07-01

    In the present paper information about the synthesis and results on the pharmacokinetic and experimental photodynamic therapy (PDT) of naphthalocyanines are given. The photodynamic activity of differently substituted zinc(II)- and silicon(IV)-naphthalocyanines using liposomes or Cremophor EL as drug-delivery systems is shown on different tumor models. For the evaluation of the phototherapeutic effect different assessment criteria were used, including light and electron microscope observations. The main conclusions which can be arrived at on the basis of our findings are the following: silicon(IV)-naphthalocyanine seems to be not a very effective tumor sensitizer, especially in the treatment o pigmented melanoma, while zinc(II)-naphthalocyanines appear to be very promising for PDT of tumors. Their selective targeting and slow clearance from tumor tissue, fast clearance from skin and pronounced phototherapeutic effect on different tumor models and especially at melanotic tumors, even after application of low drug doses, make this group of photosensitizers very attractive for successful PDT of cancer.

  11. Nickel Complexes of a Binucleating Ligand Derived from an SCS Pincer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Sonja M.; Helm, Monte L.; Appel, Aaron M.

    2015-01-01

    A binucleating ligand has been prepared that contains an SCS pincer and three oxygen donor ligands in a partial crown ether loop. To enable metalation with Ni0, a bromoarene precursor was used and resulted in the formation of a nickel-bromide complex in the SCS pincer. Reaction of the nickel complex with a lithium salt yielded a heterobimetallic complex with bromide bridging the two metal centers. The solid-state structures were determined for this heterobimetallic complex and the nickel-bromide precursor, and the two complexes were characterized electrochemically to determine the influence of coordinating the second metal. This research was supported by themore » US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. MLH was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less

  12. Generation of tooth-periodontium complex structures using high-odontogenic potential dental epithelium derived from mouse embryonic stem cells.

    PubMed

    Zhang, Yancong; Li, Yongliang; Shi, Ruirui; Zhang, Siqi; Liu, Hao; Zheng, Yunfei; Li, Yan; Cai, Jinglei; Pei, Duanqing; Wei, Shicheng

    2017-06-08

    A number of studies have shown that tooth-like structures can be regenerated using induced pluripotent stem cells and mouse embryonic stem (mES) cells. However, few studies have reported the regeneration of tooth-periodontium complex structures, which are more suitable for clinical tooth transplantation. We established an optimized approach to induce high-odontogenic potential dental epithelium derived from mES cells by temporally controlling bone morphogenic protein 4 (BMP4) function and regenerated tooth-periodontium complex structures in vivo. First, immunofluorescence and quantitative reverse transcription-polymerase chain reaction were used to identify the watershed of skin and the oral ectoderm. LDN193189 was then used to inhibit the BMP4 receptor around the watershed, followed by the addition of exogenous BMP4 to promote BMP4 function. The generated dental epithelium was confirmed by western blot analysis and immunofluorescence. The generated epithelium was ultimately combined with embryonic day 14.5 mouse mesenchyme and transplanted into the renal capsules of nude mice. After 4 weeks, the tooth-periodontium complex structure was examined by micro-computed tomography (CT) and hematoxylin and eosin (H&E) staining. Our study found that the turning point of oral ectoderm differentiation occurred around day 3 after the embryoid body was transferred to a common culture plate. Ameloblastin-positive dental epithelial cells were detected following the temporal regulation of BMP4. Tooth-periodontium complex structures, which included teeth, a periodontal membrane, and alveolar bone, were formed when this epithelium was combined with mouse dental mesenchyme and transplanted into the renal capsules of nude mice. Micro-CT and H&E staining revealed that the generated tooth-periodontium complex structures shared a similar histological structure with normal mouse teeth. An optimized induction method was established to promote the differentiation of mES cells into dental

  13. Using derivatives to hedge against the unexpected.

    PubMed

    Aderholt, J M; Rasmussen, R H

    1996-02-01

    Derivatives--financial instruments with a rate of return derived from an underlying asset--have been used as investment instruments for decades. Many derivative products originally were created explicitly for the purpose of reducing financial risks and have become more widely used and more complex in recent years. Healthcare financial managers should have a basic understanding of derivatives as well as the ability to apply general guidelines for their appropriate use in healthcare financial management.

  14. Einstein Equations from Varying Complexity

    NASA Astrophysics Data System (ADS)

    Czech, Bartłomiej

    2018-01-01

    A recent proposal equates the circuit complexity of a quantum gravity state with the gravitational action of a certain patch of spacetime. Since Einstein's equations follow from varying the action, it should be possible to derive them by varying complexity. I present such a derivation for vacuum solutions of pure Einstein gravity in three-dimensional asymptotically anti-de Sitter space. The argument relies on known facts about holography and on properties of tensor network renormalization, an algorithm for coarse-graining (and optimizing) tensor networks.

  15. Automated Derivation of Complex System Constraints from User Requirements

    NASA Technical Reports Server (NTRS)

    Foshee, Mark; Murey, Kim; Marsh, Angela

    2010-01-01

    The Payload Operations Integration Center (POIC) located at the Marshall Space Flight Center has the responsibility of integrating US payload science requirements for the International Space Station (ISS). All payload operations must request ISS system resources so that the resource usage will be included in the ISS on-board execution timelines. The scheduling of resources and building of the timeline is performed using the Consolidated Planning System (CPS). The ISS resources are quite complex due to the large number of components that must be accounted for. The planners at the POIC simplify the process for Payload Developers (PD) by providing the PDs with a application that has the basic functionality PDs need as well as list of simplified resources in the User Requirements Collection (URC) application. The planners maintained a mapping of the URC resources to the CPS resources. The process of manually converting PD's science requirements from a simplified representation to a more complex CPS representation is a time-consuming and tedious process. The goal is to provide a software solution to allow the planners to build a mapping of the complex CPS constraints to the basic URC constraints and automatically convert the PD's requirements into systems requirements during export to CPS.

  16. SEPARATION PROCESS USING COMPLEXING AND ADSORPTION

    DOEpatents

    Spedding, J.H.; Ayers, J.A.

    1958-06-01

    An adsorption process is described for separating plutonium from a solution of neutron-irradiated uranium containing ions of a compound of plutonium and other cations. The method consists of forming a chelate complex compound with plutoniunn ions in the solution by adding a derivative of 8- hydroxyquinoline, which derivative contains a sulfonic acid group, and adsorbing the remaining cations from the solution on a cation exchange resin, while the complexed plutonium remains in the solution.

  17. Porphyrin amino acids-amide coupling, redox and photophysical properties of bis(porphyrin) amides.

    PubMed

    Melomedov, Jascha; Wünsche von Leupoldt, Anica; Meister, Michael; Laquai, Frédéric; Heinze, Katja

    2013-07-14

    New trans-AB2C meso-substituted porphyrin amino acid esters with meso-substituents of tunable electron withdrawing power (B = mesityl, 4-C6H4F, 4-C6H4CF3, C6F5) were prepared as free amines 3a-3d, as N-acetylated derivatives Ac-3a-Ac-3d and corresponding zinc(II) complexes Zn-Ac-3a-Zn-Ac-3d. Several amide-linked bis(porphyrins) with a tunable electron density at each porphyrin site were obtained from the amino porphyrin precursors by condensation reactions (4a-4d) and mono- and bis(zinc(II)) complexes Zn(2)-4d and Zn(1)Zn(2)-4d were prepared. The electronic interaction between individual porphyrin units in bis(porphyrins) 4 is probed by electrochemical experiments (CV, EPR), electronic absorption spectroscopy, steady-state and time-resolved fluorescence spectroscopy in combination with DFT/PCM calculations on diamagnetic neutral bis(porphyrins) 4 and on respective charged mixed-valent radicals 4(+/-). The interaction via the -C6H4-NHCO-C6H4- bridge, the site of oxidation and reduction and the lowest excited singlet state S1, is tuned by the substituents on the individual porphyrins and the metalation state.

  18. Interrelations between the mesomeric and electronegativity effects in para-substituted derivatives of phenol/phenolate and aniline/anilide H-bonded complexes: a DFT-based computational study.

    PubMed

    Szatyłowicz, Halina; Krygowski, Tadeusz M; Jezierska, Aneta; Panek, Jarosław J

    2009-05-14

    We were able to test the Bent-Walsh rule by examining geometric parameters in the vicinity of the ipso-carbon atom of H-bonded complexes of para-substituted phenol/phenolate and aniline/anilide derivatives for the three cases (i) a versus alpha, (ii) alpha versus d(CO) or d(CN), and (iii) a versus d(CO) or d(CN), where alpha is the ring valence angle at the ipso-carbon atom (C1 substituted by OH or O(-) or NH(2) or NH(-)) and a is the arithmetic mean of the two C(ipso)-C(ortho) bond lengths. The data for nonequilibrium H-bonded complexes of unsubstituted phenol/phenolate and aniline/anilide with the respective bases F(-) and CN(-) and acids HF and HCN showed the same dependence of a on d(CX) (X = O, N) as the data for equilibrium complexes of para-Y-substituted phenol/phenolate and aniline/anilide derivatives (Y = NO, NO(2), CHO, COMe, CONH(2), Cl, F, H, Me, OMe, OH) with the same bases and acids. The slope of these dependencies was negative, as expected. In the remaining cases (a versus alpha and alpha versus d(CO) or d(CN)), the slopes for simulated complexes followed the Bent-Walsh rule. Finally, for the equilibrium complexes in which the substituent effect was included, the slopes of the trend lines for the substituted systems were opposite. This is because in the a versus alpha relationships, electonegativity and the resonance effect act in the same direction, whereas for the other two cases, these effects are opposite, and the resonance effect dominates.

  19. Zinc(II) and Cadmium(II) coordination polymers constructed from phenylenediacetate ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sezer, Güneş Günay; Department of Chemistry, Eskişehir Osmangazi University, Eskişehir; Yeşilel, Okan Zafer

    ABSTRACT: A series of new coordination polymers {[Zn(μ-opda)(μ-bpa)]·2H_2O}{sub n} (1), [Zn(μ{sub 3}-ppda)(μ-bpa)]{sub n} (2), [Cd(μ{sub 3}-ppda)(μ-bpa)]{sub n} (3), [Cd(μ{sub 3}-mpda)(μ-bpa)]{sub n} (4) and [Cd(μ{sub 3}-mpda)(μ-bipy)]{sub n} (5), (o/m/ppda=1,2/1,3/1,4-phenylenediacetate, bpa=1,2-bi(4-pyridyl)ethane, bipy=4,4′-bipyridine) were synthesized. Their structures were characterized by elemental analysis, IR spectroscopy, single-crystal and powder X-ray diffraction. Furthermore, the effect of metal sources (zinc acetate and zinc oxide) and acidity of the solution on the structure of the coordination polymers was discussed for complexes 1 and 5, respectively. The single-crystal X-ray crystallographic studies revealed that complexes 1, 3, 4 and 5 are uninodal (4)-connected 2D frameworks and display sql topology withmore » the point symbol of (4{sup 4}.6{sup 2}). Complex 2 is 3D coordination polymer and exhibits pcu topology with the point symbol of (4{sup 12}.6{sup 3}). In addition, the luminescent properties and thermal behavior of all complexes were also investigated. - Graphical abstract: Scheme 1. Topologies of Coordination Polymers Reported in This Paper.« less

  20. Spectral studies, thermal investigation and biological activity of some metal complexes derived from (E)-N‧-(1-(4-aminophenyl)ethylidene)morpholine-4-carbothiohydrazide

    NASA Astrophysics Data System (ADS)

    El-Samanody, El-Sayed A.; Polis, Magdy W.; Emara, Esam M.

    2017-09-01

    A new series of biologically active Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes derived from the novel thiosemicarbazone ligand; (E)-N‧-(1-(4-aminophenyl)ethylidene)morpholine-4-carbothiohydrazide (HL) were synthesized. The mode of bonding of the ligand and the geometrical structures of its metal complexes were achieved by different analytical and spectral methods. The ligand coordinated with metal ions in a neutral bidentate fashion through the thione sulfur and azomethine nitrogen atoms. All metal complexes adopted octahedral geometry, except Cu(II) complexes (3, 6, 7) which have a square planar structure. The general thermal decomposition pathways of the ligand along with its metal complexes were explained. The thermal stability of the complexes is controlled by the number of outer and inner sphere water molecules, ionic radii and the steric hindrance. The activation thermodynamic parameters; (activation energy (E*), enthalpy of activation (ΔH*), entropy of activation (ΔS*) and Gibbs free energy (ΔG*)) along with order of reaction (n) were estimated from DTG curves. The ESR spectra of Cu(II) complexes indicated that (dx2-y2)1 is the ground state with covalence character of metal-ligand bonds. The molluscicidal and biochemical effects of the ligand and its Ni(II); Cu(II) complexes (2; 3, 5, 7) along with their combinations with metaldehyde were screened in vitro on the mucous gland of Eobania vermiculata. The tested compounds exhibited a significant toxicity against the tested animals and have almost the same toxic effect of metaldehyde which increases the mucous secretion of the snails and leads to death.

  1. In vitro gene expression by cationized derivatives of an artificial protein with repeated RGD sequences, Pronectin.

    PubMed

    Hosseinkhani, Hossein; Tabata, Yasuhiko

    2003-01-09

    The objective of this study is to investigate the efficiency of a non-viral gene carrier with RGD sequences, Pronectin F(+) for gene transfection. The Pronectin F(+) was cationized by introducing ethylenediamine (Ed), spermidine (Sd), and spermine (Sm) to the hydroxyl groups while the corresponding gelatin derivative was prepared similarly because gelatin also has one RGD sequence per molecule. The zeta potential and molecular size of Pronectin F(+) and gelatin derivatives were examined before and after polyion complexation with a plasmid DNA of luciferase. When complexed with the plasmid DNA at the Pronectin F(+)/plasmid DNA mixing ratio of 50, the complex exhibited a zeta potential of about 10 mV, which is similar to that of the gelatin derivative-plasmid DNA complex. Irrespective of the type of Pronectin F(+) and gelatin derivatives, their complexation enabled the apparent molecular size of plasmid DNA to reduce to about 200 nm, the size decreasing with the increased derivative/plasmid DNA weight mixing ratio. The rat gastric mucosal (RGM)-1 cells treated with both complexes exhibited significantly stronger luciferase activities than free plasmid DNA although the enhanced extent was significant for the Sm derivative compared with the corresponding Ed and Sd derivatives. Cell attachment was enhanced by the Pronectin F(+) derivative to a significant high extent compared with the gelatin derivative. The amount of plasmid DNA internalized into the cells was enhanced by the complexation with every Pronectin F(+) derivative compared with the gelatin derivative. For both of Pronectin F(+) and gelatin carriers, the buffering capacity of Sm derivatives was higher than that of Ed and Sd derivatives and comparable to that of polyethyleneimine. It is likely that the high efficiency of gene transfection for the Sm derivative is due to the superior buffering effect. We conclude that the Sm derivative of Pronectin F(+) is promising as a non-viral vector of gene transfection.

  2. Amphiphilic zinc phthalocyanine photosensitizers: synthesis, photophysicochemical properties and in vitro studies for photodynamic therapy.

    PubMed

    Çakır, Dilek; Göksel, Meltem; Çakır, Volkan; Durmuş, Mahmut; Biyiklioglu, Zekeriya; Kantekin, Halit

    2015-05-28

    Peripherally and non-peripherally tetra-substituted zinc(ii) phthalocyanines bearing 2-(2-{2-[3-(dimethylamino)phenoxy]ethoxy}ethoxy)ethoxy and 2-(2-{2-[3-(diethylamino)phenoxy]ethoxy}ethoxy)ethoxy groups (, , and ) were synthesized by cyclotetramerization of the corresponding phthalonitriles (, , and ). Their quaternized ionic derivatives (, , and ) were also synthesized by the reaction of them with methyl iodide. The novel compounds were characterized by using standard spectroscopic techniques such as FT-IR, (1)H NMR, (13)C NMR, UV-vis, mass and elemental analyses. The obtained quaternized phthalocyanines (, , and ) showed amphiphilic behaviour with excellent solubility in both organic and aqueous solutions, which makes them potential photosensitizers for use in photodynamic therapy (PDT) of cancer. The photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen and photodegradation quantum yields) properties of these novel phthalocyanines were studied in DMSO for both non-ionic and ionic quaternized derivatives. However, these properties were examined in both DMSO and phosphate buffer solution (PBS) for quaternized ionic phthalocyanines. The effects of the positions of substituents (peripheral or non-peripheral) and the quaternization of the nitrogen atoms on the substituents about their photophysical and photochemical properties were also compared in this study. The bovine serum albumin (BSA) binding behaviours of the studied quaternized ionic zinc(ii) phthalocyanines were also described in PBS solutions. The quaternized phthalocyanines (, , and ) successfully displayed light-dependent photodamage in HeLa and HuH-7 cancer cells in photodynamic therapy treatment. The photosensitivity and the intensity of damage were found directly related to the concentration of the photosensitizers.

  3. Processing of zero-derived words in English: an fMRI investigation.

    PubMed

    Pliatsikas, Christos; Wheeldon, Linda; Lahiri, Aditi; Hansen, Peter C

    2014-01-01

    Derivational morphological processes allow us to create new words (e.g. punish (V) to noun (N) punishment) from base forms. The number of steps from the basic units to derived words often varies (e.g., nationalitycomplex derivations cause more brain activity than simple ones (Meinzer, Lahiri, Flaisch, Hannemann, & Eulitz, 2009). However, all studies to date have investigated derivational processes in which morphological complexity is related to a change in surface form. It is therefore unclear whether the effects reported are attributable to underlying morphological complexity or to the processing of multiple surface morphemes. Here we report the first study to investigate morphological processing where derivational steps are not overtly marked (e.g., bridge-N>bridge-V) i.e., zero-derivation (Aronoff, 1980). We compared the processing of one-step (soakingderivations together with monomorphemic control words (grumble) in an fMRI experiment. Participants were presented with derived forms of words (soaking, bridging) in a lexical decision task. Although the surface derived -ing forms can be contextually participles, gerunds, or even nouns, they are all derived from verbs since the suffix -ing can only be attached to verb roots. Crucially, the verb root is the basic form for the one-step words, whereas for the two-step words the verb root is zero derived from a basic noun. Significantly increased brain activity was observed for complex (one-step and two-step) versus simple (zero-step) forms in regions involved in morphological processing, such as the left inferior frontal gyrus (LIFG). Critically, activation was also more pronounced for two-step compared to one-step forms. Since both types of derived words have the same surface structure, our findings suggest that morphological processing is based on underlying morphological complexity, independent of overt

  4. Fast computation of derivative based sensitivities of PSHA models via algorithmic differentiation

    NASA Astrophysics Data System (ADS)

    Leövey, Hernan; Molkenthin, Christian; Scherbaum, Frank; Griewank, Andreas; Kuehn, Nicolas; Stafford, Peter

    2015-04-01

    Probabilistic seismic hazard analysis (PSHA) is the preferred tool for estimation of potential ground-shaking hazard due to future earthquakes at a site of interest. A modern PSHA represents a complex framework which combines different models with possible many inputs. Sensitivity analysis is a valuable tool for quantifying changes of a model output as inputs are perturbed, identifying critical input parameters and obtaining insight in the model behavior. Differential sensitivity analysis relies on calculating first-order partial derivatives of the model output with respect to its inputs. Moreover, derivative based global sensitivity measures (Sobol' & Kucherenko '09) can be practically used to detect non-essential inputs of the models, thus restricting the focus of attention to a possible much smaller set of inputs. Nevertheless, obtaining first-order partial derivatives of complex models with traditional approaches can be very challenging, and usually increases the computation complexity linearly with the number of inputs appearing in the models. In this study we show how Algorithmic Differentiation (AD) tools can be used in a complex framework such as PSHA to successfully estimate derivative based sensitivities, as is the case in various other domains such as meteorology or aerodynamics, without no significant increase in the computation complexity required for the original computations. First we demonstrate the feasibility of the AD methodology by comparing AD derived sensitivities to analytically derived sensitivities for a basic case of PSHA using a simple ground-motion prediction equation. In a second step, we derive sensitivities via AD for a more complex PSHA study using a ground motion attenuation relation based on a stochastic method to simulate strong motion. The presented approach is general enough to accommodate more advanced PSHA studies of higher complexity.

  5. Photochemical studies and nanomolar photodynamic activities of phthalocyanines functionalized with 1,4,7-trioxanonyl moieties at their non-peripheral positions.

    PubMed

    Sobotta, Lukasz; Wierzchowski, Marcin; Mierzwicki, Michal; Gdaniec, Zofia; Mielcarek, Jadwiga; Persoons, Leentje; Goslinski, Tomasz; Balzarini, Jan

    2016-02-01

    Manganese(III), cobalt(II), copper(II), magnesium(II), zinc(II) and metal-free phthalocyanines, possessing 1,4,7-trioxanonyl substituents, at their non-peripheral positions, were subjected to photochemical, photodynamic and biological activity studies. Demetallated phthalocyanine and its metallated d-block analogues, with copper(II), cobalt(II), manganese(III) chloride, were found to be less efficient singlet oxygen generators in comparison to the zinc(II) analogue and zinc(II) phthalocyanine reference. Irradiation of several phthalocyanines for short time periods resulted in a substantially increased cytostatic activity against both suspension (leukemic/lymphoma at 85nM) and solid (cervix carcinoma at 72nM and melanoma at 81nM) tumour cell lines (up to 200-fold). Noteworthy is that enveloped viruses, such as for herpesvirus and influenza A virus, but not, non-enveloped virus strains, such as Coxsackie B4 virus and reovirus-1, exposed to irradiation in the presence of the phthalocyanines, markedly lost their infectivity potential. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Synthesis, crystal structures, spectral, thermal and antimicrobial properties of new Zn(II) 5-iodo- and 5-bromosalicylates

    NASA Astrophysics Data System (ADS)

    Košická, Petra; Győryová, Katarína; Smolko, Lukáš; Gyepes, Róbert; Hudecová, Daniela

    2018-03-01

    Two new analogous zinc(II) complexes containing 5-iodo- and 5-bromosalicylate ligands, respectively, were prepared in single-crystal form and characterized by IR spectroscopy, thermal analysis and elemental analysis. The solid-state structures of prepared complexes were determined by single crystal X-ray crystallography. Both complexes are isostructural and their crystal structures composed of neutral molecules [Zn(5-Xsal)2(H2O)2] (where X = Br, I, sal = salicylato). Central Zn(II) atom is in both complexes coordinated by six oxygen atoms, four of which are from two chelate bonded 5-halosalicylates and remaining two from coordinated water molecules. The found chelate binding mode is in line with the Δ values calculated from IR spectral data. Antimicrobial activity of prepared complexes was studied against selected bacteria, yeast and filamentous fungi. Obtained results indicate that 5-iodosalicylate complex is more antimicrobially active than its 5-bromo substituted analogue.

  7. Synthesis, crystal structure and investigation of mononuclear copper(II) and zinc(II) complexes of a new carboxylate rich tripodal ligand and their interaction with carbohydrates in alkaline aqueous solution

    PubMed Central

    Stewart, Christopher D.; Pedraza, Mayra; Arman, Hadi; Fan, Hua-Jun; Schilling, Eduardo Luiz; Szpoganicz, Bruno; Musie, Ghezai T.

    2016-01-01

    A new carboxylate rich asymmetric tripodal ligand, N-[2-carboxybenzomethyl]-N-[carboxymethyl]-β-alanine (H3camb), and its di-copper(II), (NH4)2[1]2, and di-zinc(II), ((CH3)4 N)2[2]2, complexes have been synthesized as carbohydrate binding models in aqueous solutions. The ligand and complexes have been fully characterized using several techniques, including single crystal X-ray diffraction. The interactions of (NH4)2[1]2 and ((CH3)4 N)2[2]2 with D-glucose, D-mannose, D-xylose and xylitol in aqueous alkaline media were investigated using UV–Vis and 13C-NMR spectroscopic techniques, respectively. The molar conductance, NMR and ESI–MS studies indicate that the complexes dissociate in solution to produce the respective complex anions, 1− and 2−. Complexes 1− and 2− showed chelating ability towards the naturally abundant and biologically relevant sugars, D-glucose, D-mannose, D-xylose, and xylitol. The complex ions bind to one molar equivalent of the sugars, even in the presence of stoichiometric excess of the substrates, in solution. Experimentally obtained spectroscopic data and computational results suggest that the substrates bind to the metal center in a bidentate fashion. Apparent binding constant values, pKapp, between the complexes and the substrates were determined and a specific mode of substrate binding is proposed. The pKapp and relativistic density functional theory (DFT) calculated Gibbs free energy values indicate that D-mannose displayed the strongest interaction with the complexes. Syntheses, characterizations, detailed substrate binding studies using spectroscopic techniques, single crystal X-ray diffraction and geometry optimizations of the complex-substrates with DFT calculations are also reported. PMID:25969174

  8. Synthesis, spectroscopic characterization and antimicrobial studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with Schiff bases derived from 5-bromo-salicylaldehyde

    NASA Astrophysics Data System (ADS)

    Kursunlu, Ahmed Nuri; Guler, Ersin; Sevgi, Fatih; Ozkalp, Birol

    2013-09-01

    In this study, the new Schiff base ligands derived from condensation of amine and 5-bromo-salicylaldehyde were characterized. All compounds, the Schiff bases and the metal complexes, were characterized by elemental analyzes, FT-IR, 1H NMR, 13C NMR and magnetic susceptibility measurements. The synthesized ligands, along with their metal (II) complexes, were screened for their in vitro antibacterial activity against four Gram-negative (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Salmonella enteritidis) and four Gram-positive (Streptococcus pyogones, Bacillus cereus, Staphylococcus aureus and Methicillin-resistant S. aureus) bacterial strains by using disc diffusion and broth microdilution techniques.

  9. Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells.

    PubMed

    Noessner, Elfriede; Gastpar, Robert; Milani, Valeria; Brandl, Anna; Hutzler, Peter J S; Kuppner, Maria C; Roos, Miriam; Kremmer, Elisabeth; Asea, Alexzander; Calderwood, Stuart K; Issels, Rolf D

    2002-11-15

    Our study demonstrates that tumor-derived heat shock protein (HSP)70 chaperones a tyrosinase peptide and mediates its transfer to human immature dendritic cells (DCs) by receptor-dependent uptake. Human tumor-derived HSP70 peptide complexes (HSP70-PC) thus have the immunogenic potential to instruct DCs to cross-present endogenously expressed, nonmutated, and tumor antigenic peptides that are shared among tumors of the melanocytic lineage for T cell recognition. T cell stimulation by HSP70-instructed DCs is dependent on the Ag bound to HSP70 in that only DCs incubated with HSP70-PC purified from tyrosinase-positive (HSP70-PC/tyr(+)) but not from tyrosinase-negative (HSP70-PC/tyr(-)) melanoma cells resulted in the specific activation of the HLA-A*0201-restricted tyrosinase peptide-specific cytotoxic T cell clone. HSP70-PC-mediated T cell stimulation is very efficient, delivering the tyrosinase peptide at concentrations as low as 30 ng/ml of HSP70-PC for T cell recognition. Receptor-dependent binding of HSP70-PC and active cell metabolism are prerequisites for MHC class I-restricted cross-presentation and T cell stimulation. T cell stimulation does not require external DC maturation signals (e.g., exogenously added TNF-alpha), suggesting that signaling DC maturation is an intrinsic property of the HSP70-PC itself and related to receptor-mediated binding. The cross-presentation of a shared human tumor Ag together with the exquisite efficacy are important new aspects for HSP70-based immunotherapy in clinical anti-cancer vaccination strategies, and suggest a potential extension of HSP70-based vaccination protocols from a patient-individual treatment modality to its use in an allogeneic setting.

  10. pH dependent synthesis of two zinc(II) compounds derived from 5-aminotetrazole-1-isopropanoic acid for treatment of cancer cells

    NASA Astrophysics Data System (ADS)

    Zhai, Chun; Yang, Zhan Yong; Xu, Duo; Wang, Zhi Kang; Hao, Xin Yu; Shi, Yu Jie; Yang, Gao Wen; Li, Qiao Yun

    2018-02-01

    pH is sometimes fundamental to the formation of coordination compounds. Here we report two new Zn(II)-tetrazole-carboxylate coordination compounds derived from Hatzipa, namely two dimensional [Zn(atzipa)2]n (1) and [Zn(atzipa)2(H2O)(EtOH)]n (2), where Hatzipa = 5-aminotetrazole-1-isopropanoic acid. The structures of the two compounds are controlled by pH value of the reaction system. Compound 1 crystallizes in an achiral space group while 2 in a chiral space group P2(1)2(1)2. Furthermore, nanoparticles (NPs) of the two compounds can be obtained by co-precipitation with PEG-5000 (Polyethylene Glycol-5000). And [Zn(atzipa)2]n (1) NPs with a relatively low IC50 (half-maximal inhibitory concentration) on Hela cells of 23 μg/mL (6.1 μM) is superior to [Zn(atzipa)2(H2O)(EtOH)]n (2) NPs (58 μg/mL, 13.2 μM). Both NPs of the two compounds can inhibit the migration of Hela cells and compound 1NPs can be used as a cell imaging agent. The results show that pH influences the resulting structures and [Zn(atzipa)2]n (1) NPs capable of inhibiting the growth of tumor in vitro may be a potential candidate against cancer.

  11. Automated Derivation of Complex System Constraints from User Requirements

    NASA Technical Reports Server (NTRS)

    Muery, Kim; Foshee, Mark; Marsh, Angela

    2006-01-01

    International Space Station (ISS) payload developers submit their payload science requirements for the development of on-board execution timelines. The ISS systems required to execute the payload science operations must be represented as constraints for the execution timeline. Payload developers use a software application, User Requirements Collection (URC), to submit their requirements by selecting a simplified representation of ISS system constraints. To fully represent the complex ISS systems, the constraints require a level of detail that is beyond the insight of the payload developer. To provide the complex representation of the ISS system constraints, HOSC operations personnel, specifically the Payload Activity Requirements Coordinators (PARC), manually translate the payload developers simplified constraints into detailed ISS system constraints used for scheduling the payload activities in the Consolidated Planning System (CPS). This paper describes the implementation for a software application, User Requirements Integration (URI), developed to automate the manual ISS constraint translation process.

  12. Late Stage Azidation of Complex Molecules

    PubMed Central

    2016-01-01

    Selective functionalization of complex scaffolds is a promising approach to alter the pharmacological profiles of natural products and their derivatives. We report the site-selective azidation of benzylic and aliphatic C–H bonds in complex molecules catalyzed by the combination of Fe(OAc)2 and a PyBox ligand. The same system also catalyzes the trifluoromethyl azidation of olefins to form derivatives of natural products containing both fluorine atoms and azides. In general, both reactions tolerate a wide range of functional groups and occur with predictable regioselectivity. Azides obtained by functionalization of C–H and C=C bonds were converted to the corresponding amines, amides, and triazoles, thus providing a wide variety of nitrogen-containing complex molecules. PMID:27800554

  13. Synthesis, characterization and reactivity of trinuclear Cu(II) complexes derived from disalicylaldehyde malonoyldihydrazone

    NASA Astrophysics Data System (ADS)

    Koch, Angira; Kumar, Arvind; De, Arjun K.; Phukan, Arnab; Lal, Ram A.

    2014-08-01

    Three new homotrinuclear copper(II) complexes [Cu3(slmh)(μ-Cl)2(CH3OH)3]ṡ0.5CH3OH (1), [Cu3(slmh)(NO3)2(CH3OH)5]ṡ1.5CH3OH (2) and [Cu3(slmh)(μ-ClO4)2(CH3OH)3]ṡ2CH3OH (3) from disalicylaldehyde malonoyldihydrazone have been synthesized and characterized. The composition of the complexes has been established on the basis of data obtained from analytical and thermoanalytical data. The structure of the complexes has been discussed in the light of molar conductance, electronic, FT-IR and far-IR spectral data, magnetic moment and EPR spectral studies. The molar conductance values for the complexes in DMSO solution indicate that all of them are non-electrolyte. The magnetic moment values for the complexes suggest considerable metal-metal intramolecular interaction between metal ions in the structural unit of the complexes. The EPR spectral features reveal that at RT, the ground state for the complexes is a mixture of the quartet state (S = 3/2) and doublet state (S = ½). At lower temperature, the ground state for the complexes is dx2-y2 with considerable contribution from dz2 orbital. Dihydrazone ligand is present in enol form in all of the complexes. The complexes have distorted square pyramidal stereochemistry. The electron transfer reactions of the complexes have been investigated by cyclic voltammetry. Hydrogen peroxide mediated oxidation of benzyl alcohol catalyzed by complex 1 has been studied.

  14. Broad hexagonal columnar mesophases formation in bioinspired transition-metal complexes of simple fatty acid meta-octaester derivatives of meso-tetraphenyl porphyrins.

    PubMed

    Wu, Bin; Chen, Keyang; Deng, Yuchen; Chen, Jian; Liu, Chengjie; Cheng, Rongshi; Chen, Dongzhong

    2015-02-23

    A series of meta-substituted fatty acid octaester derivatives and their transition-metal complexes of meso- tetraphenyl porphyrins (TPP-8OOCR, with R = C(n-1)H(2n-1), n = 8, 12, or 16) have been prepared through very simple synthesis protocols. The thermotropic phase behavior and the liquid crystalline (LC) organization structures of the synthesized porphyrin derivatives were systematically investigated by a combination of differential scanning calorimetry (DSC), polarized optical microscopy (POM), and variable-temperature small-angle X-ray scattering/wide-angle X-ray scattering (SAXS/WAXS) techniques. The shorter octanoic acid ester substituted porphyrin (C8-TPP) did not show liquid crystallinity and its metal porphyrins exhibited an uncommon columnar mesophase. The lauric acid octaester (C12-TPP) and the palmitic acid octaester (C16-TPP) series porphyrins generated hexagonal columnar mesophase Colh. Moreover, the metal porphyrins C12-TPPM and C16-TPPM with M = Zn, Cu, or Ni, exhibited well-organized Colh mesophases of broad LC temperature ranges increasing in the order of TPPNicomplexes very attractive for variant applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Wh-Questions in Child L2 French: Derivational Complexity and Its Interactions with L1 Properties, Length of Exposure, Age of Exposure, and the Input

    ERIC Educational Resources Information Center

    Prévost, Philippe; Strik, Nelleke; Tuller, Laurie

    2014-01-01

    This study investigates how derivational complexity interacts with first language (L1) properties, second language (L2) input, age of first exposure to the target language, and length of exposure in child L2 acquisition. We compared elicited production of "wh"-questions in French in two groups of 15 participants each, one with L1 English…

  16. Predicting Individual Tree and Shrub Species Distributions with Empirically Derived Microclimate Surfaces in a Complex Mountain Ecosystem in Northern Idaho, USA

    NASA Astrophysics Data System (ADS)

    Holden, Z.; Cushman, S.; Evans, J.; Littell, J. S.

    2009-12-01

    The resolution of current climate interpolation models limits our ability to adequately account for temperature variability in complex mountainous terrain. We empirically derive 30 meter resolution models of June-October day and nighttime temperature and April nighttime Vapor Pressure Deficit (VPD) using hourly data from 53 Hobo dataloggers stratified by topographic setting in mixed conifer forests near Bonners Ferry, ID. 66%, of the variability in average June-October daytime temperature is explained by 3 variables (elevation, relative slope position and topographic roughness) derived from 30 meter digital elevation models. 69% of the variability in nighttime temperatures among stations is explained by elevation, relative slope position and topographic dissection (450 meter window). 54% of variability in April nighttime VPD is explained by elevation, soil wetness and the NDVIc derived from Landsat. We extract temperature and VPD predictions at 411 intensified Forest Inventory and Analysis plots (FIA). We use these variables with soil wetness and solar radiation indices derived from a 30 meter DEM to predict the presence and absence of 10 common forest tree species and 25 shrub species. Classification accuracies range from 87% for Pinus ponderosa , to > 97% for most other tree species. Shrub model accuracies are also high with greater than 90% accuracy for the majority of species. Species distribution models based on the physical variables that drive species occurrence, rather than their topographic surrogates, will eventually allow us to predict potential future distributions of these species with warming climate at fine spatial scales.

  17. Crystal structures, DFT calculations and Hirshfeld surface analyses of three new cobalt(III) Schiff base complexes derived from meso-1,2-diphenyl-1,2-ethylenediamine

    NASA Astrophysics Data System (ADS)

    Masoudi, Mohaddeseh; Behzad, Mahdi; Arab, Ali; Tarahhomi, Atekeh; Rudbari, Hadi Amiri; Bruno, Giuseppe

    2016-10-01

    Three new Cobalt(III) Schiff base complexes were synthesized and characterized by spectroscopic methods and x-ray crystallography. The DFT optimized structures of the complexes agreed well with the corresponding x-ray structures. According to the calculated vibrational normal modes, the observed signals in the IR spectra of the complexes were assigned. The experimental UV-Vis spectra of the complexes were also discussed considering the calculated excited states and molecular orbitals. Hirshfeld surface analysis was carried out to study the inter-contact interactions in these complexes. These studies provided comprehensive description of such inter-contact interactions by means of an appealing graphical approach using 3D Hirshfeld surfaces and 2D fingerprint plots derived from the surfaces. It indicated the dominant role of various hydrogen intermolecular interactions such as H⋯H (above 60%), C⋯H/H⋯C (near 15%-20%), O⋯H/H⋯O (about 16% or 17% for structures with counter ion ClO4-) and H⋯F (17% for structure with counter ion PF6-) contacts into the crystal packing which are discussed in details.

  18. Derivation of a reference dose for a complex petroleum hydrocarbon mixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryer-Powder, J.E.; LaPirre, A.; Scofield, R.

    1997-12-31

    Petroleum hydrocarbon mixtures pose a challenge in assessing potential health effects associated with environmental exposures through impacted media. Two components of risk assessment that must be addressed when evaluating these mixtures are toxicity and environmental fate. In this paper, we focus on issues regarding toxicity. Specifically, we have developed a methodology to derive a reference dose (RfD) for a complex petroleum hydrocarbon mixture referred to as diluent. Diluent is a solvent used in the production of crude oil and is composed of hydrocarbons in the middle distillate range. Two conservative approaches to developing a reference dose for diluent are presented.more » Both involve separating the diluent into carbon number ranges (e.g., diluent consists of hydrocarbons containing between 5 carbons and greater than 21 carbons, so, the mixture can be divided into mixtures of hydrocarbons having 5 carbons, 6-11 carbons, etcetera) and assigning each range a representative RfD. In the first approach, the representative RfD for each range is that of one specific chemical within the range (e.g., the reference dose for the C{sub 5}-C{sub 8} carbon range is that of n-hexane). In the second approach, the RfD dose for each range is that of a mixture of chemicals representative of each carbon number range (e.g., the RfD for the C{sub 6} to C{sub 11} carbon range is that of mineral spirits). The RfD for each carbon range is then multiplied by the percent of diluent in the corresponding range and the products are added to arrive at a final RfD. The RfD for diluent using the first approach is estimated at 2 mg/kg-day and that using the second approach is estimated at 1 mg/kg-day.« less

  19. Triamines and their derivatives as bifunctional chelating agents

    DOEpatents

    Troutner, David E.; John, Christy S.; Pillai, Maroor R. A.

    1992-03-31

    A group of functionalized triamine chelants and their derivatives that form complexes with radioactive metal ions are disclosed. The complexes can be covalently attached to a protein or an antibody or antibody fragment and used for therapeutic and/or diagnostic purposes.

  20. Assemblies of Boron Dipyrromethene/Porphyrin, Phthalocyanine, and C60 Moieties as Artificial Models of Photosynthesis: Synthesis, Supramolecular Interactions, and Photophysical Studies.

    PubMed

    Chen, Xiao-Fei; El-Khouly, Mohamed E; Ohkubo, Kei; Fukuzumi, Shunichi; Ng, Dennis K P

    2018-03-12

    A series of light-harvesting conjugates based on a zinc(II) phthalocyanine core with either two or four boron dipyrromethene (BODIPY) or porphyrin units have been synthesized and characterized. The conjugation of BODIPY/porphyrin units can extend the absorptions of the phthalocyanine core to cover most of the visible region. Upon addition of an imidazole-substituted C 60 (C 60 Im), it can axially bind to the zinc(II) center of the phthalocyanine core through metal-ligand interactions. The resulting complexes form photosynthetic antenna-reaction center mimics in which the BODIPY/porphyrin units serve as the antennas to capture the light and transfer the energy to the phthalocyanine core by efficient excitation energy transfer. The excited phthalocyanine is then quenched by the axially bound C 60 Im moiety by electron transfer, which has been supported by computational studies. The photoinduced processes of the assemblies have been studied in detail by various steady-state and time-resolved spectroscopic methods. By femtosecond transient absorption spectroscopic studies, the lifetimes of the charge-separated state of the bis(BODIPY) and bis(porphyrin) systems have been determined to be 3.2 and 4.0 ns, respectively. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis, characterization and in vitro antimicrobial studies of Co(II), Ni(II) and Cu(II) complexes derived from macrocyclic compartmental ligand

    NASA Astrophysics Data System (ADS)

    El-Gammal, O. A.; Bekheit, M. M.; El-Brashy, S. A.

    2015-02-01

    New Co(II), Ni(II) and Cu(II) complexes derived from tetradentate macrocyclic nitrogen ligand, (1E,4E,8E,12E)-5,8,13,16-tetramethyl-1,4,9,12-tetrazacyclohexadeca-4,8,12,16-tetraene (EDHDH) have been synthesized. The complexes have been characterized by elemental analysis, spectral (IR, UV-Vis, 1H NMR and ESR (for Cu(II) complex)) mass, and magnetic as well as thermal analysis measurements. The complexes afforded the formulae: [Cu(EDHDH)Cl2]·2EtOH and [M(EDHDH)X2]·nH2O where M = Co(II) and Ni(II), X = Cl- or OH-, n = 1,0, respectively. The data revealed an octahedral arrangement with N4 tetradentate donor sites in addition to two Cl atoms occupying the other two sites. ESR spectrum of Cu2+ complex confirmed the suggested geometry with values of a α2and β2 indicating that the in-plane σ-bonding and in-plane π-bonding are appreciably covalent, and are consistent with very strong σ-in-plane bonding in the complexes. The molecular modeling is drawn and showed the bond length, bond angle, chemical reactivity, energy components (kcal/mol) and binding energy (kcal/mol) for all the title compounds using DFT method. Also, the thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern and Horowitz-Metzger methods. Moreover, the in vitro antibacterial studies of all compounds screened against pathogenic bacteria (two Gram +ve and two Gram -ve) to assess their inhibiting potential. The assay indicated that the inhibition potential is metal ion dependent. The ligand, EDHDH, Co(II) and Cu(II) complexes exhibited a remarkable antibacterial activity against Streptococcus Pyogenes as Gram +ve and Proteus vulgaris as Gram -ve bacterial strains. On the other hand, Ni(II) complex revealed a moderate antibacterial activity against both Gram +ve organisms and no activity against Gram -ve bacterial strain.

  2. Determining protein complex connectivity using a probabilistic deletion network derived from quantitative proteomics.

    PubMed

    Sardiu, Mihaela E; Gilmore, Joshua M; Carrozza, Michael J; Li, Bing; Workman, Jerry L; Florens, Laurence; Washburn, Michael P

    2009-10-06

    Protein complexes are key molecular machines executing a variety of essential cellular processes. Despite the availability of genome-wide protein-protein interaction studies, determining the connectivity between proteins within a complex remains a major challenge. Here we demonstrate a method that is able to predict the relationship of proteins within a stable protein complex. We employed a combination of computational approaches and a systematic collection of quantitative proteomics data from wild-type and deletion strain purifications to build a quantitative deletion-interaction network map and subsequently convert the resulting data into an interdependency-interaction model of a complex. We applied this approach to a data set generated from components of the Saccharomyces cerevisiae Rpd3 histone deacetylase complexes, which consists of two distinct small and large complexes that are held together by a module consisting of Rpd3, Sin3 and Ume1. The resulting representation reveals new protein-protein interactions and new submodule relationships, providing novel information for mapping the functional organization of a complex.

  3. Triamines and their derivatives as bifunctional chelating agents

    DOEpatents

    Troutner, D.E.; John, C.S.; Pillai, M.R.A.

    1992-03-31

    A group of functionalized triamine chelants and their derivatives that form complexes with radioactive metal ions are disclosed. The complexes can be covalently attached to a protein or an antibody or antibody fragment and used for therapeutic and/or diagnostic purposes. No Drawings

  4. Some transition metal complexes derived from mono- and di-ethynyl perfluorobenzenes.

    PubMed

    Armitt, David J; Bruce, Michael I; Gaudio, Maryka; Zaitseva, Natasha N; Skelton, Brian W; White, Allan H; Le Guennic, Boris; Halet, Jean-François; Fox, Mark A; Roberts, Rachel L; Hartl, Frantisek; Low, Paul J

    2008-12-21

    Transition metal alkynyl complexes containing perfluoroaryl groups have been prepared directly from trimethylsilyl-protected mono- and di-ethynyl perfluoroarenes by simple desilylation/metallation reaction sequences. Reactions between Me(3)SiC[triple bond, length as m-dash]CC(6)F(5) and RuCl(dppe)Cp' [Cp' = Cp, Cp*] in the presence of KF in MeOH give the monoruthenium complexes Ru(C[triple bond, length as m-dash]CC(6)F(5))(dppe)Cp' [Cp' = Cp (); Cp* ()], which are related to the known compound Ru(C[triple bond, length as m-dash]CC(6)F(5))(PPh(3))(2)Cp (). Treatment of Me(3)SiC[triple bond, length as m-dash]CC(6)F(5) with Pt(2)(mu-dppm)(2)Cl(2) in the presence of NaOMe in MeOH gave the bis(alkynyl) complex Pt(2)(mu-dppm)(2)(C[triple bond, length as m-dash]CC(6)F(5))(2) (). The Pd(0)/Cu(i)-catalysed reactions between Au(C[triple bond, length as m-dash]CC(6)F(5))(PPh(3)) and Mo( identical withCBr)(CO)(2)Tp* [Tp* = hydridotris(3.5-dimethylpyrazoyl)borate], Co(3)(mu(3)-CBr)(mu-dppm)(CO)(7) or IC[triple bond, length as m-dash]CFc [Fc = (eta(5)-C(5)H(4))FeCp] afford Mo( identical withCC[triple bond, length as m-dash]CC(6)F(5))(CO)(2)Tp* (), Co(3)(mu(3)-CC[triple bond, length as m-dash]CC(6)F(5))(mu-dppm)(CO)(7) () and FcC[triple bond, length as m-dash]CC[triple bond, length as m-dash]CC(6)F(5) (), respectively. The diruthenium complexes 1,4-{Cp'(PP)RuC[triple bond, length as m-dash]C}(2)C(6)F(4) [(PP)Cp' = (PPh(3))(2)Cp (); (dppe)Cp (); (dppe)Cp* ()] are prepared from 1,4-(Me(3)SiC[triple bond, length as m-dash]C)(2)C(6)F(4) in a manner similar to that described for the monoruthenium complexes -. The non-fluorinated complexes 1,4-{Cp'(PP)RuC[triple bond, length as m-dash]C}(2)C(6)H(4) [(PP)Cp' = (PPh(3))(2)Cp (); (dppe)Cp (); (dppe)Cp* ()], prepared for comparison, are obtained from 1,4-(Me(3)SiC[triple bond, length as m-dash]C)(2)C(6)H(4). Spectro-electrochemical studies of the ruthenium aryl and arylene alkynyl complexes - and -, together with DFT-based computational

  5. Synthesis, spectroscopic characterization, X-ray study and in vitro cytotoxicity of 5-hydroxycoumarin derivatives and their copper complexes

    NASA Astrophysics Data System (ADS)

    Ostrowska, Kinga; Maciejewska, Dorota; Drzewiecka-Antonik, Aleksandra; Klepka, Marcin T.; Wolska, Anna; Dobrzycki, Łukasz; Sztokfisz, Alicja; Czajkowska, Agnieszka; Młynarczuk-Biały, Izabela

    2017-10-01

    We have synthesized a series of bromo derivatives of 5-hydroxycoumarin and two new Cu(II) complexes with 6-acetyl-8-bromo-5-hydroxy-4,7-dimethylcoumarin (L2) and 6-acetyl-3,8-dibromo-5-hydroxy-4,7-dimethylcoumarin (L3) ligands, designed as potential active compounds against human cancer cell lines. The elemental analysis, mass spectroscopy, NMR and infrared spectroscopy have been used for basic characterization of analyzed compounds. The X-ray crystal structure analysis for one representative organic compound, 3,6,8-tribromo-5-hydroxy-4,7-dimethylcoumarin (c) has been performed. It has shown that coumarin system is nearly planar and the Br⋯Br interaction is a very characteristic feature of the molecular association for organic ligands. The complexes, Cu(L2)2·3H2O and Cu(L3)(ClO4)·2.5H2O, have been found as four-coordinated and contain copper in the +2 oxidation state according to X-ray absorption spectroscopy. All the compounds have been screened in vitro for their cytotoxic activity against mouse fibroblast and human prostate cancer cells. The coordination products of brominated ligands have shown to be more active than the free ligands and demonstrate significant in-vitro cytotoxicity against human prostate cancer cells (DU145).

  6. Crystal structures and DFT calculations of mixed chloride-azide zinc(II) and chloride-isocyanate cadmium(II) complexes with the condensation product of 2-quinolinecarboxaldehyde and Girard's T reagent

    NASA Astrophysics Data System (ADS)

    Anđelković, Katarina; Pevec, Andrej; Grubišić, Sonja; Turel, Iztok; Čobeljić, Božidar; Milenković, Milica R.; Keškić, Tanja; Radanović, Dušanka

    2018-06-01

    The mixed chloride-azide [ZnL(N3)1.65Cl0.35] (1) and chloride-isocyanate [CdL(NCO)1.64Cl0.36] (2) complexes with the condensation product of 2-quinolinecarboxaldehyde and trimethylammonium acetohydrazide chloride (Girard's T reagent) (HLCl) have been prepared and characterized by X-ray crystallography. In complexes 1 and 2, Zn1 and Cd1 ions, respectively, are five-coordinated in a distorted square based pyramidal geometry with NNO set of donor atoms of deprotonated hydrazone ligand and two monodentate ligands N3- and/or N3- and Cl- in the case of 1 and OCN- and/or OCN- and Cl- in the case of 2. The structural parameters of 1 and 2 have been discussed in relation to those of previously reported M(II) complexes with the same hydrazone ligand. Density functional theory calculations have been employed to study the interaction between the Zn2+ and Cd2+ ions and ligands. High affinity of ligands towards the Zn2+ and Cd2+ ions are predicted for both complexes.

  7. The Entropy of Non-Ergodic Complex Systems — a Derivation from First Principles

    NASA Astrophysics Data System (ADS)

    Thurner, Stefan; Hanel, Rudolf

    In information theory the 4 Shannon-Khinchin1,2 (SK) axioms determine Boltzmann Gibbs entropy, S -∑i pilog pi, as the unique entropy. Physics is different from information in the sense that physical systems can be non-ergodic or non-Markovian. To characterize such strongly interacting, statistical systems - complex systems in particular - within a thermodynamical framework it might be necessary to introduce generalized entropies. A series of such entropies have been proposed in the past decades. Until now the understanding of their fundamental origin and their deeper relations to complex systems remains unclear. To clarify the situation we note that non-ergodicity explicitly violates the fourth SK axiom. We show that by relaxing this axiom the entropy generalizes to, S ∑i Γ(d + 1, 1 - c log pi), where Γ is the incomplete Gamma function, and c and d are scaling exponents. All recently proposed entropies compatible with the first 3 SK axioms appear to be special cases. We prove that each statistical system is uniquely characterized by the pair of the two scaling exponents (c, d), which defines equivalence classes for all systems. The corresponding distribution functions are special forms of Lambert-W exponentials containing, as special cases, Boltzmann, stretched exponential and Tsallis distributions (power-laws) - all widely abundant in nature. This derivation is the first ab initio justification for generalized entropies. We next show how the phasespace volume of a system is related to its generalized entropy, and provide a concise criterion when it is not of Boltzmann-Gibbs type but assumes a generalized form. We show that generalized entropies only become relevant when the dynamically (statistically) relevant fraction of degrees of freedom in a system vanishes in the thermodynamic limit. These are systems where the bulk of the degrees of freedom is frozen. Systems governed by generalized entropies are therefore systems whose phasespace volume effectively

  8. The preparation and use of metal salen complexes derived from cyclobutane diamine

    NASA Astrophysics Data System (ADS)

    Patil, Smita

    The helix is an important chiral motif in nature, there is increasing development in field of helical transition metal complexes and related supramolecular structures. Hence, the goals of this work are to apply the principles of helicity in order to produce metal complexes with predictable molecular shapes and to study their properties as asymmetric catalysts. Computational studies suggest that the (1R,2 R)-cyclobutyldiamine unit can produce highly twisted salen complexes with a large energy barrier between the M and P helical forms. To test this prediction, the tartrate salt of (1R,2R)-cyclobutyldiamine was synthesized and condensed with a series of saliclaldehydes to produce novel salen ligands. The salicylaldehydes chosen have extended phenanthryl or benz[a]anthryl sidearms to encourage formation of helical coordination complexes. These ligands were metallated with zinc, iron and manganese salts to produce salen metal complexes which were characterized by NMR analysis, high-resolution mass spectrometry, and IR spectroscopy. A second ligand type, neutral bis(pyridine-imine) has also been synthesized from (1R,2R)-cyclobutyldiamine and quinolylaldehydes. The synthesis of bis(pyridine-imine) ligands was conducted using greener method, solvent assisted grinding. These ligands, in-situ with nickel metal salts, showed good catalytic activity for asymmetric Diels-Alder reactions. The third ligand type studied was chiral acid-functionalized Schiff-base ligands. These were synthesized by the condensation of 3-formyl-5-methyl salicylic acid and (1R,2R)-cyclobutyldiamine. With this type of ligand, there is possibility of producing both mono and dinuclear metal complexes. In our studies, we were only able to synthesize mononuclear complexs. These were tested as catalysts for asymmetric direct Mannich-type reaction, but were found to be ineffective.

  9. Heterogeneous Intracellular Trafficking Dynamics of Brain-Derived Neurotrophic Factor Complexes in the Neuronal Soma Revealed by Single Quantum Dot Tracking

    PubMed Central

    Vermehren-Schmaedick, Anke; Krueger, Wesley; Jacob, Thomas; Ramunno-Johnson, Damien; Balkowiec, Agnieszka; Lidke, Keith A.; Vu, Tania Q.

    2014-01-01

    Accumulating evidence underscores the importance of ligand-receptor dynamics in shaping cellular signaling. In the nervous system, growth factor-activated Trk receptor trafficking serves to convey biochemical signaling that underlies fundamental neural functions. Focus has been placed on axonal trafficking but little is known about growth factor-activated Trk dynamics in the neuronal soma, particularly at the molecular scale, due in large part to technical hurdles in observing individual growth factor-Trk complexes for long periods of time inside live cells. Quantum dots (QDs) are intensely fluorescent nanoparticles that have been used to study the dynamics of ligand-receptor complexes at the plasma membrane but the value of QDs for investigating ligand-receptor intracellular dynamics has not been well exploited. The current study establishes that QD conjugated brain-derived neurotrophic factor (QD-BDNF) binds to TrkB receptors with high specificity, activates TrkB downstream signaling, and allows single QD tracking capability for long recording durations deep within the soma of live neurons. QD-BDNF complexes undergo internalization, recycling, and intracellular trafficking in the neuronal soma. These trafficking events exhibit little time-synchrony and diverse heterogeneity in underlying dynamics that include phases of sustained rapid motor transport without pause as well as immobility of surprisingly long-lasting duration (several minutes). Moreover, the trajectories formed by dynamic individual BDNF complexes show no apparent end destination; BDNF complexes can be found meandering over long distances of several microns throughout the expanse of the neuronal soma in a circuitous fashion. The complex, heterogeneous nature of neuronal soma trafficking dynamics contrasts the reported linear nature of axonal transport data and calls for models that surpass our generally limited notions of nuclear-directed transport in the soma. QD-ligand probes are poised to provide

  10. First derivative emission spectrofluorimetric method for the determination of LCZ696, a newly approved FDA supramolecular complex of valsartan and sacubitril in tablets.

    PubMed

    Ragab, Marwa A A; Galal, Shereen M; Korany, Mohamed A; Ahmed, Aya R

    2017-12-01

    LCZ696 (sacubitril/valsartan, Entresto™) is a therapy lately approved by United States Food and Drug Administration (US FDA) as a heart failure therapy. It is claimed to decrease the mortality rate and hospitalization for patients with chronic heart failure. This study is considered as the first report to investigate the fluorimetric behavior of sacubitril in addition to pursuing all the different conditions that may affect its fluorescence. Various conditions were studied, for example studying the effects of organized media, solvents and pH, which may affect the fluorescence behavior of sacubitril. For the simultaneous determination of the newly approved supramolecular complex of valsartan (VAL) and sacubitril (SAC) in their tablets, a sensitive and simple first derivative spectrofluorimetric method was developed. The method involved the measurement of native fluorescence at 416 nm and 314 nm (λ ex 249 nm) for VAL and SAC, respectively. The first (D1) derivative technique was applied to the emission data to resolve a partial overlap that appeared in their emission spectra. The proposed method was successfully applied for the assay of the two drugs in their supramolecular complex LCZ696 with no interference from common pharmaceutical additives. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) guidelines were followed in order to validate the proposed method. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Sensitivity analysis of complex coupled systems extended to second and higher order derivatives

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1989-01-01

    In design of engineering systems, the what if questions often arise such as: what will be the change of the aircraft payload, if the wing aspect ratio is incremented by 10 percent. Answers to such questions are commonly sought by incrementing the pertinent variable, and reevaluating the major disciplinary analyses involved. These analyses are contributed by engineering disciplines that are, usually, coupled, as are the aerodynamics, structures, and performance in the context of the question above. The what if questions can be answered precisely by computation of the derivatives. A method for calculation of the first derivatives has been developed previously. An algorithm is presented for calculation of the second and higher order derivatives.

  12. Charge carrier effective mass and concentration derived from combination of Seebeck coefficient and Te 125 NMR measurements in complex tellurides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, E. M.

    Thermoelectric materials utilize the Seebeck effect to convert heat to electrical energy. The Seebeck coefficient (thermopower), S, depends on the free (mobile) carrier concentration, n, and effective mass, m*, as S ~ m*/n 2/3. The carrier concentration in tellurides can be derived from 125Te nuclear magnetic resonance (NMR) spin-lattice relaxation measurements. The NMR spin-lattice relaxation rate, 1/T 1, depends on both n and m* as 1/T 1~(m*) 3/2n (within classical Maxwell-Boltzmann statistics) or as 1/T1~(m*) 2n 2/3 (within quantum Fermi-Dirac statistics), which challenges the correct determination of the carrier concentration in some materials by NMR. Here it is shown thatmore » the combination of the Seebeck coefficient and 125Te NMR spin-lattice relaxation measurements in complex tellurides provides a unique opportunity to derive the carrier effective mass and then to calculate the carrier concentration. This approach was used to study Ag xSb xGe 50–2xTe 50, well-known GeTe-based high-efficiency tellurium-antimony-germanium-silver thermoelectric materials, where the replacement of Ge by [Ag+Sb] results in significant enhancement of the Seebeck coefficient. Thus, values of both m* and n derived using this combination show that the enhancement of thermopower can be attributed primarily to an increase of the carrier effective mass and partially to a decrease of the carrier concentration when the [Ag+Sb] content increases.« less

  13. Charge carrier effective mass and concentration derived from combination of Seebeck coefficient and Te 125 NMR measurements in complex tellurides

    DOE PAGES

    Levin, E. M.

    2016-06-27

    Thermoelectric materials utilize the Seebeck effect to convert heat to electrical energy. The Seebeck coefficient (thermopower), S, depends on the free (mobile) carrier concentration, n, and effective mass, m*, as S ~ m*/n 2/3. The carrier concentration in tellurides can be derived from 125Te nuclear magnetic resonance (NMR) spin-lattice relaxation measurements. The NMR spin-lattice relaxation rate, 1/T 1, depends on both n and m* as 1/T 1~(m*) 3/2n (within classical Maxwell-Boltzmann statistics) or as 1/T1~(m*) 2n 2/3 (within quantum Fermi-Dirac statistics), which challenges the correct determination of the carrier concentration in some materials by NMR. Here it is shown thatmore » the combination of the Seebeck coefficient and 125Te NMR spin-lattice relaxation measurements in complex tellurides provides a unique opportunity to derive the carrier effective mass and then to calculate the carrier concentration. This approach was used to study Ag xSb xGe 50–2xTe 50, well-known GeTe-based high-efficiency tellurium-antimony-germanium-silver thermoelectric materials, where the replacement of Ge by [Ag+Sb] results in significant enhancement of the Seebeck coefficient. Thus, values of both m* and n derived using this combination show that the enhancement of thermopower can be attributed primarily to an increase of the carrier effective mass and partially to a decrease of the carrier concentration when the [Ag+Sb] content increases.« less

  14. Atomic structure of an alphabeta T cell receptor (TCR) heterodimer in complex with an anti-TCR fab fragment derived from a mitogenic antibody.

    PubMed Central

    Wang, J; Lim, K; Smolyar, A; Teng, M; Liu, J; Tse, A G; Liu, J; Hussey, R E; Chishti, Y; Thomson, C T; Sweet, R M; Nathenson, S G; Chang, H C; Sacchettini, J C; Reinherz, E L

    1998-01-01

    Each T cell receptor (TCR) recognizes a peptide antigen bound to a major histocompatibility complex (MHC) molecule via a clonotypic alphabeta heterodimeric structure (Ti) non-covalently associated with the monomorphic CD3 signaling components. A crystal structure of an alphabeta TCR-anti-TCR Fab complex shows an Fab fragment derived from the H57 monoclonal antibody (mAb), interacting with the elongated FG loop of the Cbeta domain, situated beneath the Vbeta domain. This loop, along with the partially exposed ABED beta sheet of Cbeta, and glycans attached to both Cbeta and Calpha domains, forms a cavity of sufficient size to accommodate a single non-glycosylated Ig domain such as the CD3epsilon ectodomain. That this asymmetrically localized site is embedded within the rigid constant domain module has implications for the mechanism of signal transduction in both TCR and pre-TCR complexes. Furthermore, quaternary structures of TCRs vary significantly even when they bind the same MHC molecule, as manifested by a unique twisting of the V module relative to the C module. PMID:9427737

  15. Copper and manganese complexes based on 1,4-naphthalene dicarboxylic acid ligand and its derivative: Syntheses, crystal structures, and magnetic properties

    NASA Astrophysics Data System (ADS)

    Xing, Yubo; Liu, Yuqi; Xue, Xiaofei; Wang, Xinying; Li, Wei

    2018-02-01

    Three new metal-organic coordination polymers, {[Mn2(1,4-NDC)2 (C2H5OH) (DMF) (H2O)]·CH3OH}n(1), {[Mn(III)(1,4-NDC)(C2H5O)][Mn(II)(1,4-NDC)(DMF)(H2O)]}n(2) and {[Cu2(C13H9O4)4(H2O)2]}n(3) based on1,4-H2NDC and its derivative were hydrothermally synthesized (1,4-H2NDC = 1,4-naphthalene-dicarboxylic acid, C13H10O4 = 4-methyl formate-1-naphthalenecarboxylic acid), and characterized by techniques of single crystal X-ray diffraction, infrared spectra (IR), elemental analysis, powder X-ray diffraction(PXRD) and variable-temperature magnetic susceptibility measurements. X-ray crystal structure analyses reveal that complexes 1 and 2 show a same 3,5-connected fsc 3D topology network with the Schlȁfli symbol of {4·6·8}{4·66·83}. But, the valence of some Mn atom in complex 2 take place transition from the +II oxidation state to the +III oxidation state, which may be the effect of the different solvent ratio. In complex 3, the Cu⋯Cu distance of 2.620(13) Å is significantly shorter than the sum of the van der Waals radii of Cu (1.40 Å), resulting in a strong ferromagnetic interaction between the Cu(II) centers. Furthermore, the temperature-dependent magnetic susceptibility measurements exhibit overall antiferromagnetic interactions between manganese ions for complexes 1 and 2, and a strong ferromagnetic interaction between the Cu(II) centers for complex 3.

  16. Optimal economic order quantity for buyer-distributor-vendor supply chain with backlogging derived without derivatives

    NASA Astrophysics Data System (ADS)

    Teng, Jinn-Tsair; Cárdenas-Barrón, Leopoldo Eduardo; Lou, Kuo-Ren; Wee, Hui Ming

    2013-05-01

    In this article, we first complement an inappropriate mathematical error on the total cost in the previously published paper by Chung and Wee [2007, 'Optimal the Economic Lot Size of a Three-stage Supply Chain With Backlogging Derived Without Derivatives', European Journal of Operational Research, 183, 933-943] related to buyer-distributor-vendor three-stage supply chain with backlogging derived without derivatives. Then, an arithmetic-geometric inequality method is proposed not only to simplify the algebraic method of completing prefect squares, but also to complement their shortcomings. In addition, we provide a closed-form solution to integral number of deliveries for the distributor and the vendor without using complex derivatives. Furthermore, our method can solve many cases in which their method cannot, because they did not consider that a squared root of a negative number does not exist. Finally, we use some numerical examples to show that our proposed optimal solution is cheaper to operate than theirs.

  17. Energy transfer ultraviolet photodetector with 8-hydroxyquinoline derivative-metal complexes as acceptors

    NASA Astrophysics Data System (ADS)

    Wu, Shuang-Hong; Li, Wen-Lian; Chen, Zhi; Li, Shi-Bin; Wang, Xiao-Hui; Wei, Xiong-Bang

    2015-02-01

    We choose 8-hydroxyquinoline derivative-metal complexes (Beq, Mgq, and Znq) as the acceptors (A) and 4,4',4”-tri-(2-methylphenyl phenylamino) triphenylaine (m-MTDATA) as the donor (D) respectively to study the existing energy transfer process in the organic ultraviolet (UV) photodetector (PD), which has an important influence on the sensitivity of PDs. The energy transfer process from D to A without exciplex formation is discussed, differing from the working mechanism of previous PDs with Gaq [Zisheng Su, Wenlian Li, Bei Chu, Tianle Li, Jianzhuo Zhu, Guang Zhang, Fei Yan, Xiao Li, Yiren Chen and Chun-Sing Lee 2008 Appl. Phys. Lett. 93 103309)] and REq [J. B. Wang, W. L. Li, B. Chu, L. L. Chen, G. Zhang, Z. S. Su, Y. R. Chen, D. F. Yang, J. Z. Zhu, S. H. Wu, F. Yan, H. H. Liu, C. S. Lee 2010 Org. Electron. 11 1301] used as an A material. Under 365-nm UV irradiation with an intensity of 1.2 mW/cm2, the m-MTDATA:Beq blend device with a weight ratio of 1:1 shows a response of 192 mA/W with a detectivity of 6.5× 1011 Jones, which exceeds those of PDs based on Mgq (146 mA/W) and Znq (182 mA/W) due to better energy level alignment between m-MTDATA/Beq and lower radiative decay. More photophysics processes of the PDs involved are discussed in detail. Project supported by the National Natural Science Foundation of China (Grant Nos. 61371046, 61405026, 61474016, and 61421002) and China Postdoctoral Science Foundation (Grant No. 2014M552330).

  18. A Schiff base-derived copper (II) complex is a potent inducer of apoptosis in colon cancer cells by activating the intrinsic pathway.

    PubMed

    Hajrezaie, Maryam; Paydar, Mohammadjavad; Moghadamtousi, Soheil Zorofchian; Hassandarvish, Pouya; Gwaram, Nura Suleiman; Zahedifard, Maryam; Rouhollahi, Elham; Karimian, Hamed; Looi, Chung Yeng; Ali, Hapipah Mohd; Abdul Majid, Nazia; Abdulla, Mahmood Ameen

    2014-01-01

    Metal-based drugs with extensive clinical applications hold great promise for the development of cancer chemotherapeutic agents. In the last few decades, Schiff bases and their complexes have become well known for their extensive biological potential. In the present study, we examined the antiproliferative effect of a copper (II) complex on HT-29 colon cancer cells. The Cu(BrHAP)2 Schiff base compound demonstrated a potent antiproliferative effect in HT-29 cells, with an IC50 value of 2.87  μg/ml after 72 h of treatment. HT-29 cells treated with Cu (II) complexes underwent apoptosis death, as exhibited by a progressive elevation in the proportion of the G1 cell population. At a concentration of 6.25  μg/ml, the Cu(BrHAP)2 compound caused significant elevation in ROS production following perturbation of mitochondrial membrane potential and cytochrome c release, as assessed by the measurement of fluorescence intensity in stained cells. Furthermore, the activation of caspases 3/7 and 9 was part of the Cu (II) complex-induced apoptosis, which confirmed the involvement of mitochondrial-mediated apoptosis. Meanwhile, there was no significant activation of caspase-8. Taken together, these results imply that the Cu(BrHAP)2 compound is a potential candidate for further in vivo and clinical colon cancer studies to develop novel chemotherapeutic agents derived from metal-based agents.

  19. Theoretical study of novel complexed structures for methoxy derivatives of scytonemin: potential biomarkers in iron-rich stressed environments.

    PubMed

    Varnali, Tereza; Edwards, Howell G M

    2013-09-01

    Scytonemin is a cyanobacterial sheath pigment with potent UV (UVA, UVB, and UVC) absorbing properties. Di- and tetramethoxy derivatives of scytonemin have also been found and described in the literature. The importance of these biomolecules is their photoprotective function, which is one of the major survival strategies adopted by extremophiles in environmentally stressed conditions. Also, iron compounds [particularly iron(III) oxides] offer an additional UV-protecting facility to subsurface endolithic biological colonization; hence, banded iron formations (accompanied by zones of depletion of iron) in rock matrices have attracted attention with special interest in the method of transportation of iron compounds through the rock. Di- and tetramethoxyscytonemin and their iron(III) complexes have been modeled and studied computationally by using density functional theory calculations at the level of B3LYP/6-31G** methodology. We propose new structures that could feature in survival strategy and facilitate the movement of iron through the rock especially for iron-rich stressed terrestrial environments exemplified by the Río Tinto system with the added potential of subsurface Mars exploration. This study represents a continuation of our previous work on scytonemin. The calculated Raman spectra of the proposed iron complexes are compared with those of their parent compounds and discussed in relation to structural changes effected in the parent ligand upon complexation. This information leads to new insights to be gained by experimental Raman spectroscopists and the characterization of spectroscopic biosignatures for the database being compiled for the remote Raman analytical interrogation of the martian surface and subsurface being proposed for the ESA ExoMars mission planned for launch in 2018.

  20. Electrocatalytic Transformation of Carbon Dioxide into Low Carbon Compounds on Conducting Polymers Derived from Multimetallic Porphyrins.

    PubMed

    Dreyse, Paulina; Honores, Jessica; Quezada, Diego; Isaacs, Mauricio

    2015-11-01

    The electrochemical reduction of carbon dioxide is studied herein by using conducting polymers based on metallotetraruthenated porphyrins (MTRPs). The polymers on glassy carbon electrodes were obtained by electropolymerization processes of the monomeric MTRP. The linear sweep voltammetry technique resulted in polymeric films that showed electrocatalytic activity toward carbon dioxide reduction with an onset potential of -0.70 V. The reduction products obtained were hydrogen, formic acid, formaldehyde, and methanol, with a tendency for a high production of methanol with a maximum value of turnover frequency equal to 15.07 when using a zinc(II) polymeric surface. Studies of the morphology (AFM) and electrochemical impedance spectroscopy results provide an adequate background to explain that the electrochemical reduction is governed by the roughness of the polymer, for which the possible mechanism involves a series of one-electron reduction reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Dynamic torsional motion of a diruthenium complex with four homo-catecholates and first synthesis of a diruthenium complex with mixed-catecholates

    NASA Astrophysics Data System (ADS)

    Chang, Ho-Chol; Mochizuki, Katsunori; Kitagawa, Susumu

    2008-11-01

    Dynamic properties of a diruthenium complex with ligand-unsupported Ru-Ru triple bonds, Na 2[Ru 2(3,6-DTBCat) 4] ( 1), were studied using variable-temperature 1H NMR. Structural freedom derived from the ligand-unsupported structure leads to torsional motion about the Ru-Ru bonds in THF and in DMF. The observed solvent dependency corresponds to the electrostatic interactions between the diruthenium complex and Na + counter cations, which are sensitive to the polarity of solvents. In addition, a new diruthenium complex, [{Na(THF) 2(H 2O)}{Na(THF) 0.5(H 2O)}{Ru 2(3,6-DTBCat) 2(H 4Cat) 2}] ( 2·2.5THF·2H 2O), with a ligand-unsupported Ru-Ru bond surrounded by two different kinds of catecholate derivatives, has been synthesized and crystallographically characterized. The complex, which was characterized by single-crystal structural analysis, will provide an opportunity to investigate not only static molecular structures but also dynamic physicochemical properties in comparison with analogues containing four identical catecholate derivatives.

  2. Derivation of GFDM Based on OFDM Principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussein Moradi; Behrouz Farhang-Boroujeny

    2015-06-01

    This paper starts with discussing the principle based on which the celebrated orthogonal frequency division multiplexing (OFDM) signals are constructed. It then extends the same principle to construct the newly introduced generalized frequency division multiplexing (GFDM) signals. This novel derivation sheds light on some interesting properties of GFDM. In particular, our derivation seamlessly leads to an implementation of GFDM transmitter which has significantly lower complexity than what has been reported so far. Our derivation also facilitates a trivial understanding of how GFDM (similar to OFDM) can be applied in MIMO channels.

  3. Copper complexes containing thiosemicarbazones derived from 6-nitropiperonal: Antimicrobial and biophysical properties

    NASA Astrophysics Data System (ADS)

    Beckford, Floyd A.; Webb, Kelsey R.

    2017-08-01

    A series of four thiosemicarbazones from 6-nitropiperonal along with the corresponding copper complexes were synthesized. The biophysical characteristics of the complexes were investigated by the binding to DNA and human serum albumin. The binding to DNA is moderate; the binding constants run from (0.49-7.50) × 104 M- 1. In relation to HSA, the complexes interact strongly with binding constants on the order of 105 M- 1. The complexes also display antioxidant behavior as determined by the ability to scavenge diphenylpicrylhydrazyl (dpph) and nitric oxide radicals. The antimicrobial profiles of the compounds, tested against a panel of microbes including five of the ESKAPE pathogens (Staphylococcus aureus, MRSA, Escherichia coli, Klebsiella pneumoniae, MDR, Acinetobacter baumannii, Pseudomonas aeruginosa) and two yeasts (Candida albicans and Cryptococcus neoformans var. grubii), are also described. The compounds contain a core moiety that is similar to oxolinic acid, a quinolone antibiotic that targets DNA gyrase and topoisomerase (IV). The binding interaction between the complexes and these important antibacterial targets were studied by computational methods, chiefly docking studies. The calculated dissociation constants for the interaction with DNA gyrase B (from Staphylococcus aureus) range from 4.32 to 24.65 μM; the binding was much stronger to topoisomerase IV, with dissociation constants ranging from 0.37 to 1.27 μM.

  4. Functional Entropy Variables: A New Methodology for Deriving Thermodynamically Consistent Algorithms for Complex Fluids, with Particular Reference to the Isothermal Navier-Stokes-Korteweg Equations

    DTIC Science & Technology

    2012-11-01

    multicorrector algorithm . Predictor stage: Set Cρn+1,(0) = C ρ n, (157) Cun+1,(0) = C u n, (158) Cvn+1,(0) = C v n. (159) Multicorrector stage: Repeat the... corrector algorithm given by (157)-(178). Remark 20. We adopt the preconditioned GMRES algorithm [53] from PETSc [2] to solve the linear system given by (175...ICES REPORT 12-43 November 2012 Functional Entropy Variables: A New Methodology for Deriving Thermodynamically Consistent Algorithms for Complex

  5. Enhanced antitumor immunity of nanoliposome-encapsulated heat shock protein 70 peptide complex derived from dendritic tumor fusion cells.

    PubMed

    Zhang, Yunfei; Luo, Wen; Wang, Yucai; Chen, Jun; Liu, Yunyan; Zhang, Yong

    2015-06-01

    Tumor-derived heat shock proteins peptide complex (HSP.PC-Tu) has been regarded as a promising antitumor agent. However, inadequate immunogenicity and low bioavailability limit the clinical uses of this agent. In a previous study, we first produced an improved HSP70.PC-based vaccine purified from dendritic cell (DC)-tumor fusion cells (HSP70.PC-Fc) which had increased immunogenicity due to enhanced antigenic tumor peptides compared to HSP70.PC-Tu. In order to increase the bioavailability of HSP70.PC-Fc, the peptide complex was encapsulated with nanoliposomes (NL-HSP70.PC-Fc) in this study. After encapsulation, the tumor immunogenicity was observed using various assays. It was demonstrated that the NL-HSP70.PC-Fc has acceptable stability. The in vivo antitumor immune response was increased with regard to T-cell activation, CTL response and tumor therapy efficiency compared to that of HSP70.PC-Fc. In addition, it was shown that DC maturation was improved by NL-HSP70.PC-Fc, which added to the antitumor immunity. The results obtained for NL-HSP70.PC-Fc, which improved immunogenicity and increases the bioavailability of HSP70.PC, may represent superior heat shock proteins (HSPs)-based tumor vaccines. Such vaccines deserve further investigation and may provide a preclinical rationale to translate findings into early phase trials for patients with breast tumors.

  6. Numerical Nuclear Second Derivatives on a Computing Grid: Enabling and Accelerating Frequency Calculations on Complex Molecular Systems.

    PubMed

    Yang, Tzuhsiung; Berry, John F

    2018-06-04

    The computation of nuclear second derivatives of energy, or the nuclear Hessian, is an essential routine in quantum chemical investigations of ground and transition states, thermodynamic calculations, and molecular vibrations. Analytic nuclear Hessian computations require the resolution of costly coupled-perturbed self-consistent field (CP-SCF) equations, while numerical differentiation of analytic first derivatives has an unfavorable 6 N ( N = number of atoms) prefactor. Herein, we present a new method in which grid computing is used to accelerate and/or enable the evaluation of the nuclear Hessian via numerical differentiation: NUMFREQ@Grid. Nuclear Hessians were successfully evaluated by NUMFREQ@Grid at the DFT level as well as using RIJCOSX-ZORA-MP2 or RIJCOSX-ZORA-B2PLYP for a set of linear polyacenes with systematically increasing size. For the larger members of this group, NUMFREQ@Grid was found to outperform the wall clock time of analytic Hessian evaluation; at the MP2 or B2LYP levels, these Hessians cannot even be evaluated analytically. We also evaluated a 156-atom catalytically relevant open-shell transition metal complex and found that NUMFREQ@Grid is faster (7.7 times shorter wall clock time) and less demanding (4.4 times less memory requirement) than an analytic Hessian. Capitalizing on the capabilities of parallel grid computing, NUMFREQ@Grid can outperform analytic methods in terms of wall time, memory requirements, and treatable system size. The NUMFREQ@Grid method presented herein demonstrates how grid computing can be used to facilitate embarrassingly parallel computational procedures and is a pioneer for future implementations.

  7. Novel Zn(II) complexes of 1,3-diphenyl-4-(arylazo)pyrazol-5-one derivatives: Synthesis, spectroscopic properties, DFT calculations and first order nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Abdel-Latif, Samir A.; Mohamed, Adel A.

    2018-03-01

    Eight novel Zn(II) complexes with substituted 1,3-diphenyl-4-(arylazo)pyrazol-5-one (L1-L4) derivatives have been synthesized and elucidated using various physicochemical techniques. Quantum mechanical calculations of energies, geometries were done by DFT using B3LYP/GEN functional combined with 6.311G (d,p) and LAN2DZ basis sets. The analyses of HOMO and LUMO have been used to explain the charge transfer within the ligands and complexes. The calculated small energy gap between HOMO and LUMO energies shows that the charge transfer occurs within Zn(II) complexes. Geometrical parameters, molecular electrostatic potential maps (MEP) and total electron densities analyses of the ligands and their Zn complexes have been carried out. Molecular stability, hyperconjugative interactions, intramolecular charge transfer (ICT) and bond strength has been investigated by the applying of natural bond orbital (NBO) analysis. Total static dipole moment (μ), the mean polarizability (<α>), the anisotropy of the polarizability (Δα), the mean first-order hyperpolarizability (<β>) have been also performed. The obtained values show that Zn(II) complexes is brilliant candidate to NLO materials. The analyses of the 1:1 complexes indicate that the Zn(II) ion is five-coordinated with water molecules at axial position in case of L1, L2 and L4 whereas, six-coordinated with L3 and non-electrolytic behaviour of complexes indicates the absence of counter ion.

  8. Synthesis, structural, optical and anti-rheumatic activity of metal complexes derived from (E)-2-amino-N-(1-(2-aminophenyl)ethylidene)benzohydrazide (2-AAB) with Ru(III), Pd(II) and Zr(IV)

    NASA Astrophysics Data System (ADS)

    Hosny, Nasser Mohammed; Sherif, Yousery E.

    2015-02-01

    Three new metal complexes derived from Pd(II), Ru(III) and Zr(IV) with (E)-2-amino-N-(1-(2-aminophenyl)ethylidene)benzohydrazide (2-AAB) have been synthesized. The isolated complexes were characterized by elemental analyses, FT-IR, UV-Vis, ES-MS, 1H NMR, XRD, thermal analyses (TGA and DTA) and conductance. The morphology and the particle size were determined by transmittance electron microscope (TEM). The results showed that, the ligand coordinates to Pd(II) in the enol form, while it coordinates to Ru(III) and Zr(IV) in the keto form. A square planar geometry is suggested for Pd(II) complex and octahedral geometries are suggested for Ru(III) and Zr(IV) complexes. The optical band gaps of the isolated complexes were measured and indicated the semi-conductivity nature of the complexes. The anti-inflammatory and analgesic activities of the ligand and its complexes showed that, Ru(III) complex has higher effect than the well known drug "meloxicam".

  9. Synthesis, spectral, thermal and optical properties of Schiff-base complexes derived from 2(E)-2-((z)-4-hydroxypent-3-en-2-ylideneamino)-5-guanidinopentanoic acid and acetylacetone

    NASA Astrophysics Data System (ADS)

    Hosny, Nasser Mohammed; Hussien, Mostafa A.; Radwan, Fatima M.; Nawar, Nagwa

    2017-09-01

    New metal complexes derived from the in situ reaction of Cu(II), Co(II), Ni(II) and Zn(II) acetates with the Schiff-base ligand (H2L) resulted from the condensation of 2-amino-5-guanidinopentanoic acid (arginine) and acetylacetone have been synthesized. The resulting complexes have been characterized by, elemental analyses, ES-MS, IR, Raman spectra, UV-Vis., 1HNMR, ESR, thermal analyses (TGA and DTG) and magnetic measurements. The results showed that, The Schiff-base ligand acts as bi-negative tridentate coordinating via azomethine nitrogen, enolic carbonyl oxygen and carboxylate oxygen after displacement of hydrogen. The thermodynamic parameters E∗, ΔH, ΔG and ΔS of the isolated complexes have been calculated. The optical band gap (Eg) values of Cu, Co, Ni and Zn were found to be 3.3, 3.4, 3.7 and 4.3 eV, respectively, arising from direct transitions. Optical band gap measurements indicate the semi-conductivity nature of these complexes.

  10. Synthesis, spectral, and structural studies of porphyrins having sterically hindered [η(5)-CpCo(η(4)-C4Ph4)] cobalt sandwich units at the meso positions.

    PubMed

    Keshav, Karunesh; Kumar, Dheeraj; Elias, Anil J

    2013-11-04

    Synthesis, spectral, and structural studies of the first examples of porphyrins substituted at the meso positions with sterically hindered η(5)-CpCo(η(4)-C4Ph4) cobalt sandwich units are described. The novel dipyrromethane derived cobalt sandwich compound {η(5)-[(C4H4N)2CH]C5H4}Co(η(4)-C4Ph4) 1, as well as its parent aldehyde, η(5)-[C5H4(CHO)]Co(η(4)-C4Ph4), were used in the synthesis of porphyrins having one or two η(5)-CpCo(η(4)-C4Ph4) groups at their meso positions. 1,9-Diformyldipyrromethane derived η(5)-CpCo(η(4)-C4Ph4) 2 was synthesized using dipyrromethane 1 under Vilsmeier conditions. A reaction of 2 with unsubstituted dipyrromethane under basic conditions in the presence of Pd(C6H5CN)2Cl2 yielded an A-type palladium coordinated porphyrin 3 [where A = η(5)-CpCo(η(4)-C4Ph4)]. A similar reaction of 2 with meso aryl and ferrocenyl-substituted dipyrromethanes yielded trans-AB type palladium coordinated porphyrins 4-6 [where A = η(5)-CpCo(η(4)-C4Ph4) and B = 4-tert-butylphenyl 4, ferrocenyl 5, and pentafluorophenyl 6]. Reactions of 2 with 5-ferrocenyl dipyrromethane under the same reaction conditions in the presence of Ni(acac)2 and Zn(OAc)2 gave the trimetallic nickel(II) and zinc(II) complexed trans-AB type porphyrins 7 and 8 having both cobalt and iron sandwich units at the meso positions. Crystal structure of the Pd(II) porphyrin 5 and nickel(II) porphyrin 7 showed nonplanar structures having distinct ruffle type distortion of the porphyrin ring. Demetalation of the zinc(II) trans-AB type porphyrin 8 in the presence of trifluoroacetic acid gave the metal free base porphyrin 9. Reactions of the cobalt sandwich aldehyde [(η(5)-C5H4(CHO)]Co(η(4)-C4Ph4) with sterically hindered dipyrromethane derivatives under acid-catalyzed condensation reactions gave trans-A2B2 type porphyrins [where A = η(5)-CpCo(η(4)-C4Ph4) and B = pentafluorophenyl, 10 mesityl 11]. In contrast, reactions of [η(5)-C5H4(CHO)]Co(η(4)-C4Ph4) with sterically unhindered meso-4

  11. Membrane extraction with thermodynamically unstable diphosphonic acid derivatives

    DOEpatents

    Horwitz, Earl Philip; Gatrone, Ralph Carl; Nash, Kenneth LaVerne

    1997-01-01

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.

  12. An efficient nonviral gene-delivery vector based on hyperbranched cationic glycogen derivatives.

    PubMed

    Liang, Xuan; Ren, Xianyue; Liu, Zhenzhen; Liu, Yingliang; Wang, Jue; Wang, Jingnan; Zhang, Li-Ming; Deng, David Yb; Quan, Daping; Yang, Liqun

    2014-01-01

    The purpose of this study was to synthesize and evaluate hyperbranched cationic glycogen derivatives as an efficient nonviral gene-delivery vector. A series of hyperbranched cationic glycogen derivatives conjugated with 3-(dimethylamino)-1-propylamine (DMAPA-Glyp) and 1-(2-aminoethyl) piperazine (AEPZ-Glyp) residues were synthesized and characterized by Fourier-transform infrared and hydrogen-1 nuclear magnetic resonance spectroscopy. Their buffer capacity was assessed by acid-base titration in aqueous NaCl solution. Plasmid deoxyribonucleic acid (pDNA) condensation ability and protection against DNase I degradation of the glycogen derivatives were assessed using agarose gel electrophoresis. The zeta potentials and particle sizes of the glycogen derivative/pDNA complexes were measured, and the images of the complexes were observed using atomic force microscopy. Blood compatibility and cytotoxicity were evaluated by hemolysis assay and MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay, respectively. pDNA transfection efficiency mediated by the cationic glycogen derivatives was evaluated by flow cytometry and fluorescence microscopy in the 293T (human embryonic kidney) and the CNE2 (human nasopharyngeal carcinoma) cell lines. In vivo delivery of pDNA in model animals (Sprague Dawley rats) was evaluated to identify the safety and transfection efficiency. The hyperbranched cationic glycogen derivatives conjugated with DMAPA and AEPZ residues were synthesized. They exhibited better blood compatibility and lower cytotoxicity when compared to branched polyethyleneimine (bPEI). They were able to bind and condense pDNA to form the complexes of 100-250 nm in size. The transfection efficiency of the DMAPA-Glyp/pDNA complexes was higher than those of the AEPZ-Glyp/pDNA complexes in both the 293T and CNE2 cells, and almost equal to those of bPEI. Furthermore, pDNA could be more safely delivered to the blood vessels in brain tissue of Sprague Dawley rats

  13. Cytotoxicity of Triorganophosphinegold(I) Complexes of Thiobenzoate

    PubMed Central

    Vincent, Beverly R.; Clarke, David J.; Smyth, Douglas R.; de Vos, Dick

    2001-01-01

    The preparation and characterization of two triorganophosphinegold(I) complexes containing the anion derived from thiobenzoic acid are described. The cytotoxicity of these complexes has been investigated along with that of triphenylphosphinegold(I) mercaptopurinate, a known anti-tumor compound, against a variety of human cell lines. The complexes showed moderate to high cytotoxicity (ID50 250 – 2500 ng/ml). PMID:18475979

  14. Communication complexity and information complexity

    NASA Astrophysics Data System (ADS)

    Pankratov, Denis

    complexity of two of the most studied functions in the communication complexity literature: Gap Hamming Distance (GHD) and Inner Product mod 2 (IP). In our first result we affirm the conjecture that the information complexity of GHD is linear even under the uniform distribution. This strengthens the O(n) bound shown by Kerenidis et al. (2012) and answers an open problem by Chakrabarti et al. (2012). We also prove that the information complexity of IP is arbitrarily close to the trivial upper bound n as the permitted error tends to zero, again strengthening the O(n) lower bound proved by Braverman and Weinstein (2011). More importantly, our proofs demonstrate that self-reducibility makes the connection between information complexity and communication complexity lower bounds a two-way connection. Whereas numerous results in the past used information complexity techniques to derive new communication complexity lower bounds, we explore a generic way, in which communication complexity lower bounds imply information complexity lower bounds in a black-box manner. In the third contribution we consider the roles that private and public randomness play in the definition of information complexity. In communication complexity, private randomness can be trivially simulated by public randomness. Moreover, the communication cost of simulating public randomness with private randomness is well understood due to Newman's theorem (1991). In information complexity, the roles of public and private randomness are reversed: public randomness can be trivially simulated by private randomness. However, the information cost of simulating private randomness with public randomness is not understood. We show that protocols that use only public randomness admit a rather strong compression. In particular, efficient simulation of private randomness by public randomness would imply a version of a direct sum theorem in the setting of communication complexity. This establishes a yet another connection between

  15. A Schiff Base-Derived Copper (II) Complex Is a Potent Inducer of Apoptosis in Colon Cancer Cells by Activating the Intrinsic Pathway

    PubMed Central

    Hajrezaie, Maryam; Paydar, Mohammadjavad; Zorofchian Moghadamtousi, Soheil; Hassandarvish, Pouya; Gwaram, Nura Suleiman; Zahedifard, Maryam; Rouhollahi, Elham; Karimian, Hamed; Looi, Chung Yeng; Ali, Hapipah Mohd; Abdul Majid, Nazia; Abdulla, Mahmood Ameen

    2014-01-01

    Metal-based drugs with extensive clinical applications hold great promise for the development of cancer chemotherapeutic agents. In the last few decades, Schiff bases and their complexes have become well known for their extensive biological potential. In the present study, we examined the antiproliferative effect of a copper (II) complex on HT-29 colon cancer cells. The Cu(BrHAP)2 Schiff base compound demonstrated a potent antiproliferative effect in HT-29 cells, with an IC50 value of 2.87 μg/ml after 72 h of treatment. HT-29 cells treated with Cu (II) complexes underwent apoptosis death, as exhibited by a progressive elevation in the proportion of the G1 cell population. At a concentration of 6.25 μg/ml, the Cu(BrHAP)2 compound caused significant elevation in ROS production following perturbation of mitochondrial membrane potential and cytochrome c release, as assessed by the measurement of fluorescence intensity in stained cells. Furthermore, the activation of caspases 3/7 and 9 was part of the Cu (II) complex-induced apoptosis, which confirmed the involvement of mitochondrial-mediated apoptosis. Meanwhile, there was no significant activation of caspase-8. Taken together, these results imply that the Cu(BrHAP)2 compound is a potential candidate for further in vivo and clinical colon cancer studies to develop novel chemotherapeutic agents derived from metal-based agents. PMID:24737979

  16. Adaptive control for a class of nonlinear complex dynamical systems with uncertain complex parameters and perturbations.

    PubMed

    Liu, Jian; Liu, Kexin; Liu, Shutang

    2017-01-01

    In this paper, adaptive control is extended from real space to complex space, resulting in a new control scheme for a class of n-dimensional time-dependent strict-feedback complex-variable chaotic (hyperchaotic) systems (CVCSs) in the presence of uncertain complex parameters and perturbations, which has not been previously reported in the literature. In detail, we have developed a unified framework for designing the adaptive complex scalar controller to ensure this type of CVCSs asymptotically stable and for selecting complex update laws to estimate unknown complex parameters. In particular, combining Lyapunov functions dependent on complex-valued vectors and back-stepping technique, sufficient criteria on stabilization of CVCSs are derived in the sense of Wirtinger calculus in complex space. Finally, numerical simulation is presented to validate our theoretical results.

  17. Adaptive control for a class of nonlinear complex dynamical systems with uncertain complex parameters and perturbations

    PubMed Central

    Liu, Jian; Liu, Kexin; Liu, Shutang

    2017-01-01

    In this paper, adaptive control is extended from real space to complex space, resulting in a new control scheme for a class of n-dimensional time-dependent strict-feedback complex-variable chaotic (hyperchaotic) systems (CVCSs) in the presence of uncertain complex parameters and perturbations, which has not been previously reported in the literature. In detail, we have developed a unified framework for designing the adaptive complex scalar controller to ensure this type of CVCSs asymptotically stable and for selecting complex update laws to estimate unknown complex parameters. In particular, combining Lyapunov functions dependent on complex-valued vectors and back-stepping technique, sufficient criteria on stabilization of CVCSs are derived in the sense of Wirtinger calculus in complex space. Finally, numerical simulation is presented to validate our theoretical results. PMID:28467431

  18. Effects of structures of bidentate Schiff base type bonded-ligands derived from benzaldehyde on the photoluminescence performance of polymer-rare earth complexes.

    PubMed

    Gao, Baojiao; Zhang, Liqin; Zhang, Dandan

    2018-02-07

    Two kinds of bidentate Schiff base ligands derived from benzaldehyde, benzaldehyde/m-aminophenol (BAMA) type and benzaldehyde/glutamic acid (BAGL) type ligands, were synchronously synthesized and bonded on the backbone of polysulfone (PSF) through molecular design and by polymer reactions, and two functional polymers, PSF-BAMA and PSF-BAGL, were obtained. Then two series of novel luminescent Schiff base-type polymer-rare earth complexes were prepared via coordination reactions. In this work, the effects of the structures of the bonded ligands on the photoluminescence performance of the complexes were investigated in detail, and for the different photophysical properties of the prepared complexes, relevant theoretical explanations were given. The experimental results show that the bonded ligand BAMA can strongly sensitize the fluorescence emission of Eu(iii) ions, and the binary complex PSF-(BAMA) 3 -Eu(iii) emits strong red fluorescence under UV light. The reason for this lies in the fact that a larger conjugate π-bond system is contained in the structure of BAMA, and so the triplet state of BAMA can be matched with the resonant energy level of the Eu(iii) ion. While the bonded ligand BAGL can effectively sensitize the fluorescence emission of Tb(iii) ions, the binary complex PSF-(BAGL) 3 -Tb(iii) exhibits very strong green fluorescence under UV light. The reason is that a smaller conjugate π-bond system is contained in the structure of BAGL and there is a good energy level matching between the triplet state of BAGL and the resonant energy level of the Tb(iii) ion. The fluorescence intensities of the two ternary complexes, PSF-(BAMA) 3 -Eu(iii)-(Phen) 1 (phenanthroline, Phen) and PSF-(BAGL) 3 -Tb(iii)-(Phen) 1 , are much stronger than that of the corresponding binary complex because Phen as the second ligand has two effects, the effect of synergistic coordination with the first ligand and the effect of replacing the coordinated water around the central ion, and

  19. Synthesis and spectral characterization of Schiff base complexes of Cu(II), Co(II), Zn(II) and VO(IV) containing 4-(4-aminophenyl)morpholine derivatives: Antimicrobial evaluation and anticancer studies

    NASA Astrophysics Data System (ADS)

    Dhahagani, K.; Mathan Kumar, S.; Chakkaravarthi, G.; Anitha, K.; Rajesh, J.; Ramu, A.; Rajagopal, G.

    2014-01-01

    Metal(II) chelates of Schiff bases derived from the condensation of 4-morpholinoaniline with substituted salicylaldehyde have been prepared and characterized by 1H NMR, IR, electronic, EPR, and magnetic measurement studies. The complexes are of the type M(X-MPMP)2 [where M = Cu(II), Co(II)), Zn(II), or VO(IV); MPMP = 2-[(4 morpholinophenyl imino) methyl] 4-X-phenol, X = Cl, (L1H), X = Br (L2H)]. Single crystal X-ray crystallography studies confirm the structure of newly synthesized Schiff bases. The Schiff bases act as bidentate monobasic ligands, coordinating through deprotonated phenolic oxygen and azomethine nitrogen atoms. The free ligands and metal complexes are screened for their biopotency. Metal complexes exhibit better activity than ligands. Anticancer activity of ligands and their metal complexes are evaluated in human heptocarcinoma(HepG2) cells. The preliminary bioassay indicates that the Schiff base and its zinc complex exhibit inhibitory activity against the human gastric cancer cell lines.

  20. Structurally complex and highly active RNA ligases derived from random RNA sequences

    NASA Technical Reports Server (NTRS)

    Ekland, E. H.; Szostak, J. W.; Bartel, D. P.

    1995-01-01

    Seven families of RNA ligases, previously isolated from random RNA sequences, fall into three classes on the basis of secondary structure and regiospecificity of ligation. Two of the three classes of ribozymes have been engineered to act as true enzymes, catalyzing the multiple-turnover transformation of substrates into products. The most complex of these ribozymes has a minimal catalytic domain of 93 nucleotides. An optimized version of this ribozyme has a kcat exceeding one per second, a value far greater than that of most natural RNA catalysts and approaching that of comparable protein enzymes. The fact that such a large and complex ligase emerged from a very limited sampling of sequence space implies the existence of a large number of distinct RNA structures of equivalent complexity and activity.

  1. Synthesis and characterization of heterobimetallic molybdenum and nickel complexes derived from polyfunctional disalicylaldehyde oxaloyldihydrazone

    NASA Astrophysics Data System (ADS)

    Kumar, Arvind; Borthakur, Rosmita; Koch, Angira; Chanu, Oinam B.; Choudhury, Sanjesh; Lemtur, Aka; Lal, Ram A.

    2011-07-01

    Heterobimetallic nickel and molybdenum complexes of the composition [Ni(L)MoO 2(A) 4]· nH 2O (A = H 2O (1), py (2), 2-pic (3), 3-pic (4), and 4-pic (5); n = 0, 2) and [Ni(L)(MoO 2)(BB) 2](BB = bpy (6) and (phen (7)) have been synthesized from the multidentate ligand disalicylaldehyde oxaloyldihydrazone (H 4L) in methanol. The composition of the complexes has been established based on data obtained from elemental analyses, thermoanalytical, mass spectral and molecular weight studies. The probable structures of the complexes have been discussed in the light of molar conductance, magnetic moment data and electronic, EPR and infrared spectral studies. In all of the complexes, the dihydrazone is present in enol form and coordinates to the metal centre as a tetrabasic hexadentate ligand. All of the complexes are normal paramagnetic to the extent of two unpaired electrons per nickel atom. The μeff values for the complexes lying in the region 2.87-3.07 B.M. are consistent with the octahedral stereochemistry of nickel(II) in the heterobimetallic complexes. The EPR and electronic spectral data also support the distorted octahedral stereochemistry of the nickel(II) centre. Both nickel and molybdenum have octahedral geometry in the complexes.

  2. Affinity of guanosine derivatives for polycytidylate revisited

    NASA Technical Reports Server (NTRS)

    Kanavarioti, A.; Hurley, T. B.; Baird, E. E.

    1995-01-01

    Evidence is presented for complexation of guanosine 5'-monophosphate 2-methylimidazolide (2-MeImpG) with polycytidylate (poly(C)) at pH 8.0 and 23 degrees C in the presence of 1.0 M NaCl2 and 0.2 M MgCl2 in water. The association of 2-MeImpG with poly(C) was investigated using UV-vis spectroscopy as well as by monitoring the kinetics of the nucleophilic substitution reaction of the imidazole moiety by amines. The results of both methods are consistent with moderately strong poly(C) 2-MeImpG complexation and the spectrophotometric measurements allowed the construction of a binding isotherm with a concentration of 2-MeImpG equal to 5.55 +/- 0.15 mM at half occupancy. UV spectroscopy was employed to establish the binding of other guanosine derivatives on poly(C). These derivatives are guanosine 5'-monophosphate (5'GMP), guanosine 5'-monophosphate imidazolide (ImpG), and guanosine 5'-monophosphate morpholidate (morpG). Within experimental error these guanosine derivatives exhibit the same affinity for poly(C) as 2-MeImpG.

  3. Studies on chalcone derivatives: complex formation, thermal behavior, stability constant and antioxidant activity.

    PubMed

    El-Sayed, Yusif S; Gaber, M

    2015-02-25

    The chalcone 3-[4'-dimethylaminophenyl]-1-(2-pyridyl) prop-2-en-1-one (DMAPP) and 3-(4'-diethylaminophenyl)-1-(2-pyridinyl) prop-2-en-1-one abbreviated as DEAPP have been synthesized and characterized with IR, (1)H NMR, (13)C NMR spectroscopic techniques as described previously (El-Daly et al., 2008; Gaber et al., 2009; El-Sayed, 2013). By using UV visible spectroscopy method the mole fraction ratio for copper with DMAPP and DEAPP complexes were determined and it was found to be 1:1. The stability constants of this complex have been determined by Job's method. The stability constant (Kf) of copper with DMAPP and DEAPP complexes in universal buffer pH=3.2 was determined to be 9.9×10(4) and 5.2×10(4) respectively. The effect of Cu(II) ion on the emission spectrum of the free chalcone is also assigned. Adherence to Beer's law and Ringbom optimum concentration ranges are determined. The thermal decomposition of the metal complexes is studied by TGA technique. The kinetic parameters like activation energy, pre-exponential factor and entropy of activation are estimated. The structure of complexes was energetically optimized through molecular mechanics applying MM(+) force field coupled with molecular dynamics simulation. The bond lengths and bond angles have been calculated to confirm the geometry of the ligands and their Cu(II) complexes. The mode of interaction of the chalcone to copper nanoparticles was studied. The apparent association constants of the colloidal copper nanoparticles:chalcone complexes in solution were evaluated using the spectral method and compared with the formation constant of the Cu(II) chalcone complexes. Antioxidant activity of these chalcones was evaluated by using 1,1'-diphenyl-2-picrylhydrazyl (DPPH) radicals scavenging method, which showed that the antioxidant activity of DMAPP has higher value than the DEAPP. Semi-empirical study results showed that DMAPP have higher dipole moment than DEAPP. Copyright © 2014 Elsevier B.V. All rights

  4. Studies on chalcone derivatives: Complex formation, thermal behavior, stability constant and antioxidant activity

    NASA Astrophysics Data System (ADS)

    El-Sayed, Yusif S.; Gaber, M.

    2015-02-01

    The chalcone 3-[4‧-dimethylaminophenyl]-1-(2-pyridyl) prop-2-en-1-one (DMAPP) and 3-(4‧-diethylaminophenyl)-1-(2-pyridinyl) prop-2-en-1-one abbreviated as DEAPP have been synthesized and characterized with IR, 1H NMR, 13C NMR spectroscopic techniques as described previously (El-Daly et al., 2008; Gaber et al., 2009; El-Sayed, 2013). By using UV visible spectroscopy method the mole fraction ratio for copper with DMAPP and DEAPP complexes were determined and it was found to be 1:1. The stability constants of this complex have been determined by Job's method. The stability constant (Kf) of copper with DMAPP and DEAPP complexes in universal buffer pH = 3.2 was determined to be 9.9 × 104 and 5.2 × 104 respectively. The effect of Cu(II) ion on the emission spectrum of the free chalcone is also assigned. Adherence to Beer's law and Ringbom optimum concentration ranges are determined. The thermal decomposition of the metal complexes is studied by TGA technique. The kinetic parameters like activation energy, pre-exponential factor and entropy of activation are estimated. The structure of complexes was energetically optimized through molecular mechanics applying MM+ force field coupled with molecular dynamics simulation. The bond lengths and bond angles have been calculated to confirm the geometry of the ligands and their Cu(II) complexes. The mode of interaction of the chalcone to copper nanoparticles was studied. The apparent association constants of the colloidal copper nanoparticles:chalcone complexes in solution were evaluated using the spectral method and compared with the formation constant of the Cu(II) chalcone complexes. Antioxidant activity of these chalcones was evaluated by using 1,1‧-diphenyl-2-picrylhydrazyl (DPPHrad) radicals scavenging method, which showed that the antioxidant activity of DMAPP has higher value than the DEAPP. Semi-empirical study results showed that DMAPP have higher dipole moment than DEAPP [1].

  5. Membrane extraction with thermodynamically unstable diphosphonic acid derivatives

    DOEpatents

    Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.

    1997-10-14

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.

  6. EHPG iron(III) complexes as potential contrast contrast agents for MRI.

    PubMed

    Kuźnik, Nikodem; Jewuła, Paweł; Oczek, Lidia; Kozłowicz, Sylwia; Grucela, Artur; Domagała, Wojciech

    2014-01-01

    A series of EHPG ligands and complexes were obtained. The derivatives of choice were p-OMe, 3,4-dimethyl, p-NHAc and p-Ph substituted ones. The complexes were characterized by NMR relaxation decay (T1), EPR and cyclic voltammetry (CV). r1 Relaxivity of the Fe-EHPG-OMe, Fe-EHPG-Ph derivatives was found higher than that of Fe-EHPG. EPR measurements at liquid nitrogen temperature indicate a typical rhombohedral structure for both rac- and meso-diastereoisomers of the EHPG complexes. CV revealed the redox inactivity of the Fe-EHPG complexes at physiological conditions. Interpretation and discussion of the results is presented.

  7. Hypervalent iodine-promoted α-fluorination of acetophenone derivatives with a triethylamine·HF complex.

    PubMed

    Kitamura, Tsugio; Muta, Kensuke; Muta, Kazutaka

    2014-06-20

    The direct fluorination reaction of acetophenone using iodosylarenes and TEA·5HF was conducted under mild conditions except for use of a HF reagent. The fluorination reaction was applied to acetophenone derivatives, acetonaphthones, benzyl phenyl ketone, propiophenone, butyrophenone, 1-indanone, and phenacyl chloride, giving selectively the corresponding α-fluoroketone derivatives in good yields.

  8. IC-tagged proteins are able to interact with each other and perform complex reactions when integrated into muNS-derived inclusions.

    PubMed

    Brandariz-Nuñez, Alberto; Otero-Romero, Iria; Benavente, Javier; Martinez-Costas, Jose M

    2011-09-20

    We have recently developed a versatile tagging system (IC-tagging) that causes relocation of the tagged proteins to ARV muNS-derived intracellular globular inclusions. In the present study we demonstrate (i) that the IC-tag can be successfully fused either to the amino or carboxyl terminus of the protein to be tagged and (ii) that IC-tagged proteins are able to interact between them and perform complex reactions that require such interactions while integrated into muNS inclusions, increasing the versatility of the IC-tagging system. Also, our studies with the DsRed protein add some light on the structure/function relationship of the evolution of DsRed chromophore. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Corrigendum to "Synthesis, structural features, and methyl methacrylate polymerisation of binuclear zinc(II) complexes with tetradentate pyrazolyl ligands" [J. Mol. Struct. 1063 (2014) 70-76

    NASA Astrophysics Data System (ADS)

    Kim, Sunghoon; Kim, Dongil; Lee, Ha-Jin; Lee, Hyosun

    2015-05-01

    The authors regret to inform that 4,4‧-bis-(N,N-di(1H-pyrazolyl-1-methyl)phenyl)methane (L2) and its binuclear 4,4‧-bis-(N,N-di-(1H-pyrazolyl-1-methyl)phenyl)methane(dichloro)Zn(II) complex, namely, [L2Zn2Cl4] in the paper were published as the thesis for the degree of master in the Department of Chemistry at Kyungpook National University in 2003.

  10. Identification of Complex Carbon Nanotube Structures

    NASA Technical Reports Server (NTRS)

    Han, Jie; Saini, Subhash (Technical Monitor)

    1998-01-01

    A variety of complex carbon nanotube (CNT) structures have been observed experimentally. These include sharp bends, branches, tori, and helices. They are believed to be formed by using topological defects such as pentagons and heptagons to connect different CNT. The effects of type, number, and arrangement (separation and orientation) of defects on atomic structures and energetics of complex CNT are investigated using topology, quantum mechanics and molecular mechanics calculations. Energetically stable models are derived for identification of observed complex CNT structures.

  11. An Lnc RNA (GAS5)/SnoRNA-derived piRNA induces activation of TRAIL gene by site-specifically recruiting MLL/COMPASS-like complexes

    PubMed Central

    He, Xin; Chen, Xinxin; Zhang, Xue; Duan, Xiaobing; Pan, Ting; Hu, Qifei; Zhang, Yijun; Zhong, Fudi; Liu, Jun; Zhang, Hong; Luo, Juan; Wu, Kang; Peng, Gao; Luo, Haihua; Zhang, Lehong; Li, Xiaoxi; Zhang, Hui

    2015-01-01

    PIWI-interacting RNA (piRNA) silences the transposons in germlines or induces epigenetic modifications in the invertebrates. However, its function in the mammalian somatic cells remains unknown. Here we demonstrate that a piRNA derived from Growth Arrest Specific 5, a tumor-suppressive long non-coding RNA, potently upregulates the transcription of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a proapoptotic protein, by inducing H3K4 methylation/H3K27 demethylation. Interestingly, the PIWIL1/4 proteins, which bind with this piRNA, directly interact with WDR5, resulting in a site-specific recruitment of the hCOMPASS-like complexes containing at least MLL3 and UTX (KDM6A). We have indicated a novel pathway for piRNAs to specially activate gene expression. Given that MLL3 or UTX are frequently mutated in various tumors, the piRNA/MLL3/UTX complex mediates the induction of TRAIL, and consequently leads to the inhibition of tumor growth. PMID:25779046

  12. The effect of specific solvent-solute interactions on complexation of alkali-metal cations by a lower-rim calix[4]arene amide derivative.

    PubMed

    Horvat, Gordan; Stilinović, Vladimir; Kaitner, Branko; Frkanec, Leo; Tomišić, Vladislav

    2013-11-04

    Complexation of alkali-metal cations with calix[4]arene secondary-amide derivative, 5,11,17,23-tetra(tert-butyl)-25,26,27,28-tetra(N-hexylcarbamoylmethoxy)calix[4]arene (L), in benzonitrile (PhCN) and methanol (MeOH) was studied by means of microcalorimetry, UV and NMR spectroscopies, and in the solid state by X-ray crystallography. The inclusion of solvent molecules (including acetonitrile, MeCN) in the calixarene hydrophobic cavity was also investigated. The classical molecular dynamics (MD) simulations of the systems studied were carried out. By combining the results obtained using the mentioned experimental and computational techniques, an attempt was made to get an as detailed insight into the complexation reactions as possible. The thermodynamic parameters, that is, equilibrium constants, reaction Gibbs energies, enthalpies, and entropies, of the investigated processes were determined and discussed. The stability constants of the 1:1 (metal:ligand) complexes measured by different methods were in very good agreement. Solution Gibbs energies of the ligand and its complexes with Na(+) and K(+) in methanol and acetonitrile were determined. It was established that from the thermodynamic point of view, apart from cation solvation, the most important reason for the huge difference in the stability of these complexes in the two solvents lay in the fact that the transfer of complex species from MeOH to MeCN was quite favorable. That could be at least partly explained by a more exergonic inclusion of the solvent molecule in the complexed calixarene cone in MeCN as compared to MeOH, which was supported by MD simulations. Molecular and crystal structures of the lithium cation complex of L with the benzonitrile molecule bound in the hydrophobic calixarene cavity were determined by single-crystal X-ray diffraction. As far as we are aware, for the first time the alkali-metal cation was found to be coordinated by the solvent nitrile group in a calixarene adduct. According to

  13. A new class of transition metal pincer ligand: tantalum complexes that feature a [CCC] X3-donor array derived from a terphenyl ligand.

    PubMed

    Sattler, Aaron; Parkin, Gerard

    2012-02-01

    A new class of [CCC] X(3)-donor pincer ligand for transition metals has been constructed via cyclometalation of a 2,6-di-p-tolylphenyl ([Ar(Tol(2))]) derivative. Specifically, addition of PMe(3) to [Ar(Tol(2))]TaMe(3)Cl induces elimination of methane and formation of the pincer complex, [κ(3)-Ar(Tol'(2))]Ta(PMe(3))(2)MeCl (Tol' = C(6)H(3)Me), which may also be obtained by treatment of Ta(PMe(3))(2)Me(3)Cl(2) with [Ar(Tol(2))]Li. Solutions of [κ(3)-Ar(Tol'(2))]Ta(PMe(3))(2)MeCl undergo ligand redistribution with the formation of [κ(3)-Ar(Tol'(2))]Ta(PMe(3))(2)Me(2)and [κ(3)-Ar(Tol'(2))]Ta(PMe(3))(2)Cl(2), which may also be synthesized by the reactions of [κ(3)-Ar(Tol'(2))]Ta(PMe(3))(2)MeCl with MeMgBr and ZnCl(2), respectively. Reduction of [κ(3)-Ar(Tol'(2))]Ta(PMe(3))(2)Cl(2) with KC(8) in benzene gives the benzene complex [κ(3)-Ar(Tol'(2))]Ta(PMe(3))(2)(η(6)-C(6)H(6)) that is better described as a 1,4-cyclohexadienediyl derivative. Deuterium labeling employing Ta(PMe(3))(2)(CD(3))(3)Cl(2) demonstrates that the pincer ligand is created by a pair of Ar-H/Ta-Me sigma-bond metathesis transformations, rather than by a mechanism that involves α-H abstraction by a tantalum methyl ligand. © 2012 American Chemical Society

  14. Electrochemical and spectroelectrochemical study on novel non-peripherally tetra 1,2,4-triazole substituted phthalocyanines

    NASA Astrophysics Data System (ADS)

    Demirbaş, Ümit; Akyüz, Duygu; Akçay, Hakkı Türker; Koca, Atıf; Bekircan, Olcay; Kantekin, Halit

    2018-03-01

    In the present study novel tetra 4-(4-fluorophenyl)-5-(4-methoxyphenyl)-4H-1,2,4-triazole-3-thio substituted non-peripherally metal free (4), zinc(II) (5), lead (II) (6) and copper(II) (7) phthalocyanines were synthesized. The obtained novel compounds were characterized by a combination of FT-IR, 1H NMR, UV-Vis and MALDI-TOF techniques. The redox properties of the complexes have been investigated via cyclic voltammetry, square wave voltammetry and in situ spectroelectrochemistry. The compounds displayed ring-based, reversible and/or quasi-reversible reduction and oxidation processes and aggregation of the complexes influenced the redox character of the processes. The color changes during the redox processes of metallo phthalocyanine were recorded by in-situ spectroelectrochemical measurements. In situ UV-vis spectroelectrochemical measurements, which was associated with color change of the complexes, showed their applicability in the fields of the electrochemical technologies.

  15. A multiscale analysis of coral reef topographic complexity using lidar-derived bathymetry

    USGS Publications Warehouse

    Zawada, D.G.; Brock, J.C.

    2009-01-01

    Coral reefs represent one of the most irregular substrates in the marine environment. This roughness or topographic complexity is an important structural characteristic of reef habitats that affects a number of ecological and environmental attributes, including species diversity and water circulation. Little is known about the range of topographic complexity exhibited within a reef or between different reef systems. The objective of this study was to quantify topographic complexity for a 5-km x 5-km reefscape along the northern Florida Keys reef tract, over spatial scales ranging from meters to hundreds of meters. The underlying dataset was a 1-m spatial resolution, digital elevation model constructed from lidar measurements. Topographic complexity was quantified using a fractal algorithm, which provided a multi-scale characterization of reef roughness. The computed fractal dimensions (D) are a measure of substrate irregularity and are bounded between values of 2 and 3. Spatial patterns in D were positively correlated with known reef zonation in the area. Landward regions of the study site contain relatively smooth (D ??? 2.35) flat-topped patch reefs, which give way to rougher (D ??? 2.5), deep, knoll-shaped patch reefs. The seaward boundary contains a mixture of substrate features, including discontinuous shelf-edge reefs, and exhibits a corresponding range of roughness values (2.28 ??? D ??? 2.61). ?? 2009 Coastal Education and Research Foundation.

  16. Spectral simplicity of apparent complexity. II. Exact complexities and complexity spectra

    NASA Astrophysics Data System (ADS)

    Riechers, Paul M.; Crutchfield, James P.

    2018-03-01

    The meromorphic functional calculus developed in Part I overcomes the nondiagonalizability of linear operators that arises often in the temporal evolution of complex systems and is generic to the metadynamics of predicting their behavior. Using the resulting spectral decomposition, we derive closed-form expressions for correlation functions, finite-length Shannon entropy-rate approximates, asymptotic entropy rate, excess entropy, transient information, transient and asymptotic state uncertainties, and synchronization information of stochastic processes generated by finite-state hidden Markov models. This introduces analytical tractability to investigating information processing in discrete-event stochastic processes, symbolic dynamics, and chaotic dynamical systems. Comparisons reveal mathematical similarities between complexity measures originally thought to capture distinct informational and computational properties. We also introduce a new kind of spectral analysis via coronal spectrograms and the frequency-dependent spectra of past-future mutual information. We analyze a number of examples to illustrate the methods, emphasizing processes with multivariate dependencies beyond pairwise correlation. This includes spectral decomposition calculations for one representative example in full detail.

  17. Extracting metal ions with diphosphonic acid, or derivative thereof

    DOEpatents

    Horwitz, Earl P.; Gatrone, Ralph C.; Nash, Kenneth L.

    1994-01-01

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.

  18. The GARP/Latent TGF-β1 complex on Treg cells modulates the induction of peripherally derived Treg cells during oral tolerance.

    PubMed

    Edwards, Justin P; Hand, Timothy W; Morais da Fonseca, Denise; Glass, Deborah D; Belkaid, Yasmine; Shevach, Ethan M

    2016-06-01

    Treg cells can secrete latent TGF-β1 (LTGF-β1), but can also utilize an alternative pathway for transport and expression of LTGF-β1 on the cell surface in which LTGF-β1 is coupled to a distinct LTGF-β binding protein termed glycoprotein A repetitions predominant (GARP)/LRRC32. The function of the GARP/LTGF-β1 complex has remained elusive. Here, we examine in vivo the roles of GARP and TGF-β1 in the induction of oral tolerance. When Foxp3(-) OT-II T cells were transferred to wild-type recipient mice followed by OVA feeding, the conversion of Foxp3(-) to Foxp3(+) OT-II cells was dependent on recipient Treg cells. Neutralization of IL-2 in the recipient mice also abrogated this conversion. The GARP/LTGF-β1 complex on recipient Treg cells, but not dendritic cell-derived TGF-β1, was required for efficient induction of Foxp3(+) T cells and for the suppression of delayed hypersensitivity. Expression of the integrin αvβ8 by Treg cells (or T cells) in the recipients was dispensable for induction of Foxp3 expression. Transient depletion of the bacterial flora enhanced the development of oral tolerance by expanding Treg cells with enhanced expression of the GARP/LTGF-β1 complex. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  19. Novel bis-(−)-nor-meptazinol derivatives act as dual binding site AChE inhibitors with metal-complexing property

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Wei; NPFPC Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research, 2140 Xietu Road, Shanghai 200032; Li, Juan

    The strategy of dual binding site acetylcholinesterase (AChE) inhibition along with metal chelation may represent a promising direction for multi-targeted interventions in the pathophysiological processes of Alzheimer's disease (AD). In the present study, two derivatives (ZLA and ZLB) of a potent dual binding site AChE inhibitor bis-(−)-nor-meptazinol (bis-MEP) were designed and synthesized by introducing metal chelating pharmacophores into the middle chain of bis-MEP. They could inhibit human AChE activity with IC{sub 50} values of 9.63 μM (for ZLA) and 8.64 μM (for ZLB), and prevent AChE-induced amyloid-β (Aβ) aggregation with IC{sub 50} values of 49.1 μM (for ZLA) and 55.3more » μM (for ZLB). In parallel, molecular docking analysis showed that they are capable of interacting with both the catalytic and peripheral anionic sites of AChE. Furthermore, they exhibited abilities to complex metal ions such as Cu(II) and Zn(II), and inhibit Aβ aggregation triggered by these metals. Collectively, these results suggest that ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency, and may be potential leads of value for further study on disease-modifying treatment of AD. -- Highlights: ► Two novel bis-(−)-nor-meptazinol derivatives are designed and synthesized. ► ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency. ► They are potential leads for disease-modifying treatment of Alzheimer's disease.« less

  20. Quasi-projective synchronization of fractional-order complex-valued recurrent neural networks.

    PubMed

    Yang, Shuai; Yu, Juan; Hu, Cheng; Jiang, Haijun

    2018-08-01

    In this paper, without separating the complex-valued neural networks into two real-valued systems, the quasi-projective synchronization of fractional-order complex-valued neural networks is investigated. First, two new fractional-order inequalities are established by using the theory of complex functions, Laplace transform and Mittag-Leffler functions, which generalize traditional inequalities with the first-order derivative in the real domain. Additionally, different from hybrid control schemes given in the previous work concerning the projective synchronization, a simple and linear control strategy is designed in this paper and several criteria are derived to ensure quasi-projective synchronization of the complex-valued neural networks with fractional-order based on the established fractional-order inequalities and the theory of complex functions. Moreover, the error bounds of quasi-projective synchronization are estimated. Especially, some conditions are also presented for the Mittag-Leffler synchronization of the addressed neural networks. Finally, some numerical examples with simulations are provided to show the effectiveness of the derived theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Synthesis, spectroscopic, electrochemical and computational studies of rhenium(i) tricarbonyl complexes based on bidentate-coordinated 2,6-di(thiazol-2-yl)pyridine derivatives.

    PubMed

    Klemens, Tomasz; Czerwińska, Katarzyna; Szlapa-Kula, Agata; Kula, Slawomir; Switlicka, Anna; Kotowicz, Sonia; Siwy, Mariola; Bednarczyk, Katarzyna; Krompiec, Stanisław; Smolarek, Karolina; Maćkowski, Sebastian; Danikiewicz, Witold; Schab-Balcerzak, Ewa; Machura, Barbara

    2017-07-25

    Nine rhenium(i) complexes possessing three carbonyl groups together with a bidentate coordinated 2,6-di(thiazol-2-yl)pyridine derivative were synthesized to examine the impact of structure modification of the triimine ligand on the photophysical, thermal and electrochemical properties of [ReCl(CO) 3 (4-R n -dtpy-κ 2 N)]. The Re(i) complexes were fully characterized using IR, 1 H and 13 C, HRMS-ESI and single crystal X-ray analysis. Their thermal properties were evaluated using DSC and TGA measurements. Photoluminescence spectra of [ReCl(CO) 3 (4-R n -dtpy-κ 2 N)] were investigated in solution and in the solid state, at 298 and 77 K. Both emission wavelengths and quantum yields of [ReCl(CO) 3 (4-R n -dtpy-κ 2 N)] were found to be structure-related, demonstrating a crucial role of the substituent attached to the 2,6-di(thiazol-2-yl)pyridine skeleton. In order to fully understand the photophysical properties of [ReCl(CO) 3 (4-R n -dtpy-κ 2 N)], density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were performed. Furthermore, the complexes which showed appropriate solubility in chloroform were tested as an emissive active layer in OLED devices.

  2. 3D Complex: A Structural Classification of Protein Complexes

    PubMed Central

    Levy, Emmanuel D; Pereira-Leal, Jose B; Chothia, Cyrus; Teichmann, Sarah A

    2006-01-01

    Most of the proteins in a cell assemble into complexes to carry out their function. It is therefore crucial to understand the physicochemical properties as well as the evolution of interactions between proteins. The Protein Data Bank represents an important source of information for such studies, because more than half of the structures are homo- or heteromeric protein complexes. Here we propose the first hierarchical classification of whole protein complexes of known 3-D structure, based on representing their fundamental structural features as a graph. This classification provides the first overview of all the complexes in the Protein Data Bank and allows nonredundant sets to be derived at different levels of detail. This reveals that between one-half and two-thirds of known structures are multimeric, depending on the level of redundancy accepted. We also analyse the structures in terms of the topological arrangement of their subunits and find that they form a small number of arrangements compared with all theoretically possible ones. This is because most complexes contain four subunits or less, and the large majority are homomeric. In addition, there is a strong tendency for symmetry in complexes, even for heteromeric complexes. Finally, through comparison of Biological Units in the Protein Data Bank with the Protein Quaternary Structure database, we identified many possible errors in quaternary structure assignments. Our classification, available as a database and Web server at http://www.3Dcomplex.org, will be a starting point for future work aimed at understanding the structure and evolution of protein complexes. PMID:17112313

  3. Polystyrene bound oxidovanadium(IV) and dioxidovanadium(V) complexes of histamine derived ligand for the oxidation of methyl phenyl sulfide, diphenyl sulfide and benzoin.

    PubMed

    Maurya, Mannar R; Arya, Aarti; Kumar, Amit; Pessoa, João Costa

    2009-03-28

    Ligand Hsal-his (I) derived from salicylaldehyde and histamine has been covalently bound to chloromethylated polystyrene cross-linked with 5% divinylbenzene. Upon treatment with [VO(acac)(2)] in DMF, the polystyrene-bound ligand (abbreviated as PS-Hsal-his, II) gave the stable polystyrene-bound oxidovanadium(iv) complex PS-[V(IV)O(sal-his)(acac)] , which upon oxidation yielded the dioxidovanadium(v) PS-[V(V)O(2)(sal-his)] complex. The corresponding non polymer-bound complexes [V(IV)O(sal-his)(acac)] and [V(V)O(2)(sal-his)] have also been obtained. These complexes have been characterised by IR, electronic, (51)V NMR and EPR spectral studies, and thermal as well as scanning electron micrograph studies. Complexes and have been used as a catalyst for the oxidation of methyl phenyl sulfide, diphenyl sulfide and benzoin with 30% H(2)O(2) as oxidant. Under the optimised reaction conditions, a maximum of 93.8% conversion of methyl phenyl sulfide with 63.7% selectivity towards methyl phenyl sulfoxide and 36.3% towards methyl phenyl sulfone has been achieved in 2 h with 2 . Under similar conditions, diphenyl sulfide gave 83.4% conversion where selectivity of reaction products varied in the order: diphenyl sulfoxide (71.8%) > diphenyl sulfone (28.2%). A maximum of 91.2% conversion of benzoin has been achieved within 6 h, and the selectivities of reaction products are: methylbenzoate (37.0%) > benzil (30.5%) > benzaldehyde-dimethylacetal (22.5%) > benzoic acid (8.1%). The PS-bound complex, 1 exhibits very comparable catalytic potential. These polymer-anchored heterogeneous catalysts do not leach during catalytic action, are recyclable and show higher catalytic activity and turnover frequency than the corresponding non polymer-bound complexes. EPR and (51)V NMR spectroscopy was used to characterise methanolic solutions of 3 and 4 and to identify species formed upon addition of H(2)O(2) and/or acid and/or methyl phenyl sulfide.

  4. BIOCHEMICAL INDICATORS OF HEPATOTOXICITY IN BLOOD SERUM OF RATS UNDER THE EFFECT OF NOVEL 4-THIAZOLIDINONE DERIVATIVES AND DOXORUBICIN AND THEIR COMPLEXES WITH POLYETHYLENEGLYCOL-CONTAINING NANOSCALE POLYMERIC CARRIER.

    PubMed

    Kobylinska, L I; Havrylyuk, D Ya; Ryabtseva, A O; Mitina, N E; Zaichenko, O S; Lesyk, R B; Zimenkovsky, B S; Stoika, R S

    2015-01-01

    The aim of this study was to compare the effect of new synthetic 4-tiazolidinone derivatives (compounds 3882, 3288 and 3833) and doxorubicin (positive control) in free form and in their complexes with synthetic polyethyleneglycol-containing nanoscale polymeric carrier on the biochemical indicators of hepatotoxicity in blood serum of rats. The activity of enzymes considered as the markers of hepatotoxicity, as well as. the concentration of total protein, urea and creatinine were measured in blood serum of rats. It was found that after injection of investigated compounds the activities ofalanine aminotransferase, alkaline phosphatase and α-amylase increased in comparison to control. Doxorubicin injection was accompanied by 4-fold increase in the activity of γ-glutamyltransferase, and injection ofcompound 3833 led to 2.5-fold elevation ofthe activity of this enzyme. Complexation ofthese antineoplastic derivatives with a synthetic nanocarrier lowered the activity ofthe investigated enzymes substantially if compared to the effect of these compounds infreeform. The most evident decrease was measured for α-amylase, γ-glutamyltransferase and lactate dehydrogenase activities. The normalization of concentrations of total protein, urea and creatinine in blood serum of rats treated with complexes of the studied compounds with a polymeric carrier comparing with their introduction infreeform was also detected. Thus, the immobilization by novel polymeric carrier of anticancer drugs possessing high general toxicity in the treated organism mitigates their toxic effect, which is evident as normalization of specific biochemical indicators of the hepatodestructive effects of the anticancer drugs.

  5. Gas-phase behaviour of Ru(II) cyclopentadienyl-derived complexes with N-coordinated ligands by electrospray ionization mass spectrometry: fragmentation pathways and energetics.

    PubMed

    Madeira, Paulo J Amorim; Morais, Tânia S; Silva, Tiago J L; Florindo, Pedro; Garcia, M Helena

    2012-08-15

    The gas-phase behaviour of six Ru(II) cyclopentadienyl-derived complexes with N-coordinated ligands, compounds with antitumor activities against several cancer lines, was studied. This was performed with the intent of establishing fragmentation pathways and to determine the Ru-L(N) and Ru-L(P) ligand bond dissociation energies. Such knowledge can be an important tool for the postulation of the mechanisms of action of these anticancer drugs. Two types of instruments equipped with electrospray ionisation were used (ion trap and a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer). The dissociation energies were determined using energy-variable collision-induced dissociation measurements in the ion trap. The FTICR instrument was used to perform MS(n) experiments on one of the compounds and to obtain accurate mass measurements. Theoretical calculations were performed at the density functional theory (DFT) level using two different functionals (B3LYP and M06L) to estimate the dissociation energies of the complexes under study. The influence of the L(N) on the bond dissociation energy (D) of RuCp compounds with different nitrogen ligands was studied. The lability order of L(N) was: imidazole<1-butylimidazole<5-phenyl-1H-tetrazole<1-benzylimidazole. Both the functionals used gave the following ligand lability order: imidazole<1-benzylimidazole<5-phenyl-1H-tetrazole<1-butylimidazole. It is clear that there is an inversion between 1-benzylimidazole and 1-butylimidazole for the experimental and theoretical lability orders. The M06L functional afforded values of D closer to the experimental values. The type of phosphane (L(P) ) influenced the dissociation energies, with values of D being higher for Ru-L(N) with 1-butylimidazole when the phosphane was 1,2-bis(diphenylphosphino)ethane. The Ru-L(P) bond dissociation energy for triphenylphosphane was independent of the type of complex. The D values of Ru-L(N) and Ru-L(P) were determined for all six compounds and

  6. A luminescent zinc(ii) coordination polymer with unusual (3,4,4)-coordinated self-catenated 3D network for selective detection of nitroaromatics and ferric and chromate ions: a versatile luminescent sensor.

    PubMed

    Zhang, Ya-Qian; Blatov, Vladislav A; Zheng, Tian-Rui; Yang, Chang-Hao; Qian, Lin-Lu; Li, Ke; Li, Bao-Long; Wu, Bing

    2018-05-01

    A zinc(ii) coordination polymer {[Zn3(mtrb)3(btc)2]·3H2O}n (1) was synthesized and characterized (mtrb = 1,3-bis(1,2,4-triazole-4-ylmethyl)benzene, btc = 1,3,5-benzenetricarboxylate). The polymer 1 shows an unusual (3,4,4)-coordinated self-catenated 3D network with the point symbol of {63}2{62·82·102}{64·82}2. The polymer 1 is the first luminescent sensor for the detection of 2-amino-4-nitrophenol (ANP). The polymer 1 is also a good luminescence sensor for detection of TNP, 2,4-DNP, 4-NP, ANP and 2-NP in MeOH, particularly for TNP. The order of detection efficiency is TNP > 2,4-DNP > 4-NP > ANP > 2-NP. The polymer 1 also exhibits high sensitivity and selectivity as a luminescence sensor for the detection of Fe3+, Cr2O72- and CrO42- in aqueous solution. Our experiments showed that the presence of interfering ions had no significant effect on the sensing of Fe3+, Cr2O72- or CrO42- ions. The detection limits for TNP, ANP, Fe3+, Cr2O72- and CrO42- are 0.22 μM, 4.12 μM, 1.78 μM, 2.83 μM, and 4.52 μM, respectively. The luminescence sensor is stable and can be recycled for detection at least five times. The possible quenching mechanisms are discussed. The polymer 1 is also an effective photocatalyst for degradation of methylene blue (MB) under visible or UV light irradiation.

  7. Synthesis, spectroscopic and thermal studies of transition metal complexes derived from benzil and diethylenetriamine

    NASA Astrophysics Data System (ADS)

    Khan, Sadaf; Nami, Shahab A. A.; Siddiqi, K. S.

    2007-10-01

    A macrocyclic ligand, bdta (where bdta = 3,6,9,12,15,18-hexaaza-1,2,10,11-tetraphenyl-2,9,11,18-tetraenecyclododecane) has been prepared by cyclocondensation of benzil with diethylenetriamine which efficiently encapsulates transition as well as pseudo-transition metal ions leading to the formation of M(bdta)Cl 2 type complexes [where M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)]. The analytical, spectroscopic and magnetic moment data suggests an octahedral geometry for all the complexes. EPR spectra of Mn(II) and Cu(II) show considerable exchange interaction in the complex. They are non-conducting in DMSO. The TGA profile of the ligand and its complexes are identical and consists of two discreet stages. The voltammogram of Cu-complex exhibits a quasi-reversible one-electron transfer wave for Cu(II)/Cu(I) couple.

  8. Synthesis, spectroscopic and thermal studies of transition metal complexes derived from benzil and diethylenetriamine.

    PubMed

    Khan, Sadaf; Nami, Shahab A A; Siddiqi, K S

    2007-10-01

    A macrocyclic ligand, bdta (where bdta=3,6,9,12,15,18-hexaaza-1,2,10,11-tetraphenyl-2,9,11,18-tetraenecyclododecane) has been prepared by cyclocondensation of benzil with diethylenetriamine which efficiently encapsulates transition as well as pseudo-transition metal ions leading to the formation of M(bdta)Cl2 type complexes [where M=Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)]. The analytical, spectroscopic and magnetic moment data suggests an octahedral geometry for all the complexes. EPR spectra of Mn(II) and Cu(II) show considerable exchange interaction in the complex. They are non-conducting in DMSO. The TGA profile of the ligand and its complexes are identical and consists of two discreet stages. The voltammogram of Cu-complex exhibits a quasi-reversible one-electron transfer wave for Cu(II)/Cu(I) couple.

  9. Computational investigations of trans-platinum(II) oxime complexes used as anticancer drug

    NASA Astrophysics Data System (ADS)

    Sayin, Koray; Karakaş, Duran

    2018-01-01

    Some platinum oxime complexes are optimized at HF/CEP-31G level which has been reported as the best level for these type complexes in the gas phase. IR spectrum is calculated and the new scale factor is derived. NMR spectrum is calculated at the same level of theory and examined in detail. Quantum chemical parameters which have been mainly used are investigated and their formulas are given in detail. Additionally, selected quantum chemical parameters of studied complexes are calculated. New theoretical IC50% formulas are derived and biological activity rankings of mentioned complexes are investigated.

  10. Enhanced visible-light-driven photocatalytic activity of mesoporous TiO2-xNx derived from the ethylenediamine-based complex

    NASA Astrophysics Data System (ADS)

    Jiang, Zheng; Kong, Liang; Alenazey, Feraih Sh.; Qian, Yangdong; France, Liam; Xiao, Tiancun; Edwards, Peter P.

    2013-05-01

    A facile solvent evaporation induced self-assembly (SEISA) strategy was developed to synthesize mesoporous N-doped anatase TiO2 (SE-meso-TON) using a single organic complex precursor derived in situ from titanium butoxide and ethylenediamine in ethanol solution. After the evaporation of ethanol in a fume hood and subsequent calcinations at 450 °C, the obtained N-doped TiO2 (meso-TON) anatase was of finite crystallite size, developed porosity, large surface area (101 m2 g-1) and extended light absorption in the visible region. This SE-meso-TON also showed superior photocatalytic activity to the SG-meso-TON anatase prepared via sol-gel synthesis. On the basis of characterization results from XRD, XPS, N2 adsorption-desorption and ESR, the enhanced visible-light-responsive photocatalytic activity of SE-meso-TON was assigned to its developed mesoporosity and reduced oxygen vacancies.

  11. Chemistry and biological activity of platinum amidine complexes.

    PubMed

    Michelin, Rino A; Sgarbossa, Paolo; Sbovata, Silvia Mazzega; Gandin, Valentina; Marzano, Cristina; Bertani, Roberta

    2011-07-04

    Platinum amidine complexes represent a new class of potential antitumor drugs that contain the imino moiety HN=C(sp(2)) bonded to the platinum center. They can be related to the iminoether derivatives, which were recently shown to be the first Pt(II) compounds with a trans configuration endowed with anticancer activity. The chemical and biological properties of platinum amidine complexes, and more generally of platinum imino derivatives, can be rationally modified through suitable synthetic procedures with the aim of improving their cytotoxicity and antitumor activity. The addition of protic nucleophiles to nitriles coordinated to platinum in various oxidation states can offer a wide variety of complexes with chemical, structural, and physical properties specifically tuned for a more efficacious biological response. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Electronic processes in TTF-derived complexes studied by IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Graja, Andrzej

    2001-09-01

    We focus our attention on the plasma-edge-like dispersion of the reflectance spectra of the selected bis(ethylenodithio)tetrathiafulvalene (BEDT-TTF)-derived organic conductors. The standard procedure to determine the electron transport parameters in low-dimensional organic conductors consists of fitting the appropriate theoretical models with the experimental reflectance data. This procedure provides us with basic information like plasma frequency, the optical effective mass of charge carriers, their number, mean free path and damping constant. Therefore, it is concluded that the spectroscopy is a powerful tool to study the electronic processes in conducting organic solids.

  13. Spectrofluorometric Determination of Putrescine: Optimization of the Putrescine-Orthophthaldehyde Complex Using Spectrofluorometry.

    PubMed

    Oyelakin, Oladele; Traoré, Moumouny; Mbye, El Hadji Babacar; Khonté, Abdourahmane; Cisse, Lamine; Faye, Abdoulaye N; Faye, Ousman; Mbaye, Moussa; Kital, Khemesse; Gaye-Seye, Mame Diabou; Coly, Atanasse; Tine, Alphonse; Delattre, François

    2016-11-01

    In alkaline medium, the complex formed between putrescine and orthophthalaldehyde was studied using spectrofluorescence. The derivative is kinetically stable 24 h after complexation. The stoichiometry of the complex is 1:1 at maximum fluorescence intensity, also 24 h after complexation.

  14. Docking studies on a new human immunodeficiency virus integrase-Mg-DNA complex: phenyl ring exploration and synthesis of 1H-benzylindole derivatives through fluorine substitutions.

    PubMed

    Ferro, Stefania; De Luca, Laura; Barreca, Maria Letizia; Iraci, Nunzio; De Grazia, Sara; Christ, Frauke; Witvrouw, Myriam; Debyser, Zeger; Chimirri, Alba

    2009-01-22

    A new model of HIV-1 integrase-Mg-DNA complex that is useful for docking experiments has been built. It was used to study the binding mode of integrase strand transfer inhibitor 1 (CHI-1043) and other fluorine analogues. Molecular modeling results prompted us to synthesize the designed derivatives which showed potent enzymatic inhibition at nanomolar concentration, high antiviral activity, and low toxicity. Microwave assisted organic synthesis (MAOS) was employed in several steps of the synthetic pathway, thus reducing reaction times and improving yields.

  15. Extracting metal ions with diphosphonic acid, or derivative thereof

    DOEpatents

    Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.

    1994-07-26

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulfur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.

  16. Short peptides derived from the interaction domain of SARS coronavirus nonstructural protein nsp10 can suppress the 2'-O-methyltransferase activity of nsp10/nsp16 complex.

    PubMed

    Ke, Min; Chen, Yu; Wu, Andong; Sun, Ying; Su, Ceyang; Wu, Hao; Jin, Xu; Tao, Jiali; Wang, Yi; Ma, Xiao; Pan, Ji-An; Guo, Deyin

    2012-08-01

    Coronaviruses are the etiological agents of respiratory and enteric diseases in humans and livestock, exemplified by the life-threatening severe acute respiratory syndrome (SARS) caused by SARS coronavirus (SARS-CoV). However, effective means for combating coronaviruses are still lacking. The interaction between nonstructural protein (nsp) 10 and nsp16 has been demonstrated and the crystal structure of SARS-CoV nsp16/10 complex has been revealed. As nsp10 acts as an essential trigger to activate the 2'-O-methyltransferase activity of nsp16, short peptides derived from nsp10 may have inhibitory effect on viral 2'-O-methyltransferase activity. In this study, we revealed that the domain of aa 65-107 of nsp10 was sufficient for its interaction with nsp16 and the region of aa 42-120 in nsp10, which is larger than the interaction domain, was needed for stimulating the nsp16 2'-O-methyltransferase activity. We further showed that two short peptides derived from the interaction domain of nsp10 could inhibit the 2'-O-methyltransferase activity of SARS-CoV nsp16/10 complex, thus providing a novel strategy and proof-of-principle study for developing peptide inhibitors against SARS-CoV. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Zirconocene-iridium hydrido complexes: arene carbon-hydrogen bond activation and formation of a planar square Zr2Ir2 complex.

    PubMed

    Oishi, Masataka; Suzuki, Hiroharu

    2009-03-16

    New early-late heterobimetallic hydrides (L(2)ZrCl)(Cp*Ir)(mu-H)(3) (1; L = Cp derivative, Cp* = eta(5)-C(5)Me(5)) were synthesized from zirconocene derivatives (L(2)ZrCl(2)) and LiCp*IrH(3) via a salt elimination reaction and structurally characterized by NMR and X-ray analyses. Upon treatment of 1 with an alkyllithium reagent, hydride abstraction complex 4 underwent thermolytic ligand elimination at the Zr-Ir system to yield a novel planar square complex (L(2)Zr)(2)(Cp*Ir)(2)(mu(3)-H)(4) (2). When a labeling study of the reaction was conducted, it was found that the conversion of 1 to 2 involves rapid aromatic and benzylic C-H activation by a coordinatively unsaturated dinuclear complex (L(2)Zr)(Cp*Ir)(H)(2) (3).

  18. Metal based biologically active compounds: design, synthesis, and antibacterial/antifungal/cytotoxic properties of triazole-derived Schiff bases and their oxovanadium(IV) complexes.

    PubMed

    Chohan, Zahid H; Sumrra, Sajjad H; Youssoufi, Moulay H; Hadda, Taibi B

    2010-07-01

    A new series of oxovanadium(IV) complexes have been designed and synthesized with a new class of triazole Schiff bases derived from the reaction of 3,5-diamino-1,2,4-triazole with 2-hydroxy-1-naphthaldehyde, pyrrole-2-carboxaldehyde, pyridine-2-carboxaldehyde and acetyl pyridine-2-carboxaldehyde, respectively. Physical (magnetic susceptibility, molar conductance), spectral (IR, (1)H NMR, (13)C NMR, mass and electronic) and analytical data have established the structures of these synthesized Schiff bases and their oxovanadium(IV) complexes. The Schiff bases, predominantly act as bidentate and coordinate with the vanadium(IV) metal to give a stoichiometric ratio of 1:2 [M:L], forming a general formulae, [M(L-H)(2)] and [M(L)(2)]SO(4) where L = (L(1))-(L(4)) and M = VO(IV) of these complexes in a square-pyramidal geometry. In order to evaluate the biological activity of Schiff bases and to assess the role of vanadium(IV) metal on biological activity, the triazole Schiff bases and their oxovanadium(IV) complexes have been studied for in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexenari, Pseudomonas aeruginosa, Salmonella typhi) and two Gram-positive (Staphylococcus aureus, Bacillus subtilis) bacterial strains, in vitro antifungal activity against Trichophyton longifucus, Candida albican, Aspergillus flavus, Microscopum canis, Fusarium solani and Candida glaberata. The simple Schiff bases showed weaker to significant activity against one or more bacterial and fungal strains. In most of the cases higher activity was exhibited upon coordination with vanadium(IV) metal. Brine shrimp bioassay was also carried out for in vitro cytotoxic properties against Artemia salina. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  19. Complexity Variability Assessment of Nonlinear Time-Varying Cardiovascular Control

    NASA Astrophysics Data System (ADS)

    Valenza, Gaetano; Citi, Luca; Garcia, Ronald G.; Taylor, Jessica Noggle; Toschi, Nicola; Barbieri, Riccardo

    2017-02-01

    The application of complex systems theory to physiology and medicine has provided meaningful information about the nonlinear aspects underlying the dynamics of a wide range of biological processes and their disease-related aberrations. However, no studies have investigated whether meaningful information can be extracted by quantifying second-order moments of time-varying cardiovascular complexity. To this extent, we introduce a novel mathematical framework termed complexity variability, in which the variance of instantaneous Lyapunov spectra estimated over time serves as a reference quantifier. We apply the proposed methodology to four exemplary studies involving disorders which stem from cardiology, neurology and psychiatry: Congestive Heart Failure (CHF), Major Depression Disorder (MDD), Parkinson’s Disease (PD), and Post-Traumatic Stress Disorder (PTSD) patients with insomnia under a yoga training regime. We show that complexity assessments derived from simple time-averaging are not able to discern pathology-related changes in autonomic control, and we demonstrate that between-group differences in measures of complexity variability are consistent across pathologies. Pathological states such as CHF, MDD, and PD are associated with an increased complexity variability when compared to healthy controls, whereas wellbeing derived from yoga in PTSD is associated with lower time-variance of complexity.

  20. Inhibition of Mycobacterium tuberculosis Methionine Aminopeptidases by Bengamide Derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Jing-Ping; Yuan, Xiu-Hua; Yuan, Hai

    Methionine aminopeptidase (MetAP) carries out an essential function of protein N-terminal processing in many bacteria and is a promising target for the development of novel antitubercular agents. Natural bengamides potently inhibit the proliferation of mammalian cells by targeting MetAP enzymes, and the X-ray crystal structure of human type 2 MetAP in complex with a bengamide derivative reveals the key interactions at the active site. By preserving the interactions with the conserved residues inside the binding pocket while exploring the differences between bacterial and human MetAPs around the binding pocket, seven bengamide derivatives were synthesized and evaluated for inhibition of MtMetAP1amore » and MtMetAP1c in different metalloforms, inhibition of M. tuberculosis growth in replicating and non-replicating states, and inhibition of human K562 cell growth. Potent inhibition of MtMetAP1a and MtMetAP1c and modest growth inhibition of M. tuberculosis were observed for some of these derivatives. Crystal structures of MtMetAP1c in complex with two of the derivatives provided valuable structural information for improvement of these inhibitors for potency and selectivity.« less

  1. Lanthanide-cyclodextrin complexes as probes for elucidating optical purity by NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenzel, T.J.; Bogyo, M.S.; Lebeau, E.L.

    1994-06-01

    A multidentate ligand is bonded to cyclodextrins by the reaction of diethylenetriaminepentaacetic dianhydride with 6-mono- and 2-mono(ethylenediamine) derivatives of cyclodextrin. Adding Dy(III) to the cyclodextrin derivatives enhances the enantiomeric resolution in the [sup 1]H NMR spectra of carbionoxamine maleate, doxylamine succinate, pheniramine maleate, propranolol hydrochloride, and tryptophan. The enhancement is more pronounced with the secondary derivative. The Dy(III)-induced shifts can be used to elucidate the geometry of cyclodextrin-substrate inclusion complexes. Lanthanide-induced shifts are reported for complexes of aspartame, tryptophan, propranolol, and 1-anilino-8-naphthalenesulfonate with cyclodextrins, and the relative magnitudes of the shifts agree with previously reported structures of the complexes. 37more » refs., 9 figs., 5 tabs.« less

  2. Attempt to generalize fractional-order electric elements to complex-order ones

    NASA Astrophysics Data System (ADS)

    Si, Gangquan; Diao, Lijie; Zhu, Jianwei; Lei, Yuhang; Zhang, Yanbin

    2017-06-01

    The complex derivative {D}α +/- {{j}β }, with α, β \\in R+ is a generalization of the concept of integer derivative, where α=1, β=0. Fractional-order electric elements and circuits are becoming more and more attractive. In this paper, the complex-order electric elements concept is proposed for the first time, and the complex-order elements are modeled and analyzed. Some interesting phenomena are found that the real part of the order affects the phase of output signal, and the imaginary part affects the amplitude for both the complex-order capacitor and complex-order memristor. More interesting is that the complex-order capacitor can do well at the time of fitting electrochemistry impedance spectra. The complex-order memristor is also analyzed. The area inside the hysteresis loops increases with the increasing of the imaginary part of the order and decreases with the increasing of the real part. Some complex case of complex-order memristors hysteresis loops are analyzed at last, whose loop has touching points beyond the origin of the coordinate system.

  3. A novel copper complex supported on magnetic reduced graphene oxide: an efficient and green nanocatalyst for the synthesis of 1-amidoalkyl-2-naphthol derivatives

    NASA Astrophysics Data System (ADS)

    Kooti, M.; Karimi, M.; Nasiri, E.

    2018-02-01

    A new Cu(II) complex supported on magnetic reduced graphene oxide was prepared and characterized by various techniques, such as FT-IR, XRD, SEM, EDX, TEM, TGA, BET, ICP, and VSM. The synthesized nanocomposite, which has size distribution of 25-30 nm, was employed as catalyst in one-pot synthesis of 1-amidoalkyl-2-naphthols via three-component condensation reaction of amides, aromatic aldehydes, and 2-naphthol, under solvent-free conditions. The introduced catalysis procedure for the synthesis of 1-amidoalkyl-2-naphthol derivatives offers several advantages namely, short reaction times, high yields, facile recyclability, and cost effectiveness. [Figure not available: see fulltext.

  4. Cationic Zn-Porphyrin Polymer Coated onto CNTs as a Cooperative Catalyst for the Synthesis of Cyclic Carbonates.

    PubMed

    Jayakumar, Sanjeevi; Li, He; Chen, Jian; Yang, Qihua

    2018-01-24

    The development of solid catalysts containing multiple active sites that work cooperatively is very attractive for biomimetic catalysis. Herein, we report the synthesis of bifunctional catalysts by supporting cationic porphyrin-based polymers on carbon nanotubes (CNTs) using the direct reaction of 5,10,15,20-tetrakis(4-pyridyl)porphyrin zinc(II), di(1H-imidazol-1-yl)methane, and 1,4-bis(bromomethyl)benzene in the presence of CNTs. The bifunctional catalysts could efficiently catalyze the cycloaddition reaction of epoxides and CO 2 under solvent-free conditions with porphyrin zinc(II) as the Lewis acid site and a bromine anion as a nucleophilic agent working in a cooperative way. Furthermore, a relative amount of porphyrin zinc(II) and quaternary ammonium bromide could be facilely adjusted for facilitating cooperative behavior. The bifunctional catalyst with a TOF up to 2602 h -1 is much more active than the corresponding homogeneous counterpart and is one of the most active heterogeneous catalysts ever reported under cocatalyst-free conditions. The high activity is mainly attributed to the enhanced cooperation effect of the bifunctional catalyst. With a wide substrate scope, the bifunctional catalyst could be stably recycled. This work demonstrates a new approach for the generation of a cooperative activation effect for solid catalysts.

  5. A bis(3-hydroxy-4-pyridinone)-EDTA derivative as a strong chelator for M3+ hard metal ions: complexation ability and selectivity.

    PubMed

    Gama, Sofia; Dron, Paul; Chaves, Silvia; Farkas, Etelka; Santos, M Amélia

    2009-08-21

    The study of chelating compounds is very important to solve problems related to human metal overload. 3-Hydroxy-3-pyridinones (HP), namely deferiprone, have been clinically used for chelating therapy of Fe and Al over the last decade. A multi-disciplinary search for alternative molecules led us to develop poly-(3-hydroxy-4-pyridinones) to increase metal chelation efficacy. We present herein a complexation study of a new bis-(3-hydroxy-4-pyridinone)-EDTA derivative with a set of M(3+) hard metal ions (M = Fe, Al, Ga), as well as Zn(2+), a biologically relevant metal ion. Thus a systematic aqueous solution equilibrium study was performed using potentiometric and spectroscopic techniques (UV-Vis, NMR methods). These set of results enables the establishment of specific models as well as the determination of thermodynamic stability constants and coordination modes of the metal complexes. The results indicate that this ligand has a higher affinity for chelating to these hard metal ions than deferiprone, and that the coordination occurs mostly through the HP moieties. Furthermore, it was also found that this ligand has a higher selectivity for chelating to M(3+) hard metal ions (M = Fe, Al, Ga) than Zn(2+).

  6. CF3 Derivatives of the Anticancer Ru(III) Complexes KP1019, NKP-1339, and Their Imidazole and Pyridine Analogues Show Enhanced Lipophilicity, Albumin Interactions, and Cytotoxicity.

    PubMed

    Chang, Stephanie W; Lewis, Andrew R; Prosser, Kathleen E; Thompson, John R; Gladkikh, Margarita; Bally, Marcel B; Warren, Jeffrey J; Walsby, Charles J

    2016-05-16

    The Ru(III) complexes indazolium [trans-RuCl4(1H-indazole)2] (KP1019) and sodium [trans-RuCl4(1H-indazole)2] (NKP-1339) are leading candidates for the next generation of metal-based chemotherapeutics. Trifluoromethyl derivatives of these compounds and their imidazole and pyridine analogues were synthesized to probe the effect of ligand lipophilicity on the pharmacological properties of these types of complexes. Addition of CF3 groups also provided a spectroscopic handle for (19)F NMR studies of ligand exchange processes and protein interactions. The lipophilicities of the CF3-functionalized compounds and their unsubstituted parent complexes were quantified by the shake-flask method to give the distribution coefficient D at pH 7.4 (log D7.4). The solution behavior of the CF3-functionalized complexes was characterized in phosphate-buffered saline (PBS) using (19)F NMR, electron paramagnetic resonance (EPR), and UV-vis spectroscopies. These techniques, along with fluorescence competition experiments, were also used to characterize interactions with human serum albumin (HSA). From these studies it was determined that increased lipophilicity correlates with reduced solubility in PBS but enhancement of noncoordinate interactions with hydrophobic domains of HSA. These protein interactions improve the solubility of the complexes and inhibit the formation of oligomeric species. EPR measurements also demonstrated the formation of HSA-coordinated species with longer incubation. (19)F NMR spectra show that the trifluoromethyl complexes release axial ligands in PBS and in the presence of HSA. In vitro testing showed that the most lipophilic complexes had the greatest cytotoxic activity. Addition of CF3 groups enhances the activity of the indazole complex against A549 nonsmall cell lung carcinoma cells. Furthermore, in the case of the pyridine complexes, the parent compound was inactive against the HT-29 human colon carcinoma cell line but showed strong cytotoxicity with CF3

  7. BFV-Complex and Higher Homotopy Structures

    NASA Astrophysics Data System (ADS)

    Schätz, Florian

    2009-03-01

    We present a connection between the BFV-complex (abbreviation for Batalin-Fradkin-Vilkovisky complex) and the strong homotopy Lie algebroid associated to a coisotropic submanifold of a Poisson manifold. We prove that the latter structure can be derived from the BFV-complex by means of homotopy transfer along contractions. Consequently the BFV-complex and the strong homotopy Lie algebroid structure are L ∞ quasi-isomorphic and control the same formal deformation problem. However there is a gap between the non-formal information encoded in the BFV-complex and in the strong homotopy Lie algebroid respectively. We prove that there is a one-to-one correspondence between coisotropic submanifolds given by graphs of sections and equivalence classes of normalized Maurer-Cartan elemens of the BFV-complex. This does not hold if one uses the strong homotopy Lie algebroid instead.

  8. An Additive Definition of Molecular Complexity.

    PubMed

    Böttcher, Thomas

    2016-03-28

    A framework for molecular complexity is established that is based on information theory and consistent with chemical knowledge. The resulting complexity index Cm is derived from abstracting the information content of a molecule by the degrees of freedom in the microenvironments on a per-atom basis, allowing the molecular complexity to be calculated in a simple and additive way. This index allows the complexity of any molecule to be universally assessed and is sensitive to stereochemistry, heteroatoms, and symmetry. The performance of this complexity index is evaluated and compared against the current state of the art. Its additive character gives consistent values also for very large molecules and supports direct comparisons of chemical reactions. Finally, this approach may provide a useful tool for medicinal chemistry in drug design and lead selection, as demonstrated by correlating molecular complexities of antibiotics with compound-specific parameters.

  9. Orthotopic Patient-Derived Glioblastoma Xenografts in Mice.

    PubMed

    Xu, Zhongye; Kader, Michael; Sen, Rajeev; Placantonakis, Dimitris G

    2018-01-01

    Patient-derived xenografts (PDX) provide in vivo glioblastoma (GBM) models that recapitulate actual tumors. Orthotopic tumor xenografts within the mouse brain are obtained by injection of GBM stem-like cells derived from fresh surgical specimens. These xenografts reproduce GBM's histologic complexity and hallmark biological behaviors, such as brain invasion, angiogenesis, and resistance to therapy. This method has become essential for analyzing mechanisms of tumorigenesis and testing the therapeutic effect of candidate agents in the preclinical setting. Here, we describe a protocol for establishing orthotopic tumor xenografts in the mouse brain with human GBM cells.

  10. Establishing and Maintaining an Extensive Library of Patient-Derived Xenograft Models.

    PubMed

    Mattar, Marissa; McCarthy, Craig R; Kulick, Amanda R; Qeriqi, Besnik; Guzman, Sean; de Stanchina, Elisa

    2018-01-01

    Patient-derived xenograft (PDX) models have recently emerged as a highly desirable platform in oncology and are expected to substantially broaden the way in vivo studies are designed and executed and to reshape drug discovery programs. However, acquisition of patient-derived samples, and propagation, annotation and distribution of PDXs are complex processes that require a high degree of coordination among clinic, surgery and laboratory personnel, and are fraught with challenges that are administrative, procedural and technical. Here, we examine in detail the major aspects of this complex process and relate our experience in establishing a PDX Core Laboratory within a large academic institution.

  11. Persimmon-derived tannin has bacteriostatic and anti-inflammatory activity in a murine model of Mycobacterium avium complex (MAC) disease.

    PubMed

    Matsumura, Yoko; Kitabatake, Masahiro; Ouji-Sageshima, Noriko; Yasui, Satsuki; Mochida, Naoko; Nakano, Ryuichi; Kasahara, Kei; Tomoda, Koichi; Yano, Hisakazu; Kayano, Shin-Ichi; Ito, Toshihiro

    2017-01-01

    Nontuberculous mycobacteria (NTM), including Mycobacterium avium complex (MAC), cause opportunistic chronic pulmonary infections. Notably, MAC susceptibility is regulated by various factors, including the host immune system. Persimmon (Ebenaceae Diospyros kaki Thunb.) tannin is a condensed tannin composed of a polymer of catechin groups. It is well known that condensed tannins have high antioxidant activity and bacteriostatic properties. However, it is hypothesized that condensed tannins might need to be digested and/or fermented into smaller molecules in vivo prior to being absorbed into the body to perform beneficial functions. In this study, we evaluated the effects of soluble persimmon-derived tannins on opportunistic MAC disease. Soluble tannins were hydrolyzed and evaluated by the oxygen radical absorbance capacity (ORAC) method. The ORAC value of soluble tannin hydrolysate was approximately five times greater than that of soluble tannin powder. In addition, soluble tannin hydrolysate exhibited high bacteriostatic activity against MAC in vitro. Furthermore, in an in vivo study, MAC infected mice fed a soluble tannin-containing diet showed significantly higher anti-bacterial activity against MAC and less pulmonary granuloma formation compared with those fed a control diet. Tumor necrosis factor α and inducible nitric oxide synthase levels were significantly lower in lungs of the soluble tannin diet group compared with the control diet group. Moreover, proinflammatory cytokines induced by MAC stimulation of bone marrow-derived macrophages were significantly decreased by addition of soluble tannin hydrolysate. These data suggest that soluble tannin from persimmons might attenuate the pathogenesis of pulmonary NTM infection.

  12. Persimmon-derived tannin has bacteriostatic and anti-inflammatory activity in a murine model of Mycobacterium avium complex (MAC) disease

    PubMed Central

    Matsumura, Yoko; Kitabatake, Masahiro; Ouji-Sageshima, Noriko; Yasui, Satsuki; Mochida, Naoko; Nakano, Ryuichi; Kasahara, Kei; Tomoda, Koichi; Yano, Hisakazu; Kayano, Shin-ichi

    2017-01-01

    Nontuberculous mycobacteria (NTM), including Mycobacterium avium complex (MAC), cause opportunistic chronic pulmonary infections. Notably, MAC susceptibility is regulated by various factors, including the host immune system. Persimmon (Ebenaceae Diospyros kaki Thunb.) tannin is a condensed tannin composed of a polymer of catechin groups. It is well known that condensed tannins have high antioxidant activity and bacteriostatic properties. However, it is hypothesized that condensed tannins might need to be digested and/or fermented into smaller molecules in vivo prior to being absorbed into the body to perform beneficial functions. In this study, we evaluated the effects of soluble persimmon-derived tannins on opportunistic MAC disease. Soluble tannins were hydrolyzed and evaluated by the oxygen radical absorbance capacity (ORAC) method. The ORAC value of soluble tannin hydrolysate was approximately five times greater than that of soluble tannin powder. In addition, soluble tannin hydrolysate exhibited high bacteriostatic activity against MAC in vitro. Furthermore, in an in vivo study, MAC infected mice fed a soluble tannin-containing diet showed significantly higher anti-bacterial activity against MAC and less pulmonary granuloma formation compared with those fed a control diet. Tumor necrosis factor α and inducible nitric oxide synthase levels were significantly lower in lungs of the soluble tannin diet group compared with the control diet group. Moreover, proinflammatory cytokines induced by MAC stimulation of bone marrow-derived macrophages were significantly decreased by addition of soluble tannin hydrolysate. These data suggest that soluble tannin from persimmons might attenuate the pathogenesis of pulmonary NTM infection. PMID:28827842

  13. Chemically Reversible Reactions of Hydrogen Sulfide with Metal Phthalocyanines

    PubMed Central

    2015-01-01

    Hydrogen sulfide (H2S) is an important signaling molecule that exerts action on various bioinorganic targets. Despite this importance, few studies have investigated the differential reactivity of the physiologically relevant H2S and HS– protonation states with metal complexes. Here we report the distinct reactivity of H2S and HS– with zinc(II) and cobalt(II) phthalocyanine (Pc) complexes and highlight the chemical reversibility and cyclability of each metal. ZnPc reacts with HS–, but not H2S, to generate [ZnPc-SH]−, which can be converted back to ZnPc by protonation. CoPc reacts with HS–, but not H2S, to form [CoIPc]−, which can be reoxidized to CoPc by air. Taken together, these results demonstrate the chemically reversible reaction of HS– with metal phthalocyanine complexes and highlight the importance of H2S protonation state in understanding the reactivity profile of H2S with biologically relevant metal scaffolds. PMID:24785654

  14. DNA-Binding Interaction Studies of Microwave Assisted Synthesized Sulfonamide Substituted 8-Hydroxyquinoline Derivatives.

    PubMed

    Dixit, Ritu B; Patel, Tarosh S; Vanparia, Satish F; Kunjadiya, Anju P; Keharia, Harish R; Dixit, Bharat C

    2011-01-01

    Sulfonamide substituted 8-hydroxyquinoline derivatives were prepared using a microwave synthesizer. The interaction of sulfonamide substituted 8-hydroxyquinoline derivatives and their transition metal complexes with Plasmid (pUC 19) DNA and Calf Thymus DNA were investigated by UV spectroscopic studies and gel electrophoresis measurements. The interaction between ligand/metal complexes and DNA was carried out by increasing the concentration of DNA from 0 to 12 μl in UV spectroscopic study, while the concentration of DNA in gel electrophoresis remained constant at 10 μl. These studies supported the fact that, the complex binds to DNA by intercalation via ligand into the base pairs of DNA. The relative binding efficacy of the complexes to DNA was much higher than the binding efficacy of ligands, especially the complex of Cu-AHQMBSH had the highest binding ability to DNA. The mobility of the bands decreased as the concentration of the complex was increased, indicating that there was increase in the interaction between the metal ion and DNA. Complexes of AHQMBSH were excellent for DNA binding as compared to HQMABS.

  15. Hilbert complexes of nonlinear elasticity

    NASA Astrophysics Data System (ADS)

    Angoshtari, Arzhang; Yavari, Arash

    2016-12-01

    We introduce some Hilbert complexes involving second-order tensors on flat compact manifolds with boundary that describe the kinematics and the kinetics of motion in nonlinear elasticity. We then use the general framework of Hilbert complexes to write Hodge-type and Helmholtz-type orthogonal decompositions for second-order tensors. As some applications of these decompositions in nonlinear elasticity, we study the strain compatibility equations of linear and nonlinear elasticity in the presence of Dirichlet boundary conditions and the existence of stress functions on non-contractible bodies. As an application of these Hilbert complexes in computational mechanics, we briefly discuss the derivation of a new class of mixed finite element methods for nonlinear elasticity.

  16. Ferrocene Derivatives Included in a Water-Soluble Cavitand: Are They Electroinactive?

    PubMed Central

    Podkoscielny, Dagmara; Hooley, Richard J.; Rebek, Julius; Kaifer, Angel E.

    2009-01-01

    The formation in aqueous solution of kinetically stable inclusion complexes between a deep-cavity cavitand and several redox active ferrocene derivatives was demonstrated using 1H NMR spectroscopy. The electrochemical kinetics of the inclusion complexes was strongly attenuated as compared to that observed with the free guests. PMID:18537255

  17. Pharmacological Role of Anions (Sulphate, Nitrate, Oxalate and Acetate) on the Antibacterial Activity of Cobalt(II), Copper(II) and Nickel(II) Complexes With Nicotinoylhydrazine-Derived ONO, NNO and SNO Ligands

    PubMed Central

    Rauf, Abdur

    1996-01-01

    Mixed ligands biologically active complexes of cobalt(II), copper(II) and nickel(II) with nicotinoylhydrazine-derived ONO, NNO and SNO donor schiff-base ligands having the same metal ion but different anions such as sulphate, nitrate, oxalate and acetate have been synthesised and characterised on the basis of their physical, analytical and spectral data. In order to evaluate the role of anions on their bioability, these ligands and their synthesised metal complexes with various anions have been screened against bacterial species such as Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus and the title studies have proved a definative role of anions in increasing the biological activity PMID:18472896

  18. Perspectives of ruthenium(ii) polyazaaromatic photo-oxidizing complexes photoreactive towards tryptophan-containing peptides and derivatives.

    PubMed

    Estalayo-Adrián, S; Garnir, K; Moucheron, C

    2018-01-04

    Ru II polyazaaromatic complexes have been studied with the aim of developing molecular tools for DNA and oligonucleotides. In this context, Ru II -TAP (TAP = 1,4,5,8-tetraazaphenanthrene) complexes have been developed as specific photoreagents targeting the genetic material. The advantage of such compounds is due to the formation of photo-addition products between the Ru-TAP complex and the biomolecule, originating from a photo-induced electron transfer process that takes place between the excited Ru-TAP complex and guanine (G) bases of DNA. This photo-addition has been more recently extended to amino acids in view of applications involving peptides, such as inhibition or photocontrol of proteins. More particularly, tryptophan (Trp) and Trp-containing peptides are also able to be photo-oxidized by Ru II -TAP complexes, leading to the formation of photo-addition products. This mini review focuses on recent advances in the search for Ru II polyazaaromatic photo-oxidizing complexes of interest as molecular tools and photoreagents for Trp-containing peptides and proteins. Different possible future directions in this field are also discussed.

  19. Homochiral coordination polymers constructed from aminocarboxylate derivates: Effect of bipyridine on the amidation reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Jianshan; Sheng Tianlu; Hu Shengmin

    2012-08-15

    Using aminocarboxylate derivates (S)-N-(4-cyanobenzoic)-glutamic acid (denoted as cbg, 1a) and (S)-N-(4-nitrobenzoic)-glutamic acid (denoted as nbg, 1b) as chiral ligands, five new homochiral coordination polymers formulated as [Cu(cbg)(H{sub 2}O){sub 2}]{sub n} (3), [Cu(cbop){sub 2}(4,4 Prime -bipy)(H{sub 2}O)]{sub n} (4) (cbop=(S)-N-(4-cyanobenzoic)-5-oxoproline, 4,4 Prime -bipy=4,4 Prime -bipyridine), {l_brace}[Cu(nbop){sub 2}(4,4 Prime -bipy)]{center_dot}4H{sub 2}O{r_brace}{sub n} (5) (nbop=(S)-N-(4-nitrobenzoic)-5-oxoproline), {l_brace}[Cd(nbop){sub 2}(4,4 Prime -bipy)]{center_dot}2H{sub 2}O{r_brace}{sub n} (6), and [Ni(nbop){sub 2}(4,4 Prime -bipy)(H{sub 2}O){sub 2}]{sub n} (7) have been hydrothermally synthesized and structurally characterized. Single-crystal X-ray diffraction study reveals that the original chirality of aminocarboxylate derivates is maintained in all these complexes. Complexes 3, 4, and 7 are one-dimensionalmore » infinite chain coordination polymers, while complexes 5 and 6 possess two-dimensional network structures. In situ cyclization of 1a and 1b was taken place in the formation of complexes 4-7, which may be due to the competition of 4,4 Prime -bipyridine with chiral ligands during the coordination process. Preliminary optical behavior investigation indicates that ligands 1a, 1b, and complexes 6, 7 are nonlinear optical active. - Graphical abstract: Using aminocarboxylate derivates as chiral ligands, five new homochiral coordination polymers possessing second harmonic generation activities have been hydrothermally synthesized. Highlights: Black-Right-Pointing-Pointer Two new chiral aminocarboxylate derivates were firstly synthesized. Black-Right-Pointing-Pointer Five new homochiral metal organic complexes were obtained hydrothermally based on these ligands. Black-Right-Pointing-Pointer Intramolecular amidation was taken place on the aminocarboxylate derivates during the formation of these complexes. Black-Right-Pointing-Pointer In

  20. Ylide Ligands as Building Blocks for Bioactive Group 11 Metal Complexes.

    PubMed

    Gimeno, M Concepción; Johnson, Alice; Marzo, Isabel

    2018-05-22

    The reactivity of the phosphonium salt, (cyanomethyl)triphenylphosphonium chloride, and the ylide, triphenylphosphoniumcyanomethylide, towards group eleven metal complexes is described. Mononuclear neutral gold(I) and gold(III) complexes of the type [AuX{CH(CN)PPh3}] or [AuX3{CH(CN)PPh3}], and cationic derivatives such as [AuL{CH(CN)PPh3}]X have been prepared. Surprisingly the cationic gold species could only be prepared with ligands with a large steric hindrance such as bulky NHCs or the JohnPhos phosphine, in contrast with silver and copper derivatives which have dimeric structures with coordination to the cyano group of the ylide. Bis(ylide)metal complexes have been synthesised in which a different structure is observed for gold compared to copper and silver. While gold shows mononuclear species, the silver complex presents a bidimensional polymeric structure as a result of further coordination of the silver centre to the nitrogen of the cyano group. These complexes possess two chiral centres and the gold compound is obtained as a mixture of diastereoisomers, whereas the copper and silver derivatives afford only one diastereroisomer. These compounds were screened for the in vitro cytotoxic activity against the human lung carcinoma cell line (A549). The IC50 values reveal an excellent cytotoxic activity for these metal complexes compared with cisplatin. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis, spectral and third-order nonlinear optical properties of terpyridine Zn(II) complexes based on carbazole derivative with polyether group

    NASA Astrophysics Data System (ADS)

    Kong, Ming; Liu, Yanqiu; Wang, Hui; Luo, Junshan; Li, Dandan; Zhang, Shengyi; Li, Shengli; Wu, Jieying; Tian, Yupeng

    2015-01-01

    Four novel Zn(II) terpyridine complexes (ZnLCl2, ZnLBr2, ZnLI2, ZnL(SCN)2) based on carbazole derivative group were designed, synthesized and fully characterized. Their photophysical properties including absorption and one-photon excited fluorescence, two-photon absorption (TPA) and optical power limiting (OPL) were further investigated systematically and interpreted on the basis of theoretical calculations (TD-DFT). The influences of different solvents on the absorption and One-Photon Excited Fluorescence (OPEF) spectral behavior, quantum yields and the lifetime of the chromophores have been investigated in detail. The third-order nonlinear optical (NLO) properties were investigated by open/closed aperture Z-scan measurements using femtosecond pulse laser in the range from 680 to 1080 nm. These results revealed that ZnLCl2 and ZnLBr2 exhibited strong two-photon absorption and ZnLCl2 showed superior optical power limiting property.

  2. Silver Complexes of Dihalogen Molecules.

    PubMed

    Malinowski, Przemysław J; Himmel, Daniel; Krossing, Ingo

    2016-08-01

    The perfluorohexane-soluble and donor-free silver compound Ag(A) (A=Al(OR(F) )4 ; R(F) =C(CF3 )3 ) prepared using a facile novel route has unprecedented capabilities to form unusual and weakly bound complexes. Here, we report on the three dihalogen-silver complexes Ag(Cl2 )A, Ag(Br2 )A, and Ag(I2 )A derived from the soluble silver compound Ag(A) (characterized by single-crystal/powder XRD, Raman spectra, and quantum-mechanical calculations). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Complex Systems

    PubMed Central

    Goldberger, Ary L.

    2006-01-01

    Physiologic systems in health and disease display an extraordinary range of temporal behaviors and structural patterns that defy understanding based on linear constructs, reductionist strategies, and classical homeostasis. Application of concepts and computational tools derived from the contemporary study of complex systems, including nonlinear dynamics, fractals and “chaos theory,” is having an increasing impact on biology and medicine. This presentation provides a brief overview of an emerging area of biomedical research, including recent applications to cardiopulmonary medicine and chronic obstructive lung disease. PMID:16921107

  4. Genetic strategies to investigate neuronal circuit properties using stem cell-derived neurons

    PubMed Central

    Garcia, Isabella; Kim, Cynthia; Arenkiel, Benjamin R.

    2012-01-01

    The mammalian brain is anatomically and functionally complex, and prone to diverse forms of injury and neuropathology. Scientists have long strived to develop cell replacement therapies to repair damaged and diseased nervous tissue. However, this goal has remained unrealized for various reasons, including nascent knowledge of neuronal development, the inability to track and manipulate transplanted cells within complex neuronal networks, and host graft rejection. Recent advances in embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) technology, alongside novel genetic strategies to mark and manipulate stem cell-derived neurons, now provide unprecedented opportunities to investigate complex neuronal circuits in both healthy and diseased brains. Here, we review current technologies aimed at generating and manipulating neurons derived from ESCs and iPSCs toward investigation and manipulation of complex neuronal circuits, ultimately leading to the design and development of novel cell-based therapeutic approaches. PMID:23264761

  5. Petrogenesis and tectonics of the Acasta Gneiss Complex derived from integrated petrology and 142Nd and 182W extinct nuclide-geochemistry

    NASA Astrophysics Data System (ADS)

    Reimink, Jesse R.; Chacko, Thomas; Carlson, Richard W.; Shirey, Steven B.; Liu, Jingao; Stern, Richard A.; Bauer, Ann M.; Pearson, D. Graham; Heaman, Larry M.

    2018-07-01

    The timing and mechanisms of continental crust formation represent major outstanding questions in the Earth sciences. Extinct-nuclide radioactive systems offer the potential to evaluate the temporal relations of a variety of differentiation processes on the early Earth, including crust formation. Here, we investigate the whole-rock 182W/184W and 142Nd/144Nd ratios and zircon Δ17O values of a suite of well-studied and lithologically-homogeneous meta-igneous rocks from the Acasta Gneiss Complex, Northwest Territories, Canada, including the oldest-known zircon-bearing rocks on Earth. In the context of previously published geochemical data and petrogenetic models, the new 142Nd/144Nd data indicate that formation of the Hadean-Eoarchean Acasta crust was ultimately derived from variable sources, both in age and composition. Although 4.02 Ga crust was extracted from a nearly bulk-Earth source, heterogeneous μ142Nd signatures indicate that Eoarchean rocks of the Acasta Gneiss Complex were formed by partial melting of hydrated, Hadean-age mafic crust at depths shallower than the garnet stability field. By ∼3.6 Ga, granodioritic-granitic rocks were formed by partial melting of Archean hydrated mafic crust that was melted at greater depth, well into the garnet stability field. Our 182W results indicate that the sources to the Acasta Gneiss Complex had homogeneous, high-μ182W on the order of +10 ppm-a signature ubiquitous in other Eoarchean terranes. No significant deviation from the terrestrial mass fractionation line was found in the triple oxygen isotope (16O-17O-18O) compositions of Acasta zircons, confirming homogeneous oxygen isotope compositions in Earth's mantle by 4.02 Ga.

  6. Anticancer activity and tissue distribution of platinum (II) complex with lignin-derived polymer of benzene-poly-carboxylic acids.

    PubMed

    Solovyev, Nikolay D; Fedoros, Elena I; Drobyshev, Evgenii J; Ivanenko, Natalya B; Pigarev, Sergey E; Tyndyk, Margarita L; Anisimov, Vladimir N; Vilpan, Yury A; Panchenko, Andrey V

    2017-09-01

    Platinum-containing antineoplastic agents with physiologically active ligands seem to be a promising direction in anticancer drug design. PDBA is a novel promising antineoplastic agent, containing polymer ligand of natural origin (international patent WO2013/143549 A1). Polymer ligand of PDBA has a highly functionalised polyphenolic backbone, which exerts its own pharmacological effect via immune modulation and regulation of gene expression. PDBA is a cis-diammineplatinum(II) complex, containing mono-deprotonated benzene-poly-carboxylic acids, derived from lignin, and hydroxyl group as O-donor ligands (approximate bulk formula C 83 H 70 N 2 O 27 Pt). The agent is being evaluated in Phase II controlled clinical trials in metastatic breast cancer patients. In the present study, tissue distribution and tumour growth inhibition effects of PDBA, cisplatin and carboplatin were compared in SHR female mice, bearing inoculated solid Ehrlich carcinoma. The agents were administered subcutaneously every second day for the period of 10days (5 injections) at 62.5mg/kg, 3.0mg/kg and 18.5mg/kg for PDBA, cisplatin and carboplatin, respectively. Experimental animals were sacrificed on the Days 11, 16 and 23 after the inoculation of the tumour. The doses of all studied drugs were selected to obtain similar antitumour efficacy with ca. 50% growth inhibition of the Ehrlich tumour at the end of the study. The efficacy of a single platinum reactive moiety [cis-diammineplatinum(II)] was shown to be the highest for cisplatin, followed by PDBA and finally carboplatin. However, the toxicity of PDBA was considerably lower than that of carboplatin and especially cisplatin. The drugs were mainly distributed in lungs, kidneys, liver, spleen and tumour tissue. PDBA showed quite high accumulation in the tumour tissue, possibly, owing to the effect of the lignin-derived ligand. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Weaving and neural complexity in symmetric quantum states

    NASA Astrophysics Data System (ADS)

    Susa, Cristian E.; Girolami, Davide

    2018-04-01

    We study the behaviour of two different measures of the complexity of multipartite correlation patterns, weaving and neural complexity, for symmetric quantum states. Weaving is the weighted sum of genuine multipartite correlations of any order, where the weights are proportional to the correlation order. The neural complexity, originally introduced to characterize correlation patterns in classical neural networks, is here extended to the quantum scenario. We derive closed formulas of the two quantities for GHZ states mixed with white noise.

  8. Complex systems in metabolic engineering.

    PubMed

    Winkler, James D; Erickson, Keesha; Choudhury, Alaksh; Halweg-Edwards, Andrea L; Gill, Ryan T

    2015-12-01

    Metabolic engineers manipulate intricate biological networks to build efficient biological machines. The inherent complexity of this task, derived from the extensive and often unknown interconnectivity between and within these networks, often prevents researchers from achieving desired performance. Other fields have developed methods to tackle the issue of complexity for their unique subset of engineering problems, but to date, there has not been extensive and comprehensive examination of how metabolic engineers use existing tools to ameliorate this effect on their own research projects. In this review, we examine how complexity affects engineering at the protein, pathway, and genome levels within an organism, and the tools for handling these issues to achieve high-performing strain designs. Quantitative complexity metrics and their applications to metabolic engineering versus traditional engineering fields are also discussed. We conclude by predicting how metabolic engineering practices may advance in light of an explicit consideration of design complexity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Study of the convergence behavior of the complex kernel least mean square algorithm.

    PubMed

    Paul, Thomas K; Ogunfunmi, Tokunbo

    2013-09-01

    The complex kernel least mean square (CKLMS) algorithm is recently derived and allows for online kernel adaptive learning for complex data. Kernel adaptive methods can be used in finding solutions for neural network and machine learning applications. The derivation of CKLMS involved the development of a modified Wirtinger calculus for Hilbert spaces to obtain the cost function gradient. We analyze the convergence of the CKLMS with different kernel forms for complex data. The expressions obtained enable us to generate theory-predicted mean-square error curves considering the circularity of the complex input signals and their effect on nonlinear learning. Simulations are used for verifying the analysis results.

  10. A novel complexity-to-diversity strategy for the diversity-oriented synthesis of structurally diverse and complex macrocycles from quinine.

    PubMed

    Ciardiello, J J; Stewart, H L; Sore, H F; Galloway, W R J D; Spring, D R

    2017-06-01

    Recent years have witnessed a global decline in the productivity and advancement of the pharmaceutical industry. A major contributing factor to this is the downturn in drug discovery successes. This can be attributed to the lack of structural (particularly scaffold) diversity and structural complexity exhibited by current small molecule screening collections. Macrocycles have been shown to exhibit a diverse range of biological properties, with over 100 natural product-derived examples currently marketed as FDA-approved drugs. Despite this, synthetic macrocycles are widely considered to be a poorly explored structural class within drug discovery, which can be attributed to their synthetic intractability. Herein we describe a novel complexity-to-diversity strategy for the diversity-oriented synthesis of novel, structurally complex and diverse macrocyclic scaffolds from natural product starting materials. This approach exploits the inherent structural (including functional) and stereochemical complexity of natural products in order to rapidly generate diversity and complexity. Readily-accessible natural product-derived intermediates serve as structural templates which can be divergently functionalized with different building blocks to generate a diverse range of acyclic precursors. Subsequent macrocyclisation then furnishes compounds that are each based around a distinct molecular scaffold. Thus, high levels of library scaffold diversity can be rapidly achieved. In this proof-of-concept study, the natural product quinine was used as the foundation for library synthesis, and six novel structurally diverse, highly complex and functionalized macrocycles were generated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Thermodynamic Analysis of Nickel(II) and Zinc(II) Adsorption to Biochar.

    PubMed

    Alam, Md Samrat; Gorman-Lewis, Drew; Chen, Ning; Flynn, Shannon L; Ok, Yong Sik; Konhauser, Kurt O; Alessi, Daniel S

    2018-05-21

    While numerous studies have investigated metal uptake from solution by biochar, few of these have developed a mechanistic understanding of the adsorption reactions that occur at the biochar surface. In this study, we explore a combined modeling and spectroscopic approach for the first time to describe the molecular level adsorption of Ni(II) and Zn(II) to five types of biochar. Following thorough characterization, potentiometric titrations were carried out to measure the proton (H + ) reactivity of each biochar, and the data was used to develop protonation models. Surface complexation modeling (SCM) supported by synchrotron-based extended X-ray absorption fine structure (EXAFS) was then used to gain insights into the molecular scale metal-biochar surface reactions. The SCM approach was combined with isothermal titration calorimetry (ITC) data to determine the thermodynamic driving forces of metal adsorption. Our results show that the reactivity of biochar toward Ni(II) and Zn(II) directly relates to the site densities of biochar. EXAFS along with FT-IR analyses, suggest that Ni(II) and Zn(II) adsorption occurred primarily through proton-active carboxyl (-COOH) and hydroxyl (-OH) functional groups on the biochar surface. SCM-ITC analyses revealed that the enthalpies of protonation are exothermic and Ni(II) and Zn(II) complexes with biochar surface are slightly exothermic to slightly endothermic. The results obtained from these combined approaches contribute to the better understanding of molecular scale metal adsorption onto the biochar surface, and will facilitate the further development of thermodynamics-based, predictive approaches to biochar removal of metals from contaminated water.

  12. Synthesis of a Benzodiazepine-derived Rhodium NHC Complex by C-H Bond Activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergman, Roberg G.; Gribble, Jr., Michael W.; Ellman, Jonathan A.

    2008-01-30

    The synthesis and characterization of a Rh(I)-NHC complex generated by C-H activation of 1,4-benzodiazepine heterocycle are reported. This complex constitutes a rare example of a carbene tautomer of a 1,4-benzodiazepine aldimine stabilized by transition metal coordination and demonstrates the ability of the catalytically relevant RhCl(PCy{sub 3}){sub 2} fragment to induce NHC-forming tautomerization of heterocycles possessing a single carbene-stabilizing heteroatom. Implications for the synthesis of benzodiazepines and related pharmacophores via C-H functionalization are discussed.

  13. Re-Os isotopic systematics in chromitites from the Stillwater Complex, Montana, USA

    NASA Astrophysics Data System (ADS)

    Marcantonio, Franco; Zindler, Alan; Reisberg, Laurie; Mathez, E. A.

    1993-08-01

    New Re-Os isotopic data on chromitites of the Stillwater Complex demonstrate isotopic equilibrium between cumulate chromite and whole rock. Initial osmium isotopic ratios for the chromitites, chosen for their freshness, are consistent with derivation from a mantle-derived magma that suffered little or no interaction with the continental crust prior to crystallization. Molybdenite, separated from a sample of the G-chromitite, yields a Re-Os age of 2740 Ma, indistinguishable from the age of the intrusion. The presence of molybdenite documents rhenium, and probably osmium, mobilization by hydrothermal fluids that permeated the intrusion shortly after crystallization. Initial osmium isotopic variability observed in chromitites and other rocks from the Stillwater Complex could result from interaction with these fluids. In this context, there is no compelling reason to call on assimilation of crust by mantle-derived magma to explain the osmium or neodymium isotopic variability. Although osmium isotopic systematics have been affected by hydrothermal processes, Re-Os results demonstrate that more than 95 percent of the osmium, and by inference other PGEs in the Stillwater Complex, derive from the mantle.

  14. Chirality sensing with stereodynamic copper(I) complexes.

    PubMed

    De Los Santos, Zeus A; Legaux, Nicholas M; Wolf, Christian

    2017-11-01

    Three Cu(I) complexes derived from stereodynamic diphosphine ligands were synthesized and used for chirality sensing. The coordination of diamines and amino acids to these complexes generates distinct circular dichroism signals. The chiroptical sensor response allows determination of the absolute configuration and the enantiomeric excess of the analyte at low concentrations. This method is operationally simple, fast, and attractive for high-throughput sensing applications. © 2017 Wiley Periodicals, Inc.

  15. Edge Fracture in Complex Fluids.

    PubMed

    Hemingway, Ewan J; Kusumaatmaja, Halim; Fielding, Suzanne M

    2017-07-14

    We study theoretically the edge fracture instability in sheared complex fluids, by means of linear stability analysis and direct nonlinear simulations. We derive an exact analytical expression for the onset of edge fracture in terms of the shear-rate derivative of the fluid's second normal stress difference, the shear-rate derivative of the shear stress, the jump in shear stress across the interface between the fluid and the outside medium (usually air), the surface tension of that interface, and the rheometer gap size. We provide a full mechanistic understanding of the edge fracture instability, carefully validated against our simulations. These findings, which are robust with respect to choice of rheological constitutive model, also suggest a possible route to mitigating edge fracture, potentially allowing experimentalists to achieve and accurately measure flows stronger than hitherto possible.

  16. Homogeneous catalytic hydrogenations of complex carbonaceous substrates. [16 references

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, J L; Wilcox, W A; Roberts, G L

    1976-11-05

    Results of homogeneous catalytic hydrogenation of complex unsaturated substrates including coal and coal-derived materials are reported, with organic soluble molecular complexes as catalysts. Among the substrates used were Hvab coal, solvent-refined coal, and COED pyrolysate. The hydrogenations were carried out in an autoclave. The results are summarized in tables.

  17. Complex Chern-Simons from M5-branes on the squashed three-sphere

    NASA Astrophysics Data System (ADS)

    Córdova, Clay; Jafferis, Daniel L.

    2017-11-01

    We derive an equivalence between the (2,0) superconformal M5-brane field theory dimensionally reduced on a squashed three-sphere, and Chern-Simons theory with complex gauge group. In the reduction, the massless fermions obtain an action which is second order in derivatives and are reinterpreted as ghosts for gauge fixing the emergent non-compact gauge symmetry. A squashing parameter in the geometry controls the imaginary part of the complex Chern-Simons level.

  18. Synthesis and Spectroscopic Evaluation of Two Novel Glycosylated Zinc(II)-Phthalocyanines.

    PubMed

    Bächle, Felix; Hanack, Michael; Ziegler, Thomas

    2015-10-09

    In continuation of our work on glycoconjugated phthalocyanines, two new water soluble, non-ionic zinc(II) phthalocyanines have been prepared and fully characterized by means of ¹H-NMR, 13C-NMR, MALDI-TOF, ESI-TOF, UV-Vis spectroscopy, emission spectroscopy and fluorescence lifetime measurements. The carbohydrate-containing phthalonitrile precursors were synthesized through a copper-catalyzed azide-alkyne cycloaddition (CuAAC). The 2-methoxyethoxymethyl protecting group (MEM) was used to protect the carbohydrate moieties. It resisted the harsh basic cyclotetramerization conditions and could be easily cleaved under mild acidic conditions. The glycoconjugated zinc(II) phthalocyanines described here have molar extinction coefficents εmax>10⁵ m(-1) cm(-1) and absorption maxima λ>680 nm, which make them attractive photosensitizers for photo-dynamic therapy.

  19. Nonturbulent dispersion processes in complex terrain

    Treesearch

    Michael A. Fosberg; Douglas G. Fox; E.A. Howard; Jack D. Cohen

    1976-01-01

    Mass divergence influences on plume dispersion modify classic Gaussian calculations by as much as a factor of two in complex terrain. The Gaussian plume was derived in flux form to include this process.Authors' response to comments and criticism received following this publication:

  20. Criticality and Connectivity in Macromolecular Charge Complexation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Jian; de Pablo, Juan J.

    We examine the role of molecular connectivity and architecture on the complexation of ionic macromolecules (polyelectrolytes) of finite size. A unified framework is developed and applied to evaluate the electrostatic correlation free energy for point-like, rod-like, and coil-like molecules. That framework is generalized to molecules of variable fractal dimensions, including dendrimers. Analytical expressions for the free energy, correlation length, and osmotic pressure are derived, thereby enabling consideration of the effects of charge connectivity, fractal dimension, and backbone stiffness on the complexation behavior of a wide range of polyelectrolytes. Results are presented for regions in the immediate vicinity of the criticalmore » region and far from it. A transparent and explicit expression for the coexistence curve is derived in order to facilitate analysis of experimentally observed phase diagrams.« less

  1. Antimicrobial Potential of Benzimidazole Derived Molecules.

    PubMed

    Bansal, Yogita; Kaur, Manjinder; Bansal, Gulshan

    2017-10-31

    Structural resemblance of benzimidazole nucleus with purine nucleus in nucleotides makes benzimidazole derivatives attractive ligands to interact with biopolymers of a living system. The most prominent benzimidazole compound in nature is N-ribosyldimethylbenzimidazole, which serves as an axial ligand for cobalt in vitamin B12. This structural similarity prompted medicinal chemists across the globe to synthesize a variety of benzimidazole derivatives and to screen those for various biological activities, such as anticancer, hormone antagonist, antiviral, anti-HIV, anthelmintic, antiprotozoal, antimicrobial, antihypertensive, anti-inflammatory, analgesic, anxiolytic, antiallergic, coagulant, anticoagulant, antioxidant and antidiabetic activities. Hence, benzimidazole nucleus is considered as a privileged structure in drug discovery, and it is exploited by many research groups to develop numerous compounds that are purported to be antimicrobial. Despite a large volume of research in this area, no novel benzimidazole derived compound has emerged as clinically effective antimicrobial drug. In the present review, we have compiled various reports on benzimidazole derived antimicrobials, classified as monosubstituted, disubstituted, trisubstituted and tetrasubstituted benzimidazoles, bis-benzimidazoles, fused-benzimidazoles, and benzimidazole derivative-metal complexes. The purpose is to collate these research reports, and to generate a generalised outlay of benzimidazole derived molecules that can assist the medicinal chemists in selecting appropriate combination of substituents around the nucleus for designing potent antimicrobials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Synthesis, characterization of 1,2,4-triazole Schiff base derived 3d-metal complexes: Induces cytotoxicity in HepG2, MCF-7 cell line, BSA binding fluorescence and DFT study

    NASA Astrophysics Data System (ADS)

    Tyagi, Prateek; Tyagi, Monika; Agrawal, Swati; Chandra, Sulekh; Ojha, Himanshu; Pathak, Mallika

    2017-01-01

    Two novel Schiff base ligands H2L1 and H2L2 have been synthesized by condensation reaction of amine derivative of 1,2,4-triazole moiety with 2-hydroxy-4-methoxybenzaldehyde. Co(II), Ni(II), Cu(II) and Zn(II) of the synthesized Schiff bases were prepared by using a molar ratio of ligand:metal as 1:1. The structure of the Schiff bases and synthesized metal complexes were established by 1H NMR, UV-Vis, IR, Mass spectrometry and molar conductivity. The thermal stability of the complexes was study by TGA. Fluorescence quenching mechanism of metal complexes 1-4 show that Zn(II) and Cu(II) complex binds more strongly to BSA. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31 + g(d,p) basis set. The spectral data shows that the ligands behaves as binegative tridentate. On the basis of the spectral studies, TGA and DFT data an octahedral geometry has been assigned for Co(II), Ni(II), square planar for Cu(II) and tetrahedral for Zn(II) complexes. The anticancer activity were screened against human breast cancer cell line (MCF-7) and human hepatocellular liver carcinoma cell line (Hep-G2). Result indicates that metal complexes shows increase cytotoxicity in proliferation to cell lines as compared to free ligand.

  3. Biochemical indicators of nephrotoxicity in blood serum of rats treated with novel 4-thiazolidinone derivatives or their complexes with polyethylene glycol-containing nanoscale polymeric carrier

    PubMed

    Kоbyli nska, L I; Havrylyuk, D Ya; Mitina, N E; Zaichenko, A S; Lesyk, R B; Zіme nkovsky, B S; Stoika, R S

    2016-01-01

    The aim of this study was to compare the effect of new synthetic 4-thiazolidinone derivatives (potential anticancer compounds denoted as 3882, 3288 and 3833) and doxorubicin (positive control) in free form and in their complexes with synthetic polyethylene glycol-containing nanoscale polymeric carrier on the biochemical indicators of nephrotoxicity in blood serum of rats. The concentration of total protein, urea, creatinine, glucose, ions of sodium, potassium, calcium, iron and chloride was measured. It was found that after injection of the investigated compounds, the concentration of sodium cations and chloride anions in blood serum was increased compared with control (untreated animals). Doxorubicin’s injection was accompanied by a decrease in the concentration of iron cations. The concentration of total protein, urea and creatinine decreased under the influence of the studied compounds. Complexation of these аntineoplastic substances with a synthetic polymeric nanocarrier lowered the concentration of the investigated metabolites substantially compared to the effect of these compounds in free form. The normalization of concentration of total protein, urea and creatinine in blood serum of rats treated with complexes of the studied compounds with the polymeric carrier comparing with increased concentration of these indicators at the introduction of such compounds in free form was found.

  4. Hydrogen Bond Lifetimes and Energetics for Solute-Solvent Complexes Studied with 2D-IR Vibrational Echo Spectroscopy

    PubMed Central

    Zheng, Junrong; Fayer, Michael D.

    2008-01-01

    Weak π hydrogen bonded solute-solvent complexes are studied with ultrafast two dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy, temperature dependent IR absorption spectroscopy, and density functional theory calculations. Eight solute-solvent complexes composed of a number of phenol derivatives and various benzene derivatives are investigated. The complexes are formed between the phenol derivative (solute) in a mixed solvent of the benzene derivative and CCl4. The time dependence of the 2D-IR vibrational echo spectra of the phenol hydroxyl stretch is used to directly determine the dissociation and formation rates of the hydrogen bonded complexes. The dissociation rates of the weak hydrogen bonds are found to be strongly correlated with their formation enthalpies. The correlation can be described with an equation similar to the Arrhenius equation. The results are discussed in terms of transition state theory. PMID:17373792

  5. Bordetella pertussis proteins dominating the major histocompatibility complex class II-presented epitope repertoire in human monocyte-derived dendritic cells.

    PubMed

    Stenger, Rachel M; Meiring, Hugo D; Kuipers, Betsy; Poelen, Martien; van Gaans-van den Brink, Jacqueline A M; Boog, Claire J P; de Jong, Ad P J M; van Els, Cécile A C M

    2014-05-01

    Knowledge of naturally processed Bordetella pertussis-specific T cell epitopes may help to increase our understanding of the basis of cell-mediated immune mechanisms to control this reemerging pathogen. Here, we elucidate for the first time the dominant major histocompatibility complex (MHC) class II-presented B. pertussis CD4(+) T cell epitopes, expressed on human monocyte-derived dendritic cells (MDDC) after the processing of whole bacterial cells by use of a platform of immunoproteomics technology. Pertussis epitopes identified in the context of HLA-DR molecules were derived from two envelope proteins, i.e., putative periplasmic protein (PPP) and putative peptidoglycan-associated lipoprotein (PAL), and from two cytosolic proteins, i.e., 10-kDa chaperonin groES protein (groES) and adenylosuccinate synthetase (ASS). No epitopes were detectable from known virulence factors. CD4(+) T cell responsiveness in healthy adults against peptide pools representing epitope regions or full proteins confirmed the immunogenicity of PAL, PPP, groES, and ASS. Elevated lymphoproliferative activity to PPP, groES, and ASS in subjects within a year after the diagnosis of symptomatic pertussis suggested immunogenic exposure to these proteins during clinical infection. The PAL-, PPP-, groES-, and ASS-specific responses were associated with secretion of functional Th1 (tumor necrosis factor alpha [TNF-α] and gamma interferon [IFN-γ]) and Th2 (interleukin 5 [IL-5] and IL-13) cytokines. Relative paucity in the natural B. pertussis epitope display of MDDC, not dominated by epitopes from known protective antigens, can interfere with the effectiveness of immune recognition of B. pertussis. A more complete understanding of hallmarks in B. pertussis-specific immunity may advance the design of novel immunological assays and prevention strategies.

  6. Weaving and neural complexity in symmetric quantum states

    DOE PAGES

    Susa, Cristian E.; Girolami, Davide

    2017-12-27

    Here, we study the behaviour of two different measures of the complexity of multipartite correlation patterns, weaving and neural complexity, for symmetric quantum states. Weaving is the weighted sum of genuine multipartite correlations of any order, where the weights are proportional to the correlation order. The neural complexity, originally introduced to characterize correlation patterns in classical neural networks, is here extended to the quantum scenario. We derive closed formulas of the two quantities for GHZ states mixed with white noise.

  7. Weaving and neural complexity in symmetric quantum states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susa, Cristian E.; Girolami, Davide

    Here, we study the behaviour of two different measures of the complexity of multipartite correlation patterns, weaving and neural complexity, for symmetric quantum states. Weaving is the weighted sum of genuine multipartite correlations of any order, where the weights are proportional to the correlation order. The neural complexity, originally introduced to characterize correlation patterns in classical neural networks, is here extended to the quantum scenario. We derive closed formulas of the two quantities for GHZ states mixed with white noise.

  8. Investigating Magmatic Processes in the Lower Levels of Mantle-derived Magmatic Systems: The Age & Emplacement of the Kunene Anorthosite Complex (SW Angola)

    NASA Astrophysics Data System (ADS)

    Hayes, B.; Bybee, G. M.; Owen-Smith, T.; Lehmann, J.; Brower, A. M.; Ashwal, L. D.; Hill, C. M.

    2017-12-01

    Our understanding of mantle-derived magmatic systems has shifted from a notion of upper crustal, melt-dominated magma chambers that feed short-lived volcanic eruptions, to a view of more long-lived trans-crustal, mush-dominated systems. Proterozoic massif-type anorthosite systems are voluminous, plagioclase-dominated plutonic suites with ubiquitous intermediate compositions (An 50 ± 10) that represent mantle-derived magmas initially ponded at Moho depths and crystallized polybarically until emplacement at mid-crustal levels. Thus, these systems provide unique insight into magma storage and processing in the lower reaches of the magma mush column, where such interpretation has previously relied on cumulate xenoliths in lavas, geophysical data and experimental/numerical modeling. We present new CA-ID-TIMS ages and a series of detailed field observations from the largest Proterozoic anorthosite massif on Earth, the Kunene Anorthosite Complex (KAC) of SW Angola. Field structures indicate that (i) the bulk of the material was emplaced in the form of crystal mushes, as both plutons and sheet-like intrusions; (ii) prolonged magmatism led to cumulate disaggregation (block structure development) and remobilization, producing considerable textural heterogeneity; (iii) crystal-rich magmatic flow induced localized recrystallization and the development of protoclastic (mortar) textures; and (iv) late residual melts were able to migrate locally prior to complete solidification. Dating of pegmatitic pods entrained from cumulate zones at the base of the crust (1500 ± 13 Ma) and their host anorthosites (1375-1438 Ma) reveals time periods in the range of 60-120 Myr between the earliest products of the system and the final mushes emplaced at higher crustal levels. Therefore, the KAC represents a complex, mushy magmatic system that developed over a long period of time. Not only do these observations help in refining our understanding of Proterozoic anorthosite petrogenesis, they

  9. Regeneration of dental pulp/dentine complex with a three-dimensional and scaffold-free stem-cell sheet-derived pellet.

    PubMed

    Na, Sijia; Zhang, Hao; Huang, Fang; Wang, Weiqi; Ding, Yin; Li, Dechao; Jin, Yan

    2016-03-01

    Dental pulp/dentine complex regeneration is indispensable to the construction of biotissue-engineered tooth roots and represents a promising approach to therapy for irreversible pulpitis. We used a tissue-engineering method based on odontogenic stem cells to design a three-dimensional (3D) and scaffold-free stem-cell sheet-derived pellet (CSDP) with the necessary physical and biological properties. Stem cells were isolated and identified and stem cells from root apical papilla (SCAPs)-based CSDPs were then fabricated and examined. Compact cell aggregates containing a high proportion of extracellular matrix (ECM) components were observed, and the CSDP culture time was prolonged. The expression of alkaline phosphatase (ALP), dentine sialoprotein (DSPP), bone sialoprotein (BSP) and runt-related gene 2 (RUNX2) mRNA was higher in CSDPs than in cell sheets (CSs), indicating that CSDPs have greater odonto/osteogenic potential. To further investigate this hypothesis, CSDPs and CSs were inserted into human treated dentine matrix fragments (hTDMFs) and transplanted into the subcutaneous space in the backs of immunodeficient mice, where they were cultured in vivo for 6 weeks. The root space with CSDPs was filled entirely with a dental pulp-like tissue with well-established vascularity, and a continuous layer of dentine-like tissue was deposited onto the existing dentine. A layer of odontoblast-like cells was found to express DSPP, ALP and BSP, and human mitochondria lined the surface of the newly formed dentine-like tissue. These results clearly indicate that SCAP-CSDPs with a mount of endogenous ECM have a strong capacity to form a heterotopic dental pulp/dentine complex in empty root canals; this method can be used in the fabrication of bioengineered dental roots and also provides an alternative treatment approach for pulp disease. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Acquisition of Complex Systemic Thinking: Mental Models of Evolution

    ERIC Educational Resources Information Center

    d'Apollonia, Sylvia T.; Charles, Elizabeth S.; Boyd, Gary M.

    2004-01-01

    We investigated the impact of introducing college students to complex adaptive systems on their subsequent mental models of evolution compared to those of students taught in the same manner but with no reference to complex systems. The students' mental models (derived from similarity ratings of 12 evolutionary terms using the pathfinder algorithm)…

  11. Design of novel HIV-1 protease inhibitors incorporating isophthalamide-derived P2-P3 ligands: Synthesis, biological evaluation and X-ray structural studies of inhibitor-HIV-1 protease complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Arun K.; Brindisi, Margherita; Nyalapatla, Prasanth R.

    Based upon molecular insights from the X-ray structures of inhibitor-bound HIV-1 protease complexes, we have designed a series of isophthalamide-derived inhibitors incorporating substituted pyrrolidines, piperidines and thiazolidines as P2-P3 ligands for specific interactions in the S2-S3 extended site. Compound 4b has shown an enzyme Ki of 0.025 nM and antiviral IC50 of 69 nM. An X-ray crystal structure of inhibitor 4b-HIV-1 protease complex was determined at 1.33 Å resolution. We have also determined X-ray structure of 3b-bound HIV-1 protease at 1.27 Å resolution. These structures revealed important molecular insight into the inhibitor–HIV-1 protease interactions in the active site.

  12. Synthesis, Characterization, and Bioactivity of Schiff Bases and Their Cd2+, Zn2+, Cu2+, and Ni2+ Complexes Derived from Chloroacetophenone Isomers with S-Benzyldithiocarbazate and the X-Ray Crystal Structure of S-Benzyl-β-N-(4-chlorophenyl)methylenedithiocarbazate

    PubMed Central

    Break, Mohammed Khaled bin; Tahir, M. Ibrahim M.; Crouse, Karen A.; Khoo, Teng-Jin

    2013-01-01

    Two bidentate Schiff base ligands having nitrogen sulphur donor sequence were derived from the condensation of S-benzyldithiocarbazate (SBDTC) with 2-chloroacetophenone and 4-chloroacetophenone to give S-benzyl-β-N-(2-chlorophenyl)methylenedithiocarbazate (NS2) and S-benzyl-β-N-(4-chlorophenyl)methylenedithiocarbazate (NS4) isomers. Each of the ligands was then chelated with Cd2+, Zn2+, Cu2+, and Ni2+. The compounds were characterized via IR spectroscopy and melting point while the structure of NS4 was revealed via X-ray crystallography. Finally, the compounds were screened for antimicrobial activity to investigate the effect that is brought by the introduction of the chlorine atom to the benzene ring. X-ray crystallographic analysis showed that the structure of NS4 is planar with a phenyl ring that is nearly perpendicular to the rest of the molecules. The qualitative antimicrobial assay results showed that NS4 and its complexes lacked antifungal activity while Gram-positive bacteria were generally inhibited more strongly than Gram-negative bacteria. Furthermore, NS4 metal complexes were inhibited more strongly than the ligand while the opposite was seen with NS2 ligand and its complexes due to the partial solubility in dimethyl sulfoxide (DMSO). It was concluded that generally NS2 derivatives have higher bioactivity than that of NS4 derivatives and that the Cd complexes of both ligands have pronounced activity specifically on K. rhizophila. PMID:24319401

  13. Derivation of Pitzer Interaction Parameters for an Aqueous Species Pair of Sodium and Iron(II)-Citrate Complex

    NASA Astrophysics Data System (ADS)

    Jang, J. H.; Nemer, M.

    2015-12-01

    The U.S. DOE Waste Isolation Pilot Plant (WIPP) is a deep underground repository for the permanent disposal of transuranic (TRU) radioactive waste. The WIPP is located in the Permian Delaware Basin near Carlsbad, New Mexico, U.S.A. The TRU waste includes, but is not limited to, iron-based alloys and the complexing agent, citric acid. Iron is also present from the steel used in the waste containers. The objective of this analysis is to derive the Pitzer activity coefficients for the pair of Na+ and FeCit- complex to expand current WIPP thermodynamic database. An aqueous model for the dissolution of Fe(OH)2(s) in a Na3Cit solution was fitted to the experimentally measured solubility data. The aqueous model consists of several chemical reactions and related Pitzer interaction parameters. Specifically, Pitzer interaction parameters for the Na+ and FeCit- pair (β(0), β(1), and Cφ) plus the stability constant for species of FeCit- were fitted to the experimental data. Anoxic gloveboxes were used to keep the oxygen level low (<1 ppm) throughout the experiments due to redox sensitivity. EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations, packaged in EQ3/6 v.8.0a, calculates the aqueous speciation and saturation index using an aqueous model addressed in EQ3/6's database. The saturation index indicates how far the system is from equilibrium with respect to the solid of interest. Thus, the smaller the sum of squared saturation indices that the aqueous model calculates for the given number of experiments, the more closely the model attributes equilibrium to each individual experiment with respect to the solid of interest. The calculation of aqueous speciation and saturation indices was repeated by adjusting stability constant of FeCit-, β(0), β(1), and Cφ in the database until the values are found that make the sum of squared saturation indices the smallest for the given number of experiments. Results will be presented at the time of

  14. Heteroleptic Copper(I)-Based Complexes for Photocatalysis: Combinatorial Assembly, Discovery, and Optimization.

    PubMed

    Minozzi, Clémentine; Caron, Antoine; Grenier-Petel, Jean-Christophe; Santandrea, Jeffrey; Collins, Shawn K

    2018-05-04

    A library of 50 copper-based complexes derived from bisphosphines and diamines was prepared and evaluated in three mechanistically distinct photocatalytic reactions. In all cases, a copper-based catalyst was identified to afford high yields, where new heteroleptic complexes derived from the bisphosphine BINAP displayed high efficiency across all reaction types. Importantly, the evaluation of the library of copper complexes revealed that even when photophysical data is available, it is not always possible to predict which catalyst structure will be efficient or inefficient in a given process, emphasizing the advantages for catalyst structures with high modularity and structural variability. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Supramolecular Architectures and Mimics of Complex Natural Folds Derived from Rationally Designed alpha-Helical Protein Structures

    NASA Astrophysics Data System (ADS)

    Tavenor, Nathan Albert

    Protein-based supramolecular polymers (SMPs) are a class of biomaterials which draw inspiration from and expand upon the many examples of complex protein quaternary structures observed in nature: collagen, microtubules, viral capsids, etc. Designing synthetic supramolecular protein scaffolds both increases our understanding of natural superstructures and allows for the creation of novel materials. Similar to small-molecule SMPs, protein-based SMPs form due to self-assembly driven by intermolecular interactions between monomers, and monomer structure determines the properties of the overall material. Using protein-based monomers takes advantage of the self-assembly and highly specific molecular recognition properties encodable in polypeptide sequences to rationally design SMP architectures. The central hypothesis underlying our work is that alpha-helical coiled coils, a well-studied protein quaternary folding motif, are well-suited to SMP design through the addition of synthetic linkers at solvent-exposed sites. Through small changes in the structures of the cross-links and/or peptide sequence, we have been able to control both the nanoscale organization and the macroscopic properties of the SMPs. Changes to the linker and hydrophobic core of the peptide can be used to control polymer rigidity, stability, and dimensionality. The gaps in knowledge that this thesis sought to fill on this project were 1) the relationship between the molecular structure of the cross-linked polypeptides and the macroscopic properties of the SMPs and 2) a means of creating materials exhibiting multi-dimensional net or framework topologies. Separate from the above efforts on supramolecular architectures was work on improving backbone modification strategies for an alpha-helix in the context of a complex protein tertiary fold. Earlier work in our lab had successfully incorporated unnatural building blocks into every major secondary structure (beta-sheet, alpha-helix, loops and beta

  16. Synthesis, Characterization and Biological Evaluation of Transition Metal Complexes Derived from N, S Bidentate Ligands

    PubMed Central

    Md Yusof, Enis Nadia; Ravoof, Thahira Begum S. A.; Tiekink, Edward R. T.; Veerakumarasivam, Abhimanyu; Crouse, Karen Anne; Mohamed Tahir, Mohamed Ibrahim; Ahmad, Haslina

    2015-01-01

    Two bidentate NS ligands were synthesized by the condensation reaction of S-2-methylbenzyldithiocarbazate (S2MBDTC) with 2-methoxybenzaldehyde (2MB) and 3-methoxybenzaldehyde (3MB). The ligands were reacted separately with acetates of Cu(II), Ni(II) and Zn(II) yielding 1:2 (metal:ligand) complexes. The metal complexes formed were expected to have a general formula of [M(NS)2] where M = Cu2+, Ni2+, and Zn2+. These compounds were characterized by elemental analysis, molar conductivity, magnetic susceptibility and various spectroscopic techniques. The magnetic susceptibility measurements and spectral results supported the predicted coordination geometry in which the Schiff bases behaved as bidentate NS donor ligands coordinating via the azomethine nitrogen and thiolate sulfur. The molecular structures of the isomeric S2M2MBH (1) and S2M3MBH (2) were established by X-ray crystallography to have very similar l-shaped structures. The Schiff bases and their metal complexes were evaluated for their biological activities against estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) breast cancer cell lines. Only the Cu(II) complexes showed marked cytotoxicity against the cancer cell lines. Both Schiff bases and other metal complexes were found to be inactive. In concordance with the cytotoxicity studies, the DNA binding studies indicated that Cu(II) complexes have a strong DNA binding affinity. PMID:25988384

  17. Explicitly solvable complex Chebyshev approximation problems related to sine polynomials

    NASA Technical Reports Server (NTRS)

    Freund, Roland

    1989-01-01

    Explicitly solvable real Chebyshev approximation problems on the unit interval are typically characterized by simple error curves. A similar principle is presented for complex approximation problems with error curves induced by sine polynomials. As an application, some new explicit formulae for complex best approximations are derived.

  18. An Integrated approach (thermodynamic, structural, and computational) to the study of complexation of alkali-metal cations by a lower-rim calix[4]arene amide derivative in acetonitrile.

    PubMed

    Horvat, Gordan; Stilinović, Vladimir; Hrenar, Tomica; Kaitner, Branko; Frkanec, Leo; Tomišić, Vladislav

    2012-06-04

    The calix[4]arene secondary-amide derivative L was synthesized, and its complexation with alkali-metal cations in acetonitrile (MeCN) was studied by means of spectrophotometric, NMR, conductometric, and microcalorimetric titrations at 25 °C. The stability constants of the 1:1 (metal/ligand) complexes determined by different methods were in excellent agreement. For the complexation of M(+) (M = Li, Na, K) with L, both enthalpic and entropic contributions were favorable, with their values and mutual relations being quite strongly dependent on the cation. The enthalpic and overall stability was the largest in the case of the sodium complex. Molecular and crystal structures of free L, its methanol and MeCN solvates, the sodium complex, and its MeCN solvate were determined by single-crystal X-ray diffraction. The inclusion of a MeCN molecule in the calixarene hydrophobic cavity was observed both in solution and in the solid state. This specific interaction was found to be stronger in the case of metal complexes compared to the free ligand because of the better preorganization of the hydrophobic cone to accept the solvent molecule. Density functional theory calculations showed that the flattened cone conformation (C(2) point group) of L was generally more favorable than the square cone conformation (C(4) point group). In the complex with Na(+), L was in square cone conformation, whereas in its adduct with MeCN, the conformation was slightly distorted from the full symmetry. These conformations were in agreement with those observed in the solid state. The classical molecular dynamics simulations indicated that the MeCN molecule enters the L hydrophobic cavity of both the free ligand and its alkali-metal complexes. The inclusion of MeCN in the cone of free L was accompanied by the conformational change from C(2) to C(4) symmetry. As in solution studies, in the case of ML(+) complexes, an allosteric effect was observed: the ligand was already in the appropriate square cone

  19. The neural correlates of morphological complexity processing: Detecting structure in pseudowords.

    PubMed

    Schuster, Swetlana; Scharinger, Mathias; Brooks, Colin; Lahiri, Aditi; Hartwigsen, Gesa

    2018-06-01

    Morphological complexity is a highly debated issue in visual word recognition. Previous neuroimaging studies have shown that speakers are sensitive to degrees of morphological complexity. Two-step derived complex words (bridging through bridge N  > bridge V  > bridging) led to more enhanced activation in the left inferior frontal gyrus than their 1-step derived counterparts (running through run V  > running). However, it remains unclear whether sensitivity to degrees of morphological complexity extends to pseudowords. If this were the case, it would indicate that abstract knowledge of morphological structure is independent of lexicality. We addressed this question by investigating the processing of two sets of pseudowords in German. Both sets contained morphologically viable two-step derived pseudowords differing in the number of derivational steps required to access an existing lexical representation and therefore the degree of structural analysis expected during processing. Using a 2 × 2 factorial design, we found lexicality effects to be distinct from processing signatures relating to structural analysis in pseudowords. Semantically-driven processes such as lexical search showed a more frontal distribution while combinatorial processes related to structural analysis engaged more parietal parts of the network. Specifically, more complex pseudowords showed increased activation in parietal regions (right superior parietal lobe and left precuneus) relative to pseudowords that required less structural analysis to arrive at an existing lexical representation. As the two sets were matched on cohort size and surface form, these results highlight the role of internal levels of morphological structure even in forms that do not possess a lexical representation. © 2018 Wiley Periodicals, Inc.

  20. Entropy and equilibrium via games of complexity

    NASA Astrophysics Data System (ADS)

    Topsøe, Flemming

    2004-09-01

    It is suggested that thermodynamical equilibrium equals game theoretical equilibrium. Aspects of this thesis are discussed. The philosophy is consistent with maximum entropy thinking of Jaynes, but goes one step deeper by deriving the maximum entropy principle from an underlying game theoretical principle. The games introduced are based on measures of complexity. Entropy is viewed as minimal complexity. It is demonstrated that Tsallis entropy ( q-entropy) and Kaniadakis entropy ( κ-entropy) can be obtained in this way, based on suitable complexity measures. A certain unifying effect is obtained by embedding these measures in a two-parameter family of entropy functions.

  1. Amphiphilic Cyclodextrin Derivatives for Targeted Drug Delivery to Tumors.

    PubMed

    Erdogar, Nazlı; Varan, Gamze; Bilensoy, Erem

    2017-01-01

    Villiers has extensively studied cyclodextrins, a family of macrocyclic oligosaccharides linked by α-1,4 glycosidic bonds, in different fields since their discovery in 1891. The unique structure enabling inclusion complexation for natural cyclodextrins and cyclodextrin derivatives make them attractive for novel drug delivery systems. Cyclodextrins can be modified with long aliphatic chains to render an amphiphilic property and these different amphiphilic cyclodextrins are able to form nanoparticles without surfactants. In the literature, several different amphiphilic cyclodextrins are reported and applied to drug delivery and targeting especially to tumors. Specificly, folateconjugated amphiphilic cyclodextrin derivatives are used for active tumor targeting of poorly water soluble drugs and improve the efficacy and safety of therapeutic agents. On the other hand, effect of positive surface charge has also been under research in the recent years. Polycationic amphiphilic cyclodextrins have shown promise towards forming small complexes with negatively charged molecules such as drugs or plasmid DNA. Polycationic amphiphilic cyclodextrins enhance interaction with cell membrane due to their net positive surface charge. The scope of this review is to describe potential uses and pharmaceutical applications of tumor-targeted amphiphilic cyclodextrins, with focus on folate-conjugated cyclodextrin derivatives and polycationic cyclodextrin derivatives both studied by our group at Hacettepe University. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Synthesis, spectral characterization and antimicrobial studies of nano-sized oxovanadium(IV) complexes with Schiff bases derived from 5-(phenyl/substituted phenyl)-2-hydrazino-1,3,4-thiadiazole and indoline-2,3-dione.

    PubMed

    Sahani, M K; Yadava, U; Pandey, O P; Sengupta, S K

    2014-05-05

    A new class of oxovanadium(IV) complexes with Schiff bases derived by the condensation of 5-(phenyl/substituted phenyl)-2-hydrazino-1,3,4-thiadiazoles and indoline-2,3-dione have been prepared in ethanol in the presence of sodium acetate. Micro-analytical data, magnetic susceptibility, UV-Vis, IR, EPR and XRD spectral techniques were used to confirm the structures. Electronic absorption spectra of the complexes suggest a square-pyramidal geometry. The oxovanadium(IV) complexes have monoclinic crystal system and particle sizes were found to be in the range 18.0 nm to 24.0 nm (nano-size). In vitro antifungal activity of synthesized compounds was determined against fungi Aspergillus niger, Colletotrichum falcatum and Colletotrichum pallescence and in vitro antibacterial activity was determined by screening the compounds against Gram-negative (Escherichia coli and Salmonella typhi) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacterial strains. The oxovanadium(IV) complexes have higher antimicrobial effect than free ligands. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Systems and Methods for Derivative-Free Adaptive Control

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J. (Inventor); Yucelen, Tansel (Inventor); Kim, Kilsoo (Inventor)

    2015-01-01

    An adaptive control system is disclosed. The control system can control uncertain dynamic systems. The control system can employ one or more derivative-free adaptive control architectures. The control system can further employ one or more derivative-free weight update laws. The derivative-free weight update laws can comprise a time-varying estimate of an ideal vector of weights. The control system of the present invention can therefore quickly stabilize systems that undergo sudden changes in dynamics, caused by, for example, sudden changes in weight. Embodiments of the present invention can also provide a less complex control system than existing adaptive control systems. The control system can control aircraft and other dynamic systems, such as, for example, those with non-minimum phase dynamics.

  4. Indirect spectrophotometric determination of trace cyanide with cationic porphyrins.

    PubMed

    Ishii, H; Kohata, K

    1991-05-01

    Three highly sensitive methods for the determination of cyanide have been developed, based on the fact that the complexation of silver ions with three cationic porphyrins, 5,10,15,20-tetrakis-(1-methyl-2-pyridinio)porphine [T(2-MPy)P], 5,10,15,20-tetrakis(1-methyl-3-pyridinio)porphine [T(3-MPy)P] and 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphine [T(4-MPy)P], in alkaline media is inhibited by cyanide and the decrease in absorbance of the silver(II) complex is proportional to the cyanide concentration. Sensitivities of the procedures developed are 0.133, 0.126 and 0.234 ng/cm(2), respectively for an absorbance of 0.001. Cadmium(II), copper(II), mercury(II), zinc(II), iodide and sulfide interfere with the cyanide determination. One of the proposed methods was applied to the determination of cyanide in waste-water samples, with satisfactory results.

  5. Thermodynamics and binding mode of novel structurally related 1,2,4-thiadiazole derivatives with native and modified cyclodextrins

    NASA Astrophysics Data System (ADS)

    Terekhova, Irina V.; Chislov, Mikhail V.; Brusnikina, Maria A.; Chibunova, Ekaterina S.; Volkova, Tatyana V.; Zvereva, Irina A.; Proshin, Alexey N.

    2017-03-01

    Study of complex formation of cyclodextrins with 1,2,4-thiadiazole derivatives intended for Alzheimer's disease treatment was carried out using 1H NMR, ITC and phase solubility methods. Structure of cyclodextrins and thiadiazoles affects the binding mode and thermodynamics of complexation. The larger cavity of β- and γ-cyclodextrins is more appropriate for deeper insertion of 1,2,4-thiadiazole derivatives which is accompanied by intensive dehydration and solvent reorganization. Benzene ring of the thiadiazoles is located inside macrocyclic cavity while piperidine ring is placed outside the cavity and can form H-bonds with cyclodextrin exterior. Complexation with cyclodextrins induces the enhancement of aqueous solubility of 1,2,4-thiadiazole derivatives.

  6. Biosensors from conjugated polyelectrolyte complexes

    PubMed Central

    Wang, Deli; Gong, Xiong; Heeger, Peter S.; Rininsland, Frauke; Bazan, Guillermo C.; Heeger, Alan J.

    2002-01-01

    A charge neutral complex (CNC) was formed in aqueous solution by combining an orange light emitting anionic conjugated polyelectrolyte and a saturated cationic polyelectrolyte at a 1:1 ratio (per repeat unit). Photoluminescence (PL) from the CNC can be quenched by both the negatively charged dinitrophenol (DNP) derivative, (DNP-BS−), and positively charged methyl viologen (MV2+). Use of the CNC minimizes nonspecific interactions (which modify the PL) between conjugated polyelectrolytes and biopolymers. Quenching of the PL from the CNC by the DNP derivative and specific unquenching on addition of anti-DNP antibody (anti-DNP IgG) were observed. Thus, biosensing of the anti-DNP IgG was demonstrated. PMID:11756675

  7. A fractal derivative model for the characterization of anomalous diffusion in magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Liang, Yingjie; Ye, Allen Q.; Chen, Wen; Gatto, Rodolfo G.; Colon-Perez, Luis; Mareci, Thomas H.; Magin, Richard L.

    2016-10-01

    Non-Gaussian (anomalous) diffusion is wide spread in biological tissues where its effects modulate chemical reactions and membrane transport. When viewed using magnetic resonance imaging (MRI), anomalous diffusion is characterized by a persistent or 'long tail' behavior in the decay of the diffusion signal. Recent MRI studies have used the fractional derivative to describe diffusion dynamics in normal and post-mortem tissue by connecting the order of the derivative with changes in tissue composition, structure and complexity. In this study we consider an alternative approach by introducing fractal time and space derivatives into Fick's second law of diffusion. This provides a more natural way to link sub-voxel tissue composition with the observed MRI diffusion signal decay following the application of a diffusion-sensitive pulse sequence. Unlike previous studies using fractional order derivatives, here the fractal derivative order is directly connected to the Hausdorff fractal dimension of the diffusion trajectory. The result is a simpler, computationally faster, and more direct way to incorporate tissue complexity and microstructure into the diffusional dynamics. Furthermore, the results are readily expressed in terms of spectral entropy, which provides a quantitative measure of the overall complexity of the heterogeneous and multi-scale structure of biological tissues. As an example, we apply this new model for the characterization of diffusion in fixed samples of the mouse brain. These results are compared with those obtained using the mono-exponential, the stretched exponential, the fractional derivative, and the diffusion kurtosis models. Overall, we find that the order of the fractal time derivative, the diffusion coefficient, and the spectral entropy are potential biomarkers to differentiate between the microstructure of white and gray matter. In addition, we note that the fractal derivative model has practical advantages over the existing models from the

  8. A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis.

    PubMed

    Bu, Quan; Lei, Hanwu; Zacher, Alan H; Wang, Lu; Ren, Shoujie; Liang, Jing; Wei, Yi; Liu, Yupeng; Tang, Juming; Zhang, Qin; Ruan, Roger

    2012-11-01

    Catalytic hydrodeoxygenation (HDO) of lignin-derived phenols which are the lowest reactive chemical compounds in biomass pyrolysis oils has been reviewed. The hydrodeoxygenation (HDO) catalysts have been discussed including traditional HDO catalysts such as CoMo/Al(2)O(3) and NiMo/Al(2)O(3) catalysts and transition metal catalysts (noble metals). The mechanism of HDO of lignin-derived phenols was analyzed on the basis of different model compounds. The kinetics of HDO of different lignin-derived model compounds has been investigated. The diversity of bio-oils leads to the complexities of HDO kinetics. The techno-economic analysis indicates that a series of major technical and economical efforts still have to be investigated in details before scaling up the HDO of lignin-derived phenols in existed refinery infrastructure. Examples of future investigation of HDO include significant challenges of improving catalysts and optimum operation conditions, further understanding of kinetics of complex bio-oils, and the availability of sustainable and cost-effective hydrogen source. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Managing Complexity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chassin, David P.; Posse, Christian; Malard, Joel M.

    2004-08-01

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today’s most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically-based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This paper explores the state of the art in the use physical analogs for understanding the behavior of some econophysical systems and to deriving stable and robust controlmore » strategies for them. In particular we review and discussion applications of some analytic methods based on the thermodynamic metaphor according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood.« less

  10. Mixed La-Li heterobimetallic complexes for tertiary nitroaldol resolution.

    PubMed

    Tosaki, Shin-ya; Hara, Keiichi; Gnanadesikan, Vijay; Morimoto, Hiroyuki; Harada, Shinji; Sugita, Mari; Yamagiwa, Noriyuki; Matsunaga, Shigeki; Shibasaki, Masakatsu

    2006-09-13

    A kinetic resolution of tertiary nitroaldols derived from simple ketones is described. Mixed BINOL/biphenol La-Li heterobimetallic complexes gave the best selectivity in retro-nitroaldol reactions of racemic tertiary nitroaldols. By using a mixture of La-Li3-(1a)3 complex (LLB 2a) and La-Li3-(1b)3 (LLB* 2b) complex in a ratio of 2/1, chiral tertiary nitroaldols were obtained in 80-97% ee and 30-47% recovery yield.

  11. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    PubMed Central

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Leong, Susanna Su Jan; Chang, Matthew Wook

    2014-01-01

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes. PMID:25566540

  12. Neutral Porphyrin Derivative Exerts Anticancer Activity by Targeting Cellular Topoisomerase I (Top1) and Promotes Apoptotic Cell Death without Stabilizing Top1-DNA Cleavage Complexes

    PubMed Central

    2017-01-01

    Camptothecin (CPT) selectively traps topoisomerase 1-DNA cleavable complexes (Top1cc) to promote anticancer activity. Here, we report the design and synthesis of a new class of neutral porphyrin derivative 5,10-bis(4-carboxyphenyl)-15, 20-bis(4-dimethylaminophenyl)porphyrin (compound 8) as a potent catalytic inhibitor of human Top1. In contrast to CPT, compound 8 reversibly binds with the free enzyme and inhibits the formation of Top1cc and promotes reversal of the preformed Top1cc with CPT. Compound 8 induced inhibition of Top1cc formation in live cells was substantiated by fluorescence recovery after photobleaching (FRAP) assays. We established that MCF7 cells treated with compound 8 trigger proteasome-mediated Top1 degradation, accumulate higher levels of reactive oxygen species (ROS), PARP1 cleavage, oxidative DNA fragmentation, and stimulate apoptotic cell death without stabilizing apoptotic Top1-DNA cleavage complexes. Finally, compound 8 shows anticancer activity by targeting cellular Top1 and preventing the enzyme from directly participating in the apoptotic process. PMID:29290109

  13. Bordetella pertussis Proteins Dominating the Major Histocompatibility Complex Class II-Presented Epitope Repertoire in Human Monocyte-Derived Dendritic Cells

    PubMed Central

    Stenger, Rachel M.; Meiring, Hugo D.; Kuipers, Betsy; Poelen, Martien; van Gaans-van den Brink, Jacqueline A. M.; Boog, Claire J. P.; de Jong, Ad P. J. M.

    2014-01-01

    Knowledge of naturally processed Bordetella pertussis-specific T cell epitopes may help to increase our understanding of the basis of cell-mediated immune mechanisms to control this reemerging pathogen. Here, we elucidate for the first time the dominant major histocompatibility complex (MHC) class II-presented B. pertussis CD4+ T cell epitopes, expressed on human monocyte-derived dendritic cells (MDDC) after the processing of whole bacterial cells by use of a platform of immunoproteomics technology. Pertussis epitopes identified in the context of HLA-DR molecules were derived from two envelope proteins, i.e., putative periplasmic protein (PPP) and putative peptidoglycan-associated lipoprotein (PAL), and from two cytosolic proteins, i.e., 10-kDa chaperonin groES protein (groES) and adenylosuccinate synthetase (ASS). No epitopes were detectable from known virulence factors. CD4+ T cell responsiveness in healthy adults against peptide pools representing epitope regions or full proteins confirmed the immunogenicity of PAL, PPP, groES, and ASS. Elevated lymphoproliferative activity to PPP, groES, and ASS in subjects within a year after the diagnosis of symptomatic pertussis suggested immunogenic exposure to these proteins during clinical infection. The PAL-, PPP-, groES-, and ASS-specific responses were associated with secretion of functional Th1 (tumor necrosis factor alpha [TNF-α] and gamma interferon [IFN-γ]) and Th2 (interleukin 5 [IL-5] and IL-13) cytokines. Relative paucity in the natural B. pertussis epitope display of MDDC, not dominated by epitopes from known protective antigens, can interfere with the effectiveness of immune recognition of B. pertussis. A more complete understanding of hallmarks in B. pertussis-specific immunity may advance the design of novel immunological assays and prevention strategies. PMID:24599530

  14. Synthesis and amino acids complexation of tripodal hexasubstituted benzene chiral receptors

    NASA Astrophysics Data System (ADS)

    Choksakulporn, Saowanaporn; Punkvang, Auradee; Sritana-anant, Yongsak

    2015-02-01

    The parent 1,3,5-triacetyl-2,4,6-trihydroxybenzene was prepared in up to 91% yield using a one-pot, one step reaction catalyzed by aluminum chloride. Its alkylations with 1,5-dibromopentane generated a symmetric tripodal hexasubstituted benzene precursor in the alternated conformer predicted by a theoretical calculation. Subsequent substitutions and reductions provided the corresponding tris-amine in 59% yield. Aminations of the tripodal precursor with (R)-(+)-1-phenylethylamine obtained a chiral tris-amine ligand in 44% yield. 1H NMR titrations of this ligand with each of three L-amino acid derivatives as guest molecules confirmed the presence of their complexes, in which the complex with alanine derivative displayed the strongest interactions with the ligand. Job plots suggested that all complexes composed of 1:2 ratios of the ligand and these guests. Theoretical calculations additionally revealed the structures and the associated binding parameters of the complexes.

  15. Enantioseparation of mandelic acid derivatives by high performance liquid chromatography with substituted β-cyclodextrin as chiral mobile phase additive and evaluation of inclusion complex formation

    PubMed Central

    Tong, Shengqiang; Zhang, Hu; Shen, Mangmang

    2014-01-01

    The enantioseparation of ten mandelic acid derivatives was performed by reverse phase high performance liquid chromatography with hydroxypropyl-β-cyclodextrin (HP-β-CD) or sulfobutyl ether-β-cyclodextrin (SBE-β-CD) as chiral mobile phase additives, in which inclusion complex formations between cyclodextrins and enantiomers were evaluated. The effects of various factors such as the composition of mobile phase, concentration of cyclodextrins and column temperature on retention and enantioselectivity were studied. The peak resolutions and retention time of the enantiomers were strongly affected by the pH, the organic modifier and the type of β-cyclodextrin in the mobile phase, while the concentration of buffer solution and temperature had a relatively low effect on resolutions. Enantioseparations were successfully achieved on a Shimpack CLC-ODS column (150×4.6 mm i.d., 5 μm). The mobile phase was a mixture of acetonitrile and 0.10 mol L-1 of phosphate buffer at pH 2.68 containing 20 mmol L-1 of HP-β-CD or SBE-β-CD. Semi-preparative enantioseparation of about 10 mg of α-cyclohexylmandelic acid and α-cyclopentylmandelic acid were established individually. Cyclodextrin-enantiomer complex stoichiometries as well as binding constants were investigated. Results showed that stoichiomertries for all the inclusion complex of cyclodextrin-enantiomers were 1:1. PMID:24893270

  16. Terminal NiII-OH/-OH2 complexes in trigonal bipyramidal geometries derived from H2O.

    PubMed

    Lau, Nathanael; Sano, Yohei; Ziller, Joseph W; Borovik, A S

    2017-03-29

    The preparation and characterization of two Ni II complexes are described, a terminal Ni II -OH complex with the tripodal ligand tris[(N)-tertbutylureaylato)-N-ethyl)]aminato ([H 3 buea] 3- ) and a terminal Ni II -OH 2 complex with the tripodal ligand N , N ', N ″-[2,2',2″-nitrilotris(ethane-2,1-diyl)]tris(2,4,6-trimethylbenzenesulfonamido) ([MST] 3- ). For both complexes, the source of the -OH and -OH 2 ligand is water. The salts K 2 [Ni II H 3 buea(OH)] and NMe 4 [Ni II MST(OH 2 )] were characterized using perpendicular-mode X-band electronic paramagnetic resonance, Fourier transform infrared, UV-visible spectroscopies, and its electrochemical properties were evaluated using cyclic voltammetry. The solid state structures of these complexes determined by X-ray diffraction methods reveal that they adopt a distorted trigonal bipyramidal geometry, an unusual structure for 5-coordinate Ni II complexes. Moreover, the Ni II -OH and Ni II -OH 2 units form intramolecular hydrogen bonding networks with the [H 3 buea] 3- and [MST] 3- ligands. The oxidation chemistry of these complexes was explored by treating the high-spin Ni II compounds with one-electron oxidants. Species were formed with S = 1/2 spin ground states that are consistent with formation of monomeric Ni III species. While the formation of Ni III -OH complexes cannot be ruled out, the lack of observable O-H vibrations from the putative Ni-OH units suggest the possibility that other high valent Ni species are formed.

  17. Binding of immunoglobulins and immune complexes to cartilage derived extracts.

    PubMed Central

    Alomari, W R; Archer, J R; Brocklehurst, R; Currey, H L

    1983-01-01

    Cartilage extracts with affinity for heat aggregated immunoglobulins were prepared from human articular and bovine nasal cartilage. These extracts, containing predominantly collagen, also bound both to immune complexes (IC) prepared in vitro and to immunoglobulins from sera of many patients with rheumatoid arthritis (RA). Cryoprecipitation of rheumatoid sera removed material reacting with the extract and density gradient fractionation of a positive serum showed correlation between binding to the extract and to C1q. These results indicate that the binding materials in rheumatoid sera were likely to be IC. We suggest that some assays which apparently demonstrate anti-collagen autoantibodies in fact measure IC. These findings also have implications for models of the pathogenesis of RA. PMID:6606513

  18. Structural, theoretical and corrosion inhibition studies on some transition metal complexes derived from heterocyclic system

    NASA Astrophysics Data System (ADS)

    Gupta, Shraddha Rani; Mourya, Punita; Singh, M. M.; Singh, Vinod P.

    2017-06-01

    A Schiff base, (E)-N‧-((1H-indol-3-yl)methylene)-2-aminobenzohydrazide (Iabh) and its Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. These compounds have been characterized by different physico-chemical and spectroscopic tools (UV-Vis, IR, NMR and ESI-Mass). The molecular structure of Iabh is determined by single crystal X-ray diffraction technique. The ligand Iabh displays E-configuration about the >Cdbnd N- bond. The structure of ligand is stabilized by intra-molecular H-bonding. In all the metal complexes the ligand coordinates through azomethine-N and carbonyl-O resulting a distorted octahedral geometry for Mn(II), Co(II) and Cu(II) complexes in which chloride ions occupy axial positions. Ni(II) and Zn(II) complexes, however, form 4-coordinate distorted square planer and tetrahedral geometry around metal ion, respectively. The structures of the complexes have been satisfactorily modeled by calculations based on density functional theory (DFT) and time dependent-DFT (TD-DFT). The corrosion inhibition study of the compounds have been performed against mild steel in 0.5 M H2SO4 solution at 298 K by using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). They show appreciable corrosion inhibition property.

  19. Highly microporous carbons derived from a complex of glutamic acid and zinc chloride for use in supercapacitors

    NASA Astrophysics Data System (ADS)

    Dong, Xiao-Ling; Lu, An-Hui; He, Bin; Li, Wen-Cui

    2016-09-01

    The selection of carbon precursor is an important factor when designing carbon materials. In this study, a complex derived from L-glutamic acid and zinc chloride was used to prepare highly microporous carbons via facile pyrolysis. L-glutamic acid, a new carbon precursor with nitrogen functionality, coordinated with zinc chloride resulted in a homogeneous distribution of Zn2+ on the molecular level. During pyrolysis, the evaporation of the in situ formed zinc species creates an abundance of micropores together with the inert gases. The obtained carbons exhibit high specific surface area (SBET: 1203 m2 g-1) and a rich nitrogen content (4.52 wt%). In excess of 89% of the pore volume consists of micropores with pore size ranging from 0.5 to 1.2 nm. These carbons have been shown to be suitable for use as supercapacitor electrodes, and have been tested in 6 M KOH where a capacitance of 217 F g-1 was achieved at a current density of 0.5 A g-1. A long cycling life of 30 000 cycles was achieved at a current density of 1 A g-1, with only a 9% loss in capacity. The leakage current through a two-electrode device was measured as 2.3 μA per mg of electrode and the self-discharge characteristics were minimal.

  20. Stereoselective Synthesis of Cyclometalated Iridium (III) Complexes: Characterization and Photophysical Properties

    PubMed Central

    Yang, Liangru; von Zelewsky, Alex; Nguyen, Huong P.; Muller, Gilles; Labat, Gaël; Stoeckli-Evans, Helen

    2009-01-01

    The stereoselective synthesis of a highly luminescent neutral Ir(III) complex comprising two bidentate chiral, cyclometalating phenylpyridine derivatives, and one acetylacetonate as ligands is described. The final complex and some intermediates were characterized by X-ray structural analysis, NMR-, CD-, and CPL-spectroscopy. PMID:20161195

  1. Thermal Degradation of Complexes Derived from Cu (II) Groundnut (Arachis hypogaea) and Sesame (Sesamum indicum) Soaps

    NASA Astrophysics Data System (ADS)

    Joram, Anju; Sharma, Rashmi; Sharma, Arun kumar

    2018-05-01

    The complexes have been synthesized from Cu (II) soaps of groundnut (Arachis hypogaea) and sesame (Sesamum indicum) oils, with ligand containing nitrogen and sulfur atoms like 2-amino-6-methyl benzothiazole. The complexes were greenish brown in color. In order to study TGA, first characterized them by elemental analysis, and spectroscopic technique such as IR, NMR and ESR. From the analytical data, the stoichiometry's of the complexes have been observed to be 1:1 (metal:ligand). These complexes have been thermally analyzed using TGA techniques to determine their energy of activation. These complexes show three step thermal degradation corresponding to fatty acid components of the edible oils and each complex has three decomposition steps in the range of 439-738 K. Various equations like Coats-Redfern (CR), Horowitz-Metzger (HM) and Broido equations (BE) were applied to evaluate the energy of activation. The values of energy of activation are observed to be in the following order for both copper groundnut benzothiazole (CGB) and copper sesame benzothiazole (CSeB) complexes: CGB > CSeB. CGB is observed to be more stable than CSeB due to its higher activation energy. The above studies would provide significant information regarding the applications of synthesized agrochemicals and their safe removal through parameters obtained in degradation curves and its relation with energy.

  2. Interactions between 2,4-bis-pteridine-1,5-benzodiazepine and group 12 dihalides: synthesis, spectral and XRD structural studies and theoretical calculations.

    PubMed

    Illán-Cabeza, Nuria A; Jiménez-Pulido, Sonia B; Hueso-Ureña, Francisco; Peña-Ruiz, Tomás; Quirós-Olozábal, Miguel; Moreno-Carretero, Miguel N

    2016-11-28

    2,4-Bis(1,3,7-trimethyl-pteridine-2,4(1H,3H)-dione-6-yl)-2,3-dihydro-2-methyl-1H-1,5-benzodiazepine (DLMBZD) has been prepared and its molecular and crystal structures have been determined from spectral and XRD data. The benzodiazepine ligand was reacted with zinc(ii), cadmium(ii) and mercury(ii) chloride, bromide and iodide to give complexes with general formula [M(DLMBZD)X 2 ]. The complexes have been synthesized and characterized by IR, NMR and elemental analysis. The structure of seven complexes has been obtained by single crystal X-ray diffraction. In all the cases, the metal is (2 + 2 + 1)-five-coordinated by two halide ligands, two nitrogen atoms from pyrazine and diazepine rings and a carbonyl oxygen from a pteridine ring. The coordinated-metal environment is a square-based pyramid, with increasing trigonality from Hg(ii) to Zn(ii) complexes. To coordinate the metals, the ligand folds itself, establishing four intramolecular σ-π interactions with the pyrimidine and pyrazine rings. A topological analysis of the electron density using the Quantum Theory of Atoms in Molecules and the complexes stability has been performed.

  3. Chromium(IV)–Peroxo Complex Formation and Its Nitric Oxide Dioxygenase Reactivity

    PubMed Central

    Yokoyama, Atsutoshi; Han, Jung Eun; Cho, Jaeheung; Kubo, Minoru; Ogura, Takashi; Siegler, Maxime A.; Karlin, Kenneth D.; Nam, Wonwoo

    2012-01-01

    The O2 and NO reactivity of a Cr(II) complex bearing a 12-membered tetraazamacrocyclic TMC ligand, [CrII(12-TMC)(Cl)]+ (1), and the NO reactivity of its peroxo derivative, [CrIV(12-TMC)(O2)(Cl)]+ (2), are described. By contrast to the previously reported Cr(III)-superoxo complex, [CrIII(14-TMC)(O2)(Cl)]+, a Cr(IV)-peroxo complex (2) is formed in the reaction of 1 and O2. Full spectroscopic and X-ray analysis reveals that 2 possesses a side-on η2-peroxo ligation. A quantitative reaction of 2 with NO affords a reduction in Cr oxidation state and production of a Cr(III)-nitrato complex, [CrIII(12-TMC)(NO3)(Cl)]+ (3). The latter is suggested to form via a Cr(III)-peroxynitrite intermediate. A Cr(II)-nitrosyl complex, [CrII(12-TMC)(NO)(Cl)]+ (4), derived from 1 andNO could also be synthesized; however, it does not react with O2. PMID:22950528

  4. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives

    NASA Astrophysics Data System (ADS)

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-01

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L = cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF = N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu3 + in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu3 + ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of 5D0 and triplet state contracts.

  5. On deformation of complex continuum immersed in a plane space

    NASA Astrophysics Data System (ADS)

    Kovalev, V. A.; Murashkin, E. V.; Radayev, Y. N.

    2018-05-01

    The present paper is devoted to mathematical modelling of complex continua deformations considered as immersed in an external plane space. The complex continuum is defined as a differential manifold supplied with metrics induced by the external space. A systematic derivation of strain tensors by notion of isometric immersion of the complex continuum into a plane space of a higher dimension is proposed. Problem of establishing complete systems of irreducible objective strain and extrastrain tensors for complex continuum immersed in an external plane space is resolved. The solution to the problem is obtained by methods of the field theory and the theory of rational algebraic invariants. Strain tensors of the complex continuum are derived as irreducible algebraic invariants of contravariant vectors of the external space emerging as functional arguments in the complex continuum action density. Present analysis is restricted to rational algebraic invariants. Completeness of the considered systems of rational algebraic invariants is established for micropolar elastic continua. Rational syzygies for non-quadratic invariants are discussed. Objective strain tensors (indifferent to frame rotations in the external plane space) for micropolar continuum are alternatively obtained by properly combining multipliers of polar decompositions of deformation and extra-deformation gradients. The latter is realized only for continua immersed in a plane space of the equal mathematical dimension.

  6. The building blocks of economic complexity

    PubMed Central

    Hidalgo, César A.; Hausmann, Ricardo

    2009-01-01

    For Adam Smith, wealth was related to the division of labor. As people and firms specialize in different activities, economic efficiency increases, suggesting that development is associated with an increase in the number of individual activities and with the complexity that emerges from the interactions between them. Here we develop a view of economic growth and development that gives a central role to the complexity of a country's economy by interpreting trade data as a bipartite network in which countries are connected to the products they export, and show that it is possible to quantify the complexity of a country's economy by characterizing the structure of this network. Furthermore, we show that the measures of complexity we derive are correlated with a country's level of income, and that deviations from this relationship are predictive of future growth. This suggests that countries tend to converge to the level of income dictated by the complexity of their productive structures, indicating that development efforts should focus on generating the conditions that would allow complexity to emerge to generate sustained growth and prosperity. PMID:19549871

  7. Complex Nanostructures from Materials based on Metal-Organic Frameworks for Electrochemical Energy Storage and Conversion.

    PubMed

    Guan, Bu Yuan; Yu, Xin Yao; Wu, Hao Bin; Lou, Xiong Wen David

    2017-12-01

    Metal-organic frameworks (MOFs) have drawn tremendous attention because of their abundant diversity in structure and composition. Recently, there has been growing research interest in deriving advanced nanomaterials with complex architectures and tailored chemical compositions from MOF-based precursors for electrochemical energy storage and conversion. Here, a comprehensive overview of the synthesis and energy-related applications of complex nanostructures derived from MOF-based precursors is provided. After a brief summary of synthetic methods of MOF-based templates and their conversion to desirable nanostructures, delicate designs and preparation of complex architectures from MOFs or their composites are described in detail, including porous structures, single-shelled hollow structures, and multishelled hollow structures, as well as other unusual complex structures. Afterward, their applications are discussed as electrode materials or catalysts for lithium-ion batteries, hybrid supercapacitors, water-splitting devices, and fuel cells. Lastly, the research challenges and possible development directions of complex nanostructures derived from MOF-based-templates for electrochemical energy storage and conversion applications are outlined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Quantum computational complexity, Einstein's equations and accelerated expansion of the Universe

    NASA Astrophysics Data System (ADS)

    Ge, Xian-Hui; Wang, Bin

    2018-02-01

    We study the relation between quantum computational complexity and general relativity. The quantum computational complexity is proposed to be quantified by the shortest length of geodesic quantum curves. We examine the complexity/volume duality in a geodesic causal ball in the framework of Fermi normal coordinates and derive the full non-linear Einstein equation. Using insights from the complexity/action duality, we argue that the accelerated expansion of the universe could be driven by the quantum complexity and free from coincidence and fine-tunning problems.

  9. Bioengineered nisin derivatives with enhanced activity in complex matrices

    PubMed Central

    Rouse, Susan; Field, Des; Daly, Karen M.; O'Connor, Paula M.; Cotter, Paul D.; Hill, Colin; Ross, R. Paul

    2012-01-01

    Summary Nisin A is the best known and most extensively characterized lantibiotic. As it is ribosomally synthesized, bioengineering‐based strategies can be used to generate variants. We have previously demonstrated that bioengineering of the hinge region of nisin A can result in the generation of variants with enhanced anti‐microbial activity against Gram‐positive pathogens. Here we created a larger bank of hinge variant producers and screened for producers that exhibit enhanced bioactivity as assessed by agar‐based assays against a selection of target strains. Further analysis of 12 ‘lead’ variants reveals that in many cases enhanced bioactivity is not attributable to enhanced specific activity but is instead as a consequence of an enhanced ability to diffuse through complex polymers. In the case of two variants, which contain the residues SVA and NAK, respectively, within the hinge region, we demonstrate that this enhanced trait enables the peptides to dramatically outperform nisin A with respect to controlling Listeria monocytogenes in commercially produced chocolate milk that contains carrageenan as a stabilizer. PMID:22260415

  10. Synthesis and characterization of copper complexes of Schiff base derived from isatin and salicylic hydrazide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lekshmy, R. K., E-mail: lekshmyulloor@gmail.com, E-mail: tharapradeepkumar@yahoo.com; Thara, G. S., E-mail: lekshmyulloor@gmail.com, E-mail: tharapradeepkumar@yahoo.com

    A series of novel metal complexes of Schiff base have been prepared by the interaction of Cu(II) with isatin salicylic hydrazide. All the new compounds were characterized by elemental analysis, conductance measurement, magnetic moment determination, IR, UV, NMR, Mass and EPR spectral studies, thermal studies and microbial activities. The results indicate that the ligand acts as a tridentate chelating ligand coordinating through nitrogen and oxygen atoms. The ligand and complexes show inactive against Escherichia coli and active against Staphylococcus aureus and B.substilis. By analyzing the results of spectral, thermal and elemental analysis square planar geometry is proposed for all themore » complexes.« less

  11. Longitudinal Surveys of Australian Youth (LSAY): 1995 Cohort Derived Variables. Technical Report 69

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2012

    2012-01-01

    This technical report details the derived variables developed for users of the Longitudinal Surveys of Australian Youth (LSAY) data. The derived variables fall into the categories education, employment and social, and help to simplify the complexity of the LSAY data by providing useful indicators for analysis. To help LSAY data users understand…

  12. CORUM: the comprehensive resource of mammalian protein complexes

    PubMed Central

    Ruepp, Andreas; Brauner, Barbara; Dunger-Kaltenbach, Irmtraud; Frishman, Goar; Montrone, Corinna; Stransky, Michael; Waegele, Brigitte; Schmidt, Thorsten; Doudieu, Octave Noubibou; Stümpflen, Volker; Mewes, H. Werner

    2008-01-01

    Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. The CORUM (http://mips.gsf.de/genre/proj/corum/index.html) database is a collection of experimentally verified mammalian protein complexes. Information is manually derived by critical reading of the scientific literature from expert annotators. Information about protein complexes includes protein complex names, subunits, literature references as well as the function of the complexes. For functional annotation, we use the FunCat catalogue that enables to organize the protein complex space into biologically meaningful subsets. The database contains more than 1750 protein complexes that are built from 2400 different genes, thus representing 12% of the protein-coding genes in human. A web-based system is available to query, view and download the data. CORUM provides a comprehensive dataset of protein complexes for discoveries in systems biology, analyses of protein networks and protein complex-associated diseases. Comparable to the MIPS reference dataset of protein complexes from yeast, CORUM intends to serve as a reference for mammalian protein complexes. PMID:17965090

  13. Natural image statistics and low-complexity feature selection.

    PubMed

    Vasconcelos, Manuela; Vasconcelos, Nuno

    2009-02-01

    Low-complexity feature selection is analyzed in the context of visual recognition. It is hypothesized that high-order dependences of bandpass features contain little information for discrimination of natural images. This hypothesis is characterized formally by the introduction of the concepts of conjunctive interference and decomposability order of a feature set. Necessary and sufficient conditions for the feasibility of low-complexity feature selection are then derived in terms of these concepts. It is shown that the intrinsic complexity of feature selection is determined by the decomposability order of the feature set and not its dimension. Feature selection algorithms are then derived for all levels of complexity and are shown to be approximated by existing information-theoretic methods, which they consistently outperform. The new algorithms are also used to objectively test the hypothesis of low decomposability order through comparison of classification performance. It is shown that, for image classification, the gain of modeling feature dependencies has strongly diminishing returns: best results are obtained under the assumption of decomposability order 1. This suggests a generic law for bandpass features extracted from natural images: that the effect, on the dependence of any two features, of observing any other feature is constant across image classes.

  14. Exploring the predictive power of polygenic scores derived from genome-wide association studies: a study of 10 complex traits.

    PubMed

    So, Hon-Cheong; Sham, Pak C

    2017-03-15

    It is hoped that advances in our knowledge in disease genomics will contribute to personalized medicine such as individualized preventive strategies or early diagnoses of diseases. With the growth of genome-wide association studies (GWAS) in the past decade, how far have we reached this goal? In this study we explored the predictive ability of polygenic risk scores (PRSs) derived from GWAS for a range of complex disease and traits. We first proposed a new approach to evaluate predictive performances of PRS at arbitrary P -value thresholds. The method was based on corrected estimates of effect sizes, accounting for possible false positives and selection bias. This approach requires no distributional assumptions and only requires summary statistics as input. The validity of the approach was verified in simulations. We explored the predictive power of PRS for ten complex traits, including type 2 diabetes (DM), coronary artery disease (CAD), triglycerides, high- and low-density lipoprotein, total cholesterol, schizophrenia (SCZ), bipolar disorder (BD), major depressive disorder and anxiety disorders. We found that the predictive ability of PRS for CAD and DM were modest (best AUC = 0.608 and 0.607) while for lipid traits the prediction R-squared ranged from 16.1 to 29.8%. For psychiatric disorders, the predictive power for SCZ was estimated to be the highest (best AUC 0.820), followed by BD. Predictive performance of other psychiatric disorders ranged from 0.543 to 0.585. Psychiatric traits tend to have more gradual rise in AUC when significance thresholds increase and achieve the best predictive power at higher P -values than cardiometabolic traits. hcso@cuhk.edu.hk ; pcsham@hku.hk. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  15. Distribution, fate and formation of non-extractable residues of a nonylphenol isomer in soil with special emphasis on soil derived organo-clay complexes.

    PubMed

    Riefer, Patrick; Klausmeyer, Timm; Schäffer, Andreas; Schwarzbauer, Jan; Schmidt, Burkhard

    2011-01-01

    Anthropogenic contaminants like nonylphenols (NP) are added to soil, for instance if sewage-sludge is used as fertilizer in agriculture. A commercial mixture of NP consists of more than 20 isomers. For our study, we used one of the predominate isomers of NP mixtures, 4-(3,5-dimethylhept-3-yl)phenol, as a representative compound. The aim was to investigate the fate and distribution of the isomer within soil and soil derived organo-clay complexes. Therefore, (14)C- and (13)C-labeled NP was added to soil samples and incubated up to 180 days. Mineralization was measured and soil samples were fractionated into sand, silt and clay; the clay fraction was further separated in humic acids, fulvic acids and humin. The organo-clay complexes pre-incubated for 90 or 180 days were re-incubated with fresh soil for 180 days, to study the potential of re-mobilization of incorporated residues. The predominate incorporation sites of the nonylphenol isomer in soil were the organo-clay complexes. After 180 days of incubation, 22 % of the applied (14)C was mineralized. The bioavailable, water extractable portion was low (9 % of applied (14)C) and remained constant during the entire incubation period, which could be explained by an incorporation/release equilibrium. Separation of organo-clay complexes, after extraction with solvents to release weakly incorporated, bioaccessible portions, showed that non-extractable residues (NER) were preferentially located in the humic acid fraction, which was regarded as an effect of the chemical composition of this fraction. Generally, 27 % of applied (14)C was incorporated into organo-clay complexes as NER, whereas 9 % of applied (14)C was bioaccessible after 180 days of incubation. The re-mobilization experiments showed on the one hand, a decrease of the bioavailability of the nonylphenol residues due to stronger incorporation, when the pre-incubation period was increased from 90 to 180 days. On the other hand, a shift of these residues from the

  16. Antibacterial activity and spectral studies of trivalent chromium, manganese, iron macrocyclic complexes derived from oxalyldihydrazide and glyoxal.

    PubMed

    Singh, D P; Kumar, Ramesh; Singh, Jitender

    2009-06-01

    A new series of complexes is synthesized by template condensation of oxalyldihydrazide and glyoxal in methanolic medium in the presence of trivalent chromium, manganese and iron salts forming complexes of the type: [M(C(8)H(8)N(8)O(4))X]X(2) where M = Cr(III), Mn(III), Fe(III) and X = Cl(-1), NO(-1)(3), CH(3)COO(-1). The complexes have been characterized with the help of elemental analyses, conductance measurements, magnetic susceptibility measurements, electronic, NMR, infrared and far infrared spectral studies. On the basis of these studies, a five coordinate square pyramidal geometry for these complexes has been proposed. The biological activities of the metal complexes were tested in vitro against a number of pathogenic bacteria and some of the complexes exhibited remarkable antibacterial activities.

  17. Supramolecular assembly of group 11 phosphorescent metal complexes for chemosensors of alcohol derivatives

    NASA Astrophysics Data System (ADS)

    Lintang, H. O.; Ghazalli, N. F.; Yuliati, L.

    2018-04-01

    We report on systematic study on vapochromic sensing of ethanol by using phosphorescent trinuclear metal pyrazolate complexes with supramolecular assembly of weak intermolecular metal-metal interactions using 4-(3,5-dimethoxybenzyl)-3,5-dimethyl pyrazole ligand (1) and group 11 metal ions (Cu(I), Ag(I), Au(I)). Upon excitation at 284, the resulting complexes showed emission bands with a peak centered at 616, 473 and 612 nm for 2(Cu), 2(Ag) and 2(Au), respectively. Chemosensor 2(Cu) showed positive response to ethanol vapors in 5 mins by blue-shifting its emission band from 616 to 555 nm and emitting bright orange to green. Otherwise 2(Au) gave shifting from its emission band centered at 612 to 587 nm with Δλ of 25 nm (41%) and color changes from red-orange to light green-orange while 2(Ag) showed quenching in its original emission intensity at 473 nm in 40% with color changes from dark green to less emissive. These results demonstrate that sensing capability of chemosensor 2(Cu) with suitable molecular design of ligand and metal ion in the complex is due to the formation of a weak intermolecular hydrogen bonding interaction of O atom at the methoxy of the benzyl ring with the OH of the vapors at the outside of the molecules.

  18. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives.

    PubMed

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-05

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L=cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF=N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu(3+) in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu(3+) ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of (5)D0 and triplet state contracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Wave field synthesis of moving virtual sound sources with complex radiation properties.

    PubMed

    Ahrens, Jens; Spors, Sascha

    2011-11-01

    An approach to the synthesis of moving virtual sound sources with complex radiation properties in wave field synthesis is presented. The approach exploits the fact that any stationary sound source of finite spatial extent radiates spherical waves at sufficient distance. The angular dependency of the radiation properties of the source under consideration is reflected by the amplitude and phase distribution on the spherical wave fronts. The sound field emitted by a uniformly moving monopole source is derived and the far-field radiation properties of the complex virtual source under consideration are incorporated in order to derive a closed-form expression for the loudspeaker driving signal. The results are illustrated via numerical simulations of the synthesis of the sound field of a sample moving complex virtual source.

  20. Zwitterionic metal carboxylate complexes: In solid state

    NASA Astrophysics Data System (ADS)

    Nath, Bhaskar; Kalita, Dipjyoti; Baruah, Jubaraj B.

    2012-07-01

    A flexible dicarboxylic acid having composition [(CH(o-C5H4N)(p-C6H4OCH2CO2H)2] derived from corresponding bis-phenol reacts with various metal(II) acetates such as manganese(II), cobalt(II) and nickel(II) acetate leads to zwtterionic complexes with compositions [CH(o-C5H4N)(p-C6H4OCH2CO2){p-C6H4OCH2CO2M(H2O)5}].6H2O (where M = Mn, Co, Ni). The complexes are characterised by X-ray crystallography. These complexes have chiral center due to unsymmetric structure conferred to the ligand through coordination at only one carboxylate group of the ligand. In solid state these complexes are racemic.

  1. The hopf algebra of vector fields on complex quantum groups

    NASA Astrophysics Data System (ADS)

    Drabant, Bernhard; Jurčo, Branislav; Schlieker, Michael; Weich, Wolfgang; Zumino, Bruno

    1992-10-01

    We derive the equivalence of the complex quantum enveloping algebra and the algebra of complex quantum vector fields for the Lie algebra types A n , B n , C n , and D n by factorizing the vector fields uniquely into a triangular and a unitary part and identifying them with the corresponding elements of the algebra of regular functionals.

  2. Chitosan derivatives for gene transfer: effect of phosphorylcholine and diethylaminoethyl grafts on the in vitro transfection efficiency.

    PubMed

    Picola, Isadora Pfeifer Dalla; Shi, Qin; Fernandes, Júlio Cesar; Petrônio, Maicon Segalla; Lima, Aline Margarete Furuyama; de Oliveira Tiera, Vera Aparecida; Tiera, Marcio José

    2016-11-01

    The purpose of this work was to improve the functional properties of chitosan for gene transfer by inserting phosphorylcholine (PC) and diethylaminoethyl (DEAE) groups into the main chain. A series of derivatives containing increasing contents of DEAE and a fixed content of PC groups were synthesized and characterized, aiming to evaluate the effect of these groups on the nanoparticles' properties and the in vitro transfection efficiency. The derivatives were soluble at physiological pH levels and all derivatives were less cytotoxic than the control, the lipid lipofectamine. The obtained derivatives complexed pDNA into nanoparticles with smaller sizes and higher zeta potentials than plain chitosan. The in vitro transfection was performed with nanoparticles prepared at pH 6.3 and 7.4 and the results showed that nanoparticles prepared with derivatives containing 20% of PC groups (PC18-CH) and high degrees of substitution by DEAE (PC20-CH-DEAE100, CH-DEAE80, CH-DEAE100) displayed the better transfection efficiencies in HeLa cells, reaching relative values comparable to lipofectamine. The most effective derivative, PC18CH, was selected for complexation with siRNA and its complexes demonstrated an in vitro knockdown efficiency highly dependent on the N/P ratio. Our combined results indicated that, by means of controlled modifications, the limitations of chitosan can be overcome to obtain more effective carriers based on chitosan, and the derivatives here studied hold potential for in vivo studies.

  3. Coordination Polymers Containing 1,3-Phenylenebis-((1H-1,2,4-triazol-1-yl)methanone) Ligand: Synthesis and ε-Caprolactone Polymerization Behavior.

    PubMed

    Bello-Vieda, Nestor J; Murcia, Ricardo A; Muñoz-Castro, Alvaro; Macías, Mario A; Hurtado, John J

    2017-11-10

    The reaction of isophthaloyl dichloride with 1 H -1,2,4-triazole afforded the new ligand 1,3-phenylenebis(1,2,4-triazole-1-yl)methanone ( 1 ). A series of Co(II), Cu(II), Zn(II) and Ni(II) complexes were synthesized using 1 and then characterized by melting point analysis, elemental analysis, theoretical calculations, thermogravimetric analysis, X-ray powder diffraction, nuclear magnetic resonance, infrared and Raman spectroscopy. Experimental and computational studies predict the formation of coordination polymers (CPs). The cobalt and copper CPs and zinc(II) complex were found to be good initiators for the ring-opening polymerization of ε-caprolactone (CL) under solvent-free conditions. ¹H-NMR analysis showed that the obtained polymers of CL were mainly linear and had terminal hydroxymethylene groups. Differential scanning calorimetry showed that the obtained polycaprolactones had high crystallinity, and TGA showed that they had decomposition temperatures above 400 °C. These results provide insight and guidance for the design of metal complexes with potential applications in the polymerization of CL.

  4. Bending nanofibers into nanospirals: coordination chemistry as a tool for shaping hydrophobic assemblies.

    PubMed

    Kossoy, Elizaveta; Weissman, Haim; Rybtchinski, Boris

    2015-01-02

    In the current work, we demonstrate how coordination chemistry can be employed to direct self-assembly based on strong hydrophobic interactions. To investigate the influence of coordination sphere geometry on aqueous self-assembly, we synthesized complexes of the amphiphilic perylene diimide terpyridine ligand with the first-row transition-metal centers (zinc, cobalt, and nickel). In aqueous medium, aggregation of these complexes is induced by hydrophobic interactions between the ligands. However, the final shapes of the resulting assemblies depend on the preferred geometry of the coordination spheres typical for the particular metal center. The self-assembly process was characterized by UV/Vis spectroscopy, zeta potential measurements, and cryogenic transmission electron microscopy (cryo-TEM). Coordination of zinc(II) and cobalt(II) leads to the formation of unique nanospiral assemblies, whereas complexation of nickel(II) leads to the formation of straight nanofibers. Notably, coordination bonds are utilized not as connectors between elementary building blocks, but as directing interactions, enabling control over supramolecular geometry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Structural analysis of fungus-derived FAD glucose dehydrogenase

    PubMed Central

    Yoshida, Hiromi; Sakai, Genki; Mori, Kazushige; Kojima, Katsuhiro; Kamitori, Shigehiro; Sode, Koji

    2015-01-01

    We report the first three-dimensional structure of fungus-derived glucose dehydrogenase using flavin adenine dinucleotide (FAD) as the cofactor. This is currently the most advanced and popular enzyme used in glucose sensor strips manufactured for glycemic control by diabetic patients. We prepared recombinant nonglycosylated FAD-dependent glucose dehydrogenase (FADGDH) derived from Aspergillus flavus (AfGDH) and obtained the X-ray structures of the binary complex of enzyme and reduced FAD at a resolution of 1.78 Å and the ternary complex with reduced FAD and D-glucono-1,5-lactone (LGC) at a resolution of 1.57 Å. The overall structure is similar to that of fungal glucose oxidases (GOxs) reported till date. The ternary complex with reduced FAD and LGC revealed the residues recognizing the substrate. His505 and His548 were subjected for site-directed mutagenesis studies, and these two residues were revealed to form the catalytic pair, as those conserved in GOxs. The absence of residues that recognize the sixth hydroxyl group of the glucose of AfGDH, and the presence of significant cavity around the active site may account for this enzyme activity toward xylose. The structural information will contribute to the further engineering of FADGDH for use in more reliable and economical biosensing technology for diabetes management. PMID:26311535

  6. Self-templating synthesis of hollow spheres of MOFs and their derived nanostructures.

    PubMed

    Chuan Tan, Ying; Chun Zeng, Hua

    2016-10-04

    An aqueous one-pot self-templating synthesis method to prepare highly uniform ZIF-67 hollow spheres (ZIF-67-HS) and their transition metal-doped derivatives (M/ZIF-67-HS, M = Cu and/or Zn) was developed. Extension of this approach to another important class of MOFs (metal carboxylates; e.g., HKUST-1) and facile design of derived nanostructures with complex architectures were also achieved.

  7. Novel semisynthetic antibiotics from caprazamycins A-G: caprazene derivatives and their antibacterial activity.

    PubMed

    Takahashi, Yoshiaki; Igarashi, Masayuki; Miyake, Toshiaki; Soutome, Hiromi; Ishikawa, Kanae; Komatsuki, Yasuhiro; Koyama, Yoshiko; Nakagawa, Naoko; Hattori, Seiko; Inoue, Kunio; Doi, Norio; Akamatsu, Yuzuru

    2013-03-01

    Acidic treatment of a mixture of caprazamycins (CPZs) A-G isolated from a screen of novel antimycobacterial agents gave caprazene, a core structure of CPZs, in high yield. Chemical modification of the resulting caprazene was performed to give its various derivatives. The structure-activity relationships of the caprazene derivatives against several mycobacterial species and pathogenic Gram-positive and Gram-negative bacteria were studied. Although caprazene showed no antibacterial activity, the antibacterial activity was restored for its 1'''-alkylamide, 1'''-anilide and 1'''-ester derivatives. Compounds 4b (CPZEN-45), 4d (CPZEN-48), 4f and 4g (CPZEN-51) exhibited more potent activities against Mycobacterium tuberculosis and M. avium complex strains than CPZ-B. These results suggest that caprazene would be a good precursor from which novel semisynthetic antibacterial antibiotics can be designed for the treatment of mycobacterial diseases such as tuberculosis and M. avium complex infection.

  8. Multi-frequency complex network from time series for uncovering oil-water flow structure.

    PubMed

    Gao, Zhong-Ke; Yang, Yu-Xuan; Fang, Peng-Cheng; Jin, Ning-De; Xia, Cheng-Yi; Hu, Li-Dan

    2015-02-04

    Uncovering complex oil-water flow structure represents a challenge in diverse scientific disciplines. This challenge stimulates us to develop a new distributed conductance sensor for measuring local flow signals at different positions and then propose a novel approach based on multi-frequency complex network to uncover the flow structures from experimental multivariate measurements. In particular, based on the Fast Fourier transform, we demonstrate how to derive multi-frequency complex network from multivariate time series. We construct complex networks at different frequencies and then detect community structures. Our results indicate that the community structures faithfully represent the structural features of oil-water flow patterns. Furthermore, we investigate the network statistic at different frequencies for each derived network and find that the frequency clustering coefficient enables to uncover the evolution of flow patterns and yield deep insights into the formation of flow structures. Current results present a first step towards a network visualization of complex flow patterns from a community structure perspective.

  9. Synthesis and characterization of tin(II) complexes of fluorinated Schiff bases derived from amino acids.

    PubMed

    Singh, Har Lal

    2010-07-01

    New tin(II) complexes of general formula Sn(L)(2) (L=monoanion of 3-methyl-4-fluoro-acetophenone phenylalanine L(1)H, 3-methyl-4-fluoro-acetophenone alanine L(2)H, 3-methyl-4-fluoro acetophenone tryptophan L(3)H, 3-methyl-4-fluoro-acetophenone valine L(4)H, 3-methyl-4-fluoro-acetophenone isoleucine L(5)H and 3-methyl-4-fluoro-acetophenone glycine L(6)H) have been prepared. It is characterized by elemental analyses, molar conductance measurements and molecular weight determinations. Bonding of these complexes is discussed in terms of their UV-visible, infrared, and nuclear magnetic resonance ((1)H, (13)C, (19)F and (119)Sn NMR) spectral studies. The ligands act as bidentate towards metal ions, via the azomethine nitrogen and deprotonated oxygen of the respective amino acid. Elemental analyses and NMR spectral data of the ligands with their tin(II) complexes agree with their proposed square pyramidal structures. A few representative ligands and their tin complexes have been screened for their antibacterial activities and found to be quite active in this respect. Copyright 2010 Elsevier B.V. All rights reserved.

  10. A review on methods of recovery of acid(s) from spent pickle liquor of steel industry.

    PubMed

    Ghare, N Y; Wani, K S; Patil, V S

    2013-04-01

    Pickling is the process of removal of oxide layer and rust formed on metal surface. It also removes sand and corrosion products from the surface of metal. Acids such as sulfuric acid, hydrochloric acid are used for pickling. Hydrofluoric acid-Nitric acid mixture is used for stainless steel pickling. Pickling solutions are spent when acid concentration in pickling solutions decreases by 75-85%, which also has metal content up to 150-250 g/ dm3. Spent pickling liquor (SPL) should be dumped because the efficiency of pickling decreases with increasing content of dissolved metal in the bath. The SPL content depends on the plant of origin and the pickling method applied there. SPL from steel pickling in hot-dip galvanizing plants contains zinc(II), iron, traces of lead, chromium. and other heavy metals (max. 500 mg/dm3) and hydrochloric acid. Zinc(II) passes tothe spent solution after dissolution of this metal from zinc(II)-covered racks, chains and baskets used for transportation of galvanized elements. Unevenly covered zinc layers are usually removed in another pickling bath. Due to this, zinc(II) concentration increases even up to 110 g/dm3, while iron content may reach or exceed even 80 g/dm3 in the same solution. This review presents an overview on different aspects of generation and treatment of SPL with recourse to recovery of acid for recycling. Different processes are described in this review and higher weightage is given to membrane processes.

  11. Preparation and adsorption characteristics for heavy metals of active silicon adsorbent from leaching residue of lead-zinc tailings.

    PubMed

    Lei, Chang; Yan, Bo; Chen, Tao; Xiao, Xian-Ming

    2018-05-19

    To comprehensively reuse the leaching residue obtained from lead-zinc tailings, an active silicon adsorbent (ASA) was prepared from leaching residue and studied as an adsorbent for copper(II), lead(II), zinc(II), and cadmium(II) in this paper. The ASA was prepared by roasting the leaching residue with either a Na 2 CO 3 /residue ratio of 0.6:1 at 700 °C for 1 h or a CaCO 3 /residue ratio of 0.8:1 at 800 °C for 1 h. Under these conditions, the available SiO 2 content of the ASA was more than 20%. The adsorption behaviors of the metal ions onto the ASA were investigated and the Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models were used to analyze the adsorption isotherm. The result showed that the maximum adsorption capacities of copper(II), lead(II), cadmium(II), and zinc(II) calculated by the Langmuir model were 3.40, 2.83, 0.66, and 0.62 mmol g -1 , respectively. The FT-IR spectra of the ASA and the mean free adsorption energies indicated that ion exchange was the mechanism of copper(II), lead(II), and cadmium(II) adsorption and that chemical reaction was the mechanism of zinc(II) adsorption. These results provide a method for reusing the leaching residue obtained from lead-zinc tailings and show that the ASA is an effective adsorbent for heavy metal pollution remediation.

  12. Enabling quaternion derivatives: the generalized HR calculus

    PubMed Central

    Xu, Dongpo; Jahanchahi, Cyrus; Took, Clive C.; Mandic, Danilo P.

    2015-01-01

    Quaternion derivatives exist only for a very restricted class of analytic (regular) functions; however, in many applications, functions of interest are real-valued and hence not analytic, a typical case being the standard real mean square error objective function. The recent HR calculus is a step forward and provides a way to calculate derivatives and gradients of both analytic and non-analytic functions of quaternion variables; however, the HR calculus can become cumbersome in complex optimization problems due to the lack of rigorous product and chain rules, a consequence of the non-commutativity of quaternion algebra. To address this issue, we introduce the generalized HR (GHR) derivatives which employ quaternion rotations in a general orthogonal system and provide the left- and right-hand versions of the quaternion derivative of general functions. The GHR calculus also solves the long-standing problems of product and chain rules, mean-value theorem and Taylor's theorem in the quaternion field. At the core of the proposed GHR calculus is quaternion rotation, which makes it possible to extend the principle to other functional calculi in non-commutative settings. Examples in statistical learning theory and adaptive signal processing support the analysis. PMID:26361555

  13. Enabling quaternion derivatives: the generalized HR calculus.

    PubMed

    Xu, Dongpo; Jahanchahi, Cyrus; Took, Clive C; Mandic, Danilo P

    2015-08-01

    Quaternion derivatives exist only for a very restricted class of analytic (regular) functions; however, in many applications, functions of interest are real-valued and hence not analytic, a typical case being the standard real mean square error objective function. The recent HR calculus is a step forward and provides a way to calculate derivatives and gradients of both analytic and non-analytic functions of quaternion variables; however, the HR calculus can become cumbersome in complex optimization problems due to the lack of rigorous product and chain rules, a consequence of the non-commutativity of quaternion algebra. To address this issue, we introduce the generalized HR (GHR) derivatives which employ quaternion rotations in a general orthogonal system and provide the left- and right-hand versions of the quaternion derivative of general functions. The GHR calculus also solves the long-standing problems of product and chain rules, mean-value theorem and Taylor's theorem in the quaternion field. At the core of the proposed GHR calculus is quaternion rotation, which makes it possible to extend the principle to other functional calculi in non-commutative settings. Examples in statistical learning theory and adaptive signal processing support the analysis.

  14. New Fluorescent Macrolide Derivatives for Studying Interactions of Antibiotics and Their Analogs with the Ribosomal Exit Tunnel.

    PubMed

    Tereshchenkov, A G; Shishkina, A V; Karpenko, V V; Chertkov, V A; Konevega, A L; Kasatsky, P S; Bogdanov, A A; Sumbatyan, N V

    2016-10-01

    Novel fluorescent derivatives of macrolide antibiotics related to tylosin bearing rhodamine, fluorescein, Alexa Fluor 488, BODIPY FL, and nitrobenzoxadiazole (NBD) residues were synthesized. The formation of complexes of these compounds with 70S E. coli ribosomes was studied by measuring the fluorescence polarization depending on the ribosome amount at constant concentration of the fluorescent substance. With the synthesized fluorescent tylosin derivatives, the dissociation constants for ribosome complexes with several known antibiotics and macrolide analogs previously obtained were determined. It was found that the fluorescent tylosin derivatives containing BODIPY FL and NBD groups could be used to screen the binding of novel antibiotics to bacterial ribosomes in the macrolide-binding site.

  15. A turn-on fluorescent chemosensor for Zn2+ ion: X-ray structure and application in cell imaging study

    NASA Astrophysics Data System (ADS)

    Ghosh, Koushik; Dey, Sudipto; Halder, Shibashis; Bhattacharjee, Aradhita; Rizzoli, Corrado; Roy, Partha

    2016-08-01

    The selective fluorescence zinc(II) sensing properties of a Schiff-base compound, 2-methoxy-6-(2-morpholinoethyliminomethyl)phenol (HL) have been explored. The emission intensity of HL in the presence of one equivalent of Zn2+ ion increases by about 25 times. Several other metal ions, except Cd2+ and Ni2+, have not been able to increase the emission intensity of HL significantly. The quantum yield and life-time of HL have also been increased in the presence of Zn2+ ions. The enhancement in fluorescence intensity of HL is mainly due to the restriction of ESIPT, CHEF and PET on complex formation. HL forms a complex with Zn2+ in 1:1 ratio as evidenced by Job's plot analysis and X-ray single crystal structure determination. Some theoretical calculations have been performed to get a better view on the nature of the observed electronic transitions. The probe has been applied for imaging of DLD-1, human colorectal adenocarcinoma cell.

  16. Origins of Aminergic Regulation of Behavior in Complex Insect Social Systems

    PubMed Central

    Kamhi, J. Frances; Arganda, Sara; Moreau, Corrie S.; Traniello, James F. A.

    2017-01-01

    Neuromodulators are conserved across insect taxa, but how biogenic amines and their receptors in ancestral solitary forms have been co-opted to control behaviors in derived socially complex species is largely unknown. Here we explore patterns associated with the functions of octopamine (OA), serotonin (5-HT) and dopamine (DA) in solitary ancestral insects and their derived functions in eusocial ants, bees, wasps and termites. Synthesizing current findings that reveal potential ancestral roles of monoamines in insects, we identify physiological processes and conserved behaviors under aminergic control, consider how biogenic amines may have evolved to modulate complex social behavior, and present focal research areas that warrant further study. PMID:29066958

  17. Novel unsymmetrical P/O substituted ferrocene ligands and the first structurally characterised hydroxyferrocene derivative.

    PubMed

    Atkinson, Robert C J; Gibson, Vernon C; Long, Nicholas J; White, Andrew J P; Williams, David J

    2004-06-21

    Two new unsymmetrical 1'-substituted hydroxyferrocene ligands featuring either phosphine or phosphine oxide substituents have been synthesised and the phosphine oxide derivative has been structurally characterised. A nickel complex of the hydroxyl/phosphine ligand has been formed, along with preliminary evaluation of the complex for catalysis of ethylene polymerisation.

  18. Statistical Determinants of Selective Ionic Complexation: Ions in Solvent, Transport Proteins, and Other “Hosts”

    PubMed Central

    Bostick, David L.; Brooks, Charles L.

    2009-01-01

    To provide utility in understanding the molecular evolution of ion-selective biomembrane channels/transporters, globular proteins, and ionophoric compounds, as well as in guiding their modification and design, we present a statistical mechanical basis for deconstructing the impact of the coordination structure and chemistry of selective multidentate ionic complexes. The deconstruction augments familiar ideas in liquid structure theory to realize the ionic complex as an open ion-ligated system acting under the influence of an “external field” provided by the host (or surrounding medium). Using considerations derived from this basis, we show that selective complexation arises from exploitation of a particular ion's coordination preferences. These preferences derive from a balance of interactions much like that which dictates the Hofmeister effect. By analyzing the coordination-state space of small family IA and VIIA ions in simulated fluid media, we derive domains of coordinated states that confer selectivity for a given ion upon isolating and constraining particular attributes (order parameters) of a complex comprised of a given type of ligand. We demonstrate that such domains may be used to rationalize the ion-coordinated environments provided by selective ionophores and biological ion channels/transporters of known structure, and that they can serve as a means toward deriving rational design principles for ion-selective hosts. PMID:19486671

  19. Synthesis of Diiron(I) Dithiolato Carbonyl Complexes.

    PubMed

    Li, Yulong; Rauchfuss, Thomas B

    2016-06-22

    Virtually all organosulfur compounds react with Fe(0) carbonyls to give the title complexes. These reactions are reviewed in light of major advances over the past few decades, spurred by interest in Fe2(μ-SR)2(CO)x centers at the active sites of the [FeFe]-hydrogenase enzymes. The most useful synthetic route to Fe2(μ-SR)2(CO)6 involves the reaction of thiols with Fe2(CO)9 and Fe3(CO)12. Such reactions can proceed via mono-, di-, and triiron intermediates. The reactivity of Fe(0) carbonyls toward thiols is highly chemoselective, and the resulting dithiolato complexes are fairly rugged. Thus, many complexes tolerate further synthetic elaboration directed at the organic substituents. A second major route involves alkylation of Fe2(μ-S2)(CO)6, Fe2(μ-SH)2(CO)6, and Li2Fe2(μ-S)2(CO)6. This approach is especially useful for azadithiolates Fe2[(μ-SCH2)2NR](CO)6. Elaborate complexes arise via addition of the FeSH group to electrophilic alkenes, alkynes, and carbonyls. Although the first example of Fe2(μ-SR)2(CO)6 was prepared from ferrous reagents, ferrous compounds are infrequently used, although the Fe(II)(SR)2 + Fe(0) condensation reaction is promising. Almost invariably low-yielding, the reaction of Fe3(CO)12, S8, and a variety of unsaturated substrates results in C-H activation, affording otherwise inaccessible derivatives. Thiones and related C═S-containing reagents are highly reactive toward Fe(0), often giving complexes derived from substituted methanedithiolates and C-H activation.

  20. Complex coacervate-based materials for biomedicine.

    PubMed

    Blocher, Whitney C; Perry, Sarah L

    2017-07-01

    There has been increasing interest in complex coacervates for deriving and transporting biomaterials. Complex coacervates are a dense, polyelectrolyte-rich liquid that results from the electrostatic complexation of oppositely charged macroions. Coacervates have long been used as a strategy for encapsulation, particularly in food and personal care products. More recent efforts have focused on the utility of this class of materials for the encapsulation of small molecules, proteins, RNA, DNA, and other biomaterials for applications ranging from sensing to biomedicine. Furthermore, coacervate-related materials have found utility in other areas of biomedicine, including cartilage mimics, tissue culture scaffolds, and adhesives for wet, biological environments. Here, we discuss the self-assembly of complex coacervate-based materials, current challenges in the intelligent design of these materials, and their utility applications in the broad field of biomedicine. WIREs Nanomed Nanobiotechnol 2017, 9:e1442. doi: 10.1002/wnan.1442 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.