NASA Technical Reports Server (NTRS)
Church, D. L.; Galston, A. W.
1988-01-01
Mechanically isolated mesophyll cells of Zinnia elegans L. cv Envy differentiate to tracheary elements when cultured in inductive medium containing sufficient auxin and cytokinin. Tracheary element differentiation was induced by the three auxins (alpha-naphthaleneacetic acid, indole-3-acetic acid, and 2,4-dichlorophenoxyacetic acid) and four cytokinins (6-benzyladenine, kinetin, 2-isopentenyladenine and zeatin) tested. Tracheary element formation is inhibited or delayed if the inductive medium is supplemented with an anticytokinin, antiauxin, or inhibitor of auxin transport.
IAA8 expression during vascular cell differentiation
Andrew T. Groover; Amy Pattishall; Alan M. Jones
2003-01-01
We report the characterization of a member of the auxin-induced IAA gene family from zinnia, designated zIAA8, which is expressed by mesophyll cells differentiating as tracheary elements in vitro. Transcription of zIAA8 is upregulated within 3 h after cell isolation in inductive medium,...
Iakimova, Elena T; Woltering, Ernst J
2017-04-01
Physiological and molecular studies support the view that xylogenesis can largely be determined as a specific form of vacuolar programmed cell death (PCD). The studies in xylogenic zinnia cell culture have led to many breakthroughs in xylogenesis research and provided a background for investigations in other experimental models in vitro and in planta . This review discusses the most essential earlier and recent findings on the regulation of xylem elements differentiation and PCD in zinnia and other xylogenic systems. Xylogenesis (the formation of water conducting vascular tissue) is a paradigm of plant developmental PCD. The xylem vessels are composed of fused tracheary elements (TEs)-dead, hollow cells with patterned lignified secondary cell walls. They result from the differentiation of the procambium and cambium cells and undergo cell death to become functional post-mortem. The TE differentiation proceeds through a well-coordinated sequence of events in which differentiation and the programmed cellular demise are intimately connected. For years a classical experimental model for studies on xylogenesis was the xylogenic zinnia (Zinnia elegans) cell culture derived from leaf mesophyll cells that, upon induction by cytokinin and auxin, transdifferentiate into TEs. This cell system has been proven very efficient for investigations on the regulatory components of xylem differentiation which has led to many discoveries on the mechanisms of xylogenesis. The knowledge gained from this system has potentiated studies in other xylogenic cultures in vitro and in planta. The present review summarises the previous and latest findings on the hormonal and biochemical signalling, metabolic pathways and molecular and gene determinants underlying the regulation of xylem vessels differentiation in zinnia cell culture. Highlighted are breakthroughs achieved through the use of xylogenic systems from other species and newly introduced tools and analytical approaches to study the processes. The mutual dependence between PCD signalling and the differentiation cascade in the program of TE development is discussed.
Kákošová, Anna; Digonnet, Catherine; Goffner, Deborah; Lišková, Desana
2013-04-01
Galactoglucomannan oligosaccharides seem to interact with auxin in xylogenic cell culture, thus influencing mainly metaxylem-like tracheary element differentiation depending on timing with hormones and the process kinetics. Complex mapping of Zinnia mesophyll cell transdifferentiation into tracheary elements with or without prior cell division was documented after palisade and spongy parenchyma cell immobilization during the first 4 days of culture. Here, we report a positive effect of galactoglucomannan oligosaccharides on cell viability and density and higher metaxylem-like tracheary element formation in xylogenic cell culture. The maximal positive effect was achieved by the simultaneous addition of the oligosaccharides and growth hormones (auxin, cytokinin) to the cell culture medium. Moreover, a large number of metaxylem-like tracheary elements were observed in a low-auxin medium supplemented with oligosaccharides, but not in a low-cytokinin medium, suggesting a close relationship between auxin and the oligosaccharides during tracheary element formation.
Benová-Kákosová, Anna; Digonnet, Catherine; Goubet, Florence; Ranocha, Philippe; Jauneau, Alain; Pesquet, Edouard; Barbier, Odile; Zhang, Zhinong; Capek, Peter; Dupree, Paul; Lisková, Desana; Goffner, Deborah
2006-10-01
Xylogenic cultures of zinnia (Zinnia elegans) provide a unique opportunity to study signaling pathways of tracheary element (TE) differentiation. In vitro TEs differentiate into either protoxylem (PX)-like TEs characterized by annular/helical secondary wall thickening or metaxylem (MX)-like TEs with reticulate/scalariform/pitted thickening. The factors that determine these different cell fates are largely unknown. We show here that supplementing zinnia cultures with exogenous galactoglucomannan oligosaccharides (GGMOs) derived from spruce (Picea abies) xylem had two major effects: an increase in cell population density and a decrease in the ratio of PX to MX TEs. In an attempt to link these two effects, the consequence of the plane of cell division on PX-MX differentiation was assessed. Although GGMOs did not affect the plane of cell division per se, they significantly increased the proportion of longitudinally divided cells differentiating into MX. To test the biological significance of these findings, we have determined the presence of mannan-containing oligosaccharides in zinnia cultures in vitro. Immunoblot assays indicated that beta-1,4-mannosyl epitopes accumulate specifically in TE-inductive media. These epitopes were homogeneously distributed within the thickened secondary walls of TEs when the primary cell wall was weakly labeled. Using polysaccharide analysis carbohydrate gel electrophoresis, glucomannans were specifically detected in cell walls of differentiating zinnia cultures. Finally, zinnia macroarrays probed with cDNAs from cells cultured in the presence or absence of GGMOs indicated that significantly more genes were down-regulated rather than up-regulated by GGMOs. This study constitutes a major step in the elucidation of signaling mechanisms of PX- and MX-specific genetic programs in zinnia.
Imaging Cell Wall Architecture in Single Zinnia elegans Tracheary Elements1[OA
Lacayo, Catherine I.; Malkin, Alexander J.; Holman, Hoi-Ying N.; Chen, Liang; Ding, Shi-You; Hwang, Mona S.; Thelen, Michael P.
2010-01-01
The chemical and structural organization of the plant cell wall was examined in Zinnia elegans tracheary elements (TEs), which specialize by developing prominent secondary wall thickenings underlying the primary wall during xylogenesis in vitro. Three imaging platforms were used in conjunction with chemical extraction of wall components to investigate the composition and structure of single Zinnia TEs. Using fluorescence microscopy with a green fluorescent protein-tagged Clostridium thermocellum family 3 carbohydrate-binding module specific for crystalline cellulose, we found that cellulose accessibility and binding in TEs increased significantly following an acidified chlorite treatment. Examination of chemical composition by synchrotron radiation-based Fourier-transform infrared spectromicroscopy indicated a loss of lignin and a modest loss of other polysaccharides in treated TEs. Atomic force microscopy was used to extensively characterize the topography of cell wall surfaces in TEs, revealing an outer granular matrix covering the underlying meshwork of cellulose fibrils. The internal organization of TEs was determined using secondary wall fragments generated by sonication. Atomic force microscopy revealed that the resulting rings, spirals, and reticulate structures were composed of fibrils arranged in parallel. Based on these combined results, we generated an architectural model of Zinnia TEs composed of three layers: an outermost granular layer, a middle primary wall composed of a meshwork of cellulose fibrils, and inner secondary wall thickenings containing parallel cellulose fibrils. In addition to insights in plant biology, studies using Zinnia TEs could prove especially productive in assessing cell wall responses to enzymatic and microbial degradation, thus aiding current efforts in lignocellulosic biofuel production. PMID:20592039
Twumasi, Peter; Iakimova, Elena T; Qian, Tian; van Ieperen, Wim; Schel, Jan H N; Emons, Anne Mie C; van Kooten, Olaf; Woltering, Ernst J
2010-08-06
The xylem vascular system is composed of fused dead, hollow cells called tracheary elements (TEs) that originate through trans-differentiation of root and shoot cambium cells. TEs undergo autolysis as they differentiate and mature. The final stage of the formation of TEs in plants is the death of the involved cells, a process showing some similarities to programmed cell death (PCD) in animal systems. Plant proteases with functional similarity to proteases involved in mammalian apoptotic cell death (caspases) are suggested as an integral part of the core mechanism of most PCD responses in plants, but participation of plant caspase-like proteases in TE PCD has not yet been documented. Confocal microscopic images revealed the consecutive stages of TE formation in Zinnia cells during trans-differentiation. Application of the caspase inhibitors Z-Asp-CH2-DCB, Ac-YVAD-CMK and Ac-DEVD-CHO affected the kinetics of formation and the dimensions of the TEs resulting in a significant delay of TE formation, production of larger TEs and in elimination of the 'two-wave' pattern of TE production. DNA breakdown and appearance of TUNEL-positive nuclei was observed in xylogenic cultures and this was suppressed in the presence of caspase inhibitors. To the best of our knowledge this is the first report showing that caspase inhibitors can modulate the process of trans-differentiation in Zinnia xylogenic cell cultures. As caspase inhibitors are closely associated with cell death inhibition in a variety of plant systems, this suggests that the altered TE formation results from suppression of PCD. The findings presented here are a first step towards the use of appropriate PCD signalling modulators or related molecular genetic strategies to improve the hydraulic properties of xylem vessels in favour of the quality and shelf life of plants or plant parts.
Roberts, A W; Frost, A O; Roberts, E M; Haigler, C H
2004-12-01
The roles of cellulose microfibrils and cortical microtubules in establishing and maintaining the pattern of secondary-cell-wall deposition in tracheary elements were investigated with direct dyes to inhibit cellulose microfibril assembly and amiprophosmethyl to inhibit microtubule polymerization. When direct dyes were added to xylogenic cultures of Zinnia elegans L. mesophyll cells just before the onset of differentiation, the secondary cell wall was initially secreted as bands composed of discrete masses of stained material, consistent with immobilized sites of cellulose synthesis. The masses coalesced, forming truncated, sinuous or smeared thickenings, as secondary cell wall deposition continued. The absence of ordered cellulose microfibrils was confirmed by polarization microscopy and a lack of fluorescence dichroism as determined by laser scanning microscopy. Indirect immunofluorescence showed that cortical microtubules initially subtended the masses of dye-altered secondary cell wall material but soon became disorganized and disappeared. Although most of the secondary cell wall was deposited in the absence of subtending cortical microtubules in dye-treated cells, secretion remained confined to discrete regions of the plasma membrane. Examination of non-dye-treated cultures following application of microtubule inhibitors during various stages of secondary-cell-wall deposition revealed that the pattern became fixed at an early stage such that deposition remained localized in the absence of cortical microtubules. These observations indicate that cortical microtubules are required to establish, but not to maintain, patterned secondary-cell-wall deposition. Furthermore, cellulose microfibrils play a role in maintaining microtubule arrays and the integrity of the secondary-cell-wall bands during deposition.
Agrobacterium tumefaciens mutants affected in attachment to plant cells.
Douglas, C J; Halperin, W; Nester, E W
1982-01-01
An analysis of Agrobacterium tumefaciens mutants with Tn5 insertions in chromosomal DNA showed that the chromosome of A. tumefaciens codes for a specific ability of this bacterium to attach to plant cells. This ability is associated with tumorigenesis by A. tumefaciens, the ability of avirulent A. tumefaciens to inhibit tumorigenesis, and the ability to adsorb certain phages. A second class of chromosomal mutations affects tumorigenesis without altering the ability to attach to plant cells. The attachment of A. tumefaciens to plant cells was assayed by mixing radiolabeled bacteria with suspensions of tobacco tissue culture cells or freshly isolated Zinnia leaf mesophyll cells. Under the conditions of this assay, an avirulent Ti plasmid-cured strain attached to the same extent as the same strain containing pTiB6806. Six of eight avirulent mutants with Tn5 insertions in chromosomal DNA showed defective attachment, whereas two retained wild-type attachment ability. In contrast to the strains showing wild-type attachment, the attachment-defective mutants failed to inhibit tumorigenesis when inoculated onto Jerusalem artichoke slices before inoculation of a virulent strain and also showed a loss of sensitivity to two Agrobacterium phages. The loss of phage sensitivity appeared to be due to a loss of ability to adsorb the phages. Staining with Calcofluor indicated that the mutants retained the ability to synthesize cellulose fibrils, which have been implicated in the attachment process. Southern filter hybridizations demonstrated that each mutant contained a single Tn5 insertion, and genetic linkage between the Tn5 insertion in one mutant and the attachment phenotype has also been demonstrated. Images PMID:6292165
NASA Technical Reports Server (NTRS)
Sutton, F.; Paul, S. S.; Wang, X. Q.; Assmann, S. M.; Evans, M. L. (Principal Investigator)
2000-01-01
Regulation of guard cell ion transport by abscisic acid (ABA) and in particular ABA inhibition of a guard cell inward K(+) current (I(Kin)) is well documented. However, little is known concerning ABA effects on ion transport in other plant cell types. Here we applied patch clamp techniques to mesophyll cell protoplasts of fava bean (Vicia faba cv Long Pod) plants and demonstrated ABA inhibition of an outward K(+) current (I(Kout)). When mesophyll cell protoplast mRNA (mesophyll mRNA) was expressed in Xenopus laevis oocytes, I(Kout) was generated that displayed similar properties to I(Kout) observed from direct analysis of mesophyll cell protoplasts. I(Kout) expressed by mesophyll mRNA-injected oocytes was inhibited by ABA, indicating that the ABA signal transduction pathway observed in mesophyll cells was preserved in the frog oocytes. Co-injection of oocytes with guard cell protoplast mRNA and cRNA for KAT1, an inward K(+) channel expressed in guard cells, resulted in I(Kin) that was similarly inhibited by ABA. However, oocytes co-injected with mesophyll mRNA and KAT1 cRNA produced I(Kin) that was not inhibited by ABA. These results demonstrate that the mesophyll-encoded signaling mechanism could not substitute for the guard cell pathway. These findings indicate that mesophyll cells and guard cells use distinct and different receptor types and/or signal transduction pathways in ABA regulation of K(+) channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varner, J.E.
1993-06-01
Since xylem tissue includes the main cell types which are lignified, we are interested in gene expression of glycine-rich proteins and proline-rich proteins, and other proteins which are involved in secondary cell wall thickening during xylogenesis. Since the main feature of xylogenesis is the deposition of additional wall components, study of the mechanism of xylogenesis will greatly advance our knowledge of the synthesis and assembly of wall macromolecules. We are using the in vitro xylogenesis system from isolated Zinnia mesophyll cells to isolate genes which are specifically expressed during xylogenesis. We have used subtractive hybridization methods to isolate a numbermore » of cDNA clones for differentially regulated genes from the cells after hormonal induction. So far, we have partially characterized 18 different cDNA clones from 239 positive clones. These differentially regulated genes can be divided into three sets according to the characteristics of gene expression in the induction medium and the control medium. The first set is induced in both the induction medium and the control medium without hormones. The second set is induced mainly in the induction medium and in the control medium with the addition of NAA alone. Two of thesegenes are exclusively induced by auxin. The third set of genes is induced mainly in the induction medium. Since these genes are not induced by either auxin or cytokinin alone, they may be directly involved in the process of xylogenesis. Our experiments on the localization of H{sub 2}O{sub 2} production reinforce the earlier ideas of others that H{sub 2}O{sub 2} is involved in normal lignification.« less
[Hydroxyproline: Rich glycoproteins of the plant and cell wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varner, J.E.
1993-01-01
Since xylem tissue includes the main cell types which are lignified, we are interested in gene expression of glycine-rich proteins and proline-rich proteins, and other proteins which are involved in secondary cell wall thickening during xylogenesis. Since the main feature of xylogenesis is the deposition of additional wall components, study of the mechanism of xylogenesis will greatly advance our knowledge of the synthesis and assembly of wall macromolecules. We are using the in vitro xylogenesis system from isolated Zinnia mesophyll cells to isolate genes which are specifically expressed during xylogenesis. We have used subtractive hybridization methods to isolate a numbermore » of cDNA clones for differentially regulated genes from the cells after hormonal induction. So far, we have partially characterized 18 different cDNA clones from 239 positive clones. These differentially regulated genes can be divided into three sets according to the characteristics of gene expression in the induction medium and the control medium. The first set is induced in both the induction medium and the control medium without hormones. The second set is induced mainly in the induction medium and in the control medium with the addition of NAA alone. Two of thesegenes are exclusively induced by auxin. The third set of genes is induced mainly in the induction medium. Since these genes are not induced by either auxin or cytokinin alone, they may be directly involved in the process of xylogenesis. Our experiments on the localization of H[sub 2]O[sub 2] production reinforce the earlier ideas of others that H[sub 2]O[sub 2] is involved in normal lignification.« less
Kubínová, Zuzana
2014-01-01
Chloroplast number per cell is a frequently examined quantitative anatomical parameter, often estimated by counting chloroplast profiles in two-dimensional (2D) sections of mesophyll cells. However, a mesophyll cell is a three-dimensional (3D) structure and this has to be taken into account when quantifying its internal structure. We compared 2D and 3D approaches to chloroplast counting from different points of view: (i) in practical measurements of mesophyll cells of Norway spruce needles, (ii) in a 3D model of a mesophyll cell with chloroplasts, and (iii) using a theoretical analysis. We applied, for the first time, the stereological method of an optical disector based on counting chloroplasts in stacks of spruce needle optical cross-sections acquired by confocal laser-scanning microscopy. This estimate was compared with counting chloroplast profiles in 2D sections from the same stacks of sections. Comparing practical measurements of mesophyll cells, calculations performed in a 3D model of a cell with chloroplasts as well as a theoretical analysis showed that the 2D approach yielded biased results, while the underestimation could be up to 10-fold. We proved that the frequently used method for counting chloroplasts in a mesophyll cell by counting their profiles in 2D sections did not give correct results. We concluded that the present disector method can be efficiently used for unbiased estimation of chloroplast number per mesophyll cell. This should be the method of choice, especially in coniferous needles and leaves with mesophyll cells with lignified cell walls where maceration methods are difficult or impossible to use. PMID:24336344
Zinnia Germination and Lunar Soil Amendment
NASA Technical Reports Server (NTRS)
Reese, Laura
2017-01-01
Germination testing was performed to determine the best method for germinating zinnias. This method will be used to attempt to germinate the zinnia seeds produced in space. It was found that seed shape may be critically important in determining whether a seed will germinate or not. The ability of compost and worm castings to remediate lunar regolith simulant for plant growth was tested. It was found that neither treatment effectively improves plant growth in lunar regolith simulant. A potential method of improving lunar regolith simulant by mixing it with arcillite was discovered.
Lindgren conducts Veg-01 Plant Pillow Refill
2015-12-02
Flight engineer Kjell Lindgren poses with zinnia plants in the Veggie facility during Plant Pillow water refill operations. Image was taken in the Columbus European Laboratory and released by Lindgren on social media. "Our zinnias are looking good! #SpaceGardener"
Urbaniak, Camilla; Massa, Gioia; Hummerick, Mary; Khodadad, Christina; Schuerger, Andrew
2018-01-01
ABSTRACT Here, we present the whole-genome sequences of two Fusarium oxysporum isolates cultured from infected Zinnia hybrida plants that were grown onboard the International Space Station (ISS). PMID:29773617
Edwards, Gerald E.; Black, Clanton C.
1971-01-01
A technique is described for the separation of mesophyll and bundle sheath cells from Digitaria sanguinalis leaves and evidence for separation is given with light and scanning electron micrographs. Gentle grinding of fully differentiated leaves in a mortar releases mesophyll cells which are isolated on nylon nets by filtration. More extensive grinding of the remaining tissue yields bundle sheath strands which are isolated by filtration with stainless steel sieves and nylon nets. Further grinding of bundle sheath strands in a tissue homogenizer releases bundle sheath cells which are collected on nylon nets. Percentage of purity derived from cell counts and yield data on a chlorophyll basis are given. The internal leaf cell morphology is presented in scanning electron micrographs and compared with light micrographs of fully-differentiated D. sanguinalis leaves. In leaves of plants which possess the C4-dicarboxylic acid cycle of photosynthesis, the relationship of leaf morphology to photosynthesis in mesophyll and bundle sheath cells is considered, and the hypothesis is presented that as atmospheric CO2 enters a leaf about 85% is fixed by the C4-dicarboxylic acid cycle in the mesophyll cells and 10 to 15% is fixed by the reductive pentose phosphate cycle in the bundle sheath cells. A technique also is given for the isolation of mesophyll cells from spinach leaves. Images PMID:16657571
Edwards, G E; Black, C C
1971-01-01
A technique is described for the separation of mesophyll and bundle sheath cells from Digitaria sanguinalis leaves and evidence for separation is given with light and scanning electron micrographs. Gentle grinding of fully differentiated leaves in a mortar releases mesophyll cells which are isolated on nylon nets by filtration. More extensive grinding of the remaining tissue yields bundle sheath strands which are isolated by filtration with stainless steel sieves and nylon nets. Further grinding of bundle sheath strands in a tissue homogenizer releases bundle sheath cells which are collected on nylon nets. Percentage of purity derived from cell counts and yield data on a chlorophyll basis are given.The internal leaf cell morphology is presented in scanning electron micrographs and compared with light micrographs of fully-differentiated D. sanguinalis leaves. In leaves of plants which possess the C(4)-dicarboxylic acid cycle of photosynthesis, the relationship of leaf morphology to photosynthesis in mesophyll and bundle sheath cells is considered, and the hypothesis is presented that as atmospheric CO(2) enters a leaf about 85% is fixed by the C(4)-dicarboxylic acid cycle in the mesophyll cells and 10 to 15% is fixed by the reductive pentose phosphate cycle in the bundle sheath cells.A technique also is given for the isolation of mesophyll cells from spinach leaves.
Three-dimensional intracellular structure of a whole rice mesophyll cell observed with FIB-SEM.
Oi, Takao; Enomoto, Sakiko; Nakao, Tomoyo; Arai, Shigeo; Yamane, Koji; Taniguchi, Mitsutaka
2017-07-01
Ultrathin sections of rice leaf blades observed two-dimensionally using a transmission electron microscope (TEM) show that the chlorenchyma is composed of lobed mesophyll cells, with intricate cell boundaries, and lined with chloroplasts. The lobed cell shape and chloroplast positioning are believed to enhance the area available for the gas exchange surface for photosynthesis in rice leaves. However, a cell image revealing the three-dimensional (3-D) ultrastructure of rice mesophyll cells has not been visualized. In this study, a whole rice mesophyll cell was observed using a focused ion beam scanning electron microscope (FIB-SEM), which provides many serial sections automatically, rapidly and correctly, thereby enabling 3-D cell structure reconstruction. Rice leaf blades were fixed chemically using the method for conventional TEM observation, embedded in resin and subsequently set in the FIB-SEM chamber. Specimen blocks were sectioned transversely using the FIB, and block-face images were captured using the SEM. The sectioning and imaging were repeated overnight for 200-500 slices (each 50 nm thick). The resultant large-volume image stacks ( x = 25 μm, y = 25 μm, z = 10-25 μm) contained one or two whole mesophyll cells. The 3-D models of whole mesophyll cells were reconstructed using image processing software. The reconstructed cell models were discoid shaped with several lobes around the cell periphery. The cell shape increased the surface area, and the ratio of surface area to volume was twice that of a cylinder having the same volume. The chloroplasts occupied half the cell volume and spread as sheets along the cell lobes, covering most of the inner cell surface, with adjacent chloroplasts in close contact with each other. Cellular and sub-cellular ultrastructures of a whole mesophyll cell in a rice leaf blade are demonstrated three-dimensionally using a FIB-SEM. The 3-D models and numerical information support the hypothesis that rice mesophyll cells enhance their CO 2 absorption with increased cell surface and sheet-shaped chloroplasts. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Urbaniak, Camilla; Massa, Gioia; Hummerick, Mary; Khodadad, Christina; Schuerger, Andrew; Venkateswaran, Kasthuri
2018-05-17
Here, we present the whole-genome sequences of two Fusarium oxysporum isolates cultured from infected Zinnia hybrida plants that were grown onboard the International Space Station (ISS). Copyright © 2018 Urbaniak et al.
Extremely thick cell walls and low mesophyll conductance: welcome to the world of ancient living!
Tosens, Tiina; Laanisto, Lauri; Niinemets, Ülo
2017-01-01
Abstract Mesophyll conductance is thought to be an important photosynthetic limitation in gymnosperms, but they currently constitute the most understudied plant group in regard to the extent to which photosynthesis and intrinsic water use efficiency are limited by mesophyll conductance. A comprehensive analysis of leaf gas exchange, photosynthetic limitations, mesophyll conductance (calculated by three methods previously used for across-species comparisons), and the underlying ultra-anatomical, morphological and chemical traits in 11 gymnosperm species varying in evolutionary history was performed to gain insight into the evolution of structural and physiological controls on photosynthesis at the lower return end of the leaf economics spectrum. Two primitive herbaceous species were included in order to provide greater evolutionary context. Low mesophyll conductance was the main limiting factor of photosynthesis in the majority of species. The strongest sources of limitation were extremely thick mesophyll cell walls, high chloroplast thickness and variation in chloroplast shape and size, and the low exposed surface area of chloroplasts per unit leaf area. In gymnosperms, the negative relationship between net assimilation per mass and leaf mass per area reflected an increased mesophyll cell wall thickness, whereas the easy-to-measure integrative trait of leaf mass per area failed to predict the underlying ultrastructural traits limiting mesophyll conductance. PMID:28419340
Ion transport in broad bean leaf mesophyll under saline conditions.
Percey, William J; Shabala, Lana; Breadmore, Michael C; Guijt, Rosanne M; Bose, Jayakumar; Shabala, Sergey
2014-10-01
Salt stress reduces the ability of mesophyll tissue to respond to light. Potassium outward rectifying channels are responsible for 84 % of Na (+) induced potassium efflux from mesophyll cells. Modulation in ion transport of broad bean (Vicia faba L.) mesophyll to light under increased apoplastic salinity stress was investigated using vibrating ion-selective microelectrodes (the MIFE technique). Increased apoplastic Na(+) significantly affected mesophyll cells ability to respond to light by modulating ion transport across their membranes. Elevated apoplastic Na(+) also induced a significant K(+) efflux from mesophyll tissue. This efflux was mediated predominately by potassium outward rectifying channels (84 %) and the remainder of the efflux was through non-selective cation channels. NaCl treatment resulted in a reduction in photosystem II efficiency in a dose- and time-dependent manner. In particular, reductions in Fv'/Fm' were linked to K(+) homeostasis in the mesophyll tissue. Increased apoplastic Na(+) concentrations induced vanadate-sensitive net H(+) efflux, presumably mediated by the plasma membrane H(+)-ATPase. It is concluded that the observed pump's activation is essential for the maintenance of membrane potential and ion homeostasis in the cytoplasm of mesophyll under salt stress.
Mesophyll cells are the main site of abscisic acid biosynthesis in water-stressed leaves.
McAdam, Scott A M; Brodribb, Timothy John
2018-05-07
The hormone abscisic acid (ABA) plays a critical role in enhancing plant survival during water deficit. Recent molecular evidence suggests that ABA is synthesized in the phloem companion cells and guard cells. However, the nature of cell turgor and water status in these two cell types cannot easily account for the rapid, water status-triggered ABA biosynthesis observed in leaves. Here we utilize the unique foliar anatomies of an angiosperm (Hakea lissosperma) and of four conifer species (Saxegothaea conspicua, Podocarpus latifolius, Cephalotaxus harringtonii, and Amentotaxus formosana) in which the mesophyll can be isolated from the vascular tissue to identify the main site of ABA biosynthesis in water-stressed leaves. In all five species tested, considerable ABA biosynthesis occurred in mesophyll tissue that had been separated from vascular tissue. In addition, the removal of the epidermis from the mesophyll in two conifer species had no impact on the observed increase in ABA levels under water deficit. Our results suggest that mesophyll cells are the predominant location of water deficit-triggered ABA biosynthesis in the leaf. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Greenhouse trials were designed to evaluate the effect the application technique would have on temporal and spatial movement of neonicotinoid insecticides imidacloprid and thiamethoxam through plant tissue. Mature Zinnia elegans plants were treated by either a soil drench of neonicotinoid insectici...
Phomalactone from a phytopathogenic fungus infecting Zinnia elegans (Asteraceae) leaves
USDA-ARS?s Scientific Manuscript database
Zinnia elegans plants are infected by a fungus that causes necrosis with dark red spots particularly in late spring to the middle of summer in the Mid-South part of the United States. This fungal disease when untreated causes the leaves to wilt and eventually kills the plant. The fungus was isolated...
2008-03-01
vivipara Hidden flower Cryptantha crassisepala Hidden flower Cryptantha fulvocanescens James’s hidden flower Cryptantha jamesii Buffalo gourd...pumila Bigbract verbena ta Verbena bractea Banana yucca ta Yucca bacca Soapweed yucca Yucca glauca Rocky Mountain zinnia Zinnia grandiflora A-9
Nonami, H; Schulze, E D
1989-01-01
Water potential, osmotic potential and turgor measurements obtained by using a cell pressure probe together with a nanoliter osmometer were compared with measurements obtained with an isopiestic psychrometer. Both types of measurements were conducted in the mature region of Tradescantia virginiana L. leaves under non-transpiring conditions in the dark, and gave similar values of all potentials. This finding indicates that the pressure probe and the osmometer provide accurate measurements of turgor, osmotic potentials and water potentials. Because the pressure probe does not require long equilibration times and can measure turgor of single cells in intact plants, the pressure probe together with the osmometer was used to determine in-situ cell water potentials, osmotic potentials and turgor of epidermal and mesophyll cells of transpiring leaves as functions of stomatal aperture and xylem water potential. When the xylem water potential was-0.1 MPa, the stomatal aperture was at its maximum, but turgor of both epidermal and mesophyll cells was relatively low. As the xylem water potential decreased, the stomatal aperture became gradually smaller, whereas turgor of both epidermal and mesophyll cells first increased and afterward decreased. Water potentials of the mesophyll cells were always lower than those of the epidermal cells. These findings indicate that evaporation of water is mainly occurring from mesophyll cells and that peristomatal transpiration could be less important than it has been proposed previously, although peristomatal transpiration may be directly related to regulation of turgor in the guard cells.
The Effect of Designated Pollutants on Plants
1979-12-01
chamber . . . . .. . . o 34 10 Leaf injury on marigold plants at Vandenberg AFB exposed to HCI gas. . . . . . . . . . . . . * . . . * 0 * * * * 36 11...in a preliminary field trial . 6. . . . . . . . . . . . . . . . . . . . .. . 22 12 Injury on bean, zinnia, and marigold seedlings after field exposure...solid rocket fuel under field conditions . . . . . . . . 26 16 Chlorine content of marigold and zinnia plants exposed weekly to gas generated by solid
Mateyka, Christian; Schnarrenberger, Claus
1988-01-01
Two major α-glucan phosphorylases (I and II) from leaves of the C4 plant corn (Zea mays L.) were previously shown to be compartmented in mesophyll and bundle sheath cells, respectively (C Mateyka, C Schnarrenberger 1984 Plant Sci Lett 36: 119-123). The two enzymes were separated by chromatography on DEAE-cellulose and purified to homogeneity by affinity chromatography on immobilized starch, according to published procedures, as developed for the cytosol and chloroplast phosphorylase from the C3 plant spinach. The two α-glucan phosphorylases have their pH optimum at pH 7. The specificity for polyglucans was similar for soluble starch and amylopectin, however, differed for glycogen (Km = 16 micrograms per milliliter for the mesophyll cell and 250 micrograms per milliliter for the bundle sheath cell phosphorylase). Maltose, maltotriose, and maltotetraose were not cleaved by either phosphorylase. If maltopentaose was used as substrate, the rate was about twice as high with the bundle sheath cell phosphorylase, than with the mesophyll cell phosphorylase. The phosphorylase I showed a molecular mass of 174 kilodaltons and the phosphorylase II of 195 kilodaltons for the native enzyme and of 87 and of 53 kilodaltons for the SDS-treated proteins, respectively. Specific antisera raised against mesophyll cell phosphorylase from corn leaves and against chloroplast phosphorylase from spinach leaves implied high similarity for the cytosol phosphorylase of the C3 plant spinach with mesophyll cell phosphorylase of the C4 plant corn and of chloroplast phosphorylase of spinach with the bundle sheath cell phosphorylase of corn. Images Fig. 2 Fig. 7 PMID:16665923
Lu, P.; Outlaw Jr, W. H.; Smith, B. G.; Freed, G. A.
1997-01-01
At various times after pulse-labeling broad bean (Vicia faba L.) leaflets with 14CO2, whole-leaf pieces and rinsed epidermal peels were harvested and subsequently processed for histochemical analysis. Cells dissected from whole leaf retained apoplastic contents, whereas those from rinsed peels contained only symplastic contents. Sucrose (Suc)-specific radioactivity peaked (111 GBq mol-1) in palisade cells at 20 min. In contrast, the 14C content and Sucspecific radioactivity were very low in guard cells for 20 min, implying little CO2 incorporation; both then peaked at 40 min. The guard-cell apoplast had a high maximum Suc-specific radioactivity (204 GBq mol-1) and a high Suc influx rate (0.05 pmol stoma-1 min-1). These and other comparisons implied the presence of (a) multiple Suc pools in mesophyll cells, (b) a localized mesophyll-apoplast region that exchanges with phloem and stomata, and (c) mesophyll-derived Suc in guard-cell walls sufficient to diminish stomatal opening by approximately 3 [mu]m. Factors expected to enhance Suc accumulation in guard-cell walls are (a) high transpiration rate, which closes stomata, and (b) high apoplastic Suc concentration, which is elevated when mesophyll Suc efflux exceeds translocation. Therefore, multiple physiological factors are integrated in the attenuation of stomatal aperture size by this previously unrecognized mechanism. PMID:12223693
Sibbernsen, Erik; Mott, Keith A
2010-07-01
Flooding the intercellular air spaces of leaves with water was shown to cause rapid closure of stomata in Tradescantia pallida, Lactuca serriola, Helianthus annuus, and Oenothera caespitosa. The response occurred when water was injected into the intercellular spaces, vacuum infiltrated into the intercellular spaces, or forced into the intercellular spaces by pressurizing the xylem. Injecting 50 mm KCl or silicone oil into the intercellular spaces also caused stomata to close, but the response was slower than with distilled water. Epidermis-mesophyll grafts for T. pallida were created by placing the epidermis of one leaf onto the exposed mesophyll of another leaf. Stomata in these grafts opened under light but closed rapidly when water was allowed to wick between epidermis and the mesophyll. When epidermis-mesophyll grafts were constructed with a thin hydrophobic filter between the mesophyll and epidermis stomata responded normally to light and CO(2). These data, when taken together, suggest that the effect of water on stomata is caused partly by dilution of K(+) in the guard cell and partly by the existence of a vapor-phase signal that originates in the mesophyll and causes stomata to open in the light.
Conn, Simon J; Gilliham, Matthew; Athman, Asmini; Schreiber, Andreas W; Baumann, Ute; Moller, Isabel; Cheng, Ning-Hui; Stancombe, Matthew A; Hirschi, Kendal D; Webb, Alex A R; Burton, Rachel; Kaiser, Brent N; Tyerman, Stephen D; Leigh, Roger A
2011-01-01
The physiological role and mechanism of nutrient storage within vacuoles of specific cell types is poorly understood. Transcript profiles from Arabidopsis thaliana leaf cells differing in calcium concentration ([Ca], epidermis <10 mM versus mesophyll >60 mM) were compared using a microarray screen and single-cell quantitative PCR. Three tonoplast-localized Ca(2+) transporters, CAX1 (Ca(2+)/H(+)-antiporter), ACA4, and ACA11 (Ca(2+)-ATPases), were identified as preferentially expressed in Ca-rich mesophyll. Analysis of respective loss-of-function mutants demonstrated that only a mutant that lacked expression of both CAX1 and CAX3, a gene ectopically expressed in leaves upon knockout of CAX1, had reduced mesophyll [Ca]. Reduced capacity for mesophyll Ca accumulation resulted in reduced cell wall extensibility, stomatal aperture, transpiration, CO(2) assimilation, and leaf growth rate; increased transcript abundance of other Ca(2+) transporter genes; altered expression of cell wall-modifying proteins, including members of the pectinmethylesterase, expansin, cellulose synthase, and polygalacturonase families; and higher pectin concentrations and thicker cell walls. We demonstrate that these phenotypes result from altered apoplastic free [Ca(2+)], which is threefold greater in cax1/cax3 than in wild-type plants. We establish CAX1 as a key regulator of apoplastic [Ca(2+)] through compartmentation into mesophyll vacuoles, a mechanism essential for optimal plant function and productivity.
Ren, Baizhao; Cui, Haiyan; Camberato, James J; Dong, Shuting; Liu, Peng; Zhao, Bin; Zhang, Jiwang
2016-08-01
A field experiment was conducted to study the effects of shading on the photosynthetic characteristics and mesophyll cell ultrastructure of two summer maize hybrids Denghai605 (DH605) and Zhengdan958 (ZD958). The ambient sunlight treatment was used as control (CK) and shading treatments (40 % of ambient sunlight) were applied at different growth stages from silking (R1) to physiological maturity (R6) (S1), from the sixth leaf stage (V6) to R1 (S2), and from seeding to R6 (S3), respectively. The net photosynthetic rate (P n) was significantly decreased after shading. The greatest reduction of P n was found at S3 treatment, followed by S1 and S2 treatments. P n of S3 was decreased by 59 and 48 % for DH605, and 39 and 43 % for ZD958 at tasseling and milk-ripe stages, respectively, compared to that of CK. Additionally, leaf area index (LAI) and chlorophyll content decreased after shading. In terms of mesophyll cell ultrastructure, chloroplast configuration of mesophyll cells dispersed, and part of chloroplast swelled and became circular. Meanwhile, the major characteristics of chloroplasts showed poorly developed thylakoid structure at the early growth stage, blurry lamellar structure, loose grana, and a large gap between slices and warping granum. Then, plasmolysis occurred in mesophyll cells and the endomembrane system was destroyed, which resulted in the dissolution of cell membrane, karyotheca, mitochondria, and some membrane structures. The damaged mesophyll cell ultrastructure led to the decrease of photosynthetic capacity, and thus resulted in significant yield reduction by 45, 11, and 84 % in S1, S2, and S3 treatments, respectively, compared to that of CK.
The Effect of Designated Pollutants on Plant Species
1981-01-01
49 33 Dry weight of marigolds exposed to four weekly acid sprays and harvested on fifth week o . . . . . . 0 .. . .. .. 49 34...fertilizer and 12 kg pre-emergence weed killer (Dacthal) per hectare during plowing. Two-week-old zinnia and marigold plants, started in peat pots in the...study described below. Effect on Yield Zinnia and marigold plants transplanted to a Riverside field were exposed weekly for 6 successive weeks to one
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, P.; Outlaw, W.H. Jr.; Smith, B.G.
At various times after pulse labeling Vicia faba L. leaflets with {sup 14}CO{sub 2}, whole-leaf pieces and rinsed epidermal peels were harvested and subsequently processed for histochemical analysis. Cells dissected from whole leaf retained apoplastic contents whereas those from rinsed peels contained only cytoplastic contents. Sucrose specific radioactivity peaked in palisade cells, 111 GBq{center_dot}mol{sup {minus}1}, at 20 min. In contrast, the {sup 14}C content and sucrose specific radioactivity were very low in guard cells for 20 min, implying little CO{sub 2} incorporation; both then peaked at 40 min. The guard-cell apoplast had a high maximum sucrose specific radioactivity and amore » high sucrose influx rate. These and other comparisons implied the presence of (a) multiple sucrose pools in mesophyll cells, (b) a localized mesophyll-apoplast region that exchanges with phloem and stomata, and (c) mesophyll-derived sucrose in guard-cell walls sufficient to diminish stomatal opening by {approximately} 4 {micro}m. Factors expected to enhance sucrose accumulation in guard-cell walls are (a) high transpiration rate, which closes stomata, and (b) high apoplastic sucrose concentration, which is elevated when mesophyll-sucrose efflux exceeds translocation. Therefore, multiple physiological factors are integrated in the attenuation of stomatal-aperture size by this previously unrecognized mechanism.« less
Wuyts, Nathalie; Massonnet, Catherine; Dauzat, Myriam; Granier, Christine
2012-09-01
Light and soil water content affect leaf surface area expansion through modifications in epidermal cell numbers and area, while effects on leaf thickness and mesophyll cell volumes are far less documented. Here, three-dimensional imaging was applied in a study of Arabidopsis thaliana leaf growth to determine leaf thickness and the cellular organization of mesophyll tissues under moderate soil water deficit and two cumulative light conditions. In contrast to surface area, thickness was highly conserved in response to water deficit under both low and high cumulative light regimes. Unlike epidermal and palisade mesophyll tissues, no reductions in cell number were observed in the spongy mesophyll; cells had rather changed in volume and shape. Furthermore, leaf features of a selection of genotypes affected in leaf functioning were analysed. The low-starch mutant pgm had very thick leaves because of unusually large palisade mesophyll cells, together with high levels of photosynthesis and stomatal conductance. By means of an open stomata mutant and a 9-cis-epoxycarotenoid dioxygenase overexpressor, it was shown that stomatal conductance does not necessarily have a major impact on leaf dimensions and cellular organization, pointing to additional mechanisms for the control of CO(2) diffusion under high and low stomatal conductance, respectively. © 2012 Blackwell Publishing Ltd.
LAM-1 and FAT Genes Control Development of the Leaf Blade in Nicotiana sylvestris.
McHale, NA
1993-01-01
Leaf primordia of the lam-1 mutant of Nicotiana sylvestris grow normally in length but remain bladeless throughout development. The blade initiation site is established at the normal time and position in lam-1 primordia. Anticlinal divisions proceed normally in the outer L1 and L2 layers, but the inner L3 cells fail to establish the periclinal divisions that normally generate the middle mesophyll core. The lam-1 mutation also blocks formation of blade mesophyll from distal L2 cells. This suggests that LAM-1 controls a common step in initiation of blade tissue from the L2 and L3 lineage of the primordium. Another recessive mutation (fat) was isolated in N. sylvestris that induces abnormal periclinal divisions in the mesophyll during blade initiation and expansion. This generates a blade approximately twice its normal thickness by doubling the number of mesophyll cell layers from four to approximately eight. Presumably, the fat mutation defines a negative regulator involved in repression of periclinal divisions in the blade. The lam-1 fat double mutant shows radial proliferation of mesophyll cells at the blade initiation site. This produces a highly disorganized, club-shaped blade that appears to represent an additive effect of the lam-1 and fat mutations on blade founder cells. PMID:12271096
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ping; Outlaw, W.H. Jr.; Smith, B.G.
At various times after pulse-labeling broad bean (Vicia faba L.) leaflets with {sup 14}CO{sub 2}, whole-leaf pieces and rinsed epidermal peels were harvested and subsequently processed for histochemical analysis. Cells dissected from whole leaf retained apoplastic contents, whereas those from rinsed peels contained only symplastic contents. Sucrose (Suc)-specific radioactivity peaked (111 GBq mol{sup -1}) in palisade cells at 20 min. In contrast, the {sup 14}C content and Suc-specific radioactivity were very low in guard cells for 20 min, implying little CO, incorporation; both then peaked at 40 min. The guard-cell apoplast had a high maximum Suc-specific radioactivity (204 GBq mol{supmore » -1}) and a high Suc influx rate (0.05 pmol stoma{sup -1} min{sup -1}). These and other comparisons implied the presence of (a) multiple Suc pools in mesophyll cells, M a localized mesophyll-apoplast region that exchanges with phloem and stomata, and mesophyll-derived Suc in guard-cell walls sufficient to diminish stomatal opening by approximately 3 pm. Factors expected to enhance Suc accumulation in guard-cell walls are (a) high transpiration rate, which closes stomata, and N high apoplastic Suc concentration, which is elevated when mesophyll Suc efflux exceeds translocation. Therefore, multiple physiological factors are integrated in the attenuation of stomatal aperture size by this previously unrecognized mechanism. 50 refs., 9 figs.« less
Sibbernsen, Erik; Mott, Keith A.
2010-01-01
Flooding the intercellular air spaces of leaves with water was shown to cause rapid closure of stomata in Tradescantia pallida, Lactuca serriola, Helianthus annuus, and Oenothera caespitosa. The response occurred when water was injected into the intercellular spaces, vacuum infiltrated into the intercellular spaces, or forced into the intercellular spaces by pressurizing the xylem. Injecting 50 mm KCl or silicone oil into the intercellular spaces also caused stomata to close, but the response was slower than with distilled water. Epidermis-mesophyll grafts for T. pallida were created by placing the epidermis of one leaf onto the exposed mesophyll of another leaf. Stomata in these grafts opened under light but closed rapidly when water was allowed to wick between epidermis and the mesophyll. When epidermis-mesophyll grafts were constructed with a thin hydrophobic filter between the mesophyll and epidermis stomata responded normally to light and CO2. These data, when taken together, suggest that the effect of water on stomata is caused partly by dilution of K+ in the guard cell and partly by the existence of a vapor-phase signal that originates in the mesophyll and causes stomata to open in the light. PMID:20472750
USDA-ARS?s Scientific Manuscript database
The surface area of the leaf mesophyll exposed to intercellular airspace per leaf area (Sm) is closely associated with CO2 diffusion and photosynthetic rates. Sm is typically estimated from two-dimensional (2D) leaf sections and corrected for the three-dimensional (3D) geometry of mesophyll cells, l...
Relative quantification of membrane-associated calcium in red spruce mesophyll cells
Catherine H. Borer; Paul Schaberg; Jonathan R. Cumming
1997-01-01
We describe a method for localizing and comparing relative amounts of plasma membrane-associated calcium ions (mCa) in complex tissues and verify the procedure for mesophyll cells of red spruce (Picea rubens Sarg.) needles. This technique incorporates epifluorescence microscopy using the fluorescent probe chlorotetracycline (CTC) with computer image...
Ma, Hong-Zhen; Liu, Guo-Qin; Li, Cheng-Wei; Kang, Guo-Zhang; Guo, Tian-Cai
2012-10-05
The full-length cDNA (882bp) and DNA (1742bp) sequences encoding a basic transcription factor 3, designated as TaBTF3, were first isolated from common wheat (Triticum aestivum L.). Subcellular localization studies revealed that the TaBTF3 protein was mainly located in the cytoplasm and nucleus. In TaBTF3-silenced transgenic wheat seedlings obtained using the Virus-induced gene silencing (VIGS) method, the chlorophyll pigment content was markedly reduced. However, the malonaldehyde (MDA) and H(2)O(2) contents were enhanced, and the structure of the wheat mesophyll cell was seriously damaged. Furthermore, transcripts of the chloroplast- and mitochondrial-encoded genes were significantly reduced in TaBTF3-silenced transgenic wheat plants. These results suggest that the TaBTF3 gene might function in the development of the wheat chloroplast, mitochondria and mesophyll cell. This paper is the first report to describe the involvement of TaBTF3 in maintaining the normal plant mesophyll cell structure. Copyright © 2012 Elsevier Inc. All rights reserved.
Stephan, Aaron B.; Schroeder, Julian I.
2016-01-01
Starch metabolism is involved in stomatal movement regulation. However, it remains unknown whether starch-deficient mutants affect CO2-induced stomatal closing and whether starch biosynthesis in guard cells and/or mesophyll cells is rate limiting for high CO2-induced stomatal closing. Stomatal responses to [CO2] shifts and CO2 assimilation rates were compared in Arabidopsis (Arabidopsis thaliana) mutants that were either starch deficient in all plant tissues (ADP-Glc-pyrophosphorylase [ADGase]) or retain starch accumulation in guard cells but are starch deficient in mesophyll cells (plastidial phosphoglucose isomerase [pPGI]). ADGase mutants exhibited impaired CO2-induced stomatal closure, but pPGI mutants did not, showing that starch biosynthesis in guard cells but not mesophyll functions in CO2-induced stomatal closing. Nevertheless, starch-deficient ADGase mutant alleles exhibited partial CO2 responses, pointing toward a starch biosynthesis-independent component of the response that is likely mediated by anion channels. Furthermore, whole-leaf CO2 assimilation rates of both ADGase and pPGI mutants were lower upon shifts to high [CO2], but only ADGase mutants caused impairments in CO2-induced stomatal closing. These genetic analyses determine the roles of starch biosynthesis for high CO2-induced stomatal closing. PMID:27208296
Potter, J W; Black, C C
1982-08-01
The distribution and molecular weights of cellular proteins in soluble and membrane-associated locations were analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Coomassie blue staining of leaf (Digitaria sanguinalis L. Scop.) extracts and isolated cell extracts. Leaf polypeptides also were pulse-labeled, followed by isolation of the labeled leaf cell types and analysis of the newly synthesized polypeptides in each cell type by electrophoresis and fluorography.Comparison of the electrophoretic patterns of crabgrass whole leaf polypeptides with isolated cell-type polypeptides indicated a difference in protein distribution patterns for the two cell types. The mesophyll cells exhibited a greater allocation of total cellular protein into membrane-associated proteins relative to soluble proteins. In contrast, the bundle sheath cells exhibited a higher percentage of total cellular protein in soluble proteins. Phosphoenolpyruvate carboxylase was the major soluble protein in the mesophyll cell and ribulose bisphosphate carboxylase was the major soluble protein in the bundle sheath cell. The majority of in vivo(35)S-pulse-labeled proteins synthesized by the two crabgrass cell types corresponded in molecular weight to the proteins present in the cell types which were detected by conventional staining techniques. The bundle sheath cell and mesophyll cell fluorograph profiles each had 15 major (35)S-labeled proteins. The major incorporation of (35)S by bundle sheath cells was into products which co-electrophoresed with the large and small subunits of ribulose bisphosphate carboxylase. In contrast, a major (35)S-labeled product in mesophyll cell extracts co-electrophoresed with the subunit of phosphoenolpyruvate carboxylase. Both cell types exhibited equivalent in vivo labeling of a polypeptide with one- and two-dimensional electrophoretic behavior similar to the major apoprotein of the light-harvesting chlorophyll a/b protein. Results from the use of protein synthesis inhibitors during pulse-labeling experiments indicated intercellular differences in both organelle and cytoplasmic protein synthesis. A majority of the (35)S incorporation by crabgrass mesophyll cell 70S ribosomes was associated with a pair of membrane-associated polypeptides of molecular weight 32,000 and 34,500; a comparison of fluorograph and stained gel profiles suggests these products resemble the precursor and mature forms of the maize chloroplast 32,000 dalton protein reported by Grebanier et al. (1978 J. Cell Biol. 28:734-746). In contrast, crabgrass bundle sheath cell organelle translation was directed predominantly into a product which co-electrophoresed with the large subunit of ribulose bisphosphate carboxylase.
Time-course of programmed cell death during leaf senescence in Eucommia ulmoides.
Cao, Jing; Jiang, Feng; Sodmergen; Cui, Keming
2003-02-01
Leaves of Eucommia ulmoidesOliv. harvested between April to November were examined for programmed cell death (PCD) during growth and senescence. Leaves developed in April, becoming fully expanded in late May, remaining unchanged until November when they started to dehisce. Falling leaves retained a green color. Our results showed that (1) mesophyll cells gradually reduced their nuclei from September to November, (2) positive TUNEL signals appeared on the nuclei from August, (3) ladder-like DNA fragmentation occurred in September and October, and (4) a 20-kDa Ca(2+)-dependent DNase appeared in these same months. In fallen leaves, intact mesophyll cell nuclei could not be detected, but a few cells around the vascular bundle had nuclei. Therefore, (1) programmed cell death (PCD) of leaf cells occurred in the leaves of E. ulmoides, (2) the progress of mesophyll cell PCD lasted for more than 2 months, and (3) PCD of leaf cells was asynchronous in natural senescing leaves.
Vanacker, Helene; Carver, Tim L.W.; Foyer, Christine H.
2000-01-01
H2O2 production and changes in glutathione, catalase, and peroxidase were followed in whole-leaf extracts from the susceptible (AlgS [Algerian/4* (F14) Man.(S)]; ml-a1 allele) and resistant (AlgR [Algerian/4* (F14) Man.(R)]; Ml-a1 allele) barley (Hordeum vulgare) isolines between 12 and 24 h after inoculation with powdery mildew (Blumeria graminis [DC]. Speer [syn. Erysiphe graminis DC] f.sp hordei Marchal). Localized papilla responses and cell death hypersensitive responses were not observed within the same cell. In hypersensitive response sites, H2O2 accumulation first occurred in the mesophyll underlying the attacked epidermal cell. Subsequently, H2O2 disappeared from the mesophyll and accumulated around attacked epidermal cells. In AlgR, transient glutathione oxidation coincided with H2O2 accumulation in the mesophyll. Subsequently, total foliar glutathione and catalase activities transiently increased in AlgR. These changes, absent from AlgS, preceded inoculation-dependent increases in peroxidase activity that were observed in both AlgR and AlgS at 18 h. An early intercellular signal precedes H2O2, and this elicits anti-oxidant responses in leaves prior to events leading to death of attacked cells. PMID:10938348
Turgeon, R; Hepler, P K
1989-08-01
Dye-coupling studies have been undertaken to determine whether plasmodesmata between intermediary cells (companion cells) and bundle-sheath cells in the minor veins of mature Cucurbita pepo L. leaves are open to passage of low-molecular-weight compounds. The abaxial phloem of these veins was exposed by stripping the lower epidermis of the leaf and removing the spongy-mesophyll cells by abrasion. Lucifer yellow, or 6-carboxyfluorescein, were microinjected into intermediary cells by iontophoresis, and dye location was monitored by fluorescence microscopy. Dye spread from one intermediary cell to another and from intermediary cells to bundle-sheath and mesophyll cells. No movement of microinjected dye occurred in some experiments, probably because plasmodesmata closed in response to cell damage incurred during tissue preparation. Most, but not all, minor veins in tissue prepared for microinjections studies are able to accumulate exogenously supplied [(14)C]sucrose. Plasmolysis studies indicate that the solute content of intermediary cells is much higher than that of bundle-sheath cells. In C. pepo, plasmodesmata may provide a route for the selective phloem loading of export sugars.
Pyke, Kevin
2011-01-01
Methods are described which allow one to observe chloroplasts in mesophyll cells from leaves of Arabidopsis, determine their number per cell, measure their area, and determine a value for chloroplast coverage inside mesophyll cells. Non-green plastids can also be imaged either by using staining, or by exploiting fluorescent proteins targeted to the plastid in non-green parts of the plant, such as the roots, in transgenic Arabidopsis.
Effects of reactive Mn(III)-oxalate complexes on structurally intact plant cell walls
NASA Astrophysics Data System (ADS)
Summering, J. A.; Keiluweit, M.; Goni, M. A.; Nico, P. S.; Kleber, M.
2011-12-01
Lignin components in the in plant litter are commonly assumed to have longer residence times in soil than many other compounds, which are supposedly, more easily degradable. The supposed resistance of lignin compounds to decomposition is generally attributed to the complex chain of biochemical steps required to create footholds in the non-porous structure of ligno-cellulose in cell walls. Interestingly, Mn(III) complexes have shown the ability to degrade ligno-cellulose. Mn(III) chelated by ligands such as oxalate are soluble oxidizers with a high affinity for lignin structures. Here we determined (i) the formation and decay kinetics of the Mn(III)-oxalate complexes in aqueous solution and (ii) the effects that these complexes have on intact ligno-cellulose. UV/vis spectroscopy and iodometric titrations confirmed the transient nature of Mn(III)-oxalate complexes with decay rates being in the order of hours. Zinnia elegans tracheary elements - a model ligno-cellulose substrate - were treated with Mn(III)-oxalate complexes in a newly developed flow-through reactor. Soluble decomposition products released during the treatment were analyzed by GC/MS and the degree of cell integrity was measured by cell counts, pre- and post-treatment counts indicate a decrease in intact Zinnia elegans as a result of Mn(III)-treatment. GC/MS results showed the release of a multitude of solubilized lignin breakdown products from plant cell walls. We conclude that Mn(III)-oxalate complexes have the ability to lyse intact plant cells and solubilize lignin. Lignin decomposition may thus be seen as resource dependent, with Mn(III) a powerful resource that should be abundant in terrestrial characterized by frequent redox fluctuations.
Winter, Klaus; Edwards, Gerald E.; Holtum, Joseph A. M.
1981-01-01
The inducible Crassulacean acid metabolism plant, Mesembryanthemum crystallinum, accumulates malic acid, i.e. equivalent amounts of malate anions and protons in the mesophyll cells at night. Levels of malate and titratable acidity are low in the epidermal tissue and do not change significantly during the day/night cycle. This result is in contrast to a recent report (Bloom 1979 Plant Physiol 64: 919-923) that the synthesis of malic acid during dark CO2 fixation is associated with an equivalent exchange of inorganic cations from epidermal tissue with protons in the mesophyll cells. PMID:16661916
D.H. DeHayes; P.G. Schaberg; G.J. Hawley; C.H. Borer; J.R. Cumming; J.R. Strimbeck
1997-01-01
We examined the pattern of seasonal variation in total foliar calcium (Ca) pools and plasma membrane-associated Ca (mCa) in mesophyll cells of current-year and 1-year-old needles of red spruce (Picea rubens Sarg.) and the relationship between mCa and total foliar Ca on an individual plant and seasonal basis. Foliar samples were collected from...
Balsamo, Ronald A; Bauer, Aaron M; Davis, Stephen D; Rice, Benita M
2003-01-01
Leaf tensile properties were compared between the mesic deciduous tree Prunus serrulata (var. "Kwanzan") and the xeric and sclerophyllous chaparral evergreen shrub Heteromeles arbutifolia (M. Roem). All values for biomechanical parameters for H. arbutifolia were significantly greater than those of P. serrulata. The fracture planes also differed between the two species with P. serrulata fracturing along the secondary veins, while H. arbutifolia most often fractured across the leaf irrespective of the vein or mesophyll position, thus yielding qualitative differences in the stress-strain curves of the two species. Anatomically, P. serrulata exhibits features typical for a deciduous mesophytic leaf such as a thin cuticle, a single layer of palisade mesophyll, isodiametric spongy mesophyll, and extensive reticulation of the laminar veins. Heteromeles arbutifolia leaves, however, are typically two- to three-fold thicker with a 35% higher dry mass/fresh mass ratio. The vascular tissue is restricted to the interface of the palisade and spongy mesophyll near the center of the leaf. Both epidermal layers have a thick cuticle. The palisade mesophyll is tightly packed and two to three layers thick. The spongy mesophyll cells are ameboid in shape and tightly interlinked both to other spongy cells as well as to the overlying palisade layer. We conclude that the qualitative and quantitative biomechanical differences between the leaves of these two species are likely due to a complex interaction of internal architectural arrangement and the physical/chemical differences in the properties of their respective cell walls. These studies illustrate the importance that morphological and anatomical correlates play with mechanical behavior in plant material and ultimately reflect adaptations present in the leaves of chaparral shrubs that are conducive to surviving in arid environments.
Mesophyll cell ultrastructure of wheat leaves etiolated by lead and selenium.
Semenova, Galina A; Fomina, Irina R; Kosobryukhov, Anatoly A; Lyubimov, Valery Yu; Nadezhkina, Ekaterina S; Balakhnina, Tamara I
2017-12-01
The ultrastructure of mesophyll cells was studied in leaves of the Triticum aestivum L. cv. "Trizo" seedlings after two weeks of growth on soil contaminated by Pb and/or Se. The soil treatments: control; (Pb1) 50mgkg -1 ; (Pb2) 100mgkg -1 ; (Se1) 0.4mgkg -1 ; (Se2) 0.8mgkg -1 ; (Pb1+Se1); (Pb1+Se2); (P2+Se1); and (Pb2+Se2) were used. Light and other conditions were optimal for plant growth. The (Se1)-plants showed enhanced growth and biomass production; (Pb1+Se1)-plants did not lag behind the controls, though O 2 evolution decreased; chlorophyll content did not differ statistically in these treatments. Other treatments led to statistically significant growth suppression, chlorophyll content reduction, inhibition of photosynthesis, stress development tested by H 2 O 2 and leaf etiolation at the end of 14-days experiment. The tops of etiolated leaves remained green, while the main leaf parts were visually white. Plastids in mesophyll cells of etiolated parts of leaves were mainly represented by etioplasts and an insignificant amount of degraded chloroplasts. Other cellular organelles remained intact in most mesophyll cells of the plants, except (Pb2+Se2)-plants. Ruptured tonoplast and etioplast envelope, swelled cytoplasm and mitochondria, and electron transparent matrix of gialoplasm were observed in the mesophyll cells at (Pb2+Se2)-treatment, that caused maximal inhibition of plant growth. The results indicate that Pb and Se effects on growth of wheat leaves are likely to target meristem in which the development of proplastids to chloroplasts under the light is determined by chlorophyll biosynthesis. Antagonistic effect of low concentration of Se and Pb in combination may retard etiolation process. Copyright © 2017 Elsevier GmbH. All rights reserved.
Sharkey, T D; Badger, M R
1982-12-01
Several component processes of photosynthesis were measured in osmotically stressed mesophyll cells of Xanthium strumarium L. The ribulose-1,5-bisphosphate regeneration capacity was reduced by water stress. Photophoshorylation was sensitive to water stress but photosynthetic electron transport was unaffected by water potentials down to-40 bar (-4 MPa). The concentrations of several intermediates of the photosynthetic carbon-reduction cycle remained relatively constant and did not indicate that ATP supply was limiting photosynthesis in the water-stressed cells.
Lu, Chungui; Koroleva, Olga A; Farrar, John F; Gallagher, Joe; Pollock, Chris J; Tomos, A Deri
2002-11-01
We describe a highly efficient two-step single-cell reverse transcriptase-polymerase chain reaction technique for analyzing gene expression at the single-cell level. Good reproducibility and a linear dose response indicated that the technique has high specificity and sensitivity for detection and quantification of rare RNA. Actin could be used as an internal standard. The expression of message for Rubisco small subunit (RbcS), chlorophyll a/b-binding protein (Cab), sucrose (Suc):fructan-6-fructosyl transferase (6-SFT), and Actin were measured in individual photosynthetic cells of the barley (Hordeum vulgare) leaf. Only Actin was found in the non-photosynthetic epidermal cells. Cab, RbcS, and 6-SFT genes were expressed at a low level in mesophyll and parenchymatous bundle sheath (BS) cells when sampled from plants held in dark for 40 h. Expression increased considerably after illumination. The amount of 6-SFT, Cab, and RbcS transcript increased more in mesophyll cells than in the parenchymatous BS cells. The difference may be caused by different chloroplast structure and posttranscriptional control in mesophyll and BS cells. When similar single-cell samples were assayed for Suc, glucose, and fructan, there was high correlation between 6-SFT gene expression and Suc and glucose concentrations. This is consistent with Suc concentration being the trigger for transcription. Together with earlier demonstrations that the mesophyll cells have a higher sugar threshold for fructan polymerization, our data may indicate separate control of transcription and enzyme activity. Values for the sugar concentrations of the individual cell types are reported.
Takeda, Ryuta; Petrov, Anton I.; Leontis, Neocles B.; Ding, Biao
2011-01-01
Cell-to-cell trafficking of RNA is an emerging biological principle that integrates systemic gene regulation, viral infection, antiviral response, and cell-to-cell communication. A key mechanistic question is how an RNA is specifically selected for trafficking from one type of cell into another type. Here, we report the identification of an RNA motif in Potato spindle tuber viroid (PSTVd) required for trafficking from palisade mesophyll to spongy mesophyll in Nicotiana benthamiana leaves. This motif, called loop 6, has the sequence 5′-CGA-3′...5′-GAC-3′ flanked on both sides by cis Watson-Crick G/C and G/U wobble base pairs. We present a three-dimensional (3D) structural model of loop 6 that specifies all non-Watson-Crick base pair interactions, derived by isostericity-based sequence comparisons with 3D RNA motifs from the RNA x-ray crystal structure database. The model is supported by available chemical modification patterns, natural sequence conservation/variations in PSTVd isolates and related species, and functional characterization of all possible mutants for each of the loop 6 base pairs. Our findings and approaches have broad implications for studying the 3D RNA structural motifs mediating trafficking of diverse RNA species across specific cellular boundaries and for studying the structure-function relationships of RNA motifs in other biological processes. PMID:21258006
Takeda, Ryuta; Petrov, Anton I; Leontis, Neocles B; Ding, Biao
2011-01-01
Cell-to-cell trafficking of RNA is an emerging biological principle that integrates systemic gene regulation, viral infection, antiviral response, and cell-to-cell communication. A key mechanistic question is how an RNA is specifically selected for trafficking from one type of cell into another type. Here, we report the identification of an RNA motif in Potato spindle tuber viroid (PSTVd) required for trafficking from palisade mesophyll to spongy mesophyll in Nicotiana benthamiana leaves. This motif, called loop 6, has the sequence 5'-CGA-3'...5'-GAC-3' flanked on both sides by cis Watson-Crick G/C and G/U wobble base pairs. We present a three-dimensional (3D) structural model of loop 6 that specifies all non-Watson-Crick base pair interactions, derived by isostericity-based sequence comparisons with 3D RNA motifs from the RNA x-ray crystal structure database. The model is supported by available chemical modification patterns, natural sequence conservation/variations in PSTVd isolates and related species, and functional characterization of all possible mutants for each of the loop 6 base pairs. Our findings and approaches have broad implications for studying the 3D RNA structural motifs mediating trafficking of diverse RNA species across specific cellular boundaries and for studying the structure-function relationships of RNA motifs in other biological processes.
Iermak, Ievgeniia; Vink, Jochem; Bader, Arjen N; Wientjes, Emilie; van Amerongen, Herbert
2016-09-01
Two-photon fluorescence lifetime imaging microscopy (FLIM) was used to analyse the distribution and properties of Photosystem I (PSI) and Photosystem II (PSII) in palisade and spongy chloroplasts of leaves from the C3 plant Arabidopsis thaliana and the C4 plant Miscanthus x giganteus. This was achieved by separating the time-resolved fluorescence of PSI and PSII in the leaf. It is found that the PSII antenna size is larger on the abaxial side of A. thaliana leaves, presumably because chloroplasts in the spongy mesophyll are "shaded" by the palisade cells. The number of chlorophylls in PSI on the adaxial side of the A. thaliana leaf is slightly higher. The C4 plant M. x giganteus contains both mesophyll and bundle sheath cells, which have a different PSI/PSII ratio. It is shown that the time-resolved fluorescence of bundle sheath and mesophyll cells can be analysed separately. The relative number of chlorophylls, which belong to PSI (as compared to PSII) in the bundle sheath cells is at least 2.5 times higher than in mesophyll cells. FLIM is thus demonstrated to be a useful technique to study the PSI/PSII ratio and PSII antenna size in well-defined regions of plant leaves without having to isolate pigment-protein complexes. Copyright © 2016 Elsevier B.V. All rights reserved.
Smith-Moritz, Andreia M.; Hao, Zhao; Fernández-Niño, Susana G.; Fangel, Jonatan U.; Verhertbruggen, Yves; Holman, Hoi-Ying N.; Willats, William G. T.; Ronald, Pamela C.; Scheller, Henrik V.; Heazlewood, Joshua L.; Vega-Sánchez, Miguel E.
2015-01-01
The CELLULOSE SYNTHASE-LIKE F6 (CslF6) gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG), a cell wall polysaccharide that is hypothesized to be tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to test the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of 3 day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared (FTM-IR) Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell walls of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion. PMID:26347754
Smith-Moritz, Andreia M.; Hao, Zhao; Fernández-Nino, Susana G.; ...
2015-08-18
The CELLULOSE SYNTHASE-LIKE F6 (CslF6) gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG), a cell wall polysaccharide that is hypothesized to be tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to testmore » the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of 3 day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared (FTM-IR) Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell walls of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Finally, taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion.« less
Gautier, Hélène; Vavasseur, Alain; Gans, Pierre; Lascève, Gérard
1991-01-01
A mass spectrometric method combining 16O/18O and 12C/13C isotopes was used to quantify the unidirectional fluxes of O2 and CO2 during a dark to light transition for guard cell protoplasts and mesophyll cell protoplasts of Commelina communis L. In darkness, O2 uptake and CO2 evolution were similar on a protein basis. Under light, guard cell protoplasts evolved O2 (61 micromoles of O2 per milligram of chlorophyll per hour) almost at the same rate as mesophyll cell protoplasts (73 micromoles of O2 per milligram of chlorophyll per hour). However, carbon assimilation was totally different. In contrast with mesophyll cell protoplasts, guard cell protoplasts were able to fix CO2 in darkness at a rate of 27 micromoles of CO2 per milligram of chlorophyll per hour, which was increased by 50% in light. At the onset of light, a delay observed for guard cell protoplasts between O2 evolution and CO2 fixation and a time lag before the rate of saturation suggested a carbon metabolism based on phosphoenolpyruvate carboxylase activity. Under light, CO2 evolution by guard cell protoplasts was sharply decreased (37%), while O2 uptake was slowly inhibited (14%). A control of mitochondrial activity by guard cell chloroplasts under light via redox equivalents and ATP transfer in the cytosol is discussed. From this study on protoplasts, we conclude that the energy produced at the chloroplast level under light is not totally used for CO2 assimilation and may be dissipated for other purposes such as ion uptake. PMID:16668030
Huang, S S; Kirchoff, B K; Liao, J P
2013-02-01
The effects of heat shock (HS) on the ultrastructure and calcium distribution of Lavandula pinnata secretory trichomes are examined using transmission electron microscopy and potassium antimonate precipitation. After 48-h HS at 40°C, plastids become distorted and lack stroma and osmiophilic deposits, the cristae of the mitochondria become indistinct, the endoplasmic reticulum acquires a chain-like appearance with ribosomes prominently attached to the lamellae, and the plasma and organelle membranes become distorted. Heat shock is associated with a decrease in calcium precipitates in the trichomes, while the number of precipitates increases in the mesophyll cells. Prolonged exposure to elevated calcium levels may be toxic to the mesophyll cells, while the lack of calcium in the glands cell may deprive them of the normal protective advantages of elevated calcium levels. The inequality in calcium distribution may result not only from uptake from the transpiration stream, but also from redistribution of calcium from the trichomes to the mesophyll cells.
Peguero-Pina, José Javier; Gil-Pelegrín, Eustaquio; Morales, Fermín
2009-01-01
The existence of major vertical gradients within the leaf is often overlooked in studies of photosynthesis. These gradients, which involve light heterogeneity, cell composition, and CO(2) concentration across the mesophyll, can generate differences in the maximum potential PSII efficiency (F (V)/F (M) or F (V)/F (P)) of the different cell layers. Evidence is presented for a step gradient of F (V)/F (P) ratios across the mesophyll, from the adaxial (palisade parenchyma, optimal efficiencies) to the abaxial (spongy parenchyma, sub-optimal efficiencies) side of Quercus coccifera leaves. For this purpose, light sources with different wavelengths that penetrate more or less deep within the leaf were employed, and measurements from the adaxial and abaxial sides were performed. To our knowledge, this is the first report where a low photosynthetic performance in the abaxial side of leaves is accompanied by impaired F (V)/F (P) ratios. This low photosynthetic efficiency of the abaxial side could be related to the occurrence of bundle sheath extensions, which facilitates the penetration of high light intensities deep within the mesophyll. Also, leaf morphology (twisted in shape) and orientation (with a marked angle from the horizontal plane) imply direct sunlight illumination of the abaxial side. The existence of cell layers within leaves with different photosynthetic efficiencies makes appropriate the evaluation of how light penetrates within the mesophyll when using Chl fluorescence or gas exchange techniques that use different wavelengths for excitation and/or for driving photosynthesis.
Dubald, M; Barakate, A; Mandaron, P; Mache, R
1993-11-01
Exopolygalacturonase (exoPG) is a pectin-degrading enzyme abundant in maize pollen. Using immunochemistry and in situ hybridization it is shown that in addition to its presence in pollen, exoPG is also present in sporophytic tissues, such as the tapetum and mesophyll cells. The enzyme is located in the cytoplasm of pollen and of some mesophyll cells. In other mesophyll cells, the tapetum and the pollen tube, exoPG is located in the cell wall. The measurement of enzyme activity shows that exoPG is ubiquitous in the vegetative organs. These results suggest a general function for exoPG in cell wall edification or degradation. ExoPG is encoded by a closely related multigene family. The regulation of the expression of one of the exoPG genes was analyzed in transgenic tobacco. Reporter GUS activity was detected in anthers, seeds and stems but not in leaves or roots of transgenic plants. This strongly suggests that the ubiquitous presence of exoPG in maize is the result of the expression of different exoPG genes.
Chloroplast behaviour and interactions with other organelles in Arabidopsis thaliana pavement cells.
Barton, Kiah A; Wozny, Michael R; Mathur, Neeta; Jaipargas, Erica-Ashley; Mathur, Jaideep
2018-01-29
Chloroplasts are a characteristic feature of green plants. Mesophyll cells possess the majority of chloroplasts and it is widely believed that, with the exception of guard cells, the epidermal layer in most higher plants does not contain chloroplasts. However, recent observations on Arabidopsis thaliana have shown a population of chloroplasts in pavement cells that are smaller than mesophyll chloroplasts and have a high stroma to grana ratio. Here, using stable transgenic lines expressing fluorescent proteins targeted to the plastid stroma, plasma membrane, endoplasmic reticulum, tonoplast, nucleus, mitochondria, peroxisomes, F-actin and microtubules, we characterize the spatiotemporal relationships between the pavement cell chloroplasts (PCCs) and their subcellular environment. Observations on the PCCs suggest a source-sink relationship between the epidermal and the mesophyll layers, and experiments with the Arabidopsis mutants glabra2 ( gl2 ) and immutans ( im ), which show altered epidermal plastid development, underscored their developmental plasticity. Our findings lay down the foundation for further investigations aimed at understanding the precise role and contributions of PCCs in plant interactions with the environment. © 2018. Published by The Company of Biologists Ltd.
Ouyang, Wenjing; Struik, Paul C; Yin, Xinyou; Yang, Jianchang
2017-11-02
Increasing leaf transpiration efficiency (TE) may provide leads for growing rice like dryland cereals such as wheat (Triticum aestivum). To explore avenues for improving TE in rice, variations in stomatal conductance (gs) and mesophyll conductance (gm) and their anatomical determinants were evaluated in two cultivars from each of lowland, aerobic, and upland groups of Oryza sativa, one cultivar of O. glaberrima, and two cultivars of T. aestivum, under three water regimes. The TE of upland rice, O. glaberrima, and wheat was more responsive to the gm/gs ratio than that of lowland and aerobic rice. Overall, the explanatory power of the particular anatomical trait varied among species. Low stomatal density mostly explained the low gs in drought-tolerant rice, whereas rice genotypes with smaller stomata generally responded more strongly to drought. Compared with rice, wheat had a higher gm, which was associated with thicker mesophyll tissue, mesophyll and chloroplasts more exposed to intercellular spaces, and thinner cell walls. Upland rice, O. glaberrima, and wheat cultivars minimized the decrease in gm under drought by maintaining high ratios of chloroplasts to exposed mesophyll cell walls. Rice TE could be improved by increasing the gm/gs ratio via modifying anatomical traits. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Sade, Nir; Shatil-Cohen, Arava; Attia, Ziv; Maurel, Christophe; Boursiac, Yann; Kelly, Gilor; Granot, David; Yaaran, Adi; Lerner, Stephen; Moshelion, Menachem
2014-11-01
Our understanding of the cellular role of aquaporins (AQPs) in the regulation of whole-plant hydraulics, in general, and extravascular, radial hydraulic conductance in leaves (K(leaf)), in particular, is still fairly limited. We hypothesized that the AQPs of the vascular bundle sheath (BS) cells regulate K(leaf). To examine this hypothesis, AQP genes were silenced using artificial microRNAs that were expressed constitutively or specifically targeted to the BS. MicroRNA sequences were designed to target all five AQP genes from the PLASMA MEMBRANE-INTRINSIC PROTEIN1 (PIP1) subfamily. Our results show that the constitutively silenced PIP1 (35S promoter) plants had decreased PIP1 transcript and protein levels and decreased mesophyll and BS osmotic water permeability (P(f)), mesophyll conductance of CO2, photosynthesis, K(leaf), transpiration, and shoot biomass. Plants in which the PIP1 subfamily was silenced only in the BS (SCARECROW:microRNA plants) exhibited decreased mesophyll and BS Pf and decreased K(leaf) but no decreases in the rest of the parameters listed above, with the net result of increased shoot biomass. We excluded the possibility of SCARECROW promoter activity in the mesophyll. Hence, the fact that SCARECROW:microRNA mesophyll exhibited reduced P(f), but not reduced mesophyll conductance of CO2, suggests that the BS-mesophyll hydraulic continuum acts as a feed-forward control signal. The role of AQPs in the hierarchy of the hydraulic signal pathway controlling leaf water status under normal and limited-water conditions is discussed. © 2014 American Society of Plant Biologists. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Hamim, Hamim; Banon, Sri; Dorly, Dorly
2016-01-01
The experiment aimed to analyse the different response of C3 (Oryza sativa L.) and C4 (Echinochloa crusgalli L.) species to drought stress based on physiological and anatomical properties. Seeds of rice (Oryza sativa) and Echinochloa (Echinochloa crusgalli) were grown in 15 cm (D) pot for 6 weeks under well-watered conditions. After 6 weeks the plants were divided into two groups, (1) well-watered which were watered daily, and (2) drought stress which were withheld from watering for 6 days. After 6 days of drought, the plants were then re-watered to analyse plant recovery. During drought period, the plants were analysed for growth, leaf relative water content (RWC), photosynthesis, and leaf anatomy. Drought stress significantly reduced leaf RWC of both species, but the reduction was bigger in rice than in Echinochloa. The maximum efficiency of photosynthesis (Fv/Fm) was decrease significantly in response to drought stress by about 48.04% in rice, while it was only 34.40% in Echinochloa. Anatomical analysis showed drought treatment tended to reduce leaf thickness in the area of bulliform cell, major- as well as intervein and xylem diameter, more in Echinochloa than in rice, suggesting that the decrease of vein and xylem diameter is among the anatomical parameters that is important to overcome from drought stress in Echinochloa. The number of chloroplast in the mesophyll cell and bundle sheath cell (BSC) was different between these two species, where in Echinochloa chloroplast was found in both mesophyll as well as BSC, while in rice it was only found in mesophyll cell, confirmed that Echinochloa is a C4 and rice is a C3 species. Interestingly, in Echinochloa, the number of chloroplast was significantly increased due to drought stress in BSC, but not in mesophyll cell. The number of starch granules also dramatically increased in response to drought in the mesophyll cells of rice and Echinochloa, and in the bundle sheath cell of Echinochloa which indicate that C3 cycle may be occurred in C4 species, at least in Echinochloa, especially during drought stress.
Pyke, K; Zubko, M K; Day, A
2000-10-01
Spectinomycin, an inhibitor of plastid protein synthesis, can be used to mark specific cell layers in the shoot meristem of Brassica napus. Pale yellow-green (YG) plants resulting from spectinomycin-treatment can be propagated indefinitely in vitro. Microscopic examination showed that YG-plants result from inactivation of plastids in the L2 and L3 layers and are composed of a pale green epidermis covering a white mesophyll layer. Epidermal cells of YG and normal green plants are similar and contain 10-20 small pale green plastids. YG plants are equivalent to periclinal chimeras with the important distinction that there is no genotypic difference between the white and green cell layers. Periclinal divisions of epidermal cells take place at all stages of leaf development to produce invaginations of green mesophyll located in sectors of widely varying sizes. A periclinal division rate of 1 in 3000-4000 anticlinal divisions for the adaxial epidermis, was 2-3-fold higher than that estimated for the abaxial epidermis. Analysis of white and green mesophyll showed that chloroplasts are essential for palisade cell differentiation and this requirement is cell-autonomous. Stable marking of cell lineages with spectinomycin is simple, rapid and reveals the requirement for functional plastids in cellular differentiation.
Fuchs, R; Haas, R; Wrage, K; Heinz, E
1981-08-01
Mitochondria were isolated from oat primary leaves via mesophyll protoplasts and subjected to phospholipid analysis. In mesophyll cells mitochondria account for only small proportions of cellular phospholipids (in the order of 5%) and proteins (in the order of 2%). Contamination by lipids from other membranes was insignificant as indicated by the absence or very low levels of chlorophyll, galactolipids and steryl glycosides. The absence of 3-trans-hexadecenoic acid in phosphatidylglycerol from mitochondria of green cells serves an an additional criterion of purity. The phospholipid mixture extracted from these mitochondria resembles phospholipids in mitochondria from non-green tissues regarding composition as well as fatty acid profiles. Therefore, mitochondria maintain a rather constant lipid profile and in contrast to plastids do not respond at this level to differences in the physiological status of their housing cell. Palmitic acid in mitochondrial phosphatidylcholine and phosphatidylethanolamine is primarily localized at the C-1 position of the glycerol moiety. Two enzymatic activities so far not described in mitochondria, formation of acylgalactosyl diacylglycerol and hydrolysis of acyl-CoA, were found in the purified mitochondrial fraction.
Kadohama, Noriaki; Goh, Tatsuaki; Ohnishi, Miwa; Fukaki, Hidehiro; Mimura, Tetsuro; Suzuki, Yoshihiro
2013-01-01
It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. 'Iceberg') and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury.
Kadohama, Noriaki; Goh, Tatsuaki; Ohnishi, Miwa; Fukaki, Hidehiro; Mimura, Tetsuro; Suzuki, Yoshihiro
2013-01-01
It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. ‘Iceberg’) and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury. PMID:23451194
Veggie: Space Vegetables for the International Space Station and Beyond
NASA Technical Reports Server (NTRS)
Massa, Gioia D.
2016-01-01
The Veggie vegetable production system was launched to the International Space Station (ISS) in 2014. Veggie was designed by ORBITEC to be a compact, low mass, low power vegetable production system for astronaut crews. Veggie consists of a light cap containing red, blue, and green LEDs, an extensible transparent bellows, and a baseplate with a root mat reservoir. Seeds are planted in plant pillows, small growing bags that interface with the reservoir. The Veggie technology validation test, VEG-01, was initiated with the first test crop of 'Outredgeous' red romaine lettuce. Prior to flight, lettuce seeds were sanitized and planted in a substrate of arcillite (baked ceramic) mixed with controlled release fertilizer. Upon initiation, astronauts open the packaged plant pillows, install them in the Veggie hardware, and prime the system with water. Operations include plant thinning, watering, and photography. Plants were grown on the ISS for 33 days, harvested, and returned frozen to Earth for analysis. Ground controls were conducted at Kennedy Space Center in controlled environment chambers reproducing ISS conditions of temperature, relative humidity, and CO2. Returned plant samples were analyzed for microbial food safety and chemistry including elements, antioxidants, anthocyanins and phenolics. In addition the entire plant microbiome was sequenced, and returned plant pillows were analyzed via x-ray tomography. Food safety analyses allowed us to gain approvals for future consumption of lettuce by the flight surgeons and the payload safety office. A second crop of lettuce was grown in 2015, and the crew consumed half the produce, with the remainder frozen for later analysis. This growth test was followed by testing of a new crop in Veggie, zinnias. Zinnias were grown to test a longer duration flowering crop in preparation for tests of tomatoes and other fruiting crops in the future. Zinnias were harvested in February. Samples from the second harvest of lettuce and the zinnia harvest are frozen on the ISS and will return with the next cargo return flight. Some challenges occurred in all tests, especially in the area of watering, with plants receiving insufficient or excess water leading to stressed growth. Zinnia plants were also challenged with fungal growth. Initial tests with Veggie have given us great insight into future crop production scenarios as we work to develop regular supplemental salad crop production on ISS and larger food production systems for our journey to Mars. Funding for this research comes from NASA's Space Biology Program.
Dow, Graham J; Berry, Joseph A; Bergmann, Dominique C
2017-10-01
Stomata are simultaneously tasked with permitting the uptake of carbon dioxide for photosynthesis while limiting water loss from the plant. This process is mainly regulated by guard cell control of the stomatal aperture, but recent advancements have highlighted the importance of several genes that control stomatal development. Using targeted genetic manipulations of the stomatal lineage and a combination of gas exchange and microscopy techniques, we show that changes in stomatal development of the epidermal layer lead to coupled changes in the underlying mesophyll tissues. This coordinated response tends to match leaf photosynthetic potential (V cmax ) with gas-exchange capacity (g smax ), and hence the uptake of carbon dioxide for water lost. We found that different genetic regulators systematically altered tissue coordination in separate ways: the transcription factor SPEECHLESS (SPCH) primarily affected leaf size and thickness, whereas peptides in the EPIDERMAL PATTERNING FACTOR (EPF) family altered cell density in the mesophyll. It was also determined that interlayer coordination required the cell-surface receptor TOO MANY MOUTHS (TMM). These results demonstrate that stomata-specific regulators can alter mesophyll properties, which provides insight into how molecular pathways can organize leaf tissues to coordinate gas exchange and suggests new strategies for improving plant water-use efficiency. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
The coordination of ploidy and cell size differs between cell layers in leaves
Katagiri, Yohei; Hasegawa, Junko; Fujikura, Ushio; Hoshino, Rina; Matsunaga, Sachihiro; Tsukaya, Hirokazu
2016-01-01
Growth and developmental processes are occasionally accompanied by multiple rounds of DNA replication, known as endoreduplication. Coordination between endoreduplication and cell size regulation often plays a crucial role in proper organogenesis and cell differentiation. Here, we report that the level of correlation between ploidy and cell volume is different in the outer and inner cell layers of leaves of Arabidopsis thaliana using a novel imaging technique. Although there is a well-known, strong correlation between ploidy and cell volume in pavement cells of the epidermis, this correlation was extremely weak in palisade mesophyll cells. Induction of epidermis cell identity based on the expression of the homeobox gene ATML1 in mesophyll cells enhanced the level of correlation between ploidy and cell volume to near that of wild-type epidermal cells. We therefore propose that the correlation between ploidy and cell volume is regulated by cell identity. PMID:26903507
Coble, Adam P; Cavaleri, Molly A
2017-10-01
A key trait used in canopy and ecosystem function modeling, leaf mass per area (LMA), is influenced by changes in both leaf thickness and leaf density (LMA = Thickness × Density). In tall trees, LMA is understood to increase with height through two primary mechanisms: (i) increasing palisade layer thickness (and thus leaf thickness) in response to light and/or (ii) reduced cell expansion and intercellular air space in response to hydrostatic constraints, leading to increased leaf density. Our objective was to investigate within-canopy gradients in leaf anatomical traits in order to understand environmental factors that influence leaf morphology in a sugar maple (Acer saccharum Marshall) forest canopy. We teased apart the effects of light and height on anatomical traits by sampling at exposed and closed canopies that had different light conditions at similar heights. As expected, palisade layer thickness responded strongly to cumulative light exposure. Mesophyll porosity, however, was weakly and negatively correlated with light and height (i.e., hydrostatic gradients). Reduced mesophyll porosity was not likely caused by limitations on cell expansion; in fact, epidermal cell width increased with height. Palisade layer thickness was better related to LMA, leaf density and leaf thickness than was mesophyll porosity. Vein diameter and fraction of vascular tissue also increased with height and LMA, density and thickness, revealing that greater investment in vascular and support tissue may be a third mechanism for increased LMA with height. Overall, decreasing mesophyll porosity with height was likely due to palisade cells expanding into the available air space and also greater investments in vascular and support tissue, rather than a reduction of cell expansion due to hydrostatic constraints. Our results provide evidence that light influences both palisade layer thickness and mesophyll porosity and indicate that hydrostatic gradients influence leaf vascular and support tissues in mature Acer saccharum trees. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Role of Reactive Mn Complexes in a Litter Decomposition Model System
NASA Astrophysics Data System (ADS)
Nico, P. S.; Keiluweit, M.; Bougoure, J.; Kleber, M.; Summering, J. A.; Maynard, J. J.; Johnson, M.; Pett-Ridge, J.
2012-12-01
The search for controls on litter decomposition rates and pathways has yet to return definitive characteristics that are both statistically robust and can be understood as part of a mechanistic or numerical model. Herein we focus on Mn, an element present in all litter that is likely an active chemical agent of decomposition. Berg and co-workers (2010) found a strong correlation between Mn concentration in litter and the magnitude of litter degradation in boreal forests, suggesting that litter decomposition proceeds more efficiently in the presence of Mn. Although there is much circumstantial evidence for the potential role of Mn in lignin decomposition, few reports exist on mechanistic details of this process. For the current work, we are guided by the hypothesis that the dependence of decomposition on Mn is due to Mn (III)-oxalate complexes act as a 'pretreatment' for structurally intact ligno-carbohydrate complexes (LCC) in fresh plant cell walls (e.g. in litter, root and wood). Manganese (III)-ligand complexes such as Mn (III)-oxalate are known to be potent oxidizers of many different organic and inorganic compounds. In the litter system, the unique property of these complexes may be that they are much smaller than exo-enzymes and therefore more easily able to penetrate LCC complexes in plant cell walls. By acting as 'diffusible oxidizers' and reacting with the organic matrix of the cell wall, these compounds can increase the porosity of fresh litter thereby facilitating access of more specific lignin- and cellulose decomposing enzymes. This possibility was investigated by reacting cell walls of single Zinnia elegans tracheary elements with Mn (III)-oxalate complexes in a continuous flow reactor. The uniformity of these individual plant cells allowed us to examine Mn (III)-induced changes in cell wall chemistry and ultrastructure on the micro-scale using fluorescence and electron microscopy as well as IR and X-ray spectromicroscopy. This presentation will discuss the chemical changes induced by reaction of Mn (III)-complexes with the Zinnia cells, the impact of such reactions on cell integrity, and potential implications for soil C cycling.
The Evolutionary Basis of Naturally Diverse Rice Leaves Anatomy
Chatterjee, Jolly; Dionora, Jacqueline; Elmido-Mabilangan, Abigail; Wanchana, Samart; Thakur, Vivek; Bandyopadhyay, Anindya; Brar, Darshan S.; Quick, William Paul
2016-01-01
Rice contains genetically and ecologically diverse wild and cultivated species that show a wide variation in plant and leaf architecture. A systematic characterization of leaf anatomy is essential in understanding the dynamics behind such diversity. Therefore, leaf anatomies of 24 Oryza species spanning 11 genetically diverse rice genomes were studied in both lateral and longitudinal directions and possible evolutionary trends were examined. A significant inter-species variation in mesophyll cells, bundle sheath cells, and vein structure was observed, suggesting precise genetic control over these major rice leaf anatomical traits. Cellular dimensions, measured along three growth axes, were further combined proportionately to construct three-dimensional (3D) leaf anatomy models to compare the relative size and orientation of the major cell types present in a fully expanded leaf. A reconstruction of the ancestral leaf state revealed that the following are the major characteristics of recently evolved rice species: fewer veins, larger and laterally elongated mesophyll cells, with an increase in total mesophyll area and in bundle sheath cell number. A huge diversity in leaf anatomy within wild and domesticated rice species has been portrayed in this study, on an evolutionary context, predicting a two-pronged evolutionary pathway leading to the ‘sativa leaf type’ that we see today in domesticated species. PMID:27792743
The Evolutionary Basis of Naturally Diverse Rice Leaves Anatomy.
Chatterjee, Jolly; Dionora, Jacqueline; Elmido-Mabilangan, Abigail; Wanchana, Samart; Thakur, Vivek; Bandyopadhyay, Anindya; Brar, Darshan S; Quick, William Paul
2016-01-01
Rice contains genetically and ecologically diverse wild and cultivated species that show a wide variation in plant and leaf architecture. A systematic characterization of leaf anatomy is essential in understanding the dynamics behind such diversity. Therefore, leaf anatomies of 24 Oryza species spanning 11 genetically diverse rice genomes were studied in both lateral and longitudinal directions and possible evolutionary trends were examined. A significant inter-species variation in mesophyll cells, bundle sheath cells, and vein structure was observed, suggesting precise genetic control over these major rice leaf anatomical traits. Cellular dimensions, measured along three growth axes, were further combined proportionately to construct three-dimensional (3D) leaf anatomy models to compare the relative size and orientation of the major cell types present in a fully expanded leaf. A reconstruction of the ancestral leaf state revealed that the following are the major characteristics of recently evolved rice species: fewer veins, larger and laterally elongated mesophyll cells, with an increase in total mesophyll area and in bundle sheath cell number. A huge diversity in leaf anatomy within wild and domesticated rice species has been portrayed in this study, on an evolutionary context, predicting a two-pronged evolutionary pathway leading to the 'sativa leaf type' that we see today in domesticated species.
LHOTÁKOVÁ, Z; ALBRECHTOVÁ, J; JANÁČEK, J; KUBÍNOVÁ, L
2008-01-01
The anatomical structure of mesophyll tissue in the leaf is tightly connected with many physiological processes in plants. One of the most important mesophyll parameters related to photosynthesis is the internal leaf surface area, i.e. the surface area of mesophyll cell walls exposed to intercellular spaces. An efficient design-based stereological method can be applied for estimation of this parameter, using software-randomized virtual fakir test probes in stacks of optical sections acquired by a confocal microscope within thick physical free-hand sections (i.e. acquired using a hand microtome), as we have shown in the case of fresh Norway spruce needles recently. However, for wider practical use in plant ecophysiology, a suitable form of sample storage and other possible technical constraints of this methodology need to be checked. We tested the effect of freezing conifer needles on their anatomical structure as well as the effect of possible deformations due to the cutting of unembedded material by a hand microtome, which can result in distortions of cutting surfaces. In the present study we found a higher proportion of intercellular spaces in mesophyll in regions near to the surface of a physical section, which means that the measurements should be restricted only to the middle region of the optical section series. On the other hand, the proportion of intercellular spaces in mesophyll as well as the internal needle surface density in mesophyll did not show significant difference between fresh and frozen needles; therefore, we conclude that freezing represents a suitable form of storage of sampled material for proposed stereological evaluation. PMID:19017201
Lhotáková, Z; Albrechtová, J; Janácek, J; Kubínová, L
2008-10-01
The anatomical structure of mesophyll tissue in the leaf is tightly connected with many physiological processes in plants. One of the most important mesophyll parameters related to photosynthesis is the internal leaf surface area, i.e. the surface area of mesophyll cell walls exposed to intercellular spaces. An efficient design-based stereological method can be applied for estimation of this parameter, using software-randomized virtual fakir test probes in stacks of optical sections acquired by a confocal microscope within thick physical free-hand sections (i.e. acquired using a hand microtome), as we have shown in the case of fresh Norway spruce needles recently. However, for wider practical use in plant ecophysiology, a suitable form of sample storage and other possible technical constraints of this methodology need to be checked. We tested the effect of freezing conifer needles on their anatomical structure as well as the effect of possible deformations due to the cutting of unembedded material by a hand microtome, which can result in distortions of cutting surfaces. In the present study we found a higher proportion of intercellular spaces in mesophyll in regions near to the surface of a physical section, which means that the measurements should be restricted only to the middle region of the optical section series. On the other hand, the proportion of intercellular spaces in mesophyll as well as the internal needle surface density in mesophyll did not show significant difference between fresh and frozen needles; therefore, we conclude that freezing represents a suitable form of storage of sampled material for proposed stereological evaluation.
De Diego, Nuria; Muñoz, Francisco J.; Baroja-Fernández, Edurne; Li, Jun; Ricarte-Bermejo, Adriana; Baslam, Marouane; Aranjuelo, Iker; Almagro, Goizeder; Humplík, Jan F.; Novák, Ondřej; Spíchal, Lukáš; Doležal, Karel; Pozueta-Romero, Javier
2015-01-01
Phosphoglucose isomerase (PGI) catalyzes the reversible isomerization of glucose-6-phosphate and fructose-6-phosphate. It is involved in glycolysis and in the regeneration of glucose-6-P molecules in the oxidative pentose phosphate pathway (OPPP). In chloroplasts of illuminated mesophyll cells PGI also connects the Calvin-Benson cycle with the starch biosynthetic pathway. In this work we isolated pgi1-3, a mutant totally lacking pPGI activity as a consequence of aberrant intron splicing of the pPGI encoding gene, PGI1. Starch content in pgi1-3 source leaves was ca. 10-15% of that of wild type (WT) leaves, which was similar to that of leaves of pgi1-2, a T-DNA insertion pPGI null mutant. Starch deficiency of pgi1 leaves could be reverted by the introduction of a sex1 null mutation impeding β-amylolytic starch breakdown. Although previous studies showed that starch granules of pgi1-2 leaves are restricted to both bundle sheath cells adjacent to the mesophyll and stomata guard cells, microscopy analyses carried out in this work revealed the presence of starch granules in the chloroplasts of pgi1-2 and pgi1-3 mesophyll cells. RT-PCR analyses showed high expression levels of plastidic and extra-plastidic β-amylase encoding genes in pgi1 leaves, which was accompanied by increased β-amylase activity. Both pgi1-2 and pgi1-3 mutants displayed slow growth and reduced photosynthetic capacity phenotypes even under continuous light conditions. Metabolic analyses revealed that the adenylate energy charge and the NAD(P)H/NAD(P) ratios in pgi1 leaves were lower than those of WT leaves. These analyses also revealed that the content of plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP)-pathway derived cytokinins (CKs) in pgi1 leaves were exceedingly lower than in WT leaves. Noteworthy, exogenous application of CKs largely reverted the low starch content phenotype of pgi1 leaves. The overall data show that pPGI is an important determinant of photosynthesis, energy status, growth and starch accumulation in mesophyll cells likely as a consequence of its involvement in the production of OPPP/glycolysis intermediates necessary for the synthesis of plastidic MEP-pathway derived hormones such as CKs. PMID:25811607
Vacuolar Localization of Endoproteinases EP(1) and EP(2) in Barley Mesophyll Cells.
Thayer, S S; Huffaker, R C
1984-05-01
The localization of two previously characterized endoproteinases (EP(1) and EP(2)) that comprise more than 95% of the protease activity in primary Hordeum vulgare L. var Numar leaves was determined. Intact vacuoles released from washed mesophyll protoplasts by gentle osmotic shock and increase in pH, were purified by flotation through a four-step Ficoll gradient. These vacuoles contained endoproteinases that rapidly degraded purified barley ribulose-1,5-bisphosphate carboxylase (RuBPCase) substrate. Breakdown products and extent of digestion of RuBPCase were determined using 12% polyacrylamide-sodium dodecyl sulfate gels. Coomassie brilliant blue- or silver-stained gels were scanned, and the peaks were integrated to provide quantitative information. The characteristics of the vacuolar endoproteinases (e.g. sensitivity to various inhibitors and activators, and the molecular weights of the breakdown products, i.e. peptide maps) closely resembled those of purified EP(1) and partially purified EP(2). It is therefore concluded that EP(1) and EP(2) are localized in the vacuoles of mesophyll cells.
Long, Benedict M; Bahar, Nur H A; Atkin, Owen K
2015-11-01
In intact leaves, mitochondrial populations are highly heterogeneous among contrasting cell types; how such contrasting populations respond to sustained changes in the environment remains, however, unclear. Here, we examined respiratory rates, mitochondrial protein composition and response to growth temperature in photosynthetic (mesophyll) and non-photosynthetic (epidermal) cells from fully expanded leaves of warm-developed (WD) and cold-developed (CD) broad bean (Vicia faba L.). Rates of respiration were significantly higher in mesophyll cell protoplasts (MCPs) than epidermal cell protoplasts (ECPs), with both protoplast types exhibiting capacity for cytochrome and alternative oxidase activity. Compared with ECPs, MCPs contained greater relative quantities of porin, suggesting higher mitochondrial surface area in mesophyll cells. Nevertheless, the relative quantities of respiratory proteins (normalized to porin) were similar in MCPs and ECPs, suggesting that ECPs have lower numbers of mitochondria yet similar protein complement to MCP mitochondria (albeit with lower abundance serine hydroxymethyltransferase). Several mitochondrial proteins (both non-photorespiratory and photorespiratory) exhibited an increased abundance in response to cold in both protoplast types. Based on estimates of individual protoplast respiration rates, combined with leaf cell abundance data, epidermal cells make a small but significant (2%) contribution to overall leaf respiration which increases twofold in the cold. Taken together, our data highlight the heterogeneous nature of mitochondrial populations in leaves, both among contrasting cell types and in how those populations respond to growth temperature. © 2015 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Vasilenko, A.; McDaniel, J. K.; Conger, B. V.
2000-01-01
Somatic embryos initiate and develop directly from single mesophyll cells in in vitro-cultured leaf segments of orchardgrass (Dactylis glomerata L.). Embryogenic cells establish themselves in the predivision stage by formation of thicker cell walls and dense cytoplasm. Electron microscopy observations for embryos ranging from the pre-cell-division stage to 20-cell proembryos confirm previous light microscopy studies showing a single cell origin. They also confirm that the first division is predominantly periclinal and that this division plane is important in establishing embryo polarity and in determining the embryo axis. If the first division is anticlinal or if divisions are in random planes after the first division, divisions may not continue to produce an embryo. This result may produce an embryogenic cell mass, callus formation, or no structure at all. Grant numbers: NAGW-3141, NAG10-0221.
The coordination of ploidy and cell size differs between cell layers in leaves.
Katagiri, Yohei; Hasegawa, Junko; Fujikura, Ushio; Hoshino, Rina; Matsunaga, Sachihiro; Tsukaya, Hirokazu
2016-04-01
Growth and developmental processes are occasionally accompanied by multiple rounds of DNA replication, known as endoreduplication. Coordination between endoreduplication and cell size regulation often plays a crucial role in proper organogenesis and cell differentiation. Here, we report that the level of correlation between ploidy and cell volume is different in the outer and inner cell layers of leaves of Arabidopsis thaliana using a novel imaging technique. Although there is a well-known, strong correlation between ploidy and cell volume in pavement cells of the epidermis, this correlation was extremely weak in palisade mesophyll cells. Induction of epidermis cell identity based on the expression of the homeobox gene ATML1 in mesophyll cells enhanced the level of correlation between ploidy and cell volume to near that of wild-type epidermal cells. We therefore propose that the correlation between ploidy and cell volume is regulated by cell identity. © 2016. Published by The Company of Biologists Ltd.
Yan, Xiaoyuan; Yan, Zongyun; Han, Yuzhen
2017-01-01
The exosome complex plays a central and essential role in RNA metabolism. However, current research on functions of exosome subunit in plants is limited. Here, we used an egg cell-specific promoter-controlled CRISPR/Cas9 system to knock out RRP42 which encodes a core subunit of the Arabidopsis exosome and presented evidence that RRP42 is essential for the development of female gametophytes. Next, we designed three different amiRNAs targeting RRP42 . The rrp42 knock-down mutants mainly displayed variegated and serrated leaves, especially in cauline leaves. The internal anatomy of cauline leaves displayed irregularly shaped palisade cells and a reduced density of mesophyll cells. Interestingly, we detected highly accumulated mRNAs that encode xyloglucan endotransglucosylase/hydrolases (XTHs) and expansins (EXPAs) during later growth stages in rrp42 knock-down mutants. The mRNA decay kinetics analysis for XTH19 , EXPA10 , and EXPA11 revealed that RRP42 had a role in the decay of these mRNAs in the cytoplasm. RRP42 is localized to both the nucleus and cytoplasm, and RRP42 is preferentially expressed in cauline leaves during later growth stages. Altogether, our results demonstrate that RRP42 is essential for the development of female gametophytes and plays an important role in mesophyll cell morphogenesis.
Apoplastic and symplastic phloem loading in Quercus robur and Fraxinus excelsior
Lohaus, Gertrud
2014-01-01
Whereas most of the research on phloem loading is performed on herbaceous plants, less is known about phloem loading strategies in trees. In this study, the phloem loading mechanisms of Quercus robur and Fraxinus excelsior were analysed. The following features were examined: the minor vein structure, the sugar concentrations in phloem sap by the laser–aphid–stylet technique, the distribution of photoassimilates in the mesophyll cells by non-aqueous fractionation, gradients of sugar concentrations and osmotic pressure, and the expression of sucrose transporters. The minor vein configurations of Q. robur and F. excelsior belong to the open type. Quercus robur contained companion cells in the minor veins whereas F. excelsior showed intermediary cells in addition to ordinary companion cells. The main carbon transport form in Q. robur was sucrose (~1M). In F. excelsior high amounts of raffinose and stachyose were also transported. However, in both tree species, the osmolality of phloem sap was higher than the osmolality of the mesophyll cells. The concentration gradients between phloem sap and the cytoplasm of mesophyll cells for sucrose were 16-fold and 14-fold for Q. robur and F. excelsior, respectively. Independent of the type of translocated sugars, sucrose transporter cDNAs were cloned from both species. The results indicate that phloem loading of sucrose and other metabolites must involve active loading steps in both tree species. Quercus robur seems to be an apoplastic phloem loader while F. excelsior shows indications of being a symplastic or mixed symplastic–apoplastic phloem loader. PMID:24591056
Analysis of the conductivity of plasmodesmata by microinjection.
Kragler, Friedrich
2015-01-01
Pressure microinjection can be used to introduce fluorescent dyes and labeled macromolecules into single cells. The method allows measuring transport activity of macromolecules such as proteins and RNA molecules within and between cells. Routinely, plant mesophyll cells are injected with fluorescent dextran molecules of specific sizes to measure an increase of the size exclusion limit of plasmodesmata in the presence of a co-injected or expressed protein. The mobility of a macromolecule can also be addressed directly by injecting a recombinant protein that itself is labeled with fluorescent dye and following its transport to neighboring cells. This chapter describes a pressure microinjection protocol successfully applied to Nicotiana leaves. This protocol requires basic skills and experience in handling a microscope equipped with an imaging system, a micromanipulator, and a microinjection system attached to an upright microscope. Using this equipment, a trained person can inject approximately 10-20 mesophyll cells per hour.
Fujiwara, Makoto T; Yasuzawa, Mana; Kojo, Kei H; Niwa, Yasuo; Abe, Tomoko; Yoshida, Shigeo; Nakano, Takeshi; Itoh, Ryuuichi D
2018-01-01
Chloroplasts, or photosynthetic plastids, multiply by binary fission, forming a homogeneous population in plant cells. In Arabidopsis thaliana, the division apparatus (or division ring) of mesophyll chloroplasts includes an inner envelope transmembrane protein ARC6, a cytoplasmic dynamin-related protein ARC5 (DRP5B), and members of the FtsZ1 and FtsZ2 families of proteins, which co-assemble in the stromal mid-plastid division ring (FtsZ ring). FtsZ ring placement is controlled by several proteins, including a stromal factor MinE (AtMinE1). During leaf mesophyll development, ARC6 and AtMinE1 are necessary for FtsZ ring formation and thus plastid division initiation, while ARC5 is essential for a later stage of plastid division. Here, we examined plastid morphology in leaf epidermal pavement cells (PCs) and stomatal guard cells (GCs) in the arc5 and arc6 mutants using stroma-targeted fluorescent proteins. The arc5 PC plastids were generally a bit larger than those of the wild type, but most had normal shapes and were division-competent, unlike mutant mesophyll chloroplasts. The arc6 PC plastids were heterogeneous in size and shape, including the formation of giant and mini-plastids, plastids with highly developed stromules, and grape-like plastid clusters, which varied on a cell-by-cell basis. Moreover, unique plastid phenotypes for stomatal GCs were observed in both mutants. The arc5 GCs rarely lacked chlorophyll-bearing plastids (chloroplasts), while they accumulated minute chlorophyll-less plastids, whereas most GCs developed wild type-like chloroplasts. The arc6 GCs produced large chloroplasts and/or chlorophyll-less plastids, as previously observed, but unexpectedly, their chloroplasts/plastids exhibited marked morphological variations. We quantitatively analyzed plastid morphology and partitioning in paired GCs from wild-type, arc5, arc6, and atminE1 plants. Collectively, our results support the notion that ARC5 is dispensable in the process of equal division of epidermal plastids, and indicate that dysfunctions in ARC5 and ARC6 differentially affect plastid replication among mesophyll cells, PCs, and GCs within a single leaf.
Agati, Giovanni; Stefano, Giovanni; Biricolti, Stefano; Tattini, Massimiliano
2009-10-01
Flavonoids have the potential to serve as antioxidants in addition to their function of UV screening in photoprotective mechanisms. However, flavonoids have long been reported to accumulate mostly in epidermal cells and surface organs in response to high sunlight. Therefore, how leaf flavonoids actually carry out their antioxidant functions is still a matter of debate. Here, the distribution of flavonoids with effective antioxidant properties, i.e. the orthodihydroxy B-ring-substituted quercetin and luteolin glycosides, was investigated in the mesophyll of Ligustrum vulgare leaves acclimated to contrasting sunlight irradiance. In the first experiment, plants were grown at 20 % (shade) or 100% (sun) natural sunlight. Plants were exposed to 100 % sunlight irradiance in the presence or absence of UV wavelengths, in a second experiment. Fluorescence microspectroscopy and multispectral fluorescence microimaging were used in both cross sections and intact leaf pieces to visualize orthodihydroxy B-ring-substituted flavonoids at inter- and intracellular levels. Identification and quantification of individual hydroxycinnamates and flavonoid glycosides were performed via HPLC-DAD. Quercetin and luteolin derivatives accumulated to a great extent in both the epidermal and mesophyll cells in response to high sunlight. Tissue fluorescence signatures and leaf flavonoid concentrations were strongly related. Monohydroxyflavone glycosides, namely luteolin 4'-O-glucoside and two apigenin 7-O-glycosides were unresponsive to changes in sunlight irradiance. Quercetin and luteolin derivatives accumulated in the vacuoles of mesophyll cells in leaves growing under 100 % natural sunlight in the absence of UV wavelengths. The above findings lead to the hypothesis that flavonoids play a key role in countering light-induced oxidative stress, and not only in avoiding the penetration of short solar wavelengths in the leaf.
Agati, Giovanni; Stefano, Giovanni; Biricolti, Stefano; Tattini, Massimiliano
2009-01-01
Background and Aims Flavonoids have the potential to serve as antioxidants in addition to their function of UV screening in photoprotective mechanisms. However, flavonoids have long been reported to accumulate mostly in epidermal cells and surface organs in response to high sunlight. Therefore, how leaf flavonoids actually carry out their antioxidant functions is still a matter of debate. Here, the distribution of flavonoids with effective antioxidant properties, i.e. the orthodihydroxy B-ring-substituted quercetin and luteolin glycosides, was investigated in the mesophyll of Ligustrum vulgare leaves acclimated to contrasting sunlight irradiance. Methods In the first experiment, plants were grown at 20 % (shade) or 100% (sun) natural sunlight. Plants were exposed to 100 % sunlight irradiance in the presence or absence of UV wavelengths, in a second experiment. Fluorescence microspectroscopy and multispectral fluorescence microimaging were used in both cross sections and intact leaf pieces to visualize orthodihydroxy B-ring-substituted flavonoids at inter- and intracellular levels. Identification and quantification of individual hydroxycinnamates and flavonoid glycosides were performed via HPLC-DAD. Key Results Quercetin and luteolin derivatives accumulated to a great extent in both the epidermal and mesophyll cells in response to high sunlight. Tissue fluorescence signatures and leaf flavonoid concentrations were strongly related. Monohydroxyflavone glycosides, namely luteolin 4′-O-glucoside and two apigenin 7-O-glycosides were unresponsive to changes in sunlight irradiance. Quercetin and luteolin derivatives accumulated in the vacuoles of mesophyll cells in leaves growing under 100 % natural sunlight in the absence of UV wavelengths. Conclusions The above findings lead to the hypothesis that flavonoids play a key role in countering light-induced oxidative stress, and not only in avoiding the penetration of short solar wavelengths in the leaf. PMID:19633310
Fujiwara, Makoto T.; Kojo, Kei H.; Kazama, Yusuke; Sasaki, Shun; Abe, Tomoko; Itoh, Ryuuichi D.
2015-01-01
Plastids in the leaf epidermal cells of plants are regarded as immature chloroplasts that, like mesophyll chloroplasts, undergo binary fission. While mesophyll chloroplasts have generally been used to study plastid division, recent studies have suggested the presence of tissue- or plastid type-dependent regulation of plastid division. Here, we report the detailed morphology of plastids and their stromules, and the intraplastidic localization of the chloroplast division-related protein AtFtsZ1-1, in the leaf epidermis of an Arabidopsis mutant that harbors a mutation in the chloroplast division site determinant gene AtMinE1. In atminE1, the size and shape of epidermal plastids varied widely, which contrasts with the plastid phenotype observed in atminE1 mesophyll cells. In particular, atminE1 epidermal plastids occasionally displayed grape-like morphology, a novel phenotype induced by a plastid division mutation. Observation of an atminE1 transgenic line harboring an AtMinE1 promoter::AtMinE1-yellow fluorescent protein fusion gene confirmed the expression and plastidic localization of AtMinE1 in the leaf epidermis. Further examination revealed that constriction of plastids and stromules mediated by the FtsZ1 ring contributed to the plastid pleomorphism in the atminE1 epidermis. These results illustrate that a single plastid division mutation can have dramatic consequences for epidermal plastid morphology, thereby implying that plastid division and morphogenesis are differentially regulated in epidermal and mesophyll plastids. PMID:26500667
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith-Moritz, Andreia M.; Hao, Zhao; Fernández-Nino, Susana G.
The CELLULOSE SYNTHASE-LIKE F6 (CslF6) gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG), a cell wall polysaccharide that is hypothesized to be tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to testmore » the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of 3 day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared (FTM-IR) Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell walls of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Finally, taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion.« less
Retta, Moges; Ho, Quang Tri; Yin, Xinyou; Verboven, Pieter; Berghuijs, Herman N C; Struik, Paul C; Nicolaï, Bart M
2016-05-01
CO2 exchange in leaves of maize (Zea mays L.) was examined using a microscale model of combined gas diffusion and C4 photosynthesis kinetics at the leaf tissue level. Based on a generalized scheme of photosynthesis in NADP-malic enzyme type C4 plants, the model accounted for CO2 diffusion in a leaf tissue, CO2 hydration and assimilation in mesophyll cells, CO2 release from decarboxylation of C4 acids, CO2 fixation in bundle sheath cells and CO2 retro-diffusion from bundle sheath cells. The transport equations were solved over a realistic 2-D geometry of the Kranz anatomy obtained from light microscopy images. The predicted responses of photosynthesis rate to changes in ambient CO2 and irradiance compared well with those obtained from gas exchange measurements. A sensitivity analysis showed that the CO2 permeability of the mesophyll-bundle sheath and airspace-mesophyll interfaces strongly affected the rate of photosynthesis and bundle sheath conductance. Carbonic anhydrase influenced the rate of photosynthesis, especially at low intercellular CO2 levels. In addition, the suberin layer at the exposed surface of the bundle sheath cells was found beneficial in reducing the retro-diffusion. The model may serve as a tool to investigate CO2 diffusion further in relation to the Kranz anatomy in C4 plants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Łabuz, Justyna; Samardakiewicz, Sławomir; Hermanowicz, Paweł; Wyroba, Elżbieta; Pilarska, Maria; Gabryś, Halina
2016-01-01
Calcium is involved in the signal transduction pathway from phototropins, the blue light photoreceptor kinases which mediate chloroplast movements. The chloroplast accumulation response in low light is controlled by both phot1 and phot2, while only phot2 is involved in avoidance movement induced by strong light. Phototropins elevate cytosolic Ca2+ after activation by blue light. In higher plants, both types of chloroplast responses depend on Ca2+, and internal calcium stores seem to be crucial for these processes. Yet, the calcium signatures generated after the perception of blue light by phototropins are not well understood. To characterize the localization of calcium in Arabidopsis mesophyll cells, loosely bound (exchangeable) Ca2+ was precipitated with potassium pyroantimonate and analyzed by transmission electron microscopy followed by energy-dispersive X-ray microanalysis. In dark-adapted wild-type Arabidopsis leaves, calcium precipitates were observed at the cell wall, where they formed spherical structures. After strong blue light irradiation, calcium at the apoplast prevailed, and bigger, multilayer precipitates were found. Spherical calcium precipitates were also detected at the tonoplast. After red light treatment as a control, the precipitates at the cell wall were smaller and less numerous. In the phot2 and phot1phot2 mutants, calcium patterns were different from those of wild-type plants. In both mutants, no elevation of calcium after blue light treatment was observed at the cell periphery (including the cell wall and a fragment of cytoplasm). This result confirms the involvement of phototropin2 in the regulation of Ca2+ homeostasis in mesophyll cells. PMID:26957564
Sulzinski, M A; Zaitlin, M
1982-08-01
Only small amounts of tobacco mosaic virus (TMV) are recoverable from directly inoculated leaves of some plant species, a phenomenon investigated by P. C. Cheo (1970, Phytopathology 60, 41-46) and termed subliminal infection. To interpret this phenomenon in two varieties of cowpea (Vigna sinensis Emil.), primary leaves were inoculated on their lower surfaces with TMV (common strain), and at various times postinoculation, mesophyll protoplasts were isolated, incubated for 36 hr, and stained with a TMV-specific fluorescent-labeled antibody. It was determined that only 1 in 50,000 to 150,000 protoplasts contained TMV antigen; this number remained essentially unchanged for experimental periods of from immediately after inoculation to up to 11 days postinoculation (the longest period examined). Cytological staining of epidermis from another subliminally infected host, cotton, also revealed infection of only a few cells. These data suggest that leaves of subliminally infected plants support TMV replication in those cells which receive virus during mechanical inoculation, but that the infectious principle is unable to move from those original centers in these hosts. Control experiments with tobacco (Nicotiana tabacum L. cv. Turkish Samsun), in which virus spreads extensively in the inoculated leaves, suggest that a rapid cell-to-cell movement of the infectious entity begins after about 6 hr following inoculation. An unexpected observation was that some cowpea and tobacco mesophyll cells become infected immediately upon mechanical inoculation, suggesting that mesophyll cells can be primary sites of viral ingress into the leaf.
Functional analysis of a viroid RNA motif mediating cell-to-cell movement in Nicotiana benthamiana.
Jiang, Dongmei; Wang, Meng; Li, Shifang
2017-01-01
Cell-to-cell trafficking through different cellular layers is a key process for various RNAs including those of plant viruses and viroids, but the regulatory mechanisms involved are still not fully elucidated and good model systems are important. Here, we analyse the function of a simple RNA motif (termed 'loop19') in potato spindle tuber viroid (PSTVd) which is required for trafficking in Nicotiana benthamiana leaves. Northern blotting, reverse transcriptase PCR (RT-PCR) and in situ hybridization analyses demonstrated that unlike wild-type PSTVd, which was present in the nuclei in all cell types, the trafficking-defective loop19 mutants were visible only in the nuclei of upper epidermal and palisade mesophyll cells, which shows that PSTVd loop19 plays a role in mediating RNA trafficking from palisade to spongy mesophyll cells in N.benthamiana leaves. Our findings and approaches have broad implications for studying the RNA motifs mediating trafficking of RNAs across specific cellular boundaries in other biological systems.
Rumen Bacterial Degradation of Forage Cell Walls Investigated by Electron Microscopy
Akin, Danny E.; Amos, Henry E.
1975-01-01
The association of rumen bacteria with specific leaf tissues of the forage grass Kentucky-31 tall fescue (Festuca arundinacea Schreb.) during in vitro degradation was investigated by transmission and scanning electron microscopy. Examination of degraded leaf cross-sections revealed differential rates of tissue degradation in that the cell walls of the mesophyll and pholem were degraded prior to those of the outer bundle sheath and epidermis. Rumen bacteria appeared to degrade the mesophyll, in some cases, and phloem without prior attachment to the plant cell walls. The degradation of bundle sheath and epidermal cell walls appeared to be preceded by attachment of bacteria to the plant cell wall. Ultrastructural features apparently involved in the adhesion of large cocci to plant cells were observed by transmission and scanning electron microscopy. The physical association between plant and rumen bacterial cells during degradation apparently varies with tissue types. Bacterial attachment, by extracellular features in some microorganisms, is required prior to degradation of the more resistant tissues. Images PMID:16350017
Niinemets, Ulo; Lukjanova, Aljona; Turnbull, Matthew H; Sparrow, Ashley D
2007-08-01
Acclimation potential of needle photosynthetic capacity varies greatly among pine species, but the underlying chemical, anatomical and morphological controls are not entirely understood. We investigated the light-dependent variation in needle characteristics in individuals of Pinus patula Schlect. & Cham., which has 19-31-cm long pendulous needles, and individuals of P. radiata D. Don., which has shorter (8-17-cm-long) stiffer needles. Needle nitrogen and carbon contents, mesophyll and structural tissue volume fractions, needle dry mass per unit total area (M(A)) and its components, volume to total area ratio (V/A(T)) and needle density (D = M(A)/(V/A(T))), and maximum carboxylase activity of Rubisco (V(cmax)) and capacity of photosynthetic electron transport (J(max)) were investigated in relation to seasonal mean integrated irradiance (Q(int)). Increases in Q(int) from canopy bottom to top resulted in proportional increases in both needle thickness and width such that needle total to projected surface area ratio, characterizing the efficiency of light interception, was independent of Q(int). Increased light availability also led to larger M(A) and nitrogen content per unit area (N(A)). Light-dependent modifications in M(A) resulted from increases in both V/A(T) and D, whereas N(A) changed because of increases in both M(A) and mass-based nitrogen content (N(M)) (N(A) = N(M)M(A)). Overall, the volume fraction of mesophyll cells increased with increasing irradiance and V/A(T) as the fraction of hypodermis and epidermis decreased with increasing needle thickness. Increases in M(A) and N(A) resulted in enhanced J(max) and V(cmax) per unit area in both species, but mass-based photosynthetic capacity increased only in P. patula. In addition, J(max) and V(cmax) showed greater plasticity in response to light in P. patula. Species differences in mesophyll volume fraction explained most of the variation in mass-based needle photosynthetic capacity between species, demonstrating that differences in plastic adjustments in mass-based photosynthetic activities among these representative individuals were mainly associated with contrasting investments in mesophyll cells. Greater area-based photosynthetic plasticity in P. patula relative to P. radiata was associated with larger increases in M(A) and mesophyll volume fraction with increasing irradiance. These data collectively demonstrate that light-dependent increases in mass-based nitrogen contents and photosynthetic activities were associated with an increased mesophyll volume fraction in needles at higher irradiances. They also emphasize the importance of light-dependent anatomical modifications in determining needle photosynthetic capacity.
2017-01-01
Photosynthetic efficiency is a critical determinant of crop yield potential, although it remains below the theoretical optimum in modern crop varieties. Enhancing mesophyll conductance (i.e. the rate of carbon dioxide diffusion from substomatal cavities to the sites of carboxylation) may increase photosynthetic and water use efficiencies. To improve water use efficiency, mesophyll conductance should be increased without concomitantly increasing stomatal conductance. Here, we partition the variance in mesophyll conductance to within- and among-cultivar components across soybean (Glycine max) grown under both controlled and field conditions and examine the covariation of mesophyll conductance with photosynthetic rate, stomatal conductance, water use efficiency, and leaf mass per area. We demonstrate that mesophyll conductance varies more than 2-fold and that 38% of this variation is due to cultivar identity. As expected, mesophyll conductance is positively correlated with photosynthetic rates. However, a strong positive correlation between mesophyll and stomatal conductance among cultivars apparently impedes positive scaling between mesophyll conductance and water use efficiency in soybean. Contrary to expectations, photosynthetic rates and mesophyll conductance both increased with increasing leaf mass per area. The presence of genetic variation for mesophyll conductance suggests that there is potential to increase photosynthesis and mesophyll conductance by selecting for greater leaf mass per area. Increasing water use efficiency, though, is unlikely unless there is simultaneous stabilizing selection on stomatal conductance. PMID:28270627
Öner-Sieben, Soner; Rappl, Christine; Sauer, Norbert; Stadler, Ruth; Lohaus, Gertrud
2015-01-01
Trees are generally assumed to be symplastic phloem loaders. A typical feature for most wooden species is an open minor vein structure with symplastic connections between mesophyll cells and phloem cells, which allow sucrose to move cell-to-cell through the plasmodesmata into the phloem. Fraxinus excelsior (Oleaceae) also translocates raffinose family oligosaccharides in addition to sucrose. Sucrose concentration was recently shown to be higher in the phloem sap than in the mesophyll cells. This suggests the involvement of apoplastic steps and the activity of sucrose transporters in addition to symplastic phloem-loading processes. In this study, the sucrose transporter FeSUT1 from F. excelsior was analysed. Heterologous expression in baker’s yeast showed that FeSUT1 mediates the uptake of sucrose. Immunohistochemical analyses revealed that FeSUT1 was exclusively located in phloem cells of minor veins and in the transport phloem of F. excelsior. Further characterization identified these cells as sieve elements and possibly ordinary companion cells but not as intermediary cells. The localization and expression pattern point towards functions of FeSUT1 in phloem loading of sucrose as well as in sucrose retrieval. FeSUT1 is most likely responsible for the observed sucrose gradient between mesophyll and phloem. The elevated expression level of FeSUT1 indicated an increased apoplastic carbon export activity from the leaves during spring and late autumn. It is hypothesized that the importance of apoplastic loading is high under low-sucrose conditions and that the availability of two different phloem-loading mechanisms confers advantages for temperate woody species like F. excelsior. PMID:26022258
Bilska-Kos, Anna; Panek, Piotr; Szulc-Głaz, Anna; Ochodzki, Piotr; Cisło, Aneta; Zebrowski, Jacek
2018-06-08
Miscanthus × giganteus and Zea mays, closely-related C 4 grasses, originated from warm climates react differently to low temperature. To investigate the response to cold (12-14 °C) in these species, the photosynthetic and anatomical parameters as well as biochemical properties of the cell wall were studied. The research was performed using M. giganteus (MG) and two Z. mays lines differentiated for chilling-sensitivity: chilling-tolerant (Zm-T) and chilling-sensitive (Zm-S). The chilled plants of Zm-S line demonstrated strong inhibition of net CO 2 assimilation and a clear decrease in F' v /F' m , F v /F m and ɸ PSII, while in MG and Zm-T plants these parameters were almost unchanged. The anatomical studies revealed that MG plants had thinner leaves, epidermis and mesophyll cell layer as well as thicker cell walls in the comparison to both maize lines. Cold led to an increase in leaf thickness and mesophyll cell layer thickness in the Zm-T maize line, while the opposite response was observed in Zm-S. In turn, in chilled plants of MG and Zm-T lines, some anatomical parameters associated with bundle sheath cells were higher. In addition, Zm-S line showed the strong increase in the cell wall thickness at cold for mesophyll and bundle sheath cells. Chilling-treatment induced the changes in the cell wall biochemistry of tested species, mainly in the content of glucuronoarabinoxylan, uronic acid, β-glucan and phenolic compounds. This work presents a new approach in searching of mechanism(s) of tolerance/sensitivity to low temperature in two thermophilic plants: Miscanthus and maize. Copyright © 2018 Elsevier GmbH. All rights reserved.
Łabuz, Justyna; Samardakiewicz, Sławomir; Hermanowicz, Paweł; Wyroba, Elżbieta; Pilarska, Maria; Gabryś, Halina
2016-06-01
Calcium is involved in the signal transduction pathway from phototropins, the blue light photoreceptor kinases which mediate chloroplast movements. The chloroplast accumulation response in low light is controlled by both phot1 and phot2, while only phot2 is involved in avoidance movement induced by strong light. Phototropins elevate cytosolic Ca(2+) after activation by blue light. In higher plants, both types of chloroplast responses depend on Ca(2+), and internal calcium stores seem to be crucial for these processes. Yet, the calcium signatures generated after the perception of blue light by phototropins are not well understood. To characterize the localization of calcium in Arabidopsis mesophyll cells, loosely bound (exchangeable) Ca(2+) was precipitated with potassium pyroantimonate and analyzed by transmission electron microscopy followed by energy-dispersive X-ray microanalysis. In dark-adapted wild-type Arabidopsis leaves, calcium precipitates were observed at the cell wall, where they formed spherical structures. After strong blue light irradiation, calcium at the apoplast prevailed, and bigger, multilayer precipitates were found. Spherical calcium precipitates were also detected at the tonoplast. After red light treatment as a control, the precipitates at the cell wall were smaller and less numerous. In the phot2 and phot1phot2 mutants, calcium patterns were different from those of wild-type plants. In both mutants, no elevation of calcium after blue light treatment was observed at the cell periphery (including the cell wall and a fragment of cytoplasm). This result confirms the involvement of phototropin2 in the regulation of Ca(2+) homeostasis in mesophyll cells. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Lionetti, Vincenzo; Cervone, Felice; De Lorenzo, Giulia
2015-04-01
Cell adhesion occurs primarily at the level of middle lamella which is mainly composed by pectin polysaccharides. These can be degraded by cell wall degrading enzymes (CWDEs) during developmental processes to allow a controlled separation of plant cells. Extensive cell wall degradation by CWDEs with consequent cell separation is performed when protoplasts are isolated from plant tissues by using mixtures of CWDEs. We have evaluated whether modification of pectin affects cell separation and protoplast isolation. Arabidopsis plants overexpressing the pectin methylesterase inhibitors AtPMEI-1 or AtPMEI-2, and Arabidopsis pme3 plants, mutated in the gene encoding pectin methylesterase 3, showed an increased efficiency of isolation of viable mesophyll protoplasts as compared with Wild Type Columbia-0 plants. The release of protoplasts was correlated with the reduced level of long stretches of de-methylesterified homogalacturonan (HGA) present in these plants. Response to elicitation, cell wall regeneration and efficiency of transfection in protoplasts from transgenic plants was comparable to those of wild type protoplasts. Copyright © 2014 Elsevier Ltd. All rights reserved.
Frank, Margaret H.; Balaguer, Maria A. de Luis; Li, Mao
2017-01-01
Thicker leaves allow plants to grow in water-limited conditions. However, our understanding of the genetic underpinnings of this highly functional leaf shape trait is poor. We used a custom-built confocal profilometer to directly measure leaf thickness in a set of introgression lines (ILs) derived from the desert tomato Solanum pennellii and identified quantitative trait loci. We report evidence of a complex genetic architecture of this trait and roles for both genetic and environmental factors. Several ILs with thick leaves have dramatically elongated palisade mesophyll cells and, in some cases, increased leaf ploidy. We characterized the thick IL2-5 and IL4-3 in detail and found increased mesophyll cell size and leaf ploidy levels, suggesting that endoreduplication underpins leaf thickness in tomato. Next, we queried the transcriptomes and inferred dynamic Bayesian networks of gene expression across early leaf ontogeny in these lines to compare the molecular networks that pattern leaf thickness. We show that thick ILs share S. pennellii-like expression profiles for putative regulators of cell shape and meristem determinacy as well as a general signature of cell cycle-related gene expression. However, our network data suggest that leaf thickness in these two lines is patterned at least partially by distinct mechanisms. Consistent with this hypothesis, double homozygote lines combining introgression segments from these two ILs show additive phenotypes, including thick leaves, higher ploidy levels, and larger palisade mesophyll cells. Collectively, these data establish a framework of genetic, anatomical, and molecular mechanisms that pattern leaf thickness in desert-adapted tomato. PMID:28794258
Gao, Jia; Cui, Hai Yan; Shi, Jian Guo; Dong, Shu Ting; Liu, Peng; Zhao, Bin; Zhang, Ji Wang
2018-03-01
We examined the changes of photosynthetic characteristics and chloroplast ultrastructure in mesophyll cell of summer maize in response to different light intensities in the field, with the summer maize hybrid Denghai 605 as experimental material. Two treatments of both shading (S) and increasing light (L) from flowering to physiological maturity stage were designed, with the ambient sunlight treatment as control (CK). Under shading treatment, poorly developed thylakoid structure, blurry lamellar structure, loose granum, large gap between slices and warping granum were the major characteristics in chloroplast. Meanwhile, photosynthetic rate (P n ), transpiration rate, stomatal conductance, chlorophyll content, and actual photo-chemical efficiency (Φ PSII ) decreased, whereas the maximal photochemical efficiency and non-photochemical quenching increased, which resulted in decreases in grain yield under shading treatment. However, a better development was observed in chloroplasts for L treatment, with the number of grana and lamellae increased and lamellae arranged compactly. In addition, P n and Φ PSII increased under L treatment, which increased grain yield. The chloroplast arrangement dispersed in mesophyll cells and chloroplast ultrastructure was destroyed after shading, and then chlorophyll synthesis per unit leaf area and photosynthetic capacity decreased. In contrast, the number of grana and lamellae increased and lamellae arranged compactly after increasing light, which are beneficial for corn yield.
Reactive oxygen species and redox regulation in mesophyll and bundle sheath cells of C4 plants.
Turkan, Ismail; Uzilday, Baris; Dietz, Karl-Josef; Bräutigam, Andrea; Ozgur, Rengin
2018-02-26
Redox regulation, antioxidant defence and ROS signalling are critical in realizing and tuning metabolic activities. However, our concepts were mostly developed for C3 plants since Arabidopsis thaliana is major model. Efforts to convert C3 plants to C4 plants to increase yield (see C4 rice; c4rice.irri.org/) entails better understanding of these processes in C4 plants. Various photosynthetic enzymes that take part in light reactions and carbon reactions are regulated via redox components such as thioredoxins as redox transmitters and peroxiredoxins. Due to this, understanding redox regulation in mesophyll and bundle sheath chloroplasts of C4 plants is of paramount importance. It appears impossible to utilize efficient C4 photosynthesis without understanding its exact redox needs and regulation mechanisms used during light reactions. In this review we will discuss available knowledge on redox regulation in C3 and C4 plants with special emphasis on mesophyll and bundle sheath differences in C4. In these two cell types of C4 plants, linear and cyclic electron transport in chloroplasts operate differentially when compared to C3 chloroplasts, changing the redox needs of the cell. Therefore, the focus is given to photosynthetic light reactions, ROS production dynamics, antioxidant defence and thiol based redox regulation with the aim to draw a picture of current knowledge.
Stiles, Kari A; Van Volkenburgh, Elizabeth
2002-07-01
Leaf growth responses to light have been compared in two species of Populus, P. deltoides and P. trichocarpa. These species differ markedly in morphology, anatomy, and dependence on light during leaf expansion. Light stimulates the growth rate and acidification of cell walls in P. trichocarpa but not in P. deltoides, whereas leaves of P. deltoides maintain growth in the dark. Light-induced growth is promoted in P. deltoides when cells are provided 50-100 mM KCl. In both species, light initially depolarizes, then hyperpolarizes mesophyll plasma membranes. However, in the dark, the resting E(m) of mesophyll cells in P. deltoides, but not in P. trichocarpa, is relatively insensitive to decade changes in external [K+]. Results suggest that light-stimulated leaf growth depends on developmentally regulated cellular mechanisms controlling ion fluxes across the plasma membrane. These developmental differences underlie species-level differences in growth and physiological responses to the photoenvironment.
van Doorn, Wouter G; Kirasak, Kanjana; Ketsa, Saichol
2015-04-01
Prior to flower opening, mesophyll cells at the vascular bundles of Dendrobium tepals showed a large increase in vacuolar volume, partially at the expense of the cytoplasm. Electron micrographs indicated that this increase in vacuolar volume was mainly due to vacuole fusion. Macroautophagous structures typical of plant cells were observed. Only a small part of the decrease in cytoplasmic volume seemed due to macroautophagy. The vacuoles contained vesicles of various types, including multilamellar bodies. It was not clear if these vacuolar inclusions were due to macroautophagy or microautophagy. Only a single structure was observed of a protruding vacuole, indicating microautophagy. It is concluded that macroautophagy occurs in these cells but its role in vacuole formation seems small, while a possible role of microautophagy in vacuole formation might be hypothesized. Careful labeling of organelle membranes seems required to advance our insight in plant macro- and microautophagy and their roles in vacuole formation. Copyright © 2015 Elsevier GmbH. All rights reserved.
Berghuijs, Herman N C; Yin, Xinyou; Ho, Q Tri; Driever, Steven M; Retta, Moges A; Nicolaï, Bart M; Struik, Paul C
2016-11-01
One way to increase potential crop yield could be increasing mesophyll conductance g m . This variable determines the difference between the CO 2 partial pressure in the intercellular air spaces (C i ) and that near Rubisco (C c ). Various methods can determine g m from gas exchange measurements, often combined with measurements of chlorophyll fluorescence or carbon isotope discrimination. g m lumps all biochemical and physical factors that cause the difference between C c and C i . g m appears to vary with C i . This variability indicates that g m does not satisfy the physical definition of a conductance according to Fick's first law and is thus an apparent parameter. Uncertainty about the mechanisms that determine g m can be limited to some extent by using analytical models that partition g m into separate conductances. Such models are still only capable of describing the CO 2 diffusion pathway to a limited extent, as they make implicit assumptions about the position of mitochondria in the cells, which affect the re-assimilation of (photo)respired CO 2 . Alternatively, reaction-diffusion models may be used. Rather than quantifying g m , these models explicitly account for factors that affect the efficiency of CO 2 transport in the mesophyll. These models provide a better mechanistic description of the CO 2 diffusion pathways than mesophyll conductance models. Therefore, we argue that reaction-diffusion models should be used as an alternative to mesophyll conductance models, in case the aim of such a study is to identify traits that can be improved to increase g m . Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Sade, Nir; Gallé, Alexander; Flexas, Jaume; Lerner, Stephen; Peleg, Gadi; Yaaran, Adi; Moshelion, Menachem
2014-02-01
The regulation of plant hydraulic conductance and gas conductance involves a number of different morphological, physiological and molecular mechanisms working in harmony. At the molecular level, aquaporins play a key role in the transport of water, as well as CO₂, through cell membranes. Yet, their tissue-related function, which controls whole-plant gas exchange and water relations, is less understood. In this study, we examined the tissue-specific effects of the stress-induced tobacco Aquaporin1 (NtAQP1), which functions as both a water and CO₂ channel, on whole-plant behavior. In tobacco and tomato plants, constitutive overexpression of NtAQP1 increased net photosynthesis (A(N)), mesophyll CO₂ conductance (g(m)) and stomatal conductance (g(s)) and, under stress, increased root hydraulic conductivity (L(pr)) as well. Our results revealed that NtAQP1 that is specifically expressed in the mesophyll tissue plays an important role in increasing both A(N) and g(m). Moreover, targeting NtAQP1 expression to the cells of the vascular envelope significantly improved the plants' stress response. Surprisingly, NtAQP1 expression in the guard cells did not have a significant effect under any of the tested conditions. The tissue-specific involvement of NtAQP1 in hydraulic and gas conductance via the interaction between the vasculature and the stomata is discussed.
Tholen, Danny; Zhu, Xin-Guang
2011-05-01
Photosynthesis is limited by the conductance of carbon dioxide (CO(2)) from intercellular spaces to the sites of carboxylation. Although the concept of internal conductance (g(i)) has been known for over 50 years, shortcomings in the theoretical description of this process may have resulted in a limited understanding of the underlying mechanisms. To tackle this issue, we developed a three-dimensional reaction-diffusion model of photosynthesis in a typical C(3) mesophyll cell that includes all major components of the CO(2) diffusion pathway and associated reactions. Using this novel systems model, we systematically and quantitatively examined the mechanisms underlying g(i). Our results identify the resistances of the cell wall and chloroplast envelope as the most significant limitations to photosynthesis. In addition, the concentration of carbonic anhydrase in the stroma may also be limiting for the photosynthetic rate. Our analysis demonstrated that higher levels of photorespiration increase the apparent resistance to CO(2) diffusion, an effect that has thus far been ignored when determining g(i). Finally, we show that outward bicarbonate leakage through the chloroplast envelope could contribute to the observed decrease in g(i) under elevated CO(2). Our analysis suggests that physiological and anatomical features associated with g(i) have been evolutionarily fine-tuned to benefit CO(2) diffusion and photosynthesis. The model presented here provides a novel theoretical framework to further analyze the mechanisms underlying diffusion processes in the mesophyll.
Tholen, Danny; Zhu, Xin-Guang
2011-01-01
Photosynthesis is limited by the conductance of carbon dioxide (CO2) from intercellular spaces to the sites of carboxylation. Although the concept of internal conductance (gi) has been known for over 50 years, shortcomings in the theoretical description of this process may have resulted in a limited understanding of the underlying mechanisms. To tackle this issue, we developed a three-dimensional reaction-diffusion model of photosynthesis in a typical C3 mesophyll cell that includes all major components of the CO2 diffusion pathway and associated reactions. Using this novel systems model, we systematically and quantitatively examined the mechanisms underlying gi. Our results identify the resistances of the cell wall and chloroplast envelope as the most significant limitations to photosynthesis. In addition, the concentration of carbonic anhydrase in the stroma may also be limiting for the photosynthetic rate. Our analysis demonstrated that higher levels of photorespiration increase the apparent resistance to CO2 diffusion, an effect that has thus far been ignored when determining gi. Finally, we show that outward bicarbonate leakage through the chloroplast envelope could contribute to the observed decrease in gi under elevated CO2. Our analysis suggests that physiological and anatomical features associated with gi have been evolutionarily fine-tuned to benefit CO2 diffusion and photosynthesis. The model presented here provides a novel theoretical framework to further analyze the mechanisms underlying diffusion processes in the mesophyll. PMID:21441385
USDA-ARS?s Scientific Manuscript database
The physiological role and mechanism of nutrient storage within vacuoles of specific cell types is poorly understood. Transcript profiles from "Arabidopsis thaliana" leaf cells differing in calcium concentration ([Ca], epidermis <10 mM versus mesophyll >60 mM) were compared using a microarray screen...
Kuźniak, Elżbieta; Kornas, Andrzej; Kaźmierczak, Andrzej; Rozpądek, Piotr; Nosek, Michał; Kocurek, Maciej; Zellnig, Günther; Müller, Maria; Miszalski, Zbigniew
2016-01-01
Background and Aims Leaf veins are usually encircled by specialized bundle sheath cells. In C4 plants, they play an important role in CO2 assimilation, and the photosynthetic activity is compartmentalized between the mesophyll and the bundle sheath. In C3 and CAM (Crassulacean acid metabolism) plants, the photosynthetic activity is generally attributed to the leaf mesophyll cells, and the vascular parenchymal cells are rarely considered for their role in photosynthesis. Recent studies demonstrate that enzymes required for C4 photosynthesis are also active in the veins of C3 plants, and their vascular system contains photosynthetically competent parenchyma cells. However, our understanding of photosynthesis in veins of C3 and CAM plants still remains insufficient. Here spatial analysis of photosynthesis-related properties were applied to the midrib and the interveinal lamina cells in leaves of Mesembryanthemum crystallinum, a C3–CAM intermediate plant. Methods The midrib anatomy as well as chloroplast structure and chlorophyll fluorescence, diurnal gas exchange profiles, the immunoblot patterns of PEPC (phosphoenolpyruvate carboxylase) and RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase), H2O2 localization and antioxidant enzyme activities were compared in the midrib and in the interveinal mesophyll cells in leaves of C3 and CAM plants. Key Results Leaf midribs were structurally competent to perform photosynthesis in C3 and CAM plants. The midrib chloroplasts resembled those in the bundle sheath cells of C4 plants and were characterized by limited photosynthetic activity. Conclusions The metabolic roles of midrib chloroplasts differ in C3 and CAM plants. It is suggested that in leaves of C3 plants the midrib chloroplasts could be involved in the supply of CO2 for carboxylation, and in CAM plants they could provide malate to different metabolic processes and mediate H2O2 signalling. PMID:27091507
Kuźniak, Elżbieta; Kornas, Andrzej; Kaźmierczak, Andrzej; Rozpądek, Piotr; Nosek, Michał; Kocurek, Maciej; Zellnig, Günther; Müller, Maria; Miszalski, Zbigniew
2016-06-01
Leaf veins are usually encircled by specialized bundle sheath cells. In C4 plants, they play an important role in CO2 assimilation, and the photosynthetic activity is compartmentalized between the mesophyll and the bundle sheath. In C3 and CAM (Crassulacean acid metabolism) plants, the photosynthetic activity is generally attributed to the leaf mesophyll cells, and the vascular parenchymal cells are rarely considered for their role in photosynthesis. Recent studies demonstrate that enzymes required for C4 photosynthesis are also active in the veins of C3 plants, and their vascular system contains photosynthetically competent parenchyma cells. However, our understanding of photosynthesis in veins of C3 and CAM plants still remains insufficient. Here spatial analysis of photosynthesis-related properties were applied to the midrib and the interveinal lamina cells in leaves of Mesembryanthemum crystallinum, a C3-CAM intermediate plant. The midrib anatomy as well as chloroplast structure and chlorophyll fluorescence, diurnal gas exchange profiles, the immunoblot patterns of PEPC (phosphoenolpyruvate carboxylase) and RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase), H2O2 localization and antioxidant enzyme activities were compared in the midrib and in the interveinal mesophyll cells in leaves of C3 and CAM plants. Leaf midribs were structurally competent to perform photosynthesis in C3 and CAM plants. The midrib chloroplasts resembled those in the bundle sheath cells of C4 plants and were characterized by limited photosynthetic activity. The metabolic roles of midrib chloroplasts differ in C3 and CAM plants. It is suggested that in leaves of C3 plants the midrib chloroplasts could be involved in the supply of CO2 for carboxylation, and in CAM plants they could provide malate to different metabolic processes and mediate H2O2 signalling. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Streatfield, S J; Weber, A; Kinsman, E A; Häusler, R E; Li, J; Post-Beittenmiller, D; Kaiser, W M; Pyke, K A; Flügge, U I; Chory, J
1999-09-01
The Arabidopsis chlorophyll a/b binding protein (CAB) gene underexpressed 1 (cue1) mutant underexpresses light-regulated nuclear genes encoding chloroplast-localized proteins. cue1 also exhibits mesophyll-specific chloroplast and cellular defects, resulting in reticulate leaves. Both the gene underexpression and the leaf cell morphology phenotypes are dependent on light intensity. In this study, we determine that CUE1 encodes the plastid inner envelope phosphoenolpyruvate/phosphate translocator (PPT) and define amino acid residues that are critical for translocator function. The biosynthesis of aromatics is compromised in cue1, and the reticulate phenotype can be rescued by feeding aromatic amino acids. Determining that CUE1 encodes PPT indicates the in vivo role of the translocator in metabolic partitioning and reveals a mesophyll cell-specific requirement for the translocator in Arabidopsis leaves. The nuclear gene expression defects in cue1 suggest that a light intensity-dependent interorganellar signal is modulated through metabolites dependent on a plastid supply of phosphoenolpyruvate.
Sulmon, Cécile; Gouesbet, Gwenola; Couée, Ivan; Cabello-Hurtado, Francisco; Cavalier, Annie; Penno, Christophe; Zaka, Raïhana; Bechtold, Nicole; Thomas, Daniel; El Amrani, Abdelhak
2006-11-01
In higher plants, plastid development must be tightly coordinated with cell and organ development. In this paper, a novel T-DNA-mutagenized Arabidopsis line showing chlorotic leaves and minute stature was identified in a genetic screen for altered chloroplast development. The mutation corresponded to a single locus on chromosome IV and was associated with insertion of the T-DNA. This locus was named FARFADET and resulted in pleiotropic effects on chloroplast biogenesis, cell size and differentiation, organ size and number. Thus, in contrast with previously described chlorotic mutants, frd mutants were affected not only in chloroplast development and chlorophyll accumulation, but also in cell and organ development. Alteration of differentiation affected different cell types such as leaf epidermal cells, trichomes, mesophyll cells, and columella cells. A major effect on mesophyll cell differentiation was the lack of palisadic parenchyma and absence of grana stacks. Moreover, meristem size and lateral meristem initiation were affected. Genetic and molecular characterisation showed that the T-DNA insertion generated 41 bp deletion in a potential miRNA precursor. The predicted miRNA target genes were involved in plant development and stress. It is therefore hypothesized that the frd mutation had affected coordination of cell developmental span and the control of the division-differentiation balance.
Hylton, C M; Rawsthorne, S; Smith, A M; Jones, D A; Woolhouse, H W
1988-10-01
Immunogold labelling has been used to determine the cellular distribution of glycine decarboxylase in leaves of C3, C3-C4 intermediate and C4 species in the genera Moricandia, Panicum, Flaveria and Mollugo. In the C3 species Moricandia foleyi and Panicum laxum, glycine decarboxylase was present in the mitochondria of both mesophyll and bundle-sheath cells. However, in all the C3-C4 intermediate (M. arvensis var. garamatum, M. nitens, M. sinaica, M. spinosa, M. suffruticosa, P. milioides, Flaveria floridana, F. linearis, Mollugo verticillata) and C4 (P. prionitis, F. trinervia) species studied glycine decarboxylase was present in the mitochondria of only the bundle-sheath cells. The bundle-sheath cells of all the C3-C4 intermediate species have on their centripetal faces numerous mitochondria which are larger in profile area than those in mesophyll cells and are in close association with chloroplasts and peroxisomes. Confinement of glycine decarboxylase to the bundle-sheath cells is likely to improve the potential for recapture of photorespired CO2 via the Calvin cycle and could account for the low rate of photorespiration in all C3-C4 intermediate species.
Photosynthetic Trichomes Contain a Specific Rubisco with a Modified pH-Dependent Activity.
Laterre, Raphaëlle; Pottier, Mathieu; Remacle, Claire; Boutry, Marc
2017-04-01
Ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) is the most abundant enzyme in plants and is responsible for CO 2 fixation during photosynthesis. This enzyme is assembled from eight large subunits (RbcL) encoded by a single chloroplast gene and eight small subunits (RbcS) encoded by a nuclear gene family. Rubisco is primarily found in the chloroplasts of mesophyll (C3 plants), bundle-sheath (C4 plants), and guard cells. In certain species, photosynthesis also takes place in the secretory cells of glandular trichomes, which are epidermal outgrowths (hairs) involved in the secretion of specialized metabolites. However, photosynthesis and, in particular, Rubisco have not been characterized in trichomes. Here, we show that tobacco ( Nicotiana tabacum ) trichomes contain a specific Rubisco small subunit, NtRbcS-T, which belongs to an uncharacterized phylogenetic cluster (T). This cluster contains RbcS from at least 33 species, including monocots, many of which are known to possess glandular trichomes. Cluster T is distinct from the cluster M, which includes the abundant, functionally characterized RbcS isoforms expressed in mesophyll or bundle-sheath cells. Expression of NtRbcS-T in Chlamydomonas reinhardtii and purification of the full Rubisco complex showed that this isoform conferred higher V max and K m values as well as higher acidic pH-dependent activity than NtRbcS-M, an isoform expressed in the mesophyll. This observation was confirmed with trichome extracts. These data show that an ancient divergence allowed for the emergence of a so-far-uncharacterized RbcS cluster. We propose that secretory trichomes have a particular Rubisco uniquely adapted to secretory cells where CO 2 is released by the active specialized metabolism. © 2017 American Society of Plant Biologists. All Rights Reserved.
Tosens, Tiina
2012-01-01
In sclerophylls, photosynthesis is particularly strongly limited by mesophyll diffusion resistance from substomatal cavities to chloroplasts (r m), but the controls on diffusion limits by integral leaf variables such as leaf thickness, density, and dry mass per unit area and by the individual steps along the diffusion pathway are imperfectly understood. To gain insight into the determinants of r m in leaves with varying structure, the full CO2 physical diffusion pathway was analysed in 32 Australian species sampled from sites contrasting in soil nutrients and rainfall, and having leaf structures from mesophytic to strongly sclerophyllous. r m was estimated based on combined measurements of gas exchange and chlorophyll fluorescence. In addition, r m was modelled on the basis of detailed anatomical measurements to separate the importance of different serial resistances affecting CO2 diffusion into chloroplasts. The strongest sources of variation in r m were S c/S, the exposed surface area of chloroplasts per unit leaf area, and mesophyll cell wall thickness, t cw. The strong correlation of r m with t cw could not be explained by cell wall thickness alone, and most likely arose from a further effect of cell wall porosity. The CO2 drawdown from intercellular spaces to chloroplasts was positively correlated with t cw, suggesting enhanced diffusional limitations in leaves with thicker cell walls. Leaf thickness and density were poorly correlated with S c/S, indicating that widely varying combinations of leaf anatomical traits occur at given values of leaf integrated traits, and suggesting that detailed anatomical studies are needed to predict r m for any given species. PMID:22888123
Phloem unloading in developing leaves of sugar beet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmalstig, J.G.
1985-01-01
Physiological and transport data support a symplastic pathway for phloem unloading in developing leaves of sugar beet (Beta vulgaris L. Klein E, multigerm). The sulfhydryl inhibitor parachloromercuribenzene sulfonic acid (PCMBS) inhibited uptake of (/sup 14/C)-sucrose added to the free space of developing leaves, but did not affect import of (/sup 14/C)-sucrose during steady-state /sup 14/CO/sub 2/ labeling of a source leaf. The passively-transported xenobiotic sugar, (/sup 14/C)-L-glucose did not readily enter mesophyll cells when supplied through the cut end of the petiole of a sink leaf as determined by whole leaf autoradiography. In contrast, (/sup 14/C)-L-glucose translocated through the phloemmore » from a mature leaf, rapidly entered mesophyll cells, and was evenly distributed between mesophyll and veins. Autoradiographs of developing leaves following a pulse of /sup 14/CO/sub 2/ to a source leaf revealed rapid passage of phloem translocated into progressively higher order veins as the leaf developed. Entry into V order veins occurred during the last stage of import through the phloem. Import into developing leaves was inhibited by glyphosate (N-phosphomethylglycine), a herbicide which inhibits the aromatic amino acid pathway and hence protein synthesis. Glyphosate also stopped net starch accumulation in sprayed mature leaves, but did not affect export of carbon from treated leaves during the time period that import into developed leaves was inhibited.« less
The light response of mesophyll conductance is controlled by structure across leaf profiles.
Théroux-Rancourt, Guillaume; Gilbert, Matthew E
2017-05-01
Mesophyll conductance to CO 2 (g m ) may respond to light either through regulated dynamic mechanisms or due to anatomical and structural factors. At low light, some layers of cells in the leaf cross-section approach photocompensation and contribute minimally to bulk leaf photosynthesis and little to whole leaf g m (g m,leaf ). Thus, the bulk g m,leaf will appear to respond to light despite being based upon cells having an anatomically fixed mesophyll conductance. Such behaviour was observed in species with contrasting leaf structure using the variable J or stable isotope method of measuring g m,leaf . A species with bifacial structure, Arbutus × 'Marina', and an isobilateral species, Triticum durum L., had contrasting responses of g m,leaf upon varying adaxial or abaxial illumination. Anatomical observations, when coupled with the proposed model of g m,leaf to photosynthetic photon flux density (PPFD) response, successfully represented the observed gas exchange data. The theoretical and observed evidence that g m,leaf apparently responds to light has large implications for how g m,leaf values are interpreted, particularly limitation analyses, and indicates the importance of measuring g m under full light saturation. Responses of g m,leaf to the environment should be treated as an emergent property of a distributed 3D structure, and not solely a leaf area-based phenomenon. © 2016 John Wiley & Sons Ltd.
Metabolomic Responses of Guard Cells and Mesophyll Cells to Bicarbonate
Misra, Biswapriya B.; de Armas, Evaldo; Tong, Zhaohui; Chen, Sixue
2015-01-01
Anthropogenic CO2 presently at 400 ppm is expected to reach 550 ppm in 2050, an increment expected to affect plant growth and productivity. Paired stomatal guard cells (GCs) are the gate-way for water, CO2, and pathogen, while mesophyll cells (MCs) represent the bulk cell-type of green leaves mainly for photosynthesis. We used the two different cell types, i.e., GCs and MCs from canola (Brassica napus) to profile metabolomic changes upon increased CO2 through supplementation with bicarbonate (HCO3 -). Two metabolomics platforms enabled quantification of 268 metabolites in a time-course study to reveal short-term responses. The HCO3 - responsive metabolomes of the cell types differed in their responsiveness. The MCs demonstrated increased amino acids, phenylpropanoids, redox metabolites, auxins and cytokinins, all of which were decreased in GCs in response to HCO3 -. In addition, the GCs showed differential increases of primary C-metabolites, N-metabolites (e.g., purines and amino acids), and defense-responsive pathways (e.g., alkaloids, phenolics, and flavonoids) as compared to the MCs, indicating differential C/N homeostasis in the cell-types. The metabolomics results provide insights into plant responses and crop productivity under future climatic changes where elevated CO2 conditions are to take center-stage. PMID:26641455
Dorca-Fornell, Carmen; Pajor, Radoslaw; Lehmeier, Christoph; Pérez-Bueno, Marísa; Bauch, Marion; Sloan, Jen; Osborne, Colin; Rolfe, Stephen; Sturrock, Craig; Mooney, Sacha; Fleming, Andrew
2013-01-01
The causal relationship between cell division and growth in plants is complex. Although altered expression of cell-cycle genes frequently leads to altered organ growth, there are many examples where manipulation of the division machinery leads to a limited outcome at the level of organ form, despite changes in constituent cell size. One possibility, which has been under-explored, is that altered division patterns resulting from manipulation of cell-cycle gene expression alter the physiology of the organ, and that this has an effect on growth. We performed a series of experiments on retinoblastoma-related protein (RBR), a well characterized regulator of the cell cycle, to investigate the outcome of altered cell division on leaf physiology. Our approach involved combination of high-resolution microCT imaging and physiological analysis with a transient gene induction system, providing a powerful approach for the study of developmental physiology. Our investigation identifies a new role for RBR in mesophyll differentiation that affects tissue porosity and the distribution of air space within the leaf. The data demonstrate the importance of RBR in early leaf development and the extent to which physiology adapts to modified cellular architecture resulting from altered cell-cycle gene expression. PMID:24118480
Hommel, Robert; Siegwolf, Rolf; Saurer, Matthias; Farquhar, Graham D; Kayler, Zachary; Ferrio, Juan Pedro; Gessler, Arthur
2014-09-01
Regulation of stomatal (gs ) and mesophyll conductance (gm ) is an efficient means for optimizing the relationship between water loss and carbon uptake in plants. We assessed water-use efficiency (WUE)-based drought adaptation strategies with respect to mesophyll conductance of different functional plant groups of the forest understory. Moreover we aimed at assessing the mechanisms of and interactions between water and CO2 conductance in the mesophyll. The facts that an increase in WUE was observed only in the two species that increased gm in response to moderate drought, and that over all five species examined, changes in mesophyll conductance were significantly correlated with the drought-induced change in WUE, proves the importance of gm in optimizing resource use under water restriction. There was no clear correlation of mesophyll CO2 conductance and the tortuosity of water movement in the leaf across the five species in the control and drought treatments. This points either to different main pathways for CO2 and water in the mesophyll either to different regulation of a common pathway. © 2014 Scandinavian Plant Physiology Society.
Phloem Loading through Plasmodesmata: A Biophysical Analysis1[OPEN
2017-01-01
In many species, Suc en route out of the leaf migrates from photosynthetically active mesophyll cells into the phloem down its concentration gradient via plasmodesmata, i.e. symplastically. In some of these plants, the process is entirely passive, but in others phloem Suc is actively converted into larger sugars, raffinose and stachyose, and segregated (trapped), thus raising total phloem sugar concentration to a level higher than in the mesophyll. Questions remain regarding the mechanisms and selective advantages conferred by both of these symplastic-loading processes. Here, we present an integrated model—including local and global transport and kinetics of polymerization—for passive and active symplastic loading. We also propose a physical model of transport through the plasmodesmata. With these models, we predict that (1) relative to passive loading, polymerization of Suc in the phloem, even in the absence of segregation, lowers the sugar content in the leaf required to achieve a given export rate and accelerates export for a given concentration of Suc in the mesophyll and (2) segregation of oligomers and the inverted gradient of total sugar content can be achieved for physiologically reasonable parameter values, but even higher export rates can be accessed in scenarios in which polymers are allowed to diffuse back into the mesophyll. We discuss these predictions in relation to further studies aimed at the clarification of loading mechanisms, fitness of active and passive symplastic loading, and potential targets for engineering improved rates of export. PMID:28794259
Chang, Yao-Ming; Liu, Wen-Yu; Shih, Arthur Chun-Chieh; Shen, Meng-Ni; Lu, Chen-Hua; Lu, Mei-Yeh Jade; Yang, Hui-Wen; Wang, Tzi-Yuan; Chen, Sean C-C; Chen, Stella Maris; Li, Wen-Hsiung; Ku, Maurice S B
2012-09-01
To study the regulatory and functional differentiation between the mesophyll (M) and bundle sheath (BS) cells of maize (Zea mays), we isolated large quantities of highly homogeneous M and BS cells from newly matured second leaves for transcriptome profiling by RNA sequencing. A total of 52,421 annotated genes with at least one read were found in the two transcriptomes. Defining a gene with more than one read per kilobase per million mapped reads as expressed, we identified 18,482 expressed genes; 14,972 were expressed in M cells, including 53 M-enriched transcription factor (TF) genes, whereas 17,269 were expressed in BS cells, including 214 BS-enriched TF genes. Interestingly, many TF gene families show a conspicuous BS preference in expression. Pathway analyses reveal differentiation between the two cell types in various functional categories, with the M cells playing more important roles in light reaction, protein synthesis and folding, tetrapyrrole synthesis, and RNA binding, while the BS cells specialize in transport, signaling, protein degradation and posttranslational modification, major carbon, hydrogen, and oxygen metabolism, cell division and organization, and development. Genes coding for several transporters involved in the shuttle of C(4) metabolites and BS cell wall development have been identified, to our knowledge, for the first time. This comprehensive data set will be useful for studying M/BS differentiation in regulation and function.
The role of mesophyll conductance in the economics of nitrogen and water use in photosynthesis.
Buckley, Thomas N; Warren, Charles R
2014-02-01
A recent resurgence of interest in formal optimisation theory has begun to improve our understanding of how variations in stomatal conductance and photosynthetic capacity control the response of whole plant photosynthesis and growth to the environment. However, mesophyll conductance exhibits similar variation and has similar impact on photosynthesis as stomatal conductance; yet, the role of mesophyll conductance in the economics of photosynthetic resource use has not been thoroughly explored. In this article, we first briefly summarise the knowledge of how mesophyll conductance varies in relation to environmental factors that also affect stomatal conductance and photosynthetic capacity, and then we use a simple analytical approach to begin to explore how these important controls on photosynthesis should mutually co-vary in a plant canopy in the optimum. Our analysis predicts that when either stomatal or mesophyll conductance is limited by fundamental biophysical constraints in some areas of a canopy, e.g. reduced stomatal conductance in upper canopy leaves due to reduced water potential, the other of the two conductances should increase in those leaves, while photosynthetic capacity should decrease. Our analysis also predicts that if mesophyll conductance depends on nitrogen investment in one or more proteins, then nitrogen investment should shift away from Rubisco and towards mesophyll conductance if hydraulic or other constraints cause chloroplastic CO2 concentration to decline. Thorough exploration of these issues awaits better knowledge of whether and how mesophyll conductance is itself limited by nitrogen investment, and about how these determinants of photosynthetic CO2 supply and demand co-vary among leaves in real plant canopies.
The Competition between Liquid and Vapor Transport in Transpiring Leaves1[W][OPEN
Rockwell, Fulton Ewing; Holbrook, N. Michele; Stroock, Abraham Duncan
2014-01-01
In leaves, the transpirational flux of water exits the veins as liquid and travels toward the stomata in both the vapor and liquid phases before exiting the leaf as vapor. Yet, whether most of the evaporation occurs from the vascular bundles (perivascular), from the photosynthetic mesophyll cells, or within the vicinity of the stomatal pore (peristomatal) remains in dispute. Here, a one-dimensional model of the competition between liquid and vapor transport is developed from the perspective of nonisothermal coupled heat and water molecule transport in a composite medium of airspace and cells. An analytical solution to the model is found in terms of the energy and transpirational fluxes from the leaf surfaces and the absorbed solar energy load, leading to mathematical expressions for the proportions of evaporation accounted for by the vascular, mesophyll, and epidermal regions. The distribution of evaporation in a given leaf is predicted to be variable, changing with the local environment, and to range from dominantly perivascular to dominantly peristomatal depending on internal leaf architecture, with mesophyll evaporation a subordinate component. Using mature red oak (Quercus rubra) trees, we show that the model can be solved for a specific instance of a transpiring leaf by combining gas-exchange data, anatomical measurements, and hydraulic experiments. We also investigate the effect of radiation load on the control of transpiration, the potential for condensation on the inside of an epidermis, and the impact of vapor transport on the hydraulic efficiency of leaf tissue outside the xylem. PMID:24572172
The competition between liquid and vapor transport in transpiring leaves.
Rockwell, Fulton Ewing; Holbrook, N Michele; Stroock, Abraham Duncan
2014-04-01
In leaves, the transpirational flux of water exits the veins as liquid and travels toward the stomata in both the vapor and liquid phases before exiting the leaf as vapor. Yet, whether most of the evaporation occurs from the vascular bundles (perivascular), from the photosynthetic mesophyll cells, or within the vicinity of the stomatal pore (peristomatal) remains in dispute. Here, a one-dimensional model of the competition between liquid and vapor transport is developed from the perspective of nonisothermal coupled heat and water molecule transport in a composite medium of airspace and cells. An analytical solution to the model is found in terms of the energy and transpirational fluxes from the leaf surfaces and the absorbed solar energy load, leading to mathematical expressions for the proportions of evaporation accounted for by the vascular, mesophyll, and epidermal regions. The distribution of evaporation in a given leaf is predicted to be variable, changing with the local environment, and to range from dominantly perivascular to dominantly peristomatal depending on internal leaf architecture, with mesophyll evaporation a subordinate component. Using mature red oak (Quercus rubra) trees, we show that the model can be solved for a specific instance of a transpiring leaf by combining gas-exchange data, anatomical measurements, and hydraulic experiments. We also investigate the effect of radiation load on the control of transpiration, the potential for condensation on the inside of an epidermis, and the impact of vapor transport on the hydraulic efficiency of leaf tissue outside the xylem.
Elements Required for an Efficient NADP-Malic Enzyme Type C4 Photosynthesis1[C][W][OPEN
Wang, Yu; Long, Stephen P.; Zhu, Xin-Guang
2014-01-01
C4 photosynthesis has higher light, nitrogen, and water use efficiencies than C3 photosynthesis. Although the basic anatomical, cellular, and biochemical features of C4 photosynthesis are well understood, the quantitative significance of each element of C4 photosynthesis to the high photosynthetic efficiency are not well defined. Here, we addressed this question by developing and using a systems model of C4 photosynthesis, which includes not only the Calvin-Benson cycle, starch synthesis, sucrose synthesis, C4 shuttle, and CO2 leakage, but also photorespiration and metabolite transport between the bundle sheath cells and mesophyll cells. The model effectively simulated the CO2 uptake rates, and the changes of metabolite concentrations under varied CO2 and light levels. Analyses show that triose phosphate transport and CO2 leakage can help maintain a high photosynthetic rate by balancing ATP and NADPH amounts in bundle sheath cells and mesophyll cells. Finally, we used the model to define the optimal enzyme properties and a blueprint for C4 engineering. As such, this model provides a theoretical framework for guiding C4 engineering and studying C4 photosynthesis in general. PMID:24521879
Picchi, Valentina; Monga, Robert; Marzuoli, Riccardo; Gerosa, Giacomo; Faoro, Franco
2017-03-01
Colombo and Sculptur are two modern durum wheat cultivars that, in previous studies, proved to be very sensitive to ozone injury in terms of eco-physiological parameters and significant grain yield loss. Nevertheless, their response regarding leaf visible symptoms was very different; Sculptur showed almost no symptoms, even after several weeks of ozone exposure, whereas Colombo showed in a few weeks typical ozone-like symptoms (chlorotic/necrotic spots). The mechanisms underlying this different response has been studied with a biochemical and microscopical approach. Plants were grown in Open-Top Chambers (OTCs) and exposed to charcoal filtered and ozone enriched air. Flag leaves were analyzed at two phenological stages (pre- and post-anthesis). At pre-anthesis the ascorbate pool was significantly lower in Colombo, which also underwent an increase in the oxidized glutathione content and abundant H 2 O 2 deposition in mesophyll cells around the substomatal chamber. No or scarce H 2 O 2 was found at both phenological stages in ozone exposed leaf tissues of Sculptur, where stomata appeared often closed. In this cultivar, transmission electron microscopy showed that chloroplasts in apparently undamaged mesophyll cells were slightly swollen and presented numerous plastoglobuli, as a result of a mild oxidative stress. These results suggest that Sculptur leaves remains symptomless as a consequence of the higher content of constitutive ascorbate pool and the synergistic effect of stomata closure. Instead, Colombo shows chlorotic/necrotic symptoms because of the lower ROS (Reactive Oxygen Species) scavenging capacity and the less efficient stomata closure that lead to severe damages of groups of the mesophyll cells, however leaving the surrounding photosynthetic tissue functional. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Rios, Juan Jose; Lochlainn, Seosamh O; Devonshire, Jean; Graham, Neil S; Hammond, John P; King, Graham J; White, Philip J; Kurup, Smita; Broadley, Martin R
2012-05-01
Leafy vegetable Brassica crops are an important source of dietary calcium (Ca) and magnesium (Mg) and represent potential targets for increasing leaf Ca and Mg concentrations through agronomy or breeding. Although the internal distribution of Ca and Mg within leaves affects the accumulation of these elements, such data are not available for Brassica. The aim of this study was to characterize the internal distribution of Ca and Mg in the leaves of a vegetable Brassica and to determine the effects of altered exogenous Ca and Mg supply on this distribution. Brassica rapa ssp. trilocularis 'R-o-18' was grown at four different Ca:Mg treatments for 21 d in a controlled environment. Concentrations of Ca and Mg were determined in fully expanded leaves using inductively coupled plasma-mass spectrometry (ICP-MS). Internal distributions of Ca and Mg were determined in transverse leaf sections at the base and apex of leaves using energy-dispersive X-ray spectroscopy (EDS) with cryo-scanning electron microscopy (cryo-SEM). Leaf Ca and Mg concentrations were greatest in palisade and spongy mesophyll cells, respectively, although this was dependent on exogenous supply. Calcium accumulation in palisade mesophyll cells was enhanced slightly under high Mg supply; in contrast, Mg accumulation in spongy mesophyll cells was not affected by Ca supply. The results are consistent with Arabidopsis thaliana and other Brassicaceae, providing phenotypic evidence that conserved mechanisms regulate leaf Ca and Mg distribution at a cellular scale. The future study of Arabidopsis gene orthologues in mutants of this reference B. rapa genotype will improve our understanding of Ca and Mg homeostasis in plants and may provide a model-to-crop translation pathway for targeted breeding.
Synchrotron X-ray computed laminography of the three-dimensional anatomy of tomato leaves.
Verboven, Pieter; Herremans, Els; Helfen, Lukas; Ho, Quang T; Abera, Metadel; Baumbach, Tilo; Wevers, Martine; Nicolaï, Bart M
2015-01-01
Synchrotron radiation computed laminography (SR-CL) is presented as an imaging method for analyzing the three-dimensional (3D) anatomy of leaves. The SR-CL method was used to provide 3D images of 1-mm² samples of intact leaves at a pixel resolution of 750 nm. The method allowed visualization and quantitative analysis of palisade and spongy mesophyll cells, and showed local venation patterns, aspects of xylem vascular structure and stomata. The method failed to image subcellular organelles such as chloroplasts. We constructed 3D computer models of leaves that can provide a basis for calculating gas exchange, light penetration and water and solute transport. The leaf anatomy of two different tomato genotypes grown in saturating light conditions was compared by 3D analysis. Differences were found in calculated values of tissue porosity, cell number density, cell area to volume ratio and cell volume and cell shape distributions of palisade and spongy cell layers. In contrast, the exposed cell area to leaf area ratio in mesophyll, a descriptor that correlates to the maximum rate of photosynthesis in saturated light conditions, was no different between spongy and palisade cells or between genotypes. The use of 3D image processing avoids many of the limitations of anatomical analysis with two-dimensional sections. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Van Volkenburgh, E.; Cleland, R. E.
1990-01-01
Cell expansion in dicotyledonous leaves is strongly stimulated by bright white light (WL), at least in part as a result of light-induced acidification of the cell walls. It has been proposed that photosynthetic reactions are required for light-stimulated transport processes across plasma membranes of leaf cells, including proton excretion. The involvement of photosynthesis in growth and wall acidification of primary leaves of bean has been tested by inhibiting photosynthesis in two ways: by reducing chlorophyll content of intact plants with tentoxin (TX) and by treating leaf discs with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Exposure to bright WL stimulated growth of intact leaves of TX-treated plants. Discs excised from green as well as from TX-or DCMU-treated leaves also responded by growing faster in WL, as long as exogenous sucrose was supplied to the photosynthetically inhibited tissues. The WL caused acidification of the epidermal surface of intact TX-leaves, but acidification of the incubation medium by mesophyll cells only occurred when photosynthesis was not inhibited. It is concluded that light-stimulated cell enlargement of bean leaves, and the necessary acidification of epidermal cell walls, are mediated by a pigment other than chlorophyll. Light-induced proton excretion by mesophyll cells, on the other hand, may require both a photosynthetic product (or exogenous sugars) and a non-photosynthetic light effect.
Mesophyll cells of C4 plants have fewer chloroplasts than those of closely related C3 plants.
Stata, Matt; Sage, Tammy L; Rennie, Troy D; Khoshravesh, Roxana; Sultmanis, Stefanie; Khaikin, Yannay; Ludwig, Martha; Sage, Rowan F
2014-11-01
The evolution of C(4) photosynthesis from C(3) ancestors eliminates ribulose bisphosphate carboxylation in the mesophyll (M) cell chloroplast while activating phosphoenolpyruvate (PEP) carboxylation in the cytosol. These changes may lead to fewer chloroplasts and different chloroplast positioning within M cells. To evaluate these possibilities, we compared chloroplast number, size and position in M cells of closely related C(3), C(3) -C(4) intermediate and C(4) species from 12 lineages of C(4) evolution. All C(3) species had more chloroplasts per M cell area than their C(4) relatives in high-light growth conditions. C(3) species also had higher chloroplast coverage of the M cell periphery than C(4) species, particularly opposite intercellular air spaces. In M cells from 10 of the 12 C(4) lineages, a greater fraction of the chloroplast envelope was pulled away from the plasmalemma in the C(4) species than their C(3) relatives. C(3) -C(4) intermediate species generally exhibited similar patterns as their C(3) relatives. We interpret these results to reflect adaptive shifts that facilitate efficient C(4) function by enhancing diffusive access to the site of primary carbon fixation in the cytosol. Fewer chloroplasts in C(4) M cells would also reduce shading of the bundle sheath chloroplasts, which also generate energy required by C(4) photosynthesis. © 2014 John Wiley & Sons Ltd.
USDA-ARS?s Scientific Manuscript database
Photosynthetic potential in C3 plants is largely limited by CO2 diffusion through stomata (Ls) and mesophyll (Lm) and photo-biochemical (Lb) processes. Accurate estimation of mesophyll conductance (gm) using gas exchange (GE) and chlorophyll fluorescence (CF) parameters of the photosynthetic proces...
Prats, Elena; Gay, Alan P; Roberts, Peter C; Thomas, Barry J; Sanderson, Ruth; Paveley, Neil; Lyngkjaer, Michael F; Carver, Tim L W; Mur, Luis A J
2010-01-01
Hypersensitive response (HR) against Blumeria graminis f. sp. hordei infection in barley (Hordeum vulgare) was associated with stomata "lock-up" leading to increased leaf water conductance (g(l)). Unique spatio-temporal patterns of HR formation occurred in barley with Mla1, Mla3, or MlLa R genes challenged with B. graminis f. sp. hordei. With Mla1, a rapid HR, limited to epidermal cells, arrested fungal growth before colonies initiated secondary attacks. With Mla3, mesophyll HR preceded that in epidermal cells whose initial survival supported secondary infections. With MlLa, mesophyll survived and not all attacked epidermal cells died immediately, allowing colony growth and secondary infection until arrested. Isolines with Mla1, Mla3, or MlLa genes inoculated with B. graminis f. sp. hordei ranging from 1 to 100 conidia mm(2) showed abnormally high g(l) during dark periods whose timing and extent correlated with those of each HR. Each isoline showed increased dark g(l) with the nonpathogen B. graminis f. sp. avenae which caused a single epidermal cell HR. Guard cell autofluorescence was seen only after drying of epidermal strips and closure of stomata suggesting that locked open stomata were viable. The data link stomatal lock-up to HR associated cell death and has implications for strategies for selecting disease resistant genotypes.
NASA Technical Reports Server (NTRS)
Gausman, H. W.; Allen, W. A.; Wiegand, C. L.; Escobar, D. E.; Rodriguez, R. R.
1971-01-01
Review of research on radiation interactions within plant canopies and communities and interactions of various leaf structures (mesophyll arrangements) with electromagnetic radiation involved in the interpretation of data sensed from air or spacecraft. The hypothesis underlying the research reported is that leaf mesophyll arrangements influence spectral energy measurements of leaves.
Zeiger, E; Schwartz, A
1982-11-12
Guard cell chloroplasts in senescing leaves from 12 species of perennial trees and three species of annual plants survived considerably longer than their mesophyll counterparts. In Ginkgo biloba, stomata from yellow leaves opened during the day and closed at night; guard cell chloroplasts from these leaves showed fluorescence transients associated with electron transport and photophosphorylation. These findings indicate that guard cell chloroplasts are highly conserved throughout the life-span of the leaf and that leaves retain stomatal control during senescence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeiger, E.; Schwartz, A.
1982-11-12
Guard cell chloroplasts in senescing leaves from 12 species of perennial trees and three species of annual plants survived considerably longer than their mesophyll counterparts. In Ginkgo biloba, stomata from yellow leaves opened during the day and closed at night; guard cell chloroplasts from these leaves showed fluorescence transients associated with electron transport and photophosphorylation. These findings indicate that guard cell chloroplasts are highly conserved throughout the life-span of the leaf and that leaves retain stomatal control during senescence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reckmann, U.; Scheibe, R.; Raschke, K.
We investigated whether the reductive pentose phosphate path in guard cells of Pisum sativum had the capacity to contribute significantly to the production of osmotica during stomatal opening in the light. Amounts of ribulose 1,5-bisphophate carboxylase/oxygenase (Rubisco) were determined by the ({sup 14}C) carboxyarabinitol bisphosphate assay. A guard cell contained about 1.2 and a mesophyll cell about 324 picograms of the enzyme; the ratio was 1:270. The specific activities of Rubisco in guard cells and in mesophyll cells were equal; there was no indication of a specific inhibitor of Rubisco in guard cells. Rubisco activity was 115 femtomol per guard-cellmore » protoplast and hour. This value was different from zero with a probability of 0.99. After exposure of guard-cell protoplasts to {sup 14}CO{sub 2} for 2 seconds in the light, about one-half of the radioactivity was in phosphorylated compounds and <10% in malate. Guard cells in epidermal strips produced a different labelling pattern; in the light, <10% of the label was in phosphorylated compounds and about 60% in malate. The rate of solute accumulation in intact guard cells was estimated to have been 900 femto-osmol per cell and hour. If Rubisco operated at full capacity in guard cells, and hexoses were produced as osmotica, solutes could be supplied at a rate of 19femto-osmol per cell and hour, which would constitute 2% of the estimated requirement. The capacity of guard-cell Rubisco to meet the solute requirement for stomatal opening in leaves of Pisum sativum is insignificant.« less
Sotiriou, P; Giannoutsou, E; Panteris, E; Galatis, B; Apostolakos, P
2018-03-01
The distribution of homogalacturonans (HGAs) displaying different degrees of esterification as well as of callose was examined in cell walls of mature pavement cells in two angiosperm and two fern species. We investigated whether local cell wall matrix differentiation may enable pavement cells to respond to mechanical tension forces by transiently altering their shape. HGA epitopes, identified with 2F4, JIM5 and JIM7 antibodies, and callose were immunolocalised in hand-made or semithin leaf sections. Callose was also stained with aniline blue. The structure of pavement cells was studied with light and transmission electron microscopy (TEM). In all species examined, pavement cells displayed wavy anticlinal cell walls, but the waviness pattern differed between angiosperms and ferns. The angiosperm pavement cells were tightly interconnected throughout their whole depth, while in ferns they were interconnected only close to the external periclinal cell wall and intercellular spaces were developed between them close to the mesophyll. Although the HGA epitopes examined were located along the whole cell wall surface, the 2F4- and JIM5- epitopes were especially localised at cell lobe tips. In fern pavement cells, the contact sites were impregnated with callose and JIM5-HGA epitopes. When tension forces were applied on leaf regions, the pavement cells elongated along the stretching axis, due to a decrease in waviness of anticlinal cell walls. After removal of tension forces, the original cell shape was resumed. The presented data support that HGA epitopes make the anticlinal pavement cell walls flexible, in order to reversibly alter their shape. Furthermore, callose seems to offer stability to cell contacts between pavement cells, as already suggested in photosynthetic mesophyll cells. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Effects of microgravityon the structural organization of Brassica rapa photosynthetic appartus
NASA Astrophysics Data System (ADS)
Adamchuk, N.; Kordyum, E.; Guikema, J.
Leaf mesophyll cells of 13- and 15-day old Brassica rapa plants grown on board the space shuttle Columbia (STS-87) and in the ground control have been investigated using the methods of light and electron microscopy. 13-day old plants were fixed on orbit and 15-day old plants were fixed after landing. It was shown the essential differences in leaf mesophyll quantitative anatomical and ultrastructural characteristics between spaceflight and ground control variants. Both the volume of palisade parenchyma cells and a number of chloroplasts in those cells increased in spaceflight samples. Simultaneusly, a chloroplast size decreased together with increasing of a relative volume of stromal thylakoids, starch grains and plastoglobuli. It was also noted increasing of stromal thylakoid length. In the same time, both a total length of thylakoids in granae and the grana number diminished in space flight. In addition, the interthylakoid space could be expended and the thylakoid length was more variable in chloroplast granae on microgravity, that correlated with a shrinkage of thylakoids in granal stacks. The obtained data a er discussed with the questions on both the photosynthetic apparatus sensitivity to gravity and its adaptive possibility to microgravity.
Kobayashi, Hiroaki; Yamada, Masahiro; Taniguchi, Mitsutaka; Kawasaki, Michio; Sugiyama, Tatsuo; Miyake, Hiroshi
2009-01-01
In C(4) plants, bundle sheath (BS) chloroplasts are arranged in the centripetal position or in the centrifugal position, although mesophyll (M) chloroplasts are evenly distributed along cell membranes. To examine the molecular mechanism for the intracellular disposition of these chloroplasts, we observed the distribution of actin filaments in BS and M cells of the C(4) plants finger millet (Eleusine coracana) and maize (Zea mays) using immunofluorescence. Fine actin filaments encircled chloroplasts in both cell types, and an actin network was observed adjacent to plasma membranes. The intracellular disposition of both chloroplasts in finger millet was disrupted by centrifugal force but recovered within 2 h in the dark. Actin filaments remained associated with chloroplasts during recovery. We also examined the effects of inhibitors on the rearrangement of chloroplasts. Inhibitors of actin polymerization, myosin-based activities and cytosolic protein synthesis blocked migration of chloroplasts. In contrast, a microtubule-depolymerizing drug had no effect. These results show that C(4) plants possess a mechanism for keeping chloroplasts in the home position which is dependent on the actomyosin system and cytosolic protein synthesis but not tubulin or light.
Tian, Tian; Qin, Yebo; Gill, Rafaqat A.; Ali, Shafaqat
2014-01-01
Lead (Pb) is a widely spread pollutant and leads to diverse morphological and structural changes in the plants. In this study, alleviating role of 5-aminolevulinic acid (ALA) in oilseed rape (Brassica napus L.) was investigated with or without foliar application of ALA (25 mg L−1) in hydroponic environment under different Pb levels (0, 100, and 400 µM). Outcomes stated that plant morphology and photosynthetic attributes were reduced under the application of Pb alone. However, ALA application significantly increased the plant growth and photosynthetic parameters under Pb toxicity. Moreover, ALA also lowered the Pb concentration in shoots and roots under Pb toxicity. The microscopic studies depicted that exogenously applied ALA ameliorated the Pb stress and significantly improved the cell ultrastructures. After application of ALA under Pb stress, mesophyll cell had well-developed nucleus and chloroplast having a number of starch granules. Moreover, micrographs illustrated that root tip cell contained well-developed nucleus, a number of mitochondria, and golgi bodies. These results proposed that under 15-day Pb-induced stress, ALA improved the plant growth, chlorophyll content, photosynthetic parameters, and ultrastructural modifications in leaf mesophyll and root tip cells of the B. napus plants. PMID:24683549
Estimating Mesophyll Conductance in the Tropical Rainforest
NASA Astrophysics Data System (ADS)
Coughlin, I.
2015-12-01
In the current research modeling the carbon cycle, some of the biggest setbacks are methodological barriers to calculating the gross primary production (GPP) in the terrestrial biosphere. However, recent developments in high precision gas measurements now allow the use of COS as a potential tracer for determination of GPP, independently of CO2 .Since the tropics are implicated as being the source of the most significant reduction of carbon uptake by the majority of models, making accurate GPP measurements in the tropics is particularly important for carbon modeling. In order to constrain measurements of GPP in the tropics, carbonyl sulfide fluxes on a leaf chamber scale and a canopy-wide scale will be analyzed in a field site in the central Amazon. Accompanying this experiment, I am measuring the resistance of CO2 passing through the intercellular airspaces in the leaf to the sites of carboxylation, known as mesophyll conductance. Mesophyll conductance is poorly documented in the tropics, and remains a centrally limiting factor in plant uptake of COS and CO2 - with upward estimates of 40% of the CO2 diffusional limitation of photosynthesis hinging on mesophyll conductance (Warren, 2008). This makes mesophyll conductance comparable in magnitude to that of the stomatal conductance, suggesting that mesophyll conductance is one of the most fundamental measurements necessary for developing the predictive capacity of plants' response to ecosystem changes. Accurate measurements of the mesophyll conductance also lead to better informed models that can upscale assimilation measurements from leaf chambers, by providing quantitative constraints for modeling the uptake of carbonyl sulfide and carbon dioxide by the leaf. Additionally, since mesophyll conductance reacts to environmental variation, it can be used as an indicator for leaf stress. Measurements are taken using the 'variable J' technique, involving the use of combined fluorescence measurements and gas exchange data to estimate the ratio of photosynthetic assimilation to differences in CO2 concentration between the intercellular air spaces and the sites of carboxylation.
Pérez-Amador, M A; Abler, M L; De Rocher, E J; Thompson, D M; van Hoof, A; LeBrasseur, N D; Lers, A; Green, P J
2000-01-01
Nuclease I enzymes are responsible for the degradation of RNA and single-stranded DNA during several plant growth and developmental processes, including senescence. However, in the case of senescence the corresponding genes have not been reported. We describe the identification and characterization of BFN1 of Arabidopsis, and demonstrate that it is a senescence-associated nuclease I gene. BFN1 nuclease shows high similarity to the sequence of a barley nuclease induced during germination and a zinnia (Zinnia elegans) nuclease induced during xylogenesis. In transgenic plants overexpressing the BFN1 cDNA, a nuclease activity of about 38 kD was detected on both RNase and DNase activity gels. Levels of BFN1 mRNA were extremely low or undetectable in roots, leaves, and stems. In contrast, relatively high BFN1 mRNA levels were detected in flowers and during leaf and stem senescence. BFN1 nuclease activity was also induced during leaf and stem senescence. The strong response of the BFN1 gene to senescence indicated that it would be an excellent tool with which to study the mechanisms of senescence induction, as well as the role of the BFN1 enzyme in senescence using reverse genetic approaches in Arabidopsis.
Screening of plants for phytoremediation of oil-contaminated soil.
Ikeura, Hiromi; Kawasaki, Yu; Kaimi, Etsuko; Nishiwaki, Junko; Noborio, Kosuke; Tamaki, Masahiko
2016-01-01
Several species of ornamental flowering plants were evaluated regarding their phytoremediation ability for the cleanup of oil-contaminated soil in Japanese environmental conditions. Thirty-three species of plants were grown in oil-contaminated soil, and Mimosa, Zinnia, Gazania, and cypress vine were selected for further assessment on the basis of their favorable initial growth. No significant difference was observed in the above-ground and under-ground dry matter weight of Gazania 180 days after sowing between contaminated and non-contaminated plots. However, the other 3 species of plants died by the 180th day, indicating that Gazania has an especially strong tolerance for oil-contaminated soil. The total petroleum hydrocarbon concentration of the soils in which the 4 species of plants were grown decreased by 45-49% by the 180th day. Compared to an irrigated plot, the dehydrogenase activity of the contaminated soil also increased significantly, indicating a phytoremediation effect by the 4 tested plants. Mimosa, Zinnia, and cypress vine all died by the 180th day after seeding, but the roots themselves became a source of nutrients for the soil microorganisms, which led to a phytoremediation effect by increase in the oil degradation activity. It has been indicated that Gazania is most appropriate for phytoremediation of oil-contaminated soil.
[Changes of lastids in virus-infected cells of the attraction-zone from Sarracenia purpurea L].
Barckhaus, R H; Weinert, H
1975-01-01
Viruslike particles 300-350 nm long and 70 nm in diameter were found in ultrathin sections of attraction-zone from Sarracenia purpurea. Epidermal- and mesophyll cells contained the bacilliform particles. The membrane-bound particles-most virions occured within ER-like membranes-consisted of an outer coat 70-90 A thick, an inner membrane and an axial core. The plastids of infected cells in which virus particles were localized show morphologicals changes of the organells.
NASA Astrophysics Data System (ADS)
Guo, J.; Beverly, D.; Cook, C.; Ewers, B.; Williams, D. G.
2016-12-01
Carbon isotope ratio values (δ13C) of conifer leaf material generally increases with elevation, potentially reflecting decreases in the leaf internal to ambient CO2 concentration ratio (Ci/Ca) during photosynthesis. Reduced stomatal conductance or increased carboxylation capacity with increasing elevation could account for these patterns. But some studies reported conifers δ13C increased with altitude consistently, but Ci/Ca did not significantly decrease and leaf nitrogen content remained constant with increasing of altitude in Central Rockies. Variation in leaf mesophyll conductance to CO2 diffusion, which influences leaf δ13C independently of effects related to stomatal conductance and carboxylation demand, might reconcile these conflicting observations. Leaf mass per unit area (LMA) increases with altitude and often correlates with δ13C and mesophyll conductance. Therefore, we hypothesized that increases in δ13C of conifers with altitude are controlled mainly by changes in mesophyll conductance. To test this hypothesis, leaf δ13C, photosynthetic capacity, leaf nitrogen content, LMA, and mesophyll conductance were determined on leaves of two dominant conifers (Pinus contorta and Picea engelmannii) along a 90-km transect in SE Wyoming at altitudes ranging from 2400 to 3200 m above sea level. Mesophyll conductance was determined by on-line 13C discrimination using isotope laser spectroscopy. We expected to observe relatively small differences in stomatal conductance and decreases in mesophyll conductance from lower and higher altitude sites. Such a pattern would have important implications for how differences in leaf δ13C values across altitude are interpreted in relation to forest water use and productivity from scaling of leaf-level water-use efficiency.
Let’s not forget the critical role of surface tension in xylem water relations
Jean-Christophe Domec
2011-01-01
The widely supported cohesionâtension theory of water transport explains the importance of a continuous water column and the mechanism of long-distance ascent of sap in plants (Dixon 1914, Tyree 2003, Angeles et al. 2004). The evaporation of water from the surfaces of mesophyll cells causes the airâwater interface to retreat into the cellulose matrix of the plant cell...
The Arabidopsis vacuolar malate channel is a member of the ALMT family.
Kovermann, Peter; Meyer, Stefan; Hörtensteiner, Stefan; Picco, Cristiana; Scholz-Starke, Joachim; Ravera, Silvia; Lee, Youngsook; Martinoia, Enrico
2007-12-01
In plants, malate is a central metabolite and fulfills a large number of functions. Vacuolar malate may reach very high concentrations and fluctuate rapidly, whereas cytosolic malate is kept at a constant level allowing optimal metabolism. Recently, a vacuolar malate transporter (Arabidopsis thaliana tonoplast dicarboxylate transporter, AttDT) was identified that did not correspond to the well-characterized vacuolar malate channel. We therefore hypothesized that a member of the aluminum-activated malate transporter (ALMT) gene family could code for a vacuolar malate channel. Using GFP fusion constructs, we could show that AtALMT9 (A. thaliana ALMT9) is targeted to the vacuole. Promoter-GUS fusion constructs demonstrated that this gene is expressed in all organs, but is cell-type specific as GUS activity in leaves was detected nearly exclusively in mesophyll cells. Patch-clamp analysis of an Atalmt9 T-DNA insertion mutant exhibited strongly reduced vacuolar malate channel activity. In order to functionally characterize AtALMT9 as a malate channel, we heterologously expressed this gene in tobacco and in oocytes. Overexpression of AtALMT9-GFP in Nicotiana benthamiana leaves strongly enhanced the malate current densities across the mesophyll tonoplasts. Functional expression of AtALMT9 in Xenopus oocytes induced anion currents, which were clearly distinguishable from endogenous oocyte currents. Our results demonstrate that AtALMT9 is a vacuolar malate channel. Deletion mutants for AtALMT9 exhibit only slightly reduced malate content in mesophyll protoplasts and no visible phenotype, indicating that AttDT and the residual malate channel activity are sufficient to sustain the transport activity necessary to regulate the cytosolic malate homeostasis.
Long-distance signaling within Coleus x hybridus leaves; mediated by changes in intra-leaf CO2?
NASA Technical Reports Server (NTRS)
Stahlberg, R.; Van Volkenburgh, E.; Cleland, R. E.
2001-01-01
Rapid long-distance signaling in plants can occur via several mechanisms, including symplastic electric coupling and pressure waves. We show here in variegated Coleus leaves a rapid propagation of electrical signals that appears to be caused by changes in intra-leaf CO2 concentrations. Green leaf cells, when illuminated, undergo a rapid depolarization of their membrane potential (Vm) and an increase in their apoplastic pH (pHa) by a process that requires photosynthesis. This is followed by a slower hyperpolarization of Vm and apoplastic acidification, which do not require photosynthesis. White (chlorophyll-lacking) leaf cells, when in isolated white leaf segments, show only the slow response, but when in mixed (i.e. green and white) segments, the rapid Vm depolarization and increase in pHa propagate over more than 10 mm from the green to the white cells. Similarly, these responses propagate 12-20 mm from illuminated to unilluminated green cells. The fact that the propagation of these responses is eliminated when the leaf air spaces are infiltrated with solution indicates that the signal moves in the apoplast rather than the symplast. A depolarization of the mesophyll cells is induced in the dark by a decrease in apoplastic CO2 but not by an increase in pHa. These results support the hypothesis that the propagating signal for the depolarization of the white mesophyll cells is a photosynthetically induced decrease in the CO2 level of the air spaces throughout the leaf.
Lu, Zhifeng; Lu, Jianwei; Pan, Yonghui; Lu, Piaopiao; Li, Xiaokun; Cong, Rihuan; Ren, Tao
2016-11-01
Leaves exposed to potassium (K) deficiency usually present decreased mesophyll conductance (g m ) and photosynthesis (A). The relative contributions of leaf anatomical traits in determining g m have been quantified; however, anatomical variabilities related to low g m under K starvation remain imperfectly known. A one-dimensional model was used to quantify anatomical controls of the entire CO 2 diffusion pathway resistance within a leaf on two Brassica napus L. cultivars in response to K deficiency. Leaf photosynthesis of both cultivars was significantly decreased under K deficiency in parallel with down-regulated g m . The mesophyll conductance limitation contributed to more than one-half of A decline. The decreased internal air space in K-starved leaves was associated with the increase of gas-phase resistance. Potassium deficiency reduced liquid-phase conductance by decreasing the exposed surface area of chloroplasts per unit leaf area (S c /S), and enlarging the resistance of the cytoplasm that can be interpreted by the increasing distance of chloroplast from cell wall, and between adjacent chloroplasts. Additionally, the discrepancies of A between two cultivars were in part because of g m variations, ascribing to an altered S c /S. These results emphasize the important role of K on the regulation of g m by enhancing S c /S and reducing cytoplasm resistance. © 2016 John Wiley & Sons Ltd.
Galmés, Jeroni; Ochogavía, Joan Manuel; Gago, Jorge; Roldán, Emilio José; Cifre, Josep; Conesa, Miquel Àngel
2013-05-01
In a previous study, important acclimation to water stress was observed in the Ramellet tomato cultivar (TR) from the Balearic Islands, related to an increase in the water-use efficiency through modifications in both stomatal (g(s)) and mesophyll conductances (g(m)). In the present work, the comparison of physiological and morphological traits between TR accessions grown with and without water stress confirmed that variability in the photosynthetic capacity was mostly explained by differences in the diffusion of CO2 through stomata and leaf mesophyll. Maximization of gm under both treatments was mainly achieved through adjustments in the mesophyll thickness and porosity and the surface area of chloroplasts exposed to intercellular airspace (S(c)). In addition, the lower g(m) /S(c) ratio for a given porosity in drought-acclimated plants suggests that the decrease in gm was due to an increased cell wall thickness. Stomatal conductance was also affected by drought-associated changes in the morphological properties of stomata, in an accession and treatment-dependent manner. The results confirm the presence of advantageous physiological traits in the response to drought stress in Mediterranean accessions of tomato, and relate them to particular changes in the leaf anatomical properties, suggesting specific adaptive processes operating at the leaf anatomical level. © 2012 Blackwell Publishing Ltd.
Mixing of maize and wheat genomic DNA by somatic hybridization in regenerated sterile maize plants.
Szarka, B.; Göntér, I.; Molnár-Láng, M.; Mórocz, S.; Dudits, D.
2002-07-01
Intergeneric somatic hybridization was performed between albino maize ( Zea mays L.) protoplasts and mesophyll protoplasts of wheat ( Triticum aestivum L.) by polyethylene glycol (PEG) treatments. None of the parental protoplasts were able to produce green plants without fusion. The maize cells regenerated only rudimentary albino plantlets of limited viability, and the wheat mesophyll protoplasts were unable to divide. PEG-mediated fusion treatments resulted in hybrid cells with mixed cytoplasm. Six months after fusion green embryogenic calli were selected as putative hybrids. The first-regenerates were discovered as aborted embryos. Regeneration of intact, green, maize-like plants needed 6 months of further subcultures on hormone-free medium. These plants were sterile, although had both male and female flowers. The cytological analysis of cells from callus tissues and root tips revealed 56 chromosomes, but intact wheat chromosomes were not observed. Using total DNA from hybrid plants, three RAPD primer combinations produced bands resembling the wheat profile. Genomic in situ hybridization (GISH) using total wheat DNA as a probe revealed the presence of wheat DNA islands in the maize chromosomal background. The increased viability and the restored green color were the most-significant new traits as compared to the original maize parent. Other intermediate morphological traits of plants with hybrid origin were not found.
The mechanism of phloem loading in rice (Oryza sativa).
Eom, Joon-Seob; Choi, Sang-Bong; Ward, John M; Jeon, Jong-Seong
2012-05-01
Carbohydrates, mainly sucrose, that are synthesized in source organs are transported to sink organs to support growth and development. Phloem loading of sucrose is a crucial step that drives long-distance transport by elevating hydrostatic pressure in the phloem. Three phloem loading strategies have been identified, two active mechanisms, apoplastic loading via sucrose transporters and symplastic polymer trapping, and one passive mechanism. The first two active loading mechanisms require metabolic energy, carbohydrate is loaded into the phloem against a concentration gradient. The passive process, diffusion, involves equilibration of sucrose and other metabolites between cells through plasmodesmata. Many higher plant species including Arabidopsis utilize the active loading mechanisms to increase carbohydrate in the phloem to higher concentrations than that in mesophyll cells. In contrast, recent data revealed that a large number of plants, especially woody species, load sucrose passively by maintaining a high concentration in mesophyll cells. However, it still remains to be determined how the worldwide important cereal crop, rice, loads sucrose into the phloem in source organs. Based on the literature and our results, we propose a potential strategy of phloem loading in rice. Elucidation of the phloem loading mechanism should improve our understanding of rice development and facilitate its manipulation towards the increase of crop productivity.
NASA Technical Reports Server (NTRS)
Kaur Sawhney, R.; Shekhawat, N. S.; Galston, A. W.
1985-01-01
We have previously reported that aseptically cultured mesophyll protoplasts of Vigna divide rapidly and regenerate into complete plants, while mesophyll protoplasts of Avena divide only sporadically and senesce rapidly after isolation. We measured polyamine titers in such cultures of Vigna and Avena, to study possible correlations between polyamines and cellular behavior. We also deliberately altered polyamine titer by the use of selective inhibitors of polyamine biosynthesis, noting the effects on internal polyamine titer, cell division activity and regenerative events. In Vigna cultures, levels of free and bound putrescine and spermidine increased dramatically as cell division and differentiation progressed. The increase in bound polyamines was largest in embryoid-forming callus tissue while free polyamine titer was highest in root-forming callus. In Avena cultures, the levels of total polyamines decreased as the protoplast senesced. The presence of the inhibitors alpha-difluoromethyl-arginine (specific inhibitor of arginine decarboxylase), alpha-difluoromethylornithine (specific inhibitor of ornithine decarboxylase) and dicyclohexylamine (inhibitor of spermidine synthase) reduced cell division and organogenesis in Vigna cultures. Addition of low concentration of polyamines to such cultures containing inhibitors or removal of inhibitors from the culture medium restored the progress of growth and differentiation with concomitant increase in polyamine levels.
Moualeu-Ngangue, Dany P.; Chen, Tsu-Wei; Stützel, Hartmut
2016-01-01
Water use efficiency (WUE) is considered as a determinant of yield under stress and a component of crop drought resistance. Stomatal behavior regulates both transpiration rate and net assimilation and has been suggested to be crucial for improving crop WUE. In this work, a dynamic model was used to examine the impact of dynamic properties of stomata on WUE. The model includes sub-models of stomatal conductance dynamics, solute accumulation in the mesophyll, mesophyll water content, and water flow to the mesophyll. Using the instantaneous value of stomatal conductance, photosynthesis, and transpiration rate were simulated using a biochemical model and Penman-Monteith equation, respectively. The model was parameterized for a cucumber leaf and model outputs were evaluated using climatic data. Our simulations revealed that WUE was higher on a cloudy than a sunny day. Fast stomatal reaction to light decreased WUE during the period of increasing light (e.g., in the morning) by up to 10.2% and increased WUE during the period of decreasing light (afternoon) by up to 6.25%. Sensitivity of daily WUE to stomatal parameters and mesophyll conductance to CO2 was tested for sunny and cloudy days. Increasing mesophyll conductance to CO2 was more likely to increase WUE for all climatic conditions (up to 5.5% on the sunny day) than modifications of stomatal reaction speed to light and maximum stomatal conductance. PMID:27379150
Veggies in Space: Salad Crop Production on the ISS
NASA Technical Reports Server (NTRS)
Massa, Gioia
2016-01-01
NASA is currently testing Veggie, a low mass, low energy, salad crop production system on the International Space Station (ISS). Veggie grows crops with LED lights using ISS cabin air and passive watering that has presented challenges in microgravity. Initial tests included red romaine lettuce and zinnia, with testing of Chinese cabbage, and tomatoes planned. A goal is to add supplemental salad foods to the astronaut diet as we prepare for a future journey to Mars.
Signes-Pastor, A J; Munera-Picazo, S; Burló, F; Cano-Lamadrid, M; Carbonell-Barrachina, A A
2015-06-01
Several agricultural fields show high contents of arsenic because of irrigation with arsenic-contaminated groundwater. Vegetables accumulate arsenic in their edible parts when grown in contaminated soils. Polluted vegetables are one of the main sources of arsenic in the food chain, especially for people living in rural arsenic endemic villages of India and Bangladesh. The aim of this study was to assess the feasibility of floriculture in the crop rotation system of arsenic endemic areas of the Bengal Delta. The effects of different arsenic concentrations (0, 0.5, 1.0, and 2.0 mg As L(-1)) and types of flowering plant (Gomphrena globosa and Zinnia elegans) on plant growth and arsenic accumulation were studied under hydroponic conditions. Total arsenic was quantified using atomic absorption spectrometer with hydride generation (HG-AAS). Arsenic was mainly accumulated in the roots (72 %), followed by leaves (12 %), stems (10 %), and flowers (<1 %). The flowering plants studied did not show as high phytoremediation capacities as other wild species, such as ferns. However, they behaved as arsenic tolerant plants and grew and bloomed well, without showing any phytotoxic signs. This study proves that floriculture could be included within the crop rotation system in arsenic-contaminated agricultural soils, in order to improve food safety and also food security by increasing farmer's revenue.
Limited acclimation in leaf anatomy to experimental drought in tropical rainforest trees
Binks, Oliver; Meir, Patrick; Rowland, Lucy; da Costa, Antonio Carlos Lola; Vasconcelos, Steel Silva; de Oliveira, Alex Antonio Ribeiro; Ferreira, Leandro; Mencuccini, Maurizio
2016-01-01
Dry periods are predicted to become more frequent and severe in the future in some parts of the tropics, including Amazonia, potentially causing reduced productivity, higher tree mortality and increased emissions of stored carbon. Using a long-term (12 year) through-fall exclusion (TFE) experiment in the tropics, we test the hypothesis that trees produce leaves adapted to cope with higher levels of water stress, by examining the following leaf characteristics: area, thickness, leaf mass per area, vein density, stomatal density, the thickness of palisade mesophyll, spongy mesophyll and both of the epidermal layers, internal cavity volume and the average cell sizes of the palisade and spongy mesophyll. We also test whether differences in leaf anatomy are consistent with observed differential drought-induced mortality responses among taxa, and look for relationships between leaf anatomy, and leaf water relations and gas exchange parameters. Our data show that trees do not produce leaves that are more xeromorphic in response to 12 years of soil moisture deficit. However, the drought treatment did result in increases in the thickness of the adaxial epidermis (TFE: 20.5 ± 1.5 µm, control: 16.7 ± 1.0 µm) and the internal cavity volume (TFE: 2.43 ± 0.50 mm3 cm−2, control: 1.77 ± 0.30 mm3 cm−2). No consistent differences were detected between drought-resistant and drought-sensitive taxa, although interactions occurred between drought-sensitivity status and drought treatment for the palisade mesophyll thickness (P = 0.034) and the cavity volume of the leaves (P = 0.025). The limited response to water deficit probably reflects a tight co-ordination between leaf morphology, water relations and photosynthetic properties. This suggests that there is little plasticity in these aspects of plant anatomy in these taxa, and that phenotypic plasticity in leaf traits may not facilitate the acclimation of Amazonian trees to the predicted future reductions in dry season water availability. PMID:27614360
USDA-ARS?s Scientific Manuscript database
C4 photosynthesis is an elaborate set of metabolic pathways that utilize specialized anatomical and biochemical adaptations to concentrate CO2 around RuBisCO. The activities of the C4 pathways are coordinated between two specialized leaf cell types, mesophyll (M) and bundle sheath (BS), and rely hea...
Youping Zhou; Benli Zhang; Hilary Stuart-Williams; Kliti Grice; Charles H. Hocart; Arthur Gessler; Zachary E. Kayler; Graham D. Farquhar
2018-01-01
Compartmentation of C4 photosynthetic biochemistry into bundle sheath (BS) and mesophyll (M) cells, and photorespiration in C3 plants is predicted to have hydrogen isotopic consequences for metabolites at both molecular and site-specific levels. Molecular-level evidence was recently reported (Zhou et al., 2016), but...
Liu, Yubing; Li, Xinrong; Chen, Guoxiong; Li, Mengmeng; Liu, Meiling; Liu, Dan
2015-01-01
Leaf epidermal micromorphology and mesophyll structure during the development of Populus euphratica heteromorphic leaves, including linear, lanceolate, ovate, dentate ovate, dentate rhombic, dentate broad-ovate and dentate fan-shaped leaves, were studied by using electron and light microscopy. During development of heteromorphic leaves, epidermal appendages (wax crystals and trichomes) and special cells (mucilage cells and crystal idioblasts) increased in all leaf types while chloroplast ultrastructure and stomatal characters show maximum photosynthetic activity in dentate ovate and rhombic leaves. Also, functional analysis by subordinate function values shows that the maximum adaptability to adverse stress was exhibited in the broad type of mature leaves. The 12 heteromorphic leaf types are classified into three major groups by hierarchical cluster analysis: young, developing and mature leaves. Mature leaves can effectively obtain the highest stress resistance by combining the protection of xerophytic anatomy from drought stress, regulation of water uptake in micro-environment by mucilage and crystal idioblasts, and assistant defense of transpiration reduction through leaf epidermal appendages, which improves photosynthetic activity under arid desert conditions. Our data confirms that the main leaf function is differentiated during the developing process of heteromorphic leaves. PMID:26356300
Liu, Yubing; Li, Xinrong; Chen, Guoxiong; Li, Mengmeng; Liu, Meiling; Liu, Dan
2015-01-01
Leaf epidermal micromorphology and mesophyll structure during the development of Populus euphratica heteromorphic leaves, including linear, lanceolate, ovate, dentate ovate, dentate rhombic, dentate broad-ovate and dentate fan-shaped leaves, were studied by using electron and light microscopy. During development of heteromorphic leaves, epidermal appendages (wax crystals and trichomes) and special cells (mucilage cells and crystal idioblasts) increased in all leaf types while chloroplast ultrastructure and stomatal characters show maximum photosynthetic activity in dentate ovate and rhombic leaves. Also, functional analysis by subordinate function values shows that the maximum adaptability to adverse stress was exhibited in the broad type of mature leaves. The 12 heteromorphic leaf types are classified into three major groups by hierarchical cluster analysis: young, developing and mature leaves. Mature leaves can effectively obtain the highest stress resistance by combining the protection of xerophytic anatomy from drought stress, regulation of water uptake in micro-environment by mucilage and crystal idioblasts, and assistant defense of transpiration reduction through leaf epidermal appendages, which improves photosynthetic activity under arid desert conditions. Our data confirms that the main leaf function is differentiated during the developing process of heteromorphic leaves.
In Vivo Quantification of Cell Coupling in Plants with Different Phloem-Loading Strategies[W][OA
Liesche, Johannes; Schulz, Alexander
2012-01-01
Uptake of photoassimilates into the leaf phloem is the key step in carbon partitioning and phloem transport. Symplasmic and apoplasmic loading strategies have been defined in different plant taxa based on the abundance of plasmodesmata between mesophyll and phloem. For apoplasmic loading to occur, an absence of plasmodesmata is a sufficient but not a necessary criterion, as passage of molecules through plasmodesmata might well be blocked or restricted. Here, we present a noninvasive, whole-plant approach to test symplasmic coupling and quantify the intercellular flux of small molecules using photoactivation microscopy. Quantification of coupling between all cells along the prephloem pathways of the apoplasmic loader Vicia faba and Nicotiana tabacum showed, to our knowledge for the first time in vivo, that small solutes like sucrose can diffuse through plasmodesmata up to the phloem sieve element companion cell complex (SECCC). As expected, the SECCC was found to be symplasmically isolated for small solutes. In contrast, the prephloem pathway of the symplasmic loader Cucurbita maxima was found to be well coupled with the SECCC. Phloem loading in gymnosperms is not well understood, due to a profoundly different leaf anatomy and a scarcity of molecular data compared with angiosperms. A cell-coupling analysis for Pinus sylvestris showed high symplasmic coupling along the entire prephloem pathway, comprising at least seven cell border interfaces between mesophyll and sieve elements. Cell coupling together with measurements of leaf sap osmolality indicate a passive symplasmic loading type. Similarities and differences of this loading type with that of angiosperm trees are discussed. PMID:22422939
Yang, Yongil; Karlson, Dale
2012-08-01
The cold shock domain is among the most evolutionarily conserved nucleic acid binding domains from prokaryotes to higher eukaryotes, including plants. Although eukaryotic cold shock domain proteins have been extensively studied as transcriptional and post-transcriptional regulators during various developmental processes, their functional roles in plants remains poorly understood. In this study, AtCSP3 (At2g17870), which is one of four Arabidopsis thaliana c old s hock domain proteins (AtCSPs), was functionally characterized. Quantitative RT-PCR analysis confirmed high expression of AtCSP3 in reproductive and meristematic tissues. A homozygous atcsp3 loss-of-function mutant exhibits an overall reduced seedling size, stunted and orbicular rosette leaves, reduced petiole length, and curled leaf blades. Palisade mesophyll cells are smaller and more circular in atcsp3 leaves. Cell size analysis indicated that the reduced size of the circular mesophyll cells appears to be generated by a reduction of cell length along the leaf-length axis, resulting in an orbicular leaf shape. It was also determined that leaf cell expansion is impaired for lateral leaf development in the atcsp3 loss-of-function mutant, but leaf cell proliferation is not affected. AtCSP3 loss-of-function resulted in a dramatic reduction of LNG1 transcript, a gene that is involved in two-dimensional leaf polarity regulation. Transient subcellular localization of AtCSP3 in onion epidermal cells confirmed a nucleocytoplasmic localization pattern. Collectively, these data suggest that AtCSP3 is functionally linked to the regulation of leaf length by affecting LNG1 transcript accumulation during leaf development. A putative function of AtCSP3 as an RNA binding protein is also discussed in relation to leaf development.
Space Station Live: Everythings Coming up Veggie
2016-04-13
NASA Commentator Lori Meggs at the Marshall Space Flight Center talks about the latest work of the Veggie experiment on board the International Space Station with Gioia Massa, the Veggie project scientist. The experimental compact greenhouse has been used successfully to grow two crops of lettuce and a crop of zinnias, demonstrating an ability to grow crops in space that could be very useful for future exploration missions out into the solar systems. More tests are on the agenda as specialists improve the capabilities of the system.
Giannoutsou, E; Sotiriou, P; Apostolakos, P; Galatis, B
2013-10-01
The morphogenesis of lobed mesophyll cells (MCs) is highly controlled and coupled with intercellular space formation. Cortical microtubule rings define the number and the position of MC isthmi. This work investigated early events of MC morphogenesis, especially the mechanism defining the position of contacts between MCs. The distributions of plasmodesmata, the hemicelluloses callose and (1 → 3,1 → 4)-β-d-glucans (MLGs) and the pectin epitopes recognized by the 2F4, JIM5, JIM7 and LM6 antibodies were studied in the cell walls of Zea mays MCs. Matrix cell wall polysaccharides were immunolocalized in hand-made sections and in sections of material embedded in LR White resin. Callose was also localized using aniline blue in hand-made sections. Plasmodesmata distribution was examined by transmission electron microscopy. Before reorganization of the dispersed cortical microtubules into microtubule rings, particular bands of the longitudinal MC walls, where the MC contacts will form, locally differentiate by selective (1) deposition of callose and the pectin epitopes recognized by the 2F4, LM6, JIM5 and JIM7 antibodies, (2) degradation of MLGs and (3) formation of secondary plasmodesmata clusterings. This cell wall matrix differentiation persists in cell contacts of mature MCs. Simultaneously, the wall bands between those of future cell contacts differentiate with (1) deposition of local cell wall thickenings including cellulose microfibrils, (2) preferential presence of MLGs, (3) absence of callose and (4) transient presence of the pectins identified by the JIM5 and JIM7 antibodies. The wall areas between cell contacts expand determinately to form the cell isthmi and the cell lobes. The morphogenesis of lobed MCs is characterized by the early patterned differentiation of two distinct cell wall subdomains, defining the sites of the future MC contacts and of the future MC isthmi respectively. This patterned cell wall differentiation precedes cortical microtubule reorganization and may define microtubule ring disposition.
Jiang, Yanling; Xu, Zhenzhu; Zhou, Guangsheng; Liu, Tao
2016-07-12
The atmospheric CO2 concentration is rising continuously, and abnormal precipitation may occur more frequently in the future. Although the effects of elevated CO2 and drought on plants have been well reported individually, little is known about their interaction, particularly over a water status gradient. Here, we aimed to characterize the effects of elevated CO2 and a water status gradient on the growth, photosynthetic capacity, and mesophyll cell ultrastructure of a dominant grass from a degraded grassland. Elevated CO2 stimulated plant biomass to a greater extent under moderate changes in water status than under either extreme drought or over-watering conditions. Photosynthetic capacity and stomatal conductance were also enhanced by elevated CO2 under moderate drought, but inhibited with over-watering. Severe drought distorted mesophyll cell organelles, but CO2 enrichment partly alleviated this effect. Intrinsic water use efficiency (WUEi) and total biomass water use efficiency (WUEt) were increased by elevated CO2, regardless of water status. Plant structural traits were also found to be tightly associated with photosynthetic potentials. The results indicated that CO2 enrichment alleviated severe and moderate drought stress, and highlighted that CO2 fertilization's dependency on water status should be considered when projecting key species' responses to climate change in dry ecosystems.
Punwong, Paramita; Juprasong, Yotin; Traiperm, Paweena
2017-09-01
This study investigated the short-term impacts of an oil spill on the leaf anatomical structures of Terminalia catappa L. from crude oil leakage in Rayong province, Thailand, in 2013. Approximately 3 weeks after the oil spill, leaves of T. catappa were collected along the coastline of Rayong from one affected site, five adjacent sites, and a control site. Slides of the leaf epidermis were prepared by the peeling method, while leaf and petiole transverse sections were prepared by paraffin embedding. Cell walls of adaxial epidermal cell on leaves in the affected site were straight instead of the jigsaw shape found in leaves from the adjacent and control sites. In addition, the stomatal index of the abaxial leaf surface was significantly lower in the affected site. Leaf and petiole transverse sections collected from the affected site showed increased cuticle thickness, epidermal cell diameter on both sides, and palisade mesophyll thickness; in contrast, vessel diameter and spongy mesophyll thickness were reduced. These significant changes in the leaf anatomy of T. catappa correspond with previous research and demonstrate the negative effects of oil spill pollution on plants. The anatomical changes of T. catappa in response to crude oil pollution are discussed as a possible indicator of pollution and may be used in monitoring crude oil pollution.
Yanzhuo Zhang; James L. Hanula; Scott Horn; Kristine Braman; Jianghua Sun
2011-01-01
The biology of Leptoypha hospita Drake et Poor (Hemiptera: Tingidae), a potential biological control agent from China for Chinese privet, Ligustrum sinense Lour., was studied in quarantine in the United States. Both nymphs and adults feed on Chinese privet mesophyll cells that lead to a bleached appearance of leaves and dieback of branch tips. L. hospita has five...
Diane L. Wagner; Linda DeFoliart; Patricia Doak; Jenny Schneiderheinze
2008-01-01
The aspen leaf miner, Phyllocnistis populiella, feeds on the contents of epidermal cells on both top (adaxial) and bottom (abaxial) surfaces of quaking aspen leaves, leaving the photosynthetic tissue of the mesophyll intact. This type of feeding is taxonomically restricted to a small subset of leaf mining insects but can cause widespread plant...
Zhou, Jian; Jiang, Zeping; Ma, Jie; Yang, Lifeng; Wei, Yuan
2017-04-01
In this experiment, the effects of different lead (Pb) concentrations (0, 200, 600, 1000, 1400 mg kg -1 ) on photosynthesis and chlorophyll fluorescence in Robinia pseudoacacia seedlings were examined. As Pb concentration increased, chlorophyll a, chlorophyll b, total chlorophyll content, net photosynthetic rate, transpiration rate, stomatal conductance (g s ), and mesophyll intercellular carbon dioxide concentration were gradually reduced. Maximal photochemical efficiency, photochemical quenching, and quantum yield also decreased. However, the initial fluorescence and nonphotochemical quenching gradually increased. Chloroplasts swelled owing to local plasmolysis and lost most of their starch content, and their thylakoid lamellae gradually became disordered and loosely packed. When the chloroplast envelope was lost under high Pb stress (≥1000 mg kg -1 ), lipid globules were released into the surrounding mesophyll cell. Multiple regression analysis showed that g s and inactivity of the PSII reaction center had the greatest effect on photosynthetic function, whereas inhibition of electron transport had minimal effects on black locust seedlings under Pb stress.
Plant cell wall architecture. Final report, 1 June 1994--30 October 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-31
The authors have successfully finished the DOE-supported project entitled ``Plant cell wall architecture.`` During the funding period (June 1, 1994--October 30, 1996), they have published 6 research papers and 2 review articles. A brief description of these accomplishments is outlined as follows: (1) Improved and extended tissue printing techniques to reveal different surface and wall architectures, and to localized proteins and RNA. (2) Identification of an auxin- and cytokinin-regulated gene from Zinnia which is mainly expressed in cambium. (3) It was found that caffeoyl CoA 3-O-methyltransferase is involved in an alternative methylation pathway of lignin biosynthesis. (4) It was foundmore » that two different O-methyltransferases involved in lignification are differentially regulated in different lignifying tissues during development. They propose a scheme of monolignol biosynthesis combining both methylation pathways. (5) Identification of cysteine and serine proteases which are preferentially expressed during xylogenesis. This is the first report to identify an autolysis-associated cDNA in plants. (6) Characterization of two ribonuclease genes which are induced during xylogenesis and by wounding. (7) Isolation of cinnamic acid 4-hydroxylase gene and analysis of its expression patterns during lignification.« less
Sotiriou, P.; Giannoutsou, E.; Panteris, E.; Apostolakos, P.; Galatis, B.
2016-01-01
Background and aims This work investigates the involvement of local differentiation of cell wall matrix polysaccharides and the role of microtubules in the morphogenesis of mesophyll cells (MCs) of three types (lobed, branched and palisade) in the dicotyledon Vigna sinensis and the fern Asplenium nidus. Methods Homogalacturonan (HGA) epitopes recognized by the 2F4, JIM5 and JIM7 antibodies and callose were immunolocalized in hand-made leaf sections. Callose was also stained with aniline blue. We studied microtubule organization by tubulin immunofluorescence and transmission electron microscopy. Results In both plants, the matrix cell wall polysaccharide distribution underwent definite changes during MC differentiation. Callose constantly defined the sites of MC contacts. The 2F4 HGA epitope in V. sinensis first appeared in MC contacts but gradually moved towards the cell wall regions facing the intercellular spaces, while in A. nidus it was initially localized at the cell walls delimiting the intercellular spaces, but finally shifted to MC contacts. In V. sinensis, the JIM5 and JIM7 HGA epitopes initially marked the cell walls delimiting the intercellular spaces and gradually shifted in MC contacts, while in A. nidus they constantly enriched MC contacts. In all MC types examined, the cortical microtubules played a crucial role in their morphogenesis. In particular, in palisade MCs, cortical microtubule helices, by controlling cellulose microfibril orientation, forced these MCs to acquire a truncated cone-like shape. Unexpectedly in V. sinensis, the differentiation of colchicine-affected MCs deviated completely, since they developed a cell wall ingrowth labyrinth, becoming transfer-like cells. Conclusions The results of this work and previous studies on Zea mays (Giannoutsou et al., Annals of Botany 2013; 112: 1067–1081) revealed highly controlled local cell wall matrix differentiation in MCs of species belonging to different plant groups. This, in coordination with microtubule-dependent cellulose microfibril alignment, spatially controlled cell wall expansion, allowing MCs to acquire their particular shape. PMID:26802013
Biosynthesis and subcellular distribution of hydrolyzable tannins.
Grundhöfer, P; Niemetz, R; Schilling, G; Gross, G G
2001-07-01
Pathways to complex gallotannins have been elucidated by enzyme studies, indicating that beta-glucogallin is required as principal acyl donor. Evidence for the in vitro oxidation of pentagalloylglucose, the pivotal metabolite in this sequence, to ellagitannins, is presented. Immunohistochemical studies with antibodies raised against pentagalloylglucose and the galloyltransferase catalyzing the formation of this ester revealed that leaf mesophyll cell walls were a typical site of origin and deposition of hydrolyzable tannins. Seasonal changes of these compounds were studied with extracts from cell walls and intracellular space of oak leaves.
Pectin Methylesterification Impacts the Relationship between Photosynthesis and Plant Growth1[OPEN
Kim, Sang-Jin; Renna, Luciana; Brandizzi, Federica
2016-01-01
Photosynthesis occurs in mesophyll cells of specialized organs such as leaves. The rigid cell wall encapsulating photosynthetic cells controls the expansion and distribution of cells within photosynthetic tissues. The relationship between photosynthesis and plant growth is affected by leaf area. However, the underlying genetic mechanisms affecting carbon partitioning to different aspects of leaf growth are not known. To fill this gap, we analyzed Arabidopsis plants with altered levels of pectin methylesterification, which is known to modulate cell wall plasticity and plant growth. Pectin methylesterification levels were varied through manipulation of cotton Golgi-related (CGR) 2 or 3 genes encoding two functionally redundant pectin methyltransferases. Increased levels of methylesterification in a line over-expressing CGR2 (CGR2OX) resulted in highly expanded leaves with enhanced intercellular air spaces; reduced methylesterification in a mutant lacking both CGR-genes 2 and 3 (cgr2/3) resulted in thin but dense leaf mesophyll that limited CO2 diffusion to chloroplasts. Leaf, root, and plant dry weight were enhanced in CGR2OX but decreased in cgr2/3. Differences in growth between wild type and the CGR-mutants can be explained by carbon partitioning but not by variations in area-based photosynthesis. Therefore, photosynthesis drives growth through alterations in carbon partitioning to new leaf area growth and leaf mass per unit leaf area; however, CGR-mediated pectin methylesterification acts as a primary factor in this relationship through modulation of the expansion and positioning of the cells in leaves, which in turn drive carbon partitioning by generating dynamic carbon demands in leaf area growth and leaf mass per unit leaf area. PMID:27208234
Pectin Methylesterification Impacts the Relationship between Photosynthesis and Plant Growth.
M Weraduwage, Sarathi; Kim, Sang-Jin; Renna, Luciana; C Anozie, Fransisca; D Sharkey, Thomas; Brandizzi, Federica
2016-06-01
Photosynthesis occurs in mesophyll cells of specialized organs such as leaves. The rigid cell wall encapsulating photosynthetic cells controls the expansion and distribution of cells within photosynthetic tissues. The relationship between photosynthesis and plant growth is affected by leaf area. However, the underlying genetic mechanisms affecting carbon partitioning to different aspects of leaf growth are not known. To fill this gap, we analyzed Arabidopsis plants with altered levels of pectin methylesterification, which is known to modulate cell wall plasticity and plant growth. Pectin methylesterification levels were varied through manipulation of cotton Golgi-related (CGR) 2 or 3 genes encoding two functionally redundant pectin methyltransferases. Increased levels of methylesterification in a line over-expressing CGR2 (CGR2OX) resulted in highly expanded leaves with enhanced intercellular air spaces; reduced methylesterification in a mutant lacking both CGR-genes 2 and 3 (cgr2/3) resulted in thin but dense leaf mesophyll that limited CO2 diffusion to chloroplasts. Leaf, root, and plant dry weight were enhanced in CGR2OX but decreased in cgr2/3. Differences in growth between wild type and the CGR-mutants can be explained by carbon partitioning but not by variations in area-based photosynthesis. Therefore, photosynthesis drives growth through alterations in carbon partitioning to new leaf area growth and leaf mass per unit leaf area; however, CGR-mediated pectin methylesterification acts as a primary factor in this relationship through modulation of the expansion and positioning of the cells in leaves, which in turn drive carbon partitioning by generating dynamic carbon demands in leaf area growth and leaf mass per unit leaf area. © 2016 American Society of Plant Biologists. All Rights Reserved.
Fabrication of Artificial Leaf to Develop Fluid Pump Driven by Surface Tension and Evaporation
NASA Astrophysics Data System (ADS)
Lee, Minki; Lim, Hosub; Lee, Jinkee
2017-11-01
Plants transport water from roots to leaves via xylem through transpiration, which is an evaporation process that occurs at the leaves. During transpiration, negative pressure can be generated by the porous structure of mesophyll cells in the leaves. Here, an artificial leaf mimicking structure using hydrogel, which has a nanoporous structure is fabricated. The cryogel method is used to develop a hierarchy structure on the nano- and microscale in the hydrogel media that is similar to the mesophyll cells and veins of a leaf, respectively. The theoretical model is analyzed to calculate the flow resistance in the artificial leaf, and compare the model with the experimental results. The experiment involves connecting a glass capillary tube at the bottom of the artificial leaf to observe the fluid velocity in the glass capillary tube generated by the negative pressure. The use of silicone oil as fluid instead of water to increase the flow resistance enables the measurement of negative pressure. The negative pressure of the artificial leaf is affected by several variables (e.g., pore size, wettability of the structure). Finally, by decreasing the pore size and increasing the wettability, the maximum negative pressure of the artificial leaf, -7.9 kPa is obtained.
Kalve, Shweta; Fotschki, Joanna; Beeckman, Tom; Vissenberg, Kris; Beemster, Gerrit T S
2014-12-01
Variations in size and shape of multicellular organs depend on spatio-temporal regulation of cell division and expansion. Here, cell division and expansion rates were quantified relative to the three spatial axes in the first leaf pair of Arabidopsis thaliana. The results show striking differences in expansion rates: the expansion rate in the petiole is higher than in the leaf blade; expansion rates in the lateral direction are higher than longitudinal rates between 5 and 10 days after stratification, but become equal at later stages of leaf blade development; and anticlinal expansion co-occurs with, but is an order of magnitude slower than periclinal expansion. Anticlinal expansion rates also differed greatly between tissues: the highest rates occurred in the spongy mesophyll and the lowest in the epidermis. Cell division rates were higher and continued for longer in the epidermis compared with the palisade mesophyll, causing a larger increase of palisade than epidermal cell area over the course of leaf development. The cellular dynamics underlying the effect of shading on petiole length and leaf thickness were then investigated. Low light reduced leaf expansion rates, which was partly compensated by increased duration of the growth phase. Inversely, shading enhanced expansion rates in the petiole, so that the blade to petiole ratio was reduced by 50%. Low light reduced leaf thickness by inhibiting anticlinal cell expansion rates. This effect on cell expansion was preceded by an effect on cell division, leading to one less layer of palisade cells. The two effects could be uncoupled by shifting plants to contrasting light conditions immediately after germination. This extended kinematic analysis maps the spatial and temporal heterogeneity of cell division and expansion, providing a framework for further research to understand the molecular regulatory mechanisms involved. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Limited acclimation in leaf anatomy to experimental drought in tropical rainforest trees.
Binks, Oliver; Meir, Patrick; Rowland, Lucy; da Costa, Antonio Carlos Lola; Vasconcelos, Steel Silva; de Oliveira, Alex Antonio Ribeiro; Ferreira, Leandro; Mencuccini, Maurizio
2016-12-01
Dry periods are predicted to become more frequent and severe in the future in some parts of the tropics, including Amazonia, potentially causing reduced productivity, higher tree mortality and increased emissions of stored carbon. Using a long-term (12 year) through-fall exclusion (TFE) experiment in the tropics, we test the hypothesis that trees produce leaves adapted to cope with higher levels of water stress, by examining the following leaf characteristics: area, thickness, leaf mass per area, vein density, stomatal density, the thickness of palisade mesophyll, spongy mesophyll and both of the epidermal layers, internal cavity volume and the average cell sizes of the palisade and spongy mesophyll. We also test whether differences in leaf anatomy are consistent with observed differential drought-induced mortality responses among taxa, and look for relationships between leaf anatomy, and leaf water relations and gas exchange parameters. Our data show that trees do not produce leaves that are more xeromorphic in response to 12 years of soil moisture deficit. However, the drought treatment did result in increases in the thickness of the adaxial epidermis (TFE: 20.5 ± 1.5 µm, control: 16.7 ± 1.0 µm) and the internal cavity volume (TFE: 2.43 ± 0.50 mm 3 cm -2 , control: 1.77 ± 0.30 mm 3 cm -2 ). No consistent differences were detected between drought-resistant and drought-sensitive taxa, although interactions occurred between drought-sensitivity status and drought treatment for the palisade mesophyll thickness (P = 0.034) and the cavity volume of the leaves (P = 0.025). The limited response to water deficit probably reflects a tight co-ordination between leaf morphology, water relations and photosynthetic properties. This suggests that there is little plasticity in these aspects of plant anatomy in these taxa, and that phenotypic plasticity in leaf traits may not facilitate the acclimation of Amazonian trees to the predicted future reductions in dry season water availability. © The Author 2016. Published by Oxford University Press.
Nanjareddy, Kalpana; Arthikala, Manoj-Kumar; Blanco, Lourdes; Arellano, Elizabeth S; Lara, Miguel
2016-06-24
Phaseolus vulgaris is one of the most extensively studied model legumes in the world. The P. vulgaris genome sequence is available; therefore, the need for an efficient and rapid transformation system is more imperative than ever. The functional characterization of P. vulgaris genes is impeded chiefly due to the non-amenable nature of Phaseolus sp. to stable genetic transformation. Transient transformation systems are convenient and versatile alternatives for rapid gene functional characterization studies. Hence, the present work focuses on standardizing methodologies for protoplast isolation from multiple tissues and transient transformation protocols for rapid gene expression analysis in the recalcitrant grain legume P. vulgaris. Herein, we provide methodologies for the high-throughput isolation of leaf mesophyll-, flower petal-, hypocotyl-, root- and nodule-derived protoplasts from P. vulgaris. The highly efficient polyethylene glycol-mannitol magnesium (PEG-MMG)-mediated transformation of leaf mesophyll protoplasts was optimized using a GUS reporter gene. We used the P. vulgaris SNF1-related protein kinase 1 (PvSnRK1) gene as proof of concept to demonstrate rapid gene functional analysis. An RT-qPCR analysis of protoplasts that had been transformed with PvSnRK1-RNAi and PvSnRK1-OE vectors showed the significant downregulation and ectopic constitutive expression (overexpression), respectively, of the PvSnRK1 transcript. We also demonstrated an improved transient transformation approach, sonication-assisted Agrobacterium-mediated transformation (SAAT), for the leaf disc infiltration of P. vulgaris. Interestingly, this method resulted in a 90 % transformation efficiency and transformed 60-85 % of the cells in a given area of the leaf surface. The constitutive expression of YFP further confirmed the amenability of the system to gene functional characterization studies. We present simple and efficient methodologies for protoplast isolation from multiple P. vulgaris tissues. We also provide a high-efficiency and amenable method for leaf mesophyll transformation for rapid gene functional characterization studies. Furthermore, a modified SAAT leaf disc infiltration approach aids in validating genes and their functions. Together, these methods help to rapidly unravel novel gene functions and are promising tools for P. vulgaris research.
The effect of SO2 pollution on pine needle structure
E. A. Zhitkova; L. L. Novitskaya
2000-01-01
Fall and winter needles from pines growing near the Kostomuksha oredressing mill (KODM) were collected and studied by light microscopy. Fall needles showed symptoms of SO2 influence and no specific seasonal changes in mesophyll. The injury rates of needle surface and mesophyll showed that pollutants penetrate into the needles through stomata and...
Variation among soybean cultivars in mesophyll conductance and leaf water use efficiency
USDA-ARS?s Scientific Manuscript database
Improving water use efficiency (WUE) may prove a useful way to adapt crop species to drought. Since the recognition of the importance of mesophyll conductance to CO2 movement from inside stomatal pores to the sites of photosynthetic carboxylation, there has been interest in how much intraspecific v...
Wang, Xiaoxiao; Wang, Wencheng; Huang, Jianliang; Peng, Shaobing; Xiong, Dongliang
2018-05-01
Salinity significantly limits leaf photosynthesis but the factors causing the limitation in salt-stressed leaves remain unclear. In the present work, photosynthetic and biochemical traits were investigated in four rice genotypes under two NaCl concentration (0 and 150 mM) to assess the stomatal, mesophyll and biochemical contributions to reduced photosynthetic rate (A) in salt-stressed leaves. Our results indicated that salinity led to a decrease in A, leaf osmotic potential, electron transport rate and CO 2 concentrations in the chloroplasts (C c ) of rice leaves. Decreased A in salt-stressed leaves was mainly attributable to low C c , which was determined by stomatal and mesophyll conductance. The increased stomatal limitation was mainly related to the low leaf osmotic potential caused by soil salinity. However, the increased mesophyll limitation in salt-stressed leaves was related to both osmotic stress and ion stress. These findings highlight the importance of considering mesophyll conductance when developing salinity-tolerant rice cultivars. © 2017 Scandinavian Plant Physiology Society.
Huo, Ailing; Chen, Zhenyu; Wang, Pengkai; Yang, Liming; Wang, Guangping; Wang, Dandan; Liao, Suchan; Cheng, Tielong; Chen, Jinhui; Shi, Jisen
2017-01-01
Liriodendron is a genus of the magnolia family comprised of two flowering tree species that produce hardwoods of great ecological and economic value. However, only a limited amount of genetic research has been performed on the Liriodendron genus partly because transient or stable transgenic trees have been difficult to produce. In general, transient expression systems are indispensable for rapid, high-throughput screening and systematic characterization of gene functions at a low cost; therefore, development of such a system for Liriodendron would provide a necessary step forward for research on Magnoliaceae and other woody trees. Herein, we describe an efficient and rapid protocol for preparing protoplasts from the leaf mesophyll tissue of a Liriodendron hybrid and an optimized system for polyethylene glycol–mediated transient transfection of the protoplasts. Because the leaves of the Liriodendron hybrid are waxy, we formulated an enzyme mix containing 1.5% (w/v) Cellulase R-10, 0.5% (w/v) Macerozyme R-10, and 0.1% (w/v) Pectolyase Y-23 to efficiently isolate protoplasts from the Liriodendron hybrid leaf mesophyll tissue in 3 h. We optimized Liriodendron protoplast transfection efficiency by including 20 μg plasmid DNA per 104 protoplasts, a transformation time of 20 min, and inclusion of 20% (w/v) polyethylene glycol 4000. After integrating the Liriodendron WOX1 gene into pJIT166-GFP to produce a WOX1-GFP fusion product and transfecting it into isolated protoplasts, LhWOX1-GFP was found to localize to the nucleus according to its green fluorescence. PMID:28323890
Huo, Ailing; Chen, Zhenyu; Wang, Pengkai; Yang, Liming; Wang, Guangping; Wang, Dandan; Liao, Suchan; Cheng, Tielong; Chen, Jinhui; Shi, Jisen
2017-01-01
Liriodendron is a genus of the magnolia family comprised of two flowering tree species that produce hardwoods of great ecological and economic value. However, only a limited amount of genetic research has been performed on the Liriodendron genus partly because transient or stable transgenic trees have been difficult to produce. In general, transient expression systems are indispensable for rapid, high-throughput screening and systematic characterization of gene functions at a low cost; therefore, development of such a system for Liriodendron would provide a necessary step forward for research on Magnoliaceae and other woody trees. Herein, we describe an efficient and rapid protocol for preparing protoplasts from the leaf mesophyll tissue of a Liriodendron hybrid and an optimized system for polyethylene glycol-mediated transient transfection of the protoplasts. Because the leaves of the Liriodendron hybrid are waxy, we formulated an enzyme mix containing 1.5% (w/v) Cellulase R-10, 0.5% (w/v) Macerozyme R-10, and 0.1% (w/v) Pectolyase Y-23 to efficiently isolate protoplasts from the Liriodendron hybrid leaf mesophyll tissue in 3 h. We optimized Liriodendron protoplast transfection efficiency by including 20 μg plasmid DNA per 104 protoplasts, a transformation time of 20 min, and inclusion of 20% (w/v) polyethylene glycol 4000. After integrating the Liriodendron WOX1 gene into pJIT166-GFP to produce a WOX1-GFP fusion product and transfecting it into isolated protoplasts, LhWOX1-GFP was found to localize to the nucleus according to its green fluorescence.
Carriquí, Marc; Douthe, Cyril; Molins, Arántzazu; Flexas, Jaume
2018-05-10
Mesophyll conductance to CO 2 (g m ), a key photosynthetic trait, is strongly constrained by leaf anatomy. Leaf anatomical parameters such as cell wall thickness and chloroplast area exposed to the mesophyll intercellular airspace have been demonstrated to determine g m in species with diverging phylogeny, leaf structure and ontogeny. However, the potential implication of leaf anatomy, especially chloroplast movement, on the short-term response of g m to rapid changes (i.e. seconds to minutes) under different environmental conditions (CO 2 , light or temperature) has not been examined. The aim of this study was to determine whether the observed rapid variations of g m in response to variations of light and CO 2 could be explained by changes in any leaf anatomical arrangements. When compared to high light and ambient CO 2 , the values of g m estimated by chlorophyll fluorescence decreased under high CO 2 and increased at low CO 2 , while it decreased with decreasing light. Nevertheless, no changes in anatomical parameters, including chloroplast distribution, were found. Hence, the g m estimated by analytical models based on anatomical parameters was constant under varying light and CO 2 . Considering this discrepancy between anatomy and chlorophyll fluorescence estimates, it is concluded that apparent fast g m variations should be due to artifacts in its estimation and/or to changes in the biochemical components acting on diffusional properties of the leaf (e.g. aquaporins and carbonic anhydrase). This article is protected by copyright. All rights reserved.
Cell Wall Architecture of the Elongating Maize Coleoptile1
Carpita, Nicholas C.; Defernez, Marianne; Findlay, Kim; Wells, Brian; Shoue, Douglas A.; Catchpole, Gareth; Wilson, Reginald H.; McCann, Maureen C.
2001-01-01
The primary walls of grasses are composed of cellulose microfibrils, glucuronoarabinoxylans (GAXs), and mixed-linkage β-glucans, together with smaller amounts of xyloglucans, glucomannans, pectins, and a network of polyphenolic substances. Chemical imaging by Fourier transform infrared microspectroscopy revealed large differences in the distributions of many chemical species between different tissues of the maize (Zea mays) coleoptile. This was confirmed by chemical analyses of isolated outer epidermal tissues compared with mesophyll-enriched preparations. Glucomannans and esterified uronic acids were more abundant in the epidermis, whereas β-glucans were more abundant in the mesophyll cells. The localization of β-glucan was confirmed by immunocytochemistry in the electron microscope and quantitative biochemical assays. We used field emission scanning electron microscopy, infrared microspectroscopy, and biochemical characterization of sequentially extracted polymers to further characterize the cell wall architecture of the epidermis. Oxidation of the phenolic network followed by dilute NaOH extraction widened the pores of the wall substantially and permitted observation by scanning electron microscopy of up to six distinct microfibrillar lamellae. Sequential chemical extraction of specific polysaccharides together with enzymic digestion of β-glucans allowed us to distinguish two distinct domains in the grass primary wall. First, a β-glucan-enriched domain, coextensive with GAXs of low degrees of arabinosyl substitution and glucomannans, is tightly associated around microfibrils. Second, a GAX that is more highly substituted with arabinosyl residues and additional glucomannan provides an interstitial domain that interconnects the β-glucan-coated microfibrils. Implications for current models that attempt to explain the biochemical and biophysical mechanism of wall loosening during cell growth are discussed. PMID:11598229
Arrivault, Stéphanie; Obata, Toshihiro; Szecówka, Marek; Mengin, Virginie; Guenther, Manuela; Hoehne, Melanie; Fernie, Alisdair R; Stitt, Mark
2017-01-01
Worldwide efforts to engineer C 4 photosynthesis into C 3 crops require a deep understanding of how this complex pathway operates. CO 2 is incorporated into four-carbon metabolites in the mesophyll, which move to the bundle sheath where they are decarboxylated to concentrate CO 2 around RuBisCO. We performed dynamic 13 CO 2 labeling in maize to analyze C flow in C 4 photosynthesis. The overall labeling kinetics reflected the topology of C 4 photosynthesis. Analyses of cell-specific labeling patterns after fractionation to enrich bundle sheath and mesophyll cells revealed concentration gradients to drive intercellular diffusion of malate, but not pyruvate, in the major CO 2 -concentrating shuttle. They also revealed intercellular concentration gradients of aspartate, alanine, and phosphenolpyruvate to drive a second phosphoenolpyruvate carboxykinase (PEPCK)-type shuttle, which carries 10-14% of the carbon into the bundle sheath. Gradients also exist to drive intercellular exchange of 3-phosphoglycerate and triose-phosphate. There is rapid carbon exchange between the Calvin-Benson cycle and the CO 2 -concentrating shuttle, equivalent to ~10% of carbon gain. In contrast, very little C leaks from the large pools of metabolites in the C concentration shuttle into respiratory metabolism. We postulate that the presence of multiple shuttles, alongside carbon transfer between them and the Calvin-Benson cycle, confers great flexibility in C 4 photosynthesis. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Reversible Leaf Xylem Collapse: A Potential “Circuit Breaker” against Cavitation1[OPEN
Zhang, Yong-Jiang; Rockwell, Fulton E.; Graham, Adam C.; Alexander, Teressa; Holbrook, N. Michele
2016-01-01
We report a novel form of xylem dysfunction in angiosperms: reversible collapse of the xylem conduits of the smallest vein orders that demarcate and intrusively irrigate the areoles of red oak (Quercus rubra) leaves. Cryo-scanning electron microscopy revealed gradual increases in collapse from approximately −2 MPa down to −3 MPa, saturating thereafter (to −4 MPa). Over this range, cavitation remained negligible in these veins. Imaging of rehydration experiments showed spatially variable recovery from collapse within 20 s and complete recovery after 2 min. More broadly, the patterns of deformation induced by desiccation in both mesophyll and xylem suggest that cell wall collapse is unlikely to depend solely on individual wall properties, as mechanical constraints imposed by neighbors appear to be important. From the perspective of equilibrium leaf water potentials, petioles, whose vessels extend into the major veins, showed a vulnerability to cavitation that overlapped in the water potential domain with both minor vein collapse and buckling (turgor loss) of the living cells. However, models of transpiration transients showed that minor vein collapse and mesophyll capacitance could effectively buffer major veins from cavitation over time scales relevant to the rectification of stomatal wrong-way responses. We suggest that, for angiosperms, whose subsidiary cells give up large volumes to allow large stomatal apertures at the cost of potentially large wrong-way responses, vein collapse could make an important contribution to these plants’ ability to transpire near the brink of cavitation-inducing water potentials. PMID:27733514
Phomalactone from a Phytopathogenic Fungus Infecting ZINNIA elegans (ASTERACEAE) Leaves.
Meepagala, Kumudini M; Johnson, Robert D; Techen, Natascha; Wedge, David E; Duke, Stephen O
2015-07-01
Zinnia elegans Jacq. plants are infected by a fungus that causes dark red spots with necrosis on leaves, particularly in late spring to the middle of summer in the Mid-South of the United States. This fungal disease causes the leaves to wilt and eventually kills the plant. The fungus was isolated, cultured in potato dextrose broth, and identified as Nigrospora sphaerica by molecular techniques. Two major lactone metabolites (phomalactone and catenioblin A) were isolated from liquid culture of N. sphaerica isolated from Z. elegans. When injected into leaves of Z. elegans, phomalactone caused lesions similar to those of the fungus. The lesion sizes were proportional to the concentration of the phomalactone. Phomalactone, but not catenioblin A, was phytotoxic to Z. elegans and other plant species by inhibition of seedling growth and by causing electrolyte leakage from photosynthetic tissues of both Z. elegans leaves and cucumber cotyledons. This latter effect may be related to the wilting caused by the fungus in mature Z. elegans plants. Phomalactone was moderately fungicidal to Coletotrichum fragariae and two Phomopsis species, indicating that the compound may keep certain other fungi from encroaching into plant tissue that N. sphaerica has infected. Production of large amounts of phomalactone by N. sphaerica contributes to the pathogenic behavior of this fungus, and may have other ecological functions in the interaction of N. sphaerica with other fungi. This is the first report of isolation of catenioblin A from a plant pathogenic fungus. The function of catenioblin A is unclear, as it was neither significantly phyto- nor fungitoxic.
NASA Technical Reports Server (NTRS)
Tiburcio, A. F.; Kaur-Sawhney, R.; Galston, A. W.
1986-01-01
We have attempted to improve the viability of cereal mesophyll protoplasts by pretreatment of leaves with DL-alpha-difluoromethylarginine (DFMA), a specific 'suicide' inhibitor of the enzyme (arginine decarboxylase) responsible for their osmotically induced putrescine accumulation. Leaf pretreatment with DFMA before a 6 hour osmotic shock caused a 45% decrease of putrescine and a 2-fold increase of spermine titer. After 136 hours of osmotic stress, putrescine titer in DFMA-pretreated leaves increased by only 50%, but spermidine and spermine titers increased dramatically by 3.2- and 6-fold, respectively. These increases in higher polyamines could account for the reduced chlorophyll loss and enhanced ability of pretreated leaves to incorporate tritiated thymidine, uridine, and leucine into macromolecules. Pretreatment with DFMA significantly improved the overall viability of the protoplasts isolated from these leaves. The results support the view that the osmotically induced rise in putrescine and blockage of its conversion to higher polyamines may contribute to the lack of sustained cell division in cereal mesophyll protoplasts, although other undefined factors must also play a major role.
Leal-Costa, Marcos Vinicius; Nascimento, Luana Beatriz dos Santos; Moreira, Nattacha dos Santos; Reinert, Fernanda; Costa, Sônia Soares; Lage, Celso Luiz Salgueiro; Tavares, Eliana Schwartz
2010-10-01
Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae) (air plant, miracle leaf) is popularly used to treat gastrointestinal disorders and wounds. Recently, the species was tested to treat cutaneous leishmaniasis with successful results. This medicinal activity was associated with the phenolic fraction of the plant. Blue light induces biosynthesis of phenolic compounds and many changes in anatomical characteristics. We studied the effects of supplementary blue light on the leaf morphology of in vitro K. pinnata. Plants cultured under white light (W plants) only and white light plus blue light (WB plants) show petioles with plain-convex section, amphistomatic leaf blades with simple epidermis, homogeneous mesophyll with densely packed cells, and a single collateral vascular bundle in the midrib. W plants have longer branches, a larger number of nodes per branch, and smaller leaves, whereas WB plant leaves have a thicker upper epidermis and mesophyll. Leaf fresh weight and leaf dry weight were similar in both treatments. Phenolic idioblasts were observed in the plants supplemented with blue light, suggesting that blue light plays an important role in the biosynthesis of phenolic compounds in K. pinnata.
Osborn, Hannah L; Alonso-Cantabrana, Hugo; Sharwood, Robert E; Covshoff, Sarah; Evans, John R; Furbank, Robert T; von Caemmerer, Susanne
2017-01-01
In C 4 species, the major β-carbonic anhydrase (β-CA) localized in the mesophyll cytosol catalyses the hydration of CO 2 to HCO 3 - , which phosphoenolpyruvate carboxylase uses in the first step of C 4 photosynthesis. To address the role of CA in C 4 photosynthesis, we generated transgenic Setaria viridis depleted in β-CA. Independent lines were identified with as little as 13% of wild-type CA. No photosynthetic defect was observed in the transformed lines at ambient CO 2 partial pressure (pCO 2 ). At low pCO 2 , a strong correlation between CO 2 assimilation rates and CA hydration rates was observed. C 18 O 16 O isotope discrimination was used to estimate the mesophyll conductance to CO 2 diffusion from the intercellular air space to the mesophyll cytosol (g m ) in control plants, which allowed us to calculate CA activities in the mesophyll cytosol (C m ). This revealed a strong relationship between the initial slope of the response of the CO 2 assimilation rate to cytosolic pCO 2 (AC m ) and cytosolic CA activity. However, the relationship between the initial slope of the response of CO 2 assimilation to intercellular pCO 2 (AC i ) and cytosolic CA activity was curvilinear. This indicated that in S. viridis, mesophyll conductance may be a contributing limiting factor alongside CA activity to CO 2 assimilation rates at low pCO 2 . © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Single-cell-type Proteomics: Toward a Holistic Understanding of Plant Function*
Dai, Shaojun; Chen, Sixue
2012-01-01
Multicellular organisms such as plants contain different types of cells with specialized functions. Analyzing the protein characteristics of each type of cell will not only reveal specific cell functions, but also enhance understanding of how an organism works. Most plant proteomics studies have focused on using tissues and organs containing a mixture of different cells. Recent single-cell-type proteomics efforts on pollen grains, guard cells, mesophyll cells, root hairs, and trichomes have shown utility. We expect that high resolution proteomic analyses will reveal novel functions in single cells. This review provides an overview of recent developments in plant single-cell-type proteomics. We discuss application of the approach for understanding important cell functions, and we consider the technical challenges of extending the approach to all plant cell types. Finally, we consider the integration of single-cell-type proteomics with transcriptomics and metabolomics with the goal of providing a holistic understanding of plant function. PMID:22982375
USDA-ARS?s Scientific Manuscript database
Most previous analyses of leaf gas exchange measurements assumed an infinite value of mesophyll conductance (gm) and thus equaled CO2 partial pressures in the substomatal cavity and chloroplast. Yet an increasing number of studies have recognized that gm is finite and there is a drawdown of CO2 part...
Mesophyll Chloroplast Investment in C3, C4 and C2 Species of the Genus Flaveria.
Stata, Matt; Sage, Tammy L; Hoffmann, Natalie; Covshoff, Sarah; Ka-Shu Wong, Gane; Sage, Rowan F
2016-05-01
The mesophyll (M) cells of C4 plants contain fewer chloroplasts than observed in related C3 plants; however, it is uncertain where along the evolutionary transition from C3 to C4 that the reduction in M chloroplast number occurs. Using 18 species in the genus Flaveria, which contains C3, C4 and a range of C3-C4 intermediate species, we examined changes in chloroplast number and size per M cell, and positioning of chloroplasts relative to the M cell periphery. Chloroplast number and coverage of the M cell periphery declined in proportion to increasing strength of C4 metabolism in Flaveria, while chloroplast size increased with increasing C4 cycle strength. These changes increase cytosolic exposure to the cell periphery which could enhance diffusion of inorganic carbon to phosphenolpyruvate carboxylase (PEPC), a cytosolic enzyme. Analysis of the transcriptome from juvenile leaves of nine Flaveria species showed that the transcript abundance of four genes involved in plastid biogenesis-FtsZ1, FtsZ2, DRP5B and PARC6-was negatively correlated with variation in C4 cycle strength and positively correlated with M chloroplast number per planar cell area. Chloroplast size was negatively correlated with abundance of FtsZ1, FtsZ2 and PARC6 transcripts. These results indicate that natural selection targeted the proteins of the contractile ring assembly to effect the reduction in chloroplast numbers in the M cells of C4 Flaveria species. If so, efforts to engineer the C4 pathway into C3 plants might evaluate whether inducing transcriptome changes similar to those observed in Flaveria could reduce M chloroplast numbers, and thus introduce a trait that appears essential for efficient C4 function. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Amorphous areas in the cytoplasm of Dendrobium tepal cells
van Doorn, Wouter G.; Kirasak, Kanjana; Ketsa, Saichol
2013-01-01
In Dendrobium flowers some tepal mesophyll cells showed cytoplasmic areas devoid of large organelles. Such amorphous areas comprised up to about 40% of the cross-section of a cell. The areas were not bound by a membrane. The origin of these areas is not known. We show data suggesting that they can be formed from vesicle-like organelles. The data imply that these organelles and other material become degraded inside the cytoplasm. This can be regarded as a form of autophagy. The amorphous areas became surrounded by small vacuoles, vesicles or double membranes. These seemed to merge and thereby sequester the areas. Degradation of the amorphous areas therefore seemed to involve macroautophagy. PMID:23823702
Berghuijs, Herman N. C.; Yin, Xinyou; Ho, Q. Tri; Verboven, Pieter; Nicolaï, Bart M.
2017-01-01
The rate of photosynthesis depends on the CO2 partial pressure near Rubisco, Cc, which is commonly calculated by models using the overall mesophyll resistance. Such models do not explain the difference between the CO2 level in the intercellular air space and Cc mechanistically. This problem can be overcome by reaction-diffusion models for CO2 transport, production and fixation in leaves. However, most reaction-diffusion models are complex and unattractive for procedures that require a large number of runs, like parameter optimisation. This study provides a simpler reaction-diffusion model. It is parameterized by both leaf physiological and leaf anatomical data. The anatomical data consisted of the thickness of the cell wall, cytosol and stroma, and the area ratios of mesophyll exposed to the intercellular air space to leaf surfaces and exposed chloroplast to exposed mesophyll surfaces. The model was used directly to estimate photosynthetic parameters from a subset of the measured light and CO2 response curves; the remaining data were used for validation. The model predicted light and CO2 response curves reasonably well for 15 days old tomato (cv. Admiro) leaves, if (photo)respiratory CO2 release was assumed to take place in the inner cytosol or in the gaps between the chloroplasts. The model was also used to calculate the fraction of CO2 produced by (photo)respiration that is re-assimilated in the stroma, and this fraction ranged from 56 to 76%. In future research, the model should be further validated to better understand how the re-assimilation of (photo)respired CO2 is affected by environmental conditions and physiological parameters. PMID:28880924
Berghuijs, Herman N C; Yin, Xinyou; Ho, Q Tri; Retta, Moges A; Verboven, Pieter; Nicolaï, Bart M; Struik, Paul C
2017-01-01
The rate of photosynthesis depends on the CO2 partial pressure near Rubisco, Cc, which is commonly calculated by models using the overall mesophyll resistance. Such models do not explain the difference between the CO2 level in the intercellular air space and Cc mechanistically. This problem can be overcome by reaction-diffusion models for CO2 transport, production and fixation in leaves. However, most reaction-diffusion models are complex and unattractive for procedures that require a large number of runs, like parameter optimisation. This study provides a simpler reaction-diffusion model. It is parameterized by both leaf physiological and leaf anatomical data. The anatomical data consisted of the thickness of the cell wall, cytosol and stroma, and the area ratios of mesophyll exposed to the intercellular air space to leaf surfaces and exposed chloroplast to exposed mesophyll surfaces. The model was used directly to estimate photosynthetic parameters from a subset of the measured light and CO2 response curves; the remaining data were used for validation. The model predicted light and CO2 response curves reasonably well for 15 days old tomato (cv. Admiro) leaves, if (photo)respiratory CO2 release was assumed to take place in the inner cytosol or in the gaps between the chloroplasts. The model was also used to calculate the fraction of CO2 produced by (photo)respiration that is re-assimilated in the stroma, and this fraction ranged from 56 to 76%. In future research, the model should be further validated to better understand how the re-assimilation of (photo)respired CO2 is affected by environmental conditions and physiological parameters.
Lawyer, Arthur L.; Cornwell, Karen L.; Larsen, Peder O.; Bassham, James A.
1981-01-01
Photosynthetic carbon metabolism of isolated spinach mesophyll cells was characterized under conditions favoring photorespiratory (PR; 0.04% CO2 and 20% O2) and nonphotorespiratory (NPR; 0.2% CO2 and 2% O2) metabolism, as well as intermediate conditions. Comparisons were made between the metabolic effects of extracellularly supplied NH4+ and intracellular NH4+, produced primarily via PR metabolism. The metabolic effects of 14CO2 fixation under PR conditions were similar to perturbations of photosynthetic metabolism brought about by externally supplied NH4+; both increased labeling and intracellular concentrations of glutamine at the expense of glutamate and increased anaplerotic synthesis through α-ketoglutarate. The metabolic effects of added NH4+ during NPR fixation were greater than those during PR fixation, presumably due to lower initial NH4+ levels during NPR fixation. During PR fixation, addition of ammonia caused decreased pools and labeling of glutamate and serine and increased glycolate, glyoxylate, and glycine labeling. The glycolate pathway was thus affected by increased rates of carbon flow and decreased glutamate availability for glyoxylate transamination, resulting in increased usage of serine for transamination. Sucrose labeling decreased with NH4+ addition only during PR fixation, suggesting that higher photosynthetic rates under NPR conditions can accommodate the increased drain of carbon toward amino acid synthesis while maintaining sucrose synthesis. PMID:16662084
Buchner, Othmar; Holzinger, Andreas; Lütz, Cornelius
2007-11-01
Chloroplasts of many alpine plants have the ability to form marked, stroma-filled protrusions that do not contain thylakoids. Effects of temperature and light intensity on the frequency of chloroplasts with such protrusions in leaf mesophyll cells of nine different alpine plant species (Carex curvula All., Leontodon helveticus Merat., Oxyria digyna (L.) Hill., Poa alpina L. ssp. vivipara, Polygonum viviparum L., Ranunculus glacialis L., Ranunculus alpestris L., Silene acaulis L. and Soldanella pusilla Baumg.) covering seven different families were studied. Leaves were exposed to either darkness and a stepwise increase in temperature (10-38 degrees C) or to different light intensities (500 and 2000 micromol photons m(-2) s(-1)) and a constant temperature of 10 or 30 degrees C in a special temperature-regulated chamber. A chloroplast protrusions index characterising the relative proportion of chloroplasts with protrusions was defined. Seven of the nine species showed a significant increase in chloroplast protrusions when temperature was elevated to over 20 degrees C. In contrast, the light level did not generally affect the abundance of chloroplasts with protrusions. Chloroplast protrusions lead to a dynamic enlargement of the chloroplast surface area. They do not appear to be directly connected to a distinct photosystem II (PSII) (F(v)/F(m)) status and thus seem to be involved in secondary, not primary, photosynthetic processes.
Phakopsora euvitis Causes Unusual Damage to Leaves and Modifies Carbohydrate Metabolism in Grapevine
Nogueira Júnior, Antonio F.; Ribeiro, Rafael V.; Appezzato-da-Glória, Beatriz; Soares, Marli K. M.; Rasera, Júlia B.; Amorim, Lilian
2017-01-01
Asian grapevine rust (Phakopsora euvitis) is a serious disease, which causes severe leaf necrosis and early plant defoliation. These symptoms are unusual for a strict biotrophic pathogen. This work was performed to quantify the effects of P. euvitis on photosynthesis, carbohydrates, and biomass accumulation of grapevine. The reduction in photosynthetic efficiency of the green leaf tissue surrounding the lesions was quantified using the virtual lesion concept (β parameter). Gas exchange and responses of CO2 assimilation to increasing intercellular CO2 concentration were analyzed. Histopathological analyses and quantification of starch were also performed on diseased leaves. Biomass and carbohydrate accumulation were quantified in different organs of diseased and healthy plants. Rust reduced the photosynthetic rate, and β was estimated at 5.78, indicating a large virtual lesion. Mesophyll conductance, maximum rubisco carboxylation rate, and regeneration of ribulose-1,5-bisphosphate dependent on electron transport rate were reduced, causing diffusive and biochemical limitations to photosynthesis. Hypertrophy, chloroplast degeneration of mesophyll cells, and starch accumulation in cells close to lesions were observed. Root carbohydrate concentration was reduced, even at low rust severity. Asian grapevine rust dramatically reduced photosynthesis and altered the dynamics of production and accumulation of carbohydrates, unlike strict biotrophic pathogens. The reduction in carbohydrate reserves in roots would support polyetic damage on grapevine, caused by a polycyclic disease. PMID:29018470
Sotiriou, P; Giannoutsou, E; Panteris, E; Apostolakos, P; Galatis, B
2016-03-01
This work investigates the involvement of local differentiation of cell wall matrix polysaccharides and the role of microtubules in the morphogenesis of mesophyll cells (MCs) of three types (lobed, branched and palisade) in the dicotyledon Vigna sinensis and the fern Asplenium nidus. Homogalacturonan (HGA) epitopes recognized by the 2F4, JIM5 and JIM7 antibodies and callose were immunolocalized in hand-made leaf sections. Callose was also stained with aniline blue. We studied microtubule organization by tubulin immunofluorescence and transmission electron microscopy. In both plants, the matrix cell wall polysaccharide distribution underwent definite changes during MC differentiation. Callose constantly defined the sites of MC contacts. The 2F4 HGA epitope in V. sinensis first appeared in MC contacts but gradually moved towards the cell wall regions facing the intercellular spaces, while in A. nidus it was initially localized at the cell walls delimiting the intercellular spaces, but finally shifted to MC contacts. In V. sinensis, the JIM5 and JIM7 HGA epitopes initially marked the cell walls delimiting the intercellular spaces and gradually shifted in MC contacts, while in A. nidus they constantly enriched MC contacts. In all MC types examined, the cortical microtubules played a crucial role in their morphogenesis. In particular, in palisade MCs, cortical microtubule helices, by controlling cellulose microfibril orientation, forced these MCs to acquire a truncated cone-like shape. Unexpectedly in V. sinensis, the differentiation of colchicine-affected MCs deviated completely, since they developed a cell wall ingrowth labyrinth, becoming transfer-like cells. The results of this work and previous studies on Zea mays (Giannoutsou et al., Annals of Botany 2013; 112: : 1067-1081) revealed highly controlled local cell wall matrix differentiation in MCs of species belonging to different plant groups. This, in coordination with microtubule-dependent cellulose microfibril alignment, spatially controlled cell wall expansion, allowing MCs to acquire their particular shape. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Keiluweit, M.; Bougoure, J.; Pett-Ridge, J.; Kleber, M.; Nico, P. S.
2011-12-01
Lignin comprises a dominant proportion of carbon fluxes into the soil (representing up to 50% of plant litter and roots). Two lines of evidence suggest that manganese (Mn) acts as a strong controlling factor on the residence time of lignin in soil ecosystems. First, Mn content is highly correlated with litter decomposition in temperate and boreal forest soil ecosystems and, second, microbial agents of lignin degradation have been reported to rely on reactive Mn(III)-complexes to specifically oxidize lignin. However, few attempts have been made to isolate the mechanisms responsible for the apparent Mn-dependence of lignin decomposition in soils. Here we tested the hypothesis that Mn(III)-oxalate complexes may act as a perforating 'pretreatment' for structurally intact plant cell walls. We propose that these diffusible oxidizers are small enough to penetrate and react with non-porous ligno-cellulose in cell walls. This process was investigated by reacting single Zinnia elegans tracheary elements with Mn(III)-oxalate complexes in a continuous flow-through microreactor. The uniformity of cultured tracheary elements allowed us to examine Mn(III)-induced changes in cell wall chemistry and ultrastructure on the micro-scale using fluorescence and electron microscopy as well as synchrotron-based infrared and X-ray spectromicroscopy. Our results show that Mn(III)-complexes substantially oxidize specific lignin components of the cell wall, solubilize decomposition products, severely undermine the cell wall integrity, and cause cell lysis. We conclude that Mn(III)-complexes induce oxidative damage in plant cell walls that renders ligno-cellulose substrates more accessible for microbial lignin- and cellulose-decomposing enzymes. Implications of our results for the rate limiting impact of soil Mn speciation and availability on litter decomposition in forest soils will be discussed.
Fini, Alessio; Loreto, Francesco; Tattini, Massimiliano; Giordano, Cristiana; Ferrini, Francesco; Brunetti, Cecilia; Centritto, Mauro
2016-05-01
The ability to modify mesophyll conductance (gm ) in response to changes in irradiance may be a component of the acclimation of plants to shade-sun transitions, thus influencing species-specific distributions along light-gradients, and the ecological niches for the different species. To test this hypothesis we grew three woody species of the Oleaceae family, the evergreen Phillyrea latifolia (sun-requiring), the deciduous Fraxinus ornus (facultative sun-requiring) and the hemi-deciduous Ligustrum vulgare (shade tolerant) at 30 or 100% sunlight irradiance. We show that neither mesophyll conductance calculated with combined gas exchange and chlorophyll fluorescence techniques (gm) nor CO2 assimilation significantly varied in F. ornus because of sunlight irradiance. This corroborates previous suggestions that species with high plasticity for light requirements, do not need to undertake extensive reorganization of leaf conductances to CO2 diffusion to adapt to different light environments. On the other hand, gm steeply declined in L. vulgare and increased in P. latifolia exposed to full-sun conditions. In these two species, leaf anatomical traits are in part responsible for light-driven changes in gm , as revealed by the correlation between gm and mesophyll conductance estimated by anatomical parameters (gmA). Nonetheless, gm was greatly overestimated by gmA when leaf metabolism was impaired because of severe light stress. We show that gm is maximum at the light intensity at which plant species have evolved and we conclude that gm actually plays a key role in the sun and shade adaptation of Mediterranean species. The limits of gmA in predicting mesophyll conductance are also highlighted. © 2015 Scandinavian Plant Physiology Society.
Effects of Slag-Based Silicon Fertilizer on Rice Growth and Brown-Spot Resistance
Ning, Dongfeng; Song, Alin; Fan, Fenliang; Li, Zhaojun; Liang, Yongchao
2014-01-01
It is well documented that slag-based silicon fertilizers have beneficial effects on the growth and disease resistance of rice. However, their effects vary greatly with sources of slag and are closely related to availability of silicon (Si) in these materials. To date, few researches have been done to compare the differences in plant performance and disease resistance between different slag-based silicon fertilizers applied at the same rate of plant-available Si. In the present study both steel and iron slags were chosen to investigate their effects on rice growth and disease resistance under greenhouse conditions. Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the effects of slags on ultrastructural changes in leaves of rice naturally infected by Bipolaris oryaze, the causal agent of brown spot. The results showed that both slag-based Si fertilizers tested significantly increased rice growth and yield, but decreased brown spot incidence, with steel slag showing a stronger effect than iron slag. The results of SEM analysis showed that application of slags led to more pronounced cell silicification in rice leaves, more silica cells, and more pronounced and larger papilla as well. The results of TEM analysis showed that mesophyll cells of slag-untreated rice leaf were disorganized, with colonization of the fungus (Bipolaris oryzae), including chloroplast degradation and cell wall alterations. The application of slag maintained mesophyll cells relatively intact and increased the thickness of silicon layer. It can be concluded that applying slag-based fertilizer to Si-deficient paddy soil is necessary for improving both rice productivity and brown spot resistance. The immobile silicon deposited in host cell walls and papillae sites is the first physical barrier for fungal penetration, while the soluble Si in the cytoplasm enhances physiological or induced resistance to fungal colonization. PMID:25036893
Xiong, Tou Cheu; Ronzier, Elsa; Sanchez, Frédéric; Corratgé-Faillie, Claire; Mazars, Christian; Thibaud, Jean-Baptiste
2014-01-01
Calcium (Ca2+) is a second messenger involved in many plant signaling processes. Biotic and abiotic stimuli induce Ca2+ signals within plant cells, which, when decoded, enable these cells to adapt in response to environmental stresses. Multiple examples of Ca2+ signals from plants containing the fluorescent yellow cameleon sensor (YC) have contributed to the definition of the Ca2+ signature in some cell types such as root hairs, pollen tubes and guard cells. YC is, however, of limited use in highly autofluorescent plant tissues, in particular mesophyll cells. Alternatively, the bioluminescent reporter aequorin enables Ca2+ imaging in the whole plant, including mesophyll cells, but this requires specific devices capable of detecting the low amounts of emitted light. Another type of Ca2+ sensor, referred to as GFP-aequorin (G5A), has been engineered as a chimeric protein, which combines the two photoactive proteins from the jellyfish Aequorea victoria, the green fluorescent protein (GFP) and the bioluminescent protein aequorin. The Ca2+-dependent light-emitting property of G5A is based on a bioluminescence resonance energy transfer (BRET) between aequorin and GFP. G5A has been used for over 10 years for enhanced in vivo detection of Ca2+ signals in animal tissues. Here, we apply G5A in Arabidopsis and show that G5A greatly improves the imaging of Ca2+ dynamics in intact plants. We describe a simple method to image Ca2+ signals in autofluorescent leaves of plants with a cooled charge-coupled device (cooled CCD) camera. We present data demonstrating how plants expressing the G5A probe can be powerful tools for imaging of Ca2+ signals. It is shown that Ca2+ signals propagating over long distances can be visualized in intact plant leaves and are visible mainly in the veins. PMID:24600459
NASA Astrophysics Data System (ADS)
Fu, W.; Gu, L.; Hoffman, F. M.
2013-12-01
The photosynthesis model of Farquhar, von Caemmerer & Berry (1980) is an important tool for predicting the response of plants to climate change. So far, the critical parameters required by the model have been obtained from the leaf-level measurements of gas exchange, namely the net assimilation of CO2 against intercellular CO2 concentration (A-Ci) curves, made at saturating light conditions. With such measurements, most points are likely in the Rubisco-limited state for which the model is structurally overparameterized (the model is also overparameterized in the TPU-limited state). In order to reliably estimate photosynthetic parameters, there must be sufficient number of points in the RuBP regeneration-limited state, which has no structural over-parameterization. To improve the accuracy of A-Ci data analysis, we investigate the potential of using multiple A-Ci curves at subsaturating light intensities to generate some important parameter estimates more accurately. Using subsaturating light intensities allow more RuBp regeneration-limited points to be obtained. In this study, simulated examples are used to demonstrate how this method can eliminate the errors of conventional A-Ci curve fitting methods. Some fitted parameters like the photocompensation point and day respiration impose a significant limitation on modeling leaf CO2 exchange. The multiple A-Ci curves fitting can also improve over the so-called Laisk (1977) method, which was shown by some recent publication to produce incorrect estimates of photocompensation point and day respiration. We also test the approach with actual measurements, along with suggested measurement conditions to constrain measured A-Ci points to maximize the occurrence of RuBP regeneration-limited photosynthesis. Finally, we use our measured gas exchange datasets to quantify the magnitude of resistance of chloroplast and cell wall-plasmalemma and explore the effect of variable mesophyll conductance. The variable mesophyll conductance takes into account the influence of CO2 from mitochondria, comparing to the commonly used constant value of mesophyll conductance. We show that after considering this effect the other parameters of the photosynthesis model can be re-estimated. Our results indicate that variable mesophyll conductance has most effect on the estimation of the parameter of the maximum electron transport rate (Jmax), but has a negligible impact on the estimated day respiration (Rd) and photocompensation point (<2%).
Impact of mesophyll diffusion on estimated global land CO 2 fertilization
Sun, Ying; Gu, Lianhong; Dickinson, Robert E.; ...
2014-10-13
In C 3 plants, CO 2 concentrations drop considerably along mesophyll diffusion pathways from substomatal cavities to chloroplasts where CO 2 assimilation occurs. Global carbon cycle models have not explicitly represented this internal drawdown and so overestimate CO 2 available for carboxylation and underestimate photosynthetic responsiveness to atmospheric CO 2. An explicit consideration of mesophyll diffusion increases the modeled cumulative CO 2 fertilization effect (CFE) for global gross primary production (GPP) from 915 PgC to 1057 PgC for the period of 1901 to 2010. This increase represents a 16% correction, large enough to explain the persistent overestimation of growth ratesmore » of historical atmospheric CO 2 by Earth System Models. Without this correction, the CFE for global GPP is underestimated by 0.05 PgC yr -1ppm -1. This finding implies that the contemporary terrestrial biosphere is more CO 2-limited than previously thought.« less
Leaf maximum photosynthetic rate and venation are linked by hydraulics.
Brodribb, Tim J; Feild, Taylor S; Jordan, Gregory J
2007-08-01
Leaf veins are almost ubiquitous across the range of terrestrial plant diversity, yet their influence on leaf photosynthetic performance remains uncertain. We show here that specific physical attributes of the vascular plumbing network are key limiters of the hydraulic and photosynthetic proficiency of any leaf. Following the logic that leaf veins evolved to bypass inefficient water transport through living mesophyll tissue, we examined the hydraulic pathway beyond the distal ends of the vein system as a possible limiter of water transport in leaves. We tested a mechanistic hypothesis that the length of this final traverse, as water moves from veins across the mesophyll to where it evaporates from the leaf, governs the hydraulic efficiency and photosynthetic carbon assimilation of any leaf. Sampling 43 species across the breadth of plant diversity from mosses to flowering plants, we found that the post-vein traverse as determined by characters such as vein density, leaf thickness, and cell shape, was strongly correlated with the hydraulic conductivity and maximum photosynthetic rate of foliage. The shape of this correlation provided clear support for the a priori hypothesis that vein positioning limits photosynthesis via its influence on leaf hydraulic efficiency.
Landi, Marco; Guidi, Lucia; Pardossi, Alberto; Tattini, Massimiliano; Gould, Kevin S
2014-11-01
Boron (B) toxicity is an important agricultural problem in arid environments. Excess edaphic B compromises photosynthetic efficiency, limits growth and reduces crop yield. However, some purple-leafed cultivars of sweet basil (Ocimum basilicum) exhibit greater tolerance to high B concentrations than do green-leafed cultivars. We hypothesised that foliar anthocyanins protect basil leaf mesophyll from photo-oxidative stress when chloroplast function is compromised by B toxicity. Purple-leafed 'Red Rubin' and green-leafed 'Tigullio' cultivars, grown with high or negligible edaphic B, were given a photoinhibitory light treatment. Possible effects of photoabatement by anthocyanins were simulated by superimposing a purple polycarbonate filter on the green leaves. An ameliorative effect of light filtering on photosynthetic quantum yield and on photo-oxidative load was observed in B-stressed plants. In addition, when green protoplasts from both cultivars were treated with B and illuminated through a screen of anthocyanic protoplasts or a polycarbonate film which approximated cyanidin-3-O-glucoside optical properties, the degree of photoinhibition, hydrogen peroxide production, and malondialdehyde content were reduced. The data provide evidence that anthocyanins exert a photoprotective role in purple-leafed basil mesophyll cells, thereby contributing to improved tolerance to high B concentrations.
Kiirats, Olavi; Lea, Peter J.; Franceschi, Vincent R.; Edwards, Gerald E.
2002-01-01
A mutant of the NAD-malic enzyme-type C4 plant, Amaranthus edulis, which lacks phosphoenolpyruvate carboxylase (PEPC) in the mesophyll cells was studied. Analysis of CO2 response curves of photosynthesis of the mutant, which has normal Kranz anatomy but lacks a functional C4 cycle, provided a direct means of determining the liquid phase-diffusive resistance of atmospheric CO2 to sites of ribulose 1,5-bisphosphate carboxylation inside bundle sheath (BS) chloroplasts (rbs) within intact plants. Comparisons were made with excised shoots of wild-type plants fed 3,3-dichloro-2-(dihydroxyphosphinoyl-methyl)-propenoate, an inhibitor of PEPC. Values of rbs in A. edulis were 70 to 180 m2 s−1 mol−1, increasing as the leaf matured. This is about 70-fold higher than the liquid phase resistance for diffusion of CO2 to Rubisco in mesophyll cells of C3 plants. The values of rbs in A. edulis are sufficient for C4 photosynthesis to elevate CO2 in BS cells and to minimize photorespiration. The calculated CO2 concentration in BS cells, which is dependent on input of rbs, was about 2,000 μbar under maximum rates of CO2 fixation, which is about six times the ambient level of CO2. High re-assimilation of photorespired CO2 was demonstrated in both mutant and wild-type plants at limiting CO2 concentrations, which can be explained by high rbs. Increasing O2 from near zero up to ambient levels under low CO2, resulted in an increase in the gross rate of O2 evolution measured by chlorophyll fluorescence analysis in the PEPC mutant; this increase was simulated from a Rubisco kinetic model, which indicates effective refixation of photorespired CO2 in BS cells. PMID:12376660
Influence of Environmental Changes on Physiology and Development of Polar Vascular Plants
NASA Astrophysics Data System (ADS)
Giełwanowska, Irena; Pastorczyk, Marta; Kellmann-Sopyła, Wioleta
2011-01-01
Polar vascular plants native to the Arctic and the Antarctic geobotanical zone have been growing and reproducing effectively under difficult environmental conditions, colonizing frozen ground areas formerly covered by ice. Our macroscopic observations and microscopic studies conducted by means of a light microscope (LM) and transmission electron microscope (TEM) concerning the anatomical and ultrastructural observations of vegetative and generative tissue in Cerastium arcticum, Colobanthus quitensis, Silene involucrata, plants from Caryophyllaceae and Deschampsia antarctica, Poa annua and Poa arctica, from Poaceae family. In the studies, special attention was paid to plants coming from diversity habitats where stress factors operated with clearly different intensity. In all examinations plants, differences in anatomy were considerable. In Deschampsia antarctica the adaxial epidermis of hairgrass leaves from a humid microhabitat, bulliform cells differentiated. Mesophyll was composed of cells of irregular shapes and resembled aerenchyma. The ultrastructural observations of mesophyll in all plants showed tight adherence of chloroplasts, mitochondria and peroxisomes, surface deformations of these organelles and formation of characteristic outgrowths and pocket concavities filled with cytoplasm with vesicles and organelles by chloroplasts. In reproduction biology of examined Caryophyllaceae and Poaceae plants growing in natural conditions, in the Arctic and in the Antarctic, and in a greenhouse in Olsztyn showed that this plant develops two types of bisexual flowers. Almost all ovules developed and formed seeds with a completely differentiated embryo both under natural conditions in the Arctic and the Antarctic and in a greenhouse in Olsztyn.
Influence of Environmental Changes on Physiology and Development of Polar Vascular Plants
NASA Astrophysics Data System (ADS)
Giełwanowska, Irena; Pastorczyk, Marta; Kellmann-Sopyła, Wioleta
2011-01-01
Polar vascular plants native to the Arctic and the Antarctic geobotanical zone have been growing and reproducing effectively under difficult environmental conditions, colonizing frozen ground areas formerly covered by ice. Our macroscopic observations and microscopic studies conducted by means of a light microscope (LM) and transmission electron microscope (TEM) concerning the anatomical and ultrastructural observations of vegetative and generative tissue in
Onoda, Yusuke; Schieving, Feike; Anten, Niels P. R.
2015-01-01
Plant leaves commonly exhibit a thin, flat structure that facilitates a high light interception per unit mass, but may increase risks of mechanical failure when subjected to gravity, wind and herbivory as well as other stresses. Leaf laminas are composed of thin epidermis layers and thicker intervening mesophyll layers, which resemble a composite material, i.e. sandwich structure, used in engineering constructions (e.g. airplane wings) where high bending stiffness with minimum weight is important. Yet, to what extent leaf laminas are mechanically designed and behave as a sandwich structure remains unclear. To resolve this issue, we developed and applied a novel method to estimate stiffness of epidermis- and mesophyll layers without separating the layers. Across a phylogenetically diverse range of 36 angiosperm species, the estimated Young’s moduli (a measure of stiffness) of mesophyll layers were much lower than those of the epidermis layers, indicating that leaf laminas behaved similarly to efficient sandwich structures. The stiffness of epidermis layers was higher in evergreen species than in deciduous species, and strongly associated with cuticle thickness. The ubiquitous nature of sandwich structures in leaves across studied species suggests that the sandwich structure has evolutionary advantages as it enables leaves to be simultaneously thin and flat, efficiently capturing light and maintaining mechanical stability under various stresses. PMID:25675956
Crown gall transformation of tobacco callus cells by cocultivation with Agrobacterium tumefaciens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller, A.; Manzara, T.; Lurquin, P.F.
1984-09-17
Incubation of cells from squashed tobacco callus tissue with virulent Agrobacterium tumefaciens leads to the production of cells displaying a crown gall phenotype. In vitro crown gall transformation of dicotyledonous plant cells has been demonstrated after cocultivation of cell-wall regenerating mesophyll protoplasts with Agrobacterium tumefaciens cells. In addition, it has been shown that protoplasts freshly isolated from suspension cultures, when treated with A. tumefaciens spheroplasts and a fusogen, also generated cells displaying a typical crown gall phenotype, i.e., phytohormone-independent growth and opine synthesis. Subsequently, both techniques were used to transfer and express foreign genes in plant cells via A. tumefaciensmore » T-DNA integration. For practical purposes, it would be advantageous to be able to perform crown gall transformation of plant cells in tissue culture. The authors report here for the first time the production of Nicotiana tabacum crown gall cells after cocultivation of callus tissue with A. tumefaciens A136 cells. 11 references, 1 figure, 1 table.« less
Distribution and Translocation of 141Ce (III) in Horseradish
Guo, Xiaoshan; Zhou, Qing; Lu, Tianhong; Fang, Min; Huang, Xiaohua
2007-01-01
Background and Aims Rare earth elements (REEs) are used in agriculture and a large amount of them contaminate the environment and enter foods. The distribution and translocation of 141Ce (III) in horseradish was investigated in order to help understand the biochemical behaviour and toxic mechanism of REEs in plants. Method The distribution and translocation of 141Ce (III) in horseradish were investigated using autoradiography, liquid scintillation counting (LSC) and electron microscopic autoradiography (EMARG) techniques. The contents of 141Ce (III) and nutrient elements were analysed using an inductively coupled plasma-atomic emission spectrometer (ICP-AES). Results The results from autoradiography and LSC indicated that 141Ce (III) could be absorbed by horseradish and transferred from the leaf to the leaf-stalk and then to the root. The content of 141Ce (III) in different parts of horseradish was as follows: root > leaf-stalk > leaf. The uptake rates of 141Ce (III) in horseradish changed with the different organs and time. The content of 141Ce (III) in developing leaves was greater than that in mature leaves. The results from EMARG indicated that 141Ce (III) could penetrate through the cell membrane and enter the mesophyll cells, being present in both extra- and intra-cellular deposits. The contents of macronutrients in horseradish were decreased by 141Ce (III) treatment. Conclusions 141Ce (III) can be absorbed and transferred between organs of horseradish with time, and the distribution was found to be different at different growth stages. 141Ce (III) can enter the mesophyll cells via apoplast and symplast channels or via plasmodesmata. 141Ce (III) can disturb the metabolism of macronutrients in horseradish. PMID:17921527
Anatomy and ultrastructure of embryonic leaves of the C4 species Setaria viridis.
Junqueira, Nicia E G; Ortiz-Silva, Bianca; Leal-Costa, Marcos Vinícius; Alves-Ferreira, Márcio; Dickinson, Hugh G; Langdale, Jane A; Reinert, Fernanda
2018-05-11
Setaria viridis is being promoted as a model C4 photosynthetic plant because it has a small genome (~515 Mb), a short life cycle (~60 d) and it can be transformed. Unlike other C4 grasses such as maize, however, there is very little information about how C4 leaf anatomy (Kranz anatomy) develops in S. viridis. As a foundation for future developmental genetic studies, we provide an anatomical and ultrastructural framework of early shoot development in S. viridis, focusing on the initiation of Kranz anatomy in seed leaves. Setaria viridis seeds were germinated and divided into five stages covering development from the dry seed (stage S0) to 36 h after germination (stage S4). Material at each of these stages was examined using conventional light, scanning and transmission electron microscopy. Dry seeds contained three embryonic leaf primordia at different developmental stages (plastochron 1-3 primordia). The oldest (P3) leaf primordium possessed several procambial centres whereas P2 displayed only ground meristem. At the tip of P3 primordia at stage S4, C4 leaf anatomy typical of the malate dehydrogenase-dependent nicotinamide dinucleotide phosphate (NADP-ME) subtype was evident in that vascular bundles lacked a mestome layer and were surrounded by a single layer of bundle sheath cells that contained large, centrifugally located chloroplasts. Two to three mesophyll cells separated adjacent vascular bundles and one mesophyll cell layer on each of the abaxial and adaxial sides delimited vascular bundles from the epidermis. The morphological trajectory reported here provides a foundation for studies of gene regulation during early leaf development in S. viridis and a framework for comparative analyses with other C4 grasses.
Gómez, Leonardo D.; Vanacker, Hélène; Buchner, Peter; Noctor, Graham; Foyer, Christine H.
2004-01-01
To investigate the intercellular control of glutathione synthesis and its influence on leaf redox state in response to short-term chilling, genes encoding γ-glutamylcysteine synthetase (γ-ECS) and glutathione synthetase (GSH-S) were cloned from maize (Zea mays) and specific antibodies produced. These tools were used to provide the first information on the intercellular distribution of γ-ECS and GSH-S transcript and protein in maize leaves, in both optimal conditions and chilling stress. A 2-d exposure to low growth temperatures (chill) had no effect on leaf phenotype, whereas return to optimal temperatures (recovery) caused extensive leaf bleaching. The chill did not affect total leaf GSH-S transcripts but strongly induced γ-ECS mRNA, an effect reversed during recovery. The chilling-induced increase in γ-ECS transcripts was not accompanied by enhanced total leaf γ-ECS protein or extractable activity. In situ hybridization and immunolocalization of leaf sections showed that γ-ECS and GSH-S transcripts and proteins were found in both the bundle sheath (BS) and the mesophyll cells under optimal conditions. Chilling increased γ-ECS transcript and protein in the BS but not in the mesophyll cells. Increased BS γ-ECS was correlated with a 2-fold increase in both leaf Cys and γ-glutamylcysteine, but leaf total glutathione significantly increased only in the recovery period, when the reduced glutathione to glutathione disulfide ratio decreased 3-fold. Thus, while there was a specific increase in the potential contribution of the BS cells to glutathione synthesis during chilling, it did not result in enhanced leaf glutathione accumulation at low temperatures. Return to optimal temperatures allowed glutathione to increase, particularly glutathione disulfide, and this was associated with leaf chlorosis. PMID:15047902
Littlejohn, George R.; Mansfield, Jessica C.; Christmas, Jacqueline T.; Witterick, Eleanor; Fricker, Mark D.; Grant, Murray R.; Smirnoff, Nicholas; Everson, Richard M.; Moger, Julian; Love, John
2014-01-01
Plant leaves are optically complex, which makes them difficult to image by light microscopy. Careful sample preparation is therefore required to enable researchers to maximize the information gained from advances in fluorescent protein labeling, cell dyes and innovations in microscope technologies and techniques. We have previously shown that mounting leaves in the non-toxic, non-fluorescent perfluorocarbon (PFC), perfluorodecalin (PFD) enhances the optical properties of the leaf with minimal impact on physiology. Here, we assess the use of the PFCs, PFD, and perfluoroperhydrophenanthrene (PP11) for in vivo plant leaf imaging using four advanced modes of microscopy: laser scanning confocal microscopy (LSCM), two-photon fluorescence microscopy, second harmonic generation microscopy, and stimulated Raman scattering (SRS) microscopy. For every mode of imaging tested, we observed an improved signal when leaves were mounted in PFD or in PP11, compared to mounting the samples in water. Using an image analysis technique based on autocorrelation to quantitatively assess LSCM image deterioration with depth, we show that PP11 outperformed PFD as a mounting medium by enabling the acquisition of clearer images deeper into the tissue. In addition, we show that SRS microscopy can be used to image PFCs directly in the mesophyll and thereby easily delimit the “negative space” within a leaf, which may have important implications for studies of leaf development. Direct comparison of on and off resonance SRS micrographs show that PFCs do not to form intracellular aggregates in live plants. We conclude that the application of PFCs as mounting media substantially increases advanced microscopy image quality of living mesophyll and leaf vascular bundle cells. PMID:24795734
2016-01-01
Subcellular lipid droplets (LDs) in diverse plant cells and species are coated with stabilizing oleosins of at least five phylogenic lineages and perform different functions. We examined two types of inadequately studied LDs for coated oleosins and their characteristics. The epidermis but not mesophyll of leaves of vanilla (Vanilla planifolia) and most other Asparagales species contained solitary and clustered LDs (<0.5 μm), some previously studied by electron microscopy and speculated to be for cuticle formation. In vanilla leaves, transcripts of oleosins of the U lineage were present in both epidermis and mesophyll, but oleosin occurred only in epidermis. Immuno-confocal laser scanning microscopy revealed that the LDs were coated with oleosins. LDs in isolated fractions did not coalesce, and the fractions contained heterogeneous proteins including oleosins and diverse lipids. These findings reflect the in situ structure and possible functions of the LDs. Fruit mesocarp of avocado (Persea americana) and other Lauraceae species possessed large LDs, which likely function in attracting animals for seed dispersal. They contained transcripts of oleosin of a novel M phylogenic lineage. Each avocado mesocarp fatty cell possessed one to several large LDs (5 to 20 μm) and at their periphery, numerous small LDs (<0.5 μm). Immuno-confocal laser scanning microscopy revealed that oleosin was present mostly on the small LDs. LDs in isolated fractions coalesced rapidly, and the fraction contained oleosin and several other proteins and triacylglycerols as the main lipids. These two new types of oleosin-LDs exemplify the evolutionary plasticity of oleosins-LDs in generating novel functions in diverse cell types and species. PMID:27208281
Huang, Ming-Der; Huang, Anthony H C
2016-07-01
Subcellular lipid droplets (LDs) in diverse plant cells and species are coated with stabilizing oleosins of at least five phylogenic lineages and perform different functions. We examined two types of inadequately studied LDs for coated oleosins and their characteristics. The epidermis but not mesophyll of leaves of vanilla (Vanilla planifolia) and most other Asparagales species contained solitary and clustered LDs (<0.5 μm), some previously studied by electron microscopy and speculated to be for cuticle formation. In vanilla leaves, transcripts of oleosins of the U lineage were present in both epidermis and mesophyll, but oleosin occurred only in epidermis. Immuno-confocal laser scanning microscopy revealed that the LDs were coated with oleosins. LDs in isolated fractions did not coalesce, and the fractions contained heterogeneous proteins including oleosins and diverse lipids. These findings reflect the in situ structure and possible functions of the LDs. Fruit mesocarp of avocado (Persea americana) and other Lauraceae species possessed large LDs, which likely function in attracting animals for seed dispersal. They contained transcripts of oleosin of a novel M phylogenic lineage. Each avocado mesocarp fatty cell possessed one to several large LDs (5 to 20 μm) and at their periphery, numerous small LDs (<0.5 μm). Immuno-confocal laser scanning microscopy revealed that oleosin was present mostly on the small LDs. LDs in isolated fractions coalesced rapidly, and the fraction contained oleosin and several other proteins and triacylglycerols as the main lipids. These two new types of oleosin-LDs exemplify the evolutionary plasticity of oleosins-LDs in generating novel functions in diverse cell types and species. © 2016 American Society of Plant Biologists. All Rights Reserved.
Vasfilov, S P
2011-01-01
The lamina dry mass: area ratio (LMA - Leaf Mass per Area) is a quite variable trait. Leaf dry mass consists of symplast mass (a set of all leaf protoplasts) and apoplast mass (a set of all cell walls in a leaf). The ratio between symplast and apoplast masses is positively related to any functional trait of leaf calculated per unit of dry mass. The value of this ratio is defined by cells size and their number per unit of leaf area, number of mesophyll cells layers and their differentiation between palisade and spongy ones, and also by density of cells packing. The LMA value is defined by leaf thickness and density. The extent and direction of variability in both leaf traits define the extent and direction of variability in LMA. Negative correlation between leaf thickness and density reduces the level of LMA variability. As a consequence of this correlation the following pattern emerges: the thinner a leaf, the denser it is. Changes in the traits that define the LMA value take place both within a species under the influence of environmental factors and between species that differ in leaf structure and functions. Light is the most powerful environmental factor that influences the LMA, increase in illumination leading to increase in LMA. This effect occurs during leaf growth at the expense of structural changes associated with the reduction of symplast/apoplast mass ratio. Under conditions of intense illumination, LMA may increase due to accumulation of starch. With regard to the majority of leaf functions, the mass of starch may be ascribed to apoplast. Starch accumulation in leaves is observed also under conditions of elevated CO2 concentration in the air. Under high illumination, however, LMA increases also due to increased apoplast contribution to leaf dry mass. Scarce mineral nutrition leads to LMA increase due to lowering of growth zones demands for phothosyntates and, therefore, to increase in starch content of leaves. High level of mineral nutrition during leaf growth period leads to LMA increase at the expense of mesophyll thickening where components of photosynthesis system are located. When additional environmental factors are involved, starch accumulation may be partly responsible for increase in LMA. LMA increase at the expense of starch accumulation, unlike that at the expense of mesophyll thickening, is accompanied by increased leaf density. Under conditions of water deficiency LMA increases, which in mature leaf may be caused by starch accumulation. LMA increase during leaf growth period under conditions of water deficiency is associated with decrease in the symplast/apoplast mass ratio.
Townsend, R; Watts, J; Stanley, J
1986-01-01
Totipotent leaf mesophyll protoplasts of Nicotiana plumbaginifolia, Viviani were inoculated with cassava latent virus (CLV) or with full length copies of CLV genomic DNAs 1 and 2 excised from replicative forms of M13 clones. Virus specific DNAs began to appear 48-72h after inoculation with virus or cloned DNAs, coincident with the onset of host cell division. Infected cells accumulated supercoiled forms of DNAs 1 and 2 as well as progeny single-stranded (ss) virion (+) sense DNAs representing each component of the genome. Both supercoiled and ss molecules were synthesised by cells inoculated with cloned DNA 1 alone but DNA 2 failed to replicate independently. Images PMID:3951986
Polyamine metabolism and osmotic stress. I. Relation to protoplast viability
NASA Technical Reports Server (NTRS)
Tiburcio, A. F.; Masdeu, M. A.; Dumortier, F. M.; Galston, A. W.
1986-01-01
Cereal leaves subjected to the osmotica routinely used for protoplast isolation show a rapid increase in arginine decarboxylase activity, a massive accumulation of putrescine, and slow conversion of putrescine to the higher polyamines, spermidine and spermine (HE Flores, AW Galston 1984 Plant Physiol 75: 102). Mesophyll protoplasts from these leaves, which have a high putrescine:polyamine ratio, do not undergo sustained division. By contrast, in Nicotiana, Capsicum, Datura, Trigonella, and Vigna, dicot genera that readily regenerate plants from mesophyll protoplasts, the response of leaves to osmotic stress is opposite to that in cereals. Putrescine titer as well as arginine and ornithine decarboxylase activities decline in these osmotically stressed dicot leaves, while spermidine and spermine titers increase. Thus, the putrescine:polyamine ratio in Vigna protoplasts, which divide readily, is 4-fold lower than in oat protoplasts, which divide poorly. We suggest that this differing response of polyamine metabolism to osmotic stress may account in part for the failure of cereal mesophyll protoplasts to develop readily in vitro.
GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana.
Sawa, Mariko; Kay, Steve A
2011-07-12
Plants perceive environmental signals such as day length and temperature to determine optimal timing for the transition from vegetative to floral stages. Arabidopsis flowers under long-day conditions through the CONSTANS (CO)-FLOWERING LOCUS T (FT) regulatory module. It is thought that the environmental cues for photoperiodic control of flowering are initially perceived in the leaves. We have previously shown that GIGANTEA (GI) regulates the timing of CO expression, together with FLAVIN-BINDING, KELCH REPEAT, F BOX protein 1. Normally, CO and FT are expressed exclusively in vascular bundles, whereas GI is expressed in various tissues. To better elucidate the role of tissue-specific expression of GI in the flowering pathway, we established transgenic lines in which GI is expressed exclusively in mesophyll, vascular bundles, epidermis, shoot apical meristem, or root. We found that GI expressed in either mesophyll or vascular bundles rescues the late-flowering phenotype of the gi-2 loss-of-function mutant under both short-day and long-day conditions. Interestingly, GI expressed in mesophyll or vascular tissues increases FT expression without up-regulating CO expression under short-day conditions. Furthermore, we examined the interaction between GI and FT repressors in mesophyll. We found that GI can bind to three FT repressors: SHORT VEGETATIVE PHASE (SVP), TEMPRANILLO (TEM)1, and TEM2. Finally, our chromatin immunoprecipitation experiments showed that GI binds to FT promoter regions that are near the SVP binding sites. Taken together, our data further elucidate the multiple roles of GI in the regulation of flowering time.
Onoda, Yusuke; Schieving, Feike; Anten, Niels P R
2015-05-01
Plant leaves commonly exhibit a thin, flat structure that facilitates a high light interception per unit mass, but may increase risks of mechanical failure when subjected to gravity, wind and herbivory as well as other stresses. Leaf laminas are composed of thin epidermis layers and thicker intervening mesophyll layers, which resemble a composite material, i.e. sandwich structure, used in engineering constructions (e.g. airplane wings) where high bending stiffness with minimum weight is important. Yet, to what extent leaf laminas are mechanically designed and behave as a sandwich structure remains unclear. To resolve this issue, we developed and applied a novel method to estimate stiffness of epidermis- and mesophyll layers without separating the layers. Across a phylogenetically diverse range of 36 angiosperm species, the estimated Young's moduli (a measure of stiffness) of mesophyll layers were much lower than those of the epidermis layers, indicating that leaf laminas behaved similarly to efficient sandwich structures. The stiffness of epidermis layers was higher in evergreen species than in deciduous species, and strongly associated with cuticle thickness. The ubiquitous nature of sandwich structures in leaves across studied species suggests that the sandwich structure has evolutionary advantages as it enables leaves to be simultaneously thin and flat, efficiently capturing light and maintaining mechanical stability under various stresses. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Cookson, Sarah J.; Williams, Lorraine E.; Miller, Anthony J.
2005-01-01
Several different cellular processes determine the size of the metabolically available nitrate pool in the cytoplasm. These processes include not only ion fluxes across the plasma membrane and tonoplast but also assimilation by the activity of nitrate reductase (NR). In roots, the maintenance of cytosolic nitrate activity during periods of nitrate starvation and resupply (M. van der Leij, S.J. Smith, A.J. Miller [1998] Planta 205: 64–72; R.-G. Zhen, H.-W. Koyro, R.A. Leigh, A.D. Tomos, A.J. Miller [1991] Planta 185: 356–361) suggests that this pool is regulated. Under nitrate-replete conditions vacuolar nitrate is a membrane-bound store that can release nitrate to the cytoplasm; after depletion of cytosolic nitrate, tonoplast transporters would serve to restore this pool. To study the role of assimilation, specifically the activity of NR in regulating the size of the cytosolic nitrate pool, we have compared wild-type and mutant plants. In leaf mesophyll cells, light-to-dark transitions increase cytosolic nitrate activity (1.5–2.8 mm), and these changes were reversed by dark-to-light transitions. Such changes were not observed in nia1nia2 NR-deficient plants indicating that this change in cytosolic nitrate activity was dependent on the presence of functional NR. Furthermore, in the dark, the steady-state cytosolic nitrate activities were not statistically different between the two types of plant, indicating that NR has little role in determining resting levels of nitrate. Epidermal cells of both wild type and NR mutants had cytosolic nitrate activities that were not significantly different from mesophyll cells in the dark and were unaltered by dark-to-light transitions. We propose that the NR-dependent changes in cytosolic nitrate provide a cellular mechanism for the diurnal changes in vacuolar nitrate storage, and the results are discussed in terms of the possible signaling role of cytosolic nitrate. PMID:15908593
NASA Technical Reports Server (NTRS)
Dauwalder, M.; Roux, S. J.
1986-01-01
Immunofluorescence techniques have been used to study the distribution of calmodulin in several tissues in etiolated corn (Zea mays, var. Bear Hybrid) seedlings. Uniform staining was seen in the background cytoplasm of most cell types. Cell walls and vacuoles were not stained. In coleoptile mesophyll cells the nucleoplasm of most nuclei was stained as was the stroma of most amyloplasts. The lumen border of mature tracheary elements in coleoptiles also stained. In the rootcap the most intensely stained regions were the cytoplasms of columella cells and of the outermost cells enmeshed in the layer of secreted slime. Nuclei in the rootcap cells did not stain distinctly, but those in all cell types of the root meristem did. Also in the root meristem, the cytoplasm of metaxylem elements stained brightly. These results are compared and contrasted with previous data on the localization of calmodulin in pea root apices and epicotyls and discussed in relation to current hypotheses on mechanisms of gravitropism.
Arabidopsis ANGULATA10 is required for thylakoid biogenesis and mesophyll development
Micol, José Luis
2014-01-01
The chloroplasts of land plants contain internal membrane systems, the thylakoids, which are arranged in stacks called grana. Because grana have not been found in Cyanobacteria, the evolutionary origin of genes controlling the structural and functional diversification of thylakoidal membranes in land plants remains unclear. The angulata10-1 (anu10-1) mutant, which exhibits pale-green rosettes, reduced growth, and deficient leaf lateral expansion, resulting in the presence of prominent marginal teeth, was isolated. Palisade cells in anu10-1 are larger and less packed than in the wild type, giving rise to large intercellular spaces. The ANU10 gene encodes a protein of unknown function that localizes to both chloroplasts and amyloplasts. In chloroplasts, ANU10 associates with thylakoidal membranes. Mutant anu10-1 chloroplasts accumulate H2O2, and have reduced levels of chlorophyll and carotenoids. Moreover, these chloroplasts are small and abnormally shaped, thylakoidal membranes are less abundant, and their grana are absent due to impaired thylakoid stacking in the anu10-1 mutant. Because the trimeric light-harvesting complex II (LHCII) has been reported to be required for thylakoid stacking, its levels were determined in anu10-1 thylakoids and they were found to be reduced. Together, the data point to a requirement for ANU10 for chloroplast and mesophyll development. PMID:24663344
Gamalei, Yu V
2015-01-01
Chloroplast agglutination and sieve tube obliteration are related to the different plant tissues: the agglutination--to the leaf mesophyll, and the obliteration--to the axis phloem. Being equally produced by photosynthate export dynamics, both phenomena are synchronous and can be used for diagnostics of seasonal flashes and pauses of photosynthetic activity with equal success. The nature of the mobility of chloroplast and their shuttle displacements from the nuclear envelope to the cell periphery connected with export dynamics have been established. It is assumed that nuclear envelope is the base structure of the endoplasmic reticulum (ER) inside which the chloroplasts are localized. Activation of photosynthesis and sugar accumulation inside the ER induces its expansion followed by centrifugal diffusion of chloroplasts. Come back effect--ER collapse, its return to the source--can be induced by the blockade of photosynthesis. Centripetal collapse is accompanied by plastid concentration around the nuclear envelope. Displacements of ER and the chloroplasts dislocating inside it are reversible. It depends on seasonal fluctuations of photosynthesis and export intensities. Changes in the volume of sieve tubes, which are due to the same reason, are irreversible. Each seasonal wave of photosynthesis and sugar export forms new series of sieve tubes, replacing obliterated ones.
Poobathy, Ranjetta; Zakaria, Rahmad; Murugaiyah, Vikneswaran; Subramaniam, Sreeramanan
2018-01-01
Anoectochilus sp. and Ludisia discolor are known as Jewel orchids. Both species are terrestrial wild orchids that grow in shaded areas of forests. The Jewel orchids are renowned for the beauty of their leaves, which are dark-green laced with silvery or golden veins. The orchids are used as a cure in various parts of Asia. Overharvesting and anthropogenic disturbances threaten the existence of the Jewel orchids in the wild, necessitating human intervention in their survival. An understanding of the structure and adaptations of a plant may assist in its survival when propagated outside of its habitat. In this study, ex vitro leaves of Anoectochilus sp. and L. discolor were subjected to freehand sectioning, and then inspected through brightfield and fluorescence microscopy. The study indicated that all parts of both plants presented typical monocotyledonous characteristics except the leaves. The leaves displayed dorsiventrality with distinct palisade and spongy mesophyll layers. The spongy mesophyll layer contained cells which fluoresced a bright red when exposed to ultraviolet, blue, and green light wavelengths, hinting at the presence of anthocyanins for photoprotection. Cyanidin was detected in the leaves of L. discolor, as enumerated through high performance liquid chromatography (HPLC). The observations indicated that Anoectochilus sp. and L. discolor are well-adapted to live under shaded conditions with minimal exposure to light.
Photosynthesis Activates Plasma Membrane H+-ATPase via Sugar Accumulation.
Okumura, Masaki; Inoue, Shin-Ichiro; Kuwata, Keiko; Kinoshita, Toshinori
2016-05-01
Plant plasma membrane H(+)-ATPase acts as a primary transporter via proton pumping and regulates diverse physiological responses by controlling secondary solute transport, pH homeostasis, and membrane potential. Phosphorylation of the penultimate threonine and the subsequent binding of 14-3-3 proteins in the carboxyl terminus of the enzyme are required for H(+)-ATPase activation. We showed previously that photosynthesis induces phosphorylation of the penultimate threonine in the nonvascular bryophyte Marchantia polymorpha However, (1) whether this response is conserved in vascular plants and (2) the process by which photosynthesis regulates H(+)-ATPase phosphorylation at the plasma membrane remain unresolved issues. Here, we report that photosynthesis induced the phosphorylation and activation of H(+)-ATPase in Arabidopsis (Arabidopsis thaliana) leaves via sugar accumulation. Light reversibly phosphorylated leaf H(+)-ATPase, and this process was inhibited by pharmacological and genetic suppression of photosynthesis. Immunohistochemical and biochemical analyses indicated that light-induced phosphorylation of H(+)-ATPase occurred autonomously in mesophyll cells. We also show that the phosphorylation status of H(+)-ATPase and photosynthetic sugar accumulation in leaves were positively correlated and that sugar treatment promoted phosphorylation. Furthermore, light-induced phosphorylation of H(+)-ATPase was strongly suppressed in a double mutant defective in ADP-glucose pyrophosphorylase and triose phosphate/phosphate translocator (adg1-1 tpt-2); these mutations strongly inhibited endogenous sugar accumulation. Overall, we show that photosynthesis activated H(+)-ATPase via sugar production in the mesophyll cells of vascular plants. Our work provides new insight into signaling from chloroplasts to the plasma membrane ion transport mechanism. © 2016 American Society of Plant Biologists. All Rights Reserved.
Photosynthesis Activates Plasma Membrane H+-ATPase via Sugar Accumulation1[OPEN
Okumura, Masaki; Inoue, Shin-ichiro; Kuwata, Keiko
2016-01-01
Plant plasma membrane H+-ATPase acts as a primary transporter via proton pumping and regulates diverse physiological responses by controlling secondary solute transport, pH homeostasis, and membrane potential. Phosphorylation of the penultimate threonine and the subsequent binding of 14-3-3 proteins in the carboxyl terminus of the enzyme are required for H+-ATPase activation. We showed previously that photosynthesis induces phosphorylation of the penultimate threonine in the nonvascular bryophyte Marchantia polymorpha. However, (1) whether this response is conserved in vascular plants and (2) the process by which photosynthesis regulates H+-ATPase phosphorylation at the plasma membrane remain unresolved issues. Here, we report that photosynthesis induced the phosphorylation and activation of H+-ATPase in Arabidopsis (Arabidopsis thaliana) leaves via sugar accumulation. Light reversibly phosphorylated leaf H+-ATPase, and this process was inhibited by pharmacological and genetic suppression of photosynthesis. Immunohistochemical and biochemical analyses indicated that light-induced phosphorylation of H+-ATPase occurred autonomously in mesophyll cells. We also show that the phosphorylation status of H+-ATPase and photosynthetic sugar accumulation in leaves were positively correlated and that sugar treatment promoted phosphorylation. Furthermore, light-induced phosphorylation of H+-ATPase was strongly suppressed in a double mutant defective in ADP-glucose pyrophosphorylase and triose phosphate/phosphate translocator (adg1-1 tpt-2); these mutations strongly inhibited endogenous sugar accumulation. Overall, we show that photosynthesis activated H+-ATPase via sugar production in the mesophyll cells of vascular plants. Our work provides new insight into signaling from chloroplasts to the plasma membrane ion transport mechanism. PMID:27016447
Three-dimensional radiation transfer modeling in a dicotyledon leaf
NASA Astrophysics Data System (ADS)
Govaerts, Yves M.; Jacquemoud, Stéphane; Verstraete, Michel M.; Ustin, Susan L.
1996-11-01
The propagation of light in a typical dicotyledon leaf is investigated with a new Monte Carlo ray-tracing model. The three-dimensional internal cellular structure of the various leaf tissues, including the epidermis, the palisade parenchyma, and the spongy mesophyll, is explicitly described. Cells of different tissues are assigned appropriate morphologies and contain realistic amounts of water and chlorophyll. Each cell constituent is characterized by an index of refraction and an absorption coefficient. The objective of this study is to investigate how the internal three-dimensional structure of the tissues and the optical properties of cell constituents control the reflectance and transmittance of the leaf. Model results compare favorably with laboratory observations. The influence of the roughness of the epidermis on the reflection and absorption of light is investigated, and simulation results confirm that convex cells in the epidermis focus light on the palisade parenchyma and increase the absorption of radiation.
Death of mitochondria during programmed cell death of leaf mesophyll cells.
Selga, Tūrs; Selga, Maija; Pāvila, Vineta
2005-12-01
The role of plant mitochondria in the programmed cell death (PCD) is widely discussed. However, spectrum and sequence of mitochondrial structural changes during different types of PCD in leaves are poorly described. Pea, cucumber and rye plants were grown under controlled growing conditions. A part of them were sprinkled with ethylene releaser to accelerate cell death. During yellowing the palisade parenchyma mitochondria were attracted to nuclear envelope. Mitochondrial matrix became electron translucent. Mitochondria entered vacuole by invagination of tonoplast and formed multivesicular bodies. Ethephon treatment increased the frequency of sticking of mitochondria to the nuclear envelope or chloroplasts and peroxisomes. Mitochondria divided by different mechanisms and became enclosed in Golgi and ER derived authopagic vacuoles or in the central vacuole. Several fold increase of the diameter of cristae became typical. In all cases mitochondria were attached to nuclear envelope. It can be considered as structural mechanism of promoting of PCD.
Wound signaling: The missing link in plant regeneration.
Chen, Lyuqin; Sun, Beibei; Xu, Lin; Liu, Wu
2016-10-02
Wounding is the first event that occurs in plant regeneration. However, wound signaling in plant regeneration is barely understood. Using a simple system of de novo root organogenesis from Arabidopsis thaliana leaf explants, we analyzed the genes downstream of wound signaling. Leaf explants may produce at least two kinds of wound signals to trigger short-term and long-term wound signaling. Short-term wound signaling is primarily involved in controlling auxin behavior and the fate transition of regeneration-competent cells, while long-term wound signaling mainly modulates the cellular environment at the wound site and maintains the auxin level in regeneration-competent cells. YUCCA (YUC) genes, which are involved in auxin biogenesis, are targets of short-term wound signaling in mesophyll cells and of long-term wound signaling in regeneration-competent cells. The expression patterns of YUCs provide important information about the molecular basis of wound signaling in plant regeneration.
de la Torre, Daniel
2008-01-01
The daily variations in cellular and apoplastic ascorbic acid and dehydroascorbic acid levels in a Mediterranean durum wheat cultivar (Triticum durum Desf. cv. Camacho) were analyzed in order to relate them to ambient ozone exposure and to subsequent stomatally absorbed ozone fluxes. The aim of this study is to prove the effectiveness and accuracy of a computer model (SODA) to calculate the mesophyll resistance (rm) to ozone uptake, the percentage of ozone detoxification by apoplastic ascorbic acid, and the ozone flux to the plasmalemma (Fm) in a Mediterranean durum wheat cultivar. These calculated factors were related to apoplastic ascorbic acid levels and to ambient ozone concentrations. These relationships were obtained with a view to explaining the detoxification of ozone by apoplastic ascorbic acid. Ozone detoxifications of up to 52% were found at midday, when maximum ozone concentrations and maximum apoplastic ascorbic acid are seen. Mesophyll resistance was minimum at this time, and ozone flux to the plasmalemma was reduced because of the reaction of ozone with apoplastic ascorbic acid. PMID:19082416
de la Torre, Daniel
2008-12-14
The daily variations in cellular and apoplastic ascorbic acid and dehydroascorbic acid levels in a Mediterranean durum wheat cultivar (Triticum durum Desf. cv. Camacho) were analyzed in order to relate them to ambient ozone exposure and to subsequent stomatally absorbed ozone fluxes. The aim of this study is to prove the effectiveness and accuracy of a computer model (SODA) to calculate the mesophyll resistance (rm) to ozone uptake, the percentage of ozone detoxification by apoplastic ascorbic acid, and the ozone flux to the plasmalemma (Fm) in a Mediterranean durum wheat cultivar. These calculated factors were related to apoplastic ascorbic acid levels and to ambient ozone concentrations. These relationships were obtained with a view to explaining the detoxification of ozone by apoplastic ascorbic acid. Ozone detoxifications of up to 52% were found at midday, when maximum ozone concentrations and maximum apoplastic ascorbic acid are seen. Mesophyll resistance was minimum at this time, and ozone flux to the plasmalemma was reduced because of the reaction of ozone with apoplastic ascorbic acid.
Zhang, Zhongkai; Zheng, Kuanyu; Dong, Jiahong; Fang, Qi; Hong, Jian; Wang, Xifeng
2016-01-19
Tomato spotted wilt virus (TSWV) and Tomato zonate spot virus (TZSV) are the two dominant species of thrip-transmitted tospoviruses, cause significant losses in crop yield in Yunnan and its neighboring provinces in China. TSWV and TZSV belong to different serogroup of tospoviruses but induce similar symptoms in the same host plant species, which makes diagnostic difficult. We used different electron microscopy preparing methods to investigate clustering and cellular distribution of TSWV and TZSV in the host plant species. Negative staining of samples infected with TSWV and TZSV revealed that particles usually clustered in the vesicles, including single particle (SP), double particles clustering (DPC), triple particles clustering (TPC). In the immunogold labeling negative staining against proteins of TZSV, the antibodies against Gn protein were stained more strongly than the N protein. Ultrathin section and high pressure freeze (HPF)-electron microscopy preparations revealed that TSWV particles were distributed in the cisternae of endoplasmic reticulum (ER), filamentous inclusions (FI) and Golgi bodies in the mesophyll cells. The TSWV particles clustered as multiple particles clustering (MPC) and distributed in globular viroplasm or cisternae of ER in the top leaf cell. TZSV particles were distributed more abundantly in the swollen membrane of ER in the mesophyll cell than those in the phloem parenchyma cells and were not observed in the top leaf cell. However, TZSV virions were mainly present as single particle in the cytoplasm, with few clustering as MPC. In this study, we identified TSWV and TZSV particles had the distinct cellular distribution patterns in the cytoplasm from different tissues and host plants. This is the first report of specific clustering characteristics of tospoviruses particles as well as the cellular distribution of TSWV particles in the FI and globular viroplasm where as TZSV particles inside the membrane of ER. These results indicated that tospoviruses particles possessed specific and similar clustering in the saps of diseased plants. Furthermore, the results of this study will also provide a basis for further study on the tospoviruses assembling, maturation and movement.
Koffler, Barbara E.; Bloem, Elke; Zellnig, Günther; Zechmann, Bernd
2013-01-01
Glutathione is an important antioxidant and redox buffer in plants. It fulfills many important roles during plant development, defense and is essential for plant metabolism. Even though the compartment specific roles of glutathione during abiotic and biotic stress situations have been studied in detail there is still great lack of knowledge about subcellular glutathione concentrations within the different leaf areas at different stages of development. In this study a method is described that allows the calculation of compartment specific glutathione concentrations in all cell compartments simultaneously in one experiment by using quantitative immunogold electron microscopy combined with biochemical methods in different leaf areas of Arabidopsis thaliana Col-0 (center of the leaf, leaf apex, leaf base and leaf edge). The volume of subcellular compartments in the mesophyll of Arabidopsis was found to be similar to other plants. Vacuoles covered the largest volume within a mesophyll cell and increased with leaf age (up to 80% in the leaf apex of older leaves). Behind vacuoles, chloroplasts covered the second largest volume (up to 20% in the leaf edge of the younger leaves) followed by nuclei (up to 2.3% in the leaf edge of the younger leaves), mitochondria (up to 1.6% in the leaf apex of the younger leaves), and peroxisomes (up to 0.3% in the leaf apex of the younger leaves). These values together with volumes of the mesophyll determined by stereological methods from light and electron micrographs and global glutathione contents measured with biochemical methods enabled the determination of subcellular glutathione contents in mM. Even though biochemical investigations did not reveal differences in global glutathione contents, compartment specific differences could be observed in some cell compartments within the different leaf areas. Highest concentrations of glutathione were always found in mitochondria, where values in a range between 8.7 mM (in the apex of younger leaves) and 15.1 mM (in the apex of older leaves) were found. The second highest amount of glutathione was found in nuclei (between 5.5 mM and 9.7 mM in the base and the center of younger leaves, respectively) followed by peroxisomes (between 2.6 mM in the edge of younger leaves and 4.8 mM in the base of older leaves, respectively) and the cytosol (2.8 mM in the edge of younger and 4.5 mM in the center of older leaves, respectively). Chloroplasts contained rather low amounts of glutathione (between 1 mM and 1.4 mM). Vacuoles had the lowest concentrations of glutathione (0.01 mM and 0.14 mM) but showed large differences between the different leaf areas. Clear differences in glutathione contents between the different leaf areas could only be found in vacuoles and mitochondria revealing that glutathione in the later cell organelle accumulated with leaf age to concentrations of up to 15 mM and that concentrations of glutathione in vacuoles are quite low in comparison to the other cell compartments. PMID:23265941
Parys, Eugeniusz; Jastrzebski, Hubert
2006-04-01
The rate of respiratory CO2 evolution from the leaves of Zea mays, Panicum miliaceum, and Panicum maximum, representing NADP-ME, NAD-ME, and PEP-CK types of C4 plants, respectively, was increased by approximately two to four times after a period of photosynthesis. This light-enhanced dark respiration (LEDR) was a function of net photosynthetic rate specific to plant species, and was depressed by 1% O2. When malate, aspartate, oxaloacetate or glycine solution at 50 mM concentration was introduced into the leaves instead of water, the rate of LEDR was enhanced, far less in Z. mays (by 10-25%) than in P. miliaceum (by 25-35%) or P. maximum (by 40-75%). The enhancement of LEDR under glycine was relatively stable over a period of 1 h, whereas the remaining metabolites caused its decrease following a transient increase. The metabolites reduced the net photosynthesis rate in the two Panicum species, but not in Z. mays, where this process was stimulated by glycine. The bundle sheath cells from P. miliaceum exhibited a higher rate of LEDR than those of Z. mays and P. maximum. Glycine had no effect on the respiration rate of the cells, but malate increased in cells of Z. mays and P. miliaceum by about 50% and 30%, respectively. With the exception of aspartate, which stimulated both the O2 evolution and O2 uptake in P. maximum, the remaining metabolites reduced photosynthetic O2 evolution from bundle sheath cells in Panicun species. The net O2 exchange in illuminated cells of Z. mays did not respond to CO2 or metabolites. Leaf mesophyll protoplasts of Z. mays and P. miliaceum, and bundle sheath protoplasts of Z. mays, which are unable to fix CO2 photosynthetically, also produced LEDR, but the mesophyll protoplasts, compared with bundle sheath protoplasts, required twice the time of illumination to obtain the maximal rate. The results suggest that the substrates for LEDR in C4 plants are generated during a period of illumination not only via the Calvin cycle reactions, but also by the conversion of endogenous compounds present in leaf cells. The stimulation of LEDR under glycine is discussed in relation to its direct or indirect effect on mitochondrial respiration.
Victório, Cristiane Pimentel; Moreira, Claudio B; Souza, Marcelo da Costa; Sato, Alice; Arruda, Rosani do Carmo de Oliveira
2011-07-01
In this study, we investigated the leaf anatomy and the composition of volatiles in Myrrhinium atropurpureum var. atropurpureum endemic to Rio de Janeiro restingas. Particularly, leaf secretory structures were described using light microscopy, and histochemical tests were performed from fresh leaves to localize the secondary metabolites. To observe secretory cavities, fixed leaf samples were free-hand sectioned. To evaluate lipophilic compounds and terpenoids the following reagents were employed: Sudans III and IV, Red oil O and Nile blue. Leaf volatiles were characterized by gas chromatography after hydrodistillation (HD) or simultaneous distillation-extraction (SDE). Leaf analysis showed several cavities in mesophyll that are the main sites of lipophilic and terpenoid production. Monoterpenes, which represented more than 80% of the major volatiles, were characterized mainly by alpha- and beta-pinene and 1,8-cineole. In order to provide tools for M. atropurpureum identification, the following distinguishing characteristics were revealed by the following data: 1) adaxial face clear and densely punctuated by the presence of round or ellipsoidal secretory cavities randomly distributed in the mesophyll; 2) the presence of cells overlying the upper neck cells of secretory cavities; 3) the presence of numerous paracytic stomata distributed on the abaxial leaf surface, but absent in vein regions and leaf margin; and 4) non-glandular trichomes on both leaf surfaces. Our study of the compounds produced by the secretory cavities of M. atropurpureum led us to conclude that volatile terpenoid class are the main secretory compounds and that they consist of a high concentration of monoterpenes, which may indicate the phytotherapeutic importance of this plant.
Sang, Jianrong; Zhang, Aying; Lin, Fan; Tan, Mingpu; Jiang, Mingyi
2008-05-01
Using pharmacological and biochemical approaches, the signaling pathways between hydrogen peroxide (H(2)O(2)), calcium (Ca(2+))-calmodulin (CaM), and nitric oxide (NO) in abscisic acid (ABA)-induced antioxidant defense were investigated in leaves of maize (Zea mays L.) plants. Treatments with ABA, H(2)O(2), and CaCl(2) induced increases in the generation of NO in maize mesophyll cells and the activity of nitric oxide synthase (NOS) in the cytosolic and microsomal fractions of maize leaves. However, such increases were blocked by the pretreatments with Ca(2+) inhibitors and CaM antagonists. Meanwhile, pretreatments with two NOS inhibitors also suppressed the Ca(2+)-induced increase in the production of NO. On the other hand, treatments with ABA and the NO donor sodium nitroprusside (SNP) also led to increases in the concentration of cytosolic Ca(2+) in protoplasts of mesophyll cells and in the expression of calmodulin 1 (CaM1) gene and the contents of CaM in leaves of maize plants, and the increases induced by ABA were reduced by the pretreatments with a NO scavenger and a NOS inhibitor. Moreover, SNP-induced increases in the expression of the antioxidant genes superoxide dismutase 4 (SOD4), cytosolic ascorbate peroxidase (cAPX), and glutathione reductase 1 (GR1) and the activities of the chloroplastic and cytosolic antioxidant enzymes were arrested by the pretreatments with Ca(2+) inhibitors and CaM antagonists. Our results suggest that Ca(2+)-CaM functions both upstream and downstream of NO production, which is mainly from NOS, in ABA- and H(2)O(2)-induced antioxidant defense in leaves of maize plants.
Ju, Shuming; Wang, Liping; Zhang, Cuiying; Yin, Tingchao; Shao, Siliang
2017-01-01
Silicon (Si) is a macroelement in plants. The biological effects and mitigation mechanisms of silicon under environmental stress have become hot topics. The main objectives of this study were to elucidate the roles of Si in alleviating the effects on the phenotype, micromorphology and anatomy of the leaves of rice seedlings under acid rain stress. The results indicated that the combined or single effects of Si and simulated acid rain (SAR) stress on rice roots depended on the concentration of Si and the intensity of the SAR stress. The combined or single effects of the moderate concentration of Si (2.0 mM) and light SAR (pH 4.0) enhanced the growth of the rice leaves and the development of the mesophyll cells, and the combined effects were stronger than those of the single treatments. The high concentration of Si (4.0 mM) and severe SAR (pH 3.0 or 2.0) exerted deleterious effects. The incorporation of Si (2.0 or 4.0 mM) into SAR at pH values of 3.0 or 2.0 promoted rice leaf growth, decreased necrosis spots, maintained the structure and function of the mesophyll cells, increased the epicuticular wax content and wart-like protuberance (WP) density, and improved the stomatal characteristics of the leaves of rice seedlings more than the SAR only treatments. The alleviatory effects observed with a moderate concentration of Si (2.0 mM) were better than the effects obtained with the high concentration of Si (4.0 mM). The alleviatory effects were due to the enhancement of the mechanical barriers in the leaf epidermis. PMID:29065171
Ju, Shuming; Wang, Liping; Zhang, Cuiying; Yin, Tingchao; Shao, Siliang
2017-01-01
Silicon (Si) is a macroelement in plants. The biological effects and mitigation mechanisms of silicon under environmental stress have become hot topics. The main objectives of this study were to elucidate the roles of Si in alleviating the effects on the phenotype, micromorphology and anatomy of the leaves of rice seedlings under acid rain stress. The results indicated that the combined or single effects of Si and simulated acid rain (SAR) stress on rice roots depended on the concentration of Si and the intensity of the SAR stress. The combined or single effects of the moderate concentration of Si (2.0 mM) and light SAR (pH 4.0) enhanced the growth of the rice leaves and the development of the mesophyll cells, and the combined effects were stronger than those of the single treatments. The high concentration of Si (4.0 mM) and severe SAR (pH 3.0 or 2.0) exerted deleterious effects. The incorporation of Si (2.0 or 4.0 mM) into SAR at pH values of 3.0 or 2.0 promoted rice leaf growth, decreased necrosis spots, maintained the structure and function of the mesophyll cells, increased the epicuticular wax content and wart-like protuberance (WP) density, and improved the stomatal characteristics of the leaves of rice seedlings more than the SAR only treatments. The alleviatory effects observed with a moderate concentration of Si (2.0 mM) were better than the effects obtained with the high concentration of Si (4.0 mM). The alleviatory effects were due to the enhancement of the mechanical barriers in the leaf epidermis.
Kromdijk, Johannes; Ubierna, Nerea; Cousins, Asaph B; Griffiths, Howard
2014-07-01
Crop species with the C4 photosynthetic pathway are generally characterized by high productivity, especially in environmental conditions favouring photorespiration. In comparison with the ancestral C3 pathway, the biochemical and anatomical modifications of the C4 pathway allow spatial separation of primary carbon acquisition in mesophyll cells and subsequent assimilation in bundle-sheath cells. The CO2-concentrating C4 cycle has to operate in close coordination with CO2 reduction via the Calvin-Benson-Bassham (CBB) cycle in order to keep the C4 pathway energetically efficient. The gradient in CO2 concentration between bundle-sheath and mesophyll cells facilitates diffusive leakage of CO2. This rate of bundle-sheath CO2 leakage relative to the rate of phosphoenolpyruvate carboxylation (termed leakiness) has been used to probe the balance between C4 carbon acquisition and subsequent reduction as a result of environmental perturbations. When doing so, the correct choice of equations to derive leakiness from stable carbon isotope discrimination (Δ(13)C) during gas exchange is critical to avoid biased results. Leakiness responses to photon flux density, either short-term (during measurements) or long-term (during growth and development), can have important implications for C4 performance in understorey light conditions. However, recent reports show leakiness to be subject to considerable acclimation. Additionally, the recent discovery of two decarboxylating C4 cycles operating in parallel in Zea mays suggests that flexibility in the transported C4 acid and associated decarboxylase could also aid in maintaining C4/CBB balance in a changing environment. In this paper, we review improvements in methodology to estimate leakiness, synthesize reports on bundle-sheath leakiness, discuss different interpretations, and highlight areas where future research is necessary. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
De Diego, N; Rodríguez, J L; Dodd, I C; Pérez-Alfocea, F; Moncaleán, P; Lacuesta, M
2013-05-01
Anatomical, physiological and phytohormonal changes involved in drought tolerance were examined in different Pinus radiata D. Don breeds subjected to soil drying and rewatering. Breeds with the smallest stomatal chamber size had the lowest transpiration rate and the highest intrinsic water-use efficiency. Xylem cell size was positively correlated with leaf hydraulic conductance and needle indole-3-acetic acid (IAA) concentrations, whereas transpiration rate was negatively correlated with needle abscisic acid (ABA) levels. Since these two phytohormones seem important in regulating the P. radiata drought response, they were simultaneously immunolocalized in roots and needles of the most tolerant breed (P. radiata var. radiata × var. cedrosensis) during two sequential drought cycles and after rewatering. During drought, IAA was unequally distributed into the pointed area of the needle cross-section and mainly located in mesophyll and vascular tissue cells of needles, possibly inducing needle epinasty, whereas ABA was principally located in guard cells, presumably to elicit stomata closure. In the roots, at the end of the first drought cycle, while strong IAA accumulation was observed in the cortex, ABA levels decreased probably due to translocation to the leaves. Rewatering modified the distribution of both IAA and ABA in the needles, causing an accumulation principally in vascular tissue, with residual concentrations in mesophyll, likely favouring the acclimatization of the plants for further drought cycles. Contrarily, in the roots IAA and ABA were located in the exodermis, a natural barrier that regulates the phytohormone translocation to other plant tissues and hormone losses to the soil solution after rewatering. These results confirm that immunolocalization is an efficient tool to understand the translocation of IAA and ABA in plants subjected to different water stress situations, and clarify their role in regulating physiological responses such as stomata closure and epinasty in needles and root development.
Lauteri, Marco; Haworth, Matthew; Serraj, Rachid; Monteverdi, Maria Cristina; Centritto, Mauro
2014-01-01
Global production of rice (Oryza sativa) grain is limited by water availability and the low ‘leaf-level’ photosynthetic capacity of many cultivars. Oryza sativa is extremely susceptible to water-deficits; therefore, predicted increases in the frequency and duration of drought events, combined with future rises in global temperatures and food demand, necessitate the development of more productive and drought tolerant cultivars. We investigated the underlying physiological, isotopic and morphological responses to water-deficit in seven common varieties of O. sativa, subjected to prolonged drought of varying intensities, for phenotyping purposes in open field conditions. Significant variation was observed in leaf-level photosynthesis rates (A) under both water treatments. Yield and A were influenced by the conductance of the mesophyll layer to CO2 (g m) and not by stomatal conductance (g s). Mesophyll conductance declined during drought to differing extents among the cultivars; those varieties that maintained g m during water-deficit sustained A and yield to a greater extent. However, the variety with the highest g m and yield under well-watered conditions (IR55419-04) was distinct from the most effective cultivar under drought (Vandana). Mesophyll conductance most effectively characterises the photosynthetic capacity and yield of O. sativa cultivars under both well-watered and water-deficit conditions; however, the desired attributes of high g m during optimal growth conditions and the capacity for g m to remain constant during water-deficit may be mutually exclusive. Nonetheless, future genetic and physiological studies aimed at enhancing O. sativa yield and drought stress tolerance should investigate the biochemistry and morphology of the interface between the sub-stomatal pore and mesophyll layer. PMID:25275452
Kröber, W; Heklau, H; Bruelheide, H
2015-03-01
We explored potential of morphological and anatomical leaf traits for predicting ecophysiological key functions in subtropical trees. We asked whether the ecophysiological parameters stomatal conductance and xylem cavitation vulnerability could be predicted from microscopy leaf traits. We investigated 21 deciduous and 19 evergreen subtropical tree species, using individuals of the same age and from the same environment in the Biodiversity-Ecosystem Functioning experiment at Jiangxi (BEF-China). Information-theoretic linear model selection was used to identify the best combination of morphological and anatomical predictors for ecophysiological functions. Leaf anatomy and morphology strongly depended on leaf habit. Evergreen species tended to have thicker leaves, thicker spongy and palisade mesophyll, more palisade mesophyll layers and a thicker subepidermis. Over 50% of all evergreen species had leaves with multi-layered palisade parenchyma, while only one deciduous species (Koelreuteria bipinnata) had this. Interactions with leaf habit were also included in best multi-predictor models for stomatal conductance (gs ) and xylem cavitation vulnerability. In addition, maximum gs was positively related to log ratio of palisade to spongy mesophyll thickness. Vapour pressure deficit (vpd) for maximum gs increased with the log ratio of palisade to spongy mesophyll thickness in species having leaves with papillae. In contrast, maximum specific hydraulic conductivity and xylem pressure at which 50% loss of maximum specific xylem hydraulic conductivity occurred (Ψ50 ) were best predicted by leaf habit and density of spongy parenchyma. Evergreen species had lower Ψ50 values and lower maximum xylem hydraulic conductivities. As hydraulic leaf and wood characteristics were reflected in structural leaf traits, there is high potential for identifying further linkages between morphological and anatomical leaf traits and ecophysiological responses. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Effects of G, a Growth Regulator from Eucalyptus grandis, on Photosynthesis
Sharkey, Thomas D.; Stevenson, Gay F.; Paton, Dugald M.
1982-01-01
A growth regulator (G; 4-ethyl-1-hydroxy-4,8,8,10,10 pentamethyl-7,9-dioxo-2,3 dioxyabicyclo (4.4.0) decene-5) from Eucalyptus grandis (Maiden) reduced stomatal conductance and also photosynthetic capacity when fed through the transpiration stream of detached leaves. The concentration of G required for this effect was high (10−4 molar), but the amount of G taken up (dose) was below the level which has previously been found in E. grandis leaves. Similar effects were observed in detached leaves of Xanthium strumarium L. though almost 10 times more G was required. G reduced CO2-dependent O2 evolution from isolated cells of X. strumarium. In spinach (Spinacia oleracea L.) chloroplasts, electron transport through photosystem II was reduced by G. It is proposed that G affects stomatal conductance and photosynthesis by reducing photosystem II activity in both the guard cell chloroplasts and mesophyll cell chloroplasts. PMID:16662322
CO2 sensing and CO2 regulation of stomatal conductance: advances and open questions
Engineer, Cawas; Hashimoto-Sugimoto, Mimi; Negi, Juntaro; Israelsson-Nordstrom, Maria; Azoulay-Shemer, Tamar; Rappel, Wouter-Jan; Iba, Koh; Schroeder, Julian
2015-01-01
Guard cells form epidermal stomatal gas exchange valves in plants and regulate the aperture of stomatal pores in response to changes in the carbon dioxide (CO2) concentration in leaves. Moreover, the development of stomata is repressed by elevated CO2 in diverse plant species. Evidence suggests that plants can sense CO2 concentration changes via guard cells and via mesophyll tissues in mediating stomatal movements. We review new discoveries and open questions on mechanisms mediating CO2-regulated stomatal movements and CO2 modulation of stomatal development, which together function in CO2-regulation of stomatal conductance and gas exchange in plants. Research in this area is timely in light of the necessity of selecting and developing crop cultivars which perform better in a shifting climate. PMID:26482956
Peguero-Pina, José Javier; Sancho-Knapik, Domingo; Flexas, Jaume; Galmés, Jeroni; Niinemets, Ülo; Gil-Pelegrín, Eustaquio
2016-01-01
Leaves growing in the forest understory usually present a decreased mesophyll conductance (gm) and photosynthetic capacity. The role of leaf anatomy in determining the variability in gm among species is known, but there is a lack of information on how the acclimation of gm to shade conditions is driven by changes in leaf anatomy. Within this context, we demonstrated that Abies pinsapo Boiss. experienced profound modifications in needle anatomy to drastic changes in light availability that ultimately led to differential photosynthetic performance between trees grown in the open field and in the forest understory. In contrast to A. pinsapo, its congeneric Abies alba Mill. did not show differences either in needle anatomy or in photosynthetic parameters between trees grown in the open field and in the forest understory. The increased gm values found in trees of A. pinsapo grown in the open field can be explained by occurrence of stomata at both needle sides (amphistomatous needles), increased chloroplast surface area exposed to intercellular airspace, decreased cell wall thickness and, especially, decreased chloroplast thickness. To the best of our knowledge, the role of such drastic changes in ultrastructural needle anatomy in explaining the response of gm to the light environment has not been demonstrated in field conditions. PMID:26543153
Poobathy, Ranjetta; Zakaria, Rahmad; Murugaiyah, Vikneswaran
2018-01-01
Anoectochilus sp. and Ludisia discolor are known as Jewel orchids. Both species are terrestrial wild orchids that grow in shaded areas of forests. The Jewel orchids are renowned for the beauty of their leaves, which are dark-green laced with silvery or golden veins. The orchids are used as a cure in various parts of Asia. Overharvesting and anthropogenic disturbances threaten the existence of the Jewel orchids in the wild, necessitating human intervention in their survival. An understanding of the structure and adaptations of a plant may assist in its survival when propagated outside of its habitat. In this study, ex vitro leaves of Anoectochilus sp. and L. discolor were subjected to freehand sectioning, and then inspected through brightfield and fluorescence microscopy. The study indicated that all parts of both plants presented typical monocotyledonous characteristics except the leaves. The leaves displayed dorsiventrality with distinct palisade and spongy mesophyll layers. The spongy mesophyll layer contained cells which fluoresced a bright red when exposed to ultraviolet, blue, and green light wavelengths, hinting at the presence of anthocyanins for photoprotection. Cyanidin was detected in the leaves of L. discolor, as enumerated through high performance liquid chromatography (HPLC). The observations indicated that Anoectochilus sp. and L. discolor are well-adapted to live under shaded conditions with minimal exposure to light. PMID:29649288
Electron-cytochemical study of Ca2+ in cotyledon cells of soybean seedlings grown in microgravity
NASA Technical Reports Server (NTRS)
Nedukha, O.; Brown, C. S.; Kordyum, E.; Piastuch, W. C.; Guikema, J. A. (Principal Investigator)
1999-01-01
Microgravity and horizontal clinorotation are known to cause the rearrangement of the structural-functional organization of plant cells, leading to accelerated aging. Altered gravity conditions resulted in an increase in the droplets volume in cells and the destruction of chloroplast structure in Arabidopsis thaliana plants, an enhancement of cytosolic autophagaous processes, an increase in the respiration rate and a greater number of multimolecular forms of succinate- and malate dehydrogenases in cells of the Funaria hygrometrica protonema and Chlorella vulgaris, and changes in calcium balance of cells. Because ethylene is known to be involved in cell aging and microgravity appears to speed the process, and because soybean seedlings grown in space produce higher ethylene levels we asked: 1) does an acceleration of soybean cotyledon cell development and aging occur in microgravity? 2) what roles do Ca2+ ions and the enhanced ethylene level play in these events? Therefore, the goal of our investigation was to examine of the interaction of microgravity and ethylene on the localization of Ca2+ in cotyledon mesophyll of soybean seedlings.
Kuusk, Vivian; Niinemets, Ülo; Valladares, Fernando
2018-04-01
Pine (Pinus) species exhibit extensive variation in needle shape and size between juvenile (primary) and adult (secondary) needles (heteroblasty), but few studies have quantified the changes in needle morphological, anatomical and chemical traits upon juvenile-to-adult transition. Mediterranean pines keep juvenile needles longer than most other pines, implying that juvenile needles play a particularly significant role in seedling and sapling establishment in this environment. We studied needle anatomical, morphological and chemical characteristics in juvenile and different-aged adult needles in Mediterranean pines Pinus halepensis Mill., Pinus pinea L. and Pinus nigra J. F. Arnold subsp. salzmannii (Dunal) Franco hypothesizing that needle anatomical modifications upon juvenile-to-adult transition lead to a trade-off between investments in support and photosynthetic tissues, and that analogous changes occur with needle aging albeit to a lower degree. Compared with adult needles, juvenile needles of all species were narrower with 1.6- to 2.4-fold lower leaf dry mass per unit area, and had ~1.4-fold thinner cell walls, but needle nitrogen content per dry mass was similar among plant ages. Juvenile needles also had ~1.5-fold greater mesophyll volume fraction, ~3-fold greater chloroplast volume fraction and ~1.7-fold greater chloroplast exposed to mesophyll exposed surface area ratio, suggesting overall greater photosynthetic activity. Changes in needle traits were similar in aging adult needles, but the magnitude was generally less than the changes upon juvenile to adult transition. In adult needles, the fraction in support tissues scaled positively with known ranking of species tolerance of drought (P. halepensis > P. pinea > P. nigra). Across all species, and needle and plant ages, a negative correlation between volume fractions of mesophyll and structural tissues was observed, manifesting a trade-off between biomass investments in different needle functions. These results demonstrate that within the broad trade-off, juvenile and adult needle morphophysiotypes are separated by varying investments in support and photosynthetic functions. We suggest that the ecological advantage of the juvenile morphophysiotype is maximization of carbon gain of establishing saplings, while adult needle physiognomy enhances environmental stress tolerance of established plants.
Xiong, Dongliang; Flexas, Jaume; Yu, Tingting; Peng, Shaobing; Huang, Jianliang
2017-01-01
Leaf hydraulic conductance (K leaf ) and mesophyll conductance (g m ) both represent major constraints to photosynthetic rate (A), and previous studies have suggested that K leaf and g m is correlated in leaves. However, there is scarce empirical information about their correlation. In this study, K leaf , leaf hydraulic conductance inside xylem (K x ), leaf hydraulic conductance outside xylem (K ox ), A, stomatal conductance (g s ), g m , and anatomical and structural leaf traits in 11 Oryza genotypes were investigated to elucidate the correlation of H 2 O and CO 2 diffusion inside leaves. All of the leaf functional and anatomical traits varied significantly among genotypes. K leaf was not correlated with the maximum theoretical stomatal conductance calculated from stomatal dimensions (g smax ), and neither g s nor g smax were correlated with K x . Moreover, K ox was linearly correlated with g m and both were closely related to mesophyll structural traits. These results suggest that K leaf and g m are related to leaf anatomical and structural features, which may explain the mechanism for correlation between g m and K leaf . © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
BUCKERIDGE, MARCOS S.; HUTCHEON, IAN S.; REID, J. S. GRANT
2005-01-01
• Background and Aims The cotyledons of Lupinus angustifolius contain large amounts of cell wall storage polysaccharide (CWSP) composed mainly of (1→4)-β-linked d-galactose residues in the form of branches attached to a rhamnogalacturonan core molecule. An exo-(1→4)-β-galactanase with a very high specificity towards (1→4)-β-linked d-galactan has been isolated from L. angustifolius cotyledons, and shown to vary (activity and specific protein) in step with CWSP mobilization. This work aimed to confirm the hypothesis that galactan is the main polymer retrieved from the wall during mobilization at the ultrastructural level, using the purified exo-galactanase as a probe. • Methods Storage mesophyll cell walls (‘ghosts’) were isolated from the cotyledons of imbibed but ungerminated lupin seeds, and also from cotyledons of seedlings after the mobilization of the CWSP. The pure exo-(1→4)-β-galactanase was coupled to colloidal gold particles and shown to be a specific probe for (1→4)-β-d-galactan. They were used to localize galactan in ultrathin sections of L. angustifolius cotyledonary mesophyll tissue during CWSP mobilization. • Key Results On comparing the morphologies of isolated cell walls, the post-mobilization ‘ghosts’ did not have the massive wall-thickenings of pre-mobilization walls. Compositional analysis showed that the post-mobilization walls were depleted in galactose and, to a lesser extent, in arabinose. When pre-mobilization ghosts were treated with the pure exo-galactanase, they became morphologically similar to the post-mobilization ghosts. They were depleted of approximately 70% of the galactose residues that would have been mobilized in vivo, and retained all the other sugar residues originally present. Sharply defined electron-transparent wall zones or pockets are associated with CWSP mobilization, being totally free of galactan, whereas wall areas immediately adjacent to them were apparently undepleted. • Conclusions The exo-(1→4)-β-galactanase is the principal enzyme involved in CWSP mobilization in lupin cotyledons in vivo. The storage walls dramatically change their texture during mobilization as most of the galactan is hydrolysed during seedling development. PMID:15994843
Buckeridge, Marcos S; Hutcheon, Ian S; Reid, J S Grant
2005-09-01
The cotyledons of Lupinus angustifolius contain large amounts of cell wall storage polysaccharide (CWSP) composed mainly of (1-->4)-beta-linked D-galactose residues in the form of branches attached to a rhamnogalacturonan core molecule. An exo-(1-->4)-beta-galactanase with a very high specificity towards (1-->4)-beta-linked D-galactan has been isolated from L. angustifolius cotyledons, and shown to vary (activity and specific protein) in step with CWSP mobilization. This work aimed to confirm the hypothesis that galactan is the main polymer retrieved from the wall during mobilization at the ultrastructural level, using the purified exo-galactanase as a probe. Storage mesophyll cell walls ('ghosts') were isolated from the cotyledons of imbibed but ungerminated lupin seeds, and also from cotyledons of seedlings after the mobilization of the CWSP. The pure exo-(1-->4)-beta-galactanase was coupled to colloidal gold particles and shown to be a specific probe for (1-->4)-beta-D-galactan. They were used to localize galactan in ultrathin sections of L. angustifolius cotyledonary mesophyll tissue during CWSP mobilization. On comparing the morphologies of isolated cell walls, the post-mobilization 'ghosts' did not have the massive wall-thickenings of pre-mobilization walls. Compositional analysis showed that the post-mobilization walls were depleted in galactose and, to a lesser extent, in arabinose. When pre-mobilization ghosts were treated with the pure exo-galactanase, they became morphologically similar to the post-mobilization ghosts. They were depleted of approximately 70% of the galactose residues that would have been mobilized in vivo, and retained all the other sugar residues originally present. Sharply defined electron-transparent wall zones or pockets are associated with CWSP mobilization, being totally free of galactan, whereas wall areas immediately adjacent to them were apparently undepleted. The exo-(1-->4)-beta-galactanase is the principal enzyme involved in CWSP mobilization in lupin cotyledons in vivo. The storage walls dramatically change their texture during mobilization as most of the galactan is hydrolysed during seedling development.
Hong, Jian; Wang, Wei-Bing; Zhou, Xue-Ping; Hu, Dong-Wei
2006-06-01
The alteration of ultrastructure in Pisum sativum and Vicia faba leaf cells infected with B935 isolate of BBWV 2 were investigated by electron microscopy, immunogold-labeling technique. The results showed that the membranous proliferation, virus-formed crystals and tubular structures were found in leaf cells of two hosts. At early stages of infection, the tubules containing virus-like particles associate with plasmodesmata in mesophyll cell. Immunogold particles anti-BBWV 2 were localized to the plasmodesmata modified by tubules passing through them. The membranous proliferation and virus-formed tubules were also found in the parenchyma cells, companion cells and transfer cells of vascular bundle. Some virus-like particles located within sieve tube can be labeled immunogold particles anti-BBWV 2. These suggest that BBWV 2, similar CPMV, produce tubules extending into the plasmodesmata. Virions assembled in the cytoplasm are escorted to the tubular structures through interactions with their MP and are then transported to the adjacent cell. Many 160 nm in diameter virus-formed tubules in the cytoplasm, as a special aggregate, not directly relate to cell-to-cell movement; Intact virions are long-distance sustemic transported possibly through sieve elements.
Yorifuji, Eri; Ishikawa, Naoko; Okada, Hiroshi; Tsukaya, Hirokazu
2015-03-01
Morphological and molecular variation between Arundina graminifolia var. graminifolia and the dwarf variety, A. graminifolia var. revoluta, was examined to assess the validity of their taxonomic characteristics and genetic background for identification. Morphological analysis in combination with field observations indicated that A. graminifolia var. revoluta is a rheophyte form of A. graminifolia characterized by narrow leaves, whereas the other morphological characteristics described for A. graminifolia var. revoluta, such as smaller flowers and short stems, were not always accompanied by the narrower leaf phenotype. Molecular analysis based on matK sequences indicated that only partial differentiation has occurred between A. graminifolia var. graminifolia and A. graminifolia var. revoluta. Therefore, we should consider the rheophyte form an ecotype rather than a variety. Anatomical observations of the leaves revealed that the rheophyte form of A. graminifolia possessed characteristics of the rheophytes of both ferns and angiosperms, such as narrower palisade tissue cells and thinner spongy tissue cells, as well as fewer cells in the leaf-width direction and fewer mesophyll cell layers.
Amborella trichopoda, plasmodesmata, and the evolution of phloem loading.
Turgeon, Robert; Medville, Richard
2011-01-01
Phloem loading is the process by which photoassimilates synthesized in the mesophyll cells of leaves enter the sieve elements and companion cells of minor veins in preparation for long distance transport to sink organs. Three loading strategies have been described: active loading from the apoplast, passive loading via the symplast, and passive symplastic transfer followed by polymer trapping of raffinose and stachyose. We studied phloem loading in Amborella trichopoda, a premontane shrub that may be sister to all other flowering plants. The minor veins of A. trichopoda contain intermediary cells, indicative of the polymer trap mechanism, forming an arc on the abaxial side and subtending a cluster of ordinary companion cells in the interior of the veins. Intermediary cells are linked to bundle sheath cells by highly abundant plasmodesmata whereas ordinary companion cells have few plasmodesmata, characteristic of phloem that loads from the apoplast. Intermediary cells, ordinary companion cells, and sieve elements form symplastically connected complexes. Leaves provided with (14)CO(2) translocate radiolabeled sucrose, raffinose, and stachyose. Therefore, structural and physiological evidence suggests that both apoplastic and polymer trapping mechanisms of phloem loading operate in A. trichopoda. The evolution of phloem loading strategies is complex and may be difficult to resolve.
Cellular effects of olomoucine, an inhibitor of cyclin-dependent kinases.
Abraham, R T; Acquarone, M; Andersen, A; Asensi, A; Bellé, R; Berger, F; Bergounioux, C; Brunn, G; Buquet-Fagot, C; Fagot, D
1995-01-01
Olomoucine (2-(2-hydroxyethylamino)-6-benzylamino-9-methylpurine) has been recently described as a competitive inhibitor (ATP-binding site) of the cell cycle regulating p34cdc2/cyclin B, p33cdk2/cyclin A and p33cdk2/cyclin E kinases, the brain p33cdk5/p35 kinase and the ERK1/MAP-kinase. The unusual specificity of this compound towards cell cycle regulating enzymes suggests that it could inhibit certain steps of the cell cycle. The cellular effects of olomoucine were investigated in a large variety of plant and animal models. This compound inhibits the G1/S transition of unicellular algae (dinoflagellate and diatom). It blocks Fucus zygote cleavage and development of Laminaria gametophytes. Stimulated Petunia mesophyl protoplasts are arrested in G1 by olomoucine. By arresting cleavage it blocks the Laminaria gametophytes. Stimulated Petunia mesophyl protoplasts are arrested in G1 by olomoucine. By arresting cleavage it blocks the development of Calanus copepod larvae. It reversibly inhibits the early cleavages of Caenorhabditis elegans embryos and those of ascidian embryos. Olomoucine inhibits the serotonin-induced prophase/metaphase transition of clam oocytes; furthermore, it triggers the the release of these oocytes from their meiotic metaphase I arrest, and induces nuclei reformation. Olomoucine slows down the prophase/metaphase transition in cleaving sea urchin embryos, but does not affect the duration of the metaphase/anaphase and anaphase/telophase transitions. It also inhibits the prophase/metaphase transition of starfish oocytes triggered by various agonists. Xenopus oocyte maturation, the in vivo and in vitro phosphorylation of elongation factor EF-1 are inhibited by olomoucine. Mouse oocyte maturation is delayed by this compound, whereas parthenogenetic release from metaphase II arrest is facilitated. Growth of a variety of human cell lines (rhabdomyosarcoma cell lines Rh1, Rh18, Rh28 and Rh30; MCF-7, KB-3-1 and their adriamycin-resistant counterparts; National Cancer Institute 60 human tumor cell lines comprising nine tumor types) is inhibited by olomoucine. Cell cycle parameter analysis of the non-small cell lung cancer cell line MR65 shows that olomoucine affects G1 and S phase transits. Olomoucine inhibits DNA synthesis in interleukin-2-stimulated T lymphocytes (CTLL-2 cells) and triggers a G1 arrest similar to interleukin-2 deprivation. Both cdc2 and cdk2 kinases (immunoprecipitated from nocodazole- and hydroxyurea-treated CTLL-2 cells, respectively) are inhibited by olomoucine. Both yeast and Drosophila embryos were insensitive to olomoucine. Taken together the results of this Noah's Ark approach show that olomoucine arrests cells both at the G1/S and the G2/M boundaries, consistent with the hypothesis of a prevalent effect on the cdk2 and cdc2 kinases, respectively.
Barbour, Margaret M; Warren, Charles R; Farquhar, Graham D; Forrester, Guy; Brown, Hamish
2010-07-01
Leaf internal, or mesophyll, conductance to CO(2) (g(m)) is a significant and variable limitation of photosynthesis that also affects leaf transpiration efficiency (TE). Genotypic variation in g(m) and the effect of g(m) on TE were assessed in six barley genotypes (four Hordeum vulgare and two H. bulbosum). Significant variation in g(m) was found between genotypes, and was correlated with photosynthetic rate. The genotype with the highest g(m) also had the highest TE and the lowest carbon isotope discrimination as recorded in leaf tissue (Delta(p)). These results suggest g(m) has unexplored potential to provide TE improvement within crop breeding programmes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Chien-Yuan; Li, Quanzi; Tunlaya-Anukit, Sermsawat
2016-03-11
Class III peroxidases are members of a large plant-specific sequence-heterogeneous protein family. Several sequence-conserved homologs have been associated with lignin polymerization in Arabidopsis thaliana, Oryza sativa, Nicotiana tabacum, Zinnia elegans, Picea abies, and Pinus sylvestris. In Populus trichocarpa, a model species for studies of wood formation, the peroxidases involved in lignin biosynthesis have not yet been identified. To do this, we retrieved sequences of all PtrPOs from Peroxibase and conducted RNA-seq to identify candidates. Transcripts from 42 PtrPOs were detected in stem differentiating xylem (SDX) and four of them are the most xylem-abundant (PtrPO12, PtrPO21, PtrPO42, and PtrPO64). PtrPO21 showsmore » xylem-specific expression similar to that of genes encoding the monolignol biosynthetic enzymes. Using protein cleavage-isotope dilution mass spectrometry, PtrPO21 is detected only in the cell wall fraction and not in the soluble fraction. Downregulated transgenics of PtrPO21 have a lignin reduction of ~20% with subunit composition (S/G ratio) similar to wild type. The transgenics show a growth reduction and reddish color of stem wood. The modulus of elasticity (MOE) of the stems of the downregulated PtrPO21-line 8 can be reduced to ~60% of wild type. Differentially expressed gene (DEG) analysis of PtrPO21 downregulated transgenics identified a significant overexpression of PtPrx35, suggesting a compensatory effect within the peroxidase family. No significant changes in the expression of the 49 P. trichocarpa laccases (PtrLACs) were observed.« less
Cellular distribution of calmodulin and calmodulin-binding proteins in Vicia faba L
NASA Technical Reports Server (NTRS)
Ling, V.; Assmann, S. M.
1992-01-01
The distribution of calmodulin (CaM) and CaM-binding proteins within Vicia faba was investigated. Both CaM and CaM-binding proteins were found to be differentially distributed among organs, tissues, and protoplast types. CaM levels, on a per protein basis, were found to be the highest in leaf epidermis, containing 3-fold higher levels of CaM than in total leaf. Similarly, guard cell and epidermal cell protoplasts were also found to have higher levels of CaM than mesophyll cell protoplasts. 125I-CaM blot overlay assays were performed to qualitatively examine CaM-binding proteins in these protoplast types as well as in whole tissues and organs. CaM-binding proteins with Mr 52,000, 78,000, and 115,000 were common in all metabolically active plant parts. Unique CaM-binding protein bands were detected in guard cell protoplasts (Mr 39,000, 88,000), stems (Mr 45,000, 60,000, 64,000), and roots (Mr 62,000), suggesting the presence of specialized CaM-dependent processes in these cells and organs.
Li, Jian-Feng; Bush, Jenifer; Xiong, Yan; Li, Lei; McCormack, Matthew
2011-01-01
Protein-protein interactions (PPIs) constitute the regulatory network that coordinates diverse cellular functions. There are growing needs in plant research for creating protein interaction maps behind complex cellular processes and at a systems biology level. However, only a few approaches have been successfully used for large-scale surveys of PPIs in plants, each having advantages and disadvantages. Here we present split firefly luciferase complementation (SFLC) as a highly sensitive and noninvasive technique for in planta PPI investigation. In this assay, the separate halves of a firefly luciferase can come into close proximity and transiently restore its catalytic activity only when their fusion partners, namely the two proteins of interest, interact with each other. This assay was conferred with quantitativeness and high throughput potential when the Arabidopsis mesophyll protoplast system and a microplate luminometer were employed for protein expression and luciferase measurement, respectively. Using the SFLC assay, we could monitor the dynamics of rapamycin-induced and ascomycin-disrupted interaction between Arabidopsis FRB and human FKBP proteins in a near real-time manner. As a proof of concept for large-scale PPI survey, we further applied the SFLC assay to testing 132 binary PPIs among 8 auxin response factors (ARFs) and 12 Aux/IAA proteins from Arabidopsis. Our results demonstrated that the SFLC assay is ideal for in vivo quantitative PPI analysis in plant cells and is particularly powerful for large-scale binary PPI screens.
Singh, Shardendu K; Badgujar, Girish; Reddy, Vangimalla R; Fleisher, David H; Bunce, James A
2013-06-15
Nutrients such as phosphorus may exert a major control over plant response to rising atmospheric carbon dioxide concentration (CO2), which is projected to double by the end of the 21st century. Elevated CO2 may overcome the diffusional limitations to photosynthesis posed by stomata and mesophyll and alter the photo-biochemical limitations resulting from phosphorus deficiency. To evaluate these ideas, cotton (Gossypium hirsutum) was grown in controlled environment growth chambers with three levels of phosphate (Pi) supply (0.2, 0.05 and 0.01mM) and two levels of CO2 concentration (ambient 400 and elevated 800μmolmol(-1)) under optimum temperature and irrigation. Phosphate deficiency drastically inhibited photosynthetic characteristics and decreased cotton growth for both CO2 treatments. Under Pi stress, an apparent limitation to the photosynthetic potential was evident by CO2 diffusion through stomata and mesophyll, impairment of photosystem functioning and inhibition of biochemical process including the carboxylation efficiency of ribulose-1,5-bisphosphate carboxylase/oxyganase and the rate of ribulose-1,5-bisphosphate regeneration. The diffusional limitation posed by mesophyll was up to 58% greater than the limitation due to stomatal conductance (gs) under Pi stress. As expected, elevated CO2 reduced these diffusional limitations to photosynthesis across Pi levels; however, it failed to reduce the photo-biochemical limitations to photosynthesis in phosphorus deficient plants. Acclimation/down regulation of photosynthetic capacity was evident under elevated CO2 across Pi treatments. Despite a decrease in phosphorus, nitrogen and chlorophyll concentrations in leaf tissue and reduced stomatal conductance at elevated CO2, the rate of photosynthesis per unit leaf area when measured at the growth CO2 concentration tended to be higher for all except the lowest Pi treatment. Nevertheless, plant biomass increased at elevated CO2 across Pi nutrition with taller plants, increased leaf number and larger leaf area. Copyright © 2013 Elsevier GmbH. All rights reserved.
Khan, NA
2004-01-01
Background The stimulatory effect of CO2 on ethylene evolution in plants is known, but the extent to which ethylene controls photosynthesis is not clear. Studies on the effects of ethylene on CO2 metabolism have shown conflicting results. Increase or inhibition of photosynthesis by ethylene has been reported. To understand the physiological processes responsible for ethylene-mediated changes in photosynthesis, stomatal and mesophyll effects on photosynthesis and ethylene biosynthesis in response to ethephon treatment in mustard (Brassica juncea) cultivars differing in photosynthetic capacity were studied. Results The effects of ethephon on photosynthetic rate (PN), stomatal conductance (gS), carbonic anhydrase (CA) activity, 1-aminocyclopropane carboxylic acid synthase (ACS) activity and ethylene evolution were similar in both the cultivars. Increasing ethephon concentration up to 1.5 mM increased PN, gS and CA maximally, whereas 3.0 mM ethephon proved inhibitory. ACS activity and ethylene evolution increased with increasing concentrations of ethephon. The corresponding changes in gs and CA activity suggest that the changes in photosynthesis in response to ethephon were triggered by altered stomatal and mesophyll processes. Stomatal conductance changed in parallel with changes in mesophyll photosynthetic properties. In both the cultivars ACS activity and ethylene increased up to 3.0 mM ethephon, but 1.5 mM ethephon caused maximum effects on photosynthetic parameters. Conclusion These results suggest that ethephon affects foliar gas exchange responses. The changes in photosynthesis in response to ethephon were due to stomatal and mesophyll effects. The changes in gS were a response maintaining stable intercellular CO2 concentration (Ci) under the given treatment in both the cultivars. Also, the high photosynthetic capacity cultivar, Varuna responded less to ethephon than the low photosynthetic capacity cultivar, RH30. The photosynthetic capacity of RH30 increased with the increase in ethylene evolution due to 1.5 mM ethephon application. PMID:15625009
Wu, Jun-Zheng; Liu, Qin; Geng, Xiao-Shan; Li, Kai-Mian; Luo, Li-Juan; Liu, Jin-Ping
2017-03-14
Cassava (Manihot esculenta Crantz) is a major crop extensively cultivated in the tropics as both an important source of calories and a promising source for biofuel production. Although stable gene expression have been used for transgenic breeding and gene function study, a quick, easy and large-scale transformation platform has been in urgent need for gene functional characterization, especially after the cassava full genome was sequenced. Fully expanded leaves from in vitro plantlets of Manihot esculenta were used to optimize the concentrations of cellulase R-10 and macerozyme R-10 for obtaining protoplasts with the highest yield and viability. Then, the optimum conditions (PEG4000 concentration and transfection time) were determined for cassava protoplast transient gene expression. In addition, the reliability of the established protocol was confirmed for subcellular protein localization. In this work we optimized the main influencing factors and developed an efficient mesophyll protoplast isolation and PEG-mediated transient gene expression in cassava. The suitable enzyme digestion system was established with the combination of 1.6% cellulase R-10 and 0.8% macerozyme R-10 for 16 h of digestion in the dark at 25 °C, resulting in the high yield (4.4 × 10 7 protoplasts/g FW) and vitality (92.6%) of mesophyll protoplasts. The maximum transfection efficiency (70.8%) was obtained with the incubation of the protoplasts/vector DNA mixture with 25% PEG4000 for 10 min. We validated the applicability of the system for studying the subcellular localization of MeSTP7 (an H + /monosaccharide cotransporter) with our transient expression protocol and a heterologous Arabidopsis transient gene expression system. We optimized the main influencing factors and developed an efficient mesophyll protoplast isolation and transient gene expression in cassava, which will facilitate large-scale characterization of genes and pathways in cassava.
Kamdee, Channatika; Kirasak, Kanjana; Ketsa, Saichol; van Doorn, Wouter G
2015-09-01
Cut Iris flowers (Iris x hollandica, cv. Blue Magic) show visible senescence about two days after full opening. Epidermal cells of the outer tepals collapse due to programmed cell death (PCD). Transmission electron microscopy (TEM) showed irregular swelling of the cell walls, starting prior to cell collapse. Compared to cells in flowers that had just opened, wall thickness increased up to tenfold prior to cell death. Fibrils were visible in the swollen walls. After cell death very little of the cell wall remained. Prior to and during visible wall swelling, vesicles (paramural bodies) were observed between the plasma membrane and the cell walls. The vesicles were also found in groups and were accompanied by amorphous substance. They usually showed a single membrane, and had a variety of diameters and electron densities. Cut Dendrobium hybrid cv. Lucky Duan flowers exhibited visible senescence about 14 days after full flower opening. Paramural bodies were also found in Dendrobium tepal epidermis and mesophyll cells, related to wall swelling and degradation. Although alternative explanations are well possible, it is hypothesized that paramural bodies carry enzymes involved in cell wall breakdown. The literature has not yet reported such bodies in association with senescence/PCD. Copyright © 2015 Elsevier GmbH. All rights reserved.
Spaceflight reduces somatic embryogenesis in orchardgrass (Poaceae)
NASA Technical Reports Server (NTRS)
Conger, B. V.; Tomaszewski, Z. Jr; McDaniel, J. K.; Vasilenko, A.
1998-01-01
Somatic embryos initiate and develop from single mesophyll cells in in vitro cultured leaf segments of orchard-grass (Dactylis glomerata L.). Segments were plated at time periods ranging from 21 to 0.9 d (21 h) prior to launch on an 11 d spaceflight (STS-64). Using a paired t-test, there was no significant difference in embryogenesis from preplating periods of 14 d and 21 d. However, embryogenesis was reduced by 70% in segments plated 21 h before launch and this treatment was significant at P=0.0001. The initial cell divisions leading to embryo formation would be taking place during flight in this treatment. A higher ratio of anticlinal:periclinal first cell divisions observed in the flight compared to the control tissue suggests that microgravity affects axis determination and embryo polarity at a very early stage. A similar reduction in zygotic embryogenesis would reduce seed formation and have important implications for long-term space flight or colonization where seeds would be needed either for direct consumption or to grow another generation of plants.
Sunil, Bobba; Raghavendra, Agepati S
2017-01-01
The electron partitioning between COX and AOX pathways of mitochondria and their coordination is necessary to meet the energy demands as well as to maintain optimized redox status in plants under varying environmental conditions. The relative contribution of these two pathways to total respiration is an important measure during a given stress condition. We describe in detail the procedure that allows the measurement of the parameters of COX and AOX pathway of respiration in mesophyll protoplasts using Clark-type O 2 electrode. This chapter also lists the steps for rapid isolation procedure for mesophyll protoplasts from pea leaves. The advantages and limitations of the use of metabolic inhibitors and the protoplasts for measuring the respiration are also briefly discussed.
Somatic hybridization in Citrus: navel orange (C. sinensis Osb.) and grapefruit (C. paradisi Macf.).
Ohgawara, T; Kobayashi, S; Ishii, S; Yoshinaga, K; Oiyama, I
1989-11-01
Protoplasts of navel orange, isolated from embryogenic nucellar cell suspension culture, were fused with protoplasts of grapefruit isolated from leaf tissue. The fusion products were cultured in the hormone-free medium containing 0.6 M sucrose. Under the culture conditions, somatic embryogenesis of navel orange protoplasts was suppressed, while cell division of grapefruit mesophyll protoplasts was not induced. Six embryoids were obtained and three lines regenerated to complete plants through embryogenesis. Two of the regenerated lines exhibited intermediate morphological characteristics of the parents in the leaf shape. Chromosome counts showed that these regenerated plants had expected 36 chromosomes (2n=2x=18 for each parent). The rDNA analysis using biotin-labeled rRNA probes confirmed the presence of genomes from both parents in these plants. This somatic hybridization system would be useful for the practical Citrus breeding.
NASA Astrophysics Data System (ADS)
Zhang, Tao; Wang, Wei; Liu, Heping; Zhang, Zhi-jie; Liang, Cunzhu; Wang, Li xin; Bu Ren, Tuo Ya
2007-09-01
The micrograph and the geographical information system(GIS) technology are combined, and applied into histiocytic anatomy. Through studying histiocytic changes of Cleistogenes squarrosa's vegetation organs, namely leaf and stem, the steppe plants' inherent mechanism of miniaturization is revealed. In the course of restoring succession, Cleistogenes squarrosa's anatomy of leaf and stem demonstrate the same variation trend in the three different sample plots: the longer the resume time is, the more, its cells which make up the organ are. According to opposite course, miniaturization has all taken place in the leaf and stem. However, there is difference in the miniaturization mechanism of the leaf and stem. (1) According to dissection structure of the blade, the reduction of organizing the figure of the mesophyll has caused miniaturization. (2) The miniaturization mechanism of the stem is the reduction of different organization's cell's figure of the stem.
Somatic hybridization of sexually incompatible petunias: Petunia parodii, Petunia parviflora.
Power, J B; Berry, S F; Chapman, J V; Cocking, E C
1980-01-01
Somatic hybrid plants were regenerated following the fusion of leaf mesophyll protoplasts of P. parodii with those isolated from a nuclear-albino mutant of P. parviflora. Attempts at sexual hybridization of these two species repeatedly failed thus confirming their previously established cross-incompatibility. Selection of somatic hybrid plants was possible since protoplasts of P. parodii would not develop beyond the cell colony stage, whilst those of the somatic hybrid and albino P. parviflora produced calluses. Green somatic hybrid calluses were visible against a background of albino cells/calluses, and upon transfer to regeneration media gave rise to shoots. Shoots and the resultant flowering plants were confirmed as somatic hybrids based on their growth habit, floral pigmentation and morphology, leaf hair structure, chromosome number and Fraction 1 protein profiles. The relevance of such hybrid material for the development of new, and extensively modified cultivars, is discussed.
Majeran, Wojciech; Zybailov, Boris; Ytterberg, A Jimmy; Dunsmore, Jason; Sun, Qi; van Wijk, Klaas J
2008-09-01
Chloroplasts of maize leaves differentiate into specific bundle sheath (BS) and mesophyll (M) types to accommodate C(4) photosynthesis. Chloroplasts contain thylakoid and envelope membranes that contain the photosynthetic machineries and transporters but also proteins involved in e.g. protein homeostasis. These chloroplast membranes must be specialized within each cell type to accommodate C(4) photosynthesis and regulate metabolic fluxes and activities. This quantitative study determined the differentiated state of BS and M chloroplast thylakoid and envelope membrane proteomes and their oligomeric states using innovative gel-based and mass spectrometry-based protein quantifications. This included native gels, iTRAQ, and label-free quantification using an LTQ-Orbitrap. Subunits of Photosystems I and II, the cytochrome b(6)f, and ATP synthase complexes showed average BS/M accumulation ratios of 1.6, 0.45, 1.0, and 1.33, respectively, whereas ratios for the light-harvesting complex I and II families were 1.72 and 0.68, respectively. A 1000-kDa BS-specific NAD(P)H dehydrogenase complex with associated proteins of unknown function containing more than 15 proteins was observed; we speculate that this novel complex possibly functions in inorganic carbon concentration when carboxylation rates by ribulose-bisphosphate carboxylase/oxygenase are lower than decarboxylation rates by malic enzyme. Differential accumulation of thylakoid proteases (Egy and DegP), state transition kinases (STN7,8), and Photosystem I and II assembly factors was observed, suggesting that cell-specific photosynthetic electron transport depends on post-translational regulatory mechanisms. BS/M ratios for inner envelope transporters phosphoenolpyruvate/P(i) translocator, Dit1, Dit2, and Mex1 were determined and reflect metabolic fluxes in carbon metabolism. A wide variety of hundreds of other proteins showed differential BS/M accumulation. Mass spectral information and functional annotations are available through the Plant Proteome Database. These data are integrated with previous data, resulting in a model for C(4) photosynthesis, thereby providing new rationales for metabolic engineering of C(4) pathways and targeted analysis of genetic networks that coordinate C(4) differentiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, L.S.; Gmur, N.F.; Da Costa, F.
1977-08-01
Initial injury to adaxial leaf surfaces of Phaseolus vulgaris and Helianthus annuus occurred near trichomes and stomata after exposure to simulated sulfate acid rain. Lesion frequency was not correlated with density of either stomata or trichomes but was correlated with degree of leaf expansion. The number of lesions per unit area increased with total leaf area. Results suggest that characteristics of the leaf indumentum such as development of trichomes and guard cells and/or cuticle thickness near these structures may be involved in lesion development. Adaxial epidermal cell collapse was the first event in lesion development. Palisade cells and eventually spongymore » mesophyll cells collapsed after continued, daily exposure to simulated rain of low pH. Lesion development on Phaseolus vulgaris followed a specific course of events after exposure to simulated rain of known composition, application rate, drop size frequency, drop velocities, and frequency of exposures. These results allow development of further experiments to observe accurately other parameters, such as nutrient inputs and nutrient leaching from foliage, after exposure to simulated sulfate acid rain.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weissmann, Sarit; Ma, Fangfang; Furuyama, Koki
C 4 photosynthesis in grasses requires the coordinated movement of metabolites through two specialized leaf cell types, mesophyll (M) and bundle sheath (BS), to concentrate CO 2 around Rubisco. Despite the importance of transporters in this process, few have been identified or rigorously characterized. In maize (Zea mays), DCT2 has been proposed to function as a plastid-localizedmalate transporter and is preferentially expressed in BS cells. Here, we characterized the role of DCT2 in maize leaves using Activator-tagged mutant alleles. Our results indicate that DCT2 enables the transport of malate into the BS chloroplast. Isotopic labeling experiments show that the lossmore » of DCT2 results in markedly different metabolic network operation and dramatically reduced biomass production. In the absence of a functioning malate shuttle, dct2 lines survive through the enhanced use of the phosphoenolpyruvate carboxykinase carbon shuttle pathway that in wild-type maize accounts for ;25% of the photosynthetic activity. The results emphasize the importance of malate transport during C 4 photosynthesis, define the role of a primary malate transporter in BS cells, and support a model for carbon exchange between BS and M cells in maize.« less
Genetic and Developmental Basis for Increased Leaf Thickness in the Arabidopsis Cvi Ecotype.
Coneva, Viktoriya; Chitwood, Daniel H
2018-01-01
Leaf thickness is a quantitative trait that is associated with the ability of plants to occupy dry, high irradiance environments. Despite its importance, leaf thickness has been difficult to measure reproducibly, which has impeded progress in understanding its genetic basis, and the associated anatomical mechanisms that pattern it. Here, we used a custom-built dual confocal profilometer device to measure leaf thickness in the Arabidopsis Ler × Cvi recombinant inbred line population and found statistical support for four quantitative trait loci (QTL) associated with this trait. We used publically available data for a suite of traits relating to flowering time and growth responses to light quality and show that three of the four leaf thickness QTL coincide with QTL for at least one of these traits. Using time course photography, we quantified the relative growth rate and the pace of rosette leaf initiation in the Ler and Cvi ecotypes. We found that Cvi rosettes grow slower than Ler, both in terms of the rate of leaf initiation and the overall rate of biomass accumulation. Collectively, these data suggest that leaf thickness is tightly linked with physiological status and may present a tradeoff between the ability to withstand stress and rapid vegetative growth. To understand the anatomical basis of leaf thickness, we compared cross-sections of Cvi and Ler leaves and show that Cvi palisade mesophyll cells elongate anisotropically contributing to leaf thickness. Flow cytometry of whole leaves show that endopolyploidy accompanies thicker leaves in Cvi. Overall, our data suggest that mechanistically, an altered schedule of cellular events affecting endopolyploidy and increasing palisade mesophyll cell length contribute to increase of leaf thickness in Cvi. Ultimately, knowledge of the genetic basis and developmental trajectory leaf thickness will inform the mechanisms by which natural selection acts to produce variation in this adaptive trait.
Genetic and Developmental Basis for Increased Leaf Thickness in the Arabidopsis Cvi Ecotype
Coneva, Viktoriya; Chitwood, Daniel H.
2018-01-01
Leaf thickness is a quantitative trait that is associated with the ability of plants to occupy dry, high irradiance environments. Despite its importance, leaf thickness has been difficult to measure reproducibly, which has impeded progress in understanding its genetic basis, and the associated anatomical mechanisms that pattern it. Here, we used a custom-built dual confocal profilometer device to measure leaf thickness in the Arabidopsis Ler × Cvi recombinant inbred line population and found statistical support for four quantitative trait loci (QTL) associated with this trait. We used publically available data for a suite of traits relating to flowering time and growth responses to light quality and show that three of the four leaf thickness QTL coincide with QTL for at least one of these traits. Using time course photography, we quantified the relative growth rate and the pace of rosette leaf initiation in the Ler and Cvi ecotypes. We found that Cvi rosettes grow slower than Ler, both in terms of the rate of leaf initiation and the overall rate of biomass accumulation. Collectively, these data suggest that leaf thickness is tightly linked with physiological status and may present a tradeoff between the ability to withstand stress and rapid vegetative growth. To understand the anatomical basis of leaf thickness, we compared cross-sections of Cvi and Ler leaves and show that Cvi palisade mesophyll cells elongate anisotropically contributing to leaf thickness. Flow cytometry of whole leaves show that endopolyploidy accompanies thicker leaves in Cvi. Overall, our data suggest that mechanistically, an altered schedule of cellular events affecting endopolyploidy and increasing palisade mesophyll cell length contribute to increase of leaf thickness in Cvi. Ultimately, knowledge of the genetic basis and developmental trajectory leaf thickness will inform the mechanisms by which natural selection acts to produce variation in this adaptive trait. PMID:29593772
Yan, Yonglian; Takáč, Tomáš; Li, Xiaoquan; Chen, Houbin; Wang, Yingying; Xu, Enfeng; Xie, Ling; Su, Zhaohua; Šamaj, Jozef; Xu, Chunxiang
2015-01-01
Information on the spatial distribution of arabinogalactan proteins (AGPs) in plant organs and tissues during plant reactions to low temperature (LT) is limited. In this study, the extracellular distribution of AGPs in banana leaves and roots, and their changes under LT stress were investigated in two genotypes differing in chilling tolerance, by immuno-techniques using 17 monoclonal antibodies against different AGP epitopes. Changes in total classical AGPs in banana leaves were also tested. The results showed that AGP epitopes recognized by JIM4, JIM14, JIM16, and CCRC-M32 antibodies were primarily distributed in leaf veins, while those recognized by JIM8, JIM13, JIM15, and PN16.4B4 antibodies exhibited predominant sclerenchymal localization. Epitopes recognized by LM2, LM14, and MAC207 antibodies were distributed in both epidermal and mesophyll cells. Both genotypes accumulated classical AGPs in leaves under LT treatment, and the chilling tolerant genotype contained higher classical AGPs at each temperature treatment. The abundance of JIM4 and JIM16 epitopes in the chilling-sensitive genotype decreased slightly after LT treatment, and this trend was opposite for the tolerant one. LT induced accumulation of LM2- and LM14-immunoreactive AGPs in the tolerant genotype compared to the sensitive one, especially in phloem and mesophyll cells. These epitopes thus might play important roles in banana LT tolerance. Different AGP components also showed differential distribution patterns in banana roots. In general, banana roots started to accumulate AGPs under LT treatment earlier than leaves. The levels of AGPs recognized by MAC207 and JIM13 antibodies in the control roots of the tolerant genotype were higher than in the chilling sensitive one. Furthermore, the chilling tolerant genotype showed high immuno-reactivity against JIM13 antibody. These results indicate that several AGPs are likely involved in banana tolerance to chilling injury.
Yan, Yonglian; Takáč, Tomáš; Li, Xiaoquan; Chen, Houbin; Wang, Yingying; Xu, Enfeng; Xie, Ling; Su, Zhaohua; Šamaj, Jozef; Xu, Chunxiang
2015-01-01
Information on the spatial distribution of arabinogalactan proteins (AGPs) in plant organs and tissues during plant reactions to low temperature (LT) is limited. In this study, the extracellular distribution of AGPs in banana leaves and roots, and their changes under LT stress were investigated in two genotypes differing in chilling tolerance, by immuno-techniques using 17 monoclonal antibodies against different AGP epitopes. Changes in total classical AGPs in banana leaves were also tested. The results showed that AGP epitopes recognized by JIM4, JIM14, JIM16, and CCRC-M32 antibodies were primarily distributed in leaf veins, while those recognized by JIM8, JIM13, JIM15, and PN16.4B4 antibodies exhibited predominant sclerenchymal localization. Epitopes recognized by LM2, LM14, and MAC207 antibodies were distributed in both epidermal and mesophyll cells. Both genotypes accumulated classical AGPs in leaves under LT treatment, and the chilling tolerant genotype contained higher classical AGPs at each temperature treatment. The abundance of JIM4 and JIM16 epitopes in the chilling-sensitive genotype decreased slightly after LT treatment, and this trend was opposite for the tolerant one. LT induced accumulation of LM2- and LM14-immunoreactive AGPs in the tolerant genotype compared to the sensitive one, especially in phloem and mesophyll cells. These epitopes thus might play important roles in banana LT tolerance. Different AGP components also showed differential distribution patterns in banana roots. In general, banana roots started to accumulate AGPs under LT treatment earlier than leaves. The levels of AGPs recognized by MAC207 and JIM13 antibodies in the control roots of the tolerant genotype were higher than in the chilling sensitive one. Furthermore, the chilling tolerant genotype showed high immuno-reactivity against JIM13 antibody. These results indicate that several AGPs are likely involved in banana tolerance to chilling injury. PMID:26074928
Gao, Yue; Zhang, Chong; Han, Xiao; Wang, Zi Yuan; Ma, Lai; Yuan, De Peng; Wu, Jing Ni; Zhu, Xiao Feng; Liu, Jing Miao; Li, Dao Pin; Hu, Yi Bing; Xuan, Yuan Hu
2018-04-16
Pathogen-host interaction is a complicated process; pathogens mainly infect host plants to acquire nutrients, especially sugars. Rhizoctonia solani, the causative agent of sheath blight disease, is a major pathogen of rice. However, it is not known, as to how this pathogen obtains sugar from rice plants. In this study, we found that the rice sugar transporter, OsSWEET11 is involved in the pathogenesis of sheath blight disease. qRT-PCR and β-d-glucuronidase expression analyses showed that R. solani infection significantly enhanced OsSWEET11 expression in leaves among the clade III SWEET members. The analyses of transgenic plants revealed that Ossweet11 mutants were less susceptible, whereas plants overexpressing OsSWEET11 were more susceptible to sheath blight compared to wild-type controls, but the yield of OsSWEET11 mutants and overexpressors was reduced. SWEETs become active upon oligomerization. Split-ubiquitin yeast two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays showed that mutated-OsSWEET11 interacted with normal OsSWEET11. In addition, expressing conserved residue mutated-AtSWEET1 inhibits normal AtSWEET1 activity. To analyze whether inhibition of OsSWEET11 function in mesophyll cells is related to defense against this disease, mutated- OsSWEET11 was expressed under the control of Rubisco promoter, which is specific for green tissues. The resistance of transgenic plants to sheath blight disease, but not other disease was improved, while yield production was not evidently affected. Overall, these results suggest that R. solani might acquire sugar from rice leaves by activating OsSWEET11 expression. The plants can be protected from infection by manipulating the expression of OsSWEET11 without affecting the crop yield. This article is protected by copyright. All rights reserved. © 2018 BSPP and John Wiley & Sons Ltd.
Kelly, Gilor; Sade, Nir; Attia, Ziv; Secchi, Francesca; Zwieniecki, Maciej; Holbrook, N. Michele; Levi, Asher; Alchanatis, Victor; Moshelion, Menachem; Granot, David
2014-01-01
Increased expression of the aquaporin NtAQP1, which is known to function as a plasmalemma channel for CO2 and water, increases the rate of both photosynthesis and transpiration. In contrast, increased expression of Arabidopsis hexokinase1 (AtHXK1), a dual-function enzyme that mediates sugar sensing, decreases the expression of photosynthetic genes and the rate of transpiration and inhibits growth. Here, we show that AtHXK1 also decreases root and stem hydraulic conductivity and leaf mesophyll CO2 conductance (g m). Due to their opposite effects on plant development and physiology, we examined the relationship between NtAQP1 and AtHXK1 at the whole-plant level using transgenic tomato plants expressing both genes simultaneously. NtAQP1 significantly improved growth and increased the transpiration rates of AtHXK1-expressing plants. Reciprocal grafting experiments indicated that this complementation occurs when both genes are expressed simultaneously in the shoot. Yet, NtAQP1 had only a marginal effect on the hydraulic conductivity of the double-transgenic plants, suggesting that the complementary effect of NtAQP1 is unrelated to shoot water transport. Rather, NtAQP1 significantly increased leaf mesophyll CO2 conductance and enhanced the rate of photosynthesis, suggesting that NtAQP1 facilitated the growth of the double-transgenic plants by enhancing mesophyll conductance of CO2. PMID:24498392
Huang, Wei; Hu, Hong; Zhang, Shi-Bao
2015-01-01
Plants usually experience dynamic fluctuations of light intensities under natural conditions. However, the responses of mesophyll conductance, CO2 assimilation, and photorespiration to light fluctuation are not well understood. To address this question, we measured photosynthetic parameters of gas exchange and chlorophyll fluorescence in tobacco leaves at 2-min intervals while irradiance levels alternated between 100 and 1200 μmol photons m(-2) s(-1). Compared with leaves exposed to a constant light of 1200 μmol photons m(-2) s(-1), both stomatal and mesophyll conductances were significantly restricted in leaves treated with fluctuating light condition. Meanwhile, CO2 assimilation rate and electron flow devoted to RuBP carboxylation at 1200 μmol photons m(-2) s(-1) under fluctuating light were limited by the low chloroplast CO2 concentration. Analysis based on the C3 photosynthesis model indicated that, at 1200 μmol photons m(-2) s(-1) under fluctuating light, the CO2 assimilation rate was limited by RuBP carboxylation. Electron flow devoted to RuBP oxygenation at 1200 μmol photons m(-2) s(-1) under fluctuating light remained at nearly the maximum level throughout the experimental period. We conclude that fluctuating light restricts CO2 assimilation by decreasing both stomatal and mesophyll conductances. Under such conditions, photorespiration plays an important role in the regulation of photosynthetic electron flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turgeon, R.; Wimmers, L.E.
1988-05-01
Vein loading of exogenous ({sup 14}C)sucrose was studied using short uptake and wash periods to distinguish between direct loading into veins and loading via mesophyll tissue. Mature leaf tissue of Pisum sativum L. cv Little Marvel, or Coleus blumei Benth. cv Candidum, was abraded and leaf discs were floated on ({sup 14}C)sucrose solution for 1 or 2 minutes. Discs were then washed for 1 to 30 min either at room temperature or in the cold and were frozen, lyophilized, and autoradiographed. In P. sativum, veins were clearly labeled after 1 minute uptake and 1 minute wash periods. Autoradiographic images didmore » not change appreciably with longer times of uptake or wash. Vein loading was inhibited by p-chloromercuribenzenesulfonic acid. These results indicate that uptake of exogenous sucrose occurs directly into the veins in this species. When C. blumei leaf discs were floated on ({sup 14}C)sucrose for 2 minutes and washed in the cold, the mesophyll was labeled but little, if any, minor vein loading occurred. When discs were labeled for 2 minutes and washed at room temperature, label was transferred from the mesophyll to the veins within minutes. These results indicate that there may be different patterns of phloem loading of photosynthetically derived sucrose in these two species.« less
Tazoe, Youshi; VON Caemmerer, Susanne; Estavillo, Gonzalo M; Evans, John R
2011-04-01
In C₃ leaves, the mesophyll conductance to CO₂ diffusion, g(m) , determines the drawdown in CO₂ concentration from intercellular airspace to the chloroplast stroma. Both g(m) and stomatal conductance limit photosynthetic rate and vary in response to the environment. We investigated the response of g(m) to changes in CO₂ in two Arabidopsis genotypes (including a mutant with open stomata, ost1), tobacco and wheat. We combined measurements of gas exchange with carbon isotope discrimination using tunable diode laser absorption spectroscopy with a CO₂ calibration system specially designed for a range of CO₂ and O₂ concentrations. CO₂ was initially increased from 200 to 1000 ppm and then decreased stepwise to 200 ppm and increased stepwise back to 1000 ppm, or the sequence was reversed. In 2% O₂ a step increase from 200 to 1000 ppm significantly decreased g(m) by 26-40% in all three species, whereas following a step decrease from 1000 to 200 ppm, the 26-38% increase in g(m) was not statistically significant. The response of g(m) to CO₂ was less in 21% O₂. Comparing wild type against the ost1 revealed that mesophyll and stomatal conductance varied independently in response to CO₂. We discuss the effects of isotope fractionation factors on estimating g(m) . © 2011 Blackwell Publishing Ltd.
Microanalysis of plant cell wall polysaccharides.
Obel, Nicolai; Erben, Veronika; Schwarz, Tatjana; Kühnel, Stefan; Fodor, Andrea; Pauly, Markus
2009-09-01
Oligosaccharide Mass Profiling (OLIMP) allows a fast and sensitive assessment of cell wall polymer structure when coupled with Matrix Assisted Laser Desorption Ionisation Time Of Flight Mass Spectrometry (MALDI-TOF MS). The short time required for sample preparation and analysis makes possible the study of a wide range of plant organs, revealing a high degree of heterogeneity in the substitution pattern of wall polymers such as the cross-linking glycan xyloglucan and the pectic polysaccharide homogalacturonan. The high sensitivity of MALDI-TOF allows the use of small amounts of samples, thus making it possible to investigate the wall structure of single cell types when material is collected by such methods as laser micro-dissection. As an example, the analysis of the xyloglucan structure in the leaf cell types outer epidermis layer, entire epidermis cell layer, palisade mesophyll cells, and vascular bundles were investigated. OLIMP is amenable to in situ wall analysis, where wall polymers are analyzed on unprepared plant tissue itself without first isolating cell walls. In addition, OLIMP enables analysis of wall polymers in Golgi-enriched fractions, the location of nascent matrix polysaccharide biosynthesis, enabling separation of the processes of wall biosynthesis versus post-deposition apoplastic metabolism. These new tools will make possible a semi-quantitative analysis of the cell wall at an unprecedented level.
Light as a regulator of structural and chemical leaf defenses against insects in two Prunus species
NASA Astrophysics Data System (ADS)
Mąderek, Ewa; Zadworny, Marcin; Mucha, Joanna; Karolewski, Piotr
2017-11-01
Light is a key factor influencing competition between species, and the mechanisms by which trees overcome insect outbreaks can be associated with alternation of the leaves structure, which then prevent or promotes their susceptibility to herbivores. It was predicted that leaf tissue anatomy would likely be different in sun and shade leaves, with a gradual decline of leaves resistance coupled with reduction of accessible light. We quantified anatomical patterns and the distribution of defence compounds (phenols, total tannins, catechol tannins) within heavily grazed leaves of Prunus padus, native in Europe and Prunus serotina, an invasive to Central Europe. Both species were strongly attacked by folivorous insects when shrubs grew in the shade. In the sun, however only P. padus leaves were grazed, but P. serotina leaves were almost unaffected. We identified that anatomical characteristics are not linked to different P. padus and P. serotina leaf vulnerability to insects. Furthermore, the staining of defence compounds of P. serotina leaves grown in full sun revealed that the palisade mesophyll cells had a higher content of phenolic compounds and catechol tannins. Thus, our results indicate that a specific distribution of defence compounds, but not the anatomical relationships between palisade and spongy mesophyll, may be beneficial for P. serotina growth outside its natural range. The identified pattern of defence compounds distribution is linked to a lower susceptibility of P. serotina leaves to herbivores, and is associated with its invasiveness. This likely reflects that P. serotina is a stronger competitor than P. padus, especially at high sunlit sites i.e. gaps in the forest.
How Does Leaf Anatomy Influence Water Transport outside the Xylem?1[OPEN
Buckley, Thomas N.; Scoffoni, Christine; Sack, Lawren
2015-01-01
Leaves are arguably the most complex and important physicobiological systems in the ecosphere. Yet, water transport outside the leaf xylem remains poorly understood, despite its impacts on stomatal function and photosynthesis. We applied anatomical measurements from 14 diverse species to a novel model of water flow in an areole (the smallest region bounded by minor veins) to predict the impact of anatomical variation across species on outside-xylem hydraulic conductance (Kox). Several predictions verified previous correlational studies: (1) vein length per unit area is the strongest anatomical determinant of Kox, due to effects on hydraulic pathlength and bundle sheath (BS) surface area; (2) palisade mesophyll remains well hydrated in hypostomatous species, which may benefit photosynthesis, (3) BS extensions enhance Kox; and (4) the upper and lower epidermis are hydraulically sequestered from one another despite their proximity. Our findings also provided novel insights: (5) the BS contributes a minority of outside-xylem resistance; (6) vapor transport contributes up to two-thirds of Kox; (7) Kox is strongly enhanced by the proximity of veins to lower epidermis; and (8) Kox is strongly influenced by spongy mesophyll anatomy, decreasing with protoplast size and increasing with airspace fraction and cell wall thickness. Correlations between anatomy and Kox across species sometimes diverged from predicted causal effects, demonstrating the need for integrative models to resolve causation. For example, (9) Kox was enhanced far more in heterobaric species than predicted by their having BS extensions. Our approach provides detailed insights into the role of anatomical variation in leaf function. PMID:26084922
Pruvost, Olivier; Savelon, Caroline; Boyer, Claudine; Chiroleu, Frédéric; Gagnevin, Lionel; Jacques, Marie-Agnès
2009-07-01
Epiphytic survival of several Xanthomonas pathovars has been reported, but most studies failed to determine whether such populations were resident epiphytes, resulting from latent infections, or casual epiphytes. This study aimed at understanding the nature of Xanthomonas citri pv. mangiferaeindicae populations associated with asymptomatic leaves. When spray-inoculated on mango leaves cv. Maison Rouge, the pathogen multiplied markedly in association with juvenile leaves, but was most often detected as low population sizes (<1 x 10(3) cfu g(-1)) in association with mature leaves. Our results suggest a very low biological significance of biofilm-associated populations of X. citri pv. mangiferaeindicae, while saprophytic microbiota associated with mango leaves survived frequently as biofilms. A chloroform vapor-based disinfestation assay which kills cells specifically located on the leaf surface and not those located within the leaf mesophyll was developed. When applied to spray-inoculated leaves maintained under controlled environmental conditions, 155 out of the 168 analyzed datasets collected over three assessment dates for seven bacterial strains representative of the genetic diversity of the pathogen failed to demonstrate a significant X. citri pv. mangiferaeindicae population decrease on chloroform treated leaves up to 13 days after inoculation. We conclude that an efficient survival of X. citri pv. mangiferaeindicae present on mango leaf surfaces following a limited dissemination event is largely dependent on the availability of juvenile plant tissues. The bacterium gains access to protected sites (e.g., mesophyll) through stomata where it becomes endophytic and eventually causes disease. Chloroform vapor-based disinfestation assays should be useful for further studies aiming at evaluating survival sites of bacteria associated with the phyllosphere.
Pharmacognostical evaluation of leaf of Bada Rasna [Nelsonia canescens (Lam.) Spreng.; Acanthaceae].
Acharya, Rabinarayan; Padiya, Riddhish H; Patel, Eisha D; Rudrapa, Harisha C; Shukla, Vinaya J; Chauhan, Malati G
2012-04-01
Nelsonia canescens (Lam.) Spreng. (Acanthaceae), a well-known plant in traditional systems of medicine, known as "Bada Rasna" by the traditional practitioners of Odisha, is being used as Rasna for managing pain and inflammation. The detailed macroscopic and microscopic characters of the plant, except its root, are lacking. Hence, it was thought worth to study the leaves of the plant for its detailed morphological and microscopical characters, by following the standard pharmacognostical procedures. The study shows the presence of diacytic stomata in the lower epidermis of lamina, microsphenoidal and prismatic crystals of calcium oxalate in the mesophyll cells, simple and glandular trichomes. The observed major diagnostic characters of the leaf may find useful for its standardization.
Viral and Cellular Factors Involved in Phloem Transport of Plant Viruses
Hipper, Clémence; Brault, Véronique; Ziegler-Graff, Véronique; Revers, Frédéric
2013-01-01
Phloem transport of plant viruses is an essential step in the setting-up of a complete infection of a host plant. After an initial replication step in the first cells, viruses spread from cell-to-cell through mesophyll cells, until they reach the vasculature where they rapidly move to distant sites in order to establish the infection of the whole plant. This last step is referred to as systemic transport, or long-distance movement, and involves virus crossings through several cellular barriers: bundle sheath, vascular parenchyma, and companion cells for virus loading into sieve elements (SE). Viruses are then passively transported within the source-to-sink flow of photoassimilates and are unloaded from SE into sink tissues. However, the molecular mechanisms governing virus long-distance movement are far from being understood. While most viruses seem to move systemically as virus particles, some viruses are transported in SE as viral ribonucleoprotein complexes (RNP). The nature of the cellular and viral factors constituting these RNPs is still poorly known. The topic of this review will mainly focus on the host and viral factors that facilitate or restrict virus long-distance movement. PMID:23745125
Imaging and Spectroscopy of Natural Fluorophores in Pine Needles
Williams, Nari
2018-01-01
Many plant tissues fluoresce due to the natural fluorophores present in cell walls or within the cell protoplast or lumen. While lignin and chlorophyll are well-known fluorophores, other components are less well characterized. Confocal fluorescence microscopy of fresh or fixed vibratome-cut sections of radiata pine needles revealed the presence of suberin, lignin, ferulate, and flavonoids associated with cell walls as well as several different extractive components and chlorophyll within tissues. Comparison of needles in different physiological states demonstrated the loss of chlorophyll in both chlorotic and necrotic needles. Necrotic needles showed a dramatic change in the fluorescence of extractives within mesophyll cells from ultraviolet (UV) excited weak blue fluorescence to blue excited strong green fluorescence associated with tissue browning. Comparisons were made among fluorophores in terms of optimal excitation, relative brightness compared to lignin, and the effect of pH of mounting medium. Fluorophores in cell walls and extractives in lumens were associated with blue or green emission, compared to the red emission of chlorophyll. Autofluorescence is, therefore, a useful method for comparing the histology of healthy and diseased needles without the need for multiple staining techniques, potentially aiding visual screening of host resistance and disease progression in needle tissue. PMID:29393922
Occurrence of Leaf Blight on Cosmos Caused by Alternaria cosmosa in Korea
Deng, Jian Xin; Lee, Ji Hye; Paul, Narayan Chandra; Cho, Hye Sun; Lee, Hyang Burm; Yu, Seung Hun
2015-01-01
In 2011, a leaf blight disease was observed on cosmos (Cosmos bipinnatus) leaves in Nonsan, Korea. The causal pathogen was isolated and identified based on morphological and molecular approaches. Morphological characteristics of the pathogen matched well with the Alternaria cosmosa and also easily distinguishable from Alternaria zinniae reported from cosmos seeds by producing branched beak. Phylogenetically, the pathogen could not be distinguished from A. passiflorae based on the sequence analysis of a combined data set of Alt a1 and gpd genes. However, A. passiflorae was distinguished from the present species by having conidiophores with 4 to 5 conidiogenous loci. The results indicate that the present Alternaria species is A. cosmosa. Pathogenicity tests revealed that the isolate was pathogenic to the leaves of Cosmos bipinnatus. This is the first report of Alternaria blight disease caused by A. cosmosa on cosmos in Korea. PMID:25774114
Occurrence of Leaf Blight on Cosmos Caused by Alternaria cosmosa in Korea.
Deng, Jian Xin; Lee, Ji Hye; Paul, Narayan Chandra; Cho, Hye Sun; Lee, Hyang Burm; Yu, Seung Hun
2015-03-01
In 2011, a leaf blight disease was observed on cosmos (Cosmos bipinnatus) leaves in Nonsan, Korea. The causal pathogen was isolated and identified based on morphological and molecular approaches. Morphological characteristics of the pathogen matched well with the Alternaria cosmosa and also easily distinguishable from Alternaria zinniae reported from cosmos seeds by producing branched beak. Phylogenetically, the pathogen could not be distinguished from A. passiflorae based on the sequence analysis of a combined data set of Alt a1 and gpd genes. However, A. passiflorae was distinguished from the present species by having conidiophores with 4 to 5 conidiogenous loci. The results indicate that the present Alternaria species is A. cosmosa. Pathogenicity tests revealed that the isolate was pathogenic to the leaves of Cosmos bipinnatus. This is the first report of Alternaria blight disease caused by A. cosmosa on cosmos in Korea.
Foliar anatomy and microscopy of six Brazilian species of Baccharis (Asteraceae).
Budel, J M; Raman, V; Monteiro, L M; Almeida, V P; Bobek, V B; Heiden, G; Takeda, I J M; Khan, I A
2018-04-27
We report for the first time the presence of cluster crystals of calcium oxalate within the glandular trichomes and oil bodies in the mesophyll for Baccharis species. Moreover, the comparative leaf anatomy and micro-morphology of six species of Baccharis, namely B. illinita, B. microdonta, B. pauciflosculosa, B. punctulata, B. reticularioides, and B. sphenophylla is investigated by light and scanning electron microscopy. The studied species exhibited differences in their leaf anatomical features such as the morphology of the cuticle, type and occurrence of the stomata, presence or absence of glandular trichomes, shape of the flagelliform trichomes, and the arrangement of the mesophyll tissues. These differences can be helpful in the species identification and classification and could represent informative characters for the reconstruction of the evolution of the genus. © 2018 Wiley Periodicals, Inc.
Cano, F Javier; López, Rosana; Warren, Charles R
2014-11-01
Water stress (WS) slows growth and photosynthesis (A(n)), but most knowledge comes from short-time studies that do not account for longer term acclimation processes that are especially relevant in tree species. Using two Eucalyptus species that contrast in drought tolerance, we induced moderate and severe water deficits by withholding water until stomatal conductance (g(sw)) decreased to two pre-defined values for 24 d, WS was maintained at the target g(sw) for 29 d and then plants were re-watered. Additionally, we developed new equations to simulate the effect on mesophyll conductance (g(m)) of accounting for the resistance to refixation of CO(2). The diffusive limitations to CO(2), dominated by the stomata, were the most important constraints to A(n). Full recovery of A(n) was reached after re-watering, characterized by quick recovery of gm and even higher biochemical capacity, in contrast to the slower recovery of g(sw). The acclimation to long-term WS led to decreased mesophyll and biochemical limitations, in contrast to studies in which stress was imposed more rapidly. Finally, we provide evidence that higher gm under WS contributes to higher intrinsic water-use efficiency (iWUE) and reduces the leaf oxidative stress, highlighting the importance of gm as a target for breeding/genetic engineering. © 2014 John Wiley & Sons Ltd.
Huang, Wei; Hu, Hong; Zhang, Shi-Bao
2015-01-01
Plants usually experience dynamic fluctuations of light intensities under natural conditions. However, the responses of mesophyll conductance, CO2 assimilation, and photorespiration to light fluctuation are not well understood. To address this question, we measured photosynthetic parameters of gas exchange and chlorophyll fluorescence in tobacco leaves at 2-min intervals while irradiance levels alternated between 100 and 1200 μmol photons m−2 s−1. Compared with leaves exposed to a constant light of 1200 μmol photons m−2 s−1, both stomatal and mesophyll conductances were significantly restricted in leaves treated with fluctuating light condition. Meanwhile, CO2 assimilation rate and electron flow devoted to RuBP carboxylation at 1200 μmol photons m−2 s−1 under fluctuating light were limited by the low chloroplast CO2 concentration. Analysis based on the C3 photosynthesis model indicated that, at 1200 μmol photons m−2 s−1 under fluctuating light, the CO2 assimilation rate was limited by RuBP carboxylation. Electron flow devoted to RuBP oxygenation at 1200 μmol photons m−2 s−1 under fluctuating light remained at nearly the maximum level throughout the experimental period. We conclude that fluctuating light restricts CO2 assimilation by decreasing both stomatal and mesophyll conductances. Under such conditions, photorespiration plays an important role in the regulation of photosynthetic electron flow. PMID:26322062
Gilbert, Matthew E.; McElrone, Andrew J.
2017-01-01
In agricultural and natural systems, diffuse light can enhance plant primary productivity due to deeper penetration into and greater irradiance of the entire canopy. However, for individual sun-grown leaves from three species, photosynthesis is actually less efficient under diffuse compared with direct light. Despite its potential impact on canopy-level productivity, the mechanism for this leaf-level diffuse light photosynthetic depression effect is unknown. Here, we investigate if the spatial distribution of light absorption relative to electron transport capacity in sun- and shade-grown sunflower (Helianthus annuus) leaves underlies its previously observed diffuse light photosynthetic depression. Using a new one-dimensional porous medium finite element gas-exchange model parameterized with light absorption profiles, we found that weaker penetration of diffuse versus direct light into the mesophyll of sun-grown sunflower leaves led to a more heterogenous saturation of electron transport capacity and lowered its CO2 concentration drawdown capacity in the intercellular airspace and chloroplast stroma. This decoupling of light availability from photosynthetic capacity under diffuse light is sufficient to generate an 11% decline in photosynthesis in sun-grown but not shade-grown leaves, primarily because thin shade-grown leaves similarly distribute diffuse and direct light throughout the mesophyll. Finally, we illustrate how diffuse light photosynthetic depression could overcome enhancement in canopies with low light extinction coefficients and/or leaf area, pointing toward a novel direction for future research. PMID:28432257
Excess Diffuse Light Absorption in Upper Mesophyll Limits CO2 Drawdown and Depresses Photosynthesis.
Earles, J Mason; Théroux-Rancourt, Guillaume; Gilbert, Matthew E; McElrone, Andrew J; Brodersen, Craig R
2017-06-01
In agricultural and natural systems, diffuse light can enhance plant primary productivity due to deeper penetration into and greater irradiance of the entire canopy. However, for individual sun-grown leaves from three species, photosynthesis is actually less efficient under diffuse compared with direct light. Despite its potential impact on canopy-level productivity, the mechanism for this leaf-level diffuse light photosynthetic depression effect is unknown. Here, we investigate if the spatial distribution of light absorption relative to electron transport capacity in sun- and shade-grown sunflower ( Helianthus annuus ) leaves underlies its previously observed diffuse light photosynthetic depression. Using a new one-dimensional porous medium finite element gas-exchange model parameterized with light absorption profiles, we found that weaker penetration of diffuse versus direct light into the mesophyll of sun-grown sunflower leaves led to a more heterogenous saturation of electron transport capacity and lowered its CO 2 concentration drawdown capacity in the intercellular airspace and chloroplast stroma. This decoupling of light availability from photosynthetic capacity under diffuse light is sufficient to generate an 11% decline in photosynthesis in sun-grown but not shade-grown leaves, primarily because thin shade-grown leaves similarly distribute diffuse and direct light throughout the mesophyll. Finally, we illustrate how diffuse light photosynthetic depression could overcome enhancement in canopies with low light extinction coefficients and/or leaf area, pointing toward a novel direction for future research. © 2017 American Society of Plant Biologists. All Rights Reserved.
Leaf conductance and carbon gain under salt-stressed conditions
NASA Astrophysics Data System (ADS)
Volpe, V.; Manzoni, S.; Marani, M.; Katul, G.
2011-12-01
Exposure of plants to salt stress is often accompanied by reductions in leaf photosynthesis and in stomatal and mesophyll conductances. To separate the effects of salt stress on these quantities, a model based on the hypothesis that carbon gain is maximized subject to a water loss cost is proposed. The optimization problem of adjusting stomatal aperture for maximizing carbon gain at a given water loss is solved for both a non-linear and a linear biochemical demand function. A key novel theoretical outcome of the optimality hypothesis is an explicit relationship between the stomatal and mesophyll conductances that can be evaluated against published measurements. The approaches here successfully describe gas-exchange measurements reported for olive trees (Olea europea L.) and spinach (Spinacia oleraceaL.) in fresh water and in salt-stressed conditions. Salt stress affected both stomatal and mesophyll conductances and photosynthetic efficiency of both species. The fresh water/salt water comparisons show that the photosynthetic capacity is directly reduced by 30%-40%, indicating that reductions in photosynthetic rates under increased salt stress are not due only to a limitation of CO2diffusion. An increase in salt stress causes an increase in the cost of water parameter (or marginal water use efficiency) exceeding 100%, analogous in magnitude to findings from extreme drought stress studies. The proposed leaf-level approach can be incorporated into physically based models of the soil-plant-atmosphere system to assess how saline conditions and elevated atmospheric CO2 jointly impact transpiration and photosynthesis.
Kolbe, Allison R; Cousins, Asaph B
2018-03-01
Mesophyll conductance (g m ) describes the movement of CO 2 from the intercellular air spaces below the stomata to the site of initial carboxylation in the mesophyll. In contrast with C 3 -g m , little is currently known about the intraspecific variation in C 4 -g m or its responsiveness to environmental stimuli. To address these questions, g m was measured on five maize (Zea mays) lines in response to CO 2 , employing three different estimates of g m . Each of the methods indicated a significant response of g m to CO 2 . Estimates of g m were similar between methods at ambient and higher CO 2 , but diverged significantly at low partial pressures of CO 2 . These differences are probably driven by incomplete chemical and isotopic equilibrium between CO 2 and bicarbonate under these conditions. Carbonic anhydrase and phosphoenolpyruvate carboxylase in vitro activity varied significantly despite similar values of g m and leaf anatomical traits. These results provide strong support for a CO 2 response of g m in Z. mays, and indicate that g m in maize is probably driven by anatomical constraints rather than by biochemical limitations. The CO 2 response of g m indicates a potential role for facilitated diffusion in C 4 -g m . These results also suggest that water-use efficiency could be enhanced in C 4 species by targeting g m . © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Pérez-Pérez, José Manuel; Rubio-Díaz, Silvia; Dhondt, Stijn; Hernández-Romero, Diana; Sánchez-Soriano, Joaquín; Beemster, Gerrit T S; Ponce, María Rosa; Micol, José Luis
2011-12-01
Despite the large number of genes known to affect leaf shape or size, we still have a relatively poor understanding of how leaf morphology is established. For example, little is known about how cell division and cell expansion are controlled and coordinated within a growing leaf to eventually develop into a laminar organ of a definite size. To obtain a global perspective of the cellular basis of variations in leaf morphology at the organ, tissue and cell levels, we studied a collection of 111 non-allelic mutants with abnormally shaped and/or sized leaves, which broadly represent the mutational variations in Arabidopsis thaliana leaf morphology not associated with lethality. We used image-processing techniques on these mutants to quantify morphological parameters running the gamut from the palisade mesophyll and epidermal cells to the venation, whole leaf and rosette levels. We found positive correlations between epidermal cell size and leaf area, which is consistent with long-standing Avery's hypothesis that the epidermis drives leaf growth. In addition, venation parameters were positively correlated with leaf area, suggesting that leaf growth and vein patterning share some genetic controls. Positional cloning of the genes affected by the studied mutations will eventually establish functional links between genotypes, molecular functions, cellular parameters and leaf phenotypes. © 2011 Blackwell Publishing Ltd.
Pakravan, M; Abedinzadeh, H; Safaeepur, J
2007-08-01
Distribution of Mucilage Cells (MC) in leaves and petals of two species of Malva L. : Malva neglecta Wallr and M. nicaeensis All, one species of Altheae L.: A. officinalis L. and one species of Alcea L: A. angulata (Freyn and Sint.) Freyn and Sint. ex Iljin, have studied. Except ofA. angulata that mucilage cells observed both in epidermis and mesophyll of leaves, in the others mucilage cells confined to epidermis cells. All of species have mucilage cells in the petals. The area of the mucilaginous elements in the leaves and petals of species determined planimetrically on definite cross-sections was studied as a comparative element to the mucilage content determined by extracting the raw mucilage by Hot Extraction Method (HEM) and then by comparing the dry weight, comparison between species was done. A correlation between the greater area of the mucilaginous elements and the mucilage content measured by methods mentioned was shown, basing on different microscopic examination of cross-sections of the organs fixed and stained with ruthenium red. The results were shown that mucilage content in the leaves of Malva neglecta was more than the others and mucilage content in petals of Malva neglecta was more than the others.
Munekage, Yuri Nakajima; Inoue, Shio; Yoneda, Yuki; Yokota, Akiho
2015-06-01
Plants develop palisade tissue consisting of cylindrical mesophyll cells located at the adaxial side of leaves in response to high light. To understand high light signalling in palisade tissue development, we investigated leaf autonomous and long-distance signal responses of palisade tissue development using Arabidopsis thaliana. Illumination of a developing leaf with high light induced cell height elongation, whereas illumination of mature leaves with high light increased cell density and suppressed cell width expansion in palisade tissue of new leaves. Examination using phototropin1 phototropin2 showed that blue light signalling mediated by phototropins was involved in cell height elongation of the leaf autonomous response rather than the cell density increase induced by long-distance signalling. Hydrogen peroxide treatment induced cylindrical palisade tissue cell formation in both a leaf autonomous and long-distance manner, suggesting involvement of oxidative signals. Although constitutive expression of transcription factors involved in systemic-acquired acclimation to excess light, ZAT10 and ZAT12, induced cylindrical palisade tissue cell formation, knockout of these genes did not affect cylindrical palisade tissue cell formation. We conclude that two distinct signalling pathways - leaf autonomous signalling mostly dependent on blue light signalling and long-distance signalling from mature leaves that sense high light and oxidative stress - control palisade tissue development in A. thaliana. © 2014 John Wiley & Sons Ltd.
The ERECTA gene regulates plant transpiration efficiency in Arabidopsis.
Masle, Josette; Gilmore, Scott R; Farquhar, Graham D
2005-08-11
Assimilation of carbon by plants incurs water costs. In the many parts of the world where water is in short supply, plant transpiration efficiency, the ratio of carbon fixation to water loss, is critical to plant survival, crop yield and vegetation dynamics. When challenged by variations in their environment, plants often seem to coordinate photosynthesis and transpiration, but significant genetic variation in transpiration efficiency has been identified both between and within species. This has allowed plant breeders to develop effective selection programmes for the improved transpiration efficiency of crops, after it was demonstrated that carbon isotopic discrimination, Delta, of plant matter was a reliable and sensitive marker negatively related to variation in transpiration efficiency. However, little is known of the genetic controls of transpiration efficiency. Here we report the isolation of a gene that regulates transpiration efficiency, ERECTA. We show that ERECTA, a putative leucine-rich repeat receptor-like kinase (LRR-RLK) known for its effects on inflorescence development, is a major contributor to a locus for Delta on Arabidopsis chromosome 2. Mechanisms include, but are not limited to, effects on stomatal density, epidermal cell expansion, mesophyll cell proliferation and cell-cell contact.
New evidence for grain specific C4 photosynthesis in wheat
Rangan, Parimalan; Furtado, Agnelo; Henry, Robert J
2016-01-01
The C4 photosynthetic pathway evolved to allow efficient CO2 capture by plants where effective carbon supply may be limiting as in hot or dry environments, explaining the high growth rates of C4 plants such as maize. Important crops such as wheat and rice are C3 plants resulting in efforts to engineer them to use the C4 pathway. Here we show the presence of a C4 photosynthetic pathway in the developing wheat grain that is absent in the leaves. Genes specific for C4 photosynthesis were identified in the wheat genome and found to be preferentially expressed in the photosynthetic pericarp tissue (cross- and tube-cell layers) of the wheat caryopsis. The chloroplasts exhibit dimorphism that corresponds to chloroplasts of mesophyll- and bundle sheath-cells in leaves of classical C4 plants. Breeding to optimize the relative contributions of C3 and C4 photosynthesis may adapt wheat to climate change, contributing to wheat food security. PMID:27530078
Purified isolation of vacuoles from Sedum alfredii leaf-derived protoplasts.
Gao, Xiao-Yu; Liao, Xing-Cheng; Wu, Ruo-Lai; Liu, Ting; Wang, Hai-Xing; Lu, Ling-Li
This study aims to develop a method for isolating and purifying protoplasts/vacuoles from fresh leaves of the Cd hyperaccumulator plant species, Sedum alfredii. The results revealed that preheating cellulase and macerozyme at 50 °C for 5 min significantly accelerated the cell wall degradation. For the most optimal conditions for mesophyll protoplast isolation, the mixture of fresh leaves and cell lysates was followed by a 2-h-long vibration. The protoplast lysate for vacuole isolation was diluted, and 0.675 mmol/L was identified as the most appropriate 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonic acid (CHAPS) level, in which S. alfredii large vacuoles are characterized by a high metal and malic acid content. For the best vacuole purification results, we established that 0.8 mol/L was the most optimal mannitol level in the vacuole buffer in terms of vacuole protection during centrifugation, whereas a Ficoll concentration of 0.10 g/ml was adopted in the density-gradient centrifugation.
Remote detection of forest damage
NASA Technical Reports Server (NTRS)
Rock, B. N.; Vogelmann, J. E.; Vogelmann, A. F.; Hoshizaki, T.; Williams, D. L.
1986-01-01
The use of remote sensing to discriminate, measure, and map forest damage is evaluated. TM spectal coverage, a helicopter-mounted radiometer, and ground-based surveys were utilized to examine the responses of the spruces and firs of Camels Hump Mountain, Vermont to stresses, such as pollution and trace metals. The basic spectral properties of vegetation are described. Forest damage at the site was estimated as 11.8-76.0 percent for the spruces and 19-43.8 percent for the balsam firs. Shifts in the spectra of the conifers in particular in the near IR region are analyzed, and variations in the mesophyll cell anatomy and pigment content of the spruces and firs are investigated. The relations between canopy moisture and damage is studied. The TM data are compared to aircraft data and found to be well correlated.
Metcalfe, R J; Shaw, M W; Russell, P E
2000-12-01
ABSTRACT Translocation of (14)C-labeled fluquinconazole was measured using combustion analysis and radio thin-layer-chromatographic analysis in seedling wheat leaves uninfected and infected with Mycosphaerella graminicola. Two isolates were used with differing sensitivity to demethylation inhibitor fungicides. Fluquinconazole was translocated acropetally, but not basipetally. Fluquinconazole accumulated around infection sites within 6 days after treatment. Accumulation occurred before M. graminicola hyphae had colonized the host mesophyll further than one host cell around the invasion site. This suggested that the accumulation was caused by a host response to infection. Infrared gas analysis showed that rates of transpiration and stomatal conductance in inoculated leaves were significantly increased very soon after inoculation but net photosynthesis was decreased. The actual mechanism of fungicide accumulation was not determined.
On the Resistance to Transpiration of the Sites of Evaporation within the Leaf 1
Farquhar, Graham D.; Raschke, Klaus
1978-01-01
The rates of transpiration from the upper and lower surfaces of leaves of Gossypium hirsutum, Xanthium strumarium, and Zea mays were compared with the rates at which helium diffused across those leaves. There was no evidence for effects of CO2 concentration or rate of evaporation on the resistance to water loss from the evaporating surface (“resistance of the mesophyll wall to transpiration”) and no evidence for any significant wall resistance in turgid tissues. The possible existence of a wall resistance was also tested in leaves of Commelina communis and Tulipa gesneriana whose epidermis could be easily peeled. Only when an epidermis was removed from a leaf, evaporation from the mesophyll tissue declined. We conclude that under conditions relevant to studies of stomatal behavior, the water vapor pressure at the sites of evaporation is equal to the saturation vapor pressure. PMID:16660404
Bishop, Kristen A; Lemonnier, Pauline; Quebedeaux, Jennifer C; Montes, Christopher M; Leakey, Andrew D B; Ainsworth, Elizabeth A
2018-06-02
Species have different strategies for loading sugars into the phloem, which vary in the route that sugars take to enter the phloem and the energetics of sugar accumulation. Species with passive phloem loading are hypothesized to have less flexibility in response to changes in some environmental conditions because sucrose export from mesophyll cells is dependent on fixed anatomical plasmodesmatal connections. Passive phloem loaders also have high mesophyll sugar content, and may be less likely to exhibit sugar-mediated down-regulation of photosynthetic capacity at elevated CO 2 concentrations. To date, the effect of phloem loading strategy on the response of plant carbon metabolism to rising atmospheric CO 2 concentrations is unclear, despite the widespread impacts of rising CO 2 on plants. Over three field seasons, five species with apoplastic loading, passive loading, or polymer-trapping were grown at ambient and elevated CO 2 concentration in free air concentration enrichment plots. Light-saturated rate of photosynthesis, photosynthetic capacity, leaf carbohydrate content, and anatomy were measured and compared among the species. All five species showed significant stimulation in midday photosynthetic CO 2 uptake by elevated CO 2 even though the two passive loading species showed significant down-regulation of maximum Rubisco carboxylation capacity at elevated CO 2 . There was a trend toward greater starch accumulation at elevated CO 2 in all species, and was most pronounced in passive loaders. From this study, we cannot conclude that phloem loading strategy is a key determinant of plant response to elevated CO 2 , but compelling differences in response counter to our hypothesis were observed. A phylogenetically controlled experiment with more species may be needed to fully test the hypothesis.
Hydrogen sulphide improves adaptation of Zea mays seedlings to iron deficiency
Chen, Juan; Wu, Fei-Hua; Shang, Yu-Ting; Wang, Wen-Hua; Hu, Wen-Jun; Simon, Martin; Liu, Xiang; Shangguan, Zhou-Ping; Zheng, Hai-Lei
2015-01-01
Hydrogen sulphide (H2S) is emerging as a potential molecule involved in physiological regulation in plants. However, whether H2S regulates iron-shortage responses in plants is largely unknown. Here, the role of H2S in modulating iron availability in maize (Zea mays L. cv Canner) seedlings grown in iron-deficient culture solution is reported. The main results are as follows: Firstly, NaHS, a donor of H2S, completely prevented leaf interveinal chlorosis in maize seedlings grown in iron-deficient culture solution. Secondly, electron micrographs of mesophyll cells from iron-deficient maize seedlings revealed plastids with few photosynthetic lamellae and rudimentary grana. On the contrary, mesophyll chloroplasts appeared completely developed in H2S-treated maize seedlings. Thirdly, H2S treatment increased iron accumulation in maize seedlings by changing the expression levels of iron homeostasis- and sulphur metabolism-related genes. Fourthly, phytosiderophore (PS) accumulation and secretion were enhanced by H2S treatment in seedlings grown in iron-deficient solution. Indeed, the gene expression of ferric-phytosiderophore transporter (ZmYS1) was specifically induced by iron deficiency in maize leaves and roots, whereas their abundance was decreased by NaHS treatment. Lastly, H2S significantly enhanced photosynthesis through promoting the protein expression of ribulose-1,5-bisphosphate carboxylase large subunit (RuBISCO LSU) and phosphoenolpyruvate carboxylase (PEPC) and the expression of genes encoding RuBISCO large subunit (RBCL), small subunit (RBCS), D1 protein (psbA), and PEPC in maize seedlings grown in iron-deficient solution. These results indicate that H2S is closely related to iron uptake, transport, and accumulation, and consequently increases chlorophyll biosynthesis, chloroplast development, and photosynthesis in plants. PMID:26208645
Hydrogen sulphide improves adaptation of Zea mays seedlings to iron deficiency.
Chen, Juan; Wu, Fei-Hua; Shang, Yu-Ting; Wang, Wen-Hua; Hu, Wen-Jun; Simon, Martin; Liu, Xiang; Shangguan, Zhou-Ping; Zheng, Hai-Lei
2015-11-01
Hydrogen sulphide (H2S) is emerging as a potential molecule involved in physiological regulation in plants. However, whether H2S regulates iron-shortage responses in plants is largely unknown. Here, the role of H2S in modulating iron availability in maize (Zea mays L. cv Canner) seedlings grown in iron-deficient culture solution is reported. The main results are as follows: Firstly, NaHS, a donor of H2S, completely prevented leaf interveinal chlorosis in maize seedlings grown in iron-deficient culture solution. Secondly, electron micrographs of mesophyll cells from iron-deficient maize seedlings revealed plastids with few photosynthetic lamellae and rudimentary grana. On the contrary, mesophyll chloroplasts appeared completely developed in H2S-treated maize seedlings. Thirdly, H2S treatment increased iron accumulation in maize seedlings by changing the expression levels of iron homeostasis- and sulphur metabolism-related genes. Fourthly, phytosiderophore (PS) accumulation and secretion were enhanced by H2S treatment in seedlings grown in iron-deficient solution. Indeed, the gene expression of ferric-phytosiderophore transporter (ZmYS1) was specifically induced by iron deficiency in maize leaves and roots, whereas their abundance was decreased by NaHS treatment. Lastly, H2S significantly enhanced photosynthesis through promoting the protein expression of ribulose-1,5-bisphosphate carboxylase large subunit (RuBISCO LSU) and phosphoenolpyruvate carboxylase (PEPC) and the expression of genes encoding RuBISCO large subunit (RBCL), small subunit (RBCS), D1 protein (psbA), and PEPC in maize seedlings grown in iron-deficient solution. These results indicate that H2S is closely related to iron uptake, transport, and accumulation, and consequently increases chlorophyll biosynthesis, chloroplast development, and photosynthesis in plants. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Contribution of a harpin protein from Xanthomonas axonopodis pv. citri to pathogen virulence.
Sgro, Germán G; Ficarra, Florencia A; Dunger, Germán; Scarpeci, Telma E; Valle, Estela M; Cortadi, Adriana; Orellano, Elena G; Gottig, Natalia; Ottado, Jorgelina
2012-12-01
Xanthomonas axonopodis pv. citri (Xac), the bacterium that causes citrus canker, contains a gene in the hrp [for hypersensitive response (HR) and pathogenicity] cluster that encodes a harpin protein called Hpa1. Hpa1 produced HR in the nonhost plants tobacco, pepper and Arabidopsis, whereas, in the host plant citrus, it elicited a weak defence response with no visible phenotype. Co-infiltrations of Xac with or without the recombinant Hpa1 protein in citrus leaves produced a larger number of cankers in the presence of the protein. To characterize the effect of Hpa1 during the disease, an XacΔhpa1 mutant was constructed, and infiltration of this mutant caused a smaller number of cankers. In addition, the lack of Hpa1 hindered bacterial aggregation both in solution and in planta. Analysis of citrus leaves infiltrated with Hpa1 revealed alterations in mesophyll morphology caused by the presence of cavitations and crystal idioblasts, suggesting the binding of the harpin to plant membranes and the elicitation of signalling cascades. Overall, these results suggest that, even though Hpa1 elicits the defence response in nonhost plants and, to a lesser extent, in host plants, its main roles in citrus canker are to alter leaf mesophyll structure and to aggregate bacterial cells, and thus increase virulence and pathogen fitness. We expressed the N-terminal and C-terminal regions and found that, although both regions elicited HR in nonhost plants, only the N-terminal region showed increased virulence and bacterial aggregation, supporting the role of this region of the protein as the main active domain. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.
Genotypically Identifying Wheat Mesophyll Conductance Regulation under Progressive Drought Stress
Olsovska, Katarina; Kovar, Marek; Brestic, Marian; Zivcak, Marek; Slamka, Pavol; Shao, Hong Bo
2016-01-01
Photosynthesis limitation by CO2 flow constraints from sub-stomatal cavities to carboxylation sites in chloroplasts under drought stress conditions is, at least in some plant species or crops not fully understood, yet. Leaf mesophyll conductance for CO2 (gm) may considerably affect both photosynthesis and water use efficiency (WUE) in plants under drought conditions. The aim of our study was to detect the responses of gm in leaves of four winter wheat (Triticum aestivum L.) genotypes from different origins under long-term progressive drought. Based on the measurement of gas-exchange parameters the variability of genotypic responses was analyzed at stomatal (stomata closure) and non-stomatal (diffusional and biochemical) limits of net CO2 assimilation rate (AN). In general, progressive drought caused an increasing leaf diffusion resistance against CO2 flow leading to the decrease of AN, gm and stomatal conductance (gs), respectively. Reduction of gm also led to inhibition of carboxylation efficiency (Vcmax). On the basis of achieved results a strong positive relationship between gm and gs was found out indicating a co-regulation and mutual independence of the relationship under the drought conditions. In severely stressed plants, the stomatal limitation of the CO2 assimilation rate was progressively increased, but to a less extent in comparison to gm, while a non-stomatal limitation became more dominant due to the prolonged drought. Mesophyll conductance (gm) seems to be a suitable mechanism and parameter for selection of improved diffusional properties and photosynthetic carbon assimilation in C3 plants, thus explaining their better photosynthetic performance at a whole plant level during periods of drought. PMID:27551283
Guehl, J M; Aussenac, G
1987-02-01
The responses of steady state CO(2) assimilation rate (A), transpiration rate (E), and stomatal conductance (g(s)) to changes in leaf-to-air vapor pressure difference (DeltaW) were examined on different dates in shoots from Abies alba trees growing outside. In Ecouves, a provenance representative of wet oceanic conditions in Northern France, both A and g(s) decreased when DeltaW was increased from 4.6 to 14.5 Pa KPa(-1). In Nebias, which represented the dry end of the natural range of A. alba in southern France, A and g(s) decreased only after reaching peak levels at 9.0 and 7.0 Pa KPa(-1), respectively. The representation of the data in assimilation rate (A) versus intercellular CO(2) partial pressure (C(i)) graphs allowed us to determine how stomata and mesophyll photosynthesis interacted when DeltaW was increased. Changes in A were primarily due to alterations in mesophyll photosynthesis. At high DeltaW, and especially in Ecouves when soil water deficit prevailed, A declined, while C(i) remained approximately constant, which may be interpreted as an adjustment of g(s) to changes in mesophyll photosynthesis. Such a stomatal control of gas exchange appeared as an alternative to the classical feedforward interpretation of E versus DeltaW responses with a peak rate of E. The gas exchange response to DeltaW was also characterized by considerable deviations from the optimization theory of IR Cowan and GD Farquhar (1977 Symp Soc Exp Biol 31: 471-505).
Cohen, William S.
1989-01-01
The membrane-bound coupling factor of maize mesophyll thylakoids is a latent ATPase. Mg2+-ATPase activity can be induced in the light with either dithiothreitol or low concentrations of trypsin. Maize thylakoids that are activated with light plus trypsin exhibit considerably higher levels of activity in Na2SO3-dependent Mg2+-ATPase assays compared to thylakoids that are light and dithiothreitol activated (1400 micromoles per milligram of chlorophyll per hour versus 200 micromoles per milligram of chlorophyll per hour). Treatment with light and dithiothreitol or light plus trypsin were also required to demonstrate high levels of octyl glucoside-dependent Mg2+-ATPase activity in maize mesophyll thylakoids. Only small differences in octyl glucoside-dependent Mg2+-ATPase activity were observed in preparations that were activated in the light with either trypsin or dithiothreitol. Mg2+-ATPase activity can also be induced in maize mesophyll chloroplasts by illuminating intact preparations under appropriate conditions. Little or no ATPase activity was observed in the absence of illumination or in the presence of light plus methyl viologen. The active state decayed in the dark with a t½ of 6 to 7 minutes at room temperature. Based on the effect of the thiol oxidant, o-iodosobenzoate, and the uncoupler, nigericin, on the kinetics of deactivation of ATPase activity in intact maize chloroplasts, it appears that the activation process requires a transmembrane proton gradient and reduction of a key disulfide bridge in the gamma of chloroplast coupling factor one. PMID:16667119
Tissue-autonomous promotion of palisade cell development by phototropin 2 in Arabidopsis.
Kozuka, Toshiaki; Kong, Sam-Geun; Doi, Michio; Shimazaki, Ken-ichiro; Nagatani, Akira
2011-10-01
Light is an important environmental information source that plants use to modify their growth and development. Palisade parenchyma cells in leaves develop cylindrical shapes in response to blue light; however, the photosensory mechanism for this response has not been elucidated. In this study, we analyzed the palisade cell response in phototropin-deficient mutants. First, we found that two different light-sensing mechanisms contributed to the response in different proportions depending on the light intensity. One response observed under lower intensities of blue light was mediated exclusively by a blue light photoreceptor, phototropin 2 (PHOT2). Another response was elicited under higher intensities of light in a phototropin-independent manner. To determine the tissue in which PHOT2 perceives the light stimulus to regulate the response, green fluorescent protein (GFP)-tagged PHOT2 (P2G) was expressed under the control of tissue-specific promoters in the phot1 phot2 mutant background. The results revealed that the expression of P2G in the mesophyll, but not in the epidermis, promoted palisade cell development. Furthermore, a constitutively active C-terminal kinase fragment of PHOT2 fused to GFP (P2CG) promoted the development of cylindrical palisade cells in the proper direction without the directional cue provided by light. Hence, in response to blue light, PHOT2 promotes the development of cylindrical palisade cells along a predetermined axis in a tissue-autonomous manner.
Ueno, Osamu; Wakayama, Masataka
2004-12-01
The amphibious leafless sedge Eleocharis retroflexa ssp. chaetaria expresses C(4)-like biochemical characteristics in both the terrestrial and submerged forms. Culms of the terrestrial form have Kranz anatomy, whereas those of the submerged form have Kranz-like anatomy combined with anatomical features of aquatic plant leaves. We examined the immunolocalization of C(3) and C(4) enzymes in culms of the two forms. In both forms, phosphoenolpyruvate carboxylase; pyruvate, Pi dikinase; and NAD-malic enzyme were compartmentalized between the mesophyll (M) and Kranz cells, but their levels were somewhat reduced in the submerged form. In the terrestrial form, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) occurred mainly in the Kranz cells, and weakly in the M chloroplasts. In the submerged form, the rubisco occurred at higher levels in the M cells than in the terrestrial form. In both forms, the C(4) pattern of enzyme expression was clearer in the M cells adjacent to Kranz cells than in distant M cells. During the transition from terrestrial to submerged conditions, the enzyme expression pattern changed in submerged mature culms that had been formed in air before submergence, and matched that in culms newly developed underwater. It seems that effects of both environmental and developmental factors overlap in the C(4) pattern expression in this plant.
Gürlebeck, Doreen; Jahn, Simone; Gürlebeck, Norman; Szczesny, Robert; Szurek, Boris; Hahn, Simone; Hause, Gerd; Bonas, Ulla
2009-03-01
Xanthomonas campestris pv. vesicatoria secretes at least 20 effector proteins through the type III secretion system directly into plant cells. In this study, we uncovered virulence activities of the effector proteins AvrBs1, AvrBs3 and AvrBs4 using Agrobacterium-mediated transient expression of the corresponding genes in Nicotiana benthamiana, followed by microscopic analyses. We showed that, in addition to the nuclear-localized AvrBs3, the effector AvrBs1, which localizes to the plant cell cytoplasm, also induces a morphological change in mesophyll cells. Comparative analyses revealed that avrBs3-expressing plant cells contain highly active nuclei. Furthermore, plant cells expressing avrBs3 or avrBs1 show a decrease in the starch content in chloroplasts and an increased number of vesicles, indicating an enlargement of the central vacuole and the cell wall. Both AvrBs1 and AvrBs3 cause an increased ion efflux when expressed in N. benthamiana. By contrast, expression of the avrBs3 homologue avrBs4 leads to large catalase crystals in peroxisomes, suggesting a possible virulence function of AvrBs4 in the suppression of the plant defence responses. Taken together, our data show that microscopic inspection can uncover subtle and novel virulence activities of type III effector proteins.
Microstructure of Desmanthus illinoensis
NASA Astrophysics Data System (ADS)
Wood, Delilah F.; Orts, William J.; Glenn, Gregory M.
2010-06-01
Structure and histochemistry of mature seeds of Desmanthus illinoensis (Illinois bundle flower) show that the seed has typical legume structure. The seed can be separated into two major fractions including the seed coat/endosperm and the embryo. The seed coat consists of a cuticle, palisade sclereids, hour glass cells and mesophyll. Endosperm is attached to the inner portion of the seed coat and is thicker beneath the pleurogram in the center of the seed. The embryo consists mostly of two large cotyledons, the major storage structures of the seed. The cotyledons are high in protein which occurs in protein bodies. Protein bodies in the cotyledons include those without inclusions, those with phytin inclusions and those with calcium-rich crystals. The phytin inclusions are spherical and have high phosphorus and magnesium contents. The calcium-rich crystals are also included inside protein bodies and are druse-type crystals.
NASA Technical Reports Server (NTRS)
Brakke, Thomas W.; Wergin, William P.; Erbe, Eric F.; Harnden, Joann M.
1993-01-01
The light scattered from leaves was measured as a function of view angle in the principal plane for yellow poplar, red oak, and red maple. The source was a parallel-polarized helium-neon laser. Yellow poplar leaves had the highest reflectance of the three species, which may have been due to its shorter palisade cells and more extensive spongy mesophyll. Prior to senescence, there was a significant decrease, but not total extinction, in the reflectance of the beam incident at 60 deg from nadir on the adaxial side of the leaves of all three species. Low-temperature SEM observations showed differences in the surface wax patterns among the three species but did not indicate a cause of the reflectance changes other than possibly the accumulation and aging of the wax.
[Morphology, anatomy and floral biology of Cabralea canjerana (Vell.) Mart. (Meliaceae)].
Moscheta, Ismar S; de Souza, Luiz A; Mourão, Káthia S; da Rosa, Sônia M
2002-01-01
Cabralea canjerana (Vell.) Mart. is a tree that occurs frequently in secondary forests of Maringá, Paraná, Brazil and presents a valuable wood. Its flowering time occurs from August to October and the anthesis occurs during the night. Its flowers are visited by Lepidoptera-Noctuidae. The flowers are unisexual and solitary or arranged in panicles. The perianth presents a papillose epidermis with striate cuticle and a parenchymatic mesophyll. Ten stamens constitute the androecium and are arranged in a staminal tube with anthers. The anthers present epidermis, endothecium, two median layers and secretory tapetum with binucleate cells. The semi-inferior ovary presents anatropous, bitegmic and crassinucleate ovules. The nectaries are located in the base of the ovary and staminal tube and they present papillose epidermis with stomata and secretory parenchyma with a conspicuous phloematic tissue.
Optimized Methods for the Isolation of Arabidopsis Female Central Cells and Their Nuclei
Park, Kyunghyuk; Frost, Jennifer M.; Adair, Adam James; Kim, Dong Min; Yun, Hyein; Brooks, Janie S.; Fischer, Robert L.; Choi, Yeonhee
2016-01-01
The Arabidopsis female gametophyte contains seven cells with eight haploid nuclei buried within layers of sporophytic tissue. Following double fertilization, the egg and central cells of the gametophyte develop into the embryo and endosperm of the seed, respectively. The epigenetic status of the central cell has long presented an enigma due both to its inaccessibility, and the fascinating epigenome of the endosperm, thought to have been inherited from the central cell following activity of the DEMETER demethylase enzyme, prior to fertilization. Here, we present for the first time, a method to isolate pure populations of Arabidopsis central cell nuclei. Utilizing a protocol designed to isolate leaf mesophyll protoplasts, we systematically optimized each step in order to efficiently separate central cells from the female gametophyte. We use initial manual pistil dissection followed by the derivation of central cell protoplasts, during which process the central cell emerges from the micropylar pole of the embryo sac. Then, we use a modified version of the Isolation of Nuclei TAgged in specific Cell Types (INTACT) protocol to purify central cell nuclei, resulting in a purity of 75–90% and a yield sufficient to undertake downstream molecular analyses. We find that the process is highly dependent on the health of the original plant tissue used, and the efficiency of protoplasting solution infiltration into the gametophyte. By isolating pure central cell populations, we have enabled elucidation of the physiology of this rare cell type, which in the future will provide novel insights into Arabidopsis reproduction. PMID:27788573
Genome-scale modeling of the evolutionary path to C4 photosynthesis
NASA Astrophysics Data System (ADS)
Myers, Christopher R.; Bogart, Eli
In C4 photosynthesis, plants maintain a high carbon dioxide level in specialized bundle sheath cells surrounding leaf veins and restrict CO2 assimilation to those cells, favoring CO2 over O2 in competition for Rubisco active sites. In C3 plants, which do not possess such a carbon concentrating mechanism, CO2 fixation is reduced due to this competition. Despite the complexity of the C4 system, it has evolved convergently from more than 60 independent origins in diverse families of plants around the world over the last 30 million years. We study the evolution of the C4 system in a genome-scale model of plant metabolism that describes interacting mesophyll and bundle sheath cells and enforces key nonlinear kinetic relationships. Adapting the zero-temperature string method for simulating transition paths in physics and chemistry, we find the highest-fitness paths connecting C3 and C4 positions in the model's high-dimensional parameter space, and show that they reproduce known aspects of the C3-C4 transition while making additional predictions about metabolic changes along the path. We explore the relationship between evolutionary history and C4 biochemical subtype, and the effects of atmospheric carbon dioxide levels.
Carbon dioxide and water transport through plant aquaporins.
Groszmann, Michael; Osborn, Hannah L; Evans, John R
2017-06-01
Aquaporins are channel proteins that function to increase the permeability of biological membranes. In plants, aquaporins are encoded by multigene families that have undergone substantial diversification in land plants. The plasma membrane intrinsic proteins (PIPs) subfamily of aquaporins is of particular interest given their potential to improve plant water relations and photosynthesis. Flowering plants have between 7 and 28 PIP genes. Their expression varies with tissue and cell type, through development and in response to a variety of factors, contributing to the dynamic and tissue specific control of permeability. There are a growing number of PIPs shown to act as water channels, but those altering membrane permeability to CO 2 are more limited. The structural basis for selective substrate specificities has not yet been resolved, although a few key amino acid positions have been identified. Several regions important for dimerization, gating and trafficking are also known. PIP aquaporins assemble as tetramers and their properties depend on the monomeric composition. PIPs control water flux into and out of veins and stomatal guard cells and also increase membrane permeability to CO 2 in mesophyll and stomatal guard cells. The latter increases the effectiveness of Rubisco and can potentially influence transpiration efficiency. © 2016 John Wiley & Sons Ltd.
Santadino, Marina; Brentassi, María E; Fanello, Diego D; Coviella, Carlos
2017-04-01
The bronze bug, Thaumastocoris peregrinus Carpintero & Dellapé, 2006 (Heteroptera: Thaumastocoridae) originally restricted to Australia, is an important emerging pest of Eucalyptus plantations in the Southern Hemisphere. It feeds on mature leaves, causing the loss of photosynthetic surface area and defoliation and, according to some studies, even tree death. In this work, feeding activities of T. peregrinus on Eucalyptus camaldulensis Dehn leaves and its primary food resources were identified. In cross sections of leaves, solid salivary deposits on epidermal cells and in the vicinity of stomata cells were detected. In subepidermal cells of the palisade parenchyma near the stylet penetration point, disorganization and removal of chloroplasts were also observed. The presence of chlorophyll in guts of adults and nymphs was analyzed using spectrophotometry and confocal laser scanning to obtain in situ fluorescent spectra. Both spectra showed chlorophyll absorbance peaks. In addition, the presence of chlorophyll in guts of T. peregrinus using fluorescence microscopy was identified. These results provide the first evidence that T. peregrinus feeds from the palisade parenchyma (chlorenchyma) of Eucalyptus leaves. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Momayyezi, Mina; Guy, Robert D
2017-06-01
To explore what role chloroplast positioning might have in relation to latitudinal variation in mesophyll conductance (g m ) of Populus trichocarpa Torr. & Gray (black cottonwood), we examined photosynthetic response to different blue light treatments in six representative genotypes (three northern and three southern). The proportion of blue (B) to red light was varied from 0:100, 10:90, 20:80, 40:60, and 60:40 while keeping the total photosynthetic photon flux density constant. Mesophyll conductance was estimated by monitoring chlorophyll fluorescence in combination with gas exchange. Compared to the control (10% B), g m was significantly lower with increasing blue light. Consistent with a change in chloroplast positioning, there was a simultaneous but reversible decrease in chlorophyll content index (CCI), as measured by foliar greenness, while the extracted, actual chlorophyll content (ACC) remained unchanged. Blue-light-induced decreases in g m and CCI were greater in northern genotypes than in southern genotypes, both absolutely and proportionally, consistent with their inherently higher photosynthetic rate. Treatment of leaves with cytochalasin D, an inhibitor of actin-based chloroplast motility, reduced both CCI and ACC but had no effect on the CCI/ACC ratio and fully blocked any effect of blue light on CCI. Cytochalasin D reduced g m by ∼56% under 10% B, but did not block the effect of 60% B on g m , which was reduced a further 20%. These results suggest that the effect of high blue light on g m is at least partially independent of chloroplast repositioning. High blue light reduced carbonic anhydrase activity by 20% (P<0.05), consistent with a possible reduction in protein-mediated facilitation of CO 2 diffusion. Copyright © 2017 Elsevier GmbH. All rights reserved.
Ghannoum, Oula; Evans, John R.; Chow, Wah Soon; Andrews, T. John; Conroy, Jann P.; von Caemmerer, Susanne
2005-01-01
In 27 C4 grasses grown under adequate or deficient nitrogen (N) supplies, N-use efficiency at the photosynthetic (assimilation rate per unit leaf N) and whole-plant (dry mass per total leaf N) level was greater in NADP-malic enzyme (ME) than NAD-ME species. This was due to lower N content in NADP-ME than NAD-ME leaves because neither assimilation rates nor plant dry mass differed significantly between the two C4 subtypes. Relative to NAD-ME, NADP-ME leaves had greater in vivo (assimilation rate per Rubisco catalytic sites) and in vitro Rubisco turnover rates (kcat; 3.8 versus 5.7 s−1 at 25°C). The two parameters were linearly related. In 2 NAD-ME (Panicum miliaceum and Panicum coloratum) and 2 NADP-ME (Sorghum bicolor and Cenchrus ciliaris) grasses, 30% of leaf N was allocated to thylakoids and 5% to 9% to amino acids and nitrate. Soluble protein represented a smaller fraction of leaf N in NADP-ME (41%) than in NAD-ME (53%) leaves, of which Rubisco accounted for one-seventh. Soluble protein averaged 7 and 10 g (mmol chlorophyll)−1 in NADP-ME and NAD-ME leaves, respectively. The majority (65%) of leaf N and chlorophyll was found in the mesophyll of NADP-ME and bundle sheath of NAD-ME leaves. The mesophyll-bundle sheath distribution of functional thylakoid complexes (photosystems I and II and cytochrome f) varied among species, with a tendency to be mostly located in the mesophyll. In conclusion, superior N-use efficiency of NADP-ME relative to NAD-ME grasses was achieved with less leaf N, soluble protein, and Rubisco having a faster kcat. PMID:15665246
Théroux-Rancourt, Guillaume; Éthier, Gilbert; Pepin, Steeve
2014-02-01
Mesophyll conductance (gm) has been shown to impose significant limitations to net CO2 assimilation (A) in various species during water stress. Net CO2 assimilation is also limited by stomatal conductance to water (gsw), both having been shown to co-vary with leaf hydraulic conductance (Kleaf). Lately, several studies have suggested a close functional link between Kleaf, gsw, and gm. However, such relationships could only be circumstantial since a recent study has shown that the response of gm to drought could merely be an artefactual consequence of a reduced intercellular CO2 mole fraction (Ci). Experiments were conducted on 8-week-old hybrid poplar cuttings to determine the relationship between Kleaf, gsw, and g m in clones of contrasting drought tolerance. It was hypothesized that changes in gsw and Kleaf in response to drought would not impact on gm over most of its range. The results show that Kleaf decreased in concert with g sw as drought proceeded, whereas gm measured at a normalized Ci remained relatively constant up to a g sw threshold of ~0.15 mol m(-2) s(-1). This delayed gm response prevented a substantial decline in A at the early stage of the drought, thereby enhancing water use efficiency. Reducing the stomatal limitation of droughted plants by diminishing the ambient CO2 concentration of the air did not modify gm or Kleaf. The relationship between gas exchange and leaf hydraulics was similar in both drought-tolerant and drought-sensitive clones despite their contrasting vulnerability to stem cavitation and stomatal response to soil drying. The results support the hypothesis of a partial hydraulic isolation of the mesophyll from the main transpiration pathway.
Van Moerkercke, Alex; Galván-Ampudia, Carlos S; Verdonk, Julian C; Haring, Michel A; Schuurink, Robert C
2012-05-01
In which cells of the flower volatile biosynthesis takes place is unclear. In rose and snapdragon, some enzymes of the volatile phenylpropanoid/benzenoid pathway have been shown to be present in the epidermal cells of petals. It is therefore generally believed that the production of these compounds occurs in these cells. However, whether the entire pathway is active in these cells and whether it is exclusively active in these cells remains to be proven. Cell-specific transcription factors activating these genes will determine in which cells they are expressed. In petunia, the transcription factor EMISSION OF BENZENOIDS II (EOBII) activates the ODORANT1 (ODO1) promoter and the promoter of the biosynthetic gene isoeugenol synthase (IGS). The regulator ODO1 in turn activates the promoter of the shikimate gene 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Here the identification of a new target gene of ODO1, encoding an ABC transporter localized on the plasma membrane, PhABCG1, which is co-expressed with ODO1, is described. PhABCG1 expression is up-regulated in petals overexpressing ODO1 through activation of the PhABCG1 promoter. Interestingly, the ODO1, PhABCG1, and IGS promoters were active in petunia protoplasts originating from both epidermal and mesophyll cell layers of the petal, suggesting that the volatile phenylpropanoid/benzenoid pathway in petunia is active in these different cell types. Since volatile release occurs from epidermal cells, trafficking of (volatile) compounds between cell layers must be involved, but the exact function of PhABCG1 remains to be resolved.
Effects of ammonium sulfate aerosols on vegetation—II. Mode of entry and responses of vegetation
NASA Astrophysics Data System (ADS)
Gmur, Nicholas F.; Evans, Lance S.; Cunningham, Elizabeth A.
These experiments were designed to provide information on the rates of aerosol deposition, mode of entry, and effects of deposition of submicrometer ammonium sulfate aerosols on foliage of Phaseolus vulgaris L. A deposition velocity of 3.2 × 10 3cms-1 was constant during 3-week exposures of plants to aerosol concentrations of 26mg m -3 (i.e. about two orders of magnitude above ambient episode concentrations). Mean deposition rate on foliage was 4.1 × 10 -11 μg cm -2s -1. Visible injury symptoms included leaf chlorosis, necrosis and loss of turgor. Chlorosis was most frequent near leaf margins causing epinasty and near major veins. Internal injury occurred initially in spongy mesophyll cells. Eventually abaxial epidermal and palisade parenchyma cells were injured. These results suggest that submicrometer aerosols enter abaxial stomata and affect more internal cells before affecting leaf surface cells. Exposure to aerosols decreased both abaxial and adaxial leaf resistances markedly. Although visible injury to foliage occurred, no changes in dry mass of roots and shoots or leaf area occurred. These results suggest that for the plant developmental stage studied, while leaf resistances decreased and cellular injury occurred in foliage, these factors were not significantly related to plant growth and development.
Diagnosis of ambient air pollution injury to red maple leaves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krause, C.R.
1981-01-01
Ramets of red maple, Acer rubrum L. (cv 'Scarlet Sentinel') were grown under ambient field conditions for 5 months (May-Sept) in either clean air (i.e. minimum background of ozone (O/sub 3/) and sulfur dioxide (SO/sub 2/)) or were grown in polluted air containing phytotoxic combinations of O/sub 3/ and SO/sub 2/. At the end of the growing season leaf samples from each site were fixed in glutaraldehyde, washed in buffer (3X) post-fixed in O/sub s/O/sub 4/, dehydrated in ethanol and critically-point-dried. Samples were fractured with a razor blade, mounted either abaxially or adaxially or in cross-section, and sputter-coated with Au.more » While plants from either site failed to exhibit macroscopic air pollutant-induced symptoms, SEM examination revealed significant microscopic differences between prepared samples from different sites. Epidermal cells of leaves grown in clean air were uniformly turgid with fluffy epicuticular wax. Leaf samples from ramets that were grown in polluted air exhibited collapsed epidermal cells and lacked fluffy epicuticular wax. Cross-sections revealed increased vesicular activity in leaf mesophyll cells of plants exposed to high ambient pollution while cells of plants grown in clean air appeared normal. 10 references, 6 figures.« less
Weissmann, Sarit; Ma, Fangfang; Furuyama, Koki; ...
2016-01-26
C 4 photosynthesis in grasses requires the coordinated movement of metabolites through two specialized leaf cell types, mesophyll (M) and bundle sheath (BS), to concentrate CO 2 around Rubisco. Despite the importance of transporters in this process, few have been identified or rigorously characterized. In maize (Zea mays), DCT2 has been proposed to function as a plastid-localizedmalate transporter and is preferentially expressed in BS cells. Here, we characterized the role of DCT2 in maize leaves using Activator-tagged mutant alleles. Our results indicate that DCT2 enables the transport of malate into the BS chloroplast. Isotopic labeling experiments show that the lossmore » of DCT2 results in markedly different metabolic network operation and dramatically reduced biomass production. In the absence of a functioning malate shuttle, dct2 lines survive through the enhanced use of the phosphoenolpyruvate carboxykinase carbon shuttle pathway that in wild-type maize accounts for ;25% of the photosynthetic activity. The results emphasize the importance of malate transport during C 4 photosynthesis, define the role of a primary malate transporter in BS cells, and support a model for carbon exchange between BS and M cells in maize.« less
Functions of maize genes encoding pyruvate phosphate dikinase in developing endosperm
USDA-ARS?s Scientific Manuscript database
Pyruvate phosphate dikinase reversibly converts AMP, pyrophosphate and phosphoenolpyruvate (PEP) to ATP, orthophosphate and pyruvate. Maize PPDK functions in mesophyll in C4 photosynthesis, yet also is highly abundant in starchy endosperm during grain fill where its function is unknown. To investiga...
Rumen Protozoal Degradation of Structurally Intact Forage Tissues
Amos, Henry E.; Akin, Danny E.
1978-01-01
The association with and digestion of intact leaf sections of cool- and warm-season grasses by cattle rumen protozoa were investigated by light and scanning electron microscopy and by in vitro dry matter disappearance studies. Within extensively degraded areas of mesophyll tissue in cool-season forages, almost all protozoa were Epidinium ecaudatum form caudatum, with maximum numbers at 4 to 10 h of incubation. However, few protozoa were found inside warm-season forage leaves. In in vitro dry matter disappearance studies of a series of incubations with and without 1.6 mg of streptomycin per ml, which inhibited the cellulolytic activity of the bacteria, and in comparison with uninoculated controls, rumen protozoa degraded 11.0 and 3.7 percentage units of orchardgrass and bermuda-grass, respectively. Scanning electron microscopy showed that the tissues degraded in orchardgrass consisted of large amounts of mesophyll and portions of the parenchyma bundle sheath and epidermis; no tissue loss due to the protozoa was observed in bermudagrass. The relationship of these observations to forage digestion is discussed. Images PMID:16345315
Velikova, Violeta; Tsonev, Tsonko; Loreto, Francesco; Centritto, Mauro
2011-05-01
Poplar (Populus nigra) plants were grown hydroponically with 30 and 200 μM Ni (Ni30 and Ni200). Photosynthesis limitations and isoprenoid emissions were investigated in two leaf types (mature and developing). Ni stress significantly decreased photosynthesis, and this effect depended on the leaf Ni content, which was lower in mature than in developing leaves. The main limitations to photosynthesis were attributed to mesophyll conductance and metabolism impairment. In Ni-stressed developing leaves, isoprene emission was significantly stimulated. We attribute such stimulation to the lower chloroplastic [CO2] than in control leaves. However chloroplastic [CO2] did not control isoprene emission in mature leaves. Ni stress induced the emission of cis-β-ocimene in mature leaves, and of linalool in both leaf types. Induced biosynthesis and emission of isoprenoids reveal the onset of antioxidant processes that may also contribute to reduce Ni stress, especially in mature poplar leaves. Copyright © 2010 Elsevier Ltd. All rights reserved.
Leto, Kenneth J.; Keresztes, Aron; Arntzen, Charles J.
1982-01-01
The genetic locus for the high chlorophyll fluorescent photosystem II-deficient maize mutant hcf*-3 has been definitively located to the nuclear genome. Fluorography of lamellar polypeptides labeled with [35S]methionine in vivo revealed the specific loss of a heavily labeled 32,000 dalton thylakoid membrane polypeptide as well as its chloroplast encoded precursor species at 34,000 daltons. Examination of freeze-fractured mesophyll and bundle sheath thylakoids from hcf*-3 revealed that both plastid types lacked the large EFs particles believed to consist of the photosystem II reaction center-core complex and associated light harvesting chlorophyll-proteins. The present evidence suggests that the synthesis or turnover/integration of the chloroplast-encoded 34,000 to 32,000 dalton polypeptide is under nuclear control, and that these polyipeptides are integral components of photosystem II which may be required for the assembly or structural stabilization of newly formed photosystem II reaction centers in both mesophyll and bundle sheath chloroplasts. Images PMID:16662421
Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.
Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam
2016-07-01
Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hg localisation in Tillandsia usneoides L. (Bromeliaceae), an atmospheric biomonitor
NASA Astrophysics Data System (ADS)
Amado Filho, G. M.; Andrade, L. R.; Farina, M.; Malm, O.
The Spanish moss, Tillandsia usneoides, has been applied as an atmospheric biomonitor of Hg contamination, although the mechanism of metal plant accumulation has not been understood until now. In the present work, analytical scanning electron microscopy (SEM) was used to localize Hg in T. usneoides exposed to a Hg-air-contaminated area during 15 days. After this period, Hg was determined by the flow injection mercury system, and plants were prepared for SEM observation and energy-dispersive X-ray analysis. A concentration of 2702±318 μg Hg g -1 was determined in exposed plants. The presented microanalytical results demonstrated that Hg was partly associated with atmospheric particles deposited upon the plant surface, but it was highly absorbed by the scales, stem and leaves surfaces and less absorbed by epidermal cells of T. usneoides. No Hg was detected in mesophyll parenchyma or in vascular system cells. The great surface adsorption area provided by the scales, in addition to the characteristics of T. usneoides morphology, especially of the node region, are suggested to confer the great capability of T. usneoides in Hg holding.
Brunkard, Jacob O; Burch-Smith, Tessa M; Runkel, Anne M; Zambryski, Patricia
2015-01-01
Plasmodesmata (PD) are channels that connect the cytoplasm of adjacent plant cells, permitting intercellular transport and communication. PD function and formation are essential to plant growth and development, but we still know very little about the genetic pathways regulating PD transport. Here, we present a method for assaying changes in the rate of PD transport following genetic manipulation. Gene expression in leaves is modified by virus-induced gene silencing. Seven to ten days after infection with Tobacco rattle virus carrying a silencing trigger, the gene(s) of interest is silenced in newly arising leaves. In these new leaves, individual cells are then transformed with Agrobacterium to express GFP, and the rate of GFP diffusion via PD is measured. By measuring GFP diffusion both within the epidermis and between the epidermis and mesophyll, the assay can be used to study the effects of silencing a gene(s) on PD transport in general, or transport through secondary PD specifically. Plant biologists working in several fields will find this assay useful, since PD transport impacts plant physiology, development, and defense.
Light-dependent intracellular positioning of mitochondria in Arabidopsis thaliana mesophyll cells.
Islam, Md Sayeedul; Niwa, Yasuo; Takagi, Shingo
2009-06-01
Mitochondria, the power house of the cell, are one of the most dynamic cell organelles. Although there are several reports on actin- or microtubule-dependent movement of mitochondria in plant cells, intracellular positioning and motility of mitochondria under different light conditions remain open questions. Mitochondria were visualized in living Arabidopsis thaliana leaf cells using green fluorescent protein fused to a mitochondrion-targeting signal. In darkness, mitochondria were distributed randomly in palisade cells. In contrast, mitochondria accumulated along the periclinal walls, similar to the accumulation response of chloroplasts, when treated with weak blue light (470 nm, 4 micromol m(-2) s(-1)). Under strong blue light (100 micromol m(-2) s(-1)), mitochondria occupied the anticlinal positions similar to the avoidance response of chloroplasts and nuclei. While strong red light (660 nm, 100 micromol m(-2) s(-1)) induced the accumulation of mitochondria along the inner periclinal walls, green light exhibited little effect on the distribution of mitochondria. In addition, the mode of movement of individual mitochondria along the outer periclinal walls under different light conditions was precisely analyzed by time-lapse fluorescence microscopy. A gradual increase in the number of static mitochondria located in the vicinity of chloroplasts with a time period of blue light illumination clearly demonstrated the accumulation response of mitochondria. Light-induced co-localization of mitochondria with chloroplasts strongly suggested their mutual metabolic interactions. This is the first characterization of the light-dependent redistribution of mitochondria in plant cells.
Sakai, Kaori; Taconnat, Ludivine; Borrega, Nero; Yansouni, Jennifer; Brunaud, Véronique; Paysant-Le Roux, Christine; Delannoy, Etienne; Martin Magniette, Marie-Laure; Lepiniec, Loïc; Faure, Jean Denis; Balzergue, Sandrine; Dubreucq, Bertrand
2018-01-01
Genome-wide characterization of tissue- or cell-specific gene expression is a recurrent bottleneck in biology. We have developed a sensitive approach based on ultra-low RNA sequencing coupled to laser assisted microdissection for analyzing different tissues of the small Arabidopsis embryo. We first characterized the number of genes detected according to the quantity of tissue yield and total RNA extracted. Our results revealed that as low as 0.02 mm 2 of tissue and 50 pg of total RNA can be used without compromising the number of genes detected. The optimised protocol was used to compare the epidermal versus mesophyll cell transcriptomes of cotyledons at the torpedo-shaped stage of embryo development. The approach was validated by the recovery of well-known epidermal genes such AtML1 or AtPDF2 and genes involved in flavonoid and cuticular waxes pathways. Moreover, the interest and sensitivity of this approach were highlighted by the characterization of several transcription factors preferentially expressed in epidermal cells. This technical advance unlocks some current limitations of transcriptomic analyses and allows to investigate further and efficiently new biological questions for which only a very small amounts of cells need to be isolated. For instance, it paves the way to increasing the spatial accuracy of regulatory networks in developing small embryo of Arabidopsis or other plant tissues.
McCaskill, Ashlee; Turgeon, Robert
2007-01-01
Phloem loading is the initial step in photoassimilate export and the one that creates the driving force for mass flow. It has been proposed that loading occurs symplastically in species that translocate carbohydrate primarily as raffinose family oligosaccharides (RFOs). In these plants, dense fields of plasmodesmata connect bundle sheath cells to specialized companion cells (intermediary cells) in the minor veins. According to the polymer trap model, advanced as a mechanism of symplastic loading, sucrose from the mesophyll diffuses into intermediary cells and is converted there to RFOs. This process keeps the sucrose concentration low and, because of the larger size of the RFOs, prevents back diffusion. To test this model, the RFO pathway was down-regulated in Verbascum phoeniceum L. by suppressing the synthesis of galactinol synthase (GAS), which catalyzes the first committed step in RFO production. Two GAS genes (VpGAS1 and VpGAS2) were cloned and shown to be expressed in intermediary cells. Simultaneous RNAi suppression of both genes resulted in pronounced inhibition of RFO synthesis. Phloem transport was negatively affected, as evidenced by the accumulation of carbohydrate in the lamina and the reduced capacity of leaves to export sugars during a prolonged dark period. In plants with severe down-regulation, additional symptoms of reduced export were obvious, including impaired growth, leaf chlorosis, and necrosis and curling of leaf margins. PMID:18048337
Lu, Yuming; Chen, Xi; Wu, Yuxuan; Wang, Yanping; He, Yuqing; Wu, Yan
2013-01-01
A circular plasmid containing a gene coding sequence has been broadly used for studying gene regulation in cells. However, to accommodate a quick screen plasmid construction and preparation can be time consuming. Here we report a PCR amplified dsDNA fragments (PCR-fragments) based transient expression system (PCR-TES) for suiting in the study of gene regulation in plant cells. Instead of transforming plasmids into plant cells, transient expression of PCR-fragments can be applicable. The transformation efficiency and expression property of PCR-fragments are comparable to transformation using plasmids. We analyzed the transformation efficiency in PCR-TES at transcription and protein levels. Our results indicate that the PCR-TES is as versatile as the conventional transformation system using plasmid DNA. Through reconstituting PYR1-mediated ABA signaling pathway in Arabidopsis mesophyll protoplasts, we were not only validating the practicality of PCR-TES but also screening potential candidates of CDPK family members which might be involved in the ABA signaling. Moreover, we determined that phosphorylation of ABF2 by CPK4 could be mediated by ABA-induced PYR1 and ABI1, demonstrating a crucial role of CDPKs in the ABA signaling. In summary, PCR-TES can be applicable to facilitate analyzing gene regulation and for the screen of putative regulatory molecules at the high throughput level in plant cells.
Lu, Yuming; Chen, Xi; Wu, Yuxuan; Wang, Yanping; He, Yuqing; Wu, Yan
2013-01-01
A circular plasmid containing a gene coding sequence has been broadly used for studying gene regulation in cells. However, to accommodate a quick screen plasmid construction and preparation can be time consuming. Here we report a PCR amplified dsDNA fragments (PCR-fragments) based transient expression system (PCR-TES) for suiting in the study of gene regulation in plant cells. Instead of transforming plasmids into plant cells, transient expression of PCR-fragments can be applicable. The transformation efficiency and expression property of PCR-fragments are comparable to transformation using plasmids. We analyzed the transformation efficiency in PCR-TES at transcription and protein levels. Our results indicate that the PCR-TES is as versatile as the conventional transformation system using plasmid DNA. Through reconstituting PYR1-mediated ABA signaling pathway in Arabidopsis mesophyll protoplasts, we were not only validating the practicality of PCR-TES but also screening potential candidates of CDPK family members which might be involved in the ABA signaling. Moreover, we determined that phosphorylation of ABF2 by CPK4 could be mediated by ABA-induced PYR1 and ABI1, demonstrating a crucial role of CDPKs in the ABA signaling. In summary, PCR-TES can be applicable to facilitate analyzing gene regulation and for the screen of putative regulatory molecules at the high throughput level in plant cells. PMID:23468926
Caillaud, Marie-Cécile; Piquerez, Sophie J M; Fabro, Georgina; Steinbrenner, Jens; Ishaque, Naveed; Beynon, Jim; Jones, Jonathan D G
2012-01-01
Filamentous phytopathogens form sophisticated intracellular feeding structures called haustoria in plant cells. Pathogen effectors are likely to play a role in the establishment and maintenance of haustoria in addition to their better-characterized role in suppressing plant defence. However, the specific mechanisms by which these effectors promote virulence remain unclear. To address this question, we examined changes in subcellular architecture using live-cell imaging during the compatible interaction between the oomycete Hyaloperonospora arabidopsidis (Hpa) and its host Arabidopsis. We monitored host-cell restructuring of subcellular compartments within plant mesophyll cells during haustoria ontogenesis. Live-cell imaging highlighted rearrangements in plant cell membranes upon infection, in particular to the tonoplast, which was located close to the extra-haustorial membrane surrounding the haustorium. We also investigated the subcellular localization patterns of Hpa RxLR effector candidates (HaRxLs) in planta. We identified two major classes of HaRxL effector based on localization: nuclear-localized effectors and membrane-localized effectors. Further, we identified a single effector, HaRxL17, that associated with the tonoplast in uninfected cells and with membranes around haustoria, probably the extra-haustorial membrane, in infected cells. Functional analysis of selected effector candidates in planta revealed that HaRxL17 enhances plant susceptibility. The roles of subcellular changes and effector localization, with specific reference to the potential role of HaRxL17 in plant cell membrane trafficking, are discussed with respect to Hpa virulence. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
Leaf Histology--Two Modern Methods.
ERIC Educational Resources Information Center
Freeman, H. E.
1984-01-01
Two methods for examining leaf structure are presented; both methods involve use of "superglue." The first method uses the glue to form a thin, permanent, direct replica of a leaf surface on a microscope slide. The second method uses the glue to examine the three-dimensional structure of spongy mesophyll. (JN)
Farnese, F S; Oliveira, J A; Lima, F S; Leão, G A; Gusman, G S; Silva, L C
2014-08-01
Specimens of Pistia stratiotes were subjected to five concentrations of arsenic (As) for seven days. Growth, As absorption, malondialdehyde (MDA) content, photosynthetic pigments, enzymatic activities, amino acids content and anatomical changes were assessed. Plant arsenic accumulation increased with increasing metalloid in the solution, while growth rate and photosynthetic pigment content decreased. The MDA content increased, indicating oxidative stress. Enzymatic activity and amino acids content increased at the lower doses of As, subsequently declining in the higher concentrations. Chlorosis and necrosis were observed in the leaves. Leaves showed starch accumulation and increased thickness of the mesophyll. In the root system, there was a loss and darkening of roots. Cell layers formed at the insertion points on the root stems may have been responsible for the loss of roots. These results indicate that water lettuce shows potential for bioindication and phytoremediation of As-contaminated aquatic environments.
Tissue-Autonomous Promotion of Palisade Cell Development by Phototropin 2 in Arabidopsis[W
Kozuka, Toshiaki; Kong, Sam-Geun; Doi, Michio; Shimazaki, Ken-ichiro; Nagatani, Akira
2011-01-01
Light is an important environmental information source that plants use to modify their growth and development. Palisade parenchyma cells in leaves develop cylindrical shapes in response to blue light; however, the photosensory mechanism for this response has not been elucidated. In this study, we analyzed the palisade cell response in phototropin-deficient mutants. First, we found that two different light-sensing mechanisms contributed to the response in different proportions depending on the light intensity. One response observed under lower intensities of blue light was mediated exclusively by a blue light photoreceptor, phototropin 2 (PHOT2). Another response was elicited under higher intensities of light in a phototropin-independent manner. To determine the tissue in which PHOT2 perceives the light stimulus to regulate the response, green fluorescent protein (GFP)–tagged PHOT2 (P2G) was expressed under the control of tissue-specific promoters in the phot1 phot2 mutant background. The results revealed that the expression of P2G in the mesophyll, but not in the epidermis, promoted palisade cell development. Furthermore, a constitutively active C-terminal kinase fragment of PHOT2 fused to GFP (P2CG) promoted the development of cylindrical palisade cells in the proper direction without the directional cue provided by light. Hence, in response to blue light, PHOT2 promotes the development of cylindrical palisade cells along a predetermined axis in a tissue-autonomous manner. PMID:21972260
Cell wall properties in Oryza sativa influence mesophyll CO2 conductance.
Ellsworth, Patrícia V; Ellsworth, Patrick Z; Koteyeva, Nuria K; Cousins, Asaph B
2018-04-20
Diffusion of CO 2 from the leaf intercellular air space to the site of carboxylation (g m ) is a potential trait for increasing net rates of CO 2 assimilation (A net ), photosynthetic efficiency, and crop productivity. Leaf anatomy plays a key role in this process; however, there are few investigations into how cell wall properties impact g m and A net . Online carbon isotope discrimination was used to determine g m and A net in Oryza sativa wild-type (WT) plants and mutants with disruptions in cell wall mixed-linkage glucan (MLG) production (CslF6 knockouts) under high- and low-light growth conditions. Cell wall thickness (T cw ), surface area of chloroplast exposed to intercellular air spaces (S c ), leaf dry mass per area (LMA), effective porosity, and other leaf anatomical traits were also analyzed. The g m of CslF6 mutants decreased by 83% relative to the WT, with c. 28% of the reduction in g m explained by S c . Although A net /LMA and A net /Chl partially explained differences in A net between genotypes, the change in cell wall properties influenced the diffusivity and availability of CO 2 . The data presented here indicate that the loss of MLG in CslF6 plants had an impact on g m and demonstrate the importance of cell wall effective porosity and liquid path length on g m . © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Van Moerkercke, Alex; Galván-Ampudia, Carlos S.; Verdonk, Julian C.; Haring, Michel A.; Schuurink, Robert C.
2012-01-01
In which cells of the flower volatile biosynthesis takes place is unclear. In rose and snapdragon, some enzymes of the volatile phenylpropanoid/benzenoid pathway have been shown to be present in the epidermal cells of petals. It is therefore generally believed that the production of these compounds occurs in these cells. However, whether the entire pathway is active in these cells and whether it is exclusively active in these cells remains to be proven. Cell-specific transcription factors activating these genes will determine in which cells they are expressed. In petunia, the transcription factor EMISSION OF BENZENOIDS II (EOBII) activates the ODORANT1 (ODO1) promoter and the promoter of the biosynthetic gene isoeugenol synthase (IGS). The regulator ODO1 in turn activates the promoter of the shikimate gene 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Here the identification of a new target gene of ODO1, encoding an ABC transporter localized on the plasma membrane, PhABCG1, which is co-expressed with ODO1, is described. PhABCG1 expression is up-regulated in petals overexpressing ODO1 through activation of the PhABCG1 promoter. Interestingly, the ODO1, PhABCG1, and IGS promoters were active in petunia protoplasts originating from both epidermal and mesophyll cell layers of the petal, suggesting that the volatile phenylpropanoid/benzenoid pathway in petunia is active in these different cell types. Since volatile release occurs from epidermal cells, trafficking of (volatile) compounds between cell layers must be involved, but the exact function of PhABCG1 remains to be resolved. PMID:22345641
Jin, Xiaofen; Wang, Rui-Sheng; Zhu, Mengmeng; Jeon, Byeong Wook; Albert, Reka; Chen, Sixue; Assmann, Sarah M.
2013-01-01
Individual metabolites have been implicated in abscisic acid (ABA) signaling in guard cells, but a metabolite profile of this specialized cell type is lacking. We used liquid chromatography–multiple reaction monitoring mass spectrometry for targeted analysis of 85 signaling-related metabolites in Arabidopsis thaliana guard cell protoplasts over a time course of ABA treatment. The analysis utilized ∼350 million guard cell protoplasts from ∼30,000 plants of the Arabidopsis Columbia accession (Col) wild type and the heterotrimeric G-protein α subunit mutant, gpa1, which has ABA-hyposensitive stomata. These metabolomes revealed coordinated regulation of signaling metabolites in unrelated biochemical pathways. Metabolites clustered into different temporal modules in Col versus gpa1, with fewer metabolites showing ABA-altered profiles in gpa1. Ca2+-mobilizing agents sphingosine-1-phosphate and cyclic adenosine diphosphate ribose exhibited weaker ABA-stimulated increases in gpa1. Hormone metabolites were responsive to ABA, with generally greater responsiveness in Col than in gpa1. Most hormones also showed different ABA responses in guard cell versus mesophyll cell metabolomes. These findings suggest that ABA functions upstream to regulate other hormones, and are also consistent with G proteins modulating multiple hormonal signaling pathways. In particular, indole-3-acetic acid levels declined after ABA treatment in Col but not gpa1 guard cells. Consistent with this observation, the auxin antagonist α-(phenyl ethyl-2-one)-indole-3-acetic acid enhanced ABA-regulated stomatal movement and restored partial ABA sensitivity to gpa1. PMID:24368793
Nitric Oxide Improves Internal Iron Availability in Plants1
Graziano, Magdalena; Beligni, María Verónica; Lamattina, Lorenzo
2002-01-01
Iron deficiency impairs chlorophyll biosynthesis and chloroplast development. In leaves, most of the iron must cross several biological membranes to reach the chloroplast. The components involved in the complex internal iron transport are largely unknown. Nitric oxide (NO), a bioactive free radical, can react with transition metals to form metal-nitrosyl complexes. Sodium nitroprusside, an NO donor, completely prevented leaf interveinal chlorosis in maize (Zea mays) plants growing with an iron concentration as low as 10 μm Fe-EDTA in the nutrient solution. S-Nitroso-N-acetylpenicillamine, another NO donor, as well as gaseous NO supply in a translucent chamber were also able to revert the iron deficiency symptoms. A specific NO scavenger, 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, blocked the effect of the NO donors. The effect of NO treatment on the photosynthetic apparatus of iron-deficient plants was also studied. Electron micrographs of mesophyll cells from iron-deficient maize plants revealed plastids with few photosynthetic lamellae and rudimentary grana. In contrast, in NO-treated maize plants, mesophyll chloroplast appeared completely developed. NO treatment did not increase iron content in plant organs, when expressed in a fresh matter basis, suggesting that root iron uptake was not enhanced. NO scavengers 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and methylene blue promoted interveinal chlorosis in iron-replete maize plants (growing in 250 μm Fe-EDTA). Even though results support a role for endogenous NO in iron nutrition, experiments did not establish an essential role. NO was also able to revert the chlorotic phenotype of the iron-inefficient maize mutants yellow stripe1 and yellow stripe3, both impaired in the iron uptake mechanisms. All together, these results support a biological action of NO on the availability and/or delivery of metabolically active iron within the plant. PMID:12481068
NASA Technical Reports Server (NTRS)
Schuerger, A. C.; Brown, C. S.; Stryjewski, E. C.
1997-01-01
Pepper plants (Capsicum annuum L. cv., Hungarian Wax) were grown under metal halide (MH) lamps or light-emitting diode (LED) arrays with different spectra to determine the effects of light quality on plant anatomy of leaves and stems. One LED (660) array supplied 90% red light at 660 nm (25nm band-width at half-peak height) and 1% far-red light between 700-800nm. A second LED (660/735) array supplied 83% red light at 660nm and 17% far-red light at 735nm (25nm band-width at half-peak height). A third LED (660/blue) array supplied 98% red light at 660nm, 1% blue light between 350-550nm, and 1% far-red light between 700-800nm. Control plants were grown under broad spectrum metal halide lamps. Plants were gron at a mean photon flux (300-800nm) of 330 micromol m-2 s-1 under a 12 h day-night photoperiod. Significant anatomical changes in stem and leaf morphologies were observed in plants grown under the LED arrays compared to plants grown under the broad-spectrum MH lamp. Cross-sectional areas of pepper stems, thickness of secondary xylem, numbers of intraxylary phloem bundles in the periphery of stem pith tissues, leaf thickness, numbers of choloplasts per palisade mesophyll cell, and thickness of palisade and spongy mesophyll tissues were greatest in peppers grown under MH lamps, intermediate in plants grown under the 660/blue LED array, and lowest in peppers grown under the 660 or 660/735 LED arrays. Most anatomical features of pepper stems and leaves were similar among plants grown under 660 or 660/735 LED arrays. The effects of spectral quality on anatomical changes in stem and leaf tissues of peppers generally correlate to the amount of blue light present in the primary light source.
Fernando, Denise R; Marshall, Alan T; Lynch, Jonathan P
2016-01-01
Sugar maple and red maple are closely-related co-occurring tree species significant to the North American forest biome. Plant abiotic stress effects including nutritional imbalance and manganese (Mn) toxicity are well documented within this system, and are implicated in enhanced susceptibility to biotic stresses such as insect attack. Both tree species are known to overaccumulate foliar manganese (Mn) when growing on unbuffered acidified soils, however, sugar maple is Mn-sensitive, while red maple is not. Currently there is no knowledge about the cellular sequestration of Mn and other nutrients in these two species. Here, electron-probe x-ray microanalysis was employed to examine cellular and sub-cellular deposition of excessively accumulated foliar Mn and other mineral nutrients in vivo. For both species, excess foliar Mn was deposited in symplastic cellular compartments. There were striking between-species differences in Mn, magnesium (Mg), sulphur (S) and calcium (Ca) distribution patterns. Unusually, Mn was highly co-localised with Mg in mesophyll cells of red maple only. The known sensitivity of sugar maple to excess Mn is likely linked to Mg deficiency in the leaf mesophyll. There was strong evidence that Mn toxicity in sugar maple is primarily a symplastic process. For each species, leaf-surface damage due to biotic stress including insect herbivory was compared between sites with acidified and non-acidified soils. Although it was greatest overall in red maple, there was no difference in biotic stress damage to red maple leaves between acidified and non-acidified soils. Sugar maple trees on buffered non-acidified soil were less damaged by biotic stress compared to those on unbuffered acidified soil, where they are also affected by Mn toxicity abiotic stress. This study concluded that foliar nutrient distribution in symplastic compartments is a determinant of Mn sensitivity, and that Mn stress hinders plant resistance to biotic stress.
Fernando, Denise R.; Marshall, Alan T.; Lynch, Jonathan P.
2016-01-01
Sugar maple and red maple are closely-related co-occurring tree species significant to the North American forest biome. Plant abiotic stress effects including nutritional imbalance and manganese (Mn) toxicity are well documented within this system, and are implicated in enhanced susceptibility to biotic stresses such as insect attack. Both tree species are known to overaccumulate foliar manganese (Mn) when growing on unbuffered acidified soils, however, sugar maple is Mn-sensitive, while red maple is not. Currently there is no knowledge about the cellular sequestration of Mn and other nutrients in these two species. Here, electron-probe x-ray microanalysis was employed to examine cellular and sub-cellular deposition of excessively accumulated foliar Mn and other mineral nutrients in vivo. For both species, excess foliar Mn was deposited in symplastic cellular compartments. There were striking between-species differences in Mn, magnesium (Mg), sulphur (S) and calcium (Ca) distribution patterns. Unusually, Mn was highly co-localised with Mg in mesophyll cells of red maple only. The known sensitivity of sugar maple to excess Mn is likely linked to Mg deficiency in the leaf mesophyll. There was strong evidence that Mn toxicity in sugar maple is primarily a symplastic process. For each species, leaf-surface damage due to biotic stress including insect herbivory was compared between sites with acidified and non-acidified soils. Although it was greatest overall in red maple, there was no difference in biotic stress damage to red maple leaves between acidified and non-acidified soils. Sugar maple trees on buffered non-acidified soil were less damaged by biotic stress compared to those on unbuffered acidified soil, where they are also affected by Mn toxicity abiotic stress. This study concluded that foliar nutrient distribution in symplastic compartments is a determinant of Mn sensitivity, and that Mn stress hinders plant resistance to biotic stress. PMID:27391424
Aluminum ions induce oat protoplasts to produce an extracellular (1 yields 3). beta. -D-glucan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaeffer, H.J.; Walton, J.D.
1990-09-01
Aluminum chloride induced mesophyll protoplasts of oat (Avena sativa) to produce an extracellular polysaccharide (EPS). EPS induced by AlCl{sub 3} appeared identical to that produced in response to the phytotoxin victorin. Al ions at 1 millimolar were toxic to protoplasts, but maximum EPS production occurred at a sublethal concentration of 200 micromolar, assayed at pH 6.0. As measured by incorporation of ({sup 14}C)glucose, AlCl{sub 3} stimulated EPS production 10- to 15-fold. Pretreatment of protoplasts with cycloheximide prevented EPS production but not cell death in response to AlCl{sub 3}, indicating that protein synthesis was necessary for EPS production but not formore » the phytotoxicity of Al ions. The trivalent salts of Y, Yb, Gd, and In also induced EPS production but those of Sc, Fe, Ga, Cr, and La did not. Mesophyll protoplasts from an acid-soil tolerant oat cultivar produced less EPS in response to AlCl{sub 3} than the acid-soil sensitive cultivar Fla 501. EPS was also produced by wheat (Triticum aestivum) and barley (Hordeum vulgare) protoplasts in response to AlCl{sub 3}. An Al-tolerant cultivar of wheat, Atlas, produced less EPS than an Al-sensitive cultivar, Scout, but an Al-tolerant cultivar of barley, Dayton, produced more than the Al-sensitive cultivar Kearney. Therefore, production of EPS by protoplasts in response to Al ions did not appear to be related to Al ion tolerance at the level of whole plants. EPS fluoresced in the presence of Calcofluor and Sirofluor and was degraded by purified laminarinase ((1{yields}3){beta}-D-glucanase) but did not pectinase (polygalacturonase). EPS was composed solely of glucose in 1{yields}3 linkages; hence it is a (1{yields}3){beta}-D-glucan (callose).« less
Schuerger, A C; Brown, C S; Stryjewski, E C
1997-03-01
Pepper plants (Capsicum annuum L. cv., Hungarian Wax) were grown under metal halide (MH) lamps or light-emitting diode (LED) arrays with different spectra to determine the effects of light quality on plant anatomy of leaves and stems. One LED (660) array supplied 90% red light at 660 nm (25nm band-width at half-peak height) and 1% far-red light between 700-800nm. A second LED (660/735) array supplied 83% red light at 660nm and 17% far-red light at 735nm (25nm band-width at half-peak height). A third LED (660/blue) array supplied 98% red light at 660nm, 1% blue light between 350-550nm, and 1% far-red light between 700-800nm. Control plants were grown under broad spectrum metal halide lamps. Plants were gron at a mean photon flux (300-800nm) of 330 micromol m-2 s-1 under a 12 h day-night photoperiod. Significant anatomical changes in stem and leaf morphologies were observed in plants grown under the LED arrays compared to plants grown under the broad-spectrum MH lamp. Cross-sectional areas of pepper stems, thickness of secondary xylem, numbers of intraxylary phloem bundles in the periphery of stem pith tissues, leaf thickness, numbers of choloplasts per palisade mesophyll cell, and thickness of palisade and spongy mesophyll tissues were greatest in peppers grown under MH lamps, intermediate in plants grown under the 660/blue LED array, and lowest in peppers grown under the 660 or 660/735 LED arrays. Most anatomical features of pepper stems and leaves were similar among plants grown under 660 or 660/735 LED arrays. The effects of spectral quality on anatomical changes in stem and leaf tissues of peppers generally correlate to the amount of blue light present in the primary light source.
Papp, Nóra; Bencsik, Tímea; Németh, Kitti; Gyergyák, Kinga; Sulc, Alexandra; Farkas, Agnes
2011-10-01
Plants living in different ecological habitats can show significant variability in their histological and phytochemical characters. The main histological features of various populations of three medicinal plants from the Boraginaceae family were studied. Stems, petioles and leaves were investigated by light microscopy in vertical and transverse sections. The outline of the epidermal cells, as well as the shape and cell number of trichomes was studied in leaf surface casts. Differences were measured among the populations of Echium vulgare in the width and height of epidermis cells in the stem, petiole and leaf, as well as in the size of palisade cells in the leaves. Among the populations of Pulmonaria officinalis significant differences were found in the length of trichomes and in the slightly or strongly wavy outline of epidermal radial cell walls. Populations of Symphytum officinale showed variance in the height of epidermal cells in leaves and stems, length of palisade cells and number of intercellular spaces in leaves, and the size of the central cavity in the stem. Boraginaceae bristles were found to be longer in plants in windy/shady habitats as opposed to sunny habitats, both in the leaves and stems ofP. officinalis and S. officinale, which might be connected to varying levels of exposure to wind. Longer epidermal cells were detected in the leaves and stems of both E. vulgare and S. officinale plants living in shady habitats, compared with shorter cells in sunny habitats. Leaf mesophyll cells were shorter in shady habitats as opposed to longer cells in sunny habitats, both in E. vulgare and S. officinale. This combination of histological characters may contribute to the plant's adaptation to various amounts of sunshine. The reported data prove the polymorphism of the studied taxa, as well as their ability to adapt to various ecological circumstances.
Muhaidat, Riyadh; Sage, Tammy L; Frohlich, Michael W; Dengler, Nancy G; Sage, Rowan F
2011-10-01
Photosynthetic pathway characteristics were studied in nine species of Heliotropium (sensu lato, including Euploca), using assessments of leaf anatomy and ultrastructure, activities of PEP carboxylase and C₄ acid decarboxylases, and immunolocalization of ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) and the P-subunit of glycine decarboxylase (GDC). Heliotropium europaeum, Heliotropium calcicola and Heliotropium tenellum are C₃ plants, while Heliotropium texanum and Heliotropium polyphyllum are C₄ species. Heliotropium procumbens and Heliotropium karwinskyi are functionally C₃, but exhibit 'proto-Kranz' anatomy where bundle sheath (BS) cells are enlarged and mitochondria primarily occur along the centripetal (inner) wall of the BS cells; GDC is present throughout the leaf. Heliotropium convolvulaceum and Heliotropium greggii are C₃--C₄ intermediates, with Kranz-like enlargement of the BS cells, localization of mitochondria along the inner BS wall and a loss of GDC in the mesophyll (M) tissue. These C₃--C₄ species of Heliotropium probably shuttle photorespiratory glycine from the M to the BS tissue for decarboxylation. Heliotropium represents an important new model for studying C₄ evolution. Where existing models such as Flaveria emphasize diversification of C₃--C₄ intermediates, Heliotropium has numerous C₃ species expressing proto-Kranz traits that could represent a critical initial phase in the evolutionary origin of C₄ photosynthesis. © 2011 Blackwell Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Shengke; Xie, Ruohan; Wang, Haixin
Sedum alfredii is one of a few plant species known to hyperaccumulate cadmium (Cd). Uptake, localization, and tolerance of Cd at cellular levels in shoots were compared in hyperaccumulating (HE) and non-hyperaccumulating (NHE) ecotypes of Sedum alfredii. X-ray fluorescence images of Cd in stems and leaves showed only a slight Cd signal restricted within vascular bundles in the NHEs, while enhanced localization of Cd, with significant tissue- and age-dependent variations, was detected in HEs. In contrast to the vascular-enriched Cd in young stems, parenchyma cells in leaf mesophyll, stem pith and cortex tissues served as terminal storage sites for Cdmore » sequestration in HEs. Kinetics of Cd transport into individual leaf protoplasts of the two ecotypes showed little difference in Cd accumulation. However, far more efficient storage of Cd in vacuoles was apparent in HEs. Subsequent analysis of cell viability and hydrogen peroxide levels suggested that HE protoplasts exhibited higher resistance to Cd than those of NHE protoplasts. These results suggest that efficient sequestration into vacuoles, as opposed to rapid transport into parenchyma cells, is a pivotal process in Cd accumulation and homeostasis in shoots of HE S. alfredii. This is in addition to its efficient root-to-shoot translocation of Cd.« less
Vojnov, Adrián Alberto; do Amaral, Alexandre Morais; Dow, John Maxwell; Castagnaro, Atilio Pedro; Marano, Marìa Rosa
2010-06-01
In this review, we summarise the current knowledge on three pathogens that exhibit distinct tissue specificity and modes of pathogenesis in citrus plants. Xanthomonas axonopodis pv. citri causes canker disease and invades the host leaf mesophyll tissue through natural openings and can also survive as an epiphyte. Xylella fastidiosa and Candidatus Liberibacter are vectored by insects and proliferate in the vascular system of the host, either in the phloem (Candidatus Liberibacter) or xylem (X. fastidiosa) causing variegated chlorosis and huanglongbing diseases, respectively. Candidatus Liberibacter can be found within host cells and is thus unique as an intracellular phytopathogenic bacterium. Genome sequence comparisons have identified groups of species-specific genes that may be associated with the particular lifestyle, mode of transmission or symptoms produced by each phytopathogen. In addition, components that are conserved amongst bacteria may have diverse regulatory actions underpinning the different bacterial lifestyles; one example is the divergent role of the Rpf/DSF cell-cell signalling system in X. citri and X. fastidiosa. Biofilm plays a key role in epiphytic fitness and canker development in X. citri and in the symptoms produced by X. fastidiosa. Bacterial aggregation may be associated with vascular occlusion of the xylem vessels and symptomatology of variegated chlorosis.
Keech, Olivier; Pesquet, Edouard; Ahad, Abdul; Askne, Anna; Nordvall, Dag; Vodnala, Sharvani Munender; Tuominen, Hannele; Hurry, Vaughan; Dizengremel, Pierre; Gardeström, Per
2007-12-01
Senescence is an active process allowing the reallocation of valuable nutrients from the senescing organ towards storage and/or growing tissues. Using Arabidopsis thaliana leaves from both whole darkened plants (DPs) and individually darkened leaves (IDLs), we investigated the fate of mitochondria and chloroplasts during dark-induced leaf senescence. Combining in vivo visualization of fates of the two organelles by three-dimensional reconstructions of abaxial parts of leaves with functional measurements of photosynthesis and respiration, we showed that the two experimental systems displayed major differences during 6 d of dark treatment. In whole DPs, organelles were largely retained in both epidermal and mesophyll cells. However, while the photosynthetic capacity was maintained, the capacity of mitochondrial respiration decreased. In contrast, IDLs showed a rapid decline in photosynthetic capacity while maintaining a high capacity for mitochondrial respiration throughout the treatment. In addition, we noticed an unequal degradation of organelles in the different cell types of the senescing leaf. From these data, we suggest that metabolism in leaves of the whole DPs enters a 'stand-by mode' to preserve the photosynthetic machinery for as long as possible. However, in IDLs, mitochondria actively provide energy and carbon skeletons for the degradation of cell constituents, facilitating the retrieval of nutrients. Finally, the heterogeneity of the degradation processes involved during senescence is discussed with regard to the fate of mitochondria and chloroplasts in the different cell types.
Excess diffuse light absorption in upper mesophyll limits CO2 drawdown and depresses photosynthesis
USDA-ARS?s Scientific Manuscript database
Sun-grown and shade-grown leaves of some species absorb direct and diffuse light differently. Sun-grown leaves can photosynthesize ~10-15% less under diffuse compared to direct irradiance, while shade-grown leaves do not exhibit this sensitivity. In this study, we investigate if the spatial differen...
Structure and enzyme expression in photosynthetic organs of the atypical C4 grass Arundinella hirta.
Wakayama, Masataka; Ohnishi, Jun-ichi; Ueno, Osamu
2006-05-01
In its leaf blade, Arundinella hirta has unusual Kranz cells that lie distant from the veins (distinctive cells; DCs), in addition to the usual Kranz units composed of concentric layers of mesophyll cells (MCs) and bundle sheath cells (BSCs; usual Kranz cells) surrounding the veins. We examined whether chlorophyllous organs other than leaf blades--namely, the leaf sheath, stem, scale leaf, and constituents of the spike--also have this unique anatomy and the C4 pattern of expression of photosynthetic enzymes. All the organs developed DCs to varying degrees, as well as BSCs. The stem, rachilla, and pedicel had C4-type anatomy with frequent occurrence of DCs, as in the leaf blade. The leaf sheath, glume, and scale leaf had a modified C4 anatomy with MCs more than two cells distant from the Kranz cells; DCs were relatively rare. An immunocytochemical study of C3 and C4 enzymes revealed that all the organs exhibited essentially the same C4 pattern of expression as in the leaf blade. In the scale leaf, however, intense expression of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) occurred in the MCs as well as in the BSCs and DCs. In the leaf sheath, the distant MCs also expressed Rubisco. In Arundinella hirta, it seems that the ratio of MC to Kranz cell volumes, and the distance from the Kranz cells, but not from the veins, affects the cellular expression of photosynthetic enzymes. We suggest that the main role of DCs is to keep a constant quantitative balance between the MCs and Kranz cells, which is a prerequisite for effective C4 pathway operation.
Pepin, Steeve
2014-01-01
Mesophyll conductance (g m) has been shown to impose significant limitations to net CO2 assimilation (A) in various species during water stress. Net CO2 assimilation is also limited by stomatal conductance to water (g sw), both having been shown to co-vary with leaf hydraulic conductance (K leaf). Lately, several studies have suggested a close functional link between K leaf, g sw, and g m. However, such relationships could only be circumstantial since a recent study has shown that the response of g m to drought could merely be an artefactual consequence of a reduced intercellular CO2 mole fraction (C i). Experiments were conducted on 8-week-old hybrid poplar cuttings to determine the relationship between K leaf, g sw, and g m in clones of contrasting drought tolerance. It was hypothesized that changes in g sw and K leaf in response to drought would not impact on g m over most of its range. The results show that K leaf decreased in concert with g sw as drought proceeded, whereas g m measured at a normalized C i remained relatively constant up to a g sw threshold of ~0.15mol m–2 s–1. This delayed g m response prevented a substantial decline in A at the early stage of the drought, thereby enhancing water use efficiency. Reducing the stomatal limitation of droughted plants by diminishing the ambient CO2 concentration of the air did not modify g m or K leaf. The relationship between gas exchange and leaf hydraulics was similar in both drought-tolerant and drought-sensitive clones despite their contrasting vulnerability to stem cavitation and stomatal response to soil drying. The results support the hypothesis of a partial hydraulic isolation of the mesophyll from the main transpiration pathway. PMID:24368507
Metts, J; West, J; Doares, S H; Matthysse, A G
1991-02-01
Three Agrobacterium tumefaciens mutants with chromosomal mutations that affect bacterial virulence were isolated by transposon mutagenesis. Two of the mutants were avirulent on all hosts tested. The third mutant, Ivr-211, was a host range mutant which was avirulent on Bryophyllum diagremontiana, Nicotiana tabacum, N. debneyi, N. glauca, and Daucus carota but was virulent on Zinnia elegans and Lycopersicon esculentum (tomato). That the mutant phenotype was due to the transposon insertion was determined by cloning the DNA containing the transposon insertion and using the cloned DNA to replace the wild-type DNA in the parent bacterial strain by marker exchange. The transposon insertions in the three mutants mapped at three widely separated locations on the bacterial chromosome. The effects of the mutations on various steps in tumor formation were examined. All three mutants showed no alteration in binding to carrot cells. However, none of the mutants showed any induction of vir genes by acetosyringone under conditions in which the parent strain showed vir gene induction. When the mutant bacteria were examined for changes in surface components, it was found that all three of the mutants showed a similar alteration in lipopolysaccharide (LPS). LPS from the mutants was larger in size and more heavily saccharide substituted than LPS from the parent strain. Two of the mutants showed no detectable alteration in outer membrane and periplasmic space proteins. The third mutant, Ivr-225, was missing a 79-kDa surface peptide. The reason(s) for the failure of vir gene induction in these mutants and its relationship, if any, to the observed alteration in LPS are unknown.
Asselbergh, Bob; Curvers, Katrien; França, Soraya C.; Audenaert, Kris; Vuylsteke, Marnik; Van Breusegem, Frank; Höfte, Monica
2007-01-01
Plant defense mechanisms against necrotrophic pathogens, such as Botrytis cinerea, are considered to be complex and to differ from those that are effective against biotrophs. In the abscisic acid-deficient sitiens tomato (Solanum lycopersicum) mutant, which is highly resistant to B. cinerea, accumulation of hydrogen peroxide (H2O2) was earlier and stronger than in the susceptible wild type at the site of infection. In sitiens, H2O2 accumulation was observed from 4 h postinoculation (hpi), specifically in the leaf epidermal cell walls, where it caused modification by protein cross-linking and incorporation of phenolic compounds. In wild-type tomato plants, H2O2 started to accumulate 24 hpi in the mesophyll layer and was associated with spreading cell death. Transcript-profiling analysis using TOM1 microarrays revealed that defense-related transcript accumulation prior to infection was higher in sitiens than in wild type. Moreover, further elevation of sitiens defense gene expression was stronger than in wild type 8 hpi both in number of genes and in their expression levels and confirmed a role for cell wall modification in the resistant reaction. Although, in general, plant defense-related reactive oxygen species formation facilitates necrotrophic colonization, these data indicate that timely hyperinduction of H2O2-dependent defenses in the epidermal cell wall can effectively block early development of B. cinerea. PMID:17573540
Suetsugu, Noriyuki; Kagawa, Takatoshi; Wada, Masamitsu
2005-01-01
The ambient-light conditions mediate chloroplast relocation in plant cells. Under the low-light conditions, chloroplasts accumulate in the light (accumulation response), while under the high-light conditions, they avoid the light (avoidance response). In Arabidopsis (Arabidopsis thaliana), the accumulation response is mediated by two blue-light receptors, termed phototropins (phot1 and phot2) that act redundantly, and the avoidance response is mediated by phot2 alone. A mutant, J-domain protein required for chloroplast accumulation response 1 (jac1), lacks the accumulation response under weak blue light but shows a normal avoidance response under strong blue light. In dark-adapted wild-type cells, chloroplasts accumulate on the bottom of cells. Both the jac1 and phot2 mutants are defective in this chloroplast movement in darkness. Positional cloning of JAC1 reveals that this gene encodes a J-domain protein, resembling clathrin-uncoating factor auxilin at its C terminus. The amounts of JAC1 transcripts and JAC1 proteins are not regulated by light and by phototropins. A green fluorescent protein-JAC1 fusion protein showed a similar localization pattern to green fluorescent protein alone in a transient expression assay using Arabidopsis mesophyll cells and onion (Allium cepa) epidermal cells, suggesting that the JAC1 protein may be a soluble cytosolic protein. Together, these results suggest that JAC1 is an essential component of phototropin-mediated chloroplast movement. PMID:16113208
The Dehydratase ADT3 Affects ROS Homeostasis and Cotyledon Development1[OPEN
Para, Alessia; Muhammad, DurreShahwar; Naldrett, Michael J.; Warpeha, Katherine M.
2016-01-01
During the transition from seed to seedling, emerging embryos strategically balance available resources between building up defenses against environmental threats and initiating the developmental program that promotes the switch to autotrophy. We present evidence of a critical role for the phenylalanine (Phe) biosynthetic activity of AROGENATE DEHYDRATASE3 (ADT3) in coordinating reactive oxygen species (ROS) homeostasis and cotyledon development in etiolated Arabidopsis (Arabidopsis thaliana) seedlings. We show that ADT3 is expressed in the cotyledon and shoot apical meristem, mainly in the cytosol, and that the epidermis of adt3 cotyledons contains higher levels of ROS. Genome-wide proteomics of the adt3 mutant revealed a general down-regulation of plastidic proteins and ROS-scavenging enzymes, corroborating the hypothesis that the ADT3 supply of Phe is required to control ROS concentration and distribution to protect cellular components. In addition, loss of ADT3 disrupts cotyledon epidermal patterning by affecting the number and expansion of pavement cells and stomata cell fate specification; we also observed severe alterations in mesophyll cells, which lack oil bodies and normal plastids. Interestingly, up-regulation of the pathway leading to cuticle production is accompanied by an abnormal cuticle structure and/or deposition in the adt3 mutant. Such impairment results in an increase in cell permeability and provides a link to understand the cell defects in the adt3 cotyledon epidermis. We suggest an additional role of Phe in supplying nutrients to the young seedling. PMID:27540109
Wood processing wastes recovery and composted product field test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, C.T.; Lin, K.L.
1997-12-31
Lumber mill waste, more than 3,000 tons per month, is one of the main waste sources in I-Lan area. Most of the lumber mill waste is sawdust which takes a large parts of organic-containing wastes in I-Lan county. Wastes from seafood plants around the Sueou Harbor causes a treatment problem because of their high nitrogen and phosphorous concentrations. Furthermore, the distiller-by products in I-Lan Winery are easy to become spoiled and result in odor. In this study, the compost method is suggested to deal with these waste problems and make energy recovery. Microorganisms incubating in the laboratory provide the stablemore » seed needed for composting. Flowers and vegetable raising are scheduled to be used in field to verify the efficiency of the products. The optimal combination ration of wastes and operation criteria then will be concluded in this study after economic analyzing. The results show that the Zinnia elegans leaves growth is relative with organic fertilizer. It can also be illustrated from the statistical value that the F value is 19.4 and above the critical value 9.4.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duenas, Maria Emilia; Klein, Adam T.; Alexander, Liza E.
Metabolism in plants is compartmentalized among different tissues, cells and subcellular organelles. Mass spectrometry imaging (MSI) with matrix-assisted laser desorption ionization (MALDI) has recently advanced to allow for the visualization of metabolites at single-cell resolution. Here we applied 5- and 10 μm high spatial resolution MALDI-MSI to the asymmetric Kranz anatomy of Zea mays (maize) leaves to study the differential localization of two major anionic lipids in thylakoid membranes, sulfoquinovosyldiacylglycerols (SQDG) and phosphatidylglycerols (PG). The quantification and localization of SQDG and PG molecular species, among mesophyll (M) and bundle sheath (BS) cells, are compared across the leaf developmental gradient frommore » four maize genotypes (the inbreds B73 and Mo17, and the reciprocal hybrids B73 × Mo17 and Mo17 × B73). SQDG species are uniformly distributed in both photosynthetic cell types, regardless of leaf development or genotype; however, PG shows photosynthetic cell-specific differential localization depending on the genotype and the fatty acyl chain constituent. Overall, 16:1-containing PGs primarily contribute to the thylakoid membranes of M cells, whereas BS chloroplasts are mostly composed of 16:0-containing PGs. Furthermore, PG 32:0 shows genotype-specific differences in cellular distribution, with preferential localization in BS cells for B73, but more uniform distribution between BS and M cells in Mo17. Maternal inheritance is exhibited within the hybrids, such that the localization of PG 32:0 in B73 × Mo17 is similar to the distribution in the B73 parental inbred, whereas that of Mo17 × B73 resembles the Mo17 parent. As a result, this study demonstrates the power of MALDI-MSI to reveal unprecedented insights on metabolic outcomes in multicellular organisms at single-cell resolution.« less
Rao, Xiaolan; Lu, Nan; Li, Guifen; Nakashima, Jin; Tang, Yuhong; Dixon, Richard A.
2016-01-01
Almost all C4 plants require the co-ordination of the adjacent and fully differentiated cell types, mesophyll (M) and bundle sheath (BS). The C4 photosynthetic pathway operates through two distinct subtypes based on how malate is decarboxylated in BS cells; through NAD-malic enzyme (NAD-ME) or NADP-malic enzyme (NADP-ME). The diverse or unique cell-specific molecular features of M and BS cells from separate C4 subtypes of independent lineages remain to be determined. We here provide an M/BS cell type-specific transcriptome data set from the monocot NAD-ME subtype switchgrass (Panicum virgatum). A comparative transcriptomics approach was then applied to compare the M/BS mRNA profiles of switchgrass, monocot NADP-ME subtype C4 plants maize and Setaria viridis, and dicot NAD-ME subtype Cleome gynandra. We evaluated the convergence in the transcript abundance of core components in C4 photosynthesis and transcription factors to establish Kranz anatomy, as well as gene distribution of biological functions, in these four independent C4 lineages. We also estimated the divergence between NAD-ME and NADP-ME subtypes of C4 photosynthesis in the two cell types within C4 species, including differences in genes encoding decarboxylating enzymes, aminotransferases, and metabolite transporters, and differences in the cell-specific functional enrichment of RNA regulation and protein biogenesis/homeostasis. We suggest that C4 plants of independent lineages in both monocots and dicots underwent convergent evolution to establish C4 photosynthesis, while distinct C4 subtypes also underwent divergent processes for the optimization of M and BS cell co-ordination. The comprehensive data sets in our study provide a basis for further research on evolution of C4 species. PMID:26896851
Improved efficiency of plant regeneration from protoplasts of eggplant Solanum melongena L.
Guri, A; Izhar, S
1984-12-01
Eggplant (Solanum melongena L.) mesophyll protoplasts were obtained from in vitro growing plants of line 410 and cv. 'Classic'. Relatively high (15%) plating efficiency was achieved using petri dishes with alternate quadrants containing reservoir medium (R medium + 1% activated charcoal) and culture medium. Shoot regeneration occurred within 6 weeks following initiation of protoplast culture.
Leaf carbohydrate metabolism during defense
Essmann, Jutta; Bones, Philipp; Weis, Engelbert
2008-01-01
The significance of cell wall invertase (cwINV) for plant defense was investigated by comparing wild type (wt) tobacco Nicotiana tabacum L. Samsun NN (SNN) with plants with RNA interference-mediated repression of cwINV (SNN::cwINV) during the interaction with the oomycetic phytopathogen Phytophthora nicotianae. We have previously shown that the transgenic plants developed normally under standard growth conditions, but exhibited weaker defense reactions in infected source leaves and were less tolerant to the pathogen. Here, we show that repression of cwINV was not accompanied by any compensatory activities of intracellular sucrose-cleaving enzymes such as vacuolar and alkaline/neutral invertases or sucrose synthase (SUSY), neither in uninfected controls nor during infection. In wt source leaves vacuolar invertase did not respond to infection, and the activity of alkaline/neutral invertases increased only slightly. SUSY however, was distinctly stimulated, in parallel to enhanced cwINV. In SNN::cwINV SUSY-activation was largely repressed upon infection. SUSY may serve to allocate sucrose into callose deposition and other carbohydrate-consuming defense reactions. Its activity, however, seems to be directly affected by cwINV and the related reflux of carbohydrates from the apoplast into the mesophyll cells. PMID:19704530
Sheen, Jenq-Yunn; Bogorad, Lawrence
1986-01-01
Transcripts of three distinct ribulose-1,5-bisphosphate carboxylase (RuBPC) small subunit (SS) genes account for ∼90% of the mRNA for this protein in maize leaves. Transcripts of two of them constitute >80% of the SS mRNA in 24-h greening maize leaves. The third gene contribute ∼10%. Transcripts of all three nuclear-encoded SS genes are detectable in bundle sheath (BSC) and mesophyll cells (MC) of etiolated maize leaves. The level of mRNA for each gene is different in etioplasts of MC but all drop during photoregulated development of chloroplasts in MC and follow a pattern of transitory rise and fall in BSC. The amounts of LS and SS proteins continue to increase steadily well after the mRNA levels reach their peaks in BSC. The molar ratio of mRNA for chloroplast-encoded RuBPC large subunit (LS) to the nuclear genome encoded SS is about 10:1 although LS and SS proteins are present in about equimolar amounts. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4.Fig. 5.Fig. 6. PMID:16453739
Vesicles Are Persistent Features of Different Plastids.
Lindquist, Emelie; Solymosi, Katalin; Aronsson, Henrik
2016-10-01
Peripheral vesicles in plastids have been observed repeatedly, primarily in proplastids and developing chloroplasts, in which they are suggested to function in thylakoid biogenesis. Previous observations of vesicles in mature chloroplasts have mainly concerned low temperature pretreated plants occasionally treated with inhibitors blocking vesicle fusion. Here, we show that such vesicle-like structures occur not only in chloroplasts and proplastids, but also in etioplasts, etio-chloroplasts, leucoplasts, chromoplasts and even transforming desiccoplasts without any specific pretreatment. Observations are made both in C3 and C4 species, in different cell types (meristematic, epidermis, mesophyll, bundle sheath and secretory cells) and different organs (roots, stems, leaves, floral parts and fruits). Until recently not much focus has been given to the idea that vesicle transport in chloroplasts could be mediated by proteins, but recent data suggest that the vesicle system of chloroplasts has similarities with the cytosolic coat protein complex II system. All current data taken together support the idea of an ongoing, active and protein-mediated vesicle transport not only in chloroplasts but also in other plastids, obviously occurring regardless of chemical modifications, temperature and plastid developmental stage. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Analysis of Triticum aestivum seedling response to the excess of zinc.
Glińska, Sława; Gapińska, Magdalena; Michlewska, Sylwia; Skiba, Elżbieta; Kubicki, Jakub
2016-03-01
The effects of 50 and 300 mg L(-1) Zn(2+) (50 Zn and 300 Zn) were investigated in Triticum aestivum (cv. Żura) grown hydroponically for 7 days. Although wheat treated with 50 Zn took up relatively high amount of the metal (8,943 and 1,503 mg kg(-1) DW in roots and shoots, respectively), none of the morphological and cytological parameters were changed. After 300 Zn, the metal concentration increased to 32,205 and 5,553 mg kg(-1) DW in roots and shoots, respectively. It was connected with the depletion of shoot and root growth, their fresh and dry weight, water content and mitotic index of root meristematic cells. Microelement contents (Cu, Mn and Fe) after 50 Zn were changed only in roots, while 300 Zn disturbed ion balance in whole plants. The most evident ultrastructural alterations of root meristematic cells caused by both tested Zn(2+) doses included increased vacuolization, accumulation of granular deposits inside vacuoles and cell wall thickening. The effect of 300 Zn on root cell ultrastructure was greater that of 50 Zn. The majority of mitochondria had condensed matrix and swollen cristae, plastids contained plastoglobuli, nucleoli were ring-shaped, thinned down cytoplasm with lipid droplets and swollen endoplasmic reticulum cisternae appeared. In mesophyll cells, 50 Zn caused slight reorganization of chloroplast thylakoids and formation of condensed mitochondria. Three hundred Zn triggered more extensive, but not degenerative, changes: plasmolysis of some cells; chloroplasts with protrusions, changed thylakoid organisation and often large starch grains; irregular, condensed mitochondria. The results indicate that T. aestivum cv. Żura is relatively tolerant to Zn stress.
Shibata, Yutaka; Katoh, Wataru; Tahara, Yukari
2013-04-01
Fluorescence microspectroscopy observations were used to study the processes of cell differentiation and assemblies of photosynthesis proteins in Zea mays leaves under the greening process. The observations were done at 78K by setting the sample in a cryostat to avoid any undesired progress of the greening process during the measurements. The lateral and axial spatial resolutions of the system were 0.64μm and 4.4μm, respectively. The study revealed the spatial distributions of protochlorophyllide (PChld) in both the 632-nm-emitting and 655-nm-emitting forms within etiolated Zea mays leaves. The sizes of the fluorescence spots attributed to the former were larger than those of the latter, validating the assignment of the former and latter to the prothylakoid and prolamellar bodies, respectively. In vivo microspectroscopy observations of mature Zea mays leaves confirmed the different photosystem II (PS I)/photosystem I (PS II) ratio between the bundle sheath (BS) and mesophyll (MS) cells, which is specific for C4-plants. The BS cells in Zea mays leaves 1h after the initiation of the greening process tended to show fluorescence spectra at shorter wavelength side (at around 679nm) than the MS cells (at around 682nm). The 679-nm-emitting chlorophyll-a form observed mainly in the BS cells was attributed to putative precursor complexes to PS I. The BS cells under 3-h greening showed higher relative intensities of the PS I fluorescence band at around 735nm, suggesting the reduced PS II amount in the BS cells in this greening stage. Copyright © 2013 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The larval stages of Lasioptera donacis Coutin consists of three instars, which develop within the mesophyll of the leaf sheaths of Arundo donax (L.) They feed aggregatively on mycelia of an endophytic fungus. The larval instars are similar to other members of the genus except for a three pronged sp...
Isoelectric Focusing of Cassava Protoplasts
Santana, María Angélica; Villegas, Leopoldo
1991-01-01
Cassava (Manihot esculenta Crantz) protoplast was analyzed by using isoelectric focusing techniques. Two populations, representing 68 and 32% of the total sample, with mean isoelectric points of 4.48 and 4.60, were obtained using mesophyll protoplasts. The use of this technique allows demonstration of a discontinuous distribution of protoplast isoelectric point from one species according to their surface potential. Images Figure 1 PMID:16667975
USDA-ARS?s Scientific Manuscript database
Nutrients such as phosphorus availability may exert a major control over plant response to rising atmospheric carbon dioxide concentration (CO2), which is projected to double by the end of 21st century. Elevated CO2 may overcome the diffusional limitation to photosynthesis posed by stomata and mesop...
USDA-ARS?s Scientific Manuscript database
Efforts to improve the photosynthetic performance of species are presently focused on leaf-level traits (e.g., quantum efficiency, mesophyll osmoregulation, stress protein regulation). Here, we emphasize that efforts to improve plant performance in arid environments would benefit from also consider...
Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics
NASA Astrophysics Data System (ADS)
Wong, Min Hao; Giraldo, Juan P.; Kwak, Seon-Yeong; Koman, Volodymyr B.; Sinclair, Rosalie; Lew, Tedrick Thomas Salim; Bisker, Gili; Liu, Pingwei; Strano, Michael S.
2017-02-01
Plant nanobionics aims to embed non-native functions to plants by interfacing them with specifically designed nanoparticles. Here, we demonstrate that living spinach plants (Spinacia oleracea) can be engineered to serve as self-powered pre-concentrators and autosamplers of analytes in ambient groundwater and as infrared communication platforms that can send information to a smartphone. The plants employ a pair of near-infrared fluorescent nanosensors--single-walled carbon nanotubes (SWCNTs) conjugated to the peptide Bombolitin II to recognize nitroaromatics via infrared fluorescent emission, and polyvinyl-alcohol functionalized SWCNTs that act as an invariant reference signal--embedded within the plant leaf mesophyll. As contaminant nitroaromatics are transported up the roots and stem into leaf tissues, they accumulate in the mesophyll, resulting in relative changes in emission intensity. The real-time monitoring of embedded SWCNT sensors also allows residence times in the roots, stems and leaves to be estimated, calculated to be 8.3 min (combined residence times of root and stem) and 1.9 min mm-1 leaf, respectively. These results demonstrate the ability of living, wild-type plants to function as chemical monitors of groundwater and communication devices to external electronics at standoff distances.
Li, Yong; Ren, Binbin; Yang, Xiuxia; Xu, Guohua; Shen, Qirong; Guo, Shiwei
2012-05-01
The phenomenon whereby ammonium enhances the tolerance of rice seedlings (Oryza sativa L., cv. 'Shanyou 63' hybrid indica China) to water stress has been reported in previous studies. To study the intrinsic mechanism of biomass synthesis related to photosynthesis, hydroponic experiments supplying different nitrogen (N) forms were conducted; water stress was simulated by the addition of polyethylene glycol. Water stress decreased leaf water potential (Ψ(leaf)) under nitrate nutrition, while it had no negative effect under ammonium nutrition. The decreased Ψ(leaf) under nitrate nutrition resulted in chloroplast downsizing and subsequently decreased mesophyll conductance to CO(2) (g(m)). The decreased g(m) and stomatal conductance (g(s)) under nitrate nutrition with water stress restrained the CO(2) supply to the chloroplast and Rubisco. The relatively higher distribution of leaf N to Rubisco under ammonium nutrition might also be of benefit for photosynthesis under water stress. In conclusion, chloroplast downsizing induced a decline in g(m), a relatively higher decrease in g(s) under nitrate nutrition with water stress, restrained the CO(2) supply to Rubisco and finally decreased the photosynthetic rate.
Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics.
Wong, Min Hao; Giraldo, Juan P; Kwak, Seon-Yeong; Koman, Volodymyr B; Sinclair, Rosalie; Lew, Tedrick Thomas Salim; Bisker, Gili; Liu, Pingwei; Strano, Michael S
2017-02-01
Plant nanobionics aims to embed non-native functions to plants by interfacing them with specifically designed nanoparticles. Here, we demonstrate that living spinach plants (Spinacia oleracea) can be engineered to serve as self-powered pre-concentrators and autosamplers of analytes in ambient groundwater and as infrared communication platforms that can send information to a smartphone. The plants employ a pair of near-infrared fluorescent nanosensors-single-walled carbon nanotubes (SWCNTs) conjugated to the peptide Bombolitin II to recognize nitroaromatics via infrared fluorescent emission, and polyvinyl-alcohol functionalized SWCNTs that act as an invariant reference signal-embedded within the plant leaf mesophyll. As contaminant nitroaromatics are transported up the roots and stem into leaf tissues, they accumulate in the mesophyll, resulting in relative changes in emission intensity. The real-time monitoring of embedded SWCNT sensors also allows residence times in the roots, stems and leaves to be estimated, calculated to be 8.3 min (combined residence times of root and stem) and 1.9 min mm -1 leaf, respectively. These results demonstrate the ability of living, wild-type plants to function as chemical monitors of groundwater and communication devices to external electronics at standoff distances.
Wang, Xiaoxiao; Du, Tingting; Huang, Jianliang; Peng, Shaobing; Xiong, Dongliang
2018-05-18
Understanding the physiological responses of crops to drought is important for ensuring sustained crop productivity under climate change, which is expected to exacerbate drought frequencies and intensities. Drought responses involve multiple traits, but the correlations between these traits are poorly understood. Using a variety of techniques, we estimated the changes in gas exchange, leaf hydraulic conductance (Kleaf), and leaf turgor in rice (Oryza sativa) in response to both short- and long-term soil drought and performed a photosynthetic limitation analysis to quantify the contributions of each limiting factor to the resultant overall decrease in photosynthesis during drought. Biomass, leaf area and leaf width significantly decreased during the two-week drought treatment, but leaf mass per area and leaf vein density increased. Light-saturated photosynthetic rate (A) declined dramatically during soil drought, mainly due to the decrease in stomatal conductance (gs) and mesophyll conductance (gm). Stomatal modeling suggested that the decline in Kleaf explained most of the decrease in stomatal closure during the drought treatment, and may also trigger the drought-related decrease of gs and gm. The results of this study provide insight into the regulation of carbon assimilation under drought conditions.
Gabotti, Damiano; Caporali, Elisabetta; Manzotti, Priscilla; Persico, Martina; Vigani, Gianpiero; Consonni, Gabriella
2014-06-01
The empty pericarp4 (emp4) gene encodes a mitochondrion-targeted pentatricopeptide repeat (ppr) protein that is involved in the regulation of mitochondrial gene expression and is required for seed development. In homozygous mutant emp4-1 kernels the endosperm is drastically reduced and the embryo is retarded in its development and unable to germinate. With the aim of investigating the role of emp4 during post-germinative development, homozygous mutant seedlings were obtained by cultivation of excised immature embryos on a synthetic medium. In the mutants both germination frequency as well as the proportion of seedlings reaching the first and second leaf stages were reduced. The anatomy of the leaf blades and the root cortex was not affected by the mutation, however severe alterations such as the presence of empty cells or cells containing poorly organized organelles, were observed. Moreover both mitochondria and chloroplast functionality was impaired in the mutants. Our hypothesis is that mitochondrial impairment, the primary effect of the mutation, causes secondary effects on the development of other cellular organelles. Ultra-structural features of mutant leaf blade mesophyll cells are reminiscent of cells undergoing senescence. Interestingly, both structural and functional damage was less severe in seedlings grown in total darkness compared with those exposed to light, thus suggesting that the effects of the mutation are enhanced by the presence of light. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Takai, Toshiyuki; Adachi, Shunsuke; Taguchi-Shiobara, Fumio; Sanoh-Arai, Yumiko; Iwasawa, Norio; Yoshinaga, Satoshi; Hirose, Sakiko; Taniguchi, Yojiro; Yamanouchi, Utako; Wu, Jianzhong; Matsumoto, Takashi; Sugimoto, Kazuhiko; Kondo, Katsuhiko; Ikka, Takashi; Ando, Tsuyu; Kono, Izumi; Ito, Sachie; Shomura, Ayahiko; Ookawa, Taiichiro; Hirasawa, Tadashi; Yano, Masahiro; Kondo, Motohiko; Yamamoto, Toshio
2013-01-01
Improvement of leaf photosynthesis is an important strategy for greater crop productivity. Here we show that the quantitative trait locus GPS (GREEN FOR PHOTOSYNTHESIS) in rice (Oryza sativa L.) controls photosynthesis rate by regulating carboxylation efficiency. Map-based cloning revealed that GPS is identical to NAL1 (NARROW LEAF1), a gene previously reported to control lateral leaf growth. The high-photosynthesis allele of GPS was found to be a partial loss-of-function allele of NAL1. This allele increased mesophyll cell number between vascular bundles, which led to thickened leaves, and it pleiotropically enhanced photosynthesis rate without the detrimental side effects observed in previously identified nal1 mutants, such as dwarf plant stature. Furthermore, pedigree analysis suggested that rice breeders have repeatedly selected the high-photosynthesis allele in high-yield breeding programs. The identification and utilization of NAL1 (GPS) can enhance future high-yield breeding and provides a new strategy for increasing rice productivity.
Takai, Toshiyuki; Adachi, Shunsuke; Taguchi-Shiobara, Fumio; Sanoh-Arai, Yumiko; Iwasawa, Norio; Yoshinaga, Satoshi; Hirose, Sakiko; Taniguchi, Yojiro; Yamanouchi, Utako; Wu, Jianzhong; Matsumoto, Takashi; Sugimoto, Kazuhiko; Kondo, Katsuhiko; Ikka, Takashi; Ando, Tsuyu; Kono, Izumi; Ito, Sachie; Shomura, Ayahiko; Ookawa, Taiichiro; Hirasawa, Tadashi; Yano, Masahiro; Kondo, Motohiko; Yamamoto, Toshio
2013-01-01
Improvement of leaf photosynthesis is an important strategy for greater crop productivity. Here we show that the quantitative trait locus GPS (GREEN FOR PHOTOSYNTHESIS) in rice (Oryza sativa L.) controls photosynthesis rate by regulating carboxylation efficiency. Map-based cloning revealed that GPS is identical to NAL1 (NARROW LEAF1), a gene previously reported to control lateral leaf growth. The high-photosynthesis allele of GPS was found to be a partial loss-of-function allele of NAL1. This allele increased mesophyll cell number between vascular bundles, which led to thickened leaves, and it pleiotropically enhanced photosynthesis rate without the detrimental side effects observed in previously identified nal1 mutants, such as dwarf plant stature. Furthermore, pedigree analysis suggested that rice breeders have repeatedly selected the high-photosynthesis allele in high-yield breeding programs. The identification and utilization of NAL1 (GPS) can enhance future high-yield breeding and provides a new strategy for increasing rice productivity. PMID:23985993
Cloning and expression analysis of Zmglp1, a new germin-like protein gene in maize.
Fan, Zhanmin; Gu, Hongya; Chen, Xiaowei; Song, Hui; Wang, Qian; Liu, Meihua; Qu, Li-Jia; Chen, Zhangliang
2005-06-17
The cDNA and genomic DNA of a green tissue-specific gene were cloned from maize (Zea mays L.) using cDNA-amplified fragment length polymorphism (cDNA-AFLP) and library screening. The deduced protein was highly similar to Hordeum vulgare germin-like protein 1 (HvGLP1), and the maize gene was therefore designated Zmglp1. Northern blot specifically detected the mRNA of Zmglp1 in young whorl leaves at the early-whorl stage. However, at the late-whorl, tassel, and silk stages, Zmglp1 transcripts were highly abundant in young whorl leaves; less abundant in mature leaves, young tassels, and cobs; and not detectable in roots, immature kernels, and stalks. RNA in situ hybridization revealed that Zmglp1 expressed only in mesophyllous, phloem, and guard cells in the young whorl leaves. Deletion analysis of the promoter in transgenic Arabidopsis resulted in the identification of several regions containing important regulatory cis-elements controlling the expression levels and circadian rhythm-oscillated patterns of Zmglp1.
A staining protocol for identifying secondary compounds in Myrtaceae1
Retamales, Hernan A.; Scharaschkin, Tanya
2014-01-01
• Premise of the study: Here we propose a staining protocol using toluidine blue (TBO) and ruthenium red to reliably identify secondary compounds in the leaves of some species of Myrtaceae. • Methods and Results: Leaves of 10 species representing 10 different genera of Myrtaceae were processed and stained using five different combinations of ruthenium red and TBO. Optimal staining conditions were determined as 1 min of ruthenium red (0.05% aqueous) and 45 s of TBO (0.1% aqueous). Secondary compounds clearly identified under this treatment include mucilage in the mesophyll, polyphenols in the cuticle, lignin in fibers and xylem, tannins and carboxylated polysaccharides in the epidermis, and pectic substances in the primary cell walls. • Conclusions: Potential applications of this protocol include systematic, phytochemical, and ecological investigations in Myrtaceae. It might be applicable to other plant families rich in secondary compounds and could be used as a preliminary screening method for extraction of these elements. PMID:25309840
Besserer, Arnaud; Burnotte, Emeline; Bienert, Gerd Patrick; Chevalier, Adrien S.; Errachid, Abdelmounaim; Grefen, Christopher; Blatt, Michael R.; Chaumont, François
2012-01-01
Plasma membrane intrinsic proteins (PIPs) are aquaporins facilitating the diffusion of water through the cell membrane. We previously showed that the traffic of the maize (Zea mays) PIP2;5 to the plasma membrane is dependent on the endoplasmic reticulum diacidic export motif. Here, we report that the post-Golgi traffic and water channel activity of PIP2;5 are regulated by the SNARE (for soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) SYP121, a plasma membrane resident syntaxin involved in vesicle traffic, signaling, and regulation of K+ channels. We demonstrate that the expression of the dominant-negative SYP121-Sp2 fragment in maize mesophyll protoplasts or epidermal cells leads to a decrease in the delivery of PIP2;5 to the plasma membrane. Protoplast and oocyte swelling assays showed that PIP2;5 water channel activity is negatively affected by SYP121-Sp2. A combination of in vitro (copurification assays) and in vivo (bimolecular fluorescence complementation, Förster resonance energy transfer, and yeast split-ubiquitin) approaches allowed us to demonstrate that SYP121 and PIP2;5 physically interact. Together with previous data demonstrating the role of SYP121 in regulating K+ channel trafficking and activity, these results suggest that SYP121 SNARE contributes to the regulation of the cell osmotic homeostasis. PMID:22942383
Besserer, Arnaud; Burnotte, Emeline; Bienert, Gerd Patrick; Chevalier, Adrien S; Errachid, Abdelmounaim; Grefen, Christopher; Blatt, Michael R; Chaumont, François
2012-08-01
Plasma membrane intrinsic proteins (PIPs) are aquaporins facilitating the diffusion of water through the cell membrane. We previously showed that the traffic of the maize (Zea mays) PIP2;5 to the plasma membrane is dependent on the endoplasmic reticulum diacidic export motif. Here, we report that the post-Golgi traffic and water channel activity of PIP2;5 are regulated by the SNARE (for soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) SYP121, a plasma membrane resident syntaxin involved in vesicle traffic, signaling, and regulation of K(+) channels. We demonstrate that the expression of the dominant-negative SYP121-Sp2 fragment in maize mesophyll protoplasts or epidermal cells leads to a decrease in the delivery of PIP2;5 to the plasma membrane. Protoplast and oocyte swelling assays showed that PIP2;5 water channel activity is negatively affected by SYP121-Sp2. A combination of in vitro (copurification assays) and in vivo (bimolecular fluorescence complementation, Förster resonance energy transfer, and yeast split-ubiquitin) approaches allowed us to demonstrate that SYP121 and PIP2;5 physically interact. Together with previous data demonstrating the role of SYP121 in regulating K(+) channel trafficking and activity, these results suggest that SYP121 SNARE contributes to the regulation of the cell osmotic homeostasis.
Boursiac, Yann; Lee, Sang Min; Romanowsky, Shawn; Blank, Robert; Sladek, Chris; Chung, Woo Sik; Harper, Jeffrey F
2010-11-01
Calcium (Ca(2+)) signals regulate many aspects of plant development, including a programmed cell death pathway that protects plants from pathogens (hypersensitive response). Cytosolic Ca(2+) signals result from a combined action of Ca(2+) influx through channels and Ca(2+) efflux through pumps and cotransporters. Plants utilize calmodulin-activated Ca(2+) pumps (autoinhibited Ca(2+)-ATPase [ACA]) at the plasma membrane, endoplasmic reticulum, and vacuole. Here, we show that a double knockout mutation of the vacuolar Ca(2+) pumps ACA4 and ACA11 in Arabidopsis (Arabidopsis thaliana) results in a high frequency of hypersensitive response-like lesions. The appearance of macrolesions could be suppressed by growing plants with increased levels (greater than 15 mm) of various anions, providing a method for conditional suppression. By removing plants from a conditional suppression, lesion initials were found to originate primarily in leaf mesophyll cells, as detected by aniline blue staining. Initiation and spread of lesions could also be suppressed by disrupting the production or accumulation of salicylic acid (SA), as shown by combining aca4/11 mutations with a sid 2 (for salicylic acid induction-deficient2) mutation or expression of the SA degradation enzyme NahG. This indicates that the loss of the vacuolar Ca(2+) pumps by itself does not cause a catastrophic defect in ion homeostasis but rather potentiates the activation of a SA-dependent programmed cell death pathway. Together, these results provide evidence linking the activity of the vacuolar Ca(2+) pumps to the control of a SA-dependent programmed cell death pathway in plants.
Bezerra, L D A; Mangabeira, P A O; de Oliveira, R A; Costa, L C D B; Da Cunha, M
2018-05-01
Secretory structures are common in Asteraceae, where they exhibit a high degree of morphological diversity. The species Verbesina macrophylla, popularly known as assa-peixe, is native to Brazil where it is widely used for medicinal purposes. Despite its potential medical importance, there have been no studies of the anatomy of this species, especially its secretory structures and secreted compounds. This study examined leaves of V. macrophylla with emphasis on secretory structures and secreted secondary metabolites. Development of secretory ducts and the mechanism of secretion production are described for V. macrophylla using ultrastructure, yield and chemical composition of its essential oils. Verbesina macrophylla has a hypostomatic leaf blade with dorsiventral mesophyll and secretory ducts associated with vascular bundles of schizogenous origin. Histochemistry identified the presence of lipids, terpenes, alkaloids and mucopolysaccharides. Ultrastructure suggests that the secretion released into the duct lumen is produced in plastids of transfer cells, parenchymal sheath cells and stored in vacuoles in these cells and duct epithelial cells. The essential oil content was 0.8%, and its major components were germacrene D, germacrene D-4-ol, β-caryophyllene, bicyclogermacrene and α-cadinol. Secretory ducts of V. macrophylla are squizogenous. Substances identified in tissues suggest that both secretions stored in the ducts and in adjacent parenchyma cells are involved in chemical defence. The essential oil is rich in sesquiterpenes, with germacrene D and its derivatives being notable components. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Climate change and fire regimes in the Sierra de Manantlan, Mexico
Brooke A. Cassell; Ernesto Alvarado; Emily Heyerdahl; Diego Perez-Salicrup; Enrique Jardel-Pelaez
2010-01-01
Fire has been attributed as one of the most influential factors in vegetation community and succession in the Sierra de Manantlán Biosphere Reserve in Jalisco and Colima, México. A mosaic of low, mixed and high severity fire regimes characterizes the landscape with ecosystems ranging from mesophyllous mountain forest to higher elevation pine and oak forest. Research...
Coordination of leaf structure and gas exchange along a height gradient in a tall conifer.
Woodruff, D R; Meinzer, F C; Lachenbruch, B; Johnson, D M
2009-02-01
The gravitational component of water potential and frictional resistance during transpiration lead to substantial reductions in leaf water potential (Psi(l)) near the tops of tall trees, which can influence both leaf growth and physiology. We examined the relationships between morphological features and gas exchange in foliage collected near the tops of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees of different height classes ranging from 5 to 55 m. This sampling allowed us to investigate the effects of tree height on leaf structural characteristics in the absence of potentially confounding factors such as irradiance, temperature, relative humidity and branch length. The use of cut foliage for measurement of intrinsic gas-exchange characteristics allowed identification of height-related trends without the immediate influences of path length and gravity. Stomatal density, needle length, needle width and needle area declined with increasing tree height by 0.70 mm(-2) m(-1), 0.20 mm m(-1), 5.9 x 10(-3) mm m(-1) and 0.012 mm(2) m(-1), respectively. Needle thickness and mesophyll thickness increased with tree height by 4.8 x 10(-2) mm m(-1) and 0.74 microm m(-1), respectively. Mesophyll conductance (g(m)) and CO(2) assimilation in ambient [CO(2)] (A(amb)) decreased by 1.1 mmol m(-2) s(-1) per m and 0.082 micromol m(-2) s(-1) per m increase in height, respectively. Mean reductions in g(m) and A(amb) of foliage from 5 to 55 m were 47% and 42%, respectively. The observed trend in A(amb) was associated with g(m) and several leaf anatomic characteristics that are likely to be determined by the prevailing vertical tension gradient during foliar development. A linear increase in foliar delta(13)C values with height (0.042 per thousand m(-1)) implied that relative stomatal and mesophyll limitations of photosynthesis in intact shoots increased with height. These data suggest that increasing height leads to both fixed structural constraints on leaf gas exchange and dynamic constraints related to prevailing stomatal behavior.
Giuliani, Rita; Koteyeva, Nuria; Voznesenskaya, Elena; Evans, Marc A.; Cousins, Asaph B.; Edwards, Gerald E.
2013-01-01
The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO2 access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thickleaf), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (Smes), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO2 diffusion (gm), stomatal conductance to gas diffusion (gs), and the gm/gs ratio. While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (Smes) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thickleaf and transpiration rate and a significant positive association between Thickleaf and leaf transpiration efficiency. Interestingly, high gm together with high gm/gs and a low Smes/gm ratio (M resistance to CO2 diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance. PMID:23669746
Coate, Jeremy E; Luciano, Amelia K; Seralathan, Vasu; Minchew, Kevin J; Owens, Tom G; Doyle, Jeff J
2012-01-01
Previous studies have shown that polyploidy has pronounced effects on photosynthesis. Most of these studies have focused on synthetic or recently formed autopolyploids, and comparatively little is known about the integrated effects of natural allopolyploidy, which involves hybridity and genome doubling and often incorporates multiple genotypes through recurrent origins and lineage recombination. Glycine dolichocarpa (designated T2) is a natural allotetraploid with multiple origins. We quantified 21 anatomical, biochemical, and physiological phenotypes relating to photosynthesis in T2 and its diploid progenitors, G. tomentella (D3) and G. syndetika (D4). To assess how direction of cross affects these phenotypes, we included three T2 accessions having D3-like plastids (T2(D3)) and two accessions having D4-like plastids (T2(D4)). T2 accessions were transgressive (more extreme than any diploid accession) for 17 of 21 phenotypes, and species means differed significantly in T2 vs. both progenitors for four of 21 phenotypes (higher for guard cell length, electron transport capacity [J(max)] per palisade cell, and J(max) per mesophyll cell; lower for palisade cells per unit leaf area). Within T2, four of 21 parameters differed significantly between T2(D3) and T2(D4) (palisade cell volume; chloroplast number and volume per unit leaf area; and J(max) per unit leaf area). T2 is characterized by transgressive photosynthesis-related phenotypes (including an ca. 2-fold increase in J(max) per cell), as well as by significant intraspecies variation correlating with plastid type. These data indicate prominent roles for both nucleotypic effects and cytoplasmic factors in photosynthetic responses to allopolyploidy.
Giuliani, Rita; Koteyeva, Nuria; Voznesenskaya, Elena; Evans, Marc A; Cousins, Asaph B; Edwards, Gerald E
2013-07-01
The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO(2) access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thick(leaf)), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (S(mes)), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO(2) diffusion (g(m)), stomatal conductance to gas diffusion (g(s)), and the g(m)/g(s) ratio.While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (S(mes)) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thick(leaf) and transpiration rate and a significant positive association between Thick(leaf) and leaf transpiration efficiency. Interestingly, high g(m) together with high g(m)/g(s) and a low S(mes)/g(m) ratio (M resistance to CO(2) diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance.
Duenas, Maria Emilia; Klein, Adam T.; Alexander, Liza E.; ...
2016-11-17
Metabolism in plants is compartmentalized among different tissues, cells and subcellular organelles. Mass spectrometry imaging (MSI) with matrix-assisted laser desorption ionization (MALDI) has recently advanced to allow for the visualization of metabolites at single-cell resolution. Here we applied 5- and 10 μm high spatial resolution MALDI-MSI to the asymmetric Kranz anatomy of Zea mays (maize) leaves to study the differential localization of two major anionic lipids in thylakoid membranes, sulfoquinovosyldiacylglycerols (SQDG) and phosphatidylglycerols (PG). The quantification and localization of SQDG and PG molecular species, among mesophyll (M) and bundle sheath (BS) cells, are compared across the leaf developmental gradient frommore » four maize genotypes (the inbreds B73 and Mo17, and the reciprocal hybrids B73 × Mo17 and Mo17 × B73). SQDG species are uniformly distributed in both photosynthetic cell types, regardless of leaf development or genotype; however, PG shows photosynthetic cell-specific differential localization depending on the genotype and the fatty acyl chain constituent. Overall, 16:1-containing PGs primarily contribute to the thylakoid membranes of M cells, whereas BS chloroplasts are mostly composed of 16:0-containing PGs. Furthermore, PG 32:0 shows genotype-specific differences in cellular distribution, with preferential localization in BS cells for B73, but more uniform distribution between BS and M cells in Mo17. Maternal inheritance is exhibited within the hybrids, such that the localization of PG 32:0 in B73 × Mo17 is similar to the distribution in the B73 parental inbred, whereas that of Mo17 × B73 resembles the Mo17 parent. As a result, this study demonstrates the power of MALDI-MSI to reveal unprecedented insights on metabolic outcomes in multicellular organisms at single-cell resolution.« less
Control of Xiphinema index populations by fallow plants under greenhouse and field conditions.
Villate, Laure; Morin, Elisa; Demangeat, Gérard; Van Helden, Maarten; Esmenjaud, Daniel
2012-06-01
The dagger nematode Xiphinema index has a high economic impact in vineyards by direct pathogenicity and above all by transmitting the Grapevine fanleaf virus (GFLV). Agrochemicals have been largely employed to restrict the spread of GFLV by reducing X. index populations but are now banned. As an alternative to nematicides, the use of fallow plants between two successive vine crops was assessed. We selected plant species adapted to vineyard soils and exhibiting negative impact on nematodes and we evaluated their antagonistic effect on X. index in greenhouse using artificially infested soil, and in naturally infested vineyard conditions. The screening was conducted with plants belonging to the families Asteraceae (sunflower, marigold, zinnia, and nyjer), Poaceae (sorghum and rye), Fabaceae (white lupin, white melilot, hairy vetch, and alfalfa), Brassicaceae (rapeseed and camelina), and Boraginaceae (phacelia). In the greenhouse controlled assay, white lupin, nyjer, and marigold significantly reduced X. index populations compared with that of bare soil. The vineyard assay, designed to take into account the aggregative pattern of X. index distribution, revealed that marigold and hairy vetch are good candidates as cover crops to reduce X. index populations in vineyard. Moreover, this original experimental design could be applied to manage other soilborne pathogens.
Ben M'Barek, Sarrah; Cordewener, Jan H G; Tabib Ghaffary, Seyed M; van der Lee, Theo A J; Liu, Zhaohui; Mirzadi Gohari, Amir; Mehrabi, Rahim; America, Antoine H P; Robert, Olivier; Friesen, Timothy L; Hamza, Sonia; Stergiopoulos, Ioannis; de Wit, Pierre J G M; Kema, Gerrit H J
2015-06-01
Culture filtrates (CFs) of the fungal wheat pathogen Zymoseptoria tritici were assayed for necrosis-inducing activity after infiltration in leaves of various wheat cultivars. Active fractions were partially purified and characterized. The necrosis-inducing factors in CFs are proteinaceous, heat stable and their necrosis-inducing activity is temperature and light dependent. The in planta activity of CFs was tested by a time series of proteinase K (PK) co-infiltrations, which was unable to affect activity 30min after CF infiltrations. This suggests that the necrosis inducing proteins (NIPs) are either absent from the apoplast and likely actively transported into mesophyll cells or protected from the protease by association with a receptor. Alternatively, plant cell death signaling pathways might be fully engaged during the first 30min and cannot be reversed even after PK treatment. Further fractionation of the CFs with the highest necrosis-inducing activity involved fast performance liquid chromatography, SDS-PAGE and mass spectrometry. This revealed that most of the proteins present in the fractions have not been described before. The two most prominent ZtNIP encoding candidates were heterologously expressed in Pichia pastoris and subsequent infiltration assays showed their differential activity in a range of wheat cultivars. Copyright © 2015 Elsevier Inc. All rights reserved.
Lupoi, Jason S.; Smith-Moritz, Andreia; Singh, Seema; ...
2015-07-10
Background: Slow-degrading, fossil fuel-derived plastics can have deleterious effects on the environment, especially marine ecosystems. The production of bio-based, biodegradable plastics from or in plants can assist in supplanting those manufactured using fossil fuels. Polyhydroxybutyrate (PHB) is one such biodegradable polyester that has been evaluated as a possible candidate for relinquishing the use of environmentally harmful plastics. Results: PHB, possessing similar properties to polyesters produced from non-renewable sources, has been previously engineered in sugarcane, thereby creating a high-value co-product in addition to the high biomass yield. This manuscript illustrates the coupling of a Fourier-transform infrared microspectrometer, equipped with a focalmore » plane array (FPA) detector, with multivariate imaging to successfully identify and localize PHB aggregates. Principal component analysis imaging facilitated the mining of the abundant quantity of spectral data acquired using the FPA for distinct PHB vibrational modes. PHB was measured in the chloroplasts of mesophyll and bundle sheath cells, acquiescent with previously evaluated plant samples. Conclusion: This study demonstrates the power of IR microspectroscopy to rapidly image plant sections to provide a snapshot of the chemical composition of the cell. While PHB was localized in sugarcane, this method is readily transferable to other value-added co-products in different plants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lupoi, Jason S.; Smith-Moritz, Andreia; Singh, Seema
Background: Slow-degrading, fossil fuel-derived plastics can have deleterious effects on the environment, especially marine ecosystems. The production of bio-based, biodegradable plastics from or in plants can assist in supplanting those manufactured using fossil fuels. Polyhydroxybutyrate (PHB) is one such biodegradable polyester that has been evaluated as a possible candidate for relinquishing the use of environmentally harmful plastics. Results: PHB, possessing similar properties to polyesters produced from non-renewable sources, has been previously engineered in sugarcane, thereby creating a high-value co-product in addition to the high biomass yield. This manuscript illustrates the coupling of a Fourier-transform infrared microspectrometer, equipped with a focalmore » plane array (FPA) detector, with multivariate imaging to successfully identify and localize PHB aggregates. Principal component analysis imaging facilitated the mining of the abundant quantity of spectral data acquired using the FPA for distinct PHB vibrational modes. PHB was measured in the chloroplasts of mesophyll and bundle sheath cells, acquiescent with previously evaluated plant samples. Conclusion: This study demonstrates the power of IR microspectroscopy to rapidly image plant sections to provide a snapshot of the chemical composition of the cell. While PHB was localized in sugarcane, this method is readily transferable to other value-added co-products in different plants.« less
Remote sensing of changes in morphology and physiology of trees under stress
NASA Technical Reports Server (NTRS)
Olson, C. E., Jr.; Rohde, W. G.; Ward, J. M.
1970-01-01
Results of continuing studies of forest trees subjected to varying types of stress are reported. Both greenhouse and field studies are included. Greenhouse work with tree seedlings exposed to varying levels of NaCl and CaCl2 in the soil indicated that, in the initial stages, palisade cells shrink and the amount of air space in the leaf increases. As the severity of damage increases, the cells of the spongy mesophyll shrink and flatten, and the amount of air space in the leaf decreases. Statistical analysis of foliar reflectance and associated moisture content data led to a series of regression equations for predicting foliar moisture content from reflectance data. Equations were calculated for three species, yellow birch (Betula alleghaniensis Britton), sugar maple (Acer saccharum Marsh.) and white ash (Fraxinus americana L.) having multiple correlation coefficients of 0.98, 0.94 and 0.93 respectively. Interpretation of multispectral imagery of the Ann Arbor Forestry Test Site (NASA Site 190) provided evidence that infections of Fomes annosus can be detected in the early stages. Infections of two needle cast diseases were also detected in conifer plantations in the test site. A study of automatic interpretation of multispectral scanner imagery for tree species recognition provided encouraging results.
Lightbourn, Gordon J; Griesbach, Robert J; Novotny, Janet A; Clevidence, Beverly A; Rao, David D; Stommel, John R
2008-01-01
Shades ranging from violet to black pigmentation in pepper (Capsicum annuum L.) are attributed to anthocyanin accumulation. High-performance liquid chromatography and mass spectrometry analysis of violet and black fruit tissue identified a single anthocyanin that was determined to be delphinidin-3-p-coumaroyl-rutinoside-5-glucoside. Leaf tissue of a black-pigmented foliage genotype contained the same anthocyanin found in fruit but at a considerably higher concentration in comparison to violet and black fruit tissue. Fruit chlorophyll concentration was approximately 14-fold higher in black fruit in comparison to violet fruit that contained relatively little chlorophyll. Beta-carotene, lutein, violaxanthin, and neoxanthin carotenoid concentrations in black fruit were also significantly greater in comparison to violet fruit. High concentrations of delphinidin in combination with chlorophyll and accessory carotenoid pigments produced the characteristic black pigmentation observed in fruits and leaves of selected genotypes. Anthocyanins were accumulated in the outer mesocarp of violet and black fruit and in the palisade and mesophyll cells of black leaves. Consistent with chlorophyll content of respective genotypes, chloroplast density was greater in cells of black fruits. Utilizing Capsicum pigment variants, we determine the biochemical factors responsible for violet versus black-pigmented pepper tissue in the context of described pepper color genes.
Korte, Andrew R.; Yandeau-Nelson, Marna D.; Nikolau, Basil J.; ...
2015-01-25
A significant limiting factor in achieving high spatial resolution for matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) imaging is the size of the laser spot at the sample surface. We present modifications to the beam-delivery optics of a commercial MALDI-linear ion trap-Orbitrap instrument, incorporating an external Nd:YAG laser, beam-shaping optics, and an aspheric focusing lens, to reduce the minimum laser spot size from ~50 μm for the commercial configuration down to ~9 μm for the modified configuration. This improved system was applied for MALDI-MS imaging of cross sections of juvenile maize leaves at 5-μm spatial resolution using an oversampling method. Theremore » are a variety of different metabolites including amino acids, glycerolipids, and defense-related compounds were imaged at a spatial resolution well below the size of a single cell. Such images provide unprecedented insights into the metabolism associated with the different tissue types of the maize leaf, which is known to asymmetrically distribute the reactions of C4 photosynthesis among the mesophyll and bundle sheath cell types. The metabolite ion images correlate with the optical images that reveal the structures of the different tissues, and previously known and newly revealed asymmetric metabolic features are observed.« less
Li, Xiaojie; Han, Liping; Zhao, Yanying; You, Zhenzhen; Dong, Hansong; Zhang, Chunling
2014-03-01
Hpa1 is a harpin protein produced by Xanthomonas oryzae, an important bacterial pathogen of rice, and has the growth-promoting activity in plants. To understand the molecular basis for the function of Hpa1, we generated an inactive variant protein, Hpa1 delta NT, by deleting the nitroxyl-terminal region of the Hpa1 sequence and compared Hpa1 delta NT with the full-length protein in terms of the effects on vegetative growth and related physiological responses in Arabidopsis. When Hpa1 was applied to plants, it acted to enhance the vegetative growth but did not affect the floral development. Enhanced plant growth was accompanied by induced expression of growth-promoting genes in plant leaves. The growth-promoting activity of Hpa1 was further correlated with a physiological consequence shown as promoted leaf photosynthesis as a result of facilitated CO2 conduction through leaf stomata and mesophyll cells. On the contrary, plant growth, growth-promoting gene expression, and the physiological consequence changed little in response to the Hpa1 delta NT treatment. These analyses suggest that Hpa1 requires the nitroxyl-terminus to facilitate CO2 transport inside leaf cells and promote leaf photosynthesis and vegetative growth of the plant.
Uptake, Distribution, and Speciation of Chromium in Brassica Juncea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bluskov, S.; Arocena, J.M.; Omotoso, O.O.
2008-06-09
Brassica juncea (Indian mustard) has been widely used in phytoremediation because of its capacity to accumulate high levels of chromium (Cr) and other metals. The present study was conducted to investigate mechanism(s) involved in Cr binding and sequestration by B. juncea. The plants were grown under greenhouse conditions in field-moist or air-dried soils, amended with 100 mg kg{sup -1} of Cr (III or VI). The plant concentrated Cr mainly in the roots. B. juncea removed an average of 48 and 58 {micro}g Cr per plant from Cr (III) and Cr (VI)-treated soils, respectively. The uptake of Cr was not affectedmore » by the moisture status of the soils. X-ray absorption near-edge spectroscopy measurements showed only Cr (III) bound predominantly to formate and acetate ligands, in the bulk and rhizosphere soils, respectively. In the plant tissues, Cr (III) was detected, primarily as acetate in the roots and oxalate in the leaves. X-ray microprobe showed the sites of Cr localization, and probably sequestration, in epidermal and cortical cells in the roots and epidermal and spongy mesophyll cells in the leaves. These findings demonstrate the ability of B. juncea to detoxify more toxic Cr (VI), thereby making this plant a potential candidate for phytostabilization.« less
Responses of photosynthetic parameters to drought in subtropical forest ecosystem of China
Zhou, Lei; Wang, Shaoqiang; Chi, Yonggang; Li, Qingkang; Huang, Kun; Yu, Quanzhou
2015-01-01
The mechanism underlying the effect of drought on the photosynthetic traits of leaves in forest ecosystems in subtropical regions is unclear. In this study, three limiting processes (stomatal, mesophyll and biochemical limitations) that control the photosynthetic capacity and three resource use efficiencies (intrinsic water use efficiency (iWUE), nitrogen use efficiency (NUE) and light use efficiency (LUE)), which were characterized as the interactions between photosynthesis and environmental resources, were estimated in two species (Schima superba and Pinus massoniana) under drought conditions. A quantitative limitation analysis demonstrated that the drought-induced limitation of photosynthesis in Schima superba was primarily due to stomatal limitation, whereas for Pinus massoniana, both stomatal and non-stomatal limitations generally exhibited similar magnitudes. Although the mesophyll limitation represented only 1% of the total limitation in Schima superba, it accounted for 24% of the total limitations for Pinus massoniana. Furthermore, a positive relationship between the LUE and NUE and a marginally negative relationship or trade-off between the NUE and iWUE were observed in the control plots. However, drought disrupted the relationships between the resource use efficiencies. Our findings may have important implications for reducing the uncertainties in model simulations and advancing the understanding of the interactions between ecosystem functions and climate change. PMID:26666469
Shapira, Or; Khadka, Sudha; Israeli, Yair; Shani, Uri; Schwartz, Amnon
2009-05-01
Typical salt stress symptoms appear in banana (Musa sp., cv. 'Grand Nain' AAA) only along the leaf margins. Mineral analysis of the dry matter of plants treated with increasing concentrations of KCl or NaCl revealed significant accumulation of Na+, but not of K+ or Cl(-), in the affected leaf margins. The differential distribution of the three ions suggests that water and ion movement out of the xylem is mostly symplastic and, in contrast to K+ and Cl(-), there exists considerable resistance to the flow of Na+ from the xylem to the adjacent mesophyll and epidermis. The parallel veins of the lamina are enclosed by several layers of bundle sheath parenchyma; in contrast, the large vascular bundle that encircles the entire lamina, and into which the parallel veins merge, lacks a complete bundle sheath. Xylem sap containing a high concentration of Na+ is 'pulled' by water tension from the marginal vein back into the adjacent mesophyll without having to cross a layer of parenchyma tissue. When the marginal vein was dissected from the lamina, the pattern of Na+ distribution in the margins changed markedly. The distinct anatomy of the marginal vein plays a major role in the accumulation of Na+ in the margins, with the latter serving as a 'dumping site' for toxic molecules.
Majeran, Wojciech; Cai, Yang; Sun, Qi; van Wijk, Klaas J.
2005-01-01
Chloroplasts of maize (Zea mays) leaves differentiate into specific bundle sheath (BS) and mesophyll (M) types to accommodate C4 photosynthesis. Consequences for other plastid functions are not well understood but are addressed here through a quantitative comparative proteome analysis of purified M and BS chloroplast stroma. Three independent techniques were used, including cleavable stable isotope coded affinity tags. Enzymes involved in lipid biosynthesis, nitrogen import, and tetrapyrrole and isoprenoid biosynthesis are preferentially located in the M chloroplasts. By contrast, enzymes involved in starch synthesis and sulfur import preferentially accumulate in BS chloroplasts. The different soluble antioxidative systems, in particular peroxiredoxins, accumulate at higher levels in M chloroplasts. We also observed differential accumulation of proteins involved in expression of plastid-encoded proteins (e.g., EF-Tu, EF-G, and mRNA binding proteins) and thylakoid formation (VIPP1), whereas others were equally distributed. Enzymes related to the C4 shuttle, the carboxylation and regeneration phase of the Calvin cycle, and several regulators (e.g., CP12) distributed as expected. However, enzymes involved in triose phosphate reduction and triose phosphate isomerase are primarily located in the M chloroplasts, indicating that the M-localized triose phosphate shuttle should be viewed as part of the BS-localized Calvin cycle, rather than a parallel pathway. PMID:16243905
Responses of photosynthetic parameters to drought in subtropical forest ecosystem of China
NASA Astrophysics Data System (ADS)
Zhou, Lei; Wang, Shaoqiang; Chi, Yonggang; Li, Qingkang; Huang, Kun; Yu, Quanzhou
2015-12-01
The mechanism underlying the effect of drought on the photosynthetic traits of leaves in forest ecosystems in subtropical regions is unclear. In this study, three limiting processes (stomatal, mesophyll and biochemical limitations) that control the photosynthetic capacity and three resource use efficiencies (intrinsic water use efficiency (iWUE), nitrogen use efficiency (NUE) and light use efficiency (LUE)), which were characterized as the interactions between photosynthesis and environmental resources, were estimated in two species (Schima superba and Pinus massoniana) under drought conditions. A quantitative limitation analysis demonstrated that the drought-induced limitation of photosynthesis in Schima superba was primarily due to stomatal limitation, whereas for Pinus massoniana, both stomatal and non-stomatal limitations generally exhibited similar magnitudes. Although the mesophyll limitation represented only 1% of the total limitation in Schima superba, it accounted for 24% of the total limitations for Pinus massoniana. Furthermore, a positive relationship between the LUE and NUE and a marginally negative relationship or trade-off between the NUE and iWUE were observed in the control plots. However, drought disrupted the relationships between the resource use efficiencies. Our findings may have important implications for reducing the uncertainties in model simulations and advancing the understanding of the interactions between ecosystem functions and climate change.
Bundle sheath lignification mediates the linkage of leaf hydraulics and venation.
Ohtsuka, Akihiro; Sack, Lawren; Taneda, Haruhiko
2018-02-01
The lignification of the leaf vein bundle sheath (BS) has been observed in many species and would reduce conductance from xylem to mesophyll. We hypothesized that lignification of the BS in lower-order veins would provide benefits for water delivery through the vein hierarchy but that the lignification of higher-order veins would limit transport capacity from xylem to mesophyll and leaf hydraulic conductance (K leaf ). We further hypothesized that BS lignification would mediate the relationship of K leaf to vein length per area. We analysed the dependence of K leaf , and its light response, on the lignification of the BS across vein orders for 11 angiosperm tree species. Eight of 11 species had lignin deposits in the BS of the midrib, and two species additionally only in their secondary veins, and for six species up to their minor veins. Species with lignification of minor veins had a lower hydraulic conductance of xylem and outside-xylem pathways and lower K leaf . K leaf could be strongly predicted by vein length per area and highest lignified vein order (R 2 = .69). The light-response of K leaf was statistically independent of BS lignification. The lignification of the BS is an important determinant of species variation in leaf and thus whole plant water transport. © 2017 John Wiley & Sons Ltd.
Functional Redundancy and Divergence within the Arabidopsis RETICULATA-RELATED Gene Family1[W][OA
Pérez-Pérez, José Manuel; Esteve-Bruna, David; González-Bayón, Rebeca; Kangasjärvi, Saijaliisa; Caldana, Camila; Hannah, Matthew A.; Willmitzer, Lothar; Ponce, María Rosa; Micol, José Luis
2013-01-01
A number of Arabidopsis (Arabidopsis thaliana) mutants exhibit leaf reticulation, having green veins that stand out against paler interveinal tissues, fewer cells in the interveinal mesophyll, and normal perivascular bundle sheath cells. Here, to examine the basis of leaf reticulation, we analyzed the Arabidopsis RETICULATA-RELATED (RER) gene family, several members of which cause leaf reticulation when mutated. Although transcripts of RE, RER1, and RER3 were mainly detected in the bundle sheath cells of expanded leaves, functional RER3:GREEN FLUORESCENT PROTEIN was visualized in the chloroplast membranes of all photosynthetic cells. Leaf reticulation in the re and rer3 loss-of-function mutants occurred, along with accumulation of reactive oxygen species, in a photoperiod-dependent manner. A comparison of re and rer3 leaf messenger RNA expression profiles showed more than 200 genes were similarly misexpressed in both mutants. In addition, metabolic profiles of mature leaves revealed that several biosynthetic pathways downstream of pyruvate are altered in re and rer3. Double mutant analysis showed that only re rer1 and rer5 rer6 exhibited synergistic phenotypes, indicating functional redundancy. The redundancy between RE and its closest paralog, RER1, was confirmed by overexpressing RER1 in re mutants, which partially suppressed leaf reticulation. Our results show that RER family members can be divided into four functional modules with divergent functions. Moreover, these results provide insights into the origin of the reticulated phenotype, suggesting that the RER proteins functionally interconnect photoperiodic growth, amino acid homeostasis, and reactive oxygen species metabolism during Arabidopsis leaf growth. PMID:23596191
Responses of tropical legumes from the Brazilian Atlantic Rainforest to simulated acid rain.
Andrade, Guilherme C; Silva, Luzimar C
2017-07-01
We investigated the morphological and anatomical effects of simulated acid rain on leaves of two species native to the Brazilian Atlantic Rainforest: Paubrasilia echinata and Libidibia ferrea var. leiostachya. Saplings were subjected to acid rain in a simulation chamber during 10 days for 15 min daily, using H 2 SO 4 solution pH 3.0 and, in the control, deionized water. At the end of the experiment, fragments from young and expanding leaves were anatomically analyzed. Although L. ferrea var. leiostachya leaves are more hydrophobic, rain droplets remained in contact with them for a longer time, as in the hydrophilic P. echinata leaves, droplets coalesce and rapidly run off. Visual symptomatology consisted in interveinal and marginal necrotic dots. Microscopic damage found included epicuticular wax flaking, turgor loss and epidermal cell shape alteration, hypertrophy of parenchymatous cells, and epidermal and mesophyll cell collapse. Formation of a wound tissue was observed in P. echinata, and it isolated the necrosis to the adaxial leaf surface. Acid rain increased thickness of all leaf tissues except spongy parenchyma in young leaves of L. ferrea var. leiostachya, and such thickness was maintained throughout leaf expansion. To our knowledge, this is the first report of acidity causing increase in leaf tissue thickness. This could represent the beginning of cell hypertrophy, which was seen in visually affected leaf regions. Paubrasilia echinata was more sensitive, showing earlier symptoms, but the anatomical damage in L. ferrea var. leiostachya was more severe, probably due to the higher time of contact with acid solution in this species.
Cohu, Christopher M; Muller, Onno; Adams, William W; Demmig-Adams, Barbara
2014-09-01
Acclimation of foliar features to cool temperature and high light was characterized in winter (Spinacia oleracea L. cv. Giant Nobel; Arabidopsis thaliana (L.) Heynhold Col-0 and ecotypes from Sweden and Italy) versus summer (Helianthus annuus L. cv. Soraya; Cucurbita pepo L. cv. Italian Zucchini Romanesco) annuals. Significant relationships existed among leaf dry mass per area, photosynthesis, leaf thickness and palisade mesophyll thickness. While the acclimatory response of the summer annuals to cool temperature and/or high light levels was limited, the winter annuals increased the number of palisade cell layers, ranging from two layers under moderate light and warm temperature to between four and five layers under cool temperature and high light. A significant relationship was also found between palisade tissue thickness and either cross-sectional area or number of phloem cells (each normalized by vein density) in minor veins among all four species and growth regimes. The two winter annuals, but not the summer annuals, thus exhibited acclimatory adjustments of minor vein phloem to cool temperature and/or high light, with more numerous and larger phloem cells and a higher maximal photosynthesis rate. The upregulation of photosynthesis in winter annuals in response to low growth temperature may thus depend on not only (1) a greater volume of photosynthesizing palisade tissue but also (2) leaf veins containing additional phloem cells and presumably capable of exporting a greater volume of sugars from the leaves to the rest of the plant. © 2014 Scandinavian Plant Physiology Society.
Rubio, Lourdes; García-Pérez, Delia; García-Sánchez, María Jesús; Fernández, José A
2018-05-24
Posidonia oceanica (L.) Delile is a seagrass, the only group of vascular plants to colonize the marine environment. Seawater is an extreme yet stable environment characterized by high salinity, alkaline pH and low availability of essential nutrients, such as nitrate and phosphate. Classical depletion experiments, membrane potential and cytosolic sodium measurements were used to characterize the high-affinity NO₃ - , Pi and amino acids uptake mechanisms in this species. Net uptake rates of both NO₃ - and Pi were reduced by more than 70% in the absence of Na⁺. Micromolar concentrations of NO₃ - depolarized mesophyll leaf cells plasma membrane. Depolarizations showed saturation kinetics ( Km = 8.7 ± 1 μM NO₃ - ), which were not observed in the absence of Na⁺. NO₃ - induced depolarizations at increasing Na⁺ also showed saturation kinetics ( Km = 7.2 ± 2 mM Na⁺). Cytosolic Na⁺ measured in P. oceanica leaf cells (17 ± 2 mM Na⁺) increased by 0.4 ± 0.2 mM Na⁺ upon the addition of 100 μM NO₃ - . Na⁺-dependence was also observed for high-affinity l-ala and l-cys uptake and high-affinity Pi transport. All together, these results strongly suggest that NO₃ - , amino acids and Pi uptake in P. oceanica leaf cells are mediated by high-affinity Na⁺-dependent transport systems. This mechanism seems to be a key step in the process of adaptation of seagrasses to the marine environment.
Phloem loading--not metaphysical, only complex: towards a unified model of phloem loading.
Komor, E; Orlich, G; Weig, A; Köckenberger, W
1996-08-01
Phloem loading comprises the entire pathway of phloem-mobile solutes from their place of generation (or delivery) to the sieve tubes in a sequence of transport steps across or passing by several different cell types. Each of these steps can be classified as symplastic or apoplastic. The detailed anatomical-cytological work in the past ten years made clear that the symplastic continuity from mesophyll to sieve tubes may be very different for different plant species or even in different vein orders. Therefore data from one species are not transferable to another species and a well-rounded picture involving different experimental methods has to be aimed at for each species separately. The information obtained with the Ricinus seedling, where phloem loading and sieve tube sap analysis can be achieved relatively easily, is presented. The analysis of the radioactive labelling of sucrose from the sieve tubes of cotyledons, in which external and intracellular sucrose had been differently labelled, revealed that at sucrose concentrations close to the natural one, 50% of sucrose is loaded directly from the external medium. The other 50% is first taken up by mesophyll and then released for uptake into the sieve tubes. No bundle tissue works as obligate, intermediate sucrose storage. The apoplast therefore definitely serves as a transit reservoir for sucrose destined to be loaded into the sieve tubes. The sieve tube sap contains glycolytic metabolites at concentrations higher than found in the hypocotyl tissue, whereas the corresponding glycolytic enzymes are missing. It is concluded that the enzymes are sequestered in the companion cell or by parietal membrane stacks. Not only the sieve tubes but nearly all cotyledonary cells are equipped with a sucrose-H(+) symporter able to achieve sucrose accumulation and sensitive to inhibition by high salt concentrations or SH reagents. A cDNA clone coding for a sucrose carrier was isolated. It is transcribed at approximately the same level in most organs of the seedling and throughout the germination period. Leaves of adult Ricinus have significantly lower levels of this transcript. Recirculation of excess, phloem-delivered solutes from the sink back to the source is shown not only to be a common feature of long-distance transport, but the only way that an imbalance between supply to and consumption of nutrients in the sink can be adjusted in the source. It is a pathway by which sink activity regulates phloem loading. Non-invasive NMR imaging revealed the flow rates and flow speeds in phloem and xylem in the intact seedling and proved directly the existence of an internal circulating solution flow. A unified model of phloem loading is proposed, based on a pump-and-leak model, where active sucrose carriers (and other carriers) accumulate solutes in the sieve tubes with a concomitant build-up of pressure resulting in mass flow. Plasmodesmata are leaks (as are the transport carriers, too), slowing down the transport rate, but they also serve as diffusion channels for substances which are produced in the neighbouring cell. Therefore, compounds, which are not made in the sieve tubes themselves are translocated together with the bulk solution of sieve tube sap.
Carbon Heavy-ion Radiation Induced Biological effects on Oryza sativa L.
NASA Astrophysics Data System (ADS)
Zhang, Meng; Sun, Yeqing; Li, Xishan; Gong, Ning; Meng, Qingmei; Liu, Jiawei; Wang, Ting
2016-07-01
Large number of researches on rice after spaceflights indicated that rice was a favorable model organism to study biological effects induced by space radiation. The stimulative effect could often be found on rice seedlings after irradiation by low-dose energetic heavy-ion radiation. Spaceflight also could induce stimulative effect on kinds of seeds. To further understand the mechanism of low-dose radiation biological effects and the dose range, the germinated rice seeds which were irradiated by different doses of carbon heavy-ion (0, 0.02, 0.1, 0.2, 1, 2, 5, 10, 15 and 20Gy, LET=27.3keV/µm) were used as materials to study. By investigating the variation of rice phenotype under different doses, we found that 2Gy radiation dose was a dividing point of the phenotypic variation. Transmission electron microscopy was used to observe the variation of mitochondria, chloroplast, endoplasmic reticulum, ribosome and nucleus in mesophyll cell of rice apical meristem at 24 hours after radiation with different doses. The cells were not apparently physiologically damaged when the dose of radiation was less than 2Gy. The number of chloroplast did not change significantly, but the number of mitochondria was significantly increased, and gathered around in the chloroplast and endoplasmic reticulum; the obvious lesion of chloroplast and mitochondria were found at the mesophyll cells when radiation dose was higher than 2Gy. The mitochondria were swelling and appearing blurred crest. The chloroplast and mitochondrial mutation rate increased significantly (p<0.01). These phenomena showed that cell biological changes may be the reasons of the stimulation and inhibition effects with the boundary of 2Gy. Since mitochondrial was an important organelle involved in the antioxidative systems, its dysfunction could result in the increase of reactive oxygen species and lipid peroxidation. We found that the growth stimulation induced by low-dose radiation mainly occurred at three-leaf stage along with the increasing activity of antioxidase system and damages of lipid peroxidation. We also found that the relative expression of genes sdhb and aox1a which encode the key proteins in mitochondria changed differently after exposed to different doses of radiation, and the lower dose of the radiation could cause longer effect. The chlorophyll was an important organ of photosynthesis, its dysfunction could result in the phenotypic variation. We found that the chlorophyll fluorescence parameter Fv/Fm, the content of chlorophyll (including chlorophyll a, chlorophyll b and total chlorophyll) and both the relative expression of CP24 and its encoding gene lhcb6 changed significantly in different doses. The changes of the relative expression of CP24 and its encoding gene lhcb6 were completely opposite at the lower dose and agreed at the higher dose. The possible mechanisms of growth stimulation and inhibition effects induced by low and high dose radiations were discussed on multiple levels. Moreover, our findings were important to understand the spaceflight induced growth stimulation and inhibition effects of plant. Keywords: Heavy-ion radiation; Low dose; Stimulation effect; Inhibition effect; Rice.
John, Christopher R.; Smith-Unna, Richard D.; Woodfield, Helen; Covshoff, Sarah; Hibberd, Julian M.
2014-01-01
Leaves of almost all C4 lineages separate the reactions of photosynthesis into the mesophyll (M) and bundle sheath (BS). The extent to which messenger RNA profiles of M and BS cells from independent C4 lineages resemble each other is not known. To address this, we conducted deep sequencing of RNA isolated from the M and BS of Setaria viridis and compared these data with publicly available information from maize (Zea mays). This revealed a high correlation (r = 0.89) between the relative abundance of transcripts encoding proteins of the core C4 pathway in M and BS cells in these species, indicating significant convergence in transcript accumulation in these evolutionarily independent C4 lineages. We also found that the vast majority of genes encoding proteins of the C4 cycle in S. viridis are syntenic to homologs used by maize. In both lineages, 122 and 212 homologous transcription factors were preferentially expressed in the M and BS, respectively. Sixteen shared regulators of chloroplast biogenesis were identified, 14 of which were syntenic homologs in maize and S. viridis. In sorghum (Sorghum bicolor), a third C4 grass, we found that 82% of these trans-factors were also differentially expressed in either M or BS cells. Taken together, these data provide, to our knowledge, the first quantification of convergence in transcript abundance in the M and BS cells from independent lineages of C4 grasses. Furthermore, the repeated recruitment of syntenic homologs from large gene families strongly implies that parallel evolution of both structural genes and trans-factors underpins the polyphyletic evolution of this highly complex trait in the monocotyledons. PMID:24676859
Souza, Vânia L; de Almeida, Alex-Alan F; Souza, Jadiel de S; Mangabeira, Pedro A O; de Jesus, Raildo M; Pirovani, Carlos P; Ahnert, Dário; Baligar, Virupax C; Loguercio, Leandro L
2014-01-01
Seedlings of Theobroma cacao CCN 51 genotype were grown under greenhouse conditions and exposed to increasing concentrations of Cu (0.005, 1, 2, 4, 8, 16, and 32 mg Cu L(-1)) in nutrient solution. When doses were equal or higher than 8 mg Cu L(-1), after 24 h of treatment application, leaf gas exchange was highly affected and changes in chloroplasts thylakoids of leaf mesophyll cells and plasmolysis of cells from the root cortical region were observed. In addition, cell membranes of roots and leaves were damaged. In leaves, 96 h after treatments started, increases in the percentage of electrolyte leakage through membranes were observed with increases of Cu in the nutrient solution. Moreover, there was an increase in the concentration of thiobarbituric acid-reactive substances in roots due to lipid peroxidation of membranes. Chemical analysis showed that increases in Cu concentrations in vegetative organs of T. cacao increased with the increase of the metal in the nutrient solution, but there was a greater accumulation of Cu in roots than in shoots. The excess of Cu interfered in the levels of Mn, Zn, Fe, Mg, K, and Ca in different organs of T. cacao. Analysis of gene expression via RTq-PCR showed increased levels of MT2b, SODCyt, and PER-1 expression in roots and of MT2b, PSBA, PSBO, SODCyt, and SODChI in leaves. Hence, it was concluded that Cu in nutrient solution at doses equal or above 8 mg L(-1) significantly affected leaf gas exchange, cell ultrastructure, and transport of mineral nutrients in seedlings of this T. cacao genotype.
Initial Events during the Evolution of C4 Photosynthesis in C3 Species of Flaveria1[W][OPEN
Sage, Tammy L.; Busch, Florian A.; Johnson, Daniel C.; Friesen, Patrick C.; Stinson, Corey R.; Stata, Matt; Sultmanis, Stefanie; Rahman, Beshar A.; Rawsthorne, Stephen; Sage, Rowan F.
2013-01-01
The evolution of C4 photosynthesis in many taxa involves the establishment of a two-celled photorespiratory CO2 pump, termed C2 photosynthesis. How C3 species evolved C2 metabolism is critical to understanding the initial phases of C4 plant evolution. To evaluate early events in C4 evolution, we compared leaf anatomy, ultrastructure, and gas-exchange responses of closely related C3 and C2 species of Flaveria, a model genus for C4 evolution. We hypothesized that Flaveria pringlei and Flaveria robusta, two C3 species that are most closely related to the C2 Flaveria species, would show rudimentary characteristics of C2 physiology. Compared with less-related C3 species, bundle sheath (BS) cells of F. pringlei and F. robusta had more mitochondria and chloroplasts, larger mitochondria, and proportionally more of these organelles located along the inner cell periphery. These patterns were similar, although generally less in magnitude, than those observed in the C2 species Flaveria angustifolia and Flaveria sonorensis. In F. pringlei and F. robusta, the CO2 compensation point of photosynthesis was slightly lower than in the less-related C3 species, indicating an increase in photosynthetic efficiency. This could occur because of enhanced refixation of photorespired CO2 by the centripetally positioned organelles in the BS cells. If the phylogenetic positions of F. pringlei and F. robusta reflect ancestral states, these results support a hypothesis that increased numbers of centripetally located organelles initiated a metabolic scavenging of photorespired CO2 within the BS. This could have facilitated the formation of a glycine shuttle between mesophyll and BS cells that characterizes C2 photosynthesis. PMID:24064930
Initial events during the evolution of C4 photosynthesis in C3 species of Flaveria.
Sage, Tammy L; Busch, Florian A; Johnson, Daniel C; Friesen, Patrick C; Stinson, Corey R; Stata, Matt; Sultmanis, Stefanie; Rahman, Beshar A; Rawsthorne, Stephen; Sage, Rowan F
2013-11-01
The evolution of C4 photosynthesis in many taxa involves the establishment of a two-celled photorespiratory CO2 pump, termed C2 photosynthesis. How C3 species evolved C2 metabolism is critical to understanding the initial phases of C4 plant evolution. To evaluate early events in C4 evolution, we compared leaf anatomy, ultrastructure, and gas-exchange responses of closely related C3 and C2 species of Flaveria, a model genus for C4 evolution. We hypothesized that Flaveria pringlei and Flaveria robusta, two C3 species that are most closely related to the C2 Flaveria species, would show rudimentary characteristics of C2 physiology. Compared with less-related C3 species, bundle sheath (BS) cells of F. pringlei and F. robusta had more mitochondria and chloroplasts, larger mitochondria, and proportionally more of these organelles located along the inner cell periphery. These patterns were similar, although generally less in magnitude, than those observed in the C2 species Flaveria angustifolia and Flaveria sonorensis. In F. pringlei and F. robusta, the CO2 compensation point of photosynthesis was slightly lower than in the less-related C3 species, indicating an increase in photosynthetic efficiency. This could occur because of enhanced refixation of photorespired CO2 by the centripetally positioned organelles in the BS cells. If the phylogenetic positions of F. pringlei and F. robusta reflect ancestral states, these results support a hypothesis that increased numbers of centripetally located organelles initiated a metabolic scavenging of photorespired CO2 within the BS. This could have facilitated the formation of a glycine shuttle between mesophyll and BS cells that characterizes C2 photosynthesis.
A Novel Gene, OZONE-RESPONSIVE APOPLASTIC PROTEIN1, Enhances Cell Death in Ozone Stress in Rice1
Ueda, Yoshiaki; Siddique, Shahid; Frei, Michael
2015-01-01
A novel protein, OZONE-RESPONSIVE APOPLASTIC PROTEIN1 (OsORAP1), was characterized, which was previously suggested as a candidate gene underlying OzT9, a quantitative trait locus for ozone stress tolerance in rice (Oryza sativa). The sequence of OsORAP1 was similar to that of ASCORBATE OXIDASE (AO) proteins. It was localized in the apoplast, as shown by transient expression of an OsORAP1/green fluorescent protein fusion construct in Nicotiana benthamiana leaf epidermal and mesophyll cells, but did not possess AO activity, as shown by heterologous expression of OsORAP1 in Arabidopsis (Arabidopsis thaliana) mutants with reduced background AO activity. A knockout rice line of OsORAP1 showed enhanced tolerance to ozone stress (120 nL L−1 average daytime concentration, 20 d), as demonstrated by less formation of leaf visible symptoms (i.e. cell death), less lipid peroxidation, and lower NADPH oxidase activity, indicating reduced active production of reactive oxygen species. In contrast, the effect of ozone on chlorophyll content was not significantly different among the lines. These observations suggested that OsORAP1 specifically induced cell death in ozone stress. Significantly enhanced expression of jasmonic acid-responsive genes in the knockout line implied the involvement of the jasmonic acid pathway in symptom mitigation. Sequence analysis revealed extensive polymorphisms in the promoter region of OsORAP1 between the ozone-susceptible cv Nipponbare and the ozone-tolerant cv Kasalath, the OzT9 donor variety, which could be responsible for the differential regulation of OsORAP1 reported earlier. These pieces of evidence suggested that OsORAP1 enhanced cell death in ozone stress, and its expression levels could explain the effect of a previously reported quantitative trait locus. PMID:26220952
Functional Analysis of Corn Husk Photosynthesis[W][OA
Pengelly, Jasper J.L.; Kwasny, Scott; Bala, Soumi; Evans, John R.; Voznesenskaya, Elena V.; Koteyeva, Nuria K.; Edwards, Gerald E.; Furbank, Robert T.; von Caemmerer, Susanne
2011-01-01
The husk surrounding the ear of corn/maize (Zea mays) has widely spaced veins with a number of interveinal mesophyll (M) cells and has been described as operating a partial C3 photosynthetic pathway, in contrast to its leaves, which use the C4 photosynthetic pathway. Here, we characterized photosynthesis in maize husk and leaf by measuring combined gas exchange and carbon isotope discrimination, the oxygen dependence of the CO2 compensation point, and photosynthetic enzyme activity and localization together with anatomy. The CO2 assimilation rate in the husk was less than that in the leaves and did not saturate at high CO2, indicating CO2 diffusion limitations. However, maximal photosynthetic rates were similar between the leaf and husk when expressed on a chlorophyll basis. The CO2 compensation points of the husk were high compared with the leaf but did not vary with oxygen concentration. This and the low carbon isotope discrimination measured concurrently with gas exchange in the husk and leaf suggested C4-like photosynthesis in the husk. However, both Rubisco activity and the ratio of phosphoenolpyruvate carboxylase to Rubisco activity were reduced in the husk. Immunolocalization studies showed that phosphoenolpyruvate carboxylase is specifically localized in the layer of M cells surrounding the bundle sheath cells, while Rubisco and glycine decarboxylase were enriched in bundle sheath cells but also present in M cells. We conclude that maize husk operates C4 photosynthesis dispersed around the widely spaced veins (analogous to leaves) in a diffusion-limited manner due to low M surface area exposed to intercellular air space, with the functional role of Rubisco and glycine decarboxylase in distant M yet to be explained. PMID:21511990
Hiltscher, Heiko; Rudnik, Radoslaw; Shaikhali, Jehad; Heiber, Isabelle; Mellenthin, Marina; Meirelles Duarte, Iuri; Schuster, Günter; Kahmann, Uwe; Baier, Margarete
2014-01-01
The rimb1 (redox imbalanced 1) mutation was mapped to the RCD1 locus (radical-induced cell death 1; At1g32230) demonstrating that a major factor involved in redox-regulation genes for chloroplast antioxidant enzymes and protection against photooxidative stress, RIMB1, is identical to the regulator of disease response reactions and cell death, RCD1. Discovering this link let to our investigation of its regulatory mechanism. We show in yeast that RCD1 can physically interact with the transcription factor Rap2.4a which provides redox-sensitivity to nuclear expression of genes for chloroplast antioxidant enzymes. In the rimb1 (rcd1-6) mutant, a single nucleotide exchange results in a truncated RCD1 protein lacking the transcription factor binding site. Protein-protein interaction between full-length RCD1 and Rap2.4a is supported by H2O2, but not sensitive to the antioxidants dithiotreitol and ascorbate. In combination with transcript abundance analysis in Arabidopsis, it is concluded that RCD1 stabilizes the Rap2.4-dependent redox-regulation of the genes encoding chloroplast antioxidant enzymes in a widely redox-independent manner. Over the years, rcd1-mutant alleles have been described to develop symptoms like chlorosis, lesions along the leaf rims and in the mesophyll and (secondary) induction of extra- and intra-plastidic antioxidant defense mechanisms. All these rcd1 mutant characteristics were observed in rcd1-6 to succeed low activation of the chloroplast antioxidant system and glutathione biosynthesis. We conclude that RCD1 protects plant cells from running into reactive oxygen species (ROS)-triggered programs, such as cell death and activation of pathogen-responsive genes (PR genes) and extra-plastidic antioxidant enzymes, by supporting the induction of the chloroplast antioxidant system. PMID:25295044
Heimann, Louisa; Horst, Ina; Perduns, Renke; Dreesen, Björn; Offermann, Sascha; Peterhansel, Christoph
2013-05-01
C4 photosynthesis evolved more than 60 times independently in different plant lineages. Each time, multiple genes were recruited into C4 metabolism. The corresponding promoters acquired new regulatory features such as high expression, light induction, or cell type-specific expression in mesophyll or bundle sheath cells. We have previously shown that histone modifications contribute to the regulation of the model C4 phosphoenolpyruvate carboxylase (C4-Pepc) promoter in maize (Zea mays). We here tested the light- and cell type-specific responses of three selected histone acetylations and two histone methylations on five additional C4 genes (C4-Ca, C4-Ppdk, C4-Me, C4-Pepck, and C4-RbcS2) in maize. Histone acetylation and nucleosome occupancy assays indicated extended promoter regions with regulatory upstream regions more than 1,000 bp from the transcription initiation site for most of these genes. Despite any detectable homology of the promoters on the primary sequence level, histone modification patterns were highly coregulated. Specifically, H3K9ac was regulated by illumination, whereas H3K4me3 was regulated in a cell type-specific manner. We further compared histone modifications on the C4-Pepc and C4-Me genes from maize and the homologous genes from sorghum (Sorghum bicolor) and Setaria italica. Whereas sorghum and maize share a common C4 origin, C4 metabolism evolved independently in S. italica. The distribution of histone modifications over the promoters differed between the species, but differential regulation of light-induced histone acetylation and cell type-specific histone methylation were evident in all three species. We propose that a preexisting histone code was recruited into C4 promoter control during the evolution of C4 metabolism.
Sack, Lawren; Scoffoni, Christine
2012-12-31
Water is a key resource, and the plant water transport system sets limits on maximum growth and drought tolerance. When plants open their stomata to achieve a high stomatal conductance (gs) to capture CO2 for photosynthesis, water is lost by transpiration(1,2). Water evaporating from the airspaces is replaced from cell walls, in turn drawing water from the xylem of leaf veins, in turn drawing from xylem in the stems and roots. As water is pulled through the system, it experiences hydraulic resistance, creating tension throughout the system and a low leaf water potential (Ψ(leaf)). The leaf itself is a critical bottleneck in the whole plant system, accounting for on average 30% of the plant hydraulic resistance(3). Leaf hydraulic conductance (K(leaf) = 1/ leaf hydraulic resistance) is the ratio of the water flow rate to the water potential gradient across the leaf, and summarizes the behavior of a complex system: water moves through the petiole and through several orders of veins, exits into the bundle sheath and passes through or around mesophyll cells before evaporating into the airspace and being transpired from the stomata. K(leaf) is of strong interest as an important physiological trait to compare species, quantifying the effectiveness of the leaf structure and physiology for water transport, and a key variable to investigate for its relationship to variation in structure (e.g., in leaf venation architecture) and its impacts on photosynthetic gas exchange. Further, K(leaf) responds strongly to the internal and external leaf environment(3). K(leaf) can increase dramatically with irradiance apparently due to changes in the expression and activation of aquaporins, the proteins involved in water transport through membranes(4), and K(leaf) declines strongly during drought, due to cavitation and/or collapse of xylem conduits, and/or loss of permeability in the extra-xylem tissues due to mesophyll and bundle sheath cell shrinkage or aquaporin deactivation(5-10). Because K(leaf) can constrain gs and photosynthetic rate across species in well watered conditions and during drought, and thus limit whole-plant performance they may possibly determine species distributions especially as droughts increase in frequency and severity(11-14). We present a simple method for simultaneous determination of K(leaf) and gs on excised leaves. A transpiring leaf is connected by its petiole to tubing running to a water source on a balance. The loss of water from the balance is recorded to calculate the flow rate through the leaf. When steady state transpiration (E, mmol • m(-2) • s(-1)) is reached, gs is determined by dividing by vapor pressure deficit, and K(leaf) by dividing by the water potential driving force determined using a pressure chamber (K(leaf)= E /- Δψ(leaf), MPa)(15). This method can be used to assess K(leaf) responses to different irradiances and the vulnerability of K(leaf) to dehydration(14,16,17).
Liu, Guosheng; Sheng, Xiaoyan; Greenshields, David L; Ogieglo, Adam; Kaminskyj, Susan; Selvaraj, Gopalan; Wei, Yangdou
2005-07-01
A cDNA library was constructed from leaf epidermis of diploid wheat (Triticum monococcum) infected with the powdery mildew fungus (Blumeria graminis f. sp. tritici) and was screened for genes encoding peroxidases. From 2,500 expressed sequence tags (ESTs), 36 cDNAs representing 10 peroxidase genes (designated TmPRX1 to TmPRX10) were isolated and further characterized. Alignment of the deduced amino acid sequences and phylogenetic clustering with peroxidases from other plant species demonstrated that these peroxidases fall into four distinct groups. Differential expression and tissue-specific localization among the members were observed during the B. graminis f. sp. tritici attack using Northern blots and reverse-transcriptase polymerase chain reaction analyses. Consistent with its abundance in the EST collection, TmPRX1 expression showed the highest induction during pathogen attack and fluctuated in response to the fungal parasitic stages. TmPRX1 to TmPRX6 were expressed predominantly in mesophyll cells, whereas TmPRX7 to TmPRX10, which feature a putative C-terminal propeptide, were detectable mainly in epidermal cells. Using TmPRX8 as a representative, we demonstrated that its C-terminal propeptide was sufficient to target a green fluorescent protein fusion protein to the vacuoles in onion cells. Finally, differential expression profiles of the TmPRXs after abiotic stresses and signal molecule treatments were used to dissect the potential role of these peroxidases in multiple stress and defense pathways.
Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii.
Tian, Shengke; Lu, Lingli; Labavitch, John; Yang, Xiaoe; He, Zhenli; Hu, Hening; Sarangi, Ritimukta; Newville, Matt; Commisso, Joel; Brown, Patrick
2011-12-01
Spatial imaging of cadmium (Cd) in the hyperaccumulator Sedum alfredii was investigated in vivo by laser ablation inductively coupled plasma mass spectrometry and x-ray microfluorescence imaging. Preferential Cd accumulation in the pith and cortex was observed in stems of the Cd hyperaccumulating ecotype (HE), whereas Cd was restricted to the vascular bundles in its contrasting nonhyperaccumulating ecotype. Cd concentrations of up to 15,000 μg g(-1) were measured in the pith cells, which was many fold higher than the concentrations in the stem epidermis and vascular bundles in the HE plants. In the leaves of the HE, Cd was mainly localized to the mesophyll and vascular cells rather than the epidermis. The distribution pattern of Cd in both stems and leaves of the HE was very similar to calcium but not zinc, irrespective of Cd exposure levels. Extended x-ray absorption fine structure spectroscopy analysis showed that Cd in the stems and leaves of the HE was mainly associated with oxygen ligands, and a larger proportion (about 70% in leaves and 47% in stems) of Cd was bound with malic acid, which was the major organic acid in the shoots of the plants. These results indicate that a majority of Cd in HE accumulates in the parenchyma cells, especially in stems, and is likely associated with calcium pathways and bound with organic acid (malate), which is indicative of a critical role of vacuolar sequestration of Cd in the HE S. alfredii.
Hamdoun, Safae; Gao, Min; Gill, Manroop; Kwon, Ashley; Norelli, John L; Lu, Hua
2018-05-01
Erwinia amylovora is the causal agent of the fire blight disease in some plants of the Rosaceae family. The non-host plant Arabidopsis serves as a powerful system for the dissection of mechanisms of resistance to E. amylovora. Although not yet known to mount gene-for-gene resistance to E. amylovora, we found that Arabidopsis activated strong defence signalling mediated by salicylic acid (SA), with kinetics and amplitude similar to that induced by the recognition of the bacterial effector avrRpm1 by the resistance protein RPM1. Genetic analysis further revealed that SA signalling, but not signalling mediated by ethylene (ET) and jasmonic acid (JA), is required for E. amylovora resistance. Erwinia amylovora induces massive callose deposition on infected leaves, which is independent of SA, ET and JA signalling and is necessary for E. amylovora resistance in Arabidopsis. We also observed tumour-like growths on E. amylovora-infected Arabidopsis leaves, which contain enlarged mesophyll cells with increased DNA content and are probably a result of endoreplication. The formation of such growths is largely independent of SA signalling and some E. amylovora effectors. Together, our data reveal signalling requirements for E. amylovora-induced disease resistance, callose deposition and cell fate change in the non-host plant Arabidopsis. Knowledge from this study could facilitate a better understanding of the mechanisms of host defence against E. amylovora and eventually improve host resistance to the pathogen. © 2017 BSPP AND JOHN WILEY & SONS LTD.
Hymus, Graham J; Cai, Suqin; Kohl, Elizabeth A; Holtan, Hans E; Marion, Colleen M; Tiwari, Shiv; Maszle, Don R; Lundgren, Marjorie R; Hong, Melissa C; Channa, Namitha; Loida, Paul; Thompson, Rebecca; Taylor, J Philip; Rice, Elena; Repetti, Peter P; Ratcliffe, Oliver J; Reuber, T Lynne; Creelman, Robert A
2013-11-01
Transcription factors are proposed as suitable targets for the control of traits such as yield or food quality in plants. This study reports the results of a functional genomics research effort that identified ATHB17, a transcription factor from the homeodomain-leucine zipper class II family, as a novel target for the enhancement of photosynthetic capacity. It was shown that ATHB17 is expressed natively in the root quiescent centre (QC) from Arabidopsis embryos and seedlings. Analysis of the functional composition of genes differentially expressed in the QC from a knockout mutant (athb17-1) compared with its wild-type sibling revealed the over-representation of genes involved in auxin stimulus, embryo development, axis polarity specification, and plastid-related processes. While no other phenotypes were observed in athb17-1 plants, overexpression of ATHB17 produced a number of phenotypes in Arabidopsis including enhanced chlorophyll content. Image analysis of isolated mesophyll cells of 35S::ATHB17 lines revealed an increase in the number of chloroplasts per unit cell size, which is probably due to an increase in the number of proplastids per meristematic cell. Leaf physiological measurements provided evidence of improved photosynthetic capacity in 35S::ATHB17 lines on a per unit leaf area basis. Estimates of the capacity for ribulose-1,5-bisphosphate-saturated and -limited photosynthesis were significantly higher in 35S::ATHB17 lines.
Kohl, Elizabeth A.; Tiwari, Shiv; Lundgren, Marjorie R.; Channa, Namitha; Creelman, Robert A.
2013-01-01
Transcription factors are proposed as suitable targets for the control of traits such as yield or food quality in plants. This study reports the results of a functional genomics research effort that identified ATHB17, a transcription factor from the homeodomain-leucine zipper class II family, as a novel target for the enhancement of photosynthetic capacity. It was shown that ATHB17 is expressed natively in the root quiescent centre (QC) from Arabidopsis embryos and seedlings. Analysis of the functional composition of genes differentially expressed in the QC from a knockout mutant (athb17-1) compared with its wild-type sibling revealed the over-representation of genes involved in auxin stimulus, embryo development, axis polarity specification, and plastid-related processes. While no other phenotypes were observed in athb17-1 plants, overexpression of ATHB17 produced a number of phenotypes in Arabidopsis including enhanced chlorophyll content. Image analysis of isolated mesophyll cells of 35S::ATHB17 lines revealed an increase in the number of chloroplasts per unit cell size, which is probably due to an increase in the number of proplastids per meristematic cell. Leaf physiological measurements provided evidence of improved photosynthetic capacity in 35S::ATHB17 lines on a per unit leaf area basis. Estimates of the capacity for ribulose-1,5-bisphosphate-saturated and -limited photosynthesis were significantly higher in 35S::ATHB17 lines. PMID:24006420
Symplasmic transport and phloem loading in gymnosperm leaves
Liesche, Johannes; Martens, Helle Juel
2010-01-01
Despite more than 130 years of research, phloem loading is far from being understood in gymnosperms. In part this is due to the special architecture of their leaves. They differ from angiosperm leaves among others by having a transfusion tissue between bundle sheath and the axial vascular elements. This article reviews the somewhat inaccessible and/or neglected literature and identifies the key points for pre-phloem transport and loading of photoassimilates. The pre-phloem pathway of assimilates is structurally characterized by a high number of plasmodesmata between all cell types starting in the mesophyll and continuing via bundle sheath, transfusion parenchyma, Strasburger cells up to the sieve elements. Occurrence of median cavities and branching indicates that primary plasmodesmata get secondarily modified and multiplied during expansion growth. Only functional tests can elucidate whether this symplasmic pathway is indeed continuous for assimilates, and if phloem loading in gymnosperms is comparable with the symplasmic loading mode in many angiosperm trees. In contrast to angiosperms, the bundle sheath has properties of an endodermis and is equipped with Casparian strips or other wall modifications that form a domain border for any apoplasmic transport. It constitutes a key point of control for nutrient transport, where the opposing flow of mineral nutrients and photoassimilates has to be accommodated in each single cell, bringing to mind the principle of a revolving door. The review lists a number of experiments needed to elucidate the mode of phloem loading in gymnosperms. PMID:21107620
Majeran, Wojciech; Friso, Giulia; Ponnala, Lalit; Connolly, Brian; Huang, Mingshu; Reidel, Edwin; Zhang, Cankui; Asakura, Yukari; Bhuiyan, Nazmul H; Sun, Qi; Turgeon, Robert; van Wijk, Klaas J
2010-11-01
C(4) grasses, such as maize (Zea mays), have high photosynthetic efficiency through combined biochemical and structural adaptations. C(4) photosynthesis is established along the developmental axis of the leaf blade, leading from an undifferentiated leaf base just above the ligule into highly specialized mesophyll cells (MCs) and bundle sheath cells (BSCs) at the tip. To resolve the kinetics of maize leaf development and C(4) differentiation and to obtain a systems-level understanding of maize leaf formation, the accumulation profiles of proteomes of the leaf and the isolated BSCs with their vascular bundle along the developmental gradient were determined using large-scale mass spectrometry. This was complemented by extensive qualitative and quantitative microscopy analysis of structural features (e.g., Kranz anatomy, plasmodesmata, cell wall, and organelles). More than 4300 proteins were identified and functionally annotated. Developmental protein accumulation profiles and hierarchical cluster analysis then determined the kinetics of organelle biogenesis, formation of cellular structures, metabolism, and coexpression patterns. Two main expression clusters were observed, each divided in subclusters, suggesting that a limited number of developmental regulatory networks organize concerted protein accumulation along the leaf gradient. The coexpression with BSC and MC markers provided strong candidates for further analysis of C(4) specialization, in particular transporters and biogenesis factors. Based on the integrated information, we describe five developmental transitions that provide a conceptual and practical template for further analysis. An online protein expression viewer is provided through the Plant Proteome Database.
2010-01-01
Background Camptotheca acuminata is a major natural source of the terpenoid indole alkaloid camptothecin (CPT). At present, little is known about the cellular distribution of the biosynthesis of CPT, which would be useful knowledge for developing new strategies and technologies for improving alkaloid production. Results The pattern of CPT accumulation was compared with the expression pattern of some genes involved in CPT biosynthesis in C. acuminata [i.e., Ca-TDC1 and Ca-TDC2 (encoding for tryptophan decarboxylase) and Ca-HGO (encoding for 10-hydroxygeraniol oxidoreductase)]. Both CPT accumulation and gene expression were investigated in plants at different degrees of development and in plantlets subjected to drought-stress. In all organs, CPT accumulation was detected in epidermal idioblasts, in some glandular trichomes, and in groups of idioblast cells localized in parenchyma tissues. Drought-stress caused an increase in CPT accumulation and in the number of glandular trichomes containing CPT, whereas no increase in epidermal or parenchymatous idioblasts was observed. In the leaf, Ca-TDC1 expression was detected in some epidermal cells and in groups of mesophyll cells but not in glandular trichomes; in the stem, it was observed in parenchyma cells of the vascular tissue; in the root, no expression was detected. Ca-TDC2 expression was observed exclusively in leaves of plantlets subjected to drought-stress, in the same sites described for Ca-TDC1. In the leaf, Ca-HGO was detected in all chlorenchyma cells; in the stem, it was observed in the same sites described for Ca-TDC1; in the root, no expression was detected. Conclusions The finding that the sites of CPT accumulation are not consistently the same as those in which the studied genes are expressed demonstrates an organ-to-organ and cell-to-cell translocation of CPT or its precursors. PMID:20403175
Valletta, Alessio; Trainotti, Livio; Santamaria, Anna Rita; Pasqua, Gabriella
2010-04-19
Camptotheca acuminata is a major natural source of the terpenoid indole alkaloid camptothecin (CPT). At present, little is known about the cellular distribution of the biosynthesis of CPT, which would be useful knowledge for developing new strategies and technologies for improving alkaloid production. The pattern of CPT accumulation was compared with the expression pattern of some genes involved in CPT biosynthesis in C. acuminata [i.e., Ca-TDC1 and Ca-TDC2 (encoding for tryptophan decarboxylase) and Ca-HGO (encoding for 10-hydroxygeraniol oxidoreductase)]. Both CPT accumulation and gene expression were investigated in plants at different degrees of development and in plantlets subjected to drought-stress. In all organs, CPT accumulation was detected in epidermal idioblasts, in some glandular trichomes, and in groups of idioblast cells localized in parenchyma tissues. Drought-stress caused an increase in CPT accumulation and in the number of glandular trichomes containing CPT, whereas no increase in epidermal or parenchymatous idioblasts was observed. In the leaf, Ca-TDC1 expression was detected in some epidermal cells and in groups of mesophyll cells but not in glandular trichomes; in the stem, it was observed in parenchyma cells of the vascular tissue; in the root, no expression was detected. Ca-TDC2 expression was observed exclusively in leaves of plantlets subjected to drought-stress, in the same sites described for Ca-TDC1. In the leaf, Ca-HGO was detected in all chlorenchyma cells; in the stem, it was observed in the same sites described for Ca-TDC1; in the root, no expression was detected. The finding that the sites of CPT accumulation are not consistently the same as those in which the studied genes are expressed demonstrates an organ-to-organ and cell-to-cell translocation of CPT or its precursors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamprecht, W.O. Jr.; Powell, R.D.
Coleus blumei Benth. Cv. 12th Man was fumigated with hydrogen fluoride gas. The treatment caused the development of lesions which originally involved the mesophyll but spread to and eventually included the epidermis. An anthocyanin, cyanidin-3,5-diglucoside acylated with p-coumaric acid, was destroyed and it was postulated that the flavanonol, dihydrokaempferol, was converted to the flavone, apigenin. The anthocyanin destruction and pigment conversion occurred following membrane injury and mixing of the cellular constituents. 17 references, 1 figure, 1 table.
NASA Astrophysics Data System (ADS)
Kim, Hyejeong; Kim, Hyeonjeong; Huh, Hyungkyu; Hwang, Hyung Ju; Lee, Sang Joon
2014-11-01
Plant leaves are generally known to have optimized morphological structure in response to environmental changes for efficient water usage. However, the advantageous features of plant leaves are not fully utilized in engineering fields yet, since the optimum design in internal structure of plant leaves is unclear. In this study, the tissue organization of the hydraulic pathways inside plant leaves was investigated. Water transport through double-layered porous hydrogel models analogous to mesophyll cells was experimentally observed. In addition, computational experiment and theoretical analysis were applied to the model systems to find the optimal design for efficient water transport. As a result, the models with lower porosity or with pores distributed widely in the structure exhibit efficient mass transport. Our theoretical prediction supports that structural features of plant leaves guarantee sufficient water supply as survival strategy. This study may provide a new framework for investigating the biophysical principles governing the morphological optimization of plant leaves and for designing microfluidic devices to enhance mass transport ability. This study was supported by the National Research Foundation of Korea and funded by the Korean government.
USDA-ARS?s Scientific Manuscript database
The responses of CO2 assimilation to [CO2] (A/Ci) were investigated at two developmental stages (R5 and R6) and in several soybean cultivars grown under two levels of [CO2], the ambient level of 370 µbar versus the elevated level of 550 µbar. The A/Ci data were analyzed and compared using various cu...
Barreto de Deus, Tamiles; Mendes da Silva, Ricardo; Karine da Silva Lima, Wanessa; Virgens Lima, Danuza das; dos Santos Silva, Adriana
2017-01-01
The present study evaluated the microbiological and sanitary quality of curd cheese sold on the beaches of the Itaparica Island, Brazil, and verified whether a correlation exists between the commercialization conditions and the microbiological data. The research was performed between December 2015 and March 2017. Sixty samples of rennet-containing cheese were collected to estimate the populations of mesophylls, psychrotrophic microorganisms, mold and yeast, Staphylococcus aureus, total coliforms, and Escherichia coli. An observational analysis was performed during the collection, using a checklist to verify the sellers' sanitary conditions and cheese marketing. A high nonconformity index was registered regarding aspects in the checklist. In the microbiological analyses, the number of mesophylls in raw and roasted samples ranged from 7,88 to 14,82 log CFU/mL, and those of psychrotrophs ranged from 2,80 to 3,84 log CFU/mL. Meanwhile, mold and yeast levels in the samples ranged from 8,06 to 5,54 log CFU/mL, S. aureus was detected at levels from 3,24 to 4,94 log CFU/mL, and the total coliform counts ranged from 4,48 to 7,18 log CFU/mL. The number of E. coli specimens ranged from 2,96 to 5,75 log CFU/mL. Microbial insecurity was noted for commercialized curd cheese, and the need for intervention was indicated. PMID:29362565
Perez-Martin, Alfonso; Michelazzo, Chiara; Torres-Ruiz, Jose M.; Flexas, Jaume; Fernández, José E.; Sebastiani, Luca; Diaz-Espejo, Antonio
2014-01-01
The hypothesis that aquaporins and carbonic anhydrase (CA) are involved in the regulation of stomatal (g s) and mesophyll (g m) conductance to CO2 was tested in a short-term water-stress and recovery experiment in 5-year-old olive plants (Olea europaea) growing outdoors. The evolution of leaf gas exchange, chlorophyll fluorescence, and plant water status, and a quantitative analysis of photosynthesis limitations, were followed during water stress and recovery. These variables were correlated with gene expression of the aquaporins OePIP1.1 and OePIP2.1, and stromal CA. At mild stress and at the beginning of the recovery period, stomatal limitations prevailed, while the decline in g m accounted for up to 60% of photosynthesis limitations under severe water stress. However, g m was restored to control values shortly after rewatering, facilitating the recovery of the photosynthetic rate. CA was downregulated during water stress and upregulated after recovery. The use of structural equation modelling allowed us to conclude that both OePIP1.1 and OePIP2.1 expression could explain most of the variations observed for g s and g m. CA expression also had a small but significant effect on g m in olive under water-stress conditions. PMID:24799563
On the progressive enrichment of the oxygen isotopic composition of water along a leaf.
Farquhar, G. D.; Gan, K. S.
2003-06-01
A model has been derived for the enrichment of heavy isotopes of water in leaves, including progressive enrichment along the leaf. In the model, lighter water is preferentially transpired leaving heavier water to diffuse back into the xylem and be carried further along the leaf. For this pattern to be pronounced, the ratio of advection to diffusion (Péclet number) has to be large in the longitudinal direction, and small in the radial direction. The progressive enrichment along the xylem is less than that occurring at the sites of evaporation in the mesophyll, depending on the isolation afforded by the radial Péclet number. There is an upper bound on enrichment, and effects of ground tissue associated with major veins are included. When transpiration rate is spatially nonuniform, averaging of enrichment occurs more naturally with transpiration weighting than with area-based weighting. This gives zero average enrichment of transpired water, the modified Craig-Gordon equation for average enrichment at the sites of evaporation and the Farquhar and Lloyd (In Stable Isotopes and Plant Carbon-Water Relations, pp. 47-70. Academic Press, New York, USA, 1993) prediction for mesophyll water. Earlier results on the isotopic composition of evolved oxygen and of retro-diffused carbon dioxide are preserved if these processes vary in parallel with transpiration rate. Parallel variation should be indicated approximately by uniform carbon isotope discrimination across the leaf.
Sperlich, D; Chang, C T; Peñuelas, J; Gracia, C; Sabaté, S
2015-05-01
The Mediterranean region is a hot spot of climate change vulnerable to increased droughts and heat waves. Scaling carbon fluxes from leaf to landscape levels is particularly challenging under drought conditions. We aimed to improve the mechanistic understanding of the seasonal acclimation of photosynthesis and morphology in sunlit and shaded leaves of four Mediterranean trees (Quercus ilex L., Pinus halepensis Mill., Arbutus unedo L. and Quercus pubescens Willd.) under natural conditions. Vc,max and Jmax were not constant, and mesophyll conductance was not infinite, as assumed in most terrestrial biosphere models, but varied significantly between seasons, tree species and leaf position. Favourable conditions in winter led to photosynthetic recovery and growth in the evergreens. Under moderate drought, adjustments in the photo/biochemistry and stomatal/mesophyllic diffusion behaviour effectively protected the photosynthetic machineries. Severe drought, however, induced early leaf senescence mostly in A. unedo and Q. pubescens, and significantly increased leaf mass per area in Q. ilex and P. halepensis. Shaded leaves had lower photosynthetic potentials but cushioned negative effects during stress periods. Species-specificity, seasonal variations and leaf position are key factors to explain vegetation responses to abiotic stress and hold great potential to reduce uncertainties in terrestrial biosphere models especially under drought conditions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Gong, Han Yu; Li, Yang; Fang, Gen; Hu, Dao Heng; Jin, Wen Bin; Wang, Zhao Hai; Li, Yang Sheng
2015-01-01
To find a way to promote the rate of carbon flux and further improve the photosynthetic rate in rice, two CO2-transporting and fixing relevant genes, Ictb and FBP/Sbpase, which were derived from cyanobacteria with the 35SCaMV promotor in the respective constructs, were transformed into rice. Three homologous transgenic groups with Ictb, FBP/Sbpase and the two genes combined were constructed in parallel, and the functional effects of these two genes were investigated by physiological, biochemical and leaf anatomy analyses. The results indicated that the mesophyll conductance and net photosynthetic rate were higher at approximately 10.5-36.8% and 13.5-34.6%, respectively, in the three groups but without any changes in leaf anatomy structure compared with wild type. Other physiological and biochemical parameters increased with the same trend in the three groups, which showed that the effect of FBP/SBPase on improving photosynthetic capacity was better than that of ICTB and that there was an additive effect in ICTB+FBP/SBPase. ICTB localized in the cytoplasm, whereas FBP/SBPase was successfully transported to the chloroplast. The two genes might show a synergistic interaction to promote carbon flow and the assimilation rate as a whole. The multigene transformation engineering and its potential utility for improving the photosynthetic capacity and yield in rice were discussed.
Mizokami, Yusuke; Noguchi, Ko; Kojima, Mikiko; Sakakibara, Hitoshi; Terashima, Ichiro
2015-03-01
Under drought conditions, leaf photosynthesis is limited by the supply of CO2 . Drought induces production of abscisic acid (ABA), and ABA decreases stomatal conductance (gs ). Previous papers reported that the drought stress also causes the decrease in mesophyll conductance (gm ). However, the relationships between ABA content and gm are unclear. We investigated the responses of gm to the leaf ABA content [(ABA)L ] using an ABA-deficient mutant, aba1, and the wild type (WT) of Nicotiana plumbaginifolia. We also measured leaf water potential (ΨL ) because leaf hydraulics may be related to gm . Under drought conditions, gm decreased with the increase in (ABA)L in WT, whereas both (ABA)L and gm were unchanged by the drought treatment in aba1. Exogenously applied ABA decreased gm in both WT and aba1 in a dose-dependent manner. ΨL in WT was decreased by the drought treatment to -0.7 MPa, whereas ΨL in aba1 was around -0.8 MPa even under the well-watered conditions and unchanged by the drought treatment. From these results, we conclude that the increase in (ABA)L is crucial for the decrease in gm under drought conditions. We discuss possible relationships between the decrease in gm and changes in the leaf hydraulics. © 2014 John Wiley & Sons Ltd.
Sun, Ying; Gu, Lianhong; Dickinson, Robert E; Pallardy, Stephen G; Baker, John; Cao, Yonghui; DaMatta, Fábio Murilo; Dong, Xuejun; Ellsworth, David; Van Goethem, Davina; Jensen, Anna M; Law, Beverly E; Loos, Rodolfo; Martins, Samuel C Vitor; Norby, Richard J; Warren, Jeffrey; Weston, David; Winter, Klaus
2014-04-01
Worldwide measurements of nearly 130 C3 species covering all major plant functional types are analysed in conjunction with model simulations to determine the effects of mesophyll conductance (g(m)) on photosynthetic parameters and their relationships estimated from A/Ci curves. We find that an assumption of infinite g(m) results in up to 75% underestimation for maximum carboxylation rate V(cmax), 60% for maximum electron transport rate J(max), and 40% for triose phosphate utilization rate T(u) . V(cmax) is most sensitive, J(max) is less sensitive, and T(u) has the least sensitivity to the variation of g(m). Because of this asymmetrical effect of g(m), the ratios of J(max) to V(cmax), T(u) to V(cmax) and T(u) to J(max) are all overestimated. An infinite g(m) assumption also limits the freedom of variation of estimated parameters and artificially constrains parameter relationships to stronger shapes. These findings suggest the importance of quantifying g(m) for understanding in situ photosynthetic machinery functioning. We show that a nonzero resistance to CO2 movement in chloroplasts has small effects on estimated parameters. A non-linear function with gm as input is developed to convert the parameters estimated under an assumption of infinite gm to proper values. This function will facilitate gm representation in global carbon cycle models. © 2013 John Wiley & Sons Ltd.
Teng, Hong Mei; Fang, Min Feng; Hu, Zheng Hai
2009-02-01
Anatomical, histochemical and phytochemistry methods were used to investigate the structure of vegetative organs, and saponins localization and dynamic changes in Polygala sibirica L. The root consisted of developed periderm and secondary vascular. The secondary phloem was thick, and mainly composed of parenchyma. There were well-developed vessels and fibers in the secondary xylem. The stem was composed of epidermis, cortex and vascular bundle. The ring of sclerenchymatous cells lied between cortex and phloem might be the apoplastic protective screen which could protect the stem from drought. The leaf was bifacial one. The root and stem possessed characteristics adapting to arid environment. Histochemical localization results showed that saponins distributed in secondary phloem and phelloderm of root, in epidermis, cortex and phloem of stem, mainly in mesophyll of leaf. It displayed that saponins accumulated mainly in parenchyma cells of vegetative organs, among of which, the secondary phloem was the main storage site. The HPLC results also showed that the saponins accumulated in all the vegetative organs of Polygala sibirica L., with higher content in roots and lower content in the aerial part that included stems and leaves. The study indicated the aerial part of Polygala sibirica L. also had medicinal value. The saponins content had dynamic variance at the developmental stage, the crude drug should be gathered at period from April to May.
Flavonols Accumulate Asymmetrically and Affect Auxin Transport in Arabidopsis1[C][W][OA
Kuhn, Benjamin M.; Geisler, Markus; Bigler, Laurent; Ringli, Christoph
2011-01-01
Flavonoids represent a class of secondary metabolites with diverse functions in plants including ultraviolet protection, pathogen defense, and interspecies communication. They are also known as modulators of signaling processes in plant and animal systems and therefore are considered to have beneficial effects as nutraceuticals. The rol1-2 (for repressor of lrx1) mutation of Arabidopsis (Arabidopsis thaliana) induces aberrant accumulation of flavonols and a cell-growth phenotype in the shoot. The hyponastic cotyledons, aberrant shape of pavement cells, and deformed trichomes in rol1-2 mutants are suppressed by blocking flavonoid biosynthesis, suggesting that the altered flavonol accumulation in these plants induces the shoot phenotype. Indeed, the identification of several transparent testa, myb, and fls1 (for flavonol synthase1) alleles in a rol1-2 suppressor screen provides genetic evidence that flavonols interfere with shoot development in rol1-2 seedlings. The increased accumulation of auxin in rol1-2 seedlings appears to be caused by a flavonol-induced modification of auxin transport. Quantification of auxin export from mesophyll protoplasts revealed that naphthalene-1-acetic acid but not indole-3-acetic acid transport is affected by the rol1-2 mutation. Inhibition of flavonol biosynthesis in rol1-2 fls1-3 restores naphthalene-1-acetic acid transport to wild-type levels, indicating a very specific mode of action of flavonols on the auxin transport machinery. PMID:21502189
Merali, Zara; Mayer, Melinda J; Parker, Mary L; Michael, Anthony J; Smith, Andrew C; Waldron, Keith W
2012-06-01
Tobacco plants (Nicotiana tabacum cv XHFD 8) were genetically modified to express a bacterial 4-hydroxycinnamoyl-CoA hydratase/lyase (HCHL) enzyme which is active with intermediates of the phenylpropanoid pathway. We have previously shown that HCHL expression in tobacco stem resulted in various pleiotropic effects, indicative of a reduction in the carbon flux through the phenylpropanoid pathway, accompanied by an abnormal phenotype. Here, we report that in addition to the reduction in lignin and phenolic biosynthesis, HCHL expression also resulted in several gross morphological changes in poorly lignified tissue, such as abnormal mesophyll and palisade. The effect of HCHL expression was also noted in lignin-free single cells, with suspension cultures displaying an altered shape and different growth patterns. Poorly/non-lignified cell walls also exhibited a greater ease of alkaline extractability of simple phenolics and increased levels of incorporation of vanillin and vanillic acid. However, HCHL expression had no significant effect on the cell wall carbohydrate chemistry of these tissues. Evidence from this study suggests that changes in the transgenic lines result from a reduction in phenolic intermediates which have an essential role in maintaining structural integrity of low-lignin or lignin-deprived cell walls. These results emphasize the importance of the intermediates and products of phenylpropanoid pathway in modulating aspects of normal growth and development of tobacco. Analysis of these transgenic plants also shows the plasticity of the lignification process and reveals the potential to bioengineer plants with reduced phenolics (without deleterious effects) which could enhance the bioconversion of lignocellulose for industrial applications. Copyright © Physiologia Plantarum 2012.
Jørgensen, Kirsten; Bak, Søren; Busk, Peter Kamp; Sørensen, Charlotte; Olsen, Carl Erik; Puonti-Kaerlas, Johanna; Møller, Birger Lindberg
2005-01-01
Transgenic cassava (Manihot esculenta Crantz, cv MCol22) plants with a 92% reduction in cyanogenic glucoside content in tubers and acyanogenic (<1% of wild type) leaves were obtained by RNA interference to block expression of CYP79D1 and CYP79D2, the two paralogous genes encoding the first committed enzymes in linamarin and lotaustralin synthesis. About 180 independent lines with acyanogenic (<1% of wild type) leaves were obtained. Only a few of these were depleted with respect to cyanogenic glucoside content in tubers. In agreement with this observation, girdling experiments demonstrated that cyanogenic glucosides are synthesized in the shoot apex and transported to the root, resulting in a negative concentration gradient basipetal in the plant with the concentration of cyanogenic glucosides being highest in the shoot apex and the petiole of the first unfolded leaf. Supply of nitrogen increased the cyanogenic glucoside concentration in the shoot apex. In situ polymerase chain reaction studies demonstrated that CYP79D1 and CYP79D2 were preferentially expressed in leaf mesophyll cells positioned adjacent to the epidermis. In young petioles, preferential expression was observed in the epidermis, in the two first cortex cell layers, and in the endodermis together with pericycle cells and specific parenchymatic cells around the laticifers. These data demonstrate that it is possible to drastically reduce the linamarin and lotaustralin content in cassava tubers by blockage of cyanogenic glucoside synthesis in leaves and petioles. The reduced flux to the roots of reduced nitrogen in the form of cyanogenic glucosides did not prevent tuber formation. PMID:16126856
Ryu, J H; Takagi, S; Nagai, R
1995-04-01
In mesophyll cells of the aquatic angiosperm Vallisneria gigantea, bundles of microfilaments (MFs) serve as tracks for the rotational streaming of the cytoplasm, which occurs along the two longer side walls and the two shorter end walls. The stationary organization of these bundles has been shown to depend on the association of the bundles with the plasma membrane at the end walls. To identify the sites of such association, the effects of cytochalasin B (CB) on the configuration of the bundles of MFs were examined. In the case of the side walls, MFs were completely disrupted after treatment with CB at 100 micrograms/ml for 24 hours. By contrast, in the case of the end walls, a number of partially disrupted MFs remained even after 48 hours of treatment. After removal of CB, a completely normal arrangement of bundles of MFs was once again evident within 24 hours after a rather complicated process of reassembly. When reassembly had been completed, the direction of cytoplasmic streaming was reversed only in a small fraction of the treated cells, suggesting that bundles of MFs are anchored and stabilized at the end walls of each cell and that the polarity of reorganized bundles and, therefore, the direction of the cytoplasmic streaming is determined in a manner that depends on the original polarity of MFs that remained in spite of the disruptive action of CB. By contrast, the direction of reinitiated cytoplasmic streaming was reversed in 50% of cells in which the bundles of MFs had been completely disrupted by exogenously applied trypsin prior treatment with CB.(ABSTRACT TRUNCATED AT 250 WORDS)
Christopher, David A; Borsics, Tamas; Yuen, Christen Y L; Ullmer, Wendy; Andème-Ondzighi, Christine; Andres, Marilou A; Kang, Byung-Ho; Staehelin, L Andrew
2007-09-19
The cyclic nucleotide-gated ion channels (CNGCs) maintain cation homeostasis essential for a wide range of physiological processes in plant cells. However, the precise subcellular locations and trafficking of these membrane proteins are poorly understood. This is further complicated by a general deficiency of information about targeting pathways of membrane proteins in plants. To investigate CNGC trafficking and localization, we have measured Atcngc5 and Atcngc10 expression in roots and leaves, analyzed AtCNGC10-GFP fusions transiently expressed in protoplasts, and conducted immunofluorescence labeling of protoplasts and immunoelectron microscopic analysis of high pressure frozen leaves and roots. AtCNGC10 mRNA and protein levels were 2.5-fold higher in roots than leaves, while AtCNGC5 mRNA and protein levels were nearly equal in these tissues. The AtCNGC10-EGFP fusion was targeted to the plasma membrane in leaf protoplasts, and lightly labeled several intracellular structures. Immunofluorescence microscopy with affinity purified CNGC-specific antisera indicated that AtCNGC5 and AtCNGC10 are present in the plasma membrane of protoplasts. Immunoelectron microscopy demonstrated that AtCNGC10 was associated with the plasma membrane of mesophyll, palisade parenchyma and epidermal cells of leaves, and the meristem, columella and cap cells of roots. AtCNCG10 was also observed in the endoplasmic reticulum and Golgi cisternae and vesicles of 50-150 nm in size. Patch clamp assays of an AtCNGC10-GFP fusion expressed in HEK293 cells measured significant cation currents. AtCNGC5 and AtCNGC10 are plasma membrane proteins. We postulate that AtCNGC10 traffics from the endoplasmic reticulum via the Golgi apparatus and associated vesicles to the plasma membrane. The presence of the cation channel, AtCNGC10, in root cap meristem cells, cell plate, and gravity-sensing columella cells, combined with the previously reported antisense phenotypes of decreased gravitropic and cell enlargement responses, suggest roles of AtCNGC10 in modulating cation balance required for root gravitropism, cell division and growth.
Tripp, Erin A; Fatimah, Siti
2012-06-01
Anatomical and morphological features of Satanocrater were studied to test hypotheses of xeric adaptations in the genus, which is endemic to arid tropical Africa. These features, together with molecular data, were used to test the phylogenetic placement of Satanocrater within the large plant family Acanthaceae. We undertook a comparative study of four species of Satanocrater. Carbon isotope ratios were generated to test a hypothesis of C(4) photosynthesis. Molecular data from chloroplast (trnG-trnS, trnG-trnR, psbA-trnH) and nuclear (Eif3E) loci were used to test the placement of Satanocrater within Acanthaceae. Anatomical features reflecting xeric adaptations of species of Satanocrater included a thick-walled epidermis, thick cuticle, abundant trichomes and glandular scales, stomata overarched by subsidiary cells, tightly packed mesophyll cells, and well-developed palisade parenchyma on both leaf surfaces. Although two species had enlarged bundle sheath cells, a feature often implicated in C(4) photosynthesis, isotope ratios indicated all species of Satanocrater use the C(3) pathway. Molecular data resolved Satanocrater within tribe Ruellieae with strong support. Within Ruellieae, our data suggest that pollen morphology of Satanocrater may represent an intermediate stage in a transition series. Anatomical and morphological features of Satanocrater reflect adaptation to xeric environments and add new information about the biology of xerophytes. Morphological and molecular data place Satanocrater in the tribe Ruellieae with confidence. This study adds to our capacity to test hypotheses of broad evolutionary and ecological interest in a diverse and important family of flowering plants.
Bioaccumulation and effects of lanthanum on growth and mitotic index in soybean plants.
de Oliveira, Cynthia; Ramos, Sílvio J; Siqueira, José O; Faquin, Valdemar; de Castro, Evaristo M; Amaral, Douglas C; Techio, Vânia H; Coelho, Lívia C; e Silva, Pedro H P; Schnug, Ewald; Guilherme, Luiz R G
2015-12-01
Rare earth elements such as lanthanum (La) have been used as agricultural inputs in some countries in order to enhance yield and improve crop quality. However, little is known about the effect of La on the growth and structure of soybean, which is an important food and feed crop worldwide. In this study, bioaccumulation of La and its effects on the growth and mitotic index of soybean was evaluated. Soybean plants were exposed to increasing concentrations of La (0, 5, 10, 20, 40, 80, and 160 µM) in nutrient solution for 28 days. Plant response to La was evaluated in terms of plant growth, nutritional characteristics, photosynthetic rate, chlorophyll content, mitotic index, modifications in the ultrastructure of roots and leaves, and La mapping in root and shoot tissues. The results showed that the roots of soybean plants can accumulate sixty-fold more La than shoots. La deposition occurred mainly in cell walls and in crystals dispersed in the root cortex and in the mesophyll. When La was applied, it resulted in increased contents of some essential nutrients (i.e., Ca, P, K, and Mn), while Cu and Fe levels decreased. Moreover, low La concentrations stimulated the photosynthetic rate and total chlorophyll content and lead to a higher incidence of binucleate cells, resulting in a slight increase in roots and shoot biomass. At higher La levels, soybean growth was reduced. This was caused by ultrastructural modifications in the cell wall, thylakoids and chloroplasts, and the appearance of c-metaphases. Copyright © 2015 Elsevier Inc. All rights reserved.
Zhang, Yanxiang; Equiza, Maria Alejandra; Zheng, Quanshui; Tyree, Melvin T
2011-09-01
Leaf morphology in the upper canopy of trees tends to be different from that lower down. The effect of long-term water stress on leaf growth and morphology was studied in seedlings of Metasequoia glyptostroboides to understand how tree height might affect leaf morphology in larger trees. Tree height increases water stress on growing leaves through increased hydraulic resistance to water flow and increased gravitational potential, hence we assume that water stress imposed by soil dehydration will have an effect equivalent to stress induced by height. Seedlings were subjected to well-watered and two constant levels of long-term water stress treatments. Drought treatment significantly reduced final needle count, area and mass per area (leaf mass area, LMA) and increased needle density. Needles from water-stressed plants had lower maximum volumetric elastic modulus (ε(max)), osmotic potential at full turgor (Ψ¹⁰⁰(π)) (and at zero turgor (Ψ⁰(π)) (than those from well-watered plants. Palisade and spongy mesophyll cell size and upper epidermal cell size decreased significantly in drought treatments. Needle relative growth rate, needle length and cell sizes were linear functions of the daily average water potential at the time of leaf growth (r² 0.88-0.999). We conclude that water stress alone does mimic the direction and magnitude of changes in leaf morphology observed in tall trees. The results are discussed in terms of various models for leaf growth rate. Copyright © Physiologia Plantarum 2011.
Rodríguez-Serrano, María; Romero-Puertas, María C.; Pazmiño, Diana M.; Testillano, Pilar S.; Risueño, María C.; del Río, Luis A.; Sandalio, Luisa M.
2009-01-01
Cadmium (Cd) toxicity has been widely studied in different plant species; however, the mechanism involved in its toxicity as well as the cell response against the metal have not been well established. In this work, using pea (Pisum sativum) plants, we studied the effect of Cd on antioxidants, reactive oxygen species (ROS), and nitric oxide (NO) metabolism of leaves using different cellular, molecular, and biochemical approaches. The growth of pea plants with 50 μm CdCl2 affected differentially the expression of superoxide dismutase (SOD) isozymes at both transcriptional and posttranscriptional levels, giving rise to a SOD activity reduction. The copper/zinc-SOD down-regulation was apparently due to the calcium (Ca) deficiency induced by the heavy metal. In these circumstances, the overproduction of the ROS hydrogen peroxide and superoxide could be observed in vivo by confocal laser microscopy, mainly associated with vascular tissue, epidermis, and mesophyll cells, and the production of superoxide radicals was prevented by exogenous Ca. On the other hand, the NO synthase-dependent NO production was strongly depressed by Cd, and treatment with Ca prevented this effect. Under these conditions, the pathogen-related proteins PrP4A and chitinase and the heat shock protein 71.2, were up-regulated, probably to protect cells against damages induced by Cd. The regulation of these proteins could be mediated by jasmonic acid and ethylene, whose contents increased by Cd treatment. A model is proposed for the cellular response to long-term Cd exposure consisting of cross talk between Ca, ROS, and NO. PMID:19279198
2011-08-22
along almost the entire coast of California. Shallow- rooted , mesophyllic plant species that are often drought-deciduous and summer-dormant... root and debris zone of the host plant (Mattoni 1992). Pupae remain in diapause until at least the following flight season. The number of adult...Maschner et al. 1991; Snethkamp and Munns 1991; Lebow 2001; Nettles and Hamilton 2008. 1149/H Location/ lithic scatter/ historic ranch N1, N3 Unevaluated
Dynamic photosynthesis in different environmental conditions.
Kaiser, Elias; Morales, Alejandro; Harbinson, Jeremy; Kromdijk, Johannes; Heuvelink, Ep; Marcelis, Leo F M
2015-05-01
Incident irradiance on plant leaves often fluctuates, causing dynamic photosynthesis. Whereas steady-state photosynthetic responses to environmental factors have been extensively studied, knowledge of dynamic modulation of photosynthesis remains scarce and scattered. This review addresses this discrepancy by summarizing available data and identifying the research questions necessary to advance our understanding of interactions between environmental factors and dynamic behaviour of photosynthesis using a mechanistic framework. Firstly, dynamic photosynthesis is separated into sub-processes related to proton and electron transport, non-photochemical quenching, control of metabolite flux through the Calvin cycle (activation states of Rubisco and RuBP regeneration, and post-illumination metabolite turnover), and control of CO₂ supply to Rubisco (stomatal and mesophyll conductance changes). Secondly, the modulation of dynamic photosynthesis and its sub-processes by environmental factors is described. Increases in ambient CO₂ concentration and temperature (up to ~35°C) enhance rates of photosynthetic induction and decrease its loss, facilitating more efficient dynamic photosynthesis. Depending on the sensitivity of stomatal conductance, dynamic photosynthesis may additionally be modulated by air humidity. Major knowledge gaps exist regarding environmental modulation of loss of photosynthetic induction, dynamic changes in mesophyll conductance, and the extent of limitations imposed by stomatal conductance for different species and environmental conditions. The study of mutants or genetic transformants for specific processes under various environmental conditions could provide significant progress in understanding the control of dynamic photosynthesis. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Qiu, Changpeng; Ethier, Gilbert; Pepin, Steeve; Dubé, Pascal; Desjardins, Yves; Gosselin, André
2017-09-01
The temperature dependence of mesophyll conductance (g m ) was measured in well-watered red raspberry (Rubus idaeus L.) plants acclimated to leaf-to-air vapour pressure deficit (VPDL) daytime differentials of contrasting amplitude, keeping a fixed diurnal leaf temperature (T leaf ) rise from 20 to 35 °C. Contrary to the great majority of g m temperature responses published to date, we found a pronounced reduction of g m with increasing T leaf irrespective of leaf chamber O 2 level and diurnal VPDL regime. Leaf hydraulic conductance was greatly enhanced during the warmer afternoon periods under both low (0.75 to 1.5 kPa) and high (0.75 to 3.5 kPa) diurnal VPDL regimes, unlike stomatal conductance (g s ), which decreased in the afternoon. Consequently, the leaf water status remained largely isohydric throughout the day, and therefore cannot be evoked to explain the diurnal decrease of g m . However, the concerted diurnal reductions of g m and g s were well correlated with increases in leaf abscisic acid (ABA) content, thus suggesting that ABA can induce a significant depression of g m under favourable leaf water status. Our results challenge the view that the temperature dependence of g m can be explained solely from dynamic leaf anatomical adjustments and/or from the known thermodynamic properties of aqueous solutions and lipid membranes.. © 2017 John Wiley & Sons Ltd.
Martins, Samuel C. V.; Galmés, Jeroni; Cavatte, Paulo C.; Pereira, Lucas F.; Ventrella, Marília C.; DaMatta, Fábio M.
2014-01-01
It has long been held that the low photosynthetic rates (A) of coffee leaves are largely associated with diffusive constraints to photosynthesis. However, the relative limitations of the stomata and mesophyll to the overall diffusional constraints to photosynthesis, as well as the coordination of leaf hydraulics with photosynthetic limitations, remain to be fully elucidated in coffee. Whether the low actual A under ambient CO2 concentrations is associated with the kinetic properties of Rubisco and high (photo)respiration rates also remains elusive. Here, we provide a holistic analysis to understand the causes associated with low A by measuring a variety of key anatomical/hydraulic and photosynthetic traits in sun- and shade-grown coffee plants. We demonstrate that leaf hydraulic architecture imposes a major constraint on the maximisation of the photosynthetic gas exchange of coffee leaves. Regardless of the light treatments, A was mainly limited by stomatal factors followed by similar limitations associated with the mesophyll and biochemical constraints. No evidence of an inefficient Rubisco was found; rather, we propose that coffee Rubisco is well tuned for operating at low chloroplastic CO2 concentrations. Finally, we contend that large diffusive resistance should lead to large CO2 drawdown from the intercellular airspaces to the sites of carboxylation, thus favouring the occurrence of relatively high photorespiration rates, which ultimately leads to further limitations to A. PMID:24743509
DaMatta, Fábio M.; Godoy, Alice G.; Menezes-Silva, Paulo E.; Martins, Samuel C.V.; Sanglard, Lílian M.V.P.; Morais, Leandro E.; Torre-Neto, André; Ghini, Raquel
2016-01-01
Coffee (Coffea spp.), a globally traded commodity, is a slow-growing tropical tree species that displays an improved photosynthetic performance when grown under elevated atmospheric CO2 concentrations ([CO2]). To investigate the mechanisms underlying this response, two commercial coffee cultivars (Catuaí and Obatã) were grown using the first free-air CO2 enrichment (FACE) facility in Latin America. Measurements were conducted in two contrasting growth seasons, which were characterized by the high (February) and low (August) sink demand. Elevated [CO2] led to increases in net photosynthetic rates (A) in parallel with decreased photorespiration rates, with no photochemical limitations to A. The stimulation of A by elevated CO2 supply was more prominent in August (56% on average) than in February (40% on average). Overall, the stomatal and mesophyll conductances, as well as the leaf nitrogen and phosphorus concentrations, were unresponsive to the treatments. Photosynthesis was strongly limited by diffusional constraints, particularly at the stomata level, and this pattern was little, if at all, affected by elevated [CO2]. Relative to February, starch pools (but not soluble sugars) increased remarkably (>500%) in August, with no detectable alteration in the maximum carboxylation capacity estimated on a chloroplast [CO2] basis. Upregulation of A by elevated [CO2] took place with no signs of photosynthetic downregulation, even during the period of low sink demand, when acclimation would be expected to be greatest. PMID:26503540
The Sites of Evaporation within Leaves.
Buckley, Thomas N; John, Grace P; Scoffoni, Christine; Sack, Lawren
2017-03-01
The sites of evaporation within leaves are unknown, but they have drawn attention for decades due to their perceived implications for many factors, including patterns of leaf isotopic enrichment, the maintenance of mesophyll water status, stomatal regulation, and the interpretation of measured stomatal and leaf hydraulic conductances. We used a spatially explicit model of coupled water and heat transport outside the xylem, MOFLO 2.0, to map the distribution of net evaporation across leaf tissues in relation to anatomy and environmental parameters. Our results corroborate earlier predictions that most evaporation occurs from the epidermis at low light and moderate humidity but that the mesophyll contributes substantially when the leaf center is warmed by light absorption, and more so under high humidity. We also found that the bundle sheath provides a significant minority of evaporation (15% in darkness and 18% in high light), that the vertical center of amphistomatous leaves supports net condensation, and that vertical temperature gradients caused by light absorption vary over 10-fold across species, reaching 0.3°C. We show that several hypotheses that depend on the evaporating sites require revision in light of our findings, including that experimental measurements of stomatal and hydraulic conductances should be affected directly by changes in the location of the evaporating sites. We propose a new conceptual model that accounts for mixed-phase water transport outside the xylem. These conclusions have far-reaching implications for inferences in leaf hydraulics, gas exchange, water use, and isotope physiology. © 2017 American Society of Plant Biologists. All Rights Reserved.
Yiotis, Charilaos; Manetas, Yiannis
2010-07-01
A combination of gas exchange and various chlorophyll fluorescence measurements under varying O(2) and CO(2) partial pressures were used to characterize photosynthesis in green, stomata-bearing petioles of Zantedeschia aethiopica (calla lily) while corresponding leaves served as controls. Compared to leaves, petioles displayed considerably lower CO(2) assimilation rates, limited by both stomatal and mesophyll components. Further analysis of mesophyll limitations indicated lower carboxylating efficiencies and insufficient RuBP regeneration but almost similar rates of linear electron transport. Accordingly, higher oxygenation/carboxylation ratios were assumed for petioles and confirmed by experiments under non-photorespiratory conditions. Higher photorespiration rates in petioles were accompanied by higher cyclic electron flow around PSI, the latter being possibly linked to limitations in electron transport from intermediate electron carriers to end acceptors and low contents of PSI. Based on chlorophyll fluorescence methods, similar conclusions can be drawn for green pedicels, although gas exchange in these organs could not be applied due to their bulky size. Since our test plants were not subjected to stress we argue that higher photorespiration and cyclic electron flow rates are innate attributes of photosynthesis in stalks of calla lily. Active nitrogen metabolism may be inferred, while increased cyclic electron flow may provide the additional ATP required for the enhanced photorespiratory activity in petiole and pedicel chloroplasts and/or the decarboxylation of malate ascending from roots.
NASA Astrophysics Data System (ADS)
Qi, Yadong; Bai, Shuju; Vogelmann, Thomas C.; Heisler, Gordon M.
2003-11-01
The depth of light penetration from the adaxial surfaces of the mature leaves of pecan (Carya illinoensis) was measured using a fiber optic microprobe system at four wavelengths: UV-B (310nm), UV-A (360 nm), blue light (430nm), and red light (680nm). The average thickness of the leaf adaxial epidermal layer was 15um and the total leaf thickness was 219um. The patterns of the light attenuation by the leaf tissues exhibited strong wavelength dependence. The leaf adaxial epidermal layer was chiefly responsible for absorbing the UV-A UV-B radiation. About 98% of 310 nm light was steeply attenuated within the first 5 um of the adaxial epidermis; thus, very little UV-B radiation was transmitted to the mesophyll tissues where contain photosynthetically sensitive sites. The adaxial epidermis also attenuated 96% of the UV-A radiation. In contrast, the blue and red light penetrated much deeper and was gradually attenutated by the leaves. The mesophyll tissues attenuated 17% of the blue light and 42% of the red light, which were available for photosynthesis use. Since the epidermal layer absorbed nearly all UV-B light, it acted as an effective filter screening out the harmful radiation and protecting photosynthetically sensitive tissues from the UV-B damage. Therefore, the epidermal function of the UV-B screening effectiveness can be regarded as one of the UV-B protection mechanisms in pecan.
Huang, Wei; Hu, Hong; Zhang, Shi-Bao
2016-01-01
Alpine evergreen broadleaf tree species must regularly cope with low night temperatures in winter. However, the effects of low night temperatures on photosynthesis in alpine evergreen broadleaf tree species are unclear. We measured the diurnal photosynthetic parameters before and after cold snap for leaves of Quercus guyavifolia growing in its native habitat at 3290 m. On 11 and 12 December 2013 (before cold snap), stomatal and mesophyll conductances (gs and gm), CO2 assimilation rate (An), and total electron flow through PSII (JPSII) at daytime were maintained at high levels. The major action of alternative electron flow was to provide extra ATP for primary metabolisms. On 20 December 2013 (after cold snap), the diurnal values of gs, gm, An, and JPSII at daytime largely decreased, mainly due to the large decrease in night air temperature. Meanwhile, the ratio of photorespiration and alternative electron flow to JPSII largely increased on 20 December. Furthermore, the high levels of alternative electron flow were accompanied with low rates of extra ATP production. A quantitative limitation analysis reveals that the gm limitation increased on 20 December with decreased night air temperature. Therefore, the night air temperature was an important determinant of stomatal/mesophyll conductance and photosynthesis. When photosynthesis is inhibited following freezing night temperatures, photorespiration and alternative electron flow are important electron sinks, which support the role of photorespiration and alternative electron flow in photoportection for alpine plants under low temperatures. PMID:27812359
Ripley, Brad S; Abraham, Trevor; Klak, Cornelia; Cramer, Michael D
2013-12-01
In several taxa, increasing leaf succulence has been associated with decreasing mesophyll conductance (g M) and an increasing dependence on Crassulacean acid metabolism (CAM). However, in succulent Aizoaceae, the photosynthetic tissues are adjacent to the leaf surfaces with an internal achlorophyllous hydrenchyma. It was hypothesized that this arrangement increases g M, obviating a strong dependence on CAM, while the hydrenchyma stores water and nutrients, both of which would only be sporadically available in highly episodic environments. These predictions were tested with species from the Aizoaceae with a 5-fold variation in leaf succulence. It was shown that g M values, derived from the response of photosynthesis to intercellular CO2 concentration (A:C i), were independent of succulence, and that foliar photosynthate δ(13)C values were typical of C3, but not CAM photosynthesis. Under water stress, the degree of leaf succulence was positively correlated with an increasing ability to buffer photosynthetic capacity over several hours and to maintain light reaction integrity over several days. This was associated with decreased rates of water loss, rather than tolerance of lower leaf water contents. Additionally, the hydrenchyma contained ~26% of the leaf nitrogen content, possibly providing a nutrient reservoir. Thus the intermittent use of C3 photosynthesis interspersed with periods of no positive carbon assimilation is an alternative strategy to CAM for succulent taxa (Crassulaceae and Aizoaceae) which occur sympatrically in the Cape Floristic Region of South Africa.
NASA Astrophysics Data System (ADS)
Guo, J.; Beverly, D.; Cook, C.; Ewers, B. E.; Williams, D. G.
2015-12-01
The resistance to CO2 diffusion inside leaves (mesophyll resistance; rm) during photosynthesis is often comparable in magnitude to stomatal diffusion resistance, and varies among species and across environmental conditions. Consequently, photosynthesis is strongly limited by rm at low internal CO2 partial pressures, such that its variation may determine patterns of leaf water-use efficiency (WUE). Reduction in stomatal conductance with drought typically increases WUE, but also decreases photosynthesis. In theory, the decrease in photosynthesis could be countered by reduction in rm while maintaining high WUE. It is still uncertain how drought-related changes in rm affect short- and long-term WUE strategies of different tree species. We conducted field observations of instantaneous WUE and 13C discrimination in two dominant conifer species (Pinus contorta and Picea engelmannii) in SE Wyoming over the seasonal dry-down period in the summer of 2015. rm was examined by on-line 13C discrimination using isotope laser spectroscopy. Controlled environment studies on three conifer species (P. contorta, P. engelmannii, and Abies lasiocarpa) and one angiosperm (Populus tremuloides) are in progress. We hypothesize that the plasticity of rm in response to drought accounts for significant adjustments in photosynthetic capacity and WUE. Needle leaf conifers are known to have relatively high rm, and we expect them to show greater improvements in photosynthesis and WUE when rm is decreased compared to angiosperm tree species.
The Sites of Evaporation within Leaves1[OPEN
Sack, Lawren
2017-01-01
The sites of evaporation within leaves are unknown, but they have drawn attention for decades due to their perceived implications for many factors, including patterns of leaf isotopic enrichment, the maintenance of mesophyll water status, stomatal regulation, and the interpretation of measured stomatal and leaf hydraulic conductances. We used a spatially explicit model of coupled water and heat transport outside the xylem, MOFLO 2.0, to map the distribution of net evaporation across leaf tissues in relation to anatomy and environmental parameters. Our results corroborate earlier predictions that most evaporation occurs from the epidermis at low light and moderate humidity but that the mesophyll contributes substantially when the leaf center is warmed by light absorption, and more so under high humidity. We also found that the bundle sheath provides a significant minority of evaporation (15% in darkness and 18% in high light), that the vertical center of amphistomatous leaves supports net condensation, and that vertical temperature gradients caused by light absorption vary over 10-fold across species, reaching 0.3°C. We show that several hypotheses that depend on the evaporating sites require revision in light of our findings, including that experimental measurements of stomatal and hydraulic conductances should be affected directly by changes in the location of the evaporating sites. We propose a new conceptual model that accounts for mixed-phase water transport outside the xylem. These conclusions have far-reaching implications for inferences in leaf hydraulics, gas exchange, water use, and isotope physiology. PMID:28153921
Ripley, Brad S.
2013-01-01
In several taxa, increasing leaf succulence has been associated with decreasing mesophyll conductance (g M) and an increasing dependence on Crassulacean acid metabolism (CAM). However, in succulent Aizoaceae, the photosynthetic tissues are adjacent to the leaf surfaces with an internal achlorophyllous hydrenchyma. It was hypothesized that this arrangement increases g M, obviating a strong dependence on CAM, while the hydrenchyma stores water and nutrients, both of which would only be sporadically available in highly episodic environments. These predictions were tested with species from the Aizoaceae with a 5-fold variation in leaf succulence. It was shown that g M values, derived from the response of photosynthesis to intercellular CO2 concentration (A:C i), were independent of succulence, and that foliar photosynthate δ13C values were typical of C3, but not CAM photosynthesis. Under water stress, the degree of leaf succulence was positively correlated with an increasing ability to buffer photosynthetic capacity over several hours and to maintain light reaction integrity over several days. This was associated with decreased rates of water loss, rather than tolerance of lower leaf water contents. Additionally, the hydrenchyma contained ~26% of the leaf nitrogen content, possibly providing a nutrient reservoir. Thus the intermittent use of C3 photosynthesis interspersed with periods of no positive carbon assimilation is an alternative strategy to CAM for succulent taxa (Crassulaceae and Aizoaceae) which occur sympatrically in the Cape Floristic Region of South Africa. PMID:24127513
Perez-Martin, Alfonso; Michelazzo, Chiara; Torres-Ruiz, Jose M; Flexas, Jaume; Fernández, José E; Sebastiani, Luca; Diaz-Espejo, Antonio
2014-07-01
The hypothesis that aquaporins and carbonic anhydrase (CA) are involved in the regulation of stomatal (g s) and mesophyll (g m) conductance to CO2 was tested in a short-term water-stress and recovery experiment in 5-year-old olive plants (Olea europaea) growing outdoors. The evolution of leaf gas exchange, chlorophyll fluorescence, and plant water status, and a quantitative analysis of photosynthesis limitations, were followed during water stress and recovery. These variables were correlated with gene expression of the aquaporins OePIP1.1 and OePIP2.1, and stromal CA. At mild stress and at the beginning of the recovery period, stomatal limitations prevailed, while the decline in g m accounted for up to 60% of photosynthesis limitations under severe water stress. However, g m was restored to control values shortly after rewatering, facilitating the recovery of the photosynthetic rate. CA was downregulated during water stress and upregulated after recovery. The use of structural equation modelling allowed us to conclude that both OePIP1.1 and OePIP2.1 expression could explain most of the variations observed for g s and g m. CA expression also had a small but significant effect on g m in olive under water-stress conditions. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
C4GEM, a Genome-Scale Metabolic Model to Study C4 Plant Metabolism1[W][OA
de Oliveira Dal’Molin, Cristiana Gomes; Quek, Lake-Ee; Palfreyman, Robin William; Brumbley, Stevens Michael; Nielsen, Lars Keld
2010-01-01
Leaves of C4 grasses (such as maize [Zea mays], sugarcane [Saccharum officinarum], and sorghum [Sorghum bicolor]) form a classical Kranz leaf anatomy. Unlike C3 plants, where photosynthetic CO2 fixation proceeds in the mesophyll (M), the fixation process in C4 plants is distributed between two cell types, the M cell and the bundle sheath (BS) cell. Here, we develop a C4 genome-scale model (C4GEM) for the investigation of flux distribution in M and BS cells during C4 photosynthesis. C4GEM, to our knowledge, is the first large-scale metabolic model that encapsulates metabolic interactions between two different cell types. C4GEM is based on the Arabidopsis (Arabidopsis thaliana) model (AraGEM) but has been extended by adding reactions and transporters responsible to represent three different C4 subtypes (NADP-ME [for malic enzyme], NAD-ME, and phosphoenolpyruvate carboxykinase). C4GEM has been validated for its ability to synthesize 47 biomass components and consists of 1,588 unique reactions, 1,755 metabolites, 83 interorganelle transporters, and 29 external transporters (including transport through plasmodesmata). Reactions in the common C4 model have been associated with well-annotated C4 species (NADP-ME subtypes): 3,557 genes in sorghum, 11,623 genes in maize, and 3,881 genes in sugarcane. The number of essential reactions not assigned to genes is 131, 135, and 156 in sorghum, maize, and sugarcane, respectively. Flux balance analysis was used to assess the metabolic activity in M and BS cells during C4 photosynthesis. Our simulations were consistent with chloroplast proteomic studies, and C4GEM predicted the classical C4 photosynthesis pathway and its major effect in organelle function in M and BS. The model also highlights differences in metabolic activities around photosystem I and photosystem II for three different C4 subtypes. Effects of CO2 leakage were also explored. C4GEM is a viable framework for in silico analysis of cell cooperation between M and BS cells during photosynthesis and can be used to explore C4 plant metabolism. PMID:20974891
Moreno, Aranzazu; Tjallingii, W Freddy; Fernandez-Mata, Gabriela; Fereres, Alberto
2012-03-01
Inoculation of the semi-persistent cauliflower mosaic virus (CaMV, genus Caulimovirus) is associated with successive brief (5-10 s) intracellular stylet punctures (pd) when aphids probe in epidermal and mesophyll cells. In contrast to non-persistent viruses, there is no evidence for which of the pd subphases (II-1, II-2 and II-3) is involved in the inoculation of CaMV. Experiments were conducted using the electrical penetration graph (EPG) technique to investigate which particular subphases of the pd are associated with the inoculation of CaMV to turnip by its aphid vector Brevicoryne brassicae. In addition, the same aphid species/test plant combination was used to compare the role of the pd subphases in the inoculation of the non-persistent turnip mosaic virus (TuMV, genus Potyvirus). Inoculation of TuMV was found to be related to subphase II-1, confirming earlier results, but CaMV inoculation appeared to be related exclusively to subphase II-2 instead. The mechanism of CaMV inoculation and the possible nature of subphase II-2 are discussed in the scope of our findings.
Liu, Li-Ping; Deng, Zi-Niu; Qu, Jin-Wang; Yan, Jia-Wen; Catara, Vittoria; Li, Da-Zhi; Long, Gui-You; Li, Na
2012-09-01
Xanthomonas axonopodis pv. citri (Xac) is the causal agent of citrus bacterial canker, an economically important disease to world citrus industry. To monitor the infection process of Xac in different citrus plants, the enhanced green florescent protein (EGFP) visualizing system was constructed to visualize the propagation and localization in planta. First, the wild-type Xac was isolated from the diseased leaves of susceptible 'Bingtang' sweet orange, and then the isolated Xac was labeled with EGFP by triparental mating. After PCR identification, the growth kinetics and pathogenicity of the transformants were analyzed in comparison with the wild-type Xac. The EGFP-labeled bacteria were inoculated by spraying on the surface and infiltration in the mesophyll of 'Bingtang' sweet orange leaves. The bacterial cell multiplication and diffusion processes were observed directly under confocal laser scanning microscope at different intervals after inoculation. The results indicated that the EGFP-labeled Xac releasing clear green fluorescence light under fluorescent microscope showed the infection process and had the same pathogenicity as the wild type to citrus. Consequently, the labeled Xac demonstrated the ability as an efficient tool to monitor the pathogen infection.
Shao, Ruixin; Xin, Longfei; Mao, Jun; Li, Leilei; Kang, Guozhang; Yang, Qinghua
2015-01-01
After maize seedlings grown in full-strength Hoagland solution for 20 days were exposed to 20% polyethylene glycol (PEG)-stimulated water deficiency for two days, plant height, shoot fresh and dry weights, and pigment contents significantly decreased, whereas malondialdehyde (MDA) content greatly increased. Using transmission electron microscopy, we observed that chloroplasts of mesophyll cells in PEG-treated maize seedlings were swollen, with a disintegrating envelope and disrupted grana thylakoid lamellae. Using two-dimensional gel electrophoresis (2-DE) method, we were able to identify 22 protein spots with significantly altered abundance in the leaves of treated seedlings in response to water deficiency, 16 of which were successfully identified. These protein species were functionally classified into signal transduction, stress defense, carbohydrate metabolism, protein metabolism, and unknown categories. The change in the abundance of the identified protein species may be closely related to the phenotypic and physiological changes due to PEG-stimulated water deficiency. Most of the identified protein species were putatively located in chloroplasts, indicating that chloroplasts may be prone to damage by PEG stimulated-water deficiency in maize seedlings. Our results help clarify the molecular mechanisms of the responses of higher plants to severe water deficiency. PMID:26370980
How the climate limits the wood density of angiosperms
NASA Astrophysics Data System (ADS)
Choi, Jin Woo; Kim, Ho-Young
2017-11-01
Flowering trees have various types of wood structure to perform multiple functions under their environmental conditions. In addition to transporting water from the roots to the canopy and providing mechanical support, the structure should provide resistance to embolism to maintain soil-plant-atmosphere continuum. By investigating existing data of the resistivity to embolism and wood density of 165 angiosperm species, here we show that the climate can limit the intrinsic properties of trees. Trees living in the dry environments require a high wood density to slow down the pressure decrease as it loses water relatively fast by evaporation. However, building too much tissues will result in the decrease of hydraulic conductivity and moisture concentration around mesophyll cells. To rationalize the biologically observed lower bound of the wood density, we construct a mechanical model to predict the wood density as a function of the vulnerability to embolism and the time for the recovery. Also, we build an artificial system using hydrogel microchannels that can test the probability of embolism as a function of conduit distributions. Our theoretical prediction is shown to be consistent with the results obtained from the artificial system and the biological data.
Goggin, Danica E.; Cawthray, Gregory R.; Powles, Stephen B.
2016-01-01
Resistance to auxinic herbicides is increasing in a range of dicotyledonous weed species, but in most cases the biochemical mechanism of resistance is unknown. Using 14C-labelled herbicide, the mechanism of resistance to 2,4-dichlorophenoxyacetic acid (2,4-D) in two wild radish (Raphanus raphanistrum L.) populations was identified as an inability to translocate 2,4-D out of the treated leaf. Although 2,4-D was metabolized in wild radish, and in a different manner to the well-characterized crop species wheat and bean, there was no difference in metabolism between the susceptible and resistant populations. Reduced translocation of 2,4-D in the latter was also not due to sequestration of the herbicide, or to reduced uptake by the leaf epidermis or mesophyll cells. Application of auxin efflux or ABCB transporter inhibitors to 2,4-D-susceptible plants caused a mimicking of the reduced-translocation resistance phenotype, suggesting that 2,4-D resistance in the populations under investigation could be due to an alteration in the activity of a plasma membrane ABCB-type auxin transporter responsible for facilitating long-distance transport of 2,4-D. PMID:26994475
Bi, Zhen; Merl-Pham, Juliane; Uehlein, Norbert; Zimmer, Ina; Mühlhans, Stefanie; Aichler, Michaela; Walch, Axel Karl; Kaldenhoff, Ralf; Palme, Klaus; Schnitzler, Jörg-Peter; Block, Katja
2015-10-14
Plasma membrane intrinsic proteins (PIPs) are one subfamily of aquaporins that mediate the transmembrane transport of water. To reveal their function in poplar, we generated transgenic poplar plants in which the translation of PIP genes was downregulated by RNA interference investigated these plants with a comprehensive leaf plasma membrane proteome and physiome analysis. First, inhibition of PIP synthesis strongly altered the leaf plasma membrane protein composition. Strikingly, several signaling components and transporters involved in the regulation of stomatal movement were differentially regulated in transgenic poplars. Furthermore, hormonal crosstalk related to abscisic acid, auxin and brassinosteroids was altered, in addition to cell wall biosynthesis/cutinization, the organization of cellular structures and membrane trafficking. A physiological analysis confirmed the proteomic results. The leaves had wider opened stomata and higher net CO2 assimilation and transpiration rates as well as greater mesophyll conductance for CO2 (gm) and leaf hydraulic conductance (Kleaf). Based on these results, we conclude that PIP proteins not only play essential roles in whole leaf water and CO2 flux but have important roles in the regulation of stomatal movement. Copyright © 2015. Published by Elsevier B.V.
Moustaka, Julietta; Tanou, Georgia; Adamakis, Ioannis-Dimosthenis; Eleftheriou, Eleftherios P.; Moustakas, Michael
2015-01-01
Exposure of Arabidopsis thaliana young and mature leaves to the herbicide paraquat (Pq) resulted in a localized increase of hydrogen peroxide (H2O2) in the leaf veins and the neighboring mesophyll cells, but this increase was not similar in the two leaf types. Increased H2O2 production was concomitant with closed reaction centers (qP). Thirty min after Pq exposure despite the induction of the photoprotective mechanism of non-photochemical quenching (NPQ) in mature leaves, H2O2 production was lower in young leaves mainly due to the higher increase activity of ascorbate peroxidase (APX). Later, 60 min after Pq exposure, the total antioxidant capacity of young leaves was not sufficient to scavenge the excess reactive oxygen species (ROS) that were formed, and thus, a higher H2O2 accumulation in young leaves occurred. The energy allocation of absorbed light in photosystem II (PSII) suggests the existence of a differential photoprotective regulatory mechanism in the two leaf types to the time-course Pq exposure accompanied by differential antioxidant protection mechanisms. It is concluded that tolerance to Pq-induced oxidative stress is related to the redox state of quinone A (QA). PMID:26096005
Pollination induces autophagy in petunia petals via ethylene.
Shibuya, Kenichi; Niki, Tomoko; Ichimura, Kazuo
2013-02-01
Autophagy is one of the main mechanisms of degradation and remobilization of macromolecules, and it appears to play an important role in petal senescence. However, little is known about the regulatory mechanisms of autophagy in petal senescence. Autophagic processes were observed by electron microscopy and monodansylcadaverine staining of senescing petals of petunia (Petunia hybrida); autophagy-related gene 8 (ATG8) homologues were isolated from petunia and the regulation of expression was analysed. Nutrient remobilization was also examined during pollination-induced petal senescence. Active autophagic processes were observed in the mesophyll cells of senescing petunia petals. Pollination induced the expression of PhATG8 homologues and was accompanied by an increase in ethylene production. Ethylene inhibitor treatment in pollinated flowers delayed the induction of PhATG8 homologues, and ethylene treatment rapidly upregulated PhATG8 homologues in petunia petals. Dry weight and nitrogen content were decreased in the petals and increased in the ovaries after pollination in detached flowers. These results indicated that pollination induces autophagy and that ethylene is a key regulator of autophagy in petal senescence of petunia. The data also demonstrated the translocation of nutrients from the petals to the ovaries during pollination-induced petal senescence.
Pollination induces autophagy in petunia petals via ethylene
Shibuya, Kenichi
2013-01-01
Autophagy is one of the main mechanisms of degradation and remobilization of macromolecules, and it appears to play an important role in petal senescence. However, little is known about the regulatory mechanisms of autophagy in petal senescence. Autophagic processes were observed by electron microscopy and monodansylcadaverine staining of senescing petals of petunia (Petunia hybrida); autophagy-related gene 8 (ATG8) homologues were isolated from petunia and the regulation of expression was analysed. Nutrient remobilization was also examined during pollination-induced petal senescence. Active autophagic processes were observed in the mesophyll cells of senescing petunia petals. Pollination induced the expression of PhATG8 homologues and was accompanied by an increase in ethylene production. Ethylene inhibitor treatment in pollinated flowers delayed the induction of PhATG8 homologues, and ethylene treatment rapidly upregulated PhATG8 homologues in petunia petals. Dry weight and nitrogen content were decreased in the petals and increased in the ovaries after pollination in detached flowers. These results indicated that pollination induces autophagy and that ethylene is a key regulator of autophagy in petal senescence of petunia. The data also demonstrated the translocation of nutrients from the petals to the ovaries during pollination-induced petal senescence. PMID:23349142
Increasing leaf vein density by mutagenesis: laying the foundations for C4 rice.
Feldman, Aryo B; Murchie, Erik H; Leung, Hei; Baraoidan, Marietta; Coe, Robert; Yu, Su-May; Lo, Shuen-Fang; Quick, William P
2014-01-01
A high leaf vein density is both an essential feature of C4 photosynthesis and a foundation trait to C4 evolution, ensuring the optimal proportion and proximity of mesophyll and bundle sheath cells for permitting the rapid exchange of photosynthates. Two rice mutant populations, a deletion mutant library with a cv. IR64 background (12,470 lines) and a T-DNA insertion mutant library with a cv. Tainung 67 background (10,830 lines), were screened for increases in vein density. A high throughput method with handheld microscopes was developed and its accuracy was supported by more rigorous microscopy analysis. Eight lines with significantly increased leaf vein densities were identified to be used as genetic stock for the global C4 Rice Consortium. The candidate population was shown to include both shared and independent mutations and so more than one gene controlled the high vein density phenotype. The high vein density trait was found to be linked to a narrow leaf width trait but the linkage was incomplete. The more genetically robust narrow leaf width trait was proposed to be used as a reliable phenotypic marker for finding high vein density variants in rice in future screens.
The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria.
Mallmann, Julia; Heckmann, David; Bräutigam, Andrea; Lercher, Martin J; Weber, Andreas P M; Westhoff, Peter; Gowik, Udo
2014-06-16
C4 photosynthesis represents a most remarkable case of convergent evolution of a complex trait, which includes the reprogramming of the expression patterns of thousands of genes. Anatomical, physiological, and phylogenetic and analyses as well as computational modeling indicate that the establishment of a photorespiratory carbon pump (termed C2 photosynthesis) is a prerequisite for the evolution of C4. However, a mechanistic model explaining the tight connection between the evolution of C4 and C2 photosynthesis is currently lacking. Here we address this question through comparative transcriptomic and biochemical analyses of closely related C3, C3-C4, and C4 species, combined with Flux Balance Analysis constrained through a mechanistic model of carbon fixation. We show that C2 photosynthesis creates a misbalance in nitrogen metabolism between bundle sheath and mesophyll cells. Rebalancing nitrogen metabolism requires anaplerotic reactions that resemble at least parts of a basic C4 cycle. Our findings thus show how C2 photosynthesis represents a pre-adaptation for the C4 system, where the evolution of the C2 system establishes important C4 components as a side effect.
2010-01-01
Starting from the original theoretical descriptions of osmotically induced water volume flow in membrane systems, a convenient procedure to determine the osmotic water permeability coefficient (Pos) and the relative nonosmotic volume (β) of individual protoplasts is presented. Measurements performed on protoplasts prepared from pollen grains and pollen tubes of Lilium longiflorum cv. Thunb. and from mesophyll cells of Nicotiana tabacum L. and Arabidopsis thaliana revealed low values for the osmotic water permeability coefficient in the range 5–20 μm · s−1 with significant differences in Pos, depending on whether β is considered or not. The value of β was determined using two different methods: by interpolation from Boyle-van’t Hoff plots or by fitting a solution of the theoretical equation for water volume flow to the whole volume transients measured during osmotic swelling. The values determined with the second method were less affected by the heterogeneity of the protoplast samples and were around 30% of the respective isoosmotic protoplast volume. It is therefore important to consider nonosmotic volume in the calculation of Pos as plant protoplasts behave as nonideal osmometers. PMID:17568979
Contrast-enhanced 3D micro-CT of plant tissues using different impregnation techniques.
Wang, Zi; Verboven, Pieter; Nicolai, Bart
2017-01-01
X-ray micro-CT has increasingly been used for 3D imaging of plant structures. At the micrometer resolution however, limitations in X-ray contrast often lead to datasets with poor qualitative and quantitative measures, especially within dense cell clusters of plant tissue specimens. The current study developed protocols for delivering a cesium based contrast enhancing solution to varying plant tissue specimens for the purpose of improving 3D tissue structure characterization within plant specimens, accompanied by new image processing workflows to extract the additional data generated by the contrast enhanced scans. Following passive delivery of a 10% cesium iodide contrast solution, significant increases of 85.4 and 38.0% in analyzable cell volumes were observed in pear fruit hypanthium and tomato fruit outer mesocarp samples. A significant increase of 139.6% in the number of analyzable cells was observed in the pear fruit samples along the added ability to locate and isolate better brachysclereids and vasculature in the sample volume. Furthermore, contrast enhancement resulted in significant improvement in the definition of collenchyma and parenchyma in the petiolule of tomato leaflets, from which both qualitative and quantitative data can be extracted with respect to cell measures. However, contrast enhancement was not achieved in leaf vasculature and mesophyll tissue due to fundamental limitations. Active contrast delivery to apple fruit hypanthium samples did yield a small but insignificant increase in analyzable volume and cells, but data on vasculature can now be extracted better in correspondence to the pear hypanthium samples. Contrast delivery thus improved visualization and analysis the most in dense tissue types. The cesium based contrast enhancing protocols and workflows can be utilized to obtain detailed 3D data on the internal microstructure of plant samples, and can be adapted to additional samples of interest with minimal effort. The resulting datasets can therefore be utilized for more accurate downstream studies that requires 3D data.
New insights into Fe localization in plant tissues
Roschzttardtz, Hannetz; Conéjéro, Geneviève; Divol, Fanchon; Alcon, Carine; Verdeil, Jean-Luc; Curie, Catherine; Mari, Stéphane
2013-01-01
Deciphering cellular iron (Fe) homeostasis requires having access to both quantitative and qualitative information on the subcellular pools of Fe in tissues and their dynamics within the cells. We have taken advantage of the Perls/DAB Fe staining procedure to perform a systematic analysis of Fe distribution in roots, leaves and reproductive organs of the model plant Arabidopsis thaliana, using wild-type and mutant genotypes affected in iron transport and storage. Roots of soil-grown plants accumulate iron in the apoplast of the central cylinder, a pattern that is strongly intensified when the citrate effluxer FRD3 is not functional, thus stressing the importance of citrate in the apoplastic movement of Fe. In leaves, Fe level is low and only detected in and around vascular tissues. In contrast, Fe staining in leaves of iron-treated plants extends in the surrounding mesophyll cells where Fe deposits, likely corresponding to Fe-ferritin complexes, accumulate in the chloroplasts. The loss of ferritins in the fer1,3,4 triple mutant provoked a massive accumulation of Fe in the apoplastic space, suggesting that in the absence of iron buffering in the chloroplast, cells activate iron efflux and/or repress iron influx to limit the amount of iron in the cell. In flowers, Perls/DAB staining has revealed a major sink for Fe in the anthers. In particular, developing pollen grains accumulate detectable amounts of Fe in small-size intracellular bodies that aggregate around the vegetative nucleus at the binuclear stage and that were identified as amyloplasts. In conclusion, using the Perls/DAB procedure combined to selected mutant genotypes, this study has established a reliable atlas of Fe distribution in the main Arabidopsis organs, proving and refining long-assumed intracellular locations and uncovering new ones. This “iron map” of Arabidopsis will serve as a basis for future studies of possible actors of iron movement in plant tissues and cell compartments. PMID:24046774