Sample records for zinnia elegans jacquin

  1. Phomalactone from a phytopathogenic fungus infecting Zinnia elegans (Asteraceae) leaves

    USDA-ARS?s Scientific Manuscript database

    Zinnia elegans plants are infected by a fungus that causes necrosis with dark red spots particularly in late spring to the middle of summer in the Mid-South part of the United States. This fungal disease when untreated causes the leaves to wilt and eventually kills the plant. The fungus was isolated...

  2. Xylogenesis in zinnia (Zinnia elegans) cell cultures: unravelling the regulatory steps in a complex developmental programmed cell death event.

    PubMed

    Iakimova, Elena T; Woltering, Ernst J

    2017-04-01

    Physiological and molecular studies support the view that xylogenesis can largely be determined as a specific form of vacuolar programmed cell death (PCD). The studies in xylogenic zinnia cell culture have led to many breakthroughs in xylogenesis research and provided a background for investigations in other experimental models in vitro and in planta . This review discusses the most essential earlier and recent findings on the regulation of xylem elements differentiation and PCD in zinnia and other xylogenic systems. Xylogenesis (the formation of water conducting vascular tissue) is a paradigm of plant developmental PCD. The xylem vessels are composed of fused tracheary elements (TEs)-dead, hollow cells with patterned lignified secondary cell walls. They result from the differentiation of the procambium and cambium cells and undergo cell death to become functional post-mortem. The TE differentiation proceeds through a well-coordinated sequence of events in which differentiation and the programmed cellular demise are intimately connected. For years a classical experimental model for studies on xylogenesis was the xylogenic zinnia (Zinnia elegans) cell culture derived from leaf mesophyll cells that, upon induction by cytokinin and auxin, transdifferentiate into TEs. This cell system has been proven very efficient for investigations on the regulatory components of xylem differentiation which has led to many discoveries on the mechanisms of xylogenesis. The knowledge gained from this system has potentiated studies in other xylogenic cultures in vitro and in planta. The present review summarises the previous and latest findings on the hormonal and biochemical signalling, metabolic pathways and molecular and gene determinants underlying the regulation of xylem vessels differentiation in zinnia cell culture. Highlighted are breakthroughs achieved through the use of xylogenic systems from other species and newly introduced tools and analytical approaches to study the

  3. Imaging Cell Wall Architecture in Single Zinnia elegans Tracheary Elements1[OA

    PubMed Central

    Lacayo, Catherine I.; Malkin, Alexander J.; Holman, Hoi-Ying N.; Chen, Liang; Ding, Shi-You; Hwang, Mona S.; Thelen, Michael P.

    2010-01-01

    The chemical and structural organization of the plant cell wall was examined in Zinnia elegans tracheary elements (TEs), which specialize by developing prominent secondary wall thickenings underlying the primary wall during xylogenesis in vitro. Three imaging platforms were used in conjunction with chemical extraction of wall components to investigate the composition and structure of single Zinnia TEs. Using fluorescence microscopy with a green fluorescent protein-tagged Clostridium thermocellum family 3 carbohydrate-binding module specific for crystalline cellulose, we found that cellulose accessibility and binding in TEs increased significantly following an acidified chlorite treatment. Examination of chemical composition by synchrotron radiation-based Fourier-transform infrared spectromicroscopy indicated a loss of lignin and a modest loss of other polysaccharides in treated TEs. Atomic force microscopy was used to extensively characterize the topography of cell wall surfaces in TEs, revealing an outer granular matrix covering the underlying meshwork of cellulose fibrils. The internal organization of TEs was determined using secondary wall fragments generated by sonication. Atomic force microscopy revealed that the resulting rings, spirals, and reticulate structures were composed of fibrils arranged in parallel. Based on these combined results, we generated an architectural model of Zinnia TEs composed of three layers: an outermost granular layer, a middle primary wall composed of a meshwork of cellulose fibrils, and inner secondary wall thickenings containing parallel cellulose fibrils. In addition to insights in plant biology, studies using Zinnia TEs could prove especially productive in assessing cell wall responses to enzymatic and microbial degradation, thus aiding current efforts in lignocellulosic biofuel production. PMID:20592039

  4. Phomalactone from a Phytopathogenic Fungus Infecting ZINNIA elegans (ASTERACEAE) Leaves.

    PubMed

    Meepagala, Kumudini M; Johnson, Robert D; Techen, Natascha; Wedge, David E; Duke, Stephen O

    2015-07-01

    Zinnia elegans Jacq. plants are infected by a fungus that causes dark red spots with necrosis on leaves, particularly in late spring to the middle of summer in the Mid-South of the United States. This fungal disease causes the leaves to wilt and eventually kills the plant. The fungus was isolated, cultured in potato dextrose broth, and identified as Nigrospora sphaerica by molecular techniques. Two major lactone metabolites (phomalactone and catenioblin A) were isolated from liquid culture of N. sphaerica isolated from Z. elegans. When injected into leaves of Z. elegans, phomalactone caused lesions similar to those of the fungus. The lesion sizes were proportional to the concentration of the phomalactone. Phomalactone, but not catenioblin A, was phytotoxic to Z. elegans and other plant species by inhibition of seedling growth and by causing electrolyte leakage from photosynthetic tissues of both Z. elegans leaves and cucumber cotyledons. This latter effect may be related to the wilting caused by the fungus in mature Z. elegans plants. Phomalactone was moderately fungicidal to Coletotrichum fragariae and two Phomopsis species, indicating that the compound may keep certain other fungi from encroaching into plant tissue that N. sphaerica has infected. Production of large amounts of phomalactone by N. sphaerica contributes to the pathogenic behavior of this fungus, and may have other ecological functions in the interaction of N. sphaerica with other fungi. This is the first report of isolation of catenioblin A from a plant pathogenic fungus. The function of catenioblin A is unclear, as it was neither significantly phyto- nor fungitoxic.

  5. Galactoglucomannans increase cell population density and alter the protoxylem/metaxylem tracheary element ratio in xylogenic cultures of Zinnia.

    PubMed

    Benová-Kákosová, Anna; Digonnet, Catherine; Goubet, Florence; Ranocha, Philippe; Jauneau, Alain; Pesquet, Edouard; Barbier, Odile; Zhang, Zhinong; Capek, Peter; Dupree, Paul; Lisková, Desana; Goffner, Deborah

    2006-10-01

    Xylogenic cultures of zinnia (Zinnia elegans) provide a unique opportunity to study signaling pathways of tracheary element (TE) differentiation. In vitro TEs differentiate into either protoxylem (PX)-like TEs characterized by annular/helical secondary wall thickening or metaxylem (MX)-like TEs with reticulate/scalariform/pitted thickening. The factors that determine these different cell fates are largely unknown. We show here that supplementing zinnia cultures with exogenous galactoglucomannan oligosaccharides (GGMOs) derived from spruce (Picea abies) xylem had two major effects: an increase in cell population density and a decrease in the ratio of PX to MX TEs. In an attempt to link these two effects, the consequence of the plane of cell division on PX-MX differentiation was assessed. Although GGMOs did not affect the plane of cell division per se, they significantly increased the proportion of longitudinally divided cells differentiating into MX. To test the biological significance of these findings, we have determined the presence of mannan-containing oligosaccharides in zinnia cultures in vitro. Immunoblot assays indicated that beta-1,4-mannosyl epitopes accumulate specifically in TE-inductive media. These epitopes were homogeneously distributed within the thickened secondary walls of TEs when the primary cell wall was weakly labeled. Using polysaccharide analysis carbohydrate gel electrophoresis, glucomannans were specifically detected in cell walls of differentiating zinnia cultures. Finally, zinnia macroarrays probed with cDNAs from cells cultured in the presence or absence of GGMOs indicated that significantly more genes were down-regulated rather than up-regulated by GGMOs. This study constitutes a major step in the elucidation of signaling mechanisms of PX- and MX-specific genetic programs in zinnia.

  6. The effect of application method on the temporal and spatial distribution of neonicotinoid insecticides in greenhouse zinnia and impact on aphid populations

    USDA-ARS?s Scientific Manuscript database

    Greenhouse trials were designed to evaluate the effect the application technique would have on temporal and spatial movement of neonicotinoid insecticides imidacloprid and thiamethoxam through plant tissue. Mature Zinnia elegans plants were treated by either a soil drench of neonicotinoid insectici...

  7. Hormonal induction and antihormonal inhibition of tracheary element differentiation in Zinnia cell cultures

    NASA Technical Reports Server (NTRS)

    Church, D. L.; Galston, A. W.

    1988-01-01

    Mechanically isolated mesophyll cells of Zinnia elegans L. cv Envy differentiate to tracheary elements when cultured in inductive medium containing sufficient auxin and cytokinin. Tracheary element differentiation was induced by the three auxins (alpha-naphthaleneacetic acid, indole-3-acetic acid, and 2,4-dichlorophenoxyacetic acid) and four cytokinins (6-benzyladenine, kinetin, 2-isopentenyladenine and zeatin) tested. Tracheary element formation is inhibited or delayed if the inductive medium is supplemented with an anticytokinin, antiauxin, or inhibitor of auxin transport.

  8. Caspase inhibitors affect the kinetics and dimensions of tracheary elements in xylogenic Zinnia (Zinnia elegans) cell cultures.

    PubMed

    Twumasi, Peter; Iakimova, Elena T; Qian, Tian; van Ieperen, Wim; Schel, Jan H N; Emons, Anne Mie C; van Kooten, Olaf; Woltering, Ernst J

    2010-08-06

    The xylem vascular system is composed of fused dead, hollow cells called tracheary elements (TEs) that originate through trans-differentiation of root and shoot cambium cells. TEs undergo autolysis as they differentiate and mature. The final stage of the formation of TEs in plants is the death of the involved cells, a process showing some similarities to programmed cell death (PCD) in animal systems. Plant proteases with functional similarity to proteases involved in mammalian apoptotic cell death (caspases) are suggested as an integral part of the core mechanism of most PCD responses in plants, but participation of plant caspase-like proteases in TE PCD has not yet been documented. Confocal microscopic images revealed the consecutive stages of TE formation in Zinnia cells during trans-differentiation. Application of the caspase inhibitors Z-Asp-CH2-DCB, Ac-YVAD-CMK and Ac-DEVD-CHO affected the kinetics of formation and the dimensions of the TEs resulting in a significant delay of TE formation, production of larger TEs and in elimination of the 'two-wave' pattern of TE production. DNA breakdown and appearance of TUNEL-positive nuclei was observed in xylogenic cultures and this was suppressed in the presence of caspase inhibitors. To the best of our knowledge this is the first report showing that caspase inhibitors can modulate the process of trans-differentiation in Zinnia xylogenic cell cultures. As caspase inhibitors are closely associated with cell death inhibition in a variety of plant systems, this suggests that the altered TE formation results from suppression of PCD. The findings presented here are a first step towards the use of appropriate PCD signalling modulators or related molecular genetic strategies to improve the hydraulic properties of xylem vessels in favour of the quality and shelf life of plants or plant parts.

  9. Zinnia Germination and Lunar Soil Amendment

    NASA Technical Reports Server (NTRS)

    Reese, Laura

    2017-01-01

    Germination testing was performed to determine the best method for germinating zinnias. This method will be used to attempt to germinate the zinnia seeds produced in space. It was found that seed shape may be critically important in determining whether a seed will germinate or not. The ability of compost and worm castings to remediate lunar regolith simulant for plant growth was tested. It was found that neither treatment effectively improves plant growth in lunar regolith simulant. A potential method of improving lunar regolith simulant by mixing it with arcillite was discovered.

  10. Phytoremediation assessment of Gomphrena globosa and Zinnia elegans grown in arsenic-contaminated hydroponic conditions as a safe and feasible alternative to be applied in arsenic-contaminated soils of the Bengal Delta.

    PubMed

    Signes-Pastor, A J; Munera-Picazo, S; Burló, F; Cano-Lamadrid, M; Carbonell-Barrachina, A A

    2015-06-01

    Several agricultural fields show high contents of arsenic because of irrigation with arsenic-contaminated groundwater. Vegetables accumulate arsenic in their edible parts when grown in contaminated soils. Polluted vegetables are one of the main sources of arsenic in the food chain, especially for people living in rural arsenic endemic villages of India and Bangladesh. The aim of this study was to assess the feasibility of floriculture in the crop rotation system of arsenic endemic areas of the Bengal Delta. The effects of different arsenic concentrations (0, 0.5, 1.0, and 2.0 mg As L(-1)) and types of flowering plant (Gomphrena globosa and Zinnia elegans) on plant growth and arsenic accumulation were studied under hydroponic conditions. Total arsenic was quantified using atomic absorption spectrometer with hydride generation (HG-AAS). Arsenic was mainly accumulated in the roots (72 %), followed by leaves (12 %), stems (10 %), and flowers (<1 %). The flowering plants studied did not show as high phytoremediation capacities as other wild species, such as ferns. However, they behaved as arsenic tolerant plants and grew and bloomed well, without showing any phytotoxic signs. This study proves that floriculture could be included within the crop rotation system in arsenic-contaminated agricultural soils, in order to improve food safety and also food security by increasing farmer's revenue.

  11. Draft Genome Sequences of Two Fusarium oxysporum Isolates Cultured from Infected Zinnia hybrida Plants Grown on the International Space Station

    PubMed Central

    Urbaniak, Camilla; Massa, Gioia; Hummerick, Mary; Khodadad, Christina; Schuerger, Andrew

    2018-01-01

    ABSTRACT Here, we present the whole-genome sequences of two Fusarium oxysporum isolates cultured from infected Zinnia hybrida plants that were grown onboard the International Space Station (ISS). PMID:29773617

  12. Draft Genome Sequences of Two Fusarium oxysporum Isolates Cultured from Infected Zinnia hybrida Plants Grown on the International Space Station.

    PubMed

    Urbaniak, Camilla; Massa, Gioia; Hummerick, Mary; Khodadad, Christina; Schuerger, Andrew; Venkateswaran, Kasthuri

    2018-05-17

    Here, we present the whole-genome sequences of two Fusarium oxysporum isolates cultured from infected Zinnia hybrida plants that were grown onboard the International Space Station (ISS). Copyright © 2018 Urbaniak et al.

  13. Galactoglucomannan oligosaccharides are assumed to affect tracheary element formation via interaction with auxin in Zinnia xylogenic cell culture.

    PubMed

    Kákošová, Anna; Digonnet, Catherine; Goffner, Deborah; Lišková, Desana

    2013-04-01

    Galactoglucomannan oligosaccharides seem to interact with auxin in xylogenic cell culture, thus influencing mainly metaxylem-like tracheary element differentiation depending on timing with hormones and the process kinetics. Complex mapping of Zinnia mesophyll cell transdifferentiation into tracheary elements with or without prior cell division was documented after palisade and spongy parenchyma cell immobilization during the first 4 days of culture. Here, we report a positive effect of galactoglucomannan oligosaccharides on cell viability and density and higher metaxylem-like tracheary element formation in xylogenic cell culture. The maximal positive effect was achieved by the simultaneous addition of the oligosaccharides and growth hormones (auxin, cytokinin) to the cell culture medium. Moreover, a large number of metaxylem-like tracheary elements were observed in a low-auxin medium supplemented with oligosaccharides, but not in a low-cytokinin medium, suggesting a close relationship between auxin and the oligosaccharides during tracheary element formation.

  14. Neural Regeneration in Caenorhabditis elegans

    PubMed Central

    El Bejjani, Rachid; Hammarlund, Marc

    2013-01-01

    Axon regeneration is a medically relevant process that can repair damaged neurons. This review describes current progress in understanding axon regeneration in the model organism Caenorhabditis elegans. Factors that regulate axon regeneration in C. elegans have broadly similar roles in vertebrate neurons. This means that using C. elegans as a tool to leverage discovery is a legitimate strategy for identifying conserved mechanisms of axon regeneration. PMID:22974301

  15. C. elegans microRNAs.

    PubMed

    Vella, Monica C; Slack, Frank J

    2005-09-21

    MicroRNAs (miRNAs) are small, non-coding regulatory RNAs found in many phyla that control such diverse events as development, metabolism, cell fate and cell death. They have also been implicated in human cancers. The C. elegans genome encodes hundreds of miRNAs, including the founding members of the miRNA family lin-4 and let-7. Despite the abundance of C. elegans miRNAs, few miRNA targets are known and little is known about the mechanism by which they function. However, C. elegans research continues to push the boundaries of discovery in this area. lin-4 and let-7 are the best understood miRNAs. They control the timing of adult cell fate determination in hypodermal cells by binding to partially complementary sites in the mRNA of key developmental regulators to repress protein expression. For example, lin-4 is predicted to bind to seven sites in the lin-14 3' untranslated region (UTR) to repress LIN-14, while let-7 is predicted to bind two let-7 complementary sites in the lin-41 3' UTR to down-regulate LIN-41. Two other miRNAs, lsy-6 and mir-273, control left-right asymmetry in neural development, and also target key developmental regulators for repression. Approximately one third of the C. elegans miRNAs are differentially expressed during development indicating a major role for miRNAs in C. elegans development. Given the remarkable conservation of developmental mechanism across phylogeny, many of the principles of miRNAs discovered in C. elegans are likely to be applicable to higher animals.

  16. Caenorhabditis elegans: nature and nurture gift to nematode parasitologists.

    PubMed

    Salinas, Gustavo; Risi, Gastón

    2017-12-06

    The free-living nematode Caenorhabditis elegans is the simplest animal model organism to work with. Substantial knowledge and tools have accumulated over 50 years of C. elegans research. The use of C. elegans relating to parasitic nematodes from a basic biology standpoint or an applied perspective has increased in recent years. The wealth of information gained on the model organism, the use of the powerful approaches and technologies that have advanced C. elegans research to parasitic nematodes and the enormous success of the omics fields have contributed to bridge the divide between C. elegans and parasite nematode researchers. We review key fields, such as genomics, drug discovery and genetics, where C. elegans and nematode parasite research have convened. We advocate the use of C. elegans as a model to study helminth metabolism, a neglected area ready to advance. How emerging technologies being used in C. elegans can pave the way for parasitic nematode research is discussed.

  17. Chemically defined medium and Caenorhabditis elegans

    NASA Technical Reports Server (NTRS)

    Szewczyk, Nathaniel J.; Kozak, Elena; Conley, Catharine A.

    2003-01-01

    BACKGROUND: C. elegans has been established as a powerful genetic system. Use of a chemically defined medium (C. elegans Maintenance Medium (CeMM)) now allows standardization and systematic manipulation of the nutrients that animals receive. Liquid cultivation allows automated culturing and experimentation and should be of use in large-scale growth and screening of animals. RESULTS: We find that CeMM is versatile and culturing is simple. CeMM can be used in a solid or liquid state, it can be stored unused for at least a year, unattended actively growing cultures may be maintained longer than with standard techniques, and standard C. elegans protocols work well with animals grown in defined medium. We also find that there are caveats to using defined medium. Animals in defined medium grow more slowly than on standard medium, appear to display adaptation to the defined medium, and display altered growth rates as they change the composition of the defined medium. CONCLUSIONS: As was suggested with the introduction of C. elegans as a potential genetic system, use of defined medium with C. elegans should prove a powerful tool.

  18. Laser Microsurgery in Caenorhabditis elegans

    PubMed Central

    Fang-Yen, Christopher; Gabel, Christopher V.; Samuel, Aravinthan D. T.; Bargmann, Cornelia I.; Avery, Leon

    2013-01-01

    Laser killing of cell nuclei has long been a powerful means of examining the roles of individual cells in C. elegans. Advances in genetics, laser technology, and imaging have further expanded the capabilities and usefulness of laser surgery. Here, we review the implementation and application of currently used methods for target edoptical disruption in C. elegans. PMID:22226524

  19. An overview of C. elegans biology.

    PubMed

    Strange, Kevin

    2006-01-01

    The establishment of Caenorhabditis elegans as a "model organism" began with the efforts of Sydney Brenner in the early 1960s. Brenner's focus was to find a suitable animal model in which the tools of genetic analysis could be used to define molecular mechanisms of development and nervous system function. C. elegans provides numerous experimental advantages for such studies. These advantages include a short life cycle, production of large numbers of offspring, easy and inexpensive laboratory culture, forward and reverse genetic tractability, and a relatively simple anatomy. This chapter will provide a brief overview of C. elegans biology.

  20. Cell Biology of the Caenorhabditis elegans Nucleus

    PubMed Central

    Cohen-Fix, Orna; Askjaer, Peter

    2017-01-01

    Studies on the Caenorhabditis elegans nucleus have provided fascinating insight to the organization and activities of eukaryotic cells. Being the organelle that holds the genetic blueprint of the cell, the nucleus is critical for basically every aspect of cell biology. The stereotypical development of C. elegans from a one cell-stage embryo to a fertile hermaphrodite with 959 somatic nuclei has allowed the identification of mutants with specific alterations in gene expression programs, nuclear morphology, or nuclear positioning. Moreover, the early C. elegans embryo is an excellent model to dissect the mitotic processes of nuclear disassembly and reformation with high spatiotemporal resolution. We review here several features of the C. elegans nucleus, including its composition, structure, and dynamics. We also discuss the spatial organization of chromatin and regulation of gene expression and how this depends on tight control of nucleocytoplasmic transport. Finally, the extensive connections of the nucleus with the cytoskeleton and their implications during development are described. Most processes of the C. elegans nucleus are evolutionarily conserved, highlighting the relevance of this powerful and versatile model organism to human biology. PMID:28049702

  1. Axon Regeneration in C. elegans

    PubMed Central

    Hammarlund, Marc; Jin, Yishi

    2014-01-01

    Single axon transection by laser surgery has made C. elegans a new model for axon regeneration. Multiple conserved molecular signaling modules have been discovered through powerful genetic screening. in vivo imaging with single cell and axon resolution has revealed unprecedented cellular dynamics in regenerating axons. Information from C. elegans has greatly expanded our knowledge of the molecular and cellular mechanisms of axon regeneration. PMID:24794753

  2. The Si elegans project at the interface of experimental and computational Caenorhabditis elegans neurobiology and behavior

    NASA Astrophysics Data System (ADS)

    Petrushin, Alexey; Ferrara, Lorenzo; Blau, Axel

    2016-12-01

    Objective. In light of recent progress in mapping neural function to behavior, we briefly and selectively review past and present endeavors to reveal and reconstruct nervous system function in Caenorhabditis elegans through simulation. Approach. Rather than presenting an all-encompassing review on the mathematical modeling of C. elegans, this contribution collects snapshots of pathfinding key works and emerging technologies that recent single- and multi-center simulation initiatives are building on. We thereby point out a few general limitations and problems that these undertakings are faced with and discuss how these may be addressed and overcome. Main results. Lessons learned from past and current computational approaches to deciphering and reconstructing information flow in the C. elegans nervous system corroborate the need of refining neural response models and linking them to intra- and extra-environmental interactions to better reflect and understand the actual biological, biochemical and biophysical events that lead to behavior. Together with single-center research efforts, the Si elegans and OpenWorm projects aim at providing the required, in some cases complementary tools for different hardware architectures to support advancement into this direction. Significance. Despite its seeming simplicity, the nervous system of the hermaphroditic nematode C. elegans with just 302 neurons gives rise to a rich behavioral repertoire. Besides controlling vital functions (feeding, defecation, reproduction), it encodes different stimuli-induced as well as autonomous locomotion modalities (crawling, swimming and jumping). For this dichotomy between system simplicity and behavioral complexity, C. elegans has challenged neurobiologists and computational scientists alike. Understanding the underlying mechanisms that lead to a context-modulated functionality of individual neurons would not only advance our knowledge on nervous system function and its failure in pathological

  3. Effects of reactive Mn(III)-oxalate complexes on structurally intact plant cell walls

    NASA Astrophysics Data System (ADS)

    Summering, J. A.; Keiluweit, M.; Goni, M. A.; Nico, P. S.; Kleber, M.

    2011-12-01

    Lignin components in the in plant litter are commonly assumed to have longer residence times in soil than many other compounds, which are supposedly, more easily degradable. The supposed resistance of lignin compounds to decomposition is generally attributed to the complex chain of biochemical steps required to create footholds in the non-porous structure of ligno-cellulose in cell walls. Interestingly, Mn(III) complexes have shown the ability to degrade ligno-cellulose. Mn(III) chelated by ligands such as oxalate are soluble oxidizers with a high affinity for lignin structures. Here we determined (i) the formation and decay kinetics of the Mn(III)-oxalate complexes in aqueous solution and (ii) the effects that these complexes have on intact ligno-cellulose. UV/vis spectroscopy and iodometric titrations confirmed the transient nature of Mn(III)-oxalate complexes with decay rates being in the order of hours. Zinnia elegans tracheary elements - a model ligno-cellulose substrate - were treated with Mn(III)-oxalate complexes in a newly developed flow-through reactor. Soluble decomposition products released during the treatment were analyzed by GC/MS and the degree of cell integrity was measured by cell counts, pre- and post-treatment counts indicate a decrease in intact Zinnia elegans as a result of Mn(III)-treatment. GC/MS results showed the release of a multitude of solubilized lignin breakdown products from plant cell walls. We conclude that Mn(III)-oxalate complexes have the ability to lyse intact plant cells and solubilize lignin. Lignin decomposition may thus be seen as resource dependent, with Mn(III) a powerful resource that should be abundant in terrestrial characterized by frequent redox fluctuations.

  4. C. elegans network biology: a beginning.

    PubMed Central

    Piano, Fabio; Gunsalus, Kristin C; Hill, David E; Vidal, Marc

    2006-01-01

    The architecture and dynamics of molecular networks can provide an understanding of complex biological processes complementary to that obtained from the in-depth study of single genes and proteins. With a completely sequenced and well-annotated genome, a fully characterized cell lineage, and powerful tools available to dissect development, Caenorhabditis elegans, among metazoans, provides an optimal system to bridge cellular and organismal biology with the global properties of macromolecular networks. This chapter considers omic technologies available for C. elegans to describe molecular networks--encompassing transcriptional and phenotypic profiling as well as physical interaction mapping--and discusses how their individual and integrated applications are paving the way for a network-level understanding of C. elegans biology. PMID:18050437

  5. Screening for bioactivity of Mutinus elegans extracts

    NASA Astrophysics Data System (ADS)

    Gajendiran, A.; Cyriac, RE; Abraham, J.

    2017-11-01

    Mutinus elegans is a species of fungi that is commonly called as Elegant Stinkhorn. The aim of this study was to screen the crude extracts of the fungus for phytochemical analysis, antimicrobial activity, antioxidant assay and anticancer activity. Extraction of the fungal sample in Soxhlet apparatus was done with n-hexane and methanol as the solvent. Stock solutions of the crude methanol extract were prepared and used for microbiological assay. Thin layer chromatography was performed in order to determine the number of active components in n-hexane, and methanol solvent system for the fungus Mutinus elegans. Further, antioxidant assay was performed using DPPH radical scavenging assay. The fungal sample was then tested for cytotoxicity assay against MG63 osteosarcoma cell lines. The antimicrobial assay of Mutinus elegans extract exhibited activity against five pathogens. The zone of inhibition was measured with respect to standard antibiotics. Gas chromatography and Mass spectrometry (GC/MS analysis), revealed the presence of dibromo-tetradecan-1-ol-acetate, 2-myristynoyl-glycinamide, fumaric acid, and cyclohexylmethyldecyl ester compounds were presented in methanol and n-hexane extract of Mutinus elegans. The present study concludes the presence of bioactive compound in the extract which exhibited antimicrobial and antioxidant activity in Mutinus elegans.

  6. Genomic response of the nematode Caenorhabditis elegans to spaceflight

    PubMed Central

    Selch, Florian; Higashibata, Akira; Imamizo-Sato, Mari; Higashitani, Atsushi; Ishioka, Noriaki; Szewczyk, Nathaniel J.; Conley, Catharine A.

    2008-01-01

    On Earth, it is common to employ laboratory animals such as the nematode Caenorhabditis elegans to help understand human health concerns. Similar studies in Earth orbit should help understand and address the concerns associated with spaceflight. The “International Caenorhabditis elegans Experiment FIRST” (ICE FIRST), was carried out onboard the Dutch Taxiflight in April of 2004 by an international collaboration of laboratories in France, Canada, Japan and the United States. With the exception of a slight movement defect upon return to Earth, the result of altered muscle development, no significant abnormalities were detected in spaceflown C. elegans. Work from Japan revealed apoptosis proceeds normally and work from Canada revealed no significant increase in the rate of mutation. These results suggest that C. elegans can be used to study non-lethal responses to spaceflight and can possibly be developed as a biological sensor. To further our understanding of C. elegans response to spaceflight, we examined the gene transcription response to the 10 days in space using a near full genome microarray analysis. The transcriptional response is consistent with the observed normal developmental timing, apoptosis, DNA repair, and altered muscle development. The genes identified as altered in response to spaceflight are enriched for genes known to be regulated, in C. elegans, in response to altered environmental conditions (Insulin and TGF-β regulated). These results demonstrate C. elegans can be used to study the effects of altered gravity and suggest that C. elegans responds to spaceflight by altering the expression of at least some of the same metabolic genes that are altered in response to differing terrestrial environments. PMID:18392117

  7. Cell Death in C. elegans Development.

    PubMed

    Malin, Jennifer Zuckerman; Shaham, Shai

    2015-01-01

    Cell death is a common and important feature of animal development, and cell death defects underlie many human disease states. The nematode Caenorhabditis elegans has proven fertile ground for uncovering molecular and cellular processes controlling programmed cell death. A core pathway consisting of the conserved proteins EGL-1/BH3-only, CED-9/BCL2, CED-4/APAF1, and CED-3/caspase promotes most cell death in the nematode, and a conserved set of proteins ensures the engulfment and degradation of dying cells. Multiple regulatory pathways control cell death onset in C. elegans, and many reveal similarities with tumor formation pathways in mammals, supporting the idea that cell death plays key roles in malignant progression. Nonetheless, a number of observations suggest that our understanding of developmental cell death in C. elegans is incomplete. The interaction between dying and engulfing cells seems to be more complex than originally appreciated, and it appears that key aspects of cell death initiation are not fully understood. It has also become apparent that the conserved apoptotic pathway is dispensable for the demise of the C. elegans linker cell, leading to the discovery of a previously unexplored gene program promoting cell death. Here, we review studies that formed the foundation of cell death research in C. elegans and describe new observations that expand, and in some cases remodel, this edifice. We raise the possibility that, in some cells, more than one death program may be needed to ensure cell death fidelity. © 2015 Elsevier Inc. All rights reserved.

  8. Sensory Transduction in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Brown, Austin L.; Ramot, Daniel; Goodman, Miriam B.

    The roundworm Caenorhabditis elegans has a well-defined and comparatively simple repertoire of sensory-guided behaviors, all of which rely on its ability to detect chemical, mechanical or thermal stimuli. In this chapter, we review what is known about the ion channels that mediate sensation in this remarkable model organism. Genetic screens for mutants defective in sensory-guided behaviors have identified genes encoding channel proteins, which are likely transducers of chemical, thermal, and mechanical stimuli. Such classical genetic approaches are now being coupled with molecular genetics and in vivo cellular physiology to elucidate how these channels are activated in specific sensory neurons. The ion channel superfamilies implicated in sensory transduction in C. elegans - CNG, TRP, and DEG/ENaC - are conserved across phyla and also appear to contribute to sensory transduction in other organisms, including vertebrates. What we learn about the role of these ion channels in C. elegans sensation is likely to illuminate analogous processes in other animals, including humans.

  9. A microfluidic device for automated, high-speed microinjection of Caenorhabditis elegans

    PubMed Central

    Song, Pengfei; Dong, Xianke; Liu, Xinyu

    2016-01-01

    The nematode worm Caenorhabditis elegans has been widely used as a model organism in biological studies because of its short and prolific life cycle, relatively simple body structure, significant genetic overlap with human, and facile/inexpensive cultivation. Microinjection, as an established and versatile tool for delivering liquid substances into cellular/organismal objects, plays an important role in C. elegans research. However, the conventional manual procedure of C. elegans microinjection is labor-intensive and time-consuming and thus hinders large-scale C. elegans studies involving microinjection of a large number of C. elegans on a daily basis. In this paper, we report a novel microfluidic device that enables, for the first time, fully automated, high-speed microinjection of C. elegans. The device is automatically regulated by on-chip pneumatic valves and allows rapid loading, immobilization, injection, and downstream sorting of single C. elegans. For demonstration, we performed microinjection experiments on 200 C. elegans worms and demonstrated an average injection speed of 6.6 worm/min (average worm handling time: 9.45 s/worm) and a success rate of 77.5% (post-sorting success rate: 100%), both much higher than the performance of manual operation (speed: 1 worm/4 min and success rate: 30%). We conducted typical viability tests on the injected C. elegans and confirmed that the automated injection system does not impose significant adverse effect on the physiological condition of the injected C. elegans. We believe that the developed microfluidic device holds great potential to become a useful tool for facilitating high-throughput, large-scale worm biology research. PMID:26958099

  10. Characterization of the effects of methylmercury on Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmcke, Kirsten J.; Syversen, Tore; Miller, David M.

    2009-10-15

    The rising prevalence of methylmercury (MeHg) in seafood and in the global environment provides an impetus for delineating the mechanism of the toxicity of MeHg. Deleterious effects of MeHg have been widely observed in humans and in other mammals, the most striking of which occur in the nervous system. Here we test the model organism, Caenorhabditis elegans (C. elegans), for MeHg toxicity. The simple, well-defined anatomy of the C. elegans nervous system and its ready visualization with green fluorescent protein (GFP) markers facilitated our study of the effects of methylmercuric chloride (MeHgCl) on neural development. Although MeHgCl was lethal tomore » C. elegans, induced a developmental delay, and decreased pharyngeal pumping, other traits including lifespan, brood size, swimming rate, and nervous system morphology were not obviously perturbed in animals that survived MeHgCl exposure. Despite the limited effects of MeHgCl on C. elegans development and behavior, intracellular mercury (Hg) concentrations ({<=} 3 ng Hg/mg protein) in MeHgCl-treated nematodes approached levels that are highly toxic to mammals. If MeHgCl reaches these concentrations throughout the animal, this finding indicates that C. elegans cells, particularly neurons, may be less sensitive to MeHgCl toxicity than mammalian cells. We propose, therefore, that C. elegans should be a useful model for discovering intrinsic mechanisms that confer resistance to MeHgCl exposure.« less

  11. Sequence Complexity of Chromosome 3 in Caenorhabditis elegans

    PubMed Central

    Pierro, Gaetano

    2012-01-01

    The nucleotide sequences complexity in chromosome 3 of Caenorhabditis elegans (C. elegans) is studied. The complexity of these sequences is compared with some random sequences. Moreover, by using some parameters related to complexity such as fractal dimension and frequency, indicator matrix is given a first classification of sequences of C. elegans. In particular, the sequences with highest and lowest fractal value are singled out. It is shown that the intrinsic nature of the low fractal dimension sequences has many common features with the random sequences. PMID:22919380

  12. Microfluidic Devices in Advanced Caenorhabditis elegans Research.

    PubMed

    Muthaiyan Shanmugam, Muniesh; Subhra Santra, Tuhin

    2016-08-02

    The study of model organisms is very important in view of their potential for application to human therapeutic uses. One such model organism is the nematode worm, Caenorhabditis elegans. As a nematode, C. elegans have ~65% similarity with human disease genes and, therefore, studies on C. elegans can be translated to human, as well as, C. elegans can be used in the study of different types of parasitic worms that infect other living organisms. In the past decade, many efforts have been undertaken to establish interdisciplinary research collaborations between biologists, physicists and engineers in order to develop microfluidic devices to study the biology of C. elegans. Microfluidic devices with the power to manipulate and detect bio-samples, regents or biomolecules in micro-scale environments can well fulfill the requirement to handle worms under proper laboratory conditions, thereby significantly increasing research productivity and knowledge. The recent development of different kinds of microfluidic devices with ultra-high throughput platforms has enabled researchers to carry out worm population studies. Microfluidic devices primarily comprises of chambers, channels and valves, wherein worms can be cultured, immobilized, imaged, etc. Microfluidic devices have been adapted to study various worm behaviors, including that deepen our understanding of neuromuscular connectivity and functions. This review will provide a clear account of the vital involvement of microfluidic devices in worm biology.

  13. Identification of BFN1, a bifunctional nuclease induced during leaf and stem senescence in Arabidopsis.

    PubMed

    Pérez-Amador, M A; Abler, M L; De Rocher, E J; Thompson, D M; van Hoof, A; LeBrasseur, N D; Lers, A; Green, P J

    2000-01-01

    Nuclease I enzymes are responsible for the degradation of RNA and single-stranded DNA during several plant growth and developmental processes, including senescence. However, in the case of senescence the corresponding genes have not been reported. We describe the identification and characterization of BFN1 of Arabidopsis, and demonstrate that it is a senescence-associated nuclease I gene. BFN1 nuclease shows high similarity to the sequence of a barley nuclease induced during germination and a zinnia (Zinnia elegans) nuclease induced during xylogenesis. In transgenic plants overexpressing the BFN1 cDNA, a nuclease activity of about 38 kD was detected on both RNase and DNase activity gels. Levels of BFN1 mRNA were extremely low or undetectable in roots, leaves, and stems. In contrast, relatively high BFN1 mRNA levels were detected in flowers and during leaf and stem senescence. BFN1 nuclease activity was also induced during leaf and stem senescence. The strong response of the BFN1 gene to senescence indicated that it would be an excellent tool with which to study the mechanisms of senescence induction, as well as the role of the BFN1 enzyme in senescence using reverse genetic approaches in Arabidopsis.

  14. In Vivo Inhibition of Lipid Accumulation in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Sulistiyani; Purwakusumah, E. P.; Andrianto, D.

    2017-03-01

    This is a preliminary research report on the use of Caenorhabditis elegans as a model to establish anti-obesity screening assay of the natural plant resources. Nematode C. elegans has been used as experimental animal model for understanding lipid accumulation. The objective of this research was to investigate the effect of selected plant extracts on lipid accumulation in C. elegans. Currently no report could be found regarding lipid accumulation in C.elegans treated with ethanolic leaf extracts of jabon merah (Anthocephalus macrophyllus), jati belanda (Guazuma ulmifolia), and Mindi (Melia Azedarach) plants. Lipid accumulation was determined qualitatively using lipid staining method and quantitatively by colorimetry using sulpho-phospho-vanillin reagent. Data showed that lipid accumulation was inhibited up to 72% by extract of M. azedarach, about 35% by both of A. macrophyllus and G. ulmifolia extracts, and up to 25% by orlistat (a synthetic slimming drug). Ethanolic extract of A. macrophyllus, G. ulmifolia, and M. azedarach leaves were shown to inhibit lipid accumulation in C. elegans and M. azedarach leaves extracts was the most effective inhibitor. C.elegans were shown to be an effective model for in vivo lipid accumulation mechanism and potential to be used as a rapid screening assay for bioactive compounds with lipid accumulation inhibitory activity.

  15. Caenorhabditis elegans chemical biology: lessons from small molecules

    USDA-ARS?s Scientific Manuscript database

    How can we complement Caenorhabditis elegans genomics and proteomics with a comprehensive structural and functional annotation of its metabolome? Several lines of evidence indicate that small molecules of largely undetermined structure play important roles in C. elegans biology, including key pathw...

  16. The invertebrate Caenorhabditis elegans biosynthesizes ascorbate

    PubMed Central

    Patananan, Alexander N.; Budenholzer, Lauren M.; Pedraza, Maria E.; Torres, Eric R.; Adler, Lital N.; Clarke, Steven G.

    2015-01-01

    L-ascorbate, commonly known as vitamin C, serves as an antioxidant and cofactor essential for many biological processes. Distinct ascorbate biosynthetic pathways have been established for animals and plants, but little is known about the presence or synthesis of this molecule in invertebrate species. We have investigated ascorbate metabolism in the nematode Caenorhabditis elegans, where this molecule would be expected to play roles in oxidative stress resistance and as cofactor in collagen and neurotransmitter synthesis. Using high-performance liquid chromatography and gas-chromatography mass spectrometry, we determined that ascorbate is present at low amounts in the egg stage, L1 larvae, and mixed animal populations, with the egg stage containing the highest concentrations. Incubating C. elegans with precursor molecules necessary for ascorbate synthesis in plants and animals did not significantly alter ascorbate levels. Furthermore, bioinformatic analyses did not support the presence in C. elegans of either the plant or the animal biosynthetic pathway. However, we observed the complete 13C-labeling of ascorbate when C. elegans was grown with 13C-labeled Escherichia coli as a food source. These results support the hypothesis that ascorbate biosynthesis in invertebrates may proceed by a novel pathway and lay the foundation for a broader understanding of its biological role. PMID:25668719

  17. Fish oil changes the lifespan of Caenorhabditis elegans via lipid peroxidation

    PubMed Central

    Sugawara, Soko; Honma, Taro; Ito, Junya; Kijima, Ryo; Tsuduki, Tsuyoshi

    2013-01-01

    Recently, we administered fish oil containing eicosapentaenoic acid and docosahexaenoic acid (DHA) to senescence-accelerated mice P8 (SAMP8), in order to investigate the effects on lifespan. Surprisingly, the lifespan of SAMP8 that were fed fish oil was shortened significantly, through a mechanism that likely involved lipid peroxidation. In this study, we investigated this phenomenon in further detail. To examine whether this phenomenon occurs only in SAMP8, we investigated the effect of fish oil on the lifespan of another organism species, Caenorhabditis elegans (C. elegans). C. elegans fed fish oil were cultured and the lifespan monitored. As a consequence of the provision of large amounts of fish oil the lifespan of C. elegans was shortened significantly, whereas an appropriate amount of fish oil extended their lifespan significantly. Lipid peroxide levels in C. elegans that were fed fish oil increased significantly in a dose-dependent manner. However, lipid peroxide levels in C. elegans were inhibited by the addition of fish oil and an antioxidant, α-tocopherol, and completely abrogated the changes in the lifespan. To further confirm whether the oxidation of n-3 polyunsaturated fatty acid in fish oil would change the lifespan of C. elegans, the effect of oxidized DHA was examined. Large amounts of oxidized DHA were found to shorten their lifespan significantly. Thus, fish oil changes the lifespan of C. elegans through lipid peroxidation. PMID:23526170

  18. Maxillary Sinusitis Caused by Actinomucor elegans

    PubMed Central

    Davel, Graciela; Featherston, Patricia; Fernández, Anibal; Abrantes, Ruben; Canteros, Cristina; Rodero, Laura; Sztern, Carlos; Perrotta, Diego

    2001-01-01

    We report the first case of maxillary sinusitis caused by Actinomucor elegans in an 11-year-old patient. Histopathological and mycological examinations of surgical maxillary sinuses samples showed coenocytic hyphae characteristic of mucoraceous fungi. The fungi recovered had stolons and rhizoids, nonapophyseal and globose sporangia, and whorled branched sporangiophores and was identified as A. elegans. After surgical cleaning and chemotherapy with amphotericin B administered intravenously and by irrigation, the patient became asymptomatic and the mycological study results were negative. PMID:11158140

  19. Visible light reduces C. elegans longevity.

    PubMed

    De Magalhaes Filho, C Daniel; Henriquez, Brian; Seah, Nicole E; Evans, Ronald M; Lapierre, Louis R; Dillin, Andrew

    2018-03-02

    The transparent nematode Caenorhabditis elegans can sense UV and blue-violet light to alter behavior. Because high-dose UV and blue-violet light are not a common feature outside of the laboratory setting, we asked what role, if any, could low-intensity visible light play in C. elegans physiology and longevity. Here, we show that C. elegans lifespan is inversely correlated to the time worms were exposed to visible light. While circadian control, lite-1 and tax-2 do not contribute to the lifespan reduction, we demonstrate that visible light creates photooxidative stress along with a general unfolded-protein response that decreases the lifespan. Finally, we find that long-lived mutants are more resistant to light stress, as well as wild-type worms supplemented pharmacologically with antioxidants. This study reveals that transparent nematodes are sensitive to visible light radiation and highlights the need to standardize methods for controlling the unrecognized biased effect of light during lifespan studies in laboratory conditions.

  20. Investigating Connections between Metabolism, Longevity, and Behavior in Caenorhabditis elegans.

    PubMed

    Lemieux, George A; Ashrafi, Kaveh

    2016-08-01

    An overview of Caenorhabditis elegans as an experimental organism for studying energy balance is presented. Some of the unresolved questions that complicate the interpretation of lipid measurements from C. elegans are highlighted. We review studies that show that both lipid synthesis and lipid breakdown pathways are activated and needed for the longevity of hermaphrodites that lack their germlines. These findings illustrate the heterogeneity of triglyceride-rich lipid particles in C. elegans and reveal specific lipid signals that promote longevity. Finally, we provide a brief overview of feeding behavioral responses of C. elegans to varying nutritional conditions and highlight an unanticipated metabolic pathway that allows the incorporation of experience in feeding behavior. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Chemically Defined Medium and Caenorhabditis elegans: A Powerful Approach

    NASA Technical Reports Server (NTRS)

    Szewczyk, N. J.; Kozak, E.; Conley, C. A.

    2003-01-01

    C. elegans has been established as a powerful genetic system. Growth in a chemically defined medium (C. elegans Maintenance Medium (CeMM)) now allows standardization and systematic manipulation of the nutrients that animals receive. Liquid cultivation allows automated culturing and experimentation and should be of me in large-scale growth and screening of animals. Here we present our initial results from developing culture systems with CeMM. We find that CeMM is versatile and culturing is simple. CeMM can be used in a solid or liquid state, it can be stored unused for at least a year, unattended actively growing cultures may be maintained longer than with standard techniques, and standard C. elegans protocols work well with animals grown in defined medium. We also find that there are caveats of using defined medium. Animals in defined medium grow more slowly than on standard medium, appear to display adaptation to the defined medium, and display altered growth rates as they change defined medium composition. As was suggested with the introduction of C. elegans as a potential genetic system, use of defined medium with C. elegans should prove a powerful tool.

  2. A Transparent Window into Biology: A Primer on Caenorhabditis elegans.

    PubMed

    Corsi, Ann K; Wightman, Bruce; Chalfie, Martin

    2015-06-01

    A little over 50 years ago, Sydney Brenner had the foresight to develop the nematode (round worm) Caenorhabditis elegans as a genetic model for understanding questions of developmental biology and neurobiology. Over time, research on C. elegans has expanded to explore a wealth of diverse areas in modern biology including studies of the basic functions and interactions of eukaryotic cells, host-parasite interactions, and evolution. C. elegans has also become an important organism in which to study processes that go awry in human diseases. This primer introduces the organism and the many features that make it an outstanding experimental system, including its small size, rapid life cycle, transparency, and well-annotated genome. We survey the basic anatomical features, common technical approaches, and important discoveries in C. elegans research. Key to studying C. elegans has been the ability to address biological problems genetically, using both forward and reverse genetics, both at the level of the entire organism and at the level of the single, identified cell. These possibilities make C. elegans useful not only in research laboratories, but also in the classroom where it can be used to excite students who actually can see what is happening inside live cells and tissues. Copyright © 2015 Corsi, Wightman, and Chalfie.

  3. Axon Regeneration in C. elegans: worming our way to mechanisms of axon regeneration

    PubMed Central

    Byrne, Alexandra B.; Hammarlund, Marc

    2016-01-01

    How axons repair themselves after injury is a fundamental question in neurobiology. With its conserved genome, relatively simple nervous system, and transparent body, C. elegans has recently emerged as a productive model to uncover the cellular mechanisms that regulate and execute axon regeneration. In this review, we discuss the strengths and weaknesses of the C. elegans model of regeneration. We explore the technical advances that enable the use of C. elegans for in vivo regeneration studies, review findings in C. elegans that have contributed to our understanding of the regeneration response across species, discuss the potential of C. elegans research to provide insight into mechanisms that function in the injured mammalian nervous system, and present potential future directions of axon regeneration research using C. elegans. PMID:27569538

  4. Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity

    PubMed Central

    Andersen, Erik C.; Gerke, Justin P.; Shapiro, Joshua A.; Crissman, Jonathan R.; Ghosh, Rajarshi; Bloom, Joshua S.; Félix, Marie-Anne; Kruglyak, Leonid

    2011-01-01

    The nematode Caenorhabditis elegans is central to research in molecular, cell, and developmental biology, but nearly all of this research has been conducted on a single strain. Comparatively little is known about the population genomic and evolutionary history of this species. We characterized C. elegans genetic variation by high-throughput selective sequencing of a worldwide collection of 200 wild strains, identifying 41,188 single nucleotide polymorphisms. Unexpectedly, C. elegans genome variation is dominated by a set of commonly shared haplotypes on four of the six chromosomes, each spanning many megabases. Population-genetic modeling shows that this pattern was generated by chromosome-scale selective sweeps that have reduced variation worldwide; at least one of these sweeps likely occurred in the past few hundred years. These sweeps, which we hypothesize to be a result of human activity, have dramatically reshaped the global C. elegans population in the recent past. PMID:22286215

  5. Measuring Food Intake and Nutrient Absorption in Caenorhabditis elegans

    PubMed Central

    Gomez-Amaro, Rafael L.; Valentine, Elizabeth R.; Carretero, Maria; LeBoeuf, Sarah E.; Rangaraju, Sunitha; Broaddus, Caroline D.; Solis, Gregory M.; Williamson, James R.; Petrascheck, Michael

    2015-01-01

    Caenorhabditis elegans has emerged as a powerful model to study the genetics of feeding, food-related behaviors, and metabolism. Despite the many advantages of C. elegans as a model organism, direct measurement of its bacterial food intake remains challenging. Here, we describe two complementary methods that measure the food intake of C. elegans. The first method is a microtiter plate-based bacterial clearing assay that measures food intake by quantifying the change in the optical density of bacteria over time. The second method, termed pulse feeding, measures the absorption of food by tracking de novo protein synthesis using a novel metabolic pulse-labeling strategy. Using the bacterial clearance assay, we compare the bacterial food intake of various C. elegans strains and show that long-lived eat mutants eat substantially more than previous estimates. To demonstrate the applicability of the pulse-feeding assay, we compare the assimilation of food for two C. elegans strains in response to serotonin. We show that serotonin-increased feeding leads to increased protein synthesis in a SER-7-dependent manner, including proteins known to promote aging. Protein content in the food has recently emerged as critical factor in determining how food composition affects aging and health. The pulse-feeding assay, by measuring de novo protein synthesis, represents an ideal method to unequivocally establish how the composition of food dictates protein synthesis. In combination, these two assays provide new and powerful tools for C. elegans research to investigate feeding and how food intake affects the proteome and thus the physiology and health of an organism. PMID:25903497

  6. Characterization of the Caenorhabditis elegans G protein-coupled serotonin receptors.

    PubMed

    Carre-Pierrat, Maïté; Baillie, David; Johnsen, Robert; Hyde, Rhonda; Hart, Anne; Granger, Laure; Ségalat, Laurent

    2006-12-01

    Serotonin (5-HT) regulates a wide range of behaviors in Caenorhabditis elegans, including egg laying, male mating, locomotion and pharyngeal pumping. So far, four serotonin receptors have been described in the nematode C. elegans, three of which are G protein-coupled receptors (GPCR), (SER-1, SER-4 and SER-7), and one is an ion channel (MOD-1). By searching the C. elegans genome for additional 5-HT GPCR genes, we identified five further genes which encode putative 5-HT receptors, based on sequence similarities to 5-HT receptors from other species. Using loss-of-function mutants and RNAi, we performed a systematic study of the role of the eight GPCR genes in serotonin-modulated behaviors of C. elegans (F59C12.2, Y22D7AR.13, K02F2.6, C09B7.1, M03F4.3, F16D3.7, T02E9.3, C24A8.1). We also examined their expression patterns. Finally, we tested whether the most likely candidate receptors were able to modulate adenylate cyclase activity in transfected cells in a 5-HT-dependent manner. This paper is the first comprehensive study of G protein-coupled serotonin receptors of C. elegans. It provides a direct comparison of the expression patterns and functional roles for 5-HT receptors in C. elegans.

  7. Biosynthesis in vitro of Caenorhabditis elegans phosphorylcholine oligosaccharides

    PubMed Central

    Cipollo, John F.; Awad, Antoine; Costello, Catherine E.; Robbins, Phillips W.; Hirschberg, Carlos B.

    2004-01-01

    The biosynthesis in vitro of phosphorylcholine oligosaccharides in Caenorhabditis elegans has been investigated. Here we show that extracts of C. elegans' microsomes transfer phosphorylcholine from L-α-dipalmitoyl phosphatidylcholine to hybrid and complex type N-linked oligosaccharides containing mannose residues disubstituted with N-acetylglucosamine. The reaction products are consistent with structures reported for C. elegans as well those found in the filarial nematodes Acanthocheilonema viteae, Onchocerca volvulus, and Brugia malayi, strongly supporting the concept that the phosphorylcholine oligosaccharide biosynthetic enzymes are conserved in this group of organisms. Because it is thought that phosphorylcholine substitution of oligosaccharides modulates host immune response in filarial infections, this in vitro system may help in gaining an understanding of the basis for this response. PMID:14993596

  8. Forward and reverse mutagenesis in C. elegans

    PubMed Central

    Kutscher, Lena M.; Shaham, Shai

    2014-01-01

    Mutagenesis drives natural selection. In the lab, mutations allow gene function to be deciphered. C. elegans is highly amendable to functional genetics because of its short generation time, ease of use, and wealth of available gene-alteration techniques. Here we provide an overview of historical and contemporary methods for mutagenesis in C. elegans, and discuss principles and strategies for forward (genome-wide mutagenesis) and reverse (target-selected and gene-specific mutagenesis) genetic studies in this animal. PMID:24449699

  9. Hormetic effect of methylmercury on Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmcke, Kirsten J., E-mail: Kirsten.J.Helmcke@gmail.com; Aschner, Michael, E-mail: Michael.Aschner@vanderbilt.ed

    2010-10-15

    Research has demonstrated the toxic effects of methylmercury (MeHg), yet molecular mechanisms underlying its toxicity are not completely understood. Caenorhabditis elegans (C. elegans) offers a unique biological model to explore mechanisms of MeHg toxicity given many advantages associated with its ease of use and genetic power. Since our previous work indicated neurotoxic resistance of C. elegans to MeHg, the present study was designed to examine molecular mechanisms associated with this resistance. We hypothesized MeHg would induce expression of gst, hsp or mtl in vivo since glutathione (GSH), heat shock proteins (HSPs), and metallothioneins (MTs) have shown involvement in MeHg toxicity.more » Our studies demonstrated a modest, but significant increase in fluorescence in gst-4::GFP and mtl-1::GFP strains at an acute, low L1 MeHg exposure, whereas chronic L4 MeHg exposure induced expression of gst-4::GFP and hsp-4::GFP. Knockout gst-4 animals showed no alterations in lethality sensitivity compared to wildtype animals whereas mtl knockouts displayed increased sensitivity to MeHg exposure. GSH levels were increased by acute MeHg treatment and depleted with chronic exposure. We also demonstrate that MeHg induces hormesis, a phenotype whereby a sublethal exposure to MeHg rendered C. elegans resistant to subsequent exposure to the organometal. The involvement of gst-4, hsp-4, mtl-1, and mtl-2 in hormesis was examined. An increase in gst-4::GFP expression after a low-dose acute exposure to MeHg indicated that gst-4 may be involved in this response. Our results implicate GSH, HSPs, and MTs in protecting C. elegans from MeHg toxicity and show a potential role of gst-4 in MeHg-induced hormesis.« less

  10. Differential contributions of Caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity.

    PubMed

    Bates, Emily A; Victor, Martin; Jones, Adriana K; Shi, Yang; Hart, Anne C

    2006-03-08

    Expansion of a polyglutamine tract in the huntingtin protein causes neuronal degeneration and death in Huntington's disease patients, but the molecular mechanisms underlying polyglutamine-mediated cell death remain unclear. Previous studies suggest that expanded polyglutamine tracts alter transcription by sequestering glutamine rich transcriptional regulatory proteins, thereby perturbing their function. We tested this hypothesis in Caenorhabditis elegans neurons expressing a human huntingtin fragment with an expanded polyglutamine tract (Htn-Q150). Loss of function alleles and RNA interference (RNAi) were used to examine contributions of C. elegans cAMP response element-binding protein (CREB), CREB binding protein (CBP), and histone deacetylases (HDACs) to polyglutamine-induced neurodegeneration. Deletion of CREB (crh-1) or loss of one copy of CBP (cbp-1) enhanced polyglutamine toxicity in C. elegans neurons. Loss of function alleles and RNAi were then used to systematically reduce function of each C. elegans HDAC. Generally, knockdown of individual C. elegans HDACs enhanced Htn-Q150 toxicity, but knockdown of C. elegans hda-3 suppressed toxicity. Neuronal expression of hda-3 restored Htn-Q150 toxicity and suggested that C. elegans HDAC3 (HDA-3) acts within neurons to promote degeneration in response to Htn-Q150. Genetic epistasis experiments suggested that HDA-3 and CRH-1 (C. elegans CREB homolog) directly oppose each other in regulating transcription of genes involved in polyglutamine toxicity. hda-3 loss of function failed to suppress increased neurodegeneration in hda-1/+;Htn-Q150 animals, indicating that HDA-1 and HDA-3 have different targets with opposing effects on polyglutamine toxicity. Our results suggest that polyglutamine expansions perturb transcription of CREB/CBP targets and that specific targeting of HDACs will be useful in reducing associated neurodegeneration.

  11. Untangling Longevity, Dauer, and Healthspan in Caenorhabditis elegans Insulin/IGF-1-Signalling.

    PubMed

    Ewald, Collin Yvès; Castillo-Quan, Jorge Iván; Blackwell, T Keith

    2018-01-01

    The groundbreaking discovery that lower levels of insulin/IGF-1 signaling (IIS) can induce lifespan extension was reported 24 years ago in the nematode Caenorhabditis elegans. In this organism, mutations in the insulin/IGF-1 receptor gene daf-2 or other genes in this pathway can double lifespan. Subsequent work has revealed that reduced IIS (rIIS) extends lifespan across diverse species, possibly including humans. In C. elegans, IIS also regulates development into the diapause state known as dauer, a quiescent larval form that enables C. elegans to endure harsh environments through morphological adaptation, improved cellular repair, and slowed metabolism. Considerable progress has been made uncovering mechanisms that are affected by C. elegans rIIS. However, from the beginning it has remained unclear to what extent rIIS extends C. elegans lifespan by mobilizing dauer-associated mechanisms in adults. As we discuss, recent work has shed light on this question by determining that rIIS can extend C. elegans lifespan comparably through downstream processes that are either dauer-related or -independent. Importantly, these two lifespan extension programs can be distinguished genetically. It will now be critical to tease apart these programs, because each may involve different longevity-promoting mechanisms that may be relevant to higher organisms. A recent analysis of organismal "healthspan" has questioned the value of C. elegans rIIS as a paradigm for understanding healthy aging, as opposed to simply extending life. We discuss other work that argues strongly that C. elegans rIIS is indeed an invaluable model and consider the likely possibility that dauer-related processes affect parameters associated with health under rIIS conditions. Together, these studies indicate that C. elegans and analyses of rIIS in this organism will continue to provide unexpected and exciting results, and new paradigms that will be valuable for understanding healthy aging in humans. © 2017 S

  12. Measuring Food Intake and Nutrient Absorption in Caenorhabditis elegans.

    PubMed

    Gomez-Amaro, Rafael L; Valentine, Elizabeth R; Carretero, Maria; LeBoeuf, Sarah E; Rangaraju, Sunitha; Broaddus, Caroline D; Solis, Gregory M; Williamson, James R; Petrascheck, Michael

    2015-06-01

    Caenorhabditis elegans has emerged as a powerful model to study the genetics of feeding, food-related behaviors, and metabolism. Despite the many advantages of C. elegans as a model organism, direct measurement of its bacterial food intake remains challenging. Here, we describe two complementary methods that measure the food intake of C. elegans. The first method is a microtiter plate-based bacterial clearing assay that measures food intake by quantifying the change in the optical density of bacteria over time. The second method, termed pulse feeding, measures the absorption of food by tracking de novo protein synthesis using a novel metabolic pulse-labeling strategy. Using the bacterial clearance assay, we compare the bacterial food intake of various C. elegans strains and show that long-lived eat mutants eat substantially more than previous estimates. To demonstrate the applicability of the pulse-feeding assay, we compare the assimilation of food for two C. elegans strains in response to serotonin. We show that serotonin-increased feeding leads to increased protein synthesis in a SER-7-dependent manner, including proteins known to promote aging. Protein content in the food has recently emerged as critical factor in determining how food composition affects aging and health. The pulse-feeding assay, by measuring de novo protein synthesis, represents an ideal method to unequivocally establish how the composition of food dictates protein synthesis. In combination, these two assays provide new and powerful tools for C. elegans research to investigate feeding and how food intake affects the proteome and thus the physiology and health of an organism. Copyright © 2015 by the Genetics Society of America.

  13. Regulatory elements of Caenorhabditis elegans ribosomal protein genes

    PubMed Central

    2012-01-01

    Background Ribosomal protein genes (RPGs) are essential, tightly regulated, and highly expressed during embryonic development and cell growth. Even though their protein sequences are strongly conserved, their mechanism of regulation is not conserved across yeast, Drosophila, and vertebrates. A recent investigation of genomic sequences conserved across both nematode species and associated with different gene groups indicated the existence of several elements in the upstream regions of C. elegans RPGs, providing a new insight regarding the regulation of these genes in C. elegans. Results In this study, we performed an in-depth examination of C. elegans RPG regulation and found nine highly conserved motifs in the upstream regions of C. elegans RPGs using the motif discovery algorithm DME. Four motifs were partially similar to transcription factor binding sites from C. elegans, Drosophila, yeast, and human. One pair of these motifs was found to co-occur in the upstream regions of 250 transcripts including 22 RPGs. The distance between the two motifs displayed a complex frequency pattern that was related to their relative orientation. We tested the impact of three of these motifs on the expression of rpl-2 using a series of reporter gene constructs and showed that all three motifs are necessary to maintain the high natural expression level of this gene. One of the motifs was similar to the binding site of an orthologue of POP-1, and we showed that RNAi knockdown of pop-1 impacts the expression of rpl-2. We further determined the transcription start site of rpl-2 by 5’ RACE and found that the motifs lie 40–90 bases upstream of the start site. We also found evidence that a noncoding RNA, contained within the outron of rpl-2, is co-transcribed with rpl-2 and cleaved during trans-splicing. Conclusions Our results indicate that C. elegans RPGs are regulated by a complex novel series of regulatory elements that is evolutionarily distinct from those of all other species

  14. Femtosecond laser dissection in C. elegans neural circuits

    NASA Astrophysics Data System (ADS)

    Samuel, Aravinthan D. T.; Chung, Samuel H.; Clark, Damon A.; Gabel, Christopher V.; Chang, Chieh; Murthy, Venkatesh; Mazur, Eric

    2006-02-01

    The nematode C. elegans, a millimeter-long roundworm, is a well-established model organism for studies of neural development and behavior, however physiological methods to manipulate and monitor the activity of its neural network have lagged behind the development of powerful methods in genetics and molecular biology. The small size and transparency of C. elegans make the worm an ideal test-bed for the development of physiological methods derived from optics and microscopy. We present the development and application of a new physiological tool: femtosecond laser dissection, which allows us to selectively ablate segments of individual neural fibers within live C. elegans. Femtosecond laser dissection provides a scalpel with submicrometer resolution, and we discuss its application in studies of neural growth, regenerative growth, and the neural basis of behavior.

  15. Caenorhabditis elegans: An Emerging Model in Biomedical and Environmental Toxicology

    PubMed Central

    Leung, Maxwell C. K.; Williams, Phillip L.; Benedetto, Alexandre; Au, Catherine; Helmcke, Kirsten J.; Aschner, Michael; Meyer, Joel N.

    2008-01-01

    The nematode Caenorhabditis elegans has emerged as an important animal model in various fields including neurobiology, developmental biology, and genetics. Characteristics of this animal model that have contributed to its success include its genetic manipulability, invariant and fully described developmental program, well-characterized genome, ease of maintenance, short and prolific life cycle, and small body size. These same features have led to an increasing use of C. elegans in toxicology, both for mechanistic studies and high-throughput screening approaches. We describe some of the research that has been carried out in the areas of neurotoxicology, genetic toxicology, and environmental toxicology, as well as high-throughput experiments with C. elegans including genome-wide screening for molecular targets of toxicity and rapid toxicity assessment for new chemicals. We argue for an increased role for C. elegans in complementing other model systems in toxicological research. PMID:18566021

  16. Stable nuclear transformation of Eudorina elegans

    PubMed Central

    2013-01-01

    Background A fundamental step in evolution was the transition from unicellular to differentiated, multicellular organisms. Volvocine algae have been used for several decades as a model lineage to investigate the evolutionary aspects of multicellularity and cellular differentiation. There are two well-studied volvocine species, a unicellular alga (Chlamydomonas reinhardtii) and a multicellular alga with differentiated cell types (Volvox carteri). Species with intermediate characteristics also exist, which blur the boundaries between unicellularity and differentiated multicellularity. These species include the globular alga Eudorina elegans, which is composed of 16–32 cells. However, detailed molecular analyses of E. elegans require genetic manipulation. Unfortunately, genetic engineering has not yet been established for Eudorina, and only limited DNA and/or protein sequence information is available. Results Here, we describe the stable nuclear transformation of E. elegans by particle bombardment using both a chimeric selectable marker and reporter genes from different heterologous sources. Transgenic algae resistant to paromomycin were achieved using the aminoglycoside 3′-phosphotransferase VIII (aphVIII) gene of Streptomyces rimosus, an actinobacterium, under the control of an artificial promoter consisting of two V. carteri promoters in tandem. Transformants exhibited an increase in resistance to paromomycin by up to 333-fold. Co-transformation with non-selectable plasmids was achieved with a rate of 50 - 100%. The luciferase (gluc) gene from the marine copepod Gaussia princeps, which previously was engineered to match the codon usage of C. reinhardtii, was used as a reporter gene. The expression of gluc was mediated by promoters from C. reinhardtii and V. carteri. Heterologous heat shock promoters induced an increase in luciferase activity (up to 600-fold) at elevated temperatures. Long-term stability and both constitutive and inducible expression of the co

  17. Oleanolic acid activates daf-16 to increase lifespan in Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiaolong; Lu, Lulu; Zhou, Lijun, E-mail: lijunzhou@tju.edu.cn

    Oleanolic acid (OA) is an active ingredient in natural plants. It has been reported to possess a variety of pharmacological activities, but very little is known about its effects of anti-aging. We investigate here whether OA has an impact on longevity in vivo, and more specifically, we have examined effects of OA on the lifespan and stress tolerance in Caenorhabditis elegans (C. elegans). Our results showed that OA could extend the lifespan, increase its stress resistance and reduce the intracellular reactive oxygen species (ROS) in wild-type worms. Moreover, we have found that OA-induced longevity may not be associated with the calorie restrictionmore » (CR) mechanism. Our mechanistic studies using daf-16 loss-of-function mutant strains (GR1307) indicated that the extension of lifespan by OA requires daf-16. In addition, OA treatment could also modulate the nuclear localization, and the quantitative real-time PCR results revealed that up-regulation of daf-16 target genes such as sod-3, hsp-16.2 and ctl-1 could prolong lifespan and increase stress response in C. elegans. This study overall uncovers the longevity effect of OA and its underpinning mechanisms. - Graphical abstract: Oleanolic acid modulates the activity of DAF-16 to promote longevity and increase stress resistance in Caenorhabditis elegans. - Highlights: • OA extends the lifespan of wild-type Caenorhabditis elegans. • OA improves the stress resistance and reduces the intracellular ROS level in C. elegans. • OA induces lifespan extension may not proceed through the CR mechanism. • OA extends the lifespan in C. elegans is modulated by daf-16.« less

  18. Tissue enrichment analysis for C. elegans genomics.

    PubMed

    Angeles-Albores, David; N Lee, Raymond Y; Chan, Juancarlos; Sternberg, Paul W

    2016-09-13

    Over the last ten years, there has been explosive development in methods for measuring gene expression. These methods can identify thousands of genes altered between conditions, but understanding these datasets and forming hypotheses based on them remains challenging. One way to analyze these datasets is to associate ontologies (hierarchical, descriptive vocabularies with controlled relations between terms) with genes and to look for enrichment of specific terms. Although Gene Ontology (GO) is available for Caenorhabditis elegans, it does not include anatomical information. We have developed a tool for identifying enrichment of C. elegans tissues among gene sets and generated a website GUI where users can access this tool. Since a common drawback to ontology enrichment analyses is its verbosity, we developed a very simple filtering algorithm to reduce the ontology size by an order of magnitude. We adjusted these filters and validated our tool using a set of 30 gold standards from Expression Cluster data in WormBase. We show our tool can even discriminate between embryonic and larval tissues and can even identify tissues down to the single-cell level. We used our tool to identify multiple neuronal tissues that are down-regulated due to pathogen infection in C. elegans. Our Tissue Enrichment Analysis (TEA) can be found within WormBase, and can be downloaded using Python's standard pip installer. It tests a slimmed-down C. elegans tissue ontology for enrichment of specific terms and provides users with a text and graphic representation of the results.

  19. High-Throughput Gene Mapping in Caenorhabditis elegans

    PubMed Central

    Swan, Kathryn A.; Curtis, Damian E.; McKusick, Kathleen B.; Voinov, Alexander V.; Mapa, Felipa A.; Cancilla, Michael R.

    2002-01-01

    Positional cloning of mutations in model genetic systems is a powerful method for the identification of targets of medical and agricultural importance. To facilitate the high-throughput mapping of mutations in Caenorhabditis elegans, we have identified a further 9602 putative new single nucleotide polymorphisms (SNPs) between two C. elegans strains, Bristol N2 and the Hawaiian mapping strain CB4856, by sequencing inserts from a CB4856 genomic DNA library and using an informatics pipeline to compare sequences with the canonical N2 genomic sequence. When combined with data from other laboratories, our marker set of 17,189 SNPs provides even coverage of the complete worm genome. To date, we have confirmed >1099 evenly spaced SNPs (one every 91 ± 56 kb) across the six chromosomes and validated the utility of our SNP marker set and new fluorescence polarization-based genotyping methods for systematic and high-throughput identification of genes in C. elegans by cloning several proprietary genes. We illustrate our approach by recombination mapping and confirmation of the mutation in the cloned gene, dpy-18. [The sequence data described in this paper have been submitted to the NCBI dbSNP data library under accession nos. 4388625–4389689 and GenBank dbSTS under accession nos. 973810–974874. The following individuals and institutions kindly provided reagents, samples, or unpublished information as indicated in the paper: The C. elegans Sequencing Consortium and The Caenorhabditis Genetics Center.] PMID:12097347

  20. Measuring the Effect of Chemicals on the Growth and Reproduction of Caenorhabditis elegans.

    PubMed

    Lee, So Young; Kang, Kyungsu

    2017-10-05

    Toxicological evaluation is crucial for understanding the effects of chemicals on living organisms in basic and applied biological science fields. A non-mammalian soil round worm, Caenorhabditis elegans, is a valuable model organism for toxicology studies due to its convenience and lack of animal ethics issues compared with mammalian animal systems. In this protocol, a detailed procedure of toxicological evaluation of chemicals in C. elegans is described. A clinical anticancer drug, etoposide, which targets human topoisomerase II and inhibits DNA replication of human cancer cells, was selected as a model testing chemical. Age-synchronized C. elegans eggs were exposed to either dimethyl sulfoxide (DMSO) or etoposide, and then the growth of C. elegans was monitored every day for 4 days by the stereo microscope observation. The total number of eggs laid from C. elegans treated with DMSO or etoposide was also counted by using the stereo microscope. Etoposide treatment significantly affected the growth and reproduction of C. elegans. By comparison of the total number of eggs laid from worms with different treatment periods of chemicals, it can be decided that the reproductive toxicity of chemicals on C. elegans reproduction is reversible or irreversible. These protocols may be helpful for both the development of various drugs and risk assessment of environmental toxicants.

  1. The TGF-β Family in Caenorhabditis elegans

    PubMed Central

    Savage-Dunn, Cathy; Padgett, Richard W.

    2017-01-01

    Transforming growth factor β (TGF-β) and related ligands have potent effects on an enormous diversity of biological functions in all animals examined. Because of the strong conservation of TGF-β family ligand functions and signaling mechanisms, studies from multiple animal systems have yielded complementary and synergistic insights. In the nematode Caenorhabditis elegans, early studies were instrumental in the elucidation of TGF-β family signaling mechanisms. Current studies in C. elegans continue to identify new functions for the TGF-β family in this organism as well as new conserved mechanisms of regulation. PMID:28096268

  2. Neurotransmitter release mechanisms studied in Caenorhabditis elegans.

    PubMed

    Barclay, Jeff W; Morgan, Alan; Burgoyne, Robert D

    2012-01-01

    The process of regulated exocytosis has received considerable interest as a key component of synaptic transmission. Fusion of presynaptic vesicles and the subsequent release of their neurotransmitter contents is driven by a series of interactions between evolutionarily conserved proteins. Key insights into the molecular mechanisms of vesicle fusion have come from research using genetic model systems such as the nematode worm Caenorhabditis elegans. We review here the current knowledge regarding regulated exocytosis at the C. elegans synapse and future research directions involving this model organism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Cadherins and Their Partners in the Nematode Worm Caenorhabditis elegans

    PubMed Central

    Hardin, Jeff; Lynch, Allison; Loveless, Timothy; Pettitt, Jonathan

    2018-01-01

    The extreme simplicity of Caenorhabditis elegans makes it an ideal system to study the basic principles of cadherin function at the level of single cells within the physiologically relevant context of a developing animal. The genetic tractability of C. elegans also means that components of cadherin complexes can be identified through genetic modifier screens, allowing a comprehensive in vivo characterization of the macromolecular assemblies involved in cadherin function during tissue formation and maintenance in C. elegans. This work shows that a single cadherin system, the classical cadherin–catenin complex, is essential for diverse morphogenetic events during embryogenesis through its interactions with a range of mostly conserved proteins that act to modulate its function. The role of other members of the cadherin family in C. elegans, including members of the Fat-like, Flamingo/CELSR and calsyntenin families is less well characterized, but they have clear roles in neuronal development and function. PMID:23481198

  4. Action potentials drive body wall muscle contractions in Caenorhabditis elegans

    PubMed Central

    Gao, Shangbang; Zhen, Mei

    2011-01-01

    The sinusoidal locomotion exhibited by Caenorhabditis elegans predicts a tight regulation of contractions and relaxations of its body wall muscles. Vertebrate skeletal muscle contractions are driven by voltage-gated sodium channel–dependent action potentials. How coordinated motor outputs are regulated in C. elegans, which does not have voltage-gated sodium channels, remains unknown. Here, we show that C. elegans body wall muscles fire all-or-none, calcium-dependent action potentials that are driven by the L-type voltage-gated calcium and Kv1 voltage-dependent potassium channels. We further demonstrate that the excitatory and inhibitory motoneuron activities regulate the frequency of action potentials to coordinate muscle contraction and relaxation, respectively. This study provides direct evidence for the dual-modulatory model of the C. elegans motor circuit; moreover, it reveals a mode of motor control in which muscle cells integrate graded inputs of the nervous system and respond with all-or-none electrical signals. PMID:21248227

  5. A microfluidic device for the continuous culture and analysis of Caenorhabditis elegans in a toxic aqueous environment

    NASA Astrophysics Data System (ADS)

    Jung, Jaehoon; Nakajima, Masahiro; Tajima, Hirotaka; Huang, Qiang; Fukuda, Toshio

    2013-08-01

    The nematode Caenorhabditis elegans (C. elegans) receives attention as a bioindicator, and the C. elegans condition has been recently analyzed using microfluidic devices equipped with an imaging system. To establish a method without an imaging system, we have proposed a novel microfluidic device with which to analyze the condition of C. elegans from the capacitance change using a pair of micro-electrodes. The device was designed to culture C. elegans, to expose C. elegans to an external stimulus, such as a chemical or toxicant, and to measure the capacitance change which indicates the condition of C. elegans. In this study, to demonstrate the capability of our device in a toxic aqueous environment, the device was applied to examine the effect of cadmium on C. elegans. Thirty L4 larval stage C. elegans were divided into three groups. One group was a control group and the other groups were exposed to cadmium solutions with concentrations of 5% and 10% LC50 for 24 h. The capacitance change and the body volume of C. elegans as a reference were measured four times and we confirmed the correlation between them. It shows that our device can analyze the condition of C. elegans without an imaging system.

  6. Solution structure of CEH-37 homeodomain of the nematode Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Sunjin; Lee, Yong Woo; Kim, Woo Taek

    Highlights: •We have determined solution structures of CEH-37 homedomain. •CEH-37 HD has a compact α-helical structure with HTH DNA binding motif. •Solution structure of CEH-37 HD shares its molecular topology with that of the homeodomain proteins. •Residues in the N-terminal region and HTH motif are important in binding to Caenorhabditis elegans telomeric DNA. •CEH-37 could play an important role in telomere function via DNA binding. -- Abstract: The nematode Caenorhabditis elegans protein CEH-37 belongs to the paired OTD/OTX family of homeobox-containing homeodomain proteins. CEH-37 shares sequence similarity with homeodomain proteins, although it specifically binds to double-stranded C. elegans telomeric DNA,more » which is unusual to homeodomain proteins. Here, we report the solution structure of CEH-37 homeodomain and molecular interaction with double-stranded C. elegans telomeric DNA using nuclear magnetic resonance (NMR) spectroscopy. NMR structure shows that CEH-37 homeodomain is composed of a flexible N-terminal region and three α-helices with a helix-turn-helix (HTH) DNA binding motif. Data from size-exclusion chromatography and fluorescence spectroscopy reveal that CEH-37 homeodomain interacts strongly with double-stranded C. elegans telomeric DNA. NMR titration experiments identified residues responsible for specific binding to nematode double-stranded telomeric DNA. These results suggest that C. elegans homeodomain protein, CEH-37 could play an important role in telomere function via DNA binding.« less

  7. High-throughput gene mapping in Caenorhabditis elegans.

    PubMed

    Swan, Kathryn A; Curtis, Damian E; McKusick, Kathleen B; Voinov, Alexander V; Mapa, Felipa A; Cancilla, Michael R

    2002-07-01

    Positional cloning of mutations in model genetic systems is a powerful method for the identification of targets of medical and agricultural importance. To facilitate the high-throughput mapping of mutations in Caenorhabditis elegans, we have identified a further 9602 putative new single nucleotide polymorphisms (SNPs) between two C. elegans strains, Bristol N2 and the Hawaiian mapping strain CB4856, by sequencing inserts from a CB4856 genomic DNA library and using an informatics pipeline to compare sequences with the canonical N2 genomic sequence. When combined with data from other laboratories, our marker set of 17,189 SNPs provides even coverage of the complete worm genome. To date, we have confirmed >1099 evenly spaced SNPs (one every 91 +/- 56 kb) across the six chromosomes and validated the utility of our SNP marker set and new fluorescence polarization-based genotyping methods for systematic and high-throughput identification of genes in C. elegans by cloning several proprietary genes. We illustrate our approach by recombination mapping and confirmation of the mutation in the cloned gene, dpy-18.

  8. Microfluidic Platform for Analyzing the Thermotaxis of C. elegans in a Linear Temperature Gradient.

    PubMed

    Yoon, Sunhee; Piao, Hailing; Jeon, Tae-Joon; Kim, Sun Min

    2017-01-01

    Caenorhabditis elegans (C. elegans), which shares a considerable amount of characteristics with human genes is one of the important model organisms for the study of behavioral responses. Thermotaxis is a representative behavior response of C. elegans; C. elegans stores the cultivation temperature in thermosensory neurons and moves to the cultivation temperature region in a temperature variation. In this study, we developed a microfluidic system for effective thermotaxis analysis of C. elegans. The microfluidic channel was fabricated using polydimethylsiloxane (PDMS) by soft lithography process. The temperature gradient (15 - 20°C) was generated in the microchannel and controlled by Peltier modules attached to the bottom of the channel. The thermotaxis of wild type (N2), tax-4(p678) and ttx-7(nj50) mutants were effectively analyzed using this microfluidic system. We believe that this system can be employed as a basic platform for studying the neural circuit of C. elegans responding to external stimuli.

  9. Chemical constituents and biological activities of Dianthus elegans var. elegans.

    PubMed

    Mutlu, Kiymet; Sarikahya, Nazli Boke; Nalbantsoy, Ayse; Kirmizigul, Suheyla

    2018-06-01

    Chemical investigation of the aerial parts of Dianthus elegans var. elegans afforded two previously undescribed saponins, named dianosides M-N (1-2), together with four oleanane-type triterpenoid glycosides (3-6). Their structures were elucidated as 3-O-α-L-arabinofuranosyl-16α-hydroxyolean-12-ene-23α, 28β-dioic acid (1) and 3-O-α-L-arabinofuranosyl-(1 → 3)-β-D-glucopyranosyl 16α-hydroxyolean-12-ene-23α-oic acid, 28-O-β-D-glucopyranosyl-(1 → 6)-β-D-glycosyl ester (2) by chemical and extensive spectroscopic methods including IR, 1D, 2D NMR and HRESIMS. Both of the saponins were evaluated for their cytotoxicities against HEK-293, A-549 and HeLa human cancer cells using the MTT method. All compounds showed no substantial cytotoxic activity against tested cell lines. However, dianosides M-N and the n-butanol fraction exhibited considerable haemolysis in human erythrocyte cells. The immunomodulatory properties of dianosides M-N were also evaluated in activated whole blood cells by PMA plus ionomycin. Dianosides M-N increased IL-1β concentration significantly whereas the n-butanol fraction slightly augmented IL-1β secretion. All compounds did not change IL-2 and IFN-γ levels considerably.

  10. LRRK2 modulates vulnerability to mitochondrial dysfunction in C. elegans

    PubMed Central

    Saha, Shamol; Guillily, Maria; Ferree, Andrew; Lanceta, Joel; Chan, Diane; Ghosh, Joy; Hsu, Cindy H.; Segal, Lilach; Raghavan, Kesav; Matsumoto, Kunihiro; Hisamoto, Naoki; Kuwahara, Tomoki; Iwatsubo, Takeshi; Moore, Landon; Goldstein, Lee; Cookson, Mark; Wolozin, Benjamin

    2009-01-01

    Summary Mutations in leucine rich repeat kinase 2 (LRRK2) cause autosomal dominant familial Parkinson’s disease. We generated lines of C. elegans expressing neuronally directed human LRRK2. Expressing human LRRK2 expression increased nematode survival in response to rotenone or paraquat, which are agents that cause mitochondrial dysfunction. Protection by G2019S, R1441C or kinase dead LRRK2 was less than protection by wild type LRRK2. Knockdown of lrk-1, the endogenous orthologue of LRRK2 in C. elegans, reduced survival associated with mitochondrial dysfunction. C. elegans expressing LRRK2 showed rapid loss of dopaminergic markers (DAT∷GFP fluorescence and dopamine levels) beginning in early adulthood. Loss of dopaminergic markers was greater for the G2019S LRRK2 line than for the WT line. Rotenone treatment induced a larger loss of dopamine markers in C. elegans expressing G2019S LRRK2 than in C. elegans expressing WT LRRK2; however loss of dopaminergic markers in the G2019S LRRK2 nematode lines was not statistically different than that in the control line. These data suggest that LRRK2 plays an important role in modulating the response to mitochondrial inhibition, and raises the possibility that mutations in LRRK2 selectively enhance the vulnerability of dopaminergic neurons to a stressor associated with Parkinson’s disease. PMID:19625511

  11. The Natural Biotic Environment of Caenorhabditis elegans.

    PubMed

    Schulenburg, Hinrich; Félix, Marie-Anne

    2017-05-01

    Organisms evolve in response to their natural environment. Consideration of natural ecological parameters are thus of key importance for our understanding of an organism's biology. Curiously, the natural ecology of the model species Caenorhabditis elegans has long been neglected, even though this nematode has become one of the most intensively studied models in biological research. This lack of interest changed ∼10 yr ago. Since then, an increasing number of studies have focused on the nematode's natural ecology. Yet many unknowns still remain. Here, we provide an overview of the currently available information on the natural environment of C. elegans We focus on the biotic environment, which is usually less predictable and thus can create high selective constraints that are likely to have had a strong impact on C. elegans evolution. This nematode is particularly abundant in microbe-rich environments, especially rotting plant matter such as decomposing fruits and stems. In this environment, it is part of a complex interaction network, which is particularly shaped by a species-rich microbial community. These microbes can be food, part of a beneficial gut microbiome, parasites and pathogens, and possibly competitors. C. elegans is additionally confronted with predators; it interacts with vector organisms that facilitate dispersal to new habitats, and also with competitors for similar food environments, including competitors from congeneric and also the same species. Full appreciation of this nematode's biology warrants further exploration of its natural environment and subsequent integration of this information into the well-established laboratory-based research approaches. Copyright © 2017 by the Genetics Society of America.

  12. Katz model prediction of Caenorhabditis elegans mutagenesis on STS-42

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Katz, Robert; Badhwar, Gautam D.

    1992-01-01

    Response parameters that describe the production of recessive lethal mutations in C. elegans from ionizing radiation are obtained with the Katz track structure model. The authors used models of the space radiation environment and radiation transport to predict and discuss mutation rates for C. elegans on the IML-1 experiment aboard STS-42.

  13. A natural odor attraction between lactic acid bacteria and the nematode Caenorhabditis elegans.

    PubMed

    Choi, Jae Im; Yoon, Kyoung-Hye; Subbammal Kalichamy, Saraswathi; Yoon, Sung-Sik; Il Lee, Jin

    2016-03-01

    Animal predators can track prey using their keen sense of smell. The bacteriovorous nematode Caenorhabditis elegans employs sensitive olfactory sensory neurons that express vertebrate-like odor receptors to locate bacteria. C. elegans displays odor-related behaviors such as attraction, aversion and adaptation, but the ecological significance of these behaviors is not known. Using a combination of food microbiology and genetics, we elucidate a possible predator-prey relationship between C. elegans and lactic acid bacteria (LAB) in rotting citrus fruit. LAB produces the volatile odor diacetyl as an oxidized by-product of fermentation in the presence of citrate. We show that C. elegans is attracted to LAB when grown on citrate media or Citrus medica L, commonly known as yuzu, a citrus fruit native to East Asia, and this attraction is mediated by the diacetyl odor receptor, ODR-10. We isolated a wild LAB strain and a wild C. elegans-related nematode from rotten yuzu, and demonstrate that the wild nematode was attracted to the diacetyl produced by LAB. These results not only identify an ecological function for a C. elegans olfactory behavior, but contribute to the growing understanding of ecological relationships between the microbial and metazoan worlds.

  14. Realgar bioleaching solution suppress ras excessive activation by increasing ROS in Caenorhabditis elegans.

    PubMed

    Zhi, De Juan; Feng, Na; Liu, Dong Ling; Hou, Rong Li; Wang, Mei Zu; Ding, Xiao Xia; Li, Hong Yu

    2014-03-01

    Although realgar bioleaching solution (RBS) has been proved to be a potential candidate for cancer therapy, the mechanisms of RBS anticancer are still far from being completely understood. Dosed with RBS in C. elegans, the multivulva phenotype resulting from oncogenic ras gain-of-function was inhibited in a dose dependent manner. It could be abrogated by concurrent treatment C. elegans with RBS and the radical scavenger DMSO. However, RBS could not induce DAF-16 nuclear translocation in TJ356 or the increase of HSP 16.2 expression in CL2070, which both could be aroused visible GFP fluorescent variation to represent for oxidative stress generation. Treatment C. elegans with superoxide anion generator paraquat, similar results were also obtained. Our results indicated that RBS suppress excessive activated ras by increasing reactive oxygen species (ROS) in C. elegans. Secondly, ROS induced by RBS significantly accumulated on a higher level in C. elegans with a mutational ras than that with wild ras, thus leading to oxidative stress on ras gain-of-function background rather than on normal ras context. Our results firstly demonstrated that using C. elegans as a model organism for evaluating prooxidant drug candidates for cancer therapy.

  15. A natural odor attraction between lactic acid bacteria and the nematode Caenorhabditis elegans

    PubMed Central

    Choi, Jae Im; Yoon, Kyoung-hye; Subbammal Kalichamy, Saraswathi; Yoon, Sung-Sik; Il Lee, Jin

    2016-01-01

    Animal predators can track prey using their keen sense of smell. The bacteriovorous nematode Caenorhabditis elegans employs sensitive olfactory sensory neurons that express vertebrate-like odor receptors to locate bacteria. C. elegans displays odor-related behaviors such as attraction, aversion and adaptation, but the ecological significance of these behaviors is not known. Using a combination of food microbiology and genetics, we elucidate a possible predator–prey relationship between C. elegans and lactic acid bacteria (LAB) in rotting citrus fruit. LAB produces the volatile odor diacetyl as an oxidized by-product of fermentation in the presence of citrate. We show that C. elegans is attracted to LAB when grown on citrate media or Citrus medica L, commonly known as yuzu, a citrus fruit native to East Asia, and this attraction is mediated by the diacetyl odor receptor, ODR-10. We isolated a wild LAB strain and a wild C. elegans-related nematode from rotten yuzu, and demonstrate that the wild nematode was attracted to the diacetyl produced by LAB. These results not only identify an ecological function for a C. elegans olfactory behavior, but contribute to the growing understanding of ecological relationships between the microbial and metazoan worlds. PMID:26241504

  16. The effects of short-term hypergravity on Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Saldanha, Jenifer N.; Pandey, Santosh; Powell-Coffman, Jo Anne

    2016-08-01

    As we seek to recognize the opportunities of advanced aerospace technologies and spaceflight, it is increasingly important to understand the impacts of hypergravity, defined as gravitational forces greater than those present on the earth's surface. The nematode Caenorhabditis elegans has been established as a powerful model to study the effects of altered gravity regimens and has displayed remarkable resilience to space travel. In this study, we investigate the effects of short-term and defined hypergravity exposure on C. elegans motility, brood size, pharyngeal pumping rates, and lifespan. The results from this study advance our understanding of the effects of shorter durations of exposure to increased gravitational forces on C. elegans, and also contribute to the growing body of literature on the impacts of altered gravity regimens on earth's life forms.

  17. Modeling Behavioral Experiment Interaction and Environmental Stimuli for a Synthetic C. elegans.

    PubMed

    Mujika, Andoni; Leškovský, Peter; Álvarez, Roberto; Otaduy, Miguel A; Epelde, Gorka

    2017-01-01

    This paper focusses on the simulation of the neural network of the Caenorhabditis elegans living organism, and more specifically in the modeling of the stimuli applied within behavioral experiments and the stimuli that is generated in the interaction of the C. elegans with the environment. To the best of our knowledge, all efforts regarding stimuli modeling for the C. elegans are focused on a single type of stimulus, which is usually tested with a limited subnetwork of the C. elegans neural system. In this paper, we follow a different approach where we model a wide-range of different stimuli, with more flexible neural network configurations and simulations in mind. Moreover, we focus on the stimuli sensation by different types of sensory organs or various sensory principles of the neurons. As part of this work, most common stimuli involved in behavioral assays have been modeled. It includes models for mechanical, thermal, chemical, electrical and light stimuli, and for proprioception-related self-sensed information exchange with the neural network. The developed models have been implemented and tested with the hardware-based Si elegans simulation platform.

  18. Specification of anteroposterior cell fates in Caenorhabditis elegans by Drosophila Hox proteins.

    PubMed

    Hunter, C P; Kenyon, C

    1995-09-21

    Antennapedia class homeobox (Hox) genes specify cell fates in successive anteroposterior body domains in vertebrates, insects and nematodes. The DNA-binding homeodomain sequences are very similar between vertebrate and Drosophila Hox proteins, and this similarity allows vertebrate Hox proteins to function in Drosophila. In contrast, the Caenorhabditis elegans homeodomains are substantially divergent. Further, C. elegans differs from both insects and vertebrates in having a non-segmented body as well as a distinctive mode of development that involves asymmetric early cleavages and invariant cell lineages. Here we report that, despite these differences, Drosophila Hox proteins expressed in C. elegans can substitute for C. elegans Hox proteins in the control of three different cell-fate decisions: the regulation of cell migration, the specification of serotonergic neurons, and the specification of a sensory structure. We also show that the specificity of one C. elegans Hox protein is partly determined by two amino acids that have been implicated in sequence-specific DNA binding. Together these findings suggest that factors important for target recognition by specific Hox proteins have been conserved throughout much of the animal kingdom.

  19. Lipid signalling couples translational surveillance to systemic detoxification in Caenorhabditis elegans

    PubMed Central

    Govindan, J. Amaranath; Jayamani, Elamparithi; Zhang, Xinrui; Breen, Peter; Larkins-Ford, Jonah; Mylonakis, Eleftherios

    2015-01-01

    Translation in eukaryotes is surveilled to detect toxins and virulence factors and coupled to the induction of defense pathways. C. elegans germline-specific mutations in translation components are detected by this system to induce detoxification and immune responses in distinct somatic cells. An RNAi screen revealed gene inactivations that act at multiple steps in lipid biosynthetic and kinase pathways that act upstream of MAP kinase to mediate the systemic communication of translation-defects to induce detoxification genes. Mammalian bile acids can rescue the defect in detoxification gene induction caused by C. elegans lipid biosynthetic gene inactivations. Extracts prepared from C. elegans with translation deficits but not from wild type can also rescue detoxification gene induction in lipid biosynthetic defective strains. These eukaryotic antibacterial countermeasures are not ignored by bacteria: particular bacterial species suppress normal C. elegans detoxification responses to mutations in translation factors. PMID:26322678

  20. A living model for obesity and aging research: Caenorhabditis elegans.

    PubMed

    Shen, Peiyi; Yue, Yiren; Park, Yeonhwa

    2018-03-24

    Caenorhabditis elegans (C. elegans) is a free-living nematode that has been extensively utilized as an animal model for research involving aging and neurodegenerative diseases, like Alzheimer's and Parkinson's, etc. Compared with traditional animal models, this small nematode possesses many benefits, such as small body size, short lifespan, completely sequenced genome, and more than 65% of the genes associated with human disease. All these characteristics make this organism an ideal living system for obesity and aging studies. This review gives a brief introduction of C. elegans as an animal model, highlights some advantages of research using this model and describes methods to evaluate the effect of treatments on obesity and aging of this organism.

  1. Dialogue between E. coli free radical pathways and the mitochondria of C. elegans.

    PubMed

    Govindan, J Amaranath; Jayamani, Elamparithi; Zhang, Xinrui; Mylonakis, Eleftherios; Ruvkun, Gary

    2015-10-06

    The microbial world presents a complex palette of opportunities and dangers to animals, which have developed surveillance and response strategies to hints of microbial intent. We show here that the mitochondrial homeostatic response pathway of the nematode Caenorhabditis elegans responds to Escherichia coli mutations that activate free radical detoxification pathways. Activation of C. elegans mitochondrial responses could be suppressed by additional mutations in E. coli, suggesting that C. elegans responds to products of E. coli to anticipate challenges to its mitochondrion. Out of 50 C. elegans gene inactivations known to mediate mitochondrial defense, we found that 7 genes were required for C. elegans response to a free radical producing E. coli mutant, including the bZip transcription factor atfs-1 (activating transcription factor associated with stress). An atfs-1 loss-of-function mutant was partially resistant to the effects of free radical-producing E. coli mutant, but a constitutively active atfs-1 mutant growing on wild-type E. coli inappropriately activated the pattern of mitochondrial responses normally induced by an E. coli free radical pathway mutant. Carbonylated proteins from free radical-producing E. coli mutant may directly activate the ATFS-1/bZIP transcription factor to induce mitochondrial stress response: feeding C. elegans with H2O2-treated E. coli induces the mitochondrial unfolded protein response, and inhibition of a gut peptide transporter partially suppressed C. elegans response to free radical damaged E. coli.

  2. Swietenia macrophylla extract promotes the ability of Caenorhabditis elegans to survive Pseudomonas aeruginosa infection.

    PubMed

    Dharmalingam, Komalavali; Tan, Boon-Khai; Mahmud, Muhd Zulkarnain; Sedek, Saiedatul Akmal Mohamed; Majid, Mohamed Isa Abdul; Kuah, Meng-Kiat; Sulaiman, Shaida Fariza; Ooi, Kheng Leong; Khan, Nurzalina Abdul Karim; Muhammad, Tengku Sifzizul Tengku; Tan, Man-Wah; Shu-Chien, Alexander Chong

    2012-01-31

    Swietenia macrophylla or commonly known as big leaf mahogany, has been traditionally used as an antibacterial and antifungal agent. The unwanted problem of antibiotic resistance in many bacterial species advocates the need for the discovery of the new anti-infective drugs. Here, we investigated the anti-infective properties of Swietenia macrophylla with an assay involving lethal infection of Caenorhabditis elegans with the opportunistic human pathogen Pseudomonas aeruginosa. Using a slow killing assay, Caenorhabditis elegans was challenged with an infective strain of Pseudomonas aeruginosa (PA14). The ability of Swietenia macrophylla seed ethyl acetate extract to promote the survival of infected worms was assessed by comparing the percentage of survival between extract treated and non-treated worm populations. The effect of Swietenia macrophylla towards PA14 growth, Caenorhabditis elegans feeding rate and degree of PA14 colonization in the worm gut was also evaluated. Lastly, using a fluorescent transgenic Caenorhabditis elegans strain and real time PCR, the effect of Swietenia macrophylla on the expression of lys-7, an immune response gene was also investigated. Our results demonstrate the ability of Swietenia macrophylla seed ethyl acetate extract in rescuing Caenorhabditis elegans from fatal PA14 infection. Consequently, we showed that the extract promotes the survival without exhibiting any bactericidal effect or perturbation of Caenorhabditis elegans feeding rate. We also showed that Swietenia macrophylla was able to restore the initially repressed lys-7 level in PA14 infected Caenorhabditis elegans. Swietenia macrophylla extract is able to enhance the ability of Caenorhabditis elegans to survive PA14 infection without directly killing the pathogen. We further showed that the extract boosted the expression of a gene pivotal for innate immunity in Caenorhabditis elegans. Collectively, these findings strongly suggest the presence of compounds within Swietenia

  3. Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae

    PubMed Central

    2012-01-01

    Background The nematode Caenorhabditis elegans is a major model organism in laboratory biology. Very little is known, however, about its ecology, including where it proliferates. In the past, C. elegans was mainly isolated from human-made compost heaps, where it was overwhelmingly found in the non-feeding dauer diapause stage. Results C. elegans and C. briggsae were found in large, proliferating populations in rotting plant material (fruits and stems) in several locations in mainland France. Both species were found to co-occur in samples isolated from a given plant species. Population counts spanned a range from one to more than 10,000 Caenorhabditis individuals on a single fruit or stem. Some populations with an intermediate census size (10 to 1,000) contained no dauer larvae at all, whereas larger populations always included some larvae in the pre-dauer or dauer stages. We report on associated micro-organisms, including pathogens. We systematically sampled a spatio-temporally structured set of rotting apples in an apple orchard in Orsay over four years. C. elegans and C. briggsae were abundantly found every year, but their temporal distributions did not coincide. C. briggsae was found alone in summer, whereas both species co-occurred in early fall and C. elegans was found alone in late fall. Competition experiments in the laboratory at different temperatures show that C. briggsae out-competes C. elegans at high temperatures, whereas C. elegans out-competes C. briggsae at lower temperatures. Conclusions C. elegans and C. briggsae proliferate in the same rotting vegetal substrates. In contrast to previous surveys of populations in compost heaps, we found fully proliferating populations with no dauer larvae. The temporal sharing of the habitat by the two species coincides with their temperature preference in the laboratory, with C. briggsae populations growing faster than C. elegans at higher temperatures, and vice at lower temperatures. PMID:22731941

  4. Study about locomotory ability of dystrophin-defected C.elegans after spaceflight

    NASA Astrophysics Data System (ADS)

    Gao, Ying; Sun, Yeqing; Lei, Huang; Xu, Dan

    2012-07-01

    Space microgravity could induce a variety of biological changes such as muscular atrophy. Recent studies show that gravisensing is a key point in muscular atrophy process, but the molecular mechanism is still unknown. Dystrophin, a muscle-related protein, plays an important role in muscle development. It is reported that mutation of human dystrophin gene could cause muscular atrophy. In this study, we focus on whether dystrophin gene acts as a gravisensing factor and observe locomotory ability of dystrophin-defected Caenorhabditis elegans (C.elegans) after spaceflight. We used wild-type (WT) and dystrophin-defected (dys-1) mutant of C.elegans, which were cultured to dauer stage and sent to space by Shenzhou 8 spacecraft (from Nov 1st to 17th, 2011). These worms were divided into three groups: space group (space radiation and microgravity conditions), space control group (space radiation and chmetcnvTCSC0NumberType1NegativeFalseHasSpaceFalseSourceValue1UnitNameg1g centrifuge force conditions) and ground control group.We already observed the progeny (generation F1 and F2) of worms which were sent to space, the movement of C. elegans is restricted to a two-dimensional sinusoidal pattern, and evaluated locomotory ability by the ratio (length/width) in crawl trace wave of C. elegans. The increased value of ratio indicates the decrease in locomotory ability of C. elegans. Our results from generation F1 showed that WT worms in space group(7.7±1.8) demonstrated the significant decrease in locomotory ability about 15%, compared with those in space control group(6.7±1.2). This finding indicates that locomotory ability of C. elegans progeny could be affected by microgravity in space environment. In comparison to the obvious difference in ratio between space group and space control group for WT worms, there is no significant difference between two space groups of generation F2 .For dys-1 mutant of C.elegans (generation F1 and F2), the results show that dystrophin deficiency

  5. C. elegans model of neuronal aging

    PubMed Central

    Peng, Chiu-Ying; Chen, Chun-Hao; Hsu, Jiun-Min

    2011-01-01

    Aging of the nervous system underlies the behavioral and cognitive decline associated with senescence. Understanding the molecular and cellular basis of neuronal aging will therefore contribute to the development of effective treatments for aging and age-associated neurodegenerative disorders. Despite this pressing need, there are surprisingly few animal models that aim at recapitulating neuronal aging in a physiological context. We recently developed a C. elegans model of neuronal aging, and showed that age-dependent neuronal defects are regulated by insulin signaling. We identified electrical activity and epithelial attachment as two critical factors in the maintenance of structural integrity of C. elegans touch receptor neurons. These findings open a new avenue for elucidating the molecular mechanisms that maintain neuronal structures during the course of aging. PMID:22446530

  6. Selenite Enhances Immune Response against Pseudomonas aeruginosa PA14 via SKN-1 in Caenorhabditis elegans

    PubMed Central

    Huang, Chi-Wei; Wei, Chia-Cheng; Liao, Vivian Hsiu-Chuan

    2014-01-01

    Background Selenium (Se) is an important nutrient that carries out many biological processes including maintaining optimal immune function. Here, inorganic selenite (Se(IV)) was evaluated for its pathogen resistance and potential-associated factors in Caenorhabditis elegans. The immune effects of Se(IV) were investigated by examining the responses of C. elegans to Pseudomonas aerugonisa PA14 strain. Principal Findings Se(IV)-treated C. elegans showed increased survival under PA14 infection compared with untreated controls. The significant pathogen resistance of Se(IV) on C. elegans might not be attributed to the effects of Se(IV) on PA14 as Se(IV) showed no effect on bacterial quorum-sensing and virulence factors of PA14. This study showed that Se(IV) enhanced the expression of a gene pivotal for the innate immunity in C. elegans. The study found that the pathogen-resistant phenotypes contributed by Se(IV) was absent from the skn-1 mutant worms. Moreover, Se(IV) influenced the subcellular distribution of SKN-1/Nrf in C. elegans upon PA14 infection. Furthermore, Se(IV) increased mRNA levels of SKN-1 target genes (gst-4 and gcs-1). Conclusions This study found evidence of Se(IV) protecting C. elegans against P. aeruginosa PA14 infection by exerting effects on the innate immunity of C. elegans that is likely mediated via regulation of a SKN-1-dependent signaling pathway. PMID:25147937

  7. Dissection of C. elegans behavioral genetics in 3-D environments

    PubMed Central

    Kwon, Namseop; Hwang, Ara B.; You, Young-Jai; V. Lee, Seung-Jae; Ho Je, Jung

    2015-01-01

    The nematode Caenorhabditis elegans is a widely used model for genetic dissection of animal behaviors. Despite extensive technical advances in imaging methods, it remains challenging to visualize and quantify C. elegans behaviors in three-dimensional (3-D) natural environments. Here we developed an innovative 3-D imaging method that enables quantification of C. elegans behavior in 3-D environments. Furthermore, for the first time, we characterized 3-D-specific behavioral phenotypes of mutant worms that have defects in head movement or mechanosensation. This approach allowed us to reveal previously unknown functions of genes in behavioral regulation. We expect that our 3-D imaging method will facilitate new investigations into genetic basis of animal behaviors in natural 3-D environments. PMID:25955271

  8. Aversive Olfactory Learning and Associative Long-Term Memory in "Caenorhabditis elegans"

    ERIC Educational Resources Information Center

    Amano, Hisayuki; Maruyama, Ichiro N.

    2011-01-01

    The nematode "Caenorhabditis elegans" ("C. elegans") adult hermaphrodite has 302 invariant neurons and is suited for cellular and molecular studies on complex behaviors including learning and memory. Here, we have developed protocols for classical conditioning of worms with 1-propanol, as a conditioned stimulus (CS), and hydrochloride (HCl) (pH…

  9. Immunoglobulin superfamily proteins in Caenorhabditis elegans.

    PubMed

    Teichmann, S A; Chothia, C

    2000-03-10

    The predicted proteins of the genome of Caenorhabditis elegans were analysed by various sequence comparison methods to identify the repertoire of proteins that are members of the immunoglobulin superfamily (IgSF). The IgSF is one of the largest families of protein domain in this genome and likely to be one of the major families in other multicellular eukaryotes too. This is because members of the superfamily are involved in a variety of functions including cell-cell recognition, cell-surface receptors, muscle structure and, in higher organisms, the immune system. Sixty-four proteins with 488 I set IgSF domains were identified largely by using Hidden Markov models. The domain architectures of the protein products of these 64 genes are described. Twenty-one of these had been characterised previously. We show that another 25 are related to proteins of known function. The C. elegans IgSF proteins can be classified into five broad categories: muscle proteins, protein kinases and phosphatases, three categories of proteins involved in the development of the nervous system, leucine-rich repeat containing proteins and proteins without homologues of known function, of which there are 18. The 19 proteins involved in nervous system development that are not kinases or phosphatases are homologues of neuroglian, axonin, NCAM, wrapper, klingon, ICCR and nephrin or belong to the recently identified zig gene family. Out of the set of 64 genes, 22 are on the X chromosome. This study should be seen as an initial description of the IgSF repertoire in C. elegans, because the current gene definitions may contain a number of errors, especially in the case of long sequences, and there may be IgSF genes that have not yet been detected. However, the proteins described here do provide an overview of the bulk of the repertoire of immunoglobulin superfamily members in C. elegans, a framework for refinement and extension of the repertoire as gene and protein definitions improve, and the basis

  10. Tracking C. elegans and its neuromuscular activity using NemaFlex

    NASA Astrophysics Data System (ADS)

    van Bussel, Frank; Rahman, Mizanur; Hewitt, Jennifer; Blawzdziewicz, Jerzy; Driscoll, Monica; Szewczyk, Nathaniel; Vanapalli, Siva

    Recently, a novel platform has been developed for studying the behavior and physical characteristics of the nematode C. elegans. This is NemaFlex, developed by the Vanapalli group at Texas Tech University to analyze movement and muscular strength of crawling C. elegans. NemaFlex is a microfluidic device consisting of an array of deformable PDMS pillars, with which the C. elegans interacts in the course of moving through the system. Deflection measurements then allow us to calculate the force exerted by the worm via Euler-Bernoulli beam theory. For the procedure to be fully automated a fairly sophisticated software analysis has to be developed in tandem with the physical device. In particular, the usefulness of the force calculations is highly dependent on the accuracy and volume of the deflection measurements, which would be prohibitively time-consuming if carried out by hand/eye. In order to correlate the force results with muscle activations the C. elegans itself has to be tracked simultaneously, and pillar deflections precisely associated with mechanical-contact on the worm's body. Here we will outline the data processing and analysis routines that have been implemented in order to automate the calculation of these forces and muscular activations.

  11. A genome-wide screen of bacterial mutants that enhance dauer formation in C. elegans.

    PubMed

    Khanna, Amit; Kumar, Jitendra; Vargas, Misha A; Barrett, LaKisha; Katewa, Subhash; Li, Patrick; McCloskey, Tom; Sharma, Amit; Naudé, Nicole; Nelson, Christopher; Brem, Rachel; Killilea, David W; Mooney, Sean D; Gill, Matthew; Kapahi, Pankaj

    2016-12-13

    Molecular pathways involved in dauer formation, an alternate larval stage that allows Caenorhabditis elegans to survive adverse environmental conditions during development, also modulate longevity and metabolism. The decision to proceed with reproductive development or undergo diapause depends on food abundance, population density, and temperature. In recent years, the chemical identities of pheromone signals that modulate dauer entry have been characterized. However, signals derived from bacteria, the major source of nutrients for C. elegans, remain poorly characterized. To systematically identify bacterial components that influence dauer formation and aging in C. elegans, we utilized the individual gene deletion mutants in E. coli (K12). We identified 56 diverse E. coli deletion mutants that enhance dauer formation in an insulin-like receptor mutant (daf-2) background. We describe the mechanism of action of a bacterial mutant cyaA, that is defective in the production of cyclic AMP, which extends lifespan and enhances dauer formation through the modulation of TGF-β (daf-7) signaling in C. elegans. Our results demonstrate the importance of bacterial components in influencing developmental decisions and lifespan in C. elegans. Furthermore, we demonstrate that C. elegans is a useful model to study bacterial-host interactions.

  12. Dietary regulation of hypodermal polyploidization in C. elegans

    PubMed Central

    Tain, Luke S; Lozano, Encarnación; Sáez, Alberto G; Leroi, Armand M

    2008-01-01

    Background Dietary restriction (DR) results in increased longevity, reduced fecundity and reduced growth in many organisms. Though many studies have examined the effects of DR on longevity and fecundity, few have investigated the effects on growth. Results Here we use Caenorhabditis elegans to determine the mechanisms that regulate growth under DR. We show that rather than a reduction in cell number, decreased growth in wild type C. elegans under DR is correlated with lower levels of hypodermal polyploidization. We also show that mutants lacking wild type sensory ciliated neurons are small, exhibit hypo-polyploidization and more importantly, when grown under DR, reduce their levels of endoreduplication to a lesser extent than wild type, suggesting that these neurons are required for the regulation of hypodermal polyploidization in response to DR. Similarly, we also show that the cGMP-dependent protein kinase EGL-4 and the SMA/MAB signalling pathway regulate polyploidization under DR. Conclusion We show C. elegans is capable of actively responding to food levels to regulate adult ploidy. We suggest this response is dependent on the SMA/MAB signalling pathway. PMID:18366811

  13. Dietary regulation of hypodermal polyploidization in C. elegans.

    PubMed

    Tain, Luke S; Lozano, Encarnación; Sáez, Alberto G; Leroi, Armand M

    2008-03-12

    Dietary restriction (DR) results in increased longevity, reduced fecundity and reduced growth in many organisms. Though many studies have examined the effects of DR on longevity and fecundity, few have investigated the effects on growth. Here we use Caenorhabditis elegans to determine the mechanisms that regulate growth under DR. We show that rather than a reduction in cell number, decreased growth in wild type C. elegans under DR is correlated with lower levels of hypodermal polyploidization. We also show that mutants lacking wild type sensory ciliated neurons are small, exhibit hypo-polyploidization and more importantly, when grown under DR, reduce their levels of endoreduplication to a lesser extent than wild type, suggesting that these neurons are required for the regulation of hypodermal polyploidization in response to DR. Similarly, we also show that the cGMP-dependent protein kinase EGL-4 and the SMA/MAB signalling pathway regulate polyploidization under DR. We show C. elegans is capable of actively responding to food levels to regulate adult ploidy. We suggest this response is dependent on the SMA/MAB signalling pathway.

  14. Identification of Pseudomonas aeruginosa Phenazines that Kill Caenorhabditis elegans

    PubMed Central

    Cezairliyan, Brent; Vinayavekhin, Nawaporn; Grenfell-Lee, Daniel; Yuen, Grace J.; Saghatelian, Alan; Ausubel, Frederick M.

    2013-01-01

    Pathogenic microbes employ a variety of methods to overcome host defenses, including the production and dispersal of molecules that are toxic to their hosts. Pseudomonas aeruginosa, a Gram-negative bacterium, is a pathogen of a diverse variety of hosts including mammals and the nematode Caenorhabditis elegans. In this study, we identify three small molecules in the phenazine class that are produced by P. aeruginosa strain PA14 that are toxic to C. elegans. We demonstrate that 1-hydroxyphenazine, phenazine-1-carboxylic acid, and pyocyanin are capable of killing nematodes in a matter of hours. 1-hydroxyphenazine is toxic over a wide pH range, whereas the toxicities of phenazine-1-carboxylic acid and pyocyanin are pH-dependent at non-overlapping pH ranges. We found that acidification of the growth medium by PA14 activates the toxicity of phenazine-1-carboxylic acid, which is the primary toxic agent towards C. elegans in our assay. Pyocyanin is not toxic under acidic conditions and 1-hydroxyphenazine is produced at concentrations too low to kill C. elegans. These results suggest a role for phenazine-1-carboxylic acid in mammalian pathogenesis because PA14 mutants deficient in phenazine production have been shown to be defective in pathogenesis in mice. More generally, these data demonstrate how diversity within a class of metabolites could affect bacterial toxicity in different environmental niches. PMID:23300454

  15. Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans

    PubMed Central

    Wilson, Mark A; Shukitt-Hale, Barbara; Kalt, Wilhelmina; Ingram, Donald K; Joseph, James A; Wolkow, Catherine A

    2006-01-01

    Summary The beneficial effects of polyphenol compounds in fruits and vegetables are mainly extrapolated from in vitro studies or short-term dietary supplementation studies. Due to cost and duration, relatively little is known about whether dietary polyphenols are beneficial in whole animals, particularly with respect to aging. To address this question, we examined the effects of blueberry polyphenols on lifespan and aging of the nematode, Caenorhabditis elegans, a useful organism for such a study. We report that a complex mixture of blue-berry polyphenols increased lifespan and slowed aging-related declines in C. elegans. We also found that these benefits did not just reflect antioxidant activity in these compounds. For instance, blueberry treatment increased survival during acute heat stress, but was not protective against acute oxidative stress. The blueberry extract consists of three major fractions that all contain antioxidant activity. However, only one fraction, enriched in proanthocyanidin compounds, increased C. elegans lifespan and thermotolerance. To further determine how polyphenols prolonged C. elegans lifespan, we analyzed the genetic requirements for these effects. Prolonged lifespan from this treatment required the presence of a CaMKII pathway that mediates osmotic stress resistance, though not other pathways that affect stress resistance and longevity. In conclusion, polyphenolic compounds in blueberries had robust and reproducible benefits during aging that were separable from antioxidant effects. PMID:16441844

  16. Paradigms for pharmacological characterization of C. elegans synaptic transmission mutants.

    PubMed

    Locke, Cody; Berry, Kalen; Kautu, Bwarenaba; Lee, Kyle; Caldwell, Kim; Caldwell, Guy

    2008-08-18

    The nematode, Caenorhabditis elegans, has become an expedient model for studying neurotransmission. C. elegans is unique among animal models, as the anatomy and connectivity of its nervous system has been determined from electron micrographs and refined by pharmacological assays. In this video, we describe how two complementary neural stimulants, an acetylcholinesterase inhibitor, called aldicarb, and a gamma-aminobutyric acid (GABA) receptor antagonist, called pentylenetetrazole (PTZ), may be employed to specifically characterize signaling at C. elegans neuromuscular junctions (NMJs) and facilitate our understanding of antagonistic neural circuits. Of 302 C. elegans neurons, nineteen GABAergic D-type motor neurons innervate body wall muscles (BWMs), while four GABAergic neurons, called RMEs, innervate head muscles. Conversely, thirty-nine motor neurons express the excitatory neurotransmitter, acetylcholine (ACh), and antagonize GABA transmission at BWMs to coordinate locomotion. The antagonistic nature of GABAergic and cholinergic motor neurons at body wall NMJs was initially determined by laser ablation and later buttressed by aldicarb exposure. Acute aldicarb exposure results in a time-course or dose-responsive paralysis in wild-type worms. Yet, loss of excitatory ACh transmission confers resistance to aldicarb, as less ACh accumulates at worm NMJs, leading to less stimulation of BWMs. Resistance to aldicarb may be observed with ACh-specific or general synaptic function mutants. Consistent with antagonistic GABA and ACh transmission, loss of GABA transmission, or a failure to negatively regulate ACh release, confers hypersensitivity to aldicarb. Although aldicarb exposure has led to the isolation of numerous worm homologs of neurotransmission genes, aldicarb exposure alone cannot efficiently determine prevailing roles for genes and pathways in specific C. elegans motor neurons. For this purpose, we have introduced a complementary experimental approach, which

  17. A soil bioassay using the nematode Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, M.N.; Peredney, C.L.; Williams, P.L.

    1999-07-01

    Caenorhabditis elegans is a free-livings soil nematode that is commonly used as a biological model. Recently, much work has been done using the nematode as a toxicological model as well. Much of the work involving C. elegans has been performed in aquatic media, since it lives in the interstitial water of soil. However, testing in soil would be expected to more accurately reproduce the organism's normal environment and may take into consideration other factors not available in an aquatic test, i.e., toxicant availability effects due to sorption, various chemical interactions, etc. This study used a modification of a previous experimentalmore » protocol to determine 24h LC{sub 50} values for Cu in a Cecil series soil mixture, and examined the use of CuCl{sub 2} as a reference toxicant for soil toxicity testing with C. elegans. Three different methods of determining percent lethality were used, each dependent on how the number of worms missing after the recovery process was used in the lethality calculations. Only tests having {ge}80% worm recovery and {ge}90% control survival were used in determining the LC{sub 50}s, by Probit analysis. The replicate LC{sub 50} values generated a control chart for each method of calculating percent lethality. The coefficient of variation (CV) for each of the three methods was {le}14%. The control charts and the protocol outlined in this study are intended to be used to assess test organism health and monitor precision of future soil toxicity tests with C. elegans.« less

  18. Pseudomonas fluorescens NZI7 repels grazing by C. elegans, a natural predator.

    PubMed

    Burlinson, Peter; Studholme, David; Cambray-Young, Joanna; Heavens, Darren; Rathjen, John; Hodgkin, Jonathan; Preston, Gail M

    2013-06-01

    The bacteriovorous nematode Caenorhabditis elegans has been used to investigate many aspects of animal biology, including interactions with pathogenic bacteria. However, studies examining C. elegans interactions with bacteria isolated from environments in which it is found naturally are relatively scarce. C. elegans is frequently associated with cultivation of the edible mushroom Agaricus bisporus, and has been reported to increase the severity of bacterial blotch of mushrooms, a disease caused by bacteria from the Pseudomonas fluorescens complex. We observed that pseudomonads isolated from mushroom farms showed differential resistance to nematode predation. Under nutrient poor conditions, in which most pseudomonads were consumed, the mushroom pathogenic isolate P. fluorescens NZI7 was able to repel C. elegans without causing nematode death. A draft genome sequence of NZI7 showed it to be related to the biocontrol strain P. protegens Pf-5. To identify the genetic basis of nematode repellence in NZI7, we developed a grid-based screen for mutants that lacked the ability to repel C. elegans. The mutants isolated in this screen included strains with insertions in the global regulator GacS and in a previously undescribed GacS-regulated gene cluster, 'EDB' ('edible'). Our results suggest that the product of the EDB cluster is a poorly diffusible or cell-associated factor that acts together with other features of NZI7 to provide a novel mechanism to deter nematode grazing. As nematodes interact with NZI7 colonies before being repelled, the EDB factor may enable NZI7 to come into contact with and be disseminated by C. elegans without being subject to intensive predation.

  19. Unusual DNA Structures Associated With Germline Genetic Activity in Caenorhabditis elegans

    PubMed Central

    Fire, Andrew; Alcazar, Rosa; Tan, Frederick

    2006-01-01

    We describe a surprising long-range periodicity that underlies a substantial fraction of C. elegans genomic sequence. Extended segments (up to several hundred nucleotides) of the C. elegans genome show a strong bias toward occurrence of AA/TT dinucleotides along one face of the helix while little or no such constraint is evident on the opposite helical face. Segments with this characteristic periodicity are highly overrepresented in intron sequences and are associated with a large fraction of genes with known germline expression in C. elegans. In addition to altering the path and flexibility of DNA in vitro, sequences of this character have been shown by others to constrain DNA∷nucleosome interactions, potentially producing a structure that could resist the assembly of highly ordered (phased) nucleosome arrays that have been proposed as a precursor to heterochromatin. We propose a number of ways that the periodic occurrence of An/Tn clusters could reflect evolution and function of genes that express in the germ cell lineage of C. elegans. PMID:16648589

  20. DNA Strand Breaks in Mitotic Germ Cells of Caenorhabditis elegans Evaluated by Comet Assay

    PubMed Central

    Park, Sojin; Choi, Seoyun; Ahn, Byungchan

    2016-01-01

    DNA damage responses are important for the maintenance of genome stability and the survival of organisms. Such responses are activated in the presence of DNA damage and lead to cell cycle arrest, apoptosis, and DNA repair. In Caenorhabditis elegans, double-strand breaks induced by DNA damaging agents have been detected indirectly by antibodies against DSB recognizing proteins. In this study we used a comet assay to detect DNA strand breaks and to measure the elimination of DNA strand breaks in mitotic germline nuclei of C. elegans. We found that C. elegans brc-1 mutants were more sensitive to ionizing radiation and camptothecin than the N2 wild-type strain and repaired DNA strand breaks less efficiently than N2. This study is the first demonstration of direct measurement of DNA strand breaks in mitotic germline nuclei of C. elegans. This newly developed assay can be applied to detect DNA strand breaks in different C. elegans mutants that are sensitive to DNA damaging agents. PMID:26903030

  1. A Simple Method for High Throughput Chemical Screening in Caenorhabditis Elegans

    PubMed Central

    Lucanic, Mark; Garrett, Theo; Gill, Matthew S.; Lithgow, Gordon J.

    2018-01-01

    Caenorhabditis elegans is a useful organism for testing chemical effects on physiology. Whole organism small molecule screens offer significant advantages for identifying biologically active chemical structures that can modify complex phenotypes such as lifespan. Described here is a simple protocol for producing hundreds of 96-well culture plates with fairly consistent numbers of C. elegans in each well. Next, we specified how to use these cultures to screen thousands of chemicals for effects on the lifespan of the nematode C. elegans. This protocol makes use of temperature sensitive sterile strains, agar plate conditions, and simple animal handling to facilitate the rapid and high throughput production of synchronized animal cultures for screening. PMID:29630057

  2. Evolution of host innate defence: insights from C. elegans and primitive invertebrates

    PubMed Central

    Irazoqui, Javier E.; Urbach, Jonathan M.; Ausubel, Frederick M.

    2010-01-01

    Preface The genetically tractable model organism Caenorhabditis elegans was first used to model bacterial virulence in vivo a decade ago. Since then, great strides have been made in the identification of host response pathways that are involved in the defence against infection. Strikingly, C. elegans seems to detect and respond to infection without the involvement of its Toll-like receptor homologue, in contrast to the well-established role for these proteins in innate immunity in mammals. What, therefore, do we know about host defence mechanisms in C. elegans, and what can they tell us about innate immunity in higher organisms? PMID:20029447

  3. Long-term C. elegans immobilization enables high resolution developmental studies in vivo.

    PubMed

    Berger, Simon; Lattmann, Evelyn; Aegerter-Wilmsen, Tinri; Hengartner, Michael; Hajnal, Alex; deMello, Andrew; Casadevall I Solvas, Xavier

    2018-05-01

    Live-imaging of C. elegans is essential for the study of conserved cellular pathways (e.g. EGFR/Wnt signaling) and morphogenesis in vivo. However, the usefulness of live imaging as a research tool has been severely limited by the need to immobilize worms prior to and during imaging. Conventionally, immobilization is achieved by employing both physical and chemical interventions. These are known to significantly affect many physiological processes, and thus limit our understanding of dynamic developmental processes. Herein we present a novel, easy-to-use microfluidic platform for the long-term immobilization of viable, normally developing C. elegans, compatible with image acquisition at high resolution, thereby overcoming the limitations associated with conventional worm immobilization. The capabilities of the platform are demonstrated through the continuous assessment of anchor cell (AC) invasion and distal tip cell (DTC) migration in larval C. elegans and germ cell apoptosis in adult C. elegans in vivo for the first time.

  4. Neuronal and non-neuronal signals regulate Caernorhabditis elegans avoidance of contaminated food.

    PubMed

    Anderson, Alexandra; McMullan, Rachel

    2018-07-19

    One way in which animals minimize the risk of infection is to reduce their contact with contaminated food. Here, we establish a model of pathogen-contaminated food avoidance using the nematode worm Caernorhabditis elegans We find that avoidance of pathogen-contaminated food protects C. elegans from the deleterious effects of infection and, using genetic approaches, demonstrate that multiple sensory neurons are required for this avoidance behaviour. In addition, our results reveal that the avoidance of contaminated food requires bacterial adherence to non-neuronal cells in the tail of C. elegans that are also required for the cellular immune response. Previous studies in C. elegans have contributed significantly to our understanding of molecular and cellular basis of host-pathogen interactions and our model provides a unique opportunity to gain basic insights into how animals avoid contaminated food.This article is part of the Theo Murphy meeting issue 'Evolution of pathogen and parasite avoidance behaviours'. © 2018 The Authors.

  5. Metabolomic signature associated with reproduction-regulated aging in Caenorhabditis elegans.

    PubMed

    Wan, Qin-Li; Shi, Xiaohuo; Liu, Jiangxin; Ding, Ai-Jun; Pu, Yuan-Zhu; Li, Zhigang; Wu, Gui-Sheng; Luo, Huai-Rong

    2017-02-06

    In Caenorhabditis elegans (C. elegans) , ablation of germline stem cells (GSCs) leads to infertility, which extends lifespan. It has been reported that aging and reproduction are both inextricably associated with metabolism. However, few studies have investigated the roles of polar small molecules metabolism in regulating longevity by reproduction. In this work, we combined the nuclear magnetic resonance (NMR) and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) to profile the water-soluble metabolome in C. elegans . Comparing the metabolic fingerprint between two physiological ages among different mutants, our results demonstrate that aging is characterized by metabolome remodeling and metabolic decline. In addition, by analyzing the metabolic profiles of long-lived germline-less glp-1 mutants, we discovered that glp-1 mutants regulate the levels of many age-variant metabolites to attenuate aging, including elevated concentrations of the pyrimidine and purine metabolism intermediates and decreased concentrations of the citric acid cycle intermediates. Interestingly, by analyzing the metabolome of daf-16;glp-1 double mutants, our results revealed that some metabolic exchange contributing to germline-mediated longevity was mediated by transcription factor FOXO/DAF-16, including pyrimidine metabolism and the TCA cycle. Based on a comprehensive metabolic analysis, we provide novel insight into the relationship between longevity and metabolism regulated by germline signals in C. elegans .

  6. Proprioceptive coupling within motor neurons drives C. elegans forward locomotion

    PubMed Central

    Wen, Quan; Po, Michelle; Hulme, Elizabeth; Chen, Sway; Liu, Xinyu; Kwok, Sen Wai; Gershow, Marc; Leifer, Andrew M; Butler, Victoria; Fang-Yen, Christopher; Kawano, Taizo; Schafer, William R; Whitesides, George

    2012-01-01

    Summary Locomotion requires coordinated motor activity throughout an animal’s body. In both vertebrates and invertebrates, chains of coupled Central Pattern Generators (CPGs) are commonly evoked to explain local rhythmic behaviors. In C. elegans, we report that proprioception within the motor circuit is responsible for propagating and coordinating rhythmic undulatory waves from head to tail during forward movement. Proprioceptive coupling between adjacent body regions transduces rhythmic movement initiated near the head into bending waves driven along the body by a chain of reflexes. Using optogenetics and calcium imaging to manipulate and monitor motor circuit activity of moving C. elegans held in microfluidic devices, we found that the B-type cholinergic motor neurons transduce the proprioceptive signal. In C. elegans, a sensorimotor feedback loop operating within a specific type of motor neuron both drives and organizes body movement. PMID:23177960

  7. Angiostrongylus cantonensis daf-2 regulates dauer, longevity and stress in Caenorhabditis elegans.

    PubMed

    Yan, Baolong; Sun, Weiwei; Shi, Xiaomeng; Huang, Liyang; Chen, Lingzi; Wang, Suhua; Yan, Lanzhu; Liang, Shaohui; Huang, Huicong

    2017-06-15

    The insulin-like signaling (IIS) pathway is considered to be significant in regulating fat metabolism, dauer formation, stress response and longevity in Caenorhabditis elegans. "Dauer hypothesis" indicates that similar IIS transduction mechanism regulates dauer development in free-living nematode C. elegans and the development of infective third-stage larvae (iL3) in parasitic nematodes, and this is bolstered by a few researches on structures and functions of the homologous genes in the IIS pathway cloned from several parasitic nematodes. In this study, we identified the insulin-like receptor encoding gene, Acan-daf-2, from the parasitic nematode Angiostrongylus cantonensis, and determined the genomic structures, transcripts and functions far more thorough in longevity, stress resistance and dauer formation. The sequence of Acan-DAF-2, consisting of 1413 amino acids, contained all of the characteristic domains of insulin-like receptors from other taxa. The expression patterns of Acan-daf-2 in the C. elegans surrogate system showed that pAcan-daf-2:gfp was only expressed in intestine, compared with the orthologue in C. elegans, Ce-daf-2 in both intestine and neurons. In addition to the similar genomic organization to Ce-daf-2, Acan-DAF-2 could also negatively regulate Ce-DAF-16A through nuclear/cytosolic translocation and partially restore the C. elegans daf-2(e1370) mutation in longevity, dauer formation and stress resistance. These findings provided further evidence of the functional conservation of DAF-2 between parasitic nematodes and the free-living nematode C. elegans, and might be significant in understanding the developmental biology of nematode parasites, particularly in the infective process and the host-specificity. Copyright © 2017. Published by Elsevier B.V.

  8. An image analysis toolbox for high-throughput C. elegans assays

    PubMed Central

    Wählby, Carolina; Kamentsky, Lee; Liu, Zihan H.; Riklin-Raviv, Tammy; Conery, Annie L.; O’Rourke, Eyleen J.; Sokolnicki, Katherine L.; Visvikis, Orane; Ljosa, Vebjorn; Irazoqui, Javier E.; Golland, Polina; Ruvkun, Gary; Ausubel, Frederick M.; Carpenter, Anne E.

    2012-01-01

    We present a toolbox for high-throughput screening of image-based Caenorhabditis elegans phenotypes. The image analysis algorithms measure morphological phenotypes in individual worms and are effective for a variety of assays and imaging systems. This WormToolbox is available via the open-source CellProfiler project and enables objective scoring of whole-animal high-throughput image-based assays of C. elegans for the study of diverse biological pathways relevant to human disease. PMID:22522656

  9. A method for measuring sulfide toxicity in the nematode Caenorhabditis elegans.

    PubMed

    Livshits, Leonid; Gross, Einav

    2017-01-01

    Cysteine catabolism by gut microbiota produces high levels of sulfide. Excessive sulfide can interfere with colon function, and therefore may be involved in the etiology and risk of relapse of ulcerative colitis, an inflammatory bowel disease affecting millions of people worldwide. Therefore, it is crucial to understand how cells/animals regulate the detoxification of sulfide generated by bacterial cysteine catabolism in the gut. Here we describe a simple and cost-effective way to explore the mechanism of sulfide toxicity in the nematode Caenorhabditis elegans ( C. elegans ). •A rapid cost-effective method to quantify and study sulfide tolerance in C. elegans and other free-living nematodes.•A cost effective method to measure the concentration of sulfide in the inverted plate assay.

  10. Caenorhabditis elegans Pheromones Regulate Multiple Complex Behaviors

    PubMed Central

    Edison, Arthur S.

    2009-01-01

    Summary of recent advances A family of small molecules called ascarosides act as pheromones to control multiple behaviors in the nematode Caenorhabditis elegans. At picomolar concentrations, a synergistic mixture of at least three ascarosides produced by hermaphrodites causes male-specific attraction. At higher concentrations, the same ascarosides, perhaps in a different mixture, induce the developmentally arrested stage known as dauer. The production of ascarosides is strongly dependent on environmental conditions, although relatively little is known about the major variables and mechanisms of their regulation. Thus, male mating and dauer formation are linked through a common set of small molecules whose expression is sensitive to a given microenvironment, suggesting a model by which ascarosides regulate the overall life cycle of C. elegans. PMID:19665885

  11. The ETS-5 transcription factor regulates activity states in Caenorhabditis elegans by controlling satiety

    PubMed Central

    Juozaityte, Vaida; Pladevall-Morera, David; Podolska, Agnieszka; Nørgaard, Steffen; Pocock, Roger

    2017-01-01

    Animal behavior is shaped through interplay among genes, the environment, and previous experience. As in mammals, satiety signals induce quiescence in Caenorhabditis elegans. Here we report that the C. elegans transcription factor ETS-5, an ortholog of mammalian FEV/Pet1, controls satiety-induced quiescence. Nutritional status has a major influence on C. elegans behavior. When foraging, food availability controls behavioral state switching between active (roaming) and sedentary (dwelling) states; however, when provided with high-quality food, C. elegans become sated and enter quiescence. We show that ETS-5 acts to promote roaming and inhibit quiescence by setting the internal “satiety quotient” through fat regulation. Acting from the ASG and BAG sensory neurons, we show that ETS-5 functions in a complex network with serotonergic and neuropeptide signaling pathways to control food-regulated behavioral state switching. Taken together, our results identify a neuronal mechanism for controlling intestinal fat stores and organismal behavioral states in C. elegans, and establish a paradigm for the elucidation of obesity-relevant mechanisms. PMID:28193866

  12. C. elegans Notch signaling regulates adult chemosensory response and larval molting quiescence

    PubMed Central

    Singh, Komudi; Chao, Michael Y.; Somers, Gerard A.; Komatsu, Hidetoshi; Corkins, Mark E.; Larkins-Ford, Jonah; Tucey, Tim; Dionne, Heather M.; Walsh, Melissa B.; Beaumont, Emma K.; Hart, Douglas P.; Lockery, Shawn; Hart, Anne C.

    2011-01-01

    Summary Background The conserved DOS motif proteins OSM-7 and OSM-11 function as co-ligands with canonical DSL ligands to activate C. elegans Notch receptors during development. We report herein that Notch ligands, co-ligands and the receptors LIN-12 and GLP-1 regulate two C. elegans behaviors: chemosensory avoidance of octanol and quiescence during molting lethargus. Results C. elegans lacking osm-7 or osm-11 are defective in their response to octanol. We find that OSM-11 is secreted from hypodermal seam cells into the pseudocoelomic body cavity and acts non-cell autonomously as a diffusible factor. OSM-11 acts with the DSL ligand LAG-2 to activate LIN-12 and GLP-1 Notch receptors in the neurons of adult animals,- thereby regulating octanol avoidance response. In adult animals, over-expression of osm-11 and consequent Notch receptor activation induces anachronistic sleep-like quiescence. Perturbation of Notch signaling altered basal activity in adults as well as arousal thresholds and quiescence during molting lethargus. Genetic epistasis studies revealed that Notch signaling regulates quiescence via previously identified circuits and genetic pathways including the egl-4 cGMP-dependent kinase. Conclusions Our findings indicate that the conserved Notch pathway modulates behavior in adult C. elegans in response to environmental stress. Additionally, Notch signaling regulates sleep-like quiescence in C. elegans suggesting Notch may regulate sleep in other species. PMID:21549604

  13. Electron microscopy of lamin and the nuclear lamina in Caenorhabditis elegans.

    PubMed

    Cohen, Merav; Santarella, Rachel; Wiesel, Naama; Mattaj, Iain; Gruenbaum, Yosef

    2008-01-01

    The nuclear lamina is found between the inner nuclear membrane and the peripheral chromatin. Lamins are the main components of the nuclear lamina, where they form protein complexes with integral proteins of the inner nuclear membrane, transcriptional regulators, histones and chromatin modifiers. Lamins are required for mechanical stability, chromatin organization, Pol II transcription, DNA replication, nuclear assembly, and nuclear positioning. Mutations in human lamins cause at least 13 distinct human diseases, collectively termed laminopathies, affecting muscle, adipose, bone, nerve and skin cells, and range from muscular dystrophies to accelerated aging. Caenorhabditis elegans has unique advantages in studying lamins and nuclear lamina genes including low complexity of lamina genes and the unique ability of bacterially expressed C. elegans lamin protein to form stable 10 nm fibers. In addition, transgenic techniques, simple application of RNA interference, sophisticated genetic analyses, and the production of a large collection of mutant lines, all make C. elegans especially attractive for studying the functions of its nuclear lamina genes. In this chapter we will include a short review of our current knowledge of nuclear lamina in C. elegans and will describe electron microscopy techniques used for their analyses.

  14. Mitochondrial DNA Sequence Divergence among Meloidogyne incognita, Romanomermis culicivorax, Ascaris suum, and Caenorhabditis elegans

    PubMed Central

    Powers, T. O.; Harris, T. S.; Hyman, B. C.

    1993-01-01

    Mitochondrial DNA sequences were obtained from the NADH dehydrogenase subunit 3 (ND3), large rRNA, and cytochrome b genes from Meloidogyne incognita and Romanomermis culicivorax. Both species show considerable genetic distance within these same genes when compared with Caenorhabditis elegans or Ascaris suum, two species previously analyzed. Caenorhabditis, Ascaris, and Meloidogyne were selected as representatives of three subclasses in the nematode class Secernentea: Rhabditia, Spiruria, and Diplogasteria, respectively. Romanomermis served as a representative out-group of the class Adenophorea. The divergence between the phytoparasitic lineage (represented by Meloidogyne) and the three other species is so great that virtually every variable position in these genes appears to have accumulated multiple mutations, obscuring the phylogenetic information obtainable from these comparisons. The 39 and 42% amino acid similarity between the M. incognita and C. elegans ND3 and cytochrome b coding sequences, respectively, are approximately the same as those of C. elegans-mouse comparisons for the same genes (26 and 44%). This discovery calls into question the feasibility of employing cloned C. elegans probes as reagents to isolate phytoparasitic nematode genes. The genetic distance between the phytoparasitic nematode lineage and C. elegans markedly contrasts with the 79% amino acid similarity between C. elegans and A. suum for the same sequences. The molecular data suggest that Caenorhabditis and Ascaris belong to the same subclass. PMID:19279810

  15. The laboratory domestication of Caenorhabditis elegans.

    PubMed

    Sterken, Mark G; Snoek, L Basten; Kammenga, Jan E; Andersen, Erik C

    2015-05-01

    Model organisms are of great importance to our understanding of basic biology and to making advances in biomedical research. However, the influence of laboratory cultivation on these organisms is underappreciated, and especially how that environment can affect research outcomes. Recent experiments led to insights into how the widely used laboratory reference strain of the nematode Caenorhabditis elegans compares with natural strains. Here we describe potential selective pressures that led to the fixation of laboratory-derived alleles for the genes npr-1, glb-5, and nath-10. These alleles influence a large number of traits, resulting in behaviors that affect experimental interpretations. Furthermore, strong phenotypic effects caused by these laboratory-derived alleles hinder the discovery of natural alleles. We highlight strategies to reduce the influence of laboratory-derived alleles and to harness the full power of C. elegans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Dietary choice behavior in Caenorhabditis elegans

    PubMed Central

    Shtonda, Boris Borisovich; Avery, Leon

    2005-01-01

    Animals have evolved diverse behaviors that serve the purpose of finding food in the environment. We investigated the food seeking strategy of the soil bacteria-eating nematode Caenorhabditis elegans. C. elegans bacterial food varies in quality: some species are easy to eat and support worm growth well, while others do not. We show that worms exhibit dietary choice: they hunt for high quality food and leave hard-to-eat bacteria. This food seeking behavior is enhanced in animals that have already experienced good food. When hunting for good food, worms alternate between two modes of locomotion, known as dwelling: movement with frequent stops and reversals; and roaming: straight rapid movement. On good food, roaming is very rare, while on bad food it is common. Using laser ablations and mutant analysis, we show that the AIY neurons serve to extend roaming periods, and are essential for efficient food seeking. PMID:16354781

  17. A novel computational approach for simultaneous tracking and feature extraction of C. elegans populations in fluid environments.

    PubMed

    Tsechpenakis, Gabriel; Bianchi, Laura; Metaxas, Dimitris; Driscoll, Monica

    2008-05-01

    The nematode Caenorhabditis elegans (C. elegans) is a genetic model widely used to dissect conserved basic biological mechanisms of development and nervous system function. C. elegans locomotion is under complex neuronal regulation and is impacted by genetic and environmental factors; thus, its analysis is expected to shed light on how genetic, environmental, and pathophysiological processes control behavior. To date, computer-based approaches have been used for analysis of C. elegans locomotion; however, none of these is both high resolution and high throughput. We used computer vision methods to develop a novel automated approach for analyzing the C. elegans locomotion. Our method provides information on the position, trajectory, and body shape during locomotion and is designed to efficiently track multiple animals (C. elegans) in cluttered images and under lighting variations. We used this method to describe in detail C. elegans movement in liquid for the first time and to analyze six unc-8, one mec-4, and one odr-1 mutants. We report features of nematode swimming not previously noted and show that our method detects differences in the swimming profile of mutants that appear at first glance similar.

  18. Toxicological Effects of Fullerenes on Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Schomaker, Justin; Snook, Renee; Howell, Carina

    2014-03-01

    The nematode species Caenorhabditis elegans is a useful genetic model organism due to its simplicity and the substantial molecular, genetic, and developmental knowledge about the species. In this study, this species was used to test the toxicological effects of C60 fullerene nanoparticles. In previous studies using rats, a solution of C60 fullerenes in olive oil proved to extend the life of the subjects. The purpose of this experiment was to subject C. elegans to varying concentrations of C60 fullerenes and observe their toxicological effects. Initial findings indicate a link between fullerene exposure and enlargement of the vulva as well as the formation of a small nodule at the base of the tail in some individuals. While the fullerenes are not lethally toxic in C. elegans, results will be presented that pertain to changes in life span and progeny of the nematodes exposed to varying concentrations of fullerenes as well as the mechanisms of toxicity. High magnification imaging via SEM and/or AFM will be used to characterize the fullerene nanoparticles. Testing the toxicity of fullerenes in a wide variety of organisms will lead to a more complete understanding of the effects of fullerenes on living organisms to ultimately understand their effects in humans. This work was supported by National Science Foundation grants DUE-1058829, DMR-0923047, DUE-0806660 and Lock Haven FPDC grants.

  19. Acute carbon dioxide avoidance in Caenorhabditis elegans

    PubMed Central

    Hallem, Elissa A.; Sternberg, Paul W.

    2008-01-01

    Carbon dioxide is produced as a by-product of cellular respiration by all aerobic organisms and thus serves for many animals as an important indicator of food, mates, and predators. However, whether free-living terrestrial nematodes such as Caenorhabditis elegans respond to CO2 was unclear. We have demonstrated that adult C. elegans display an acute avoidance response upon exposure to CO2 that is characterized by the cessation of forward movement and the rapid initiation of backward movement. This response is mediated by a cGMP signaling pathway that includes the cGMP-gated heteromeric channel TAX-2/TAX-4. CO2 avoidance is modulated by multiple signaling molecules, including the neuropeptide Y receptor NPR-1 and the calcineurin subunits TAX-6 and CNB-1. Nutritional status also modulates CO2 responsiveness via the insulin and TGFβ signaling pathways. CO2 response is mediated by a neural circuit that includes the BAG neurons, a pair of sensory neurons of previously unknown function. TAX-2/TAX-4 function in the BAG neurons to mediate acute CO2 avoidance. Our results demonstrate that C. elegans senses and responds to CO2 using multiple signaling pathways and a neural network that includes the BAG neurons and that this response is modulated by the physiological state of the worm. PMID:18524955

  20. Acute carbon dioxide avoidance in Caenorhabditis elegans.

    PubMed

    Hallem, Elissa A; Sternberg, Paul W

    2008-06-10

    Carbon dioxide is produced as a by-product of cellular respiration by all aerobic organisms and thus serves for many animals as an important indicator of food, mates, and predators. However, whether free-living terrestrial nematodes such as Caenorhabditis elegans respond to CO2 was unclear. We have demonstrated that adult C. elegans display an acute avoidance response upon exposure to CO2 that is characterized by the cessation of forward movement and the rapid initiation of backward movement. This response is mediated by a cGMP signaling pathway that includes the cGMP-gated heteromeric channel TAX-2/TAX-4. CO2 avoidance is modulated by multiple signaling molecules, including the neuropeptide Y receptor NPR-1 and the calcineurin subunits TAX-6 and CNB-1. Nutritional status also modulates CO2 responsiveness via the insulin and TGFbeta signaling pathways. CO2 response is mediated by a neural circuit that includes the BAG neurons, a pair of sensory neurons of previously unknown function. TAX-2/TAX-4 function in the BAG neurons to mediate acute CO2 avoidance. Our results demonstrate that C. elegans senses and responds to CO2 using multiple signaling pathways and a neural network that includes the BAG neurons and that this response is modulated by the physiological state of the worm.

  1. In Vivo Detection of Reactive Oxygen Species and Redox Status in Caenorhabditis elegans.

    PubMed

    Braeckman, Bart P; Smolders, Arne; Back, Patricia; De Henau, Sasha

    2016-10-01

    Due to its large families of redox-active enzymes, genetic amenability, and complete transparency, the nematode Caenorhabditis elegans has the potential to become an important model for the in vivo study of redox biology. The recent development of several genetically encoded ratiometric reactive oxygen species (ROS) and redox sensors has revolutionized the quantification and precise localization of ROS and redox signals in living organisms. Only few exploratory studies have applied these sensors in C. elegans and undoubtedly much remains to be discovered in this model. As a follow-up to our recent findings that the C. elegans somatic gonad uses superoxide and hydrogen peroxide (H2O2) signals to communicate with the germline, we here analyze the patterns of H2O2 inside the C. elegans germline. Despite the advantages of genetically encoded ROS and redox sensors over classic chemical sensors, still several general as well as C. elegans-specific issues need to be addressed. The major concerns for the application of these sensors in C. elegans are (i) decreased vitality of some reporter strains, (ii) interference of autofluorescent compartments with the sensor signal, and (iii) the use of immobilization methods that do not influence the worm's redox physiology. We propose that several of the current issues may be solved by designing reporter strains carrying single copies of codon-optimized sensors. Preferably, these sensors should have their emission wavelengths in the red region, where autofluorescence is absent. Worm analysis could be optimized using four-dimensional ratiometric fluorescence microscopy of worms immobilized in microfluidic chips. Antioxid. Redox Signal. 25, 577-592.

  2. Protective Efficacy of Selenite against Lead-Induced Neurotoxicity in Caenorhabditis elegans

    PubMed Central

    Tseng, I-Ling; Liao, Vivian Hsiu-Chuan

    2013-01-01

    Background Selenium is an essential micronutrient that has a narrow exposure window between its beneficial and toxic effects. This study investigated the protective potential of selenite (IV) against lead (Pb(II))-induced neurotoxicity in Caenorhabditis elegans. Principal Findings The results showed that Se(IV) (0.01 µM) pretreatment ameliorated the decline of locomotion behaviors (frequencies of body bends, head thrashes, and reversal ) of C. elegans that are damaged by Pb(II) (100 µM) exposure. The intracellular ROS level of C. elegans induced by Pb(II) exposure was significantly lowered by Se(IV) supplementation prior to Pb(II) exposure. Finally, Se(IV) protects AFD sensory neurons from Pb(II)-induced toxicity. Conclusions Our study suggests that Se(IV) has protective activities against Pb(II)-induced neurotoxicity through its antioxidant property. PMID:23638060

  3. Description of International Caenorhabditis elegans Experiment first flight (ICE-FIRST)

    PubMed Central

    Szewczyk, N.J.; Tillman, J.; Conley, C.A.; Granger, L.; Segalat, L.; Higashitani, A.; Honda, S.; Honda, Y.; Kagawa, H.; Adachi, R.; Higashibata, A.; Fujimoto, N.; Kuriyama, K.; Ishioka, N.; Fukui, K.; Baillie, D.; Rose, A.; Gasset, G.; Eche, B.; Chaput, D.; Viso, M.

    2008-01-01

    Traveling, living and working in space is now a reality. The number of people and length of time in space is increasing. With new horizons for exploration it becomes more important to fully understand and provide countermeasures to the effects of the space environment on the human body. In addition, space provides a unique laboratory to study how life and physiologic functions adapt from the cellular level to that of the entire organism. Caenorhabditis elegans is a genetic model organism used to study physiology on Earth. Here we provide a description of the rationale, design, methods, and space culture validation of the ICE-FIRST payload, which engaged C. elegans researchers from four nations. Here we also show C. elegans growth and development proceeds essentially normally in a chemically defined liquid medium on board the International Space Station (10.9 day round trip). By setting flight constraints first and bringing together established C. elegans researchers second, we were able to use minimal stowage space to successfully return a total of 53 independent samples, each containing more than a hundred individual animals, to investigators within one year of experiment concept. We believe that in the future, bringing together individuals with knowledge of flight experiment operations, flight hardware, space biology, and genetic model organisms should yield similarly successful payloads. PMID:22146801

  4. Metabolomic signature associated with reproduction-regulated aging in Caenorhabditis elegans

    PubMed Central

    Wan, Qin-Li; Shi, Xiaohuo; Liu, Jiangxin; Ding, Ai-Jun; Pu, Yuan-Zhu; Li, Zhigang; Wu, Gui-Sheng; Luo, Huai-Rong

    2017-01-01

    In Caenorhabditis elegans (C. elegans), ablation of germline stem cells (GSCs) leads to infertility, which extends lifespan. It has been reported that aging and reproduction are both inextricably associated with metabolism. However, few studies have investigated the roles of polar small molecules metabolism in regulating longevity by reproduction. In this work, we combined the nuclear magnetic resonance (NMR) and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) to profile the water-soluble metabolome in C. elegans. Comparing the metabolic fingerprint between two physiological ages among different mutants, our results demonstrate that aging is characterized by metabolome remodeling and metabolic decline. In addition, by analyzing the metabolic profiles of long-lived germline-less glp-1 mutants, we discovered that glp-1 mutants regulate the levels of many age-variant metabolites to attenuate aging, including elevated concentrations of the pyrimidine and purine metabolism intermediates and decreased concentrations of the citric acid cycle intermediates. Interestingly, by analyzing the metabolome of daf-16;glp-1 double mutants, our results revealed that some metabolic exchange contributing to germline-mediated longevity was mediated by transcription factor FOXO/DAF-16, including pyrimidine metabolism and the TCA cycle. Based on a comprehensive metabolic analysis, we provide novel insight into the relationship between longevity and metabolism regulated by germline signals in C. elegans PMID:28177875

  5. Description of International Caenorhabditis elegans Experiment first flight (ICE-FIRST).

    PubMed

    Szewczyk, N J; Tillman, J; Conley, C A; Granger, L; Segalat, L; Higashitani, A; Honda, S; Honda, Y; Kagawa, H; Adachi, R; Higashibata, A; Fujimoto, N; Kuriyama, K; Ishioka, N; Fukui, K; Baillie, D; Rose, A; Gasset, G; Eche, B; Chaput, D; Viso, M

    2008-09-15

    Traveling, living and working in space is now a reality. The number of people and length of time in space is increasing. With new horizons for exploration it becomes more important to fully understand and provide countermeasures to the effects of the space environment on the human body. In addition, space provides a unique laboratory to study how life and physiologic functions adapt from the cellular level to that of the entire organism. Caenorhabditis elegans is a genetic model organism used to study physiology on Earth. Here we provide a description of the rationale, design, methods, and space culture validation of the ICE-FIRST payload, which engaged C. elegans researchers from four nations. Here we also show C. elegans growth and development proceeds essentially normally in a chemically defined liquid medium on board the International Space Station (10.9 day round trip). By setting flight constraints first and bringing together established C. elegans researchers second, we were able to use minimal stowage space to successfully return a total of 53 independent samples, each containing more than a hundred individual animals, to investigators within one year of experiment concept. We believe that in the future, bringing together individuals with knowledge of flight experiment operations, flight hardware, space biology, and genetic model organisms should yield similarly successful payloads.

  6. Description of International Caenorhabditis elegans Experiment first flight (ICE-FIRST)

    NASA Astrophysics Data System (ADS)

    Szewczyk, N. J.; Tillman, J.; Conley, C. A.; Granger, L.; Segalat, L.; Higashitani, A.; Honda, S.; Honda, Y.; Kagawa, H.; Adachi, R.; Higashibata, A.; Fujimoto, N.; Kuriyama, K.; Ishioka, N.; Fukui, K.; Baillie, D.; Rose, A.; Gasset, G.; Eche, B.; Chaput, D.; Viso, M.

    2008-09-01

    Traveling, living and working in space is now a reality. The number of people and length of time in space is increasing. With new horizons for exploration it becomes more important to fully understand and provide countermeasures to the effects of the space environment on the human body. In addition, space provides a unique laboratory to study how life and physiologic functions adapt from the cellular level to that of the entire organism. Caenorhabditis elegans is a genetic model organism used to study physiology on Earth. Here we provide a description of the rationale, design, methods, and space culture validation of the ICE-FIRST payload, which engaged C. elegans researchers from four nations. Here we also show C. elegans growth and development proceeds essentially normally in a chemically defined liquid medium on board the International Space Station (10.9 day round trip). By setting flight constraints first and bringing together established C. elegans researchers second, we were able to use minimal stowage space to successfully return a total of 53 independent samples, each containing more than a hundred individual animals, to investigators within one year of experiment concept. We believe that in the future, bringing together individuals with knowledge of flight experiment operations, flight hardware, space biology, and genetic model organisms should yield similarly successful payloads.

  7. Modeling Molecular and Cellular Aspects of Human Disease using the Nematode Caenorhabditis elegans

    PubMed Central

    Silverman, Gary A.; Luke, Cliff J.; Bhatia, Sangeeta R.; Long, Olivia S.; Vetica, Anne C.; Perlmutter, David H.; Pak, Stephen C.

    2009-01-01

    As an experimental system, Caenorhabditis elegans, offers a unique opportunity to interrogate in vivo the genetic and molecular functions of human disease-related genes. For example, C. elegans has provided crucial insights into fundamental biological processes such as cell death and cell fate determinations, as well as pathological processes such as neurodegeneration and microbial susceptibility. The C. elegans model has several distinct advantages including a completely sequenced genome that shares extensive homology with that of mammals, ease of cultivation and storage, a relatively short lifespan and techniques for generating null and transgenic animals. However, the ability to conduct unbiased forward and reverse genetic screens in C. elegans remains one of the most powerful experimental paradigms for discovering the biochemical pathways underlying human disease phenotypes. The identification of these pathways leads to a better understanding of the molecular interactions that perturb cellular physiology, and forms the foundation for designing mechanism-based therapies. To this end, the ability to process large numbers of isogenic animals through automated work stations suggests that C. elegans, manifesting different aspects of human disease phenotypes, will become the platform of choice for in vivo drug discovery and target validation using high-throughput/content screening technologies. PMID:18852689

  8. Lactobacillus salivarius strain FDB89 induced longevity in Caenorhabditis elegans by dietary restriction.

    PubMed

    Zhao, Yang; Zhao, Liang; Zheng, Xiaonan; Fu, Tianjiao; Guo, Huiyuan; Ren, Fazheng

    2013-04-01

    In this study, we utilized the nematode Caenorhabditis elegans to assess potential life-expanding effect of Lactobacillus salivarius strain FDB89 (FDB89) isolated from feces of centenarians in Bama County (Guangxi, China). This study showed that feeding FDB89 extended the mean life span in C. elegans by up to 11.9% compared to that of control nematodes. The reduced reproductive capacities, pharyngeal pumping rate, growth, and increased superoxide dismutase (SOD) activity and XTT reduction capacity were also observed in FDB89 feeding worms. To probe the anti-aging mechanism further, we incorporated a food gradient feeding assay and assayed the life span of eat-2 mutant. The results demonstrated that the maximal life span of C. elegans fed on FDB89 was achieved at the concentration of 1.0 mg bacterial cells/plate, which was 10-fold greater than that of C. elegans fed on E. coli OP50 (0.1 mg bacterial cells/plate). However, feeding FDB89 could not further extend the life span of eat-2 mutant. These results indicated that FDB89 modulated the longevity of C. elegans in a dietary restriction-dependent manner and expanded the understanding of anti-aging effect of probiotics.

  9. Caenorhabditis elegans neuron degeneration and mitochondrial suppression caused by selected environmental chemicals

    PubMed Central

    Zhou, Shaoyu; Wang, Zemin; Klaunig, James E

    2013-01-01

    Mitochondrial alterations have been documented for many years in the brains of Parkinson’s disease (PD), a disorder that is characterized by the selective loss of dopamine neurons. Recent studies have demonstrated that Parkinson’s disease-associated proteins are either present in mitochondria or translocated into mitochondria in response to stress, further reinforcing the importance of the mitochondrial function in the pathogenesis of Parkinson’s disease. Exposure to environmental chemicals such as pesticides and heavy metals has been suggested as risk factors in the development of Parkinson’s disease. It has been reported that a number of environmental agents including tobacco smoke and perfluorinated compounds, pesticides, as well as metals (Mn2+ and Pb2+) modulate mitochondrial function. However the exact mechanism of mitochondrial alteration has not been defined in the context of the development and progression of Parkinson’s disease. The complexity of the mammalian system has made it difficult to dissect the molecular components involved in the pathogenesis of Parkinson’s disease. In the present study we used the nematode Caenorhabditis elegans (C. elegans) model of neuron degeneration and investigated the effect of environmental chemicals on mitochondrial biogenesis and mitochondrial gene regulation. Chronic exposure to low concentration (2 or 4 μM) of pesticide rotenone, resulted in significant loss of dopamine neuron in C. elegans, a classic feature of Parkinson’s disease. We then determined if the rotenone-induced neuron degeneration is accompanied by a change in mitochondria biogenesis. Analysis of mitochondrial genomic replication by quantitative PCR showed a dramatic decrease in mitochondrial DNA (mtDNA) copies of rotenone-treated C. elegans compared to control. This decreased mitochondrial biogenesis occurred prior to the development of loss of dopamine neurons, and was persistent. The inhibition of mtDNA replication was also found in C

  10. C. elegans Major Fats Are Stored in Vesicles Distinct from Lysosome-Related Organelles

    PubMed Central

    O’Rourke, Eyleen J.; Soukas, Alexander A.; Carr, Christopher E.; Ruvkun, Gary

    2010-01-01

    SUMMARY Genetic conservation allows ancient features of fat storage endocrine pathways to be explored in C. elegans. Multiple studies have used Nile red or BODIPY-labeled fatty acids to identify regulators of fat mass. When mixed with their food, E. coli bacteria, Nile red, and BODIPY-labeled fatty acids stain multiple spherical cellular structures in the C. elegans major fat storage organ, the intestine. However, here we demonstrate that, in the conditions previously reported, the lysosome-related organelles stained by Nile red and BODIPY-labeled fatty acids are not the C. elegans major fat storage compartment. We show that the major fat stores are contained in a distinct cellular compartment that is not stained by Nile red. Using biochemical assays, we validate oil red O staining as a method to assess major fat stores in C. elegans, allowing for efficient and accurate genetic and functional genomic screens for genes that control fat accumulation at the organismal level. PMID:19883620

  11. [Caenorhabditis elegans: a powerful tool for drug discovery].

    PubMed

    Jia, Xi-Hua; Cao, Cheng

    2009-07-01

    A simple model organism Caenorhabditis elegans has contributed substantially to the fundamental researches in biology. In an era of functional genomics, nematode worm has been developed into a multi-purpose tool that can be exploited to identify disease-causing or disease-associated genes, validate potential drug targets. This, coupled with its genetic amenability, low cost experimental manipulation and compatibility with high throughput screening in an intact physiological condition, makes the model organism into an effective toolbox for drug discovery. This review shows the unique features of C. elegans, how it can play a valuable role in our understanding of the molecular mechanism of human diseases and finding drug leads in drug development process.

  12. Optimizing Host-Pathogen In-Flight Assays for C.Elegans and Methicillin-Resistant Staphylococcus Aureus

    NASA Astrophysics Data System (ADS)

    Hammond, Timothy G.; Birdsall, Holly H.; Hammond, Jeffrey S.; Allen, Patricia L.

    2013-02-01

    This study addresses controls for an assay of bacterial virulence that has been optimized for space flight studies. Caenorhabditis elegans (C. elegans) worms ingest microorganisms, but are also killed by virulent bacteria. Virulence is assessed by the number of bacteria surviving in co-culture with C. elegans , as measured by optical density at 620 nm. Co -cultures of Methicillin-resistant Staphylococcus aureus (MRSA) with C. elegans have a higher OD620 than MRSA grown alone, which could reflect debris from dead worms and/or enhanced growth of the MRSA in response to worm-derived factors. The use of media conditioned by pre-incubation with worms demonstrated the presence of temperature-stable factors that change MRSA growth in a strain-dependent manner. Some sources of deionized water contain an undefined antibacterial activity present in conditioned, but not fresh untreated media.

  13. Beyond Traditional Antimicrobials: A Caenorhabditis elegans Model for Discovery of Novel Anti-infectives

    PubMed Central

    Kong, Cin; Eng, Su-Anne; Lim, Mei-Perng; Nathan, Sheila

    2016-01-01

    The spread of antibiotic resistance amongst bacterial pathogens has led to an urgent need for new antimicrobial compounds with novel modes of action that minimize the potential for drug resistance. To date, the development of new antimicrobial drugs is still lagging far behind the rising demand, partly owing to the absence of an effective screening platform. Over the last decade, the nematode Caenorhabditis elegans has been incorporated as a whole animal screening platform for antimicrobials. This development is taking advantage of the vast knowledge on worm physiology and how it interacts with bacterial and fungal pathogens. In addition to allowing for in vivo selection of compounds with promising anti-microbial properties, the whole animal C. elegans screening system has also permitted the discovery of novel compounds targeting infection processes that only manifest during the course of pathogen infection of the host. Another advantage of using C. elegans in the search for new antimicrobials is that the worm itself is a source of potential antimicrobial effectors which constitute part of its immune defense response to thwart infections. This has led to the evaluation of effector molecules, particularly antimicrobial proteins and peptides (APPs), as candidates for further development as therapeutic agents. In this review, we provide an overview on use of the C. elegans model for identification of novel anti-infectives. We highlight some highly potential lead compounds obtained from C. elegans-based screens, particularly those that target bacterial virulence or host defense to eradicate infections, a mechanism distinct from the action of conventional antibiotics. We also review the prospect of using C. elegans APPs as an antimicrobial strategy to treat infections. PMID:27994583

  14. The nematode Caenorhabditis elegans as a tool to predict chemical activity on mammalian development and identify mechanisms influencing toxicological outcome.

    PubMed

    Harlow, Philippa H; Perry, Simon J; Widdison, Stephanie; Daniels, Shannon; Bondo, Eddie; Lamberth, Clemens; Currie, Richard A; Flemming, Anthony J

    2016-03-18

    To determine whether a C. elegans bioassay could predict mammalian developmental activity, we selected diverse compounds known and known not to elicit such activity and measured their effect on C. elegans egg viability. 89% of compounds that reduced C. elegans egg viability also had mammalian developmental activity. Conversely only 25% of compounds found not to reduce egg viability in C. elegans were also inactive in mammals. We conclude that the C. elegans egg viability assay is an accurate positive predictor, but an inaccurate negative predictor, of mammalian developmental activity. We then evaluated C. elegans as a tool to identify mechanisms affecting toxicological outcomes among related compounds. The difference in developmental activity of structurally related fungicides in C. elegans correlated with their rate of metabolism. Knockdown of the cytochrome P450s cyp-35A3 and cyp-35A4 increased the toxicity to C. elegans of the least developmentally active compounds to the level of the most developmentally active. This indicated that these P450s were involved in the greater rate of metabolism of the less toxic of these compounds. We conclude that C. elegans based approaches can predict mammalian developmental activity and can yield plausible hypotheses for factors affecting the biological potency of compounds in mammals.

  15. Mapping a Mutation in "Caenorhabditis elegans" Using a Polymerase Chain Reaction-Based Approach

    ERIC Educational Resources Information Center

    Myers, Edith M.

    2014-01-01

    Many single nucleotide polymorphisms (SNPs) have been identified within the "Caenorhabditis elegans" genome. SNPs present in the genomes of two isogenic "C. elegans" strains have been routinely used as a tool in forward genetics to map a mutation to a particular chromosome. This article describes a laboratory exercise in which…

  16. Both live and dead Enterococci activate Caenorhabditis elegans host defense via immune and stress pathways.

    PubMed

    Yuen, Grace J; Ausubel, Frederick M

    2018-12-31

    The innate immune response of the nematode Caenorhabditis elegans has been extensively studied and a variety of Toll-independent immune response pathways have been identified. Surprisingly little, however, is known about how pathogens activate the C. elegans immune response. Enterococcus faecalis and Enterococcus faecium are closely related enterococcal species that exhibit significantly different levels of virulence in C. elegans infection models. Previous work has shown that activation of the C. elegans immune response by Pseudomonas aeruginosa involves P. aeruginosa-mediated host damage. Through ultrastructural imaging, we report that infection with either E. faecalis or E. faecium causes the worm intestine to become distended with proliferating bacteria in the absence of extensive morphological changes and apparent physical damage. Genetic analysis, whole-genome transcriptional profiling, and multiplexed gene expression analysis demonstrate that both enterococcal species, whether live or dead, induce a rapid and similar transcriptional defense response dependent upon previously described immune signaling pathways. The host response to E. faecium shows a stricter dependence upon stress response signaling pathways than the response to E. faecalis. Unexpectedly, we find that E. faecium is a C. elegans pathogen and that an active wild-type host defense response is required to keep an E. faecium infection at bay. These results provide new insights into the mechanisms underlying the C. elegans immune response to pathogen infection.

  17. Both live and dead Enterococci activate Caenorhabditis elegans host defense via immune and stress pathways

    PubMed Central

    2018-01-01

    ABSTRACT The innate immune response of the nematode Caenorhabditis elegans has been extensively studied and a variety of Toll-independent immune response pathways have been identified. Surprisingly little, however, is known about how pathogens activate the C. elegans immune response. Enterococcus faecalis and Enterococcus faecium are closely related enterococcal species that exhibit significantly different levels of virulence in C. elegans infection models. Previous work has shown that activation of the C. elegans immune response by Pseudomonas aeruginosa involves P. aeruginosa-mediated host damage. Through ultrastructural imaging, we report that infection with either E. faecalis or E. faecium causes the worm intestine to become distended with proliferating bacteria in the absence of extensive morphological changes and apparent physical damage. Genetic analysis, whole-genome transcriptional profiling, and multiplexed gene expression analysis demonstrate that both enterococcal species, whether live or dead, induce a rapid and similar transcriptional defense response dependent upon previously described immune signaling pathways. The host response to E. faecium shows a stricter dependence upon stress response signaling pathways than the response to E. faecalis. Unexpectedly, we find that E. faecium is a C. elegans pathogen and that an active wild-type host defense response is required to keep an E. faecium infection at bay. These results provide new insights into the mechanisms underlying the C. elegans immune response to pathogen infection. PMID:29436902

  18. Programmed Cell Death During Caenorhabditis elegans Development

    PubMed Central

    Conradt, Barbara; Wu, Yi-Chun; Xue, Ding

    2016-01-01

    Programmed cell death is an integral component of Caenorhabditis elegans development. Genetic and reverse genetic studies in C. elegans have led to the identification of many genes and conserved cell death pathways that are important for the specification of which cells should live or die, the activation of the suicide program, and the dismantling and removal of dying cells. Molecular, cell biological, and biochemical studies have revealed the underlying mechanisms that control these three phases of programmed cell death. In particular, the interplay of transcriptional regulatory cascades and networks involving multiple transcriptional regulators is crucial in activating the expression of the key death-inducing gene egl-1 and, in some cases, the ced-3 gene in cells destined to die. A protein interaction cascade involving EGL-1, CED-9, CED-4, and CED-3 results in the activation of the key cell death protease CED-3, which is tightly controlled by multiple positive and negative regulators. The activation of the CED-3 caspase then initiates the cell disassembly process by cleaving and activating or inactivating crucial CED-3 substrates; leading to activation of multiple cell death execution events, including nuclear DNA fragmentation, mitochondrial elimination, phosphatidylserine externalization, inactivation of survival signals, and clearance of apoptotic cells. Further studies of programmed cell death in C. elegans will continue to advance our understanding of how programmed cell death is regulated, activated, and executed in general. PMID:27516615

  19. Influence of resveratrol on oxidative stress resistance and life span in Caenorhabditis elegans.

    PubMed

    Chen, Wei; Rezaizadehnajafi, Leila; Wink, Michael

    2013-05-01

    Resveratrol (3,5,4'-trihydroxy-trans-stilbene), a polyphenol from red wine, has been reported to be beneficial in cases of ageing-related cardiovascular and neurodegenerative diseases owing to its property to reduce oxidative stress. Previous studies on the longevity promoting effect of resveratrol have been partly inconclusive, therefore we set out to investigate whether resveratrol at least promoted longevity in Caenorhabditis elegans under acute oxidative stress conditions. C. elegans was cultured under standard conditions with or without resveratrol. After exposure to juglone-induced acute oxidative stress, the survival rate and hsp-16.2::GFP expression were measured. The influence of resveratrol on life span was recorded also under oxidative stress induced by high glucose concentrations in the growth medium. No extension of the normal life span of C. elegans was observed either in liquid or solid growth media containing different concentrations of resveratrol. However, resveratrol alleviated juglone-induced lethal oxidative stress, and significantly prolonged the life span of C. elegans under conditions of acute oxidative damage and oxidative stress caused by high concentrations of glucose. Resveratrol, as an antioxidant, ameliorated oxidative stress in vivo but did not extend the life span of C. elegans under normal conditions. However, resveratrol did extend life span under conditions of oxidative stress. © 2013 The Authors. JPP © 2013 Royal Pharmaceutical Society.

  20. Mutational signatures of DNA mismatch repair deficiency in C. elegans and human cancers.

    PubMed

    Meier, Bettina; Volkova, Nadezda V; Hong, Ye; Schofield, Pieta; Campbell, Peter J; Gerstung, Moritz; Gartner, Anton

    2018-05-01

    Throughout their lifetime, cells are subject to extrinsic and intrinsic mutational processes leaving behind characteristic signatures in the genome. DNA mismatch repair (MMR) deficiency leads to hypermutation and is found in different cancer types. Although it is possible to associate mutational signatures extracted from human cancers with possible mutational processes, the exact causation is often unknown. Here, we use C. elegans genome sequencing of pms-2 and mlh-1 knockouts to reveal the mutational patterns linked to C. elegans MMR deficiency and their dependency on endogenous replication errors and errors caused by deletion of the polymerase ε subunit pole-4 Signature extraction from 215 human colorectal and 289 gastric adenocarcinomas revealed three MMR-associated signatures, one of which closely resembles the C. elegans MMR spectrum and strongly discriminates microsatellite stable and unstable tumors (AUC = 98%). A characteristic difference between human and C. elegans MMR deficiency is the lack of elevated levels of N C G > NTG mutations in C. elegans, likely caused by the absence of cytosine (CpG) methylation in worms . The other two human MMR signatures may reflect the interaction between MMR deficiency and other mutagenic processes, but their exact cause remains unknown. In summary, combining information from genetically defined models and cancer samples allows for better aligning mutational signatures to causal mutagenic processes. © 2018 Meier et al.; Published by Cold Spring Harbor Laboratory Press.

  1. Propulsion by sinusoidal locomotion: A motion inspired by Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Ulrich, Xialing

    Sinusoidal locomotion is commonly seen in snakes, fish, nematodes, or even the wings of some birds and insects. This doctoral thesis presents the study of sinusoidal locomotion of the nematode C. elegans in experiments and the application of the state-space airloads theory to the theoretical forces of sinusoidal motion. An original MATLAB program has been developed to analyze the video records of C. elegans' movement in different fluids, including Newtonian and non-Newtonian fluids. The experimental and numerical studies of swimming C. elegans has revealed three conclusions. First, though the amplitude and wavelength are varying with time, the motion of swimming C. elegans can still be viewed as sinusoidal locomotion with slips. The average normalized wavelength is a conserved character of the locomotion for both Newtonian and non-Newtonian fluids. Second, fluid viscosity affects the frequency but not the moving speed of C. elegans, while fluid elasticity affects the moving speed but not the frequency. Third, by the resistive force theory, for more elastic fluids the ratio of resistive coefficients becomes smaller. Inspired by the motion of C. elegans and other animals performing sinusoidal motion, we investigated the sinusoidal motion of a thin flexible wing in theory. Given the equation of the motion, we have derived the closed forms of propulsive force, lift and other generalized forces applying on the wing. We also calculated the power required to perform the motion, the power lost due to the shed vortices and the propulsive efficiency. These forces and powers are given as functions of reduced frequency k, dimensionless wavelength z, dimensionless amplitude A/b, and time. Our results show that a positive, time-averaged propulsive force is produced for all k>k0=pi/ z. At k=k0, which implies the moment when the moving speed of the wing is the same as the wave speed of its undulation, the motion reaches a steady state with all forces being zero. If there were no

  2. The nematode Caenorhabditis elegans as an integrated toxicological tool to assess water quality and pollution.

    PubMed

    Clavijo, Araceli; Kronberg, María Florencia; Rossen, Ariana; Moya, Aldana; Calvo, Daniel; Salatino, Santa Esmeralda; Pagano, Eduardo Antonio; Morábito, José Antonio; Munarriz, Eliana Rosa

    2016-11-01

    Determination of water quality status in rivers is critical to establish a sustainable water management policy. For this reason, over the last decades it has been recommended to perform integrated water assessments that include water quantities and physicochemical, ecological and toxicological tests. However, sometimes resources are limited and it is not possible to perform large-scale chemical determinations of pollutants or conduct numerous ecotoxicological tests. To overcome this problem we use and measure the growth, as a response parameter, of the soil nematode Caenorhabditis elegans to assess water quality in rivers. The C. elegans is a ubiquitous organism that has emerged as an important model organism in aquatic and soil toxicology research. The Tunuyán River Basin (Province of Mendoza, Argentina) has been selected as a representative traditional water monitoring system to test the applicability of the C. elegans toxicological bioassay to generate an integrated water quality evaluation. Jointly with the C. elegans toxic assays, physicochemical and bacteriological parameters were determined for each monitoring site. C. elegans bioassays help to identify different water qualities in the river basin. Multivariate statistical analysis (PCA and linear regression models) has allowed us to confirm that traditional water quality studies do not predict potential toxic effects on living organisms. On the contrary, physicochemical and bacteriological analyzes explain <62% of the C. elegans growth response variability, showing that ecotoxicological bioassays are important to obtain a realistic scenario of water quality threats. Our results confirm that the C. elegans bioassay is a sensible and suitable tool to assess toxicity and should be implemented in routine water quality monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The C. elegans rab family: identification, classification and toolkit construction.

    PubMed

    Gallegos, Maria E; Balakrishnan, Sanjeev; Chandramouli, Priya; Arora, Shaily; Azameera, Aruna; Babushekar, Anitha; Bargoma, Emilee; Bokhari, Abdulmalik; Chava, Siva Kumari; Das, Pranti; Desai, Meetali; Decena, Darlene; Saramma, Sonia Dev Devadas; Dey, Bodhidipra; Doss, Anna-Louise; Gor, Nilang; Gudiputi, Lakshmi; Guo, Chunyuan; Hande, Sonali; Jensen, Megan; Jones, Samantha; Jones, Norman; Jorgens, Danielle; Karamchedu, Padma; Kamrani, Kambiz; Kolora, Lakshmi Divya; Kristensen, Line; Kwan, Kelly; Lau, Henry; Maharaj, Pranesh; Mander, Navneet; Mangipudi, Kalyani; Menakuru, Himabindu; Mody, Vaishali; Mohanty, Sandeepa; Mukkamala, Sridevi; Mundra, Sheena A; Nagaraju, Sudharani; Narayanaswamy, Rajhalutshimi; Ndungu-Case, Catherine; Noorbakhsh, Mersedeh; Patel, Jigna; Patel, Puja; Pendem, Swetha Vandana; Ponakala, Anusha; Rath, Madhusikta; Robles, Michael C; Rokkam, Deepti; Roth, Caroline; Sasidharan, Preeti; Shah, Sapana; Tandon, Shweta; Suprai, Jagdip; Truong, Tina Quynh Nhu; Uthayaruban, Rubatharshini; Varma, Ajitha; Ved, Urvi; Wang, Zeran; Yu, Zhe

    2012-01-01

    Rab monomeric GTPases regulate specific aspects of vesicle transport in eukaryotes including coat recruitment, uncoating, fission, motility, target selection and fusion. Moreover, individual Rab proteins function at specific sites within the cell, for example the ER, golgi and early endosome. Importantly, the localization and function of individual Rab subfamily members are often conserved underscoring the significant contributions that model organisms such as Caenorhabditis elegans can make towards a better understanding of human disease caused by Rab and vesicle trafficking malfunction. With this in mind, a bioinformatics approach was first taken to identify and classify the complete C. elegans Rab family placing individual Rabs into specific subfamilies based on molecular phylogenetics. For genes that were difficult to classify by sequence similarity alone, we did a comparative analysis of intron position among specific subfamilies from yeast to humans. This two-pronged approach allowed the classification of 30 out of 31 C. elegans Rab proteins identified here including Rab31/Rab50, a likely member of the last eukaryotic common ancestor (LECA). Second, a molecular toolset was created to facilitate research on biological processes that involve Rab proteins. Specifically, we used Gateway-compatible C. elegans ORFeome clones as starting material to create 44 full-length, sequence-verified, dominant-negative (DN) and constitutive active (CA) rab open reading frames (ORFs). Development of this toolset provided independent research projects for students enrolled in a research-based molecular techniques course at California State University, East Bay (CSUEB).

  4. The C. elegans Rab Family: Identification, Classification and Toolkit Construction

    PubMed Central

    Gallegos, Maria E.; Balakrishnan, Sanjeev; Chandramouli, Priya

    2012-01-01

    Rab monomeric GTPases regulate specific aspects of vesicle transport in eukaryotes including coat recruitment, uncoating, fission, motility, target selection and fusion. Moreover, individual Rab proteins function at specific sites within the cell, for example the ER, golgi and early endosome. Importantly, the localization and function of individual Rab subfamily members are often conserved underscoring the significant contributions that model organisms such as Caenorhabditis elegans can make towards a better understanding of human disease caused by Rab and vesicle trafficking malfunction. With this in mind, a bioinformatics approach was first taken to identify and classify the complete C. elegans Rab family placing individual Rabs into specific subfamilies based on molecular phylogenetics. For genes that were difficult to classify by sequence similarity alone, we did a comparative analysis of intron position among specific subfamilies from yeast to humans. This two-pronged approach allowed the classification of 30 out of 31 C. elegans Rab proteins identified here including Rab31/Rab50, a likely member of the last eukaryotic common ancestor (LECA). Second, a molecular toolset was created to facilitate research on biological processes that involve Rab proteins. Specifically, we used Gateway-compatible C. elegans ORFeome clones as starting material to create 44 full-length, sequence-verified, dominant-negative (DN) and constitutive active (CA) rab open reading frames (ORFs). Development of this toolset provided independent research projects for students enrolled in a research-based molecular techniques course at California State University, East Bay (CSUEB). PMID:23185324

  5. Caenorhabditis elegans star formation and negative chemotaxis induced by infection with corynebacteria.

    PubMed

    Antunes, Camila Azevedo; Clark, Laura; Wanuske, Marie-Therès; Hacker, Elena; Ott, Lisa; Simpson-Louredo, Liliane; de Luna, Maria das Gracas; Hirata, Raphael; Mattos-Guaraldi, Ana Luíza; Hodgkin, Jonathan; Burkovski, Andreas

    2016-01-01

    Caenorhabditis elegans is one of the major model systems in biology based on advantageous properties such as short life span, transparency, genetic tractability and ease of culture using an Escherichia coli diet. In its natural habitat, compost and rotting plant material, this nematode lives on bacteria. However, C. elegans is a predator of bacteria, but can also be infected by nematopathogenic coryneform bacteria such Microbacterium and Leucobacter species, which display intriguing and diverse modes of pathogenicity. Depending on the nematode pathogen, aggregates of worms, termed worm-stars, can be formed, or severe rectal swelling, so-called Dar formation, can be induced. Using the human and animal pathogens Corynebacterium diphtheriae and Corynebacterium ulcerans as well as the non-pathogenic species Corynebacterium glutamicum, we show that these coryneform bacteria can also induce star formation slowly in worms, as well as a severe tail-swelling phenotype. While C. glutamicum had a significant, but minor influence on survival of C. elegans, nematodes were killed after infection with C. diphtheriae and C. ulcerans. The two pathogenic species were avoided by the nematodes and induced aversive learning in C. elegans.

  6. Untwisting the Caenorhabditis elegans embryo.

    PubMed

    Christensen, Ryan Patrick; Bokinsky, Alexandra; Santella, Anthony; Wu, Yicong; Marquina-Solis, Javier; Guo, Min; Kovacevic, Ismar; Kumar, Abhishek; Winter, Peter W; Tashakkori, Nicole; McCreedy, Evan; Liu, Huafeng; McAuliffe, Matthew; Mohler, William; Colón-Ramos, Daniel A; Bao, Zhirong; Shroff, Hari

    2015-12-03

    The nematode Caenorhabditis elegans possesses a simple embryonic nervous system with few enough neurons that the growth of each cell could be followed to provide a systems-level view of development. However, studies of single cell development have largely been conducted in fixed or pre-twitching live embryos, because of technical difficulties associated with embryo movement in late embryogenesis. We present open-source untwisting and annotation software (http://mipav.cit.nih.gov/plugin_jws/mipav_worm_plugin.php) that allows the investigation of neurodevelopmental events in late embryogenesis and apply it to track the 3D positions of seam cell nuclei, neurons, and neurites in multiple elongating embryos. We also provide a tutorial describing how to use the software (Supplementary file 1) and a detailed description of the untwisting algorithm (Appendix). The detailed positional information we obtained enabled us to develop a composite model showing movement of these cells and neurites in an 'average' worm embryo. The untwisting and cell tracking capabilities of our method provide a foundation on which to catalog C. elegans neurodevelopment, allowing interrogation of developmental events in previously inaccessible periods of embryogenesis.

  7. Untwisting the Caenorhabditis elegans embryo

    PubMed Central

    Christensen, Ryan Patrick; Bokinsky, Alexandra; Santella, Anthony; Wu, Yicong; Marquina-Solis, Javier; Guo, Min; Kovacevic, Ismar; Kumar, Abhishek; Winter, Peter W; Tashakkori, Nicole; McCreedy, Evan; Liu, Huafeng; McAuliffe, Matthew; Mohler, William; Colón-Ramos, Daniel A; Bao, Zhirong; Shroff, Hari

    2015-01-01

    The nematode Caenorhabditis elegans possesses a simple embryonic nervous system with few enough neurons that the growth of each cell could be followed to provide a systems-level view of development. However, studies of single cell development have largely been conducted in fixed or pre-twitching live embryos, because of technical difficulties associated with embryo movement in late embryogenesis. We present open-source untwisting and annotation software (http://mipav.cit.nih.gov/plugin_jws/mipav_worm_plugin.php) that allows the investigation of neurodevelopmental events in late embryogenesis and apply it to track the 3D positions of seam cell nuclei, neurons, and neurites in multiple elongating embryos. We also provide a tutorial describing how to use the software (Supplementary file 1) and a detailed description of the untwisting algorithm (Appendix). The detailed positional information we obtained enabled us to develop a composite model showing movement of these cells and neurites in an 'average' worm embryo. The untwisting and cell tracking capabilities of our method provide a foundation on which to catalog C. elegans neurodevelopment, allowing interrogation of developmental events in previously inaccessible periods of embryogenesis. DOI: http://dx.doi.org/10.7554/eLife.10070.001 PMID:26633880

  8. Effect of pest controlling neem (Azadirachta indica A. Juss) and mata-raton (Gliricidia sepium Jacquin) leaf extracts on emission of green house gases and inorganic-N content in urea-amended soil.

    PubMed

    Méndez-Bautista, Joaquín; Fernández-Luqueño, Fabián; López-Valdez, Fernando; Mendoza-Cristino, Reyna; Montes-Molina, Joaquín A; Gutierrez-Miceli, F A; Dendooven, L

    2009-07-01

    Extracts of neem (Azadirachta indica A. Juss.) and Gliricidia sepium Jacquin, locally known as 'mata-raton', are used to control pests of maize. Their application, however, is known to affect soil microorganisms. We investigated if these extracts affected emissions of methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O), important greenhouse gases, and dynamics of soil inorganic N. Soil was treated with extracts of neem, mata-raton or lambda-cyhalothrin, used as chemical control. The soil was amended with or without urea and incubated at 40% and 100% water holding capacity (WHC). Concentrations of ammonium (NH4+), nitrite (NO2(-)) and nitrate (NO3(-)) and emissions of CH4, CO2 and N2O were monitored for 7d. Treating urea-amended soil with extracts of neem, mata-raton or lambda-cyhalothrin reduced the emission of CO2 significantly compared to the untreated soil with the largest decrease found in the latter. Oxidation of CH4 was inhibited by extracts of neem in the unamended soil, and by neem, mata-raton and lambda-cyhalothrin in the urea-amended soil compared to the untreated soil. Neem, mata-raton and lambda-cyhalothrin reduced the N2O emission from the unamended soil incubated at 40%WHC compared to the untreated soil. Extracts of neem, mata-raton and lambda-cyhalothrin had no significant effect on dynamics of NH4(+), NO2(-) and NO(3)(-). It was found that emission of CO2 and oxidation of CH4 was inhibited in the urea-amended soil treated with extracts of neem, mata-raton and lambda-cyhalothrin, but ammonification, N2O emission and nitrification were not affected.

  9. Competition between virus-derived and endogenous small RNAs regulates gene expression in Caenorhabditis elegans.

    PubMed

    Sarkies, Peter; Ashe, Alyson; Le Pen, Jérémie; McKie, Mikel A; Miska, Eric A

    2013-08-01

    Positive-strand RNA viruses encompass more than one-third of known virus genera and include many medically and agriculturally relevant human, animal, and plant pathogens. The nematode Caenorhabditis elegans and its natural pathogen, the positive-strand RNA virus Orsay, have recently emerged as a new animal model to understand the mechanisms and evolution of innate immune responses. In particular, the RNA interference (RNAi) pathway is required for C. elegans resistance to viral infection. Here we report the first genome-wide analyses of gene expression upon viral infection in C. elegans. Using the laboratory strain N2, we identify a novel C. elegans innate immune response specific to viral infection. A subset of these changes is driven by the RNAi response to the virus, which redirects the Argonaute protein RDE-1 from its endogenous small RNA cofactors, leading to loss of repression of endogenous RDE-1 targets. Additionally, we show that a C. elegans wild isolate, JU1580, has a distinct gene expression signature in response to viral infection. This is associated with a reduction in microRNA (miRNA) levels and an up-regulation of their target genes. Intriguingly, alterations in miRNA levels upon JU1580 infection are associated with a transformation of the antiviral transcriptional response into an antibacterial-like response. Together our data support a model whereby antiviral RNAi competes with endogenous small RNA pathways, causing widespread transcriptional changes. This provides an elegant mechanism for C. elegans to orchestrate its antiviral response, which may have significance for the relationship between small RNA pathways and immune regulation in other organisms.

  10. Reproductive fitness and dietary choice behavior of the genetic model organism Caenorhabditis elegans under semi-natural conditions.

    PubMed

    Freyth, Katharina; Janowitz, Tim; Nunes, Frank; Voss, Melanie; Heinick, Alexander; Bertaux, Joanne; Scheu, Stefan; Paul, Rüdiger J

    2010-10-01

    Laboratory breeding conditions of the model organism C. elegans do not correspond with the conditions in its natural soil habitat. To assess the consequences of the differences in environmental conditions, the effects of air composition, medium and bacterial food on reproductive fitness and/or dietary-choice behavior of C. elegans were investigated. The reproductive fitness of C. elegans was maximal under oxygen deficiency and not influenced by a high fractional share of carbon dioxide. In media approximating natural soil structure, reproductive fitness was much lower than in standard laboratory media. In seminatural media, the reproductive fitness of C. elegans was low with the standard laboratory food bacterium E. coli (γ-Proteobacteria), but significantly higher with C. arvensicola (Bacteroidetes) and B. tropica (β-Proteobacteria) as food. Dietary-choice experiments in semi-natural media revealed a low preference of C. elegans for E. coli but significantly higher preferences for C. arvensicola and B. tropica (among other bacteria). Dietary-choice experiments under quasi-natural conditions, which were feasible by fluorescence in situ hybridization (FISH) of bacteria, showed a high preference of C. elegans for Cytophaga-Flexibacter-Bacteroides, Firmicutes, and β-Proteobacteria, but a low preference for γ-Proteobacteria. The results show that data on C. elegans under standard laboratory conditions have to be carefully interpreted with respect to their biological significance.

  11. An Aversive Response to Osmotic Upshift in Caenorhabditis elegans

    PubMed Central

    Yu, Jingyi; Liu, He

    2017-01-01

    Abstract Environmental osmolarity presents a common type of sensory stimulus to animals. While behavioral responses to osmotic changes are important for maintaining a stable intracellular osmolarity, the underlying mechanisms are not fully understood. In the natural habitat of Caenorhabditis elegans, changes in environmental osmolarity are commonplace. It is known that the nematode acutely avoids shocks of extremely high osmolarity. Here, we show that C. elegans also generates gradually increased aversion of mild upshifts in environmental osmolarity. Different from an acute avoidance of osmotic shocks that depends on the function of a transient receptor potential vanilloid channel, the slow aversion to osmotic upshifts requires the cGMP-gated sensory channel subunit TAX-2. TAX-2 acts in several sensory neurons that are exposed to body fluid to generate the aversive response through a motor network that underlies navigation. Osmotic upshifts activate the body cavity sensory neuron URX, which is known to induce aversion upon activation. Together, our results characterize the molecular and cellular mechanisms underlying a novel sensorimotor response to osmotic stimuli and reveal that C. elegans engages different behaviors and the underlying mechanisms to regulate responses to extracellular osmolarity. PMID:28451641

  12. An Aversive Response to Osmotic Upshift in Caenorhabditis elegans.

    PubMed

    Yu, Jingyi; Yang, Wenxing; Liu, He; Hao, Yingsong; Zhang, Yun

    2017-01-01

    Environmental osmolarity presents a common type of sensory stimulus to animals. While behavioral responses to osmotic changes are important for maintaining a stable intracellular osmolarity, the underlying mechanisms are not fully understood. In the natural habitat of Caenorhabditis elegans , changes in environmental osmolarity are commonplace. It is known that the nematode acutely avoids shocks of extremely high osmolarity. Here, we show that C. elegans also generates gradually increased aversion of mild upshifts in environmental osmolarity. Different from an acute avoidance of osmotic shocks that depends on the function of a transient receptor potential vanilloid channel, the slow aversion to osmotic upshifts requires the cGMP-gated sensory channel subunit TAX-2. TAX-2 acts in several sensory neurons that are exposed to body fluid to generate the aversive response through a motor network that underlies navigation. Osmotic upshifts activate the body cavity sensory neuron URX, which is known to induce aversion upon activation. Together, our results characterize the molecular and cellular mechanisms underlying a novel sensorimotor response to osmotic stimuli and reveal that C. elegans engages different behaviors and the underlying mechanisms to regulate responses to extracellular osmolarity.

  13. Neuronal regulation of ascaroside response during mate response behavior in the nematode Caenorhabditis elegans

    USDA-ARS?s Scientific Manuscript database

    Small-molecule signaling plays an important role in the biology of Caenorhabditis elegans. We have previously shown that ascarosides, glycosides of the dideoxysugar ascarylose regulate both development and behavior in C. elegans The mating signal consists of a synergistic blend of three dauer-induc...

  14. A Modular Library of Small Molecule Signals Regulates Social Behaviors in Caenorhabditis elegans

    PubMed Central

    Bose, Neelanjan; Zaslaver, Alon; Mahanti, Parag; Ho, Margaret C.; O'Doherty, Oran G.; Edison, Arthur S.; Sternberg, Paul W.; Schroeder, Frank C.

    2012-01-01

    The nematode C. elegans is an important model for the study of social behaviors. Recent investigations have shown that a family of small molecule signals, the ascarosides, controls population density sensing and mating behavior. However, despite extensive studies of C. elegans aggregation behaviors, no intraspecific signals promoting attraction or aggregation of wild-type hermaphrodites have been identified. Using comparative metabolomics, we show that the known ascarosides are accompanied by a series of derivatives featuring a tryptophan-derived indole moiety. Behavioral assays demonstrate that these indole ascarosides serve as potent intraspecific attraction and aggregation signals for hermaphrodites, in contrast to ascarosides lacking the indole group, which are repulsive. Hermaphrodite attraction to indole ascarosides depends on the ASK amphid sensory neurons. Downstream of the ASK sensory neuron, the interneuron AIA is required for mediating attraction to indole ascarosides instead of the RMG interneurons, which previous studies have shown to integrate attraction and aggregation signals from ASK and other sensory neurons. The role of the RMG interneuron in mediating aggregation and attraction is thought to depend on the neuropeptide Y-like receptor NPR-1, because solitary and social C. elegans strains are distinguished by different npr-1 variants. We show that indole ascarosides promote attraction and aggregation in both solitary and social C. elegans strains. The identification of indole ascarosides as aggregation signals reveals unexpected complexity of social signaling in C. elegans, which appears to be based on a modular library of ascarosides integrating building blocks derived from lipid β-oxidation and amino-acid metabolism. Variation of modules results in strongly altered signaling content, as addition of a tryptophan-derived indole unit to repellent ascarosides produces strongly attractive indole ascarosides. Our findings show that the library of

  15. Endogenous cGMP regulates adult longevity via the insulin signaling pathway in Caenorhabditis elegans.

    PubMed

    Hahm, Jeong-Hoon; Kim, Sunhee; Paik, Young-Ki

    2009-08-01

    G-proteins, including GPA-3, play an important role in regulating physiological responses in Caenorhabditis elegans. When confronted with an environmental stimulus such as dauer pheromone, or poor nutrients, C. elegans receives and integrates external signals through its nervous system (i.e. amphid neurons), which interprets and translates them into biological action. Here it is shown that a suppressed neuronal cGMP level caused by GPA-3 activation leads to a significant increase (47.3%) in the mean lifespan of adult C. elegans through forkhead transcription factor family O (FOXO)-mediated signal. A reduced neuronal cGMP level was found to be caused by an increased cGMP-specific phosphodiesterase activity at the transcriptional level. Our results using C. elegans mutants with specific deficits in TGF-beta and FOXO RNAi system suggest a mechanism in that cGMP, TGF-beta, and FOXO signaling interact to differentially produce the insulin-like molecules, ins-7 and daf-28, causing suppression of the insulin/IGF-1 pathway and promoting lifespan extension. Our findings provide not only a new mechanism of cGMP-mediated induction of longevity in adult C. elegans but also a possible therapeutic strategy for neuronal disease, which has been likened to brain diabetes.

  16. Suspended animation in C. elegans requires the spindle checkpoint.

    PubMed

    Nystul, Todd G; Goldmark, Jesse P; Padilla, Pamela A; Roth, Mark B

    2003-11-07

    In response to environmental signals such as anoxia, many organisms enter a state of suspended animation, an extreme form of quiescence in which microscopically visible movement ceases. We have identified a gene, san-1, that is required for suspended animation in Caenorhabditis elegans embryos. We show that san-1 functions as a spindle checkpoint component in C. elegans. During anoxia-induced suspended animation, embryos lacking functional SAN-1 or a second spindle checkpoint component, MDF-2, failed to arrest the cell cycle, exhibited chromosome missegregation, and showed reduced viability. These data provide a model for how a dynamic biological process is arrested in suspended animation.

  17. Comparison of Caenorhabditis elegans NLP peptides with arthropod neuropeptides.

    PubMed

    Husson, Steven J; Lindemans, Marleen; Janssen, Tom; Schoofs, Liliane

    2009-04-01

    Neuropeptides are small messenger molecules that can be found in all metazoans, where they govern a diverse array of physiological processes. Because neuropeptides seem to be conserved among pest species, selected peptides can be considered as attractive targets for drug discovery. Much can be learned from the model system Caenorhabditis elegans because of the availability of a sequenced genome and state-of-the-art postgenomic technologies that enable characterization of endogenous peptides derived from neuropeptide-like protein (NLP) precursors. Here, we provide an overview of the NLP peptide family in C. elegans and discuss their resemblance with arthropod neuropeptides and their relevance for anthelmintic discovery.

  18. Modulation of Caenorhabditis elegans immune response and modification of Shigella endotoxin upon interaction.

    PubMed

    Kesika, Periyanaina; Prasanth, Mani Iyer; Balamurugan, Krishnaswamy

    2015-04-01

    To analyze the pathogenesis at both physiological and molecular level using the model organism, Caenorhabditis elegans at different developmental stages in response to Shigella spp. and its pathogen associated molecular patterns such as lipopolysaccharide. The solid plate and liquid culture-based infection assays revealed that Shigella spp. infects C. elegans and had an impact on the brood size and pharyngeal pumping rate. LPS of Shigella spp. was toxic to C. elegans. qPCR analysis revealed that host innate immune genes have been modulated upon Shigella spp. infections and its LPS challenges. Non-destructive analysis was performed to kinetically assess the alterations in LPS during interaction of Shigella spp. with C. elegans. The modulation of innate immune genes attributed the surrendering of host immune system to Shigella spp. by favoring the infection. LPS appeared to have a major role in Shigella-mediated pathogenesis and Shigella employs a tactic behavior of modifying its LPS content to escape from the recognition of host immune system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue.

    PubMed

    Gray, Jesse M; Karow, David S; Lu, Hang; Chang, Andy J; Chang, Jennifer S; Ellis, Ronald E; Marletta, Michael A; Bargmann, Cornelia I

    2004-07-15

    Specialized oxygen-sensing cells in the nervous system generate rapid behavioural responses to oxygen. We show here that the nematode Caenorhabditis elegans exhibits a strong behavioural preference for 5-12% oxygen, avoiding higher and lower oxygen levels. 3',5'-cyclic guanosine monophosphate (cGMP) is a common second messenger in sensory transduction and is implicated in oxygen sensation. Avoidance of high oxygen levels by C. elegans requires the sensory cGMP-gated channel tax-2/tax-4 and a specific soluble guanylate cyclase homologue, gcy-35. The GCY-35 haem domain binds molecular oxygen, unlike the haem domains of classical nitric-oxide-regulated guanylate cyclases. GCY-35 and TAX-4 mediate oxygen sensation in four sensory neurons that control a naturally polymorphic social feeding behaviour in C. elegans. Social feeding and related behaviours occur only when oxygen exceeds C. elegans' preferred level, and require gcy-35 activity. Our results suggest that GCY-35 is regulated by molecular oxygen, and that social feeding can be a behavioural strategy for responding to hyperoxic environments.

  20. Editor’s Highlight: Comparative Toxicity of Organophosphate Flame Retardants and Polybrominated Diphenyl Ethers to Caenorhabditis elegans

    PubMed Central

    Behl, Mamta; Rice, Julie R.; Smith, Marjo V.; Co, Caroll A.; Bridge, Matthew F.; Hsieh, Jui-Hua; Freedman, Jonathan H.; Boyd, Windy A.

    2016-01-01

    With the phasing-out of the polybrominated diphenyl ether (PBDE) flame retardants due to concerns regarding their potential developmental toxicity, the use of replacement compounds such as organophosphate flame retardants (OPFRs) has increased. Limited toxicity data are currently available to estimate the potential adverse health effects of the OPFRs. The toxicological effects of 4 brominated flame retardants, including 3 PBDEs and 3,3',5,5'-tetrabromobisphenol A, were compared with 6 aromatic OPFRs and 2 aliphatic OPFRs. The effects of these chemicals were determined using 3 biological endpoints in the nematode Caenorhabditis elegans (feeding, larval development, and reproduction). Because C. elegans development was previously reported to be sensitive to mitochondrial function, results were compared with those from an in vitro mitochondrial membrane permeabilization (MMP) assay. Overall 11 of the 12 flame retardants were active in 1 or more C. elegans biological endpoints, with only tris(2-chloroethyl) phosphate inactive across all endpoints including the in vitro MMP assay. For 2 of the C. elegans endpoints, at least 1 OPFR had similar toxicity to the PBDEs: triphenyl phosphate (TPHP) inhibited larval development at levels comparable to the 3 PBDEs; whereas TPHP and isopropylated phenol phosphate (IPP) affected C. elegans reproduction at levels similar to the PBDE commercial mixture, DE-71. The PBDEs reduced C. elegans feeding at lower concentrations than any OPFR. In addition, 9 of the 11 chemicals that inhibited C. elegans larval development also caused significant mitochondrial toxicity. These results suggest that some of the replacement aromatic OPFRs may have levels of toxicity comparable to PBDEs. PMID:27566445

  1. Nanoscale Mechanical Stimulation Method for Quantifying C. elegans Mechanosensory Behavior and Memory.

    PubMed

    Sugi, Takuma; Okumura, Etsuko; Kiso, Kaori; Igarashi, Ryuji

    2016-01-01

    Withdrawal escape response of C. elegans to nonlocalized vibration is a useful behavioral paradigm to examine mechanisms underlying mechanosensory behavior and its memory-dependent change. However, there are very few methods for investigating the degree of vibration frequency, amplitude and duration needed to induce behavior and memory. Here, we establish a new system to quantify C. elegans mechanosensory behavior and memory using a piezoelectric sheet speaker. In the system, we can flexibly change the vibration properties at a nanoscale displacement level and quantify behavioral responses under each vibration property. This system is an economic setup and easily replicated in other laboratories. By using the system, we clearly detected withdrawal escape responses and confirmed habituation memory. This system will facilitate the understanding of physiological aspects of C. elegans mechanosensory behavior in the future.

  2. A homeotic gene cluster patterns the anteroposterior body axis of C. elegans.

    PubMed

    Wang, B B; Müller-Immergluck, M M; Austin, J; Robinson, N T; Chisholm, A; Kenyon, C

    1993-07-16

    In insects and vertebrates, clusters of Antennapedia class homeobox (HOM-C) genes specify anteroposterior body pattern. The nematode C. elegans also contains a small cluster of HOM-C genes, one of which has been shown to specify positional identity. Here we show that two additional C. elegans HOM-C genes also specify positional identity and that together these three HOM-C genes function along the anteroposterior axis in the same order as their homologs in other organisms. Thus, HOM-C-based pattern formation has been conserved in nematodes despite the many differences in morphology and embryology that distinguish them from other phyla. Each C. elegans HOM-C gene is responsible for a distinct body region; however, where their domains overlap, two HOM-C genes can act together to specify the fates of individual cells.

  3. Caenorhabditis elegans PRMT-7 and PRMT-9 Are Evolutionarily Conserved Protein Arginine Methyltransferases with Distinct Substrate Specificities.

    PubMed

    Hadjikyriacou, Andrea; Clarke, Steven G

    2017-05-23

    Caenorhabditis elegans protein arginine methyltransferases PRMT-7 and PRMT-9 are two evolutionarily conserved enzymes, with distinct orthologs in plants, invertebrates, and vertebrates. Biochemical characterization of these two enzymes reveals that they share much in common with their mammalian orthologs. C. elegans PRMT-7 produces only monomethylarginine (MMA) and preferentially methylates R-X-R motifs in a broad collection of substrates, including human histone peptides and RG-rich peptides. In addition, the activity of the PRMT-7 enzyme is dependent on temperature, the presence of metal ions, and the reducing agent dithiothreitol. C. elegans PRMT-7 has a substrate specificity and a substrate preference different from those of mammalian PRMT7, and the available X-ray crystal structures of the PRMT7 orthologs show differences in active site architecture. C. elegans PRMT-9, on the other hand, produces symmetric dimethylarginine and MMA on SFTB-2, the conserved C. elegans ortholog of human RNA splicing factor SF3B2, indicating a possible role in the regulation of nematode splicing. In contrast to PRMT-7, C. elegans PRMT-9 appears to be biochemically indistinguishable from its human ortholog.

  4. Lindgren conducts Veg-01 Plant Pillow Refill

    NASA Image and Video Library

    2015-12-02

    Flight engineer Kjell Lindgren poses with zinnia plants in the Veggie facility during Plant Pillow water refill operations. Image was taken in the Columbus European Laboratory and released by Lindgren on social media. "Our zinnias are looking good! #SpaceGardener"

  5. Environmental Assessment for the Expansion of Permitted Land and Operations at the 9940 Complex and Thunder Range at Sandia National Laboratories/New Mexico

    DTIC Science & Technology

    2008-03-01

    vivipara Hidden flower Cryptantha crassisepala Hidden flower Cryptantha fulvocanescens James’s hidden flower Cryptantha jamesii Buffalo gourd...pumila Bigbract verbena ta Verbena bractea Banana yucca ta Yucca bacca Soapweed yucca Yucca glauca Rocky Mountain zinnia Zinnia grandiflora A-9

  6. Classification and prediction of toxicity of chemicals using an automated phenotypic profiling of Caenorhabditis elegans.

    PubMed

    Gao, Shan; Chen, Weiyang; Zeng, Yingxin; Jing, Haiming; Zhang, Nan; Flavel, Matthew; Jois, Markandeya; Han, Jing-Dong J; Xian, Bo; Li, Guojun

    2018-04-18

    Traditional toxicological studies have relied heavily on various animal models to understand the effect of various compounds in a biological context. Considering the great cost, complexity and time involved in experiments using higher order organisms. Researchers have been exploring alternative models that avoid these disadvantages. One example of such a model is the nematode Caenorhabditis elegans. There are some advantages of C. elegans, such as small size, short life cycle, well defined genome, ease of maintenance and efficient reproduction. As these benefits allow large scale studies to be initiated with relative ease, the problem of how to efficiently capture, organize and analyze the resulting large volumes of data must be addressed. We have developed a new method for quantitative screening of chemicals using C. elegans. 33 features were identified for each chemical treatment. The compounds with different toxicities were shown to alter the phenotypes of C. elegans in distinct and detectable patterns. We found that phenotypic profiling revealed conserved functions to classify and predict the toxicity of different chemicals. Our results demonstrate the power of phenotypic profiling in C. elegans under different chemical environments.

  7. Mapping and analysis of Caenorhabditis elegans transcription factor sequence specificities

    PubMed Central

    Narasimhan, Kamesh; Lambert, Samuel A; Yang, Ally WH; Riddell, Jeremy; Mnaimneh, Sanie; Zheng, Hong; Albu, Mihai; Najafabadi, Hamed S; Reece-Hoyes, John S; Fuxman Bass, Juan I; Walhout, Albertha JM; Weirauch, Matthew T; Hughes, Timothy R

    2015-01-01

    Caenorhabditis elegans is a powerful model for studying gene regulation, as it has a compact genome and a wealth of genomic tools. However, identification of regulatory elements has been limited, as DNA-binding motifs are known for only 71 of the estimated 763 sequence-specific transcription factors (TFs). To address this problem, we performed protein binding microarray experiments on representatives of canonical TF families in C. elegans, obtaining motifs for 129 TFs. Additionally, we predict motifs for many TFs that have DNA-binding domains similar to those already characterized, increasing coverage of binding specificities to 292 C. elegans TFs (∼40%). These data highlight the diversification of binding motifs for the nuclear hormone receptor and C2H2 zinc finger families and reveal unexpected diversity of motifs for T-box and DM families. Motif enrichment in promoters of functionally related genes is consistent with known biology and also identifies putative regulatory roles for unstudied TFs. DOI: http://dx.doi.org/10.7554/eLife.06967.001 PMID:25905672

  8. Goalpha regulates volatile anesthetic action in Caenorhabditis elegans.

    PubMed Central

    van Swinderen, B; Metz, L B; Shebester, L D; Mendel, J E; Sternberg, P W; Crowder, C M

    2001-01-01

    To identify genes controlling volatile anesthetic (VA) action, we have screened through existing Caenorhabditis elegans mutants and found that strains with a reduction in Go signaling are VA resistant. Loss-of-function mutants of the gene goa-1, which codes for the alpha-subunit of Go, have EC(50)s for the VA isoflurane of 1.7- to 2.4-fold that of wild type. Strains overexpressing egl-10, which codes for an RGS protein negatively regulating goa-1, are also isoflurane resistant. However, sensitivity to halothane, a structurally distinct VA, is differentially affected by Go pathway mutants. The RGS overexpressing strains, a goa-1 missense mutant found to carry a novel mutation near the GTP-binding domain, and eat-16(rf) mutants, which suppress goa-1(gf) mutations, are all halothane resistant; goa-1(null) mutants have wild-type sensitivities. Double mutant strains carrying mutations in both goa-1 and unc-64, which codes for a neuronal syntaxin previously found to regulate VA sensitivity, show that the syntaxin mutant phenotypes depend in part on goa-1 expression. Pharmacological assays using the cholinesterase inhibitor aldicarb suggest that VAs and GOA-1 similarly downregulate cholinergic neurotransmitter release in C. elegans. Thus, the mechanism of action of VAs in C. elegans is regulated by Goalpha, and presynaptic Goalpha-effectors are candidate VA molecular targets. PMID:11404329

  9. Competition between virus-derived and endogenous small RNAs regulates gene expression in Caenorhabditis elegans

    PubMed Central

    Sarkies, Peter; Ashe, Alyson; Le Pen, Jérémie; McKie, Mikel A.; Miska, Eric A.

    2013-01-01

    Positive-strand RNA viruses encompass more than one-third of known virus genera and include many medically and agriculturally relevant human, animal, and plant pathogens. The nematode Caenorhabditis elegans and its natural pathogen, the positive-strand RNA virus Orsay, have recently emerged as a new animal model to understand the mechanisms and evolution of innate immune responses. In particular, the RNA interference (RNAi) pathway is required for C. elegans resistance to viral infection. Here we report the first genome-wide analyses of gene expression upon viral infection in C. elegans. Using the laboratory strain N2, we identify a novel C. elegans innate immune response specific to viral infection. A subset of these changes is driven by the RNAi response to the virus, which redirects the Argonaute protein RDE-1 from its endogenous small RNA cofactors, leading to loss of repression of endogenous RDE-1 targets. Additionally, we show that a C. elegans wild isolate, JU1580, has a distinct gene expression signature in response to viral infection. This is associated with a reduction in microRNA (miRNA) levels and an up-regulation of their target genes. Intriguingly, alterations in miRNA levels upon JU1580 infection are associated with a transformation of the antiviral transcriptional response into an antibacterial-like response. Together our data support a model whereby antiviral RNAi competes with endogenous small RNA pathways, causing widespread transcriptional changes. This provides an elegant mechanism for C. elegans to orchestrate its antiviral response, which may have significance for the relationship between small RNA pathways and immune regulation in other organisms. PMID:23811144

  10. Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans

    PubMed Central

    Pradel, Elizabeth; Zhang, Yun; Pujol, Nathalie; Matsuyama, Tohey; Bargmann, Cornelia I.; Ewbank, Jonathan J.

    2007-01-01

    The nematode Caenorhabditis elegans is present in soils and composts, where it can encounter a variety of microorganisms. Some bacteria in these rich environments are innocuous food sources for C. elegans, whereas others are pathogens. Under laboratory conditions, C. elegans will avoid certain pathogens, such as Serratia marcescens, by exiting a bacterial lawn a few hours after entering it. By combining bacterial genetics and nematode genetics, we show that C. elegans specifically avoids certain strains of Serratia based on their production of the cyclic lipodepsipentapeptide serrawettin W2. Lawn-avoidance behavior is chiefly mediated by the two AWB chemosensory neurons, probably through G protein-coupled chemoreceptors, and also involves the nematode Toll-like receptor gene tol-1. Purified serrawettin W2, added to an Escherichia coli lawn, can directly elicit lawn avoidance in an AWB-dependent fashion, as can another chemical detected by AWB. These findings represent an insight into chemical recognition between these two soil organisms and reveal sensory mechanisms for pathogen recognition in C. elegans. PMID:17267603

  11. Biophysical and biological meanings of healthspan from C. elegans cohort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suda, Hitoshi, E-mail: suda@tsc.u-tokai.ac.jp

    2014-09-12

    Highlights: • We focus on a third factor, noise, as well as on genetic and environmental factors. • C. elegans fed a healthy food had an extended healthspan as compared to those fed a conventional diet. • An amplification of ATP noise was clearly evident from around the onset of biodemographic aging. • The extension of timing of noise amplification may contribute to effectively extending the healthspan. • The same mechanism of the mean lifespan extension in C. elegans may be realized in humans. - Abstract: Lifespan among individuals ranges widely in organisms from yeast to mammals, even in anmore » isogenic cohort born in a nearly uniform environment. Needless to say, genetic and environmental factors are essential for aging and lifespan, but in addition, a third factor or the existence of a stochastic element must be reflected in aging and lifespan. An essential point is that lifespan or aging is an unpredictable phenomenon. The present study focuses on elucidating the biophysical and biological meanings of healthspan that latently indwells a stochastic nature. To perform this purpose, the nematode Caenorhabditis elegans served as a model animal. C. elegans fed a healthy food had an extended healthspan as compared to those fed a conventional diet. Then, utilizing this phenomenon, we clarified a mechanism of healthspan extension by measuring the single-worm ATP and estimating the ATP noise (or the variability of the ATP content) among individual worms and by quantitatively analyzing biodemographic data with the lifespan equation that was derived from a fluctuation theory.« less

  12. Probiotic Lactobacillus fermentum strain JDFM216 stimulates the longevity and immune response of Caenorhabditis elegans through a nuclear hormone receptor.

    PubMed

    Park, Mi Ri; Ryu, Sangdon; Maburutse, Brighton E; Oh, Nam Su; Kim, Sae Hun; Oh, Sejong; Jeong, Seong-Yeop; Jeong, Do-Youn; Oh, Sangnam; Kim, Younghoon

    2018-05-10

    Here, we examined the functionality of Lactobacillus fermentum strain JDFM216, a newly isolated probiotic bacterium, using a Caenorhabditis elegans model. We determined bacterial colonization in the intestinal tract of C. elegans by plate counting and transmission electron microscopy and examined the survival of C. elegans using a solid killing assay. In addition, we employed DNA microarray analysis, quantitative real time-polymerase chain reaction, and immunoblotting assays to explore health-promoting pathways induced by probiotic bacteria in C. elegans. Initially, we found that the probiotic bacterium L. fermentum strain JDFM216 was not harmful to the C. elegans host. Conditioning with JDFM216 led to its colonization in the nematode intestine and enhanced resistance in nematodes exposed to food-borne pathogens, including Staphylococcus aureus and Escherichia coli O157:H7. Interestingly, this probiotic strain significantly prolonged the life span of C. elegans. Whole-transcriptome analysis and transgenic worm assays revealed that the health-promoting effects of JDFM216 were mediated by a nuclear hormone receptor (NHR) family and PMK-1 signaling. Taken together, we described a new C. elegans-based system to screen novel probiotic activity and demonstrated that preconditioning with the probiotic L. fermentum strain JDFM216 may positively stimulate the longevity of the C. elegans host via specific pathway.

  13. Excision repair of UV radiation-induced DNA damage in Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, P.S.; Hevelone, J.; Dwarakanath, V.

    1989-06-01

    Radioimmunoassays were used to monitor the removal of antibody-binding sites associated with the two major UV radiation-induced DNA photoproducts (cyclobutane dimers and (6-4) photoproducts). Unlike with cultured human cells, where (6-4) photoproducts are removed more rapidly than cyclobutane dimers, the kinetics of repair were similar for both lesions. Repair capacity in wild type diminished throughout development. The radioimmunoassays were also employed to confirm the absence of photoreactivation in C. elegans. In addition, three radiation-sensitive mutants (rad-1, rad-2, rad-7) displayed normal repair capacities. An excision defect was much more pronounced in larvae than embryos in the fourth mutant tested (rad-3). Thismore » correlates with the hypersensitivity pattern of this mutant and suggests that DNA repair may be developmentally regulated in C. elegans. The mechanism of DNA repair in C. elegans as well as the relationship between the repair of specific photoproducts and UV radiation sensitivity during development are discussed.« less

  14. The Genetic Basis of Natural Variation in Caenorhabditis elegans Telomere Length

    PubMed Central

    Cook, Daniel E.; Zdraljevic, Stefan; Tanny, Robyn E.; Seo, Beomseok; Riccardi, David D.; Noble, Luke M.; Rockman, Matthew V.; Alkema, Mark J.; Braendle, Christian; Kammenga, Jan E.; Wang, John; Kruglyak, Leonid; Félix, Marie-Anne; Lee, Junho; Andersen, Erik C.

    2016-01-01

    Telomeres are involved in the maintenance of chromosomes and the prevention of genome instability. Despite this central importance, significant variation in telomere length has been observed in a variety of organisms. The genetic determinants of telomere-length variation and their effects on organismal fitness are largely unexplored. Here, we describe natural variation in telomere length across the Caenorhabditis elegans species. We identify a large-effect variant that contributes to differences in telomere length. The variant alters the conserved oligonucleotide/oligosaccharide-binding fold of protection of telomeres 2 (POT-2), a homolog of a human telomere-capping shelterin complex subunit. Mutations within this domain likely reduce the ability of POT-2 to bind telomeric DNA, thereby increasing telomere length. We find that telomere-length variation does not correlate with offspring production or longevity in C. elegans wild isolates, suggesting that naturally long telomeres play a limited role in modifying fitness phenotypes in C. elegans. PMID:27449056

  15. The Genetic Basis of Natural Variation in Caenorhabditis elegans Telomere Length.

    PubMed

    Cook, Daniel E; Zdraljevic, Stefan; Tanny, Robyn E; Seo, Beomseok; Riccardi, David D; Noble, Luke M; Rockman, Matthew V; Alkema, Mark J; Braendle, Christian; Kammenga, Jan E; Wang, John; Kruglyak, Leonid; Félix, Marie-Anne; Lee, Junho; Andersen, Erik C

    2016-09-01

    Telomeres are involved in the maintenance of chromosomes and the prevention of genome instability. Despite this central importance, significant variation in telomere length has been observed in a variety of organisms. The genetic determinants of telomere-length variation and their effects on organismal fitness are largely unexplored. Here, we describe natural variation in telomere length across the Caenorhabditis elegans species. We identify a large-effect variant that contributes to differences in telomere length. The variant alters the conserved oligonucleotide/oligosaccharide-binding fold of protection of telomeres 2 (POT-2), a homolog of a human telomere-capping shelterin complex subunit. Mutations within this domain likely reduce the ability of POT-2 to bind telomeric DNA, thereby increasing telomere length. We find that telomere-length variation does not correlate with offspring production or longevity in C. elegans wild isolates, suggesting that naturally long telomeres play a limited role in modifying fitness phenotypes in C. elegans. Copyright © 2016 by the Genetics Society of America.

  16. Spaceflight and ageing: reflecting on Caenorhabditis elegans in space.

    PubMed

    Honda, Yoko; Honda, Shuji; Narici, Marco; Szewczyk, Nathaniel J

    2014-01-01

    The prospect of space travel continues to capture the imagination. Several competing companies are now promising flights for the general population. Previously, it was recognized that many of the physiological changes that occur with spaceflight are similar to those seen with normal ageing. This led to the notion that spaceflight can be used as a model of accelerated ageing and raised concerns about the safety of individuals engaging in space travel. Paradoxically, however, space travel has been recently shown to be beneficial to some aspects of muscle health in the tiny worm Caenorhabditis elegans. C. elegans is a commonly used laboratory animal for studying ageing. C. elegans displays age-related decline of some biological processes observed in ageing humans, and about 35% of C. elegans' genes have human homologs. Space flown worms were found to have decreased expression of a number of genes that increase lifespan when expressed at lower levels. These changes were accompanied by decreased accumulation of toxic protein aggregates in ageing worms' muscles. Thus, in addition to spaceflight producing physiological changes that are similar to accelerated ageing, it also appears to produce some changes similar to delayed ageing. Here, we put forward the hypothesis that in addition to the previously well-appreciated mechanotransduction changes, neural and endocrine signals are altered in response to spaceflight and that these may have both negative (e.g. less muscle protein) and some positive consequences (e.g. healthier muscles), at least for invertebrates, with respect to health in space. Given that changes in circulating hormones are well documented with age and in astronauts, our view is that further research into the relationship between metabolic control, ageing, and adaptation to the environment should be productive in advancing our understanding of the physiology of both spaceflight and ageing.

  17. Usefulness of the Non-conventional Caenorhabditis elegans Model to Assess Candida Virulence.

    PubMed

    Ortega-Riveros, Marcelo; De-la-Pinta, Iker; Marcos-Arias, Cristina; Ezpeleta, Guillermo; Quindós, Guillermo; Eraso, Elena

    2017-10-01

    Invasive candidiasis is caused mainly by Candida albicans, but other Candida species have increasing etiologies. These species show different virulence and susceptibility levels to antifungal drugs. The aims of this study were to evaluate the usefulness of the non-conventional model Caenorhabditis elegans to assess the in vivo virulence of seven different Candida species and to compare the virulence in vivo with the in vitro production of proteinases and phospholipases, hemolytic activity and biofilm development capacity. One culture collection strain of each of seven Candida species (C. albicans, Candida dubliniensis, Candida glabrata, Candida krusei, Candida metapsilosis, Candida orthopsilosis and Candida parapsilosis) was studied. A double mutant C. elegans AU37 strain (glp-4;sek-1) was infected with Candida by ingestion, and the analysis of nematode survival was performed in liquid medium every 24 h until 120 h. Candida establishes a persistent lethal infection in the C. elegans intestinal tract. C. albicans and C. krusei were the most pathogenic species, whereas C. dubliniensis infection showed the lowest mortality. C. albicans was the only species with phospholipase activity, was the greatest producer of aspartyl proteinase and had a higher hemolytic activity. C. albicans and C. krusei caused higher mortality than the rest of the Candida species studied in the C. elegans model of candidiasis.

  18. Studying human disease genes in Caenorhabditis elegans: a molecular genetics laboratory project.

    PubMed

    Cox-Paulson, Elisabeth A; Grana, Theresa M; Harris, Michelle A; Batzli, Janet M

    2012-01-01

    Scientists routinely integrate information from various channels to explore topics under study. We designed a 4-wk undergraduate laboratory module that used a multifaceted approach to study a question in molecular genetics. Specifically, students investigated whether Caenorhabditis elegans can be a useful model system for studying genes associated with human disease. In a large-enrollment, sophomore-level laboratory course, groups of three to four students were assigned a gene associated with either breast cancer (brc-1), Wilson disease (cua-1), ovarian dysgenesis (fshr-1), or colon cancer (mlh-1). Students compared observable phenotypes of wild-type C. elegans and C. elegans with a homozygous deletion in the assigned gene. They confirmed the genetic deletion with nested polymerase chain reaction and performed a bioinformatics analysis to predict how the deletion would affect the encoded mRNA and protein. Students also performed RNA interference (RNAi) against their assigned gene and evaluated whether RNAi caused a phenotype similar to that of the genetic deletion. As a capstone activity, students prepared scientific posters in which they presented their data, evaluated whether C. elegans was a useful model system for studying their assigned genes, and proposed future directions. Assessment showed gains in understanding genotype versus phenotype, RNAi, common bioinformatics tools, and the utility of model organisms.

  19. Studying Human Disease Genes in Caenorhabditis elegans: A Molecular Genetics Laboratory Project

    PubMed Central

    Cox-Paulson, Elisabeth A.; Grana, Theresa M.; Harris, Michelle A.; Batzli, Janet M.

    2012-01-01

    Scientists routinely integrate information from various channels to explore topics under study. We designed a 4-wk undergraduate laboratory module that used a multifaceted approach to study a question in molecular genetics. Specifically, students investigated whether Caenorhabditis elegans can be a useful model system for studying genes associated with human disease. In a large-enrollment, sophomore-level laboratory course, groups of three to four students were assigned a gene associated with either breast cancer (brc-1), Wilson disease (cua-1), ovarian dysgenesis (fshr-1), or colon cancer (mlh-1). Students compared observable phenotypes of wild-type C. elegans and C. elegans with a homozygous deletion in the assigned gene. They confirmed the genetic deletion with nested polymerase chain reaction and performed a bioinformatics analysis to predict how the deletion would affect the encoded mRNA and protein. Students also performed RNA interference (RNAi) against their assigned gene and evaluated whether RNAi caused a phenotype similar to that of the genetic deletion. As a capstone activity, students prepared scientific posters in which they presented their data, evaluated whether C. elegans was a useful model system for studying their assigned genes, and proposed future directions. Assessment showed gains in understanding genotype versus phenotype, RNAi, common bioinformatics tools, and the utility of model organisms. PMID:22665589

  20. An integrated platform enabling optogenetic illumination of Caenorhabditis elegans neurons and muscular force measurement in microstructured environments

    PubMed Central

    Qiu, Zhichang; Tu, Long; Huang, Liang; Zhu, Taoyuanmin; Nock, Volker; Yu, Enchao; Liu, Xiao; Wang, Wenhui

    2015-01-01

    Optogenetics has been recently applied to manipulate the neural circuits of Caenorhabditis elegans (C. elegans) to investigate its mechanosensation and locomotive behavior, which is a fundamental topic in model biology. In most neuron-related research, free C. elegans moves on an open area such as agar surface. However, this simple environment is different from the soil, in which C. elegans naturally dwells. To bridge up the gap, this paper presents integration of optogenetic illumination of C. elegans neural circuits and muscular force measurement in a structured microfluidic chip mimicking the C. elegans soil habitat. The microfluidic chip is essentially a ∼1 × 1 cm2 elastomeric polydimethylsiloxane micro-pillar array, configured in either form of lattice (LC) or honeycomb (HC) to mimic the environment in which the worm dwells. The integrated system has four key modules for illumination pattern generation, pattern projection, automatic tracking of the worm, and force measurement. Specifically, two optical pathways co-exist in an inverted microscope, including built-in bright-field illumination for worm tracking and pattern generation, and added-in optogenetic illumination for pattern projection onto the worm body segment. The behavior of a freely moving worm in the chip under optogenetic manipulation can be recorded for off-line force measurements. Using wild-type N2 C. elegans, we demonstrated optical illumination of C. elegans neurons by projecting light onto its head/tail segment at 14 Hz refresh frequency. We also measured the force and observed three representative locomotion patterns of forward movement, reversal, and omega turn for LC and HC configurations. Being capable of stimulating or inhibiting worm neurons and simultaneously measuring the thrust force, this enabling platform would offer new insights into the correlation between neurons and locomotive behaviors of the nematode under a complex environment. PMID:25759756

  1. Analysis of the C. elegans Nucleolus by Immuno-DNA FISH.

    PubMed

    Lanctôt, Christian

    2016-01-01

    Caenorhabditis elegans is a well-established model organism which allows, among others, to investigate the link between nucleolar structure/function on the one hand and cell fate choices and cellular differentiation on the other. In addition, C. elegans can be used to study the role of the nucleolus in processes that can be difficult to faithfully reproduce in vitro, such as gametogenesis, disease development, and aging. Here I present two complementary techniques, immunofluorescent staining and DNA fluorescence in situ hybridization, that have been adapted to label nucleolar components at various stages of the life cycle of the worm.

  2. Carbon monoxide-induced suspended animation protects against hypoxic damage in Caenorhabditis elegans

    PubMed Central

    Nystul, Todd G.; Roth, Mark B.

    2004-01-01

    Oxygen deprivation is a major cause of cellular damage and death. Here we demonstrate that Caenorhabditis elegans embryos, which can survive both in anoxia (<0.001 kPa O2) by entering into suspended animation and in mild hypoxia (0.25-1 kPa O2) through a hypoxia-inducible factor 1-mediated response, cannot survive in intermediate concentrations of oxygen, between 0.01 and 0.1 kPa O2. Moreover, we show that carbon monoxide can protect C. elegans embryos against hypoxic damage in this sensitive range. Carbon monoxide can also rescue the hypoxia-sensitive mutant hif-1(ia04) from lethality in hypoxia. This work defines the oxygen tensions over which hypoxic damage occurs in C. elegans embryos and demonstrates that carbon monoxide can prevent this damage by inducing suspended animation. PMID:15184665

  3. Caenorhabditis elegans as a Model to Study the Molecular and Genetic Mechanisms of Drug Addiction

    PubMed Central

    Engleman, Eric A.; Katner, Simon N.; Neal-Beliveau, Bethany S.

    2016-01-01

    Drug addiction takes a massive toll on society. Novel animal models are needed to test new treatments and understand the basic mechanisms underlying addiction. Rodent models have identified the neurocircuitry involved in addictive behavior and indicate that rodents possess some of the same neurobiologic mechanisms that mediate addiction in humans. Recent studies indicate that addiction is mechanistically and phylogenetically ancient and many mechanisms that underlie human addiction are also present in invertebrates. The nematode Caenorhabditis elegans has conserved neurobiologic systems with powerful molecular and genetic tools and a rapid rate of development that enables cost-effective translational discovery. Emerging evidence suggests that C. elegans is an excellent model to identify molecular mechanisms that mediate drug-induced behavior and potential targets for medications development for various addictive compounds. C. elegans emit many behaviors that can be easily quantitated including some that involve interactions with the environment. Ethanol (EtOH) is the best-studied drug-of-abuse in C. elegans and at least 50 different genes/targets have been identified as mediating EtOH’s effects and polymorphisms in some orthologs in humans are associated with alcohol use disorders. C. elegans has also been shown to display dopamine and cholinergic system–dependent attraction to nicotine and demonstrate preference for cues previously associated with nicotine. Cocaine and methamphetamine have been found to produce dopamine-dependent reward-like behaviors in C. elegans. These behavioral tests in combination with genetic/molecular manipulations have led to the identification of dozens of target genes/systems in C. elegans that mediate drug effects. The one target/gene identified as essential for drug-induced behavioral responses across all drugs of abuse was the cat-2 gene coding for tyrosine hydroxylase, which is consistent with the role of dopamine

  4. Caenorhabditis elegans as a Model to Study the Molecular and Genetic Mechanisms of Drug Addiction.

    PubMed

    Engleman, Eric A; Katner, Simon N; Neal-Beliveau, Bethany S

    2016-01-01

    Drug addiction takes a massive toll on society. Novel animal models are needed to test new treatments and understand the basic mechanisms underlying addiction. Rodent models have identified the neurocircuitry involved in addictive behavior and indicate that rodents possess some of the same neurobiologic mechanisms that mediate addiction in humans. Recent studies indicate that addiction is mechanistically and phylogenetically ancient and many mechanisms that underlie human addiction are also present in invertebrates. The nematode Caenorhabditis elegans has conserved neurobiologic systems with powerful molecular and genetic tools and a rapid rate of development that enables cost-effective translational discovery. Emerging evidence suggests that C. elegans is an excellent model to identify molecular mechanisms that mediate drug-induced behavior and potential targets for medications development for various addictive compounds. C. elegans emit many behaviors that can be easily quantitated including some that involve interactions with the environment. Ethanol (EtOH) is the best-studied drug-of-abuse in C. elegans and at least 50 different genes/targets have been identified as mediating EtOH's effects and polymorphisms in some orthologs in humans are associated with alcohol use disorders. C. elegans has also been shown to display dopamine and cholinergic system-dependent attraction to nicotine and demonstrate preference for cues previously associated with nicotine. Cocaine and methamphetamine have been found to produce dopamine-dependent reward-like behaviors in C. elegans. These behavioral tests in combination with genetic/molecular manipulations have led to the identification of dozens of target genes/systems in C. elegans that mediate drug effects. The one target/gene identified as essential for drug-induced behavioral responses across all drugs of abuse was the cat-2 gene coding for tyrosine hydroxylase, which is consistent with the role of dopamine neurotransmission

  5. A potential biochemical mechanism underlying the influence of sterol deprivation stress on Caenorhabditis elegans longevity

    USDA-ARS?s Scientific Manuscript database

    To investigate the biochemical mechanism for sterol-mediated alteration in aging in Caenorhabditis elegans, we established sterol depletion conditions by treating worms with azacoprostane, which reduced mean lifespan of adult C. elegans by 35%. Proteomic analyses of egg proteins from treated and un...

  6. A Chemosensory Adaptation Module for the Physiology Laboratory from Student-Directed "C. elegans" Research

    ERIC Educational Resources Information Center

    Lindblom, Tim

    2006-01-01

    The model organism, "Caenorhabditis elegans," in addition to being well suited to genetics and cell biology teaching applications, can also be useful in the physiology laboratory. In this article, the author describes how students in a junior level college Comparative Physiology course have made use of "C. elegans" in semester-long,…

  7. Mechanistic analysis of the search behaviour of Caenorhabditis elegans

    PubMed Central

    Salvador, Liliana C. M.; Bartumeus, Frederic; Levin, Simon A.; Ryu, William S.

    2014-01-01

    A central question in movement research is how animals use information and movement to promote encounter success. Current random search theory identifies reorientation patterns as key to the compromise between optimizing encounters for both nearby and faraway targets, but how the balance between intrinsic motor programmes and previous environmental experience determines the occurrence of these reorientation behaviours remains unknown. We used high-resolution tracking and imaging data to describe the complete motor behaviour of Caenorhabditis elegans when placed in a novel environment (one in which food is absent). Movement in C. elegans is structured around different reorientation behaviours, and we measured how these contributed to changing search strategies as worms became familiar with their new environment. This behavioural transition shows that different reorientation behaviours are governed by two processes: (i) an environmentally informed ‘extrinsic’ strategy that is influenced by recent experience and that controls for area-restricted search behaviour, and (ii) a time-independent, ‘intrinsic’ strategy that reduces spatial oversampling and improves random encounter success. Our results show how movement strategies arise from a balance between intrinsic and extrinsic mechanisms, that search behaviour in C. elegans is initially determined by expectations developed from previous environmental experiences, and which reorientation behaviours are modified as information is acquired from new environments. PMID:24430127

  8. Autophagy in C. elegans development.

    PubMed

    Palmisano, Nicholas J; Meléndez, Alicia

    2018-04-27

    Autophagy involves the sequestration of cytoplasmic contents in a double-membrane structure referred to as the autophagosome and the degradation of its contents upon delivery to lysosomes. Autophagy activity has a role in multiple biological processes during the development of the nematode Caenorhabditis elegans. Basal levels of autophagy are required to remove aggregate prone proteins, paternal mitochondria, and spermatid-specific membranous organelles. During larval development, autophagy is required for the remodeling that occurs during dauer development, and autophagy can selectively degrade components of the miRNA-induced silencing complex, and modulate miRNA-mediated silencing. Basal levels of autophagy are important in synapse formation and in the germ line, to promote the proliferation of proliferating stem cells. Autophagy activity is also required for the efficient removal of apoptotic cell corpses by promoting phagosome maturation. Finally, autophagy is also involved in lipid homeostasis and in the aging process. In this review, we first describe the molecular complexes involved in the process of autophagy, its regulation, and mechanisms for cargo recognition. In the second section, we discuss the developmental contexts where autophagy has been shown to be important. Studies in C. elegans provide valuable insights into the physiological relevance of this process during metazoan development. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Gait synchronization in Caenorhabditis elegans

    PubMed Central

    Yuan, Jinzhou; Raizen, David M.; Bau, Haim H.

    2014-01-01

    Collective motion is observed in swarms of swimmers of various sizes, ranging from self-propelled nanoparticles to fish. The mechanisms that govern interactions among individuals are debated, and vary from one species to another. Although the interactions among relatively large animals, such as fish, are controlled by their nervous systems, the interactions among microorganisms, which lack nervous systems, are controlled through physical and chemical pathways. Little is known, however, regarding the mechanism of collective movements in microscopic organisms with nervous systems. To attempt to remedy this, we studied collective swimming behavior in the nematode Caenorhabditis elegans, a microorganism with a compact nervous system. We evaluated the contributions of hydrodynamic forces, contact forces, and mechanosensory input to the interactions among individuals. We devised an experiment to examine pair interactions as a function of the distance between the animals and observed that gait synchronization occurred only when the animals were in close proximity, independent of genes required for mechanosensation. Our measurements and simulations indicate that steric hindrance is the dominant factor responsible for motion synchronization in C. elegans, and that hydrodynamic interactions and genotype do not play a significant role. We infer that a similar mechanism may apply to other microscopic swimming organisms and self-propelled particles. PMID:24778261

  10. Caenorhabditis elegans, a Biological Model for Research in Toxicology.

    PubMed

    Tejeda-Benitez, Lesly; Olivero-Verbel, Jesus

    2016-01-01

    Caenorhabditis elegans is a nematode of microscopic size which, due to its biological characteristics, has been used since the 1970s as a model for research in molecular biology, medicine, pharmacology, and toxicology. It was the first animal whose genome was completely sequenced and has played a key role in the understanding of apoptosis and RNA interference. The transparency of its body, short lifespan, ability to self-fertilize and ease of culture are advantages that make it ideal as a model in toxicology. Due to the fact that some of its biochemical pathways are similar to those of humans, it has been employed in research in several fields. C. elegans' use as a biological model in environmental toxicological assessments allows the determination of multiple endpoints. Some of these utilize the effects on the biological functions of the nematode and others use molecular markers. Endpoints such as lethality, growth, reproduction, and locomotion are the most studied, and usually employ the wild type Bristol N2 strain. Other endpoints use reporter genes, such as green fluorescence protein, driven by regulatory sequences from other genes related to different mechanisms of toxicity, such as heat shock, oxidative stress, CYP system, and metallothioneins among others, allowing the study of gene expression in a manner both rapid and easy. These transgenic strains of C. elegans represent a powerful tool to assess toxicity pathways for mixtures and environmental samples, and their numbers are growing in diversity and selectivity. However, other molecular biology techniques, including DNA microarrays and MicroRNAs have been explored to assess the effects of different toxicants and samples. C. elegans has allowed the assessment of neurotoxic effects for heavy metals and pesticides, among those more frequently studied, as the nematode has a very well defined nervous system. More recently, nanoparticles are emergent pollutants whose toxicity can be explored using this nematode

  11. Artificial Optogenetic TRN Stimulation of C. elegans

    PubMed Central

    Rabinowitch, Ithai; Treinin, Millet; Bai, Jihong

    2017-01-01

    Optogenetics is a powerful tool for manipulating neuronal activity with high temporal and spatial precision. In the nematode C. elegans optogentics is especially useful and easy to apply. This is because C. elegans is translucent, so its neurons are highly accessible to optic stimulation. In addition, many of its neurons can be exclusively targeted using cell-specific promoters. We have recently taken advantage of optogentics to deliver artificial patterns of prolonged activation to a class of mechanosensory neurons, called touch receptor neurons (TRNs) in worms that lack touch sensation due to a genetic mutation. Our aim was to examine whether we can counteract the effects of sensory loss by artificially activating the sensory neurons. Here we describe in detail the various components of the protocol that we used. This consists of exposing worms expressing the light-sensitive ion channel Channelrohdopsin 2 (ChR2) in TRNs to long-term random flashes of light. PMID:29170746

  12. Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans.

    PubMed

    Bass, Timothy M; Weinkove, David; Houthoofd, Koen; Gems, David; Partridge, Linda

    2007-10-01

    It was recently reported that the plant polyphenol resveratrol, found, e.g., in grape berry skins, extended lifespan in the fruit fly Drosophila melanogaster and the nematode worm Caenorhabditis elegans. This lifespan extension was dependent on an NAD(+)-dependent histone deacetylase, Sir2 in Drosophila and SIR-2.1 in C. elegans. The extension of lifespan appeared to occur through a mechanism related to dietary restriction (DR), the reduction of available nutrients without causing malnutrition, an intervention that extends lifespan in diverse organisms from yeast to mammals. In Drosophila, lifespan extension by DR is associated with a reduction in fecundity. However, a slight increase in fecundity was reported upon treatment with resveratrol, suggesting a mode of action at least partially distinct from that of DR. To probe this mechanism further, we initiated a new study of the effects of resveratrol on Drosophila. We saw no significant effects on lifespan in seven independent trials. We analysed our resveratrol and found that its structure was normal, with no oxidative modifications. We therefore re-tested the effects of resveratrol in C. elegans, in both wild-type and sir-2.1 mutant worms. The results were variable, with resveratrol treatment resulting in slight increases in lifespan in some trials but not others, in both wild type and sir-2.1 mutant animals. We postulate that the effect of resveratrol upon lifespan in C. elegans could reflect induction of phase 2 drug detoxification or activation of AMP kinase.

  13. Humidity sensation requires both mechanosensory and thermosensory pathways in Caenorhabditis elegans

    PubMed Central

    Russell, Joshua; Vidal-Gadea, Andrés G.; Makay, Alex; Lanam, Carolyn; Pierce-Shimomura, Jonathan T.

    2014-01-01

    All terrestrial animals must find a proper level of moisture to ensure their health and survival. The cellular-molecular basis for sensing humidity is unknown in most animals, however. We used the model nematode Caenorhabditis elegans to uncover a mechanism for sensing humidity. We found that whereas C. elegans showed no obvious preference for humidity levels under standard culture conditions, worms displayed a strong preference after pairing starvation with different humidity levels, orienting to gradients as shallow as 0.03% relative humidity per millimeter. Cell-specific ablation and rescue experiments demonstrate that orientation to humidity in C. elegans requires the obligatory combination of distinct mechanosensitive and thermosensitive pathways. The mechanosensitive pathway requires a conserved DEG/ENaC/ASIC mechanoreceptor complex in the FLP neuron pair. Because humidity levels influence the hydration of the worm’s cuticle, our results suggest that FLP may convey humidity information by reporting the degree that subcuticular dendritic sensory branches of FLP neurons are stretched by hydration. The thermosensitive pathway requires cGMP-gated channels in the AFD neuron pair. Because humidity levels affect evaporative cooling, AFD may convey humidity information by reporting thermal flux. Thus, humidity sensation arises as a metamodality in C. elegans that requires the integration of parallel mechanosensory and thermosensory pathways. This hygrosensation strategy, first proposed by Thunberg more than 100 y ago, may be conserved because the underlying pathways have cellular and molecular equivalents across a wide range of species, including insects and humans. PMID:24843133

  14. A distance constrained synaptic plasticity model of C. elegans neuronal network

    NASA Astrophysics Data System (ADS)

    Badhwar, Rahul; Bagler, Ganesh

    2017-03-01

    Brain research has been driven by enquiry for principles of brain structure organization and its control mechanisms. The neuronal wiring map of C. elegans, the only complete connectome available till date, presents an incredible opportunity to learn basic governing principles that drive structure and function of its neuronal architecture. Despite its apparently simple nervous system, C. elegans is known to possess complex functions. The nervous system forms an important underlying framework which specifies phenotypic features associated to sensation, movement, conditioning and memory. In this study, with the help of graph theoretical models, we investigated the C. elegans neuronal network to identify network features that are critical for its control. The 'driver neurons' are associated with important biological functions such as reproduction, signalling processes and anatomical structural development. We created 1D and 2D network models of C. elegans neuronal system to probe the role of features that confer controllability and small world nature. The simple 1D ring model is critically poised for the number of feed forward motifs, neuronal clustering and characteristic path-length in response to synaptic rewiring, indicating optimal rewiring. Using empirically observed distance constraint in the neuronal network as a guiding principle, we created a distance constrained synaptic plasticity model that simultaneously explains small world nature, saturation of feed forward motifs as well as observed number of driver neurons. The distance constrained model suggests optimum long distance synaptic connections as a key feature specifying control of the network.

  15. WormClassroom.org: An Inquiry-rich Educational Web Portal for Research Resources of Caenorhabditis elegans

    PubMed Central

    Lu, Fong-Mei; Stewart, James; White, John G.

    2007-01-01

    The utilization of biology research resources, coupled with a “learning by inquiry” approach, has great potential to aid students in gaining an understanding of fundamental biological principles. To help realize this potential, we have developed a Web portal for undergraduate biology education, WormClassroom.org, based on current research resources of a model research organism, Caenorhabditis elegans. This portal is intended to serve as a resource gateway for students to learn biological concepts using C. elegans research material. The driving forces behind the WormClassroom website were the strengths of C. elegans as a teaching organism, getting researchers and educators to work together to develop instructional materials, and the 3 P's (problem posing, problem solving, and peer persuasion) approach for inquiry learning. Iterative assessment is an important aspect of the WormClassroom site development because it not only ensures that content is up-to-date and accurate, but also verifies that it does, in fact, aid student learning. A primary assessment was performed to refine the WormClassroom website utilizing undergraduate biology students and nonstudent experts such as C. elegans researchers; results and comments were used for site improvement. We are actively encouraging continued resource contributions from the C. elegans research and education community for the further development of WormClassroom. PMID:17548872

  16. Role of DAF-21protein in Caenorhabditis elegans immunity against Proteus mirabilis infection.

    PubMed

    JebaMercy, Gnanasekaran; Durai, Sellegounder; Prithika, Udayakumar; Marudhupandiyan, Shanmugam; Dasauni, Pushpanjali; Kundu, Suman; Balamurugan, Krishnaswamy

    2016-08-11

    Caenorhabditis elegans is emerging as one of the handy model for proteome related studies due to its simplest system biology. The present study, deals with changes in protein expression in C. elegans infected with Proteus mirabilis. Proteins were separated using two-dimensional differential gel electrophoresis (2D-DIGE) and identified using MALDI-TOF. Twelve distinctly regulated proteins identified in the infected worms, included heat shock proteins involved stress pathway (HSP-1 and HSP-6), proteins involved in immune response pathway (DAF-21), enzymes involved in normal cellular process (Eukaryotic translation Elongation Factor, actin family member, S-adenosyl homocysteine hydrolase ortholog, glutamate dehydrogenase and Vacuolar H ATPase family member) and few least characterized proteins (H28O16.1 and H08J11.2). The regulation of selected players at the transcriptional level during Proteus mirabilis infection was analyzed using qPCR. Physiological experiments revealed the ability of P. mirabilis to kill daf-21 mutant C. elegans significantly compared with the wild type. This is the first report studying proteome changes in C. elegans and exploring the involvement of MAP Kinase pathway during P. mirabilis infection. This is the first report studying proteome changes in C. elegans during P. mirabilis infection. The present study explores the role and contribution of MAP Kinase pathway and its regulator protein DAF-21 involvement in the immunity against opportunistic pathogen P. mirabilis infection. Manipulation of this DAF-21 protein in host, may pave the way for new drug development or disease control strategy during opportunistic pathogen infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Relationship Between Mitochondrial Electron Transport Chain Dysfunction, Development, and Life Extension in Caenorhabditis elegans

    PubMed Central

    Johnson, Thomas E

    2007-01-01

    Prior studies have shown that disruption of mitochondrial electron transport chain (ETC) function in the nematode Caenorhabditis elegans can result in life extension. Counter to these findings, many mutations that disrupt ETC function in humans are known to be pathologically life-shortening. In this study, we have undertaken the first formal investigation of the role of partial mitochondrial ETC inhibition and its contribution to the life-extension phenotype of C. elegans. We have developed a novel RNA interference (RNAi) dilution strategy to incrementally reduce the expression level of five genes encoding mitochondrial proteins in C. elegans: atp-3, nuo-2, isp-1, cco-1, and frataxin (frh-1). We observed that each RNAi treatment led to marked alterations in multiple ETC components. Using this dilution technique, we observed a consistent, three-phase lifespan response to increasingly greater inhibition by RNAi: at low levels of inhibition, there was no response, then as inhibition increased, lifespan responded by monotonically lengthening. Finally, at the highest levels of RNAi inhibition, lifespan began to shorten. Indirect measurements of whole-animal oxidative stress showed no correlation with life extension. Instead, larval development, fertility, and adult size all became coordinately affected at the same point at which lifespan began to increase. We show that a specific signal, initiated during the L3/L4 larval stage of development, is sufficient for initiating mitochondrial dysfunction–dependent life extension in C. elegans. This stage of development is characterized by the last somatic cell divisions normally undertaken by C. elegans and also by massive mitochondrial DNA expansion. The coordinate effects of mitochondrial dysfunction on several cell cycle–dependent phenotypes, coupled with recent findings directly linking cell cycle progression with mitochondrial activity in C. elegans, lead us to propose that cell cycle checkpoint control plays a key

  18. Multigenic Natural Variation Underlies Caenorhabditis elegans Olfactory Preference for the Bacterial Pathogen Serratia marcescens

    PubMed Central

    Glater, Elizabeth E.; Rockman, Matthew V.; Bargmann, Cornelia I.

    2013-01-01

    The nematode Caenorhabditis elegans can use olfaction to discriminate among different kinds of bacteria, its major food source. We asked how natural genetic variation contributes to choice behavior, focusing on differences in olfactory preference behavior between two wild-type C. elegans strains. The laboratory strain N2 strongly prefers the odor of Serratia marcescens, a soil bacterium that is pathogenic to C. elegans, to the odor of Escherichia coli, a commonly used laboratory food source. The divergent Hawaiian strain CB4856 has a weaker attraction to Serratia than the N2 strain, and this behavioral difference has a complex genetic basis. At least three quantitative trait loci (QTLs) from the CB4856 Hawaii strain (HW) with large effect sizes lead to reduced Serratia preference when introgressed into an N2 genetic background. These loci interact and have epistatic interactions with at least two antagonistic QTLs from HW that increase Serratia preference. The complex genetic architecture of this C. elegans trait is reminiscent of the architecture of mammalian metabolic and behavioral traits. PMID:24347628

  19. Pheromone modulates two phenotypically plastic traits - adult reproduction and larval diapause - in the nematode Caenorhabditis elegans.

    PubMed

    Wharam, Barney; Weldon, Laura; Viney, Mark

    2017-08-22

    Animals use information from their environment to make decisions, ultimately to maximize their fitness. The nematode C. elegans has a pheromone signalling system, which hitherto has principally been thought to be used by worms in deciding whether or not to arrest their development as larvae. Recent studies have suggested that this pheromone can have other roles in the C. elegans life cycle. Here we demonstrate a new role for the C. elegans pheromone, showing that it accelerates hermaphrodites' reproductive rate, a phenomenon which we call pheromone-dependent reproductive plasticity (PDRP). We also find that pheromone accelerates larval growth rates, but this depends on a live bacterial food source, while PDRP does not. Different C. elegans strains all show PDRP, though the magnitude of these effects differ among the strains, which is analogous to the diversity of arrested larval phenotypes that this pheromone also induces. Using a selection experiment we also show that selection for PDRP or for larval arrest affects both the target and the non-target trait, suggesting that there is cross-talk between these two pheromone-dependent traits. Together, these results show that C. elegans' pheromone is a signal that acts at two key life cycle points, controlling alternative larval fates and affecting adult hermaphrodites' reproduction. More broadly, these results suggest that to properly understand and interpret the biology of pheromone signalling in C. elegans and other nematodes, the life-history biology of these organisms in their natural environment needs to be considered.

  20. In vivo neuronal calcium imaging in C. elegans.

    PubMed

    Chung, Samuel H; Sun, Lin; Gabel, Christopher V

    2013-04-10

    The nematode worm C. elegans is an ideal model organism for relatively simple, low cost neuronal imaging in vivo. Its small transparent body and simple, well-characterized nervous system allows identification and fluorescence imaging of any neuron within the intact animal. Simple immobilization techniques with minimal impact on the animal's physiology allow extended time-lapse imaging. The development of genetically-encoded calcium sensitive fluorophores such as cameleon and GCaMP allow in vivo imaging of neuronal calcium relating both cell physiology and neuronal activity. Numerous transgenic strains expressing these fluorophores in specific neurons are readily available or can be constructed using well-established techniques. Here, we describe detailed procedures for measuring calcium dynamics within a single neuron in vivo using both GCaMP and cameleon. We discuss advantages and disadvantages of both as well as various methods of sample preparation (animal immobilization) and image analysis. Finally, we present results from two experiments: 1) Using GCaMP to measure the sensory response of a specific neuron to an external electrical field and 2) Using cameleon to measure the physiological calcium response of a neuron to traumatic laser damage. Calcium imaging techniques such as these are used extensively in C. elegans and have been extended to measurements in freely moving animals, multiple neurons simultaneously and comparison across genetic backgrounds. C. elegans presents a robust and flexible system for in vivo neuronal imaging with advantages over other model systems in technical simplicity and cost.

  1. Essential oil alloaromadendrene from mixed-type Cinnamomum osmophloeum leaves prolongs the lifespan in Caenorhabditis elegans.

    PubMed

    Yu, Chan-Wei; Li, Wen-Hsuan; Hsu, Fu-Lan; Yen, Pei-Ling; Chang, Shang-Tzen; Liao, Vivian Hsiu-Chuan

    2014-07-02

    Cinnamomum osmophloeum Kaneh. is an indigenous tree species in Taiwan. The present study investigates phytochemical characteristics, antioxidant activities, and longevity of the essential oils from the leaves of the mixed-type C. osmophloeum tree. We demonstrate that the essential oils from leaves of mixed-type C. osmophloeum exerted in vivo antioxidant activities on Caenorhabditis elegans. In addition, minor (alloaromadendrene, 5.0%) but not major chemical components from the leaves of mixed-type C. osmophloeum have a key role against juglone-induced oxidative stress in C. elegans. Additionally, alloaromadendrene not only acts protective against oxidative stress but also prolongs the lifespan of C. elegans. Moreover, mechanistic studies show that DAF-16 is required for alloaromadendrene-mediated oxidative stress resistance and longevity in C. elegans. The results in the present study indicate that the leaves of mixed-type C. osmophloeum and essential oil alloaromadendrene have the potential for use as a source for antioxidants or treatments to delay aging.

  2. Loss of CaMKI function disrupts salt aversive learning in C. elegans.

    PubMed

    Lim, Jana P; Fehlauer, Holger; Das, Alakananda; Saro, Gabriella; Glauser, Dominique A; Brunet, Anne; Goodman, Miriam B

    2018-06-06

    The ability to adapt behavior to environmental fluctuations is critical for survival of organisms ranging from invertebrates to mammals. Caenorhabditis elegans can learn to avoid sodium chloride when it is paired with starvation. This behavior may help animals avoid areas without food. While some genes have been implicated in this salt aversive learning behavior, critical genetic components, and the neural circuit in which they act, remain elusive. Here, we show that the sole worm ortholog of mammalian CaMKI/IV, CMK-1, is essential for salt aversive learning behavior in C. elegans hermaphrodites. We find that CMK-1 acts in the primary salt-sensing ASE neurons to regulate this behavior. By characterizing the intracellular calcium dynamics in ASE neurons using microfluidics, we find that loss of cmk-1 has subtle effects on sensory-evoked calcium responses in ASE axons and their modulation by salt conditioning. Our study implicates the expression of the conserved CaMKI/CMK-1 in chemosensory neurons as a regulator of behavioral plasticity to environmental salt in C. elegans SIGNIFICANCE STATEMENT Like other animals, the nematode Caenorhabditis elegans depends on salt for survival and navigates toward high concentrations of this essential mineral. Besides its role as an essential nutrient, salt also causes osmotic stress at high concentrations. A growing body of evidence indicates that C. elegans balances the requirement for salt with the danger it presents through a process called salt aversive learning. We show that this behavior depends on expression of a calcium/calmodulin-dependent kinase, CMK-1, in the ASE salt sensing neurons. Our study identifies CMK-1 and salt-sensitive chemosensory neurons as key factors in this form of behavioral plasticity. Copyright © 2018 the authors.

  3. Differential expression pattern of UBX family genes in Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamauchi, Seiji; Sasagawa, Yohei; Ogura, Teru

    2007-06-29

    UBX (ubiquitin regulatory X)-containing proteins belong to an evolutionary conserved protein family and determine the specificity of p97/VCP/Cdc48p function by binding as its adaptors. Caenorhabditis elegans was found to possess six UBX-containing proteins, named UBXN-1 to -6. However, no general or specific function of them has been revealed. During the course of understanding not only their function but also specified function of p97, we investigated spatial and temporal expression patterns of six ubxn genes in this study. Transcript analyses showed that the expression pattern of each ubxn gene was different throughout worm's development and may show potential developmental dynamics inmore » their function, especially ubxn-5 was expressed specifically in the spermatogenic germline, suggesting a crucial role in spermatogenesis. In addition, as ubxn-4 expression was induced by ER stress, it would function as an ERAD factor in C. elegans. In vivo expression analysis by using GFP translational fusion constructs revealed that six ubxn genes show distinct expression patterns. These results altogether demonstrate that the expression of all six ubxn genes of C. elegans is differently regulated.« less

  4. Stochastic left-right neuronal asymmetry in Caenorhabditis elegans.

    PubMed

    Alqadah, Amel; Hsieh, Yi-Wen; Xiong, Rui; Chuang, Chiou-Fen

    2016-12-19

    Left-right asymmetry in the nervous system is observed across species. Defects in left-right cerebral asymmetry are linked to several neurological diseases, but the molecular mechanisms underlying brain asymmetry in vertebrates are still not very well understood. The Caenorhabditis elegans left and right amphid wing 'C' (AWC) olfactory neurons communicate through intercellular calcium signalling in a transient embryonic gap junction neural network to specify two asymmetric subtypes, AWC OFF (default) and AWC ON (induced), in a stochastic manner. Here, we highlight the molecular mechanisms that establish and maintain stochastic AWC asymmetry. As the components of the AWC asymmetry pathway are highly conserved, insights from the model organism C. elegans may provide a window onto how brain asymmetry develops in humans.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Author(s).

  5. Stochastic left–right neuronal asymmetry in Caenorhabditis elegans

    PubMed Central

    Alqadah, Amel; Hsieh, Yi-Wen; Xiong, Rui

    2016-01-01

    Left–right asymmetry in the nervous system is observed across species. Defects in left–right cerebral asymmetry are linked to several neurological diseases, but the molecular mechanisms underlying brain asymmetry in vertebrates are still not very well understood. The Caenorhabditis elegans left and right amphid wing ‘C’ (AWC) olfactory neurons communicate through intercellular calcium signalling in a transient embryonic gap junction neural network to specify two asymmetric subtypes, AWCOFF (default) and AWCON (induced), in a stochastic manner. Here, we highlight the molecular mechanisms that establish and maintain stochastic AWC asymmetry. As the components of the AWC asymmetry pathway are highly conserved, insights from the model organism C. elegans may provide a window onto how brain asymmetry develops in humans. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821536

  6. [Specification of cell destiny in early Caenorhabditis elegans embryo].

    PubMed

    Schierenberg, E

    1997-02-01

    Embryogenesis of the nematode Caenorhabditis elegans has been described completely on a cell-by-cell basis and found to be essentially invariant. With this knowledge in hands, micromanipulated embryos and mutants have been analyzed for cell lineage defects and the distribution of specific gene products. The results challenge the classical view of cell-autonomous development in nematodes and indicate that the early embryo of C. elegans is a highly dynamic system. A network of inductive events between neighboring cells is being revealed, which is necessary to assign different developmental programs to blastomeres. In those cases where molecules involved in these cell-cell interactions have been identified, homologies to cell surface receptors, ligands and transcription factors found in other systems have become obvious.

  7. Functional characterisation of a cyst nematode acetylcholinesterase gene using Caenorhabditis elegans as a heterologous system.

    PubMed

    Costa, Joana C; Lilley, Catherine J; Atkinson, Howard J; Urwin, Peter E

    2009-06-01

    Migration of plant-parasitic nematode infective larval stages through soil and invasion of roots requires perception and integration of sensory cues culminating in particular responses that lead to root penetration and parasite establishment. Components of the chemoreceptive neuronal circuitry involved in these responses are targets for control measures aimed at preventing infection. Here we report, to our knowledge, the first isolation of cyst nematode ace-2 genes encoding acetylcholinesterase (AChE). The ace-2 genes from Globodera pallida (Gp-ace-2) and Heterodera glycines (Hg-ace-2) show homology to ace-2 of Caenorhabditis elegans (Ce-ace-2). Gp-ace-2 is expressed most highly in the infective J2 stage with lowest expression in the early parasitic stages. Expression and functional analysis of the Globodera gene were carried out using the free-living nematode C. elegans in order to overcome the refractory nature of the obligate parasite G. pallida to many biological studies. Caenorhabditis elegans transformed with a GFP reporter construct under the control of the Gp-ace-2 promoter exhibited specific and restricted GFP expression in neuronal cells in the head ganglia. Gp-ACE-2 protein can functionally complement its C. elegans homologue. A chimeric construct containing the Ce-ace-2 promoter region and the Gp-ace-2 coding region and 3' untranslated region was able to restore a normal phenotype to the uncoordinated C. elegans double mutant ace-1;ace-2. This study demonstrates conservation of AChE function and expression between free-living and plant-parasitic nematode species, and highlights the utility of C. elegans as a heterologous system to study neuronal aspects of plant-parasitic nematode biology.

  8. Caenorhabditis elegans as a model to study renal development and disease: sexy cilia.

    PubMed

    Barr, Maureen M

    2005-02-01

    The nematode Caenorhabditis elegans has no kidney per se, yet "the worm" has proved to be an excellent model to study renal-related issues, including tubulogenesis of the excretory canal, membrane transport and ion channel function, and human genetic diseases including autosomal dominant polycystic kidney disease (ADPKD). The goal of this review is to explain how C. elegans has provided insight into cilia development, cilia function, and human cystic kidney diseases.

  9. Getting to the core of cadherin complex function in Caenorhabditis elegans.

    PubMed

    Hardin, Jeff

    2015-01-01

    The classic cadherin-catenin complex (CCC) mediates cell-cell adhesion in metazoans. Although substantial insights have been gained by studying the CCC in vertebrate tissue culture, analyzing requirements for and regulation of the CCC in vertebrates remains challenging. Caenorhabditis elegans is a powerful system for connecting the molecular details of CCC function with functional requirements in a living organism. Recent data, using an "angstroms to embryos" approach, have elucidated functions for key residues, conserved across all metazoans, that mediate cadherin/β-catenin binding. Other recent work reveals a novel, potentially ancestral, role for the C. elegans p120ctn homologue in regulating polarization of blastomeres in the early embryo via Cdc42 and the partitioning-defective (PAR)/atypical protein kinase C (aPKC) complex. Finally, recent work suggests that the CCC is trafficked to the cell surface via the clathrin adaptor protein complex 1 (AP-1) in surprising ways. These studies continue to underscore the value of C. elegans as a model system for identifying conserved molecular mechanisms involving the CCC.

  10. Neural sex modifies the function of a C. elegans sensory circuit.

    PubMed

    Lee, Kyunghwa; Portman, Douglas S

    2007-11-06

    Though sex differences in animal behavior are ubiquitous, their neural and genetic underpinnings remain poorly understood. In particular, the role of functional differences in the neural circuitry that is shared by both sexes has not been extensively investigated. We have addressed these issues with C. elegans olfaction, a simple innate behavior mediated by sexually isomorphic neurons. Though males respond to the same olfactory attractants as do hermaphrodites, we find that each sex has a characteristic repertoire of olfactory preferences. These are not secondary to other sex-specific behaviors and do not require signaling from the gonad. Sex-specific olfactory preferences are controlled by tra-1, the master regulator of C. elegans sexual differentiation. Moreover, the genetic masculinization of neurons in an otherwise wild-type hermaphrodite is sufficient to switch the sexual phenotype of olfactory preference behavior. These studies reveal novel and unexpected sex differences in a C. elegans sensory behavior that is exhibited by both sexes. Our results indicate that these differences are a function of the chromosomally determined sexual identity of shared neural circuitry.

  11. Thermotaxis is a Robust Mechanism for Thermoregulation in C. elegans Nematodes

    PubMed Central

    Ramot, Daniel; MacInnis, Bronwyn L.; Lee, Hau-Chen; Goodman, Miriam B.

    2013-01-01

    Many biochemical networks are robust to variations in network or stimulus parameters. Although robustness is considered an important design principle of such networks, it is not known whether this principle also applies to higher-level biological processes such as animal behavior. In thermal gradients, C. elegans uses thermotaxis to bias its movement along the direction of the gradient. Here we develop a detailed, quantitative map of C. elegans thermotaxis and use these data to derive a computational model of thermotaxis in the soil, a natural environment of C. elegans. This computational analysis indicates that thermotaxis enables animals to avoid temperatures at which they cannot reproduce, to limit excursions from their adapted temperature, and to remain relatively close to the surface of the soil, where oxygen is abundant. Furthermore, our analysis reveals that this mechanism is robust to large variations in the parameters governing both worm locomotion and temperature fluctuations in the soil. We suggest that, similar to biochemical networks, animals evolve behavioral strategies that are robust, rather than strategies that rely on fine-tuning of specific behavioral parameters. PMID:19020047

  12. Glucose 6-phosphate dehydrogenase deficiency enhances germ cell apoptosis and causes defective embryogenesis in Caenorhabditis elegans

    PubMed Central

    Yang, H-C; Chen, T-L; Wu, Y-H; Cheng, K-P; Lin, Y-H; Cheng, M-L; Ho, H-Y; Lo, S J; Chiu, D T-Y

    2013-01-01

    Glucose 6-phosphate dehydrogenase (G6PD) deficiency, known as favism, is classically manifested by hemolytic anemia in human. More recently, it has been shown that mild G6PD deficiency moderately affects cardiac function, whereas severe G6PD deficiency leads to embryonic lethality in mice. How G6PD deficiency affects organisms has not been fully elucidated due to the lack of a suitable animal model. In this study, G6PD-deficient Caenorhabditis elegans was established by RNA interference (RNAi) knockdown to delineate the role of G6PD in animal physiology. Upon G6PD RNAi knockdown, G6PD activity was significantly hampered in C. elegans in parallel with increased oxidative stress and DNA oxidative damage. Phenotypically, G6PD-knockdown enhanced germ cell apoptosis (2-fold increase), reduced egg production (65% of mock), and hatching (10% of mock). To determine whether oxidative stress is associated with G6PD knockdown-induced reproduction defects, C. elegans was challenged with a short-term hydrogen peroxide (H2O2). The early phase egg production of both mock and G6PD-knockdown C. elegans were significantly affected by H2O2. However, H2O2-induced germ cell apoptosis was more dramatic in mock than that in G6PD-deficient C. elegans. To investigate the signaling pathways involved in defective oogenesis and embryogenesis caused by G6PD knockdown, mutants of p53 and mitogen-activated protein kinase (MAPK) pathways were examined. Despite the upregulation of CEP-1 (p53), cep-1 mutation did not affect egg production and hatching in G6PD-deficient C. elegans. Neither pmk-1 nor mek-1 mutation significantly affected egg production, whereas sek-1 mutation further decreased egg production in G6PD-deficient C. elegans. Intriguingly, loss of function of sek-1 or mek-1 dramatically rescued defective hatching (8.3- and 9.6-fold increase, respectively) induced by G6PD knockdown. Taken together, these findings show that G6PD knockdown reduces egg production and hatching in C. elegans

  13. Glucose 6-phosphate dehydrogenase deficiency enhances germ cell apoptosis and causes defective embryogenesis in Caenorhabditis elegans.

    PubMed

    Yang, H-C; Chen, T-L; Wu, Y-H; Cheng, K-P; Lin, Y-H; Cheng, M-L; Ho, H-Y; Lo, S J; Chiu, D T-Y

    2013-05-02

    Glucose 6-phosphate dehydrogenase (G6PD) deficiency, known as favism, is classically manifested by hemolytic anemia in human. More recently, it has been shown that mild G6PD deficiency moderately affects cardiac function, whereas severe G6PD deficiency leads to embryonic lethality in mice. How G6PD deficiency affects organisms has not been fully elucidated due to the lack of a suitable animal model. In this study, G6PD-deficient Caenorhabditis elegans was established by RNA interference (RNAi) knockdown to delineate the role of G6PD in animal physiology. Upon G6PD RNAi knockdown, G6PD activity was significantly hampered in C. elegans in parallel with increased oxidative stress and DNA oxidative damage. Phenotypically, G6PD-knockdown enhanced germ cell apoptosis (2-fold increase), reduced egg production (65% of mock), and hatching (10% of mock). To determine whether oxidative stress is associated with G6PD knockdown-induced reproduction defects, C. elegans was challenged with a short-term hydrogen peroxide (H2O2). The early phase egg production of both mock and G6PD-knockdown C. elegans were significantly affected by H2O2. However, H2O2-induced germ cell apoptosis was more dramatic in mock than that in G6PD-deficient C. elegans. To investigate the signaling pathways involved in defective oogenesis and embryogenesis caused by G6PD knockdown, mutants of p53 and mitogen-activated protein kinase (MAPK) pathways were examined. Despite the upregulation of CEP-1 (p53), cep-1 mutation did not affect egg production and hatching in G6PD-deficient C. elegans. Neither pmk-1 nor mek-1 mutation significantly affected egg production, whereas sek-1 mutation further decreased egg production in G6PD-deficient C. elegans. Intriguingly, loss of function of sek-1 or mek-1 dramatically rescued defective hatching (8.3- and 9.6-fold increase, respectively) induced by G6PD knockdown. Taken together, these findings show that G6PD knockdown reduces egg production and hatching in C. elegans

  14. Lifespan-regulating genes in C. elegans

    PubMed Central

    Uno, Masaharu; Nishida, Eisuke

    2016-01-01

    The molecular mechanisms underlying the aging process have garnered much attention in recent decades because aging is the most significant risk factor for many chronic diseases such as type 2 diabetes and cancer. Until recently, the aging process was not considered to be an actively regulated process; therefore, discovering that the insulin/insulin-like growth factor-1 signaling pathway is a lifespan-regulating genetic pathway in Caenorhabditis elegans was a major breakthrough that changed our understanding of the aging process. Currently, it is thought that animal lifespans are influenced by genetic and environmental factors. The genes involved in lifespan regulation are often associated with major signaling pathways that link the rate of aging to environmental factors. Although many of the major mechanisms governing the aging process have been identified from studies in short-lived model organisms such as yeasts, worms and flies, the same mechanisms are frequently observed in mammals, indicating that the genes and signaling pathways that regulate lifespan are highly conserved among different species. This review summarizes the lifespan-regulating genes, with a specific focus on studies in C. elegans. PMID:28721266

  15. Precision Electrophile Tagging in Caenorhabditis elegans.

    PubMed

    Long, Marcus J C; Urul, Daniel A; Chawla, Shivansh; Lin, Hong-Yu; Zhao, Yi; Haegele, Joseph A; Wang, Yiran; Aye, Yimon

    2018-01-16

    Adduction of an electrophile to privileged sensor proteins and the resulting phenotypically dominant responses are increasingly appreciated as being essential for metazoan health. Functional similarities between the biological electrophiles and electrophilic pharmacophores commonly found in covalent drugs further fortify the translational relevance of these small-molecule signals. Genetically encodable or small-molecule-based fluorescent reporters and redox proteomics have revolutionized the observation and profiling of cellular redox states and electrophile-sensor proteins, respectively. However, precision mapping between specific redox-modified targets and specific responses has only recently begun to be addressed, and systems tractable to both genetic manipulation and on-target redox signaling in vivo remain largely limited. Here we engineer transgenic Caenorhabditis elegans expressing functional HaloTagged fusion proteins and use this system to develop a generalizable light-controlled approach to tagging a prototypical electrophile-sensor protein with native electrophiles in vivo. The method circumvents issues associated with low uptake/distribution and toxicity/promiscuity. Given the validated success of C. elegans in aging studies, this optimized platform offers a new lens with which to scrutinize how on-target electrophile signaling influences redox-dependent life span regulation.

  16. Precision Electrophile Tagging in Caenorhabditis elegans

    PubMed Central

    2017-01-01

    Adduction of an electrophile to privileged sensor proteins and the resulting phenotypically dominant responses are increasingly appreciated as being essential for metazoan health. Functional similarities between the biological electrophiles and electrophilic pharmacophores commonly found in covalent drugs further fortify the translational relevance of these small-molecule signals. Genetically encodable or small-molecule-based fluorescent reporters and redox proteomics have revolutionized the observation and profiling of cellular redox states and electrophile–sensor proteins, respectively. However, precision mapping between specific redox-modified targets and specific responses has only recently begun to be addressed, and systems tractable to both genetic manipulation and on-target redox signaling in vivo remain largely limited. Here we engineer transgenic Caenorhabditis elegans expressing functional HaloTagged fusion proteins and use this system to develop a generalizable light-controlled approach to tagging a prototypical electrophile–sensor protein with native electrophiles in vivo. The method circumvents issues associated with low uptake/distribution and toxicity/promiscuity. Given the validated success of C. elegans in aging studies, this optimized platform offers a new lens with which to scrutinize how on-target electrophile signaling influences redox-dependent life span regulation. PMID:28857552

  17. An update on the use of C. elegans for preclinical drug discovery: screening and identifying anti-infective drugs.

    PubMed

    Kim, Wooseong; Hendricks, Gabriel Lambert; Lee, Kiho; Mylonakis, Eleftherios

    2017-06-01

    The emergence of antibiotic-resistant and -tolerant bacteria is a major threat to human health. Although efforts for drug discovery are ongoing, conventional bacteria-centered screening strategies have thus far failed to yield new classes of effective antibiotics. Therefore, new paradigms for discovering novel antibiotics are of critical importance. Caenorhabditis elegans, a model organism used for in vivo, offers a promising solution for identification of anti-infective compounds. Areas covered: This review examines the advantages of C. elegans-based high-throughput screening over conventional, bacteria-centered in vitro screens. It discusses major anti-infective compounds identified from large-scale C. elegans-based screens and presents the first clinically-approved drugs, then known bioactive compounds, and finally novel small molecules. Expert opinion: There are clear advantages of using a C. elegans-infection based screening method. A C. elegans-based screen produces an enriched pool of non-toxic, efficacious, potential anti-infectives, covering: conventional antimicrobial agents, immunomodulators, and anti-virulence agents. Although C. elegans-based screens do not denote the mode of action of hit compounds, this can be elucidated in secondary studies by comparing the results to target-based screens, or conducting subsequent target-based screens, including the genetic knock-down of host or bacterial genes.

  18. The phytochemical glaucarubinone promotes mitochondrial metabolism, reduces body fat, and extends lifespan of Caenorhabditis elegans.

    PubMed

    Zarse, K; Bossecker, A; Müller-Kuhrt, L; Siems, K; Hernandez, M A; Berendsohn, W G; Birringer, M; Ristow, M

    2011-04-01

    Naturally occurring compounds that promote energy expenditure and delay aging in model organisms may be of significant interest, since these substances potentially provide pharmaceutical approaches to tackle obesity and promote healthy lifespan in humans. We aimed to test whether pharmaceutical concentrations of glaucarubinone, a cytotoxic and antimalarial quassinoid known from different species of the plant family Simaroubaceae, are capable of affecting metabolism and/or extending lifespan in a nematodal model organism for aging processes, the roundworm Caenorhabditis elegans. Adult C. elegans roundworms, maintained on agar plates, were fed with E. coli strain OP50 bacteria, and glaucarubinone was applied to the agar to test (i) whether it alters respiration rates and mitochondrial activity, (ii) whether it affects body fat content, and (iii) whether it may promote longevity by quantifying survival in the presence and absence of the compound. We have found that glaucarubinone induces oxygen consumption and reduces body fat content of C. elegans. Moreover and consistent with the concept of mitohormesis, glaucarubinone extends C. elegans lifespan when applied at a concentration of 1 or 10 nanomolar. Taken together, glaucarubinone is capable of reducing body fat and promoting longevity in C. elegans, tentatively suggesting that this compound may promote metabolic health and lifespan in mammals and possibly humans. © Georg Thieme Verlag KG Stuttgart · New York.

  19. The neuropeptide NLP-22 regulates a sleep-like state in Caenorhabditis elegans

    PubMed Central

    Nelson, MD; Trojanowski, NF; George-Raizen, JB; Smith, CJ; Yu, C-C; Fang-Yen, C; Raizen, DM

    2013-01-01

    Neuropeptides play central roles in the regulation of homeostatic behaviors such as sleep and feeding. Caenorhabditis elegans displays sleep-like quiescence of locomotion and feeding during a larval transition stage called lethargus and feeds during active larval and adult stages. Here we show that the neuropeptide NLP-22 is a regulator of Caenorhabditis elegans sleep-like quiescence observed during lethargus. nlp-22 shows cyclical mRNA expression in synchrony with lethargus; it is regulated by LIN-42, an orthologue of the core circadian protein PERIOD; and it is expressed solely in the two RIA interneurons. nlp-22 and the RIA interneurons are required for normal lethargus quiescence, and forced expression of nlp-22 during active stages causes anachronistic locomotion and feeding quiescence. Optogenetic stimulation of RIA interneurons has a movement-promoting effect, demonstrating functional complexity in a single neuron type. Our work defines a quiescence-regulating role for NLP-22 and expands our knowledge of the neural circuitry controlling Caenorhabditis elegans behavioral quiescence. PMID:24301180

  20. The neuropeptide NLP-22 regulates a sleep-like state in Caenorhabditis elegans.

    PubMed

    Nelson, M D; Trojanowski, N F; George-Raizen, J B; Smith, C J; Yu, C-C; Fang-Yen, C; Raizen, D M

    2013-01-01

    Neuropeptides have central roles in the regulation of homoeostatic behaviours such as sleep and feeding. Caenorhabditis elegans displays sleep-like quiescence of locomotion and feeding during a larval transition stage called lethargus and feeds during active larval and adult stages. Here we show that the neuropeptide NLP-22 is a regulator of Caenorhabditis elegans sleep-like quiescence observed during lethargus. nlp-22 shows cyclical mRNA expression in synchrony with lethargus; it is regulated by LIN-42, an orthologue of the core circadian protein PERIOD; and it is expressed solely in the two RIA interneurons. nlp-22 and the RIA interneurons are required for normal lethargus quiescence, and forced expression of nlp-22 during active stages causes anachronistic locomotion and feeding quiescence. Optogenetic stimulation of the RIA interneurons has a movement-promoting effect, demonstrating functional complexity in a single-neuron type. Our work defines a quiescence-regulating role for NLP-22 and expands our knowledge of the neural circuitry controlling Caenorhabditis elegans behavioural quiescence.

  1. Review of the results from the International C. elegans first experiment (ICE-FIRST)

    PubMed Central

    Adenle, A.A.; Johnsen, B.; Szewczyk, N.J.

    2009-01-01

    In an effort to speed the rate of discovery in space biology and medicine NASA introduced the now defunct model specimen program. Four nations applied this approach with C. elegans in the ICE-FIRST experiment. Here we review the standardized culturing as well as the investigation of muscle adaptation, space biology radiation, and gene expression in response to spaceflight. Muscle studies demonstrated that decreased expression of myogenic transcription factors underlie the decreased expression of myosin seen in flight, a response that would appear to be evolutionarily conserved. Radiation studies demonstrated that radiation damaged cells should be able to be removed via apoptosis in flight, and that C. elegans can be employed as a biological accumulating dosimeter. Lastly, ICE-FIRST gave us our first glimpse at the genomic response to spaceflight, suggesting that altered Insulin and/or TGF-beta signaling in-flight may underlie many of the biological changes seen in response to spaceflight. The fact that the results obtained with C. elegans appear to have strong similarities in human beings suggests that not only will C. elegans prove an invaluable model for understanding the fundamental biological changes seen during spaceflight but that it may also be invaluable for understanding those changes associated with human health concerns in space. PMID:20161164

  2. The Genetics of Axon Guidance and Axon Regeneration in Caenorhabditis elegans

    PubMed Central

    Chisholm, Andrew D.; Hutter, Harald; Jin, Yishi; Wadsworth, William G.

    2016-01-01

    The correct wiring of neuronal circuits depends on outgrowth and guidance of neuronal processes during development. In the past two decades, great progress has been made in understanding the molecular basis of axon outgrowth and guidance. Genetic analysis in Caenorhabditis elegans has played a key role in elucidating conserved pathways regulating axon guidance, including Netrin signaling, the slit Slit/Robo pathway, Wnt signaling, and others. Axon guidance factors were first identified by screens for mutations affecting animal behavior, and by direct visual screens for axon guidance defects. Genetic analysis of these pathways has revealed the complex and combinatorial nature of guidance cues, and has delineated how cues guide growth cones via receptor activity and cytoskeletal rearrangement. Several axon guidance pathways also affect directed migrations of non-neuronal cells in C. elegans, with implications for normal and pathological cell migrations in situations such as tumor metastasis. The small number of neurons and highly stereotyped axonal architecture of the C. elegans nervous system allow analysis of axon guidance at the level of single identified axons, and permit in vivo tests of prevailing models of axon guidance. C. elegans axons also have a robust capacity to undergo regenerative regrowth after precise laser injury (axotomy). Although such axon regrowth shares some similarities with developmental axon outgrowth, screens for regrowth mutants have revealed regeneration-specific pathways and factors that were not identified in developmental screens. Several areas remain poorly understood, including how major axon tracts are formed in the embryo, and the function of axon regeneration in the natural environment. PMID:28114100

  3. Maternal-Effect Lethal Mutations on Linkage Group II of Caenorhabditis Elegans

    PubMed Central

    Kemphues, K. J.; Kusch, M.; Wolf, N.

    1988-01-01

    We have analyzed a set of linkage group (LG) II maternal-effect lethal mutations in Caenorhabditis elegans isolated by a new screening procedure. Screens of 12,455 F(1) progeny from mutagenized adults resulted in the recovery of 54 maternal-effect lethal mutations identifying 29 genes. Of the 54 mutations, 39 are strict maternal-effect mutations defining 17 genes. These 17 genes fall into two classes distinguished by frequency of mutation to strict maternal-effect lethality. The smaller class, comprised of four genes, mutated to strict maternal-effect lethality at a frequency close to 5 X 10(-4), a rate typical of essential genes in C. elegans. Two of these genes are expressed during oogenesis and required exclusively for embryogenesis (pure maternal genes), one appears to be required specifically for meiosis, and the fourth has a more complex pattern of expression. The other 13 genes were represented by only one or two strict maternal alleles each. Two of these are identical genes previously identified by nonmaternal embryonic lethal mutations. We interpret our results to mean that although many C. elegans genes can mutate to strict maternal-effect lethality, most genes mutate to that phenotype rarely. Pure maternal genes, however, are among a smaller class of genes that mutate to maternal-effect lethality at typical rates. If our interpretation is correct, we are near saturation for pure maternal genes in the region of LG II balanced by mnC1. We conclude that the number of pure maternal genes in C. elegans is small, being probably not much higher than 12. PMID:3224814

  4. Natural lignans from Arctium lappa as antiaging agents in Caenorhabditis elegans.

    PubMed

    Su, Shan; Wink, Michael

    2015-09-01

    Arctium lappa is a well-known traditional medicinal plant in China (TCM) and Europe that has been used for thousands of years to treat arthritis, baldness or cancer. The plant produces lignans as secondary metabolites, which have a wide range of bioactivities. Yet, their antiaging potential has not been explored. In this study, we isolated six lignans from A. lappa seeds, namely arctigenin, matairesinol, arctiin, (iso)lappaol A, lappaol C, and lappaol F. The antioxidant and antiaging properties of the isolated lignans were studied using Caenorhabditis elegans as a relevant animal model. All lignans at concentrations of 10 and 100 μM significantly extended the mean life span of C. elegans. The strongest effect was observed with matairesinol, which at a concentration of 100 μM extended the life span of worms by 25%. Additionally, we observed that five lignans are strong free radical-scavengers in vitro and in vivo and all lignans can improve survival of C. elegans under oxidative stress. Furthermore, the lignans can induce the nuclear translocation of the transcription factor DAF-16 and up-regulate its expression, suggesting that a possible underlying mechanism of the observed longevity-promoting activity of lignans depends on DAF-16 mediated signaling pathway. All lignans up-regulated the expression of jnk-1, indicating that lignans may promote the C. elegans longevity and stress resistance through a JNK-1-DAF-16 cascade. Our study reports new antiaging activities of lignans, which might be candidates for developing antiaging agents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Nicotine affects protein complex rearrangement in Caenorhabditis elegans cells.

    PubMed

    Sobkowiak, Robert; Zielezinski, Andrzej; Karlowski, Wojciech M; Lesicki, Andrzej

    2017-10-01

    Nicotine may affect cell function by rearranging protein complexes. We aimed to determine nicotine-induced alterations of protein complexes in Caenorhabditis elegans (C. elegans) cells, thereby revealing links between nicotine exposure and protein complex modulation. We compared the proteomic alterations induced by low and high nicotine concentrations (0.01 mM and 1 mM) with the control (no nicotine) in vivo by using mass spectrometry (MS)-based techniques, specifically the cetyltrimethylammonium bromide (CTAB) discontinuous gel electrophoresis coupled with liquid chromatography (LC)-MS/MS and spectral counting. As a result, we identified dozens of C. elegans proteins that are present exclusively or in higher abundance in either nicotine-treated or untreated worms. Based on these results, we report a possible network that captures the key protein components of nicotine-induced protein complexes and speculate how the different protein modules relate to their distinct physiological roles. Using functional annotation of detected proteins, we hypothesize that the identified complexes can modulate the energy metabolism and level of oxidative stress. These proteins can also be involved in modulation of gene expression and may be crucial in Alzheimer's disease. The findings reported in our study reveal putative intracellular interactions of many proteins with the cytoskeleton and may contribute to the understanding of the mechanisms of nicotinic acetylcholine receptor (nAChR) signaling and trafficking in cells.

  6. Lifespan extension and increased resistance to environmental stressors by N-Acetyl-L-Cysteine in Caenorhabditis elegans

    PubMed Central

    Oh, Seung-Il; Park, Jin-Kook; Park, Sang-Kyu

    2015-01-01

    OBJECTIVE: This study was performed to determine the effect of N-acetyl-L-cysteine, a modified sulfur-containing amino acid that acts as a strong cellular antioxidant, on the response to environmental stressors and on aging in C. elegans. METHOD: The survival of worms under oxidative stress conditions induced by paraquat was evaluated with and without in vivo N-acetyl-L-cysteine treatment. The effect of N-acetyl-L-cysteine on the response to other environmental stressors, including heat stress and ultraviolet irradiation (UV), was also monitored. To investigate the effect on aging, we examined changes in lifespan, fertility, and expression of age-related biomarkers in C. elegans after N-acetyl-L-cysteine treatment. RESULTS: Dietary N-acetyl-L-cysteine supplementation significantly increased resistance to oxidative stress, heat stress, and UV irradiation in C. elegans. In addition, N-acetyl-L-cysteine supplementation significantly extended both the mean and maximum lifespan of C. elegans. The mean lifespan was extended by up to 30.5% with 5 mM N-acetyl-L-cysteine treatment, and the maximum lifespan was increased by 8 days. N-acetyl-L-cysteine supplementation also increased the total number of progeny produced and extended the gravid period of C. elegans. The green fluorescent protein reporter assay revealed that expression of the stress-responsive genes, sod-3 and hsp-16.2, increased significantly following N-acetyl-L-cysteine treatment. CONCLUSION: N-acetyl-L-cysteine supplementation confers a longevity phenotype in C. elegans, possibly through increased resistance to environmental stressors. PMID:26039957

  7. A microfluidic device with multi-valves system to enable several simultaneous exposure tests on Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Jung, Jaehoon; Nakajima, Masahiro; Masaru, Takeuchi; Huang, Qiang; Fukuda, Toshio

    2014-03-01

    In this paper, we report on a microfluidic device with a multi-valve system to conduct several exposure tests on Caenorhabditis elegans (C. elegans) simultaneously. It has pneumatic valves and no-moving-parts (NMP) valves. An NMP valve is incorporated with a chamber and enables the unidirectional movement of C. elegans in the chamber; once worms are loaded into the chamber, they cannot exit, regardless of the flow direction. To demonstrate the ability of the NMP valve to handle worms, we made a microfluidic device with three chambers. Each chamber was used to expose worms to Cd and Cu solutions, and K-medium. A pair of electrodes was installed in the device and the capacitance in-between the electrode was measured. When a C. elegans passed through the electrodes, the capacitance was changed. The capacitance change was proportional to the body volume of the worm, thus the body volume change by the heavy metal exposure was measured in the device. Thirty worms were divided into three groups and exposed to each solution. We confirmed that the different solutions induced differences in the capacitance changes for each group. These results indicate that our device is a viable method for simultaneously analyzing the effect of multiple stimuli on C. elegans.

  8. Programmed cell death in C. elegans, mammals and plants.

    PubMed

    Lord, Christina E N; Gunawardena, Arunika H L A N

    2012-08-01

    Programmed cell death (PCD) is the regulated removal of cells within an organism and plays a fundamental role in growth and development in nearly all eukaryotes. In animals, the model organism Caenorhabditis elegans (C. elegans) has aided in elucidating many of the pathways involved in the cell death process. Various analogous PCD processes can also be found within mammalian PCD systems, including vertebrate limb development. Plants and animals also appear to share hallmarks of PCD, both on the cellular and molecular level. Cellular events visualized during plant PCD resemble those seen in animals including: nuclear condensation, DNA fragmentation, cytoplasmic condensation, and plasma membrane shrinkage. Recently the molecular mechanisms involved in plant PCD have begun to be elucidated. Although few regulatory proteins have been identified as conserved across all eukaryotes, molecular features such as the participation of caspase-like proteases, Bcl-2-like family members and mitochondrial proteins appear to be conserved between plant and animal systems. Transgenic expression of mammalian and C. elegans pro- and anti-apoptotic genes in plants has been observed to dramatically influence the regulatory pathways of plant PCD. Although these genes often show little to no sequence similarity they can frequently act as functional substitutes for one another, thus suggesting that action may be more important than sequence resemblance. Here we present a summary of these findings, focusing on the similarities, between mammals, C. elegans, and plants. An emphasis will be placed on the mitochondria and its role in the cell death pathway within each organism. Through the comparison of these systems on both a cellular and molecular level we can begin to better understand PCD in plant systems, and perhaps shed light on the pathways, which are controlling the process. This manuscript adds to the field of PCD in plant systems by profiling apoptotic factors, to scale on a protein

  9. CUP-1 Is a Novel Protein Involved in Dietary Cholesterol Uptake in Caenorhabditis elegans

    PubMed Central

    Valdes, Victor J.; Athie, Alejandro; Salinas, Laura S.; Navarro, Rosa E.; Vaca, Luis

    2012-01-01

    Sterols transport and distribution are essential processes in all multicellular organisms. Survival of the nematode Caenorhabditis elegans depends on dietary absorption of sterols present in the environment. However the general mechanisms associated to sterol uptake in nematodes are poorly understood. In the present work we provide evidence showing that a previously uncharacterized transmembrane protein, designated Cholesterol Uptake Protein-1 (CUP-1), is involved in dietary cholesterol uptake in C. elegans. Animals lacking CUP-1 showed hypersensitivity to cholesterol limitation and were unable to uptake cholesterol. A CUP-1-GFP fusion protein colocalized with cholesterol-rich vesicles, endosomes and lysosomes as well as the plasma membrane. Additionally, by FRET imaging, a direct interaction was found between the cholesterol analog DHE and the transmembrane “cholesterol recognition/interaction amino acid consensus” (CRAC) motif present in C. elegans CUP-1. In-silico analysis identified two mammalian homologues of CUP-1. Most interestingly, CRAC motifs are conserved in mammalian CUP-1 homologous. Our results suggest a role of CUP-1 in cholesterol uptake in C. elegans and open up the possibility for the existence of a new class of proteins involved in sterol absorption in mammals. PMID:22479487

  10. A Caenorhabditis elegans Mass Spectrometric Resource for Neuropeptidomics

    NASA Astrophysics Data System (ADS)

    Van Bael, Sven; Zels, Sven; Boonen, Kurt; Beets, Isabel; Schoofs, Liliane; Temmerman, Liesbet

    2018-01-01

    Neuropeptides are important signaling molecules used by nervous systems to mediate and fine-tune neuronal communication. They can function as neurotransmitters or neuromodulators in neural circuits, or they can be released as neurohormones to target distant cells and tissues. Neuropeptides are typically cleaved from larger precursor proteins by the action of proteases and can be the subject of post-translational modifications. The short, mature neuropeptide sequences often entail the only evolutionarily reasonably conserved regions in these precursor proteins. Therefore, it is particularly challenging to predict all putative bioactive peptides through in silico mining of neuropeptide precursor sequences. Peptidomics is an approach that allows de novo characterization of peptides extracted from body fluids, cells, tissues, organs, or whole-body preparations. Mass spectrometry, often combined with on-line liquid chromatography, is a hallmark technique used in peptidomics research. Here, we used an acidified methanol extraction procedure and a quadrupole-Orbitrap LC-MS/MS pipeline to analyze the neuropeptidome of Caenorhabditis elegans. We identified an unprecedented number of 203 mature neuropeptides from C. elegans whole-body extracts, including 35 peptides from known, hypothetical, as well as from completely novel neuropeptide precursor proteins that have not been predicted in silico. This set of biochemically verified peptide sequences provides the most elaborate C. elegans reference neurpeptidome so far. To exploit this resource to the fullest, we make our in-house database of known and predicted neuropeptides available to the community as a valuable resource. We are providing these collective data to help the community progress, amongst others, by supporting future differential and/or functional studies.

  11. A Caenorhabditis elegans Mass Spectrometric Resource for Neuropeptidomics.

    PubMed

    Van Bael, Sven; Zels, Sven; Boonen, Kurt; Beets, Isabel; Schoofs, Liliane; Temmerman, Liesbet

    2018-05-01

    Neuropeptides are important signaling molecules used by nervous systems to mediate and fine-tune neuronal communication. They can function as neurotransmitters or neuromodulators in neural circuits, or they can be released as neurohormones to target distant cells and tissues. Neuropeptides are typically cleaved from larger precursor proteins by the action of proteases and can be the subject of post-translational modifications. The short, mature neuropeptide sequences often entail the only evolutionarily reasonably conserved regions in these precursor proteins. Therefore, it is particularly challenging to predict all putative bioactive peptides through in silico mining of neuropeptide precursor sequences. Peptidomics is an approach that allows de novo characterization of peptides extracted from body fluids, cells, tissues, organs, or whole-body preparations. Mass spectrometry, often combined with on-line liquid chromatography, is a hallmark technique used in peptidomics research. Here, we used an acidified methanol extraction procedure and a quadrupole-Orbitrap LC-MS/MS pipeline to analyze the neuropeptidome of Caenorhabditis elegans. We identified an unprecedented number of 203 mature neuropeptides from C. elegans whole-body extracts, including 35 peptides from known, hypothetical, as well as from completely novel neuropeptide precursor proteins that have not been predicted in silico. This set of biochemically verified peptide sequences provides the most elaborate C. elegans reference neurpeptidome so far. To exploit this resource to the fullest, we make our in-house database of known and predicted neuropeptides available to the community as a valuable resource. We are providing these collective data to help the community progress, amongst others, by supporting future differential and/or functional studies. Graphical Abstract ᅟ.

  12. Heterologous Expression in Remodeled C. elegans: A Platform for Monoaminergic Agonist Identification and Anthelmintic Screening.

    PubMed

    Law, Wenjing; Wuescher, Leah M; Ortega, Amanda; Hapiak, Vera M; Komuniecki, Patricia R; Komuniecki, Richard

    2015-04-01

    Monoamines, such as 5-HT and tyramine (TA), paralyze both free-living and parasitic nematodes when applied exogenously and serotonergic agonists have been used to clear Haemonchus contortus infections in vivo. Since nematode cell lines are not available and animal screening options are limited, we have developed a screening platform to identify monoamine receptor agonists. Key receptors were expressed heterologously in chimeric, genetically-engineered Caenorhabditis elegans, at sites likely to yield robust phenotypes upon agonist stimulation. This approach potentially preserves the unique pharmacologies of the receptors, while including nematode-specific accessory proteins and the nematode cuticle. Importantly, the sensitivity of monoamine-dependent paralysis could be increased dramatically by hypotonic incubation or the use of bus mutants with increased cuticular permeabilities. We have demonstrated that the monoamine-dependent inhibition of key interneurons, cholinergic motor neurons or body wall muscle inhibited locomotion and caused paralysis. Specifically, 5-HT paralyzed C. elegans 5-HT receptor null animals expressing either nematode, insect or human orthologues of a key Gαo-coupled 5-HT1-like receptor in the cholinergic motor neurons. Importantly, 8-OH-DPAT and PAPP, 5-HT receptor agonists, differentially paralyzed the transgenic animals, with 8-OH-DPAT paralyzing mutant animals expressing the human receptor at concentrations well below those affecting its C. elegans or insect orthologues. Similarly, 5-HT and TA paralyzed C. elegans 5-HT or TA receptor null animals, respectively, expressing either C. elegans or H. contortus 5-HT or TA-gated Cl- channels in either C. elegans cholinergic motor neurons or body wall muscles. Together, these data suggest that this heterologous, ectopic expression screening approach will be useful for the identification of agonists for key monoamine receptors from parasites and could have broad application for the identification

  13. Heterologous Expression in Remodeled C. elegans: A Platform for Monoaminergic Agonist Identification and Anthelmintic Screening

    PubMed Central

    Law, Wenjing; Wuescher, Leah M.; Ortega, Amanda; Hapiak, Vera M.; Komuniecki, Patricia R.; Komuniecki, Richard

    2015-01-01

    Monoamines, such as 5-HT and tyramine (TA), paralyze both free-living and parasitic nematodes when applied exogenously and serotonergic agonists have been used to clear Haemonchus contortus infections in vivo. Since nematode cell lines are not available and animal screening options are limited, we have developed a screening platform to identify monoamine receptor agonists. Key receptors were expressed heterologously in chimeric, genetically-engineered Caenorhabditis elegans, at sites likely to yield robust phenotypes upon agonist stimulation. This approach potentially preserves the unique pharmacologies of the receptors, while including nematode-specific accessory proteins and the nematode cuticle. Importantly, the sensitivity of monoamine-dependent paralysis could be increased dramatically by hypotonic incubation or the use of bus mutants with increased cuticular permeabilities. We have demonstrated that the monoamine-dependent inhibition of key interneurons, cholinergic motor neurons or body wall muscle inhibited locomotion and caused paralysis. Specifically, 5-HT paralyzed C. elegans 5-HT receptor null animals expressing either nematode, insect or human orthologues of a key Gαo-coupled 5-HT1-like receptor in the cholinergic motor neurons. Importantly, 8-OH-DPAT and PAPP, 5-HT receptor agonists, differentially paralyzed the transgenic animals, with 8-OH-DPAT paralyzing mutant animals expressing the human receptor at concentrations well below those affecting its C. elegans or insect orthologues. Similarly, 5-HT and TA paralyzed C. elegans 5-HT or TA receptor null animals, respectively, expressing either C. elegans or H. contortus 5-HT or TA-gated Cl- channels in either C. elegans cholinergic motor neurons or body wall muscles. Together, these data suggest that this heterologous, ectopic expression screening approach will be useful for the identification of agonists for key monoamine receptors from parasites and could have broad application for the identification

  14. The native microbiome of the nematode Caenorhabditis elegans: gateway to a new host-microbiome model.

    PubMed

    Dirksen, Philipp; Marsh, Sarah Arnaud; Braker, Ines; Heitland, Nele; Wagner, Sophia; Nakad, Rania; Mader, Sebastian; Petersen, Carola; Kowallik, Vienna; Rosenstiel, Philip; Félix, Marie-Anne; Schulenburg, Hinrich

    2016-05-09

    Host-microbe associations underlie many key processes of host development, immunity, and life history. Yet, none of the current research on the central model species Caenorhabditis elegans considers the worm's natural microbiome. Instead, almost all laboratories exclusively use the canonical strain N2 and derived mutants, maintained through routine bleach sterilization in monoxenic cultures with an E. coli strain as food. Here, we characterize for the first time the native microbiome of C. elegans and assess its influence on nematode life history characteristics. Nematodes sampled directly from their native habitats carry a species-rich bacterial community, dominated by Proteobacteria such as Enterobacteriaceae and members of the genera Pseudomonas, Stenotrophomonas, Ochrobactrum, and Sphingomonas. The C. elegans microbiome is distinct from that of the worm's natural environment and the congeneric species C. remanei. Exposure to a derived experimental microbiome revealed that bacterial composition is influenced by host developmental stage and genotype. These experiments also showed that the microbes enhance host fitness under standard and also stressful conditions (e.g., high temperature and either low or high osmolarity). Taking advantage of the nematode's transparency, we further demonstrate that several Proteobacteria are able to enter the C. elegans gut and that an Ochrobactrum isolate even seems to be able to persist in the intestines under stressful conditions. Moreover, three Pseudomonas isolates produce an anti-fungal effect in vitro which we show can contribute to the worm's defense against fungal pathogens in vivo. This first systematic analysis of the nematode's native microbiome reveals a species-rich bacterial community to be associated with C. elegans, which is likely of central importance for our understanding of the worm's biology. The information acquired and the microbial isolates now available for experimental work establishes C. elegans as a

  15. A comparative study on the relationship between various toxicological endpoints in Caenorhabditis elegans exposed to organophosphorus insecticides.

    PubMed

    Rajini, P S; Melstrom, Paul; Williams, Phillip L

    2008-01-01

    The toxicity of 10 organophophorus (OP) insecticides-acephate, dimethoate, dichlorvos, dicrotophos, monocrotophos, methamidophos, phosphamidon, omethoate, phosdrin, and trichlorfon-was evaluated in Caenorhabditis elegans using lethality, movement, and acetylcholinesterase (AChE) activity as the endpoints after a 4-hr- exposure period. The OP insecticides tested showed LC50 values ranging from 0.039 mM (for dichlorovs) to 472.8 mM (for methamidophos). The order of toxicity for lethality and movement was not significantly different when tested using the rank order correlation coefficient. AChE activity was markedly affected by all the OP insecticide exposures that caused significant inhibition in movement, indicating that the mechanism of toxicity of OP insecticides in C. elegans is the same as in higher animals. All OP insecticides induced greater than 50% inhibition of AChE at the lowest tested OP insecticide concentration resulting in inhibition in movement. While a significant correlation was evident between LC50 values in C. elegans and the LD50 values in rats for the 10 OP insecticides studied, a correlation was not evident between EC50 values in C. elegans and LD50 values in rats. Overall, the two endpoints, LC50 and movement, were more reliable and easier to perform than measurement of AChE activity in C. elegans for determining the toxicity of OP insecticides. Further, ranking of these endpoints with respect to the OP insecticides studied indicates that these parameters in C. elegans are predictive of OP insecticides mammalian neurotoxicity.

  16. The evolution of plasticity of dauer larva developmental arrest in the nematode Caenorhabditis elegans.

    PubMed

    Diaz, S Anaid; Viney, Mark

    2015-03-01

    Organisms can end up in unfavourable conditions and to survive this they have evolved various strategies. Some organisms, including nematodes, survive unfavourable conditions by undergoing developmental arrest. The model nematode Caenorhabditis elegans has a developmental choice between two larval forms, and it chooses to develop into the arrested dauer larva form in unfavourable conditions (specifically, a lack of food and high population density, indicated by the concentration of a pheromone). Wild C. elegans isolates vary extensively in their dauer larva arrest phenotypes, and this prompts the question of what selective pressures maintain such phenotypic diversity? To investigate this we grew C. elegans in four different environments, consisting of different combinations of cues that can induce dauer larva development: two combinations of food concentration (high and low) in the presence or absence of a dauer larva-inducing pheromone. Five generations of artificial selection of dauer larvae resulted in an overall increase in dauer larva formation in most selection regimes. The presence of pheromone in the environment selected for twice the number of dauer larvae, compared with environments not containing pheromone. Further, only a high food concentration environment containing pheromone increased the plasticity of dauer larva formation. These evolutionary responses also affected the timing of the worms' reproduction. Overall, these results give an insight into the environments that can select for different plasticities of C. elegans dauer larva arrest phenotypes, suggesting that different combinations of environmental cues can select for the diversity of phenotypically plastic responses seen in C. elegans.

  17. A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Windy A.; McBride, Sandra J.; Rice, Julie R.

    2010-06-01

    The National Research Council has outlined the need for non-mammalian toxicological models to test the potential health effects of a large number of chemicals while also reducing the use of traditional animal models. The nematode Caenorhabditis elegans is an attractive alternative model because of its well-characterized and evolutionarily conserved biology, low cost, and ability to be used in high-throughput screening. A high-throughput method is described for quantifying the reproductive capacity of C. elegans exposed to chemicals for 48 h from the last larval stage (L4) to adulthood using a COPAS Biosort. Initially, the effects of exposure conditions that could influencemore » reproduction were defined. Concentrations of DMSO vehicle {<=} 1% did not affect reproduction. Previous studies indicated that C. elegans may be influenced by exposure to low pH conditions. At pHs greater than 4.5, C. elegans reproduction was not affected; however below this pH there was a significant decrease in the number of offspring. Cadmium chloride was chosen as a model toxicant to verify that automated measurements were comparable to those of traditional observational studies. EC{sub 50} values for cadmium for automated measurements (176-192 {mu}M) were comparable to those previously reported for a 72-h exposure using manual counting (151 {mu}M). The toxicity of seven test toxicants on C. elegans reproduction was highly correlative with rodent lethality suggesting that this assay may be useful in predicting the potential toxicity of chemicals in other organisms.« less

  18. NeuCode Labeling in Nematodes: Proteomic and Phosphoproteomic Impact of Ascaroside Treatment in Caenorhabditis elegans*

    PubMed Central

    Rhoads, Timothy W.; Prasad, Aman; Kwiecien, Nicholas W.; Merrill, Anna E.; Zawack, Kelson; Westphall, Michael S.; Schroeder, Frank C.; Kimble, Judith; Coon, Joshua J.

    2015-01-01

    The nematode Caenorhabditis elegans is an important model organism for biomedical research. We previously described NeuCode stable isotope labeling by amino acids in cell culture (SILAC), a method for accurate proteome quantification with potential for multiplexing beyond the limits of traditional stable isotope labeling by amino acids in cell culture. Here we apply NeuCode SILAC to profile the proteomic and phosphoproteomic response of C. elegans to two potent members of the ascaroside family of nematode pheromones. By consuming labeled E. coli as part of their diet, C. elegans nematodes quickly and easily incorporate the NeuCode heavy lysine isotopologues by the young adult stage. Using this approach, we report, at high confidence, one of the largest proteomic and phosphoproteomic data sets to date in C. elegans: 6596 proteins at a false discovery rate ≤ 1% and 6620 phosphorylation isoforms with localization probability ≥75%. Our data reveal a post-translational signature of pheromone sensing that includes many conserved proteins implicated in longevity and response to stress. PMID:26392051

  19. Simulation of C. elegans thermotactic behavior in a linear thermal gradient using a simple phenomenological motility model.

    PubMed

    Matsuoka, Tomohiro; Gomi, Sohei; Shingai, Ryuzo

    2008-01-21

    The nematode Caenorhabditis elegans has been reported to exhibit thermotaxis, a sophisticated behavioral response to temperature. However, there appears to be some inconsistency among previous reports. The results of population-level thermotaxis investigations suggest that C. elegans can navigate to the region of its cultivation temperature from nearby regions of higher or lower temperature. However, individual C. elegans nematodes appear to show only cryophilic tendencies above their cultivation temperature. A Monte-Carlo style simulation using a simple individual model of C. elegans provides insight into clarifying apparent inconsistencies among previous findings. The simulation using the thermotaxis model that includes the cryophilic tendencies, isothermal tracking and thermal adaptation was conducted. As a result of the random walk property of locomotion of C. elegans, only cryophilic tendencies above the cultivation temperature result in population-level thermophilic tendencies. Isothermal tracking, a period of active pursuit of an isotherm around regions of temperature near prior cultivation temperature, can strengthen the tendencies of these worms to gather around near-cultivation-temperature regions. A statistical index, the thermotaxis (TTX) L-skewness, was introduced and was useful in analyzing the population-level thermotaxis of model worms.

  20. Fourier transform infrared microspectroscopy for the analysis of the biochemical composition of C. elegans worms.

    PubMed

    Sheng, Ming; Gorzsás, András; Tuck, Simon

    2016-01-01

    Changes in intermediary metabolism have profound effects on many aspects of C. elegans biology including growth, development and behavior. However, many traditional biochemical techniques for analyzing chemical composition require relatively large amounts of starting material precluding the analysis of mutants that cannot be grown in large amounts as homozygotes. Here we describe a technique for detecting changes in the chemical compositions of C. elegans worms by Fourier transform infrared microspectroscopy. We demonstrate that the technique can be used to detect changes in the relative levels of carbohydrates, proteins and lipids in one and the same worm. We suggest that Fourier transform infrared microspectroscopy represents a useful addition to the arsenal of techniques for metabolic studies of C. elegans worms.

  1. Longitudinal imaging of Caenorhabditis elegans in a microfabricated device reveals variation in behavioral decline during aging

    PubMed Central

    Churgin, Matthew A; Jung, Sang-Kyu; Yu, Chih-Chieh; Chen, Xiangmei; Raizen, David M; Fang-Yen, Christopher

    2017-01-01

    The roundworm C. elegans is a mainstay of aging research due to its short lifespan and easily manipulable genetics. Current, widely used methods for long-term measurement of C. elegans are limited by low throughput and the difficulty of performing longitudinal monitoring of aging phenotypes. Here we describe the WorMotel, a microfabricated device for long-term cultivation and automated longitudinal imaging of large numbers of C. elegans confined to individual wells. Using the WorMotel, we find that short-lived and long-lived strains exhibit patterns of behavioral decline that do not temporally scale between individuals or populations, but rather resemble the shortest and longest lived individuals in a wild type population. We also find that behavioral trajectories of worms subject to oxidative stress resemble trajectories observed during aging. Our method is a powerful and scalable tool for analysis of C. elegans behavior and aging. DOI: http://dx.doi.org/10.7554/eLife.26652.001 PMID:28537553

  2. The RNAi Inheritance Machinery of Caenorhabditis elegans.

    PubMed

    Spracklin, George; Fields, Brandon; Wan, Gang; Becker, Diveena; Wallig, Ashley; Shukla, Aditi; Kennedy, Scott

    2017-07-01

    Gene silencing mediated by dsRNA (RNAi) can persist for multiple generations in Caenorhabditis elegans (termed RNAi inheritance). Here we describe the results of a forward genetic screen in C. elegans that has identified six factors required for RNAi inheritance: GLH-1/VASA, PUP-1/CDE-1, MORC-1, SET-32, and two novel nematode-specific factors that we term here (heritable RNAi defective) HRDE-2 and HRDE-4 The new RNAi inheritance factors exhibit mortal germline (Mrt) phenotypes, which we show is likely caused by epigenetic deregulation in germ cells. We also show that HRDE-2 contributes to RNAi inheritance by facilitating the binding of small RNAs to the inheritance Argonaute (Ago) HRDE-1 Together, our results identify additional components of the RNAi inheritance machinery whose conservation provides insights into the molecular mechanism of RNAi inheritance, further our understanding of how the RNAi inheritance machinery promotes germline immortality, and show that HRDE-2 couples the inheritance Ago HRDE-1 with the small RNAs it needs to direct RNAi inheritance and germline immortality. Copyright © 2017 by the Genetics Society of America.

  3. Biochemical and High Throughput Microscopic Assessment of Fat Mass in Caenorhabditis Elegans

    PubMed Central

    Pino, Elizabeth C.; Webster, Christopher M.; Carr, Christopher E.; Soukas, Alexander A.

    2013-01-01

    The nematode C. elegans has emerged as an important model for the study of conserved genetic pathways regulating fat metabolism as it relates to human obesity and its associated pathologies. Several previous methodologies developed for the visualization of C. elegans triglyceride-rich fat stores have proven to be erroneous, highlighting cellular compartments other than lipid droplets. Other methods require specialized equipment, are time-consuming, or yield inconsistent results. We introduce a rapid, reproducible, fixative-based Nile red staining method for the accurate and rapid detection of neutral lipid droplets in C. elegans. A short fixation step in 40% isopropanol makes animals completely permeable to Nile red, which is then used to stain animals. Spectral properties of this lipophilic dye allow it to strongly and selectively fluoresce in the yellow-green spectrum only when in a lipid-rich environment, but not in more polar environments. Thus, lipid droplets can be visualized on a fluorescent microscope equipped with simple GFP imaging capability after only a brief Nile red staining step in isopropanol. The speed, affordability, and reproducibility of this protocol make it ideally suited for high throughput screens. We also demonstrate a paired method for the biochemical determination of triglycerides and phospholipids using gas chromatography mass-spectrometry. This more rigorous protocol should be used as confirmation of results obtained from the Nile red microscopic lipid determination. We anticipate that these techniques will become new standards in the field of C. elegans metabolic research. PMID:23568026

  4. First Descriptions of Immature Stages of the Weevils Bagous elegans , B. aliciae , and B. lutulosus

    PubMed Central

    Gosik, Rafał; Wanat, Marek

    2014-01-01

    Abstract Last-instar larvae of Bagous elegans (F.), Bagous aliciae Cmoluch, and Bagous lutulosus (Gyllenhal), and the pupa of B . elegans , are described and illustrated for the first time. Biology of these species is analyzed in association with larval morphology and feeding habits. Overall larval and pupal morphological diagnoses of the genus Bagous are updated. PMID:25347832

  5. Application of a Mathematical Model to Describe the Effects of Chlorpyrifos on Caenorhabditis elegans Development

    PubMed Central

    Boyd, Windy A.; Smith, Marjolein V.; Kissling, Grace E.; Rice, Julie R.; Snyder, Daniel W.; Portier, Christopher J.; Freedman, Jonathan H.

    2009-01-01

    Background The nematode Caenorhabditis elegans is being assessed as an alternative model organism as part of an interagency effort to develop better means to test potentially toxic substances. As part of this effort, assays that use the COPAS Biosort flow sorting technology to record optical measurements (time of flight (TOF) and extinction (EXT)) of individual nematodes under various chemical exposure conditions are being developed. A mathematical model has been created that uses Biosort data to quantitatively and qualitatively describe C. elegans growth, and link changes in growth rates to biological events. Chlorpyrifos, an organophosphate pesticide known to cause developmental delays and malformations in mammals, was used as a model toxicant to test the applicability of the growth model for in vivo toxicological testing. Methodology/Principal Findings L1 larval nematodes were exposed to a range of sub-lethal chlorpyrifos concentrations (0–75 µM) and measured every 12 h. In the absence of toxicant, C. elegans matured from L1s to gravid adults by 60 h. A mathematical model was used to estimate nematode size distributions at various times. Mathematical modeling of the distributions allowed the number of measured nematodes and log(EXT) and log(TOF) growth rates to be estimated. The model revealed three distinct growth phases. The points at which estimated growth rates changed (change points) were constant across the ten chlorpyrifos concentrations. Concentration response curves with respect to several model-estimated quantities (numbers of measured nematodes, mean log(TOF) and log(EXT), growth rates, and time to reach change points) showed a significant decrease in C. elegans growth with increasing chlorpyrifos concentration. Conclusions Effects of chlorpyrifos on C. elegans growth and development were mathematically modeled. Statistical tests confirmed a significant concentration effect on several model endpoints. This confirmed that chlorpyrifos affects C

  6. An Investigation of the Potential Antifungal Properties of CNC-2 in Caenorhabditis elegans

    PubMed Central

    Zehrbach, Angelina M. D.; Rogers, Alexandra R.; Tarr, D. Ellen K.

    2017-01-01

    Caenorhabditis elegans responds to infections by upregulating specific antimicrobial peptides. The caenacin-2 (cnc-2) gene is consistently upregulated in C. elegans by infection with the filamentous fungus Drechmeria coniospora, but there have been no direct studies of the CNC-2 peptide’s in vivo or in vitro role in defending the nematode against this pathogen. We compared infection of wild-type and cnc-2 knockout nematode strains with four potential pathogens: D. coniospora, Candida albicans, Staphylococcus aureus, and Bacillus subtilis. There was no significant difference in survival between strains for any of the pathogens or on the maintenance strain of Escherichia coli. While we were unable to demonstrate definitively that CNC-2 is integral to fungal defenses in C. elegans, we identified possible explanations for these results as well as future work that is needed to investigate CNC-2’s potential as a new antifungal treatment. PMID:29353937

  7. An Investigation of the Potential Antifungal Properties of CNC-2 in Caenorhabditis elegans.

    PubMed

    Zehrbach, Angelina M D; Rogers, Alexandra R; Tarr, D Ellen K

    2017-12-01

    Caenorhabditis elegans responds to infections by upregulating specific antimicrobial peptides. The caenacin-2 ( cnc-2 ) gene is consistently upregulated in C. elegans by infection with the filamentous fungus Drechmeria coniospora , but there have been no direct studies of the CNC-2 peptide's in vivo or in vitro role in defending the nematode against this pathogen. We compared infection of wild-type and cnc-2 knockout nematode strains with four potential pathogens: D. coniospora , Candida albicans , Staphylococcus aureus , and Bacillus subtilis . There was no significant difference in survival between strains for any of the pathogens or on the maintenance strain of Escherichia coli . While we were unable to demonstrate definitively that CNC-2 is integral to fungal defenses in C. elegans , we identified possible explanations for these results as well as future work that is needed to investigate CNC-2's potential as a new antifungal treatment.

  8. Using RNAi in C. "elegans" to Demonstrate Gene Knockdown Phenotypes in the Undergraduate Biology Lab Setting

    ERIC Educational Resources Information Center

    Roy, Nicole M.

    2013-01-01

    RNA interference (RNAi) is a powerful technology used to knock down genes in basic research and medicine. In 2006 RNAi technology using "Caenorhabditis elegans" ("C. elegans") was awarded the Nobel Prize in medicine and thus students graduating in the biological sciences should have experience with this technology. However,…

  9. Cytological Analysis of Meiosis in Caenorhabditis elegans

    PubMed Central

    Phillips, Carolyn M.; McDonald, Kent L.; Dernburg, Abby F.

    2011-01-01

    The nematode Caenorhabditis elegans has emerged as an informative experimental system for analysis of meiosis, in large part because of the advantageous physical organization of meiotic nuclei as a gradient of stages within the germline. Here we provide tools for detailed observational studies of cells within the worm gonad, including techniques for light and electron microscopy. PMID:19685325

  10. Diverse and potentially manipulative signalling with ascarosides in the model nematode C. elegans.

    PubMed

    Diaz, Sylvia Anaid; Brunet, Vincent; Lloyd-Jones, Guy C; Spinner, William; Wharam, Barney; Viney, Mark

    2014-03-11

    Animals use environmental information to make developmental decisions to maximise their fitness. The nematode Caenorhabditis elegans measures its environment to decide between arresting development as dauer larvae or continuing to grow and reproduce. Worms are thought to use ascarosides as signals of population density and this signalling is thought to be a species-wide honest signal. We compared recently wild C. elegans lines' dauer larva arrest when presented with the same ascaroside signals and in different food environments. We find that the hitherto canonical dauer larva response does not hold among these lines. Ascaroside molecules can, depending on the food environment, both promote and repress dauer larva formation. Further, these recently wild C. elegans lines also produce ascaroside mixtures that induce a wide diversity of dauer larva formation responses. We further find that the lines differ in the quantity and ratios of ascaroside molecules that they release. Some of the dauer larva formation responses are consistent with dishonest signalling. Together, the results suggest that the idea that dauer larva formation is an honestly-signalled C. elegans-wide effect does not hold. Rather, the results suggest that ascaroside-based signalling is a public broadcast information system, but where the correct interpretation of that information depends on the worms' context, and is a system open to dishonest signalling.

  11. Correct Hox gene expression established independently of position in Caenorhabditis elegans.

    PubMed

    Cowing, D; Kenyon, C

    1996-07-25

    The Hox genes are expressed in a conserved sequence of spatial domains along the anteroposterior (A/P) body axes of many organisms. In Drosophila, position-specific signals located along the A/P axis establish the pattern of Hox gene expression. In the nematode Caenorhabditis elegans, it is not known how the pattern of Hox gene expression is established. C. elegans uses lineal control mechanisms and local cell interactions to specify early blastomere identities. However, many cells expressing the same Hox gene are unrelated by lineage, suggesting that, as in Drosophila, domains of Hox gene expression may be defined by cell-extrinsic A/P positional signals. To test this, we have investigated whether posterior mesodermal and ectodermal cells will express their normal posterior Hox gene when they are mispositioned in the anterior. Surprisingly, we find that correct Hox gene expression does not depend on cell position, but is highly correlated with cell lineage. Thus, although the most striking feature of Hox gene expression is its positional specificity, in C. elegans the pattern is achieved, at least in part, by a lineage-specific control system that operates without regard to A/P position.

  12. Postzygotic incompatibilities between the pupfishes, Cyprinodon elegans and Cyprinodon variegatus: hybrid male sterility and sex ratio bias.

    PubMed

    Tech, C

    2006-11-01

    I examined the intrinsic postzygotic incompatibilities between two pupfishes, Cyprinodon elegans and Cyprinodon variegatus. Laboratory hybridization experiments revealed evidence of strong postzygotic isolation. Male hybrids have very low fertility, and the survival of backcrosses into C. elegans was substantially reduced. In addition, several crosses produced female-biased sex ratios. Crosses involving C. elegans females and C. variegatus males produced only females, and in backcrosses involving hybrid females and C. elegans males, males made up approximately 25% of the offspring. All other crosses produced approximately 50% males. These sex ratios could be explained by genetic incompatibilities that occur, at least in part, on sex chromosomes. Thus, these results provide strong albeit indirect evidence that pupfish have XY chromosomal sex determination. The results of this study provide insight on the evolution of reproductive isolating mechanisms, particularly the role of Haldane's rule and the 'faster-male' theory in taxa lacking well-differentiated sex chromosomes.

  13. Morphogenesis of the caenorhabditis elegans vulva.

    PubMed

    Schindler, Adam J; Sherwood, David R

    2013-01-01

    Understanding how cells move, change shape, and alter cellular behaviors to form organs, a process termed morphogenesis, is one of the great challenges of developmental biology. Formation of the Caenorhabditis elegans vulva is a powerful, simple, and experimentally accessible model for elucidating how morphogenetic processes produce an organ. In the first step of vulval development, three epithelial precursor cells divide and differentiate to generate 22 cells of 7 different vulval subtypes. The 22 vulval cells then rearrange from a linear array into a tube, with each of the seven cell types undergoing characteristic morphogenetic behaviors that construct the vulva. Vulval morphogenesis entails many of the same cellular activities that underlie organogenesis and tissue formation across species, including invagination, lumen formation, oriented cell divisions, cell–cell adhesion, cell migration, cell fusion, extracellular matrix remodeling, and cell invasion. Studies of vulval development have led to pioneering discoveries in a number of these processes and are beginning to bridge the gap between the pathways that specify cells and their connections to morphogenetic behaviors. The simplicity of the vulva and the experimental tools available in C. elegans will continue to make vulval morphogenesis a powerful paradigm to further our understanding of the largely mysterious mechanisms that build tissues and organs. © 2012 Wiley Periodicals, Inc.

  14. Morphogenesis of the C. elegans vulva

    PubMed Central

    Schindler, Adam J

    2012-01-01

    Understanding how cells move, change shape, and alter cellular behaviors to form organs, a process termed morphogenesis, is one of the great challenges of developmental biology. Formation of the C. elegans vulva is a powerful, simple, and experimentally accessible model for elucidating how morphogenetic processes produce an organ. In the first step of vulval development, three epithelial precursor cells divide and differentiate to generate 22 cells of seven different vulval subtypes. The 22 vulval cells then rearrange from a linear array into a tube, with each of the seven cell types undergoing characteristic morphogenetic behaviours that construct the vulva. Vulval morphogenesis entails many of the same cellular activities that underlie organogenesis and tissue formation across species, including invagination, lumen formation, oriented cell divisions, cell-cell adhesion, cell migration, cell fusion, extracellular matrix remodelling and cell invasion. Studies of vulval development have led to pioneering discoveries in a number of these processes and are beginning to bridge the gap between the pathways that specify cells and their connections to morphogenetic behaviors. The simplicity of the vulva and the experimental tools available in C. elegans will continue to make vulval morphogenesis a powerful paradigm to further our understanding of the largely mysterious mechanisms that build tissues and organs. PMID:23418408

  15. Modeling Behavioral Experiment Interaction and Environmental Stimuli for a Synthetic C. elegans

    PubMed Central

    Mujika, Andoni; Leškovský, Peter; Álvarez, Roberto; Otaduy, Miguel A.; Epelde, Gorka

    2017-01-01

    This paper focusses on the simulation of the neural network of the Caenorhabditis elegans living organism, and more specifically in the modeling of the stimuli applied within behavioral experiments and the stimuli that is generated in the interaction of the C. elegans with the environment. To the best of our knowledge, all efforts regarding stimuli modeling for the C. elegansare focused on a single type of stimulus, which is usually tested with a limited subnetwork of the C. elegansneural system. In this paper, we follow a different approach where we model a wide-range of different stimuli, with more flexible neural network configurations and simulations in mind. Moreover, we focus on the stimuli sensation by different types of sensory organs or various sensory principles of the neurons. As part of this work, most common stimuli involved in behavioral assays have been modeled. It includes models for mechanical, thermal, chemical, electrical and light stimuli, and for proprioception-related self-sensed information exchange with the neural network. The developed models have been implemented and tested with the hardware-based Si elegans simulation platform. PMID:29276485

  16. Turing mechanism for homeostatic control of synaptic density during C. elegans growth

    NASA Astrophysics Data System (ADS)

    Brooks, Heather A.; Bressloff, Paul C.

    2017-07-01

    We propose a mechanism for the homeostatic control of synapses along the ventral cord of Caenorhabditis elegans during development, based on a form of Turing pattern formation on a growing domain. C. elegans is an important animal model for understanding cellular mechanisms underlying learning and memory. Our mathematical model consists of two interacting chemical species, where one is passively diffusing and the other is actively trafficked by molecular motors, which switch between forward and backward moving states (bidirectional transport). This differs significantly from the standard mechanism for Turing pattern formation based on the interaction between fast and slow diffusing species. We derive evolution equations for the chemical concentrations on a slowly growing one-dimensional domain, and use numerical simulations to demonstrate the insertion of new concentration peaks as the length increases. Taking the passive component to be the protein kinase CaMKII and the active component to be the glutamate receptor GLR-1, we interpret the concentration peaks as sites of new synapses along the length of C. elegans, and thus show how the density of synaptic sites can be maintained.

  17. Small-molecule pheromones that control dauer development in Caenorhabditis elegans.

    PubMed

    Butcher, Rebecca A; Fujita, Masaki; Schroeder, Frank C; Clardy, Jon

    2007-07-01

    In response to high population density or low food supply, the nematode Caenorhabditis elegans enters an alternative larval stage, known as the dauer, that can withstand adverse conditions for prolonged periods. C. elegans senses its population density through a small-molecule signal, traditionally called the dauer pheromone, that it secretes into its surroundings. Here we show that the dauer pheromone consists of several structurally related ascarosides-derivatives of the dideoxysugar ascarylose-and that two of these ascarosides (1 and 2) are roughly two orders of magnitude more potent at inducing dauer formation than a previously reported dauer pheromone component (3) and constitute a physiologically relevant signal. The identification of dauer pheromone components 1 and 2 will facilitate the identification of target receptors and downstream signaling proteins.

  18. Life span effects of Hypericum perforatum extracts on Caenorhabditis elegans under heat stress.

    PubMed

    Kılıçgün, Hasan; Göksen, Gülden

    2012-10-01

    The beneficial effects of antioxidants in plants are mainly extrapolated from in vitro studies or short-term dietary supplementation studies. Due to cost and duration, relatively little is known about whether dietary antioxidants are beneficial in whole animals' life span or not. To address this question, under heat stress (35°C), Hypericum perforatum was extracted with petroleum ether and the nematodes Caenorhabditis elegans exposed to three different extract concentrations (1mg/mL, 0.1mg/mL, 0.01mg/mL) of H. perforatum. We report that Hypericum perforatum extracts did not increase life span and slow aging related increase in C. elegans. Moreover, one fraction (1mg/mL) increased declines of C. elegans life span and thermotolerance. Given this mounting evidence for life span role of H. perforatum in the presence of heat stress in vivo, the question whether H. perforatum acts as a prooxidant or an antioxidant in vivo under heat stress arises.

  19. Life span effects of Hypericum perforatum extracts on Caenorhabditis elegans under heat stress

    PubMed Central

    Kılıçgün, Hasan; Göksen, Gülden

    2012-01-01

    Background: The beneficial effects of antioxidants in plants are mainly extrapolated from in vitro studies or short-term dietary supplementation studies. Due to cost and duration, relatively little is known about whether dietary antioxidants are beneficial in whole animals’ life span or not. Materials and Methods: To address this question, under heat stress (35°C), Hypericum perforatum was extracted with petroleum ether and the nematodes Caenorhabditis elegans exposed to three different extract concentrations (1mg/mL, 0.1mg/mL, 0.01mg/mL) of H. perforatum. Results: We report that Hypericum perforatum extracts did not increase life span and slow aging related increase in C. elegans. Moreover, one fraction (1mg/mL) increased declines of C. elegans life span and thermotolerance. Conclusion: Given this mounting evidence for life span role of H. perforatum in the presence of heat stress in vivo, the question whether H. perforatum acts as a prooxidant or an antioxidant in vivo under heat stress arises. PMID:24082638

  20. A Caenorhabditis elegans Mass Spectrometric Resource for Neuropeptidomics

    NASA Astrophysics Data System (ADS)

    Van Bael, Sven; Zels, Sven; Boonen, Kurt; Beets, Isabel; Schoofs, Liliane; Temmerman, Liesbet

    2018-05-01

    Neuropeptides are important signaling molecules used by nervous systems to mediate and fine-tune neuronal communication. They can function as neurotransmitters or neuromodulators in neural circuits, or they can be released as neurohormones to target distant cells and tissues. Neuropeptides are typically cleaved from larger precursor proteins by the action of proteases and can be the subject of post-translational modifications. The short, mature neuropeptide sequences often entail the only evolutionarily reasonably conserved regions in these precursor proteins. Therefore, it is particularly challenging to predict all putative bioactive peptides through in silico mining of neuropeptide precursor sequences. Peptidomics is an approach that allows de novo characterization of peptides extracted from body fluids, cells, tissues, organs, or whole-body preparations. Mass spectrometry, often combined with on-line liquid chromatography, is a hallmark technique used in peptidomics research. Here, we used an acidified methanol extraction procedure and a quadrupole-Orbitrap LC-MS/MS pipeline to analyze the neuropeptidome of Caenorhabditis elegans. We identified an unprecedented number of 203 mature neuropeptides from C. elegans whole-body extracts, including 35 peptides from known, hypothetical, as well as from completely novel neuropeptide precursor proteins that have not been predicted in silico. This set of biochemically verified peptide sequences provides the most elaborate C. elegans reference neurpeptidome so far. To exploit this resource to the fullest, we make our in-house database of known and predicted neuropeptides available to the community as a valuable resource. We are providing these collective data to help the community progress, amongst others, by supporting future differential and/or functional studies. [Figure not available: see fulltext.

  1. Neurite sprouting and synapse deterioration in the aging Caenorhabditis elegans nervous system.

    PubMed

    Toth, Marton Lorant; Melentijevic, Ilija; Shah, Leena; Bhatia, Aatish; Lu, Kevin; Talwar, Amish; Naji, Haaris; Ibanez-Ventoso, Carolina; Ghose, Piya; Jevince, Angela; Xue, Jian; Herndon, Laura A; Bhanot, Gyan; Rongo, Chris; Hall, David H; Driscoll, Monica

    2012-06-27

    Caenorhabditis elegans is a powerful model for analysis of the conserved mechanisms that modulate healthy aging. In the aging nematode nervous system, neuronal death and/or detectable loss of processes are not readily apparent, but because dendrite restructuring and loss of synaptic integrity are hypothesized to contribute to human brain decline and dysfunction, we combined fluorescence microscopy and electron microscopy (EM) to screen at high resolution for nervous system changes. We report two major components of morphological change in the aging C. elegans nervous system: (1) accumulation of novel outgrowths from specific neurons, and (2) physical decline in synaptic integrity. Novel outgrowth phenotypes, including branching from the main dendrite or new growth from somata, appear at a high frequency in some aging neurons, but not all. Mitochondria are often associated with age-associated branch sites. Lowered insulin signaling confers some maintenance of ALM and PLM neuron structural integrity into old age, and both DAF-16/FOXO and heat shock factor transcription factor HSF-1 exert neuroprotective functions. hsf-1 can act cell autonomously in this capacity. EM evaluation in synapse-rich regions reveals a striking decline in synaptic vesicle numbers and a diminution of presynaptic density size. Interestingly, old animals that maintain locomotory prowess exhibit less synaptic decline than same-age decrepit animals, suggesting that synaptic integrity correlates with locomotory healthspan. Our data reveal similarities between the aging C. elegans nervous system and mammalian brain, suggesting conserved neuronal responses to age. Dissection of neuronal aging mechanisms in C. elegans may thus influence the development of brain healthspan-extending therapies.

  2. Neurite Sprouting and Synapse Deterioration in the Aging C. elegans Nervous System

    PubMed Central

    Toth, Marton; Melentijevic, Ilija; Shah, Leena; Bhatia, Aatish; Lu, Kevin; Talwar, Amish; Naji, Haaris; Ibanez-Ventoso, Carolina; Ghose, Piya; Jevince, Angela; Xue, Jian; Herndon, Laura A.; Bhanot, Gyan; Rongo, Chris; Hall, David H

    2012-01-01

    C. elegans is a powerful model for analysis of the conserved mechanisms that modulate healthy aging. In the aging nematode nervous system, neuronal death and/or detectable loss of processes are not readily apparent, but because dendrite restructuring and loss of synaptic integrity are hypothesized to contribute to human brain decline and dysfunction, we combined fluorescence microscopy and electron microscopy (EM) to screen at high resolution for nervous system changes. We report two major components of morphological change in the aging C. elegans nervous system: 1) accumulation of novel outgrowths from specific neurons, and 2) physical decline in synaptic integrity. Novel outgrowth phenotypes, including branching from the main dendrite or new growth from somata, appear at a high frequency in some aging neurons, but not all. Mitochondria are often associated with age-associated branch sites. Lowered insulin signaling confers some maintenance of ALM and PLM neuron structural integrity into old age, and both DAF-16/FOXO and heat shock factor transcription factor HSF-1 exert neuroprotective functions. hsf-1 can act cell autonomously in this capacity. EM evaluation in synapse-rich regions reveals a striking decline in synaptic vesicle numbers and a dimunition of presynaptic density size. Interestingly, old animals that maintain locomotory prowess exhibit less synaptic decline than same-age decrepit animals, suggesting that synaptic integrity correlates with locomotory healthspan. Our data reveal similarities between the aging C. elegans nervous system and mammalian brain, suggesting conserved neuronal responses to age. Dissection of neuronal aging mechanisms in C. elegans may thus influence the development of brain healthspan-extending therapies. PMID:22745480

  3. Behavioural and Genetic Evidence for C. elegans' Ability to Detect Volatile Chemicals Associated with Explosives

    PubMed Central

    Liao, Chunyan; Gock, Andrew; Michie, Michelle; Morton, Bethany; Anderson, Alisha; Trowell, Stephen

    2010-01-01

    Background Automated standoff detection and classification of explosives based on their characteristic vapours would be highly desirable. Biologically derived odorant receptors have potential as the explosive recognition element in novel biosensors. Caenorhabditis elegans' genome contains over 1,000 uncharacterised candidate chemosensory receptors. It was not known whether any of these respond to volatile chemicals derived from or associated with explosives. Methodology/Principal Findings We assayed C. elegans for chemotactic responses to chemical vapours of explosives and compounds associated with explosives. C. elegans failed to respond to many of the explosive materials themselves but showed strong chemotaxis with a number of compounds associated with commercial or homemade explosives. Genetic mutant strains were used to identify the likely neuronal location of a putative receptor responding to cyclohexanone, which is a contaminant of some compounded explosives, and to identify the specific transduction pathway involved. Upper limits on the sensitivity of the nematode were calculated. A sensory adaptation protocol was used to estimate the receptive range of the receptor. Conclusions/Significance: The results suggest that C. elegans may be a convenient source of highly sensitive, narrowly tuned receptors to detect a range of explosive-associated volatiles. PMID:20830309

  4. The effects of Bacillus thuringiensis Cry6A on the survival, growth, reproduction, locomotion, and behavioral response of Caenorhabditis elegans.

    PubMed

    Luo, Hui; Xiong, Jing; Zhou, Qiaoni; Xia, Liqiu; Yu, Ziquan

    2013-12-01

    Several families of crystal proteins from Bacillus thuringiensis exhibit nematicidal activity. Cry5B protein, a pore-forming toxin, has been intensively studied yielding many insights into the mode of action of crystal protein at molecular level and pathogenesis of pore-forming toxins. However, little attention was paid to Cry6A, another representative nematicidal crystal protein. Cry6A shares very low homology with Cry5B at amino acid sequence and probably acts in a distinct pathway from Cry5B and even the other main commercial crystal proteins. In the current study, we comprehensively investigated the nematicidal properties of Cry6Aa2 against the free-living soil nematode Caenorhabditis elegans and examined the physical response of C. elegans to Cry6Aa2 attack. Our results indicate that Cry6Aa2 exhibits high lethal activity to C. elegans and could cause detrimental effects on C. elegans, including obviously suppressed growth, decreased brood size, and even abnormal motility. Meanwhile, our study additionally shows that C. elegans could defend against the Cry6Aa2 toxin harmful threat through behavioral defense responses, such as reduced oral uptake and physical avoidance. In general, this study suggests that Cry6Aa2 possesses diverse nematicidal properties, which strongly indicates that Cry6Aa2 is a promising potential candidate of nematicidal agent. Moreover, this study highlights the importance of behavioral responses in defense of C. elegans for survival and demonstrates the key role of crystal protein in the interaction of B. thuringiensis-C. elegans. These findings could shed light on understanding the interaction of C. elegans with B. thuringiensis and provide a perfect model to study the role of pathogenic factor in the interaction of pathogen-host.

  5. Exploring the behavior of Caenorhabditis Elegans by using a self-organizing map and hidden Markov model

    NASA Astrophysics Data System (ADS)

    Kang, Seung-Ho; Lee, Sang-Hee; Chon, Tae-Soo

    2012-02-01

    In recent decades, the behavior of Caenorhabditis elegans ( C. elegans) has been extensively studied to understand the respective roles of neural control and biomechanics. Thus far, however, only a few studies on the simulation modeling of C. elegans swimming behavior have been conducted because it is mathematically difficult to describe its complicated behavior. In this study, we built two hidden Markov models (HMMs), corresponding to the movements of C. elegans in a controlled environment with no chemical treatment and in a formaldehyde-treated environment (0.1 ppm), respectively. The movement was characterized by a series of shape patterns of the organism, taken every 0.25 s for 40 min. All shape patterns were quantified by branch length similarity (BLS) entropy and classified into seven patterns by using the self-organizing map (SOM) and the k-means clustering algorithm. The HMM coupled with the SOM was successful in accurately explaining the organism's behavior. In addition, we briefly discussed the possibility of using the HMM together with BLS entropy to develop bio-monitoring systems for real-time applications to determine water quality.

  6. Specific roles for DEG/ENaC and TRP channels in touch and thermosensation in C. elegans nociceptors

    PubMed Central

    Chatzigeorgiou, Marios; Yoo, Sungjae; Watson, Joseph D.; Lee, Wei-Hsiang; Spencer, W. Clay; Kindt, Katie S.; Hwang, Sun Wook; Miller, David M.; Treinin, Millet; Driscoll, Monica; Schafer, William R.

    2010-01-01

    Summary Polymodal nociceptors detect noxious stimuli including harsh touch, toxic chemicals, and extremes of heat and cold. The molecular mechanisms by which nociceptors are able to sense multiple qualitatively distinct stimuli are not well-understood. We show here that the C. elegans PVD neurons are mulitidendritic nociceptors that respond to harsh touch as well as cold temperatures. The harsh touch modality specifically requires the DEG/ENaC proteins MEC-10 and DEGT-1, which represent putative components of a harsh touch mechanotransduction complex. By contrast, responses to cold require the TRPA-1 channel and are MEC-10- and DEGT-1-independent. Heterologous expression of C. elegans TRPA-1 can confer cold responsiveness to other C. elegans neurons or to mammalian cells, indicating that TRPA-1 is itself a cold sensor. These results show that C. elegans nociceptors respond to thermal and mechanical stimuli using distinct sets of molecules, and identify DEG/ENaC channels as potential receptors for mechanical pain. PMID:20512132

  7. Large-scale microfluidics providing high-resolution and high-throughput screening of Caenorhabditis elegans poly-glutamine aggregation model

    NASA Astrophysics Data System (ADS)

    Mondal, Sudip; Hegarty, Evan; Martin, Chris; Gökçe, Sertan Kutal; Ghorashian, Navid; Ben-Yakar, Adela

    2016-10-01

    Next generation drug screening could benefit greatly from in vivo studies, using small animal models such as Caenorhabditis elegans for hit identification and lead optimization. Current in vivo assays can operate either at low throughput with high resolution or with low resolution at high throughput. To enable both high-throughput and high-resolution imaging of C. elegans, we developed an automated microfluidic platform. This platform can image 15 z-stacks of ~4,000 C. elegans from 96 different populations using a large-scale chip with a micron resolution in 16 min. Using this platform, we screened ~100,000 animals of the poly-glutamine aggregation model on 25 chips. We tested the efficacy of ~1,000 FDA-approved drugs in improving the aggregation phenotype of the model and identified four confirmed hits. This robust platform now enables high-content screening of various C. elegans disease models at the speed and cost of in vitro cell-based assays.

  8. Primary Culture System for Germ Cells from Caenorhabditis elegans Tumorous Germline Mutants

    PubMed Central

    Vagasi, Alexandra S.; Rahman, Mohammad M.; Chaudhari, Snehal N.; Kipreos, Edward T.

    2017-01-01

    The Caenorhabditis elegans germ line is an important model system for the study of germ stem cells. Wild-type C. elegans germ cells are syncytial and therefore cannot be isolated in in vitro cultures. In contrast, the germ cells from tumorous mutants can be fully cellularized and isolated intact from the mutant animals. Here we describe a detailed protocol for the isolation of germ cells from tumorous mutants that allows the germ cells to be maintained for extended periods in an in vitro primary culture. This protocol has been adapted from Chaudhari et al., 2016. PMID:28868332

  9. The Effect of Designated Pollutants on Plants

    DTIC Science & Technology

    1979-12-01

    chamber . . . . .. . . o 34 10 Leaf injury on marigold plants at Vandenberg AFB exposed to HCI gas. . . . . . . . . . . . . * . . . * 0 * * * * 36 11...in a preliminary field trial . 6. . . . . . . . . . . . . . . . . . . . .. . 22 12 Injury on bean, zinnia, and marigold seedlings after field exposure...solid rocket fuel under field conditions . . . . . . . . 26 16 Chlorine content of marigold and zinnia plants exposed weekly to gas generated by solid

  10. acr-23 Encodes a Monepantel-Sensitive Channel in Caenorhabditis elegans

    PubMed Central

    Rufener, Lucien; Bedoni, Nicola; Baur, Roland; Rey, Samantha; Glauser, Dominique A.; Bouvier, Jacques; Beech, Robin; Sigel, Erwin; Puoti, Alessandro

    2013-01-01

    Monepantel is a member of the recently identified class of anthelmintics known as the amino-acetonitrile derivatives (AADs). Monepantel controls all major gastro-intestinal nematodes in sheep including those that are resistant to the classical anthelmintics. Previous studies have shown that the Caenorhabditis elegans acr-23 and the Haemonchus contortus Hco-mptl-1 genes may be prominent targets of monepantel. With this discovery it became possible to investigate the mode of action of monepantel in nematodes at the molecular level. In the present study, we show that a C. elegans mutant acr-23 strain is fully rescued by expressing the wild-type acr-23 gene. Moreover, we present a new mutant allele, and characterize acr-23 alleles genetically. We also show that acr-23 is expressed in body wall muscle cells, and provide therefore a possible explanation for the paralysis caused by monepantel. Furthermore, genetic evidence suggests that the chaperone RIC-3 is required for expression of full monepantel resistance. Finally, we present reconstitution of the C. elegans ACR-23 receptor in Xenopus laevis oocytes and provide direct evidence of its modulation by monepantel. Conversely, co-injection of the chaperone RIC-3 had no impact for channel reconstitution in X. laevis oocytes. These results reinforce the involvement of the ACR-23 family in the mode of action of monepantel and advance our understanding of this new class of anthelmintics. PMID:23950710

  11. Antioxidant and neuroprotective effects of Dictyophora indusiata polysaccharide in Caenorhabditis elegans.

    PubMed

    Zhang, Ju; Shi, Ruona; Li, Haifeng; Xiang, Yanxia; Xiao, Lingyun; Hu, Minghua; Ma, Fangli; Ma, Chung Wah; Huang, Zebo

    2016-11-04

    Dictyophora indusiata is a medicinal mushroom traditionally used in China for a variety of conditions, including inflammatory and neural diseases. D. indusiata polysaccharides (DiPS) are shown to have in vitro antioxidant activity but in vivo evidence is lacking. This study aimes to explore the antioxidant capacity and related neuroptotective activities of DiPS using wild-type and neurodegenerative Caenorhabditis elegans models. The antioxidant capacities of DiPS were first determined using paraquat survival and Pgst-4::GFP expression assays in wild-type and transgenic C. elegans models, respectively, and then further investigated by determining reactive oxygen species (ROS) level, malondialdehyde (MDA) content and superoxide dismutase (SOD) activity as well as functional parameters of mitochondria. The activation of stress response transcription factors and neuroptotective activities were examined using nuclear localization and chemosensory behavioral assays in transgenic nematodes, respectively. DiPS was shown not only to increase survival rate and reduce stress level under paraquat-induced oxidative conditions but also to decrease ROS and MDA levels and increase SOD activity in C. elegans models. Moreover, DiPS was also able to restore the functional parameters of mitochondria, including membrane potential and ATP content, in paraquat-stressed nematodes. In addition, nuclear translocation assays demonstrate that the stress response transcription factor DAF-16/FOXO was involved in the antioxidant activity of the polysaccharide. Further experiments reveal that DiPS was capable of reducing ROS levels and alleviating chemosensory behavior dysfunction in transgenic nematode models of neurodegenerative diseases mediated by polyglutamine and amyloid-β protein. These findings demonstrate the antioxidant and neuroprotective activities of the D. indusiata polysaccharide DiPS in wild-type and neurodegenerative C. elegans models, and thus provide an important

  12. Combining Human Epigenetics and Sleep Studies in Caenorhabditis elegans: A Cross-Species Approach for Finding Conserved Genes Regulating Sleep.

    PubMed

    Huang, Huiyan; Zhu, Yong; Eliot, Melissa N; Knopik, Valerie S; McGeary, John E; Carskadon, Mary A; Hart, Anne C

    2017-06-01

    We aimed to test a combined approach to identify conserved genes regulating sleep and to explore the association between DNA methylation and sleep length. We identified candidate genes associated with shorter versus longer sleep duration in college students based on DNA methylation using Illumina Infinium HumanMethylation450 BeadChip arrays. Orthologous genes in Caenorhabditis elegans were identified, and we examined whether their loss of function affected C. elegans sleep. For genes whose perturbation affected C. elegans sleep, we subsequently undertook a small pilot study to re-examine DNA methylation in an independent set of human participants with shorter versus longer sleep durations. Eighty-seven out of 485,577 CpG sites had significant differential methylation in young adults with shorter versus longer sleep duration, corresponding to 52 candidate genes. We identified 34 C. elegans orthologs, including NPY/flp-18 and flp-21, which are known to affect sleep. Loss of five additional genes alters developmentally timed C. elegans sleep (B4GALT6/bre-4, DOCK180/ced-5, GNB2L1/rack-1, PTPRN2/ida-1, ZFYVE28/lst-2). For one of these genes, ZFYVE28 (also known as hLst2), the pilot replication study again found decreased DNA methylation associated with shorter sleep duration at the same two CpG sites in the first intron of ZFYVE28. Using an approach that combines human epigenetics and C. elegans sleep studies, we identified five genes that play previously unidentified roles in C. elegans sleep. We suggest sleep duration in humans may be associated with differential DNA methylation at specific sites and that the conserved genes identified here likely play roles in C. elegans sleep and in other species. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  13. Investigating the biological impacts of nanoengineered materials in Caenorhabditis elegans and in vitro

    NASA Astrophysics Data System (ADS)

    Contreras, Elizabeth Quevedo

    In nematode Caenorhabditis elegans, the chronic and multi-generational toxicological effects of commercially relevant engineered nanoparticles (ENPs), such as quantum dots (QDs) and silver (AgNP) caused significant changes in a number of physiological endpoints. The increased water-solubility of ENPs in commercial products, for example, makes them increasingly bioavailable to terrestrial organisms exposed to pollution and waste in the soil. Since 2008, attention to the toxicology of nanomaterials in C. elegans continues to grow. Quantitative data on multiple physiological endpoints paired with metal analysis show the uptake of QDs and AgNPs, and their effects on nematode fitness. First, C. elegans were exposed for four generations through feeding to amphiphilic polymer coated CdSe/ZnS (core-shell QDs), CdSe (core QDs), and different sizes of AgNPs. These ENPs were readily ingested. QDs were qualitatively imaged in the digestive tract using a fluorescence microscopy and their and AgNP uptake quantitatively measured using ICP-MS. Each generation was analyzed for changes in lifespan, reproduction, growth and motility using an automated computer vision system. Core-shell QDs had little impact on C. elegans due to its metal shell coating. In contrast, core QDs lacked a metal shell coating, which caused significant changes to nematode physiology. iii In the same way, at high concentrations of 100 ppm, AgNP caused the most adverse effect to lifespan and reproduction related to particle size, but its adverse effect to motility had no correlation to particle size. Using C. elegans as an animal model allowed for a better understanding of the negative impacts of ENPs than with cytotoxicity tests. Lastly, to test the toxicity of water-dispersed fullerene (nanoC60) using human dermal fibroblast cells, this thesis investigated a suite of assays and methods in order to establish a standard set of cytotoxicity tests. Ten assays and methods assessed nanoC60 samples of different

  14. Bacillus subtilis biofilm extends Caenorhabditis elegans longevity through downregulation of the insulin-like signalling pathway

    PubMed Central

    Donato, Verónica; Ayala, Facundo Rodríguez; Cogliati, Sebastián; Bauman, Carlos; Costa, Juan Gabriel; Leñini, Cecilia; Grau, Roberto

    2017-01-01

    Beneficial bacteria have been shown to affect host longevity, but the molecular mechanisms mediating such effects remain largely unclear. Here we show that formation of Bacillus subtilis biofilms increases Caenorhabditis elegans lifespan. Biofilm-proficient B. subtilis colonizes the C. elegans gut and extends worm lifespan more than biofilm-deficient isogenic strains. Two molecules produced by B. subtilis — the quorum-sensing pentapeptide CSF and nitric oxide (NO) — are sufficient to extend C. elegans longevity. When B. subtilis is cultured under biofilm-supporting conditions, the synthesis of NO and CSF is increased in comparison with their production under planktonic growth conditions. We further show that the prolongevity effect of B. subtilis biofilms depends on the DAF-2/DAF-16/HSF-1 signalling axis and the downregulation of the insulin-like signalling (ILS) pathway. PMID:28134244

  15. Proanthocyanidin trimer gallate modulates lipid deposition and fatty acid desaturation in Caenorhabditis elegans.

    PubMed

    Nie, Yu; Littleton, Brad; Kavanagh, Thomas; Abbate, Vincenzo; Bansal, Sukhvinder S; Richards, David; Hylands, Peter; Stürzenbaum, Stephen R

    2017-11-01

    The incidence of obesity is rising at an alarming rate. Despite its recognition as an urgent healthcare concern, obesity remains largely an unsolved medical problem. A comprehensive screen for functional dietary phytochemicals identified proanthocyanidins as putative targets to ameliorate obesity. A full-scale purification of oligomeric proanthocyanidins (OPCs) derived from grape seed extract yielded pure OPC dimer, trimer, tetramer, and their gallates (pOPCs). Forward chemical screening conducted in Caenorhabditis elegans suggested that pOPCs reduced the activity of lipase in vitro and triglyceride storage capacity in vivo Proanthocyanidin trimer gallate in particular modified lipid desaturation in C. elegans , revealed by hyperspectral coherent anti-Stokes Raman scattering microscopy. Exposure to trimer gallate resulted in the transcriptional down-regulation of nhr-49 (an ortholog of the human peroxisome proliferator-activated receptor-α), and a key regulator of fat metabolism, and 2 downstream genes: fat-5 and acs-2 A combination exposure of 2 or 3 pOPCs (dimer gallate, trimer and/or trimer gallate) suggested the absence of synergistic potential. By using the whole-organism C. elegans coupled with versatile biochemical, biophysical, and genetic tools, we provide an account of the composition and bioactivity of individual OPCs and more generally highlight the potential of traditional Chinese medicine-derived drug leads.-Nie, Y., Littleton, B., Kavanagh, T., Abbate, V., Bansal, S. S., Richards, D., Hylands, P., Sturzenbaum, S. R. Proanthocyanidin trimer gallate modulates lipid deposition and fatty acid desaturation in Caenorhabditis elegans . © FASEB.

  16. Dauer-specific dendrite arborization in C. elegans is regulated by KPC-1/Furin.

    PubMed

    Schroeder, Nathan E; Androwski, Rebecca J; Rashid, Alina; Lee, Harksun; Lee, Junho; Barr, Maureen M

    2013-08-19

    Dendrites often display remarkably complex and diverse morphologies that are influenced by developmental and environmental cues. Neuroplasticity in response to adverse environmental conditions entails both hypertrophy and resorption of dendrites. How dendrites rapidly alter morphology in response to unfavorable environmental conditions is unclear. The nematode Caenorhabditis elegans enters into a stress-resistant dauer larval stage in response to an adverse environment. Here we show that the IL2 bipolar sensory neurons undergo dendrite arborization and axon remodeling during dauer development. When dauer larvae are returned to favorable environmental conditions, animals resume reproductive development and IL2 dendritic branches retract, leaving behind remnant branches in postdauer L4 and adult animals. The C. elegans furin homolog KPC-1 is required for dauer IL2 dendritic arborization and dauer-specific nictation behavior. KPC-1 is also necessary for dendritic arborization of PVD and FLP sensory neurons. In mammals, furin is essential, ubiquitously expressed, and associated with numerous pathologies, including neurodegenerative diseases. While broadly expressed in C. elegans neurons and epithelia, KPC-1 acts cell autonomously in IL2 neurons to regulate dauer-specific dendritic arborization and nictation. Neuroplasticity of the C. elegans IL2 sensory neurons provides a paradigm to study stress-induced and reversible dendritic branching, and the role of environmental and developmental cues in this process. The newly discovered role of KPC-1 in dendrite morphogenesis provides insight into the function of proprotein convertases in nervous system development. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. A Screenable In Vivo Assay for Mitochondrial Modulators Using Transgenic Bioluminescent Caenorhabditis elegans.

    PubMed

    Lagido, Cristina; McLaggan, Debbie; Glover, L Anne

    2015-10-16

    The multicellular model organism Caenorhabditis elegans is a small nematode of approximately 1 mm in size in adulthood that is genetically and experimentally tractable. It is economical and easy to culture and dispense in liquid medium which makes it well suited for medium-throughput screening. We have previously validated the use of transgenic luciferase expressing C. elegans strains to provide rapid in vivo assessment of the nematode's ATP levels.(1-3) Here we present the required materials and procedure to carry out bioassays with the bioluminescent C. elegans strains PE254 or PE255 (or any of their derivative strains). The protocol allows for in vivo detection of sublethal effects of drugs that may identify mitochondrial toxicity, as well as for in vivo detection of potential beneficial drug effects. Representative results are provided for the chemicals paraquat, rotenone, oxaloacetate and for four firefly luciferase inhibitory compounds. The methodology can be scaled up to provide a platform for screening drug libraries for compounds capable of modulating mitochondrial function. Pre-clinical evaluation of drug toxicity is often carried out on immortalized cancerous human cell lines which derive ATP mostly from glycolysis and are often tolerant of mitochondrial toxicants.(4,5) In contrast, C. elegans depends on oxidative phosphorylation to sustain development into adulthood, drawing a parallel with humans and providing a unique opportunity for compound evaluation in the physiological context of a whole live multicellular organism.

  18. A protein domain-based interactome network for C. elegans early embryogenesis

    PubMed Central

    Boxem, Mike; Maliga, Zoltan; Klitgord, Niels; Li, Na; Lemmens, Irma; Mana, Miyeko; de Lichtervelde, Lorenzo; Mul, Joram D.; van de Peut, Diederik; Devos, Maxime; Simonis, Nicolas; Yildirim, Muhammed A.; Cokol, Murat; Kao, Huey-Ling; de Smet, Anne-Sophie; Wang, Haidong; Schlaitz, Anne-Lore; Hao, Tong; Milstein, Stuart; Fan, Changyu; Tipsword, Mike; Drew, Kevin; Galli, Matilde; Rhrissorrakrai, Kahn; Drechsel, David; Koller, Daphne; Roth, Frederick P.; Iakoucheva, Lilia M.; Dunker, A. Keith; Bonneau, Richard; Gunsalus, Kristin C.; Hill, David E.; Piano, Fabio; Tavernier, Jan; van den Heuvel, Sander; Hyman, Anthony A.; Vidal, Marc

    2008-01-01

    Summary Many protein-protein interactions are mediated through independently folding modular domains. Proteome-wide efforts to model protein-protein interaction or “interactome” networks have largely ignored this modular organization of proteins. We developed an experimental strategy to efficiently identify interaction domains and generated a domain-based interactome network for proteins involved in C. elegans early embryonic cell divisions. Minimal interacting regions were identified for over 200 proteins, providing important information on their domain organization. Furthermore, our approach increased the sensitivity of the two-hybrid system, resulting in a more complete interactome network. This interactome modeling strategy revealed new insights into C. elegans centrosome function and is applicable to other biological processes in this and other organisms. PMID:18692475

  19. Advanced Behavioral Analyses Show that the Presence of Food Causes Subtle Changes in C. elegans Movement.

    PubMed

    Angstman, Nicholas B; Frank, Hans-Georg; Schmitz, Christoph

    2016-01-01

    As a widely used and studied model organism, Caenorhabditis elegans worms offer the ability to investigate implications of behavioral change. Although, investigation of C. elegans behavioral traits has been shown, analysis is often narrowed down to measurements based off a single point, and thus cannot pick up on subtle behavioral and morphological changes. In the present study videos were captured of four different C. elegans strains grown in liquid cultures and transferred to NGM-agar plates with an E. coli lawn or with no lawn. Using an advanced software, WormLab, the full skeleton and outline of worms were tracked to determine whether the presence of food affects behavioral traits. In all seven investigated parameters, statistically significant differences were found in worm behavior between those moving on NGM-agar plates with an E. coli lawn and NGM-agar plates with no lawn. Furthermore, multiple test groups showed differences in interaction between variables as the parameters that significantly correlated statistically with speed of locomotion varied. In the present study, we demonstrate the validity of a model to analyze C. elegans behavior beyond simple speed of locomotion. The need to account for a nested design while performing statistical analyses in similar studies is also demonstrated. With extended analyses, C. elegans behavioral change can be investigated with greater sensitivity, which could have wide utility in fields such as, but not limited to, toxicology, drug discovery, and RNAi screening.

  20. Structural analysis of N-linked glycans in Caenorhabditis elegans.

    PubMed

    Natsuka, Shunji; Adachi, Jiro; Kawaguchi, Masahumi; Nakakita, Shin-ichi; Hase, Sumihiro; Ichikawa, Akira; Ikura, Koji

    2002-06-01

    Caenorhabditis elegans is an excellent model for morphogenetic research. However, little information is available on the structure of cell-surface glycans in C. elegans, although several lines of evidence have suggested a role for these glycans in cell-cell interactions during development. In this study, we analyzed N-glycan structures. Oligosaccharides liberated by hydrazinolysis from a total membrane fraction were labeled by pyridylamination, and around 90% of the N-glycans were detected as neutral oligosaccharides. The most dominant structure was Man(alpha)1-6(Man(alpha)1-3)Man(beta)1-4GlcNAc(beta)1-4GlcNAc, which is commonly found in insects. Branching structures of major oligomannose-type glycans were the same as those found in mammals. Structures that had a core fucose or non-reducing end N-acetylglucosamine were also identified, but ordinary complex-type glycans with N-acetyllactosamine were not detected as major components.

  1. Caenorhabditis elegans as a model system for studying the nuclear lamina and laminopathic diseases.

    PubMed

    Bank, Erin M; Gruenbaum, Yosef

    2011-01-01

    The nuclear lamina is a protein-rich network located directly underneath the inner nuclear membrane of metazoan nuclei. The components of the nuclear lamina have been implicated in nearly all nuclear functions; therefore, understanding the structural, mechanical, and signal transducing properties of these proteins is crucial. In addition, mutations in many of these proteins cause a wide range of human diseases, the laminopathies. The structure, function, and interaction of the lamina proteins are conserved among metazoans, emphasizing their fundamental roles in the nucleus. Several of the advances in the field of the nuclear lamina have come from studies performed in Caenorhabditis elegans or on C. elegans proteins expressed in vitro. Here, we discuss the current knowledge about the nuclear lamina, including an overview of the technical tools offered by C. elegans that make it a powerful model organism for the study of the nuclear lamina and laminopathic diseases.

  2. The Effects of Erzincan Grape (Vitis vinifera spp., Cimin) and Benzothiazol on a Caenorhabditis elegans Organism Model

    PubMed Central

    Ozpinar, Hulya; Ozpinar, Necati; Karakus, Savas

    2017-01-01

    Background: Grapes and their products are known to have been used for the treatment of diseases throughout history. Objective: It was aimed to investigate the effects of Erzincan Cimin grapes on an organism model of Caenorhabditis elegans N2 wild type and C. elegans BS913 strains with gonad cancer. Materials and Methods: The effects of methanol extracts of the skin and seeds of Erzincan Cimin grapes were examined separately on C. elegans N2 wild type and an effect was determined on lifespan. By applying GS-MS analysis, a potential agent substance was determined in the skin and seed methanol extracts. This substance was purchased and the effects of this substance were investigated on lifespan and fertility in C. elegans BS913 strains with gonad cancer. In addition, the effects on young subjects exposed to this agent substance in L1 form were investigated. Results: Grape seed and skin methanol extract was observed to prolong the lifespan most at a dose of 10 mg/100 mL. Lifespan was determined to be at a maximum in a gonad cancer organism model with benzothiazol at a dose of 50 ppm. At the same dose, positive effects were determined on the fertility of strains with cancer. When the effects of benzothiazol were examined on young L1 forms, an evident retardation of growth was determined at doses of 10, 50, and 100 ppm. Conclusion: Owing to anti-carcinogenic effects of benzothiazol and benzothiazol-derived substances, they can be considered as agent substances in academic studies related to cancer. SUMMARY The effects of methanol extracts of the skin and seeds of Erzincan Cimin grapes were examined on C. elegans N2 wild type and an effect was determined on lifespanThrough GS-MS analysis, benzothiazol was determined in the skin methanol extractsBenzothiazol was purchased and the effects of this substance were investigated on lifespan and fertility in C. elegans BS913 strains with gonad cancerThe effects on young subjects exposed to benzothiazol in L1 formGrape seed, skin

  3. The Effects of Erzincan Grape (Vitis vinifera spp., Cimin) and Benzothiazol on a Caenorhabditis elegans Organism Model.

    PubMed

    Ozpinar, Hulya; Ozpinar, Necati; Karakus, Savas

    2017-07-01

    Grapes and their products are known to have been used for the treatment of diseases throughout history. It was aimed to investigate the effects of Erzincan Cimin grapes on an organism model of Caenorhabditis elegans N2 wild type and C. elegans BS913 strains with gonad cancer. The effects of methanol extracts of the skin and seeds of Erzincan Cimin grapes were examined separately on C. elegans N2 wild type and an effect was determined on lifespan. By applying GS-MS analysis, a potential agent substance was determined in the skin and seed methanol extracts. This substance was purchased and the effects of this substance were investigated on lifespan and fertility in C. elegans BS913 strains with gonad cancer. In addition, the effects on young subjects exposed to this agent substance in L1 form were investigated. Grape seed and skin methanol extract was observed to prolong the lifespan most at a dose of 10 mg/100 mL. Lifespan was determined to be at a maximum in a gonad cancer organism model with benzothiazol at a dose of 50 ppm. At the same dose, positive effects were determined on the fertility of strains with cancer. When the effects of benzothiazol were examined on young L1 forms, an evident retardation of growth was determined at doses of 10, 50, and 100 ppm. Owing to anti-carcinogenic effects of benzothiazol and benzothiazol-derived substances, they can be considered as agent substances in academic studies related to cancer. The effects of methanol extracts of the skin and seeds of Erzincan Cimin grapes were examined on C. elegans N2 wild type and an effect was determined on lifespanThrough GS-MS analysis, benzothiazol was determined in the skin methanol extractsBenzothiazol was purchased and the effects of this substance were investigated on lifespan and fertility in C. elegans BS913 strains with gonad cancerThe effects on young subjects exposed to benzothiazol in L1 formGrape seed, skin methanol extract, and benzothiazol was observed to prolong the lifespan

  4. OpenWorm: an open-science approach to modeling Caenorhabditis elegans.

    PubMed

    Szigeti, Balázs; Gleeson, Padraig; Vella, Michael; Khayrulin, Sergey; Palyanov, Andrey; Hokanson, Jim; Currie, Michael; Cantarelli, Matteo; Idili, Giovanni; Larson, Stephen

    2014-01-01

    OpenWorm is an international collaboration with the aim of understanding how the behavior of Caenorhabditis elegans (C. elegans) emerges from its underlying physiological processes. The project has developed a modular simulation engine to create computational models of the worm. The modularity of the engine makes it possible to easily modify the model, incorporate new experimental data and test hypotheses. The modeling framework incorporates both biophysical neuronal simulations and a novel fluid-dynamics-based soft-tissue simulation for physical environment-body interactions. The project's open-science approach is aimed at overcoming the difficulties of integrative modeling within a traditional academic environment. In this article the rationale is presented for creating the OpenWorm collaboration, the tools and resources developed thus far are outlined and the unique challenges associated with the project are discussed.

  5. SLO-1-Channels of Parasitic Nematodes Reconstitute Locomotor Behaviour and Emodepside Sensitivity in Caenorhabditis elegans slo-1 Loss of Function Mutants

    PubMed Central

    Schniederjans, Monika; Miltsch, Sandra M.; Krücken, Jürgen; Guest, Marcus; Holden-Dye, Lindy; Harder, Achim; von Samson-Himmelstjerna, Georg

    2011-01-01

    The calcium-gated potassium channel SLO-1 in Caenorhabditis elegans was recently identified as key component for action of emodepside, a new anthelmintic drug with broad spectrum activity. In this study we identified orthologues of slo-1 in Ancylostoma caninum, Cooperia oncophora, and Haemonchus contortus, all important parasitic nematodes in veterinary medicine. Furthermore, functional analyses of these slo-1 orthologues were performed using heterologous expression in C. elegans. We expressed A. caninum and C. oncophora slo-1 in the emodepside-resistant genetic background of the slo-1 loss-of-function mutant NM1968 slo-1(js379). Transformants expressing A. caninum slo-1 from C. elegans slo-1 promoter were highly susceptible (compared to the fully emodepside-resistant slo-1(js379)) and showed no significant difference in their emodepside susceptibility compared to wild-type C. elegans (p = 0.831). Therefore, the SLO-1 channels of A. caninum and C. elegans appear to be completely functionally interchangeable in terms of emodepside sensitivity. Furthermore, we tested the ability of the 5′ flanking regions of A. caninum and C. oncophora slo-1 to drive expression of SLO-1 in C. elegans and confirmed functionality of the putative promoters in this heterologous system. For all transgenic lines tested, expression of either native C. elegans slo-1 or the parasite-derived orthologue rescued emodepside sensitivity in slo-1(js379) and the locomotor phenotype of increased reversal frequency confirming the reconstitution of SLO-1 function in the locomotor circuits. A potent mammalian SLO-1 channel inhibitor, penitrem A, showed emodepside antagonising effects in A. caninum and C. elegans. The study combined the investigation of new anthelmintic targets from parasitic nematodes and experimental use of the respective target genes in C. elegans, therefore closing the gap between research approaches using model nematodes and those using target organisms. Considering the still

  6. Tissue-specific autophagy responses to aging and stress in C. elegans.

    PubMed

    Chapin, Hannah C; Okada, Megan; Merz, Alexey J; Miller, Dana L

    2015-06-01

    Cellular function relies on a balance between protein synthesis and breakdown. Macromolecular breakdown through autophagy is broadly required for cellular and tissue development, function, and recovery from stress. While Caenorhabditis elegans is frequently used to explore cellular responses to development and stress, the most common assays for autophagy in this system lack tissue-level resolution. Different tissues within an organism have unique functional characteristics and likely vary in their reliance on autophagy under different conditions. To generate a tissue-specific map of autophagy in C. elegans we used a dual fluorescent protein (dFP) tag that releases monomeric fluorescent protein (mFP) upon arrival at the lysosome. Tissue-specific expression of dFP::LGG-1 revealed autophagic flux in all tissues, but mFP accumulation was most dramatic in the intestine. We also observed variable responses to stress: starvation increased autophagic mFP release in all tissues, whereas anoxia primarily increased intestinal autophagic flux. We observed autophagic flux with tagged LGG-1, LGG-2, and two autophagic cargo reporters: a soluble cytoplasmic protein, and mitochondrial TOMM-7. Finally, an increase in mFP in older worms was consistent with an age-dependent shift in proteostasis. These novel measures of autophagic flux in C. elegans reveal heterogeneity in autophagic response across tissues during stress and aging.

  7. Larval crowding accelerates C. elegans development and reduces lifespan.

    PubMed

    Ludewig, Andreas H; Gimond, Clotilde; Judkins, Joshua C; Thornton, Staci; Pulido, Dania C; Micikas, Robert J; Döring, Frank; Antebi, Adam; Braendle, Christian; Schroeder, Frank C

    2017-04-01

    Environmental conditions experienced during animal development are thought to have sustained impact on maturation and adult lifespan. Here we show that in the model organism C. elegans developmental rate and adult lifespan depend on larval population density, and that this effect is mediated by excreted small molecules. By using the time point of first egg laying as a marker for full maturity, we found that wildtype hermaphrodites raised under high density conditions developed significantly faster than animals raised in isolation. Population density-dependent acceleration of development (Pdda) was dramatically enhanced in fatty acid β-oxidation mutants that are defective in the biosynthesis of ascarosides, small-molecule signals that induce developmental diapause. In contrast, Pdda is abolished by synthetic ascarosides and steroidal ligands of the nuclear hormone receptor DAF-12. We show that neither ascarosides nor any known steroid hormones are required for Pdda and that another chemical signal mediates this phenotype, in part via the nuclear hormone receptor NHR-8. Our results demonstrate that C. elegans development is regulated by a push-pull mechanism, based on two antagonistic chemical signals: chemosensation of ascarosides slows down development, whereas population-density dependent accumulation of a different chemical signal accelerates development. We further show that the effects of high larval population density persist through adulthood, as C. elegans larvae raised at high densities exhibit significantly reduced adult lifespan and respond differently to exogenous chemical signals compared to larvae raised at low densities, independent of density during adulthood. Our results demonstrate how inter-organismal signaling during development regulates reproductive maturation and longevity.

  8. Larval crowding accelerates C. elegans development and reduces lifespan

    PubMed Central

    Ludewig, Andreas H.; Gimond, Clotilde; Judkins, Joshua C.; Thornton, Staci; Pulido, Dania C.; Micikas, Robert J.; Döring, Frank; Antebi, Adam; Braendle, Christian; Schroeder, Frank C.

    2017-01-01

    Environmental conditions experienced during animal development are thought to have sustained impact on maturation and adult lifespan. Here we show that in the model organism C. elegans developmental rate and adult lifespan depend on larval population density, and that this effect is mediated by excreted small molecules. By using the time point of first egg laying as a marker for full maturity, we found that wildtype hermaphrodites raised under high density conditions developed significantly faster than animals raised in isolation. Population density-dependent acceleration of development (Pdda) was dramatically enhanced in fatty acid β-oxidation mutants that are defective in the biosynthesis of ascarosides, small-molecule signals that induce developmental diapause. In contrast, Pdda is abolished by synthetic ascarosides and steroidal ligands of the nuclear hormone receptor DAF-12. We show that neither ascarosides nor any known steroid hormones are required for Pdda and that another chemical signal mediates this phenotype, in part via the nuclear hormone receptor NHR-8. Our results demonstrate that C. elegans development is regulated by a push-pull mechanism, based on two antagonistic chemical signals: chemosensation of ascarosides slows down development, whereas population-density dependent accumulation of a different chemical signal accelerates development. We further show that the effects of high larval population density persist through adulthood, as C. elegans larvae raised at high densities exhibit significantly reduced adult lifespan and respond differently to exogenous chemical signals compared to larvae raised at low densities, independent of density during adulthood. Our results demonstrate how inter-organismal signaling during development regulates reproductive maturation and longevity. PMID:28394895

  9. Computational Methods for Tracking, Quantitative Assessment, and Visualization of C. elegans Locomotory Behavior

    PubMed Central

    Moy, Kyle; Li, Weiyu; Tran, Huu Phuoc; Simonis, Valerie; Story, Evan; Brandon, Christopher; Furst, Jacob; Raicu, Daniela; Kim, Hongkyun

    2015-01-01

    The nematode Caenorhabditis elegans provides a unique opportunity to interrogate the neural basis of behavior at single neuron resolution. In C. elegans, neural circuits that control behaviors can be formulated based on its complete neural connection map, and easily assessed by applying advanced genetic tools that allow for modulation in the activity of specific neurons. Importantly, C. elegans exhibits several elaborate behaviors that can be empirically quantified and analyzed, thus providing a means to assess the contribution of specific neural circuits to behavioral output. Particularly, locomotory behavior can be recorded and analyzed with computational and mathematical tools. Here, we describe a robust single worm-tracking system, which is based on the open-source Python programming language, and an analysis system, which implements path-related algorithms. Our tracking system was designed to accommodate worms that explore a large area with frequent turns and reversals at high speeds. As a proof of principle, we used our tracker to record the movements of wild-type animals that were freshly removed from abundant bacterial food, and determined how wild-type animals change locomotory behavior over a long period of time. Consistent with previous findings, we observed that wild-type animals show a transition from area-restricted local search to global search over time. Intriguingly, we found that wild-type animals initially exhibit short, random movements interrupted by infrequent long trajectories. This movement pattern often coincides with local/global search behavior, and visually resembles Lévy flight search, a search behavior conserved across species. Our mathematical analysis showed that while most of the animals exhibited Brownian walks, approximately 20% of the animals exhibited Lévy flights, indicating that C. elegans can use Lévy flights for efficient food search. In summary, our tracker and analysis software will help analyze the neural basis of the

  10. Fourier-Based Diffraction Analysis of Live Caenorhabditis elegans.

    PubMed

    Magnes, Jenny; Hastings, Harold M; Raley-Susman, Kathleen M; Alivisatos, Clara; Warner, Adam; Hulsey-Vincent, Miranda

    2017-09-13

    This manuscript describes how to classify nematodes using temporal far-field diffraction signatures. A single C. elegans is suspended in a water column inside an optical cuvette. A 632 nm continuous wave HeNe laser is directed through the cuvette using front surface mirrors. A significant distance of at least 20-30 cm traveled after the light passes through the cuvette ensures a useful far-field (Fraunhofer) diffraction pattern. The diffraction pattern changes in real time as the nematode swims within the laser beam. The photodiode is placed off-center in the diffraction pattern. The voltage signal from the photodiode is observed in real time and recorded using a digital oscilloscope. This process is repeated for 139 wild type and 108 "roller" C. elegans. Wild type worms exhibit a rapid oscillation pattern in solution. The "roller" worms have a mutation in a key component of the cuticle that interferes with smooth locomotion. Time intervals that are not free of saturation and inactivity are discarded. It is practical to divide each average by its maximum to compare relative intensities. The signal for each worm is Fourier transformed so that the frequency pattern for each worm emerges. The signal for each type of worm is averaged. The averaged Fourier spectra for the wild type and the "roller" C. elegans are distinctly different and reveal that the dynamic worm shapes of the two different worm strains can be distinguished using Fourier analysis. The Fourier spectra of each worm strain match an approximate model using two different binary worm shapes that correspond to locomotory moments. The envelope of the averaged frequency distribution for actual and modeled worms confirms the model matches the data. This method can serve as a baseline for Fourier analysis for many microscopic species, as every microorganism will have its unique Fourier spectrum.

  11. Carlina acaulis Exhibits Antioxidant Activity and Counteracts Aβ Toxicity in Caenorhabditis elegans.

    PubMed

    Link, Pille; Roth, Kevin; Sporer, Frank; Wink, Michael

    2016-07-02

    Carlina acaulis is a medicinal plant that has shown antioxidant activity in in vitro studies, but to date no corresponding in vivo data is available. Therefore, in the present study the antioxidant activity and its impact in counteracting Aβ toxicity were studied in the Caenorhabditis elegans model. A dichloromethane extract of the roots of C. acaulis was prepared and characterised via gas-liquid-chromatography/mass-spectrometry (GLC-MS). The in vitro antioxidant activity was confirmed via 2,2-diphenyl-1-picrylhydracyl assay. The extract was further separated by thin layer chromatography into two fractions, one of which was a fraction of the dichloromethane extract of C. acaulis containing mostly Carlina oxide (CarOx). Different strains of C. elegans were employed to study the expression of hsp-16.2p::GFP as a marker for oxidative stress, delocalisation of the transcription factor DAF-16 as a possible mechanism of antioxidant activity, the effect of the drug under lethal oxidative stress, and the effect against beta-amyloid (Aβ) toxicity in a paralysis assay. The C. acaulis extract and CarOx showed high antioxidant activity (stress reduction by 47% and 64%, respectively) in C. elegans and could activate the transcription factor DAF-16 which directs the expression of anti-stress genes. In paralysis assay, only the total extract was significantly active, delaying paralysis by 1.6 h. In conclusion, in vivo antioxidant activity was shown for C. acaulis for the first time in the C. elegans model. The active antioxidant compound is Carlina oxide. This activity, however, is not sufficient to counteract Aβ toxicity. Other mechanisms and possibly other active compounds are involved in this effect.

  12. Effect of mutation mechanisms on variant composition and distribution in Caenorhabditis elegans

    PubMed Central

    Wang, Jiou

    2017-01-01

    Genetic diversity is maintained by continuing generation and removal of variants. While examining over 800,000 DNA variants in wild isolates of Caenorhabditis elegans, we made a discovery that the proportions of variant types are not constant across the C. elegans genome. The variant proportion is defined as the fraction of a specific variant type (e.g. single nucleotide polymorphism (SNP) or indel) within a broader set of variants (e.g. all variants or all non-SNPs). The proportions of most variant types show a correlation with the recombination rate. These correlations can be explained as a result of a concerted action of two mutation mechanisms, which we named Morgan and Sanger mechanisms. The two proposed mechanisms act according to the distinct components of the recombination rate, specifically the genetic and physical distance. Regression analysis was used to explore the characteristics and contributions of the two mutation mechanisms. According to our model, ~20–40% of all mutations in C. elegans wild populations are derived from programmed meiotic double strand breaks, which precede chromosomal crossovers and thus may be the point of origin for the Morgan mechanism. A substantial part of the known correlation between the recombination rate and variant distribution appears to be caused by the mutations generated by the Morgan mechanism. Mathematically integrating the mutation model with background selection model gives a more complete depiction of how the variant landscape is shaped in C. elegans. Similar analysis should be possible in other species by examining the correlation between the recombination rate and variant landscape within the context of our mutation model. PMID:28135268

  13. Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans

    PubMed Central

    Vidal-Gadea, Andrés; Ward, Kristi; Beron, Celia; Ghorashian, Navid; Gokce, Sertan; Russell, Joshua; Truong, Nicholas; Parikh, Adhishri; Gadea, Otilia; Ben-Yakar, Adela; Pierce-Shimomura, Jonathan

    2015-01-01

    Many organisms spanning from bacteria to mammals orient to the earth's magnetic field. For a few animals, central neurons responsive to earth-strength magnetic fields have been identified; however, magnetosensory neurons have yet to be identified in any animal. We show that the nematode Caenorhabditis elegans orients to the earth's magnetic field during vertical burrowing migrations. Well-fed worms migrated up, while starved worms migrated down. Populations isolated from around the world, migrated at angles to the magnetic vector that would optimize vertical translation in their native soil, with northern- and southern-hemisphere worms displaying opposite migratory preferences. Magnetic orientation and vertical migrations required the TAX-4 cyclic nucleotide-gated ion channel in the AFD sensory neuron pair. Calcium imaging showed that these neurons respond to magnetic fields even without synaptic input. C. elegans may have adapted magnetic orientation to simplify their vertical burrowing migration by reducing the orientation task from three dimensions to one. DOI: http://dx.doi.org/10.7554/eLife.07493.001 PMID:26083711

  14. Chromatin and RNAi factors protect the C. elegans germline against repetitive sequences

    PubMed Central

    Robert, Valérie J.P.; Sijen, Titia; van Wolfswinkel, Josien; Plasterk, Ronald H.A.

    2005-01-01

    Protection of genomes against invasion by repetitive sequences, such as transposons, viruses, and repetitive transgenes, involves strong and selective silencing of these sequences. During silencing of repetitive transgenes, a trans effect (“cosuppression”) occurs that results in silencing of cognate endogenous genes. Here we report RNA interference (RNAi) screens performed to catalog genes required for cosuppression in the Caenorhabditis elegans germline. We find factors with a putative role in chromatin remodeling and factors involved in RNAi. Together with molecular data also presented in this study, these results suggest that in C. elegans repetitive sequences trigger transcriptional gene silencing using RNAi and chromatin factors. PMID:15774721

  15. Methods for the culture of C. elegans and S. cerevisiae in microgravity

    NASA Technical Reports Server (NTRS)

    Fahlen, Thomas; Sunga, June; Rask, Jon; Herrera, Anna; Lam, Kitty; Sing, Luke; Sato, Kevin; Ramos, Ross A.; Kirven-Brooks, Melissa; Reiss-Bubenheim, Debra

    2005-01-01

    To support the study of the effects of microgravity on biological systems, our group is developing and testing methods that allow the cultivation of C. elegans and S. cerevisiae in microgravity. Our aim is to develop the experimental means by which investigators may conduct peer reviewed biological experiments with C. elegans or S. cerevisiae in microgravity. Our protocols are aimed at enabling investigators to grow these organisms for extended periods during which samples may be sub-cultured, collected, preserved, frozen, and/or returned to earth for analysis. Data presented include characterization of the growth phenotype of these organisms in liquid medium in OptiCells(TM) (Biocrystal, LTD).

  16. Toxicity of silver nanoparticles, multiwalled carbon nanotubes, and dendrimers assessed with multicellular organism Caenorhabditis elegans.

    PubMed

    Walczynska, Marta; Jakubowski, Witold; Wasiak, Tomasz; Kadziola, Kinga; Bartoszek, Nina; Kotarba, Sylwia; Siatkowska, Malgorzata; Komorowski, Piotr; Walkowiak, Bogdan

    2018-07-01

    Nematode Caenorhabditis elegans (C. elegans) was used to investigate the impact of silver nanoparticles (SNP), multiwalled carbon nanotubes (MWCNT), and polyamidoamine dendrimers (PAMAM) used in concentration of 10 10 particle/mL. Population-based observations and gene expression analysis were employed in this study. SNP and PAMAM caused decrease in the number of live nematodes and their body length, but MWCNT did not affect the population of nematodes. Gene expression analysis revealed significant changes caused by the presence of all studied nanomaterials, and the results strongly suggest a specific metabolic response of the nematode organism to exposure to various nanomaterials. It was shown that C. elegans is a very sensitive organism capable to respond specifically to the exposure to some nanomaterials and therefore could be considered as a possible biosensor for early warning of presence of some nanoparticles.

  17. A cathepsin L-like protease from Strongylus vulgaris: an orthologue of Caenorhabditis elegans CPL-1.

    PubMed

    Ultaigh, Sinéad Nic An; Carolan, James C; Britton, Collette; Murray, Linda; Ryan, Michael F

    2009-04-01

    Cathespin L-like proteases (CPLs), characterized from a wide range of helminths, are significant in helminth biology. For example, in Caenorhabditis elegans CPL is essential for embryogenesis. Here, we report a cathepsin L-like gene from three species of strongyles that parasitize the horse, and describe the isolation of a cpl gene (Sv-cpl-1) from Strongylus vulgaris, the first such from equine strongyles. It encodes a protein of 354 amino acids with high similarity to other parasitic Strongylida (90-91%), and C.elegans CPL-1 (87%), a member of the same Clade. As S.vulgaris cpl-1 rescued the embryonic lethal phenotype of the C.elegans cpl-1 mutant, these genes may be orthologues, sharing the same function in each species. Targeting Sv-CPL-1 might enable novel control strategies by decreasing parasite development and transmission.

  18. Complete mitochondrial genomes of the yellow-bellied slider turtle Trachemys scripta scripta and anoxia tolerant red-eared slider Trachemys scripta elegans.

    PubMed

    Yu, Danna; Fang, Xindong; Storey, Kenneth B; Zhang, Yongpu; Zhang, Jiayong

    2016-05-01

    The complete mitochondrial genomes of the yellow-bellied slider (Trachemys scripta scripta) and anoxia tolerant red-eared slider (Trachemys scripta elegans) turtles were sequenced to analyze gene arrangement. The complete mt genomes of T. s. scripta and elegans were circular molecules of 16,791 bp and 16,810 bp in length, respectively, and included an A + 1 frameshift insertion in ND3 and ND4L genes. The AT content of the overall base composition of scripta and elegans was 61.2%. Nucleotide sequence divergence of the mt-genome (p distance) between scripta and elegans was 0.4%. A detailed comparison between the mitochondrial genomes of the two subspecies is shown.

  19. Biosynthetic tailoring of existing ascaroside pheromones alters their biological function in C. elegans

    PubMed Central

    Zhang, Xinxing; Bhar, Subhradeep; Jones Lipinski, Rachel A; Han, Jungsoo; Feng, Likui

    2018-01-01

    Caenorhabditis elegans produces ascaroside pheromones to control its development and behavior. Even minor structural differences in the ascarosides have dramatic consequences for their biological activities. Here, we identify a mechanism that enables C. elegans to dynamically tailor the fatty-acid side chains of the indole-3-carbonyl (IC)-modified ascarosides it has produced. In response to starvation, C. elegans uses the peroxisomal acyl-CoA synthetase ACS-7 to activate the side chains of medium-chain IC-ascarosides for β-oxidation involving the acyl-CoA oxidases ACOX-1.1 and ACOX-3. This pathway rapidly converts a favorable ascaroside pheromone that induces aggregation to an unfavorable one that induces the stress-resistant dauer larval stage. Thus, the pathway allows the worm to respond to changing environmental conditions and alter its chemical message without having to synthesize new ascarosides de novo. We establish a new model for biosynthesis of the IC-ascarosides in which side-chain β-oxidation is critical for controlling the type of IC-ascarosides produced. PMID:29863473

  20. Two Membrane-Associated Tyrosine Phosphatase Homologs Potentiate C. elegans AKT-1/PKB Signaling

    PubMed Central

    Hu, Patrick J; Xu, Jinling; Ruvkun, Gary

    2006-01-01

    Akt/protein kinase B (PKB) functions in conserved signaling cascades that regulate growth and metabolism. In humans, Akt/PKB is dysregulated in diabetes and cancer; in Caenorhabditis elegans, Akt/PKB functions in an insulin-like signaling pathway to regulate larval development. To identify molecules that modulate C. elegans Akt/PKB signaling, we performed a genetic screen for enhancers of the akt-1 mutant phenotype (eak). We report the analysis of three eak genes. eak-6 and eak-5/sdf-9 encode protein tyrosine phosphatase homologs; eak-4 encodes a novel protein with an N-myristoylation signal. All three genes are expressed primarily in the two endocrine XXX cells, and their predicted gene products localize to the plasma membrane. Genetic evidence indicates that these proteins function in parallel to AKT-1 to inhibit the FoxO transcription factor DAF-16. These results define two membrane-associated protein tyrosine phosphatase homologs that may potentiate C. elegans Akt/PKB signaling by cell autonomous and cell nonautonomous mechanisms. Similar molecules may modulate Akt/PKB signaling in human endocrine tissues. PMID:16839187

  1. Lipidomic and proteomic analysis of Caenorhabditis elegans lipid droplets and identification of ACS-4 as a lipid droplet-associated protein

    DOE PAGES

    Vrablik, Tracy L.; Petyuk, Vladislav A.; Larson, Emily M.; ...

    2015-06-27

    Lipid droplets are cytoplasmic organelles that store neutral lipids for membrane synthesis and energy reserves. In this study, we characterized the lipid and protein composition of purified Caenorhabditis elegans lipid droplets. These lipid droplets are composed mainly of triacylglycerols, surrounded by a phospholipid monolayer composed primarily of phosphatidylcholine and phosphatidylethanolamine. The fatty acid composition of the triacylglycerols is rich in fatty acid species obtained from the dietary Escherichia coli, including cyclopropane fatty acids and cis-vaccenic acid. Unlike other organisms, C. elegans lipid droplets contain very little cholesterol or cholesterol esters. Comparison of the lipid droplet proteomes of wild type andmore » high-fat daf-2 mutant strains shows a very similar proteome in both strains, except that the most abundant protein in the C. elegans lipid droplet proteome, MDT-28, is relatively less abundant in lipid droplets isolated from daf-2 mutants. Functional analysis of lipid droplet proteins identified in our proteomic studies indicated an enrichment of proteins required for growth and fat homeostasis in C. elegans. Finally, we confirmed the localization of one of the newly identified lipid droplet proteins, ACS-4. We found that ACS-4 localizes to the surface of lipid droplets in the C. elegans intestine and skin. This study bolsters C. elegans as a model to study the dynamics and functions of lipid droplets in a multicellular organism.« less

  2. Exposure to the metabolic inhibitor sodium azide induces stress protein expression and thermotolerance in the nematode Caenorhabditis elegans

    PubMed Central

    Massie, Michelle R.; Lapoczka, Elizabeth M.; Boggs, Kristy D.; Stine, Karen E.; White, Glenn E.

    2003-01-01

    Historically, sodium azide has been used to anesthetize the nematode Caenorhabditis elegans; however, the mechanism by which it survives this exposure is not understood. In this study, we report that exposure of wild-type C elegans to 10 mM sodium azide for up to 90 minutes confers thermotolerance (defined as significantly increased survival probability [SP] at 37°C) on the animal. In addition, sodium dodecyl sulfate–polyacrylamide gel electrophoresis revealed enhanced Hsp70 expression, whereas Western blot analysis revealed the induction of Hsp16. We also tested the only known C elegans Hsp mutant daf-21 (codes for Hsp90), which constitutively enters the stress-resistant state known as the dauer larvae. Daf-21 mutants also acquire sodium azide–induced thermotolerance, whereas 3 non-Hsp, constitutive dauer-forming mutants exhibited a variable response to azide exposure. We conclude that the ability of C elegans to survive exposure to azide is associated with the induction of at least 2 stress proteins. PMID:12820649

  3. CDC-25.2, a C. elegans ortholog of cdc25, is essential for the progression of intestinal divisions.

    PubMed

    Lee, Yong-Uk; Son, Miseol; Kim, Jiyoung; Shim, Yhong-Hee; Kawasaki, Ichiro

    2016-01-01

    Intestinal divisions in Caenorhabditis elegans take place in 3 stages: (1) cell divisions during embryogenesis, (2) binucleations at the L1 stage, and (3) endoreduplications at the end of each larval stage. Here, we report that CDC-25.2, a C. elegans ortholog of Cdc25, is required for these specialized division cycles between the 16E cell stage and the onset of endoreduplication. Results of our genetic analyses suggest that CDC-25.2 regulates intestinal cell divisions and binucleations by counteracting WEE-1.3 and by activating the CDK-1/CYB-1 complex. CDC-25.2 activity is then repressed by LIN-23 E3 ubiquitin ligase before the onset of intestinal endoreduplication, and this repression is maintained by LIN-35, the C. elegans ortholog of Retinoblastoma (Rb). These findings indicate that timely regulation of CDC-25.2 activity is essential for the progression of specialized division cycles and development of the C. elegans intestine.

  4. CDC-25.2, a C. elegans ortholog of cdc25, is essential for the progression of intestinal divisions

    PubMed Central

    Lee, Yong-Uk; Son, Miseol; Kim, Jiyoung; Shim, Yhong-Hee; Kawasaki, Ichiro

    2016-01-01

    ABSTRACT Intestinal divisions in Caenorhabditis elegans take place in 3 stages: (1) cell divisions during embryogenesis, (2) binucleations at the L1 stage, and (3) endoreduplications at the end of each larval stage. Here, we report that CDC-25.2, a C. elegans ortholog of Cdc25, is required for these specialized division cycles between the 16E cell stage and the onset of endoreduplication. Results of our genetic analyses suggest that CDC-25.2 regulates intestinal cell divisions and binucleations by counteracting WEE-1.3 and by activating the CDK-1/CYB-1 complex. CDC-25.2 activity is then repressed by LIN-23 E3 ubiquitin ligase before the onset of intestinal endoreduplication, and this repression is maintained by LIN-35, the C. elegans ortholog of Retinoblastoma (Rb). These findings indicate that timely regulation of CDC-25.2 activity is essential for the progression of specialized division cycles and development of the C. elegans intestine. PMID:27104746

  5. Staphylococcus saprophyticus surface-associated protein (Ssp) is associated with lifespan reduction in Caenorhabditis elegans.

    PubMed

    Szabados, Florian; Mohner, Amelie; Kleine, Britta; Gatermann, Sören G

    2013-10-01

    Staphylococcal lipases have been proposed as pathogenicity factors. In Staphylococcus saprophyticus the surface-associated protein (Ssp) has been previously characterized as a cell wall-associated true lipase. A S. saprophyticus Δssp::ermB mutant has been described as less virulent in an in vivo model of urinary tract infection compared with its wild-type. This is the first report showing that S. saprophyticus induced a lifespan reduction in Caenorhabditis elegans similar to that of S. aureus RN4220. In two S. saprophyticus Δssp::ermB mutants lifespan reduction in C. elegans was partly abolished. In order to attribute virulence to the lipase activity itself and distinguish this phenomenon from the presence of the Ssp-protein, the conserved active site of the lipase was modified by site-directed ligase-independent mutagenesis and lipase activity-deficient mutants were constructed. These results indicate that the Ssp is associated with pathogenicity in C. elegans and one could speculate that the lipase activity itself is responsible for this virulence.

  6. Effects of initial surface wettability on biofilm formation and subsequent settlement of Hydroides elegans.

    PubMed

    Huggett, Megan J; Nedved, Brian T; Hadfield, Michael G

    2009-01-01

    Hydroides elegans is a major fouling organism in tropical waters around the world, including Pearl Harbor, Hawaii. To determine the importance of initial surface characteristics on biofilm community composition and subsequent colonization by larvae of H. elegans, the settlement and recruitment of larvae to biofilmed surfaces with six different initial surface wettabilities were tested in Pearl Harbor. Biofilm community composition, as determined by a combined approach of denaturing gradient gel electrophoresis and fluorescence in situ hybridization, was similar across all surfaces, regardless of initial wettability, and all surfaces had distinct temporal shifts in community structure over a 10 day period. Larvae settled and recruited in higher numbers to surfaces with medium to low wettability in both May and August, and also to slides with high wettability in August. Pearl Harbor biofilm communities developed similarly on a range of surface wettabilities, and after 10 days in Pearl Harbor all surfaces were equally attractive to larvae of Hydroides elegans, regardless of initial surface properties.

  7. Repressive Chromatin in Caenorhabditis elegans: Establishment, Composition, and Function

    PubMed Central

    Ahringer, Julie; Gasser, Susan M.

    2018-01-01

    Chromatin is organized and compacted in the nucleus through the association of histones and other proteins, which together control genomic activity. Two broad types of chromatin can be distinguished: euchromatin, which is generally transcriptionally active, and heterochromatin, which is repressed. Here we examine the current state of our understanding of repressed chromatin in Caenorhabditis elegans, focusing on roles of histone modifications associated with repression, such as methylation of histone H3 lysine 9 (H3K9me2/3) or the Polycomb Repressive Complex 2 (MES-2/3/6)-deposited modification H3K27me3, and on proteins that recognize these modifications. Proteins involved in chromatin repression are important for development, and have demonstrated roles in nuclear organization, repetitive element silencing, genome integrity, and the regulation of euchromatin. Additionally, chromatin factors participate in repression with small RNA pathways. Recent findings shed light on heterochromatin function and regulation in C. elegans, and should inform our understanding of repressed chromatin in other animals. PMID:29378810

  8. Dietary and microbiome factors determine longevity in Caenorhabditis elegans

    PubMed Central

    Sánchez-Blanco, Adolfo; Rodríguez-Matellán, Alberto; González-Paramás, Ana; González-Manzano, Susana; Kim, Stuart K.; Mollinedo, Faustino

    2016-01-01

    Diet composition affects organismal health. Nutrient uptake depends on the microbiome. Caenorhabditis elegans fed a Bacillus subtilis diet live longer than those fed the standard Escherichia coli diet. Here we report that this longevity difference is primarily caused by dietary coQ, an antioxidant synthesized by E. coli but not by B. subtilis. CoQ-supplemented E. coli fed worms have a lower oxidation state yet live shorter than coQ-less B. subtilis fed worms. We showed that mutations affecting longevity for E. coli fed worms do not always lead to similar effects when worms are fed B. subtilis. We propose that coQ supplementation by the E. coli diet alters the worm cellular REDOX homeostasis, thus decreasing longevity. Our results highlight the importance of microbiome factors in longevity, argue that antioxidant supplementation can be detrimental, and suggest that the C. elegans standard E. coli diet can alter the effect of signaling pathways on longevity. PMID:27510225

  9. Computer-Assisted Transgenesis of Caenorhabditis elegans for Deep Phenotyping

    PubMed Central

    Gilleland, Cody L.; Falls, Adam T.; Noraky, James; Heiman, Maxwell G.; Yanik, Mehmet F.

    2015-01-01

    A major goal in the study of human diseases is to assign functions to genes or genetic variants. The model organism Caenorhabditis elegans provides a powerful tool because homologs of many human genes are identifiable, and large collections of genetic vectors and mutant strains are available. However, the delivery of such vector libraries into mutant strains remains a long-standing experimental bottleneck for phenotypic analysis. Here, we present a computer-assisted microinjection platform to streamline the production of transgenic C. elegans with multiple vectors for deep phenotyping. Briefly, animals are immobilized in a temperature-sensitive hydrogel using a standard multiwell platform. Microinjections are then performed under control of an automated microscope using precision robotics driven by customized computer vision algorithms. We demonstrate utility by phenotyping the morphology of 12 neuronal classes in six mutant backgrounds using combinations of neuron-type-specific fluorescent reporters. This technology can industrialize the assignment of in vivo gene function by enabling large-scale transgenic engineering. PMID:26163188

  10. Sensory regulation of C. elegans male mate-searching behaviour

    PubMed Central

    Barrios, Arantza; Nurrish, Stephen; Emmons, Scott W.

    2009-01-01

    Summary How do animals integrate internal drives and external environmental cues to coordinate behaviours? We address this question studying mate-searching behaviour in C. elegans. C. elgans males explore their environment in search of mates (hermaphrodites) and will leave food if mating partners are absent. However, when mates and food coincide, male exploratory behaviour is suppressed and males are retained on the food source. We show that the drive to explore is stimulated by male specific neurons in the tail, the ray neurons. Periodic contact with the hermaphrodite detected through ray neurons changes the male’s behaviour during periods of no contact and prevents the male from leaving the food source. The hermaphrodite signal is conveyed by male-specific interneurons that are post-synaptic to the rays and that send processes to the major integrative center in the head. This study identifies key parts of the neural circuit that regulates a sexual appetitive behaviour in C. elegans. PMID:19062284

  11. Optical Silencing of C. elegans Cells with Arch Proton Pump

    PubMed Central

    Okazaki, Ayako; Sudo, Yuki; Takagi, Shin

    2012-01-01

    Background Optogenetic techniques using light-driven ion channels or ion pumps for controlling excitable cells have greatly facilitated the investigation of nervous systems in vivo. A model organism, C. elegans, with its small transparent body and well-characterized neural circuits, is especially suitable for optogenetic analyses. Methodology/Principal Findings We describe the application of archaerhodopsin-3 (Arch), a recently reported optical neuronal silencer, to C. elegans. Arch::GFP expressed either in all neurons or body wall muscles of the entire body by means of transgenes were localized, at least partially, to the cell membrane without adverse effects, and caused locomotory paralysis of worms when illuminated by green light (550 nm). Pan-neuronal expression of Arch endowed worms with quick and sustained responsiveness to such light. Worms reliably responded to repeated periods of illumination and non-illumination, and remained paralyzed under continuous illumination for 30 seconds. Worms expressing Arch in different subsets of motor neurons exhibited distinct defects in the locomotory behavior under green light: selective silencing of A-type motor neurons affected backward movement while silencing of B-type motor neurons affected forward movement more severely. Our experiments using a heat-shock-mediated induction system also indicate that Arch becomes fully functional only 12 hours after induction and remains functional for more than 24 hour. Conclusions/Sgnificance Arch can be used for silencing neurons and muscles, and may be a useful alternative to currently widely used halorhodopsin (NpHR) in optogenetic studies of C. elegans. PMID:22629299

  12. A design of experiment approach for efficient multi-parametric drug testing using a Caenorhabditis elegans model.

    PubMed

    Letizia, M C; Cornaglia, M; Tranchida, G; Trouillon, R; Gijs, M A M

    2018-01-22

    When studying the drug effectiveness towards a target model, one should distinguish the effects of the drug itself and of all the other factors that could influence the screening outcome. This comprehensive knowledge is crucial, especially when model organisms are used to study the drug effect at a systemic level, as a higher number of factors can influence the drug-testing outcome. Covering the entire experimental domain and studying the effect of the simultaneous change in several factors would require numerous experiments, which are costly and time-consuming. Therefore, a design of experiment (DoE) approach in drug-testing is emerging as a robust and efficient method to reduce the use of resources, while maximizing the knowledge of the process. Here, we used a 3-factor-Doehlert DoE to characterize the concentration-dependent effect of the drug doxycycline on the development duration of the nematode Caenorhabditis elegans. To cover the experimental space, 13 experiments were designed and performed, where different doxycycline concentrations were tested, while also varying the temperature and the food amount, which are known to influence the duration of C. elegans development. A microfluidic platform was designed to isolate and culture C. elegans larvae, while testing the doxycycline effect with full control of temperature and feeding over the entire development. Our approach allowed predicting the doxycycline effect on C. elegans development in the complete drug concentration/temperature/feeding experimental space, maximizing the understanding of the effect of this antibiotic on the C. elegans development and paving the way towards a standardized and optimized drug-testing process.

  13. Integrin-linked kinase modulates longevity and thermotolerance in C. elegans through neuronal control of HSF-1

    PubMed Central

    Kumsta, Caroline; Ching, Tsui-Ting; Nishimura, Mayuko; Davis, Andrew E; Gelino, Sara; Catan, Hannah H; Yu, Xiaokun; Chu, Chu-Chiao; Ong, Binnan; Panowski, Siler H; Baird, Nathan; Bodmer, Rolf; Hsu, Ao-Lin; Hansen, Malene

    2014-01-01

    Integrin-signaling complexes play important roles in cytoskeletal organization and cell adhesion in many species. Components of the integrin-signaling complex have been linked to aging in both Caenorhabditis elegans and Drosophila melanogaster, but the mechanism underlying this function is unknown. Here, we investigated the role of integrin-linked kinase (ILK), a key component of the integrin-signaling complex, in lifespan determination. We report that genetic reduction of ILK in both C. elegans and Drosophila increased resistance to heat stress, and led to lifespan extension in C. elegans without majorly affecting cytoskeletal integrity. In C. elegans, longevity and thermotolerance induced by ILK depletion was mediated by heat-shock factor-1 (HSF-1), a major transcriptional regulator of the heat-shock response (HSR). Reduction in ILK levels increased hsf-1 transcription and activation, and led to enhanced expression of a subset of genes with roles in the HSR. Moreover, induction of HSR-related genes, longevity and thermotolerance caused by ILK reduction required the thermosensory neurons AFD and interneurons AIY, which are known to play a critical role in the canonical HSR. Notably, ILK was expressed in neighboring neurons, but not in AFD or AIY, implying that ILK reduction initiates cell nonautonomous signaling through thermosensory neurons to elicit a noncanonical HSR. Our results thus identify HSF-1 as a novel effector of the organismal response to reduced ILK levels and show that ILK inhibition regulates HSF-1 in a cell nonautonomous fashion to enhance stress resistance and lifespan in C. elegans. PMID:24314125

  14. Short term memory of Caenorhabditis elegans against bacterial pathogens involves CREB transcription factor.

    PubMed

    Prithika, Udayakumar; Vikneswari, Ramaraj; Balamurugan, Krishnaswamy

    2017-04-01

    One of the key issues pertaining to the control of memory is to respond to a consistently changing environment or microbial niche present in it. Human cyclic AMP response element binding protein (CREB) transcription factor which plays a crucial role in memory has a homolog in C. elegans, crh-1. crh-1 appears to influence memory processes to certain extent by habituation of the host to a particular environment. The discrimination between the pathogen and a non-pathogen is essential for C. elegans in a microbial niche which determines its survival. Training the nematodes in the presence of a virulent pathogen (S. aureus) and an opportunistic pathogen (P. mirabilis) separately exhibits a different behavioural paradigm. This appears to be dependent on the CREB transcription factor. Here we show that C. elegans homolog crh-1 helps in memory response for a short term against the interacting pathogens. Following conditioning of the nematodes to S. aureus and P. mirabilis, the wild type nematodes exhibited a positive response towards the respective pathogens which diminished slowly after 2h. By contrast, the crh-1 deficient nematodes had a defective memory post conditioning. The molecular data reinforces the importance of crh-1 gene in retaining the memory of nematode. Our results also suggest that involvement of neurotransmitters play a crucial role in modulating the memory of the nematode with the assistance of CREB. Therefore, we elucidate that CREB is responsible for the short term memory response in C. elegans against bacterial pathogens. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Bacterial attraction and quorum sensing inhibition in Caenorhabditis elegans exudates

    USDA-ARS?s Scientific Manuscript database

    Caenorhabditis elegans, a bacterivorous soil nematode, lives in a complex environment that requires chemical communication for mating, monitoring population density, recognition of food, avoidance of pathogenic microbes, and other essential ecological functions. Despite being one of the best-studied...

  16. An Elegant Mind: Learning and Memory in "Caenorhabditis elegans"

    ERIC Educational Resources Information Center

    Ardiel, Evan L.; Rankin, Catharine H.

    2010-01-01

    This article reviews the literature on learning and memory in the soil-dwelling nematode "Caenorhabditis elegans." Paradigms include nonassociative learning, associative learning, and imprinting, as worms have been shown to habituate to mechanical and chemical stimuli, as well as learn the smells, tastes, temperatures, and oxygen levels that…

  17. Hormetic heat shock and HSF-1 overexpression improve C. elegans survival and proteostasis by inducing autophagy.

    PubMed

    Kumsta, Caroline; Hansen, Malene

    2017-06-03

    The cellular recycling process of macroautophagy/autophagy is an essential homeostatic system induced by various stresses, but it remains unclear how autophagy contributes to organismal stress resistance. In a recent study, we report that a mild and physiologically beneficial ("hormetic") heat shock as well as overexpression of the heat-shock responsive transcription factor HSF-1 systemically increases autophagy in C. elegans. Accordingly, we found HSF-1- and heat stress-inducible autophagy to be required for C. elegans thermoresistance and longevity. Moreover, a hormetic heat shock or HSF-1 overexpression alleviated PolyQ protein aggregation in an autophagy-dependent manner. Collectively, we demonstrate a critical role for autophagy in C. elegans stress resistance and hormesis, and reveal a requirement for autophagy in HSF-1 regulated functions in the heat-shock response, proteostasis, and aging.

  18. Characterization of a Francisella tularensis-Caenorhabditis elegans Pathosystem for the Evaluation of Therapeutic Compounds

    PubMed Central

    Jayamani, Elamparithi; Tharmalingam, Nagendran; Rajamuthiah, Rajmohan; Kim, Wooseong; Okoli, Ikechukwu; Hernandez, Ana M.; Lee, Kiho; Nau, Gerard J.; Ausubel, Frederick M.

    2017-01-01

    ABSTRACT Francisella tularensis is a highly infectious Gram-negative intracellular pathogen that causes tularemia. Because of its potential as a bioterrorism agent, there is a need for new therapeutic agents. We therefore developed a whole-animal Caenorhabditis elegans-F. tularensis pathosystem for high-throughput screening to identify and characterize potential therapeutic compounds. We found that the C. elegans p38 mitogen-activate protein (MAP) kinase cascade is involved in the immune response to F. tularensis, and we developed a robust F. tularensis-mediated C. elegans killing assay with a Z′ factor consistently of >0.5, which was then utilized to screen a library of FDA-approved compounds that included 1,760 small molecules. In addition to clinically used antibiotics, five FDA-approved drugs were also identified as potential hits, including the anti-inflammatory drug diflunisal that showed anti-F. tularensis activity in vitro. Moreover, the nonsteroidal anti-inflammatory drug (NSAID) diflunisal, at 4× MIC, blocked the replication of an F. tularensis live vaccine strain (LVS) in primary human macrophages and nonphagocytic cells. Diflunisal was nontoxic to human erythrocytes and HepG2 human liver cells at concentrations of ≥32 μg/ml. Finally, diflunisal exhibited synergetic activity with the antibiotic ciprofloxacin in both a checkerboard assay and a macrophage infection assay. In conclusion, the liquid C. elegans-F. tularensis LVS assay described here allows screening for anti-F. tularensis compounds and suggests that diflunisal could potentially be repurposed for the management of tularemia. PMID:28652232

  19. The hydroalcoholic extract of Salvia elegans induces anxiolytic- and antidepressant-like effects in rats.

    PubMed

    Mora, S; Millán, R; Lungenstrass, H; Díaz-Véliz, G; Morán, J A; Herrera-Ruiz, M; Tortoriello, J

    2006-06-15

    Behavioral effects of a hydroalcoholic (60% ethanol) extract from the leaves of Salvia elegans Vahl (Lamiaceae) were studied in male Sprague-Dawley rats. The extract was administered intraperitoneally and its effects on spontaneous motor activity (total motility, locomotion, rearing and grooming behavior) were monitored. Putative anxiolytic and antidepressant properties of Salvia elegans were studied in the elevated plus-maze test (EPM) and in the forced swimming test (FST), respectively. Deleterious effects of Salvia elegans on learning and memory were also studied by using active and passive avoidance paradigms. The results revealed that all doses (3.12, 12.5, 25 and 50 mg/kg) of the extract caused a significant decrease in total motility, locomotion, rearing and grooming behavior. Only the dose of 12.5 mg/kg increased the exploration of the EPM open arms in a similar way to that of diazepam (1 mg/kg). In the FST, all doses of the extract induced a reduction of immobility, in a similar way to that of fluoxetine (10 mg/kg) and imipramine (12.5 mg/kg), along with a significant increase in the time spent in swimming behavior. Acquisition of active avoidance responses was disrupted by pre-treatment with the extract, but retention of a passive avoidance response was not significantly modified. These results suggest that some of the components of the hydroalcoholic extract of Salvia elegans have psychotropic properties, which deserve further investigation.

  20. Cyanobacterial Xenobiotics as Evaluated by a Caenorhabditis elegans Neurotoxicity Screening Test

    PubMed Central

    Ju, Jingjuan; Saul, Nadine; Kochan, Cindy; Putschew, Anke; Pu, Yuepu; Yin, Lihong; Steinberg, Christian E. W.

    2014-01-01

    In fresh waters cyanobacterial blooms can produce a variety of toxins, such as microcystin variants (MCs) and anatoxin-a (ANA). ANA is a well-known neurotoxin, whereas MCs are hepatotoxic and, to a lesser degree, also neurotoxic. Neurotoxicity applies especially to invertebrates lacking livers. Current standardized neurotoxicity screening methods use rats or mice. However, in order to minimize vertebrate animal experiments as well as experimental time and effort, many investigators have proposed the nematode Caenorhabditis elegans as an appropriate invertebrate model. Therefore, four known neurotoxic compounds (positive compounds: chlorpyrifos, abamectin, atropine, and acrylamide) were chosen to verify the expected impacts on autonomic (locomotion, feeding, defecation) and sensory (thermal, chemical, and mechanical sensory perception) functions in C. elegans. This study is another step towards successfully establishing C. elegans as an alternative neurotoxicity model. By using this protocol, anatoxin-a adversely affected locomotive behavior and pharyngeal pumping frequency and, most strongly, chemotactic and thermotactic behavior, whereas MC-LR impacted locomotion, pumping, and mechanical behavior, but not chemical sensory behavior. Environmental samples can also be screened in this simple and fast way for neurotoxic characteristics. The filtrate of a Microcystis aeruginosa culture, known for its hepatotoxicity, also displayed mild neurotoxicity (modulated short-term thermotaxis). These results show the suitability of this assay for environmental cyanotoxin-containing samples. PMID:24776722

  1. Multiparameter behavioral profiling reveals distinct thermal response regimes in Caenorhabditis elegans

    PubMed Central

    2012-01-01

    Background Responding to noxious stimuli by invoking an appropriate escape response is critical for survival of an organism. The sensations of small and large changes in temperature in most organisms have been studied separately in the context of thermotaxis and nociception, respectively. Here we use the nematode C. elegans to address the neurogenetic basis of responses to thermal stimuli over a broad range of intensities. Results C. elegans responds to aversive temperature by eliciting a stereotypical behavioral sequence. Upon sensation of the noxious stimulus, it moves backwards, turns and resumes forward movement in a new direction. In order to study the response of C. elegans to a broad range of noxious thermal stimuli, we developed a novel assay that allows simultaneous characterization of multiple aspects of escape behavior elicited by thermal pulses of increasing amplitudes. We exposed the laboratory strain N2, as well as 47 strains with defects in various aspects of nervous system function, to thermal pulses ranging from ΔT = 0.4°C to 9.1°C and recorded the resulting behavioral profiles. Conclusions Through analysis of the multidimensional behavioral profiles, we found that the combinations of molecules shaping avoidance responses to a given thermal pulse are unique. At different intensities of aversive thermal stimuli, these distinct combinations of molecules converge onto qualitatively similar stereotyped behavioral sequences. PMID:23114012

  2. RACK-1 regulates let-7 microRNA expression and terminal cell differentiation in Caenorhabditis elegans

    PubMed Central

    Chu, Yu-De; Wang, Wei-Chieh; Chen, Shi-An A; Hsu, Yen-Ting; Yeh, Meng-Wei; Slack, Frank J; Chan, Shih-Peng

    2014-01-01

    The let-7 microRNA (miRNA) regulates cell cycle exit and terminal differentiation in the C. elegans heterochronic gene pathway. Low expression of let-7 results in retarded vulva and hypodermal cell development in C. elegans and has been associated with several human cancers. Previously, the versatile scaffold protein receptor for activated C kinase 1 (RACK1) was proposed to facilitate recruitment of the miRNA-induced silencing complex (miRISC) to the polysome and to be required for miRNA function in C. elegans and humans. Here, we show that depletion of C. elegans RACK-1 by RNAi increases let-7 miRNA levels and suppresses the retarded terminal differentiation of lateral hypodermal seam cells in mutants carrying the hypomorphic let-7(n2853) allele or lacking the let-7 family miRNA genes mir-48 and mir-241. Depletion of RACK-1 also increases the levels of precursor let-7 miRNA. When Dicer is knocked down and pre-miRNA processing is inhibited, depletion of RACK-1 still leads to increased levels of pre-let-7, suggesting that RACK-1 affects a biogenesis mechanism upstream of Dicer. No changes in the activity of the let-7 promoter or the levels of primary let-7 miRNA are associated with depletion of RACK-1, suggesting that RACK-1 affects let-7 miRNA biogenesis at the post-transcriptional level. Interestingly, rack-1 knockdown also increases the levels of a few other precursor miRNAs. Our results reveal that RACK-1 controls the biogenesis of a subset of miRNAs, including let-7, and in this way plays a role in the heterochronic gene pathway during C. elegans development. PMID:24776851

  3. Transgenic C. elegans dauer larvae expressing hookworm phospho null DAF-16/FoxO exit dauer.

    PubMed

    Gelmedin, Verena; Brodigan, Thomas; Gao, Xin; Krause, Michael; Wang, Zhu; Hawdon, John M

    2011-01-01

    Parasitic hookworms and the free-living model nematode Caenorhabtidis elegans share a developmental arrested stage, called the dauer stage in C. elegans and the infective third-stage larva (L3) in hookworms. One of the key transcription factors that regulate entrance to and exit from developmental arrest is the forkhead transcription factor DAF-16/FoxO. During the dauer stage, DAF-16 is activated and localized in the nucleus. DAF-16 is negatively regulated by phosphorylation by the upstream kinase AKT, which causes DAF-16 to localize out of the nucleus and the worm to exit from dauer. DAF-16 is conserved in hookworms, and hypothesized to control recovery from L3 arrest during infection. Lacking reverse genetic techniques for use in hookworms, we used C. elegans complementation assays to investigate the function of Ancylostoma caninum DAF-16 during entrance and exit from L3 developmental arrest. We performed dauer switching assays and observed the restoration of the dauer phenotype when Ac-DAF-16 was expressed in temperature-sensitive dauer defective C. elegans daf-2(e1370);daf-16(mu86) mutants. AKT phosphorylation site mutants of Ac-DAF-16 were also able to restore the dauer phenotype, but surprisingly allowed dauer exit when temperatures were lowered. We used fluorescence microscopy to localize DAF-16 during dauer and exit from dauer in C. elegans DAF-16 mutant worms expressing Ac-DAF-16, and found that Ac-DAF-16 exited the nucleus during dauer exit. Surprisingly, Ac-DAF-16 with mutated AKT phosphorylation sites also exited the nucleus during dauer exit. Our results suggest that another mechanism may be involved in the regulation DAF-16 nuclear localization during recovery from developmental arrest.

  4. Natural variation in gene expression in the early development of dauer larvae of Caenorhabditis elegans.

    PubMed

    Harvey, Simon C; Barker, Gary L A; Shorto, Alison; Viney, Mark E

    2009-07-18

    The free-living nematode Caenorhabditis elegans makes a developmental decision based on environmental conditions: larvae either arrest as dauer larva, or continue development into reproductive adults. There is natural variation among C. elegans lines in the sensitivity of this decision to environmental conditions; that is, there is variation in the phenotypic plasticity of dauer larva development. We hypothesised that these differences may be transcriptionally controlled in early stage larvae. We investigated this by microarray analysis of different C. elegans lines under different environmental conditions, specifically the presence and absence of dauer larva-inducing pheromone. There were substantial transcriptional differences between four C. elegans lines under the same environmental conditions. The expression of approximately 2,000 genes differed between genetically different lines, with each line showing a largely line-specific transcriptional profile. The expression of genes that are markers of larval moulting suggested that the lines may be developing at different rates. The expression of a total of 89 genes was putatively affected by dauer larva or non-dauer larva-inducing conditions. Among the upstream regions of these genes there was an over-representation of DAF-16-binding motifs. Under the same environmental conditions genetically different lines of C. elegans had substantial transcriptional differences. This variation may be due to differences in the developmental rates of the lines. Different environmental conditions had a rather smaller effect on transcription. The preponderance of DAF-16-binding motifs upstream of these genes was consistent with these genes playing a key role in the decision between development into dauer or into non-dauer larvae. There was little overlap between the genes whose expression was affected by environmental conditions and previously identified loci involved in the plasticity of dauer larva development.

  5. Effects of lithium on growth, maturation, reproduction and gene expression in the nematode Caenorhabditis elegans.

    PubMed

    Inokuchi, Ayako; Yamamoto, Ryoko; Morita, Fumiyo; Takumi, Shota; Matsusaki, Hiromi; Ishibashi, Hiroshi; Tominaga, Nobuaki; Arizono, Koji

    2015-09-01

    Lithium (Li) has been widely used to treat bipolar disorder, and industrial use of Li has been increasing; thus, environmental pollution and ecological impacts of Li have become a concern. This study was conducted to clarify the potential biological effects of LiCl and Li(2)CO(3) on a nematode, Caenorhabditis elegans as a model system for evaluating soil contaminated with Li. Exposure of C. elegans to LiCl and Li(2)CO(3) decreased growth/maturation and reproduction. The lowest observed effect concentrations for growth, maturation and reproduction were 1250, 313 and 10 000 µm, respectively, for LiCl and 750, 750 and 3000 µm, respectively, for Li(2)CO(3). We also investigated the physiological function of LiCl and LiCO(3) in C. elegans using DNA microarray analysis as an eco-toxicogenomic approach. Among approximately 300 unique genes, including metabolic genes, the exposure to 78 µm LiCl downregulated the expression of 36 cytochrome P450, 16 ABC transporter, 10 glutathione S-transferase, 16 lipid metabolism and two vitellogenin genes. On the other hand, exposure to 375 µm Li(2)CO(3) downregulated the expression of 11 cytochrome P450, 13 ABC transporter, 13 lipid metabolism and one vitellogenin genes. No gene was upregulated by LiCl or Li(2)CO(3). These results suggest that LiCl and Li(2)CO(3) potentially affect the biological and physiological function in C. elegans associated with alteration of the gene expression such as metabolic genes. Our data also provide experimental support for the utility of toxicogenomics by integrating gene expression profiling into a toxicological study of an environmentally important organism such as C. elegans. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Laboratory adapted Escherichia coli K-12 becomes a pathogen of Caenorhabditis elegans upon restoration of O antigen biosynthesis.

    PubMed

    Browning, Douglas F; Wells, Timothy J; França, Fernanda L S; Morris, Faye C; Sevastsyanovich, Yanina R; Bryant, Jack A; Johnson, Matthew D; Lund, Peter A; Cunningham, Adam F; Hobman, Jon L; May, Robin C; Webber, Mark A; Henderson, Ian R

    2013-03-01

    Escherichia coli has been the leading model organism for many decades. It is a fundamental player in modern biology, facilitating the molecular biology revolution of the last century. The acceptance of E. coli as model organism is predicated primarily on the study of one E. coli lineage; E. coli K-12. However, the antecedents of today's laboratory strains have undergone extensive mutagenesis to create genetically tractable offspring but which resulted in loss of several genetic traits such as O antigen expression. Here we have repaired the wbbL locus, restoring the ability of E. coli K-12 strain MG1655 to express the O antigen. We demonstrate that O antigen production results in drastic alterations of many phenotypes and the density of the O antigen is critical for the observed phenotypes. Importantly, O antigen production enables laboratory strains of E. coli to enter the gut of the Caenorhabditis elegans worm and to kill C. elegans at rates similar to pathogenic bacterial species. We demonstrate C. elegans killing is a feature of other commensal E. coli. We show killing is associated with bacterial resistance to mechanical shear and persistence in the C. elegans gut. These results suggest C. elegans is not an effective model of human-pathogenic E. coli infectious disease. © 2013 Blackwell Publishing Ltd.

  7. The role of mycelium production and a MAPK-mediated immune response in the C. elegans-Fusarium model system

    PubMed Central

    Muhammed, Maged; Fuchs, Beth Burgwyn; WU, Michael P.; Breger, Julia; Coleman, Jeffrey J.; Mylonakis, Eleftherios

    2013-01-01

    Fusariosis is an emerging infectious complication of immune deficiency, but models to study this infection are lacking. The use of the soil nematode Caenorhabditis elegans as a model host to study the pathogenesis of Fusarium spp. was investigated. We observed that Fusarium conidia consumed by C. elegans can cause a lethal infection and result in more than 90% killing of the host within 120 hours, and the nematode had a significantly longer survival when challenged with Fusarium proliferatum compared to other species. Interestingly, mycelium production appears to be a major contributor in nematode killing in this model system, and C. elegans mutant strains with the immune response genes, tir-1 (encoding a protein containing a TIR domain that functions upstream of PMK-1) and pmk-1 (the homolog of the mammalian p38 MAPK) lived significantly shorter when challenged with Fusarium compared to the wild type strain. Furthermore, we used the C. elegans model to assess the efficacy and toxicity of various compounds against Fusarium. We demonstrated that amphotericin B, voriconazole, mancozeb, and phenyl mercury acetate significantly prolonged the survival of Fusarium-infected C. elegans, although mancozeb was toxic at higher concentrations. In conclusion, we describe a new model system for the study of Fusarium pathogenesis and evolutionarily preserved host responses to this important fungal pathogen. PMID:22225407

  8. Low survivorship of dauer larva in the nematode Caenorhabditis japonica, a potential comparative system for a model organism, C. elegans.

    PubMed

    Tanaka, Ryusei; Okumura, Etsuko; Kanzaki, Natsumi; Yoshiga, Toyoshi

    2012-05-01

    The nematode dauer larva (DL) is a non-aging diapause stage. The DL of the model nematode Caenorhabditis elegans has been studied as a model system for aging and longevity. However, information on DL in other nematode species is limited. In this study, the survivorship, storage, energy consumption, and oxidative stress tolerance of Caenorhabditis japonica DL were examined. C. japonica is a close relative of C. elegans, but has species-specific phoretic associations with the shield bug Parastrachia japonensis. Also, its DL has a much longer lifespan than C. elegans in a biological setting. However, when C. japonica DLs were detached from their phoretic host, they did not survive more than 10 days while more than 80% of C. elegans survived under the same conditions. Also, C. japonica DL showed more active movement (swimming) and lower tolerance to oxidative stress than C. elegans DL. Because the concentration of triacylglycerol (TAG), the energy source of nematodes, did not decrease significantly during the experiment, exhaustion of the energy reservoir did not cause the low survivorship of C. japonica. Instead, low tolerance to oxidizing stress and increased production of reactive oxygen species in C. japonica were the main causes of the reduced survivorship. The fact that C. japonica DL cannot survive away from its insect host indicates that its longevity is increased by unknown factors derived from the host. Despite these significant differences between C. japonica and C. elegans, these two species are phylogenetically closely related (they are derived from a common ancestor). Therefore, C. japonica could be a good comparative system for C. elegans, and further physiological and molecular analyses of C. japonica DL may provide important information about the internal and external factors affecting the longevity of nematodes in general. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Tales of cannibalism, suicide, and murder: Programmed cell death in C. elegans.

    PubMed

    Kinchen, Jason M; Hengartner, Michael O

    2005-01-01

    "Life is pleasant. Death is peaceful. It's the transition that's troublesome," said Isaac Asimov. Indeed, much scientific work over the last hundred years centered around attempts either to stave off or to induce the onset of death, at both the organismal and the cellular levels. In this quest, the nematode C. elegans has proven an invaluable tool, first, in the articulation of the genetic pathway by which programmed cell death proceeds, and also as a continuing source of inspiration. It is our purpose in this Chapter to familiarize the reader with the topic of programmed cell death in C. elegans and its relevance to current research in the fields of apoptosis and cell corpse clearance.

  10. Locomotion of C. elegans: A Piecewise-Harmonic Curvature Representation of Nematode Behavior

    PubMed Central

    Padmanabhan, Venkat; Khan, Zeina S.; Solomon, Deepak E.; Armstrong, Andrew; Rumbaugh, Kendra P.; Vanapalli, Siva A.; Blawzdziewicz, Jerzy

    2012-01-01

    Caenorhabditis elegans, a free-living soil nematode, displays a rich variety of body shapes and trajectories during its undulatory locomotion in complex environments. Here we show that the individual body postures and entire trails of C. elegans have a simple analytical description in curvature representation. Our model is based on the assumption that the curvature wave is generated in the head segment of the worm body and propagates backwards. We have found that a simple harmonic function for the curvature can capture multiple worm shapes during the undulatory movement. The worm body trajectories can be well represented in terms of piecewise sinusoidal curvature with abrupt changes in amplitude, wavevector, and phase. PMID:22792224

  11. Behavioral Phenotyping and Pathological Indicators of Parkinson's Disease in C. elegans Models

    PubMed Central

    Maulik, Malabika; Mitra, Swarup; Bult-Ito, Abel; Taylor, Barbara E.; Vayndorf, Elena M.

    2017-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder with symptoms that progressively worsen with age. Pathologically, PD is characterized by the aggregation of α-synuclein in cells of the substantia nigra in the brain and loss of dopaminergic neurons. This pathology is associated with impaired movement and reduced cognitive function. The etiology of PD can be attributed to a combination of environmental and genetic factors. A popular animal model, the nematode roundworm Caenorhabditis elegans, has been frequently used to study the role of genetic and environmental factors in the molecular pathology and behavioral phenotypes associated with PD. The current review summarizes cellular markers and behavioral phenotypes in transgenic and toxin-induced PD models of C. elegans. PMID:28659967

  12. Helminth fauna of a turtle species introduced in Japan, the red-eared slider turtle (Trachemys scripta elegans).

    PubMed

    Oi, M; Araki, J; Matsumoto, J; Nogami, S

    2012-10-01

    The red-eared slider turtle (Trachemys scripta elegans) was intentionally introduced from the United States to Japan as a pet in the 1950s and has become established throughout much of the country. We examined red-eared slider turtles from two localities in Japan for foreign parasitic helminths. Consequently, a total of seven species of helminths were found: two monogeneans (Neopolystoma exhamatum and Polystomoides japonicum), three digeneans (Spirorchisartericola, Spi.elegans and Telorchis clemmydis) and two nematodes (Serpinema microcephalum and Falcaustra wardi). Of these, three helminths are alien to Japan-Spi.artericola, Spi. elegans and F. wardi-which represent the first report of their presence in the red-eared slider turtle from Japan. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. A map of terminal regulators of neuronal identity in Caenorhabditis elegans

    PubMed Central

    2016-01-01

    Our present day understanding of nervous system development is an amalgam of insights gained from studying different aspects and stages of nervous system development in a variety of invertebrate and vertebrate model systems, with each model system making its own distinctive set of contributions. One aspect of nervous system development that has been among the most extensively studied in the nematode Caenorhabditis elegans is the nature of the gene regulatory programs that specify hardwired, terminal cellular identities. I first summarize a number of maps (anatomical, functional, and molecular) that describe the terminal identity of individual neurons in the C. elegans nervous system. I then provide a comprehensive summary of regulatory factors that specify terminal identities in the nervous system, synthesizing these past studies into a regulatory map of cellular identities in the C. elegans nervous system. This map shows that for three quarters of all neurons in the C. elegans nervous system, regulatory factors that control terminal identity features are known. In‐depth studies of specific neuron types have revealed that regulatory factors rarely act alone, but rather act cooperatively in neuron‐type specific combinations. In most cases examined so far, distinct, biochemically unlinked terminal identity features are coregulated via cooperatively acting transcription factors, termed terminal selectors, but there are also cases in which distinct identity features are controlled in a piecemeal fashion by independent regulatory inputs. The regulatory map also illustrates that identity‐defining transcription factors are reemployed in distinct combinations in different neuron types. However, the same transcription factor can drive terminal differentiation in neurons that are unrelated by lineage, unrelated by function, connectivity and neurotransmitter deployment. Lastly, the regulatory map illustrates the preponderance of homeodomain transcription factors in the

  14. Sublethal Toxicity Endpoints of Heavy Metals to the Nematode Caenorhabditis elegans

    PubMed Central

    Wu, Yue; Wang, Qiang; Li, Huixin

    2016-01-01

    Caenorhabditis elegans, a free-living nematode, is commonly used as a model organism in ecotoxicological studies. The current literatures have provided useful insight into the relative sensitivity of several endpoints, but few direct comparisons of multiple endpoints under a common set of experimental conditions. The objective of this study was to determine appropriate sublethal endpoints to develop an ecotoxicity screening and monitoring system. C. elegans was applied to explore the sublethal toxicity of four heavy metals (copper, zinc, cadmium and chromium). Two physiological endpoints (growth and reproduction), three behavioral endpoints (head thrash frequency, body bend frequency and feeding) and two enzymatic endpoints (acetylcholine esterase [AChE] and superoxide dismutase [SOD]) were selected for the assessment of heavy metal toxicity. The squared correlation coefficients (R2) between the responses observed and fitted by Logit function were higher than 0.90 and the RMSE were lower than 0.10, indicating a good significance statistically. There was no significant difference among the half effect concentration (EC50) endpoints in physiological and behavioral effects of the four heavy metals, indicating similar sensitivity of physiological and behavioral effects. AChE enzyme was more sensitive to copper, zinc, and cadmium than to other physiological and behavioral effects, and SOD enzyme was most sensitive to chromium. The EC50 of copper, zinc, and cadmium, to the AChE enzyme in the nematodes were 0.68 mg/L, 2.76 mg/L, and 0.92 mg/L respectively and the EC50 of chromium to the SOD enzyme in the nematode was 1.58 mg/L. The results of this study showed that there was a good concentration-response relationship between all four heavy metals and the sublethal toxicity effects to C. elegans. Considering these sublethal endpoints in terms of simplicity, accuracy, repeatability and costs of the experiments, feeding is the relatively ideal sublethal toxicity endpoint of

  15. High- and low-throughput scoring of fat mass and body fat distribution in C. elegans

    PubMed Central

    Wählby, Carolina; Lee-Conery, Annie; Bray, Mark-Anthony; Kamentsky, Lee; Larkins-Ford, Jonah; Sokolnicki, Katherine L.; Veneskey, Matthew; Michaels, Kerry; Carpenter, Anne E.; O’Rourke, Eyleen J.

    2014-01-01

    Fat accumulation is a complex phenotype affected by factors such as neuroendocrine signaling, feeding, activity, and reproductive output. Accordingly, the most informative screens for genes and compounds affecting fat accumulation would be those carried out in whole living animals. Caenorhabditis elegans is a well-established and effective model organism, especially for biological processes that involve organ systems and multicellular interactions, such as metabolism. Every cell in the transparent body of C. elegans is visible under a light microscope. Consequently, an accessible and reliable method to visualize worm lipid-droplet fat depots would make C. elegans the only metazoan in which genes affecting not only fat mass but also body fat distribution could be assessed at a genome-wide scale. Here we present a radical improvement in oil red O worm staining together with high-throughput image-based phenotyping. The three-step sample preparation method is robust, formaldehyde-free, and inexpensive, and requires only 15 minutes of hands-on time to process a 96-well plate. Together with our free and user-friendly automated image analysis package, this method enables C. elegans sample preparation and phenotype scoring at a scale that is compatible with genome-wide screens. Thus we present a feasible approach to small-scale phenotyping and large-scale screening for genetic and/or chemical perturbations that lead to alterations in fat quantity and distribution in whole animals. PMID:24784529

  16. Regulation of Caenorhabditis elegans vitellogenesis by DAF-2/IIS through separable transcriptional and posttranscriptional mechanisms

    PubMed Central

    2011-01-01

    Background Evolutionary theories of aging propose that longevity evolves as a competition between reproduction and somatic maintenance for a finite pool of resources. Reproduction is thought to shorten lifespan by depleting resources from processes promoting somatic maintenance. Maternal yolk production, vitellogenesis, represents a significant maternal cost for reproduction and is suppressed under genetic and environmental conditions that extend lifespan. However, little is known about the pathways regulating vitellogenesis in response to prolongevity cues. Results In order to identify mechanisms that suppress vitellogenesis under prolongevity conditions, we studied factors regulating vitellogenesis in C. elegans nematodes. In C. elegans, vitellogenesis is depressed in the absence of insulin-like signaling (IIS). We found that the C. elegans daf-2/IIS pathway regulates vitellogenesis through two mechanisms. vit-2 transcript levels in daf-2 mutants were indirectly regulated through a germline-dependent signal, and could be rescued by introduction of daf-2(+) sperm. However, yolk protein (YP) levels in daf-2 mutants were also regulated by germline-independent posttranscriptional mechanisms. Conclusions C. elegans vitellogenesis is regulated transcriptionally and posttranscriptionally in response to environmental and reproductive cues. The daf-2 pathway suppressed vitellogenesis through transcriptional mechanisms reflecting reproductive phenotypes, as well as distinct posttranscriptional mechanisms. This study reveals that pleiotropic effects of IIS pathway mutations can converge on a common downstream target, vitellogenesis, as a mechanism to modulate longevity. PMID:21749693

  17. Developmental Effects of the ToxCast™ Phase I and Phase II Chemicals in Caenorhabditis elegans and Corresponding Responses in Zebrafish, Rats, and Rabbits

    PubMed Central

    Boyd, Windy A.; Smith, Marjolein V.; Co, Caroll A.; Pirone, Jason R.; Rice, Julie R.; Shockley, Keith R.; Freedman, Jonathan H.

    2015-01-01

    Background: Modern toxicology is shifting from an observational to a mechanistic science. As part of this shift, high-throughput toxicity assays are being developed using alternative, nonmammalian species to prioritize chemicals and develop prediction models of human toxicity. Methods: The nematode Caenorhabditis elegans (C. elegans) was used to screen the U.S. Environmental Protection Agency’s (EPA’s) ToxCast™ Phase I and Phase II libraries, which contain 292 and 676 chemicals, respectively, for chemicals leading to decreased larval development and growth. Chemical toxicity was evaluated using three parameters: a biologically defined effect size threshold, half-maximal activity concentration (AC50), and lowest effective concentration (LEC). Results: Across both the Phase I and Phase II libraries, 62% of the chemicals were classified as active ≤ 200 μM in the C. elegans assay. Chemical activities and potencies in C. elegans were compared with those from two zebrafish embryonic development toxicity studies and developmental toxicity data for rats and rabbits. Concordance of chemical activity was higher between C. elegans and one zebrafish assay across Phase I chemicals (79%) than with a second zebrafish assay (59%). Using C. elegans or zebrafish to predict rat or rabbit developmental toxicity resulted in balanced accuracies (the average value of the sensitivity and specificity for an assay) ranging from 45% to 53%, slightly lower than the concordance between rat and rabbit (58%). Conclusions: Here, we present an assay that quantitatively and reliably describes the effects of chemical toxicants on C. elegans growth and development. We found significant overlap in the activity of chemicals in the ToxCast™ libraries between C. elegans and zebrafish developmental screens. Incorporating C. elegans toxicological assays as part of a battery of in vitro and in vivo assays provides additional information for the development of models to predict a chemical

  18. Longevity effect of a polysaccharide from Chlorophytum borivilianum on Caenorhabditis elegans and Saccharomyces cerevisiae

    PubMed Central

    Pannakal, Steve Thomas; Jäger, Sibylle; Duranton, Albert; Tewari, Amit; Saha, Subarna; Radhakrishnan, Aneesha; Roy, Nita; Kuntz, Jean François; Fermas, Soraya; Mellor, Jane; Breton, Lionel

    2017-01-01

    The traditional Indian medicine, Ayurveda, provides insights and practical solutions towards a healthy life style. Rasayana is a branch of Ayurveda known for preserving and promoting health, enhancing the quality of life and delaying the aging process. In the traditional knowledge, the Rasayana herb, Chlorophytum borivilianum (C. borivilanum) is regarded as a general health promoting tonic that delays aging and increases lifespan, cognitive function and physical strength. Aging is a complex and multifactorial physiological phenomenon that manifests itself over a wide range of biological systems, tissues, and functions. Longevity is an obvious marker of physiological aging. Simple model systems such as the single-cell budding yeast Saccharomyces cerevisiae (S. cerevisiae) and the nematode, Caenorhabditis elegans (C. elegans) are widely used to study the aging process and longevity. Here, we show that a polysaccharide fraction obtained from C. borivilianum increases the lifespan of S. cerevisiae and C. elegans, using an automated screening platform (ChronoscreenTM). Chemical analysis of this extract revealed a low molecular weight polysaccharide of 1000 Da, predominantly comprising Glu1→6Glu linkage. This polysaccharide showed significant dose-dependent extension of the median lifespan of S. cerevisiae by up to 41% and of the median lifespan of C. elegans by up to 10%. Taking cue from these results and the traditionally described benefits of Rasayanas on skin rejuvenation, we tested in vitro the polysaccharide for potential skin benefits. In a keratinocyte culture, we observed that this polysaccharide increased cell proliferation significantly, and induced synthesis of hyaluronic acid (HA), a well-known extracellular matrix component. Furthermore, when added to culture medium of human reconstructed epidermis, we observed an enhanced production of epidermal markers, e.g. CD44 and HA that are otherwise diminished in aged skin. Together, these results suggest that in

  19. Myricetin-Mediated Lifespan Extension in Caenorhabditis elegans Is Modulated by DAF-16

    PubMed Central

    Büchter, Christian; Ackermann, Daniela; Havermann, Susannah; Honnen, Sebastian; Chovolou, Yvonni; Fritz, Gerhard; Kampkötter, Andreas; Wätjen, Wim

    2013-01-01

    Myricetin is a naturally occurring flavonol found in many plant based food sources. It increases the lifespan of Caenorhabditis elegans, but the molecular mechanisms are not yet fully understood. We have investigated the impact of this flavonoid on the transcription factors DAF-16 (C. elegans FoxO homologue) and SKN-1 (Nrf2 homologue), which have crucial functions in the regulation of ageing. Myricetin is rapidly assimilated by the nematode, causes a nuclear translocation of DAF-16 but not of SKN-1, and finally prolongs the mean adult lifespan of C. elegans by 32.9%. The lifespan prolongation was associated with a decrease in the accumulation of reactive oxygen species (ROS) detected by DCF. Myricetin also decreases the formation of lipofuscin, a pigment consisting of highly oxidized and cross-linked proteins that is considered as a biomarker of ageing in diverse species. The lifespan extension was completely abolished in a daf-16 loss-of-function mutant strain (CF1038). Consistently with this result, myricetin was also not able to diminish stress-induced ROS accumulation in the mutant. These results strongly indicate that the pro-longevity effect of myricetin is dependent on DAF-16 and not on direct anti-oxidative effects of the flavonoid. PMID:23736695

  20. A multitasking Argonaute: exploring the many facets of C. elegans CSR-1.

    PubMed

    Wedeles, Christopher J; Wu, Monica Z; Claycomb, Julie M

    2013-12-01

    While initial studies of small RNA-mediated gene regulatory pathways focused on the cytoplasmic functions of such pathways, identifying roles for Argonaute/small RNA pathways in modulating chromatin and organizing the genome has become a topic of intense research in recent years. Nuclear regulatory mechanisms for Argonaute/small RNA pathways appear to be widespread, in organisms ranging from plants to fission yeast, Caenorhabditis elegans to humans. As the effectors of small RNA-mediated gene regulatory pathways, Argonaute proteins guide the chromatin-directed activities of these pathways. Of particular interest is the C. elegans Argonaute, chromosome segregation and RNAi deficient (CSR-1), which has been implicated in such diverse functions as organizing the holocentromeres of worm chromosomes, modulating germline chromatin, protecting the genome from foreign nucleic acid, regulating histone levels, executing RNAi, and inhibiting translation in conjunction with Pumilio proteins. CSR-1 interacts with small RNAs known as 22G-RNAs, which have complementarity to 25 % of the protein coding genes. This peculiar Argonaute is the only essential C. elegans Argonaute out of 24 family members in total. Here, we summarize the current understanding of CSR-1 functions in the worm, with emphasis on the chromatin-directed activities of this ever-intriguing Argonaute.

  1. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans.

    PubMed

    Mohan, Nitin; Chen, Chao-Sheng; Hsieh, Hsiao-Han; Wu, Yi-Chun; Chang, Huan-Cheng

    2010-09-08

    Nanoscale carbon materials hold great promise for biotechnological and biomedical applications. Fluorescent nanodiamond (FND) is a recent new addition to members of the nanocarbon family. Here, we report long-term in vivo imaging of FNDs in Caenorhabditis elegans (C. elegans) and explore the nano-biointeractions between this novel nanomaterial and the model organism. FNDs are introduced into wild-type C. elegans by either feeding them with colloidal FND solution or microinjecting FND suspension into the gonads of the worms. On feeding, bare FNDs stay in the intestinal lumen, while FNDs conjugated with biomolecules (such as dextran and bovine serum albumin) are absorbed into the intestinal cells. On microinjection, FNDs are dispersed in the gonad and delivered to the embryos and eventually into the hatched larvae in the next generation. The toxicity assessments, performed by employing longevity and reproductive potential as physiological indicators and measuring stress responses with use of reporter genes, show that FNDs are stable and nontoxic and do not cause any detectable stress to the worms. The high brightness, excellent photostability, and nontoxic nature of the nanomaterial have enabled continuous imaging of the whole digestive system and tracking of the cellular and developmental processes of the living organism for several days.

  2. Neolignans from Aristolochia elegans as antagonists of the neurotropic effect of scorpion venom.

    PubMed

    Zamilpa, Alejandro; Abarca-Vargas, Rodolfo; Ventura-Zapata, Elsa; Osuna-Torres, Lidia; Zavala, Miguel A; Herrera-Ruiz, Maribel; Jiménez-Ferrer, Enrique; González-Cortazar, Manasés

    2014-11-18

    The high frequency of poisoning by sting or bite from venomous animals has begun to be a serious public health problem in Mexico where scorpion sting is the most common. Because of this, there is the need to seek active substances in plant species with an antagonistic effect against neurotropic activity of scorpion venom. The aim of this work was to demonstrate which of the compounds contained in the n-hexane extract from Aristolochia elegans roots display activity against scorpion venom. Antagonist activity displayed by extract, fractions and isolated compounds obtained from Aristolochia elegans was guided by the inhibition of smooth muscle contraction induced by scorpion venom (Centruroides limpidus limpidus) in a model of isolated guinea pig ileum. The neolignans obtained from this extract were isolated and analyzed by chromatographic methods including HPLC. The chemical characterization of these compounds was performed by the analysis of (1)H and (13)C NMR spectra. The bio-guided chromatographic fractionation allowed us to isolate 4 known neolignans: Eupomatenoid-7 (1), licarin A (2), licarin B (3), eupomatenoid-1 (4) and other new neolignan which was characterized as 2-(3'-hydroxy-4'-methoxyphenyl)-3-methyl-5-[(E)-α-propen-γ-al]-7-methoxy-benzo [b] furan (5). This compound was named as eleganal. Compounds 1 and 2 were purified from the most active fraction AeF3 (EC50 of 149.9μg/mL, Emax of 65.66%). A doses-response analysis of eupomatenoid-7(1) and licarin A(2) allowed us to establish EC50 values (65.96μg/mL and 51.96μg/mL) respectively. The antagonistic effect against Centuroides limpidus limpidus scorpion venom displayed by the n-hexane extract from Aristolochia elegans roots is due to the presence of neolignans 1-2 contained in the fraction AeF3. Chemical analysis of fraction AeF2 allowed the isolation of a new compound which was identified as 2-(3'-hydroxy-4'-methoxyphenyl)-3-methyl-5-[(E)-α-propen-γ-al]-7-methoxy-benzo[b]furan (5), denominated as

  3. Population dynamics of Lanyu Scops Owls (Otus elegans botelensis)

    Treesearch

    L. L. Severinghaus

    1997-01-01

    Monthly visits to Lanyu Island have been made to study Lanyu Scops Owls (Otus elegans botelensis) since 1986. This population has been surveyed by regular census and playback counts, by color banding, by monitoring the survival, reproduction and movements of individual owls, and by mapping and documenting the change in nest trees.

  4. Context Specificity of Stress-activated Mitogen-activated Protein (MAP) Kinase Signaling: The Story as Told by Caenorhabditis elegans*

    PubMed Central

    Andrusiak, Matthew G.; Jin, Yishi

    2016-01-01

    Stress-associated p38 and JNK mitogen-activated protein (MAP) kinase signaling cascades trigger specific cellular responses and are involved in multiple disease states. At the root of MAP kinase signaling complexity is the differential use of common components on a context-specific basis. The roundworm Caenorhabditis elegans was developed as a system to study genes required for development and nervous system function. The powerful genetics of C. elegans in combination with molecular and cellular dissections has led to a greater understanding of how p38 and JNK signaling affects many biological processes under normal and stress conditions. This review focuses on the studies revealing context specificity of different stress-activated MAPK components in C. elegans. PMID:26907690

  5. Serotonin Control of Thermotaxis Memory Behavior in Nematode Caenorhabditis elegans

    PubMed Central

    Guo, Yuling; Wang, Daoyong; Li, Chaojun; Wang, Dayong

    2013-01-01

    Caenorhabditis elegans is as an ideal model system for the study of mechanisms underlying learning and memory. In the present study, we employed C. elegans assay system of thermotaxis memory to investigate the possible role of serotonin neurotransmitter in memory control. Our data showed that both mutations of tph-1, bas-1, and cat-4 genes, required for serotonin synthesis, and mutations of mod-5 gene, encoding a serotonin reuptake transporter, resulted in deficits in thermotaxis memory behavior. Exogenous treatment with serotonin effectively recovered the deficits in thermotaxis memory of tph-1 and bas-1 mutants to the level of wild-type N2. Neuron-specific activity assay of TPH-1 suggests that serotonin might regulate the thermotaxis memory behavior by release from the ADF sensory neurons. Ablation of ADF sensory neurons by expressing a cell-death activator gene egl-1 decreased the thermotaxis memory, whereas activation of ADF neurons by expression of a constitutively active protein kinase C homologue (pkc-1(gf)) increased the thermotaxis memory and rescued the deficits in thermotaxis memory in tph-1 mutants. Moreover, serotonin released from the ADF sensory neurons might act through the G-protein-coupled serotonin receptors of SER-4 and SER-7 to regulate the thermotaxis memory behavior. Genetic analysis implies that serotonin might further target the insulin signaling pathway to regulate the thermotaxis memory behavior. Thus, our results suggest the possible crucial role of serotonin and ADF sensory neurons in thermotaxis memory control in C. elegans. PMID:24223727

  6. Microvalve-based microfluidic device for C. elegans manipulation

    NASA Astrophysics Data System (ADS)

    Johari, S.; Nock, V.; Alkaisi, M. M.; Wang, W.

    2017-09-01

    In this paper, we report on the integration of a force measurement application capable of continuously measuring the forces generated by C. elegans in motion with a series of controllable microvalves which have an additional ability to increase control over worm selection and manipulation. The three-layer device consists of a pneumatic layer at the top, and a fluidic layer at the bottom with a thin PDMS membrane which functions as a microvalve sandwiched in between. The pneumatic layer functions as valves, whose operation is controlled pneumatically. The fluidic layer contains of PDMS micropillars for resolving the worm force from the deflection of the cantilever-like pillars. The measured force is horizontal and equivalent to a point force acting at half of the pillar height. By carefully controlling the incorporated microvalves, the proposed device is able to select and direct worm movement and at the same time increase the number of force measurement results collected. The integration of the microvalve with the PDMS micropillar-based on chip system can be easily combined with existing screening and imaging systems and also has the capability to facilitate high-throughput screening of force patterns in C. elegans locomotion behaviour.

  7. Spatiotemporal regulation of autophagy during Caenorhabditis elegans aging

    PubMed Central

    Chang, Jessica T; Kumsta, Caroline; Hellman, Andrew B; Adams, Linnea M; Hansen, Malene

    2017-01-01

    Autophagy has been linked to longevity in many species, but the underlying mechanisms are unclear. Using a GFP-tagged and a new tandem-tagged Atg8/LGG-1 reporter, we quantified autophagic vesicles and performed autophagic flux assays in multiple tissues of wild-type Caenorhabditis elegans and long-lived daf-2/insulin/IGF-1 and glp-1/Notch mutants throughout adulthood. Our data are consistent with an age-related decline in autophagic activity in the intestine, body-wall muscle, pharynx, and neurons of wild-type animals. In contrast, daf-2 and glp-1 mutants displayed unique age- and tissue-specific changes in autophagic activity, indicating that the two longevity paradigms have distinct effects on autophagy during aging. Although autophagy appeared active in the intestine of both long-lived mutants, inhibition of intestinal autophagy significantly abrogated lifespan extension only in glp-1 mutants. Collectively, our data suggest that autophagic activity normally decreases with age in C. elegans, whereas daf-2 and glp-1 long-lived mutants regulate autophagy in distinct spatiotemporal-specific manners to extend lifespan. DOI: http://dx.doi.org/10.7554/eLife.18459.001 PMID:28675140

  8. The C. elegans neural editome reveals an ADAR target mRNA required for proper chemotaxis

    PubMed Central

    Deffit, Sarah N; Yee, Brian A; Manning, Aidan C; Rajendren, Suba; Vadlamani, Pranathi; Wheeler, Emily C; Domissy, Alain; Washburn, Michael C

    2017-01-01

    ADAR proteins alter gene expression both by catalyzing adenosine (A) to inosine (I) RNA editing and binding to regulatory elements in target RNAs. Loss of ADARs affects neuronal function in all animals studied to date. Caenorhabditis elegans lacking ADARs exhibit reduced chemotaxis, but the targets responsible for this phenotype remain unknown. To identify critical neural ADAR targets in C. elegans, we performed an unbiased assessment of the effects of ADR-2, the only A-to-I editing enzyme in C. elegans, on the neural transcriptome. Development and implementation of publicly available software, SAILOR, identified 7361 A-to-I editing events across the neural transcriptome. Intersecting the neural editome with adr-2 associated gene expression changes, revealed an edited mRNA, clec-41, whose neural expression is dependent on deamination. Restoring clec-41 expression in adr-2 deficient neural cells rescued the chemotaxis defect, providing the first evidence that neuronal phenotypes of ADAR mutants can be caused by altered gene expression. PMID:28925356

  9. Epoxides Derived from Dietary Dihomo-Gamma-Linolenic Acid Induce Germ Cell Death in C. elegans.

    PubMed

    Deline, Marshall; Keller, Julia; Rothe, Michael; Schunck, Wolf-Hagen; Menzel, Ralph; Watts, Jennifer L

    2015-10-21

    Dietary fats are not created equally, slight differences in structure lead to crucial differences in function. Muticellular organisms use polyunsaturated fatty acid as substrates to produce potent signaling molecules crucial for many physiological processes, including reproduction. Here we explored the mechanism responsible for germ cell loss induced by dietary supplementation of dihomo-gamma-linolenic acid (DGLA, 20:3n-6) in the roundworm Caenorhabditis elegans. In this study we found that C. elegans CYP-33E2 activity produces a range of epoxy and hydroxy metabolites from dietary DGLA. Knockdown of cyp-33E2 suppressed the DGLA-induced sterility phenotype. Additionally, direct exposure of two specific DGLA-derived epoxy products, 8,9- and 14,15-epoxyeicosadienoic acids, produced germ cell abnormalities in the C. elegans gonad. We propose that sterility is mediated by the production of toxic DGLA-derived epoxides that trigger germ cell destruction. These studies are the first to establish a biological activity for a CYP-produced metabolite of DGLA.

  10. β-Catenin-Dependent Wnt Signaling in C. elegans: Teaching an Old Dog a New Trick

    PubMed Central

    Jackson, Belinda M.; Eisenmann, David M.

    2012-01-01

    Wnt signaling is an evolutionarily ancient pathway used to regulate many events during metazoan development. Genetic results from Caenorhabditis elegans more than a dozen years ago suggested that Wnt signaling in this nematode worm might be different than in vertebrates and Drosophila: the worm had a small number of Wnts, too many β-catenins, and some Wnt pathway components functioned in an opposite manner than in other species. Work over the ensuing years has clarified that C. elegans does possess a canonical Wnt/β-catenin signaling pathway similar to that in other metazoans, but that the majority of Wnt signaling in this species may proceed via a variant Wnt/β-catenin signaling pathway that uses some new components (mitogen-activated protein kinase signaling enzymes), and in which some conserved pathway components (β-catenin, T-cell factor [TCF]) are used in new and interesting ways. This review summarizes our current understanding of the canonical and novel TCF/β-catenin-dependent signaling pathways in C. elegans. PMID:22745286

  11. A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans

    PubMed Central

    Bretscher, Andrew Jonathan; Busch, Karl Emanuel; de Bono, Mario

    2008-01-01

    Homeostasis of internal carbon dioxide (CO2) and oxygen (O2) levels is fundamental to all animals. Here we examine the CO2 response of the nematode Caenorhabditis elegans. This species inhabits rotting material, which typically has a broad CO2 concentration range. We show that well fed C. elegans avoid CO2 levels above 0.5%. Animals can respond to both absolute CO2 concentrations and changes in CO2 levels within seconds. Responses to CO2 do not reflect avoidance of acid pH but appear to define a new sensory response. Sensation of CO2 is promoted by the cGMP-gated ion channel subunits TAX-2 and TAX-4, but other pathways are also important. Robust CO2 avoidance in well fed animals requires inhibition of the DAF-16 forkhead transcription factor by the insulin-like receptor DAF-2. Starvation, which activates DAF-16, strongly suppresses CO2 avoidance. Exposure to hypoxia (<1% O2) also suppresses CO2 avoidance via activation of the hypoxia-inducible transcription factor HIF-1. The npr-1 215V allele of the naturally polymorphic neuropeptide receptor npr-1, besides inhibiting avoidance of high ambient O2 in feeding C. elegans, also promotes avoidance of high CO2. C. elegans integrates competing O2 and CO2 sensory inputs so that one response dominates. Food and allelic variation at NPR-1 regulate which response prevails. Our results suggest that multiple sensory inputs are coordinated by C. elegans to generate different coherent foraging strategies. PMID:18524954

  12. A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans.

    PubMed

    Bretscher, Andrew Jonathan; Busch, Karl Emanuel; de Bono, Mario

    2008-06-10

    Homeostasis of internal carbon dioxide (CO2) and oxygen (O2) levels is fundamental to all animals. Here we examine the CO2 response of the nematode Caenorhabditis elegans. This species inhabits rotting material, which typically has a broad CO2 concentration range. We show that well fed C. elegans avoid CO2 levels above 0.5%. Animals can respond to both absolute CO2 concentrations and changes in CO2 levels within seconds. Responses to CO2 do not reflect avoidance of acid pH but appear to define a new sensory response. Sensation of CO2 is promoted by the cGMP-gated ion channel subunits TAX-2 and TAX-4, but other pathways are also important. Robust CO2 avoidance in well fed animals requires inhibition of the DAF-16 forkhead transcription factor by the insulin-like receptor DAF-2. Starvation, which activates DAF-16, strongly suppresses CO2 avoidance. Exposure to hypoxia (<1% O2) also suppresses CO2 avoidance via activation of the hypoxia-inducible transcription factor HIF-1. The npr-1 215V allele of the naturally polymorphic neuropeptide receptor npr-1, besides inhibiting avoidance of high ambient O2 in feeding C. elegans, also promotes avoidance of high CO2. C. elegans integrates competing O2 and CO2 sensory inputs so that one response dominates. Food and allelic variation at NPR-1 regulate which response prevails. Our results suggest that multiple sensory inputs are coordinated by C. elegans to generate different coherent foraging strategies.

  13. Molecular and genetic characterization of osmosensing and signal transduction in the nematode Caenorhabditis elegans.

    PubMed

    Choe, Keith P; Strange, Kevin

    2007-11-01

    Osmotic homeostasis is a fundamental requirement for life. In general, the effector mechanisms that mediate cellular and extracellular osmoregulation in animals are reasonably well defined. However, at the molecular level, little is known about how animals detect osmotic and ionic perturbations and transduce them into regulatory responses. The nematode Caenorhabditis elegans provides numerous powerful experimental advantages for defining the genes and integrated gene networks that underlie basic biological processes. These advantages include a fully sequenced and well-annotated genome, forward and reverse genetic and molecular tractability, and a relatively simple anatomy. C. elegans normally inhabits soil environments where it is exposed to repeated osmotic stress. In the laboratory, nematodes readily acclimate to and recover from extremes of hypertonicity. We review recent progress in defining the molecular mechanisms that underlie osmosensing and associated signal transduction in C. elegans. Some of these mechanisms are now known to be highly conserved. Therefore, studies of osmosensing in nematodes have provided, and will undoubtedly continue to provide, new insights into similar processes in more complex organisms including mammals.

  14. Staphylococcus saprophyticus surface-associated protein (Ssp) is associated with lifespan reduction in Caenorhabditis elegans

    PubMed Central

    Szabados, Florian; Mohner, Amelie; Kleine, Britta; Gatermann, Sören G

    2013-01-01

    Staphylococcal lipases have been proposed as pathogenicity factors. In Staphylococcus saprophyticus the surface-associated protein (Ssp) has been previously characterized as a cell wall-associated true lipase. A S. saprophyticus Δssp::ermB mutant has been described as less virulent in an in vivo model of urinary tract infection compared with its wild-type. This is the first report showing that S. saprophyticus induced a lifespan reduction in Caenorhabditis elegans similar to that of S. aureus RN4220. In two S. saprophyticus Δssp::ermB mutants lifespan reduction in C. elegans was partly abolished. In order to attribute virulence to the lipase activity itself and distinguish this phenomenon from the presence of the Ssp-protein, the conserved active site of the lipase was modified by site-directed ligase-independent mutagenesis and lipase activity-deficient mutants were constructed. These results indicate that the Ssp is associated with pathogenicity in C. elegans and one could speculate that the lipase activity itself is responsible for this virulence. PMID:23959029

  15. Concentration dependent differential activity of signalling molecules in Caenorhabditis elegans

    USDA-ARS?s Scientific Manuscript database

    Caenorhabditis elegans employs specific glycosides of the dideoxysugar ascarylose (the ‘ascarosides’) for monitoring population density/ dauer formation and finding mates. A synergistic blend of three ascarosides, called ascr#2, ascr#3 and ascr#4 acts as a dauer pheromone at a high concentration na...

  16. Chemotaxis-defective mutants of the nematode Caenorhabditis elegans.

    PubMed

    Dusenbery, D B; Sheridan, R E; Russell, R L

    1975-06-01

    The technique of countercurrent separation has been used to isolate 17 independent chemotaxis-defective mutants of the nematode Caenorhabditis elegans. The mutants, selected to be relatively insensitive to the normally attractive salt NaCl, show varying degrees of residual sensitivity; some are actually weakly repelled by NaCl. The mutants are due to single gene defects, are autosomal and recessive, and identify at least five complementation groups.

  17. Lower Doses of Fructose Extend Lifespan in Caenorhabditis elegans

    PubMed Central

    Zheng, Jolene; Gao, Chenfei; Wang, Mingming; Tran, Phuongmai; Mai, Nancy; Finley, John W.; Heymsfield, Steven B.; Greenway, Frank L.; Li, Zhaoping; Heber, David; Burton, Jeffrey H.; Johnson, William D.; Laine, Roger A.

    2016-01-01

    Epidemiological studies indicate that the increased consumption of sugars including sucrose and fructose in beverages correlate with the prevalence of obesity, type-2 diabetes, insulin resistance, hyperinsulinemia, hypertriglyceridemia, and hypertension in humans. A few reports suggest that fructose extends lifespan in Saccharomyces cerevisiae. In Anopheles gambiae, fructose, glucose, or glucose plus fructose also extended lifespan. New results presented here suggest that fructose extends lifespan in Caenorhabditis elegans (C. elegans) wild type (N2). C. elegans were fed standard laboratory food source (E. coli OP50), maintained in liquid culture. Experimental groups received additional glucose (111 mM), fructose (55 mM, 111 mM, or 555 mM), sucrose (55 mM, 111 mM, or 555 mM), glucose (167 mM) plus fructose (167 mM) (G&F), or high fructose corn syrup (HFCS, 333 mM). In four replicate experiments, fructose dose-dependently increased mean lifespan at 55 mM or 111 m Min N2, but decreased lifespan at 555 mM (P < 0.001). Sucrose did not affect the lifespan. Glucose reduced lifespan (P < 0.001). Equal amount of G&F or HFCS reduced lifespan (P < 0.0001). Intestinal fat deposition (IFD) was increased at a higher dose of fructose (555 mM), glucose (111 mM), and sucrose (55 mM, 111 mM, and 555 mM). Here we report a biphasic effect of fructose increasing lifespan at lower doses and shortening lifespan at higher doses with an inverse effect on IFD. In view of reports that fructose increases lifespan in yeast, mosquitoes and now nematodes, while decreasing fat deposition (in nematodes) at lower concentrations, further research into the relationship of fructose to lifespan and fat accumulation in vertebrates and mammals is indicated. PMID:27680107

  18. Lower Doses of Fructose Extend Lifespan in Caenorhabditis elegans.

    PubMed

    Zheng, Jolene; Gao, Chenfei; Wang, Mingming; Tran, Phuongmai; Mai, Nancy; Finley, John W; Heymsfield, Steven B; Greenway, Frank L; Li, Zhaoping; Heber, David; Burton, Jeffrey H; Johnson, William D; Laine, Roger A

    2017-05-04

    Epidemiological studies indicate that the increased consumption of sugars including sucrose and fructose in beverages correlate with the prevalence of obesity, type-2 diabetes, insulin resistance, hyperinsulinemia, hypertriglyceridemia, and hypertension in humans. A few reports suggest that fructose extends lifespan in Saccharomyces cerevisiae. In Anopheles gambiae, fructose, glucose, or glucose plus fructose also extended lifespan. New results presented here suggest that fructose extends lifespan in Caenorhabditis elegans (C. elegans) wild type (N2). C. elegans were fed standard laboratory food source (E. coli OP50), maintained in liquid culture. Experimental groups received additional glucose (111 mM), fructose (55 mM, 111 mM, or 555 mM), sucrose (55 mM, 111 mM, or 555 mM), glucose (167 mM) plus fructose (167 mM) (G&F), or high fructose corn syrup (HFCS, 333 mM). In four replicate experiments, fructose dose-dependently increased mean lifespan at 55 mM or 111 m Min N2, but decreased lifespan at 555 mM (P < 0.001). Sucrose did not affect the lifespan. Glucose reduced lifespan (P < 0.001). Equal amount of G&F or HFCS reduced lifespan (P < 0.0001). Intestinal fat deposition (IFD) was increased at a higher dose of fructose (555 mM), glucose (111 mM), and sucrose (55 mM, 111 mM, and 555 mM). Here we report a biphasic effect of fructose increasing lifespan at lower doses and shortening lifespan at higher doses with an inverse effect on IFD. In view of reports that fructose increases lifespan in yeast, mosquitoes and now nematodes, while decreasing fat deposition (in nematodes) at lower concentrations, further research into the relationship of fructose to lifespan and fat accumulation in vertebrates and mammals is indicated.

  19. Long-term imaging of circadian locomotor rhythms of a freely crawling C. elegans population

    PubMed Central

    Winbush, Ari; Gruner, Matthew; Hennig, Grant W.; van der Linden, Alexander M.

    2016-01-01

    Background Locomotor activity is used extensively as a behavioral output to study the underpinnings of circadian rhythms. Recent studies have required a populational approach for the study of circadian rhythmicity in Caenorhabditis elegans locomotion. New method We describe an imaging system for long-term automated recording and analysis of locomotion data of multiple free-crawling C. elegans animals on the surface of an agar plate. We devised image analysis tools for measuring specific features related to movement and shape to identify circadian patterns. Results We demonstrate the utility of our system by quantifying circadian locomotor rhythms in wild-type and mutant animals induced by temperature cycles. We show that 13 °C:18 °C (12:12 h) cycles are sufficient to entrain locomotor activity of wild-type animals, which persist but are rapidly damped during 13 °C free-running conditions. Animals with mutations in tax-2, a cyclic nucleotide-gated (CNG) ion channel, significantly reduce locomotor activity during entrainment and free-running. Comparison with existing method(s) Current methods for measuring circadian locomotor activity is generally restricted to recording individual swimming animals of C. elegans, which is a distinct form of locomotion from crawling behavior generally observed in the laboratory. Our system works well with up to 20 crawling adult animals, and allows for a detailed analysis of locomotor activity over long periods of time. Conclusions Our population-based approach provides a powerful tool for quantification of circadian rhythmicity of C. elegans locomotion, and could allow for a screening system of candidate circadian genes in this model organism. PMID:25911068

  20. A Rolling Circle Replication Mechanism Produces Multimeric Lariats of Mitochondrial DNA in Caenorhabditis elegans

    PubMed Central

    Lewis, Samantha C.; Joers, Priit; Willcox, Smaranda; Griffith, Jack D.; Jacobs, Howard T.; Hyman, Bradley C.

    2015-01-01

    Mitochondrial DNA (mtDNA) encodes respiratory complex subunits essential to almost all eukaryotes; hence respiratory competence requires faithful duplication of this molecule. However, the mechanism(s) of its synthesis remain hotly debated. Here we have developed Caenorhabditis elegans as a convenient animal model for the study of metazoan mtDNA synthesis. We demonstrate that C. elegans mtDNA replicates exclusively by a phage-like mechanism, in which multimeric molecules are synthesized from a circular template. In contrast to previous mammalian studies, we found that mtDNA synthesis in the C. elegans gonad produces branched-circular lariat structures with multimeric DNA tails; we were able to detect multimers up to four mtDNA genome unit lengths. Further, we did not detect elongation from a displacement-loop or analogue of 7S DNA, suggesting a clear difference from human mtDNA in regard to the site(s) of replication initiation. We also identified cruciform mtDNA species that are sensitive to cleavage by the resolvase RusA; we suggest these four-way junctions may have a role in concatemer-to-monomer resolution. Overall these results indicate that mtDNA synthesis in C. elegans does not conform to any previously documented metazoan mtDNA replication mechanism, but instead are strongly suggestive of rolling circle replication, as employed by bacteriophages. As several components of the metazoan mitochondrial DNA replisome are likely phage-derived, these findings raise the possibility that the rolling circle mtDNA replication mechanism may be ancestral among metazoans. PMID:25693201

  1. The Effect of Designated Pollutants on Plant Species

    DTIC Science & Technology

    1981-01-01

    49 33 Dry weight of marigolds exposed to four weekly acid sprays and harvested on fifth week o . . . . . . 0 .. . .. .. 49 34...fertilizer and 12 kg pre-emergence weed killer (Dacthal) per hectare during plowing. Two-week-old zinnia and marigold plants, started in peat pots in the...study described below. Effect on Yield Zinnia and marigold plants transplanted to a Riverside field were exposed weekly for 6 successive weeks to one

  2. Evaluation of the antioxidant property and effects in Caenorhabditis elegans of Xiangxi flavor vinegar, a Hunan local traditional vinegar*

    PubMed Central

    HUANG, Run-ting; HUANG, Qing; WU, Gen-liang; CHEN, Chun-guang; LI, Zong-jun

    2017-01-01

    Xiangxi flavor vinegar (XV) is one of Hunan Province’s traditional fermented vinegars. It is produced from herb, rice, and spring water with spontaneous liquid-state fermentation techniques. In this study, we investigated the antioxidant property of XV by analyzing its antioxidant compounds, its free radical scavenging property in vitro and in vivo, and its effects on antioxidant enzyme activity and apoptosis in Caenorhabditis elegans. The results showed that XV is rich in antioxidants. In particular, ligustrazine reached 6.431 μg/ml. The in vitro 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH•), hydroxyl radical (•OH), and superoxide anion radical (O2 •−) scavenging rates of XV were 95.85%, 97.22%, and 63.33%, respectively. The reactive oxygen species (ROS) content in XV-treated C. elegans decreased significantly (P<0.01) compared to the control group. Glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities were remarkably increased (P<0.01) in C. elegans after XV treatment. In addition, XV could upregulate CED-9 protein expression and downregulate CED-3 protein expression in C. elegans. These results prove that XV is rich in antioxidants and scavenges radicals in vitro efficiently. XV inhibits apoptosis in C. elegans probably by scavenging ROS and increasing the activities of its antioxidant enzymes. PMID:28378570

  3. Caenorhabditis elegans as an experimental tool for the study of complex neurological diseases: Parkinson's disease, Alzheimer's disease and autism spectrum disorder.

    PubMed

    Calahorro, Fernando; Ruiz-Rubio, Manuel

    2011-12-01

    The nematode Caenorhabditis elegans has a very well-defined and genetically tractable nervous system which offers an effective model to explore basic mechanistic pathways that might be underpin complex human neurological diseases. Here, the role C. elegans is playing in understanding two neurodegenerative conditions, Parkinson's and Alzheimer's disease (AD), and a complex neurological condition, autism, is used as an exemplar of the utility of this model system. C. elegans is an imperfect model of Parkinson's disease because it lacks orthologues of the human disease-related genes PARK1 and LRRK2 which are linked to the autosomal dominant form of this disease. Despite this fact, the nematode is a good model because it allows transgenic expression of these human genes and the study of the impact on dopaminergic neurons in several genetic backgrounds and environmental conditions. For AD, C. elegans has orthologues of the amyloid precursor protein and both human presenilins, PS1 and PS2. In addition, many of the neurotoxic properties linked with Aβ amyloid and tau peptides can be studied in the nematode. Autism spectrum disorder is a complex neurodevelopmental disorder characterised by impairments in human social interaction, difficulties in communication, and restrictive and repetitive behaviours. Establishing C. elegans as a model for this complex behavioural disorder is difficult; however, abnormalities in neuronal synaptic communication are implicated in the aetiology of the disorder. Numerous studies have associated autism with mutations in several genes involved in excitatory and inhibitory synapses in the mammalian brain, including neuroligin, neurexin and shank, for which there are C. elegans orthologues. Thus, several molecular pathways and behavioural phenotypes in C. elegans have been related to autism. In general, the nematode offers a series of advantages that combined with knowledge from other animal models and human research, provides a powerful

  4. New haystacks reveal new needles: using Caenorhabditis elegans to identify novel targets for ameliorating body composition changes during human aging.

    PubMed

    Wolkow, Catherine A

    2010-01-01

    Dramatic changes in body composition accompany aging in humans, particularly with respect to adiposity and the musculature. People accumulate fat as they age and lose muscle mass and strength. Caenorhabditis elegans nematodes are small, hermaphroditic soil nematodes that offer a flexible model for studying genetic pathways regulating body composition in humans. While there are significant physiological differences between worms and people, many of the genetic pathways relevant to human lipid and muscle homeostasis are present in worms. Initial studies indicate that adiposity increases in C. elegans during aging, as occurs in humans. Furthermore, substantial evidence demonstrates age-related loss of muscle mass in worms. Possible mechanisms for these changes in C. elegans are presented. Recent studies have highlighted neuroendocrine and environmental signals regulating C. elegans fat metabolism. Potential dysfunction of these pathways during aging could affect overall fat accumulation. By contrast, muscle decline in aging worms results from accumulated damage and 'wear-and-tear' over life span. However, neuroendocrine pathways also regulate muscle mass in response to food availability. Such pathways might provide useful therapeutic approaches for combating muscle loss during aging. From this chapter, readers will develop a deeper understanding of the ways that C.elegans can be used for mechanistic gerontological studies. Copyright © 2010 S. Karger AG, Basel.

  5. Heritable determinants of male fertilization success in the nematode Caenorhabditis elegans.

    PubMed

    Murray, Rosalind L; Kozlowska, Joanna L; Cutter, Asher D

    2011-04-14

    Sperm competition is a driving force in the evolution of male sperm characteristics in many species. In the nematode Caenorhabditis elegans, larger male sperm evolve under experimentally increased sperm competition and larger male sperm outcompete smaller hermaphrodite sperm for fertilization within the hermaphrodite reproductive tract. To further elucidate the relative importance of sperm-related traits that contribute to differential reproductive success among males, we quantified within- and among-strain variation in sperm traits (size, rate of production, number transferred, competitive ability) for seven male genetic backgrounds known previously to differ with respect to some sperm traits. We also quantified male mating ability in assays for rates of courtship and successful copulation, and then assessed the roles of these pre- and post-mating traits in first- and second-male fertilization success. We document significant variation in courtship ability, mating ability, sperm size and sperm production rate. Sperm size and production rate were strong indicators of early fertilization success for males that mated second, but male genetic backgrounds conferring faster sperm production make smaller sperm, despite virgin males of all genetic backgrounds transferring indistinguishable numbers of sperm to mating partners. We have demonstrated that sperm size and the rate of sperm production represent dominant factors in determining male fertilization success and that C. elegans harbors substantial heritable variation for traits contributing to male reproductive success. C. elegans provides a powerful, tractable system for studying sexual selection and for dissecting the genetic basis and evolution of reproduction-related traits.

  6. Zinc Levels Modulate Lifespan through Multiple Longevity Pathways in Caenorhabditis elegans

    PubMed Central

    Kumar, Jitendra; Barhydt, Tracy; Awasthi, Anjali; Lithgow, Gordon J.; Killilea, David W.; Kapahi, Pankaj

    2016-01-01

    Zinc is an essential trace metal that has integral roles in numerous biological processes, including enzymatic function, protein structure, and cell signaling pathways. Both excess and deficiency of zinc can lead to detrimental effects on development and metabolism, resulting in abnormalities and disease. We altered the zinc balance within Caenorhabditis elegans to examine how changes in zinc burden affect longevity and healthspan in an invertebrate animal model. We found that increasing zinc levels in vivo with excess dietary zinc supplementation decreased the mean and maximum lifespan, whereas reducing zinc levels in vivo with a zinc-selective chelator increased the mean and maximum lifespan in C. elegans. We determined that the lifespan shortening effects of excess zinc required expression of DAF-16, HSF-1 and SKN-1 proteins, whereas the lifespan lengthening effects of the reduced zinc may be partially dependent upon this set of proteins. Furthermore, reducing zinc levels led to greater nuclear localization of DAF-16 and enhanced dauer formation compared to controls, suggesting that the lifespan effects of zinc are mediated in part by the insulin/IGF-1 pathway. Additionally, zinc status correlated with several markers of healthspan in worms, including proteostasis, locomotion and thermotolerance, with reduced zinc levels always associated with improvements in function. Taken together, these data support a role for zinc in regulating both development and lifespan in C. elegans, and that suggest that regulation of zinc homeostasis in the worm may be an example of antagonistic pleiotropy. PMID:27078872

  7. Life cycle and population growth rate of Caenorhabditis elegans studied by a new method.

    PubMed

    Muschiol, Daniel; Schroeder, Fabian; Traunspurger, Walter

    2009-05-16

    The free-living nematode Caenorhabditis elegans is the predominant model organism in biological research, being used by a huge number of laboratories worldwide. Many researchers have evaluated life-history traits of C. elegans in investigations covering quite different aspects such as ecotoxicology, inbreeding depression and heterosis, dietary restriction/supplement, mutations, and ageing. Such traits include juvenile growth rates, age at sexual maturity, adult body size, age-specific fecundity/mortality, total reproduction, mean and maximum lifespan, and intrinsic population growth rates. However, we found that in life-cycle experiments care is needed regarding protocol design. Here, we test a recently developed method that overcomes some problems associated with traditional cultivation techniques. In this fast and yet precise approach, single individuals are maintained within hanging drops of semi-fluid culture medium, allowing the simultaneous investigation of various life-history traits at any desired degree of accuracy. Here, the life cycles of wild-type C. elegans strains N2 (Bristol, UK) and MY6 (Münster, Germany) were compared at 20 degrees C with 5 x 10(9) Escherichia coli ml-1 as food source. High-resolution life tables and fecundity schedules of the two strains are presented. Though isolated 700 km and 60 years apart from each other, the two strains barely differed in life-cycle parameters. For strain N2 (n = 69), the intrinsic rate of natural increase (r m d(-1)), calculated according to the Lotka equation, was 1.375, the net reproductive rate (R 0) 291, the mean generation time (T) 90 h, and the minimum generation time (T min) 73.0 h. The corresponding values for strain MY6 (n = 72) were r m = 1.460, R0 = 289, T = 84 h, and T min = 67.3 h. Peak egg-laying rates in both strains exceeded 140 eggs d(-1). Juvenile and early adulthood mortality was negligible. Strain N2 lived, on average, for 16.7 d, while strain MY6 died 2 days earlier; however

  8. Life cycle and population growth rate of Caenorhabditis elegans studied by a new method

    PubMed Central

    Muschiol, Daniel; Schroeder, Fabian; Traunspurger, Walter

    2009-01-01

    Background The free-living nematode Caenorhabditis elegans is the predominant model organism in biological research, being used by a huge number of laboratories worldwide. Many researchers have evaluated life-history traits of C. elegans in investigations covering quite different aspects such as ecotoxicology, inbreeding depression and heterosis, dietary restriction/supplement, mutations, and ageing. Such traits include juvenile growth rates, age at sexual maturity, adult body size, age-specific fecundity/mortality, total reproduction, mean and maximum lifespan, and intrinsic population growth rates. However, we found that in life-cycle experiments care is needed regarding protocol design. Here, we test a recently developed method that overcomes some problems associated with traditional cultivation techniques. In this fast and yet precise approach, single individuals are maintained within hanging drops of semi-fluid culture medium, allowing the simultaneous investigation of various life-history traits at any desired degree of accuracy. Here, the life cycles of wild-type C. elegans strains N2 (Bristol, UK) and MY6 (Münster, Germany) were compared at 20°C with 5 × 109 Escherichia coli ml-1 as food source. Results High-resolution life tables and fecundity schedules of the two strains are presented. Though isolated 700 km and 60 years apart from each other, the two strains barely differed in life-cycle parameters. For strain N2 (n = 69), the intrinsic rate of natural increase (rmd-1), calculated according to the Lotka equation, was 1.375, the net reproductive rate (R0) 291, the mean generation time (T) 90 h, and the minimum generation time (Tmin) 73.0 h. The corresponding values for strain MY6 (n = 72) were rm = 1.460, R0 = 289, T = 84 h, and Tmin = 67.3 h. Peak egg-laying rates in both strains exceeded 140 eggs d-1. Juvenile and early adulthood mortality was negligible. Strain N2 lived, on average, for 16.7 d, while strain MY6 died 2 days earlier; however

  9. Lensfree fluorescent on-chip imaging of transgenic Caenorhabditis elegans over an ultra-wide field-of-view.

    PubMed

    Coskun, Ahmet F; Sencan, Ikbal; Su, Ting-Wei; Ozcan, Aydogan

    2011-01-06

    We demonstrate lensfree on-chip fluorescent imaging of transgenic Caenorhabditis elegans (C. elegans) over an ultra-wide field-of-view (FOV) of e.g., >2-8 cm(2) with a spatial resolution of ∼10 µm. This is the first time that a lensfree on-chip platform has successfully imaged fluorescent C. elegans samples. In our wide-field lensfree imaging platform, the transgenic samples are excited using a prism interface from the side, where the pump light is rejected through total internal reflection occurring at the bottom facet of the substrate. The emitted fluorescent signal from C. elegans samples is then recorded on a large area opto-electronic sensor-array over an FOV of e.g., >2-8 cm(2), without the use of any lenses, thin-film interference filters or mechanical scanners. Because fluorescent emission rapidly diverges, such lensfree fluorescent images recorded on a chip look blurred due to broad point-spread-function of our platform. To combat this resolution challenge, we use a compressive sampling algorithm to uniquely decode the recorded lensfree fluorescent patterns into higher resolution images, demonstrating ∼10 µm resolution. We tested the efficacy of this compressive decoding approach with different types of opto-electronic sensors to achieve a similar resolution level, independent of the imaging chip. We further demonstrate that this wide FOV lensfree fluorescent imaging platform can also perform sequential bright-field imaging of the same samples using partially-coherent lensfree digital in-line holography that is coupled from the top facet of the same prism used in fluorescent excitation. This unique combination permits ultra-wide field dual-mode imaging of C. elegans on a chip which could especially provide a useful tool for high-throughput screening applications in biomedical research.

  10. Lensfree Fluorescent On-Chip Imaging of Transgenic Caenorhabditis elegans Over an Ultra-Wide Field-of-View

    PubMed Central

    Ozcan, Aydogan

    2011-01-01

    We demonstrate lensfree on-chip fluorescent imaging of transgenic Caenorhabditis elegans (C. elegans) over an ultra-wide field-of-view (FOV) of e.g., >2–8 cm2 with a spatial resolution of ∼10µm. This is the first time that a lensfree on-chip platform has successfully imaged fluorescent C. elegans samples. In our wide-field lensfree imaging platform, the transgenic samples are excited using a prism interface from the side, where the pump light is rejected through total internal reflection occurring at the bottom facet of the substrate. The emitted fluorescent signal from C. elegans samples is then recorded on a large area opto-electronic sensor-array over an FOV of e.g., >2–8 cm2, without the use of any lenses, thin-film interference filters or mechanical scanners. Because fluorescent emission rapidly diverges, such lensfree fluorescent images recorded on a chip look blurred due to broad point-spread-function of our platform. To combat this resolution challenge, we use a compressive sampling algorithm to uniquely decode the recorded lensfree fluorescent patterns into higher resolution images, demonstrating ∼10 µm resolution. We tested the efficacy of this compressive decoding approach with different types of opto-electronic sensors to achieve a similar resolution level, independent of the imaging chip. We further demonstrate that this wide FOV lensfree fluorescent imaging platform can also perform sequential bright-field imaging of the same samples using partially-coherent lensfree digital in-line holography that is coupled from the top facet of the same prism used in fluorescent excitation. This unique combination permits ultra-wide field dual-mode imaging of C. elegans on a chip which could especially provide a useful tool for high-throughput screening applications in biomedical research. PMID:21253611

  11. Alteration in cellular acetylcholine influences dauer formation in Caenorhabditis elegans.

    PubMed

    Lee, Jeeyong; Kim, Kwang-Youl; Paik, Young-Ki

    2014-02-01

    Altered acetylcholine (Ach) homeostasis is associated with loss of viability in flies, developmental defects in mice, and cognitive deficits in human. Here, we assessed the importance of Ach in Caenorhabditis elegans development, focusing on the role of Ach during dauer formation. We found that dauer formation was disturbed in choline acetyltransferase (cha-1) and acetylcholinesterase (ace) mutants defective in Ach biosynthesis and degradation, respectively. When examined the potential role of G-proteins in dauer formation, goa-1 and egl-30 mutant worms, expressing mutated versions of mammalian G(o) and G(q) homolog, respectively, showed some abnormalities in dauer formation. Using quantitative mass spectrometry, we also found that dauer larvae had lower Ach content than did reproductively grown larvae. In addition, a proteomic analysis of acetylcholinesterase mutant worms, which have excessive levels of Ach, showed differential expression of metabolic genes. Collectively, these results indicate that alterations in Ach release may influence dauer formation in C. elegans.

  12. Tracking C. elegans and its neuromuscular activity using NemaFlex II

    NASA Astrophysics Data System (ADS)

    van Bussel, Frank; Rahman, Mizanur; Blawzdziewicz, Jerzy; Vanapalli, Siva

    NemaFlex is a recently developed experimental platform designed to analyze the movement and muscular strength of crawling C. elegans. Physically it is a microfluidic device consisting of an array of deformable PDMS pillars, with which the C. elegans interacts in the course of moving through the system; image data is then acquired through a transparent top plate. The software component uses this image data to track the worm's movements and measure pillar deflections and thereby the forces exerted by the worm, in a fully automated, high-throughput manner. In order to correlate the force results with muscle activations the pillar deflections need to be precisely associated with mechanical contact on the worm's body, which requires accurate determination and representation of the body's position within the complex background. Here we discuss issues encountered in extracting this position data from the surrounding environment.

  13. Developmental transitions in C. elegans larval stages.

    PubMed

    Rougvie, Ann E; Moss, Eric G

    2013-01-01

    Molecular mechanisms control the timing, sequence, and synchrony of developmental events in multicellular organisms. In Caenorhabditis elegans, these mechanisms are revealed through the analysis of mutants with "heterochronic" defects: cell division or differentiation patterns that occur in the correct lineage, but simply at the wrong time. Subsets of cells in these mutants thus express temporal identities normally restricted to a different life stage. A seminal finding arising from studies of the heterochronic genes was the discovery of miRNAs; these tiny miRNAs are now a defining feature of the pathway. A series of sequentially expressed miRNAs guide larval transitions through stage-specific repression of key effector molecules. The wild-type lineage patterns are executed as discrete modules programmed between temporal borders imposed by the molting cycles. How these successive events are synchronized with the oscillatory molting cycle is just beginning to come to light. Progression through larval stages can be specifically, yet reversibly, halted in response to environmental cues, including nutrient availability. Here too, heterochronic genes and miRNAs play key roles. Remarkably, developmental arrest can, in some cases, either mask or reveal timing defects associated with mutations. In this chapter, we provide an overview of how the C. elegans heterochronic gene pathway guides developmental transitions during continuous and interrupted larval development. © 2013 Elsevier Inc. All rights reserved.

  14. Deep Conservation of Genes Required for Both Drosophila melanogaster and Caenorhabditis elegans Sleep Includes a Role for Dopaminergic Signaling

    PubMed Central

    Singh, Komudi; Ju, Jennifer Y.; Walsh, Melissa B.; DiIorio, Michael A.; Hart, Anne C.

    2014-01-01

    Objectives: Cross-species conservation of sleep-like behaviors predicts the presence of conserved molecular mechanisms underlying sleep. However, limited experimental evidence of conservation exists. Here, this prediction is tested directly. Measurements and Results: During lethargus, Caenorhabditis elegans spontaneously sleep in short bouts that are interspersed with bouts of spontaneous locomotion. We identified 26 genes required for Drosophila melanogaster sleep. Twenty orthologous C. elegans genes were selected based on similarity. Their effect on C. elegans sleep and arousal during the last larval lethargus was assessed. The 20 most similar genes altered both the quantity of sleep and arousal thresholds. In 18 cases, the direction of change was concordant with Drosophila studies published previously. Additionally, we delineated a conserved genetic pathway by which dopamine regulates sleep and arousal. In C. elegans neurons, G-alpha S, adenylyl cyclase, and protein kinase A act downstream of D1 dopamine receptors to regulate these behaviors. Finally, a quantitative analysis of genes examined herein revealed that C. elegans arousal thresholds were directly correlated with amount of sleep during lethargus. However, bout duration varies little and was not correlated with arousal thresholds. Conclusions: The comprehensive analysis presented here suggests that conserved genes and pathways are required for sleep in invertebrates and, likely, across the entire animal kingdom. The genetic pathway delineated in this study implicates G-alpha S and previously known genes downstream of dopamine signaling in sleep. Quantitative analysis of various components of quiescence suggests that interdependent or identical cellular and molecular mechanisms are likely to regulate both arousal and sleep entry. Citation: Singh K, Ju JY, Walsh MB, Dilorio MA, Hart AC. Deep conservation of genes required for both Drosophila melanogaster and Caenorhabditis elegans sleep includes a role for

  15. C. elegans STRADalpha and SAD cooperatively regulate neuronal polarity and synaptic organization.

    PubMed

    Kim, Joanne S M; Hung, Wesley; Narbonne, Patrick; Roy, Richard; Zhen, Mei

    2010-01-01

    Neurons are polarized cells with morphologically and functionally distinct axons and dendrites. The SAD kinases are crucial for establishing the axon-dendrite identity across species. Previous studies suggest that a tumour suppressor kinase, LKB1, in the presence of a pseudokinase, STRADalpha, initiates axonal differentiation and growth through activating the SAD kinases in vertebrate neurons. STRADalpha was implicated in the localization, stabilization and activation of LKB1 in various cell culture studies. Its in vivo functions, however, have not been examined. In our present study, we analyzed the neuronal phenotypes of the first loss-of-function mutants for STRADalpha and examined their genetic interactions with LKB1 and SAD in C. elegans. Unexpectedly, only the C. elegans STRADalpha, STRD-1, functions exclusively through the SAD kinase, SAD-1, to regulate neuronal polarity and synaptic organization. Moreover, STRD-1 tightly associates with SAD-1 to coordinate its synaptic localizations. By contrast, the C. elegans LKB1, PAR-4, also functions in an additional genetic pathway independently of SAD-1 and STRD-1 to regulate neuronal polarity. We propose that STRD-1 establishes neuronal polarity and organizes synaptic proteins in a complex with the SAD-1 kinase. Our findings suggest that instead of a single, linear genetic pathway, STRADalpha and LKB1 regulate neuronal development through multiple effectors that are shared in some cellular contexts but distinct in others.

  16. Procyanidins from apples (Malus pumila Mill.) extend the lifespan of Caenorhabditis elegans.

    PubMed

    Sunagawa, Tadahiro; Shimizu, Takahiko; Kanda, Tomomasa; Tagashira, Motoyuki; Sami, Manabu; Shirasawa, Takuji

    2011-01-01

    Apple polyphenols (AP) mainly consist of procyanidins (PC), which are composed of (-)-epicatechins and (+)-catechins. In order to investigate the antiageing effects of PC, we measured the lifespan of CAENORHABDITIS ELEGANS worms treated with PC. Treatment with 65 µg/mL PC extended the mean lifespan of wild-type N2 and FEM-1 worms by 12.1 % and 8.4 %, respectively, i.e., to a similar extent as resveratrol. In addition, treatment with 100 µg/mL AP also significantly prolonged the mean lifespan of the same worms by 12.0 % and 5.3 %, respectively, i.e., to a similar extent as PC. In contrast, treatment with (-)-epicatechin did not extend the lifespan of the worms. PC did not modify the growth, food intake, or fecundity of C. elegans. Treatment with PC did not extend the lifespan of MEV-1 worms, which show excessive oxidative stress, indicating that PC had no antioxidant ability in the MEV-1 mutant. Moreover, treatment with PC had no effect on the longevity of SIR-2.1 worms, which lack the activity of SIR-2, a member of the sirtuin family of NAD (+)-dependent protein deacetylases. These results indicated that PC has SIR-2.1-dependent antiageing effects on C. elegans. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Sorting nexin 3 mutation impairs development and neuronal function in Caenorhabditis elegans.

    PubMed

    Vieira, Neide; Bessa, Carlos; Rodrigues, Ana J; Marques, Paulo; Chan, Fung-Yi; de Carvalho, Ana Xavier; Correia-Neves, Margarida; Sousa, Nuno

    2018-06-01

    The sorting nexins family of proteins (SNXs) plays pleiotropic functions in protein trafficking and intracellular signaling and has been associated with several disorders, namely Alzheimer's disease and Down's syndrome. Despite the growing association of SNXs with neurodegeneration, not much is known about their function in the nervous system. The aim of this work was to use the nematode Caenorhabditis elegans that encodes in its genome eight SNXs orthologs, to dissect the role of distinct SNXs, particularly in the nervous system. By screening the C. elegans SNXs deletion mutants for morphological, developmental and behavioral alterations, we show here that snx-3 gene mutation leads to an array of developmental defects, such as delayed hatching, decreased brood size and life span and reduced body length. Additionally, ∆snx-3 worms present increased susceptibility to osmotic, thermo and oxidative stress and distinct behavioral deficits, namely, a chemotaxis defect which is independent of the described snx-3 role in Wnt secretion. ∆snx-3 animals also display abnormal GABAergic neuronal architecture and wiring and altered AIY interneuron structure. Pan-neuronal expression of C. elegans snx-3 cDNA in the ∆snx-3 mutant is able to rescue its locomotion defects, as well as its chemotaxis toward isoamyl alcohol. Altogether, the present work provides the first in vivo evidence of the SNX-3 role in the nervous system.

  18. Biosafety assessment of Gd@C82(OH)22 nanoparticles on Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Zhang, Wendi; Sun, Baoyun; Zhang, Longze; Zhao, Baolu; Nie, Guangjun; Zhao, Yuliang

    2011-06-01

    Gd@C82(OH)22, a water-soluble endohedral metallofullerene derivative, has been proven to possess significant antineoplastic activity in mice. Toxicity studies of the nanoparticle have shown some evidence of low or non toxicity in mice and cell models. Here we employed Caenorhabditis elegans (C. elegans) as a model organism to further evaluate the short- and long-term toxicity of Gd@C82(OH)22 and possible behavior changes under normal and stress culture conditions. With treatment of Gd@C82(OH)22 at 0.01, 0.1, 1.0 and 10 μg ml-1 within one generation (short-term), C. elegans showed no significant decrease in longevity or thermotolerance compared to the controls. Furthermore, when Gd@C82(OH)22 treatment was extended up to six generations (long-term), non-toxic effects to the nematodes were found. In addition, data from body length measurement, feeding rate and egg-laying assays with short-term treatment demonstrated that the nanoparticles have no significant impact on the individual growth, feeding behavior and reproductive ability, respectively. In summary, this work has shown that Gd@C82(OH)22 is tolerated well by worms and it has no apparent toxic effects on longevity, stress resistance, growth and behaviors that were observed in both adult and young worms. Our work lays the foundations for further developments of this anti-neoplastic agent for clinical applications.

  19. Mutant Enrichment in the Colonial Alga, EUDORINA ELEGANS

    PubMed Central

    Toby, A. L.; Kemp, C. L.

    1975-01-01

    An enrichment procedure has been developed that results in at least a 200x increase in mutation frequency in the colonial alga, Eudorina elegans. A period of nitrogen starvation followed by treatment with 8-azaguanine results in the death of wild-type cells and the maintenance of mutants. N'-nitro-N-nitro-soguanidine-induced acetate, p-aminobenzoic acid and reduced nitrogen requiring mutants have been isolated by this procedure. PMID:1205128

  20. Glucose feeding during development aggravates the toxicity of the organophosphorus insecticide Monocrotophos in the nematode, Caenorhabditis elegans.

    PubMed

    Salim, Chinnu; Rajini, P S

    2014-05-28

    Several studies have demonstrated that high glucose feeding induced oxidative stress and apoptosis thereby affecting growth, fertility, aging and lifespan in Caenorhabditis elegans. Earlier studies from our laboratory had clearly established the propensity of monocrotophos, an OPI to alter the physiological and behavioral responses of C. elegans. The present study was aimed to investigate the effect of monocrotophos (MCP) on physiological/behavioral and biochemical responses in C. elegans that were maintained on high glucose diet. We exposed the worms through development to high glucose diet (2%) and then treated with sublethal concentrations of MCP (0.5, 0.75, 1.5mM). We measured the behavioral responses in terms of locomotion, physiological responses in terms of egg laying, brood size, lifespan; morphological alterations; and biochemical responses including glucose content. The worms exposed from egg stage through development to high glucose diet showed enhanced toxic outcome of MCP in terms of physiological, behavioral and biochemical responses. Our studies showed that C. elegans is a good model to study glucose-OPI interactive neurotoxicity since all the responses could be studied at ease in this organism and the outcome could be well extrapolated to those that one would expect in higher animals. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. C. elegans-on-a-chip for in situ and in vivo Ag nanoparticles’ uptake and toxicity assay

    NASA Astrophysics Data System (ADS)

    Kim, Jin Ho; Lee, Seung Hwan; Cha, Yun Jeong; Hong, Sung Jin; Chung, Sang Kug; Park, Tai Hyun; Choi, Shin Sik

    2017-01-01

    Nanomaterials are extensively used in consumer products and medical applications, but little is known about their environmental and biological toxicities. Moreover, the toxicity analysis requires sophisticated instruments and labor-intensive experiments. Here we report a microfluidic chip incorporated with the nematode Caenorhabditis elegans that rapidly displays the changes in body growth and gene expression specifically responsive to the silver nanoparticles (AgNPs). C. elegans were cultured in microfluidic chambers in the presence or absence of AgNPs and were consequently transferred to wedge-shaped channels, which immobilized the animals, allowing the evaluation of parameters such as length, moving distance, and fluorescence from the reporter gene. The AgNPs reduced the length of C. elegans body, which was easily identified in the channel of chip. In addition, the decrease of body width enabled the worm to advance the longer distance compared to the animal without nanoparticles in a wedge-shaped channel. The transgenic marker DNA, mtl-2::gfp was highly expressed upon the uptake of AgNPs, resulting in green fluorescence emission. The comparative investigation using gold nanoparticles and heavy-metal ions indicated that these parameters are specific to AgNPs. These results demonstrate that C. elegans-on-a-chip has a great potential as a rapid and specific nanoparticle detection or nanotoxicity assessment system.

  2. The application of the comet assay to assess the genotoxicity of environmental pollutants in the nematode Caenorhabditis elegans.

    PubMed

    Imanikia, Soudabeh; Galea, Francesca; Nagy, Eszter; Phillips, David H; Stürzenbaum, Stephen R; Arlt, Volker M

    2016-07-01

    This study aimed to establish a protocol for cell dissociation from the nematode Caenorhabditis elegans (C. elegans) to assess the genotoxicity of the environmental pollutant benzo[a]pyrene (BaP) using the alkaline version of the single cell electrophoresis assay (comet assay). BaP genotoxicity was assessed in C. elegans (wild-type [WT]; N2, Bristol) after 48h exposure (0-40μM). Induction of comets by BaP was concentration-dependent up to 20μM; comet% tail DNA was ∼30% at 20μM BaP and ∼10% in controls. Similarly, BaP-induced DNA damage was evaluated in C. elegans mutant strains deficient in DNA repair. In xpa-1 and apn-1 mutants BaP-induced comet formation was diminished to WT background levels suggesting that the damage formed by BaP that is detected in the comet assay is not recognised in cells deficient in nucleotide and base excision repair, respectively. In summary, our study provides a protocol to evaluate DNA damage of environmental pollutants in whole nematodes using the comet assay. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  3. Changes in miRNA expression profile of space-flown Caenorhabditis elegans during Shenzhou-8 mission

    NASA Astrophysics Data System (ADS)

    Xu, Dan; Gao, Ying; Huang, Lei; Sun, Yeqing

    2014-04-01

    Recent advances in the field of molecular biology have demonstrated that small non-coding microRNAs (miRNAs) have a broad effect on gene expression networks and play a key role in biological responses to environmental stressors. However, little is known about how space radiation exposure and altered gravity affect miRNA expression. The "International Space Biological Experiments" project was carried out in November 2011 by an international collaboration between China and Germany during the Shenzhou-8 (SZ-8) mission. To study the effects of spaceflight on Caenorhabditis elegans (C. elegans), we explored the expression profile miRNA changes in space-flown C. elegans. Dauer C. elegans larvae were taken by SZ-8 spacecraft and experienced the 16.5-day shuttle spaceflight. We performed miRNA microarray analysis, and the results showed that 23 miRNAs were altered in a complex space environment and different expression patterns were observed in the space synthetic and radiation environments. Most putative target genes of the altered miRNAs in the space synthetic environment were predicted to be involved in developmental processes instead of in the regulation of transcription, and the enrichment of these genes was due to space radiation. Furthermore, integration analysis of the miRNA and mRNA expression profiles confirmed that twelve genes were differently regulated by seven miRNAs. These genes may be involved in embryonic development, reproduction, transcription factor activity, oviposition in a space synthetic environment, positive regulation of growth and body morphogenesis in a space radiation environment. Specifically, we found that cel-miR-52, -55, and -56 of the miR-51 family were sensitive to space environmental stressors and could regulate biological behavioural responses and neprilysin activity through the different isoforms of T01C4.1 and F18A12.8. These findings suggest that C. elegans responded to spaceflight by altering the expression of miRNAs and some target

  4. Cas9 Variants Expand the Target Repertoire in Caenorhabditis elegans

    PubMed Central

    Bell, Ryan T.; Fu, Becky X. H.; Fire, Andrew Z.

    2016-01-01

    The proliferation of CRISPR/Cas9-based methods in Caenorhabditis elegans has enabled efficient genome editing and precise genomic tethering of Cas9 fusion proteins. Experimental designs using CRISPR/Cas9 are currently limited by the need for a protospacer adjacent motif (PAM) in the target with the sequence NGG. Here we report the characterization of two modified Cas9 proteins in C. elegans that recognize NGA and NGCG PAMs. We found that each variant could stimulate homologous recombination with a donor template at multiple loci and that PAM specificity was comparable to that of wild-type Cas9. To directly compare effectiveness, we used CRISPR/Cas9 genome editing to generate a set of assay strains with a common single-guide RNA (sgRNA) target sequence, but that differ in the juxtaposed PAM (NGG, NGA, or NGCG). In this controlled setting, we determined that the NGA PAM Cas9 variant can be as effective as wild-type Cas9. We similarly edited a genomic target to study the influence of the base following the NGA PAM. Using four strains with four NGAN PAMs differing only at the fourth position and adjacent to the same sgRNA target, we observed that efficient homologous replacement was attainable with any base in the fourth position, with an NGAG PAM being the most effective. In addition to demonstrating the utility of two Cas9 mutants in C. elegans and providing reagents that permit CRISPR/Cas9 experiments with fewer restrictions on potential targets, we established a means to benchmark the efficiency of different Cas9::PAM combinations that avoids variations owing to differences in the sgRNA sequence. PMID:26680661

  5. Trends in high-throughput and functional neuroimaging in Caenorhabditis elegans.

    PubMed

    Cho, Yongmin; Zhao, Charles L; Lu, Hang

    2017-05-01

    The nervous system of Caenorhabditis elegans is an important model system for understanding the development and function of larger, more complex nervous systems. It is prized for its ease of handling, rapid life cycle, and stereotyped, well-cataloged development, with the development of all 302 neurons mapped all the way from zygote to adult. The combination of easy genetic manipulation and optical transparency of the worm allows for the direct imaging of its interior with fluorescent microscopy, without physically compromising the normal physiology of the animal itself. By expressing fluorescent markers, biologists study many developmental and cell biology questions in vivo; by expressing genetically encoded fluorescent calcium indicators within neurons, it is also possible to monitor their dynamic activity, answering questions about the structure and function of neural microcircuitry in the worm. However, to successfully image the worm it is necessary to overcome a number of experimental challenges. It is necessary to hold worms within the field of view, collect images efficiently and rapidly, and robustly analyze the data obtained. In recent years, a trend has developed toward imaging a large number of worms or neurons simultaneously, directly exploiting the unique properties of C. elegans to acquire data on a scale, which is not possible in other organisms. Doing this has required the development of new experimental tools, techniques, and data analytic approaches, all of which come together to open new perspectives on the field of neurobiology in C. elegans, and neuroscience in general. WIREs Syst Biol Med 2017, 9:e1376. doi: 10.1002/wsbm.1376 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  6. Broad chromosomal domains of histone modification patterns in C. elegans

    PubMed Central

    Liu, Tao; Rechtsteiner, Andreas; Egelhofer, Thea A.; Vielle, Anne; Latorre, Isabel; Cheung, Ming-Sin; Ercan, Sevinc; Ikegami, Kohta; Jensen, Morten; Kolasinska-Zwierz, Paulina; Rosenbaum, Heidi; Shin, Hyunjin; Taing, Scott; Takasaki, Teruaki; Iniguez, A. Leonardo; Desai, Arshad; Dernburg, Abby F.; Kimura, Hiroshi; Lieb, Jason D.; Ahringer, Julie; Strome, Susan; Liu, X. Shirley

    2011-01-01

    Chromatin immunoprecipitation identifies specific interactions between genomic DNA and proteins, advancing our understanding of gene-level and chromosome-level regulation. Based on chromatin immunoprecipitation experiments using validated antibodies, we define the genome-wide distributions of 19 histone modifications, one histone variant, and eight chromatin-associated proteins in Caenorhabditis elegans embryos and L3 larvae. Cluster analysis identified five groups of chromatin marks with shared features: Two groups correlate with gene repression, two with gene activation, and one with the X chromosome. The X chromosome displays numerous unique properties, including enrichment of monomethylated H4K20 and H3K27, which correlate with the different repressive mechanisms that operate in somatic tissues and germ cells, respectively. The data also revealed striking differences in chromatin composition between the autosomes and between chromosome arms and centers. Chromosomes I and III are globally enriched for marks of active genes, consistent with containing more highly expressed genes, compared to chromosomes II, IV, and especially V. Consistent with the absence of cytological heterochromatin and the holocentric nature of C. elegans chromosomes, markers of heterochromatin such as H3K9 methylation are not concentrated at a single region on each chromosome. Instead, H3K9 methylation is enriched on chromosome arms, coincident with zones of elevated meiotic recombination. Active genes in chromosome arms and centers have very similar histone mark distributions, suggesting that active domains in the arms are interspersed with heterochromatin-like structure. These data, which confirm and extend previous studies, allow for in-depth analysis of the organization and deployment of the C. elegans genome during development. PMID:21177964

  7. A new putative cyclic nucleotide-gated channel gene, cng-3, is critical for thermotolerance in Caenorhabditis elegans.

    PubMed

    Cho, Suk-Woo; Choi, Kyu Yeong; Park, Chul-Seung

    2004-12-10

    Cyclic nucleotide-gated (CNG) channels encoded by tax-4 and tax-2 genes are required for chemo- and thermo-sensation in Caenorhabditis elegans. Here we report the identification and the characterization of cng-3, a new CNG channel gene, found in C. elegans. CNG-3 contains six putative transmembrane regions and a cyclic nucleotide-binding domain that show high homology with CNG channels of higher animals as well as TAX-4. The expression of cng-3 is detected from early stages in worm development and restricted in five sensory neurons of amphid including AFD neuron. While a cng-3 null mutant displays normal chemotaxis to volatile odorants, the mutant worms exhibit impaired thermal tolerance. These results indicate that CNG-3, a new member of CNG channel subunits, may play a critical role in sensation or response of thermal stress in C. elegans.

  8. Single swim sessions in C. elegans induce key features of mammalian exercise.

    PubMed

    Laranjeiro, Ricardo; Harinath, Girish; Burke, Daniel; Braeckman, Bart P; Driscoll, Monica

    2017-04-10

    Exercise exerts remarkably powerful effects on metabolism and health, with anti-disease and anti-aging outcomes. Pharmacological manipulation of exercise benefit circuits might improve the health of the sedentary and the aging populations. Still, how exercised muscle signals to induce system-wide health improvement remains poorly understood. With a long-term interest in interventions that promote animal-wide health improvement, we sought to define exercise options for Caenorhabditis elegans. Here, we report on the impact of single swim sessions on C. elegans physiology. We used microcalorimetry to show that C. elegans swimming has a greater energy cost than crawling. Animals that swam continuously for 90 min specifically consumed muscle fat supplies and exhibited post-swim locomotory fatigue, with both muscle fat depletion and fatigue indicators recovering within 1 hour of exercise cessation. Quantitative polymerase chain reaction (qPCR) transcript analyses also suggested an increase in fat metabolism during the swim, followed by the downregulation of specific carbohydrate metabolism transcripts in the hours post-exercise. During a 90 min swim, muscle mitochondria matrix environments became more oxidized, as visualized by a localized mitochondrial reduction-oxidation-sensitive green fluorescent protein reporter. qPCR data supported specific transcriptional changes in oxidative stress defense genes during and immediately after a swim. Consistent with potential antioxidant defense induction, we found that a single swim session sufficed to confer protection against juglone-induced oxidative stress inflicted 4 hours post-exercise. In addition to showing that even a single swim exercise bout confers physiological changes that increase robustness, our data reveal that acute swimming-induced changes share common features with some acute exercise responses reported in humans. Overall, our data validate an easily implemented swim experience as C. elegans exercise

  9. Short communication: Development of a direct in vivo screening model to identify potential probiotic bacteria using Caenorhabditis elegans.

    PubMed

    Park, M R; Yun, H S; Son, S J; Oh, S; Kim, Y

    2014-11-01

    Caenorhabditis elegans is an accepted model host to study host-bacteria interactions in the gut, in addition to being a simple model with which to study conserved aspects of biological signaling pathways in intestinal environments, because these nematode worms have similar intestinal cells to those of humans. Here, we used C. elegans to develop a new in vivo screening system for potential probiotic lactic acid bacteria (LAB). Initially, critical colonization ability of LAB strains isolated from Korean infant feces was screened in the worm intestinal tract over a period of 5 d. Furthermore, we investigated host health-promoting activities, including longevity-extending effects and immune-enhancing activities against foodborne pathogen infection. We identified 4 LAB strains that were highly persistent in the nematode gut and that significantly prolonged the longevity of C. elegans and improved the survival of C. elegans in response to infection by Staphylococcus aureus. The 4 LAB strains we identified showed resistance to acid and bile conditions, assimilated cholesterol, and were able to attach to a mucus layer. The 4 LAB isolates were identified as Lactobacillus plantarum using 16S rRNA sequencing analysis. Taken together, we developed a direct in vivo screening system using C. elegans to study host health-promoting LAB. Our system is simple, rapid, cost-effective, and reliable, and we anticipate that this system will result in the discovery of many more potential probiotic bacteria for dairy foods. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Mitochondrial DNA level, but not active replicase, is essential for Caenorhabditis elegans development

    PubMed Central

    Bratic, Ivana; Hench, Jürgen; Henriksson, Johan; Antebi, Adam; Bürglin, Thomas R; Trifunovic, Aleksandra

    2009-01-01

    A number of studies showed that the development and the lifespan of Caenorhabditis elegans is dependent on mitochondrial function. In this study, we addressed the role of mitochondrial DNA levels and mtDNA maintenance in development of C. elegans by analyzing deletion mutants for mitochondrial polymerase gamma (polg-1(ok1548)). Surprisingly, even though previous studies in other model organisms showed necessity of polymerase gamma for embryonic development, homozygous polg-1(ok1548) mutants had normal development and reached adulthood without any morphological defects. However, polg-1 deficient animals have a seriously compromised gonadal function as a result of severe mitochondrial depletion, leading to sterility and shortened lifespan. Our results indicate that the gonad is the primary site of mtDNA replication, whilst the mtDNA of adult somatic tissues mainly stems from the developing embryo. Furthermore, we show that the mtDNA copy number shows great plasticity as it can be almost tripled as a response to the environmental stimuli. Finally, we show that the mtDNA copy number is an essential limiting factor for the worm development and therefore, a number of mechanisms set to maintain mtDNA levels exist, ensuring a normal development of C. elegans even in the absence of the mitochondrial replicase. PMID:19181702

  11. The forkhead domain gene unc-130 generates chemosensory neuron diversity in C. elegans

    PubMed Central

    Sarafi-Reinach, Trina R.; Sengupta, Piali

    2000-01-01

    Caenorhabditis elegans responds to its complex chemical environment using a small number of chemosensory neurons. Each of these neurons exhibits a unique sensory response repertoire. The developmental mechanisms that generate this diversity of function are largely unknown. Many C. elegans chemosensory neurons, including the AWA and ASG neurons, arise as lineal sisters of an asymmetric division. Here we describe the gene unc-130, which plays a role in the generation of the AWA and ASG neurons. In unc-130 mutants, the ASG neurons adopt the fate of the AWA neurons. unc-130 encodes a member of the forkhead domain family of transcription factors, and is expressed in the precursors to AWA and ASG neurons. Misexpression of unc-130 in the AWA neurons is partly sufficient to repress the AWA fate, but not to promote ASG fate. unc-130 also plays a role in the development of additional chemosensory neurons. Our experiments show that the ASG neurons share a developmental default state in common with three types of olfactory neurons. We propose that distinct cell fates and hence diversity of function in the chemosensory neurons of C. elegans are generated in a hierarchical manner, utilizing both lineage-dependent and independent mechanisms. PMID:11018015

  12. Giardia duodenalis-induced alterations of commensal bacteria kill Caenorhabditis elegans: a new model to study microbial-microbial interactions in the gut

    PubMed Central

    Gerbaba, Teklu K.; Gupta, Pratyush; Rioux, Kevin; Hansen, Dave

    2015-01-01

    Giardia duodenalis is the most common cause of parasitic diarrhea worldwide and a well-established risk factor for postinfectious irritable bowel syndrome. We hypothesized that Giardia-induced disruptions in host-microbiota interactions may play a role in the pathogenesis of giardiasis and in postgiardiasis disease. Functional changes induced by Giardia in commensal bacteria and the resulting effects on Caenorhabditis elegans were determined. Although Giardia or bacteria alone did not affect worm viability, combining commensal Escherichia coli bacteria with Giardia became lethal to C. elegans. Giardia also induced killing of C. elegans with attenuated Citrobacter rodentium espF and map mutant strains, human microbiota from a healthy donor, and microbiota from inflamed colonic sites of ulcerative colitis patient. In contrast, combinations of Giardia with microbiota from noninflamed sites of the same patient allowed for worm survival. The synergistic lethal effects of Giardia and E. coli required the presence of live bacteria and were associated with the facilitation of bacterial colonization in the C. elegans intestine. Exposure to C. elegans and/or Giardia altered the expression of 172 genes in E. coli. The genes affected by Giardia included hydrogen sulfide biosynthesis (HSB) genes, and deletion of a positive regulator of HSB genes, cysB, was sufficient to kill C. elegans even in the absence of Giardia. Our findings indicate that Giardia induces functional changes in commensal bacteria, possibly making them opportunistic pathogens, and alters host-microbe homeostatic interactions. This report describes the use of a novel in vivo model to assess the toxicity of human microbiota. PMID:25573177

  13. Unraveling the mechanisms of synapse formation and axon regeneration: the awesome power of C. elegans genetics.

    PubMed

    Jin, YiShi

    2015-11-01

    Since Caenorhabditis elegans was chosen as a model organism by Sydney Brenner in 1960's, genetic studies in this organism have been instrumental in discovering the function of genes and in deciphering molecular signaling network. The small size of the organism and the simple nervous system enable the complete reconstruction of the first connectome. The stereotypic developmental program and the anatomical reproducibility of synaptic connections provide a blueprint to dissect the mechanisms underlying synapse formation. Recent technological innovation using laser surgery of single axons and in vivo imaging has also made C. elegans a new model for axon regeneration. Importantly, genes regulating synaptogenesis and axon regeneration are highly conserved in function across animal phyla. This mini-review will summarize the main approaches and the key findings in understanding the mechanisms underlying the development and maintenance of the nervous system. The impact of such findings underscores the awesome power of C. elegans genetics.

  14. The Effect of Macrocyclic Lactones-Ivermectin Exposure on Egg Hatching and Larval Development of Caenorhabditis elegans

    PubMed Central

    Zain, Mariani Mohd; Yahaya, Zary Shariman; Him, Nik Ahmad Irwan Izzauddin Nik

    2016-01-01

    To date, the ivermectin resistance in nematode parasites has been reported and many studies are carried out to determine the causes of this problem. A free-living Caenorhabditis elegans is used as a model system for this study to investigate the response of C. elegans to ivermectin exposure by using larval development assay. Worms were exposed to ivermectin at concentration from 1 ng/mL to 10 ng/mL and dimethyl sulphoxide (DMSO) as a control. The developments of the worms were monitored for 24, 48, 72, and 96 hours until the worms become adults. Results indicated that worms’ growth began to be affected by ivermectin at a concentration of 5 ng/mL, while at the concentration of 6, 7, 8, 9, and 10 ng/mL, the growth of worms were inhibited compared to control worms. Further study of the protein expression in C. elegans should be done to investigate the up-regulated and down-regulated proteins involve in ivermectin resistance. PMID:27965734

  15. The Effect of Macrocyclic Lactones-Ivermectin Exposure on Egg Hatching and Larval Development of Caenorhabditis elegans.

    PubMed

    Zain, Mariani Mohd; Yahaya, Zary Shariman; Him, Nik Ahmad Irwan Izzauddin Nik

    2016-11-01

    To date, the ivermectin resistance in nematode parasites has been reported and many studies are carried out to determine the causes of this problem. A free-living Caenorhabditis elegans is used as a model system for this study to investigate the response of C. elegans to ivermectin exposure by using larval development assay. Worms were exposed to ivermectin at concentration from 1 ng/mL to 10 ng/mL and dimethyl sulphoxide (DMSO) as a control. The developments of the worms were monitored for 24, 48, 72, and 96 hours until the worms become adults. Results indicated that worms' growth began to be affected by ivermectin at a concentration of 5 ng/mL, while at the concentration of 6, 7, 8, 9, and 10 ng/mL, the growth of worms were inhibited compared to control worms. Further study of the protein expression in C. elegans should be done to investigate the up-regulated and down-regulated proteins involve in ivermectin resistance.

  16. cGMP Signalling Mediates Water Sensation (Hydrosensation) and Hydrotaxis in Caenorhabditis elegans

    PubMed Central

    Wang, Wei; Qin, Li-Wei; Wu, Tai-Hong; Ge, Chang-Li; Wu, Ya-Qian; Zhang, Qiang; Song, Yan-Xue; Chen, Yuan-Hua; Ge, Ming-Hai; Wu, Jing-Jing; Liu, Hui; Xu, Yao; Su, Chun-Ming; Li, Lan-Lan; Tang, Jing; Li, Zhao-Yu; Wu, Zheng-Xing

    2016-01-01

    Animals have developed the ability to sense the water content in their habitats, including hygrosensation (sensing humidity in the air) and hydrosensation (sensing the water content in other microenvironments), and they display preferences for specific water contents that influence their mating, reproduction and geographic distribution. We developed and employed four quantitative behavioural test paradigms to investigate the molecular and cellular mechanisms underlying sensing the water content in an agar substrate (hydrosensation) and hydrotaxis in Caenorhabditis elegans. By combining a reverse genetic screen with genetic manipulation, optogenetic neuronal manipulation and in vivo Ca2+ imaging, we demonstrate that adult worms avoid the wetter areas of agar plates and hypo-osmotic water droplets. We found that the cGMP signalling pathway in ciliated sensory neurons is involved in hydrosensation and hydrotaxis in Caenorhabditis elegans. PMID:26891989

  17. The computational worm: spatial orientation and its neuronal basis in C. elegans.

    PubMed

    Lockery, Shawn R

    2011-10-01

    Spatial orientation behaviors in animals are fundamental for survival but poorly understood at the neuronal level. The nematode Caenorhabditis elegans orients to a wide range of stimuli and has a numerically small and well-described nervous system making it advantageous for investigating the mechanisms of spatial orientation. Recent work by the C. elegans research community has identified essential computational elements of the neural circuits underlying two orientation strategies that operate in five different sensory modalities. Analysis of these circuits reveals novel motifs including simple circuits for computing temporal derivatives of sensory input and for integrating sensory input with behavioral state to generate adaptive behavior. These motifs constitute hypotheses concerning the identity and functionality of circuits controlling spatial orientation in higher organisms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. A potent dauer pheromone component in Caenorhabditis elegans that acts synergistically with other components.

    PubMed

    Butcher, Rebecca A; Ragains, Justin R; Kim, Edward; Clardy, Jon

    2008-09-23

    In the model organism Caenorhabditis elegans, the dauer pheromone is the primary cue for entry into the developmentally arrested, dauer larval stage. The dauer is specialized for survival under harsh environmental conditions and is considered "nonaging" because larvae that exit dauer have a normal life span. C. elegans constitutively secretes the dauer pheromone into its environment, enabling it to sense its population density. Several components of the dauer pheromone have been identified as derivatives of the dideoxy sugar ascarylose, but additional unidentified components of the dauer pheromone contribute to its activity. Here, we show that an ascaroside with a 3-hydroxypropionate side chain is a highly potent component of the dauer pheromone that acts synergistically with previously identified components. Furthermore, we show that the active dauer pheromone components that are produced by C. elegans vary depending on cultivation conditions. Identifying the active components of the dauer pheromone, the conditions under which they are produced, and their mechanisms of action will greatly extend our understanding of how chemosensory cues from the environment can influence such fundamental processes as development, metabolism, and aging in nematodes and in higher organisms.

  19. A whole-mount in situ hybridization method for microRNA detection in Caenorhabditis elegans

    PubMed Central

    Andachi, Yoshiki; Kohara, Yuji

    2016-01-01

    Whole-mount in situ hybridization (WISH) is an outstanding method to decipher the spatiotemporal expression patterns of microRNAs (miRNAs) and provides important clues for elucidating their functions. The first WISH method for miRNA detection was developed in zebrafish. Although this method was quickly adapted for other vertebrates and fruit flies, WISH analysis has not been successfully used to detect miRNAs in Caenorhabditis elegans. Here, we show a novel WISH method for miRNA detection in C. elegans. Using this method, mir-1 miRNA was detected in the body-wall muscle where the expression and roles of mir-1 miRNA have been previously elucidated. Application of the method to let-7 family miRNAs, let-7, mir-48, mir-84, and mir-241, revealed their distinct but partially overlapping expression patterns, indicating that miRNAs sharing a short common sequence were distinguishably detected. In pash-1 mutants that were depleted of mature miRNAs, signals of mir-48 miRNA were greatly reduced, suggesting that mature miRNAs were detected by the method. These results demonstrate the validity of WISH to detect mature miRNAs in C. elegans. PMID:27154969

  20. Claudins reign: The claudin/EMP/PMP22/γ channel protein family in C. elegans.

    PubMed

    Simske, Jeffrey S

    2013-07-01

    The claudin family of integral membrane proteins was identified as the major protein component of the tight junctions in all vertebrates. Since their identification, claudins, and their associated pfam00822 superfamily of proteins have been implicated in a wide variety of cellular processes. Claudin homologs have been identified in invertebrates as well, including Drosophila and C. elegans. Recent studies demonstrate that the C. elegans claudins, clc-1-clc- 5, and similar proteins in the greater PMP22/EMP/claudin/voltage-gated calcium channel γ subunit family, including nsy-4, and vab-9, while highly divergent at a sequence level from each other and from the vertebrate claudins, in many cases play roles similar to those traditionally assigned to their vertebrate homologs. These include regulating cell adhesion and passage of small molecules through the paracellular space, channel activity, protein aggregation, sensitivity to pore-forming toxins, intercellular signaling, cell fate specification and dynamic changes in cell morphology. Study of claudin superfamily proteins in C. elegans should continue to provide clues as to how claudin family protein function has been adapted to perform diverse functions at specialized cell-cell contacts in metazoans.

  1. Do developmental temperatures affect redox level and lifespan in C. elegans through upregulation of peroxiredoxin?

    PubMed

    Henderson, Dylan; Huebner, Christian; Markowitz, Moses; Taube, Nicole; Harvanek, Zachary M; Jakob, Ursula; Knoefler, Daniela

    2018-04-01

    Lifespan in poikilothermic organisms, such as Caenorhabditis elegans, can be substantially increased simply by decreasing growth temperature. To gain insights into the mechanistic underpinnings of this effect, we investigated the effects of temperature in development and adulthood on C. elegans lifespan. We found that worms exposed to 25°C during development and shifted to 15°C in adulthood exhibited an even longer lifespan than animals constantly kept at 15°C. Analysis of the in vivo redox status demonstrated that at 25°C, C. elegans larvae have a more reduced redox state and higher Prdx-2 expression levels than animals raised at 15°C. Worms lacking prdx-2 fail to show the additional lifespan extension upon shift from 25°C to 15°C and reveal a lifespan similar to prdx-2 worms always kept at 15°C. These results suggest that transiently altering the in vivo redox state during development can have highly beneficial long-term consequences for organisms. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. The C. elegans CSR-1 argonaute pathway counteracts epigenetic silencing to promote germline gene expression.

    PubMed

    Seth, Meetu; Shirayama, Masaki; Gu, Weifeng; Ishidate, Takao; Conte, Darryl; Mello, Craig C

    2013-12-23

    Organisms can develop adaptive sequence-specific immunity by reexpressing pathogen-specific small RNAs that guide gene silencing. For example, the C. elegans PIWI-Argonaute/piwi-interacting RNA (piRNA) pathway recruits RNA-dependent RNA polymerase (RdRP) to foreign sequences to amplify a transgenerational small-RNA-induced epigenetic silencing signal (termed RNAe). Here, we provide evidence that, in addition to an adaptive memory of silenced sequences, C. elegans can also develop an opposing adaptive memory of expressed/self-mRNAs. We refer to this mechanism, which can prevent or reverse RNAe, as RNA-induced epigenetic gene activation (RNAa). We show that CSR-1, which engages RdRP-amplified small RNAs complementary to germline-expressed mRNAs, is required for RNAa. We show that a transgene with RNAa activity also exhibits accumulation of cognate CSR-1 small RNAs. Our findings suggest that C. elegans adaptively acquires and maintains a transgenerational CSR-1 memory that recognizes and protects self-mRNAs, allowing piRNAs to recognize foreign sequences innately, without the need for prior exposure

  3. Pharyngeal Polysaccharide Deacetylases Affect Development in the Nematode C. elegans and Deacetylate Chitin In Vitro

    PubMed Central

    Heustis, Ronald J.; Ng, Hong K.; Brand, Kenneth J.; Rogers, Meredith C.; Le, Linda T.; Specht, Charles A.; Fuhrman, Juliet A.

    2012-01-01

    Chitin (β-1,4-linked-N-acetylglucosamine) provides structural integrity to the nematode eggshell and pharyngeal lining. Chitin is synthesized in nematodes, but not in plants and vertebrates, which are often hosts to parasitic roundworms; hence, the chitin metabolism pathway is considered a potential target for selective interventions. Polysaccharide deacetylases (PDAs), including those that convert chitin to chitosan, have been previously demonstrated in protists, fungi and insects. We show that genes encoding PDAs are distributed throughout the phylum Nematoda, with the two paralogs F48E3.8 and C54G7.3 found in C. elegans. We confirm that the genes are somatically expressed and show that RNAi knockdown of these genes retards C. elegans development. Additionally, we show that proteins from the nematode deacetylate chitin in vitro, we quantify the substrate available in vivo as targets of these enzymes, and we show that Eosin Y (which specifically stains chitosan in fungal cells walls) stains the C. elegans pharynx. Our results suggest that one function of PDAs in nematodes may be deacetylation of the chitinous pharyngeal lining. PMID:22808160

  4. Pharyngeal polysaccharide deacetylases affect development in the nematode C. elegans and deacetylate chitin in vitro.

    PubMed

    Heustis, Ronald J; Ng, Hong K; Brand, Kenneth J; Rogers, Meredith C; Le, Linda T; Specht, Charles A; Fuhrman, Juliet A

    2012-01-01

    Chitin (β-1,4-linked-N-acetylglucosamine) provides structural integrity to the nematode eggshell and pharyngeal lining. Chitin is synthesized in nematodes, but not in plants and vertebrates, which are often hosts to parasitic roundworms; hence, the chitin metabolism pathway is considered a potential target for selective interventions. Polysaccharide deacetylases (PDAs), including those that convert chitin to chitosan, have been previously demonstrated in protists, fungi and insects. We show that genes encoding PDAs are distributed throughout the phylum Nematoda, with the two paralogs F48E3.8 and C54G7.3 found in C. elegans. We confirm that the genes are somatically expressed and show that RNAi knockdown of these genes retards C. elegans development. Additionally, we show that proteins from the nematode deacetylate chitin in vitro, we quantify the substrate available in vivo as targets of these enzymes, and we show that Eosin Y (which specifically stains chitosan in fungal cells walls) stains the C. elegans pharynx. Our results suggest that one function of PDAs in nematodes may be deacetylation of the chitinous pharyngeal lining.

  5. Chemistry and the worm: Caenorhabditis elegans as a platform for integrating chemical and biological research.

    PubMed

    Hulme, S Elizabeth; Whitesides, George M

    2011-05-16

    This Review discusses the potential usefulness of the worm Caenorhabditis elegans as a model organism for chemists interested in studying living systems. C. elegans, a 1 mm long roundworm, is a popular model organism in almost all areas of modern biology. The worm has several features that make it attractive for biology: it is small (<1000 cells), transparent, and genetically tractable. Despite its simplicity, the worm exhibits complex phenotypes associated with multicellularity: the worm has differentiated cells and organs, it ages and has a well-defined lifespan, and it is capable of learning and remembering. This Review argues that the balance between simplicity and complexity in the worm will make it a useful tool in determining the relationship between molecular-scale phenomena and organism-level phenomena, such as aging, behavior, cognition, and disease. Following an introduction to worm biology, the Review provides examples of current research with C. elegans that is chemically relevant. It also describes tools-biological, chemical, and physical-that are available to researchers studying the worm. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Rendering the Intractable More Tractable: Tools from Caenorhabditis elegans Ripe for Import into Parasitic Nematodes

    PubMed Central

    Ward, Jordan D.

    2015-01-01

    Recent and rapid advances in genetic and molecular tools have brought spectacular tractability to Caenorhabditis elegans, a model that was initially prized because of its simple design and ease of imaging. C. elegans has long been a powerful model in biomedical research, and tools such as RNAi and the CRISPR/Cas9 system allow facile knockdown of genes and genome editing, respectively. These developments have created an additional opportunity to tackle one of the most debilitating burdens on global health and food security: parasitic nematodes. I review how development of nonparasitic nematodes as genetic models informs efforts to import tools into parasitic nematodes. Current tools in three commonly studied parasites (Strongyloides spp., Brugia malayi, and Ascaris suum) are described, as are tools from C. elegans that are ripe for adaptation and the benefits and barriers to doing so. These tools will enable dissection of a huge array of questions that have been all but completely impenetrable to date, allowing investigation into host–parasite and parasite–vector interactions, and the genetic basis of parasitism. PMID:26644478

  7. The C. elegans CSR-1 Argonaute pathway counteracts epigenetic silencing to promote germline gene expression

    PubMed Central

    Seth, Meetu; Shirayama, Masaki; Gu, Weifeng; Ishidate, Takao; Conte, Darryl; Mello, Craig C.

    2014-01-01

    SUMMARY Organisms can develop adaptive sequence-specific immunity by re-expressing pathogen-specific small RNAs that guide gene silencing. For example, the C. elegans PIWI-Argonaute/piRNA pathway recruits RNA-dependent RNA polymerase RdRP to foreign sequences to amplify a trans-generational small RNA-induced epigenetic silencing signal (termed RNAe). Here we provide evidence that in addition to an adaptive memory of silenced sequences, C. elegans can also develop an opposing adaptive memory of expressed/self mRNAs. We refer to this mechanism, which can prevent or reverse RNAe as RNA-induced epigenetic gene activation (RNAa). We show that CSR-1, which engages RdRP-amplified small RNAs complementary to germline-expressed mRNAs, is required for RNAa. We show that a transgene with RNAa activity also exhibits accumulation of cognate CSR-1 small RNAs. Our findings suggest that C. elegans adaptively acquires and maintains a trans-generational CSR-1 memory that recognizes and protects self mRNAs, allowing piRNAs to recognize foreign sequences innately, without need for prior exposure. PMID:24360782

  8. Tenebrio molitor Extracts Modulate the Response to Environmental Stressors and Extend Lifespan in Caenorhabditis elegans.

    PubMed

    Won, Seong-Min; Cha, Hye-Uk; Yi, Sun Shin; Kim, Sung-Jo; Park, Sang-Kyu

    2016-09-08

    Tenebrio molitor are large insects and their larvae are consumed as food in many countries. The nutritional composition of T. molitor has been studied and contains high amounts of proteins, unsaturated fatty acids, and valuable minerals. However, the bioactivity of T. molitor has not been fully understood. We examined the effects of T. molitor extracts on resistance to oxidative stress and organism's lifespan using Caenorhabditis elegans as a model system. The response to heat shock and ultraviolet (UV) irradiation was monitored in vivo. The extracts from T. molitor showed significant effects on resistance to oxidative stress and UV irradiation and extend both mean and maximum lifespan of C. elegans. The number of progeny produced significantly increased in animals supplemented with T. molitor extracts. In addition, the expression of hsp-16.2 and sod-3 was markedly upregulated by supplementation with T. molitor extracts. These findings suggest that T. molitor extracts can increase response to stressors and extend lifespan by the induction of longevity assurance genes in C. elegans.

  9. Longevity and Stress Resistant Property of 6-Gingerol from Zingiber officinale Roscoe in Caenorhabditis elegans.

    PubMed

    Lee, Eun Byeol; Kim, Jun Hyeong; An, Chang Wan; Kim, Yeong Jee; Noh, Yun Jeong; Kim, Su Jin; Kim, Ju-Eun; Shrestha, Abinash Chandra; Ham, Ha-Neul; Leem, Jae-Yoon; Jo, Hyung-Kwon; Kim, Dae-Sung; Moon, Kwang Hyun; Lee, Jeong Ho; Jeong, Kyung Ok; Kim, Dae Keun

    2018-03-14

    In order to discover lifespan-extending compounds made from natural resources, activity-guided fractionation of Zingiber officinale Roscoe (Zingiberaceae) ethanol extract was performed using the Caenorhabditis elegans ( C. elegans ) model system. The compound 6-gingerol was isolated from the most active ethyl acetate soluble fraction, and showed potent longevity-promoting activity. It also elevated the survival rate of worms against stressful environment including thermal, osmotic, and oxidative conditions. Additionally, 6-gingerol elevated the antioxidant enzyme activities of C. elegans , and showed a dose-depend reduction of intracellular reactive oxygen species (ROS) accumulation in worms. Further studies demonstrated that the increased stress tolerance of 6-gingerol-mediated worms could result from the promotion of stress resistance proteins such as heat shock protein (HSP-16.2) and superoxide dismutase (SOD-3). The lipofuscin levels in 6-gingerol treated intestinal worms were decreased in comparison to the control group. No significant 6-gingerol-related changes, including growth, food intake, reproduction, and movement were noted. These results suggest that 6-gingerol exerted longevity-promoting activities independently of these factors and could extend the human lifespan.

  10. Hydroxylation of 10-deoxoartemisinin by Cunninghamella elegans.

    PubMed

    Parshikov, Igor A; Muraleedharan, Kannoth M; Miriyala, Bruhaspathy; Avery, Mitchell A; Williamson, John S

    2004-09-01

    The microbial metabolism of 10-deoxoartemisinin (1), a derivative of the antimalarial drug artemisinin, was investigated. Various strains of fungi were investigated for their ability to transform 1. Of these microorganisms, only Cunninghamella elegans was capable of transforming 1 to 5beta-hydroxy-10-deoxoartemisinin (2), 4alpha-hydroxy-1,10-deoxoartemisinin (3), and 7beta-hydroxy-10-deoxoartemisinin (4). The metabolites 2 and 4 retained an intact peroxide group and are therefore useful scaffolds for synthetic modification in the search for new antimalarial agents.

  11. Phenotypic plasticity and remodeling in the stress-induced Caenorhabditis elegans dauer.

    PubMed

    Androwski, Rebecca J; Flatt, Kristen M; Schroeder, Nathan E

    2017-09-01

    Organisms are often capable of modifying their development to better suit their environment. Under adverse conditions, the nematode Caenorhabditis elegans develops into a stress-resistant alternative larval stage called dauer. The dauer stage is the primary survival stage for C. elegans in nature. Large-scale tissue remodeling during dauer conveys resistance to harsh environments. The environmental and genetic regulation of the decision to enter dauer has been extensively studied. However, less is known about the mechanisms regulating tissue remodeling. Changes to the cuticle and suppression of feeding in dauers lead to an increased resistance to external stressors. Meanwhile reproductive development arrests during dauer while preserving the ability to reproduce once favorable environmental conditions return. Dramatic remodeling of neurons, glia, and muscles during dauer likely facilitate dauer-specific behaviors. Dauer-specific pulsation of the excretory duct likely mediates a response to osmotic stress. The power of C. elegans genetics has uncovered some of the molecular pathways regulating dauer tissue remodeling. In addition to genes that regulate single remodeling events, several mutants result in pleiotropic defects in dauer remodeling. This review details the individual aspects of morphological changes that occur during dauer formation and discusses molecular mechanisms regulating these processes. The dauer stage provides us with an excellent model for understanding phenotypic plasticity and remodeling from the individual cell to an entire animal. WIREs Dev Biol 2017, 6:e278. doi: 10.1002/wdev.278 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  12. Mated Progeny Production Is a Biomarker of Aging in Caenorhabditis elegans

    PubMed Central

    Pickett, Christopher L.; Dietrich, Nicholas; Chen, Junfang; Xiong, Chengjie; Kornfeld, Kerry

    2013-01-01

    The relationships between reproduction and aging are important for understanding the mechanisms of aging and evaluating evolutionary theories of aging. To investigate the effects of progeny production on reproductive and somatic aging, we conducted longitudinal studies of Caenorhabditis elegans hermaphrodites. For mated wild-type animals that were not sperm limited and survived past the end of the reproductive period, high levels of cross-progeny production were positively correlated with delayed reproductive and somatic aging. In this group of animals, individuals that generated more cross progeny also reproduced and lived longer than individuals that generated fewer cross progeny. These results indicate that progeny production does not accelerate reproductive or somatic aging. This longitudinal study demonstrated that cumulative cross progeny production through day four is an early-stage biomarker that is a positive predictor of longevity. Furthermore, in mated animals, high levels of early cross progeny production were positively correlated with high levels of late cross progeny production, indicating that early progeny production does not accelerate reproductive aging. The relationships between progeny production and aging were further evaluated by comparing self-fertile hermaphrodites that generated relatively few self progeny with mated hermaphrodites that generated many cross progeny. The timing of age-related somatic degeneration was similar in these groups, suggesting progeny production does not accelerate somatic aging. These studies rigorously define relationships between progeny production, reproductive aging, and somatic aging and identify new biomarkers of C. elegans aging. These results indicate that some mechanisms or pathways control age-related degeneration of both reproductive and somatic tissues in C. elegans. PMID:24142929

  13. Heritable determinants of male fertilization success in the nematode Caenorhabditis elegans

    PubMed Central

    2011-01-01

    Background Sperm competition is a driving force in the evolution of male sperm characteristics in many species. In the nematode Caenorhabditis elegans, larger male sperm evolve under experimentally increased sperm competition and larger male sperm outcompete smaller hermaphrodite sperm for fertilization within the hermaphrodite reproductive tract. To further elucidate the relative importance of sperm-related traits that contribute to differential reproductive success among males, we quantified within- and among-strain variation in sperm traits (size, rate of production, number transferred, competitive ability) for seven male genetic backgrounds known previously to differ with respect to some sperm traits. We also quantified male mating ability in assays for rates of courtship and successful copulation, and then assessed the roles of these pre- and post-mating traits in first- and second-male fertilization success. Results We document significant variation in courtship ability, mating ability, sperm size and sperm production rate. Sperm size and production rate were strong indicators of early fertilization success for males that mated second, but male genetic backgrounds conferring faster sperm production make smaller sperm, despite virgin males of all genetic backgrounds transferring indistinguishable numbers of sperm to mating partners. Conclusions We have demonstrated that sperm size and the rate of sperm production represent dominant factors in determining male fertilization success and that C. elegans harbors substantial heritable variation for traits contributing to male reproductive success. C. elegans provides a powerful, tractable system for studying sexual selection and for dissecting the genetic basis and evolution of reproduction-related traits. PMID:21492473

  14. Non-linear imaging techniques visualize the lipid profile of C. elegans

    NASA Astrophysics Data System (ADS)

    Mari, Meropi; Petanidou, Barbara; Palikaras, Konstantinos; Fotakis, Costas; Tavernarakis, Nektarios; Filippidis, George

    2015-07-01

    The non-linear techniques Second and Third Harmonic Generation (SHG, THG) have been employed simultaneously to record three dimensional (3D) imaging and localize the lipid content of the muscular areas (ectopic fat) of Caenorhabditis elegans (C. elegans). Simultaneously, Two-Photon Fluorescence (TPEF) was used initially to localize the stained lipids with Nile Red, but also to confirm the THG potential to image lipids successfully. In addition, GFP labelling of the somatic muscles, proves the initial suggestion of the existence of ectopic fat on the muscles and provides complementary information to the SHG imaging of the pharynx. The ectopic fat may be related to a complex of pathological conditions including type-2 diabetes, hypertension and cardiovascular diseases. The elucidation of the molecular path leading to the development of metabolic syndrome is a vital issue with high biological significance and necessitates accurate methods competent of monitoring lipid storage distribution and dynamics in vivo. THG microscopy was employed as a quantitative tool to monitor the lipid accumulation in non-adipose tissues in the pharyngeal muscles of 12 unstained specimens while the SHG imaging revealed the anatomical structure of the muscles. The ectopic fat accumulation on the pharyngeal muscles increases in wild type (N2) C. elegans between 1 and 9 days of adulthood. This suggests a correlation of the ectopic fat accumulation with the aging. Our results can provide new evidence relating the deposition of ectopic fat with aging, but also validate SHG and THG microscopy modalities as new, non-invasive tools capable of localizing and quantifying selectively lipid accumulation and distribution.

  15. Heat-killed Lactobacillus spp. cells enhance survivals of Caenorhabditis elegans against Salmonella and Yersinia infections.

    PubMed

    Lee, J; Choe, J; Kim, J; Oh, S; Park, S; Kim, S; Kim, Y

    2015-12-01

    This study examined the effect of feeding heat-killed Lactobacillus cells on the survival of Caenorhabditis elegans nematodes after Salmonella Typhimurium and Yersinia enterocolitica infection. The feeding of heat-killed Lactobacillus plantarum 133 (LP133) and Lactobacillus fermentum 21 (LP21) cells to nematodes was shown to significantly increase the survival rate as well as stimulate the expression of pmk-1 gene that key factor for C. elegans immunity upon infection compared with control nematodes that were only fed Escherichia coli OP50 (OP50) cells. These results suggest that heat-killed LP133 and LF21 cells exert preventive or protective effects against the Gram-negative bacteria Salm. Typhimurium and Y. enterocolitica. To better understand the mechanisms underlying the LF21-mediated and LP133-mediated protection against bacterial infection in nematodes, transcriptional profiling was performed for each experimental group. These experiments showed that genes related to energy generation and ageing, regulators of insulin/IGF-1-like signalling, DAF genes, oxidation and reduction processes, the defence response and/or the innate immune response, and neurological processes were upregulated in nematodes that had been fed heat-killed Lactobacillus cells compared with nematodes that had been fed E. coli cells. In this study, the feeding of heat-killed Lactobacillus bacteria to Caenorhabditis elegans nematodes was shown to decrease infection by Gram-negative bacteria and increase the host lifespan. C. elegans has a small, well-organized genome and is an excellent in vivo model organism; thus, these results will potentially shed light on important Lactobacillus-host interactions. © 2015 The Society for Applied Microbiology.

  16. Precise observation of C. elegans dynamic behaviours under controlled thermal stimulus using a mobile phone-based microscope.

    PubMed

    Yoon, T; Shin, D-M; Kim, S; Lee, S; Lee, T G; Kim, K

    2017-04-01

    We investigated the temperature-dependent locomotion of Caenorhabditis elegans by using the mobile phone-based microscope. We developed the customized imaging system with mini incubator and smartphone to effectively control the thermal stimulation for precisely observing the temperature-dependent locomotory behaviours of C. elegans. Using the mobile phone-based microscope, we successfully followed the long-term progress of specimens of C. elegans in real time as they hatched and explored their temperature-dependent locomotory behaviour. We are convinced that the mobile phone-based microscope is a useful device for real time and long-term observations of biological samples during incubation, and can make it possible to carry out live observations via wireless communications regardless of location. In addition, this microscope has the potential for widespread use owing to its low cost and compact design. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  17. Interplay among Resistance Profiles, High-Risk Clones, and Virulence in the Caenorhabditis elegans Pseudomonas aeruginosa Infection Model.

    PubMed

    Sánchez-Diener, Irina; Zamorano, Laura; López-Causapé, Carla; Cabot, Gabriel; Mulet, Xavier; Peña, Carmen; Del Campo, Rosa; Cantón, Rafael; Doménech-Sánchez, Antonio; Martínez-Martínez, Luis; Arcos, Susana C; Navas, Alfonso; Oliver, Antonio

    2017-12-01

    The increasing prevalence of nosocomial infections produced by multidrug-resistant (MDR) or extensively drug-resistant (XDR) Pseudomonas aeruginosa is frequently linked to widespread international strains designated high-risk clones. In this work, we attempted to decipher the interplay between resistance profiles, high-risk clones, and virulence, testing a large ( n = 140) collection of well-characterized P. aeruginosa isolates from different sources (bloodstream infections, nosocomial outbreaks, cystic fibrosis, and the environment) in a Caenorhabditis elegans infection model. Consistent with previous data, we documented a clear inverse correlation between antimicrobial resistance and virulence in the C. elegans model. Indeed, the lowest virulence was linked to XDR profiles, which were typically linked to defined high-risk clones. However, virulence varied broadly depending on the involved high-risk clone; it was high for sequence type 111 (ST111) and ST235 but very low for ST175. The highest virulence of ST235 could be attributed to its exoU + type III secretion system (TTSS) genotype, which was found to be linked with higher virulence in our C. elegans model. Other markers, such as motility or pigment production, were not essential for virulence in the C. elegans model but seemed to be related with the higher values of the statistical normalized data. In contrast to ST235, the ST175 high-risk clone, which is widespread in Spain and France, seems to be associated with a particularly low virulence in the C. elegans model. Moreover, the previously described G154R AmpR mutation, prevalent in ST175, was found to contribute to the reduced virulence, although it was not the only factor involved. Altogether, our results provide a major step forward for understanding the interplay between P. aeruginosa resistance profiles, high-risk clones, and virulence. Copyright © 2017 American Society for Microbiology.

  18. Interplay among Resistance Profiles, High-Risk Clones, and Virulence in the Caenorhabditis elegans Pseudomonas aeruginosa Infection Model

    PubMed Central

    Sánchez-Diener, Irina; López-Causapé, Carla; Mulet, Xavier; Cantón, Rafael; Doménech-Sánchez, Antonio; Martínez-Martínez, Luis; Arcos, Susana C.; Navas, Alfonso

    2017-01-01

    ABSTRACT The increasing prevalence of nosocomial infections produced by multidrug-resistant (MDR) or extensively drug-resistant (XDR) Pseudomonas aeruginosa is frequently linked to widespread international strains designated high-risk clones. In this work, we attempted to decipher the interplay between resistance profiles, high-risk clones, and virulence, testing a large (n = 140) collection of well-characterized P. aeruginosa isolates from different sources (bloodstream infections, nosocomial outbreaks, cystic fibrosis, and the environment) in a Caenorhabditis elegans infection model. Consistent with previous data, we documented a clear inverse correlation between antimicrobial resistance and virulence in the C. elegans model. Indeed, the lowest virulence was linked to XDR profiles, which were typically linked to defined high-risk clones. However, virulence varied broadly depending on the involved high-risk clone; it was high for sequence type 111 (ST111) and ST235 but very low for ST175. The highest virulence of ST235 could be attributed to its exoU+ type III secretion system (TTSS) genotype, which was found to be linked with higher virulence in our C. elegans model. Other markers, such as motility or pigment production, were not essential for virulence in the C. elegans model but seemed to be related with the higher values of the statistical normalized data. In contrast to ST235, the ST175 high-risk clone, which is widespread in Spain and France, seems to be associated with a particularly low virulence in the C. elegans model. Moreover, the previously described G154R AmpR mutation, prevalent in ST175, was found to contribute to the reduced virulence, although it was not the only factor involved. Altogether, our results provide a major step forward for understanding the interplay between P. aeruginosa resistance profiles, high-risk clones, and virulence. PMID:28923877

  19. Caenorhabditis elegans EXO-3 contributes to longevity and reproduction: differential roles in somatic cells and germ cells.

    PubMed

    Kato, Yuichi; Moriwaki, Takahito; Funakoshi, Masafumi; Zhang-Akiyama, Qiu-Mei

    2015-02-01

    Apurinic/apyrimidinic (AP) sites are the major DNA damage generated continuously even under normal conditions, and inhibit DNA replication/transcription. AP endonucleases are ubiquitous enzymes required for the repair of AP sites and 3' blocking ends, but their physiological roles in multicellular organisms are not fully understood. In this study, we investigated how an AP endonuclease functions in a multicellular organism (Caenorhabditis elegans (C. elegans)). EXO-3 is one of the AP endonucleases in C. elegans. Using an exo-3 mutant worm, we found that deletion of the exo-3 gene caused shortened lifespan in an ung-1-dependent manner. UNG-1 is a uracil DNA glycosylase in C. elegans, and the present finding suggested that UNG-1 is the major producer of AP sites that affects lifespan, and EXO-3 contributes to longevity by completing the repair of uracil. Next we found that the exo-3 gene was abundantly expressed in the gonads, and AP sites in the gonad were efficiently repaired, suggesting that EXO-3 functioned particularly in the gonad. Deletion of the exo-3 gene resulted in a significant decrease in self-brood size. This was rescued by deficiency of NTH-1, which is a bifunctional DNA glycosylase in C. elegans that recognizes oxidative base damage. This result suggested that the major substrate of EXO-3 in the gonad was 3' blocking end generated by NTH-1, and that EXO-3 played an important role in reproduction. A contribution of EXO-3 to reproduction was also suggested by our finding here that the decrease of self-brood size of the exo-3 mutant became more marked when worms were treated with methyl methanesulfonate (MMS) and sodium bisulfite (NaHSO3). This study demonstrated differential roles of EXO-3 in somatic cells and germ cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Caenorhabditis elegans syndecan (SDN-1) is required for normal egg laying and associates with the nervous system and the vulva.

    PubMed

    Minniti, Alicia N; Labarca, Mariana; Hurtado, Claudia; Brandan, Enrique

    2004-10-01

    In Caenorhabditis elegans, the identification of many enzymes involved in the synthesis and modification of glycosaminoglycans (GAGs), essential components of proteoglycans, has attained special attention in recent years. Mutations in all the genes that encode for GAG biosynthetic enzymes show defects in the development of the vulva, specifically in the invagination of the vulval epithelium. Mutants for certain heparan sulfate modifying enzymes present axonal and cellular guidance defects in specific neuronal classes. Although most of the enzymes involved in the biosynthesis and modification of heparan sulfate have been characterized in C. elegans, little is known regarding the core proteins to which these GAGs covalently bind in proteoglycans. A single syndecan homologue (sdn-1) has been identified in the C. elegans genome through sequence analysis. In the present study, we show that C. elegans synthesizes sulfated proteoglycans, seen as three distinct species in western blot analysis. In the sdn-1 (ok449) deletion mutant allele we observed the lack of one species, which corresponds to a 50 kDa product after heparitinase treatment. The expression of sdn-1 mRNA and sequencing revealed that sdn-1 (ok449) deletion mutants lack two glycosylation sites. Hence, the missing protein in the western blot analysis probably corresponds to SDN-1. In addition, we show that SDN-1 localizes to the C. elegans nerve ring, nerve cords and to the vulva. SDN-1 is found specifically phosphorylated in nerve ring neurons and in the vulva, in both wild-type worms and sdn-1 (ok449) deletion mutants. These mutants show a defective egg-laying phenotype. Our results show for the first time, the identification, localization and some functional aspects of syndecan in the nematode C. elegans.

  1. The Signaling Pathway of Caenorhabditis elegans Mediates Chemotaxis Response to the Attractant 2-Heptanone in a Trojan Horse-like Pathogenesis.

    PubMed

    Zhang, Chunmei; Zhao, Ninghui; Chen, Yao; Zhang, Donghua; Yan, Jinyuan; Zou, Wei; Zhang, Keqin; Huang, Xiaowei

    2016-11-04

    The nematode Caenorhabditis elegans exhibits behavioral responses to a wide range of odorants associated with food and pathogens. A previous study described a Trojan Horse-like strategy of pathogenesis whereby the bacterium Bacillus nematocida B16 emits the volatile organic compound 2-heptanone to trap C. elegans for successful infection. Here, we further explored the receptor for 2-heptanone as well as the pathway involved in signal transduction in C. elegans Our experiments showed that 2-heptanone sensing depended on the function of AWC neurons and a GPCR encoded by str-2 Consistent with the above observation, the HEK293 cells expressing STR-2 on their surfaces showed a transient elevation in intracellular Ca 2+ levels after 2-heptanone applications. After combining the assays of RNA interference and gene mutants, we also identified the Gα subunits and their downstream components in the olfactory signal cascade that are necessary for responding to 2-heptanone, including Gα subunits of egl-30 and gpa-3, phospholipase C of plc-1and egl-8, and the calcium channel of cmk-1 and cal-1. Our work demonstrates for the first time that an integrated signaling pathway for 2-heptanone response in C. elegans involves recognition by GPCR STR-2, activation by Gα subunits of egl-30/gpa-3 and transfer to the PLC pathway, indicating that a potentially novel olfactory pathway exists in AWC neurons. Meanwhile, since 2-heptanone, a metabolite from the pathogenic bacterium B. nematocida B16, can be sensed by C. elegans and thus strongly attract its host, our current work also suggested coevolution between the pathogenic microorganism and the chemosensory system in C. elegans. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Phenazine derivatives cause proteotoxicity and stress in C. elegans

    PubMed Central

    Ray, Arpita; Rentas, Courtney; Caldwell, Guy A.; Caldwell, Kim A.

    2014-01-01

    It is widely recognized that bacterial metabolites have toxic effects in animal systems. Phenazines are a common bacterial metabolite within the redox-active exotoxin class. These compounds have been shown to be toxic to the soil invertebrate Caenorhabditis elegans with the capability of causing oxidative stress and lethality. Here we report that chronic, low-level exposure to three separate phenazine molecules (phenazine-1-carboxylic acid, pyocyanin and 1-hydroxyphenazine) upregulated ER stress response and enhanced expression of a superoxide dismutase reporter in vivo. Exposure to these molecules also increased of polyglutamine and α-synuclein in the bodywall muscle cells of C. elegans. Exposure of worms to these phenazines caused additional sensitivity in dopamine neurons expressing wild-type α-synuclein, indicating a possible defect in protein homeostasis. The addition of an anti-oxidant failed to rescue the neurotoxic and protein aggregation phenotypes caused by these compounds. Thus, increased production of superoxide radicals that occurs in whole animals in response to these phenazines appears independent from the toxicity phenotype observed. Collectively, these data provide cause for further consideration of the neurodegenerative impact of phenazines. PMID:25304539

  3. Genetics of Lipid-Storage Management in Caenorhabditis elegans Embryos

    PubMed Central

    Schmökel, Verena; Memar, Nadin; Wiekenberg, Anne; Trotzmüller, Martin; Schnabel, Ralf; Döring, Frank

    2016-01-01

    Lipids play a pivotal role in embryogenesis as structural components of cellular membranes, as a source of energy, and as signaling molecules. On the basis of a collection of temperature-sensitive embryonic lethal mutants, a systematic database search, and a subsequent microscopic analysis of >300 interference RNA (RNAi)–treated/mutant worms, we identified a couple of evolutionary conserved genes associated with lipid storage in Caenorhabditis elegans embryos. The genes include cpl-1 (cathepsin L–like cysteine protease), ccz-1 (guanine nucleotide exchange factor subunit), and asm-3 (acid sphingomyelinase), which is closely related to the human Niemann-Pick disease–causing gene SMPD1. The respective mutant embryos accumulate enlarged droplets of neutral lipids (cpl-1) and yolk-containing lipid droplets (ccz-1) or have larger genuine lipid droplets (asm-3). The asm-3 mutant embryos additionally showed an enhanced resistance against C band ultraviolet (UV-C) light. Herein we propose that cpl-1, ccz-1, and asm-3 are genes required for the processing of lipid-containing droplets in C. elegans embryos. Owing to the high levels of conservation, the identified genes are also useful in studies of embryonic lipid storage in other organisms. PMID:26773047

  4. Purpose and regulation of stem cells: a systems-biology view from the Caenorhabditis elegans germ line.

    PubMed

    Cinquin, Olivier

    2009-01-01

    Stem cells are expected to play a key role in the development and maintenance of organisms, and hold great therapeutic promises. However, a number of questions must be answered to achieve an understanding of stem cells and put them to use. Here I review some of these questions, and how they relate to the model system provided by the Caenorhabditis elegans germ line, which is exceptional in its thorough genetic characterization and experimental accessibility under in vivo conditions. A fundamental question is how to define a stem cell; different definitions can be adopted that capture different features of interest. In the C. elegans germ line, stem cells can be defined by cell lineage or by cell commitment ('commitment' must itself be carefully defined). These definitions are associated with two other important questions about stem cells: their functions (which must be addressed following a systems approach, based on an evolutionary perspective) and their regulation. I review possible functions and their evolutionary groundings, including genome maintenance and powerful regulation of cell proliferation and differentiation, and possible regulatory mechanisms, including asymmetrical division and control of transit amplification by a developmental timer. I draw parallels between Drosophila and C. elegans germline stem cells; such parallels raise intriguing questions about Drosophila stem cells. I conclude by showing that the C. elegans germ line bears similarities with a number of other stem cell systems, which underscores its relevance to the understanding of stem cells.

  5. Choledocystus elegans (Digenea: Plagiorchiidae) of Leptodactylus paraensis (Amphibia: Leptodactylidae) from the Brazilian Amazon.

    PubMed

    Gomes, Tássia Fernanda Furo; Melo, Francisco Tiago de Vasconcelos; Giese, Elane Guerreiro; Furtado, Adriano Penha; Santos, Jeannie Nascimento Dos

    2017-01-01

    The trematodes are parasites of the several vertebrates including amphibians, however the knowledge about of the taxonomy these parasites is still confuse. The trematode Choledocystus elegans was found in the small intestine of the Leptodactylus paraensis in eastern Amazon and presents the following characteristics: several pointed tegumentary spines, papillae on the outer and inner edges of the oral and ventral suckers, a round, well-developed cirrus sac, a well-developed cirrus, oblique testicles, a ovary right side, uterine loops extending between the testicles, follicular vitellaria distributed throughout the body, starting at the genital pore region and caeca close the end of the body. For the first time, this study identified C. elegans parasitizing L. paraensis and describes morphological aspects never characterized using light and scanning electron microscopy.

  6. Using a health-rating system to evaluate the usefulness of Caenorhabditis elegans as a model for anthelmintic study

    PubMed Central

    Weaver, Kathryn J.; May, Cassandra J.

    2017-01-01

    Soil-transmitted helminths (STHs) are intestinal parasitic nematodes that infect humans, and are transmitted through contaminated soil. These nematodes include the large roundworm (Ascaris lumbricoides), whipworm (Trichuris trichiura), and hookworm (Ancylostoma ceylanicum, Ancylostoma duodenale, and Necator americanus). Nearly 1.5 billion people (~24% of the population) worldwide are infected with at least one species of these parasites, burdening the poor, in particular, children and pregnant women. To combat these diseases, the WHO only recognizes four anthelmintic drugs, including the preferred drug, albendazole, for mass drug administration (MDA). These four drugs have a total of two different mechanisms of action, and, as expected, resistance has been observed. This problem calls for new drugs with different mechanisms of action. Although there is precedence for the use of Caenorhabditis elegans (C. elegans), a free-living nematode, as a model for drug screening and anthelmintic testing, their usefulness for such anthelmintic study is not clear as past research has shown that C. elegans did not show a strong response to albendazole, the MDA drug of choice, in comparison with various STHs under similar treatment. To further examine if C. elegans has the potential to be a good model organism for anthelmintic drug study, we employed a health rating scale in order to tease out potential effects of albendazole, and other anthelmintics, that may have been missed using a binary, dead/alive scale. Using the health-rating scale we found that although the worms may have not been dying, they were sick, showing dose responses to anthelmintic drugs, including albendazole, reinforcing C. elegans as a useful model for anthelmintic study. PMID:28632749

  7. Imaging C. elegans embryos using an epifluorescent microscope and open source software.

    PubMed

    Verbrugghe, Koen J C; Chan, Raymond C

    2011-03-24

    Cellular processes, such as chromosome assembly, segregation and cytokinesis,are inherently dynamic. Time-lapse imaging of living cells, using fluorescent-labeled reporter proteins or differential interference contrast (DIC) microscopy, allows for the examination of the temporal progression of these dynamic events which is otherwise inferred from analysis of fixed samples(1,2). Moreover, the study of the developmental regulations of cellular processes necessitates conducting time-lapse experiments on an intact organism during development. The Caenorhabiditis elegans embryo is light-transparent and has a rapid, invariant developmental program with a known cell lineage(3), thus providing an ideal experiment model for studying questions in cell biology(4,5)and development(6-9). C. elegans is amendable to genetic manipulation by forward genetics (based on random mutagenesis(10,11)) and reverse genetics to target specific genes (based on RNAi-mediated interference and targeted mutagenesis(12-15)). In addition, transgenic animals can be readily created to express fluorescently tagged proteins or reporters(16,17). These traits combine to make it easy to identify the genetic pathways regulating fundamental cellular and developmental processes in vivo(18-21). In this protocol we present methods for live imaging of C. elegans embryos using DIC optics or GFP fluorescence on a compound epifluorescent microscope. We demonstrate the ease with which readily available microscopes, typically used for fixed sample imaging, can also be applied for time-lapse analysis using open-source software to automate the imaging process.

  8. Interpreting a sequenced genome: toward a cosmid transgenic library of Caenorhabditis elegans.

    PubMed

    Janke, D L; Schein, J E; Ha, T; Franz, N W; O'Neil, N J; Vatcher, G P; Stewart, H I; Kuervers, L M; Baillie, D L; Rose, A M

    1997-10-01

    We have generated a library of transgenic Caenorhabditis elegans strains that carry sequenced cosmids from the genome of the nematode. Each strain carries an extrachromosomal array containing a single cosmid, sequenced by the C. elegans Genome Sequencing Consortium, and a dominate Rol-6 marker. More than 500 transgenic strains representing 250 cosmids have been constructed. Collectively, these strains contain approximately 8 Mb of sequence data, or approximately 8% of the C. elegans genome. The transgenic strains are being used to rescue mutant phenotypes, resulting in a high-resolution map alignment of the genetic, physical, and DNA sequence maps of the nematode. We have chosen the region of chromosome III deleted by sDf127 and not covered by the duplication sDp8(III;I) as a starting point for a systematic correlation of mutant phenotypes with nucleotide sequence. In this defined region, we have identified 10 new essential genes whose mutant phenotypes range from developmental arrest at early larva, to maternal effect lethal. To date, 8 of these 10 essential genes have been rescued. In this region, these rescues represent approximately 10% of the genes predicted by GENEFINDER and considerably enhance the map alignment. Furthermore, this alignment facilitates future efforts to physically position and clone other genes in the region. [Updated information about the Transgenic Library is available via the Internet at http://darwin.mbb.sfu.ca/imbb/dbaillie/cos mid.html.

  9. An opioid-like system regulating feeding behavior in C. elegans

    PubMed Central

    Cheong, Mi Cheong; Artyukhin, Alexander B; You, Young-Jai; Avery, Leon

    2015-01-01

    Neuropeptides are essential for the regulation of appetite. Here we show that neuropeptides could regulate feeding in mutants that lack neurotransmission from the motor neurons that stimulate feeding muscles. We identified nlp-24 by an RNAi screen of 115 neuropeptide genes, testing whether they affected growth. NLP-24 peptides have a conserved YGGXX sequence, similar to mammalian opioid neuropeptides. In addition, morphine and naloxone respectively stimulated and inhibited feeding in starved worms, but not in worms lacking NPR-17, which encodes a protein with sequence similarity to opioid receptors. Opioid agonists activated heterologously expressed NPR-17, as did at least one NLP-24 peptide. Worms lacking the ASI neurons, which express npr-17, did not response to naloxone. Thus, we suggest that Caenorhabditis elegans has an endogenous opioid system that acts through NPR-17, and that opioids regulate feeding via ASI neurons. Together, these results suggest C. elegans may be the first genetically tractable invertebrate opioid model. DOI: http://dx.doi.org/10.7554/eLife.06683.001 PMID:25898004

  10. Mitochondrial DNA diversity in the acanthocephalan Prosthenorchis elegans in Colombia based on cytochrome c oxidase I (COI) gene sequence.

    PubMed

    Falla, Ana Carolina; Brieva, Claudia; Bloor, Paul

    2015-12-01

    Prosthenorchis elegans is a member of the Phylum Acanthocephala and is an important parasite affecting New World Primates in the wild in South America and in captivity around the world. It is of significant management concern due to its pathogenicity and mode of transmission through intermediate hosts. Current diagnosis of P. elegans is based on the detection of eggs by coprological examination. However, this technique lacks both specificity and sensitivity, since eggs of most members of the genus are morphologically indistinguishable and shed intermittently, making differential diagnosis difficult, and coprological examinations are often negative in animals severely infected at death. We examined sequence variation in 633 bp of mitochondrial DNA (mtDNA) cytochrome c oxidase I (COI) sequence in 37 isolates of P. elegans from New World monkeys (Saguinus leucopus and Cebus albifrons) in Colombia held in rescue centers and from the wild. Intraspecific divergence ranged from 0.0 to 1.6% and was comparable with corresponding values within other species of acanthocephalans. Furthermore, comparisons of patterns of sequence divergence within the Acanthocephala suggest that Prosthenorchis represents a separate genus within the Oligacanthorhynchida. Six distinct haplotypes were identified within P. elegans which grouped into one of two well-supported mtDNA haplogroups. No association between haplogroup/haplotype, holding facility and species was found. This information will help pave the way to the development of molecular-based diagnostic tools for the detection of P. elegans as well as furthering research into the life cycle, intermediate hosts and epidemiological aspects of the species.

  11. Molecular time-course and the metabolic basis of entry into dauer in Caenorhabditis elegans.

    PubMed

    Jeong, Pan-Young; Kwon, Min-Seok; Joo, Hyoe-Jin; Paik, Young-Ki

    2009-01-01

    When Caenorhabditis elegans senses dauer pheromone (daumone), signaling inadequate growth conditions, it enters the dauer state, which is capable of long-term survival. However, the molecular pathway of dauer entry in C. elegans has remained elusive. To systematically monitor changes in gene expression in dauer paths, we used a DNA microarray containing 22,625 gene probes corresponding to 22,150 unique genes from C. elegans. We employed two different paths: direct exposure to daumone (Path 1) and normal growth media plus liquid culture (Path 2). Our data reveal that entry into dauer is accomplished through the multi-step process, which appears to be compartmentalized in time and according to metabolic flux. That is, a time-course of dauer entry in Path 1 shows that dauer larvae formation begins at post-embryonic stage S4 (48 h) and is complete at S6 (72 h). Our results also suggest the presence of a unique adaptive metabolic control mechanism that requires both stage-specific expression of specific genes and tight regulation of different modes of fuel metabolite utilization to sustain the energy balance in the context of prolonged survival under adverse growth conditions. It is apparent that worms entering dauer stage may rely heavily on carbohydrate-based energy reserves, whereas dauer larvae utilize fat or glyoxylate cycle-based energy sources. We created a comprehensive web-based dauer metabolic database for C. elegans (www.DauerDB.org) that makes it possible to search any gene and compare its relative expression at a specific stage, or evaluate overall patterns of gene expression in both paths. This database can be accessed by the research community and could be widely applicable to other related nematodes as a molecular atlas.

  12. The combinatorial control of alternative splicing in C. elegans

    PubMed Central

    2017-01-01

    Normal development requires the right splice variants to be made in the right tissues at the right time. The core splicing machinery is engaged in all splicing events, but which precise splice variant is made requires the choice between alternative splice sites—for this to occur, a set of splicing factors (SFs) must recognize and bind to short RNA motifs in the pre-mRNA. In C. elegans, there is known to be extensive variation in splicing patterns across development, but little is known about the targets of each SF or how multiple SFs combine to regulate splicing. Here we combine RNA-seq with in vitro binding assays to study how 4 different C. elegans SFs, ASD-1, FOX-1, MEC-8, and EXC-7, regulate splicing. The 4 SFs chosen all have well-characterised biology and well-studied loss-of-function genetic alleles, and all contain RRM domains. Intriguingly, while the SFs we examined have varied roles in C. elegans development, they show an unexpectedly high overlap in their targets. We also find that binding sites for these SFs occur on the same pre-mRNAs more frequently than expected suggesting extensive combinatorial control of splicing. We confirm that regulation of splicing by multiple SFs is often combinatorial and show that this is functionally significant. We also find that SFs appear to combine to affect splicing in two modes—they either bind in close proximity within the same intron or they appear to bind to separate regions of the intron in a conserved order. Finally, we find that the genes whose splicing are regulated by multiple SFs are highly enriched for genes involved in the cytoskeleton and in ion channels that are key for neurotransmission. Together, this shows that specific classes of genes have complex combinatorial regulation of splicing and that this combinatorial regulation is critical for normal development to occur. PMID:29121637

  13. Food responsiveness regulates episodic behavioral states in Caenorhabditis elegans

    PubMed Central

    McCloskey, Richard J.; Fouad, Anthony D.; Churgin, Matthew A.

    2017-01-01

    Animals optimize survival and reproduction in part through control of behavioral states, which depend on an organism’s internal and external environments. In the nematode Caenorhabditis elegans a variety of behavioral states have been described, including roaming, dwelling, quiescence, and episodic swimming. These states have been considered in isolation under varied experimental conditions, making it difficult to establish a unified picture of how they are regulated. Using long-term imaging, we examined C. elegans episodic behavioral states under varied mechanical and nutritional environments. We found that animals alternate between high-activity (active) and low-activity (sedentary) episodes in any mechanical environment, while the incidence of episodes and their behavioral composition depend on food levels. During active episodes, worms primarily roam, as characterized by continuous whole body movement. During sedentary episodes, animals exhibit dwelling (slower movements confined to the anterior half of the body) and quiescence (a complete lack of movement). Roaming, dwelling, and quiescent states are manifest not only through locomotory characteristics but also in pharyngeal pumping (feeding) and in egg-laying behaviors. Next, we analyzed the genetic basis of behavioral states. We found that modulation of behavioral states depends on neuropeptides and insulin-like signaling in the nervous system. Sensory neurons and the Foraging homolog EGL-4 regulate behavior through control of active/sedentary episodes. Optogenetic stimulation of dopaminergic and serotonergic neurons induced dwelling, implicating dopamine as a dwell-promoting neurotransmitter. Our findings provide a more unified description of behavioral states and suggest that perception of nutrition is a conserved mechanism for regulating animal behavior. NEW & NOTEWORTHY One strategy by which animals adapt to their internal states and external environments is by adopting behavioral states. The roundworm

  14. Direct Measurements of Drag Forces in C. elegans Crawling Locomotion

    PubMed Central

    Rabets, Yegor; Backholm, Matilda; Dalnoki-Veress, Kari; Ryu, William S.

    2014-01-01

    With a simple and versatile microcantilever-based force measurement technique, we have probed the drag forces involved in Caenorhabditis elegans locomotion. As a worm crawls on an agar surface, we found that substrate viscoelasticity introduces nonlinearities in the force-velocity relationships, yielding nonconstant drag coefficients that are not captured by original resistive force theory. A major contributing factor to these nonlinearities is the formation of a shallow groove on the agar surface. We measured both the adhesion forces that cause the worm’s body to settle into the agar and the resulting dynamics of groove formation. Furthermore, we quantified the locomotive forces produced by C. elegans undulatory motions on a wet viscoelastic agar surface. We show that an extension of resistive force theory is able to use the dynamics of a nematode’s body shape along with the measured drag coefficients to predict the forces generated by a crawling nematode. PMID:25418179

  15. Fatty acids composition of Caenorhabditis elegans using accurate mass GCMS-QTOF

    PubMed Central

    Henry, Parise; Owopetu, Olufunmilayo; Adisa, Demilade; Nguyen, Thao; Anthony, Kevin; Ijoni-Animadu, David; Jamadar, Sakha; Abdel-Rahman, Fawzia; Saleh, Mahmoud A.

    2016-01-01

    The free living nematode Caenorhabditis elegans is a proven model organism for lipid metabolism research. Total lipids of C. elegans were extracted using chloroform, methanol 2:1(v/v). Fatty acids composition of the extracted total lipids were converted to their corresponding methyl esters (FAMEs) and analyzed by gas chromatography/accurate mass quadrupole time of flight mass spectrometry (GCMS-QTOF) using both electron ionization (EI) and chemical ionization (CI) techniques. 28 fatty acids consisting of 12 to 22 carbon atoms were identified, 65% of them were unsaturated. Fatty acids containing 12 to 17 carbons were mostly saturated with stearic acid (18:0) as the major constituent. Several branched-chain fatty acids were identified. Methyl-14-methylhexadecanoate (iso-17:0) was the major identified branched fatty acid. This is the first report to detect the intact molecular parent ions of the identified fatty acids using chemical ionization compared to electron ionization which produced fragmentations of the fatty acids methyl esters (FAMEs). PMID:27166662

  16. Multi-Toxic Endpoints of the Foodborne Mycotoxins in Nematode Caenorhabditis elegans

    PubMed Central

    Yang, Zhendong; Xue, Kathy S.; Sun, Xiulan; Tang, Lili; Wang, Jia-Sheng

    2015-01-01

    Aflatoxins B1 (AFB1), deoxynivalenol (DON), fumonisin B1 (FB1), T-2 toxin (T-2), and zearalenone (ZEA) are the major foodborne mycotoxins of public health concerns. In the present study, the multiple toxic endpoints of these naturally-occurring mycotoxins were evaluated in Caenorhabditis elegans model for their lethality, toxic effects on growth and reproduction, as well as influence on lifespan. We found that the lethality endpoint was more sensitive for T-2 toxicity with the EC50 at 1.38 mg/L, the growth endpoint was relatively sensitive for AFB1 toxic effects, and the reproduction endpoint was more sensitive for toxicities of AFB1, FB1, and ZEA. Moreover, the lifespan endpoint was sensitive to toxic effects of all five tested mycotoxins. Data obtained from this study may serve as an important contribution to knowledge on assessment of mycotoxin toxic effects, especially for assessing developmental and reproductive toxic effects, using the C. elegans model. PMID:26633509

  17. Update on Actinomucor elegans, a mucormycete infrequently detected in human specimens: how combined microbiological tools contribute efficiently to a more accurate medical care.

    PubMed

    Dorin, J; D'Aveni, M; Debourgogne, A; Cuenin, M; Guillaso, M; Rivier, A; Gallet, P; Lecoanet, G; Machouart, M

    2017-12-01

    Actinomucor elegans is a fungus belonging to mucormycetes and is still probably underdiagnosed due to misidentification. Based on a recent first case of Actinomucor elegans sinusitis in Europe, in an immunocompromised patient under voriconazole treatment, this paper aims to summarize knowledge about A. elegans mucormycoses. Even if the diagnosis of mucormycosis was made using traditional mycology techniques, precise identification of the fungus could only be achieved using molecular tools. In this observation, the galactomannan dosage was positive until the introduction of treatment and surgical debridement. The patient experienced no relapse after one year. By reviewing the four previous A. elegans reported cases and describing the mycological characteristics of this species, we highlight the need to use a combination of tools to improve the diagnostic strategy in such rare and life-threatening clinical situations. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Distinct molecular targets including SLO-1 and gap junctions are engaged across a continuum of ethanol concentrations in Caenorhabditis elegans

    PubMed Central

    Dillon, James; Andrianakis, Ioannis; Mould, Richard; Ient, Ben; Liu, Wei; James, Christopher; O'Connor, Vincent; Holden-Dye, Lindy

    2013-01-01

    Ethanol (alcohol) interacts with diverse molecular effectors across a range of concentrations in the brain, eliciting intoxication through to sedation. Invertebrate models including the nematode worm Caenorhabditis elegans have been deployed for molecular genetic studies to inform on key components of these alcohol signaling pathways. C. elegans studies have typically employed external dosing with high (>250 mM) ethanol concentrations: A careful analysis of responses to low concentrations is lacking. Using the C. elegans pharyngeal system as a paradigm, we report a previously uncharacterized continuum of cellular and behavioral responses to ethanol from low (10 mM) to high (300 mM) concentrations. The complexity of these responses indicates that the pleiotropic action of ethanol observed in mammalian brain is conserved in this invertebrate model. We investigated two candidate ethanol effectors, the calcium-activated K+ channel SLO-1 and gap junctions, and show that they contribute to, but are not sole determinants of, the low- and high-concentration effects, respectively. Notably, this study shows cellular and whole organismal behavioral responses to ethanol in C. elegans that directly equate to intoxicating through to supralethal blood alcohol concentrations in humans and provides an important benchmark for interpretation of paradigms that seek to inform on human alcohol use disorders.—Dillon, J., Andrianakis, I., Mould, R., Ient, B., Liu, W., James, C., O'Connor, V., Holden-Dye, L. Distinct molecular targets including SLO-1 and gap junctions are engaged across a continuum of ethanol concentrations in Caenorhabditis elegans. PMID:23882127

  19. The alkaloid compound harmane increases the lifespan of Caenorhabditis elegans during bacterial infection, by modulating the nematode's innate immune response.

    PubMed

    Jakobsen, Henrik; Bojer, Martin S; Marinus, Martin G; Xu, Tao; Struve, Carsten; Krogfelt, Karen A; Løbner-Olesen, Anders

    2013-01-01

    The nematode Caenorhabditis elegans has in recent years been proven to be a powerful in vivo model for testing antimicrobial compounds. We report here that the alkaloid compound Harmane (2-methyl-β-carboline) increases the lifespan of nematodes infected with a human pathogen, the Shiga toxin-producing Escherichia coli O157:H7 strain EDL933 and several other bacterial pathogens. This was shown to be unrelated to the weak antibiotic effect of Harmane. Using GFP-expressing E. coli EDL933, we showed that Harmane does not lower the colonization burden in the nematodes. We also found that the expression of the putative immune effector gene F35E12.5 was up-regulated in response to Harmane treatment. This indicates that Harmane stimulates the innate immune response of the nematode; thereby increasing its lifespan during bacterial infection. Expression of F35E12.5 is predominantly regulated through the p38 MAPK pathway; however, intriguingly the lifespan extension resulting from Harmane was higher in p38 MAPK-deficient nematodes. This indicates that Harmane has a complex effect on the innate immune system of C. elegans. Harmane could therefore be a useful tool in the further research into C. elegans immunity. Since the innate immunity of C. elegans has a high degree of evolutionary conservation, drugs such as Harmane could also be possible alternatives to classic antibiotics. The C. elegans model could prove to be useful for selection and development of such drugs.

  20. Evaluation of Caenorhabditis elegans as an acute lethality and a neurotoxicity screening model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, P.L.

    1988-01-01

    This investigation evaluated C. elegans as a lethality and neurotoxicity screening model. The lethality experiments were performed in both agar and an aquatic medium. The salts of 8 metals (Hg, Be, Al, Cu, Zn, Pb, Cd, and Sr) were used in the agar studies and the salts of 14 metals (Ag, Hg, Cu, Be, Al, Pb, Cr, As, Tl, Zn, Cd, Ni, Sr, and Sb) were used in the aquatic tests. In each of these tests an LC50 value was determined. The data from the agar plates were compared to the published mammalian oral LD50 values for salts of themore » same metals. Within this set of chemicals C. elegans was found to be a predictor of mammalian acute lethality, generating LC50 values parallel to the rat and mouse LD50 values. The aquatic data were compared to data from EPA Ambient Water Quality Criteria documents. C. elegans was found to be less sensitive than Daphnia but generally more sensitive than the other invertebrate organisms that are presently used. The neurotoxicity testing also was performed in both agar and an aquatic media. The testing in agar was conducted with the salts of 4 metals (Cu, Be, Pb, and Hg) and 2 organophosphate pesticides (malathion and vapona). The studies in an aquatic medium tested the salts of 4 metals (Cu, Be, Pb, and Hg).« less

  1. Magnesium Excretion in C. elegans Requires the Activity of the GTL-2 TRPM Channel

    PubMed Central

    Teramoto, Takayuki; Sternick, Laura A.; Kage-Nakadai, Eriko; Sajjadi, Shirine; Siembida, Jakub; Mitani, Shohei; Iwasaki, Kouichi; Lambie, Eric J.

    2010-01-01

    Systemic magnesium homeostasis in mammals is primarily governed by the activities of the TRPM6 and TRPM7 cation channels, which mediate both uptake by the intestinal epithelial cells and reabsorption by the distal convoluted tubule cells in the kidney. In the nematode, C. elegans, intestinal magnesium uptake is dependent on the activities of the TRPM channel proteins, GON-2 and GTL-1. In this paper we provide evidence that another member of the TRPM protein family, GTL-2, acts within the C. elegans excretory cell to mediate the excretion of excess magnesium. Thus, the activity of GTL-2 balances the activities of the paralogous TRPM channel proteins, GON-2 and GTL-1. PMID:20221407

  2. Computational Analysis of the Caenorhabditis elegans Germline to Study the Distribution of Nuclei, Proteins, and the Cytoskeleton.

    PubMed

    Gopal, Sandeep; Pocock, Roger

    2018-04-19

    The Caenorhabditis elegans (C. elegans) germline is used to study several biologically important processes including stem cell development, apoptosis, and chromosome dynamics. While the germline is an excellent model, the analysis is often two dimensional due to the time and labor required for three-dimensional analysis. Major readouts in such studies are the number/position of nuclei and protein distribution within the germline. Here, we present a method to perform automated analysis of the germline using confocal microscopy and computational approaches to determine the number and position of nuclei in each region of the germline. Our method also analyzes germline protein distribution that enables the three-dimensional examination of protein expression in different genetic backgrounds. Further, our study shows variations in cytoskeletal architecture in distinct regions of the germline that may accommodate specific spatial developmental requirements. Finally, our method enables automated counting of the sperm in the spermatheca of each germline. Taken together, our method enables rapid and reproducible phenotypic analysis of the C. elegans germline.

  3. A whole-mount in situ hybridization method for microRNA detection in Caenorhabditis elegans.

    PubMed

    Andachi, Yoshiki; Kohara, Yuji

    2016-07-01

    Whole-mount in situ hybridization (WISH) is an outstanding method to decipher the spatiotemporal expression patterns of microRNAs (miRNAs) and provides important clues for elucidating their functions. The first WISH method for miRNA detection was developed in zebrafish. Although this method was quickly adapted for other vertebrates and fruit flies, WISH analysis has not been successfully used to detect miRNAs in Caenorhabditis elegans Here, we show a novel WISH method for miRNA detection in C. elegans Using this method, mir-1 miRNA was detected in the body-wall muscle where the expression and roles of mir-1 miRNA have been previously elucidated. Application of the method to let-7 family miRNAs, let-7, mir-48, mir-84, and mir-241, revealed their distinct but partially overlapping expression patterns, indicating that miRNAs sharing a short common sequence were distinguishably detected. In pash-1 mutants that were depleted of mature miRNAs, signals of mir-48 miRNA were greatly reduced, suggesting that mature miRNAs were detected by the method. These results demonstrate the validity of WISH to detect mature miRNAs in C. elegans. © 2016 Andachi and Kohara; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  4. Degeneracy and neuromodulation among thermosensory neurons contribute to robust thermosensory behaviors in C. elegans

    PubMed Central

    Beverly, Matthew; Anbil, Sriram; Sengupta, Piali

    2011-01-01

    Animals must ensure that they can execute behaviors important for physiological homeostasis under constantly changing environmental conditions. The neural mechanisms that regulate this behavioral robustness are not well understood. The nematode C. elegans thermoregulates primarily via modulation of navigation behavior. Upon encountering temperatures higher than its cultivation temperature (Tc), C. elegans exhibits negative thermotaxis towards colder temperatures using a biased random walk strategy. We find that C. elegans exhibits robust negative thermotaxis bias under conditions of varying Tc and temperature ranges. By cell ablation and cell-specific rescue experiments, we show that the ASI chemosensory neurons are newly identified components of the thermosensory circuit, and that different combinations of ASI and the previously identified AFD and AWC thermosensory neurons are necessary and sufficient under different conditions to execute a negative thermotaxis strategy. ASI responds to temperature stimuli within a defined operating range defined by Tc, and signaling from AFD regulates the bounds of this operating range, suggesting that neuromodulation among thermosensory neurons maintains coherence of behavioral output. Our observations demonstrate that a negative thermotaxis navigational strategy can be generated via different combinations of thermosensory neurons acting degenerately, and emphasize the importance of defining context when analyzing neuronal contributions to a behavior. PMID:21832201

  5. Selective visualization of fluorescent sterols in Caenorhabditis elegans by bleach-rate-based image segmentation.

    PubMed

    Wüstner, Daniel; Landt Larsen, Ane; Faergeman, Nils J; Brewer, Jonathan R; Sage, Daniel

    2010-04-01

    The nematode Caenorhabditis elegans is a genetically tractable model organism to investigate sterol transport. In vivo imaging of the fluorescent sterol, dehydroergosterol (DHE), is challenged by C. elegans' high autofluorescence in the same spectral region as emission of DHE. We present a method to detect DHE selectively, based on its rapid bleaching kinetics compared to cellular autofluorescence. Worms were repeatedly imaged on an ultraviolet-sensitive wide field (UV-WF) microscope, and bleaching kinetics of DHE were fitted on a pixel-basis to mathematical models describing the intensity decay. Bleach-rate constants were determined for DHE in vivo and confirmed in model membranes. Using this method, we could detect enrichment of DHE in specific tissues like the nerve ring, the spermateca and oocytes. We confirm these results in C. elegans gut-granule-loss (glo) mutants with reduced autofluorescence and compare our method with three-photon excitation microscopy of sterol in selected tissues. Bleach-rate-based UV-WF imaging is a useful tool for genetic screening experiments on sterol transport, as exemplified by RNA interference against the rme-2 gene coding for the yolk receptor and for worm homologues of Niemann-Pick C disease proteins. Our approach is generally useful for identifying fluorescent probes in the presence of high cellular autofluorescence.

  6. Evaluating the pathogenic potential of environmental Escherichia coli by using the Caenorhabditis elegans infection model.

    PubMed

    Merkx-Jacques, Alexandra; Coors, Anja; Brousseau, Roland; Masson, Luke; Mazza, Alberto; Tien, Yuan-Ching; Topp, Edward

    2013-04-01

    The detection and abundance of Escherichia coli in water is used to monitor and mandate the quality of drinking and recreational water. Distinguishing commensal waterborne E. coli isolates from those that cause diarrhea or extraintestinal disease in humans is important for quantifying human health risk. A DNA microarray was used to evaluate the distribution of virulence genes in 148 E. coli environmental isolates from a watershed in eastern Ontario, Canada, and in eight clinical isolates. Their pathogenic potential was evaluated with Caenorhabditis elegans, and the concordance between the bioassay result and the pathotype deduced by genotyping was explored. Isolates identified as potentially pathogenic on the basis of their complement of virulence genes were significantly more likely to be pathogenic to C. elegans than those determined to be potentially nonpathogenic. A number of isolates that were identified as nonpathogenic on the basis of genotyping were pathogenic in the infection assay, suggesting that genotyping did not capture all potentially pathogenic types. The detection of the adhesin-encoding genes sfaD, focA, and focG, which encode adhesins; of iroN2, which encodes a siderophore receptor; of pic, which encodes an autotransporter protein; and of b1432, which encodes a putative transposase, was significantly associated with pathogenicity in the infection assay. Overall, E. coli isolates predicted to be pathogenic on the basis of genotyping were indeed so in the C. elegans infection assay. Furthermore, the detection of C. elegans-infective environmental isolates predicted to be nonpathogenic on the basis of genotyping suggests that there are hitherto-unrecognized virulence factors or combinations thereof that are important in the establishment of infection.

  7. A novel requirement for C. elegans Alix/ALX-1 in RME-1 mediated membrane transport

    PubMed Central

    Shi, Anbing; Pant, Saumya; Balklava, Zita; Chen, Carlos Chih-Hsiung; Figueroa, Vanesa; Grant, Barth D.

    2007-01-01

    Summary Background Alix/Bro1p family proteins have recently been identified as important components of multivesicular endosomes (MVEs) involved in the sorting of endocytosed integral membrane proteins, interacting with components of the ESCRT complex, the unconventional phospholipid LBPA, and other known endocytosis regulators. During infection Alix can be co-opted by enveloped retroviruses, including HIV, providing an important function during virus budding from the plasma membrane. In addition Alix is associated with the actin cytoskeleton and may regulate cytoskeletal dynamics. Results Here we demonstrate a novel physical interaction between the only apparent Alix/Bro1p family protein in C. elegans, ALX-1, and a key regulator of receptor recycling from endosomes to the plasma membrane called RME-1. Analysis of alx-1 mutants indicates that ALX-1 is required for endocytic recycling of specific basolateral cargo in the C. elegans intestine, a pathway previously defined by analysis of rme-1 mutants. Expression of truncated human Alix in HeLa cells disrupts recycling of MHCI, a known Ehd1/RME-1 dependent transport step, suggesting phylogenetic conservation of this function. We show that the interaction of ALX-1 with RME-1 in C. elegans, mediated by RME-1/YPSL and ALX-1/NPF motifs, is required for this recycling process. In the C. elegans intestine ALX-1 localizes to both recycling endosomes and MVEs, but the ALX-1/RME-1 interaction appears dispensable for ALX-1 function in MVEs/late endosomes. Conclusions This work provides the first demonstration of a requirement for an Alix/Bro1p family member in the endocytic recycling pathway in association with the recycling regulator RME-1. PMID:17997305

  8. Non-coding stem-bulge RNAs are required for cell proliferation and embryonic development in C. elegans

    PubMed Central

    Kowalski, Madzia P.; Baylis, Howard A.; Krude, Torsten

    2015-01-01

    ABSTRACT Stem bulge RNAs (sbRNAs) are a family of small non-coding stem-loop RNAs present in Caenorhabditis elegans and other nematodes, the function of which is unknown. Here, we report the first functional characterisation of nematode sbRNAs. We demonstrate that sbRNAs from a range of nematode species are able to reconstitute the initiation of chromosomal DNA replication in the presence of replication proteins in vitro, and that conserved nucleotide sequence motifs are essential for this function. By functionally inactivating sbRNAs with antisense morpholino oligonucleotides, we show that sbRNAs are required for S phase progression, early embryonic development and the viability of C. elegans in vivo. Thus, we demonstrate a new and essential role for sbRNAs during the early development of C. elegans. sbRNAs show limited nucleotide sequence similarity to vertebrate Y RNAs, which are also essential for the initiation of DNA replication. Our results therefore establish that the essential function of small non-coding stem-loop RNAs during DNA replication extends beyond vertebrates. PMID:25908866

  9. Carqueja (Baccharis trimera) Protects against Oxidative Stress and β-Amyloid-Induced Toxicity in Caenorhabditis elegans

    PubMed Central

    Aparecida Paiva, Franciny; de Freitas Bonomo, Larissa; Ferreira Boasquivis, Patrícia; Borges Raposo de Paula, Igor Thadeu; Guerra, Joyce Ferreira da Costa; Mendes Leal, Wagney; Silva, Marcelo Eustáquio; Pedrosa, Maria Lúcia; Oliveira, Riva de Paula

    2015-01-01

    Carqueja (Baccharis trimera) is a native plant found throughout South America. Several studies have shown that Carqueja has antioxidant activity in vitro, as well as anti-inflammatory, antidiabetic, analgesic, antihepatotoxic, and antimutagenic properties. However, studies regarding its antioxidant potential in vivo are limited. In this study, we used Caenorhabditis elegans as a model to examine the antioxidant effects of a Carqueja hydroalcoholic extract (CHE) on stress resistance and lifespan and to investigate whether CHE has a protective effect in a C. elegans model for Alzheimer's disease. Here, we show for the first time, using in vivo assays, that CHE treatment improved oxidative stress resistance by increasing survival rate and by reducing ROS levels under oxidative stress conditions independently of the stress-related signaling pathways (p38, JNK, and ERK) and transcription factors (SKN-1/Nrf and DAF-16/Foxo) tested here. CHE treatment also increased the defenses against β-amyloid toxicity in C. elegans, in part by increasing proteasome activity and the expression of two heat shock protein genes. Our findings suggest a potential neuroprotective use for Carqueja, supporting the idea that dietary antioxidants are a promising approach to boost the defensive systems against stress and neurodegeneration. PMID:26236426

  10. Chemotaxis of C. elegans in 3D media: a model for navigation of undulatory microswimmers

    NASA Astrophysics Data System (ADS)

    Patel, Amar; Bilbao, Alejandro; Rahman, Mizanur; Vanapalli, Siva; Blawzdziewicz, Jerzy

    2017-11-01

    While the natural environment of C. elegans consists of complex 3D media (e.g., decomposing organic matter and water), most studies of chemotactic behavior of this nematode are limited to 2D. We present a 3D chemotaxis model that combines a realistic geometrical representation of body movements associated with 3D maneuvers, an analysis of mechanical interactions of the nematode body with the surrounding medium to determine nematode trajectories, and a simple memory-function description of chemosensory apparatus that controls the frequency, magnitude, and timing of turning maneuvers. We show that two main chemotaxis strategies of C. elegans moving in 2D, i.e., the biased random walk and gradual turn, are effective also in 3D, provided that 2D turns are supplemented by the roll maneuvers that enable 3D reorientation. Optimal choices of chemosensing and gait-control parameters are discussed; we show that the nematode can maintain efficient chemotaxis in burrowing and swimming by adjusting the undulation frequency alone, without changing the chemotactic component of the body control. Understanding how C. elegans efficiently navigates in 3D media may help in developing self-navigating artificial microswimmers. Supported by NSF Grant No. CBET 1603627.

  11. Using Caenorhabditis elegans to Uncover Conserved Functions of Omega-3 and Omega-6 Fatty Acids

    PubMed Central

    Watts, Jennifer L.

    2016-01-01

    The nematode Caenorhabditis elegans is a powerful model organism to study functions of polyunsaturated fatty acids. The ability to alter fatty acid composition with genetic manipulation and dietary supplementation permits the dissection of the roles of omega-3 and omega-6 fatty acids in many biological process including reproduction, aging and neurobiology. Studies in C. elegans to date have mostly identified overlapping functions of 20-carbon omega-6 and omega-3 fatty acids in reproduction and in neurons, however, specific roles for either omega-3 or omega-6 fatty acids are beginning to emerge. Recent findings with importance to human health include the identification of a conserved Cox-independent prostaglandin synthesis pathway, critical functions for cytochrome P450 derivatives of polyunsaturated fatty acids, the requirements for omega-6 and omega-3 fatty acids in sensory neurons, and the importance of fatty acid desaturation for long lifespan. Furthermore, the ability of C. elegans to interconvert omega-6 to omega-3 fatty acids using the FAT-1 omega-3 desaturase has been exploited in mammalian studies and biotechnology approaches to generate mammals capable of exogenous generation of omega-3 fatty acids. PMID:26848697

  12. Embryonic Methamphetamine Exposure Inhibits Methamphetamine Cue Conditioning and Reduces Dopamine Concentrations in Adult N2 C. elegans

    PubMed Central

    Katner, S.N.; Neal-Beliveau, B.S.; Engleman, E.A.

    2016-01-01

    Methamphetamine (MAP) addiction is substantially prevalent in today's society, resulting in thousands of deaths and costing billions of dollars annually. Despite the potential deleterious consequences, few studies have examined the long-term effects of embryonic MAP exposure. Using the invertebrate nematode Caenorhabditis elegans (C. elegans) allows for a controlled analysis of behavioral and neurochemical changes due to early developmental drug exposure. The objective of the current studies was to determine the long-term behavioral and neurochemical effects of embryonic exposure to MAP in C. elegans. In addition, we sought to improve our conditioning and testing procedures by utilizing liquid filtration, as opposed to agar, and smaller, 6-well testing plates to increase throughput. Wild-type N2 C. elegans were embryonically exposed to 50 μM MAP. Using classical conditioning, adult-stage C. elegans were conditioned to MAP (17 and 500 μM) in the presence of either sodium ions (Na+) or chloride (Cl-) ions as conditioned stimuli (CS+/CS-). Following conditioning, a preference test was performed by placing worms in 6-well test plates spotted with the CS+ and CS- at opposite ends of each well. A preference index (PI) was determined by counting the number of worms in the CS+ target zone divided by the total number of worms in the CS+ and CS- target zones. A food conditioning experiment was also performed in order to determine if embryonic MAP exposure affected food conditioning behavior. For the neurochemical experiments, adult worms that were embryonically exposed to MAP were analyzed for (dopamine) DA content using high performance liquid chromatography (HPLC). The liquid filtration conditioning procedure employed here in combination with the use 6-well test plates significantly decreased the time required to perform these experiments and ultimately increased throughput. The MAP conditioning data found that pairing an ion with MAP at 17 or 500 μM significantly

  13. Metabolic pathway profiling of mitochondrial respiratory chain mutants in C. elegans

    PubMed Central

    MJ, Falk; Z, Zhang; Rosenjack; Nissim; E, Daikhin; Nissim; MM, Sedensky; M, Yudkoff; PG, Morgan

    2008-01-01

    C. elegans affords a model of primary mitochondrial dysfunction that provides insight into cellular adaptations which accompany mutations in nuclear gene that encode mitochondrial proteins. To this end, we characterized genome-wide expression profiles of C. elegans strains with mutations in nuclear-encoded subunits of respiratory chain complexes. Our goal was to detect concordant changes among clusters of genes that comprise defined metabolic pathways. Results indicate that respiratory chain mutants significantly upregulate a variety of basic cellular metabolic pathways involved in carbohydrate, amino acid, and fatty acid metabolism, as well as cellular defense pathways such as the metabolism of P450 and glutathione. To further confirm and extend expression analysis findings, quantitation of whole worm free amino acid levels was performed in C. elegans mitochondrial mutants for subunits of complexes I, II, and III. Significant differences were seen for 13 of 16 amino acid levels in complex I mutants compared with controls, as well as overarching similarities among profiles of complex I, II, and III mutants compared with controls. The specific pattern of amino acid alterations observed provides novel evidence to suggest that an increase in glutamate-linked transamination reactions caused by the failure of NAD+ dependent oxidation of ketoacids occurs in primary mitochondrial respiratory chain mutants. Recognition of consistent alterations among patterns of nuclear gene expression for multiple biochemical pathways and in quantitative amino acid profiles in a translational genetic model of mitochondrial dysfunction allows insight into the complex pathogenesis underlying primary mitochondrial disease. Such knowledge may enable the development of a metabolomic profiling diagnostic tool applicable to human mitochondrial disease. PMID:18178500

  14. Gustatory Plasticity in "C. elegans" Involves Integration of Negative Cues and NaCl Taste Mediated by Serotonin, Dopamine, and Glutamate

    ERIC Educational Resources Information Center

    Hukema, Renate K.; Rademakers, Suzanne; Jansen, Gert

    2008-01-01

    While naive "Caenorhabditis elegans" individuals are attracted to 0.1-200 mM NaCl, they become strongly repelled by these NaCl concentrations after prolonged exposure to 100 mM NaCl. We call this behavior gustatory plasticity. Here, we show that "C. elegans" displays avoidance of low NaCl concentrations only when pre-exposure to NaCl is combined…

  15. Defining wild-type life span in Caenorhabditis elegans.

    PubMed

    Gems, D; Riddle, D L

    2000-05-01

    The nematode Caenorhabditis elegans reproduces predominantly as a self-fertilizing hermaphrodite, and this drives laboratory populations to be homozygous at all genetic loci. Passaging of stocks can lead to fixation of spontaneous mutations, especially when the latter do not result in a selective disadvantage under laboratory conditions. Life span may be such a trait, since a comparison of six wild-type N2 lines derived from a common ancestor (but maintained separately in several laboratories) revealed four variants with median adult life spans ranging from 12.0 +/- 0.8 to 17.0 +/- 0.6 days at 20 degrees C. Fertility was also reduced in the two shortest-lived strains. We determined which life span most closely corresponds to that of the authentic wild type by two means. Firstly, N2 hermaphrodites were compared with seven C. elegans wild isolates. The latter were found to resemble only the longest-lived N2 strain. Comparison of male life spans of six lines also revealed additional strain variation. Secondly, life spans of F1 progeny issuing from crosses between N2 variants showed that short life spans were recessive, indicating that they result from loss-of-function mutations. We infer that the longest-lived N2 variant best resembles the original N2 isolate. This is the N2 male stock currently distributed by the Caenorhabditis Genetics Center.

  16. Modeling the thermotaxis behavior of C.elegans based on the artificial neural network.

    PubMed

    Li, Mingxu; Deng, Xin; Wang, Jin; Chen, Qiaosong; Tang, Yun

    2016-07-03

    ASBTRACT This research aims at modeling the thermotaxis behavior of C.elegans which is a kind of nematode with full clarified neuronal connections. Firstly, this work establishes the motion model which can perform the undulatory locomotion with turning behavior. Secondly, the thermotaxis behavior is modeled by nonlinear functions and the nonlinear functions are learned by artificial neural network. Once the artificial neural networks have been well trained, they can perform the desired thermotaxis behavior. Last, several testing simulations are carried out to verify the effectiveness of the model for thermotaxis behavior. This work also analyzes the different performances of the model under different environments. The testing results reveal the essence of the thermotaxis of C.elegans to some extent, and theoretically support the research on the navigation of the crawling robots.

  17. Optogenetics and computer vision for Caenorhabditis elegans neuroscience and other biophysical applications

    NASA Astrophysics Data System (ADS)

    Leifer, Andrew Michael

    2011-07-01

    This work presents optogenetics and real-time computer vision techniques to non-invasively manipulate and monitor neural activity with high spatiotemporal resolution in awake behaving Caenorhabditis elegans. These methods were employed to dissect the nematode's mechanosensory and motor circuits and to elucidate the neural control of wave propagation during forward locomotion. Additionally, similar computer vision methods were used to automatically detect and decode fluorescing DNA origami nanobarcodes, a new class of fluorescent reporter constructs. An optogenetic instrument capable of real-time light delivery with high spatiotemporal resolution to specified targets in freely moving C. elegans, the first such instrument of its kind, was developed. The instrument was used to probe the nematode's mechanosensory circuit, demonstrating that stimulation of a single mechanosensory neuron suffices to induce reversals. The instrument was also used to probe the motor circuit, demonstrating that inhibition of regions of cholinergic motor neurons blocks undulatory wave propagation and that muscle contractions can persist even without inputs from the motor neurons. The motor circuit was further probed using optogenetics and microfluidic techniques. Undulatory wave propagation during forward locomotion was observed to depend on stretch-sensitive signaling mediated by cholinergic motor neurons. Specifically, posterior body segments are compelled, through stretch-sensitive feedback, to bend in the same direction as anterior segments. This is the first explicit demonstration of such feedback and serves as a foundation for understanding motor circuits in other organisms. A real-time tracking system was developed to record intracellular calcium transients in single neurons while simultaneously monitoring macroscopic behavior of freely moving C. elegans. This was used to study the worm's stereotyped reversal behavior, the omega turn. Calcium transients corresponding to temporal

  18. Temperature and food mediate long-term thermotactic behavioral plasticity by association-independent mechanisms in C. elegans.

    PubMed

    Chi, Cynthia A; Clark, Damon A; Lee, Stella; Biron, David; Luo, Linjiao; Gabel, Christopher V; Brown, Jeffrey; Sengupta, Piali; Samuel, Aravinthan D T

    2007-11-01

    Thermotactic behavior in the nematode Caenorhabditis elegans exhibits long-term plasticity. On a spatial thermal gradient, C. elegans tracks isotherms near a remembered set-point (T(S)) corresponding to its previous cultivation temperature. When navigating at temperatures above its set-point (T>T(S)), C. elegans crawls down spatial thermal gradients towards the T(S) in what is called cryophilic movement. The T(S) retains plasticity in the adult stage and is reset by approximately 4 h of sustained exposure to a new temperature. Long-term plasticity in C. elegans thermotactic behavior has been proposed to represent an associative learning of specific temperatures conditioned in the presence or absence of bacterial food. Here, we use quantitative behavioral assays to define the temperature and food-dependent determinants of long-term plasticity in the different modes of thermotactic behavior. Under our experimental conditions, we find that starvation at a specific temperature neither disrupts T(S) resetting toward the starvation temperature nor induces learned avoidance of the starvation temperature. We find that prolonged starvation suppresses the cryophilic mode of thermotactic behavior. The hen-1 and tax-6 genes have been reported to affect associative learning between temperature and food-dependent cues. Under our experimental conditions, mutation in the hen-1 gene, which encodes a secreted protein with an LDL receptor motif, does not significantly affect thermotactic behavior or long-term plasticity. Mutation in the tax-6 calcineurin gene abolishes thermotactic behavior altogether. In summary, we do not find evidence that long-term plasticity requires association between temperature and the presence or absence of bacterial food.

  19. Bacterial Respiration and Growth Rates Affect the Feeding Preferences, Brood Size and Lifespan of Caenorhabditis elegans

    PubMed Central

    Yu, Li; Yan, Xiaomei; Ye, Chenglong; Zhao, Haiyan; Chen, Xiaoyun; Hu, Feng; Li, Huixin

    2015-01-01

    Bacteria serve as live food and nutrients for bacterial-feeding nematodes (BFNs) in soils, and influence nematodes behavior and physiology through their metabolism. Five bacterial taxa (Bacillus amyloliquefaciens JX1, Variovorax sp. JX14, Bacillus megaterium JX15, Pseudomonas fluorescens Y1 and Escherichia coli OP50) and the typical BFN Caenorhabditis elegans were selected to study the effects of bacterial respiration and growth rates on the feeding preferences, brood size and lifespan of nematodes. P. fluorescens Y1 and E. coli OP50 were found to be more active, with high respiration and rapid growth, whereas B. amyloliquefaciens JX1 and B. megaterium JX15 were inactive. The nematode C. elegans preferred active P. fluorescens Y1 and E. coli OP50 obviously. Furthermore, worms that fed on these two active bacteria produced more offspring but had shorter lifespan, while inactive and less preferred bacteria had increased nematodes lifespan and decreased the brood size. Based on these results, we propose that the bacterial activity may influence the behavior and life traits of C. elegans in the following ways: (1) active bacteria reproduce rapidly and emit high levels of CO2 attracting C. elegans; (2) these active bacteria use more resources in the nematodes’ gut to sustain their survival and reproduction, thereby reducing the worm's lifespan; (3) inactive bacteria may provide less food for worms than active bacteria, thus increasing nematodes lifespan but decreasing their fertility. Nematodes generally require a balance between their preferred foods and beneficial foods, only preferred food may not be beneficial for nematodes. PMID:26222828

  20. Gene expression of Caenorhabditis elegans neurons carries information on their synaptic connectivity.

    PubMed

    Kaufman, Alon; Dror, Gideon; Meilijson, Isaac; Ruppin, Eytan

    2006-12-08

    The claim that genetic properties of neurons significantly influence their synaptic network structure is a common notion in neuroscience. The nematode Caenorhabditis elegans provides an exciting opportunity to approach this question in a large-scale quantitative manner. Its synaptic connectivity network has been identified, and, combined with cellular studies, we currently have characteristic connectivity and gene expression signatures for most of its neurons. By using two complementary analysis assays we show that the expression signature of a neuron carries significant information about its synaptic connectivity signature, and identify a list of putative genes predicting neural connectivity. The current study rigorously quantifies the relation between gene expression and synaptic connectivity signatures in the C. elegans nervous system and identifies subsets of neurons where this relation is highly marked. The results presented and the genes identified provide a promising starting point for further, more detailed computational and experimental investigations.

  1. CLHM-1 is a functionally conserved and conditionally toxic Ca2+-permeable ion channel in Caenorhabditis elegans.

    PubMed

    Tanis, Jessica E; Ma, Zhongming; Krajacic, Predrag; He, Liping; Foskett, J Kevin; Lamitina, Todd

    2013-07-24

    Disruption of neuronal Ca(2+) homeostasis contributes to neurodegenerative diseases through mechanisms that are not fully understood. A polymorphism in CALHM1, a recently described ion channel that regulates intracellular Ca(2+) levels, is a possible risk factor for late-onset Alzheimer's disease. Since there are six potentially redundant CALHM family members in humans, the physiological and pathophysiological consequences of CALHM1 function in vivo remain unclear. The nematode Caenorhabditis elegans expresses a single CALHM1 homolog, CLHM-1. Here we find that CLHM-1 is expressed at the plasma membrane of sensory neurons and muscles. Like human CALHM1, C. elegans CLHM-1 is a Ca(2+)-permeable ion channel regulated by voltage and extracellular Ca(2+). Loss of clhm-1 in the body-wall muscles disrupts locomotory kinematics and biomechanics, demonstrating that CLHM-1 has a physiologically significant role in vivo. The motility defects observed in clhm-1 mutant animals can be rescued by muscle-specific expression of either C. elegans CLHM-1 or human CALHM1, suggesting that the function of these proteins is conserved in vivo. Overexpression of either C. elegans CLHM-1 or human CALHM1 in neurons is toxic, causing degeneration through a necrotic-like mechanism that is partially Ca(2+) dependent. Our data show that CLHM-1 is a functionally conserved ion channel that plays an important but potentially toxic role in excitable cell function.

  2. Insulin/Insulin-like growth factor signaling controls non-Dauer developmental speed in the nematode Caenorhabditis elegans.

    PubMed

    Ruaud, Anne-Françoise; Katic, Iskra; Bessereau, Jean-Louis

    2011-01-01

    Identified as a major pathway controlling entry in the facultative dauer diapause stage, the DAF-2/Insulin receptor (InsR) signaling acts in multiple developmental and physiological regulation events in Caenorhabditis elegans. Here we identified a role of the insulin-like pathway in controlling developmental speed during the C. elegans second larval stage. This role relies on the canonical DAF-16/FOXO-dependent branch of the insulin-like signaling and is largely independent of dauer formation. Our studies provide further evidence for broad conservation of insulin/insulin-like growth factor (IGF) functions in developmental speed control.

  3. Environmental CO2 inhibits Caenorhabditis elegans egg-laying by modulating olfactory neurons and evokes widespread changes in neural activity

    PubMed Central

    Fenk, Lorenz A.; de Bono, Mario

    2015-01-01

    Carbon dioxide (CO2) gradients are ubiquitous and provide animals with information about their environment, such as the potential presence of prey or predators. The nematode Caenorhabditis elegans avoids elevated CO2, and previous work identified three neuron pairs called “BAG,” “AFD,” and “ASE” that respond to CO2 stimuli. Using in vivo Ca2+ imaging and behavioral analysis, we show that C. elegans can detect CO2 independently of these sensory pathways. Many of the C. elegans sensory neurons we examined, including the AWC olfactory neurons, the ASJ and ASK gustatory neurons, and the ASH and ADL nociceptors, respond to a rise in CO2 with a rise in Ca2+. In contrast, glial sheath cells harboring the sensory endings of C. elegans’ major chemosensory neurons exhibit strong and sustained decreases in Ca2+ in response to high CO2. Some of these CO2 responses appear to be cell intrinsic. Worms therefore may couple detection of CO2 to that of other cues at the earliest stages of sensory processing. We show that C. elegans persistently suppresses oviposition at high CO2. Hermaphrodite-specific neurons (HSNs), the executive neurons driving egg-laying, are tonically inhibited when CO2 is elevated. CO2 modulates the egg-laying system partly through the AWC olfactory neurons: High CO2 tonically activates AWC by a cGMP-dependent mechanism, and AWC output inhibits the HSNs. Our work shows that CO2 is a more complex sensory cue for C. elegans than previously thought, both in terms of behavior and neural circuitry. PMID:26100886

  4. Big Data in Caenorhabditis elegans: quo vadis?

    PubMed Central

    Hutter, Harald; Moerman, Donald

    2015-01-01

    A clear definition of what constitutes “Big Data” is difficult to identify, but we find it most useful to define Big Data as a data collection that is complete. By this criterion, researchers on Caenorhabditis elegans have a long history of collecting Big Data, since the organism was selected with the idea of obtaining a complete biological description and understanding of development. The complete wiring diagram of the nervous system, the complete cell lineage, and the complete genome sequence provide a framework to phrase and test hypotheses. Given this history, it might be surprising that the number of “complete” data sets for this organism is actually rather small—not because of lack of effort, but because most types of biological experiments are not currently amenable to complete large-scale data collection. Many are also not inherently limited, so that it becomes difficult to even define completeness. At present, we only have partial data on mutated genes and their phenotypes, gene expression, and protein–protein interaction—important data for many biological questions. Big Data can point toward unexpected correlations, and these unexpected correlations can lead to novel investigations; however, Big Data cannot establish causation. As a result, there is much excitement about Big Data, but there is also a discussion on just what Big Data contributes to solving a biological problem. Because of its relative simplicity, C. elegans is an ideal test bed to explore this issue and at the same time determine what is necessary to build a multicellular organism from a single cell. PMID:26543198

  5. The Alkaloid Compound Harmane Increases the Lifespan of Caenorhabditis elegans during Bacterial Infection, by Modulating the Nematode’s Innate Immune Response

    PubMed Central

    Marinus, Martin G.; Xu, Tao; Struve, Carsten; Krogfelt, Karen A.; Løbner-Olesen, Anders

    2013-01-01

    The nematode Caenorhabditis elegans has in recent years been proven to be a powerful in vivo model for testing antimicrobial compounds. We report here that the alkaloid compound Harmane (2-methyl-β-carboline) increases the lifespan of nematodes infected with a human pathogen, the Shiga toxin-producing Escherichia coli O157:H7 strain EDL933 and several other bacterial pathogens. This was shown to be unrelated to the weak antibiotic effect of Harmane. Using GFP-expressing E. coli EDL933, we showed that Harmane does not lower the colonization burden in the nematodes. We also found that the expression of the putative immune effector gene F35E12.5 was up-regulated in response to Harmane treatment. This indicates that Harmane stimulates the innate immune response of the nematode; thereby increasing its lifespan during bacterial infection. Expression of F35E12.5 is predominantly regulated through the p38 MAPK pathway; however, intriguingly the lifespan extension resulting from Harmane was higher in p38 MAPK-deficient nematodes. This indicates that Harmane has a complex effect on the innate immune system of C. elegans. Harmane could therefore be a useful tool in the further research into C. elegans immunity. Since the innate immunity of C. elegans has a high degree of evolutionary conservation, drugs such as Harmane could also be possible alternatives to classic antibiotics. The C. elegans model could prove to be useful for selection and development of such drugs. PMID:23544153

  6. Molecular characterization of a novel RhoGAP, RRC-1 of the nematode Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delawary, Mina; Nakazawa, Takanobu; Tezuka, Tohru

    2007-06-01

    The GTPase-activating proteins for Rho family GTPases (RhoGAP) transduce diverse intracellular signals by negatively regulating Rho family GTPase-mediated pathways. In this study, we have cloned and characterized a novel RhoGAP for Rac1 and Cdc42, termed RRC-1, from Caenorhabditis elegans. RRC-1 was highly homologous to mammalian p250GAP and promoted GTP hydrolysis of Rac1 and Cdc42 in cells. The rrc-1 mRNA was expressed in all life stages. Using an RRC-1::GFP fusion protein, we found that RRC-1 was localized to the coelomocytes, excretory cell, GLR cells, and uterine-seam cell in adult worms. These data contribute toward understanding the roles of Rho family GTPasesmore » in C. elegans.« less

  7. Joint Molecule Resolution Requires the Redundant Activities of MUS-81 and XPF-1 during Caenorhabditis elegans Meiosis

    PubMed Central

    O'Neil, Nigel J.; Martin, Julie S.; Youds, Jillian L.; Ward, Jordan D.; Petalcorin, Mark I. R.; Rose, Anne M.; Boulton, Simon J.

    2013-01-01

    The generation and resolution of joint molecule recombination intermediates is required to ensure bipolar chromosome segregation during meiosis. During wild type meiosis in Caenorhabditis elegans, SPO-11-generated double stranded breaks are resolved to generate a single crossover per bivalent and the remaining recombination intermediates are resolved as noncrossovers. We discovered that early recombination intermediates are limited by the C. elegans BLM ortholog, HIM-6, and in the absence of HIM-6 by the structure specific endonuclease MUS-81. In the absence of both MUS-81 and HIM-6, recombination intermediates persist, leading to chromosome breakage at diakinesis and inviable embryos. MUS-81 has an additional role in resolving late recombination intermediates in C. elegans. mus-81 mutants exhibited reduced crossover recombination frequencies suggesting that MUS-81 is required to generate a subset of meiotic crossovers. Similarly, the Mus81-related endonuclease XPF-1 is also required for a subset of meiotic crossovers. Although C. elegans gen-1 mutants have no detectable meiotic defect either alone or in combination with him-6, mus-81 or xpf-1 mutations, mus-81;xpf-1 double mutants are synthetic lethal. While mus-81;xpf-1 double mutants are proficient for the processing of early recombination intermediates, they exhibit defects in the post-pachytene chromosome reorganization and the asymmetric disassembly of the synaptonemal complex, presumably triggered by crossovers or crossover precursors. Consistent with a defect in resolving late recombination intermediates, mus-81; xpf-1 diakinetic bivalents are aberrant with fine DNA bridges visible between two distinct DAPI staining bodies. We were able to suppress the aberrant bivalent phenotype by microinjection of activated human GEN1 protein, which can cleave Holliday junctions, suggesting that the DNA bridges in mus-81; xpf-1 diakinetic oocytes are unresolved Holliday junctions. We propose that the MUS-81 and XPF-1

  8. An extensive requirement for transcription factor IID-specific TAF-1 in Caenorhabditis elegans embryonic transcription.

    PubMed

    Walker, Amy K; Shi, Yang; Blackwell, T Keith

    2004-04-09

    The general transcription factor TFIID sets the mRNA start site and consists of TATA-binding protein and associated factors (TAF(II)s), some of which are also present in SPT-ADA-GCN5 (SAGA)-related complexes. In yeast, results of multiple studies indicate that TFIID-specific TAF(II)s are not required for the transcription of most genes, implying that intact TFIID may have a surprisingly specialized role in transcription. Relatively little is known about how TAF(II)s contribute to metazoan transcription in vivo, especially at developmental and tissue-specific genes. Previously, we investigated functions of four shared TFIID/SAGA TAF(II)s in Caenorhabditis elegans. Whereas TAF-4 was required for essentially all embryonic transcription, TAF-5, TAF-9, and TAF-10 were dispensable at multiple developmental and other metazoan-specific promoters. Here we show evidence that in C. elegans embryos transcription of most genes requires TFIID-specific TAF-1. TAF-1 is not as universally required as TAF-4, but it is essential for a greater proportion of transcription than TAF-5, -9, or -10 and is important for transcription of many developmental and other metazoan-specific genes. TAF-2, which binds core promoters with TAF-1, appears to be required for a similarly substantial proportion of transcription. C. elegans TAF-1 overlaps functionally with the coactivator p300/CBP (CBP-1), and at some genes it is required along with the TBP-like protein TLF(TRF2). We conclude that during C. elegans embryogenesis TAF-1 and TFIID have broad roles in transcription and development and that TFIID and TLF may act together at certain promoters. Our findings imply that in metazoans TFIID may be of widespread importance for transcription and for expression of tissue-specific genes.

  9. The Bro1-Domain Protein, EGO-2, Promotes Notch Signaling in Caenorhabditis elegans

    PubMed Central

    Liu, Ying; Maine, Eleanor M.

    2007-01-01

    In Caenorhabditis elegans, as in other animals, Notch-type signaling mediates numerous inductive events during development. The mechanism of Notch-type signaling involves proteolytic cleavage of the receptor and subsequent transport of the receptor intracellular domain to the nucleus, where it acts as a transcriptional regulator. Notch-type signaling activity is modulated by post-translational modifications and endocytosis of ligand and receptor. We previously identified the ego-2 (enhancer of glp-1) gene as a positive regulator of germline proliferation that interacts genetically with the GLP-1/Notch signaling pathway in the germline. Here, we show that ego-2 positively regulates signaling in various tissues via both GLP-1 and the second C. elegans Notch-type receptor, LIN-12. ego-2 activity also promotes aspects of development not known to require GLP-1 or LIN-12. The EGO-2 protein contains a Bro1 domain, which is known in other systems to localize to certain endosomal compartments. EGO-2 activity in the soma promotes GLP-1 signaling in the germline, consistent with a role for EGO-2 in production of active ligand. Another C. elegans Bro1-domain protein, ALX-1, is known to interact physically with LIN-12/Notch. We document a complex phenotypic interaction between ego-2 and alx-1, consistent with their relationship being antagonistic with respect to some developmental processes and agonistic with respect to others. PMID:17603118

  10. Biotransformation of Malachite Green by the Fungus Cunninghamella elegans

    PubMed Central

    Cha, Chang-Jun; Doerge, Daniel R.; Cerniglia, Carl E.

    2001-01-01

    The filamentous fungus Cunninghamella elegans ATCC 36112 metabolized the triphenylmethane dye malachite green with a first-order rate constant of 0.029 μmol h−1 (mg of cells)−1. Malachite green was enzymatically reduced to leucomalachite green and also converted to N-demethylated and N-oxidized metabolites, including primary and secondary arylamines. Inhibition studies suggested that the cytochrome P450 system mediated both the reduction and the N-demethylation reactions. PMID:11526047

  11. Mitoflash frequency in early adulthood predicts lifespan in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Shen, En-Zhi; Song, Chun-Qing; Lin, Yuan; Zhang, Wen-Hong; Su, Pei-Fang; Liu, Wen-Yuan; Zhang, Pan; Xu, Jiejia; Lin, Na; Zhan, Cheng; Wang, Xianhua; Shyr, Yu; Cheng, Heping; Dong, Meng-Qiu

    2014-04-01

    It has been theorized for decades that mitochondria act as the biological clock of ageing, but the evidence is incomplete. Here we show a strong coupling between mitochondrial function and ageing by in vivo visualization of the mitochondrial flash (mitoflash), a frequency-coded optical readout reflecting free-radical production and energy metabolism at the single-mitochondrion level. Mitoflash activity in Caenorhabditis elegans pharyngeal muscles peaked on adult day 3 during active reproduction and on day 9 when animals started to die off. A plethora of genetic mutations and environmental factors inversely modified the lifespan and the day-3 mitoflash frequency. Even within an isogenic population, the day-3 mitoflash frequency was negatively correlated with the lifespan of individual animals. Furthermore, enhanced activity of the glyoxylate cycle contributed to the decreased day-3 mitoflash frequency and the longevity of daf-2 mutant animals. These results demonstrate that the day-3 mitoflash frequency is a powerful predictor of C. elegans lifespan across genetic, environmental and stochastic factors. They also support the notion that the rate of ageing, although adjustable in later life, has been set to a considerable degree before reproduction ceases.

  12. Aflatoxin B₁-Induced Developmental and DNA Damage in Caenorhabditis elegans.

    PubMed

    Feng, Wei-Hong; Xue, Kathy S; Tang, Lili; Williams, Phillip L; Wang, Jia-Sheng

    2016-12-26

    Aflatoxin B₁ (AFB₁) is a ubiquitous mycotoxin produced by toxicogenic Aspergillus species. AFB₁ has been reported to cause serious adverse health effects, such as cancers and abnormal development and reproduction, in animals and humans. AFB₁ is also a potent genotoxic mutagen that causes DNA damage in vitro and in vivo. However, the link between DNA damage and abnormal development and reproduction is unclear. To address this issue, we examined the DNA damage, germline apoptosis, growth, and reproductive toxicity following exposure to AFB₁, using Caenorhabditis elegans as a study model. Results found that AFB₁ induced DNA damage and germline apoptosis, and significantly inhibited growth and reproduction of the nematodes in a concentration-dependent manner. Exposure to AFB₁ inhibited growth or reproduction more potently in the DNA repair-deficient xpa-1 nematodes than the wild-type N2 strain. According to the relative expression level of pathway-related genes measured by real-time PCR, the DNA damage response (DDR) pathway was found to be associated with AFB₁-induced germline apoptosis, which further played an essential role in the dysfunction of growth and reproduction in C. elegans .

  13. Distinct Mechanisms Underlie Quiescence during Two Caenorhabditis elegans Sleep-Like States

    PubMed Central

    Trojanowski, Nicholas F.; Nelson, Matthew D.; Flavell, Steven W.

    2015-01-01

    Electrophysiological recordings have enabled identification of physiologically distinct yet behaviorally similar states of mammalian sleep. In contrast, sleep in nonmammals has generally been identified behaviorally and therefore regarded as a physiologically uniform state characterized by quiescence of feeding and locomotion, reduced responsiveness, and rapid reversibility. The nematode Caenorhabditis elegans displays sleep-like quiescent behavior under two conditions: developmentally timed quiescence (DTQ) occurs during larval transitions, and stress-induced quiescence (SIQ) occurs in response to exposure to cellular stressors. Behaviorally, DTQ and SIQ appear identical. Here, we use optogenetic manipulations of neuronal and muscular activity, pharmacology, and genetic perturbations to uncover circuit and molecular mechanisms of DTQ and SIQ. We find that locomotion quiescence induced by DTQ- and SIQ-associated neuropeptides occurs via their action on the nervous system, although their neuronal target(s) and/or molecular mechanisms likely differ. Feeding quiescence during DTQ results from a loss of pharyngeal muscle excitability, whereas feeding quiescence during SIQ results from a loss of excitability in the nervous system. Together these results indicate that, as in mammals, quiescence is subserved by different mechanisms during distinct sleep-like states in C. elegans. SIGNIFICANCE STATEMENT Sleep behavior is characterized by cessation of feeding and locomotion, reduced responsiveness, and rapid reversibility. In mammals and birds, there are sleep states that have fundamentally different electrophysiology despite outwardly similar behavior. However, it is not clear whether behavioral sleep is a uniform state in animals in which electrophysiology is not readily possible. The nematode Caenorhabditis elegans displays sleep-like behavior under two conditions: during development and after exposure to environmental stressors. Here, we show that feeding and locomotion

  14. Studying Human Disease Genes in "Caenorhabditis Elegans": A Molecular Genetics Laboratory Project

    ERIC Educational Resources Information Center

    Cox-Paulson, Elisabeth A.; Grana, Theresa M.; Harris, Michelle A.; Batzli, Janet M.

    2012-01-01

    Scientists routinely integrate information from various channels to explore topics under study. We designed a 4-wk undergraduate laboratory module that used a multifaceted approach to study a question in molecular genetics. Specifically, students investigated whether "Caenorhabditis elegans" can be a useful model system for studying genes…

  15. Effect of salinity medium on antioxidant and antidiabetic activity marine endophytic fungus of asperegillus elegans ptf 9

    NASA Astrophysics Data System (ADS)

    Mulyani, Hani; Artanti, Nina; Fitria, Irni; Filailla, Euis; Kandace, Yoice Sri; Udin, Linar Zalinar

    2017-11-01

    Our previous studies on screening of antioxidant activities from various endophytic fungi isolated from marine bioata showed that A. elegans PTF9 isolated from sea weed is one of the fungus that has good antioxidant activity. In current study we reported the effect of medium salinity (0, 3 and 10% salt in PDB medium) on antioxidant and antidiabetes activity of mycelium and filtrate ethyl acetate extracts of A. elegans Ptf 9. The antioxidant assay was conducted using DPPH free radical scavenging activity method. The antidiabetes assay was conducted using a-glucosidase inhibitory activity method. The results showed that the best antioxidant activity was obtained from filtrate extract of fungus cultures with 0% salt (IC50=1.56 ppm), whereas the best antidiabetes activity was obtained from filtrate extract of fungus culture with 10% salt (IC50= 3.64 ppm). Addition of salt reduced the antioxidant activity, but not the antidiabetes activity. The results suggest that A. elegans PTF9 showed potential for further studies on isolation of antioxidant and antidiabetes lead compounds that could be use for further development of new drugs.

  16. The geometry and fluid dynamics of two- and three-dimensional maneuvers of burrowing and swimming C. elegans

    NASA Astrophysics Data System (ADS)

    Blawzdziewicz, Jerzy; Bilbao, Alejandro; Patel, Amar; Rahman, Mizanur; Vanapalli, Siva A.

    2016-11-01

    In its natural environment, which is decomposing organic matter and water, C. elegans swims and burrows in 3D complex media. Yet quantitative investigations of C. elegans locomotion have been limited to 2D motion. Recently we have provided a quantitative analysis of turning maneuvers of crawling and swimming nematodes on flat surfaces and in 2D fluid layers. Here, we follow with the first full 3D description of how C. elegans moves in complex 3D environments. We show that the nematode can explore 3D space by combining 2D turns with roll maneuvers that result in rotation of the undulation plane around the direction of motion. Roll motion is achieved by superposing a 2D curvature wave with nonzero body torsion; 2D turns (within the current undulation plane) are attained by variation of undulation wave parameters. Our results indicate that while hydrodynamic interactions reduce angles of 2D turns, the roll efficiency is significantly enhanced. This hydrodynamic effect explains the rapid nematode reorientation observed in 3D swimming.

  17. The cell non-autonomous function of ATG-18 is essential for neuroendocrine regulation of Caenorhabditis elegans lifespan

    PubMed Central

    Minnerly, Justin; Zhang, Jiuli; Parker, Thomas

    2017-01-01

    Dietary restriction (DR) and reduced insulin growth factor (IGF) signaling extend lifespan in Caenorhabditis elegans and other eukaryotic organisms. Autophagy, an evolutionarily conserved lysosomal degradation pathway, has emerged as a central pathway regulated by various longevity signals including DR and IGF signaling in promoting longevity in a variety of eukaryotic organisms. However, the mechanism remains unclear. Here we show that the autophagy protein ATG-18 acts cell non-autonomously in neuronal and intestinal tissues to maintain C. elegans wildtype lifespan and to respond to DR and IGF-mediated longevity signaling. Moreover, ATG-18 activity in chemosensory neurons that are involved in food detection sufficiently mediates the effect of these longevity pathways. Additionally, ATG-18-mediated cell non-autonomous signaling depends on the release of neurotransmitters and neuropeptides. Interestingly, our data suggest that neuronal and intestinal ATG-18 acts in parallel and converges on unidentified neurons that secrete neuropeptides to regulate C. elegans lifespan through the transcription factor DAF-16/FOXO in response to reduced IGF signaling. PMID:28557996

  18. Deletion of phytochelatin synthase modulates the metal accumulation pattern of cadmium exposed C. elegans

    DOE PAGES

    Essig, Yona J.; Webb, Samuel M.; Stürzenbaum, Stephen R.

    2016-02-19

    Here, environmental metal pollution is a growing health risk to flora and fauna. It is therefore important to fully elucidate metal detoxification pathways. Phytochelatin synthase (PCS), an enzyme involved in the biosynthesis of phytochelatins (PCs), plays an important role in cadmium detoxification. The PCS and PCs are however not restricted to plants, but are also present in some lower metazoans. The model nematode Caenorhabditis elegans, for example, contains a fully functional phytochelatin synthase and phytochelatin pathway. By means of a transgenic nematode strain expressing a pcs-1 promoter-tagged GFP ( pcs-1::GFP) and a pcs-1 specific qPCR assay, further evidence is presentedmore » that the expression of the C. elegans phytochelatin synthase gene (pcs-1) is transcriptionally non-responsive to a chronic (48 h) insult of high levels of zinc (500 μM) or acute (3 h) exposures to high levels of cadmium (300 μM). However, the accumulation of cadmium, but not zinc, is dependent on the pcs-1 status of the nematode. Synchrotron based X-ray fluorescence imaging uncovered that the cadmium body burden increased significantly in the pcs-1(tm1748) knockout allele. Taken together, this suggests that whilst the transcription of pcs-1 may not be mediated by an exposure zinc or cadmium, it is nevertheless an integral part of the cadmium detoxification pathway in C. elegans.« less

  19. Deletion of phytochelatin synthase modulates the metal accumulation pattern of cadmium exposed C. elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essig, Yona J.; Webb, Samuel M.; Stürzenbaum, Stephen R.

    Here, environmental metal pollution is a growing health risk to flora and fauna. It is therefore important to fully elucidate metal detoxification pathways. Phytochelatin synthase (PCS), an enzyme involved in the biosynthesis of phytochelatins (PCs), plays an important role in cadmium detoxification. The PCS and PCs are however not restricted to plants, but are also present in some lower metazoans. The model nematode Caenorhabditis elegans, for example, contains a fully functional phytochelatin synthase and phytochelatin pathway. By means of a transgenic nematode strain expressing a pcs-1 promoter-tagged GFP ( pcs-1::GFP) and a pcs-1 specific qPCR assay, further evidence is presentedmore » that the expression of the C. elegans phytochelatin synthase gene (pcs-1) is transcriptionally non-responsive to a chronic (48 h) insult of high levels of zinc (500 μM) or acute (3 h) exposures to high levels of cadmium (300 μM). However, the accumulation of cadmium, but not zinc, is dependent on the pcs-1 status of the nematode. Synchrotron based X-ray fluorescence imaging uncovered that the cadmium body burden increased significantly in the pcs-1(tm1748) knockout allele. Taken together, this suggests that whilst the transcription of pcs-1 may not be mediated by an exposure zinc or cadmium, it is nevertheless an integral part of the cadmium detoxification pathway in C. elegans.« less

  20. Diversity and specificity in the interaction between Caenorhabditis elegans and the pathogen Serratia marcescens.

    PubMed

    Schulenburg, Hinrich; Ewbank, Jonathan J

    2004-11-22

    Co-evolutionary arms races between parasites and hosts are considered to be of immense importance in the evolution of living organisms, potentially leading to highly dynamic life-history changes. The outcome of such arms races is in many cases thought to be determined by frequency dependent selection, which relies on genetic variation in host susceptibility and parasite virulence, and also genotype-specific interactions between host and parasite. Empirical evidence for these two prerequisites is scarce, however, especially for invertebrate hosts. We addressed this topic by analysing the interaction between natural isolates of the soil nematode Caenorhabditis elegans and the pathogenic soil bacterium Serratia marcescens. Our analysis reveals the presence of i) significant variation in host susceptibility, ii) significant variation in pathogen virulence, and iii) significant strain- and genotype-specific interactions between the two species. The results obtained support the previous notion that highly specific interactions between parasites and animal hosts are generally widespread. At least for C. elegans, the high specificity is observed among isolates from the same population, such that it may provide a basis for and/or represent the outcome of co-evolutionary adaptations under natural conditions. Since both C. elegans and S. marcescens permit comprehensive molecular analyses, these two species provide a promising model system for inference of the molecular basis of such highly specific interactions, which are as yet unexplored in invertebrate hosts.

  1. Activation of CuZn superoxide dismutases from Caenorhabditis elegans does not require the copper chaperone CCS.

    PubMed

    Jensen, Laran T; Culotta, Valeria Cizewski

    2005-12-16

    Reactive oxygen species are produced as the direct result of aerobic metabolism and can cause damage to DNA, proteins, and lipids. A principal defense against reactive oxygen species involves the superoxide dismutases (SOD) that act to detoxify superoxide anions. Activation of CuZn-SODs in eukaryotic cells occurs post-translationally and is generally dependent on the copper chaperone for SOD1 (CCS), which inserts the catalytic copper cofactor and catalyzes the oxidation of a conserved disulfide bond that is essential for activity. In contrast to other eukaryotes, the nematode Caenorhabditis elegans does not contain an obvious CCS homologue, and we have found that the C. elegans intracellular CuZn-SODs (wSOD-1 and wSOD-5) are not dependent on CCS for activation when expressed in Saccharomyces cerevisiae. CCS-independent activation of CuZn-SODs is not unique to C. elegans; however, this is the first organism identified that appears to exclusively use this alternative pathway. As was found for mammalian SOD1, wSOD-1 exhibits a requirement for reduced glutathione in CCS-independent activation. Unexpectedly, wSOD-1 was inactive even in the presence of CCS when glutathione was depleted. Our investigation of the cysteine residues that form the disulfide bond in wSOD-1 suggests that the ability of wSODs to readily form this disulfide bond may be the key to obtaining high levels of activation through the CCS-independent pathway. Overall, these studies demonstrate that the CuZn-SODs of C. elegans have uniquely evolved to acquire copper without the copper chaperone and this may reflect the lifestyle of this organism.

  2. In silico molecular comparisons of C. elegans and mammalian pharmacology identify distinct targets that regulate feeding.

    PubMed

    Lemieux, George A; Keiser, Michael J; Sassano, Maria F; Laggner, Christian; Mayer, Fahima; Bainton, Roland J; Werb, Zena; Roth, Bryan L; Shoichet, Brian K; Ashrafi, Kaveh

    2013-11-01

    Phenotypic screens can identify molecules that are at once penetrant and active on the integrated circuitry of a whole cell or organism. These advantages are offset by the need to identify the targets underlying the phenotypes. Additionally, logistical considerations limit screening for certain physiological and behavioral phenotypes to organisms such as zebrafish and C. elegans. This further raises the challenge of elucidating whether compound-target relationships found in model organisms are preserved in humans. To address these challenges we searched for compounds that affect feeding behavior in C. elegans and sought to identify their molecular mechanisms of action. Here, we applied predictive chemoinformatics to small molecules previously identified in a C. elegans phenotypic screen likely to be enriched for feeding regulatory compounds. Based on the predictions, 16 of these compounds were tested in vitro against 20 mammalian targets. Of these, nine were active, with affinities ranging from 9 nM to 10 µM. Four of these nine compounds were found to alter feeding. We then verified the in vitro findings in vivo through genetic knockdowns, the use of previously characterized compounds with high affinity for the four targets, and chemical genetic epistasis, which is the effect of combined chemical and genetic perturbations on a phenotype relative to that of each perturbation in isolation. Our findings reveal four previously unrecognized pathways that regulate feeding in C. elegans with strong parallels in mammals. Together, our study addresses three inherent challenges in phenotypic screening: the identification of the molecular targets from a phenotypic screen, the confirmation of the in vivo relevance of these targets, and the evolutionary conservation and relevance of these targets to their human orthologs.

  3. The Caenorhabditis elegans RDE-10/RDE-11 complex regulates RNAi by promoting secondary siRNA amplification.

    PubMed

    Zhang, Chi; Montgomery, Taiowa A; Fischer, Sylvia E J; Garcia, Susana M D A; Riedel, Christian G; Fahlgren, Noah; Sullivan, Christopher M; Carrington, James C; Ruvkun, Gary

    2012-05-22

    In nematodes, plants, and fungi, RNAi is remarkably potent and persistent due to the amplification of initial silencing signals by RNA-dependent RNA polymerases (RdRPs). In Caenorhabditis elegans (C. elegans), the interaction between the RNA-induced silencing complex (RISC) loaded with primary small interfering RNAs (siRNAs) and the target messenger RNA (mRNA) leads to the recruitment of RdRPs and synthesis of secondary siRNAs using the target mRNA as the template. The mechanism and genetic requirements for secondary siRNA accumulation are not well understood. From a forward genetic screen for C. elegans genes required for RNAi, we identified rde-10, and through proteomic analysis of RDE-10-interacting proteins, we identified a protein complex containing the new RNAi factor RDE-11, the known RNAi factors RSD-2 and ERGO-1, and other candidate RNAi factors. The RNAi defective genes rde-10 and rde-11 encode a novel protein and a RING-type zinc finger domain protein, respectively. Mutations in rde-10 and rde-11 genes cause dosage-sensitive RNAi deficiencies: these mutants are resistant to low dosage but sensitive to high dosage of double-stranded RNAs. We assessed the roles of rde-10, rde-11, and other dosage-sensitive RNAi-defective genes rsd-2, rsd-6, and haf-6 in both exogenous and endogenous small RNA pathways using high-throughput sequencing and qRT-PCR. These genes are required for the accumulation of secondary siRNAs in both exogenous and endogenous RNAi pathways. The RDE-10/RDE-11 complex is essential for the amplification of RNAi in C. elegans by promoting secondary siRNA accumulation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Autosomal Genes of Autosomal/X-Linked Duplicated Gene Pairs and Germ-Line Proliferation in Caenorhabditis elegans

    PubMed Central

    Maciejowski, John; Ahn, James Hyungsoo; Cipriani, Patricia Giselle; Killian, Darrell J.; Chaudhary, Aisha L.; Lee, Ji Inn; Voutev, Roumen; Johnsen, Robert C.; Baillie, David L.; Gunsalus, Kristin C.; Fitch, David H. A.; Hubbard, E. Jane Albert

    2005-01-01

    We report molecular genetic studies of three genes involved in early germ-line proliferation in Caenorhabditis elegans that lend unexpected insight into a germ-line/soma functional separation of autosomal/X-linked duplicated gene pairs. In a genetic screen for germ-line proliferation-defective mutants, we identified mutations in rpl-11.1 (L11 protein of the large ribosomal subunit), pab-1 [a poly(A)-binding protein], and glp-3/eft-3 (an elongation factor 1-α homolog). All three are members of autosome/X gene pairs. Consistent with a germ-line-restricted function of rpl-11.1 and pab-1, mutations in these genes extend life span and cause gigantism. We further examined the RNAi phenotypes of the three sets of rpl genes (rpl-11, rpl-24, and rpl-25) and found that for the two rpl genes with autosomal/X-linked pairs (rpl-11 and rpl-25), zygotic germ-line function is carried by the autosomal copy. Available RNAi results for highly conserved autosomal/X-linked gene pairs suggest that other duplicated genes may follow a similar trend. The three rpl and the pab-1/2 duplications predate the divergence between C. elegans and C. briggsae, while the eft-3/4 duplication appears to have occurred in the lineage to C. elegans after it diverged from C. briggsae. The duplicated C. briggsae orthologs of the three C. elegans autosomal/X-linked gene pairs also display functional differences between paralogs. We present hypotheses for evolutionary mechanisms that may underlie germ-line/soma subfunctionalization of duplicated genes, taking into account the role of X chromosome silencing in the germ line and analogous mammalian phenomena. PMID:15687263

  5. The Caenorhabditis elegans RDE-10/RDE-11 complex regulates RNAi by promoting secondary siRNA amplification

    PubMed Central

    Zhang, Chi; Montgomery, Taiowa A.; Fischer, Sylvia E. J.; Garcia, Susana M. D. A.; Riedel, Christian G.; Fahlgren, Noah; Sullivan, Christopher M.; Carrington, James C.; Ruvkun, Gary

    2012-01-01

    SUMMARY Background In nematodes, plants and fungi, RNAi is remarkably potent and persistent due to the amplification of initial silencing signals by RNA-dependent RNA polymerases (RdRPs). In Caenorhabditis elegans (C. elegans), the interaction between the RNA-induced silencing complex (RISC) loaded with primary siRNAs and the target mRNA leads to the recruitment of RdRPs and synthesis of secondary siRNAs using the target mRNA as the template. The mechanism and genetic requirements for secondary siRNA accumulation are not well understood. Results From a forward genetic screen for C. elegans genes required for RNAi, we identified rde-10 and through proteomic analysis of RDE-10-interacting proteins, we identified a protein complex containing the new RNAi factor RDE-11, the known RNAi factors RSD-2 and ERGO-1, as well as other candidate RNAi factors. The RNAi defective genes rde-10 and rde-11 encode a novel protein and a RING-type zinc finger domain protein, respectively. Mutations in rde-10 and rde-11 genes cause dosage-sensitive RNAi deficiencies: these mutants are resistant to low dosage, but sensitive to high dosage of double-stranded RNAs (dsRNAs). We assessed the roles of rde-10, rde-11, and other dosage-sensitive RNAi-defective genes rsd-2, rsd-6 and haf-6 in both exogenous and endogenous small RNA pathways using high-throughput sequencing and qRT-PCR. These genes are required for the accumulation of secondary siRNAs in both exogenous and endogenous RNAi pathways. Conclusions The RDE-10/RDE-11 complex is essential for the amplification of RNAi in C. elegans by promoting secondary siRNA accumulation. PMID:22542102

  6. Alternate metabolism during the dauer stage of the nematode Caenorhabditis elegans.

    PubMed

    Burnell, Ann M; Houthoofd, Koen; O'Hanlon, Karen; Vanfleteren, Jacques R

    2005-11-01

    When environmental conditions are unsuitable to support nematode reproduction, Caenorhabditis elegans arrests development before the onset of sexual maturity and specialised 'dauer' larvae, adapted for dispersal, and extended diapause are formed. Dauer larvae do not feed and their metabolism is dependent on internal food reserves. Adult worms which express defects in the insulin/insulin-like growth factor receptor DAF-2 also display enhanced longevity. Whole genome mRNA expression profiling has demonstrated that C. elegans dauer larvae and daf-2 adults have similar transcription profiles for a cohort of longevity genes. Important components of this enhanced longevity system are the alpha-crystallin family of small heat shock proteins, anti-ROS defence systems, increased activity of cellular detoxification processes and possibly also increased chromatin stability and decreased protein turnover. Anaerobic fermentation pathways are upregulated in dauer larvae, while long-lived daf-2 adults appear to have normal oxidative metabolism. Anabolic pathways are down regulated in dauer larvae (and possibly in daf-2 adults as well), and energy consumption appears to be diverted to enhanced cellular maintenance and detoxification processes in both systems.

  7. AceTree: a tool for visual analysis of Caenorhabditis elegans embryogenesis

    PubMed Central

    Boyle, Thomas J; Bao, Zhirong; Murray, John I; Araya, Carlos L; Waterston, Robert H

    2006-01-01

    Background The invariant lineage of the nematode Caenorhabditis elegans has potential as a powerful tool for the description of mutant phenotypes and gene expression patterns. We previously described procedures for the imaging and automatic extraction of the cell lineage from C. elegans embryos. That method uses time-lapse confocal imaging of a strain expressing histone-GFP fusions and a software package, StarryNite, processes the thousands of images and produces output files that describe the location and lineage relationship of each nucleus at each time point. Results We have developed a companion software package, AceTree, which links the images and the annotations using tree representations of the lineage. This facilitates curation and editing of the lineage. AceTree also contains powerful visualization and interpretive tools, such as space filling models and tree-based expression patterning, that can be used to extract biological significance from the data. Conclusion By pairing a fast lineaging program written in C with a user interface program written in Java we have produced a powerful software suite for exploring embryonic development. PMID:16740163

  8. AceTree: a tool for visual analysis of Caenorhabditis elegans embryogenesis.

    PubMed

    Boyle, Thomas J; Bao, Zhirong; Murray, John I; Araya, Carlos L; Waterston, Robert H

    2006-06-01

    The invariant lineage of the nematode Caenorhabditis elegans has potential as a powerful tool for the description of mutant phenotypes and gene expression patterns. We previously described procedures for the imaging and automatic extraction of the cell lineage from C. elegans embryos. That method uses time-lapse confocal imaging of a strain expressing histone-GFP fusions and a software package, StarryNite, processes the thousands of images and produces output files that describe the location and lineage relationship of each nucleus at each time point. We have developed a companion software package, AceTree, which links the images and the annotations using tree representations of the lineage. This facilitates curation and editing of the lineage. AceTree also contains powerful visualization and interpretive tools, such as space filling models and tree-based expression patterning, that can be used to extract biological significance from the data. By pairing a fast lineaging program written in C with a user interface program written in Java we have produced a powerful software suite for exploring embryonic development.

  9. crm-1 facilitates BMP signaling to control body size in Caenorhabditis elegans.

    PubMed

    Fung, Wong Yan; Fat, Ko Frankie Chi; Eng, Cheah Kathryn Song; Lau, Chow King

    2007-11-01

    We have identified in Caenorhabditis elegans a homologue of the vertebrate Crim1, crm-1, which encodes a putative transmembrane protein with multiple cysteine-rich (CR) domains known to have bone morphogenetic proteins (BMPs) binding activity. Using the body morphology of C. elegans as an indicator, we showed that attenuation of crm-1 activity leads to a small body phenotype reminiscent of that of BMP pathway mutants. We showed that the crm-1 loss-of-function phenotype can be rescued by constitutive supply of sma-4 activity. crm-1 can enhance BMP signaling and this activity is dependent on the presence of the DBL-1 ligand and its receptors. crm-1 is expressed in neurons at the ventral nerve cord, where the DBL-1 ligand is produced. However, ectopic expression experiments reveal that crm-1 gene products act outside the DBL-1 producing cells and function non-autonomously to facilitate dbl/sma pathway signaling to control body size.

  10. Quantitative Assessment of Fat Levels in Caenorhabditis elegans Using Dark Field Microscopy

    PubMed Central

    Fouad, Anthony D.; Pu, Shelley H.; Teng, Shelly; Mark, Julian R.; Fu, Moyu; Zhang, Kevin; Huang, Jonathan; Raizen, David M.; Fang-Yen, Christopher

    2017-01-01

    The roundworm Caenorhabditis elegans is widely used as a model for studying conserved pathways for fat storage, aging, and metabolism. The most broadly used methods for imaging fat in C. elegans require fixing and staining the animal. Here, we show that dark field images acquired through an ordinary light microscope can be used to estimate fat levels in worms. We define a metric based on the amount of light scattered per area, and show that this light scattering metric is strongly correlated with worm fat levels as measured by Oil Red O (ORO) staining across a wide variety of genetic backgrounds and feeding conditions. Dark field imaging requires no exogenous agents or chemical fixation, making it compatible with live worm imaging. Using our method, we track fat storage with high temporal resolution in developing larvae, and show that fat storage in the intestine increases in at least one burst during development. PMID:28404661

  11. Tracking and Quantifying Developmental Processes in C. elegans Using Open-source Tools.

    PubMed

    Dutta, Priyanka; Lehmann, Christina; Odedra, Devang; Singh, Deepika; Pohl, Christian

    2015-12-16

    Quantitatively capturing developmental processes is crucial to derive mechanistic models and key to identify and describe mutant phenotypes. Here protocols are presented for preparing embryos and adult C. elegans animals for short- and long-term time-lapse microscopy and methods for tracking and quantification of developmental processes. The methods presented are all based on C. elegans strains available from the Caenorhabditis Genetics Center and on open-source software that can be easily implemented in any laboratory independently of the microscopy system used. A reconstruction of a 3D cell-shape model using the modelling software IMOD, manual tracking of fluorescently-labeled subcellular structures using the multi-purpose image analysis program Endrov, and an analysis of cortical contractile flow using PIVlab (Time-Resolved Digital Particle Image Velocimetry Tool for MATLAB) are shown. It is discussed how these methods can also be deployed to quantitatively capture other developmental processes in different models, e.g., cell tracking and lineage tracing, tracking of vesicle flow.

  12. The DM domain transcription factor MAB-3 regulates male hypersensitivity to oxidative stress in Caenorhabditis elegans.

    PubMed

    Inoue, Hideki; Nishida, Eisuke

    2010-07-01

    Sex differences occur in most species and involve a variety of biological characteristics. The nematode Caenorhabditis elegans consists of two sexes, self-fertile hermaphrodites (XX) and males (XO). Males differ from hermaphrodites in morphology, behavior, and life span. Here, we find that male C. elegans worms are much more sensitive than hermaphrodites to oxidative stress and show that the DM domain transcription factor MAB-3 plays a pivotal role in determining this male hypersensitivity. The hypersensitivity to oxidative stress does not depend on the dosage of X chromosomes but is determined by the somatic sex determination pathway. Our analyses show that the male hypersensitivity is controlled by MAB-3, one of the downstream effectors of the master terminal switch TRA-1 in the sex determination pathway. Moreover, we find that MAB-3 suppresses expression of several transcriptional target genes of the ELT-2 GATA factor, which is a global regulator of transcription in the C. elegans intestine, and show that RNA interference (RNAi) against elt-2 increases sensitivity to oxidative stress. These results strongly suggest that the DM domain protein MAB-3 regulates oxidative stress sensitivity by repressing transcription of ELT-2 target genes in the intestine.

  13. CAMKII and Calcineurin regulate the lifespan of Caenorhabditis elegans through the FOXO transcription factor DAF-16

    PubMed Central

    Tao, Li; Xie, Qi; Ding, Yue-He; Li, Shang-Tong; Peng, Shengyi; Zhang, Yan-Ping; Tan, Dan; Yuan, Zengqiang; Dong, Meng-Qiu

    2013-01-01

    The insulin-like signaling pathway maintains a relatively short wild-type lifespan in Caenorhabditis elegans by phosphorylating and inactivating DAF-16, the ortholog of the FOXO transcription factors of mammalian cells. DAF-16 is phosphorylated by the AKT kinases, preventing its nuclear translocation. Calcineurin (PP2B phosphatase) also limits the lifespan of C. elegans, but the mechanism through which it does so is unknown. Herein, we show that TAX-6•CNB-1 and UNC-43, the C. elegans Calcineurin and Ca2+/calmodulin-dependent kinase type II (CAMKII) orthologs, respectively, also regulate lifespan through DAF-16. Moreover, UNC-43 regulates DAF-16 in response to various stress conditions, including starvation, heat or oxidative stress, and cooperatively contributes to lifespan regulation by insulin signaling. However, unlike insulin signaling, UNC-43 phosphorylates and activates DAF-16, thus promoting its nuclear localization. The phosphorylation of DAF-16 at S286 by UNC-43 is removed by TAX-6•CNB-1, leading to DAF-16 inactivation. Mammalian FOXO3 is also regulated by CAMKIIA and Calcineurin. DOI: http://dx.doi.org/10.7554/eLife.00518.001 PMID:23805378

  14. Effects of conjugated linoleic acid (CLA) on fat accumulation, activity, and proteomics analysis in Caenorhabditis elegans.

    PubMed

    Shen, Peiyi; Kershaw, Jonathan C; Yue, Yiren; Wang, Ou; Kim, Kee-Hong; McClements, D Julian; Park, Yeonhwa

    2018-05-30

    Conjugated linoleic acid (CLA) has been reported to reduce fat storage in cell culture and animal models. In the current study, the effects of CLA on the fat accumulation, activities, and proteomics were investigated using Caenorhabditis elegans. 100 µM CLA-TG nanoemulsion significantly reduced fat accumulation by 29% compared to linoleic acid (LA)-TG treatment via sir-2.1 (the ortholog of Sirtuin 1), without altering the worm size, growth rate, and pumping rate of C. elegans. CLA significantly increased moving speed and amplitude (the average centroid displacement over the entire track) of wild type worms compared to the LA group and these effects were dependent on aak-2 (AMPKα ortholog) and sir-2.1. Proteomics analysis showed CLA treatment influences various proteins associated in reproduction and development, translation, metabolic processes, and catabolism and proteolysis, in C. elegans. We have also confirmed the proteomics data that CLA reduced the fat accumulation via abs-1 (ATP Synthase B homolog). However, there were no significant effects of CLA on brood size, progeny numbers, and hatchability compared to LA treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Forward locomotion of the nematode C. elegans is achieved through modulation of a single gait

    PubMed Central

    Berri, Stefano; Boyle, Jordan H.; Tassieri, Manlio; Hope, Ian A.; Cohen, Netta

    2009-01-01

    The ability of an animal to locomote through its environment depends crucially on the interplay between its active endogenous control and the physics of its interactions with the environment. The nematode worm Caenorhabditis elegans serves as an ideal model system for studying the respective roles of neural control and biomechanics, as well as the interaction between them. With only 302 neurons in a hard-wired neural circuit, the worm’s apparent anatomical simplicity belies its behavioural complexity. Indeed, C. elegans exhibits a rich repertoire of complex behaviors, the majority of which are mediated by its adaptive undulatory locomotion. The conventional wisdom is that two kinematically distinct C. elegans locomotion behaviors—swimming in liquids and crawling on dense gel-like media—correspond to distinct locomotory gaits. Here we analyze the worm’s motion through a series of different media and reveal a smooth transition from swimming to crawling, marked by a linear relationship between key locomotion metrics. These results point to a single locomotory gait, governed by the same underlying control mechanism. We further show that environmental forces play only a small role in determining the shape of the worm, placing conditions on the minimal pattern of internal forces driving locomotion. PMID:19639043

  16. Anthranilate Fluorescence Marks a Calcium-Propagated Necrotic Wave That Promotes Organismal Death in C. elegans

    PubMed Central

    Coburn, Cassandra; Allman, Erik; Mahanti, Parag; Benedetto, Alexandre; Cabreiro, Filipe; Pincus, Zachary; Matthijssens, Filip; Araiz, Caroline; Mandel, Abraham; Vlachos, Manolis; Edwards, Sally-Anne; Fischer, Grahame; Davidson, Alexander; Pryor, Rosina E.; Stevens, Ailsa; Slack, Frank J.; Tavernarakis, Nektarios; Braeckman, Bart P.; Schroeder, Frank C.; Nehrke, Keith; Gems, David

    2013-01-01

    For cells the passage from life to death can involve a regulated, programmed transition. In contrast to cell death, the mechanisms of systemic collapse underlying organismal death remain poorly understood. Here we present evidence of a cascade of cell death involving the calpain-cathepsin necrosis pathway that can drive organismal death in Caenorhabditis elegans. We report that organismal death is accompanied by a burst of intense blue fluorescence, generated within intestinal cells by the necrotic cell death pathway. Such death fluorescence marks an anterior to posterior wave of intestinal cell death that is accompanied by cytosolic acidosis. This wave is propagated via the innexin INX-16, likely by calcium influx. Notably, inhibition of systemic necrosis can delay stress-induced death. We also identify the source of the blue fluorescence, initially present in intestinal lysosome-related organelles (gut granules), as anthranilic acid glucosyl esters—not, as previously surmised, the damage product lipofuscin. Anthranilic acid is derived from tryptophan by action of the kynurenine pathway. These findings reveal a central mechanism of organismal death in C. elegans that is related to necrotic propagation in mammals—e.g., in excitotoxicity and ischemia-induced neurodegeneration. Endogenous anthranilate fluorescence renders visible the spatio-temporal dynamics of C. elegans organismal death. PMID:23935448

  17. C. elegans sirtuin SIR-2.4 and its mammalian homolog SIRT6 in stress response.

    PubMed

    Jedrusik-Bode, Monika

    2014-01-01

    Stress is a significant life event. The immediate response to stress is critical for survival. In organisms ranging from the unicellular Saccharomyces cerevisiae to protozoa (Trypanosoma brucei) and metazoan (such as Caenorhabditis elegans, Homo sapiens) stress response leads to the formation of cytoplasmic RNA-protein complexes referred to as stress granules (SGs). SGs regulate cell survival during stress by the sequestration of the signaling molecules implicated in apoptosis. They are a transient place of messenger ribonucleoproteins (mRNPs) remodeling for storage, degradation, or reinitiation of translation during stress and recovery from stress. Recently, we have identified chromatin factor, the sirtuin C. elegans SIR-2.4 variant and its mammalian homolog SIRT6 as a regulator of SGs formation. SIRT6 is highly conserved NAD(+)-dependent lysine deacetylase and ADP-ribosyltransferase impacting longevity, metabolism, and cancer. We observed that the cellular formation of SGs by SIRT6 or SIR-2.4 was linked with the cell viability or C. elegans survival and was dependent on SIRT6 enzymatic activity. Here, we discuss how SIR-2.4/SIRT6 influences SGs formation and stress response. We suggest possible mechanisms for such an unanticipated function of a chromatin regulatory factor SIRT6 in assembly of stress granules and cellular stress resistance.

  18. Ultrasound neuro-modulation chip: activation of sensory neurons in Caenorhabditis elegans by surface acoustic waves.

    PubMed

    Zhou, Wei; Wang, Jingjing; Wang, Kaiyue; Huang, Bin; Niu, Lili; Li, Fei; Cai, Feiyan; Chen, Yan; Liu, Xin; Zhang, Xiaoyan; Cheng, Hankui; Kang, Lijun; Meng, Long; Zheng, Hairong

    2017-05-16

    Ultrasound neuro-modulation has gained increasing attention as a non-invasive method. In this paper, we present an ultrasound neuro-modulation chip, capable of initiating reversal behaviour and activating neurons of C. elegans under the stimulation of a single-shot, short-pulsed ultrasound. About 85.29% ± 6.17% of worms respond to the ultrasound stimulation exhibiting reversal behaviour. Furthermore, the worms can adapt to the ultrasound stimulation with a lower acoustic pulse duration of stimulation. In vivo calcium imaging shows that the activity of ASH, a polymodal sensory neuron in C. elegans, can be directly evoked by the ultrasound stimulation. On the other hand, AFD, a thermal sensitive neuron, cannot be activated by the ultrasound stimulation using the same parameter and the temperature elevation during the stimulation process is relatively small. Consistent with the calcium imaging results, the tax-4 mutants, which are insensitive to temperature increase, do not show a significant difference in avoidance probability compared to the wild type. Therefore, the mechanical effects induced by ultrasound are the main reason for neural and behavioural modulation of C. elegans. With the advantages of confined acoustic energy on the surface, compatible with standard calcium imaging, this neuro-modulation chip could be a powerful tool for revealing the molecular mechanisms of ultrasound neuro-modulation.

  19. Using C. elegans Forward and Reverse Genetics to Identify New Compounds with Anthelmintic Activity

    PubMed Central

    Mathew, Mark D.; Mathew, Neal D.; Miller, Angela; Simpson, Mike; Au, Vinci; Garland, Stephanie; Gestin, Marie; Edgley, Mark L.; Flibotte, Stephane; Balgi, Aruna; Chiang, Jennifer; Giaever, Guri; Dean, Pamela; Tung, Audrey; Roberge, Michel; Roskelley, Calvin; Forge, Tom; Nislow, Corey; Moerman, Donald

    2016-01-01

    Background The lack of new anthelmintic agents is of growing concern because it affects human health and our food supply, as both livestock and plants are affected. Two principal factors contribute to this problem. First, nematode resistance to anthelmintic drugs is increasing worldwide and second, many effective nematicides pose environmental hazards. In this paper we address this problem by deploying a high throughput screening platform for anthelmintic drug discovery using the nematode Caenorhabditis elegans as a surrogate for infectious nematodes. This method offers the possibility of identifying new anthelmintics in a cost-effective and timely manner. Methods/Principal findings Using our high throughput screening platform we have identified 14 new potential anthelmintics by screening more than 26,000 compounds from the Chembridge and Maybridge chemical libraries. Using phylogenetic profiling we identified a subset of the 14 compounds as potential anthelmintics based on the relative sensitivity of C. elegans when compared to yeast and mammalian cells in culture. We showed that a subset of these compounds might employ mechanisms distinct from currently used anthelmintics by testing diverse drug resistant strains of C. elegans. One of these newly identified compounds targets mitochondrial complex II, and we used structural analysis of the target to suggest how differential binding of this compound may account for its different effects in nematodes versus mammalian cells. Conclusions/Significance The challenge of anthelmintic drug discovery is exacerbated by several factors; including, 1) the biochemical similarity between host and parasite genomes, 2) the geographic location of parasitic nematodes and 3) the rapid development of resistance. Accordingly, an approach that can screen large compound collections rapidly is required. C. elegans as a surrogate parasite offers the ability to screen compounds rapidly and, equally importantly, with specificity, thus

  20. High-Throughput Profiling of Caenorhabditis elegans Starvation-Responsive microRNAs

    PubMed Central

    Garcia-Segura, Laura; Abreu-Goodger, Cei; Hernandez-Mendoza, Armando; Dimitrova Dinkova, Tzvetanka D.; Padilla-Noriega, Luis; Perez-Andrade, Martha Elva; Miranda-Rios, Juan

    2015-01-01

    MicroRNAs (miRNAs) are non-coding RNAs of ~22 nucleotides in length that regulate gene expression by interfering with the stability and translation of mRNAs. Their expression is regulated during development, under a wide variety of stress conditions and in several pathological processes. In nature, animals often face feast or famine conditions. We observed that subjecting early L4 larvae from Caenorhabditis elegans to a 12-hr starvation period produced worms that are thinner and shorter than well-fed animals, with a decreased lipid accumulation, diminished progeny, reduced gonad size, and an increased lifespan. Our objective was to identify which of the 302 known miRNAs of C. elegans changed their expression under starvation conditions as compared to well-fed worms by means of deep sequencing in early L4 larvae. Our results indicate that 13 miRNAs (miR-34-3p, the family of miR-35-3p to miR-41-3p, miR-39-5p, miR-41-5p, miR-240-5p, miR-246-3p and miR-4813-5p) were upregulated, while 2 miRNAs (let-7-3p and miR-85-5p) were downregulated in 12-hr starved vs. well-fed early L4 larvae. Some of the predicted targets of the miRNAs that changed their expression in starvation conditions are involved in metabolic or developmental process. In particular, miRNAs of the miR-35 family were upregulated 6–20 fold upon starvation. Additionally, we showed that the expression of gld-1, important in oogenesis, a validated target of miR-35-3p, was downregulated when the expression of miR-35-3p was upregulated. The expression of another reported target, the cell cycle regulator lin-23, was unchanged during starvation. This study represents a starting point for a more comprehensive understanding of the role of miRNAs during starvation in C. elegans. PMID:26554708