Sample records for zircon shrimp geochronology

  1. SHRIMP U-Pb in zircon geochronology of granitoids from Myanmar: temporal constraints on the tectonic evolution of Southeast Asia

    NASA Astrophysics Data System (ADS)

    Barley, M. E.; Zaw, Khin

    2009-04-01

    The Mesozoic to Tertiary tectonic evolution of Southeast Asia is the result of the convergence and collision of fragments of Gondwanaland with Eurasia culminating in the collision of India. A rapidly growing geochronological database is placing tight constraints on the timing and duration of magmatic episodes, metallogenic and tectonic events in the Himalayas, Tibet and eastern Indochina. However, there is little comparable geochronology for Myanmar. This SHRIMP U-Pb in zircon geochronology focuses on granitoids from the Mogok Metamorphic Belt (MMB, a belt of high grade metamorphic rocks at the edge of the Shan-Thai Terrane), the Myeik Archipelago (Shan-Thai Terrane) and the west Myanmar Terrane. Strongly deformed granitic orthogneisses in the MMB near Mandalay contain Jurassic (~170 Ma) zircons that have partly recrystallised during ~43 Ma high-grade metamorphism. A hornblende syenite from Mandalay also contains Jurassic zircons with evidence of Eocene metamorphism rimmed by thin zones of 30.9 ±0.7 Ma magmatic zircon. The relative abundance of Jurassic zircons in these rocks is consistent with suggestions that southern Eurasia had an Andean-type margin at that time. Mid-Cretaceous to earliest Eocene (120 to 50 Ma). I-type granitoids in the MMB, Myeik Archipelago and west Myanmar confirm that prior to the collision of India, an up to 200km wide magmatic belt extended along the Eurasian margin. The primitive I-type Khanza Chaung granodiorite in the Wuntho batholith in the west Myanmar terrane hosts porphyry-style mineralisation and has a magmatic age of 94  1 Ma. Triassic (~240 Ma), Jurassic (~170 Ma) and Early Cretaceous xenocryst zircons in this granitoid correspond with peaks of granitoid magmatism in the Shan-Thai terrane and establish that west Myanmar was part of the margin of Eurasia during the Mesozoic. A suite of highly fractionated metaluminous to peraluminous I-type granitoids with associated Sn-W-Ta mineralisation emplaced in the Myeik Archipelago of

  2. New insights into the history and origin of the southern Maya block, SE Mexico: U-Pb-SHRIMP zircon geochronology from metamorphic rocks of the Chiapas massif

    USGS Publications Warehouse

    Weber, Bodo; Iriondo, Alexander; Premo, Wayne R.; Hecht, Lutz; Schaaf, Peter

    2007-01-01

    The histories of the pre-Mesozoic landmasses in southern México and their connections with Laurentia, Gondwana, and among themselves are crucial for the understanding of the Late Paleozoic assembly of Pangea. The Permian igneous and metamorphic rocks from the Chiapas massif as part of the southern Maya block, México, were dated by U–Pb zircon geochronology employing the SHRIMP (sensitive high resolution ion microprobe) facility at Stanford University. The Chiapas massif is composed of deformed granitoids and orthogneisses with inliers of metasedimentary rocks. SHRIMP data from an anatectic orthogneiss demonstrate that the Chiapas massif was part of a Permian (∼ 272 Ma) active continental margin established on the Pacific margin of Gondwana after the Ouachita orogeny. Latest Permian (252–254 Ma) medium- to high-grade metamorphism and deformation affected the entire Chiapas massif, resulting in anatexis and intrusion of syntectonic granitoids. This unique orogenic event is interpreted as the result of compression due to flat subduction and accretionary tectonics. SHRIMP data of zircon cores from a metapelite from the NE Chiapas massif yielded a single Grenvillian source for sediments. The majority of the zircon cores from a para-amphibolite from the SE part of the massif yielded either 1.0–1.2 or 1.4–1.5 Ga sources, indicating provenance from South American Sunsás and Rondonian-San Ignacio provinces.

  3. SHRIMP U-Pb zircon geochronology and thermal modeling of multilayer granitoid intrusions. Implications for the building and thermal evolution of the Central System batholith, Iberian Massif, Spain

    NASA Astrophysics Data System (ADS)

    Díaz Alvarado, Juan; Fernández, Carlos; Castro, Antonio; Moreno-Ventas, Ignacio

    2013-08-01

    This work shows the results of a U-Pb SHRIMP zircon geochronological study of the central part of the Gredos massif (Spanish Central System batholith). The studied batholith is composed of several granodiorite and monzogranite tabular bodies, around 1 km thick each, intruded into partially molten pelitic metasediments. Granodiorites and monzogranites, belonging to three distinct intrusive bodies, and samples of anatectic leucogranites have been selected for SHRIMP U-Pb zircon geochronology. Distinct age groups, separated by up to 20 Ma, have been distinguished in each sample. Important age differences have also been determined among the most representative age groups of the three analyzed granitoid bodies: 312.6 ± 2.8 Ma for the Circo de Gredos Bt-granodiorites (floor intrusive layer), 306.9 ± 1.5 Ma for the Barbellido-Plataforma granitoids (top intrusive layer) and 303.5 ± 2.8 Ma for Las Pozas Crd-monzogranites (middle intrusive layer). These age differences are interpreted in terms of sequential emplacement of the three intrusive bodies, contemporary with the Late Paleozoic D3 deformation phase. The anatectic leucogranites are coeval to slightly younger than the adjacent intrusive granodiorites and monzogranites (305.4 ± 1.6 Ma for Refugio del Rey leucogranites and 303 ± 2 Ma for migmatitic hornfelses). It is suggested that these anatectic magmas were generated in response to the thermal effects of granodiorite intrusions. Thermal modeling with COMSOL Multiphysics® reveals that sequential emplacement was able to keep the thermal conditions of the batholith around the temperature of zircon crystallization in granitic melts (around 750 °C) for several million of years, favoring the partial melting of host rocks and the existence of large magma chambers composed of crystal mush prone to be rejuvenated after new intrusions.

  4. U-Pb SHRIMP geochronology and trace-element geochemistry of coesite-bearing zircons, North-East Greenland Caledonides

    USGS Publications Warehouse

    McClelland, W.C.; Power, S.E.; Gilotti, J.A.; Mazdab, F.K.; Wopenka, B.

    2006-01-01

    Obtaining reliable estimates for the timing of eclogite-facies metamorphism is critical to establishing models for the formation and exhumation of high-pressure and ultrahigh-pressure (UHP) metamorphic terranes in collisional orogens. The presence of pressure-dependent phases, such as coesite, included in metamorphic zircon is generally regarded as evidence that zircon growth occurred at UHP conditions and, ifdated, should provide the necessary timing information. We report U-Pb sensitive high-resolution ion microprobe (SHRIMP) ages and trace-element SHRIMP data from coesite-bearing zircon suites formed during UHP metamorphism in the North- East Greenland Caledonides. Kyanite eclogite and quartzofeldspathic host gneiss samples from an island in J??kelbugt (78??00'N, 18??04'W) contained subspherical zircons with well-defined domains in cathodoluminescence (CL) images. The presence of coesite is confirmed by Raman spectroscopy in six zircons from four samples. Additional components of the eclogite-facies inclusion suite include kyanite, omphacite, garnet, and rutile. The trace-element signatures in core domains reflect modification of igneous protolith zircon. Rim signatures show flat heavy rare earth element (HREE) patterns that are characteristic of eclogite-facies zircon. The kyanite eclogites generally lack a Eu anomaly, whereas a negative Eu anomaly persists in all domains of the host gneiss. The 207Pb- corrected 206Pb/238U ages range from 330 to 390 Ma for the host gneiss and 330-370 Ma for the kyanite eclogite. Weighted mean 206Pb/238U ages for coesite-bearing domains vary from 364 ?? 8 Ma for the host gneiss to 350 ?? 4 Ma for kyanite eclogite. The combined U-Pb and REE data interpreted in conjunction with observed CL domains and inclusion suites suggest that (1) Caledonian metamorphic zircon formed by both new zircon growth and recrystallization, (2) UHP metamorphism occurred near the end of the Caledonian collision, and (3) the 30-50m.y. span of ages

  5. Petrogenesis, detrital zircon SHRIMP U-Pb geochronology, and tectonic implications of the Upper Paleoproterozoic Seosan iron formation, western Gyeonggi Massif, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Chang Seong; Jang, Yirang; Samuel, Vinod O.; Kwon, Sanghoon; Park, Jung-Woo; Yi, Keewook; Choi, Seon-Gyu

    2018-05-01

    This study involves investigations on the Upper Paleoproterozoic iron formation (viz., Seosan iron formation) from the Seosan Group, Gyeonggi Massif of the southwestern Korean Peninsula. It occurs as thin banded layers within meta-arkosic sandstone, formed by alternating processes of chemical (hydrothermal) and detrital depositions under a shallow marine environment. It mainly consists of alternating layers of iron oxides, mostly hematite, and quartz. Minor amounts of magnetite surrounded by muscovite, clinopyroxene and amphibole indicate hydrothermal alteration since its formation. Meta-arkosic sandstone is composed of recrystallized or porphyroclastic quartz and microcline, with small amounts of hematite and pyrite clusters. The Seosan iron formation has high contents of total Fe2O3 and SiO2 with positive Eu anomalies similar to those of other Precambrian banded iron formations, and its formation is clearly related to hydrothermal alteration since its deposition. Detrital zircon SHRIMP U-Pb geochronology data from a meta-arkosic sandstone (SN-1) and an iron formation (SN-2) show mainly two age groups of ca. 2.5 Ga and ca. 1.9-1.75 Ga. This together with intrusion age of the granite gneiss (ca. 1.70-1.65 Ga) clearly indicate that the iron formations were deposited during the Upper Paleoproterozoic. The dominant Paleoproterozoic detrital zircon bimodal age peaks preserved in the Seosan iron formation compare well with those from the South China Craton sedimentary basins, reflecting global tectonic events related to the Columbia supercontinent in East Asia.

  6. Sensitive high resolution ion microprobe (SHRIMP) detrital zircon geochronology provides new evidence for a hidden neoproterozoic foreland basin to the Grenville Orogen in the eastern Midwest, U.S.A

    USGS Publications Warehouse

    Santos, J.O.S.; Hartmann, L.A.; McNaughton, N.J.; Easton, R. M.; Rea, R.G.; Potter, P.E.

    2002-01-01

    A sensitive high resolution ion microprobe (SHRIMP) was used in combination with backscattered electron (BSE) and cathodoluminescence (CL) images to determine the age of detrital zircons from sandstones in the Neoproterozoic Middle Run Formation of the eastern Midwest, United States. Eleven samples from seven drill cores of the upper part of the Middle Run Formation contain detrital zircons ranging in age from 1030 to 1982 Ma (84 analyses), with six distinctive modes at 1.96, 1.63, 1.47, 1.34, 1.15, and 1.08 Ga. This indicates that most, but not all, of the zircon at the top of the Middle Run Formation was derived from the Grenville Orogen. The youngest concordant detrital zircon yields a maximum age of 1048 ?? 22 Ma for the Middle Run Formation, indicating that the formation is younger than ca. 1026 Ma minus the added extra time needed for later uplift, denudation, thrusting, erosion, and transport to southwestern Ohio. Thus, as judged by proximity, composition, thickness, and geochronology, it is a North American equivalent to other Neoproterozoic Grenvillian-derived basins, such as the Torridon Group of Scotland and the Palmeiral Formation of South America. An alternate possibility, although much less likely in our opinion, is that it could be much younger, any time between 1048 ?? 22 Ma and the deposition of the Middle Cambrian Mount Simon Sandstone at about 510 Ma, and still virtually almost all derived from rocks of the Grenville Orogen.

  7. U-Pb SHRIMP geochronology of zircon in garnet peridotite from the Sulu UHP terrane, China: Implications for mantle metasomatism and subduction-zone UHP metamorphism

    USGS Publications Warehouse

    Zhang, R.Y.; Yang, J.S.; Wooden, J.L.; Liou, J.G.; Li, T.F.

    2005-01-01

    We studied the Zhimafang ultrahigh-pressure metamorphic (UHP) peridotite from pre-pilot drill hole PP-1 of Chinese Continental Scientific Drilling project in the Sulu UHP terrane, eastern China. The peridotite occurs as lens within quartofeldspathic gneiss, and has an assemblage of Ol + Opx + Cpx + Phl + Ti-clinohumite (Ti-Chu) + Grt (or chromite) ?? magnesite (Mgs). Zircons were separated from cores at depths of 152 m (C24, garnet lhezolite), 160 m (C27, strongly retrograded phlogopite-rich peridotite) and 225 m (C50, banded peridotite), and were dated by SHRIMP mass spectrometer. Isometric zircons without inherited cores contain inclusions of olivine (Fo91-92), enstatite (En91-92), Ti-clinohumite, diopside, phlogopite and apatite. The enstatite inclusions have low Al2O3 contents of only 0.04-0.13 wt.%, indicating a UHP metamorphic origin. The weighted mean 206Pb/238U zircon age for garnet lherzolite (C24) is 221 ?? 3 Ma, and a discordia lower intercept age for peridotite (C50) is 220 ?? 2 Ma. These ages are within error and represent the time of subduction-zone UHP metamorphism. A younger lower intercept age of 212 ?? 3 Ma for a foliated wehrlite (C27) was probably caused by Pb loss during retrograde metamorphism. The source of zirconium may be partially attributed to melt/fluid metasomatism within the mantle wedge. Geochronological and geochemical data confirm that the mantle-derived Zhimafang garnet peridotites (probably the most representative type of Sulu garnet peridotites) were tectonically inserted into a subducting crustal slab and subjected to in situ Triassic subduction-zone UHP metamorphism. ?? 2005 Elsevier B.V. All rights reserved.

  8. Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite

    USGS Publications Warehouse

    Aleinikoff, J.N.; Schenck, W.S.; Plank, M.O.; Srogi, L.A.; Fanning, C.M.; Kamo, S.L.; Bosbyshell, H.

    2006-01-01

    High-grade rocks of the Wilmington Complex, northern Delaware and adjacent Maryland and Pennsylvania, contain morphologically complex zircons that formed through both igneous and metamorphic processes during the development of an island-arc complex and suturing of the arc to Laurentia. The arc complex has been divided into several members, the protoliths of which include both intrusive and extrusive rocks. Metasedimentary rocks are interlayered with the complex and are believed to be the infrastructure upon which the arc was built. In the Wilmingto n Complex rocks, both igneous and metamorphic zircons occur as elongate and equant forms. Chemical zoning, shown by cathodoluminescence (CL), includes both concentric, oscillatory patterns, indicative of igneous origin, and patchwork and sector patterns, suggestive of metamorphic growth. Metamorphic monazites are chemically homogeneous, or show oscillatory or spotted chemical zoning in backscattered electron images. U-Pb geochronology by sensitive high resolution ion microprobe (SHRIMP) was used to date complexly zoned zircon and monazite. All but one member of the Wilmington Complex crystallized in the Ordovician between ca. 475 and 485 Ma; these rocks were intruded by a suite of gabbro-to-granite plutonic rocks at 434 ?? Ma. Detrital zircons in metavolcanic and metasedimentary units were derived predominantly from 0.9 to 1.4 Ga (Grenvillian) basement, presumably of Laurentian origin. Amphibolite to granulite facies metamorphism of the Wilmington Complex, recorded by ages of metamorphic zircon (428 ?? 4 and 432 ?? 6 Ma) and monazite (429 ?? 2 and 426 ?? 3 Ma), occurred contemporaneously with emplacement of the younger plutonic rocks. On the basis of varying CL zoning patterns and external morphologies, metamorphic zircons formed by different processes (presumably controlled by rock chemistry) at slightly different times and temperatures during prograde metamorphism. In addition, at least three other thermal episodes are

  9. Detrital zircon U-Pb geochronology and whole-rock Nd-isotope constraints on sediment provenance in the Neoproterozoic Sergipano orogen, Brazil: From early passive margins to late foreland basins

    NASA Astrophysics Data System (ADS)

    Oliveira, E. P.; McNaughton, N. J.; Windley, B. F.; Carvalho, M. J.; Nascimento, R. S.

    2015-11-01

    SHRIMP U-Pb detrital zircon geochronology and depleted-mantle Nd-model ages of clastic rocks were combined to understand the sediment provenance in the Neoproterozoic Sergipano Belt. The Sergipano is the main orogenic belt between the Borborema province and the São Francisco Craton, eastern South America; it is divisible into several lithostratigraphic domains from North to South: Canindé, Poço Redondo-Marancó, Macururé, Vaza Barris, and Estância. Nd model ages (TDM) and detrital zircon U-Pb SHRIMP geochronology indicate that the protoliths of clastic metasedimentary rocks from the Marancó and Macururé domains were mostly derived from eroded late Mesoproterozoic to early Neoproterozoic rocks (1000-900 Ma), whereas detritus of similar rocks from the Canindé domain came from a younger source (ca. 700 Ma and 1000 Ma). Samples from the Vaza Barris domain show the greatest scatter of both TDM and zircon ages amongst all domains, but with important contributions from Proterozoic sources (690-1050 Ma and ca. 2100 Ma) and less from Archaean sources. The Estância domain samples have zircon population peaks at 570 Ma, 600 Ma, and 920-980 Ma, with a few older grains; one diamictite contains only ca. 2150 Ma zircon grains. Our preliminary results support a model in which sediments of the Marancó and Macururé domains were deposited on a continental margin of the ancient Borborema plate before its collision with the São Francisco Craton; the Canindé domain is likely to be an aborted Neoproterozoic rift assemblage within the southern part of the Borborema plate (Pernambuco-Alagoas massif). The basal units of the Vaza Barris and Estância domains have clast sources from the São Francisco Craton and are best interpreted as passive margin sediments. However, the uppermost units of the Estância and Vaza Barris domains come from foreland basins formed during collision of Borborema plate with the São Francisco Craton.

  10. Extreme isotopologue disequilibrium in molecular SIMS species during SHRIMP geochronology

    NASA Astrophysics Data System (ADS)

    Magee, Charles W., Jr.; Danišík, Martin; Mernagh, Terry

    2017-12-01

    The current limitation in the accuracy and precision of inter-element analysis in secondary ion mass spectrometry (SIMS) is the ability to find measurable quantities that allow relative differences in ionization and transmission efficiency of secondary ions to be normalized. In uranium-thorium-lead geochronology, the ability to make these corrections, or "calibrate" the data, results in an accuracy limit of approximately 1 %. This study looks at the ionization of uranium and thorium oxide species, which are traditionally used in U-Pb calibration, to explore the conditions under which isotopologues, or molecular species whose composition differs only in the isotopic composition of one or more atoms in the molecule, remain in or deviate from equilibrium. Isotopologue deficits of up to 0.2 (200 ‰) below ideal mixing are observed in UO2+ species during SIMS gechronological analyses using the SHRIMP IIe SIMS instrument. These are identified by bombarding natural U-bearing minerals with an 18O2- primary beam. The large anomalies are associated with repeat analyses down a single SIMS sputtering crater (Compston et al., 1984), analysis of high-uranium, radiation-damaged zircon, and analysis of baddeleyite. Analysis of zircon under routine conditions yield UO2+ isotopologue anomalies generally within a few percent of equilibrium. The conditions under which the isotopologue anomalies are observed are also conditions in which the UOx-based corrections, or calibration, for relative U vs. Pb ionization efficiencies fail. The existence of these isotopologue anomalies suggest that failure of the various UOx species to equilibrate with each other is the reason that none of them will successfully correct the U  / Pb ratio. No simple isotopologue-based correction is apparent. However, isotopologue disequilibrium appears to be a more sensitive tool for detecting high-U calibration breakdowns than Raman spectroscopy, which showed sharper peaks for ˜ 37 Ma high

  11. U-Pb geochronology of zircon and polygenetic titanite from the Glastonbury Complex, Connecticut, USA: An integrated SEM, EMPA, TIMS, and SHRIMP study

    USGS Publications Warehouse

    Aleinikoff, J.N.; Wintsch, R.P.; Fanning, C.M.; Dorais, M.J.

    2002-01-01

    U-Pb ages for zircon and titanite from a granodioritic gneiss in the Glastonbury Complex, Connecticut, have been determined using both isotope dilution thermal ionization mass spectrometry (TIMS) and the sensitive high resolution ion microprobe (SHRIMP). Zircons occur in three morphologic populations: (1) equant to stubby, multifaceted, colorless, (2) prismatic, dark brown, with numerous cracks, and (3) elongate, prismatic, light tan to colorless. Cathodoluminescence (CL) imaging of the three populations shows simple concentric oscillatory zoning. The zircon TIMS age [weighted average of 207Pb/206Pb ages from Group 3 grains-450.5 ?? 1.6 Ma (MSWD=1.11)] and SHRIMP age [composite of 206Pb/238 U age data from all three groups-448.2 ?? 2.7 Ma (MSWD = 1.3)], are interpreted to suggest a relatively simple crystallization history. Titanite from the granodioritic gneiss occurs as both brown and colorless varieties. Scanning electron microscope backscatter (BSE) images of brown grains show multiple cross-cutting oscillatory zones of variable brightness and dark overgrowths. Colorless grains are unzoned or contain subtle wispy or very faint oscillatory zoning. Electron microprobe analysis (EMPA) clearly distinguishes the two populations. Brown grains contain relatively high concentrations of Fe2O3, Ce2O3 (up to ~ 1.5 wt.%), Nb2O5, and Zr. Cerium concentration is positively correlated with total REE + Y concentration, which together can exceed 3.5 wt.%. Oscillatory zoning in brown titanite is correlated with variations in REE concentrations. In contrast, colorless titanite (both as discrete grains and overgrowths on brown titanite) contains lower concentrations of Y, REE, Fe2O3, and Zr, but somewhat higher Al2O3 and Nb2O5. Uranium concentrations and Th/U discriminate between brown grains (typically 200-400 ppm U; all analyses but one have Th/U between about 0.8 and 2) and colorless grains (10-60 ppm U; Th/U of 0-0.17). In contrast to the zircon U-Pb age results, SHRIMP U

  12. Dating kimberlite emplacement with zircon and perovskite (U-Th)/He geochronology

    NASA Astrophysics Data System (ADS)

    Stanley, Jessica; Flowers, Rebecca

    2017-04-01

    Kimberlites provide rich information about the composition and evolution of cratonic lithosphere. They can entrain xenoliths and xenocrysts from the entire lithospheric column as they transit rapidly to the surface, providing information on the state of the deep lithosphere as well as any sedimentary units covering the craton at the time of eruption. Accurate geochronology of these eruptions is key for interpreting this information and discerning spatiotemporal trends in lithospheric evolution, but kimberlites can sometimes be difficult to date with available methods. Here we explore whether (U-Th)/He dating of zircon and perovskite can serve as reliable techniques for determining kimberlite emplacement ages by dating a suite of sixteen southern African kimberlites by zircon and/or perovskite (U-Th)/He (ZHe, PHe). Most samples with abundant zircon yielded ZHe dates reproducible to ≤15% dispersion that are in good agreement with published eruption ages, though there were several samples that were more scattered. Since the majority of dated zircon were xenocrystic, zircon with reproducible dates were fully reset during eruption or resided at temperatures above the ZHe closure temperature ( 180 °C) prior to entrainment in the kimberlite magma. We attribute scattered ZHe dates to shallowly sourced zircon that underwent incomplete damage annealing and/or partial He loss during the eruptive process. All seven kimberlites dated with PHe yielded dates reproducible to ≤15% dispersion and reasonable results. As perovskite has not previously been used as a (U-Th)/He chronometer, we conducted two preliminary perovskite 4He diffusion experiments to obtain initial estimates of its temperature sensitivity. These experiments suggest a PHe closure temperature of >300 °C. Perovskite in kimberlites is unlikely to be xenocrystic and its relatively high temperature sensitivity suggests that PHe dates will typically record emplacement rather than post-emplacement processes. ZHe

  13. Mass-spectrometric mining of Hadean zircons by automated SHRIMP multi-collector and single-collector U/Pb zircon age dating: The first 100,000 grains

    NASA Astrophysics Data System (ADS)

    Holden, Peter; Lanc, Peter; Ireland, Trevor R.; Harrison, T. Mark; Foster, John J.; Bruce, Zane

    2009-09-01

    The identification and retrieval of a large population of ancient zircons (>4 Ga; Hadean) is of utmost priority if models of the early evolution of Earth are to be rigorously tested. We have developed a rapid and accurate U-Pb zircon age determination protocol utilizing a fully automated multi-collector ion microprobe, the ANU SHRIMP II, to screen and date these zircons. Unattended data acquisition relies on the calibration of a digitized sample map to the Sensitive High Resolution Ion MicroProbe (SHRIMP) sample-stage co-ordinate system. High precision positioning of individual grains can be produced through optical image processing of a specified mount location. The focal position of the mount can be optimized through a correlation between secondary-ion steering and the spot position on the target. For the Hadean zircon project, sample mounts are photographed and sample locations (normally grain centers) are determined off-line. The sample is loaded, reference points calibrated, and the target positions are then visited sequentially. In SHRIMP II multiple-collector mode, zircons are initially screened (ca. 5 s data acquisition) through their 204Pb corrected 207Pb/206Pb ratio; suitable candidates are then analyzed in a longer routine to obtain better measurement statistics, U/Pb, and concentration data. In SHRIMP I and SHRIMP RG, we have incorporated the automated analysis protocol to single-collector measurements. These routines have been used to analyze over 100,000 zircons from the Jack Hills quartzite. Of these, ca. 7%, have an age greater than 3.8 Ga, the oldest grain being 4372 +/- 6 Ma (2[sigma]), and this age is part of a group of analyses around 4350 Ma which we interpret as the age when continental crust first began to coalesce in this region. In multi-collector mode, the analytical time taken for a single mount with 400 zircons is approximately 6 h; whereas in single-collector mode, the analytical time is ca. 17 h. With this productivity, we can produce

  14. Comparative use of TIMS and SHRIMP for U Pb zircon dating of A-type granites and mafic tholeiitic layered complexes and dykes from the Corsican Batholith (France)

    NASA Astrophysics Data System (ADS)

    Cocherie, A.; Rossi, Ph.; Fanning, C. M.; Guerrot, C.

    2005-05-01

    The Corsica-Sardinia batholith in the southern realm of the Hercynian belt of Europe shows evidence for gravitational collapse of this part of the mountain belt, causing major felsic and mafic magmatism. The latest intrusions are composed of leucomonzogranite and late metaluminous and alkaline granite, associated with tholeiitic layered complexes and dykes. Three dating methods on zircon (Pb-evaporation, ID-TIMS and SHRIMP) were used to unravel the chronology of these felsic and mafic rocks. Dating of zircons by the conventional U-Pb method, using TIMS after zircon dissolution, achieved an analytical uncertainty of 1 Ma for favourable cases. The TIMS Pb-evaporation technique resulted in ages with an uncertainty range of 4 to 8 Ma. After 15 to 20 analyses with the SHRIMP method, a precision ranging from 2 to 5 Ma was obtained (all at 2 σ). The three methods applied to the same zircon population extracted from four A-type granites, show that the uncertainty ranges within 2-5 Ma according to the sample. This error seems to correspond to the real geochronological uncertainty that can be achieved. The results obtained show that all six tested alkaline granites were emplaced during a very short interval of about 3-5 Ma at about 288 Ma, almost contemporaneous with the leucomonzogranite emplacement (291-287 Ma) that ended the batholith formation. In addition, there is no significant gap with the age of emplacement of the mafic tholeiitic magmatism (around 286 Ma) crosscutting the "A-type" granites. The late alkaline granites definitely do not show up here as precursors of the Tethyan rifting that began at about 170 Ma, i.e. some 100 Ma after their emplacement. It is thus necessary to examine if alternative hypotheses to the anorogenic model of the A-type Younger Granite province better fit the new geochronological data. A model involving depleted continental-crust derived magma should be compatible with the timing and geodynamical constraints as far as isotopic data are

  15. Late Permian volcanic dykes in the crystalline basement of the Považský Inovec Mts. (Western Carpathians): U-Th-Pb zircon SHRIMP and monazite chemical dating

    NASA Astrophysics Data System (ADS)

    Pelech, Ondrej; Vozárová, Anna; Uher, Pavel; Petrík, Igor; Plašienka, Dušan; Šarinová, Katarína; Rodionov, Nikolay

    2017-08-01

    This paper presents geochronological data for the volcanic dykes located in the northern Považský Inovec Mts. The dykes are up to 5 m thick and tens to hundreds of metres long. They comprise variously inclined and oriented lenses, composed of strongly altered grey-green alkali basalts. Their age was variously interpreted and discussed in the past. Dykes were emplaced into the Tatricum metamorphic rocks, mostly consisting of mica schists and gneisses of the Variscan (early Carboniferous) age. Two different methods, zircon SHRIMP and monazite chemical dating, were applied to determine the age of these dykes. U-Pb SHRIMP dating of magmatic zircons yielded the concordia age of 260.2 ± 1.4 Ma. The Th-U-Pb monazite dating of the same dyke gave the CHIME age of 259 ± 3Ma. Both ages confirm the magmatic crystallization at the boundary of the latest Middle Permian to the Late Permian. Dyke emplacement was coeval with development of the Late Paleozoic sedimentary basin known in the northern Považský Inovec Mts. and could be correlated with other pre-Mesozoic Tethyan regions especially in the Southern Alps.

  16. Assessing Causes and Consequences of Columbia River Basalt Volcanism with Zircon Geochronology

    NASA Astrophysics Data System (ADS)

    Kasbohm, J.; Schoene, B.

    2017-12-01

    The Columbia River Basalt (CRB) is the youngest and best-preserved continental flood basalt province, but its mechanism of origin remains disputed. While some workers favor a mantle plume source to generate the large volume of flood basalts, others prefer subduction-related processes such as slab breakoff. Additionally, based on current geochronological (K-Ar and 40Ar/39Ar) estimates for the age of the CRB, there appears to be a very broad temporal coincidence between the main eruptive phase of the CRB and the Mid-Miocene Climate Optimum (MMCO), a period of elevated global temperatures and atmospheric CO2. Currently, large analytical uncertainties preclude the detailed calculation of volumetric eruption rates, which will be essential to test models of origin and to pinpoint correlation to climate records. To develop a complete record of eruption rates through the CRB, we use CA-ID-TIMS U-Pb zircon geochronology, which is capable of yielding 2σ uncertainties on single analyses of ca. 10 kyr. While basalt does not typically saturate zircon, interflow sediments, paleosols, and volcaniclastic layers in the CRB stratigraphy contain felsic zircon-bearing ash, likely sourced from both the Cascades arc and incipient Snake River plain volcanism. We use U-Pb zircon dates from these horizons to bracket the age of basalt flows. Preliminary results show that 88% of the total volume of the CRB (the Imnaha, Grande Ronde, and Wanapum Basalts) erupted in 700 kyr, beginning 16.6 Ma, with an average effusion rate of 0.26 km3/yr and with occurrence of lava flows propagating from south to north at a minimum rate of 0.3 m/yr. Thus far, these results do not preclude a mantle plume origin, but do place quantitative constraints on geodynamic numerical models hoping to constrain flood basalt origins. Although models based on prior geochronology have suggested that degassing from the CRB was insufficient to cause the MMCO, our calculated reduction in the duration of the main phase of CRB

  17. Thermomagmatic evolution of Mesoproterozoic crust in the Blue Ridge of SW Virginia and NW North Carolina: Evidence from U-Pb geochronology and zircon geothermometry

    USGS Publications Warehouse

    Tollo, Richard P.; Aleinikoff, John N.; Wooden, Joseph L.; Mazdab, Frank K.; Southworth, Scott; Fanning, Mark C.

    2010-01-01

    New geologic mapping, petrology, and U-Pb geochronology indicate that Mesoproterozoic crust near Mount Rogers consists of felsic to mafic meta-igneous rocks emplaced over 260 m.y. The oldest rocks are compositionally diverse and migmatitic, whereas younger granitoids are porphyritic to porphyroclastic. Cathodoluminescence imaging indicates that zircon from four representative units preserves textural evidence of multiple episodes of growth, including domains of igneous, metamorphic, and inherited origin. Sensitive high-resolution ion microprobe (SHRIMP) trace-element analyses indicate that metamorphic zircon is characterized by lower Th/U, higher Yb/Gd, and lower overall rare earth element (REE) concentrations than igneous zircon. SHRIMP U-Pb isotopic analyses of zircon define three episodes of magmatism: 1327 ± 7 Ma, 1180–1155 Ma, and 1061 ± 5 Ma. Crustal recycling is recorded by inherited igneous cores of 1.33–1.29 Ga age in 1161 ± 7 Ma meta-monzogranite. Overlapping ages of igneous and metamorphic crystallization indicate that plutons of ca. 1170 and 1060 Ma age were emplaced during episodes of regional heating. Local development of hornblende + plagioclase + quartz ± clinopyroxene indicates that prograde metamorphism at 1170–1145 Ma and 1060–1020 Ma reached upper-amphibolite-facies conditions, with temperatures estimated using Ti-in-zircon geothermometry at ~740 ± 40 °C during both episodes. The chemical composition of 1327 ± 7 Ma orthogranofels from migmatite preserves the first evidence of arc-generated rocks in the Blue Ridge, indicating a subduction-related environment that may have been comparable to similar-age systems in inliers of the Northern Appalachians and the Composite Arc belt of Canada. Granitic magmatism at 1180–1155 Ma and ca. 1060 Ma near Mount Rogers was contemporaneous with anorthosite-mangerite-charnockite-granite (AMCG) plutonism in the Northern Appalachian inliers and Canadian Grenville Province. Metamorphism at ca. 1160

  18. Paragneiss zircon geochronology and trace element geochemistry, North Qaidam HP/UHP terrane, western China

    USGS Publications Warehouse

    Mattinson, C.G.; Wooden, J.L.; Zhang, J.X.; Bird, D.K.

    2009-01-01

    In the southeastern part of the North Qaidam terrane, near Dulan, paragneiss hosts minor peridotite and UHP eclogite. Zircon geochronology and trace element geochemistry of three paragneiss samples (located within a ???3 km transect) indicates that eclogite-facies metamorphism resulted in variable degrees of zircon growth and recrystallization in the three samples. Inherited zircon core age groups at 1.8 and 2.5 Ga suggest that the protoliths of these rocks may have received sediments from the Yangtze or North China cratons. Mineral inclusions, depletion in HREE, and absence of negative Eu anomalies indicate that zircon U-Pb ages of 431 ?? 5 Ma and 426 ?? 4 Ma reflect eclogite-facies zircon growth in two of the samples. Ti-in-zircon thermometry results are tightly grouped at ???660 and ???600 ??C, respectively. Inclusions of metamorphic minerals, scarcity of inherited cores, and lack of isotopic or trace element inheritance demonstrate that significant new metamorphic zircon growth must have occurred. In contrast, zircon in the third sample is dominated by inherited grains, and rims show isotopic and trace element inheritance, suggesting solid-state recrystallization of detrital zircon with only minor new growth. ?? 2009 Elsevier Ltd.

  19. "SHRIMP geochronology for the 1450 Ma Lakhna dyke swarm: Its implication for the presence of Eoarchaean crust in the Bastar Craton and 1450-517 Ma depositional age for Purana basin (Khariar), Eastern Indian Peninsula": Comment

    NASA Astrophysics Data System (ADS)

    Basu, Abhijit; Bickford, M. E.

    2011-11-01

    As critical comments to the recent paper by Ratre et al. (2010, Journal of Asian Earth Sciences 39, 565-577) we cite U-Pb SHRIMP and CHIME ages of magmatic and detrital zircon and monazite from the Chhattisgarh and the Khariar basins in the Bastar craton to argue that these basins closed ca. 1000 Ma. We further argue that geochronologic data, geological evidence, and geological logic strongly indicate that sedimentation in the Khariar basin did not continue up to or beyond 517 Ma, as stated by Ratre et al. (op. cit).

  20. Decoding a protracted zircon geochronological record in ultrahigh temperature granulite, and persistence of partial melting in the crust, Rogaland, Norway

    NASA Astrophysics Data System (ADS)

    Laurent, Antonin T.; Bingen, Bernard; Duchene, Stephanie; Whitehouse, Martin J.; Seydoux-Guillaume, Anne-magali; Bosse, Valerie

    2018-04-01

    This contribution evaluates the relation between protracted zircon geochronological signal and protracted crustal melting in the course of polyphase high to ultrahigh temperature (UHT; T > 900 °C) granulite facies metamorphism. New U-Pb, oxygen isotope, trace element, ion imaging and cathodoluminescence (CL) imaging data in zircon are reported from five samples from Rogaland, South Norway. The data reveal that the spread of apparent age captured by zircon, between 1040 and 930 Ma, results both from open-system growth and closed-system post-crystallization disturbance. Post-crystallization disturbance is evidenced by inverse age zoning induced by solid-state recrystallization of metamict cores that received an alpha dose above 35 × 1017 α g-1. Zircon neocrystallization is documented by CL-dark domains displaying O isotope open-system behaviour. In UHT samples, O isotopic ratios are homogenous (δ18O = 8.91 ± 0.08‰), pointing to high-temperature diffusion. Scanning ion imaging of these CL-dark domains did not reveal unsupported radiogenic Pb. The continuous geochronological signal retrieved from the CL-dark zircon in UHT samples is similar to that of monazite for the two recognized metamorphic phases (M1: 1040-990 Ma; M2: 940-930 Ma). A specific zircon-forming event is identified in the orthopyroxene and UHT zone with a probability peak at ca. 975 Ma, lasting until ca. 955 Ma. Coupling U-Pb geochronology and Ti-in-zircon thermometry provides firm evidence of protracted melting lasting up to 110 My (1040-930 Ma) in the UHT zone, 85 My (ca. 1040-955 Ma) in the orthopyroxene zone and some 40 My (ca. 1040-1000 Ma) in the regional basement. These results demonstrate the persistence of melt over long timescales in the crust, punctuated by two UHT incursions.

  1. Combined garnet and zircon geochronology of the ultra-high temperature metamorphism: Constraints on the rise of the Orlica-Śnieżnik Dome, NE Bohemian Massif, SW Poland

    NASA Astrophysics Data System (ADS)

    Walczak, Katarzyna; Anczkiewicz, Robert; Szczepański, Jacek; Rubatto, Daniela; Košler, Jan

    2017-11-01

    Garnet and zircon geochronology combined with trace element partitioning and petrological studies provide tight constraints on evolution of the UHT-(U)HP terrain of the Orlica-Śnieżnik Dome (OSD) in the NE Bohemian massif. Lu-Hf dating of peritectic garnet from two mesocratic granulites constrained the time of its initial growth at 346.9 ± 1.2 and 348.3 ± 2.0 Ma recording peak 2.5 GPa pressure and 950 °C temperature. In situ, U-Pb SHRIMP dating of zircon from the same granulite gave a younger age of 341.9 ± 3.4 Ma. Ti-in-zircon thermometry indicates crystallization at 810-860 °C pointing to zircon formation on the retrograde path. Lu partitioning between garnet rim and zircon suggest equilibrium growth and thus U-Pb zircon age constrain the terminal phase of garnet crystallization which lasted about 6 Ma. All Sm-Nd garnet ages obtained for mesocratic and mafic granulites are identical and consistently younger than the corresponding Lu-Hf dates. They are interpreted as reflecting cooling of granulites through the Sm-Nd closure temperature at about 337 Ma. The estimated PTt path documents the ca. 10 Ma evolution cycle of the OSD characterized by two distinct periods: (1) 347 - > 342 Ma period corresponds to nearly isothermal decompression resulting from crustal scale folding and vertical extrusion of granulites, and (2) at > 342-337 Ma which corresponds to a fast, nearly isobaric cooling.

  2. Geology, zircon geochronology, and petrogenesis of Sabalan volcano (northwestern Iran)

    NASA Astrophysics Data System (ADS)

    Ghalamghash, J.; Mousavi, S. Z.; Hassanzadeh, J.; Schmitt, A. K.

    2016-11-01

    Sabalan Volcano (NW Iran) is an isolated voluminous (4821 m elevation; > 800 km2) composite volcano that is located within the Arabia-Eurasia collision zone. Its edifice was assembled by recurrent eruptions of trachyandesite and dacite magma falling into a relatively restricted compositional range (56-67% SiO2) with high-K calc-alkaline and adakitic trace element (Sr/Y) signatures. Previous K-Ar dating suggested protracted eruptive activity between 5.6 and 1.4 Ma, and a two stage evolution which resulted in the construction of the Paleo- and Neo-Sabalan edifices, respectively. The presence of a topographic moat surrounding Neo-Sabalan and volcanic breccias with locally intense hydrothermal alteration are indicative of intermittent caldera collapse of the central part of Paleo-Sabalan. Volcanic debris-flow and debris-avalanche deposits indicate earlier episodes of volcanic edifice collapse during the Paleo-Sabalan stage. In the Neo-Sabalan stage, three dacitic domes extruded to form the summits of Sabalan (Soltan, Heram, and Kasra). Ignimbrites and minor pumice fall-out deposits are exposed in strongly dissected drainages that in part have breached the caldera depression. Lavas and pyroclastic rocks are varyingly porphyritic with Paleo-Sabalan rocks being trachyandesites carrying abundant phenocrysts (plagioclase + amphibole + pyroxene + biotite). The Neo-Sabalan rocks are slightly more evolved and include dacitic compositions with phenocrysts of plagioclase + amphibole ± alkali-feldspar ± quartz. All Sabalan rock types share a common accessory assemblage (oxides + apatite + zircon). High spatial resolution and sensitivity U-Pb geochronology using Secondary Ionization Mass Spectrometry yielded two clusters of zircon ages which range from 4.5 to 1.3 Ma and 545 to 149 ka, respectively (all ages are averages of multiple determinations per sample). U-Th zircon geochronology for selected Neo-Sabalan rocks agrees with the U-Pb ages, with the youngest zircon rims dating

  3. Contribution of Columbia and Gondwana Supercontinent assembly- and growth-related magmatism in the evolution of the Meghalaya Plateau and the Mikir Hills, Northeast India: Constraints from U-Pb SHRIMP zircon geochronology and geochemistry

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Rino, Vikoleno; Hayasaka, Yasutaka; Kimura, Kosuke; Raju, Shunmugam; Terada, Kentaro; Pathak, Manjari

    2017-04-01

    The Meghalaya Plateau and the Mikir Hills constitute a northeastern extension of the Precambrian Indian Shield. They are dominantly composed of Proterozoic basement granite gneisses, granites, migmatites, granulites, the Shillong Group metasedimentary cover sequence, and Mesozoic-Tertiary igneous and sedimentary rocks. Medium to coarse grained, equigranular to porphyritic Cambrian granite plutons intrude the basement granite gneisses and the Shillong Group. U-Pb SHRIMP zircon geochronology and geochemistry of the granite gneisses and granites have been carried out in order to understand the nature and timing of granite magmatism, supercontinent cycles, and crustal growth of the Meghalaya Plateau and Mikir Hills. Zircons from the Rongjeng granite gneiss record the oldest magmatism at 1778 ± 37 Ma. An inherited zircon core has an age of 2566.4 ± 26.9 Ma, indicating the presence of recycled Neoarchaean crust in the basement granite gneisses. Zircons from the Sonsak granite have two ages: 523.4 ± 7.9 Ma and 1620.8 ± 9.2 Ma, which indicate partial assimilation of an older granite gneiss by a younger granite melt. Zircons from the Longavalli granite gneiss of the Mikir Hills has a crystallization age of 1430.4 ± 9.6 Ma and a metamorphic age of 514 ± 18.6 Ma. An inherited core of a zircon from Longavalli granite gneiss has an age of 1617.1 ± 14.5 Ma. Zircons from younger granite plutons have Cambrian mean ages of 528.7 ± 5.5 Ma (Kaziranga), 516 ± 9.0 Ma (South Khasi), 512.5 ± 8.7 Ma (Kyrdem), and 506.7 ± 7.1 Ma and 535 ± 11 Ma (Nongpoh). These plutons are products of the global Pan-African tectonothermal event, and their formation markedly coincides with the later stages of East Gondwana assembly (570-500 Ma, Kuunga orogen). The older inherited zircon cores (2566.4 ± 26.9 Ma, 1758.1 ± 54.3 Ma, 1617.1 ± 14 Ma) imply a significant role for recycled ancient crust in the generation of Cambrian granites. Thus the Meghalaya Plateau and Mikir Hills experienced

  4. High-precision ID-TIMS zircon U-Pb geochronology using new 1013 Ohm resistors

    NASA Astrophysics Data System (ADS)

    Von Quadt, A.; Buret, Y.; Large, S.; Peytcheva, I.; Trinquier, A.; Wotzlaw, J. F.

    2015-12-01

    Faraday cups equipped with high gain amplifiers provide a means to measure small ion beams in static mode without the limited linear range of ion counting systems. We tested the application of newly available 1013 Ohm resistors to ID-TIMS zircon U-Pb geochronology using a range of natural and synthetic reference materials. The TritonPlus-RPQ at the Institute of Geochemistry and Petrology, ETH Zurich, is equipped with five new 1013 Ohm resistors and one MasCom secondary electron multiplier, allowing to measure the 202-204-205-206-207-208Pb masses in static mode. U is measured subsequently as U-oxide (265-267-270UO2) during a second step, also in static Faraday mode. The gain calibration of the 1013 Ohm resistors was performed using the procedure of Trinquier (2014), with 144Nd-146Nd being measured using 1011 Ohm resistor and 142-143-145-148-150Nd being measured using 1013 Ohm resitors (Trinquier, 2014; Koornneef et al., 2014). Standard deviations of the noise in all five new 1013 Ohm resistors are lower than 5.0 x 10-6 over a 6 month period, with no shift occurring over this time interval. This new detector set-up was tested by analyzing natural zircon standard materials and synthetic U/Pb solutions (www.earthime.org), ranging in age from ~2 Ma to ~600 Ma. All natural zircon standards were chemically abraded (Mattinson, 2005) and all samples were spiked with the ET2535 tracer solution. U-Pb dates obtained using the static measurement routine are compared to measurements employing dynamic peak jumping routines on the MasCom multiplier. This study illustrates the benefits and current limitations of using high gain amplifiers to measure small ion beams for zircon U-Pb geochronology compared to conventional dynamic ion counting techniques. Mattinson, J.M. (2005) Chemical Geology 220:47-66; Trinquier, A. (2014) Application Note 30281; Koornneef, J. et al (2014) Analytica Chimica Acta 819:49-55.

  5. Detrital zircon geochronology of some neoproterozoic to triassic rocks in interior alaska

    USGS Publications Warehouse

    Bradley, D.C.; McClelland, W.C.; Wooden, J.L.; Till, A.B.; Roeske, S.M.; Miller, M.L.; Karl, Susan M.; Abbott, J.G.

    2007-01-01

    We report 777 U-Pb SHRIMP detrital zircon ages from thirteen sandstones and metasandstones in interior Alaska. About sixty grains per sample were analyzed; typically, half to three-fourths of these were concordant within ?? 10%. Farewell terrane. Two quartzites were collected from Ruby quadrangle and a third from Taylor Mountains quadrangle. All three are interpreted to represent a low stratigraphic level in the Nixon Fork platform succession; the samples from Ruby quadrangle are probably late Neoproterozoic, and the sample from Taylor Mountains quadrangle is probably Cambrian in age. The youngest detrital zircon in any of the three is 851 Ma. The two Ruby quadrangle samples area almost identical: one has a major age cluster at 1980-2087 and minor age clusters at 944-974 and 1366-1383 Ma; the other has a major age cluster at 1993-2095 Ma and minor age clusters at 912-946 and 1366-1395 Ma. The Taylor Mountains sample shows one dominant peak at 1914-2057 Ma. Notably absent are zircons in the range 1800-1900 Ma, which are typical of North American sources. The detrital zircon populations are consistent with paleontological evidence for a peri- Siberian position of the Farewell terrane during the early Paleozoic. Mystic subterrane of the Farewell terrane. Three graywackes from flysch of the Mystic subterrane, Talkeetna quadrangle, were sampled with the expectation that all three were Pennsylvanian. Asample from Pingston Creek is Triassic (as revealed by an interbedded ash dated at ca. 223 Ma) and is dominated by age clusters of 341-359 and 1804-1866 Ma, both consistent with a sediment source in the Yukon-Tanana terrane. Minor age clusters at 848-869 and 1992-2018 Ma could have been sourced in the older part of the Farewell terrane. Still other minor age clusters at 432-461, 620-657, 1509-1536, and 1627-1653 Ma are not readily linked to sources that are now nearby. Asample from Surprise Glacier is mid-Mississippian or younger. Adominant age cluster at 1855-1883 and a

  6. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology

    USGS Publications Warehouse

    Black, L.P.; Kamo, S.L.; Allen, C.M.; Aleinikoff, J.N.; Davis, D.W.; Korsch, R.J.; Foudoulis, C.

    2003-01-01

    The role of the standard is critical to the derivation of reliable U-Pb zircon ages by micro-beam analysis. For maximum reliability, it is critically important that the utilised standard be homogeneous at all scales of analysis. It is equally important that the standard has been precisely and accurately dated by an independent technique. This study reports the emergence of a new zircon standard that meets those criteria, as demonstrated by Sensitive High Resolution Ion MicroProbe (SHRIMP), isotope dilution thermal ionisation mass-spectrometry (IDTIMS) and excimer laser ablation- inductively coupled plasma-mass-spectrometry (ELA-ICP-MS) documentation. The TEMORA 1 zircon standard derives from the Middledale Gabbroic Diorite, a high-level mafic stock within the Palaeozoic Lachlan Orogen of eastern Australia. Its 206Pb/238U IDTIMS age has been determined to be 416.75??0.24 Ma (95% confidence limits), based on measurement errors alone. Spike-calibration uncertainty limits the accuracy to 416.8??1.1 Ma for U-Pb intercomparisons between different laboratories that do not use a common spike. ?? 2003 Published by Elsevier Science B.V. All rights reserved.

  7. U-Pb zircon geochronology and evolution of some Adirondack meta-igneous rocks

    NASA Technical Reports Server (NTRS)

    Mclelland, J. M.

    1988-01-01

    An update was presented of the recent U-Pb isotope geochronology and models for evolution of some of the meta-igneous rocks of the Adirondacks, New York. Uranium-lead zircon data from charnockites and mangerites and on baddeleyite from anorthosite suggest that the emplacement of these rocks into a stable crust took place in the range 1160 to 1130 Ma. Granulite facies metamorphism was approximately 1050 Ma as indicated by metamorphic zircon and sphene ages of the anorthosite and by development of magmatitic alaskitic gneiss. The concentric isotherms that are observed in this area are due to later doming. However, an older contact metamorphic aureole associated with anorthosite intrusion is observed where wollastonite develops in metacarbonates. Zenoliths found in the anorthosite indicate a metamorphic event prior to anorthosite emplacement. The most probable mechanism for anorthosite genesis is thought to be ponding of gabbroic magmas at the Moho. The emplacement of the anorogenic anorthosite-mangerite-charnockite suite was apparently bracketed by compressional orogenies.

  8. Scanning ion imaging - a potent tool in SIMS U -Pb zircon geochronology

    NASA Astrophysics Data System (ADS)

    Whitehouse, M. J.; Fedo, C.; Kusiak, M.; Nemchin, A.

    2012-12-01

    The application of high spatial resolution (< 15-20 μm lateral) U-Pb data obtained by sec-ondary ion mass spectrometers (SIMS) coupled with textural information from scanning electron microscope (SEM) based cathodoluminescence (CL) and/or back-scattered elec-tron (BSE) characterisation, has revolutionised geochronology over the past 25 years, re-vealing complexities of crustal evolution from zoned zircons. In addition to ge-ochronology, such studies now commonly form the basis of broader investigations using O- and Hf- isotopes and trace elements obtained from the same growth zone as age, circumventing ambiguities commonly present in bulk-rock isotope studies. The choice of analytical beam diameter is often made to maximise the precision of data obtained from a given area of analysis within an identifiable growth zone. In cases where zircons yield poorly constrained internal structures in SEM, high spatial resolution spot analyses may yield uninterpretable and/or meaningless mixed ages by inadvertent sampling across regions with real age differences. Scanning ion imaging (SII) has the potential to generate accurate and precise geochrono-logical data with a spatial resolution down to ca. 2 μm, much higher than that of a normal spot analysis. SII acquisition utilises a rastered primary beam to image an area of the sample with a spatial resolution dependent on the selected primary beam diameter. On the Cameca ims1270/80 instruments, the primary beam scanning is coupled with the dynamic transfer optical system (DTOS) which deflects the secondary ions back on to the ion optical axis of the instrument regardless of where in the raster illuminated area the ions originated. This feature allows retention of a high field magnification (= high transmission) mode and the ability to operate the mass spectrometer at high mass resolution without any compromise in the quality of the peak shape. Secondary ions may be detected either in a sequential (peak hopping) mono

  9. Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province.

    PubMed

    Blackburn, Terrence J; Olsen, Paul E; Bowring, Samuel A; McLean, Noah M; Kent, Dennis V; Puffer, John; McHone, Greg; Rasbury, E Troy; Et-Touhami, Mohammed

    2013-05-24

    The end-Triassic extinction is characterized by major losses in both terrestrial and marine diversity, setting the stage for dinosaurs to dominate Earth for the next 136 million years. Despite the approximate coincidence between this extinction and flood basalt volcanism, existing geochronologic dates have insufficient resolution to confirm eruptive rates required to induce major climate perturbations. Here, we present new zircon uranium-lead (U-Pb) geochronologic constraints on the age and duration of flood basalt volcanism within the Central Atlantic Magmatic Province. This chronology demonstrates synchroneity between the earliest volcanism and extinction, tests and corroborates the existing astrochronologic time scale, and shows that the release of magma and associated atmospheric flux occurred in four pulses over about 600,000 years, indicating expansive volcanism even as the biologic recovery was under way.

  10. Geochronology and Geochemistry of Zircons from the IODP Site U1437 in the Rear of the Izu-Bonin Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Andrews, G. D.; Schmitt, A. K.; Busby, C. J.; Brown, S. R.

    2015-12-01

    Zircons recovered from International Ocean Discovery Program Expedition 350 Site U1437 (31°47.390'N, 139°01.580'E) in the Izu-Bonin arc were analyzed by SIMS to constrain their age (U/Pb geochronology) and geochemistry (trace elements, δ18O); LA-ICP-MS ɛHf analyses are pending. Seven intervals were dated successfully: six tuffs and lapilli-tuffs between 680.99 and 1722.46 m below sea floor (mbsf) and a single peperitic rhyolitic intrusion at 1388.86 - 1390.07 mbsf. Thirty-two intervals which underwent mineral separation lacked zircon, or yielded zircon much older than age expectations for U1437. Geochronology results from separated zircons confirm and extend the shipboard age model to 1360.77 mbsf where Late Miocene (Tortonian) submarine volcanic rocks (11.3 ±0.7 Ma; n = 17) were sampled. In-situ measurement of zircons associated with magnetite crystals in the rhyolite intrusion yield an age of 13.6 ±1.7 Ma (n = 9). Zircon U contents are low (typically <300 ppm), with trace element ratios characteristic of oceanic lithosphere and near-mantle δ18O values (4-6 ‰). Individual Miocene zircon crystals are difficult to distinguish by age alone from those in the drilling mud (sepiolite) used during Expedition 350; the sepiolite is quarried by IMV Nevada in the Amargosa Valley. Our analysis of thirty-three zircons from the sepiolite finds that they have a broad and varied age distribution (2 - 2033 Ma) with a prominent peak at 12-14 Ma, bimodal δ18O values (peaks at 5-5.5 and 6.5-7.5 ‰), and dominantly continental trace element signatures. Three zircons from U1437 are tentatively identified as sepiolite-derived, but a single Eocene grain (51.7 ±2.4 Ma) recovered from 1722.46 mbsf has an age unlike those in the sepiolite, and potentially is genuinely xenocrystic. The majority of U1437 zircons thus crystallized from evolved melts lacking continental characteristics, although thermal and compositional conditions conducive for zircon crystallization appear to have

  11. Zircon age-temperature-compositional spectra in plutonic rocks

    DOE PAGES

    Samperton, Kyle M.; Bell, Elizabeth A.; Barboni, Mélanie; ...

    2017-08-23

    We present that geochronology can resolve dispersed zircon dates in plutonic rocks when magma cooling time scales exceed the temporal precision of individual U-Pb analyses; such age heterogeneity may indicate protracted crystallization between the temperatures of zircon saturation (T sat) and rock solidification (T solid). Diffusive growth models predict asymmetric distributions of zircon dates and crystallization temperatures in a cooling magma, with volumetrically abundant old, hot crystallization at T sat decreasing continuously to volumetrically minor young, cold crystallization at T solid. We present integrated geochronological and geochemical data from Bergell Intrusion tonalites (Central Alps, Europe) that document zircon compositional changemore » over hundreds of thousands of years at the hand-sample scale, indicating melt compositional evolution during solidification. Ti-in-zircon thermometry, crystallization simulation using MELTS software, and U-Pb dates produce zircon mass-temperature-time distributions that are in excellent agreement with zircon growth models. In conclusion, these findings provide the first quantitative validation of longstanding expectations from zircon saturation theory by direct geochronological investigation, underscoring zircon’s capacity to quantify supersolidus cooling rates in magmas and resolve dynamic differentiation histories in the plutonic rock record.« less

  12. Zircon age-temperature-compositional spectra in plutonic rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samperton, Kyle M.; Bell, Elizabeth A.; Barboni, Mélanie

    We present that geochronology can resolve dispersed zircon dates in plutonic rocks when magma cooling time scales exceed the temporal precision of individual U-Pb analyses; such age heterogeneity may indicate protracted crystallization between the temperatures of zircon saturation (T sat) and rock solidification (T solid). Diffusive growth models predict asymmetric distributions of zircon dates and crystallization temperatures in a cooling magma, with volumetrically abundant old, hot crystallization at T sat decreasing continuously to volumetrically minor young, cold crystallization at T solid. We present integrated geochronological and geochemical data from Bergell Intrusion tonalites (Central Alps, Europe) that document zircon compositional changemore » over hundreds of thousands of years at the hand-sample scale, indicating melt compositional evolution during solidification. Ti-in-zircon thermometry, crystallization simulation using MELTS software, and U-Pb dates produce zircon mass-temperature-time distributions that are in excellent agreement with zircon growth models. In conclusion, these findings provide the first quantitative validation of longstanding expectations from zircon saturation theory by direct geochronological investigation, underscoring zircon’s capacity to quantify supersolidus cooling rates in magmas and resolve dynamic differentiation histories in the plutonic rock record.« less

  13. Origin of northern Gondwana Cambrian sandstone revealed by detrital zircon SHRIMP dating

    USGS Publications Warehouse

    Avigad, D.; Kolodner, K.; McWilliams, M.; Persing, H.; Weissbrod, T.

    2003-01-01

    Voluminous Paleozoic sandstone sequences were deposited in northern Africa and Arabia following an extended Neoproterozoic orogenic cycle that culminated in the assembly of Gondwana. We measured sensitive high-resolution ion microprobe (SHRIMP) U-Pb ages of detrital zircons separated from several Cambrian units in the Elat area of southern Israel in order to unravel their provenance. This sandstone forms the base of the widespread siliciclastic section now exposed on the periphery of the Arabian-Nubian shield in northeastern Africa and Arabia. Most of the detrital zircons we analyzed yielded Neoproterozoic concordant ages with a marked concentration at 0.55–0.65 Ga. The most likely provenance of the Neoproterozoic detritus is the Arabian-Nubian shield; 0.55–0.65 Ga was a time of posttectonic igneous activity, rift-related volcanism, and strike-slip faulting there. Of the zircons, 30% yielded pre-Neoproterozoic ages grouped at 0.9–1.1 Ga (Kibaran), 1.65–1.85 Ga, and 2.45–2.7 Ga. The majority of the pre-Neoproterozoic zircons underwent Pb loss, possibly as a consequence of the Pan-African orogeny resetting their provenance. Rocks of the Saharan metacraton and the southern Afif terrane in Saudi Arabia (∼1000 km south of Elat) are plausible sources of these zircons. Kibaran basement rocks are currently exposed more than 3000 km south of Elat (flanking the Mozambique belt), but the shape of the detrital zircons of that age and the presence of feldspar in the host sandstone are not fully consistent with such a long-distance transport. Reworking of Neoproteorozoic glacial detritus may explain the presence of Kibaran detrital zircons in the Cambrian of Elat, but the possibility that the Arabian-Nubian shield contains Kibaran rocks (hitherto not recognized) should also be explored.

  14. Deducing the ancestry of terranes: SHRIMP evidence for South America derived Gondwana fragments in central Europe

    NASA Astrophysics Data System (ADS)

    Friedl, Gertrude; Finger, Fritz; McNaughton, Neal J.; Fletcher, Ian R.

    2000-11-01

    We present here an example of how the sensitive high-resolution ion microprobe (SHRIMP) zircon dating method can provide a terrane-specific geochronological fingerprint for a rock and thus help to reveal major tectonic boundaries within orogens. This method, applied to inherited zircons in a ca. 580 Ma metagranitoid rock from the eastern Bohemian Massif, has provided, for the first time in the central European Variscan basement, unequivocal evidence for Mesoproterozoic and late Paleoproterozoic geologic events ca. 1.2 Ga, 1.5 Ga, and 1.65 1.8 Ga. The recognition of such zircon ages has important consequences because it implies that parts of the Precambrian section of Variscan central Europe were originally derived from a Grenvillian cratonic province, as opposed to the common assumption of an African connection. A comparison with previously published SHRIMP data suggests, however, that these Mesoproterozoic and late Paleoproterozoic zircon ages may be restricted to the Moravo-Silesian unit in the eastern Variscides, whereas the Saxothuringian and Moldanubian zones appear to contain a typical north African (i.e., Neoproterozoic plus Eburnian) inherited-zircon age spectrum. This finding supports new tectonic concepts, according to which Variscan Europe is composed of a number of completely unrelated terranes with extremely different paleogeographic origins. The Moravo-Silesian unit can be best interpreted as a peri-Gondwana terrane, which was situated in the realm of the Amazonian cratonic province by the late Precambrian, comparable to the Avalonian terranes of North America and the United Kingdom.

  15. Phanerozoic polyphase orogenies recorded in the northeastern Okcheon Belt, Korea from SHRIMP U-Pb detrital zircon and K-Ar illite geochronologies

    NASA Astrophysics Data System (ADS)

    Jang, Yirang; Kwon, Sanghoon; Song, Yungoo; Kim, Sung Won; Kwon, Yi Kyun; Yi, Keewook

    2018-05-01

    We present the SHRIMP U-Pb detrital zircon and K-Ar illite 1Md/1M and 2M1 ages, suggesting new insight into the Phanerozoic polyphase orogenies preserved in the northeastern Okcheon Belt, Korea since the initial basin formation during Neoproterozoic rifting through several successive contractional orogens. The U-Pb detrital zircon ages from the Early Paleozoic strata of the Taebaeksan Zone suggest a Cambrian maximum deposition age, and are supported by trilobite and conodont biostratigraphy. Although the age spectra from two sedimentary groups, the Yeongwol and Taebaek Groups, show similar continuous distributions from the Late Paleoproterozoic to Early Paleozoic ages, a Grenville-age hiatus (1.3-0.9 Ga) in the continuous stratigraphic sequence from the Taebaek Group suggests the existence of different peripheral clastic sources along rifted continental margin(s). In addition, we present the K-Ar illite 1Md/1M ages of the fault gouges, which confirm fault formation/reactivation during the Late Cretaceous to Early Paleogene (ca. 82-62 Ma) and the Early Miocene (ca. 20-18 Ma). The 2M1 illite ages, at least those younger than the host rock ages, provide episodes of deformation, metamorphism and hydrothermal effects related to the tectonic events during the Devonian (ca.410 Ma) and Permo-Triassic (ca. 285-240 Ma). These results indicate that the northeastern Okcheon Belt experienced polyphase orogenic events, namely the Okcheon (Middle Paleozoic), Songrim (Late Paleozoic to Early Mesozoic), Daebo (Middle Mesozoic) and Bulguksa (Late Mesozoic to Early Cenozoic) Orogenies, reflecting the Phanerozoic tectonic evolution of the Korean Peninsula along the East Asian continental margin.

  16. Electron Backscatter Diffraction (EBSD) Analysis and U-Pb Geochronology of the Oldest Lunar Zircon: Constraining Early Lunar Differentiation and Dating Impact-Related Deformation

    NASA Technical Reports Server (NTRS)

    Timms, Nick; Nemchin, Alexander; Grange, Marion; Reddy, Steve; Pidgeon, Bob; Geisler, Thorsten; Meyer, Chuck

    2009-01-01

    The evolution of the early moon was dominated by two processes (i) crystallization of the Lunar Magma Ocean (LMO) and differentiation of potassium-rare earth element-phosphorous-rich residual magma reservoir referred to as KREEP, and (ii) an intense meteorite bombardment referred to as lunar cataclysm . The exact timing of these processes is disputed, and resolution relies on collection and interpretation of precise age data. This study examines the microstructure and geochronology of zircon from lunar impact breccias collected during the Apollo 17 mission. A large zircon clast within lunar breccia 72215,195 shows sector zoning in optical microscopy, cathodoluminescence (CL) imaging and Raman mapping, and indicates that it was a relict fragment of a much larger magmatic grain. Sensitive high resolution ion microprobe (SHRIMP) U-Pb analysis of the zircon shows that U and Th concentration correlate with sector zoning, with darkest CL domains corresponding with high-U and Th (approx.150 and approx.100 ppm respectively), and the brightest-CL sectors containing approx.30-50 ppm U and approx.10-20 ppm Th. This indicates that variations in optical CL and Raman properties correspond to differential accumulation of alpha-radiation damage in each sector. Electron backscatter diffraction (EBSD) mapping shows that the quality of electron backscatter patterns (band contrast) varies with sector zoning, with the poorest quality patterns obtained from high-U and Th, dark-CL zones. EBSD mapping also reveals a deformation microstructure that is cryptic in optical, CL and Raman imaging. Two orthogonal sets of straight discrete and gradational low-angle boundaries accommodate approx.12 misorientation across the grain. The deformation bands are parallel to the crystallographic {a}-planes of the zircon, have misorientation axes parallel to the c-axis, and are geometrically consistent with formation by dislocation creep associated with <100>{010} slip. The deformation bands are unlike

  17. Cenomanian-? early Turonian minimum age of the Chubut Group, Argentina: SHRIMP U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Suárez, Manuel; Márquez, Marcelo; De La Cruz, Rita; Navarrete, César; Fanning, Mark

    2014-03-01

    Four new SHRIMP U-Pb zircon ages older than 93 Ma from samples of the two uppermost formations accumulated in two different depocenters (Golfo de San Jorge and Cañadón Asfalto basins) of the Chubut Group in central Argentinean Patagonia, establish a pre-late Cenomanian-? early Turonian age for the group. It also confirms a coeval and comparable evolution of the two depocenters, where distal pyroclastic material was deposited together with fluvial and lacustrine facies.

  18. Combined garnet and zircon geochronology and trace elements studies - constraints of the UHP-(U)HT evolution of Orlica-Śnieżnik Dome (NE Bohemian Massif).

    NASA Astrophysics Data System (ADS)

    Walczak, Katarzyna; Anczkiewicz, Robert; Szczepański, Jacek; Rubatto, Daniela

    2017-04-01

    The Orlica-Śnieżnik Dome (OSD), located on the NE margin of the Bohemian Massif, is predominantly composed of amphibolite-facies orthogneiss that contain bodies of HP and UHP eclogites and granulites. Numerous geochronological studies have been undertaken to constrain the timing of the ultra-high grade metamorphic event. Despite this, the exact timing of UHP-(U)HT conditions remain dubious (e.g. Brueckner et al., 1991; Anczkiewicz et al., 2007; Bröcker et al., 2009 & 2010). We have utilized garnet and zircon geochronology to provide time constraints on the evolution of the UHT-(U)HP rocks of the OSD. We have combined the ages with trace element analyses in garnet and zircon to better understand the significance of the obtained ages in petrological context. Lu-Hf grt-wr dating of peritectic garnet from two felsic granulites constrained the time of its initial growth at 346.9 ± 1.2 and 348.3 ± 2.0 Ma, recording peak conditions of 2.7 GPa and 950°C (e.g. Ferrero et al., 2015). In situ U-Pb SHRIMP dating of zircon from the same granulite gave a younger age of 342.2 ± 3.4 Ma. HREE partitioning between garnet rim and metamorphic zircon indicate their growth in equilibrium, hence, the U-Pb zircon date constrains the terminal phase of garnet crystallization. Similar ages were obtained from two eclogite bodies from Międzygórze and Nowa Wieś localities; Lu-Hf (grt-cpx-wr) dating provided ages of 346.5 ± 2.4 and 348.1 ± 9.1 Ma for samples from Międzygórze and Nowa Wieś, respectively. The same age (within error) of 346.3 ± 5.2 Ma was reported by Bröcker et al. (2010) for zircon from the Międzygórze eclogite. Comparison of REE concentrations in garnet (this study) and in metamorphic zircon (reported in Bröcker et al., 2010) indicate that garnet and zircon crystallized in equilibrium. Furthermore, M-HREE patterns observed in both garnet and zircon strongly suggest their growth at eclogite facies conditions. Sm-Nd garnet ages obtained for both felsic and mafic

  19. New Hf isotope data from the Jack Hills zircons: constraints on the Hadean crustal evolution

    NASA Astrophysics Data System (ADS)

    Amelin, Y.; Davis, D.; Lee, D.

    2004-05-01

    Here we present a follow-up of our study of the "older" population of detrital zircons from the Jack Hills metaconglomerate W-74 [1]. We report Lu-Hf data for zircon grains, which have been previously analyzed with a number of techniques: BSE and CL imaging, detailed U-Pb SHRIMP geochronology, trace element concentrations, and oxygen isotopic compositions. After completion of non-destructive SIMS analyses and imaging, the zircons were extracted from the mounts, dissolved and analyzed for U-Pb and Lu-Hf using isotope dilution. Twenty five grains were air abraded before digestion, and eight grains were digested without abrasion. Four grains were cut, and the fragments were analyzed for U-Pb and Lu-Hf separately. The 207Pb/206Pb ages determined by isotope dilution vary between 3788-4186 Ma; the maximum SHRIMP spot 207Pb/206Pb ages of the same grains are between 3871-4276 Ma. The spot 207Pb/206Pb ages averaged over each grain are close to the whole grain isotope dilution values. The U-Pb discordance depends mainly on whether the grains were abraded: the median discordance of 27 abraded grains and fragments is 2.7 (the range is -0.4 to 20.2), whereas the median discordance of 11 unabraded grains and fragments is 66.5 (the range is 20.5 to 83.5). The epsilon176Hf values, calculated using the whole grain TIMS 207Pb/206Pb ages and the 176Lu decay constant of 1.865*10-11, are between -1.4 and -10.6. Using maximum SHRIMP spot 207Pb/206Pb ages and the same decay constant yields the range of epsilon176Hf of 0.1 to -8.6. If the decay constant of 1.983*10-11 is used instead, then the range of epsilon176Hf becomes 4.7 to -5.0 using the whole grain ages, or 6.3 to -3.0 using the maximum SHRIMP spot ages. Grain fragment analyses show internal variations of initial 176Hf/177Hf in three grains out of five. This observation is consistent with multi-episodic zircon growth rather than with ancient Pb loss. In the presentation we shall discuss the prospect of reliable interpretation of

  20. Petrologic and zircon U-Pb geochronological characteristics of the pelitic granulites from the Badu Complex of the Cathaysia Block, South China

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Zhou, Xiwen; Zhai, Mingguo; Liu, Bo; Cui, Xiahong

    2018-06-01

    The recognition of the Indosinian Orogeny in the South China block has been controversial and difficult because of strong weathering and thick cover. High temperature (HT) and high pressure (HP) metamorphic rocks related to this orogeny were considered to be absent from this orogenic belt until the recent discovery of eclogite and granulite facies meta-igneous rocks, occurring as lenses within the meta-sedimentary rocks of the Badu Complex. However, metamorphic state of these meta-sedimentary rocks is still not clear. Besides, there have been no geochronological data of HT pelitic granulites previously reported from the Badu Complex. This paper presents petrographic characteristics and zircon geochronological results on the newly discovered kyanite garnet gneiss, pyroxene garnet gneiss and the HT pelitic granulites (sillimanite garnet gneiss). Mineral assemblages are garnet + sillimanite + ternary feldspar + plagioclase + quartz + biotite for the HT pelitic granulite, kyanite + ternary feldspar + garnet + sillimanite + plagioclase + quartz + biotite for the kyanite garnet gneiss, and garnet + biotite + pyroxene + plagioclase + ternary feldspar + quartz for the pyroxene garnet gneiss, respectively. Decompressional coronas around garnet grains can be observed in all these pelitic rocks. Typical granulite facies mineral assemblages and reaction textures suggest that these rocks experienced HP granulite facies metamorphism and overprinted decompression along a clockwise P-T loop. Results from integrated U-Pb dating and REE analysis indicate the growth of metamorphic zircons from depleted heavy REE sources (100-50 chondrite) compared with detrital zircons derived from granitic sources (typically > 1000 chondrite). Metamorphic zircons in HP granulite exhibit no or subdued negative Eu anomalies, which perhaps indicate zircon overgrowth under eclogite facies conditions. The zircon overgrowth ages range from 250 to 235 Ma, suggesting that HP granulite (eclogite) to

  1. The Triassic reworking of the Yunkai massif (South China): EMP monazite and U-Pb zircon geochronologic evidence

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Hong; Liu, Yung-Hsin; Lee, Chi-Yu; Sano, Yuji; Zhou, Han-Wen; Xiang, Hua; Takahata, Naoto

    2017-01-01

    Geohistory of the Yunkai massif in South China Block is important in understanding the geodynamics for the build-up of this block during the Phanerozoic orogenies. To investigate this massif, we conduct EMP monazite and U-Pb zircon geochronological determinations on mineral inclusions and separate for seventeen samples in four groups, representing metamorphic rocks from core domain, the Gaozhou Complex (amphibolite facies, NE-striking) and the Yunkai Group (greenschist facies, NW-striking) of this massif and adjacent undeformed granites. Some EMP monazite ages are consistent with the NanoSIMS results. Monazite inclusions, mostly with long axis parallel to the cleavage of platy and elongated hosts, give distinguishable age results for NW- and NE-trending deformations at 244-236 Ma and 236-233 Ma, respectively. They also yield ages of 233-230 Ma for core domain gneissic granites and 232-229 Ma for undefomed granites. Combining U-Pb zircon ages of the same group, 245 Ma and 230 Ma are suggested to constrain the time of two phases of deformation. Aside from ubiquity of Triassic ages in studied rocks, ages of detrital monazite in the meta-sandstone match the major U-Pb zircon age clusters of the metamorphic rock that are largely concentrated at Neoproterozoic (1.0-0.9 Ga) and Early Paleozoic (444-431 Ma). Based on these geochronological data, Triassic is interpreted as representing the time for recrystallization of these host minerals on the Early Paleozoic protolith, and the also popular Neoproterozoic age is probably inherited. With this context, Yunkai massif is regarded as a strongly reactivated Triassic metamorphic terrain on an Early Paleozoic basement which had incorporated sediments with Neoproterozoic provenances. Triassic tectonic evolution of the Yunkai massif is suggested to have been controlled by converging geodynamics of the South China and Indochina Blocks as well as mafic magma emplacement related to the Emeishan large igneous province (E-LIP).

  2. LA-SF-ICP-MS zircon U-Pb geochronology of granitic rocks from the central Bundelkhand greenstone complex, Bundelkhand craton, India

    NASA Astrophysics Data System (ADS)

    Verma, Sanjeet K.; Verma, Surendra P.; Oliveira, Elson P.; Singh, Vinod K.; Moreno, Juan A.

    2016-03-01

    The central Bundelkhand greenstone complex in Bundelkhand craton, northern India is one of the well exposed Archaean supracrustal amphibolite, banded iron formation (BIF) and felsic volcanic rocks (FV) and associated with grey and pink porphyritic granite, tonalite-trondhjemite-granodiorite (TTG). Here we present high precision zircon U-Pb geochronological data for the pinkish porphyritic granites and TTG. The zircons from the grey-pinkish porphyritic granite show three different concordia ages of 2531 ± 21 Ma, 2516 ± 38 Ma, and 2514 ± 13 Ma, which are interpreted as the best estimate of the magmatic crystallization age for the studied granites. We also report the concordia age of 2669 ± 7.4 Ma for a trondhjemite gneiss sample, which is so far the youngest U-Pb geochronological data for a TTG rock suite in the Bundelkhand craton. This TTG formation at 2669 Ma is also more similar to Precambrian basement TTG gneisses of the Aravalli Craton of north western India and suggests that crust formation in the Bundelkhand Craton occurred in a similar time-frame to that recorded from the Aravalli craton of the North-western India.

  3. A chronostratigraphic assessment of the Moenave Formation, USA using C-isotope chemostratigraphy and detrital zircon geochronology: Implications for the terrestrial end Triassic extinction

    NASA Astrophysics Data System (ADS)

    Suarez, Celina A.; Knobbe, Todd K.; Crowley, James L.; Kirkland, James I.; Milner, Andrew R. C.

    2017-10-01

    The Late Triassic is a period of abrupt climate change associated with a disruption to the global carbon cycle usually ascribed to the emplacement of the Central Atlantic Magmatic Province (CAMP). Geochronologic, paleontologic, and geochemical studies have shown that the CAMP was likely the major factor for the end-Triassic extinction (ETE), however, difficulties correlating and dating terrestrial strata has left the nature of the terrestrial extinction in question. The lacustrine Whitmore Point Member (WPM) of the Moenave Formation is ideal for investigating these details because it is reported to be Late Triassic to Early Jurassic. However, currently there are conflicting age constraints between biostratigraphy and magnetostratigraphy. In this study we attempt to elucidate the ETE by incorporating C-isotope chemostratigraphy and detrital zircon geochronology. Detrital zircon geochronology suggests the upper part of the Dinosaur Canyon Member (DCM) is younger (201.33 ± 0.07/0.12/0.25 Ma) than the ETE (201.564 Ma) suggesting the ETE is in the middle to lower DCM, in agreement with track biostratigraphy (first occurrence of Eubrontes, Anomoepus, and Batrachopus). Meanwhile a distinct negative carbon isotope (NCIE) excursion (-5.5‰) occurs at the base of the WPM at Potter Canyon, AZ with a more subtle NCIE at the base of the WPM at Black Canyon, UT (-2.0‰) that may correlate to the initial NCIE at the ETE. However, the WPM NCIE is correlated to the preservation of organic C (relative %C) suggesting it may be either related to local lake productivity and biases in organic matter preservation or may be a negative CIE in the Jurassic Hettangian stage. With the addition of the detrital zircon data, we suggest the M2r reversal at the base of the WPM is a reversal in the Hettangian (the H24r, H25r, or H26r) and the ETE is within the DCM. Additional C-isotope analysis of the DCM is necessary to determine if the initial NCIE that is the hallmark of the ETE occurs in

  4. Tithonian age of dinosaur fossils in central Patagonian, Chile: U-Pb SHRIMP geochronology

    NASA Astrophysics Data System (ADS)

    Suárez, Manuel; De La Cruz, Rita; Fanning, Mark; Novas, Fernando; Salgado, Leonardo

    2016-11-01

    Three Tithonian concordant U-Pb SHRIMP zircon ages of 148.7 ± 1.4, 147.9 ± 1.5 and 147.0 ± 1.0 from tuffs intercalated in a clastic sedimentary succession with exceptional dinosaur bones including the new taxon Chilesaurus diegosuarezi gen. et sp. nov. exposed in central Chilean Patagonia (ca. 46°30'S) are reported herein. The fossiliferous beds accumulated in a synvolcanic fan delta reaching a shallow marine basin as indicated by glauconite present in some of the beds, and coeval with the beginning of the transgression of the Aysén Basin.

  5. SHRIMP-RG U-Pb isotopic systematics of zircon from the Angel Lake orthogneiss, East Humboldt Range, Nevada: Is this really archean crust?

    USGS Publications Warehouse

    Premo, Wayne R.; Castineiras, Pedro; Wooden, Joseph L.

    2008-01-01

    New SHRIMP-RG (sensitive high-resolution ion microprobe-reverse geometry) data confirm the existence of Archean components within zircon grains of a sample from the orthogneiss of Angel Lake, Nevada, United States, previously interpreted as a nappe of Archean crust. However, the combined evidence strongly suggests that this orthogneiss is a highly deformed, Late Cretaceous monzogranite derived from melting of a sedimentary source dominated by Archean detritus. Zircon grains from the same sample used previously for isotope dilution-thermal ionization mass spectrometry (ID-TIMS) isotopic work were analyzed using the SHRIMP-RG to better define the age and origin of the orthogneiss. Prior to analysis, imaging revealed a morphological variability and intragrain, polyphase nature of the zircon population. The SHRIMP-RG yielded 207Pb/206Pb ages between ca. 2430 and 2580 Ma (a best-fit mean 207Pb/206Pb age of 2531 ± 19 Ma; 95% confidence) from mostly rounded to subrounded zircons and zircon components (cores). In addition, several analyses from rounded to subrounded cores or grains yielded discordant 207Pb/206Pb ages between ca. 1460 and ca. 2170 Ma, consistent with known regional magmatic events. All cores of Proterozoic to latest Archean age were encased within clear, typically low Th/U (206Pb/238U ages between 72 and 91 Ma, consistent with magmatic ages from Lamoille Canyon to the south. An age of ca. 90 Ma is suggested, the younger 206Pb/238U ages resulting from Pb loss. The Cretaceous and Precambrian zircon components also have distinct trace element characteristics, indicating that these age groups are not related to the same igneous source. These results support recent geophysical interpretations and negate the contention that the Archean-Proterozoic boundary extends into the central Great Basin area. They further suggest that the world-class gold deposits along the Carlin Trend are not underlain by Archean cratonal crust, but rather by the Proterozoic Mojave

  6. U-Pb zircon geochronology of plutonism in the northern Peninsular Ranges batholith, southern California: Implications for the Late Cretaceous tectonic evolution of southern California

    USGS Publications Warehouse

    Premo, Wayne R.; Morton, Douglas M.; Wooden, Joseph L.; Fanning, C. Mark

    2014-01-01

    Utilizing both sensitive high-resolution ion microprobe (SHRIMP) and conventional isotope dilution–thermal ionization mass spectrometry (ID-TIMS) methods, crystallization and/or emplacement ages have been obtained for a suite of Cretaceous intermediate-composition plutonic samples collected along a roughly E-W–trending traverse through the northern Peninsular Ranges batholith. Previously noted petrologic, mineralogic, and textural differences delineated four major zonations from west to east and raised the need for detailed geochemical and isotopic work. U-Pb zircon geochronology establishes that these zonations are essentially temporally separate. Mean 206Pb/238U ages date the three older zones from west to east at 126–107 Ma, 107–98 Ma, and 98–91 Ma. Despite petrologic differences, a relatively smooth progression of magmatism is seen from west to east. A fourth zone is defined by magmatism at ca. 85 Ma, which represents emplacement of deeper-level plutons east of the Eastern Peninsular Ranges mylonite zone in an allochthonous thrust sheet in the northeastern Peninsular Ranges batholith.The age data presented here differ slightly from those presented in earlier work for similar rocks exposed across the middle and southern portions of the Peninsular Ranges batholith in that our data define a relatively smooth progression of magmatism from west to east, and that the transition from western-type to eastern-type plutonism is interpreted to have occurred at ca. 98 Ma and not at ca. 105 Ma.The progressive involvement of older crustal components in the enrichment of eastern Peninsular Ranges batholith–type magma sources is documented by the occurrence of Proterozoic zircon inheritance within samples of the eastern part of the batholith.

  7. Constraints on the timing of Co-Cu ± Au mineralization in the Blackbird district, Idaho, using SHRIMP U-Pb ages of monazite and xenotime plus zircon ages of related Mesoproterozoic orthogneisses and metasedimentary rocks

    USGS Publications Warehouse

    Aleinikoff, John N.; Slack, John F.; Lund, Karen; Evans, Karl V.; Fanning, C. Mark; Mazdab, Frank K.; Wooden, Joseph L.; Pillers, Renee M.

    2012-01-01

    The Blackbird district, east-central Idaho, contains the largest known Co reserves in the United States. The origin of strata-hosted Co-Cu ± Au mineralization at Blackbird has been a matter of controversy for decades. In order to differentiate among possible genetic models for the deposits, including various combinations of volcanic, sedimentary, magmatic, and metamorphic processes, we used U-Pb geochronology of xenotime, monazite, and zircon to establish time constraints for ore formation. New age data reported here were obtained using sensitive high resolution ion microprobe (SHRIMP) microanalysis of (1) detrital zircons from a sample of Mesoproterozoic siliciclastic metasedimentary country rock in the Blackbird district, (2) igneous zircons from Mesoproterozoic intrusions, and (3) xenotime and monazite from the Merle and Sunshine prospects at Blackbird. Detrital zircon from metasandstone of the biotite phyllite-schist unit has ages mostly in the range of 1900 to 1600 Ma, plus a few Neoarchean and Paleoproterozoic grains. Age data for the six youngest grains form a coherent group at 1409 ± 10 Ma, regarded as the maximum age of deposition of metasedimentary country rocks of the central structural domain. Igneous zircons from nine samples of megacrystic granite, granite augen gneiss, and granodiorite augen gneiss that crop out north and east of the Blackbird district yield ages between 1383 ± 4 and 1359 ± 7 Ma. Emplacement of the Big Deer Creek megacrystic granite (1377 ± 4 Ma), structurally juxtaposed with host rocks in the Late Cretaceous ca. 5 km north of Blackbird, may have been involved in initial deposition of rare earth elements (REE) minerals and, possibly, sulfides. In situ SHRIMP ages of xenotime and monazite in Co-rich samples from the Merle and Sunshine prospects, plus backscattered electron imagery and SHRIMP analyses of trace elements, indicate a complex sequence of Mesoproterozoic and Cretaceous events. On the basis of textural relationships

  8. Geochemical and Geochronologic Investigations of Zircon-hosted Melt Inclusions in Rhyolites from the Mesoproterozoic Pea Ridge IOA-REE Deposit, St. Francois Mountains, Missouri

    NASA Astrophysics Data System (ADS)

    Watts, K. E.; Mercer, C. N.; Vazquez, J. A.

    2015-12-01

    Silicic volcanic and plutonic rocks of an eroded Mesoproterozoic caldera complex were intruded and replaced by iron ore, and cross-cut by REE-enriched breccia pipes (~12% total REO) to form the Pea Ridge iron-oxide-apatite-REE (IOA-REE) deposit. Igneous activity, iron ore formation, and REE mineralization overlapped in space and time, however the source of REEs and other metals (Fe, Cu, Au) integral to these economically important deposits remains unclear. Melt inclusions (MI) hosted in refractory zircon phenocrysts are used to constrain magmatic components and processes in the formation of the Pea Ridge deposit. Homogenized (1.4 kbar, 1000°C, 1 hr) MI in zircons from rhyolites ~600 ft (PR-91) and ~1200 ft (PR-12) laterally from the ore body were analyzed for major elements by EPMA and volatiles and trace elements (H2O, S, F, Cl, REEs, Rb, Sr, Y, Zr, Nb, U, Th) by SHRIMP-RG. Metals (including Cu, Au) will be measured in an upcoming SHRIMP-RG session. U-Pb ages, Ti and REE were determined by SHRIMP-RG for a subset of zircon spots adjacent to MI (1458 ± 18 Ma (PR-12); 1480 ± 45 Ma (PR-91)). MI glasses range from fresh and homogeneous dacite-rhyolite (65-75 wt% SiO2) to heterogeneous, patchy mixtures of K-spar and quartz (PR-12, 91), and more rarely mica, albite and/or anorthoclase (PR-91). MI are commonly attached to monazite and xenotime, particularly along re-entrants and zircon rims (PR-91). Fresh dacite-rhyolite glasses (PR-12) have moderate H2O (~2-2.5 wt%), Rb/Sr ratios (~8) and U (~5-7 ppm), and negative (chondrite-normalized) Eu anomalies (Eu ~0.4-0.7 ppm) (typical of rhyolites), whereas HREEs (Tb, Ho, Tm) are elevated (~2-3 ppm). Patchy K-spar and quartz inclusions (PR-12, 91) have flat LREE patterns, and positive anomalies in Tb, Ho, and Tm. One K-spar inclusion (PR-91) has a ~5-50 fold increase in HREEs (Tb, Dy, Ho, Er, Tm) and U (35 ppm) relative to other MI. U-Pb and REE analyses of its zircon host are not unusual (1484 ± 21 Ma); its irregular shape

  9. Geochronology of Zircon in Eclogite Reveals Imbrication of the Ultrahigh-Pressure Western Gneiss Region of Norway.

    NASA Astrophysics Data System (ADS)

    Young, D. J.; Kylander-Clark, A. R.; Root, D. B.

    2014-12-01

    Eclogite provides the only record of kinematic events at the deepest levels of orogens. Integrating the U-Pb geochronology and trace element chemistry of zircon in eclogite reveals the most complete view of the PTt history, yet low concentrations of uranium and zirconium and drier compositions that hinder zircon growth at peak conditions render it a challenging rocktype for this approach. The iconic Western Gneiss Region (WGR) in Norway is one of the largest terranes of deeply subducted continental rocks in the world, and contains many indicators of ultrahigh-pressure metamorphic conditions (P>2.8 GPa) that developed during the Siluro-Devonian Caledonian Orogeny. A metamorphic transition from amphibolite-facies to ultrahigh-pressure eclogite facies broadly coincides with a km-scale shear zone that underlies the majority of the WGR. A critical unknown is the timing of movement on this feature, which emplaced allochthonous units above the Baltica basement, but might also have accommodated late-orogenic exhumation of the WGR from mantle depths. We carried out laser ablation split-stream ICPMS (LASS) and selected multigrain TIMS analyses of zircons from eleven eclogites across the southern WGR, of which eight are located within or above the shear zone. LASS spots on polished grains mostly yield weakly discordant Proterozoic intrusive ages, and often minimal indication of a Caledonian (U)HP metamorphic overprint. Direct ablation into unpolished zircon reveals thin rims of Caledonian age in some cases. Overall, the dataset shows that all samples began zircon growth at approximately the same time (ca. 430-420 Ma). Eclogite from lower levels of the shear zone does not contain any dates younger than ca. 410 Ma, however, while eclogite from higher levels continued growth until ca. 400 Ma. We interpret this to result from thrusting of the WGR above cooler basement after 410 Ma, terminating new zircon crystallization within the shear zone but allowing limited further growth in

  10. In-Situ U-Pb Dating of Apatite by Hiroshima-SHRIMP: Contributions to Earth and Planetary Science.

    PubMed

    Terada, Kentaro; Sano, Yuji

    2012-01-01

    The Sensitive High Resolution Ion MicroProbe (SHRIMP) is the first ion microprobe dedicated to geological isotopic analyses, especially in-situ analyses related to the geochronology of zircon. Such a sophisticated ion probe, which can attain a high sensitivity at a high mass resolution, based on a double focusing high mass-resolution spectrometer, designed by Matsuda (1974), was constructed at the Australian National University. In 1996, such an instrument was installed at Hiroshima University and was the first SHRIMP to be installed in Japan. Since its installation, our focus has been on the in-situ U-Pb dating of the mineral apatite, as well as zircon, which is a more common U-bearing mineral. This provides the possibility for extending the use of in-situ U-Pb dating from determining the age of formation of volcanic, granitic, sedimentary and metamorphic minerals to the direct determination of the diagenetic age of fossils and/or the crystallization age of various meteorites, which can provide new insights into the thermal history on the Earth and/or the Solar System. In this paper, we review the methodology associated with in-situ apatite dating and our contribution to Earth and Planetary Science over the past 16 years.

  11. In-Situ U–Pb Dating of Apatite by Hiroshima-SHRIMP: Contributions to Earth and Planetary Science

    PubMed Central

    Terada, Kentaro; Sano, Yuji

    2012-01-01

    The Sensitive High Resolution Ion MicroProbe (SHRIMP) is the first ion microprobe dedicated to geological isotopic analyses, especially in-situ analyses related to the geochronology of zircon. Such a sophisticated ion probe, which can attain a high sensitivity at a high mass resolution, based on a double focusing high mass-resolution spectrometer, designed by Matsuda (1974), was constructed at the Australian National University. In 1996, such an instrument was installed at Hiroshima University and was the first SHRIMP to be installed in Japan. Since its installation, our focus has been on the in-situ U–Pb dating of the mineral apatite, as well as zircon, which is a more common U-bearing mineral. This provides the possibility for extending the use of in-situ U–Pb dating from determining the age of formation of volcanic, granitic, sedimentary and metamorphic minerals to the direct determination of the diagenetic age of fossils and/or the crystallization age of various meteorites, which can provide new insights into the thermal history on the Earth and/or the Solar System. In this paper, we review the methodology associated with in-situ apatite dating and our contribution to Earth and Planetary Science over the past 16 years. PMID:24349912

  12. Exploring the pre-eruptive history of the Central Atlantic Magmatic Province (CAMP) and the link with the end Triassic extinction using high precision U-Pb zircon and baddeleyite geochronology

    NASA Astrophysics Data System (ADS)

    Davies, Joshua; Marzoli, Andrea; Bertrand, Hervé; Youbi, Nasrrddine; Schaltegger, Urs

    2015-04-01

    The Central Atlantic Magmatic Province (CAMP) is a massive outpouring of basaltic lava, dykes and sills that was predominantly emplaced into the Triassic-Jurassic basins of North and South America, Europe and Africa. These basins were, at the time, in the center of the paleo-supercontinent Pangea, and the CAMP flood basalts are associated with Pangea's break-up and the opening of the Atlantic Ocean. The global climatic and environmental impact of the basalt eruption has been temporally linked with the end-Triassic mass extinction, although the extinction horizon, defined by a carbon isotope excursion, is stratigraphically below the first basaltic flows in all of the currently identified basins. Therefore, if the extinction is related to the CAMP, it must be related to a process that occurred before the eruption of the first basalt flow, or is co-incident with a currently unidentified older basalt flow. Here we present high precision TIMS zircon U-Pb geochronology on zircons from the North Mountain basalt (NMB) in the Fundy basin, Canada, and also baddeleyite from the Foum Zuid dyke (FZD) in the Anti-Atlas, Morocco. The NMB zircons have been separated from the lowermost accessible basalt flow of the NMB sequence in a coarse-grained section, rather than from a felsic residual melt pod, which is the usual target for zircon geochronology in basalts. The baddeleyites from the FZD were also separated from a coarse-grained section of the dyke. The zircons and baddeleyites from the NMB and FZD samples contain an antecrystic population with ages more than 1 Ma older than the emplacement of the basalts. The U-Pb ages presented here suggest that there was magmatic activity relating to the CAMP before the eruption of the first basalts. There are a number of possible explanations for the old zircons 1) recycling of zircon from earlier phases of magmatism, which then would have to have been re-molten and entrained into the NMB and FZD magmas. 2) Recycling of crystal mush from

  13. Calibrating Late Cretaceous Terrestrial Cyclostratigraphy with High-precision U-Pb Zircon Geochronology: Qingshankou Formation of the Songliao Basin, China

    NASA Astrophysics Data System (ADS)

    Wang, T.; Ramezani, J.; Wang, C.

    2015-12-01

    A continuous succession of Late Cretaceous lacustrine strata has been recovered from the SK-I south (SK-Is) and SKI north (SK-In) boreholes in the long-lived Cretaceous Songliao Basin in Northeast China. Establishing a high-resolution chronostratigraphic framework is a prerequisite for integrating the Songliao record with the global marine Cretaceous. We present high-precision U-Pb zircon geochronology by the chemical abrasion isotope dilution thermal-ionization mass spectrometry method from multiple bentonite core samples from the Late Cretaceous Qingshankou Formation in order to assess the astrochronological model for the Songliao Basin cyclostratigraphy. Our results from the SK-Is core present major improvements in precision and accuracy over the previously published geochronology and allow a cycle-level calibration of the cyclostratigraphy. The resulting choronostratigraphy suggest a good first-order agreement between the radioisotope geochronology and the established astrochronological time scale over the corresponding interval. The dated bentonite beds near the 1780 m depth straddle a prominent oil shale layer of the Qingshankou Formation, which records a basin-wide lake anoxic event (LAE1), providing a direct age constraint for the LAE1. The latter appears to coincide in time with the Late Cretaceous (Turonian) global sea level change event Tu4 presently constrained at 91.8 Ma.

  14. LA-ICP-MS and SIMS U-Pb and U-Th zircon geochronological data of Late Pleistocene lava domes of the Ciomadul Volcanic Dome Complex (Eastern Carpathians).

    PubMed

    Lukács, Réka; Guillong, Marcel; Schmitt, Axel K; Molnár, Kata; Bachmann, Olivier; Harangi, Szabolcs

    2018-06-01

    This article provides laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and secondary ionization mass spectrometry (SIMS) U-Pb and U-Th zircon dates for crystals separated from Late Pleistocene dacitic lava dome rocks of the Ciomadul Volcanic Dome Complex (Eastern Carpathians, Romania). The analyses were performed on unpolished zircon prism faces (termed rim analyses) and on crystal interiors exposed through mechanical grinding an polishing (interior analyses). 206 Pb/ 238 U ages are corrected for Th-disequilibrium based on published and calculated distribution coefficients for U and Th using average whole-rock and individually analyzed zircon compositions. The data presented in this article were used for the Th-disequilibrium correction of (U-Th)/He zircon geochronology data in the research article entitled "The onset of the volcanism in the Ciomadul Volcanic Dome Complex (Eastern Carpathians): eruption chronology and magma type variation" (Molnár et al., 2018) [1].

  15. Chemical abrasion-SIMS (CA-SIMS) U-Pb dating of zircon from the late Eocene Caetano caldera, Nevada

    USGS Publications Warehouse

    Watts, Kathryn E.; Coble, Matthew A.; Vazquez, Jorge A.; Henry, Christopher D.; Colgan, Joseph P.; John, David A.

    2016-01-01

    Zircon geochronology is a critical tool for establishing geologic ages and time scales of processes in the Earth's crust. However, for zircons compromised by open system behavior, achieving robust dates can be difficult. Chemical abrasion (CA) is a routine step prior to thermal ionization mass spectrometry (TIMS) dating of zircon to remove radiation-damaged parts of grains that may have experienced open system behavior and loss of radiogenic Pb. While this technique has been shown to improve the accuracy and precision of TIMS dating, its application to high-spatial resolution dating methods, such as secondary ion mass spectrometry (SIMS), is relatively uncommon. In our efforts to U-Pb date zircons from the late Eocene Caetano caldera by SIMS (SHRIMP-RG: sensitive high resolution ion microprobe, reverse geometry), some grains yielded anomalously young U-Pb ages that implicated Pb-loss and motivated us to investigate with a comparative CA and non-CA dating study. We present CA and non-CA 206Pb/238U ages and trace elements determined by SHRIMP-RG for zircons from three Caetano samples (Caetano Tuff, Redrock Canyon porphyry, and a silicic ring-fracture intrusion) and for R33 and TEMORA-2 reference zircons. We find that non-CA Caetano zircons have weighted mean or bimodal U-Pb ages that are 2–4% younger than CA zircons for the same samples. CA Caetano zircons have mean U-Pb ages that are 0.4–0.6 Myr older than the 40Ar/39Ar sanidine eruption age (34.00 ± 0.03 Ma; error-weighted mean, 2σ), whereas non-CA zircons have ages that are 0.7–1.3 Myr younger. U-Pb ages do not correlate with U (~ 100–800 ppm), Th (~ 50–300 ppm) or any other measured zircon trace elements (Y, Hf, REE), and CA and non-CA Caetano zircons define identical trace element ranges. No statistically significant difference in U-Pb age is observed for CA versus non-CA R33 or TEMORA-2 zircons. Optical profiler measurements of ion microprobe pits demonstrate consistent depths of ~ 1.6

  16. Detrital zircon geochronology overlying the Naga Hills ophiolite

    NASA Astrophysics Data System (ADS)

    Roeder, T.; Aitchison, J.; Stojanovic, D.; Agarwal, A.; Ao, A.; Bhowmik, S.

    2013-12-01

    The Nagaland ophiolite in NE India represents the easternmost section of the ophiolitic belt running along the India-Asia suture. Outcrops near the border between Nagaland and Myanmar include not only a full suite of ophiolitic rocks but also high P/T blueschist rocks within a serpentinite-matrix mélange. Although Upper Jurassic radiolarians have been reported from the ophiolite itself (Baxter et al., 2011), few constraints have been placed on the timing of its emplacement onto India. Terrestrial sediments of the Phokphur Formation unconformably overlie the ophiolite. Similar to other sediments from along the ophiolite belt such as the Luiqu conglomerates in Tibet (Davis et al., 2002), they contain detritus derived from both the ophiolite and the continental margin onto which the ophiolite was emplaced. The clastic sediments of the Phokphur Formation potentially record not only the timing of ophiolite generation but also the ages of source terranes and can be used to place a minimum age constraint on the timing of ophiolite emplacement. As a contribution towards extending knowledge of the ophiolite belt and the India/Asia collision, we report preliminary results of an investigation into the sedimentology and detrital zircon geochronology of the Phokphur Formation in areas near Salumi and Zephu. Baxter, A.T., Aitchison, J.C., Zyabrev, S.V., Ali, J.R., 2011. Upper Jurassic radiolarians from the Naga Ophiolite, Nagaland, northeast India. Gondwana Research 20, 638-644. Davis, A.M., Aitchison, J.C., Badengzhu, Luo, H., Zyabrev, S., 2002. Paleogene island arc collision-related conglomerates, Yarlung-Tsangpo suture zone, Tibet. Sedimentary Geology 150, 247-273.

  17. Evidence for prolonged mid-Paleozoic plutonism and ages of crustal sources in east-central Alaska from SHRIMP U-Pb dating of syn-magmatic, inherited, and detrital zircon

    USGS Publications Warehouse

    Dusel-Bacon, C.; Williams, I.S.

    2009-01-01

    Sensitive high-resolution ion microprobe (SHRIMP) U-Pb analyses of igneous zircons from the Lake George assemblage in the eastern Yukon-Tanana Upland (Tanacross quadrangle) indicate both Late Devonian (???370 Ma) and Early Mississippian (???350 Ma) magmatic pulses. The zircons occur in four textural variants of granitic orthogneiss from a large area of muscovite-biotite augen gneiss. Granitic orthogneiss from the nearby Fiftymile batholith, which straddles the Alaska-Yukon border, yielded a similar range in zircon U-Pb ages, suggesting that both the Fiftymile batholith and the Tanacross orthogneiss body consist of multiple intrusions. We interpret the overall tectonic setting for the Late Devonian and Early Mississippian magmatism as an extending continental margin (broad back-arc region) inboard of a northeast-dipping (present coordinates) subduction zone. New SHRIMP U-Pb ages of inherited zircon cores in the Tanacross orthogneisses and of detrital zircons from quartzite from the Jarvis belt in the Alaska Range (Mount Hayes quadrangle) include major 2.0-1.7 Ga clusters and lesser 2.7-2.3 Ga clusters, with subordinate 3.2, 1.4, and 1.1 Ga clusters in some orthogneiss samples. For the most part, these inherited and core U-Pb ages match those of basement provinces of the western Canadian Shield and indicate widespread potential sources within western Laurentia for most grain populations; these ages also match the detrital zircon reference for the northern North American miogeocline and support a correlation between the two areas.

  18. Proterozoic tectonostratigraphy and paleogeography of central Madagascar derived from detrital zircon U-Pb age populations

    USGS Publications Warehouse

    Cox, R.; Coleman, D.S.; Chokel, C.B.; DeOreo, S.B.; Wooden, Joseph L.; Collins, A.S.; De Waele, B.; Kroner, A.

    2004-01-01

    Detrital zircon U‐Pb ages determined by SHRIMP distinguish two clastic sequences among Proterozoic metasedimentary rocks from central Madagascar. The Itremo Group is older: zircon data, stromatolite characteristics, and carbon isotope data all point to a depositional age around 1500–1700 Ma. The Molo Group is younger, deposited between ∼620 Ma (the age of the youngest zircon) and ∼560 Ma (the age of metamorphic overgrowths on detrital cores). Geochronologic provenance analysis of the Itremo Group points to sources in East Africa as well as local sources in central and southern Madagascar but provides no evidence for a detrital contribution from northern and eastern Madagascar nor from southern India. Detrital zircon and sedimentologic similarities between rocks of the Itremo Group and the Zambian Muva Supergroup suggest a lithostratigraphic correlation between the two. The Molo Group has a strong 1000–1100 Ma detrital signature that also indicates an east African provenance and suggests a Neoproterozoic geographic connection with Sri Lanka but shows no indication of input from the Dharwar craton and eastern Madagascar. Central Madagascar was probably juxtaposed with the Tanzanian craton in the Paleo‐ and Mesoproterozoic, whereas northern and eastern Madagascar were connected to India. Internal assembly of Madagascar postdates Neoproterozoic Molo Group sedimentation and is likely to have occurred at about 560 Ma.

  19. Detrital zircon U-Pb geochronological and sedimentological study of the Simao Basin, Yunnan: Implications for the Early Cenozoic evolution of the Red River

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Yan, Maodu; Fang, Xiaomin; Song, Chunhui; Zhang, Weilin; Zan, Jinbo; Zhang, Zhiguo; Li, Bingshuai; Yang, Yongpeng; Zhang, Dawen

    2017-10-01

    The paleo-Red River is suggested to have been a continental-scale drainage system connecting the Tibetan Plateau to the South China Sea. However, the evolution of the paleo-Red River is still under debate. This study presents new results from sedimentological analyses and detrital zircon U-Pb geochronologic data from fluvial sedimentary rocks of Paleocene to Oligocene age of the Simao Basin to constrain the nature of the paleo-drainage system of the Red River. The detrital zircon U-Pb results reveal multiple age groups at 190-240 Ma, 260-280 Ma, 450-540 Ma, 1700-1900 Ma and 2400-2600 Ma for the Paleocene to late Eocene Denghei Formation (Fm.), but only one conspicuous peak at 220-240 Ma for the late Eocene-Oligocene Mengla Fm. Provenance analyses illustrate that the former likely had source areas that included the Hoh-Xil, Songpan-Ganzi, northern Qiangtang, Yidun and western Yangtze Terranes, which are consistent with the catchments of the Upper and Lower Jinshajiang Segments, whereas the latter mainly transported material from a limited number of sources, such as the Lincang granitic intrusions west of the Simao Basin. Integrated with available detrital zircon U-Pb geochronologic and paleogeographic data, our study suggests the existence of a paleo-Red River during the Paleocene to late Eocene that was truncated and lost its northern sources after approximately 35 Ma, due to left-lateral strike-slip faulting of the Ailao Shan-Red River and clockwise rotation of the Lanping-Simao Terrane.

  20. Elemental Analysis of Zircon by High Mass Resolution USGS-Stanford SHRIMP-RG: Measuring and Evaluating Ti-in-zircon Temperatures and Compositional Characteristics

    NASA Astrophysics Data System (ADS)

    Wooden, J. L.; Mazdab, F. K.; Claiborne, L. L.; Miller, C. F.; Barth, A. P.

    2006-12-01

    High mass resolution of SHRIMP-RG permits measurement of a large set of trace elements for zircon, including 48Ti, Sc, and Nb (requiring better than 9,000 MR) and Be, B, F, P, 49Ti, V, Y, all the REE, Hf, Th, and U (Mazdab and Wooden 2006). A 15-20 micron spot allows analysis of numerous discrete CL zones from single zircons with minimal contributions from unknown material below the exposed surface. Data from suites of zircons from more than 20 individual granitoid samples suggest several general observations: (1) Temperatures calculated by Ti-in-zircon (Watson et al 2006) are entirely compatible with petrologic constraints; uncertainty in a(TiO2) introduces uncertainty in calculated T, but for reasonable values between 0.5 and 0.8 T's consistently fall between 650 and 900 C, mostly in the lower half of the range; (2) T can vary by 150-200 C within suites of zircons from individual samples and even in single zircons, where zonation may be normal (high to low, core to rim), reverse (low to high) or fluctuating; (3) Hf concentrations increase with decreasing T because of Zr/Hf fractionation between zircon and melt (Claiborne et al in press); (4) Many elements and element ratios show a co-variation with T and Hf concentration e.g., Th/U and MREE/HREE decrease with increasing Hf and decreasing T. Hf concentrations can continue to increase after a minimum T is reached, indicating continuing zircon growth from remaining (near eutectic?) melt. Yb/Gd (steepness of the HREE pattern) is an excellent monitor of fractionation, particularly at lower T (below 750 C) where the ratio increases rapidly. This trend may result from co-fractionation of accessory minerals and/or be driven by the thermodynamics of crystal growth, and/or may involve other factors and processes as yet poorly understood. Magmatic zircons commonly have a negative Eu anomaly of about 0.5 or lower which may change little or become more pronounced with falling T; anomalies probably reflect feldspar

  1. U-Pb SHRIMP-RG zircon ages and Nd signature of lower Paleozoic rifting-related magmatism in the Variscan basement of the Eastern Pyrenees

    USGS Publications Warehouse

    Martinez, F.J.; Iriondo, A.; Dietsch, C.; Aleinikoff, J.N.; Peucat, J.J.; Cires, J.; Reche, J.; Capdevila, R.

    2011-01-01

    The ages of orthogneisses exposed in massifs of the Variscan chain can determine whether they are part of a pre-Neoproterozoic basement, a Neoproterozoic, Panafrican arc, or are, in fact, lower Paleozoic, and their isotopic compositions can be used to probe the nature of their source rocks, adding to the understanding of the types, distribution, and tectonic evolution of peri-Gondwanan crystalline basement. Using SHRIMP U-Pb zircon geochronology and Nd isotopic analysis, pre-Variscan metaigneous rocks from the N??ria massif in the Eastern Pyrenean axial zone and the Guilleries massif, 70km to the south, have been dated and their Nd signatures characterized. All dated orthogneisses from the N??ria massif have the same age within error, ~457Ma, including the Ribes granophyre, interpreted as a subvolcanic unit within Caradocian sediments contemporaneous with granitic magmas intruded into Cambro-Ordovician sediments at deeper levels. Orthogneisses in the Guilleries massif record essentially continuous magmatic activity during the Ordovician, beginning at the Cambro-Ordovician boundary (488??3Ma) and reaching a peak in the volume of magma in the early Late Ordovician (~460Ma). Metavolcanic rocks in the Guilleries massif were extruded at 452??4Ma and appear to have their intrusive equivalent in thin, deformed veins of granitic gneiss (451??7Ma) within metasedimentary rocks. In orthogneisses from both massifs, the cores of some zircons yield Neoproterozoic ages between ~520 and 900Ma. The age of deposition of a pre-Late Ordovician metapelite in the Guilleries massif is bracketed by the weighted average age of the youngest detrital zircon population, 582??11Ma, and the age of cross-cutting granitic veins, 451??7Ma. Older detrital zircons populations in this metapelite include Neoproterozoic (749-610Ma; n=10), Neo- to Mesoproterozoic (1.04-0.86Ga; n=7), Paleoproterozoic (2.02-1.59Ga; n=5), and Neoarchean (2.74-2.58Ga; n=3). Nd isotopic analyses of the N??ria and Guilleries

  2. Detrital zircon U-Pb geochronology, Lu-Hf isotopes and REE geochemistry constrains on the provenance and tectonic setting of Indochina Block in the Paleozoic

    NASA Astrophysics Data System (ADS)

    Wang, Ce; Liang, Xinquan; Foster, David A.; Fu, Jiangang; Jiang, Ying; Dong, Chaoge; Zhou, Yun; Wen, Shunv; Van Quynh, Phan

    2016-05-01

    In situ U-Pb geochronology, Lu-Hf isotopes and REE geochemical analyses of detrital zircons from Cambrian-Devonian sandstones in the Truong Son Belt, central Vietnam, are used to provide the information of provenance and tectonic evolution of the Indochina Block. The combined detrital zircon age spectra of all of the samples ranges from 3699 Ma to 443 Ma and shows with dominant age peaks at ca. 445 Ma and 964 Ma, along with a number of age populations at 618-532 Ma, 1160-1076 Ma, 1454 Ma, 1728 Ma and 2516 Ma. The zircon age populations are similar to those from time equivalent sedimentary sequences in continental blocks disintegrated from the East Gondwana during the Phanerozoic. The younger zircon grains with age peaks at ca. 445 Ma were apparently derived from middle Ordovician-Silurian igneous and metamorphic rocks in Indochina. Zircons with ages older than about 600 Ma were derived from other Gondwana terrains or recycled from the Precambrian basement of the Indochina Block. Similarities in the detrital zircon U-Pb ages suggest that Paleozoic strata in the Indochina, Yangtze, Cathaysia and Tethyan Himalayas has similar provenance. This is consistent with other geological constrains indicating that the Indochina Block was located close to Tethyan Himalaya, northern margin of the India, and northwestern Australia in Gondwana.

  3. Timing of deformation and rapid subsidence in the northern Altiplano, Peru: Insights from detrital zircon geochronology of the Ayaviri hinterland basin

    NASA Astrophysics Data System (ADS)

    Horton, B. K.; Perez, N. D.; Saylor, J. E.

    2011-12-01

    Although age constraints on crustal deformation and sediment accumulation prove critical to testing hypotheses of orogenic plateau construction, a common lack of marine facies, volcanic tuffs, and suitable fossils hinders many attempts at chronological reconstructions. A series of elevated retroarc basins along the axis of the Andean orogenic belt provide opportunities to define the timing of deformation and transformation from foreland to hinterland basin configurations. In this study, we present new U-Pb ages of detrital zircons in the Ayaviri intermontane basin of southern Peru (~4 km elevation) in the northern part of the central Andean (Altiplano) plateau. Nearly all sandstone samples show strong unimodal U-Pb age peaks (generally defined by > 5-50 zircons), suggesting these age peaks represent syndepositional volcanism and can be regarded as accurate estimates of true depositional (stratigraphic) age. Integration of these ages with structural and stratigraphic relationships demonstrate the utility of zircon U-Pb geochronology in defining both (1) the timing of basin partitioning and (2) the pace of sediment accumulation. (1) U-Pb ages for several sandstone samples from growth-strata packages associated with two basin-bounding faults reveal structural partitioning of the Ayaviri basin from late Oligocene to Miocene time. In the north, displacement along the southwest-directed Ayaviri thrust fault commenced in late Oligocene time (~28-24 Ma), inducing initial structural partitioning of an upper Eocene-Oligocene, > 5 km thick succession potentially representing an early Andean retroarc foreland basin. In the south, the Ayaviri basin was further disrupted by initial displacement along the northeast-directed Pasani thrust fault in early to middle Miocene time (~18-15 Ma). (2) Additional U-Pb analyses from the Ayaviri basin fill help delimit the long-term rates of sedimentation, suggesting relatively short-lived (< 5 Myr) pulses of accelerated accumulation. Rapid

  4. Using U-Pb Detrital Zircon Geochronology to Study Ice Streams in the Weddell Sea Embayment, Antarctica

    NASA Astrophysics Data System (ADS)

    Agrios, L.; Licht, K.; Hemming, S. R.; Williams, T.

    2016-12-01

    Till from major ice streams of the Weddell Sea Embayment contain detrital zircons with distinct U-Pb age populations that can be used as a provenance tool to better understand ice stream dynamics. The ice streams in this study include the Foundation Ice Stream, and Academy, Slessor, and Recovery glaciers, all of which drain ice from the continent's interior into the Weddell Sea. Characterizing the U-Pb detrital zircon ages in till and rocks will (1) provide the zircon provenance signatures of the material carried by the ice stream - when these signatures are found in LGM and older deposits downstream they can enable interpretation of past ice flow history; and (2) constrain ice-covered upstream bedrock geology that supplies the till carried by ice streams and glaciers. U-Pb ages of detrital zircons were measured in 21 samples of onshore till, erratics, and bedrock of potential source rocks. Grains were analyzed by LA-ICPMS at the University of Arizona (n=300). Relative probability U-Pb age density plots of till in moraines along the Foundation Ice Stream and Academy Glacier show prominent peaks at 500-530 and 615-650 Ma, which overlap with the timing of the Ross and Pan-African orogenies. Zircon ages of 1000-1095 Ma are also present. Local bedrock in the Patuxent Range has the most prominent peak at 510 Ma, suggesting the till is predominantly derived from local Patuxent Formation. However, local bedrock also has fewer grains at 1030 Ma which suggests that this age population is carried in the till as well. Prominent peaks in U-Pb ages from till transported by the Recovery Glacier are 530, 635, 1610 and 1770 Ma. Bedrock of this area contains similar age peaks, with the exception of the 635 Ma peak, suggesting that this ice stream is carrying a signature from an unexposed source of this age completely buried by ice. The Slessor Glacier carries zircons with prominent populations at 1710 and 2260-2420 Ma, which overlap with a high-grade metamorphic event in the

  5. Oligo-Miocene Alpine Sediment Routing from Integrated Analysis of Seismic-Reflection Data and Detrital Zircon U-Pb Geochronology

    NASA Astrophysics Data System (ADS)

    Hubbard, S. M.; Sharman, G.; Covault, J. A.

    2014-12-01

    We integrate detrital zircon geochronology and 3D seismic-reflection data to reconstruct Oligo-Miocene paleogeography and sediment routing from the Alpine hinterland to Austrian Molasse foreland basin. Three-dimensional seismic-reflection data image a network of deepwater tributaries and a long-lived (>8 Ma) foredeep-axial channel belt through which predominantly southerly and westerly turbidity currents are interpreted to have transported Alpine detritus >100 km. We analyzed 793 detrital zircon grains from ten sandstone samples collected from the seismically mapped network of channel fill. Grain age populations correspond with major Alpine orogenic cycles: the Cadomian (750-530 Ma), the Caledonian (500-400 Ma), and the Variscan orogenies (350-250 Ma). Additional age populations correspond with Eocene-Oligocene Periadriatic magmatism (40-30 Ma) and pre-Alpine, Precambrian sources >750 Ma. The abundances of these age populations vary between samples. Sediment that entered the foredeep-axial channel belt from the west (freshwater Molasse) and southwest (Inntal fault zone) is characterized by statistically indistinguishable, well-distributed detrital zircon ages. Sandstone from a shallow marine unit that was deposited proximal to the northern basin margin consists of >75% Variscan (350-300 Ma) zircon, which is believed to have originated from the Bohemian Massif to the north. Mixing calculations based on the Kolmogorov-Smirnoff statistic suggest that the Alpine fold-thrust belt was an important source of detritus to the deepwater Molasse basin. We document east-to-west provenance dilution within the axial channel belt via one or more southern tributaries. Our results have important implications for sediment dispersal patterns within continental-scale orogens, including the relative role of longitudinal versus transverse sediment delivery in peripheral foreland basins.

  6. Coordinated U–Pb geochronology, trace element, Ti-in-zircon thermometry and microstructural analysis of Apollo zircons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crow, Carolyn A.; McKeegan, Kevin D.; Moser, Desmond E.

    Here, we present the results of a coordinated SIMS U–Pb, trace element, Ti-in-zircon thermometry, and microstructural study of 155 lunar zircons separated from Apollo 14, 15, and 17 breccia and soil samples that help resolve discrepancies between the zircon data, the lunar whole rock history and lunar magma ocean crystallization models. The majority of lunar grains are detrital fragments, some nearly 1 mm in length, of large parent crystals suggesting that they crystallized in highly enriched KREEP magmas. The zircon age distributions for all three landing sites exhibit an abundance of ages at ~4.33 Ga, however they differ in thatmore » only Apollo 14 samples have a population of zircons with ages between 4.1 and 3.9 Ga. These younger grains comprise only 10% of all dated lunar zircons and are usually small and highly shocked making them more susceptible to Pb-loss. These observations suggest that the majority of zircons crystallized before 4.1 Ga and that KREEP magmatism had predominantly ceased by this time. We also observed that trace element analyses are easily affected by contributions from inclusions (typically injected impact melt) within SIMS analyses spots. After filtering for these effects, rare-earth element (REE) abundances of pristine zircon are consistent with one pattern characterized by a negative Eu anomaly and no positive Ce anomaly, implying that the zircons formed in a reducing environment. This inference is consistent with crystallization temperatures based on measured Ti concentrations and new estimates of oxide activities which imply temperatures ranging between 958 ± 57 and 1321 ± 100 °C, suggesting that zircon parent magmas were anhydrous. Together, the lunar zircon ages and trace elements are consistent with a ≤300 My duration of KREEP magmatism under anhydrous, reducing conditions. We also report two granular texture zircons that contain baddeleyite cores, which both yield 207Pb– 206Pb ages of 4.33 Ga. These grains are our best

  7. Coordinated U-Pb geochronology, trace element, Ti-in-zircon thermometry and microstructural analysis of Apollo zircons

    NASA Astrophysics Data System (ADS)

    Crow, Carolyn A.; McKeegan, Kevin D.; Moser, Desmond E.

    2017-04-01

    We present the results of a coordinated SIMS U-Pb, trace element, Ti-in-zircon thermometry, and microstructural study of 155 lunar zircons separated from Apollo 14, 15, and 17 breccia and soil samples that help resolve discrepancies between the zircon data, the lunar whole rock history and lunar magma ocean crystallization models. The majority of lunar grains are detrital fragments, some nearly 1 mm in length, of large parent crystals suggesting that they crystallized in highly enriched KREEP magmas. The zircon age distributions for all three landing sites exhibit an abundance of ages at ∼4.33 Ga, however they differ in that only Apollo 14 samples have a population of zircons with ages between 4.1 and 3.9 Ga. These younger grains comprise only 10% of all dated lunar zircons and are usually small and highly shocked making them more susceptible to Pb-loss. These observations suggest that the majority of zircons crystallized before 4.1 Ga and that KREEP magmatism had predominantly ceased by this time. We also observed that trace element analyses are easily affected by contributions from inclusions (typically injected impact melt) within SIMS analyses spots. After filtering for these effects, rare-earth element (REE) abundances of pristine zircon are consistent with one pattern characterized by a negative Eu anomaly and no positive Ce anomaly, implying that the zircons formed in a reducing environment. This inference is consistent with crystallization temperatures based on measured Ti concentrations and new estimates of oxide activities which imply temperatures ranging between 958 ± 57 and 1321 ± 100 °C, suggesting that zircon parent magmas were anhydrous. Together, the lunar zircon ages and trace elements are consistent with a ⩽300 My duration of KREEP magmatism under anhydrous, reducing conditions. We also report two granular texture zircons that contain baddeleyite cores, which both yield 207Pb-206Pb ages of 4.33 Ga. These grains are our best constraints on

  8. Coordinated U–Pb geochronology, trace element, Ti-in-zircon thermometry and microstructural analysis of Apollo zircons

    DOE PAGES

    Crow, Carolyn A.; McKeegan, Kevin D.; Moser, Desmond E.

    2016-12-28

    Here, we present the results of a coordinated SIMS U–Pb, trace element, Ti-in-zircon thermometry, and microstructural study of 155 lunar zircons separated from Apollo 14, 15, and 17 breccia and soil samples that help resolve discrepancies between the zircon data, the lunar whole rock history and lunar magma ocean crystallization models. The majority of lunar grains are detrital fragments, some nearly 1 mm in length, of large parent crystals suggesting that they crystallized in highly enriched KREEP magmas. The zircon age distributions for all three landing sites exhibit an abundance of ages at ~4.33 Ga, however they differ in thatmore » only Apollo 14 samples have a population of zircons with ages between 4.1 and 3.9 Ga. These younger grains comprise only 10% of all dated lunar zircons and are usually small and highly shocked making them more susceptible to Pb-loss. These observations suggest that the majority of zircons crystallized before 4.1 Ga and that KREEP magmatism had predominantly ceased by this time. We also observed that trace element analyses are easily affected by contributions from inclusions (typically injected impact melt) within SIMS analyses spots. After filtering for these effects, rare-earth element (REE) abundances of pristine zircon are consistent with one pattern characterized by a negative Eu anomaly and no positive Ce anomaly, implying that the zircons formed in a reducing environment. This inference is consistent with crystallization temperatures based on measured Ti concentrations and new estimates of oxide activities which imply temperatures ranging between 958 ± 57 and 1321 ± 100 °C, suggesting that zircon parent magmas were anhydrous. Together, the lunar zircon ages and trace elements are consistent with a ≤300 My duration of KREEP magmatism under anhydrous, reducing conditions. We also report two granular texture zircons that contain baddeleyite cores, which both yield 207Pb– 206Pb ages of 4.33 Ga. These grains are our best

  9. Continental crustal history in SE Asia: Insights from zircon geochronology

    NASA Astrophysics Data System (ADS)

    Sevastjanova, I.; Hall, R.; Gunawan, I.; Ferdian, F.; Decker, J.

    2012-12-01

    It is well known that SE Asia is underlain mostly by continental crust derived from Gondwana. However, there are still many uncertainties about the ages of protoliths, origin, arrival ages and history of different blocks, because much of the basement is unexposed. We have compiled previously published and new zircon U-Pb age and Hf isotope data from SE Asia. Our data set currently contains over 8400 U-Pb ages and over 600 Hf isotope analyses from sedimentary, metamorphic and igneous rocks and work is continuing to increase its size and the area covered. Zircons range in age from 3.4 Ga to near-zero. Archean zircons (>2.5 Ga) are rare in SE Asia and significant Archean populations (particularly zircons >2.8 Ga) are found only in East Java and the Sibumasu block of the Malay Peninsula. The presence of Archean zircons strongly suggests that the East Java and Sibumasu blocks were once situated near present-day Western Australia. Detrital Paleoproterozoic (ca. 1.9-1.8 Ga) zircons are abundant in many parts of SE Asia. In Sundaland (Malay Peninsula, Sumatra, West Java, Borneo) the most likely source for these zircons is the tin belt basement, but a north Australian source is more likely for eastern Indonesian samples. An early Mesoproterozoic (ca. 1.6-1.5 Ga) zircon population, particularly common in eastern Indonesia, is interpreted to be derived from central or northern Australia. Mesoproterozoic zircons, ca. 1.4 Ga, are common only on fragments that are now attached to or were previously part of the north Australian margin, such as the Bird's Head of New Guinea, Timor, Seram, Sulawesi and SW Borneo. Hf isotope characteristics of zircons from Seram are similar to those of zircons from eastern Australia. This supports the suggestion that Seram was part of the Australian margin. Late Meso- and early Neoproterozoic zircons (ca. 1.2-1.1 Ga, 900 Ma, and 600 Ma) are present, but not abundant, in SE Asia. Dominant Phanerozoic populations are Permian-Triassic, Cretaceous, and

  10. Dating sub-20 micron zircons in granulite-facies mafic dikes from SW Montana: a new approach using automated mineralogy and SIMS U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Ault, A. K.; Mahan, K. H.; Flowers, R. M.; Chamberlain, K.; Appleby, S. K.; Schmitt, A. K.

    2010-12-01

    Geochronological data is fundamental to all tectonic studies, but a major limitation for many lithologies is a paucity of sizeable zircons suitable for conventional U-Pb techniques. In particular, mafic dike swarms provide important time markers for tectonometamorphic activity in Precambrian terranes, but commonly yield little or no zircon or baddeleyite sufficient for TIMS or standard ion-probe analysis of crystal separates. We apply a new approach involving in-situ automated mineralogy and high spatial resolution Secondary Ion Mass Spectrometry (SIMS) geochronology to a mafic dike swarm exposed in the Northern Madison Range of SW Montana. The dikes cross-cut early fabrics but are also variably deformed and metamorphosed to P-T conditions as high as 1.2 GPa and 850 C. The swarm emplacement age is inferred to be ca. 2.1 Ga based on similarities to dated dikes in the adjacent Tobacco Root Mountains. Resolving the timing of dike emplacement and high-grade metamorphism in the study area is important for understanding the extent of post-Archean modification to the northwest margin of the Wyoming craton. Identification and textural characterization of zircons were facilitated by in-situ automated mineralogical analysis, in contrast to a standard elemental X-ray mapping approach. Our technique uses an SEM-based platform coupling calibrated BSE data with X-ray data collected by multiple energy dispersive spectrometers to rapidly identify target accessory phases at high spatial resolution. Whole thin section search maps were generated in ~30 minutes at 4 µm pixel resolution. Our dike thin sections commonly contained >300 zircons in a variety of textural settings, with 80% having a short dimension <10 µm. Zircons were dated in-situ by adjusting the field aperture of the CAMECA ims1270 to preferentially collect secondary ions emitted from within the inner few microns of the ~15 µm diameter analysis pit. This allows us to analyze zircon grains with a minimum dimension as

  11. Isotope geochronology of the Precambrian

    NASA Astrophysics Data System (ADS)

    Levskii, L. K.; Levchenkov, O. A.

    This symposium discusses the use of isotope methods for establishing the geochronology of Precambrian formations, with special consideration given to geochronological studies of the early phases of the earth's core evolution in the Baltic and Vitim-Aldan shields and the Enderby Land (Antarctica). Attention is also given to the Early Archean Vodlozero gneiss complex and its structural-metamorphic evolution, the influence of geological events during the Proterozoic on the state of the U-Pb and Rb-Sr systems in the Archean postkinematic granites of Karelia, the Rb-Sr systems in the andesite basalts of the Suna-Semch' region (Karelia), and the geochronology of the Karelian granite-greenstone region. Also discussed are the petrogenesis and age of the rocks from the Kola ultradeep borehole, the isotope-geochronological evidence for the early Precambrian history of the Aldan-Olekma region, the Rb-Sr systems in metasedimentary rocks of the Khani graben, and the U-Pb ages of zircons from polymetamorphic rocks of the Archean granulite complex of Enderby Land.

  12. Detrital zircon U-Pb Geochronology of the Boleo Formation of Santa RosalÍa Basin, Baja California Sur, México

    NASA Astrophysics Data System (ADS)

    Henry, M.; Alvarez Ortega, K. G.; Banes, A.; Holm-Denoma, C.; Busby, C.; Niemi, T.

    2017-12-01

    The Santa Rosalía Basin (SRB) is a rift basin related to the opening of the Gulf of California. The Boleo Formation is the oldest and dominant sedimentary fill of the SRB, with a poorly constrained age. We carried out a U-Pb detrital zircon (DZ) study of the Boleo Formation to constrain its maximum depositional age. The Boleo Formation has a basal limestone-gypsum section, overlain by an up to 250 m thick clastic sequence, with coarsening upward cycles of mudstone, sandstone, and conglomerate. Cu-Zn-Co-Mn stratiform ore deposits ("mantos") cap the conglomerate in each cycle, numbered 0, 1, 2, 3 and 4 (from top to bottom of section1). Sandstone samples were collected for U-Pb detrital zircon geochronology from four stratigraphic levels beneath a manto, including one each below mantos 1, 3 and 4, as well as two localities beneath manto 2. Additionally, one sample was collected above the gypsum. The sandstones are lithic feldspathic wackes derived from erosion of andesitic arc volcanic rocks, which generally lack zircon, so large DZ samples were collected. A field Wilfley table was constructed from local materials as a first step to concentrate heavy minerals, from 88 kg/sample to 16 kg/sample. The field-processed samples were further concentrated in the lab using standard zircon separation methods. Yields were excellent, 1,000 zircons per sample. We analyzed 315 zircons per sample by LA-ICPMS, using the Arizona LaserChron Center. DZ ages from the Boleo Formation range dominantly from Late Miocene through Early Cretaceous, with minor Paleozoic and Precambrian ages. However, the maximum depositional age of the formation is constrained by 40 Ar/39 Ar age of 9.42 +/- 0.29 Ma on underlying volcanic rocks2. Only 5 to 22 zircons per sample are less than 10 Ma, and of those, all stratigraphic levels are dominated mostly by 9 Ma zircons, except for the stratigraphically highest sample. Zircons from this form a coherent group of 3 with a TuffZirc age of 6.04 +/- 0.02 (75

  13. First application of the revised Ti-in-zircon geothermometer to Paleoproterozoic ultrahigh-temperature granulites of Tuguiwula, Inner Mongolia, North China Craton

    NASA Astrophysics Data System (ADS)

    Liu, S. J.; Li, J. H.; Santosh, M.

    2010-02-01

    The revised titanium-in-zircon geothermometer was applied to Paleoproterozoic ultrahigh-temperature (UHT) granulites at Tuguiwula, Inner Mongolia, North China Craton. The Tuguiwula granulites contain diagnostic UHT mineral assemblages such as sapphirine + quartz and high alumina orthopyroxene + sillimanite + quartz, suggesting formation under temperatures of ca. 1,000°C and pressures of up to 10 kbar. Here, we report detailed petrographic studies and ICP-MS data on titanium concentration in zircons associated with the UHT assemblages. The zircons associated with sapphirine-spinel-sillimanite-magnetite assemblages have the highest Ti concentration of up to 57 ppm, yielding a temperature of 941°C, and suggesting that the growth of zircons occurred under ultrahigh-temperature conditions. The maximum temperatures obtained by the revised Ti-in-zircon geothermometer is lower than the equilibrium temperature of sapphirine + quartz, indicating an interval of cooling history of the granulites from UHT condition to ca. 940°C. Many of the zircons have Ti concentrations ranging from 10 to 33 ppm, indicating their growth or recrystallization under lower temperatures of ca. 745-870°C. These zircons are interpreted to have recrystallized during the retrograde stage indicated by microstructures such as cordierite rim or corona between spinel and quartz, and orthopyroxene-cordierite symplectite around garnet. Previous geochronological study on the zircons of the Tuguiwula UHT granulites gave a mean U-Pb SHRIMP age of 1.92 Ga. However, based on the Ti-in-zircon geothermometer results reported in this work, and considering the relatively slow thermal relaxation of these rocks, we infer that the timing of peak UHT metamorphism in the Tuguiwula area could be slightly older than 1.92 Ga.

  14. Geology and geochronology of the Spirit Mountain batholith, southern Nevada: Implications for timescales and physical processes of batholith construction

    USGS Publications Warehouse

    Walker, B.A.; Miller, C.F.; Lowery, Claiborne L.; Wooden, J.L.; Miller, J.S.

    2007-01-01

    The Spirit Mountain batholith (SMB) is a ??? 250??km2 composite silicic intrusion located within the Colorado River Extensional Corridor in southernmost Nevada. Westward tilting of 40-50?? has exposed a cross-section from the roof through deep levels of the batholith. Piecemeal construction is indicated by zircon geochronology, field relations, and elemental geochemistry. Zircon U/Pb data (SHRIMP) demonstrates a ??? 2??million year (17.4-15.3??Ma) history for the SMB. Individual samples contain zircons with ages that span the lifetime of the batholith, suggesting recycling of extant zircon into new magma pulses. Field relations reveal several distinct intrusive episodes and suggest a common injection geometry of stacked horizontal sheets. The largest unit of the SMB is a gradational section (from roof downward) of high-silica leucogranite through coarse granite into foliated quartz monzonite. Solidification of this unit spans most of the history of the batholith. The 25??km ?? 2??km leucogranite was emplaced incrementally as subhorizontal sheets over most or all of the history of this section, suggesting repeated fractional crystallization and melt segregation events. The quartz monzonite and coarse granite are interpreted to be cumulate residuum of this fractionation. Age data from throughout this gradational unit show multiple zircon populations within individual samples. Subsequent distinct intrusions that cut this large unit, which include minor populations of zircons that record the ages of earlier events in construction of the batholith, preserve a sheeted, sill-on-sill geometry. We envision the SMB to have been a patchwork of melt-rich, melt-poor, and entirely solid zones throughout its active life. Preservation of intrusion geometries and contacts depended on the consistency of the host rock. Zircons recycled into new pulses of magma document remobilization of previously emplaced crystal mush, suggesting the mechanisms by which evidence for initial

  15. Using Zircon Geochronology to Unravel the History of the Naga Hills Ophiolite

    NASA Astrophysics Data System (ADS)

    Roeder, T.; Aitchison, J. C.; Clarke, G. L.; Ireland, T. R.; Ao, A.; Bhowmik, S. K.

    2014-12-01

    Outcrops of the Naga Hills Ophiolite (NHO), a possible eastern extension of the ophiolitic belt running along the India-Asia suture, in Northeast India include a full suite of ophiolitic rocks. The ophiolite has been dated Upper Jurassic based on radiolarian studies of the unit (Baxter et al., 2011) but details of its emplacement onto the Indian margin have not been the subject of detailed investigation. Conglomerates of the Phokphur Formation unconformably overlie an eroded surface on top of dismembered ophiolite fragments and include sediments sourced from both the ophiolite and the margin of the Indian subcontinent. Notably no Asian margin-derived detritus is recognised (similar to the Liuqu conglomerates of Tibet (Davis et al., 2002)). Thus, a detailed study of the Phokphur sediments can produce valuable details of the NHO history, including constraining the timing of ophiolite emplacement. Studies of detrital sandstone petrography confirm a recycled orogen provenance for the Phokphur Formation and thus serve as validation of the methods of Dickinson and Suczek (1979) and Garzanti et al. (2007). Detrital zircon data provides further insight as to the age of source rocks of Phokphur sediments and help to further constrain the timing of ophiolite emplacement. We present results of sedimentary and detrital zircon geochronology analyses of Phokphur sediments from outcrops near the villages of Salumi and Wazeho as a contribution to furthering research on aspects of the India-Asia collision. Baxter, A.T., et al. 2011. Upper Jurassic radiolarians from the Naga Ophiolite, Nagaland, northeast India. Gondwana Research, 20: 638-644. Davis, A.M., et al. 2002. Paleogene island arc collision-related conglomerates, Yarlung-Tsangpo suture zone, Tibet. Sedimentary Geology, 150: 247-273. Dickinson, W.R. and Suczek, C.A., 1979. Plate tectonics and sandstone compositions. Am. Assoc. Pet. Geol. Bull., 63, 2164-2182, (1979). Garzanti, E., et al., 2007. Orogenic belts and orogenic

  16. Advances in Laser Microprobe (U-Th)/He Geochronology

    NASA Astrophysics Data System (ADS)

    van Soest, M. C.; Monteleone, B. D.; Boyce, J. W.; Hodges, K. V.

    2008-12-01

    The development of the laser microprobe (U-Th)/He dating method has the potential to overcome many of the limitations that affect conventional (U-Th)/He geochronology. Conventional single- or multi-crystal (U- Th)/He geochronology requires the use of pristine, inclusion-free, euhedral crystals. Furthermore, the ages that are obtained require corrections for the effects of zoning and alpha ejection based on an ensemble of assumptions before interpretation of their geological relevance is possible. With the utilization of microbeam techniques many of the limitations of conventional (U-Th)/He geochronology can either be eliminated by careful spot selection or accounted for by detailed depth profiling analyses of He, U and Th on the same crystal. Combined He, Th, and U depth profiling on the same crystal potentially even offers the ability to extract thermal histories from the analyzed grains. Boyce et al. (2006) first demonstrated the laser microprobe (U-Th)/He dating technique by successfully dating monazite crystals using UV laser ablation to liberate He and determined U and Th concentrations using a Cameca SX-Ultrachron microprobe. At Arizona State University, further development of the microprobe (U-Th)/He dating technique continues using an ArF Excimer laser connected to a GVI Helix Split Flight Tube noble gas mass spectrometer for He analysis and SIMS techniques for U and Th. The Durango apatite age standard has been successfully dated at 30.7 +/- 1.7 Ma (2SD). Work on dating zircons by laser ablation is currently underway, with initial results from Sri Lanka zircon at 437 +/- 14 Ma (2SD) confirmed by conventional (U-Th)/He analysis and in agreement with the published (U-Th)/He age of 443 +/- 9 Ma (2SD) for zircons from this region in Sri Lanka (Nasdala et al., 2004). The results presented here demonstrate the laser microprobe (U-Th)/He method as a powerful tool that allows application of (U- Th)/He dating to areas of research such as detrital apatite and zircon

  17. Zircon geochronology of the Webb Canyon Gneiss and the Mount Owen Quartz Monzonite, Teton Range, Wyoming: Significance to dating late Archean metamorphism in the Wyoming craton

    USGS Publications Warehouse

    Zartman, R.E.; Reed, J.C.

    1998-01-01

    The Webb Canyon Gneiss is a strongly foliated and lineated orthogneiss intercalated with layered Archean gneisses in the northern part of the Teton Range in northwestern Wyoming. The Mount Owen Quartz Monzonite is a non-foliated or weakly flow foliated rock which forms a discordant pluton exposed in the central part of the range and that cuts the Webb Canyon Gneiss and the associated layered gneisses. U-Pb zircon geochronology reported here indicates that euhedral pink zircon grew in the Webb Canyon Gneiss at about 2680 Ma, probably during the peak of regional metamorphism and that the Mount Owen was emplaced at 2547??3 Ma. These dates provide the best constraints so far reported on the age of Late Archean regional metamorphism in the western part of the Wyoming craton.

  18. New zircon ages on the Cambrian-Ordovician volcanism of the Southern Gemericum basement (Western Carpathians, Slovakia): SHRIMP dating, geochemistry and provenance

    NASA Astrophysics Data System (ADS)

    Vozárová, Anna; Rodionov, Nickolay; Šarinová, Katarína; Presnyakov, Sergey

    2017-09-01

    The Southern Gemericum basement in the Inner Western Carpathians, composed of low-grade volcano-sedimentary rock complexes, constitutes a record of the polyphase Cambrian-Ordovician continental volcanic arc volcanism. These metavolcanic rocks are characterized by the enrichment in K, Rb, Ba, Th and Ce and Sm relative to Ta, Nb, Hf, Zr, Y and Yb that are the characteristic features for volcanic arc magmatites. The new SHRIMP U-Pb zircon data and compilation of previously published and re-evaluated zircon ages, contribute to a new constrain of the timing of the Cambrian-Ordovician volcanism that occurred between 496 and 447 Ma. The following peaks of the volcanic activity of the Southern Gemericum basement have been recognized: (a) mid-late Furongian at 492 Ma; (b) Tremadocian at 481 Ma; (c) Darriwilian at 464 Ma prolonged to 453 Ma within the early Upper Ordovician. The metavolcanic rocks are characterized by a high zircon inheritance, composed of Ediacaran (650-550 Ma), Tonian-Stenian (1.1-0.9 Ma), and, to a lesser extent, Mesoproterozoic (1.3 Ga), Paleoproterozoic (1.9 Ga) and Archaean assemblages (2.6 Ga). Based on the acquired zircon populations, it could be deduced that Cambrian-Ordovician arc crust was generated by a partial melting of Ediacaran basement in the subduction-related setting, into which old crustal fragments were incorporated. The ascertained zircon inheritances with Meso-, Paleoproterozoic and Archaean cores indicate the similarities with the Saharan Metacraton provenance.

  19. Permian arc-back-arc basin development along the Ailaoshan tectonic zone: Geochemical, isotopic and geochronological evidence from the Mojiang volcanic rocks, Southwest China

    NASA Astrophysics Data System (ADS)

    Fan, Weiming; Wang, Yuejun; Zhang, Aimei; Zhang, Feifei; Zhang, Yuzhi

    2010-10-01

    This paper presents a set of new SHRIMP zircon U-Pb geochronological, elemental and Sr-Nd-Pb isotopic data for the Wusu and Yaxuanqiao basaltic rocks (the Mojiang area) along the Ailaoshan tectonic zone. The Wusu basaltic sequence is dominated by SiO 2-poor, MgO- and TiO 2-rich basalts with a major mineral assemblage of plagioclase + clinopyroxene. These rocks gave a SHRIMP zircon U-Pb age of 287 ± 5 Ma (MSWD = 0.58). In contrast, the Yaxuanqiao basaltic sequence is predominantly composed of high-Al basaltic andesite, which gave a SHRIMP zircon U-Pb age of 265 ± 7 Ma (MSWD = 0.34). The analyzed samples for both sequences exhibit significant enrichment in LILEs and depletion in HFSEs with (Nb/La)n of 0.38-0.81, similar to arc-like volcanics. They have positive ɛNd(t) values (+ 3.52 to + 5.54). In comparison with MORB-derived magmatic rocks, the Wusu basalts are more enriched in LILEs and REEs, and the Yaxuanqiao samples are more enriched in LILEs but variably depleted in Ti, Y and HREE. The Wusu samples show high Pb isotopic ratios, similar to the Tethyan basalts, whereas the Yaxuanqiao samples plot in the field of the global pelagic sediments. The geochemical and Sr-Nd-Pb isotopic characteristics suggest that the Wusu basalts originated from a MORB-like source metasomatised by slab-derived fluids, while the Yaxuanqiao rocks have a fluid-modified MORB source with the input of subducted sediments. The geochemical affinity to both MORB- and arc-like sources, together with other geological observations, appears to support the development of a Permian arc-back-arc basin along the Ailaoshan-Song Ma tectonic zone in response to the northward subduction of the Paleotethys main Ocean. The final closure of the arc-back-arc basin took place in the uppermost Triassic due to the diachronous amalgamation between the Yangtze and Simao-Indochina Blocks.

  20. Zircon U-Pb Ages from an Ultra-High Temperature Metapelite, Rauer Group, East Antarctica: Implications for Overprints by Grenvillian and Pan-African Events

    USGS Publications Warehouse

    Wang, Yanbin; Tong, Laixi; Liu, Dunyi

    2007-01-01

    SHRIMP U-Pb dating of zircon from an ultra-high temperature (UHT, ~1000 °C) granulite-facies metapelite from the Rauer Group, Mather Peninsula, east Antarctica, has yielded evidence for two episodes of metamorphic zircon growth, at ~1.00 Ga and ~530 Ma, and two episodes of magmatism in the source region for the protolith sediment, at ~2.53 and ~2.65 Ga, were identified from the zircon cores. Successive zircon growth at ~1.00 Ga and ~530 Ma records a sequence of distinct, widely spaced high-temperature metamorphic and/or anatectic events related to Grenvillian and Pan-African orogenesis. This study presents the first robust geochronological evidence for the timing of UHT metamorphism of the Rauer Group, supporting arguments that the peak UHT metamorphic event occurred at ~1.00 Ga and was overprinted by a separate high-grade event at ~530 Ma. The new age data indicate that the UHT granulites of the Rauer Group experienced a complex, multi-stage tectonothermal history, which cannot simply be explained via a single Pan-African (~500 Ma) high-grade tectonic event. This is critical in understanding the role of the eastern Prydz Bay region during the assembly of the east Gondwana supercontinent, and the newly recognized inherited Archaean ages (~2.53 and ~2.65 Ga) suggest a close tectonic relationship between the Rauer Group and the adjacent Archaean of the Vestfold Hills

  1. Progress integrating ID-TIMS U-Pb geochronology with accessory mineral geochemistry: towards better accuracy and higher precision time

    NASA Astrophysics Data System (ADS)

    Schoene, B.; Samperton, K. M.; Crowley, J. L.; Cottle, J. M.

    2012-12-01

    It is increasingly common that hand samples of plutonic and volcanic rocks contain zircon with dates that span between zero and >100 ka. This recognition comes from the increased application of U-series geochronology on young volcanic rocks and the increased precision to better than 0.1% on single zircons by the U-Pb ID-TIMS method. It has thus become more difficult to interpret such complicated datasets in terms of ashbed eruption or magma emplacement, which are critical constraints for geochronologic applications ranging from biotic evolution and the stratigraphic record to magmatic and metamorphic processes in orogenic belts. It is important, therefore, to develop methods that aid in interpreting which minerals, if any, date the targeted process. One promising tactic is to better integrate accessory mineral geochemistry with high-precision ID-TIMS U-Pb geochronology. These dual constraints can 1) identify cogenetic populations of minerals, and 2) record magmatic or metamorphic fluid evolution through time. Goal (1) has been widely sought with in situ geochronology and geochemical analysis but is limited by low-precision dates. Recent work has attempted to bridge this gap by retrieving the typically discarded elution from ion exchange chemistry that precedes ID-TIMS U-Pb geochronology and analyzing it by ICP-MS (U-Pb TIMS-TEA). The result integrates geochemistry and high-precision geochronology from the exact same volume of material. The limitation of this method is the relatively coarse spatial resolution compared to in situ techniques, and thus averages potentially complicated trace element profiles through single minerals or mineral fragments. In continued work, we test the effect of this on zircon by beginning with CL imaging to reveal internal zonation and growth histories. This is followed by in situ LA-ICPMS trace element transects of imaged grains to reveal internal geochemical zonation. The same grains are then removed from grain-mount, fragmented, and

  2. Component geochronology in the polyphase ca. 3920 Ma Acasta Gneiss

    USGS Publications Warehouse

    Mojzsis, Stephen J.; Cates, Nicole L.; Caro, Guillaume; Trail, Dustin; Abramov, Oleg; Guitreau, Martin; Blichert-Toft, Janne; Hopkins, Michelle D.; Bleeker, Wouter

    2014-01-01

    The oldest compiled U–Pb zircon ages for the Acasta Gneiss Complex in the Northwest Territories of Canada span about 4050–3850 Ma; yet older ca. 4200 Ma xenocrystic U–Pb zircon ages have also been reported for this terrane. The AGC expresses at least 25 km2 of outcrop exposure, but only a small subset of this has been documented in the detail required to investigate a complex history and resolve disputes over emplacement ages. To better understand this history, we combined new ion microprobe235,238U–207,206Pb zircon geochronology with whole-rock and zircon rare earth element compositions ([REE]zirc), Ti-in-zircon thermometry (Tixln) and 147Sm–143Nd geochronology for an individual subdivided ∼60 cm2 slab of Acasta banded gneiss comprising five separate lithologic components. Results were compared to other variably deformed granitoid-gneisses and plagioclase-hornblende rocks from elsewhere in the AGC. We show that different gneissic components carry distinct [Th/U]zirc vs. Tixln and [REE]zirc signatures correlative with different zircon U–Pb age populations and WR compositions, but not with 147Sm–143Nd isotope systematics. Modeled  [REE] from lattice-strain theory reconciles only the ca. 3920 Ma zircons with the oldest component that also preserves strong positive Eu∗ anomalies. Magmas which gave rise to the somewhat older (inherited) ca. 4020 Ma AGC zircon age population formed at ∼IW (iron–wüstite) to

  3. The pre-orogenic detrital zircon record of the Variscan orogeny: Preliminary results

    NASA Astrophysics Data System (ADS)

    Stephan, Tobias; Kroner, Uwe

    2017-04-01

    To test plate-tectonic constellations in consideration of the long-term development of sedimentary transport paths, temporally and spatially highly resolved records of provenance analysis are mandatory. The interpretation of existing studies focus on small-scale areas within an orogen thereby neglecting the differing distribution of provenance data in the entire orogenic system. This study reviews a large data set of compiled geochronological data to document the development of pre-orogenic tectonic units on the example of the Variscan orogeny. Constrained by tectonic and geological models, the temporal distribution of U-Pb detrital zircon ages, used as a proxy for sedimentary provenance, shows that some minima and maxima of zircon abundance are nearly synchronous for thousands of kilometres along the orogeny. Age spectra of Precambrian to Lower Palaeozoic samples were constructed on the basis of 38729 U-Pb ages from 685 samples that were compiled from 102 publications. The age compilation combines thermal ionization mass spectrometry (TIMS), laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS), sensitive high-resolution ion microprobe (SHRIMP), and secondary ion mass spectrometry (SIMS) analyses. The data was re-processed using a common age calculation and concordance filter to ensure comparability. The concordance of each zircon grain was calculated from 206Pb/238U and 207Pb/235U ages to guarantee that only concordant grains, i.e., with <10% normal and <5% reverse discordance, were included in the age compilation. In order to ignore a metamorphic overprint and hence a blur of the younger age spectra, the compilation is constrained to age data older than 400 Ma only. If a precise sample age is not documented by the author, the weighted-mean age of the youngest zircon population (n > 3) is used for the maximum age of deposition. In addition to the location of >600 samples, the precise depositional ages result in a spatially and temporally high

  4. Paleoproterozoic mojaveprovince in northwestern Mexico? Isotopic and U-Pb zircon geochronologic studies of precambrian and Cambrian crystalline and sedimentary rocks, Caborca, Sonora

    USGS Publications Warehouse

    Lang, Farmer G.; Bowring, S.A.; Matzel, J.; Maldonado, G.E.; Fedo, C.; Wooden, J.

    2005-01-01

    Whole-rock Nd isotopic data and U-Pb zircon geochronology from Precambrian crystalline rocks in the Caborca area, northern Sonora, reveal that these rocks are most likely a segment of the Paleoproterozoic Mojave province. Supporting this conclusion are the observations that paragneiss from the ??? 1.75 Ga Bamori Complex has a 2.4 Ga Nd model age and contains detrital zircons ranging in age from Paleo- proterozoic (1.75 Ga) to Archean (3.2 Ga). Paragneisses with similar age and isotopic characteristics occur in the Mojave province in southern California. In addition, "A-type" granite exposed at the southern end of Cerro Rajon has ca 2.0 Ga Nd model age and a U-Pb zircon age of 1.71 Ga, which are similar to those of Paleoproterozoic granites in the Mojave province. Unlike the U.S. Mojave province, the Caborcan crust contains ca. 1.1 Ga granite (Aibo Granite), which our new Nd isotopic data suggest is largely the product of anatexis of the local Precambrian basement. Detrital zircons from Neoproterozoic to early Cambrian miogeoclinal arenites at Caborca show dominant populations ca. 1.7 Ga, ca. 1.4 Ga, and ca. 1.1 Ga, with subordinate Early Cambrian and Archean zircons. These zircons were likely derived predominately from North American crust to the east and northeast, and not from the underlying Caborcan basement. The general age and isotopic similarities between Mojave province basement and overlying miogeoclinal sedimentary rocks in Sonora and southern California is necessary, but not sufficient, proof of the hypothesis that Sonoran crust is allochthonous and was transported to its current position during the Mesozoic along the proposed Mojave-Sonora megashear. One viable alternative model is that the Caborcan Precambrian crust is an isolated, autochthonous segment of Mojave province crust that shares a similar, but not identical, Proterozoic geological history with Mojave province crust found in the southwest United States ?? 2005 Geological Society of America.

  5. Geochronological correlation of the main coal interval in Brazilian Lower Permian: Radiometric dating of tonstein and calibration of biostratigraphic framework

    NASA Astrophysics Data System (ADS)

    Simas, Margarete Wagner; Guerra-Sommer, Margot; Cazzulo-Klepzig, Miriam; Menegat, Rualdo; Schneider Santos, João Orestes; Fonseca Ferreira, José Alcides; Degani-Schmidt, Isabela

    2012-11-01

    The radiometric age of 291 ± 1.2 Ma obtained through single-crystal zircon U-Pb ages (Sensitive High Resolution Ion MicroProbe - SHRIMP II) of tonsteins from the Leão-Butiá Coalfield, southern Paraná Basin (Rio Grande do Sul state), associated with previous SHRIMP II radiometric data obtained from tonsteins from the western (Candiota Coalfield) and eastern (Faxinal and Leão-Butiá coalfields) borders of the basin indicate that the mean age of the main peat-forming interval is 291.0 ± 1.3 Ma. In a regional context, the mean age represents a consistent geochronological correlation for the uppermost and more important coal seams in southern Brazilian coalfields, but this assumption does not establish an ash fall origin from a single volcanic event. According to the International Stratigraphic Chart, the interval is dated as middle Sakmarian. The coal palynofloras are included in the Protohaploxypinus goraiensis Subzone within the palynostratigraphic framework for the Brazilian Paraná Basin. Formal relationships are also established with the Glossopteris-Rhodeopteridium Zone within the phytostratigraphic chart for the Lower Permian of southern Brazilian Paraná Basin.

  6. U-Pb geochronology of zircon and monazite from Mesoproterozoic granitic gneisses of the northern Blue Ridge, Virginia and Maryland, USA

    USGS Publications Warehouse

    Aleinikoff, J.N.; Burton, W.C.; Lyttle, P.T.; Nelson, A.E.; Southworth, C.S.

    2000-01-01

    Mesoproterozoic granitic gneisses comprise most of the basement of the northern Blue Ridge geologic province in Virginia and Maryland. Lithology, structure, and U-Pb geochronology have been used to subdivide the gneisses into three groups. The oldest rocks, Group 1, are layered granitic gneiss (1153 ?? 6 Ma), hornblende monzonite gneiss (1149 ?? 19 Ma), porphyroblastic granite gneiss (1144 ?? 2 Ma), coarse-grained metagranite (about 1140 Ma), and charnockite (>1145 Ma?). These gneisses contain three Proterozoic deformational fabrics. Because of complex U-Pb systematics due to extensive overgrowths on magmatic cores, zircons from hornblende monzonite gneiss were dated using the sensitive high-resolution ion microprobe (SHRIMP), whereas all other ages are based on conventional U-Pb geochronology. Group 2 rocks are leucocratic and biotic varieties of Marshall Metagranite, dated at 1112??3 Ma and 1111 ?? 2 Ma respectively. Group 3 rocks are subdivided into two age groups: (1) garnetiferous metagranite (1077 ?? 4 Ma) and quartz-plagioclase gneiss (1077 ?? 4 Ma); (2) white leucocratic metagranite (1060 ?? 2 Ma), pink leucocratic metagranite (1059 ?? 2), biotite granite gneiss (1055 ?? 4 Ma), and megacrystic metagranite (1055 ?? 2 Ma). Groups 2 and 3 gneisses contain only the two younger Proterozoic deformational fabrics. Ages of monazite, seprated from seven samples, indicate growth during both igneous and metamorphic (thermal) events. However, ages obtained from individual grains may be mixtures of different age components, as suggested by backscatter electron (BSE) imaging of complexly zoned grains. Analyses of unzoned monazite (imaged by BSE and thought to contain only one age component) from porphyroblastic granite gneiss yield ages of 1070, 1060, and 1050 Ma. The range of ages of monazite (not reset to a uniform date) indicates that the Grenville granulite event at about 1035 Ma did not exceed about 750??C. Lack of evidence for 1110 Ma growth of monazite in

  7. Proterozoic to Mesozoic evolution of North-West Africa and Peri-Gondwana microplates: Detrital zircon ages from Morocco and Canada

    NASA Astrophysics Data System (ADS)

    Marzoli, Andrea; Davies, Joshua H. F. L.; Youbi, Nasrrddine; Merle, Renaud; Dal Corso, Jacopo; Dunkley, Daniel J.; Fioretti, Anna Maria; Bellieni, Giuliano; Medina, Fida; Wotzlaw, Jörn-Frederik; McHone, Greg; Font, Eric; Bensalah, Mohamed Khalil

    2017-05-01

    The complex history of assemblage and disruption of continental plates surrounding the Atlantic Ocean is in part recorded by the distribution of detrital zircon ages entrained in continental sedimentary strata from Morocco (Central High Atlas and Argana basins) and Canada (Grand Manan Island, New Brunswick). Here we investigate detrital zircon from the latest Triassic (ca. 202 Ma) sedimentary strata directly underlying lava flows of the Central Atlantic magmatic province or interlayered within them. SHRIMP (Sensitive High-Resolution Ion MicroProbe) and LA-ICP-MS (Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry) U-Pb ages for zircon range from Paleozoic to Archean with a dominant Neoproterozoic peak, and significant amounts of ca. 2 Ga zircon. These ages suggest a prevailing West African (Gondwanan) provenance at all sampling sites. Notably, the Paleoproterozoic zircon population is particularly abundant in central Morocco, north of the High Atlas chain, suggesting the presence of Eburnean-aged rocks in this part of the country, which is consistent with recent geochronologic data from outcropping rocks. Minor amounts of late Mesoproterozoic and early Neoproterozoic zircon ages (ca. 1.1-0.9 Ga) in Moroccan samples are more difficult to interpret. A provenance from Avalonia or Amazonia, as proposed by previous studies is not supported by the age distributions observed here. An involvement of more distal source regions, possibly located in north-eastern Africa (Arabian Nubian Shield) would instead be possible. Paleozoic zircon ages are abundant in the Canadian sample, pointing to a significant contribution from Hercynian aged source rocks. Such a signal is nearly absent in the Moroccan samples, suggesting that zircon-bearing Hercynian granitic rocks of the Moroccan Meseta block were not yet outcropping at ca. 200 Ma. The only Moroccan samples that yield Paleozoic zircon ages are those interlayered within the CAMP lavas, suggesting an increased dismantling

  8. Early Paleozoic tectonic reconstruction of Iran: Tales from detrital zircon geochronology

    NASA Astrophysics Data System (ADS)

    Moghadam, Hadi Shafaii; Li, Xian-Hua; Griffin, William L.; Stern, Robert J.; Thomsen, Tonny B.; Meinhold, Guido; Aharipour, Reza; O'Reilly, Suzanne Y.

    2017-01-01

    In this study we use detrital zircons to probe the Early Paleozoic history of NE Iran and evaluate the link between sediment sources and Gondwanan pre-Cadomian, Cadomian and younger events. U-Pb zircon ages and Hf isotopic compositions are reported for detrital zircons from Ordovician and Early Devonian sedimentary rocks from NE Iran. These clastic rocks are dominated by zircons with major age populations at 2.5 Ga, 0.8-0.6 Ga, 0.5 Ga and 0.5-0.4 Ga as well as a minor broad peak at 1.0 Ga. The source of 2.5 Ga detrital zircons is enigmatic; they may have been supplied from the Saharan Metacraton (or West African Craton) to the southwest or Afghanistan-Tarim to the east. The detrital zircons with age populations at 0.8-0.6 Ga probably originated from Cryogenian-Ediacaran juvenile igneous rocks of the Arabian-Nubian Shield; this inference is supported by their juvenile Hf isotopes, although some negative εHf (t) values suggest that other sources (such as the West African Craton) were also involved. The age peak at ca 0.5 Ga correlates with Cadomian magmatism reported from Iranian basement and elsewhere in north Gondwana. The variable εHf (t) values of Cadomian detrital zircons, resembling the εHf (t) values of zircons in magmatic Cadomian rocks from Iran and Taurides (Turkey), suggest an Andean-type margin and the involvement of reworked older crust in the generation of the magmatic rocks. The youngest age population at 0.5-0.4 Ga is interpreted to represent Gondwana rifting and the opening of Paleotethys, which probably started in Late Cambrian-Ordovician time. A combination of U-Pb dating and Hf-isotope data from Iran, Turkey and North Gondwana confirms that Iran and Turkey were parts of Gondwana at least until late Paleozoic time.

  9. Using Detrital Zircon Geochronology to Constrain Paleogene Provenance and Its Relationship to Rifting in the Zhu 1 Depression, Pearl River Mouth Basin, South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Ye, Jiaren; Bidgoli, Tandis; Yang, Xianghua; Shi, Hesheng; Shu, Yu

    2017-11-01

    Paleogene syn-rift successions in the South China Sea are poorly understood and systematic provenance analysis, which could provide clues to their history, is lacking. Here we report 409 new concordant U-Pb ages from detrital zircons separated from the Paleogene Wenchang, Enping, and Zhuhai formations in the Zhu 1 depression, Pearl River Mouth Basin. The new data, combined with the published age data from the region, document changes in the provenance of syn-rift successions. Detrital zircons from the Eocene Wenchang Formation are unimodal, with Jurassic-Cretaceous (180-80 Ma) ages making up >80% of grains. The ages are consistent with the geochronology of intrabasinal highs, dominated by igneous rocks emplaced during the Yanshanian orogeny, and suggest local provenance. By contrast, detrital zircons from the upper Eocene to lower Oligocene Enping Formation form three well-recognized age-clusters, with peaks at 150, 254, and 438 Ma that match documented tectonomagmatism in South China Block (SCB). Combined with increasing numbers of Precambrian zircons, the data suggest increasing influence of regional provenance of the SCB. Similar age peaks are also recognized from the limited number of zircons analyzed from the upper Oligocene Zhuhai Formation and comparability with modern shelf and river sediment indicates the unit was mainly sourced from the SCB and likely transported by a paleo-Pearl River. We infer that the change in provenance, from local uplifts within the Zhu 1 to the SCB, is related to distinct phases of PRMB rift development; however, later changes are best explained by SCB drainage evolution.

  10. The 3.5 Ga granulites of the Bug polymetamorphic complex, Ukraine (U-Pb SHRIMP-II zircon data)

    NASA Astrophysics Data System (ADS)

    Lobach-Zhuchenko, Svetlana; Kaulina, Tatiana; Baltybaev, Shauket; Yurchenko, Anastasija; Balagansky, Victor; Skublov, Sergei; Sukach, Vitaliji

    2014-05-01

    and Cpx). Zircon U-Pb isotopic analysis was carried out using SHRIMP II ion microprobe technique at the Isotopic Centre of VSEGEI, St.-Petersburg. Six transparent grains of the (1) group form a discordia line with Concordia intercepts at 3499+/-33 Ma (and 2638+/-240 Ma (MSWD=2.3). According to internal textures and chemical composition of zircons their formation is associated with granulite metamorphism. The 207 Pb/ 206 Pb data for 11 grains from (3) group are highly variable in age from 3330+/-5 to 2356+/-7 Ma indicating isotopic disturbance. They do not form an isochrone, thus reliable determination of their age is not yet possible. Thus, the oldest granulitic event at 3499 ± 33 Ma has been identified and justified for rocks of the Bug polymetamorphic granulite complex. Recognition of this oldest granulite metamorphism proved possible due to preserved isotopic and geochemical features of zircon. The work was financially supported by program ONZ - 6.

  11. Implications of Bishop Tuff zircon U-Pb ages for rates of zircon growth and magma accumulation

    NASA Astrophysics Data System (ADS)

    Reid, M. R.; Schmitt, A. K.

    2012-12-01

    Rates of geologic processes obtained from natural studies rely on accurate geochronologic information. An important benchmark in geochronology as well as a valuable source of insights into the evolution of voluminous explosive eruptions is the >600 km3 Bishop Tuff (BT). A recently determined weighted mean 206Pb/238U date of 767.1±0.9 ka for a BT zircon population [1] is indistinguishable from the recalibrated 40Ar/39Ar sanidine date of 767.4±2.2 ka [2], potentially providing a key intercalibration point between astronomical and radio-isotopic dating approaches. Consequences of these results are linear zircon growth rates of >1×10-14 cm/sec and magma accumulation rates of >200 km3/ka. In contrast, spatially selective SIMS U-Pb dating of BT zircons yielded mean pre-eruption ages of 850 ka [3], a difference that raises questions about the validity of intercalibration between U-Pb and K-Ar dating methods and the history of magma accumulation. We obtained new SIMS analyses of the BT zircons using more spatially and analytically sensitive methods and verifying our accuracy against the TIMS dated Quaternary zircon 61.308A (2.488±0.002 Ma). Analyses were performed on zircon rims and on oriented cross-sections exposed during optical interferometry-calibrated serial sectioning removing the outermost ~31 μm. Sputtering by a 100 nA ion beam versus the normally employed 10-12 nA beam resulted in enhanced radiogenic Pb yields and analytical uncertainties for Quaternary zircon approaching the U-Pb age reproducibility of the primary zircon standard (~1-2 % for AS3). Ages obtained at ~31 μm depth (representing <5% of crystal growth in most cases) average 892±26ka (MSWD=0.29), corroborating previous evidence for residence times of several tens of ka. Rim ages average 781±22 ka (MSWD=0.61), overlapping Ar/Ar determinations of eruption age and corroborating the importance of near-eruption aged zircon growth. Our results confirm the presence of BT zircon domains that predate

  12. The plutonic-volcanic connection in porphyry copper deposits: Evidence from zircon geochemistry and high-precision CA-ID-TIMS geochronology

    NASA Astrophysics Data System (ADS)

    Buret, Y.; Von Quadt, A.; Wotzlaw, J. F.; Heinrich, C. A.

    2016-12-01

    Porphyry Cu deposits represent the interface between plutonic and volcanic domains of upper crustal magmatic systems. These deposits are typically composed of multiple porphyritic intrusions which constrain the duration of ore formation to a maximum of several 104 years [1] and are commonly intruded into the base of volcanoes. The relationship between volcanic activity and porphyry stocks is often difficult to establish, as they are rarely exposed together unless later faulting and/or tilting occurred [2]. In order to investigate the relationships between extrusive magmatism and porphyry Cu formation we compare zircon petrochronology from late stage volcanic units with the nearby world class Bajo de la Alumbrera porphyry Cu deposit, from the Late Miocene Farallón Negro Volcanic Complex (FNVC) in Northwest Argentina. In this study we texturally characterise zircon crystals by CL-imaging prior to obtaining in-situ geochemical and geochronological information by LA-ICP-MS. Analysed zircon grains were then extracted and analysed by high precision CA-ID-TIMS. This approach has the two-fold benefit of screening for inherited cores, and obtaining texturally defined geochemical information, prior to dissolution of the zircon crystal for CA-ID-TIMS analysis. We use this information to establish temporal and geochemical links between studied volcanic and porphyry units in the FNVC. The results of this study suggest a close temporal and genetic link between the Bajo de la Alumbrera porphyry Cu deposit and the late stage volcanism at the FNVC. Voluminous explosive volcanism immediately following porphyry formation has important implications for the thermal and rheological state of the magma that is parental to the porphyries and fed the eruption. Further work investigating the geochemistry of other accessory and major minerals could shed further light on the evolution of the magmatic body prior to eruption/ emplacement. References: [1] Buret et al. (2016) EPSL 450:120-131; [2

  13. Unravelling the pre-Variscan evolution of the Habach terrane (Tauern Window, Austria) by U-Pb SHRIMP zircon data

    NASA Astrophysics Data System (ADS)

    Eichhorn, Roland; Loth, Georg; Kennedy, Allen

    2001-08-01

    The U-Pb SHRIMP age determinations of zircons from the Habach terrane (Tauern Window, Austria) reveal a complex evolution of this basement unit, which is exposed in the Penninic domain of the Alpine orogen. The oldest components are found in zircons of a metamorphosed granitoid clast, of a migmatitic leucosome, and of a meta-rhyolitic (Variscan) tuff which bear cores of Archean age. The U-Pb ages of discordant zircon cores of the same rocks range between 540 and 520 Ma. It is assumed that the latter zircons were originally also of Archean origin and suffered severe lead loss, whilst being incorporated into Early-Cambrian volcanic arc magmas. The provenance region of the Archean (2.64-2.06 Ga) zircons is assumed to be a terrane of Gondwana affinity: i.e., the West African craton (Hoggar Shield, Reguibat Shield). The Caledonian metamorphism left a pervasive structural imprint in amphibolite facies on rocks of the Habach terrane; it is postdated by discordant zircons of a migmatitic leucosome at <440 Ma (presumably ca. 420 Ma). Alpine and Variscan upper greenschist- to amphibolite-facies conditions caused partial lead loss in zircons of a muscovite gneiss ('white schist') only, where extensive fluid flow and brittle deformation due to its position near a nappe-sole thrust enhanced the grains' susceptibility to isotopic disturbance. The Habach terrane - an active continental margin with ensialic back-arc development - showed subduction-induced magmatic activity approx. between 550 and 507 Ma. Back-arc diorites and arc basalts were intruded by ultramafic sills and subsequently by small patches of mantle-dominated unaltered and (in the vicinity of a major tungsten deposit) altered granitoids. Fore-arc (shales) and back-arc (greywackes, cherts) basin sediments as well as arc and back-arc magmatites were not only nappe-stacked by the Caledonian compressional regime closing the presumably narrow oceanic back-arc basin and squeezing mafic to ultramafic cumulates out of high

  14. Zircon U-Pb geochronology and geochemistry of granites in the Zhuguangshan complex, South China: Implications for uranium mineralization

    NASA Astrophysics Data System (ADS)

    Zhang, Long; Chen, Zhenyu; Li, Xiaofeng; Li, Shengrong; Santosh, M.; Huang, Guolong

    2018-05-01

    The Zhuguangshan complex, composed of Caledonian, Indosinian, and Yanshanian granites, and Cretaceous mafic dykes, is one of the most important granite-hosted uranium producers in South China. Here we present LA-ICP-MS zircon U-Pb and hornblende 40Ar/39Ar geochronology and whole-rock and biotite geochemistry for the granites in this complex to evaluate the magmatism and its constraints on uranium mineralization. Samples collected from the Fuxi, Youdong, Longhuashan, Chikeng, Qiling, and Sanjiangkou intrusions yield zircon weighted 206Pb/238U ages of 426.7 ± 5.4 Ma, 226.4 ± 3.5 Ma, 225.0 ± 2.7 Ma, 152.2 ± 3.0 Ma, 153.9 ± 2.1 Ma, and 155.2 ± 2.1 Ma, respectively. A new Ar-Ar dating of the hornblende of the diabase from the Changjiang uranium ore field yields a plateau age of 145.1 ± 1.5 Ma. These results coupled with published geochronological data indicate that six major magmatic events occurred in the study area at 420-435 Ma, 225-240 Ma, 150-165 Ma, 140 Ma, 105 Ma, and 90 Ma. Both U-bearing and barren granites occur in this complex, and they display differences in whole-rock and biotite geochemistry. The barren granites show higher Al2O3, CaO, TFMM, Rb, Zr, Ba, SI, Mg#, (La/Yb)N, and Eu/Eu*, but lower SiO2, ALK, Rb, DI, Rb/Sr, and TiO2/MgO than those of the U-bearing granites. Biotites in the U-bearing granites are close to the Fe-rich siderophyllite-annite end member with Fe/(Fe + Mg) ratios higher than 0.66, whereas those in the barren granites are relatively close to the Mg-rich eastonite-phlogopite end member with Fe/(Fe + Mg) ratios <0.66. The U-bearing granites were mainly derived from the partial melting of pelitic sedimentary source, whereas the psammitic source generated the barren granites. In addition, the barren granites show higher TFMM, Ba, and Eu/Eu* but lower SiO2, Rb/Sr and Al2O3/TiO2 ratios with higher zircon saturation temperatures relative to the U-bearing granites. These results indicate that the geochemical compositions of the U

  15. Single grain U/Pb geochronology of detrital zircons from Midcontinent rift arkoses, NE Kansas: Implications for depositional history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, M.W.; Van Schmus, W.R.; Berendsen, P.

    1993-03-01

    The Midcontinent rift system in the subsurface south of the Lake Superior region has been well imaged by magnetic, gravity and seismic surveys, however only a few wells have penetrated and recovered core from rift-basin fill in this region. Texaco's exploratory Noel Poersch well [number sign]1 in northeastern Kansas, penetrated [approximately] 2,600 m of rift-related volcanic, igneous, and arkosic sedimentary rocks from which a total of 35 m of core was taken from fourteen different horizons in the rift-related section. To determine provenance ages and to constrain better the depositional patterns of clastic sedimentary rocks within the Mid-continent rift basin,more » the authors have undertaken U/Pb geochronology of detrital zircon from arkosic horizons along the depth of recovered core from the Texaco Poersch [number sign]1 well. Preliminary analyses indicate that the stratigraphically lowest arkoses recovered in core have provenance ages that range in age from 1.7--1.8 Ga, 1.4--1.5 Ga and 1.1--1.2 Ga. These data suggest the following conclusions: (1) The arkosic sediments were primarily derived proximally from the adjacent rift margin, which is known to consist of 1.75--1.80 Ga gneissic and granitic basement intruded by 1.35--1.45 Ga granitic plutons in Nebraska and northernmost Kansas plus 1.63--1.68 Ga granitic basement intruded by 1.35--1.45 granitic plutons in most of Kansas; 1.63--1.70 detrital zircons were absent, suggesting that most of the detritus was derived from northerly directions. (2) No Archean or 1.85 to 1.90 Ga Early proterozoic detrital zircons were found, suggesting very little to no transport of detritus along the rift axis from farther north, e.g., from Penokean, Trans-Hudson, or Superior Province regions. (3) One nearly concordant zircon with a Pb-Pb age of 1.18 Ga was found, suggesting that some of the detritus was derived either from older phases of igneous rift fill or from ca. 1.2 Ga intrusions that pre-date rifting.« less

  16. Complete zircon and chromite digestion by sintering of granite, rhyolite, andesite and harzburgite rock reference materials for geochronological purposes

    NASA Astrophysics Data System (ADS)

    Bokhari, Syed Nadeem H.; Meisel, Thomas

    2014-05-01

    Zircon (ZrSiO4) is a common accessory mineral in nature that occurs in a wide variety of sedimentary, igneous, and metamorphic rocks. Zircon has the ability to retain substantial chemical and isotopic information that are used in range of geochemical and geo- chronological investigations. Sample digestion of such rock types is a limiting factor due to the chemical inertness of zircon (ZrSiO4) tourmaline, chromite, barite, monazite, sphene, xenotime etc. as the accuracy of results relies mainly on recovery of analytes from these minerals. Dissolution by wet acid digestions are often incomplete and high blank and total dissolved solids (TDS) contents with alkali fusions lead to an underestimation of analyte concentrations. Hence an effective analytical procedure, that successfully dissolves refractory minerals such as zircon is needed to be employed for reliable analytical results. Na2O2 digestion [1] was applied in characterisation of granite (G-3), rhyolite (MRH), andesite (MGL-AND) and harzburgite (MUH-1) powdered reference material with solution based ICP-MS analysis. In this study we undertake a systematic evaluation of decomposition time and sample:Na2O2 ratio and test portion size after minimising effect of all other constraints that makes homogeneity ambiguous. In recovering zircon and chromite 100 mg test portion was mixed with different amounts of Na2O2 i.e. 100-600 mg. Impact of decomposition time was observed by systematically increasing heating time from 30-45 minutes to 90-120 minutes at 480°C. Different test portion sizes 100-500 mg of samples were digested to control variance of inhomogeneity. An improved recovery of zirconium in zircon in granite (G-3), rhyolite MRH), andesite (MGL-AND) and chromite in harzburgite (MUH-1) was obtained by increasing heating time (2h) at 480°C and by keeping (1:6) ratio of sample:Na2O2. Through this work it has been established that due to presence of zircon and chromite, decomposition time and sample:Na2O2 ratio has

  17. Role of zircon in tracing crustal growth and recycling

    NASA Astrophysics Data System (ADS)

    Compston, W.; Williams, I. S.; Armstrong, R. A.; Claoue-Long, J. C.; Kinny, P. D.; Foster, J. J.; Kroener, A.; Pidgeon, R. T.; Myers, J. S.

    Single crystal ion probe ages of zircons is discussed, which allow much better time resolution compared to other geochronological methods, although the technique is not without problems. Rocks from two areas that contain composite zircon populations, including true magmatic zircons as well as a variety of xenocrystic types are described. It is often difficult to distinguish these; xenocrystic zircons, for example, cannot always be identified on the basis of morphology alone. Additional evidence is needed before making age interpretations. Evidence is also presented of zircon growth long after the original time of crystallization, in some cases apparently at temperatures less than 300 C. The spectacular discovery of 4.1 to 4.2 Ga detrital zircons in metaquartzites from the Mount Narryer area of Western Australia is described. Similar zircons with ages as old as 4276 Ma have been found in the nearby Jack Hills area. The source areas or parent lithologies of these zircons have not yet been determined, but the author expects that they may be unrecognized or buried antecedents of the K rich Narryer gneisses. U or Th concentrations of zircon cannot be used to discriminate between felsic and mafic source rocks.

  18. Role of zircon in tracing crustal growth and recycling

    NASA Technical Reports Server (NTRS)

    Compston, W.; Williams, I. S.; Armstrong, R. A.; Claoue-Long, J. C.; Kinny, P. D.; Foster, J. J.; Kroener, A.; Pidgeon, R. T.; Myers, J. S.

    1988-01-01

    Single crystal ion probe ages of zircons is discussed, which allow much better time resolution compared to other geochronological methods, although the technique is not without problems. Rocks from two areas that contain composite zircon populations, including true magmatic zircons as well as a variety of xenocrystic types are described. It is often difficult to distinguish these; xenocrystic zircons, for example, cannot always be identified on the basis of morphology alone. Additional evidence is needed before making age interpretations. Evidence is also presented of zircon growth long after the original time of crystallization, in some cases apparently at temperatures less than 300 C. The spectacular discovery of 4.1 to 4.2 Ga detrital zircons in metaquartzites from the Mount Narryer area of Western Australia is described. Similar zircons with ages as old as 4276 Ma have been found in the nearby Jack Hills area. The source areas or parent lithologies of these zircons have not yet been determined, but the author expects that they may be unrecognized or buried antecedents of the K rich Narryer gneisses. U or Th concentrations of zircon cannot be used to discriminate between felsic and mafic source rocks.

  19. A New age Constraint on Sturtian Glaciation: SHRIMP U-Pb zircon geochronology of Neoproterozoic Altungol Formation in Tarim Basin, NW China

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Li, J.; Li, W.; Wang, H.

    2013-12-01

    Neoproterozoic glaciations with a wide distribution, punctuated the largely ice-free Precambrian world within tropical latitudes, interpreted as evidence record the cold paleoclimate intervals which made a Snowball Earth with the frozen ocean. More recently, Quruqtagh of Northeast Tarim Basin, Northwest China, catches the increasing eyes, not only because of its three or four Neoproterzoic glacial periods in China, but also its tectonic significance for breakup of Rodinia supercontinent. There are many Neoproterozoic glaciation strata exposures in Quruqtagh. The Nanhua System is divided into the Bayisi, Zhaobishan (absent in south aera), Altungol and Tereeken formations. Thick tillites were found in Bayisi, Tereeken and Hankalchough formations, while minor was found in Altungol Formation. After the field investigation of the south Yaerdang Mountain in the South aera, it is suggested that the Altungol Formation in the South aera differs from that the North aera. In the North, it is a set of littoral-neritic clastic facies sediment with few volcanic rocks and marine tillites in the bottom. In South Quruqtagh, it consists of 45m-thick gray-green tillites in the bottom with different size and complex components gravels, volcanic interbed near the top of tillites, overlying strata is cap dolomite of 15m thickness, with abundant drop-stones, the upper is black shales and gray to black thin-interbeded siliceous rock. The reported ages without Altungol glaciation age are all focused on the north Quruqtagh and conversely in South Quruqtagh without reported glaciation age. Based on field investigation of Nanhua System (Cryogenian) in NE Tarim Basin, we offer the first set of Sturtian glaciation age 729.4×6.6Ma, in the form of SHRIMP(sensitive high-resolution ion microprobe) U-Pb zircon age dating of volcanic interbedded near the top of Altungol Formation tillites, South Quruqtagh, which provides a new constraint on the Sturtian glaciation from global perspective. It is a

  20. Provenance of Modern Soils and Limestone and Chert Bedrock of Middle Tennessee Assessed Using Detrital Zircon U-Pb Geochronology

    NASA Astrophysics Data System (ADS)

    Ayers, J. C.; Katsiaficas, N. J.; Wang, X.

    2014-12-01

    Relatively thick soils mantle limestone bedrock throughout much of middle TN. Detrital zircon U-Pb geochronology was used to test two hypotheses: 1) That soil formed by accumulation of insoluble residue during chemical weathering of "dirty" limestone bedrock. 2) That an exotic component, perhaps wind-blown loess, was deposited and weathered to form soil. Samples of soil and underlying bedrock were collected from flat surfaces at the tops of cliffs. At Site 1 the Mississippian cherty limestone of the Fort Payne Formation was collected along with the B1 and B2 horizons of the overlying ultisol. At Site 2 a composite sample of A and B horizons of an alfisol and a sample of the underlying Ordovician limestone of the Hermitage Formation were collected. Zircon was recovered from soil and limestone samples, imaged using cathodoluminescence, and analyzed for trace elements and U-Pb isotopes using a 193 nm laser and quadrupole ICP-MS. Discordant analyses were discarded and 206Pb/238U ages are reported. Trace element concentrations and ratios in zircon seem to not be useful as provenance indicators. However, comparison of U-Pb age spectra showed that soils at both sites predominantly formed by weathering of limestone, with a small exotic component. The Hermitage has significant age peaks at ~1330, 1043, 955 and 439 Ma, and its overlying soil has age peaks at 1410, 1235, 1036 and 442 Ma. The age spectra are significantly different (Kolmogorov-Smirnov probability P = 0.01 < 0.05 significance). The Fort Payne has age peaks at ~1253, 967 and 417 Ma, while the B1 has age peaks at 1440, 1182, 1012 and 450 Ma (K-S P = 0.051) and the B2 at 1240, 941, 362, 81 and 33 Ma (K-S P = 0.073). The young ages in B2 require an exotic component that may account for ~25% of the measured ages. The source of the exotic material has not yet been identified, but its zircon age spectrum does not match previously published age spectra for the regional Pleistocene Peoria loess. Bedrock age peaks

  1. From Crustal Anatexis to Pluton Emplacement: High-Precision Zircon Geochronology Reveals the Thermal History of the Larderello-Travale Geothermal System (Italy)

    NASA Astrophysics Data System (ADS)

    Farina, F.; Dini, A.; Ovtcharova, M.; Davies, J.; Bouvier, A. S.; Baumgartner, L. P.; Caricchi, L.; Schaltegger, U.

    2017-12-01

    Late Miocene to recent post-collisional extension in Tuscany (Italy) led to the emplacement of shallow-level granitic plutons and to the eruption of small rhyolitic bodies. The intrusion of peraluminous two-mica and tourmaline-bearing granites triggered the formation of the steam-dominated Larderello-Travale geothermal system. In this study, zircon crystals from granite samples obtained from drill holes at 3.0-4.5 km depth were investigated by combining in-situ oxygen isotopes analysis and high-precision CA-ID-TIMS U-Pb age determinations to gain insight into the nature of the magmatic heat source fuelling the geothermal field. Magmatic zircon crystals display δ18O values ranging from 8.6 to 13.5‰ and crystals from individual samples exhibit inter- and intra-grain oxygen isotope variability exceeding 3‰. The geochronological data indicates the existence of three magmatic pulses with ages between 3.637 ± 0.008 and 1.671 ± 0.004 Ma. More importantly, zircon crystals from individual samples exhibit an age spread as large as 200-400 ky. This age dispersion, which is more than one order of magnitude greater than the uncertainty on a single date, suggest that most of the zircon did not crystallize at the emplacement level, but within isolated and isotopically distinct magma batches before large-scale homogenization in a magmatic reservoir at depth. The rate of assembly and final volume of this reservoir is estimated using the distribution of precise U-Pb zircon dates following the approach of Caricchi et al. (2014). Thermal modelling indicates that the heat flow at the surface in the geothermal field cannot be sustained by the inferred reservoir or by heat advection from the mantle. Our data suggest the existence of a younger shallow-level intrusion, whose occurrence also accounts for the existence of confined magmatic fluids at the top of the Larderello-Travale intrusion. We conclude that a multi-disciplinary approach, integrating high-precision zircon dating, in

  2. U-Pb Dating of Zircons and Phosphates in Lunar Meteorites, Acapulcoites and Angrites

    NASA Technical Reports Server (NTRS)

    Zhou, Q.; Zeigler, R. A.; Yin, Q. Z.; Korotev, R. L.; Joliff, B. L.; Amelin, Y.; Marti, K.; Wu, F. Y.; Li, X. H.; Li, Q. L.; hide

    2012-01-01

    Zircon U-Pb geochronology has made a great contribution to the timing of magmatism in the early Solar System [1-3]. Ca phosphates are another group of common accessory minerals in meteorites with great potential for U-Pb geochronology. Compared to zircons, the lower closure temperatures of the U-Pb system for apatite and merrillite (the most common phosphates in achondrites) makes them susceptible to resetting during thermal metamorphism. The different closure temperatures of the U-Pb system for zircon and apatite provide us an opportunity to discover the evolutionary history of meteoritic parent bodies, such as the crystallization ages of magmatism, as well as later impact events and thermal metamorphism. We have developed techniques using the Cameca IMS-1280 ion microprobe to date both zircon and phosphate grains in meteorites. Here we report U-Pb dating results for zircons and phosphates from lunar meteorites Dhofar 1442 and SaU 169. To test and verify the reliability of the newly developed phosphate dating technique, two additional meteorites, Acapulco, obtained from Acapulco consortium, and angrite NWA 4590 were also selected for this study as both have precisely known phosphate U-Pb ages by TIMS [4,5]. Both meteorites are from very fast cooled parent bodies with no sign of resetting [4,5], satisfying a necessity for precise dating.

  3. U-Pb zircon constraints on the tectonic evolution of southeastern Tibet, Namche Barwa area

    USGS Publications Warehouse

    Booth, A.L.; Zeitler, P.K.; Kidd, W.S.F.; Wooden, J.; Liu, Yajing; Idleman, B.; Hren, M.; Chamberlain, C.P.

    2004-01-01

    The eastern syntaxis of the Himalayas is expressed in the crust as a pronounced southward bend in the orogen. The change in strike of geologic features coincides with the high topography of the Namche Barwa region, the exposure of granulite-grade metamorphic rocks, and a 180-degree bend in the Yalu Tsangpo. We have conducted a geochronologic and geochemical investigation of several suites of granitoids collected from the Namche Barwa massif and subjacent terranes of southeastern Tibet, ranging from cm-scale dikes and sills to larger, outcrop-scale intrusions. U-Pb SHRIMP-RG zircon ages establish at least five magmatic episodes: ???400 to 500 Ma, ???120 Ma, 40 to 70 Ma, 18 to 25 Ma, and 3 to 10 Ma. These episodes broadly correlate to spatial patterns in sample localities, as follows: 400 to 500 Ma ages occur in zircon cores collected from within the massif proper; ???120 Ma granites, related to early Gangdese arc plutonism, are primarily located northeast of Namche Barwa; later (40-70 Ma) Gangdese activity is expressed in granites west of Namche Barwa. 18 to 25 Ma granites occur both along the suture zone west of Gyala Peri, and directly north of Namche Barwa along the area of the Jiali fault zone, and are attributed both to shearing within the Jiali fault zone and to an early Miocene Gangdese Thrust event. Exceptionally young (<10 Ma) zircon ages are clustered near the core of the massif, along the Yalu Tsangpo gorge. Trace-element geochemical data indicates the presence of both fluid-present and fluid absent melts, with a fluid-absent (decompression) melting regime dominating near the core of Namche Barwa.

  4. New insights into Arctic paleogeography and tectonics from U-Pb detrital zircon geochronology

    USGS Publications Warehouse

    Miller, E.L.; Toro, J.; Gehrels, G.; Amato, J.M.; Prokopiev, A.; Tuchkova, M.I.; Akinin, V.V.; Dumitru, T.A.; Moore, Thomas E.; Cecile, M.P.

    2006-01-01

    To test existing models for the formation of the Amerasian Basin, detrital zircon suites from 12 samples of Triassic sandstone from the circum-Arctic region were dated by laser ablation-inductively coupled plasma-mass spectrometry (ICP-MS). The northern Verkhoyansk (NE Russia) has Permo-Carboniferous (265-320 Ma) and Cambro-Silurian (410-505 Ma) zircon populations derived via river systems from the active Baikal Mountain region along the southern Siberian craton. Chukotka, Wrangel Island (Russia), and the Lisburne Hills (western Alaska) also have Permo-Carboniferous (280-330 Ma) and late Precambrian-Silurian (420-580 Ma) zircons in addition to Permo-Triassic (235-265 Ma), Devonian (340-390 Ma), and late Precambrian (1000-1300 Ma) zircons. These ages suggest at least partial derivation from the Taimyr, Siberian Trap, and/ or east Urals regions of Arctic Russia. The northerly derived Ivishak Formation (Sadlerochit Mountains, Alaska) and Pat Bay Formation (Sverdrup Basin, Canada) are dominated by Cambrian-latest Precambrian (500-600 Ma) and 445-490 Ma zircons. Permo-Carboniferous and Permo-Triassic zircons are absent. The Bjorne Formation (Sverdrup Basin), derived from the south, differs from other samples studied with mostly 1130-1240 Ma and older Precambrian zircons in addition to 430-470 Ma zircons. The most popular tectonic model for the origin of the Amerasian Basin involves counterclockwise rotation of the Arctic Alaska-Chukotka microplate away from the Canadian Arctic margin. The detrital zircon data suggest that the Chukotka part of the microplate originated closer to the Taimyr and Verkhoyansk, east of the Polar Urals of Russia, and not from the Canadian Arctic. Copyright 2006 by the American Geophysical Union.

  5. Origin of an unusual monazite-xenotime gneiss, Hudson Highlands, New York: SHRIMP U-Pb geochronology and trace element geochemistry

    USGS Publications Warehouse

    Aleinikoff, John N.; Grauch, Richard I.; Mazdab, Frank K.; Kwak, Loretta; Fanning, C. Mark; Kamo, Sandra L.

    2012-01-01

    A pod of monazite-xenotime gneiss (MXG) occurs within Mesoproterozoic paragneiss, Hudson Highlands, New York. This outcrop also contains granite of the Crystal Lake pluton, which migmatized the paragneiss. Previously, monazite, xenotime, and zircon from MXG, plus detrital zircon from the paragneiss, and igneous zircon from the granite, were dated using multi-grain thermal ionization mass spectrometry (TIMS). New SEM imagery of dated samples reveals that all minerals contain cores and rims. Thus TIMS analyses comprise mixtures of age components and are geologically meaningless. New spot analyses by sensitive high resolution ion microprobe (SHRIMP) of small homogeneous areas on individual grains allows deconvolution of ages within complexly zoned grains. Xenotime cores from MXG formed during two episodes (1034 ± 10 and 1014 ± 3 Ma), whereas three episodes of rim formation are recorded (999 ± 7, 961 ± 11, and 874 ± 11 Ma). Monazite cores from MXG mostly formed at 1004 ± 4 Ma; rims formed at 994 ± 4, 913 ± 7, and 890 ± 7 Ma. Zircon from MXG is composed of oscillatory-zoned detrital cores (2000-1170 Ma), plus metamorphic rims (1008 ± 7, 985 ± 5, and ∼950 Ma). In addition, MXG contains an unusual zircon population composed of irregularly-zoned elongate cores dated at 1036 ± 5 Ma, considered to be the time of formation of MXG. The time of granite emplacement is dated by oscillatory-zoned igneous cores at 1058 ± 4 Ma, which provides a minimum age constraint for the time of deposition of the paragneiss. Selected trace elements, including all REE plus U and Th, provide geochemical evidence for the origin of MXG. MREE-enriched xenotime from MXG are dissimilar from typical HREE-enriched patterns of igneous xenotime. The presence of large negative Eu anomalies and high U and Th in monazite and xenotime are uncharacteristic of typical ore-forming hydrothermal processes. We conclude that MXG is the result of unusual metasomatic processes during high grade

  6. Origin of an unusual monazite-xenotime gneiss, Hudson Highlands, New York: SHRIMP U-Pb geochronology and trace element geochemistry

    USGS Publications Warehouse

    Aleinikoff, John N.; Grauch, Richard I.; Mazdab, Frank K.; Kwak, Loretta; Fanning, C. Mark; Kamo, Sandra L.

    2012-01-01

    A pod of monazite-xenotime gneiss (MXG) occurs within Mesoproterozoic paragneiss, Hudson Highlands, New York. This outcrop also contains granite of the Crystal Lake pluton, which migmatized the paragneiss. Previously, monazite, xenotime, and zircon from MXG, plus detrital zircon from the paragneiss, and igneous zircon from the granite, were dated using multi-grain thermal ionization mass spectrometry (TIMS). New SEM imagery of dated samples reveals that all minerals contain cores and rims. Thus TIMS analyses comprise mixtures of age components and are geologically meaningless. New spot analyses by sensitive high resolution ion microprobe (SHRIMP) of small homogeneous areas on individual grains allows deconvolution of ages within complexly zoned grains.Xenotime cores from MXG formed during two episodes (1034 ± 10 and 1014 ± 3 Ma), whereas three episodes of rim formation are recorded (999 ± 7, 961 ± 11, and 874 ± 11 Ma). Monazite cores from MXG mostly formed at 1004 ± 4 Ma; rims formed at 994 ± 4, 913 ± 7, and 890 ± 7 Ma. Zircon from MXG is composed of oscillatory-zoned detrital cores (2000-1170 Ma), plus metamorphic rims (1008 ± 7, 985 ± 5, and ∼950 Ma). In addition, MXG contains an unusual zircon population composed of irregularly-zoned elongate cores dated at 1036 ± 5 Ma, considered to be the time of formation of MXG. The time of granite emplacement is dated by oscillatory-zoned igneous cores at 1058 ± 4 Ma, which provides a minimum age constraint for the time of deposition of the paragneiss.Selected trace elements, including all REE plus U and Th, provide geochemical evidence for the origin of MXG. MREE-enriched xenotime from MXG are dissimilar from typical HREE-enriched patterns of igneous xenotime. The presence of large negative Eu anomalies and high U and Th in monazite and xenotime are uncharacteristic of typical ore-forming hydrothermal processes. We conclude that MXG is the result of unusual metasomatic processes during high grade

  7. Magmatic tempo of Earth's youngest exposed plutons as revealed by detrital zircon U-Pb geochronology.

    PubMed

    Ito, Hisatoshi; Spencer, Christopher J; Danišík, Martin; Hoiland, Carl W

    2017-09-29

    Plutons are formed by protracted crystallization of magma bodies several kilometers deep within the crust. The temporal frequency (i.e. episodicity or 'tempo') of pluton formation is often poorly constrained as timescales of pluton formation are largely variable and may be difficult to resolve by traditional dating methods. The Hida Mountain Range of central Japan hosts the youngest exposed plutons on Earth and provides a unique opportunity to assess the temporal and spatial characteristics of pluton emplacement at high temporal resolution. Here we apply U-Pb geochronology to zircon from the Quaternary Kurobegawa Granite and Takidani Granodiorite in the Hida Mountain Range, and from modern river sediments whose fluvial catchments include these plutons in order to reconstruct their formation. The U-Pb data demonstrate that the Kurobegawa pluton experienced two magmatic pulses at ~2.3 Ma and ~0.9 Ma; whereas, to the south, the Takidani pluton experienced only one magmatic pulse at ~1.6 Ma. These data imply that each of these magmatic systems were both spatially and temporally distinct. The apparent ~0.7 Myr age gap between each of the three magmatic pulses potentially constrains the recharge duration of a single pluton within a larger arc plutonic complex.

  8. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards

    USGS Publications Warehouse

    Black, L.P.; Kamo, S.L.; Allen, C.M.; Davis, D.W.; Aleinikoff, J.N.; Valley, J.W.; Mundil, R.; Campbell, I.H.; Korsch, R.J.; Williams, I.S.; Foudoulis, C.

    2004-01-01

    Precise isotope dilution-thermal ionisation mass spectrometry (ID-TIMS) documentation is given for two new Palaeozoic zircon standards (TEMORA 2 and R33). These data, in combination with results for previously documented standards (AS3, SL13, QGNG and TEMORA 1), provide the basis for a detailed investigation of inconsistencies in 206Pb/238U ages measured by microprobe. Although these ages are normally consistent between any two standards, their relative age offsets are often different from those established by ID-TIMS. This is true for both sensitive high-resolution ion-microprobe (SHRIMP) and excimer laser ablation-inductively coupled plasma-mass spectrometry (ELA-ICP-MS) dating, although the age offsets are in the opposite sense for the two techniques. Various factors have been investigated for possible correlations with age bias, in an attempt to resolve why the accuracy of the method is worse than the indicated precision. Crystallographic orientation, position on the grain-mount and oxygen isotopic composition are unrelated to the bias. There are, however, striking correlations between the 206Pb/238U age offsets and P, Sm and, most particularly, Nd abundances in the zircons. Although these are not believed to be the primary cause of this apparent matrix effect, they indicate that ionisation of 206Pb/238U is influenced, at least in part, by a combination of trace elements. Nd is sufficiently representative of the controlling trace elements that it provides a quantitative means of correcting for the microprobe age bias. This approach has the potential to reduce age biases associated with different techniques, different instrumentation and different standards within and between laboratories. Crown Copyright ?? 2004 Published by Elsevier B.V. All rights reserved.

  9. Duration of a large Mafic intrusion and heat transfer in the lower crust: A SHRIMP U-Pb zircon Study in the Ivrea-Verbano Zone (Western Alps, Italy)

    USGS Publications Warehouse

    Peressini, G.; Quick, J.E.; Sinigoi, S.; Hofmann, A.W.; Fanning, M.

    2007-01-01

    The Ivrea-Verbano Zone in the western Italian Alps contains one of the world's classic examples of ponding of mantle-derived, mafic magma in the deep crust. Within it, a voluminous, composite mafic pluton, the Mafic Complex, intruded lower-crustal, high-grade paragneiss of the Kinzigite Formation during Permian-Carboniferous time, and is now exposed in cross-section as a result of Alpine uplift. The age of the intrusion is still debated because the results of geochronological studies in the last three decades on different rock types and with various dating techniques range from 250 to about 300 Ma. Sensitive high-resolution ion microprobe (SHRIMP) U-Pb zircon age determinations on 12 samples from several locations within the Mafic Complex were performed to better constrain the age of the igneous event. The results indicate a long history of magma emplacement and cooling, which reconciles the spread in previously published ages. The main intrusive phase took place at 288 ?? 4 Ma, causing a perturbation of the deep-crustal geotherm, which relaxed to the Sm-Nd closure temperature in garnet-free mafic rocks after about 15-20 Myr of sub-solidus cooling at c. 270 Ma. These results suggest that large, deep crustal plutons, such as those identified geophysically at depths of 10-20 km within extended continental crust (e.g. Yellowstone, Rio Grande Rift, Basin and Range) may have formed rapidly but induced a prolonged thermal perturbation. In addition, the data indicate that a significant thermal event affected the country rock of the Mafic Complex at about 310 Ma. The occurrence of an upper amphibolite- to granulite-facies thermal event in the Kinzigite Formation prior to the main intrusive phase of the Mafic Complex has been postulated by several workers, and is corroborated by other geochronological investigations. However, it remains uncertain whether this event (1) was part of a prolonged perturbation of the deep-crustal geotherm, which started long before the onset of

  10. "Taconic" arc magmatism in the central Brooks Range, Alaska: New U-Pb zircon geochronology and Hf isotopic data from the lower Paleozoic Apoon assemblage of the Doonerak fenster

    NASA Astrophysics Data System (ADS)

    Strauss, J. V.; Hoiland, C. W.; Ward, W.; Johnson, B.; McClelland, W.

    2015-12-01

    The Doonerak fenster in the central Brooks Range, AK, exposes an important package of early Paleozoic volcanic and sedimentary rocks called the Apoon assemblage, which are generally interpreted as para-autochthonous basement to the Mesozoic-Cenozoic Brookian fold-thrust belt. Recognition in the 1970's of a major pre-Mississippian unconformity within the window led to correlations between Doonerak and the North Slope (sub-) terrane of the Arctic Alaska Chukotka microplate (AACM); however, the presence of arc-affinity volcanism and the apparent lack of pre-Mississippian deformation in the Apoon assemblage makes this link tenuous and complicates Paleozoic tectonic reconstructions of the AACM. Previous age constraints on the Apoon assemblage are limited to a handful of Middle Cambrian-Silurian paleontological collections and five K-Ar and 40Ar/39Ar hornblende ages from mafic dikes ranging from ~380-520 Ma. We conducted U-Pb geochronologic and Hf isotopic analyses on igneous and sedimentary zircon from the Apoon assemblage to test Paleozoic links with the North Slope and to assess the tectonic and paleogeographic setting of the Doonerak region. U-Pb analyses on detrital zircon from Apoon rocks yield a spectrum of unimodal and polymodal age populations, including prominent age groups of ca. 420-490, 960-1250, 1380­-1500, 1750-1945, and 2650-2830 Ma. Hf isotopic data from the ca. 410-490 Ma age population are generally juvenile (~7-10 ɛHf), implying a distinct lack of crustal assimilation during Ordovician-Silurian Doonerak arc magmatism despite its proximity to a cratonic source terrane as indicated by an abundance of Archean and Proterozoic zircon in the interbedded siliciclastic strata. These data are in stark contrast to geochronological data from the non-Laurentian portions of the AACM, highlighting a prominent tectonic boundary between Laurentian- and Baltic-affinity rocks at the Doonerak window and implying a link to "Taconic"-age arc magmatism documented along

  11. Developing Zircon as a Probe of Planetary Impact History

    NASA Astrophysics Data System (ADS)

    Wielicki, Matthew

    2014-12-01

    The identification of Meteor Crater in Arizona as an extraterrestrial impact by Eugene Shoemaker provided the first evidence of this geologic phenomenon and opened the door to a new field of research that has eventually lead to the identification of over ~150 terrestrial impact structures. Subsequently impacts have been evoked in the formation of the moon, delivery of volatiles and bio-precursors to early Earth, creation of habitats for the earliest life and, in more recent times, major mass extinction events. However, understanding the impact flux to the Earth-Moon system has been complicated by the constant weathering and erosion at Earth's surface and the complex nature of impactite samples such that only a hand full of terrestrial craters have been accurately and precisely dated. Currently 40Ar/39Ar step-heating analysis of impactite samples is commonly used to infer impact ages but can be problematic due to the presence of relic clasts, incomplete 40Ar outgassing or excess 40Ar, and recoil and shock effects. The work presented here attempts to develop zircon geochronology to probe planetary impact histories as an alternative to current methods and provides another tool by which to constrain the bolide flux to the Earth-Moon system. Zircon has become the premier geo-chronometer in earth science and geochemical investigation of Hadean zircon from Western Australia has challenged the long-standing, popular conception that the near-surface Hadean Earth was an uninhabitable and hellish world; Zircons may preserve environmental information regarding their formation and thus provide a rare window into conditions on early Earth. Isotopic and petrologic analyses of these ancient grains have been interpreted to suggest that early Earth was more habitable than previously envisioned, with water oceans, continental crust, and possibly even plate tectonics. The Hadean is also suspected to be a time of major planetary bombardment however identifying impact signatures within

  12. Detrital zircon and apatite (U-Th)/He geochronology of intercalated baked sediments: A new approach to dating young basalt flows

    NASA Astrophysics Data System (ADS)

    Cooper, Frances J.; van Soest, Matthijs C.; Hodges, Kip V.

    2011-07-01

    Simple numerical models suggest that many basaltic lava flows should sufficiently heat the sediments beneath them to reset (U-Th)/He systematics in detrital zircon and apatite. This result suggests a useful way to date such flows when more conventional geochronological approaches are either impractical or yield specious results. We present here a test of this method on sediments interstratified with basalt flows of the Taos Plateau Volcanic Field of New Mexico. Nineteen zircons and apatites from two samples of baked sand collected from the uppermost 2 cm of a fluvial channel beneath a flow of the Upper Member of the Servilleta Basalt yielded an apparent age of 3.487 ± 0.047 Ma (2 SE confidence level), within the range of all published 40Ar/39Ar dates for other flows in the Upper Member (2.81-3.72 Ma) and statistically indistinguishable from the 40Ar/39Ar dates for basal flows of the Upper Member with which the studied flow is broadly correlative (3.61 ± 0.13 Ma). Given the high yield of 4He from U and Th decay, this technique may be especially useful for dating Pleistocene basalt flows. Detailed studies of the variation of (U-Th)/He detrital mineral dates in sedimentary substrates, combined with thermal modeling, may be a valuable tool for physical volcanologists who wish to explore the temporal and spatial evolution of individual flows and lava fields.

  13. Petrography and U-Pb detrital zircon geochronology of metasedimentary strata dredged from the Chukchi Borderland, Amerasia Basin, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Brumley, K.; Miller, E. L.; Mayer, L. A.; Andronikov, A.; Wooden, J. L.; Dumitru, T. A.; Elliott, B.; Gehrels, G. E.; Mukasa, S. B.

    2010-12-01

    In 2008-2009, twelve dredges were taken aboard the USCGC Healy from outcrops along the Alpha Ridge, Northern Chukchi Borderland, Northwind Ridge and the Chukchi Plateau in the Arctic Ocean as part of the U.S. Extended Continental Shelf Project. To ensure sampling of outcrop, steep bathymetric slopes (>40°) with little mud cover were identified with multibeam sonar and targeted for dredging. The first dredge from Alpha Ridge yielded volcaniclastic sedimentary rocks deposited from a phreatomagmatic eruption in shallow water (<200m). This is inconsistent with tectonic reconstructions suggesting that the Alpha Ridge was created as an oceanic plateau on deep oceanic crust of the Canada Basin. Another dredge, taken from the northern tip of Northwind Ridge, yielded metasedimentary rocks deformed under greenschist facies conditions (chlorite+white mica). These rocks are intruded and/or overlain by mid-Cretaceous alkalic basalts, also taken in this dredge, and dated by 40Ar/39Ar (plagioclase separate) to be 112±1 Ma. The metasedimentary rocks, from this single dredge, range in grain size from mud to coarse sandstone and grit which all contain grains and sub-angular clasts of volcanic, plutonic, metamorphic and fine grained sedimentary rocks as well as monocrystalline quartz, potassium feldspar, and plagioclase. All of these samples display the same bedding to foliation angle and lithology, which further indicates that they were dredged from in situ outcrop and are not random samples of ice rafted debris. Based on grain size variations and graded beds, they are interpreted as Silurian gravity flow deposits fed by proximal syn-orogenic and/or magmatic arc sources. Detrital zircons were separated from four sandstone samples of the Northwind Ridge dredge, and their U-Pb single grain ages determined by LA-MC-ICPMS and SHRIMP, (N= 393). Their detrital zircon populations are dominated by euhedral first-cycle zircon ca. 430 and 980 Ma with lesser older recycled zircons between

  14. SHRIMP U-Pb zircon dating from eclogite lenses in marble, Dabie-Sulu UHP terrane: restriction on the prograde, UHP and retrograde metamorphic ages

    NASA Astrophysics Data System (ADS)

    Liu, F.; Gerdes, A.; Xue, H.; Liang, F.

    2006-12-01

    Eclogite as lenses in impure marbles from Dabie-Sulu UHP terrane, represent parts of deeply subducted meta- sedimentary rocks. To constrain the age of metamorphism during subduction and exhumation, zircons from 2 eclogite samples in Dabie-Sulu impure marbles have been investigated. Beside Inherited (detrital) grains, 3 different metamorphic zircon domains have been identified based on distribution of mineral inclusion, trace elements and cathodoluminescence (CL) imaging: 1. Dark-luminescent rounded cores with quartz eclogite- facies mineral inclusions suggest formation at high-pressure (HP) metamorphic conditions. 2. White- luminescent zircon, either surrounding domain 1 or as rounded to spindly cores with index coesite eclogite- facies mineral inclusions indicates formation at UHP conditions. 3. Grey-luminescent rims around domain 2 with low-pressure mineral inclusions suggest formation during late regional amphibolite-facies retrogression. The three distinct zircon domains were dated by SHRIMP and yielded three discrete and meaningful age groups: 245±4 Ma for prograde HP metamorphism, 235±3 Ma for UHP metamorphism and 215±6 Ma for late amphibolite-facies retrogression from Dabie-Sulu eclogite. This data suggests that subduction and exhumation took place in about 10-11 Myr and 19-20 Myr, respectively. Continental materials was subducted from surface to the deep mantle depth at rates of 10 km/Myr, and subsequently exhumed from the mantle to the base of the crust at rates of 7 km/Myr. Ultrafast exhumation of the Dabie-Sulu UHP terrane from depth of 160 to 30 km was probably driven by buoyancy forces after UHP slab break-off at deep mantle depths.

  15. Mineral chemistry and shrimp U-Pb Geochronology of mesoproterozoic polycrase-titanite veins in the sullivan Pb-Zn-Ag Deposit, British Columbia

    USGS Publications Warehouse

    Slack, J.F.; Aleinikoff, J.N.; Belkin, H.E.; Fanning, C.M.; Ransom, P.W.

    2008-01-01

    Small polycrase-titanite veins 0.1-2 mm thick cut the tourmalinite feeder zone in the deep footwall of the Sullivan Pb-Zn-Ag deposit, southeastern British Columbia. Unaltered, euhedral crystals of polycrase and titanite 50-100 ??m in diameter are variably replaced by a finer-grained alteration-induced assemblage composed of anhedral polycrase and titanite with local calcite, albite, epidote, allanite, and thorite or uranothorite (or both). Average compositions of the unaltered and altered polycrase, as determined by electron-microprobe analysis, are (Y0.38 REE0.49 Th0.10 Ca0.04 Pb0.03 Fe0.01U0.01) (Ti1.48 Nb0.54 W0.04 Ta0.02)O6 and (Y0.42 REE0.32 Th0.15 U0.06 Ca0.04 Pb0.01 Fe0.01) (Ti1.57 Nb0.44 W0.04 Ta0.02)O6, respectively. The unaltered titanite has, in some areas, appreciable F (to 0.15 apfu), Y (to 0.40 apfu), and Nb (to 0.13 apfu). SHRIMP U-Pb geochronology of eight grains of unaltered polycrase yields a weighted 207Pb/206Pb age of 1413 ?? 4 Ma (2??) that is interpreted to be the age of vein formation. This age is 50-60 m.y. younger than the ca. 1470 Ma age of synsedimentary Pb-Zn-Ag mineralization in the Sullivan deposit, which is based on combined geological and geochronological data. SHRIMP ages for altered polycrase and titanite suggest later growth of minerals during the ???1370-1320 Ma East Kootenay and ???1150-1050 Ma Grenvillian orogenies. The 1413 ?? 4 Ma age for the unaltered polycrase in the veins records a previously unrecognized post-ore (1370 Ma) mineralizing event in the Sullivan deposit and vicinity. The SHRIMP U-Pb age of the polycrase and high concentrations of REE, Y, Ti, Nb, and Th in the veins, together with elevated F in titanite and the absence of associated sulfides, suggest transport of these high-field-strength elements (HFSE) by F-rich and S-poor hydrothermal fluids unrelated to the fluids that formed the older Fe-Pb-Zn-Ag sulfide ores of the Sullivan deposit. Fluids containing abundant REE, HFSE, and F may have been derived from a

  16. Detrital zircon geochronology of pre- and syncollisional strata, Acadian orogen, Maine Appalachians

    USGS Publications Warehouse

    Bradley, Dwight C.; O'Sullivan, Paul B.

    2017-01-01

    The Central Maine Basin is the largest expanse of deep-marine, Upper Ordovician to Devonian metasedimentary rocks in the New England Appalachians, and is a key to the tectonics of the Acadian Orogeny. Detrital zircon ages are reported from two groups of strata: (1) the Quimby, Rangeley, Perry Mountain and Smalls Falls Formations, which were derived from inboard, northwesterly sources and are supposedly older; and (2) the Madrid, Carrabassett and Littleton Formations, which were derived from outboard, easterly sources and are supposedly younger. Deep-water deposition prevailed throughout, with the provenance shift inferred to mark the onset of foredeep deposition and orogeny. The detrital zircon age distribution of a composite of the inboard-derived units shows maxima at 988 and 429 Ma; a composite from the outboard-derived units shows maxima at 1324, 1141, 957, 628, and 437 Ma. The inboard-derived units have a greater proportion of zircons between 450 and 400 Ma. Three samples from the inboard-derived group have youngest age maxima that are significantly younger than the nominal depositional ages. The outboard-derived group does not share this problem. These results are consistent with the hypothesised provenance shift, but they signal potential problems with the established stratigraphy, structure, and (or) regional mapping. Shallow-marine deposits of the Silurian to Devonian Ripogenus Formation, from northwest of the Central Maine Basin, yielded detrital zircons featuring a single age maximum at 441 Ma. These zircons were likely derived from a nearby magmatic arc now concealed by younger strata. Detrital zircons from the Tarratine Formation, part of the Acadian foreland-basin succession in this strike belt, shows age maxima at 1615, 980 and 429 Ma. These results are consistent with three episodes of zircon recycling beginning with the deposition of inboard-derived strata of the Central Maine Basin, which were shed from post-Taconic highlands located to the

  17. Geochronological study of zircons from continental crust rocks in the Frido Unit (southern Apennines)

    NASA Astrophysics Data System (ADS)

    Laurita, Salvatore; Prosser, Giacomo; Rizzo, Giovanna; Langone, Antonio; Tiepolo, Massimo; Laurita, Alessandro

    2015-01-01

    Zircon crystals have been separated from gneisses and metagranitoids of the Pollino area (southern Apennines) in order to unravel the origin of these crustal slices within the ophiolite-bearing Frido Unit. The morphology of the zircon has been investigated by SEM, and the internal structure was revealed by cathodoluminescence. Data obtained by U/Pb dating have been used to deduce the age and significance of the different crystallization stages of zircon, connected to the evolutionary stages of the continental crust (Late Paleozoic-Early Mesozoic). Zircons in gneisses are characterized by inherited cores of magmatic origin, bordered by metamorphic rims. Inherited zircons generally show Paleoproterozoic to Ordovician ages, indicating the provenance of the sedimentary protolith from different sources. The exclusive presence of Late Neoproterozoic zircon cores in leucocratic gneisses may suggest a different magmatic source possibly connected to Pan-African events. Late Carboniferous-Early Permian ages are found mainly in zircon rims of metamorphic origin. These are similar to the emplacement ages of protolith of the metagranites in the middle crust portion. Late Carboniferous-Early Permian metamorphism and magmatism testify the extensional collapse of the Hercynian belt, recorded in European, particularly, in the Corsica-Sardinia block and in Calabria. Late Permian-Triassic ages have been detected in zircon rims from gneisses and metagranitoids. These younger ages appear related to deformation and emplacement of albite-quartz veins in both lithologies, and are related to an extensional episode predating the Middle Triassic to Middle Jurassic rifting in the Tethyan domain, followed by Middle to Late Jurassic spreading.

  18. Zircon U-Th and U-Pb Ages From Quaternary Silicic Volcanic and Plutonic Rocks, and Their Bearing on Granitoid Batholiths

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.

    2007-12-01

    In the ten years since publication of M. Reid et al.'s seminal paper on zircon ages from rhyolites (EPSL 150:2-39, 1997) >20 papers have appeared on SIMS 238U-230Th and 238U-206Pb geochronology of zircon from silicic volcanic rocks, plutonic xenoliths, and young intrusions. In some cases, as well as for U-Pb studies of Tertiary granitoids, plutonic samples are interpreted in the context of related volcanism. These geochronologic data have advanced conceptual models of silicic magma genesis and pluton construction. Of fundamental importance are discoveries that zircons in volcanic rocks typically pre-date eruption by 10's to 100's of kyr and that multiple zircon populations are common; these crystals are "antecrysts" recycled from intrusive rocks or crystal mush of the system that vented. Resolving such age differences is possible with U-Th at <300 ka but is challenging with U-Pb, where SIMS precision limits resolution of differences on the order of 100 kyr for Pleistocene-Miocene zircons. Cathodoluminescence (CL) imaging of polished crystals guides beam placement but leads to sampling bias that favors high-U regions. Thus, although model-age histograms and relative probability plots identify zircon age populations, they are unlikely to accurately define relative abundances of age groups. Microbeam analysis collects data for the entire volume sampled but only SIMS depth-profiling into crystal faces can spatially resolve fine zones. ID-TIMS analysis of CL-imaged zircon fragments can improve U-Pb precision. SIMS complements geochronology with trace element fingerprints of zircon growth environments and enables Ti-in-zircon thermometry. Literature examples illustrate recent findings: (1) rhyodacite lava at Crater Lake contains zircons derived from late Pleistocene granodiorite represented by blocks ejected in the caldera-forming eruption; (2) zircons in Mount St. Helens dacites grew at sub-eruption temperatures and pre-date eruptions by up to 250 kyr; (3) Miocene

  19. Promise and Pitfalls of Lu/Hf-Sm/Nd Garnet Geochronology

    NASA Astrophysics Data System (ADS)

    King, R. L.; Vervoort, J. D.; Kohn, M. J.; Zirakparvar, N. A.; Hart, G. L.; Corrie, S. L.; Cheng, H.

    2007-12-01

    Our ability to routinely measure Lu-Hf and Sm-Nd isotopes in garnet allows broad new applications in geochronology, petrology, and tectonics. However, applications of these data can be limited by challenges in interpreting the petrologic record and preparing garnets for analysis. Here, we examine petrologic and chemical pitfalls encountered in garnet geochronology. Petrologic factors influencing trace element compositions in garnet include reactions that modify REE availability and partitioning (1,2), kinetically limited transfer of REEs to garnet (3), and bulk compositional heterogeneities (4). Interpreting the effects of these processes on Sm/Nd and Lu/Hf ages requires characterizing REE zonation prior to isotope analysis and age interpretation. Because garnet fractions are traditionally picked from crushed samples without regard to intracrystalline origins or chemistries, isochrons will represent mixtures derived to varying degrees from all periods of garnet growth. While measured zoning might generally indicate what garnet portion dominates the Lu/Hf or Sm/Nd budget, traditional mineral separation will rarely realize the chronologic potential afforded by high precision Hf and Nd isotope measurements. The potential use of alternative techniques, such as microsampling, necessitates selective digestion and/or leaching to eliminate inclusions within garnet. For Sm/Nd geochronology, H2SO4 leaching removes LREE-rich phosphates (e.g. apatite), but not silicates (e.g. epidote), precluding Sm-Nd dating of some rocks. For Lu/Hf geochronology, ubiquitous zircon microinclusions (c. 1 μm) can significantly disrupt age determinations. Microinclusions cannot be detected optically or separated physically, requiring selective chemical digestion. If complete digestion methods, such as bomb digestion, are used for garnet fractions, then "common Hf" from zircon will be contained in final solutions. These mixed analyses are of dubious utility and will fall into one of two

  20. Paleogeographic changes across the Pennsylvanian-Permian boundary within the Mid-Continent (USA) inferred from detrital zircon geochronology of continental deposits

    NASA Astrophysics Data System (ADS)

    Soreghan, M. J.; Soreghan, G. S.

    2017-12-01

    The Permo-Pennsylvanian was characterized by intense orogenesis associated with Pangaean assembly, and profound climate shifts as earth transitioned from full icehouse conditions in the Pennsylvanian-early Permian to collapse into greenhouse conditions by latest Permian time. The modern U.S. Midcontinent was part of equatorial western Pangaea (North America) sandwiched between a continental-scale orogenic zone to the east and south (Appalachian-Ouachita-Marathon orogenic belt) and a series of basement-cored, intra-plate uplifts along western Pangaea (Ancestral Rocky Mountains). Here, we present a compilation of detrital zircon geochronology data from the Permo-Pennsylvanian of the Midcontinent as well as coeval strata of the east and west to explore sediment dispersal and potential tectonic and climatic influences on these provenance signatures. Zircon provenance data come from mostly eolian and fluvial silt- and sandstones of Early Pennsylvanian through Mid Permian age, although some data include marine sandstones. Our new data were acquired by LA-ICPMS at the University of Arizona Laserchron, and predominant age groups include >2500 Ma (Archean), 1600-1800 Ma (Yavapai-Matzatzal), 1300-900 Ma (Grenville), 790-570 Ma (Neoproterozoic), and 480-360 (E-M Paleozoic). However, the relative distributions of these populations exhibit distinctive temporal differences, especially across the Pennsylvanian-Permian boundary, but also spatially in comparison to published data from the Appalachian-Ouachita-Marathon basin, Ancestral Rocky Mountain basins, and the western Pangaean margin. Although the Central Pangaean Mountains, and in particular the Grenville-age basement rocks, were a dominant source of sediment to the Midcontinent, the data suggest an abrupt introduction of Neoproterozoic zircons in the early Permian. This signature also appears within the Ancestral Rocky Mountains region, but is rare along the western margin and the Appalachian basin in the early Permian. This

  1. Detrital zircon geochronology of quartzose metasedimentary rocks from parautochthonous North America, east-central Alaska

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Holm-Denoma, Christopher S.; Jones, James V.; Aleinikoff, John N.; Mortensen, James K.

    2017-01-01

    We report eight new U-Pb detrital zircon ages for quartzose metasedimentary rocks from four lithotectonic units of parautochthonous North America in east-central Alaska: the Healy schist, Keevy Peak Formation, and Sheep Creek Member of the Totatlanika Schist in the northern Alaska Range, and the Butte assemblage in the northwestern Yukon-Tanana Upland. Excepting 1 of 3 samples from the Healy schist, all have dominant detrital zircon populations of 1.9–1.8 Ga and a subordinate population of 2.7–2.6 Ga. Three zircons from Totatlanika Schist yield the youngest age of ca. 780 Ma. The anomalous Healy schist sample has abundant 1.6–0.9 Ga detrital zircon, as well as populations at 2.0–1.8 Ga and 2.7–2.5 Ga that overlap the ages from the rest of our samples; it has a minimum age population of ca. 1007 Ma.Detrital zircon age populations from all but the anomalous sample are statistically similar to those from (1) other peri-Laurentian units in east-central Alaska; (2) the Snowcap assemblage in Yukon, basement of the allochthonous Yukon-Tanana terrane; (3) Neoproterozoic to Ordovician Laurentian passive margin strata in southern British Columbia, Canada; and (4) Proterozoic Laurentian Sequence C strata of northwestern Canada. Recycling of zircon from the Paleoproterozoic Great Bear magmatic zone in the Wopmay orogen and its Archean precursors could explain both the Precambrian zircon populations and arc trace element signatures of our samples. Zircon from the anomalous Healy schist sample resembles that in Nation River Formation and Adams Argillite in eastern Alaska, suggesting recycling of detritus in those units.

  2. Pre-Alpine evolution of the Seckau Complex (Austroalpine basement/Eastern Alps): Constraints from in-situ LA-ICP-MS Usbnd Pb zircon geochronology

    NASA Astrophysics Data System (ADS)

    Mandl, Magdalena; Kurz, Walter; Hauzenberger, Christoph; Fritz, Harald; Klötzli, Urs; Schuster, Ralf

    2018-01-01

    The Variscan European Belt is a complex orogen with its southern margin partly obscured by Alpine tectonics and metamorphism. We present a study of one of the units, the Seckau Complex, that constitute the southern part of the Variscan European Belt in the Eastern Alps in order to clarify its origin, age and lithostratigraphy. The magmatic and geochronological evolution of this Complex in the northwestern part of the Seckau Nappe (as part of the Austroalpine Silvretta-Seckau Nappe System) was investigated by zircon Usbnd Pb dating of paragneisses and metagranitoids coupled with petrological and geochemical data. This reveals the distinction of three newly defined lithostratigraphic/lithodemic sub-units: (1) Glaneck Metamorphic Suite, (2) Hochreichart Plutonic Suite and (3) Hintertal Plutonic Suite. The Glaneck Metamorphic Suite is mainly composed of fine-grained paragneisses that yield Usbnd Pb zircon ages in the range between 2.7 Ga and 2.0 Ga, as well as concordia ages from 572 ± 7 Ma to 559 ± 11 Ma. All of these ages are interpreted as detrital zircon ages originating from an igneous source. The paragneisses are the host rock for the large volumes of metagranitoids of the Hochreichart Plutonic Suite and the Hintertal Plutonic Suite. The Hochreichart Plutonic Suite comprises highly fractionated melts with mainly S-type characteristics and late Cambrian to Early Ordovician Usbnd Pb zircon ages (508 ± 9 Ma to 486 ± 9 Ma), interpreted as magmatic protolith ages. The Hintertal Plutonic Suite is composed of metagranitoids with Late Devonian to early Carboniferous (365 ± 11 Ma and 331 ± 10 Ma) protolith ages, that intruded during an early phase of the Variscan tectonometamorphic event. The metagranitoids of the Hintertal Plutonic Suites define a magmatic fractionation trend, seen in variable Rb/Sr ratios. On this base they can be further subdivided into (a) the Griessstein Pluton characterized by S-type metagranitoids and (b) the Pletzen Pluton distinguished by

  3. Detrital Zircon Geochronology of Cretaceous and Paleogene Strata Across the South-Central Alaskan Convergent Margin

    USGS Publications Warehouse

    Bradley, Dwight; Haeussler, Peter J.; O'Sullivan, Paul; Friedman, Rich; Till, Alison; Bradley, Dan; Trop, Jeff

    2009-01-01

    Ages of detrital zircons are reported from ten samples of Lower Cretaceous to Paleogene metasandstones and sandstones from the Chugach Mountains, Talkeetna Mountains, and western Alaska Range of south-central Alaska. Zircon ages are also reported from three igneous clasts from two conglomerates. The results bear on the regional geology, stratigraphy, tectonics, and mineral resource potential of the southern Alaska convergent margin. Chugach Mountains - The first detrital zircon data are reported here from the two main components of the Chugach accretionary complex - the inboard McHugh Complex and the outboard Valdez Group. Detrital zircons from sandstone and two conglomerate clasts of diorite were dated from the McHugh Complex near Anchorage. This now stands as the youngest known part of the McHugh Complex, with an inferred Turonian (Late Cretaceous) depositional age no older than 91-93 Ma. The zircon population has probability density peaks at 93 and 104 Ma and a smattering of Early Cretaceous and Jurassic grains, with nothing older than 191 Ma. The two diorite clasts yielded Jurassic U-Pb zircon ages of 179 and 181 Ma. Together, these findings suggest a Mesozoic arc as primary zircon source, the closest and most likely candidate being the Wrangellia composite terrane. The detrital zircon sample from the Valdez Group contains zircons as young as 69 and 77 Ma, consistent with the previously assigned Maastrichtian to Campanian (Late Cretaceous) depositional age. The zircon population has peaks at 78, 91, 148, and 163 Ma, minor peaks at 129, 177, 330, and 352 Ma, and no concordant zircons older than Devonian. A granite clast from a Valdez Group conglomerate yielded a Triassic U-Pb zircon age of 221 Ma. Like the McHugh Complex, the Valdez Group appears to have been derived almost entirely from Mesozoic arc sources, but a few Precambrian zircons are also present. Talkeetna Mountains - Detrital zircons ages were obtained from southernmost metasedimentary rocks of the

  4. Tectonic evolution of the NE section of the Pamir Plateau: New evidence from field observations and zircon U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Zhang, Chuan-Lin; Zou, Hai-Bo; Ye, Xian-Tao; Chen, Xiang-Yan

    2018-01-01

    The Pamir Plateau at the western end of the India-Asia collision zone underwent long-term terrane drifting, accretion and collision between early Paleozoic and Mesozoic. However, the detailed evolution of this plateau, in particular, the timing of the Proto- and Palaeo-Tethys ocean subduction and closure, remains enigmatic. Here we report new field observations and zircon U-Pb ages and Hf isotopic compositions of the representative rocks from the so-called Precambrian basement in the northeastern Pamir, i.e., the Bulunkuole Group. The rock associations of the Bulunkuole Group indicate volcano-sedimentary sequences with arc affinities. Geochronological data demonstrate that the deposition age of the Bulunkuole Group in the NE section of the Pamir was Middle to Late Cambrian (530-508 Ma) rather than Paleoproterozoic. The deposition age became progressively younger from south to north. The amphibolite- to granulite facies metamorphism of the Bulunkuole Group took place at ca. 200-180 Ma. Unlike the scenario in the Southern Kunlun terrane (SKT) in the eastern section of the West Kunlun Orogenic Belt (WKOB), early Paleozoic metamorphism (ca. 440 Ma) was absent in this area. Two phases of magmatic intrusions, composed of granites and minor gabbros with arc geochemical signatures, emplaced at 510-480 Ma and 240-200 Ma. The amphibolite (meta mafic sheet? 519 Ma) and the meta-rhyolite (508 Ma) have zircon εHf(t) values of 1.6 to 5.9 and - 1.5 to 1.4, respectively. The 511 Ma gneissic granite sheet and the 486 Ma gabbro have zircon εHf(t) values of - 0.1 to 2.4 and 1.3 to 3.6, respectively. Zircon εHf(t) of the 245 Ma augen gneissic granite sheet varies from - 2.2 to 2.0 whereas the metamorphic zircons from the amphibolite (193 Ma) and high-pressure mafic granulite sample (187 Ma) have negative εHf(t) values of - 5.3 to - 2 and - 15 to - 12, respectively. In line with rock association and the deposition age of the Bulunkuole Group and the Saitula Group in the eastern

  5. Timing of mafic magmatism in the Tapajós Province (Brazil) and implications for the evolution of the Amazon Craton: evidence from baddeleyite and zircon U Pb SHRIMP geochronology

    NASA Astrophysics Data System (ADS)

    Santos, João Orestes Schneider; Hartmann, Léo Afraneo; McNaughton, Neal Jesse; Fletcher, Ian Robert

    2002-09-01

    The precise timing and possible sources of the mafic rocks in the Amazon craton are critical for reconstruction of the Atlantica supercontinent and correlation of mafic magmatism worldwide. New SHRIMP U-Pb baddeleyite and zircon ages and the reinterpretation of 207 existing dates indicate one orogenic (Ingarana) and four postorogenic (Crepori, Cachoeira Seca, Piranhas, and Periquito) basaltic events in the Tapajós Province, south central Amazon craton. Orogenic gabbro dikes that host gold mineralization are 1893 Ma and interpreted as associated with the Ingarana gabbro intrusions of the bimodal calk-alkalic Parauari intrusive suite. The age of 1893 Ma can be used as a guide to discriminate older and mineralized orogenic dikes from younger and nonmineralized Crepori- and Cachoeira Seca-related mafic dikes. The baddeleyite U-Pb age of the postorogenic Crepori dolerite (gabbro-dolerite sills and dikes) is 1780±9 Ma, ˜150 my older than the ages provided by K-Ar. This value correlates well with the Avanavero tholeiitic intrusions in the Roraima group, in the northern part of the craton in Guyana, Venezuela, and Roraima in Brazil. Early Statherian tholeiitic magmatism was widespread not only in the Amazon craton, but also in the La Plata craton of southern South America, where it is known as the giant Piedra Alta swarm of Uruguay and the post-Trans-Amazonian dikes of Tandil in Argentina. The Cachoeira Seca troctolite represents laccoliths, Feixes, and São Domingos, whose baddeleyite U-Pb age is 1186±12 Ma, 120-150 my older than the known K-Ar ages. This age is comparable to other Stenian gabbroic rocks with alkalic affinity in the craton, such as the Seringa Formation in NE Amazonas and the basaltic flows of the Nova Floresta formation in Rondônia. Dolerite from the giant Piranhas dike swarm in the western Tapajós Province has a Middle Cambrian age (507±4 Ma, baddeleyite) and inherited zircons in the 2238-1229 Ma range. The Piranhas dikes fill extensional NNE and

  6. It's About Time: How Accurate Can Geochronology Become?

    NASA Astrophysics Data System (ADS)

    Harrison, M.; Baldwin, S.; Caffee, M. W.; Gehrels, G. E.; Schoene, B.; Shuster, D. L.; Singer, B. S.

    2015-12-01

    As isotope ratio precisions have improved to as low as ±1 ppm, geochronologic precision has remained essentially unchanged. This largely reflects the nature of radioactivity whereby the parent decays into a different chemical species thus putting as much emphasis on the determining inter-element ratios as isotopic. Even the best current accuracy grows into errors of >0.6 m.y. during the Paleozoic - a span of time equal to ¼ of the Pleistocene. If we are to understand the nature of Paleozoic species variation and climate change at anything like the Cenozoic, we need a 10x improvement in accuracy. The good news is that there is no physical impediment to realizing this. There are enough Pb* atoms in the outer few μm's of a Paleozoic zircon grown moments before eruption to permit ±0.01% accuracy in the U-Pb system. What we need are the resources to synthesize the spikes, enhance ionization yields, exploit microscale sampling, and improve knowledge of λ correspondingly. Despite advances in geochronology over the past 40 years (multicollection, multi-isotope spikes, in situ dating), our ability to translate a daughter atom into a detected ion has remained at the level of 1% or so. This means that a ~102 increase in signal can be achieved before we approach a physical limit. Perhaps the most promising approach is use of broad spectrum lasers that can ionize all neutrals. Radical new approaches to providing mass separation of such signals are emerging, including trapped ion cyclotron resonance and multi-turn, sputtered neutral TOF spectrometers capable of mass resolutions in excess of 105. These innovations hold great promise in geochronology but are largely being developed for cosmochemistry. This may make sense at first glance as cosmochemists are classically atom-limited (IDPs, stardust) but can be a misperception as the outer few μm's of a zircon may represent no more mass than a stardust mote. To reach the fundamental limits of geochronologic signals we need to

  7. Geochronology of the Thompson Creek Mo Deposit: Evidence for the Formation of Arc-related Mo Deposits

    NASA Astrophysics Data System (ADS)

    Lawrence, C. D.; Coleman, D. S.; Stein, H. J.

    2016-12-01

    The Thompson Creek Mo deposit in central ID, has been categorized as an arc-related Mo deposit due to the location, grade of Mo, and relative lack of enrichments in F, Rb, and Nb, compared to the Climax-type Mo deposits. Geochronology from this arc-related deposit provides an opportunity to compare and contrast magmatism, and mineralization to that in Climax-type deposits. Distinct pulses of magmatism were required to form the Thompson Creek Mo deposit, which is consistent with recent geochronology from Climax-type deposits. Molybdenite Re-Os geochronology from five veins requires at least three pulses of magmatism and mineralization between 89.39 +/- 0.37 and 88.47 +/- 0.16 Ma. Zircon U-Pb ages from these mineralized samples overlap with molybdenite mineralization, but show a much wider range (91.01 +/- 0.37 to 87.27 +/- 0.69). Previous work from Climax-type Mo deposits suggest a correlation between a super eruption, and the subsequent rapid (<1 Ma) onset, and completion of Mo mineralizing intrusions. The longer life (3-4 Ma) for the Thompson Creek Mo deposit suggests that the mineralizing intrusions for arc-related Mo deposits may not need to have as high [Mo] as the Climax-type deposits. This study also finds a shift in the source of magmatism from the pre- to syn-mineralizing intrusions. Zircons from pre-mineralizing intrusions have much higher (15-60 pg) concentrations of radiogenic Pb than zircons from mineralized intrusions, which all have less than 15 pg, though whole rock [U] are similar.

  8. Detrital zircon microtextures and U-PB geochronology of Upper Jurassic to Paleocene strata in the distal North American Cordillera foreland basin

    NASA Astrophysics Data System (ADS)

    Finzel, E. S.

    2017-07-01

    Detrital zircon surface microtextures, geochronologic U-Pb data, and tectonic subsidence analysis from Upper Jurassic to Paleocene strata in the Black Hills of South Dakota reveal provenance variations in the distal portion of the Cordillera foreland basin in response to tectonic events along the outboard margin of western North America. During Late Jurassic to Early Cretaceous time, nonmarine strata record initially low rates of tectonic subsidence that facilitated widespread recycling of older foreland basin strata in eolian and fluvial systems that dispersed sediment to the northeast, with minimal sediment derived from the thrust belt. By middle Cretaceous time, marine inundation reflects increased subsidence rates coincident with a change to eastern sediment sources. Lowstand Albian fluvial systems in the Black Hills may have been linked to fluvial systems upstream in the midcontinent and downstream in the Bighorn Basin in Wyoming. During latest Cretaceous time, tectonic uplift in the study area reflects dynamic processes related to Laramide low-angle subduction that, relative to other basins to the west, was more influential due to the greater distance from the thrust load. Provenance data from Maastrichtian and lower Paleocene strata indicate a change back to western sources that included the Idaho-Montana batholith and exhumed Belt Supergroup. This study provides a significant contribution to the growing database that is refining the tectonics and continental-scale sediment dispersal patterns in North America during Late Jurassic-early Paleocene time. In addition, it demonstrates the merit of using detrital zircon grain shape and surface microtextures to aid in provenance interpretations.

  9. Alpine Palaeogeography: new constraints from detrital zircon geochronology

    NASA Astrophysics Data System (ADS)

    Galster, Federico; Stockli, Daniel

    2017-04-01

    Schardt's (1898) discovery of the "allochtony" of the Préalpes Médianes and its exotic character, provided Alpine geologist with a first picture of Alpine palaeogeography: a Middle Jurassic sea divided in two branches by the rise of an emerged island. Later on, Schardt's island had been recognized at the scale of the Alpine belt and took the name of Briançonnais "geoanticline". In many Alpine palaeogeographic reconstructions, the Briançonnais and its exotic character have played a crucial role (e.g. Stampfli 1993; Manatschal et al., 2006;). In particular some of them explained the exotic character of the Briançonnais facies by proposing a pre-Cretaceous position located far from the Helvetic domain. In this view, the Briançonnais terrain was related to the Iberian plate and entered the Central Alpine system only after a Lower Cretaceous eastward drift associated with anticlockwise rotation of Iberia, opening of the northern Atlantic and closure of the Vardar ocean. In the Central Alps, the remnants of the northern Jurassic margin of the Alpine Tethys (sensu Stampfli) are contained in the Helvetic (s.l.) and Lower Penninic units. The basements and original substrate of these nappes are exposed in the crystalline external massifs and in the gneissic Lepontine dome. The highest, more internal, gneissic units within this dome are the Monte Leone, the Maggia and the Adula nappe. Theses units, as well as the autochthonous basement of the European margin, are characterized by large "Variscan" granitoids with ages between 290 and 330 Ma. The "ophiolite-bearing" units thrust on top of the Adula nappe are composed of Cretaceous and younger sedimentary rocks, with thin soles of Triassic and Jurassic strata. In addition to Variscan, Cambro-Ordovician and Proterozoic ages, detrital zircons in these soles show a peak at 260-280 Ma accompanied by a cluster of ca. 230 Ma zircons, similarly to what is observed in the Schams and Préalpes Médianes nappes (Briançonnais s

  10. Detrital-zircon fission-track geochronology of the Lower Cenozoic sediments, NW Himalayan foreland basin: Clues for exhumation and denudation of the Himalaya during the India-Asia collision

    NASA Astrophysics Data System (ADS)

    Jain, A.; Lal, N.; Suelmani, B.; Awasthi, A. K.; Singh, S.; Kumar, R.

    2007-12-01

    Detrital-zircon fission-track geochronology of the synorogenically-deposited Subathu-Dagshai-Kasauli-Lower Siwalik Formations of the Sub-Himalayan Lower Cenozoic foreland basin reflects progressive effects of the Himalayan tectonometamorphic events on the Proterozoic-Paleozoic source rock as a consequence of the India-Asia collision. The oldest transgressive marine Subathu Formation (57.0-41.5 Ma) contains a very dominant 302.4 ± 21.9 Ma old detrital zircon FT suite with a few determinable 520.0 Ma grains. This old suite was derived by mild erosion of the Zircon Partially Annealed Zone (ZPAZ) of 240-180 oC, which affected the Himalayan Proterozoic basement and its Tethyan sedimentary cover as a consequence of first imprint of the collision. In addition, 50.0 Ma old detrital zircons in this formation were derived possibly from the Indus Tsangpo Suture Zone and the Trans-Himalayan Ladakh Batholith. Sudden source rock changes and unroofing are manifested in the overlying fluvial Dagshai (~30-20 Ma) and Kasauli (20-13 Ma) molassic sediments, which are characterised by dominant 30.0 and 25.0 Ma old youngest zircon FT peaks, respectively. A distinct unconformity spanning for about 10 Myr gets established between the Subathu-Dagshai formations on the basis of detrital- zircon FT ages. Molassic sedimentation since ~30 Ma coincides with the depletion of detritus from the suture zone, and the bulk derivation from the main Higher Himalayan source rock, which has undergone sequentially the UHP-HP-amphibolite facies metamorphism (53-40 Ma) in the extreme north and widespread Eo- and Neo-Himalayan tectonothermal events in the middle. Strength of the Pre-Himalayan Peaks (PHP) >50 Ma in these younger sediments gradually decreases with the intensification of the Himalayan thermal events till the end of the Kasauli sedimentation. Widespread Eo- and Neo-Himalayan metamorphic events (40.0-30.0 and 25.0-15.0 Ma) have almost remobilised the provenance and obliterated most of the

  11. GHR1 - A new Eocene natural reference material for U-Pb and Hf isotopic measurements in zircon

    NASA Astrophysics Data System (ADS)

    Ibanez-Mejia, M.; Eddy, M. P.

    2017-12-01

    We present chemical abrasion-isotope dilution-thermal ionization (CA-ID-TIMS) U-Pb zircon geochronology and solution multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS) Hf isotopic data from a proposed natural zircon reference material for use during in situ analyses of U-Pb and Hf isotopic ratios. The sample, GHR1, was collected from the rapakivi intrusive phase of the Eocene Golden Horn batholith in Washington, USA. Zircons separated from this sample range up to 250-300 μm in length and have moderate aspect ratios. A weighted mean of 15 Th-corrected 206Pb/238U zircon dates from GHR1 produced at the Massachusetts Institute of Technology is 48.132 ± 0.023 Ma (2σ analytical and tracer uncertainties only, MSWD=1.70) confirming that there is little or no inter-crystal age heterogeneity at the scale of a few 10 kyr. Solution MC-ICP-MS measurements of chemically purified aliquots give a 176Hf/177Hf weighted mean of 0.283050 ± 17 (2σ, n=10), corresponding to a ɛHf0 of ca. +9.3. The 2σ variability of these measurements is comparable to our reproducibility of the JMC-475 Hf isotopic standard 0.282160 ± 14 (n= 13), suggesting that GHR1 zircons are homogenous with respect to 176Hf/177Hf. In situ 206Pb/238U dates from collaborating secondary ion mass spectrometry (SIMS), sensitive high-resolution ion microprobe (SHRIMP), and laser ablation ICP-MS (LA-ICP-MS) laboratories are in excellent agreement with the CA-ID-TIMS date and illustrate the reproducibility and potential value of this reference zircon. The mean values of 176Hf/177Hf measurements from two LA-ICP-MS laboratories are in agreement with the solution MC-ICP-MS value, but show slightly greater dispersion and higher (Lu+Yb)/Hf values. We attribute this discrepancy to apatite inclusions that are high in REE and may lead to greater isobaric interferences on 176Hf. These inclusions and potential isobaric interferences from REE were removed during the chemical abrasion step prior to bulk

  12. Geochronologic constraints on syntaxial development in the Nanga Parbat region, Pakistan

    NASA Astrophysics Data System (ADS)

    Winslow, David M.; Zeitler, Peter K.; Chamberlain, C. Page; Williams, Ian S.

    1996-12-01

    40Ar/39Ar data (hornblende, biotite, muscovite, and K-feldspar) and U/Pb data (zircons) were obtained from the Nanga Parbat-Haramosh Massif (NPHM), NW Pakistan, along three transects in the southern regions of the NPHM. We have based our interpretations on our new data as well as geochronologic dates from previous studies in the northern regions of the massif. Geochronologic data show that the NPHM has experienced exceptionally high denudation and cooling rates over the past 10 m.y. U/Pb ages determined through sensitive high-resolution ion microprobe (SHRIMP) "depth-profiling" experiments on metamorphic zircons and conventional U/Pb monazite dates suggest that the timing of metamorphism varied across the massif. In addition, we have documented that the massif has experienced postmetamorphic, differential cooling both along and across strike. Thermochronologic data on currently exposed surface rocks suggest that cooling occurred more recently and at greater rates in the south-central regions of the massif (representing deeper crustal levels) than along the margins and northern regions of the massif. Within the Tato region, cooling following peak metamorphic temperatures of 600°-700 °C was as high as 140 °C/m.y. following partial melting of pelitic units. Biotites from this area record plateau ages of 0.9 ± 0.1 Ma. Along the Astor and Indus gorges, cooling was less rapid (approximately 70°-80°C/m.y.) following peak metamorphism as indicated by U/Pb monazite ages of 6-8 Ma and 40Ar/39Ar muscovite cooling ages of 2.2-3.4 Ma. Cooling over the last 3 m.y. occurred at rates of 100°-140 °C/m.y. The overall cooling age pattern within the massif is interpreted syntaxial growth through the development of north plunging antiforms prior to 3 Ma, followed by reverse faulting along east dipping fault zones. Along the Raikot River transect the biotite cooling age pattern is consistent with the folding of isotherms during folding of the foliation surfaces. The age pattern

  13. Geochemistry, petrography, and zircon U-Pb geochronology of Paleozoic metaigneous rocks in the Mount Veta area of east-central Alaska: implications for the evolution of the westernmost part of the Yukon-Tanana terrane

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Day, Warren C.; Aleinikoff, John N.

    2013-01-01

    We report the results of new mapping, whole-rock major, minor, and trace-element geochemistry, and petrography for metaigneous rocks from the Mount Veta area in the westernmost part of the allochthonous Yukon–Tanana terrane (YTT) in east-central Alaska. These rocks include tonalitic mylonite gneiss and mafic metaigneous rocks from the Chicken metamorphic complex and the Nasina and Fortymile River assemblages. Whole-rock trace-element data from the tonalitic gneiss, whose igneous protolith was dated by SHRIMP U–Pb zircon geochronology at 332.6 ± 5.6 Ma, indicate derivation from tholeiitic arc basalt. Whole-rock analyses of the mafic rocks suggest that greenschist-facies rocks from the Chicken metamorphic complex, a mafic metavolcanic rock from the Nasina assemblage, and an amphibolite from the Fortymile River assemblage formed as island-arc tholeiite in a back-arc setting; another Nasina assemblage greenschist has MORB geochemical characteristics, and another mafic metaigneous rock from the Fortymile River assemblage has geochemical characteristics of calc-alkaline basalt. Our geochemical results imply derivation in an arc and back-arc spreading region within the allochthonous YTT crustal fragment, as previously proposed for correlative units in other parts of the terrane. We also describe the petrography and geochemistry of a newly discovered tectonic lens of Alpine-type metaharzburgite. The metaharzburgite is interpreted to be a sliver of lithospheric mantle from beneath the Seventymile ocean basin or from sub-continental mantle lithosphere of the allochthonous YTT or the western margin of Laurentia that was tectonically emplaced within crustal rocks during closure of the Seventymile ocean basin and subsequently displaced and fragmented by faults.

  14. Effect of pressure on Zircon's (ZrSiO4) Raman active modes: a first-principles study

    NASA Astrophysics Data System (ADS)

    Sheremetyeva, Natalya; Cherniak, Daniele; Watson, Bruce; Meunier, Vincent

    Zircon is a mineral commonly found in the Earth crust. Its remarkable properties have given rise to considerable attention. This includes possible inclusion of radioactive elements in natural samples, which allows for geochronological investigations. Subsequently, Zircon was proposed as possible host material for radioactive waste management. Internal radiation damage in zircon leads to the destruction of its crystal structure (an effect known as metamictization) which is subject to ongoing research. Recently, the effect of pressure and temperature on synthetic zircon has been analyzed experimentally using Raman spectroscopy which led to the calibration of zircon as a pressure sensor in diamond-anvil cell experiments. While there have been a number of theoretical studies, the effect of pressure on the Raman active modes of zircon has not been investigated theoretically. Here we present a first-principles pressure calibration of the Raman active modes in Zircon employing density-functional theory (DFT). We find excellent quantitative agreement of the slopes ∂ω / ∂P with the experimental ones and are able to rationalize the ω vs. P behavior based on the details of the vibrational modes.

  15. Reliability and longitudinal change of detrital-zircon age spectra in the Snake River system, Idaho and Wyoming: An example of reproducing the bumpy barcode

    NASA Astrophysics Data System (ADS)

    Link, Paul Karl; Fanning, C. Mark; Beranek, Luke P.

    2005-12-01

    Detrital-zircon age-spectra effectively define provenance in Holocene and Neogene fluvial sands from the Snake River system of the northern Rockies, U.S.A. SHRIMP U-Pb dates have been measured for forty-six samples (about 2700 zircon grains) of fluvial and aeolian sediment. The detrital-zircon age distributions are repeatable and demonstrate predictable longitudinal variation. By lumping multiple samples to attain populations of several hundred grains, we recognize distinctive, provenance-defining zircon-age distributions or "barcodes," for fluvial sedimentary systems of several scales, within the upper and middle Snake River system. Our detrital-zircon studies effectively define the geochronology of the northern Rocky Mountains. The composite detrital-zircon grain distribution of the middle Snake River consists of major populations of Neogene, Eocene, and Cretaceous magmatic grains plus intermediate and small grain populations of multiply recycled Grenville (˜950 to 1300 Ma) grains and Yavapai-Mazatzal province grains (˜1600 to 1800 Ma) recycled through the upper Belt Supergroup and Cretaceous sandstones. A wide range of older Paleoproterozoic and Archean grains are also present. The best-case scenario for using detrital-zircon populations to isolate provenance is when there is a point-source pluton with known age, that is only found in one location or drainage. We find three such zircon age-populations in fluvial sediments downstream from the point-source plutons: Ordovician in the southern Beaverhead Mountains, Jurassic in northern Nevada, and Oligocene in the Albion Mountains core complex of southern Idaho. Large detrital-zircon age-populations derived from regionally well-defined, magmatic or recycled sedimentary, sources also serve to delimit the provenance of Neogene fluvial systems. In the Snake River system, defining populations include those derived from Cretaceous Atlanta lobe of the Idaho batholith (80 to 100 Ma), Eocene Challis Volcanic Group and

  16. Magma evolution as seen through zircon geochemistry: an example from the Southern Adamello Batholith, N. Italy

    NASA Astrophysics Data System (ADS)

    Broderick, C.; Schaltegger, U.; Gerdes, A.; Frick, D.; Guenther, D.; Brack, P.

    2012-04-01

    Zircon is an ubiquitous accessory mineral often used for U-Pb geochronology but is also an important recorder of geochemical information. The trace element and isotopic characteristics of zircon yield potential for tracking changes in an evolving magma through time. With recent advances in U-Pb zircon geochronology, 10-100 ka to Ma timescales are observed for incremental pluton construction (Michel et al., 2008, Schaltegger et al., 2009). In observed 100 ka timescales of zircon crystallization, can zircon record the processes that produce trace element variations in a magma? This study focuses on the Val Fredda Complex (VFC) in the southern tip of the 43 to 33 Ma Adamello batholith, N. Italy. The VFC displays complex relationships among mafic melts that were injected into solidifying felsic magmas. Single zircon crystals were dated using CA-ID-TIMS. With permil uncertainties on 206Pb/238U zircon dates, zircons reveal complexities within single populations. The mafic units crystallized potential autocrystic zircons over a duration of 100 - 150ka, whereas the felsic units record up to 200ka of zircon crystallization. In order to understand these complex zircon populations, we analyzed Hf isotopes and trace elements, on the same volume of zircon used for U-Pb dating, following the TIMS-TEA method (Schoene et al., 2010). This detailed zircon study will allow us to look at how magmas are evolving with time. Hf isotopes of VFC mafic zircons reveal distinct ɛHf values between the three mafic units and their ɛHf values remain consistent through time, whereas the VFC felsic units record more complexity in their ɛHf values. We observe changes such as increasing and slight decreases in ɛHf with time which suggest different processes are occurring to produce the different felsic units. Trace element ratios in zircon reveal differences which allow us to make distinctions between felsic and mafic units (e.g. Th/U, (Lu/Gd)N, REEs). The VFC records 200 ka of zircon

  17. U-Pb, Re-Os, and Ar/Ar geochronology of rare earth element (REE)-rich breccia pipes and associated host rocks from the Mesoproterozoic Pea Ridge Fe-REE-Au deposit, St. Francois Mountains, Missouri

    USGS Publications Warehouse

    Aleinikoff, John N.; Selby, David; Slack, John F.; Day, Warren C.; Pillers, Renee M.; Cosca, Michael A.; Seeger, Cheryl; Fanning, C. Mark; Samson, Iain

    2016-01-01

    Rare earth element (REE)-rich breccia pipes (600,000 t @ 12% rare earth oxides) are preserved along the margins of the 136-million metric ton (Mt) Pea Ridge magnetite-apatite deposit, within Mesoproterozoic (~1.47 Ga) volcanic-plutonic rocks of the St. Francois Mountains terrane in southeastern Missouri, United States. The breccia pipes cut the rhyolite-hosted magnetite deposit and contain clasts of nearly all local bedrock and mineralized lithologies.Grains of monazite and xenotime were extracted from breccia pipe samples for SHRIMP U-Pb geochronology; both minerals were also dated in one polished thin section. Monazite forms two morphologies: (1) matrix granular grains composed of numerous small (<50 μm) crystallites intergrown with rare xenotime, thorite, apatite, and magnetite; and (2) coarse euhedral, glassy, bright-yellow grains similar to typical igneous or metamorphic monazite. Trace element abundances (including REE patterns) were determined on selected grains of monazite (both morphologies) and xenotime. Zircon grains from two samples of host rhyolite and two late felsic dikes collected underground at Pea Ridge were also dated. Additional geochronology done on breccia pipe minerals includes Re-Os on fine-grained molybdenite and 40Ar/39Ar on muscovite, biotite, and K-feldspar.Ages (±2σ errors) obtained by SHRIMP U-Pb analysis are as follows: (1) zircon from the two host rhyolite samples have ages of 1473.6 ± 8.0 and 1472.7 ± 5.6 Ma; most zircon in late felsic dikes is interpreted as xenocrystic (age range ca. 1522–1455 Ma); a population of rare spongy zircon is likely of igneous origin and yields an age of 1441 ± 9 Ma; (2) pale-yellow granular monazite—1464.9 ± 3.3 Ma (no dated xenotime); (3) reddish matrix granular monazite—1462.0 ± 3.5 Ma and associated xenotime—1453 ± 11 Ma; (4) coarse glassy-yellow monazite—1464.8 ± 2.1, 1461.7 ± 3.7 Ma, with rims at 1447.2 ± 4.7 Ma; and (5) matrix monazite (in situ)—1464.1 ± 3.6 and 1454

  18. In situ U-Pb and Lu-Hf isotopic studies of zircons from the Sancheong-Hadong AMCG suite, Yeongnam Massif, Korea: Implications for the petrogenesis of ∼1.86 Ga massif-type anorthosite

    NASA Astrophysics Data System (ADS)

    Lee, Yuyoung; Cho, Moonsup; Yi, Keewook

    2017-05-01

    Isotopic and geochemical characteristics of Proterozoic anorthosite-mangerite-charnockite-granite (AMCG) suite have long been used for tracing the mantle-crustal source and magmatic evolution. We analyzed Lu-Hf isotopic compositions of zircon from the Sancheong-Hadong AMCG complex, Yeongnam Massif, Korea, in order to understand tectonomagmatic evolution of the Paleoproterozoic AMCG suite occurring at the southeastern margin of the North China Craton (NCC). The anorthositic rocks in this complex, associated with charnockitic and granitic gneisses, were recrystallized to eradicate magmatic features. In situ SHRIMP (sensitive high-resolution ion microprobe) U-Pb analyses of zircon from a leuconorite and an oxide-bearing gabbroic dyke yielded weighted mean 207Pb/206Pb ages of 1870 ± 2 Ma and 1861 ± 6 Ma, respectively. Charnockitic, granitic, and porphyroblastic gneisses yielded weighted mean 207Pb/206Pb zircon ages of 1861 ± 6 Ma, 1872 ± 6 Ma, and 1873 ± 4 Ma, respectively. These crystallization ages, together with our previous geochronological data for anorthosites (1862 ± 2 Ma), are indicative of episodic AMCG magmatism over an ∼10 Ma interval. Initial εHf(t) values of zircon analyzed from five anorthositic rocks and four felsic gneisses range from +2.1 to -6.1 and -0.3 to -5.4, respectively. Zircon Hf isotopic data in combination with available whole rock Sr-Nd isotopic data suggest that anorthositic parental magma was most likely derived from a mantle source and variably affected by crustal contamination. This crustal component is also reflected in charnockitic-granitic magmas produced primarily by the melting of lower crust. Taken together, the AMCG magmatism at 1.87-1.86 Ga in the Yeongnam Massif is most likely a late orogenic product of Paleoproterozoic NCC amalgamation tectonically linked to assembly of the Columbia supercontinent.

  19. Geochronology of high-grade metamorphic rocks from the Anjul area, Lut block, eastern Iran

    NASA Astrophysics Data System (ADS)

    Bröcker, Michael; Fotoohi Rad, Gholamreza; Abbaslu, Fateme; Rodionov, Nikolay

    2014-03-01

    U-Pb and Rb-Sr geochronology has been used to constrain robust ages for leucosomes and high-grade gneisses from the Anjul area in the eastern part of the Lut block, Iran. The new results do not support the previously suggested Proterozoic age for this occurrence, but instead reveal the importance of Jurassic and Cretaceous magmatic and/or metamorphic processes. Ionprobe U-Pb zircon dating yielded four age groups (>200, ˜168, ˜120 and ˜110 Ma). Textural observations suggest that ages >200 Ma represent inherited zircons. The majority of zircons yielded Jurassic (168 ± 2 and 169 ± 2 Ma) and Cretaceous (120 ± 3, 108 ± 2, 111 ± 3 Ma) intercept ages. Explanations for the two dominant age groups (˜168 and ˜110 Ma) include the following alternatives: (a) the Jurassic ages constrain the protolith age of magmatic precursors that experienced metamorphic overprinting at ˜110 Ma; and (b) both the ˜168 Ma and ˜110 Ma ages indicate the time of metamorphic episodes, e.g. zircon-formation during different anatectic events or migmatization followed by a lower temperature overprint associated with new zircon growth. Multi-point Rb-Sr mineral isochrons of three additional gneisses indicated ages of 102 ± 3 Ma, 102 ± 1 Ma and 97 ± 2 Ma. These ages further document the importance of Cretaceous metamorphism in the Anjul area. The difference compared to the U-Pb ages of zircon overgrowths is interpreted to indicate cooling after a thermal event with or without partial melting. The two major occurrences of metamorphic rocks in the eastern Lut block are exposed in the Deh-Salm and the Anjul region. These occurrences may represent two different segments of a single metamorphic belt that can broadly be related to accretionary and/or collisional processes induced by convergence between the Afro-Arabian and Eurasian plates. Our geochronological study provides a conclusive evidence for Cretaceous metamorphism. We speculate that zircon overgrowths with Cretaceous ages reflect

  20. Magmatic Longevity Constrained by ID-TIMS U-Pb Dating of Zircon and Titanite

    NASA Astrophysics Data System (ADS)

    Szymanowski, D.; Wotzlaw, J. F.; Ellis, B. S.; Bachmann, O.; Von Quadt, A.

    2016-12-01

    Clues about the timescales and thermal conditions associated with the growth and evacuation of large silicic magma reservoirs are frequently drawn from radiometric dating, diffusion modelling, or thermomechanical modelling. A growing amount of petrological and geochronological evidence, supported by thermal modelling, suggests that many silicic magma reservoirs may exist for some 104-106 years in the form of high-crystallinity mushes at relatively low temperatures ( 700-750°C; [1-3]). Geochronological studies addressing this issue typically utilise the U-Pb system in zircon capable of recording extended periods of crystallisation, particularly in evolved calc-alkaline systems that spend most of their lifetime zircon-saturated. In this study, we integrate U-Pb dating of zircon and titanite to investigate the longevity of the magma reservoir that produced the Kneeling Nun Tuff, a 35 Ma, >900 km3 crystal-rich rhyolitic super-eruption from the Mogollon-Datil volcanic field in New Mexico (USA). High-precision ID-TIMS U-Pb dates of single crystals of both zircon and titanite independently record a continuous crystallisation history over >400,000 years. We combine the dating of both accessory phases with textural, major, trace element and isotopic studies of single crystals, placing tight constraints on the thermal conditions of magma accumulation and storage while recording differentiation and rejuvenation processes within the magma reservoir. The results suggest a protracted `cool' upper-crustal storage of magma prior to the Kneeling Nun Tuff eruption followed by a melting event which reduced the magma crystallinity and conditioned it for eruption. [1] Bachmann & Bergantz (2004), J. Petrol. 45, 1565-1582. [2] Gelman et al. (2013), Geology 41, 759-762. [3] Cooper & Kent (2014), Nature 506, 480-483.

  1. Middle Neoproterozoic (ca. 705-716 Ma) arc to rift transitional magmatism in the northern margin of the Yangtze Block: Constraints from geochemistry, zircon U-Pb geochronology and Hf isotopes

    NASA Astrophysics Data System (ADS)

    Wang, Ruirui; Xu, Zhiqin; Santosh, M.; Xu, Xianbing; Deng, Qi; Fu, Xuehai

    2017-09-01

    The South Qinling Belt in Central China is an important window to investigate the Neoproterozoic tectono-magmatic processes along the northern margin of the Yangtze Block. Here we present whole-rock geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes of a suite of Middle Neoproterozoic intrusion from the Wudang Uplift in South Qinling. Zircon LA-ICP-MS U-Pb ages reveal that these rocks were formed at ca. 705-716 Ma. Geochemical features indicate that the felsic magmatic rocks are I-type granitoids, belong to calcic- to calc-alkaline series, and display marked negative Nb, Ta and Ti anomalies. Moreover, the enrichment of light rare earth elements (LREEs) and large ion lithophile elements (LILEs), combined with depletion of heavy rare earth elements (HREEs) support that these rocks have affinity to typical arc magmatic rocks formed in Andean-type active continental margins. The REE patterns are highly to moderately fractionated, with (La/Yb)N = 5.13-8.10 in meta-granites, and 2.32-2.35 in granodiorite. The granitoids have a wide range of zircon εHf(t) values (-29.91 to 14.76) and zircon Hf two-stage model ages (696-3482 Ma). We suggest that the ca. 705-716 Ma granitoids were sourced from different degrees of magma mixing between partial melting of the overlying mantle wedge triggered by hydrous fluids released from subducted materials and crustal melting. The hybrid magmas were emplaced in the shallow crust accompanied by assimilation and fractional crystallization (AFC). Both isotopic and geochemical data suggest that the ca. 705-716 Ma felsic magmatic rocks were formed along a continental arc. These rocks as well as the contemporary A-type granite may mark a transitional tectonic regime from continental arc to rifting, probably related to slab rollback during the oceanic subduction beneath the northern margin of Yangtze Block.

  2. Conventional U-Pb dating versus SHRIMP of the Santa Barbara Granite Massif, Rondonia, Brazil

    USGS Publications Warehouse

    Sparrenberger, I.; Bettencourt, Jorge S.; Tosdal, R.M.; Wooden, J.L.

    2002-01-01

    The Santa Ba??rbara Granite Massif is part of the Younger Granites of Rondo??nia (998 - 974 Ma) and is included in the Rondo??nia Tin Province (SW Amazonian Craton). It comprises three highly fractionated metaluminous to peraluminous within-plate A-type granite units emplaced in older medium-grade metamorphic rocks. Sn-mineralization is closely associated with the late-stage unit. U-Pb monazite conventional dating of the early-stage Serra do Cicero facies and late-stage Serra Azul facies yielded ages of 993 ?? 5 Ma and 989 ?? 13 Ma, respectively. Conventional multigrain U-Pb isotope analyses of zircon demonstrate isotopic disturbance (discordance) and the preservation of inherited older zircons of several different ages and thus yield little about the ages of Sn-granite magmatism. SHRIMP U-Pb ages for the Santa Ba??rbara facies association yielded a 207Pb/206Pb weighted-mean age of 978 ?? 13 Ma. The textural complexity of the zircon crystals of the Santa Ba??rbara facies association, the variable concentrations of U, Th and Pb, as well as the mixed inheritance of zircon populations are major obstacles to using conventional multigrain U-Pb isotopic analyses. Sm-Nd model ages and ??Nd (T) values reveal anomalous isotopic data, attesting to the complex isotopic behaviour within these highly fractionated granites. Thus, SHRIMP U-Pb zircon and conventional U-Pb monazite dating methods are the most appropriate to constrain the crystallization age of the Sn-bearing granite systems in the Rondo??nia Tin Province.

  3. Detrital zircon geochronology and provenance of the Chubut Group in the northeast of Patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Navarro, Edgardo L.; Astini, Ricardo A.; Belousova, Elena; Guler, M. Verónica; Gehrels, George

    2015-11-01

    The Chubut Group constitutes the most widespread sedimentary unit in NE Patagonia, characterized by variable-energy fluvial deposits. U-Pb analysis of detrital zircons from two sections of the Chubut Group constraint the age of the oldest sedimentary rocks in the northeast of the Somuncurá - Cañadón Asfalto Basin. In the Cañadón Williams area, at San Jorge section, 20 km NW of Telsen locality, dating of 56 detrital zircons from a medium to coarse sandstone indicated a maximum depositional age of 109 ± 1 Ma (n = 4). These sandstones were interpreted to represent shallow channels, associated with a lacustrine system. In the Telsen locality, a laser ablation analysis of 115 detrital zircons from a medium to coarse-grained sandstone, from fluvial channel facies, yielded a maximum depositional age of ca. 106 ± 1 Ma (n = 8). Both ages are consistent with volcanic events of the Barremian to Albian age in the central Patagonian Andes Region. Cathodoluminescence images of zircons from the San Jorge sample suggest an igneous origin, which is further supported by Th/U values above 0.5 in most of the grains. The distribution of the statistical modes of the main age populations of detrital zircons for the two samples [182, 185 and 189 Ma for Telsen sample (T2S) and 181 ± 1 Ma for San Jorge sample (SJS)] matches the age of the volcanic Marifil Formation. The rocks of the Marifil Formation of these ages are exposed NE to SE of the study area. The abundance of zircons of similar Jurassic ages (n = 52 for SJS and n = 105 for T2S) and the external morphology of the zircons in the sample SJS, implies a close proximity of the source area. Suggestion that the Marifil Formation was the main provenance source is also supported by northeast-southeasterly paleocurrents measured at the San Jorge and Telsen sections.

  4. Opening the closed box: lattice diffusion in zircon?

    NASA Astrophysics Data System (ADS)

    Wheeler, J.; MacDonald, J.; Goodenough, K. M.; Crowley, Q.; Harley, S.; Mariani, E.

    2015-12-01

    In principle, any radiogenic parent or daughter element can diffuse through any crystalline lattice. Given improved analytic techniques and mathematical models, geochronology is beginning to take such diffusion into account in a quantitative fashion. Whilst lattice diffusion compromises simple interpretation of radiometric data, it can, when combined with spatially resolved data, provide more detailed insight into thermal histories. In regions that have experienced particularly high temperatures diffusion may become significant in minerals normally thought to be reliably closed. We have modelled Pb diffusion in zircon, building on earlier work on Ar diffusion in micas - the mathematics being basically the same. We are motivated by some challenging isotope data from zircon in the Lewisian Complex of NW Scotland (a TTG region with a long Archaean and Proterozoic history). For example we have grains with old rims and younger cores. Whilst other explanations are possible, we show how lattice diffusion of Pb is plausible, using experimental diffusion data together with estimates of ultra-high temperatures from the region. We have modified a previous model for Ar diffusion ("Diffarg") to include variations in parent isotope concentration, so we can understand the consequences of U zonation within zircon grains during prolonged thermal histories. This is also relevant to asking why Pb has apparently not diffused in zircon from other UHT regions - or has it?

  5. Refined Proterozoic evolution of the Gawler Craton, South Australia, through U-Pb zircon geochronology

    USGS Publications Warehouse

    Fanning, C.M.; Flint, R.B.; Parker, A.J.; Ludwig, K. R.; Blissett, A.H.

    1988-01-01

    Through the application of both conventional U-Pb zircon analyses and small-sample U-Pb isotopic analyses, the nature and timing of tectonic events leading to the formation of the Gawler Craton have been defined more precisely. Constraints on deposition of Early Proterozoic iron formation-bearing sediments have been narrowed down to the period 1960-1847 Ma. Deformed acid volcanics, including the economically important Moonta Porphyry, have zircon ages of ??? 1790 and 1740 Ma. The voluminous acid Gawler Range Volcanics and correlatives to the east were erupted over a short interval at 1592 ?? 2 Ma, and were intruded by anorogenic granites at ??? 1575 Ma. Small-sample zircon analyses proved to be an extremely valuable adjunct to conventional analyses, generally yielding more-concordant data which forced a curved discordia through an upper intercept slightly younger than from a conventional straight-line discordia. ?? 1988.

  6. Silicic melt evolution in the early Izu-Bonin arc recorded in detrital zircons: Zircon U-Pb geochronology and trace element geochemistry for Site U1438, Amami Sankaku Basin

    NASA Astrophysics Data System (ADS)

    Barth, A. P.; Tani, K.; Meffre, S.; Wooden, J. L.; Coble, M. A.

    2016-12-01

    Understanding the petrologic evolution of oceanic arc magmas through time is important because these arcs reveal the processes of formation and the early evolution of juvenile continental crust. The Izu-Bonin (IB) arc system has been targeted because it is one of several western Pacific intraoceanic arcs initiated at 50 Ma and because of its prominent spatial asymmetry, with widespread development of relatively enriched rear arc lavas. We examined Pb/U and trace element compositions in zircons recovered at IODP Site 351-U1438 and compared them to regional and global zircon suites. These new arc zircon data indicate that detrital zircons will yield new insights into the generation of IB silicic melts and form a set of useful geochemical proxies for interpreting ancient arc detrital zircon provenance. Project IBM drilling target IBM1 was explored by Expedition 351 at Site U1438, located in the proximal back-arc of the northern Kyushu-Palau Ridge (KPR) at 27.3°N. A 1.2 km thick section of Paleogene volcaniclastic rocks, increasingly lithified and hydrothermally altered with depth, constitutes a proximal rear arc sedimentary record of IB arc initiation and early arc evolution. The ages and compositions of U1438 zircons are compatible with provenance in one or more edifices of the northern KPR and are incompatible with drilling contamination. Melt zircon saturation temperatures and Ti-in-zircon thermometry suggest a provenance in relatively cool and silicic KPR melts. The abundances of selected trace elements with high native concentrations provide insight into the petrogenesis of U1438 detrital zircon host melts, and may be useful indicators of both short and long-term variations in melt compositions in arc settings. The U1438 zircons are slightly enriched in U and LREE and are depleted in Nb compared to zircons from mid-ocean ridges and the Parece-Vela Basin, as predicted for melts in a primitive oceanic arc setting with magmas derived from a highly depleted mantle

  7. Age and origin of the Merrimack terrane, southeastern New England: A detrital zircon U-Pb geochronology study

    NASA Astrophysics Data System (ADS)

    Sorota, Kristin

    Metasedimentary rocks of the Merrimack terrane (MT) originated as a thick cover sequence on Ganderia consisting of sandstones, calcareous sandstones, pelitic rocks and turbidites. In order to investigate the age, provenance and stratigraphic order of these rocks and correlations with adjoining terranes, detrital zircon suites from 7 formations across the MT along a NNE-trending transect from east-central Massachusetts to SE New Hampshire were analyzed by U-Pb LA-ICP-MS methods on 90-140 grains per sample. The youngest detrital zircons in the western units, the Worcester, Oakdale and Paxton Formations, are ca. 438 Ma while those in the Kittery, Eliot and Berwick Formations in the northeast are ca. 426 Ma. The Tower Hill Formation previously interpreted to form the easternmost unit of the MT in MA, has a distinctly different zircon distribution with its youngest zircon population in the Cambrian. All samples except for the Tower Hill Formation have detrital zircon age distributions with significant peaks in the mid-to late Ordovician, similar abundances of early Paleozoic and late Neoproterozoic zircons, significant input from ˜1.0 to ˜1.8 Ga sources and limited Archean grains. The similarities in zircon provenance suggest that all units across the terrane, except for the Tower Hill Formation, belong to a single sequence of rocks, with similar sources and with the units in the NE possibly being somewhat younger than those in east-central Massachusetts. The continuous zircon age distributions observed throughout the Mesoproterozoic and late Paleoproterozoic are consistent with an Amazonian source. All samples, except the Tower Hill Formation, show sedimentary input from both Ganderian and Laurentian sources and suggest that Laurentian input increases as the maximum depositional age decreases.

  8. Geochronology of multi-stage metamorphic events: Constraints on episodic zircon growth from the UHP eclogite in the South Altyn, NW China

    NASA Astrophysics Data System (ADS)

    Liu, Liang; Wang, Chao; Cao, Yu-Ting; Chen, Dan-Ling; Kang, Lei; Yang, Wen-Qiang; Zhu, Xiao-Hui

    2012-04-01

    Petrography, mineral chemistry and pressure-temperature (P-T) estimates were carried out for the eclogite from the South Altyn in NW China. The results suggest three stages of metamorphism: an ultra-high pressure (UHP) eclogite-facies metamorphism at 717-871 °C and ≥ 2.8 GPa, a high pressure (HP) granulite-facies metamorphism at 624-789 °C and 1.42-1.52 GPa, and an amphibolite-facies metamorphism at 597-728 °C and 0.99-1.17 GPa. Cathodoluminescence investigation revealed that zircons from the retrograde eclogite display a distinct core-rim structure. Cores are grey-white luminescent and contain mineral inclusions of Garnet + Omphacite + Rutile + Quartz, suggesting eclogite-facies metamorphic origin. The rims are dark grey luminescent and contain Garnet + Clinopyroxene + Pagioclase inclusions, forming at HP granulite-facies conditions. A few residual zircon grains with mottled internal structure also occur as the metamorphic cores. LA-ICPMS zircon U-Pb dating yielded three discrete age groups: (1) a Neoproterozoic protolith age of 752 ± 7 Ma for the residual grains, (2) an eclogite-facies metamorphic age of 500 ± 7 Ma for the metamorphic cores, and (3) a HP granulite-facies retrograde age of 455 ± 2 Ma for the rims. These ages indicate that the protolith of the Altyn eclogite probably formed in response to breakup of the Rodinia supercontinent during the Neoproterozoic; it was subjected to continental deep subduction and UHP metamorphism during early Paleozoic (~ 500 Ma) and subsequently underwent two stages of retrograde metamorphism during exhumation. The petrological and geochronological data suggest a clockwise P-T-t path for the UHP eclogite. According to pressures and ages for the peak UHP eclogite-facies and the retrograde HP granulite-facies metamorphism, an exhumation rate of 1.2 mm/yr was estimated for the eclogite, which is considerably slower than that of some UHP rocks from other UHP terranes (> 5 mm/yr). While the peak metamorphic age of 500 Ma

  9. Zircon U-Pb ages and Hf isotopic compositions indicate multiple sources for Grenvillian detrital zircon deposited in western Laurentia

    NASA Astrophysics Data System (ADS)

    Howard, Amanda L.; Farmer, G. Lang; Amato, Jeffrey M.; Fedo, Christopher M.

    2015-12-01

    Combined U-Pb ages and Hf isotopic data from 1.0 Ga to 1.3 Ga (Grenvillian) detrital zircon in Neoproterozoic and Cambrian siliciclastic sedimentary rocks in southwest North America, and from igneous zircon in potential Mesoproterozoic source rocks, are used to better assess the provenance of detrital zircon potentially transported across Laurentia in major river systems originating in the Grenville orogenic highlands. High-precision hafnium isotopic analyses of individual ∼1.1 Ga detrital zircon from Neoproterozoic siliciclastic sedimentary rocks in Sonora, northern Mexico, reveal that these zircons have low εHf (0) (-22 to -26) and were most likely derived from ∼1.1 Ga granitic rocks embedded in local Mojave Province Paleoproterozoic crust. In contrast, Grenvillian detrital zircons in Cambrian sedimentary rocks in Sonora, the Great Basin, and the Mojave Desert, have generally higher εHf (0) (-15 to -21) as demonstrated both by high precision solution-based, and by lower precision laser ablation, ICPMS data and were likely derived from more distal sources further to the east/southeast in Laurentia. Comparison to new and existing zircon U-Pb geochronology and Hf isotopic data from Grenvillian crystalline rocks from the Appalachian Mountains, central and west Texas, and from Paleoproterozoic terranes throughout southwest North America reveals that zircon in Cambrian sandstones need not entirely represent detritus transported across the continent from Grenville province rocks in the vicinity of the present-day southern Appalachian Mountains. Instead, these zircons could have been derived from more proximal, high εHf (0), ∼1.1 Ga, crystalline rocks such as those exposed today in the Llano Uplift in central Texas and in the Franklin Mountains of west Texas. Regardless of the exact source(s) of the Grenvillian detrital zircon, new and existing whole-rock Nd isotopic data from Neoproterozoic to Cambrian siliciclastic sedimentary rocks in the Mojave Desert

  10. Detrital zircon U-Pb geochronology of Cambrian to Triassic miogeoclinal and eugeoclinal strata of Sonora, Mexico

    USGS Publications Warehouse

    Gehrels, G.E.; Stewart, John H.

    1998-01-01

    One hundred and eighty two individual detrital zircon grains from Cambrian through Permian miogeoclinal strata, Ordovician eugeoclinal rocks, and Triassic post-orogenic sediments in northwestern Sonora have been analyzed. During Cambrian, Devonian, Permian, and Triassic time, most zircons accumulating along this part of the Cordilleran margin were shed from 1.40-1.45 and 1.62-1.78 Ga igneous rocks that are widespread in the southwestern United States and northwestern Mexico. Zircons with ages of approximately 1.11 Ga are common in Cambrian strata and were apparently shed from granite bodies near the sample site. The sources of 225-280 Ma zircons in our Triassic sample are more problematic, as few igneous rocks of these ages are recognized in northwestern Mexico. Such sources may be present but unrecognized, or the grains could have been derived from igneous rocks of the appropriate ages to the northwest in the Mojave Desert region, to the east in Chihuahua and Coahuila, or to the south in accreted(?) arc-type terranes. Because the zircon grains in our Cambrian and Devonian to Triassic samples could have accumulated in proximity to basement rocks near their present position or in the Death Valley region of southern California, our data do not support or refute the existence of the Mojave-Sonora megashear. Ordovician strata of both miogeoclinal and eugeoclinal affinity are dominated by >1.77 Ga detrital zircons, which are considerably older than most basement rocks in the region. Zircon grains in the miogeoclinal sample were apparently derived from the Peace River arch area of northwestern Canada and transported southward by longshore currents. The eugeoclinal grains may also have come from the Peace River arch region, with southward transport by either sedimentary or tectonic processes, or they may have been shed from off-shelf slivers of continents (perhaps Antarctica?) removed from the Cordilleran margin during Neoproterozoic rifting. It is also possible that the

  11. Detrital zircon geochronology of the Cretaceous succession from the Iberian Atlantic Margin: palaeogeographic implications

    NASA Astrophysics Data System (ADS)

    Dinis, Pedro A.; Dinis, Jorge; Tassinari, Colombo; Carter, Andy; Callapez, Pedro; Morais, Manuel

    2016-04-01

    Detrital zircon U-Pb data performed on eight Cretaceous sandstone samples (819 age isotopic results) from the Lusitanian basin (west Portugal) constrain the history of uplift and palaeodrainage of western Iberia following break-up of Pangaea and opening of the North Atlantic Ocean. We examined the links between shifts in provenance and known basinwide unconformities dated to the late Berriasian, Barremian, late Aptian and Cenomanian-Turonian. The detrital zircon record of sedimentary rocks with wider supplying areas is relatively homogenous, being characterized by a clear predominance of late Palaeozoic ages (c. 375-275 Ma) together with variable proportions of ages in the range c. 800-460 Ma. These two groups of ages are diagnostic of sources within the Variscan Iberian Massif. A few samples also reveal significant amounts of middle Palaeozoic (c. 420-385 Ma) and late Mesoproterozoic to early Neoproterozoic (c. 1.2-0.9 Ga) zircon, which are almost absent in the basement to the east of the Lusitanian basin, but are common in terranes with a Laurussia affinity found in NW Iberia and the conjugate margin (Newfoundland). The Barremian unconformity marks a sudden rise in the proportion of c. 375-275 Ma zircon ages accompanied by a decrease in the abundance of the c. 420-385 Ma and c. 1.2-0.9 Ga ages. This shift in the zircon signature, which is contemporaneous with the separation of the Galicia Bank from Flemish Cap, reflects increased denudation of Variscan crystalline rocks and a reduction in source material from NW Iberia and adjoining areas. The late Aptian unconformity, which represents the largest hiatus in the sedimentary record, is reflected by a shift in late Palaeozoic peak ages from c. 330-310 Ma (widespread in Iberia) to c. 310-290 Ma (more frequent in N Iberia). It is considered that this shift in the age spectra resulted from a westward migration of catchment areas following major uplift in northern Iberia and some transport southward from the Bay of

  12. Detrital zircon and igneous protolith ages of high-grade metamorphic rocks in the Highland and Wanni Complexes, Sri Lanka: Their geochronological correlation with southern India and East Antarctica

    NASA Astrophysics Data System (ADS)

    Kitano, Ippei; Osanai, Yasuhito; Nakano, Nobuhiko; Adachi, Tatsuro; Fitzsimons, Ian C. W.

    2018-05-01

    additional detritus derived from early to middle Neoproterozoic metamorphic rocks. The relic zircon core ages in the HC are comparable with those of the Trivandrum Block and Nagercoil Block of southern India. In contrast, those ages in the WC match the Achankovil Shear Zone and Southern Madurai Block of southern India. These comparisons are also supported by Th/U ratios of detrital zircon cores from paragneisses (Th/U ratios of >0.10 for the former and not only >0.10 but also ≤0.10 for the latter). Comparisons with the Lützow-Holm Complex of East Antarctica indicate that the geochronological characteristics of the HC and WC broadly match those of the Skallen Group, and the Ongul and Okuiwa Groups, respectively.

  13. Residence, resorption and recycling of zircons in Devils Kitchen rhyolite, Coso Volcanic Field, California

    USGS Publications Warehouse

    Miller, J.S.; Wooden, J.L.

    2004-01-01

    Zircons from the Devils Kitchen rhyolite in the Pleistocene Coso Volcanic field, California have been analyzed by in situ Pb/U ion microprobe (SHRIMP-RG) and by detailed cathodoluminescence imaging. The zircons yield common-Pb-corrected and disequilibrium-corrected 206Pb/238U ages that predate a previously reported K-Ar sanidine age by up to 200 kyr, and the range of ages exhibited by the zircons is also approximately 200 kyr. Cathodoluminescence imaging indicates that zircons formed in contrasting environments. Most zircons are euhedral, and a majority of the zircons are weakly zoned, but many also have anhedral, embayed cores, with euhedral overgrowths and multiple internal surfaces that are truncated by later crystal zones. Concentrations of U and Th vary by two orders of magnitude within the zircon population, and by 10-20 times between zones within some zircon crystals, indicating that zircons were transferred between contrasting chemical environments. A zircon saturation temperature of ???750??C overlaps within error a previously reported phenocryst equilibration temperature of 740 ?? 25??C. Textures in zircons indicative of repeated dissolution and subsequent regrowth are probably caused by punctuated heating by mafic magma input into rhyolite. The overall span of ages and large variation in U and Th concentrations, combined with calculated zircon saturation temperatures and resorption times, are most compatible with crystallization in magma bodies that were emplaced piecemeal in the crust at Coso over 200 kyr prior to eruption, and that were periodically rejuvenated or melted by subsequent basaltic injections. ?? Oxford University Press 2004; all rights reserved.

  14. Polychronous Zirconology of Navysh Volcanics of the Ai Formation (Southern Urals)

    NASA Astrophysics Data System (ADS)

    Krasnobaev, A. A.; Puchkov, V. N.; Sergeeva, N. D.

    2018-01-01

    In order to resolve the age of Navysh volcanics (NV), which is usually attributed to the Lower Riphean of the Ai Formation, we have used geochronological, petrologic, and mineralogical methods of zirconology, apart from the SHRIMP isotopic data of single zircon grains. Moreover, TIMS isotope age analyses have been conducted, the results of which can be regarded as both controlling and providing the most correct information. The TIMS and SHRIMP data make it possible to suggest a polychronous character of the NV, which include not only Riphean, but also Paleozoic groups of volcanics. In this situation, an assessment of the scales of such polychroneity of NV and, correspondingly, of the Ai Formation as a whole becomes urgent.

  15. Apollo 12 breccia 12013: Impact-induced partial Pb loss in zircon and its implications for lunar geochronology

    NASA Astrophysics Data System (ADS)

    Thiessen, F.; Nemchin, A. A.; Snape, J. F.; Bellucci, J. J.; Whitehouse, M. J.

    2018-06-01

    Apollo 12 breccia 12013 is composed of two portions, one grey in colour, the other black. The grey portion of the breccia consists mainly of felsite thought to have formed during a single crystallisation event, while the black part is characterized by presence of lithic fragments of noritic rocks and individual plagioclase crystals. In this study, U-Pb analyses of Ca-phosphate and zircon grains were conducted in both portions of the breccia. The zircon grains within the grey portion yielded a large range of ages (4154 ± 7 to 4308 ± 6 Ma, 2σ) and show decreasing U and Th concentrations within the younger grains. Moreover, some grains exhibit recrystallisation features and potentially formation of neoblasts. The latter process requires high temperatures above 1600-1700 °C leading to the decomposition of the primary zircon grain and subsequent formation of new zircon occurring as neoblasts. As a result of the high temperatures, the U-Pb system of the remaining original zircon grains was most likely open for Pb diffusion causing partial resetting and the observed range of 207Pb/206Pb ages. The event that led to the Pb loss in zircon could potentially be dated by the U-Pb system in Ca-phosphates, which have a weighted average 207Pb/206Pb age across both lithologies of 3924 ± 3 Ma (95% conf.). This age is identical within error to the combined average 207Pb/206Pb age of 3926 ± 2 Ma that was previously obtained from Ca-phosphates within Apollo 14 breccias, zircon grains in Apollo 12 impact melt breccias, and the lunar meteorite SaU 169. This age was interpreted to date the Imbrium impact. The zircon grains located within the black portion of the breccia yielded a similar range of ages (4123 ± 13 to 4328 ± 14 Ma, 2σ) to those in the grey portion. Given the brecciated nature of this part of the sample, the interpretation of these ages as representing igneous crystallisation or resetting by impact events remains ambiguous since there is no direct link to their

  16. SHRIMP study of zircons from Early Archean rocks in the Minnesota River Valley: Implications for the tectonic history of the Superior Province

    USGS Publications Warehouse

    Bickford, M.E.; Wooden, J.L.; Bauer, R.L.

    2006-01-01

    Interest in Paleoarchean to early Mesoarchean crust in North America has been sparked by the recent identification of ca. 3800-3500 Ma rocks on the northern margin of the Superior craton in the Assean Lake region of northern Manitoba and the Porpoise Cove terrane in northern Quebec. It has long been known that similarly ancient gneisses are exposed on the southern margin of the Superior craton in the Minnesota River Valley and in northern Michigan, but the ages of these rocks have been poorly constrained, because methods applied in the 1960s through late 1970s were inadequate to unravel the complexities of their thermotectonic history. Rocks exposed in the Minnesota River Valley include a complex of migmatitic granitic gneisses, schistose to gneissic amphibolite, metagabbro, and paragneisses. The best-known units are the Morton Gneiss and the Montevideo Gneiss. The complex of ancient gneisses is intruded by a major younger, weakly deformed granite body, the Sacred Heart granite. Regional geophysical anomalies that extend across the Minnesota River Valley have been interpreted as defining boundaries between distinct blocks containing the various gneissic units. New sensitive high-resolution ion microprobe (SHRIMP) U-Pb data from complex zircons yielded the following ages: Montevideo Gneiss near Montevideo, 3485 ?? 10 Ma, granodiorite intrusion, 3385 ?? 8 Ma; Montevideo Gneiss at Granite Falls, 3497 ?? 9 Ma, metamorphic event, 3300-3350 Ma, mafic intrusion, 3141 ?? 2 Ma, metamorphic overprint (rims), 2606 ?? 4 Ma; Morton Gneiss: 3524 ?? 9 Ma, granodiorite intrusion, 3370 ?? 8 Ma, metamorphic overprints (growth of rims), 3140 ?? 2 Ma and 2595 ?? 4 Ma; biotite-garnet paragneiss, 2619 ?? 20 Ma; and Sacred Heart granite, 2604 ?? 4 Ma. Zircons from a cordierite-bearing feldspar-biotite schist overlying the Morton Gneiss yielded well-defined age peaks at 3520, 3480, 3380, and 3140 Ma, showing detrital input from most of the older rock units; 2600 Ma rims on these zircons

  17. New Constraints for Tectono-Thermal Alpine Evolution of the Pyrenees: Combining Zircon Fission-Track and (U-Th)/He Analyses with Raman Spectrometry and In-Situ K-Ar Geochronology

    NASA Astrophysics Data System (ADS)

    Waldner, M.; Bellahsen, N.; Mouthereau, F.; Pik, R.; Bernet, M.; Scaillet, S.; Rosenberg, C.

    2017-12-01

    The pyrenean range was formed by the convergence of European and Iberian plates following the inversion of the Mesozoic rifting in the north of Pyrenees. In the Axial Zone, the collision caused an antiformal nappe-stacking of tectonic units. Recent studies pointed out the importance of pre-collision structural and thermal inheritance that may play a major role for orogeny such as: 1) Paleozoic Variscan inheritance; 2) Mesozoic rift-related high geothermal gradients, which are maintained during the onset of convergence in the North Pyrenean Zone. From a mineralogical point of view, pre-collision feldspars have been destabilized and influenced the development of alpine phyllonite in brittle-ductile conditions which suggests a weak crustal behavior during the formation of the orogenic wedge. Our aim is to get a better understanding of alpine deformation and exhumation by coupling different thermochronological, geochronological and thermometric methods. We document the thermal evolution of each tectonic unit by using low-temperature thermochronometers (Zircon Fission Tracks, U-Th/He on zircons including laser ablation profiles). Our data on vertical profiles combined to existing dataset on apatite allows to model alpine exhumation across the Axial zone. Structural observations through alpine thrusts coupled to geochronology (in situ K/Ar on phengites), Raman and chlorite-phengite thermo(baro)metry provide new key data to unravel the alpine evolution of the Pyrenees. According to preliminary ZFT results on granite massifs in the central part of Pyrenean Axial zone (near ECORS profile), exhumation ages potentially indicates a migration of exhumation towards the south. Exhumation ages of the northern massifs seems to have preserved the North Pyrenean Cretaceous rift evolution. Further south, the onset of exhumation is as old as Paleocene, which precedes the Eocene ages of the literature. The low burial estimated in the northern massifs may indicate a high thermal gradient

  18. Mineral inclusions and SHRIMP U-Pb dating of zircons from the Alamas nephrite and granodiorite: Implications for the genesis of a magnesian skarn deposit

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Zhang, Rongqing; Zhang, Zhiyu; Shi, Guanghai; Zhang, Qichao; Abuduwayiti, Maituohuti; Liu, Jianhui

    2015-01-01

    Extending approximately 1300 km and located in the Western Kunlun Mountains, the Hetian nephrite belt is the largest nephrite belt in the world and contains approximately 11 major deposits and more than 20 orebodies including the Alamas deposit. Hetian nephrite deposits can be classified as Mg-skarn deposits with Precambrian dolomitic marble host rock and green, green-white and white nephrite zones are distributed gradually in the zone of a granodiorite pluton. The green nephrite is mainly predominately composed of tremolite with generally minor to trace constituents of diopside, grossularitic garnet, actinolite and other minerals. Also green nephrite has higher content of TFe2O3, than green-white and white nephrites have. We subdivided the zircons from the green nephrites into four types, depending on their internal textures, mineral inclusions, and SHRIMP U-Pb ages. Type I zircons are round instead of idiomorphic in shape and lack obvious zoning. Type II and IV zircons have broad, clear oscillatory zoning and are hypidiomorphic or idiomorphic in shape; they contain inclusions of diopside, tremolite, chlorite and calcite. Most Type III zircons are narrow rims (< 10 μm) surrounding Type II and Type I zircons with highly luminous brightness and no zoning. Both Type I and Type II zircons have individual ages of 411 to 445 Ma and Type IV zircons have younger ages (388 to 406 Ma). Among the concordant ages, 425.7 ± 5.8 Ma and 420.0 ± 9.9 Ma for the QYZr1 and QYZr2 are consistent within error, with the 418.5 ± 2.8 Ma of the Alamas granodiorite formation age and the maximum age of the Alamas nephrite deposit. The partially recrystallization of zircons during skarn formation possibly lead to some younger individual ages (406.5 to 308 Ma). In the Western Kunlun Mountain, both Buya granite and Alamas grandiorite are high Ba-Sr granites and crystallized in Western Kunlun Orogen. The Buya granite formed at about 430 Ma in a post-orogenic tectonic environment. Considering

  19. Mechanisms and timescales of generating eruptible rhyolitic magmas at Yellowstone caldera from zircon and sanidine geochronology and geochemistry

    USGS Publications Warehouse

    Stelten, Mark; Cooper, Kari M.; Vazquez, Jorge A.; Calvert, Andrew T.; Glessner, Justin G

    2015-01-01

    We constrain the physical nature of the magma reservoir and the mechanisms of rhyolite generation at Yellowstone caldera via detailed characterization of zircon and sanidine crystals hosted in three rhyolites erupted during the (ca. 170 – 70 ka) Central Plateau Member eruptive episode – the most recent post-caldera magmatism at Yellowstone. We present 238U-230Th crystallization ages and trace-element compositions of the interiors and surfaces (i.e., unpolished rims) of individual zircon crystals from each rhyolite. We compare these zircon data to 238U- 230Th crystallization ages of bulk sanidine separates coupled with chemical and isotopic data from single sanidine crystals. Zircon age and trace-element data demonstrate that the magma reservoir that sourced the Central Plateau Member rhyolites was long-lived (150 – 250 kyr) and genetically related to the preceding episode of magmatism, which occurred ca. 256 ka. The interiors of most zircons in each rhyolite were inherited from unerupted material related to older stages of Central Plateau Member magmatism or the preceding late Upper Basin Member magmatism (i.e., are antecrysts). Conversely, most zircon surfaces crystallized near the time of eruption from their host liquids (i.e., are autocrystic). The repeated recycling of zircon interiors from older stages of magmatism demonstrates that sequentially erupted Central Plateau Member rhyolites are genetically related. Sanidine separates from each rhyolite yield 238U-230Th crystallization ages at or near the eruption age of their host magmas, coeval with the coexisting zircon surfaces, but are younger than the coexisting zircon interiors. Chemical and isotopic data from single sanidine crystals demonstrate that the sanidines in each rhyolite are in equilibrium with their host melts, which considered along with their near-eruption crystallization ages suggests that nearly all CPM sanidines are autocrystic. The paucity of antecrystic sanidine crystals relative to

  20. An ion microprobe study of individual zircon phenocrysts from voluminous post-caldera rhyolites of the Yellowstone caldera

    NASA Astrophysics Data System (ADS)

    Watts, K. E.; Bindeman, I. N.; Schmitt, A. K.

    2010-12-01

    Following the formation of the Yellowstone caldera from the 640 ka supereruption of the Lava Creek Tuff (LCT), a voluminous episode of post-caldera volcanism filled the caldera with >600 km3 of low-δ18O rhyolite. Such low-δ18O signatures require remelting of 100s of km3 of hydrothermally altered (18O-depleted) rock in the shallow crust. We present a high resolution oxygen isotope and geochronology (U-Th and U-Pb) study of individual zircon crystals from seven of these voluminous post-caldera rhyolites in order to elucidate their genesis. Oxygen isotope and geochronology analyses of zircon were performed with an ion microprobe that enabled us to doubly fingerprint 25-30 µm diameter spots. Host groundmass glasses and coexisting quartz were analyzed in bulk for oxygen isotopes by laser fluorination. We find that zircons from the youngest (200-80 ka) post-caldera rhyolites have oxygen isotopic compositions that are in equilibrium with low-δ18O host groundmass glasses and quartz and are unzoned in oxygen and U-Th age. This finding is in contrast to prior work on older (500-250 ka) post-caldera rhyolites, which exhibit isotopic disequilibria and age zoning, including the presence of clearly inherited zircon cores. Average U-Th crystallization ages and δ18O zircon values for Pitchstone Plateau flow (81±7 ka, 2.8±0.2‰), West Yellowstone flow (118±8 ka, 2.8±0.1‰), Elephant Back flow (175±22 ka, 2.7±0.2‰) and Tuff of Bluff Point (176±20 ka, 2.7±0.1‰) are overlapping or nearly overlapping in age and identical in oxygen isotope composition within uncertainty (2 SE). New U-Pb geochronology and oxygen isotope data for the North Biscuit Basin flow establish that it has an age (188±33 ka) and δ18O signature (2.8±0.2‰) that is distinctive of the youngest post-caldera rhyolites. Conversely, the South Biscuit Basin flow has a heterogeneous zircon population with ages that range from 550-250 ka. In this unit, older and larger (200-400 µm) zircons have more

  1. Chemical-abrasion SIMS dating of zircon from the Eocene Caetano caldera, Nevada

    NASA Astrophysics Data System (ADS)

    Colgan, J.; Watts, K. E.; John, D. A.; Henry, C. D.; Coble, M. A.; Vazquez, J. A.

    2012-12-01

    The Eocene Caetano caldera in northern Nevada formed during eruption of ~1100 km3 of crystal-rich rhyolite. Miocene extension cut the caldera into a set of fault blocks that expose minor pre-caldera volcanic rocks, two units of intracaldera Caetano Tuff up to 4 km thick, ash-flow tuff feeder dikes and ring-fracture intrusions, caldera collapse breccias, and post-collapse resurgent intrusions. Single-crystal 40Ar/39Ar sanidine dates on all parts of the caldera system overlap, yielding a 34.01 ± 0.05 Ma (n=17, Fish Canyon sanidine = 28.201 Ma) age for the eruption. 40Ar/39Ar dating also documents several preceding episodes of magmatism: 35.69 ± 0.06 Ma (sanidine, n =13) rhyolite dikes in the nearby Cortez gold district, 35.21 ± 0.18 Ma (plagioclase, n=1) andesite lava underlying Caetano Tuff, and a 38.90 ± 0.11 Ma (biotite, n=1), dacite dike in the northeastern caldera wall. Extensive U-Pb SHRIMP dating of zircon from both the Cortez dikes and all phases of the Caetano system suggests continuous magmatism from 40-34 Ma. However, all samples contain at least some—sometimes many—zircons with U-Pb ages younger than the 34.0 Ma argon age. To determine if anomalously young zircon ages are due to Pb-loss, we analyzed representative samples of the upper Caetano Tuff and the Redrock Canyon resurgent pluton with and without chemical abrasion to mitigate Pb-loss. Bulk zircon separates were annealed at 850°C for 48 hours, then chemically abraded with 10:1 HF/HNO3 vapor in a Parr bomb at 225°C for 8 hours, based on protocols outlined by Mattinson (2005). Both treated and untreated zircons from the same sample were mounted in epoxy and polished to their midsections, then imaged on the SEM using BSE and CL. The SHRIMP-RG at Stanford University was used to determine U-Pb ages and trace element concentrations in single spots for ~25 to 30 individual zircons per sample, using a round-robin procedure and two zircon age standards (R33 and 080) to monitor external precision

  2. Detrital zircon U-Pb geochronology and provenance of the Carboniferous-Permian glaciomarine pebbly slates in the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Zhu, D.; Zhao, Z.; Chung, S.; Li, C.; Sui, Q.; Fu, X.; Mo, X.

    2011-12-01

    Glaciomarine diamictites (including pebbly slate, pebbly siltstone, and pebbly sandstone) in the Tibetan Plateau are widely interpreted to have been associated with the deglaciation of the Indian continent. Guiding by zircon cathodoluminescence images, we determined U-Pb ages for detrital zircons from five typical Carboniferous-Permian pebbly slate samples from the Qiangtang, Lhasa, and Tethyan Himalaya of the Tibetan Plateau. The age distributions of detrital zircons from two samples (180 analyses) from Qiwu and Gangma Tso of the Qiangtang Terrane are similar, with two main age peaks ca. 579 and ca. 816 Ma and one minor age peak ca. 2490 Ma. Two samples (177 analyses) from Jiangrang and Damxung of the Lhasa Terrane define similar age distributions with two main age peaks ca. 539 and ca. 1175 Ma. Ages of detrital zircons from one sample (110 analyses) from Kangmar of the Tethyan Himalaya display main age peaks ca. 535, ca. 949, and ca. 2490 Ma. The ca. 816-Ma detrital zircons from the Qiangtang Terrane were most likely derived from the Lesser Himalaya, and the ca. 950-Ma detrital zircons from the Tethyan Himalaya might have been sourced from the High Himalaya, Eastern Ghats Province of the Indian plate and the Rayner Province of East Antarctica. The distinctive ca. 1175-Ma age population characteristic of zircons in the pebbly slates from the Lhasa Terrane is identical to the detrital zircons from the late Paleozoic sandstones (Zhu et al., 2011a) and the inherited zircons from the Mesozoic peraluminous granites (Zhu et al., 2011b) in this terrane, but significantly absent in the pebbly slates from both the Qiangtang and the Tethyan Himalayan terranes. The ca. 1175-Ma detrital zircons in the Lhasa Terrane were most likely sourced from the Albany-Fraser-Wilkes in southwestern Australia and East Antarctica. These new data obtained in this study reveal a distinct difference of detrital zircon provenance for the coeval Carboniferous-Permian glaciomarine pebbly slates

  3. Provenance from zircon U-Pb age distributions in crustally contaminated granitoids

    NASA Astrophysics Data System (ADS)

    Bahlburg, Heinrich; Berndt, Jasper

    2016-05-01

    The basement of sedimentary basins is often entirely covered by a potentially multi-stage basin fill and therefore removed from direct observation and sampling. Melts intruding through the basin stratigraphy at a subsequent stage in the geological evolution of a region may assimilate significant volumes of country rocks. This component may be preserved in the intrusive body either as xenoliths or it may be reflected only by the age spectrum of incorporated zircons. Here we present the case of an Ordovician calc-alkaline intrusive belt in NW Argentina named the "Faja Eruptiva de la Puna Oriental" (Faja Eruptiva), which in the course of intrusion sampled the unexposed and unknown basement of the Ordovician basin in this region, and parts of the basin stratigraphy. We present new LA-ICP-MS U-Pb ages on zircons from 9 granodiorites and granites of the Faja Eruptiva. The main part of the Faja Eruptiva intruded c. 445 Ma in the Late Ordovician. The zircon ages obtained from the intrusive rocks have a large spread between 2683.5 ± 21.6 and 440.0 ± 4.9 Ma and reflect the underlying crust and may be interpreted in several ways. The inherited zircons may have been derived from the oldest known unit in the region, the thick siliciclastic turbidite successions of the upper Neoproterozoic-lower Cambrian Puncoviscana Formation, which is inferred to represent the basement of the NW Argentina. The basement to the Puncoviscana Formation is not known. Alternatively, the inherited zircons may reflect the geochronological structure of the entire unexposed Early Paleozoic crust underlying this region of which the Puncoviscana Formation was only one component. This crust likely contained rocks pertaining to and detritus derived from earlier orogenic cycles of the southwestern Amazonia craton, including sources of Early Meso- and Paleoproterozoic age. Detritus derived, in turn, from the Faja Eruptiva intrusive belt reflects the origin of the granitoids as well as the inherited

  4. Ti-in-Zircon Thermometer: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Fu, B.; Cavosie, A. J.; Clechenko, C. C.; Fournelle, J.; Kita, N. T.; Lackey, J.; Page, F.; Wilde, S. A.; Valley, J. W.

    2005-12-01

    The titanium in zircon thermometer has been applied to 167 zircons from diverse rock types. These rocks include metamorphosed anorthosite and gabbro (1.15 Ga, intrusion age), and unmetamorphosed granitic pegmatite (0.9 Ga) from the Adirondack Highlands; metaluminous and peraluminous granites (114-90 Ma) of the Sierra Nevada Batholith; megacrysts from kimberlite pipes in southern Africa, Brazil, and Siberia; and detrital zircons (4.4-3.9 Ga) of metaconglomerate from Jack Hills, Western Australia. Titanium concentration in zircon was analysed using a CAMECA IMS-1280 ion microprobe (see Page et al., this volume). Spot analyses were correlated to U-Pb SHRIMP pits especially for Adirondack and Jack Hills zircons. The majority of zircons have Ti-content less than 10 ppm. Variability, in excess of analytical precision, within individual zircons is observed in about one-third of crystals. In general, there is no systematic change in Ti from core to rim (identified by cathodoluminescence) of zircons, or with regard to age, U content, Th/U ratio, or U-Pb age concordance for these non-metamict grains. The average temperatures for zircon crystallization in different rock suites using the experimental/empirical calibration of Watson and Harrison (W&H, 2005, Science 308:841), assuming the presence of rutile and quartz, are estimated to be: anorthosite 735±41°C (1SD, n=24; Ti = 10±5 ppm); metagabbro 714±31°C (n=19; Ti = 8±4 ppm); Adirondack pegmatite 500±16°C (n=5; Ti = 0.3±0.1 ppm); metaluminous and peraluminous granites from Sierra Nevada 681±67°C (n=53; Ti = 6±5 ppm) and 613±75°C (n=68; Ti = 3±3 ppm); kimberlite megacrysts 740±64°C (n=169; Ti = 14±13 ppm) (Page et al., this volume); and detrital zircons from Jack Hills metaconglomerate 718±63°C (n=64; Ti = 10±9 ppm). Most of the host rocks contain ilmenite or titanite suggesting that α(TiO2)>0.5, but rutile activity is unknown for megacrysts and detrital zircons. Pegmatite contains no Ti-rich minerals

  5. Is the Macquarie Arc (Lachlan Orogen) An Exotic Terrane or Formed on the Gondwanan Margin? Reappraisal by SHRIMP U-Pb Dating of Volcano-Sedimentary Rocks

    NASA Astrophysics Data System (ADS)

    Buckman, S.; Zhang, Q.; Nutman, A. P.

    2017-12-01

    A fundamental question concerning the Ordovician Macquarie Arc rocks is did they form within the palaeo-Pacific Ocean and are entirely juvenile, or did they evolve on the periphery of Gondwana? This is a key issue to ongoing debates concerning the growth of the eastern Gondwanan margin throughout the Palaeozoic. This problem is complicated by the arc now occurs as several slices, in post-arc tectonic contact with the eastern Gondwanan Ordovician Adaminaby Group. The dispersal of the arc as tectonic slices means that the temporal correlation of lithologies across the extent of the arc's exposure needs to be verified via U-Pb zircon geochronology. Our zircon U-Pb geochronology reveals that samples with the oldest zircons of Palaeozoic volcanic origin do not contain any Gondwanan-sourced zircons (particularly Cambrian and Neoproteorzoic). These samples, particularly some ascribed to the Weemalla Formation and Mitchell Formation have unimodal zircon populations of 450.5 Ma and 479.8 Ma. On the other hand, some samples with somewhat younger volcanic populations of 415 Ma and 458 Ma contain some Gondwanan-sourced older detrital zircons as well. Some of these latter samples are derived from outcrops that have previously consigned to the Yarrimbah Formation, should be older than, or equivalent to, the samples with the unimodal volcanic zircon populations of 480 Ma. This shows clearly that the consignment of some Macquarie Arc units to particular formations needs to be revised. The geochemical and radiogenic isotopic characteristics of the Macquarie Arc indicate that it is dominated by products of an intra-oceanic island arc that developed contemporaneously but spatially separated from Adaminaby Group passive margin sedimentation along eastern Gondwana. However, because our new U-Pb zircon data reveals that only samples with the youngest volcanic zircons also contain Gondwanan zircons, it shows that before the death of the arc, it was proximal to the Gondwanan margin

  6. U-Pb dating of large zircons in low-temperature jadeitite from the Osayama serpentinite melange, southwest Japan: insights into the timing of serpentinization

    USGS Publications Warehouse

    Tsujimori, T.; Liou, J.G.; Wooden, J.; Miyamoto, T.

    2005-01-01

    Crystals of zircon up to 3 mm in length occur in jadeitite veins in the Osayama serpentinite mélange, Southwest Japan. The zircon porphyroblasts show pronounced zoning, and are characterized by both low Th/U ratios (0.2-0.8) and low Th and U abundances (Th = 1-81 ppm; U = 6-149 ppm). They contain inclusions of high-pressure minerals, including jadeite and rutile; such an occurrence indicates that the zircon crystallized during subduction-zone metamorphism. Phase equilibria and the existing fluid-inclusion data constrain P-T conditions to P > 1.2 GPa at T > 350°C for formation of the jadeitite. Most U/Pb ages obtained by SHRIMP-RG are concordant, with a weighted mean 206Pb/238U age of 472 ± 8.5 Ma (MSWD = 2.7, n = 25). Because zircon porphyroblasts contain inclusions of high-pressure minerals, the SHRIMP U-Pb age represents the timing of jadeitite formation, i.e., the timing of interaction between alkaline fluid and ultramafic rocks in a subduction zone. Although this dating does not provide a direct time constraint for serpentinization, U-Pb ages of zircon in jadeitite associated with serpentinite result in new insights into the timing of fluid-rock interaction of ultramafic rocks at a subduction zone and the minimum age for serpentinization.

  7. Tiny twists in time; exploring angular resolution of in situ EBSD orientation microstructures in solar system zircon

    NASA Astrophysics Data System (ADS)

    Moser, D. E.

    2012-12-01

    Kikuchi discovered electron diffraction in samples of calcite in the 1920's, and orientation of lattice planes by Electron Backscatter Diffraction (EBSD) is now routinely measured by automated camera systems at a spatial resolution of tens of nanometers using Field Emission Gun SEM. The current methodology is proving particularly powerful when measuring lattice orientation microstructure in U-Pb geochronology minerals such as zircon and baddeleyite that have experienced high temperature deformation or shock metamorphism. These are among the oldest preserved mineral phases in inner solar system materials, and we have been applying EBSD to rare samples of the Early Earth and grains from extraterrestrial environments such as the Moon and Mars. In these cases the EBSD orientation data are useful for identifying high diffusivity pathways that may have afforded isotopic and trace element disturbance, microstructural proxies for shock metamorphic pressures, as well as resolving glide plane systems in ductile zircon and shear twin mechanisms. Blanket estimates of angular resolution for automated EBSD misorientation measurements are often in the range of 0.5 degrees. In some cases strain giving rise to only a few degrees of lattice misorientation has facilitated 100% Pb-loss. In some cases, however, there is a spatial correlation between trace element or cathodoluminescence zoning in zircon and what appears to be low magnitudes misorientation close to the limits of resolution. Given the proven value of performing EBSD analysis on geochronology minerals, a more thorough exploration of the precision and accuracy of EBSD lattice misorientation measurements is warranted. In this talk the relative weighting of the factors that limit EBSD angular resolution will be investigated, focusing on U-Pb dating minerals such as zircon. These factors include; sample surface preparation, phase symmetry, pseudo-symmetry effects, degree of crystallinity, Kikuchi band contrast and indexing

  8. Deformation-related microstructures in magmatic zircon and implications for diffusion

    NASA Astrophysics Data System (ADS)

    Reddy, Steven Michael; Timms, Nicholas E.; Hamilton, Patrick Joseph; Smyth, Helen R.

    2009-02-01

    An undeformed glomeroporphyritic andesite from the Sunda Arc of Java, Indonesia, contains zoned plagioclase and amphibole glomerocrysts in a fine-grained groundmass and records a complex history of adcumulate formation and subsequent magmatic disaggregation. A suite of xenocrystic zircon records Proterozoic and Archaean dates whilst a discrete population of zoned, euhedral, igneous zircon yields a SHRIMP U-Pb crystallisation age of 9.3 ± 0.2 Ma. Quantitative microstructural analysis of zircon by electron backscatter diffraction (EBSD) shows no deformation in the inherited xenocrysts, but intragrain orientation variations of up to 30° in 80% of the young zircon population. These variations are typically accommodated by both progressive crystallographic bending and discrete low angle boundaries that overprint compositional growth zoning. Dispersion of crystallographic orientations are dominantly by rotation about an axis parallel to the zircon c-axis [001], which is coincident with the dominant orientation of misorientation axes of adjacent analysis points in EBSD maps. Less common <100> misorientation axes account for minor components of crystallographic dispersion. These observations are consistent with zircon deformation by dislocation creep and the formation of tilt and twist boundaries associated with the operation of <001>{100} and <100>{010} slip systems. The restriction of deformation microstructures to large glomerocrysts and the young magmatic zircon population, and the absence of deformation within the host igneous rock and inherited zircon grains, indicate that zircon deformation took place within a low-melt fraction (<5% melt), mid-lower crustal cumulate prior to fragmentation during magmatic disaggregation and entrainment of xenocrystic zircons during magmatic decompression. Tectonic stresses within the compressional Sunda Arc at the time of magmatism are considered to be the probable driver for low-strain deformation of the cumulate in the late

  9. Assessment of Paleozoic terrane accretion along the southern central Andes using detrital zircon geochronology

    NASA Astrophysics Data System (ADS)

    McKenzie, R.; Horton, B. K.; Fuentes, F.; Fosdick, J. C.; Capaldi, T.; Stockli, D. F.; Alvarado, P. M.

    2015-12-01

    Two distinct Paleozoic terranes known as Cuyania and Chilenia occupy the southern central Andes of Argentina and Chile. Because the proposed terrane boundaries coincide with major structural elements of the modern Andean system at 30-36°S, it is important to understand their origins and potential role in guiding later Andean deformation. The Cuyania terrane of western Argentina encompasses the Precordillera (PC) and a thick-skinned thrust block of the western Sierras Pampeanas, persisting southward to the San Rafael Basin (SRB). Although recently challenged, Cuyania has been long considered a piece of southern Laurentia that rifted away during the early Cambrian and collided with the Argentine margin during the Ordovician. Chilenia is situated west of Cuyania and includes the Frontal Cordillera (FC) and Andean magmatic arc. This less-studied terrane was potentially accreted during an enigmatic Devonian orogenic event. We present new detrital zircon U-Pb age data from siliciclastic sedimentary rocks that span the entire Paleozoic to Triassic from the FC, PC, and SRB. Cambrian rocks of the PC exhibit similar zircon age distributions with prominent ~1.4 and subordinate ~1.1 Ga populations, which are distinct from other Paleozoic strata. Plutonic rocks with these ages are common in southern Laurentia, whereas ~1.4 Ga zircons are uncommon in South American age distributions. This supports a Laurentian origin for Cuyania in isolation from Argentina during the Cambrian. Upper Paleozoic strata from the PC, FC, and SRB all yield similar age data suggesting shared provenance across the proposed Cuyania-Chilenia suture. Age distributions also notably lack Devonian-age grains. The regional paucity of Devonian plutonic rocks and detrital zircon casts doubt on a possible arc system between these terranes at this time, a key requisite for the mid-Paleozoic transfer and accretion of Chilenia to the Argentine margin. Collectively, these data question the precise boundaries of the

  10. Do Jack Hills Detrital Zircons Contain Records of the Early Geodynamo?

    NASA Astrophysics Data System (ADS)

    Weiss, B. P.; Maloof, A. C.; Tailby, N. D.; Ramezani, J.; Fu, R. R.; Glenn, D. R.; Kehayias, P.; Walsworth, R. L.; Hanus, V.; Trail, D.; Watson, E. B.; Harrison, T. M.; Bowring, S. A.; Kirschvink, J. L.; Swanson-Hysell, N.; Coe, R. S.; Einsle, J. F.; Harrison, R. J.

    2015-12-01

    It is unknown when Earth's dynamo magnetic field originated. With crystallization ages ranging from 3.0-4.38 Ga, detrital zircon crystals found in the Jack Hills of Western Australia might preserve a record of the missing first billion years of Earth's magnetic field history. Recently, Tarduno et al. (2015) argued that magnetization in Jack Hills zircons provides evidence for a substantial geomagnetic field dating back to their U/Pb formation ages (3.3 and 4.2 Ga). However, the identification of such ancient field records requires establishing that the zircons have avoided remagnetization since their formation. At a minimum, it should be demonstrated that they have not been remagnetized since being deposited at ~3.0 Ga. To establish the timing and intensity of the metamorphic and alteration events experienced by the zircon, we conducted 12 paleomagnetic field tests in combination with U-Pb geochronology on their host rocks (see Weiss et al. 2015, EPSL). Our data show that the Hadean zircon-bearing rocks and surrounding region have been pervasively remagnetized, with the final major overprinting likely from emplacement of the Warakurna large igneous province at 1.1 Ga (see Figure). Even if some Jack Hills zircons do record a pre-depositional magnetization, they still could have been remagnetized sometime during the 1.4 Gy between their crystallization and their deposition. First, the temperatures capable of remagnetizing magnetite inclusions are well below those that could reset a U-Pb date or result in significant discordance. Therefore, thermal events capable of completely remagnetizing Jack Hills zircons could be undetected by the techniques reported by Tarduno at al. (2015). Second, the zircons' magnetization might be dominated by secondary ferromagnetic inclusions or contamination. To address the latter possibility, we are conducting electron microscopy, x-ray tomography, and magnetic field mapping on the zircons. Our initial quantum diamond magnetometry high

  11. SHRIMP U-Pb geochronology of volcanic rocks, Belt Supergroup, western Montana: Evidence for rapid deposition of sedimentary strata

    USGS Publications Warehouse

    Evans, K.V.; Aleinikoff, J.N.; Obradovich, J.D.; Fanning, C.M.

    2000-01-01

    New sensitive high resolution ion microprobe (SHRIMP) U-Pb zircon analyses from two tuffs and a felsic flow in the middle and upper Belt Supergroup of northwestern Montana significantly refine the age of sedimentation for this very thick (15-20 km) Middle Proterozoic stratigraphic sequence. In ascending stratigraphic order, the results are (1) 1454 ?? 9 Ma for a tuff in the upper part of the Helena Formation at Logan Pass, Glacier National Park; (2) 1443 ?? 7 Ma for a regionally restricted porphyritic rhyolite to quartz latite flow of the Purcell Lava in the Yaak River region; and (3) 1401 ?? 6 Ma for a tuff in the very thin transition zone between the Bonner Quartzite and Libby Formation, west of the town of Libby. Combining these ages with those previously published by other workers for ca. 1470-Ma sills in the lower Belt in Montana and Canada indicates that all but the uppermost Belt strata (about 1700 m) were deposited over a period of about 70 million years, considerably reducing the time span from longstanding estimates ranging from 250 to 600 million years. Calculated sediment accumulation rates between dated samples indicates rapid, but not unreasonable, values for early Belt strata, with decreasing rates through time. These ages also suggest the inadequacy of previously published paleomagnetic data to resolve Belt Supergroup chronology at an appropriate level of accuracy.

  12. Geologic implications of new zircon U-Pb ages from the White Mountain Peak Metavolcanic Complex, eastern California

    NASA Astrophysics Data System (ADS)

    Scherer, Hannah H.; Ernst, W. G.; Brooks Hanson, R.

    2008-04-01

    The NNW-trending White-Inyo Range includes intrusive and volcanic rocks on the eastern flank of the Sierran volcano-plutonic arc. The NE-striking, steeply SE-dipping Barcroft reverse fault separates folded, metamorphosed Mesozoic White Mountain Peak mafic and felsic volcanic flows, volcanogenic sedimentary rocks, and minor hypabyssal plugs on the north from folded, well-bedded Neoproterozoic-Cambrian marble and siliciclastic strata on the south. The 163 ± 2 Ma Barcroft Granodiorite rose along this fault, and thermally recrystallized its wall rocks. However, new SHRIMP-RG ages of magmatic zircons from three White Mountain Peak volcanogenic metasedimentary rocks and a metafelsite document stages of effusion at ˜115-120 Ma as well as at ˜155-170 Ma. The U-Pb data confirm the interpretation by Hanson et al. (1987) that part of the metasedimentary-metavolcanic pile was laid down after Late Jurassic intrusion of the Barcroft pluton. The Lower Cretaceous, largely volcanogenic metasedimentary section lies beneath a low-angle thrust fault, the upper plate of which includes interlayered Late Jurassic mafic and felsic metavolcanic rocks and the roughly coeval Barcroft pluton. Late Jurassic and Early Cretaceous volcanism in this sector of the Californian continental margin, combined with earlier petrologic, structural, and geochronologic studies, indicates that there was no gap in igneous activity at this latitude of the North American continental margin.

  13. Provenance of sediments from Sumatra, Indonesia - Insights from detrital U-Pb zircon geochronology, heavy mineral analyses and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Liebermann, C.; Hall, R.; Gough, A.

    2017-12-01

    The island of Sumatra is situated at the southwestern margin of the Indonesian archipelago. Although it is the sixth largest island in the world, the geology of the Sumatra sedimentary basins and their underlying basement is relatively poorly understood in terms of their provenance. This work is a multi-proxy provenance study utilizing U-Pb detrital zircon dating by LA-ICP-MS combined with optical and Raman spectroscopy-based heavy mineral analysis. It will help to unravel the stratigraphy of Sumatra, contribute to paleogeographic reconstruction of western SE Asia, and aid a wider understanding of Sumatran petroleum plays. Thin section analyses, heavy mineral assemblages, and >3500 concordant U-Pb zircon ages, from samples acquired during two fieldwork seasons indicate a mixed provenance for Cenozoic sedimentary formations, including both local igneous sources and mature basement rocks. Characteristic Precambrian zircon age spectra are found in all analysed Cenozoic sedimentary strata. These can be correlated with zircon age populations found in Sumatran basement rocks; Neoproterozoic and Mesoproterozoic age groups are dominant (c. 500-600 Ma, c. 850-1000 Ma, c. 1050-1200 Ma). Paleoproterozoic to Archaean zircons occur as minor populations. The Phanerozoic age spectra of the Cenozoic formations are characterised by distinct Carboniferous, Permo-Triassic, and Jurassic-Cretaceous zircon populations. Permo-Triassic zircons are interpreted to come from granitoids in the Malay peninsula or Sumatra itself. Eocene to Lower Miocene strata are characterised by ultrastable heavy minerals such as zircon, tourmaline, and rutile, which together with garnet, suggest the principal sources were igneous and metamorphic basement rocks. Cenozoic zircons appear only from the Middle Miocene onwards. This change is interpreted to indicate a new contribution from a local volcanic arc, and is supported by the occurrence of unstable heavy minerals such as apatite and clinopyroxene, and the

  14. Detrital zircon age patterns and provenance of the metamorphic complexes of southern Chile

    NASA Astrophysics Data System (ADS)

    Hervé, F.; Fanning, C. M.; Pankhurst, R. J.

    2003-05-01

    Zircon SHRIMP U-Pb age patterns are reported for 13 metasedimentary rocks from the low grade metamorphic complexes of the Patagonian Andes. Combined with four recently published patterns, these provide the first detailed survey of the provenance of these complexes. The youngest dated zircons, corresponding to maximum sedimentation ages, are Devonian-Late Triassic in the eastern Andes metamorphic complex, Carboniferous in the main range metamorphic complex, Permian in the Duque de York complex, and Late Triassic in the Chonos metamorphic complex. In the last two cases, these ages are in agreement with their respective fossil ages. Older components in the eastern Andes metamorphic complex include a large proportion of Proterozoic (predominantly 1000-1200 Ma) zircons, which may indicate distribution, probably by rivers, of detrital material from regions currently in northern South America, Africa, or east Antarctica. The abundance of Proterozoic zircons is very much less in the Duque de York complex, possibly because of the rise of an inferred Permian magmatic arc related to the Gondwanan orogeny and consequent westward migration of the watershed. A Late Triassic magmatic episode is registered in the Chonos metamorphic complex, where reappearance of significant Proterozoic zircons indicates exhumation of the cratonic areas or of recycled sedimentary material.

  15. Mechanisms of strain accommodation in plastically-deformed zircon under simple shear deformation conditions during amphibolite-facies metamorphism

    NASA Astrophysics Data System (ADS)

    Kovaleva, Elizaveta; Klötzli, Urs; Wheeler, John; Habler, Gerlinde

    2018-02-01

    This study documents the strain accommodation mechanisms in zircon under amphibolite-facies metamorphic conditions in simple shear. Microstructural data from undeformed, fractured and crystal-plastically deformed zircon crystals are described in the context of the host shear zone, and evaluated in the light of zircon elastic anisotropy. Our work challenges the existing model of zircon evolution and shows previously undescribed rheological characteristics for this important accessory mineral. Crystal-plastically deformed zircon grains have axis oriented parallel to the foliation plane, with the majority of deformed grains having axis parallel to the lineation. Zircon accommodates strain by a network of stepped low-angle boundaries, formed by switching between tilt dislocations with the slip systems <100>{010} and < 1 bar 10>{110} and rotation axis [001], twist dislocations with the rotation axis [001], and tilt dislocations with the slip system <100>{001} and rotation axis [010]. The slip system < 1 bar 10>{110} is newly described for zircon. Most misorientation axes in plastically-deformed zircon grains are parallel to the XY plane of the sample and have [001] crystallographic direction. Such behaviour of strained zircon lattice is caused by elastic anisotropy that has a direct geometric control on the rheology, deformation mechanisms and dominant slip systems in zircon. Young's modulus and P wave velocity have highest values parallel to zircon [001] axis, indicating that zircon is elastically strong along this direction. Poisson ratio and Shear modulus demonstrate that zircon is also most resistant to shearing along [001]. Thus, [001] axis is the most common rotation axis in zircon. The described zircon behaviour is important to take into account during structural and geochronological investigations of (poly)metamorphic terrains. Geometry of dislocations in zircon may help reconstructing the geometry of the host shear zone(s), large-scale stresses in the

  16. Detrital Record of Phanerozoic Tectonics in Iran: Evidence From U-Pb Zircon Geochronology

    NASA Astrophysics Data System (ADS)

    Horton, B. K.; Gillis, R. J.; Stockli, D. F.; Hassanzadeh, J.; Axen, G. J.; Grove, M.

    2004-12-01

    Ion-microprobe U-Pb ages of 91 detrital zircon grains supplement ongoing investigations of the tectonic history of Iran, a critical region bridging the gap between the Alpine and Himalayan orogenic belts. These data improve understanding of the distribution of continental blocks during a complex history of Late Proterozoic (Pan-African) crustal growth, Paleozoic passive-margin sedimentation, early Mesozoic collision with Eurasia, and Cenozoic collision with Arabia. U-Pb analyses of detrital zircon grains from four sandstone samples (two Lower Cambrian, one uppermost Triassic-Lower Jurassic, one Neogene) collected from the Alborz mountains of northern Iran reveal a spectrum of ages ranging from 50 to 2900 Ma. Most analyses yield concordant to moderately discordant ages. The Lower Cambrian Lalun and Barut sandstones yield age distribution peaks at approximately 550-650, 1000, and 2500 Ma, consistent with a Gondwanan source area presently to the south and west in parts of Iran and the Arabian-Nubian shield (Saudi Arabia and northwestern Africa). The uppermost Triassic-Lower Jurassic Shemshak Formation exhibits a broad range of U-Pb ages, including peaks of approximately 200-260, 330, 430, 600, and 1900 Ma, requiring a Eurasian source area presently to the north and east in the Turan plate (Turkmenistan and southwestern Asia). Neogene strata display both the youngest and oldest ages (approximately 50 and 2900 Ma) of any samples, a result of substantial sedimentary recycling of older Phanerozoic cover rocks. Because the youngest zircon ages for three of the four samples are indistinguishable from their stratigraphic (depositional) ages, these data suggest rapid exhumation and help constrain the termination age of Late Proterozoic-Early Cambrian (Pan-African) orogenesis and the timing of the Iran-Eurasia collision.

  17. Detrital-zircon geochronology of Paleozoic sedimentary rocks in the Hangay Hentey basin, north-central Mongolia: Implications for the tectonic evolution of the Mongol Okhotsk Ocean in central Asia

    NASA Astrophysics Data System (ADS)

    Kelty, Thomas K.; Yin, An; Dash, Batulzii; Gehrels, George E.; Ribeiro, Angela E.

    2008-04-01

    Understanding the development of the Central Asian Orogenic System (CAOS), which is the largest Phanerozoic accretionary orogen in the world, is critical to the determination of continental growth mechanisms and geological history of central Asia. A key to unraveling its geological history is to ascertain the origin and tectonic setting of the large flysch complexes that dominate the CAOS. These complexes have been variably interpreted as deep-marine deposits that were accreted onto a long-evolving arc against large continents to form a mega-accretionary complex or sediments trapped in back-arc to fore-arc basins within oceanic island-arc systems far from continents. To differentiate the above models we conducted U-Pb geochronological analyses of detrital-zircon grains from turbidites in the composite Hangay-Hentey basin of central Mongolia. This basin was divided by a Cenozoic fault system into the western and eastern sub-basins: the Hangay Basin in the west and Hentey basin in the east. This study focuses on the Hentey basin and indicates two groups of samples within this basin: (1) a southern group that were deposited after the earliest Carboniferous (˜ 339 Ma to 354 Ma) and a northern group that were deposited after the Cambrian to Neoproterozoic (˜ 504 Ma to 605 Ma). The samples from the northern part of the basin consistently contain Paleoproterozoic and Archean zircon grains that may have been derived from the Tuva-Mongol massif and/or the Siberian craton. In contrast, samples from the southern part of the basin contain only a minor component of early Paleozoic to Neoproterozoic zircon grains, which were derived from the crystalline basement bounding the Hangay-Hentey basin. Integrating all the age results from this study, we suggest that the Hangay-Hentey basin was developed between an island-arc system with a Neoproterozoic basement in the south and an Andean continental-margin arc in the north. The initiation of the southern arc occurred at or after the

  18. Characterization of Minerals of Geochronological Interest by EPMA and Atom Probe Tomography

    NASA Astrophysics Data System (ADS)

    Snoeyenbos, D.; Jercinovic, M. J.; Reinhard, D. A.; Hombourger, C.

    2012-12-01

    Isotopic and chemical dating techniques for zircon and monazite rely on several assumptions: that initial common Pb is low to nonexistent, that the analyzed domain is chronologically homogeneous, and that any relative migration of radiogenic Pb and its parent isotopes has not exceeded the analyzed domain. Yet, both zircon and monazite commonly contain significant submicron heterogeneities that may challenge these assumptions and can complicate the interpretation of chemical and isotopic data. Compositional mapping and submicron quantitative analysis by EPMA and FE-EPMA have been found to be useful techniques both for the characterization of these heterogeneities, and for quantitative geochronological determinations within the analytical limits of these techniques and the statistics of submicron sampling. Complementary to high-resolution EPMA techniques is Atom Probe Tomography (APT), wherein a specimen with dimensions of a few hundreds of nanometers is field evaporated atom by atom. The original position of each atom is identified, along with its atomic species and isotope. The result is a reconstruction allowing quantitative three-dimensional study of the specimen at the atomic scale, with low detection limits and high mass resolution. With the introduction of laser-induced thermal pulsing to achieve field evaporation, the technique is no longer limited to conductive specimens. There exists the capability to explore the compositional and isotopic structure of insulating materials at sub-nanometer resolution. Minerals of geochronological interest have been studied by an analytical method involving first compositional mapping and submicron quantitative analysis by EPMA and FE-EPMA, and subsequent use of these data to select specific sites for APT specimen extraction by FIB. Examples presented include 1) zircon from the Taconian of New England, USA, containing a fossil resorption front included between an unmodified igneous core, and a subsequent metamorphic

  19. The 230Th correction is the 1st priority for accurate dates of young zircons: U/Th partitioning experiments and measurements

    NASA Astrophysics Data System (ADS)

    Krawczynski, M.; McLean, N.

    2017-12-01

    One of the most accurate and useful ways of determining the age of rocks that formed more than about 500,000 years ago is uranium-lead (U-Pb) geochronology. Earth scientists use U-Pb geochronology to put together the geologic history of entire regions and of specific events, like the mass extinction of all non-avian dinosaurs about 66 million years ago or the catastrophic eruptions of supervolcanoes like the one currently centered at Yellowstone. The mineral zircon is often utilized because it is abundant, durable, and readily incorporates uranium into its crystal structure. But it excludes thorium, whose isotope 230Th is part of the naturally occurring isotopic decay chain from 238U to 206Pb. Calculating a date from the relative abundances of 206Pb and 238U therefore requires a correction for the missing 230Th. Existing experimental and observational constraints on the way U and Th behave when zircon crystallizes from a melt are not known precisely enough, and thus currently the uncertainty in dates introduced by they `Th correction' is one of the largest sources of systematic error in determining dates. Here we present preliminary results on our study of actinide partitioning between zircon and melt. Experiments have been conducted to grow zircon from melts doped with U and Th that mimic natural magmas at a range of temperatures, and compositions. Synthetic zircons are separated from their coexisting glass and using high precision and high-spatial-resolution techniques, the abundance and distribution of U and Th in each phase is determined. These preliminary experiments are the beginning of a study that will result in precise determination of the zircon/melt uranium and thorium partition coefficients under a wide variety of naturally occurring conditions. This data will be fit to a multidimensional surface using maximum likelihood regression techniques, so that the ratio of partition coefficients can be calculated for any set of known parameters. The results of

  20. From an active continental plate margin to continental collision: New constraints from the petrological, structural and geochronological record of the (ultra) high-P metamorphic Rhodope domain (N-Greece)

    NASA Astrophysics Data System (ADS)

    Mposkos, E.; Krohe, A.; Wawrzenitz, N.; Romer, R. L.

    2012-04-01

    The Rhodope domain occupies a key area along the suture between the European and the Apulian/Adriatic plate (Schmid et al., 2008), which collided in the early Tertiary (closure of the Vardar/Axios ocean, cf. Mposkos & Krohe, 2006). An integrated study of the geochronological, tectonic and petrological data of the Rhodope domain provides the unique opportunity resolving a 160 my lasting metamorphic evolution (Jurassic to Miocene) of an active plate margin to a high degree. The Greek Rhodope consists of several composite metamorphic complexes bounded by the Nestos thrust and several normal detachment systems. The PT- and structural records of the complexes constrain metamorphic, magmatic and tectonic processes, associated with subduction along a convergent plate margin including UHP metamorphism, MP to HP metamorphism associated with continental collision, and core complex formation linked to Aegean back arc extension. We focus on the Sidironero Complex that shows a polymetamorphic history. This is documented by SHRIMP and LA-ICP-MS U-Pb zircon ages of ca. 150 Ma from garnet-kyanite gneisses that are interpreted to record the HP/UHP metamorphism (Liati, 2005; Krenn et al., 2010). SHRIMP zircon ages of ca. 51 Ma from an amphibolitized eclogite is interpreted by Liati (2005) to record a second Eocene HP metamorphic event. We present new data from an integrated petrological, geochronological and tectonic study. Granulite facies and upper amphibolite facies metamorphic conditions are recorded by the mineral assemblage Grt-Ky-Bt-Pl-Kfs-Qtz-Rt and Grt-Ky-Bt-Ms-Pl-Qtz-Rt, respectively, in deformed migmatitic metapelites. Deformation occurred under granulite facies conditions. Monazites from the matrix, that formed during the granulite facies deformation, lack core/rim structures and are only locally patchy zoned. Monazite chemical compositions are related to varying reaction partners. Single grains and fractions of few grains yield ID-TIMS U-Pb ages that plot along the

  1. SHRIMP U-Pb dating, trace elements and the Lu-Hf isotope system of coesite-bearing zircon from amphibolite in the SW Sulu UHP terrane, eastern China

    NASA Astrophysics Data System (ADS)

    Liu, Fulai; Gerdes, Axel; Zeng, Lingsen; Xue, Huaimin

    2008-06-01

    In this study, we link mineral inclusion data, trace element analyses, U-Pb age and Hf isotope composition obtained from distinct zircon domains of complex zircon to unravel the origin and multi-stage metamorphic evolution of amphibolites from the Sulu ultrahigh-pressure (UHP) terrane, eastern China. Zircon grains separated from amphibolites from the CCSD-MH drill hole (G12) and Niushan outcrop (G13) were subdivided into two main types based on cathodoluminescence (CL) and Laser Raman spectroscopy: big dusty zircons with inherited cores and UHP metamorphic rims and small clear zircons. Weakly zoned, grey-white luminescent inherited cores preserve mineral inclusions of Cpx + Pl + Ap ± Qtz indicative of a mafic igneous protolith. Dark grey luminescent overgrowth rims contain the coesite eclogite-facies mineral inclusion assemblage Coe + Grt + Omp + Phe + Ap, and formed at T = 732-839 °C and P = 3.0-4.0 GPa. In contrast, white luminescent small clear zircons preserve mineral inclusions formed during retrograde HP quartz eclogite to LP amphibolite-facies metamorphism (T = 612-698 °C and P = 0.70-1.05 GPa). Inherited zircons from both samples yield SHRIMP 206Pb/238U ages of 695-520 Ma with an upper intercept age of 800 ± 31 Ma. The UHP rims yield consistent Triassic ages around 236-225 and 239-225 Ma for G12 and G13 with weighted means of 229 ± 3 and 231 ± 3 Ma, respectively. Small clear zircons from both samples give 206Pb/238U ages around 219-210 Ma with a weighted mean of 214 ± 3 Ma, interpreted as the age of retrograde quartz eclogite-facies metamorphism. Matrix amphibole from both samples indicate Ar-Ar ages of 209 ± 0.7 and 207 ± 0.7 Ma, respectively, probably dating late amphibolite-facies retrogression. The data suggest subduction of Neoproterozoic mafic igneous rocks to UHP conditions in Middle Triassic (∼230 Ma) times and subsequent exhumation to an early HP (∼214 Ma) and a late LP stage (∼208 Ma) over a period of ∼16 and 6 Myr, respectively

  2. Sedimentary provenance of Trinity Peninsula Group, Antarctic Peninsula: petrography, geochemistry and SHRIMP U-Pb zircon age constraints.

    NASA Astrophysics Data System (ADS)

    Castillo, P.; Lacassie, J. P.; Hervé, F.; Fanning, C. M.

    2009-04-01

    The Trinity Peninsula Group (TPG) crops out in northern Graham Land and consists of a mostly non-fossiliferous metasedimentary succession of Permo-Triassic(?) age, which was accreted prior to the initiation of the Gondwana breakup. This succession has been sub-divided, from north to south, into five formations, namely: Hope Bay (HBF), View Point (VPF), Legoupil (LgF), Charlotte Bay (ChBF) and Paradise Harbour (PHF) formations. However, there are still large areas with unknown stratigraphic allocation, age and extension. Twenty TPG samples (12 sandstones and 8 mudstones) were collected from four localities in the Antarctic Peninsula, including Hope Bay; Paradise Harbour, Cape Legoupil and Charlotte Bay. Twelve sandstones were selected for modal analysis and 15 samples (7 sandstones and 8 mudstones) for whole rock chemical analysis. The geochemical data of the TPG samples was compared with the geochemical data of other sedimentary successions of different provenance and tectonic setting, by using unsupervised artificial neural networks. The modal composition of the sandstones is dominated by quartz and, in similar but smaller proportions by feldspar, and according to the discrimination scheme of Dickinson et al. (1983) is consistent with the product of erosion of the plutonic roots of a magmatic arc. The chemical data suggest a relatively evolved source, with a composition similar to a typical granodioritic continental magmatic arc. The deposition of the detritus is most likely to have occurred within an active continental margin. Three sandstone samples from the HBF, LgF and PHF were selected for U-Pb dating of detrital zircons by SHRIMP. For the HBF and PHF samples, the major age component is Permian (270-280 Ma). Only the sample from LgF has two important peaks at ~270 and ~470 Ma. In all cases, the youngest dated zircon is Permian (~257 Ma). These results show that there are strong chemical and chronological similarities between the TPG, the Duque de York Complex

  3. Evaluating the mush extraction + multiple magma batch model for the Lake City magmatic system (Colorado, USA) using zircon U/Pb TIMS-TEA

    NASA Astrophysics Data System (ADS)

    Pamukcu, A. S.; Schoene, B.; Deering, C. D.

    2016-12-01

    Volcanic eruptions that involve a wide range of magma types highlight questions on genetic and geometric relationships between magmas in the crust prior to eruption. The Lake City magmatic system (Colorado, USA) is one such example: exposed in the caldera are ignimbrites from the 23 Ma Sunshine Peak Tuff, which range in composition and crystallinity with time (crystal-poor rhyolite to crystal-rich trachyte), and resurgent intrusions of porphyritic syenite, monzonite, and dacite (Hon 1987). Field relations and bulk rock geochemistry suggest the Lake City magmatic system was complex, with magmas of these various types existing concurrently as multiple magma batches, though not necessarily always in contact (Kennedy et al. 2015). Geochemical modeling further suggests that the crystal-poor rhyolites were liquids extracted from a syenitic mush and that the crystal-rich trachytes are remobilized portions of this cumulate. To address the genetic and geometric links between these magmas in more detail, we utilize TIMS-TEA to assess U/Pb zircon geochronology and trace element geochemistry in concert. For each eruptive unit/magma type, zircons were roughly separated into size groupings (small, medium, large), imaged by cathodoluminescence (CL), and analyzed individually by CA-ID-TIMS. Preliminary results indicate that zircons crystallized over a period of 177±31 ky, which is within the range suggested by Ar/Ar geochronology (80-300 ky, Bove et al. 2001). Consistent with the current model for the Lake City system, zircons from the rhyolites and trachytes overlap in age, while those of the dacites are younger. There is no clear relationship between age and CL zoning pattern or crystal size (e.g., small crystals are not always the youngest). We can further address relationships between the rhyolite, trachyte, and syenite using TEA to assess trace elements of the dated zircons. Rhyolite-MELTS models suggest that zircons crystallized in a rhyolitic melt derived from the trachyte

  4. Zircon geochronology and ca. 400 Ma exhumation of Norwegian ultrahigh-pressure rocks: An ion microprobe and chemical abrasion study

    USGS Publications Warehouse

    Root, D.B.; Hacker, B.R.; Mattinson, J.M.; Wooden, J.L.

    2004-01-01

    Understanding the formation and exhumation of the remarkable ultrahigh-pressure (UHP) rocks of the Western Gneiss Region, Norway, hinges on precise determination of the time of eclogite recrystallization. We conducted detailed thermal ionization mass spectrometry, chemical abrasion analysis and sensitive high-resolution ion-microprobe analysis of zircons from four ultrahigh- and high-pressure (HP) rocks. Ion-microprobe analyses from the Flatraket eclogite yielded a broad range of apparently concordant Caledonian ages, suggesting long-term growth. In contrast, higher precision thermal ionization mass spectrometry analysis of zircon subject to combined thermal annealing and multi-step chemical abrasion yielded moderate Pb loss from the first (lowest temperature) abrasion step, possible minor Pb loss or minor growth at 400 Ma from the second step and a 407-404 Ma cluster of slightly discordant 206Pb/238U ages, most likely free from Pb loss, from the remaining abrasion steps. We interpret the latter to reflect zircon crystallization at ???405-400 Ma with minor discordance from inherited cores. Zircon crystallization occurred at eclogite-facies, possibly post-peak conditions, based on compositions of garnet inclusions in zircon as well as nearly flat HREE profiles and lack of Eu anomalies in zircon fractions subjected to chemical abrasion. These ages are significantly younger than the 425 Ma age often cited for western Norway eclogite recrystallization, implying faster rates of exhumation (>2.5-8.5 km/Myr), and coeval formation of eclogites across the UHP portion of the Western Gneiss Region. ?? 2004 Published by Elsevier B.V.

  5. U-Pb ages and Hf isotope compositions of zircons in plutonic rocks from the central Famatinian arc, Argentina

    NASA Astrophysics Data System (ADS)

    Otamendi, Juan E.; Ducea, Mihai N.; Cristofolini, Eber A.; Tibaldi, Alina M.; Camilletti, Giuliano C.; Bergantz, George W.

    2017-07-01

    The Famatinian arc formed around the South Iapetus rim during the Ordovician, when oceanic lithosphere subducted beneath the West Gondwana margin. We present combined in situ U-Th-Pb and Lu-Hf isotope analyses for zircon to gain insights into the origin and evolution of Famatinian magmatism. Zircon crystals sampled from four intermediate and silicic plutonic rocks confirm previous observations showing that voluminous magmatism took place during a relatively short pulse between the Early and Middle Ordovician (472-465 Ma). The entire zircon population for the four plutonic rocks yields coherent εHf negative values and spreads over several ranges of initial εHf(t) units (-0.3 to -8.0). The range of εHf units in detrital zircons of Famatinian metasedimentary rocks reflects a prolonged history of the cratonic sources during the Proterozoic to the earliest Phanerozoic. Typical tonalites and granodiorites that contain zircons with evolved Hf isotopic compositions formed upon incorporating (meta)sedimentary materials into calc-alkaline metaluminous magmas. The evolved Hf isotope ratios of zircons in the subduction related plutonic rocks strongly reflect the Hf isotopic character of the metasedimentary contaminant, even though the linked differentiation and growth of the Famatinian arc crust was driven by ascending and evolving mantle magmas. Geochronology and Hf isotope systematics in plutonic zircons allow us understanding the petrogenesis of igneous series and the provenance of magma sources. However, these data could be inadequate for computing model ages and supporting models of crustal evolution.

  6. Temporal evolution of the giant Salobo IOCG deposit, Carajás Province (Brazil): constraints from paragenesis of hydrothermal alteration and U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    deMelo, Gustavo H. C.; Monteiro, Lena V. S.; Xavier, Roberto P.; Moreto, Carolina P. N.; Santiago, Erika S. B.; Dufrane, S. Andrew; Aires, Benevides; Santos, Antonio F. F.

    2017-06-01

    The giant Salobo copper-gold deposit is located in the Carajás Province, Amazon Craton. Detailed drill core description, petrographical studies, and U-Pb SHRIMP IIe and LA-ICP-MS geochronology unravel its evolution regarding the host rocks, hydrothermal alteration and mineralization. Within the Cinzento Shear Zone, the deposit is hosted by orthogneisses of the Mesoarchean Xingu Complex (2950 ± 25 and 2857 ± 6.7 Ma) and of the Neoarchean Igarapé Gelado suite (2763 ± 4.4 Ma), which are crosscut by the Old Salobo granite. Remnants of the Igarapé Salobo metavolcanic-sedimentary sequence are represented by a quartz mylonite with detrital zircon populations (ca. 3.1-3.0, 2.95, 2.86, and 2.74 Ga). High-temperature calcic-sodic hydrothermal alteration (hastingsite-actinolite) was followed by silicification, iron-enrichment (almandine-grunerite-magnetite), tourmaline formation, potassic alteration with biotite, copper-gold ore formation, and later Fe-rich hydrated silicate alteration. Myrmekitic bornite-chalcocite and magnetite comprise the bulk of copper-gold ore. All these alteration assemblages have been overprinted by post-ore hematite-bearing potassic and propylitic alteration, which is also recognized in the Old Salobo granite. In the central zone of the deposit the mylonitized Igarapé Gelado suite rocks yield an age of 2701 ± 30 Ma. Zircon ages of 2547 ± 5.3 and 2535 ± 8.4 Ma were obtained for the Old Salobo granite and for the high-grade copper ore, respectively. A U-Pb LA-ICP-MS monazite age (2452 ± 14 Ma) from the copper-gold ore indicates hydrothermal activity and overprinting in the Siderian. Therefore, a protracted tectono-thermal event due to the reactivation of the Cinzento Shear Zone is proposed for the evolution of the Salobo deposit.

  7. The age of unusual xenogenic zircons from Yakutian kimberlites

    NASA Astrophysics Data System (ADS)

    Vladykin, N. V.; Lepekhina, E. A.

    2009-12-01

    Several spindle-shaped grains of zircon, which have a small size (<0.25 mm) and a distinct purplish pink coloration were found in the crushed samples of kimberlites from the Aykhal, Komsomolskaya-Magnitnaya, Botuobinskaya (Siberian platform), and Nyurbinskaya (Yakutia) pipes and olivine lamproites of the Khani massif (West Aldan). U-Pb SHRIMP II zircon dating performed at the VSEGEI Center for Isotopic Research yielded the ages of 1870-1890 Ma for the pipes of the Western province (Aykhal and Komsomolskaya) and 2200-2750 Ma for the pipes of the eastern province (Nyurbinskaya and Botuobinskaya), which allowed us to consider these zircons to be xenogenic to kimberlites. Although these zircons resemble in their age and color those from the granulite xenoliths in the Udachnaya pipe [2], no other granulite minerals are found there. Thus, major geological events in the mantle and lower crust, which led to the formation of zircon-bearing rocks, happened at 1800-1900 Ma in the northern part of the kimberlite province, whereas in the Eastern part of the province (Nakyn field) these events were much older (2220-2700 Ma). It is known that the period of 1800-1900 Ma in the Earth’s history was accompanied by intense tectonic movements and widespread alkaline-carbonatite magmatism. This magmatism was related to plume activity responsible for overheating the large portions of the mantle to the temperatures at which some diamonds in mantle rocks would burn (northern part of the kimberlite province). In the Nakyn area, the mantle underwent few or no geological processes at that time, and perhaps for this reason this area hosts more diamondiferous kimberlites. The age of olivine lamproites from the Khani massif is 2672-2732 Ma. Thus, these are some of the world’s oldest known K-alkaline rocks.

  8. Detrital Zircons From the Jack Hills and Mount Narryer, Western Australia: Geochronological, Morphological, and Geochemical Evidence for Diverse >4000 Ma Source Rocks

    NASA Astrophysics Data System (ADS)

    Crowley, J. L.; Myers, J. S.; Sylvester, P. J.; Cox, R. A.

    2004-05-01

    Detrital zircons from all major clastic units in the Jack Hills and Mount Narryer metasedimentary belts, Western Australia, were analyzed for morphology, internal zoning, inclusion mineralogy, age, and trace element concentrations (latter two obtained by laser-ablation microprobe ICPMS). The results show that zircons were derived from a wide diversity of rocks, including previously described, >4000 Ma grains that are older than any known terrestrial rocks. In three metaconglomerate samples from the western Jack Hills, 4200-3800 Ma zircons ("old grains") comprise 14% of the population, 3800-3600 Ma grains form only 2%, and 3550-3250 Ma zircons ("young grains") are dominant with a significant peak at 3380 Ma. Old and young grains are interpreted as being from similar rock types because they are indistinguishable in trace element concentrations, size (several hundred microns), morphology (subequant, typically fragmented), internal zoning (typically both oscillatory and sector), and U concentration (50-200 ppm). Many of these properties suggest an intermediate plutonic source, whereas an evolved granitic source was previously interpreted from rare-earth element and oxygen isotope data. Detrital zircons in quartzites and metaconglomerates at Mount Narryer differ significantly from zircons from the western Jack Hills. Old grains comprise only 3% (most of which are 4200-4100 Ma), 3800-3600 Ma zircons form 31%, and there are peaks at 3650, 3600, and 3500 Ma. Old and young grains have similar properties that suggest granitic sources, such as elongate prismatic morphology, oscillatory zoning, high U concentrations (100-600 ppm), and xenotime and monazite inclusions. Trace element concentrations are broadly similar to those in Jack Hills zircons, with notable exceptions being generally higher U, smaller Ce and Eu anomalies, and lower Nb/Ta. It is considered unlikely that Jack Hills zircons were derived from granitic gneisses that surround the metasedimentary belts because

  9. 2.9, 2.36, and 1.96 Ga zircons in orthogneiss south of the Red River shear zone in Viet Nam: evidence from SHRIMP U-Pb dating and tectonothermal implications

    NASA Astrophysics Data System (ADS)

    Nam, Tran Ngoc; Toriumi, Mitsuhiro; Sano, Yuji; Terada, Kentaro; Thang, Ta Trong

    2003-05-01

    Orthogneissic rocks coexisting with migmatites and containing small amphibolite lenses are exposed in the center of the metamorphic belt which runs parallel to the Day Nui Con Voi-Red River shear zone in northern Viet Nam. The orthogneiss complex has given some radiogenic dates of Early Proterozoic and Late Archean, which are the oldest ages ever registered for the Southeast Asian continent. Zircon grains separated from three samples of the orthogneiss complex have been dated to establish the protolith age and the timing of high-grade tectonothermal events in the complex. Sixty-five SHRIMP U-Th-Pb analyses of these zircons define three age groups of 2.84-2.91, 2.36, and 1.96 Ga. The age groups correspond to three periods of zircon generation. The oldest ˜2.9 Ga cores indicate a minimum age for the protolith of the orthogneiss complex. Two younger generations (including ˜2.36 Ga outer-cores and ˜1.96 Ga rims) probably grew during later high-grade tectono-metamorphic events, which were previously suggested by K-Ar and 40Ar/ 39Ar cooling ages of ˜2.0 Ga for synkinematic hornblendes. An early thermal history of the orthogneiss complex has been constrained, including a primary magma-crystallization stage starting at ˜2.9 Ga, followed by two Early Proterozoic (˜2.36 and ˜1.96 Ga) high-grade tectonothermal events. The ca. 2.9 Ga protolith age of the orthogneiss complex documented in this study provides new convincing evidence for the presence of Archean rocks in Indochina, and clearly indicates that the crustal evolution of northern Viet Nam started as early as Late Archean time.

  10. 3-D Characterization of Detrital Zircon Grains and its Implications for Fluvial Transport, Mixing, and Preservation Bias

    NASA Astrophysics Data System (ADS)

    Markwitz, V.; Kirkland, C. L.; Mehnert, A.; Gessner, K.; Shaw, J.

    2017-12-01

    Detrital zircon studies can suffer from selective loss of provenance information due to U-Pb age discordance, metamictization, metamorphic overprinting and fluviatile transport processes. The relationship between isotopic composition and zircon grain shape, and how grain shape is modified during transport, is largely unknown. We combine X-ray tomography with U-Pb geochronology to quantify how fluvial transport affects 3-D zircon shape, detrital age signature, and grain density along the Murchison River, whose catchment comprises Eoarchean to Early Paleozoic source rocks in Western Australia. We acquired tomographic volumes and isotopic data from 373 detrital zircons to document changes in size, shape and density in transport direction, and explore how grain shape, age spectra and the proportion of discordant material vary along the channel. Results show that shape characteristics are sensitive to transport distance, stream gradient, proximity to source material, and whether the source consists of primary or recycled zircons. With increasing transport distance, grain lengths decrease more than their widths. Furthermore, the loss of metamict grains occurs at a near constant rate, resulting in a linear increase of mean calculated zircon density by ca. 0.03 g/cm3 per 100 km transport distance. 3-D grain shape is therefore strongly linked to detrital age signature, and mean grain density is a function of the absolute transport distance. 3-D shape characteristics provide valuable information on detrital zircon populations, including the interaction between source materials with fluvial transport processes, which significantly affects preservation bias and, by inference, the representativeness of the sampled data.

  11. Initiation and evolution of the Arabia-Eurasia collision in the Caucasus region constrained by detrital zircon geochronology

    NASA Astrophysics Data System (ADS)

    Tye, A. R.; Niemi, N. A.

    2016-12-01

    The Greater Caucasus (GC) mountain range is composed of thrust sheets of Paleozoic (Pz) - Mesozoic (Mz) flysch. Crystalline basement is exposed in the western part of the range, but not in the eastern. Detrital zircon ages from Eocene - recent foreland strata to the south of the western GC in Georgia suggest sediment sourcing from GC basement or Pz strata since Eocene time, requiring significant exhumation prior to or coincident with the onset of Arabia-Eurasia collision 30 Ma. We sampled foreland basin sedimentary rocks and modern river sands whose catchment areas together span the potential source rocks exposed in the western Greater Caucasus (GC) in Georgia. We find that GC basement rocks and lower Pz strata contain a diagnostic 450 Ma zircon population that is absent from the upper Pz and Mz sedimentary strata that are exposed throughout most of the range. These 450 Ma zircons are from an unknown source with an age distinct from the Hercynian ( 300 Ma) and Pan-African ( 600 Ma) orogens. Despite their absence in late Pz and Mz strata, the 450 Ma zircons are prevalent in Eocene - recent foreland basin deposits, whose ages were determined biostratigraphically [1]. Paleocurrent directions also indicate a GC source for Eocene strata [2], necessitating early Cenozoic exposure of GC basement or Pz strata. Exposing GC basement or Pz strata during Eocene time requires erosional removal of >3500 m of Mesozoic and late Paleozoic strata [1]. The detrital zircon age observations suggest that erosional removal of these strata took place prior to the initiation of the Arabia-Eurasia collision at 30 Ma and well before the ongoing episode of rapid GC exhumation and erosion from 5 Ma - present. Foreland basin detrital zircon ages also reveal a lack of input from Late Cretaceous to Paleogene volcanism of the Adjara-Trialet zone. This finding is consistent with the existence of a Paleogene ocean basin between the Greater Caucasus and Lesser Caucasus wide enough to prevent

  12. EARTHTIME: Teaching geochronology to high school students

    NASA Astrophysics Data System (ADS)

    Bookhagen, Britta; Buchwaldt, Robert; McLean, Noah; Rioux, Matthew; Bowring, Samuel

    2010-05-01

    The authors taught an educational module developed as part of the EARTHTIME (www.earth-time.org) outreach initiative to 215 high school students from a Massachusetts (USA) High School as part of an "out-of-school" field trip. The workshop focuses on uranium-lead (U-Pb) dating of zircons and its application to solving a geological problem. The theme of our 2.5-hour module is the timing of the K-T boundary and a discussion of how geochronology can be used to evaluate the two main hypotheses for the cause of the concurrent extinction—the Chicxlub impact and the massive eruption of the Deccan Traps. Activities are divided into three parts: In the first part, the instructors lead hands-on activities demonstrating how rock samples are processed to isolate minerals by their physical properties. Students use different techniques, such as magnetic separation, density separation using non-toxic heavy liquids, and mineral identification with a microscope. We cover all the steps from sampling an outcrop to determining a final age. Students also discuss geologic features relevant to the K-T boundary problem and get the chance to examine basalts, impact melts and meteorites. In the second part, we use a curriculum developed for and available on the EARTHTIME website (http://www.earth-time.org/Lesson_Plan.pdf). The curriculum teaches the science behind uranium-lead dating using tables, graphs, and a geochronology kit. In this module, the students start by exploring the concepts of half-life and exponential decay and graphically solving the isotopic decay equation. Manipulating groups of double-sided chips labeled with U and Pb isotopes reinforces the concept that an age determination depends on the Pb/U ratio, not the absolute number of atoms present. Next, the technique's accuracy despite loss of parent and daughter atoms during analysis, as well as the use of isotopic ratios rather than absolute abundances, is explained with an activity on isotope dilution. Here the students

  13. Dating Kimberlite Eruption and Erosion Phases Using Perovskite, Zircon, and Apatite (U-Th)/He Geochronology to Link Cratonic Lithosphere Evolution and Surface Processes

    NASA Astrophysics Data System (ADS)

    Stanley, J. R.; Flowers, R. M.

    2015-12-01

    In many cases it is difficult to evaluate the synchronicity and thus potential connections between disparate geologic events, such as the links between processes in the mantle lithosphere and at the surface. Developing new geochronologic tools and strategies for integrating existing chronologic data with other information is essential for addressing these problems. Here we use (U-Th)/He dating of multiple kimberlitic minerals to date kimberlite eruption and cratonic erosion phases. This approach permits us to more directly assess the link between unroofing and thermomodification of the lithosphere by tying our results to information obtained from mantle-derived clasts in the same pipes. Kimberlites are rich sources of information about the composition of the cratonic lithosphere and its evolution over time. Their xenoliths and xenocrysts can preserve a snapshot of the entire lithosphere and its sedimentary cover at the time of eruption. Accurate geochronology of these eruptions is crucial for interpreting spatiotemporal trends, but kimberlites can be difficult to date using standard techniques. Here we show that the mid-temperature thermochonometers of the zircon and perovskite (U-Th)/He (ZHe, PHe) systems can be viable tools for dating kimberlite eruption. When combined with the low temperature sensitivity of (U-Th)/He in apatite (AHe), the (U-Th)/He system can be used to date both the emplacement and the erosional cooling history of kimberlites. The southern African shield is an ideal location to test the utility of this approach because the region was repeatedly intruded by kimberlites in the Cretaceous, with two major pulses at ~200-110 Ma and ~100-80 Ma. These kimberlites contain a well-studied suite of mantle xenoliths and xenocrysts that document lithospheric heating and metasomatism over this interval. Our ZHe and PHe dates overlap with published eruption ages and add new ages for undated pipes. Our AHe dates constrain the spatial patterns of Cretaceous

  14. Algorithms and software for U-Pb geochronology by LA-ICPMS

    NASA Astrophysics Data System (ADS)

    McLean, Noah M.; Bowring, James F.; Gehrels, George

    2016-07-01

    The past 15 years have produced numerous innovations in geochronology, including experimental methods, instrumentation, and software that are revolutionizing the acquisition and application of geochronological data. For example, exciting advances are being driven by Laser-Ablation ICP Mass Spectrometry (LA-ICPMS), which allows for rapid determination of U-Th-Pb ages with 10s of micrometer-scale spatial resolution. This method has become the most commonly applied tool for dating zircons, constraining a host of geological problems. The LA-ICPMS community is now faced with archiving these data with associated analytical results and, more importantly, ensuring that data meet the highest standards for precision and accuracy and that interlaboratory biases are minimized. However, there is little consensus with regard to analytical strategies and data reduction protocols for LA-ICPMS geochronology. The result is systematic interlaboratory bias and both underestimation and overestimation of uncertainties on calculated dates that, in turn, decrease the value of data in repositories such as EarthChem, which archives data and analytical results from participating laboratories. We present free open-source software that implements new algorithms for evaluating and resolving many of these discrepancies. This solution is the result of a collaborative effort to extend the U-Pb_Redux software for the ID-TIMS community to the LA-ICPMS community. Now named ET_Redux, our new software automates the analytical and scientific workflows of data acquisition, statistical filtering, data analysis and interpretation, publication, community-based archiving, and the compilation and comparison of data from different laboratories to support collaborative science.

  15. Tectono-magmatic evolution of the Chihuahua-Sinaloa border region in northern Mexico: Insights from zircon-apatite U-Pb geochronology, zircon Hf isotope composition and geochemistry of granodiorite intrusions

    NASA Astrophysics Data System (ADS)

    Mahar, Munazzam Ali; Goodell, Philip C.; Feinstein, Michael Nicholas

    2016-11-01

    We present the whole-rock geochemistry, LA-ICP-MS zircon-apatite U-Pb ages and zircon Hf isotope composition of the granodioritic plutons at the southwestern boundary of Chihuahua with the states of Sinaloa and Sonora. These granodiorites are exposed in the north and south of the Rio El Fuerte in southwest Chihuahua and northern Sinaloa. The magmatism spans over a time period of 37 Ma from 90 to 53 Ma. Zircons are exclusively magmatic with strong oscillatory zoning. No inheritance of any age has been observed. Our new U-Pb dating ( 250 analyses) does not support the involvement of older basement lithologies in the generation of the granitic magmas. The U-Pb apatite ages from granodiorites in southwest Chihuahua vary from 52 to 70 Ma. These apatite ages are 1 to 20 Ma younger than the corresponding zircon U-Pb crystallization ages, suggesting variable cooling rates from very fast to 15 °C/Ma ( 800 °C to 500 °C) and shallow to moderate emplacement depths. In contrast, U-Pb apatite ages from the Sinaloa batholith are restricted from 64 to 61 Ma and are indistinguishable from the zircon U-Pb ages range from 67 to 60 Ma within the error, indicating rapid cooling and very shallow emplacement. However, one sample from El Realito showed a larger difference of 20 Ma in zircon-apatite age pair: zircon 80 ± 0.8 Ma and apatite 60.6 ± 4 Ma, suggesting a slower cooling rate of 15 °C/Ma. The weighted mean initial εHf (t) isotope composition (2σ) of granodiorites varies from + 1.8 to + 5.2. The radiogenic Hf isotope composition coupled with previous Sr-Nd isotope data demonstrates a significant shift from multiple crustal sources in the Sonoran batholithic belt to the predominant contribution of the mantle-derived magmas in the southwest Chihuahua and northern Sinaloa. Based on U-Pb ages, the absence of inheritance, typical high Th/U ratio and radiogenic Hf isotope composition, we suggest that the Late Cretaceous-Paleogene magmatic rocks in this region are not derived from

  16. Detrital zircon geochronology of Neoproterozoic to Middle Cambrian miogeoclinal and platformal strata: Northwest Sonora, Mexico

    USGS Publications Warehouse

    Gross, E.L.; Stewart, John H.; Gehreis, G.E.

    2000-01-01

    Eighty-five detrital zircon grains from Mesoproterozoic and/or Neoproterozoic to Middle Cambrian sedimentary strata in northwest Sonora, Mexico, have been analyzed to determine source terranes and provide limiting depositional ages of the units. The zircon suites from the Mesoproterozoic and/or Neoproterozoic El Alamo Formation and El Aguila unit yield ages between 1.06 Ga and 2.67 Ga, with predominant ages of 1.1 to 1.2 Ga. Zircons from the Lower? and Middle Cambrian Bolsa Quartzite show age groups from 525 Ma to 1.63 Ga, with a dominant population of 1.1 to 1.2 Ga grains. Grains older than 1.2 Ga in the samples were most likely derived from basement terranes and ???1.4 Ga granitic bodies of the southwest U.S. and northwest Mexico. It is also possible that the sediments were transported from the south, although source rocks of the appropriate age are not presently exposed south of the study area in northern Mexico. Three possibilities for the dominant 1.1 to 1.2 Ga grains include derivation from: (I) exposures of the Grenville belt in southern North America, (2) local 1.1-1.2 Ga granite bodies, or (3) a southern source, such as the Oaxaca terrane, that was subsequently rifted away. Sampling of additional units in the western U.S. and northern Mexico may help resolve the ambiguity surrounding the source of the 1.1 to 1.2 Ga grains.

  17. Petrology and geochronology of crustal xenoliths from the Bering Strait region: Linking deep and shallow processes in extending continental crust

    USGS Publications Warehouse

    Akinin, V.V.; Miller, E.L.; Wooden, J.L.

    2009-01-01

    Petrologic, geochemical, and metamorphic data on gneissic xenoliths derived from the middle and lower crust in the Neogene Bering Sea basalt province, coupled with U-Pb geochronology of their zircons using sensitive high-resolution ion microprobe-reverse geometry (SHRIMP-RG), yield a detailed comparison between the P-T-t and magmatic history of the lower crust and magmatic, metamorphic, and deformational history of the upper crust. Our results provide unique insights into the nature of lithospheric processes that accompany the extension of continental crust. The gneissic, mostly maficxenoliths (constituting less than two percent of the total xenolith population) from lavas in the Enmelen, RU, St. Lawrence, Nunivak, and Seward Peninsula fields most likely originated through magmatic fractionation processes with continued residence at granulite-facies conditions. Zircon single-grain ages (n ??? 125) are interpreted as both magmatic and metamorphic and are entirely Cretaceous to Paleocene in age (ca. 138-60 Ma). Their age distributions correspond to the main ages of magmatism in two belts of supracrustal volcanic and plutonic rocks in the Bering Sea region. Oscillatory-zoned igneous zircons, Late Cretaceous to Paleocene metamorphic zircons and overgrowths, and lack of any older inheritance in zircons from the xenoliths provide strong evidence for juvenile addition of material to the crust at this time. Surface exposures of Precambrian and Paleozoic rocks locally reached upper amphibolite-facies (sillimanite grade) to granulite-facies conditions within a series of extension-related metamorphic culminations or gneiss domes, which developed within the Cretaceous magmatic belt. Metamorphic gradients and inferred geotherms (??30-50 ??C/km) from both the gneiss domes and xenoliths aretoo high to be explained by crustal thickening alone. Magmatic heat input from the mantle is necessary to explain both the petrology of the magmas and elevated metamorphic temperatures. Deep

  18. Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia

    NASA Astrophysics Data System (ADS)

    Rubatto, Daniela; Williams, Ian S.; Buick, Ian S.

    2001-01-01

    We report an extensive field-based study of zircon and monazite in the metamorphic sequence of the Reynolds Range (central Australia), where greenschist- to granulite-facies metamorphism is recorded over a continuous crustal section. Detailed cathodoluminescence and back-scattered electron imaging, supported by SHRIMP U-Pb dating, has revealed the different behaviours of zircon and monazite during metamorphism. Monazite first recorded regional metamorphic ages (1576 ± 5 Ma), at amphibolite-facies grade, at ˜600 °C. Abundant monazite yielding similar ages (1557 ± 2 to 1585 ± 3 Ma) is found at granulite-facies conditions in both partial melt segregations and restites. New zircon growth occurred between 1562 ± 4 and 1587 ± 4 Ma, but, in contrast to monazite, is only recorded in granulite-facies rocks where melt was present (≥700 °C). New zircon appears to form at the expense of pre-existing detrital and inherited cores, which are partly resorbed. The amount of metamorphic growth in both accessory minerals increases with temperature and metamorphic grade. However, new zircon growth is influenced by rock composition and driven by partial melting, factors that appear to have little effect on the formation of metamorphic monazite. The growth of these accessory phases in response to metamorphism extends over the 30 Ma period of melt crystallisation (1557-1587 Ma) in a stable high geothermal regime. Rare earth element patterns of zircon overgrowths in leucosome and restite indicate that, during the protracted metamorphism, melt-restite equilibrium was reached. Even in the extreme conditions of long-lasting high temperature (750-800 °C) metamorphism, Pb inheritance is widely preserved in the detrital zircon cores. A trace of inheritance is found in monazite, indicating that the closure temperature of the U-Pb system in relatively large monazite crystals can exceed 750-800 °C.

  19. Geochemical and geochronological constraints on the origin and evolution of rocks in the active Woodlark Rift of Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Zirakparvar, Nasser Alexander

    fragments of an active margin'. This chapter uses a panoply of geochronological (U-Pb zircon) and geochemical (Lu-Hf and Sm-Nd isotopes, trace/REEs, and major elements) tools to investigate the origin the major lithostratigraphic units in the Woodlark Rift. Important findings in this chapter include the establishment of a tectonic link between sialic metamorphic rocks in the Woodlark Rift and the remnants of a Late Cretaceous aged bi-modal volcanic province along Australia's northern Queensland coast. This link is important because it identifies another rifted fragment of the former Australian continental margin in Gondwana, and demonstrates the complexity of recognizing the dispersed fragments of active margins. Another important finding of this chapter is that Quaternary aged high silica rhyolites erupted in the western Woodlark Rift have mantle isotopic and geochemical signatures, and are therefore not the extrusive equivalents of partially melted metamorphic rocks found in the lower plates of large metamorphic core complexes. This is important because it signifies that lithospheric rupture has already occurred, despite the fact that mid-ocean ridge basalts are not yet being erupted and there are still topographically prominent metamorphic core complexes in the region. This chapter is not yet published, but is being prepared for submission to Gondwana Research. The third chapter is entitled 'Zircon growth in rapidly evolving plate boundary zones: Evidence from the active Woodlark Rift of Papua New Guinea'. The original purpose of this chapter was simply to use U-Pb dating of zircons from felsic and intermediate gneisses in the Woodlark Rift to understand the history of rocks from (U)HP terranes that don't preserve the (U)HP metamorphic paragenesis. It was soon realized that the types of U-Pb zircon analyses typically performed on a SIMS instrument were going to be insufficient to fully understand the geochemical and geochronological records within zircons from these

  20. Petrology and zircon U-Pb geochronology of metagabbros from a mafic-ultramafic suite at Aniyapuram: Neoarchean to Early Paleoproterozoic convergent margin magmatism and Middle Neoproterozoic high-grade metamorphism in southern India

    NASA Astrophysics Data System (ADS)

    Koizumi, Tatsuya; Tsunogae, Toshiaki; Santosh, M.; Tsutsumi, Yukiyasu; Chetty, T. R. K.; Saitoh, Yohsuke

    2014-12-01

    Several mafic-ultramafic complexes occur within the Palghat-Cauvery Suture Zone (PCSZ) in southern India. The PCSZ is regarded in recent models as the zone along which crustal blocks were amalgamated during the Late Neoproterozoic-Cambrian (550-530 Ma) Gondwana assembly. Here we report petrologic and zircon U-Pb geochronologic data from gabbros associated with the Aniyapuram mafic-ultramafic suite in the central domain of the PCSZ. Geothermobarometry and pseudosection approach in the system NCFMASHTO for the metagabbro (Grt + Cpx + Opx + Hbl + Pl + Qtz + Ilm + Rt) yield peak P-T condition of 9.8-10.6 kbar and 730-790 °C, which was followed by decompression to 6.5-8.0 kbar and ca. 750 °C as inferred from the formation of Opx + Pl symplectite around garnet, probably along a clockwise P-T path. Zircon U-Pb data analyzed by LA-ICP-MS plot along a well-defined discordia with upper and lower intercepts in the concordia at 2436 ± 22 Ma and 731 ± 11 Ma respectively, suggesting Neoarchean-Early Paleoproterozoic magmatic emplacement of the protolith and progressive Pb loss related to the Middle Neoproterozoic (Cryogenian) thermal event (or high-grade metamorphism). These results closely compare with the available Neoarchean magmatic ages of mafic-ultramafic complexes (e.g., Sittampundi, Devanur, Agali Hills, and Kanja Malai) and Middle Neoproterozoic magmatic event (e.g., Manamedu and Kadavur) in the PCSZ and adjacent granulite blocks. The 650 Ma concordia ages obtained from unzoned zircons might indicate the timing of high-grade metamorphism or post-peak hydration event. The P-T conditions obtained from Aniyapuram are significantly lower than the high-pressure and ultrahigh-temperature conditions of the 550-530 Ma final collisional event (P > 14 kbar and T > 950 °C). The Middle Neoproterozoic (ca. 730 Ma or 650 Ma) high-grade metamorphism in Aniyapuram reported for the first time from the PCSZ is possibly associated with magmatism in arc tectonic setting.

  1. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps)

    NASA Astrophysics Data System (ADS)

    Vavra, Gerhard; Schmid, Rolf; Gebauer, Dieter

    Several types of growth morphologies and alteration mechanisms of zircon crystals in the high-grade metamorphic Ivrea Zone (IZ) are distinguished and attributed to magmatic, metamorphic and fluid-related events. Anatexis of pelitic metasediments in the IZ produced prograde zircon overgrowths on detrital cores in the restites and new crystallization of magmatic zircons in the associated leucosomes. The primary morphology and Th-U chemistry of the zircon overgrowth in the restites show a systematic variation apparently corresponding to the metamorphic grade: prismatic (prism-blocked) low-Th/U types in the upper amphibolite facies, stubby (fir-tree zoned) medium-Th/U types in the transitional facies and isometric (roundly zoned) high-Th/U types in the granulite facies. The primary crystallization ages of prograde zircons in the restites and magmatic zircons in the leucosomes cannot be resolved from each other, indicating that anatexis in large parts of the IZ was a single and short lived event at 299+/-5Ma (95% c. l.). Identical U/Pb ages of magmatic zircons from a metagabbro (293+/-6Ma) and a metaperidotite (300+/-6Ma) from the Mafic Formation confirm the genetic context of magmatic underplating and granulite facies anatexis in the IZ. The U-Pb age of 299+/-5Ma from prograde zircon overgrowths in the metasediments also shows that high-grade metamorphic (anatectic) conditions in the IZ did not start earlier than 20Ma after the Variscan amphibolite facies metamorphism in the adjacent Strona-Ceneri Zone (SCZ). This makes it clear that the SCZ cannot represent the middle to upper crustal continuation of the IZ. Most parts of zircon crystals that have grown during the granulite facies metamorphism became affected by alteration and Pb-loss. Two types of alteration and Pb-loss mechanisms can be distinguished by cathodoluminescence imaging: zoning-controlled alteration (ZCA) and surface-controlled alteration (SCA). The ZCA is attributed to thermal and/or decompression pulses

  2. Provenance of north Gondwana Cambrian-Ordovician sandstone: U-Pb SHRIMP dating of detrital zircons from Israel and Jordan

    USGS Publications Warehouse

    Kolodner, K.; Avigad, D.; McWilliams, M.; Wooden, J.L.; Weissbrod, T.; Feinstein, S.

    2006-01-01

    A vast sequence of quartz-rich sandstone was deposited over North Africa and Arabia during Early Palaeozoic times, in the aftermath of Neoproterozoic Pan-African orogeny and the amalgamation of Gondwana. This rock sequence forms a relatively thin sheet (1-3 km thick) that was transported over a very gentle slope and deposited over a huge area. The sense of transport indicates unroofing of Gondwana terranes but the exact provenance of the siliciclastic deposit remains unclear. Detrital zircons from Cambrian arkoses that immediately overlie the Neoproterozoic Arabian-Nubian Shield in Israel and Jordan yielded Neoproterozoic U-Pb ages (900-530 Ma), suggesting derivation from a proximal source such as the Arabian-Nubian Shield. A minor fraction of earliest Neoproterozoic and older age zircons was also detected. Upward in the section, the proportion of old zircons increases and reaches a maximum (40%) in the Ordovician strata of Jordan. The major earliest Neoproterozoic and older age groups detected are 0.95-1.1, 1.8-1.9 and 2.65-2.7 Ga, among which the 0.95-1.1 Ga group is ubiquitous and makes up as much as 27% in the Ordovician of Jordan, indicating it is a prominent component of the detrital zircon age spectra of northeast Gondwana. The pattern of zircon ages obtained in the present work reflects progressive blanketing of the northern Arabian-Nubian Shield by Cambrian-Ordovician sediments and an increasing contribution from a more distal source, possibly south of the Arabian-Nubian Shield. The significant changes in the zircon age signal reflect many hundreds of kilometres of southward migration of the provenance. ?? 2006 Cambridge University Press.

  3. Provenance analysis and detrital zircon geochronology on the onshore Makran accretionary wedge, SE Iran: implication for the geodynamic setting

    NASA Astrophysics Data System (ADS)

    Mohammadi, Ali; Burg, Jean-Pierre; Winkler, Wilfried; Ruh, Jonas

    2014-05-01

    The Makran, located in Southeast Iran and South Pakistan, is one of the largest accretionary wedges on Earth. In Iran it comprises turbiditic sediments ranging in age from Late Cretaceous to Holocene. We present a provenance analysis on sandstones, which is aimed at reconstructing the assemblages of source rocks and the tectonic setting from which the clastic material was derived. Sandstone samples collected from different units span the regional stratigraphy from Late Cretaceous to Miocene. Laser ablation ICP-MS resulted in ca 2800 new U-Pb ages of individual detrital zircons from 18 samples collected in onshore Makran. 101 detrital zircons from a Late Cretaceous fine grained sandstone range from 180 to 160 Ma (Middle Jurassic). 478 detrital zircons from mid- to late Eocene sandstones allow differentiating a NE and NW sector of the Makran Basin. Zircon grains in the NE basin belong to two populations peaking at 180 to 160 Ma (late Early to Middle Jurassic) and 50 to 40 Ma (Mid-Eocene), with the noticeable absence of Cretaceous grains. In the NW basin, detrital zircons are 120 to 40 Ma (late Early Cretaceous to Lutetian, Eocene). 587 detrital zircon grains from fine to medium grained Oligocene sandstones collected over the whole area also range from 120 to 40 Ma (late Early Cretaceous to Eocene, Lutetian). 1611 detrital zircons from early Miocene sandstones show again distinctly different ages in the eastern and western parts of the basin. They range from 120 to 40 Ma (late Early Cretaceous to Eocene) in the eastern and from 80 to 40 Ma (Late Cretaceous to Eocene) in the western basin. Hf isotopes analyses were performed on 120 zircon grains from 6 samples. Negative values (-2 to -15) in Middle Jurassic and late Early Cretaceous zircons indicate minor or no influence of mantle reservoirs which implies a rifting setting during crystallization of the zircons. Low negative to positive (-5 to +10) values in Late Cretaceous and Eocene zircons indicate mixed crustal and

  4. Time scales of intra-oceanic arc magmatism from combined U-Th and (U-Th)/He zircon geochronology of Dominica, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Howe, T. M.; Schmitt, A. K.; Lindsay, J. M.; Shane, P.; Stockli, D. F.

    2015-02-01

    The island of Dominica, located in the intra-oceanic Lesser Antilles arc, has produced a series of intermediate (mostly andesitic) lava domes and ignimbrites since the early Pleistocene. (U-Th)/He eruption ages from centers across the island range from ˜3 to ˜770 ka, with at least 10 eruptions occurring in the last 80 ka. Three eruptions occurred near the southern tip of Dominica (Plat Pays Volcanic Complex) in the past 15 ka alone. Zircon U-Th ages from individual centers range from near-eruption to secular equilibrium implicating protracted storage and recycling of zircons within the crust. Overlapping zircon crystallization peaks within deposits from geographically separated vents (up to 40 km apart) indicate that magma associated with separate volcanic edifices crystallized zircon contemporaneously. Two lava domes from the southern sector of the island display exclusively young zircon rim ages (<50 ka) with narrow crystallization peaks consistent with the construction of a new magma reservoir. The younging of eruption and crystallization ages implies that the magmatic foci leading to the construction of this reservoir have migrated southward, arc-parallel over time. Overall, our data support geochemical models for the ongoing construction of a silicic intrusive complex, consisting of varying amounts of crystal mush, beneath the island. U-Pb zircon ages <1-2 Ma indicate that accumulation of this complex is entirely Quaternary in age. Together zircon U-Th and U-Pb ages for Dominica suggest that the magmatic processes and time scales operating in intra-oceanic arcs are similar to those documented for continental arcs. This article was corrected on 18 MAR 2015. See the end of the full text for details.

  5. Detrital zircon geochronology support for Baja-BC hypothesis or Why zircons in the Nanaimo Basin, British Columbia are not from the Rocky Mountains.

    NASA Astrophysics Data System (ADS)

    Guest, B.; Matthews, W.; Hubbard, S. M.; Coutts, D. S.; Bain, H.

    2016-12-01

    The development of Cordilleran orogen of western North American is disputed despite a century of study. Paleomagnetic observations require large-scale dextral displacement of crustal fragments along the western margin of North America, from low latitudes to moderate latitudes during the Cretaceous-Paleogene. A lack of corroborating geological evidence for large-scale displacements has prevented the widespread integration of paleomagnetic data into contemporary tectonic models for the margin. Here we investigate the Cretaceous paleogeographic position of the Baja-BC block, a crustal fragment consisting of the Alexander and Wrangel terranes, using detrital zircons from the Nanaimo Basin of Vancouver Island, British Columbia. We compare 4310 detrital zircon U/Pb analyses from 16 samples to potential source areas in western North America to test hypothesized northern and southern paleogeographic positions. Our detrital zircon data suggest that sediment in the Nanaimo Basin derives from the Mojave-Sonoran Region of southwestern North America, supporting a southerly late Cretaceous paleogeographic position. We present a speculative Cretaceous to Paleogene paleogeographic reconstruction for the southwestern United States and northern Mexico that accommodates the presence, and northward transport, of the Baja-BC block. We propose that the Western Coast Mountains Batholith and the Nanaimo Basin represent the missing segment of the Mesozoic magmatic arc and associated forearc regions, between the Sierra Nevada and Peninsular Ranges Batholiths. This segment was translated northward following capture by the Kula plate. As such, we reconcile the paleomagnetic data for the Baja-BC block with the geology of the southwestern United States. Our model, albeit speculative, is compatible with the large-scale tectonic and magmatic processes that affected western North America in the Late Cretaceous and Paleogene.

  6. Zircon U-Pb geochronology and Sr-Nd-Pb-Hf isotopic constraints on the timing and origin of Mesozoic granitoids hosting the Mo deposits in northern Xilamulun district, NE China

    NASA Astrophysics Data System (ADS)

    Shu, Qihai; Lai, Yong; Zhou, Yitao; Xu, Jiajia; Wu, Huaying

    2015-12-01

    Located in the east section of the Central Asian orogen in northeastern China, the Xilamulun district comprises several newly discovered molybdenum deposits, primarily of porphyry type and Mesozoic ages. This district is divided by the Xilamulun fault into the southern and the northern parts. In this paper, we present new zircon U-Pb dating, trace elements and Hf isotope, and/or whole rock Sr-Nd-Pb isotopic results for the host granitoids from three Mo deposits (Yangchang, Haisugou and Shabutai) in northern Xilamulun. Our aim is to constrain the age and petrogenesis of these intrusions and their implications for Mo mineralization. Zircon U-Pb LA-ICP-MS dating shows that the monzogranites from the Shabutai and Yangchang deposits formed at 138.4 ± 1.5 and 137.4 ± 2.1 Ma, respectively, which is identical to the molybdenite Re-Os ages and coeval well with the other Mo deposits in this region, thereby indicating an Early Cretaceous magmatism and Mo mineralization event. Zircon Ce/Nd ratios from the mineralized intrusions are significantly higher than the barren granites, implying that the mineralization-related magmas are characterized by higher oxygen fugacity. These mineralized intrusions share similar zircon in-situ Hf and whole rock Sr-Nd isotopic compositions, with slightly negative to positive εHf(t) ranging from - 0.8 to + 10.0, restricted εNd(t) values from - 3.7 to + 1.6 but a little variable (87Sr/86Sr)i ratios between 0.7021 and 0.7074, indicative of formation from primary magmas generated from a dominantly juvenile lower crust source derived from depleted mantle, despite diverse consequent processes (e.g., magma mixing, fractional crystallization and crustal contamination) during their evolution. The Pb isotopes (whole rock) also show a narrow range of initial compositions, with (206Pb/204Pb)i = 18.03-18.88, (207Pb/204Pb)i = 15.48-15.58 and (208Pb/204Pb)i = 37.72-38.28, in agreement with Sr-Nd-Hf isotopes reflecting the dominance of a mantle component

  7. Zircon-pyrochlore ores of Proterozoic Gremyakha-Vyrmes polyphase massif, Kola Peninsula: source and evolution

    NASA Astrophysics Data System (ADS)

    Sorokhtina, Natalia; Belyatsky, Boris; Antonov, Anton; Kononkova, Natalia; Lepekhina, Elena; Kogarko, Lia

    2017-04-01

    zircon has polygenetic nature: some relics inherited from foidolite crystallized at about 800°C, whereas the newly formed - at 600°C [Watson et al., 2006]. The time interval of the magmatic massif formation may be estimated as long as 80-100 Ma only. The basic-ultrabasic rocks and foidolites were intruded consistently at 1982 ± 6 Ma and 1894±12 according to SHRIMP-II U-Pb zircon dating, but the whole-rock Sm-Nd isotope dating has resulted in 1879±99 Ma and reflects the impact of alkaline granite intrusion (1871±9 Ma). The late differentiates from alkaline magma crystallization were the main source of rare metals for zircon-pyrochlore ores of alkaline metasomatites. The metasomatic rocks (aegirinites, albitites) and carbonatites were formed as late as 1910 ± 15 Ma (SHRIMP-II U-Pb zircon, titanite, pyrochlore). While some pyrochlore grains from metasomatites are showed that U-Pb age of ore formation is 1766 ± 24 and 1764 ± 19 respectively. That can be attributed to additional source of rare metals connected with fluids formed during regional metamorphism 1750 m.y. ago [Glebovitskii et al., 2014]. The last probable source of rare-metal material and ore-deposit evolution stage (recrystallization) is established by individual pyrochlore grain Sm-Nd and U-Pb systems and evidences tectono-thermal activity at the Paleozoic plume magmatism, which was followed by structural and chemical mineral changes. The research was done within the framework of the scientific program of Russian Academy of Sciences and state contract K41.2014.014 with Sevzapnedra. References: Watson E. B., Wark D. A., Thomas J. B. Crystallization thermometers for zircon and rutile // Contrib. Mineral. Petrol. 2006. 151, 413-433. Glebovitskii V.A., Bushmin S.A., Belyatsky B.V., Bogomolov E.S., Borozdin A.P., Savva E.V., Lebedeva Y.M. Rb-Sr age of metasomatism and ore formation in the low-temperature shear zones of the Fenno-Karelian craton, Baltic Shield // Petrology. 2014. 22(2). 184-204. Sorokhtina N

  8. Zircon Trace Element Contents and Refined U-Pb Crystallization Ages for the Tatoosh Pluton, Mount Rainier National Park, Washington Cascades

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.; Du Bray, E. A.; John, D. A.; Mazdab, F. K.; Wooden, J. L.

    2008-12-01

    The 7x12 km Tatoosh pluton south of Mount Rainier consists of 4 petrographic/compositional phases, here termed Nisqually, Reflection, Pyramid, and Stevens, that intrude Tertiary volcanic and sedimentary wall and roof rocks; contacts between the 4 intrusive units are rarely exposed. We used the USGS-Stanford SHRIMP- RG to analyze, in a continuous session, zircons from each of 6 quartz monzodiorite (qmd), quartz monzonite (qm), or granodiorite (grd) samples for 206Pb/238U ages and, concurrently, U, Th, Hf, and REE concentrations. A round-robin procedure yielded statistically robust geochronological results. Ages that we reported previously (FM07) were compromised by instrument instability and by calibration differences between analytical sessions. Between 11 and 31 new analyses of zircons from each sample were evaluated using the TuffZirc and Umix Ages routines of Isoplot 3.41 (Ludwig, 2003). TuffZirc solidification ages for the intrusions are: Nisqually grd (Paradise Valley; 65.4% SiO2) 17.29 +0.37/-0.24 Ma, Nisqually grd (Christine Falls; 66.4%) 17.70 +0.30/-0.16 Ma, Reflection qm (Pinnacle Peak trail; 66.6%) 18.38 +0.45/-0.28 Ma, Pyramid qmd (58.5%) 18.58 +0.20/-0.15 Ma, Stevens grd (Stevens Canyon; 67.8%) 19.15 +0.15/-0.12 Ma, and Stevens grd (south of Louise Lake; 69.3%) 19.20 +0.31/-0.26 Ma (U-Th initial-disequilibrium corrected, ±2σ). Precision of the U-Pb data limits rigorous identification of antecrysts to those with ages ~1 Myr > solidification ages. Antecryst ages that produce subsidiary modes in relative probability diagrams for the two Stevens samples give weighted mean values of 20.18 ±0.26 Ma and 20.07 ±0.18 Ma. Wide ranges in trace element concentrations and ratios indicate that many analyzed zircons grew in highly fractionated residual liquids in high-crystallinity environments. Concentrations of Th and U in Tatoosh zircons vary by two orders of magnitude, cores tend to have higher Th, U, and Th/U than rims, and overgrowths that fill reentrants

  9. Detrital zircon geochronology of the Adams Argillite and Nation River Formation, east-central Alaska, U.S.A

    USGS Publications Warehouse

    Gehrels, G.E.; Johnsson, M.J.; Howell, D.G.

    1999-01-01

    The Cambrian Adams Argillite and the Devonian Nation River Formation are two sandstone-bearing units within a remarkably complete Paleozoic stratigraphic section in east-central Alaska. These strata, now foreshortened and fault-bounded, were originally contiguous with miogeoclinal strata to the east that formed as a passive-margin sequence along the northwestern margin of the North American continent. Seventy-five detrital zircon grains from the Adams Argillite and the Nation River Formation were analyzed in an effort to provide constraints on the original sources of the grains, and to generate a detrital zircon reference for miogeoclinal strata in the northern Cordillera. Thirty-five single zircon grains from a quartzite in the Adams Argillite yield dominant age clusters of 1047-1094 (n = 6), 1801-1868 (n = 10), and 2564-2687 (n = 5) Ma. Forty zircons extracted from a sandstone in the Nation River Formation yield clusters primarily of 424-434 (n = 6), 1815-1838 (n = 6), 1874-1921 (n = 7), and 2653-2771 (n = 4) Ma. The Early Proterozoic and Archean grains in both units probably originated in basement rocks in a broad region of the Canadian Shield. In contrast, the original igneous sources for mid-Protcrozoic grains in the Adams Argillite and ??? 430 Ma grains in the Nation River Formation are more difficult to identify. Possible original sources for the mid-Proterozoic grains include: (1) the Grenville Province of eastern Laurentia, (2) the Pearya terrane along the Arctic margin, and (3) mid-Proterozoic igneous rocks that may have been widespread along or outboard of the Cordilleran margin. The ??? 430 Ma grains may have originated in: (1) arc-type sources along the Cordilleran margin, (2) the Caledonian orogen, or (3) a landmass, such as Pearya, Siberia, or crustal fragments now in northern Asia, that resided outboard of the Innuitian orogen during mid-Paleozoic time. Copyright ?? 1999, SEPM (Society for Sedimentary Geology).

  10. SHRIMP-RG U-Pb ages of provenance and metamorphism from detrital zircon populations and Pb-Sr-Nd signatures of prebatholithic metasedimentary rocks at Searl Ridge, northern Peninsular Ranges batholith, southern California: Implications for their age, origin, and tectonic setting

    USGS Publications Warehouse

    Premo, Wayne R.; Morton, Douglas M.

    2014-01-01

    Twenty-four samples were collected from prebatholithic metasedimentary rocks along Searl Ridge, the north rim of the Diamond Valley Reservoir, Domenigoni Valley, centrally located in the northern Peninsular Ranges of southern California. These rocks exhibit progressive metamorphism from west to east across fundamental structural discontinuities now referred to as a “transition zone.” Documented structural and mineralogical changes occur across this metamorphic gradient. Sensitive high-resolution ion microprobe–reverse geometry (SHRIMP-RG) U-Pb ages were obtained from detrital zircons from metasedimentary rocks through the transition zone. To the west, metapelitic and minor metasandstone units yielded numerous concordant 206Pb/238U ages between 210 and 240 Ma, and concordant 207Pb/206Pb ages at 1075–1125 Ma, 1375–1430 Ma, and 1615–1735 Ma, although distinct differences in provenance were noted between units. A few older 207Pb/206Pb ages obtained were ca. 2250 Ma and ca. 2800 Ma. Rocks of the eastern part of the transition zone include high-grade paragneisses that yielded numerous concordant 206Pb/238U ages between 103 and 123 Ma and between 200 and 255 Ma, and concordant 207Pb/206Pb ages at 1060–1150 Ma, 1375–1435 Ma, and 1595–1710 Ma. Some zircon results from these high-grade gneisses are marked by distinct Pb-loss discordia with lower-intercept ages of ca. 215 Ma and Paleoproterozoic upper-intercept ages. Younger ages between 100 and 105 Ma are mainly obtained from rims of some zircon grains that are characterized by low Th/U values (<0.1) and high U contents (>1000 ppm), indicating the likelihood of metamorphic zircon growth at that time. The similarity of zircon age populations between western and eastern units through the transition zone indicates that this fundamental structure probably dissects sediments of the same basin. This supposition is further supported by initial whole-rock Pb-Sr-Nd isotopic data that show similar average

  11. Zircon ion microprobe dating of high-grade rocks in Sri Lanka

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroener, A.; Williams, I.S.; Compston, W.

    1987-11-01

    The high-grade gneisses of Sri Lanka display spectacular in-situ granulitization phenomena similar to those observed in southern India and of current interest for evolutionary models of the lower continental crust. The absolute ages of these rocks are poorly constrained and so, using the SHRIMP ion microprobe, the authors have analyzed small spots on zircons from upper amphibolite to granulite grade quartzitic and pelitic metasediments. Detrital grains from a metaquartzite of the Highland Group preserve premetamorphic U-Pb ages of between 3.17 and 2.4 Ga and indicate derivation of the sediment from an unidentified Archean source terrain. The Pb-loss patterns of thesemore » zircons and the other samples suggest severe disturbance at ca 1100 Ma ago, which the authors attribute to high-grade regional metamorphism. Two pelitic gneisses contain detrital zircons with ages up to 2.04 Ga and also record an approx. = 1100 Ma event that is also apparent from metamorphic rims around old cores and new zircon growth. A granite intrusive into the Highland Group granulites records an emplacement age of 1000-1100 Ma as well as metamorphic disturbance some 550 Ma ago but also contains older, crustally derived xenocrysts. Zircons from a metaquartzite xenolith within the granitoid Vijayan Complex are not older than approx. 1100 Ma; therefore the Vijayan is neither Archean in age nor acted as basement to the Highland Group, as previously proposed. The authors suggest that the Vijayan Complex formed significantly later than the Highland Group and that the two units were brought into contact through post-1.1 Ga thrusting. Although the granulitization phenomena in India and Sri Lanka are similar, the granulite event in Sri Lanka is not Archean in age but took place in the late Proterozoic.« less

  12. Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: An example from the Spirit Mountain batholith, Nevada

    USGS Publications Warehouse

    Lowery, Claiborne L.E.; Miller, C.F.; Walker, B.A.; Wooden, J.L.; Mazdab, F.K.; Bea, F.

    2006-01-01

    Zirconium and Hf are nearly identical geochemically, and therefore most of the crust maintains near-chondritic Zr/Hf ratios of ???35-40. By contrast, many high-silica rhyolites and granites have anomalously low Zr/Hf (15-30). As zircon is the primary reservoir for both Zr and Hf and preferentially incorporates Zr, crystallization of zircon controls Zr/ Hf, imprinting low Zr/Hf on coexisting melt. Thus, low Zr/Hf is a unique fingerprint of effective magmatic fractionation in the crust. Age and compositional zonation in zircons themselves provide a record of the thermal and compositional histories of magmatic systems. High Hf (low Zr/ Hf) in zircon zones demonstrates growth from fractionated melt, and Ti provides an estimate of temperature of crystallization (TTiZ) (Watson and Harrison, 2005). Whole-rock Zr/Hf and zircon zonation in the Spirit Mountain batholith, Nevada, document repeated fractionation and thermal fluctuations. Ratios of Zr/Hf are ???30-40 for cumulates and 18-30 for high-SiO2 granites. In zircons, Hf (and U) are inversely correlated with Ti, and concentrations indicate large fluctuations in melt composition and TTiZ (>100??C) for individual zircons. Such variations are consistent with field relations and ion-probe zircon geochronology that indicate a >1 million year history of repeated replenishment, fractionation, and extraction of melt from crystal mush to form the low Zr/Hf high-SiO2 zone. ?? 2006 The Mineralogical Society.

  13. SHRIMP U-Pb ages of xenotime and monazite from the Spar Lake red bed-associated Cu-Ag deposit, western Montana: Implications for ore genesis

    USGS Publications Warehouse

    Aleinikoff, John N.; Hayes, Timothy S.; Evans, Karl V.; Mazdab, Frank K.; Pillers, Renee M.; Fanning, C. Mark

    2012-01-01

    Xenotime occurs as epitaxial overgrowths on detrital zircons in the Mesoproterozoic Revett Formation (Belt Supergroup) at the Spar Lake red bed-associated Cu-Ag deposit, western Montana. The deposit formed during diagenesis of Revett strata, where oxidizing metal-bearing hydrothermal fluids encountered a reducing zone. Samples for geochronology were collected from several mineral zones. Xenotime overgrowths (1–30 μm wide) were found in polished thin sections from five ore and near-ore zones (chalcocite-chlorite, bornite-calcite, galena-calcite, chalcopyrite-ankerite, and pyrite-calcite), but not in more distant zones across the region. Thirty-two in situ SHRIMP U-Pb analyses on xenotime overgrowths yield a weighted average of 207Pb/206Pb ages of 1409 ± 8 Ma, interpreted as the time of mineralization. This age is about 40 to 60 m.y. after deposition of the Revett Formation. Six other xenotime overgrowths formed during a younger event at 1304 ± 19 Ma. Several isolated grains of xenotime have 207Pb/206Pb ages in the range of 1.67 to 1.51 Ga, and thus are considered detrital in origin. Trace element data can distinguish Spar Lake xenotimes of different origins. Based on in situ SHRIMP analysis, detrital xenotime has heavy rare earth elements-enriched patterns similar to those of igneous xenotime, whereas xenotime overgrowths of inferred hydrothermal origin have hump-shaped (i.e., middle rare earth elements-enriched) patterns. The two ages of hydrothermal xenotime can be distinguished by slightly different rare earth elements patterns. In addition, 1409 Ma xenotime overgrowths have higher Eu and Gd contents than the 1304 Ma overgrowths. Most xenotime overgrowths from the Spar Lake deposit have elevated As concentrations, further suggesting a genetic relationship between the xenotime formation and Cu-Ag mineralization.

  14. HAFNIAN ZIRCONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Knorring, O.; Hornung, G.

    1961-06-17

    Two hafnia zircons were examined in detail, one from Mtoko in Southern Rhodesia, containing 21% HfO/sub 2/, and the other from Karibib in South-West Africa, with 31% HfO/sub 2/. In both cases the zircons are associated with the later tantalum-rich phase of mineralization. The Mtoko zircon forms small, mauve- colored, independent crystals in the albitic zone of the pegmatite. The zircon from Karibib occurs in larger reddish-brown masses, partly intergrown with minute manganotantalite crystals and set in a matrix of lithium-bearing mica, albite, quartz and kaolinized feldspar. Some crystals show dominant pyramid faces, with a suppressed prism. Both zircons exhibitmore » an intense golden-yellow fluorescence in UV light. The zircon from Karibib was found to be only weakly radioactive. Data are given concerning various properties of the two zircons. (P.C.H.)« less

  15. Contrasting sources of Late Paleozoic rhyolite magma in the Polish Lowlands: evidence from U-Pb ages and Hf and O isotope composition in zircon

    NASA Astrophysics Data System (ADS)

    Słodczyk, Elżbieta; Pietranik, Anna; Glynn, Sarah; Wiedenbeck, Michael; Breitkreuz, Christoph; Dhuime, Bruno

    2018-02-01

    The Polish Lowlands, located southwest of the Teisseyre-Tornquist Zone, within Trans-European Suture Zone, were affected by bimodal, but dominantly rhyolitic, magmatism during the Late Paleozoic. Thanks to the inherited zircon they contain, these rhyolitic rocks provide a direct source of information about the pre-Permian rocks underlying the Polish Lowland. This paper presents zircon U-Pb geochronology and Hf and O isotopic results from five drill core samples representing four rhyolites and one granite. Based on the ratio of inherited vs. autocrystic zircon, the rhyolites can be divided into two groups: northern rhyolites, where autocrystic zircon is more abundant and southern rhyolites, where inherited zircon dominates. We suggest that the magma sources and the processes responsible for generating high silica magmas differ between the northern and southern rhyolites. Isotopically distinct sources were available during formation of northern rhyolites, as the Hf and O isotopes in magmatic zircon differ between the two analysed localities of northern rhyolites. A mixing between magmas formed from Baltica-derived mudstone-siltstone sediments and Avalonian basement or mantle can explain the diversity between the zircon compositions from the northern localities Daszewo and Wysoka Kamieńska. Conversely, the southern rhyolites from our two localities contain zircon with similar compositions, and these units can be further correlated with results from the North East German Basin, suggesting uniform source rocks over this larger region. Based on the ages of inherited zircon and the isotopic composition of magmatic ones, we suggest that the dominant source of the southern rhyolites is Variscan foreland sediments mixed with Baltica/Avalonia-derived sediments.

  16. Annealing effects on cathodoluminescence of zircon

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Y.; Nishido, H.; Noumi, Y.

    2011-12-01

    U-Pb zircon dating (e. g., SHRIMP) is an important tool to interpret a history of the minerals at a micrometer-scale, where cathodoluminescence (CL) imaging allows us to recognize internal zones and domains with different chemical compositions and structural disorder at high spatial resolution. The CL of zircon is attributed by various types of emission centers, which are extrinsic ones such as REE impurities and intrinsic ones such as structural defects. Metamictization resulted from radiation damage to the lattice by alpha particles from the decay of U and Th mostly causes an effect on the CL features of zircon as a defect center. However, slightly radiation-damaged zircon, which is almost nondetectable by XRD, has not been characterized using CL method. In this study, annealing effects on CL of zircon has been investigated to clarify a recovery process of the damaged lattice at low radiation dose. A single crystal of zircon from Malawi was selected for CL measurements. It contains HfO2: 2.30 w.t %, U: 241 ppm and Th: 177 ppm. Two plate samples perpendicular to c and a axes were prepared for annealing experiments during 12 hours from room temperature to 1400 degree C. Color CL images were captured using a cold-cathode microscope (Luminoscope: Nuclide ELM-3R). CL spectral measurements were conducted using an SEM (JEOL: JSM-5410) combined with a grating monochromator (Oxford: Mono CL2) to measure CL spectra ranging from 300 to 800 nm in 1 nm steps with a temperature controlled stage. The dispersed CL was collected by a photoncounting method using a photomultiplier tube (Hamamatsu: R2228) and converted to digital data. All CL spectra were corrected for the total instrumental response. Spectral analysis reveals an anisotropy of the CL emission bands related to intrinsic defect center in blue region, radiation-induced defect center from 500 to 700 nm, and trivalent Dy impurity center at 480 and 580 nm, but their relative intensities are almost constant. CL on the

  17. Mixture modeling of multi-component data sets with application to ion-probe zircon ages

    NASA Astrophysics Data System (ADS)

    Sambridge, M. S.; Compston, W.

    1994-12-01

    A method is presented for detecting multiple components in a population of analytical observations for zircon and other ages. The procedure uses an approach known as mixture modeling, in order to estimate the most likely ages, proportions and number of distinct components in a given data set. Particular attention is paid to estimating errors in the estimated ages and proportions. At each stage of the procedure several alternative numerical approaches are suggested, each having their own advantages in terms of efficency and accuracy. The methodology is tested on synthetic data sets simulating two or more mixed populations of zircon ages. In this case true ages and proportions of each population are known and compare well with the results of the new procedure. Two examples are presented of its use with sets of SHRIMP U-238 - Pb-206 zircon ages from Palaeozoic rocks. A published data set for altered zircons from bentonite at Meishucun, South China, previously treated as a single-component population after screening for gross alteration effects, can be resolved into two components by the new procedure and their ages, proportions and standard errors estimated. The older component, at 530 +/- 5 Ma (2 sigma), is our best current estimate for the age of the bentonite. Mixture modeling of a data set for unaltered zircons from a tonalite elsewhere defines the magmatic U-238 - Pb-206 age at high precision (2 sigma +/- 1.5 Ma), but one-quarter of the 41 analyses detect hidden and significantly older cores.

  18. U-Pb Detrital Zircon Geochronologic Constraints on Depositional Age and Sediment Source Terrains of the Late Paleozoic Tepuel-Genoa Basin

    NASA Astrophysics Data System (ADS)

    Griffis, N. P.; Montanez, I. P.; Isbell, J.; Gulbranson, E. L.; Wimpenny, J.; Yin, Q. Z.; Cúneo, N. R.; Pagani, M. A.; Taboada, A. C.

    2014-12-01

    The late Paleozoic Ice Age (LPIA) is the longest-lived icehouse of the Phanerozoic and the only time a metazoan dominated and vegetated world transitioned from an icehouse climate into a greenhouse. Despite several decades of research, the timing, extent of glaciation and the location of ice centers remain unresolved, which prohibits reconstruction of ice volume. The Permo-Carboniferous sediments in the Tepuel-Genoa Basin, Patagonia contains a near complete record of sedimentation from the lower Carboniferous through lower Permian. Outsized clasts, thin pebble-rich diamictites and slumps represent the last of the late Paleozoic glacially influenced deep-water marine sediments in the Mojón de Hierro Fm. and the Paleozoic of Patagonia. U-Pb analysis of detrital zircons separated from slope sediments reveal groupings (20 myr bins, n≥5 zircons) with peak depositional ages of 420, 540 to 660 and 1040 Ma. Zircon age populations recovered from the Mojón de Hierro Fm. compare well with bedrock ages of the Deseado Massif of SE Patagonia, suggesting this may be a potential source of sediments. The maximum depositional age of the sediments is 306.05 ± 3.7 Ma (2σ) as determined by the median age of the two youngest concordant zircons that overlap in error. The youngest zircon from the analysis yields a 238U/206Pb age of 301.3 ± 4.5 Ma (2σ; MSWD = 2.3). Younger zircons from the analysis compare well with the age of granite bedrock exposed along the basin margin to the E-NE suggesting they may reflect a more proximal source. These data, which indicate a maximum age of late Carboniferous for the Mojón de Hierro Fm, provide the first geochemical constraints for the timing of final deposition of glaciomarine sediments in the Tepuel-Genoa Basin, and contributes to the biostratigraphic correlation of the late Paleozoic succession in Patagonia with other key LPIA basins that has thus far been hindered by faunal provincialism.

  19. U-Pb zircon geochronology of the Paleoproterozoic Tagragra de Tata inlier and its Neoproterozoic cover, western Anti-Atlas, Morocco

    USGS Publications Warehouse

    Walsh, G.J.; Aleinikoff, J.N.; Benziane, F.; Yazidi, A.; Armstrong, T.R.

    2002-01-01

    New U-Pb zircon data obtained by sensitive high resolution ion microprobe (SHRIMP) from the Tagragra de Tata inlier in the western Anti-Atlas, Morocco establish Paleoproterozoic ages for the basement schists, granites, and metadolerites, and a Neoproterozoic age for an ignimbrite of the Ouarzazate Series in the cover sequence. The age of interbedded felsic metatuff in the metasedimentary and metavolcanic sequence of the basement schists is 2072 ?? 8 Ma. This date represents: (1) the first reliable age from the metasedimentary and metavolcanic sequence; (2) the oldest reliable age for the basement of the Anti-Atlas; (3) the first date on the timing of deposition of the sediments on the northern edge of the Paleoproterozoic West African craton; (4) a lower age limit on deformation during the Eburnean orogeny; and (5) the first date obtained from the non-granitic Paleoproterozoic basement of Morocco. Ages of 2046 ?? 7 Ma (Targant granite) and 2041 ?? 6 Ma (Oudad granite) support earlier interpretations of a Paleoproterozoic Eburnean igneous event in the Anti-Atlas. The granites post-date the Eburnean D1 deformation event in the Paleoproterozoic schist sequence, and place a ???2046 Ma limit on short-lived Eburnean deformation in the area. Cross-cutting metadolerite is 2040 ?? 6 Ma; this is the first date from a metadolerite in the western Anti-Atlas. All of the dolerites in the area post-date emplacement of the two granites and the new age constrains the onset of late- or post-Eburnean extension. Ignimbrite of the Ouarzazate Series, immediately above the Paleoproterozoic basement is 565 ?? 7 Ma. This Neoproterozoic age agrees with ages of similar volcanic rocks elsewhere from the Ouarzazate Series. The date also agrees with the ages of associated hypabyssal intrusions, and marks the second and final stage of Pan-African orogenic activity in the western Anti-Atlas. ?? 2002 Elsevier Science B.V. All rights reserved.

  20. Pervasive remagnetization of detrital zircon host rocks in the Jack Hills, Western Australia and implications for records of the early geodynamo

    NASA Astrophysics Data System (ADS)

    Weiss, Benjamin P.; Maloof, Adam C.; Tailby, Nicholas; Ramezani, Jahandar; Fu, Roger R.; Hanus, Veronica; Trail, Dustin; Bruce Watson, E.; Harrison, T. Mark; Bowring, Samuel A.; Kirschvink, Joseph L.; Swanson-Hysell, Nicholas L.; Coe, Robert S.

    2015-11-01

    It currently is unknown when Earth's dynamo magnetic field originated. Paleomagnetic studies indicate that a field with an intensity similar to that of the present day existed 3.5 billion years ago (Ga). Detrital zircon crystals found in the Jack Hills of Western Australia are some of the very few samples known to substantially predate this time. With crystallization ages ranging from 3.0-4.38 Ga, these zircons might preserve a record of the missing first billion years of Earth's magnetic field history. However, a key unknown is the age and origin of magnetization in the Jack Hills zircons. The identification of >3.9 Ga (i.e., Hadean) field records requires first establishing that the zircons have avoided remagnetization since being deposited in quartz-rich conglomerates at 2.65-3.05 Ga. To address this issue, we have conducted paleomagnetic conglomerate, baked contact, and fold tests in combination with U-Pb geochronology to establish the timing of the metamorphic and alteration events and the peak temperatures experienced by the zircon host rocks. These tests include the first conglomerate test directly on the Hadean-zircon bearing conglomerate at Erawandoo Hill. Although we observed little evidence for remagnetization by recent lightning strikes, we found that the Hadean zircon-bearing rocks and surrounding region have been pervasively remagnetized, with the final major overprinting likely due to thermal and/or aqueous effects from the emplacement of the Warakurna large igneous province at ∼1070 million years ago (Ma). Although localized regions of the Jack Hills might have escaped complete remagnetization, there currently is no robust evidence for pre-depositional (>3.0 Ga) magnetization in the Jack Hills detrital zircons.

  1. Pan-Africa/Pan-Brazilian detrital zircons in Lower Palaeozoic schists of SW Norway - enigmatic detrital zircon U-Pb ages

    NASA Astrophysics Data System (ADS)

    Zimmermann, Udo; Bjørheim, Maren; Clark, Chris

    2013-04-01

    We present Sensitive High Resolution Ion Microprobe (SHRIMP) U-Pb zircon age data from metasedimentary rocks (schists and quartzites) located in the town of Stavanger (SW Norway). The metasedimentary sequence is composed of schists, medium grained quartz-rich metawackes and quartzites. Quartzites and meta-quartz-wackes exhibit a mylonitic fabric with newly grown fine-grained muscovite defining the fabric. Accessory minerals are zircon, allanite, detrital apatite, monazite, ilmenite, rutile and zircon. The schists are dark and dominated by quartz and feldspar in a fine chloritic and silica-rich matrix and represent the dominant lithology of the region. While quartzites and metawackes show typical geochemical characteristics for strongly reworked rocks, the schists have very low Zr/Sc and Th/Sc ratios below 0.9 and point together with other trace element ratios (La/Sc, Ti/Zr) to the strong influence of less fractionated, mafic, sources in the detritus, possibly arc derived. U-Pb ages of detrital zircon from quartzites range between 740 to 1800 Ma. There is a defined population at 1135 and 1010 Ma tentatively correlated with the Sveconorwegian orogeny. A second population at ~1450 Ma that can be related to a tectono-magmatic event during the Earliest Mesoproterozoic, also recorded in Oslo, southern Sweden and Bornholm, mapped along the proposed southern margin of Baltica. Other detrital zircons record ages between 1586 - 1664 Ma that are not related to the latter event. The oldest U-Pb detrital zircon grain age was 1796 Ma and is potentially associated with the terminal phase of the Svecofennian orogeny. Detrital zircons from the associated schists do show a similar abundance of main age clusters but the oldest found zircons dates to 2013 Ma while the maximum depositional age could be determined by grains of Cambrian to even Ordovician ages with a large 1 sigma error, as such that we rather propose a Cambrian maximum depositional age. It is possible to speculate that

  2. New U Pb SHRIMP zircon age for the Schurwedraai alkali granite: Implications for pre-impact development of the Vredefort Dome and extent of Bushveld magmatism, South Africa

    NASA Astrophysics Data System (ADS)

    Graham, I. T.; De Waal, S. A.; Armstrong, R. A.

    2005-12-01

    The Schurwedraai alkali granite is one of a number of prominent ultramafic-mafic and felsic intrusions in the Neoarchaean to Palaeoproterozoic sub-vertical supracrustal collar rocks of the Vredefort Dome, South Africa. The alkali granite intruded the Neoarchaean Witwatersrand Supergroup and has a peralkaline to peraluminous composition. A new zircon SHRIMP crystallization age of 2052 ± 14 Ma for the Schurwedraai alkali granite places it statistically before the Vredefort impact event at 2023 ± 4 Ma and within the accepted emplacement interval of 2050-2060 Ma of the Bushveld magmatic event. The presence of the alkali granite and associated small ultramafic-mafic intrusions in the Vredefort collar rocks extends the southern extremity of Bushveld-related intrusions to some 120 km south of Johannesburg and about 150 km south of the current outcrop area of the Bushveld Complex. The combined effect of these ultramafic-mafic and felsic bodies may have contributed to a pronouncedly steep pre-impact geothermal gradient in the Vredefort area, and to the amphibolite-grade metamorphism observed in the supracrustal collar rocks of the Vredefort Dome.

  3. Development of the Archaean Mallina Basin, Pilbara Craton, northwestern Australia; a study of detrital and inherited zircon ages

    NASA Astrophysics Data System (ADS)

    Smithies, R. H.; Nelson, D. R.; Pike, G.

    2001-06-01

    SHRIMP U-Pb zircon dates are combined with an examination of the age distribution patterns and provenance of both detrital zircons and of zircon xenocrysts in granites to investigate the development of the Archaean Mallina Basin, in the granite-greenstone terrain of the Pilbara Craton, northwestern Australia. The oldest dated components of the basin are c. 3010 Ma volcaniclastic rocks in the western part of the area. New data indicate that siliciclastic turbidites that dominate the southern and eastern part of the basin were deposited at or after c. 2970 Ma but before c. 2955 Ma. Linking both the detrital zircon populations as well as zircon xenocrysts from granites that intruded the Mallina Basin to well-dated areas of the Pilbara granite-greenstone terrane indicates that the sediment was derived from the south, north, northwest, and east. The basin probably evolved primarily in an intracontinental setting between two elevated land masses to the southeast and northwest. Most of the rocks within the basin were folded before intrusion of granites, the oldest of which has been dated at 2954±4 Ma. Evidence of a second depositional cycle is provided by a maximum depositional age of 2941±9 Ma, indicated by a detrital zircon population from a sample of wacke from the southeast part of the Mallina Basin. This second depositional phase may have been related to renewed extension, and recycling of sedimentary rocks within the basin.

  4. Riftogenic magmatism of western part of the Early Mesozoic Mongolian-Transbaikalian igneous province: Results of geochronological studies

    NASA Astrophysics Data System (ADS)

    Yarmolyuk, V. V.; Kozlovsky, A. M.; Salnikova, E. B.; Travin, A. V.; Kudryashova, E. A.

    2017-08-01

    Geochronological studies of rocks from a bimodal high-alkali volcanic-plutonic complex collected in the area of Kharkhorin zone of the Early Mesozoic Mongolian-Transbaikalian igneous province (MTIP) are made. The age of alkali granites from Olziit sum is 211 ± 1 Ma (U-Pb ID-TIMS on zircon) to 209 ± 2 and 217 ± 4 Ma (40Ar/39Ar on alkali amphibole); the age of alkali granite-porphyries from the area of Sant sum is 206 ± 1 Ma (U-Pb ID-TIMS on zircon). These rock series formed syncronously to the analogous magmatism episode in the Northern Gobi and Western Transbaikalian rift zones of the MTIP. The similarity of the age and composition of igneous associations of the MTIP suggests a common mechanism of its formation related to the effect of a mantle plume on the continental lithosphere at the base of the entire igneous zone having a zonal structure.

  5. U-Pb zircon geochronology of Mesoproterozoic postorogenic rocks and implications for post-Ottawan magmatism and metallogenesis, New Jersey Highlands and contiguous areas, USA

    USGS Publications Warehouse

    Volkert, R.A.; Zartman, R.E.; Moore, P.B.

    2005-01-01

    Postorogenic rocks are widespread in Grenville terranes of the north-central Appalachians where they form small, discordant, largely pegmatitic felsic intrusive bodies, veins, and dikes, and also metasomatic calcic skarns that are unfoliated and postdate the regional 1090 to 1030 Ma upper amphibolite- to granulite-facies metamorphism related to the Grenville (Ottawan) Orogeny. Zircons from magmatic and nonmagmatic rocks from northern New Jersey and southern New York were dated to provide information on the regional tectonomagmatic and metallogenic history following Ottawan orogenesis. We obtained U-Th-Pb zircon ages of 1004 ?? 3 Ma for pegmatite associated with the 1020 ?? 4 Ma Mount Eve Granite near Big Island, New York, 986 ?? 4 Ma for unfoliated, discordant pegmatite that intrudes supracrustal marble at the Buckwheat open cut, Franklin, New Jersey, ???990 Ma for a silicate-borate skarn layer in the Franklin Marble at Rudeville, New Jersey, and 940 ?? 2 Ma for a calc-silicate skarn layer at Lower Twin Lake, New York. This new data, together with previously published ages of 1020 ?? 4 to 965 ?? 10 Ma for postorogenic rocks from New Jersey and southern New York, provide evidence of magmatic activity that lasted for up to 60 Ma past the peak of high-grade metamorphism. Postorogenic magmatism was almost exclusively felsic and involved relatively small volumes of metaluminous to mildly peraluminous melt that fractionated from an A-type granite parent source. Field relationships suggest the melts were emplaced along lithosphere-scale fault zones in the Highlands that were undergoing extension and that emplacement followed orogenic collapse by least 30 Ma. Postorogenic felsic intrusions correspond to the niobium-yttrium-fluorine (NYF) class of pegmatites of C??erny?? (1992a). Geochronologic data provide a temporal constraint on late-stage hydrothermal activity and a metallogenic event in New Jersey at ???990 to 940 Ma that mineralized pegmatites with subeconomic to

  6. Young cumulate complex beneath Veniaminof caldera, Aleutian arc, dated by zircon in erupted plutonic blocks

    USGS Publications Warehouse

    Bacon, C.R.; Sison, T.W.; Mazdab, F.K.

    2007-01-01

    Mount Veniaminof volcano, Alaska Peninsula, provides an opportunity to relate Quaternary volcanic rocks to a coeval intrusive complex. Veniaminof erupted tholeiitic basalt through dacite in the past ???260 k.y. Gabbro, diorite, and miarolitic granodiorite blocks, ejected 3700 14C yr B.P. in the most recent caldera-forming eruption, are fragments of a shallow intrusive complex of cumulate mush and segregated vapor-saturated residual melts. Sensitive high-resolution ion microprobe (SHRIMP) analyses define 238U-230Th isochron ages of 17.6 ?? 2.7 ka, 5+11/-10 ka, and 10.2 ?? 4.0 ka (2??) for zircon in two granodiorites and a diorite, respectively. Sparse zircons from two gabbros give 238-230Th model ages of 36 ?? 8 ka and 26 ?? 7 ka. Zircons from granodiorite and diorite crystallized in the presence of late magmatic aqueous fluid. Although historic eruptions have been weakly explosive Strombolian fountaining and small lava effusions, the young ages of plutonic blocks, as well as late Holocene dacite pumice, are evidence that the intrusive complex remains active and that evolved magmas can segregate at shallow levels to fuel explosive eruptions. ?? 2007 The Geological Society of America.

  7. Zircon morphology and U-Pb geochronology of seven metaluminous and peralkaline post-orogenic granite complexes of the Arabian Shield, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Aleinikoff, John Nicholas; Stoeser, D.B.

    1988-01-01

    The U-Pb zircon method was used to determine the ages of seven metaluminous-to-peralkaline post-orogenic granites located throughout the Late Proterozoic Arabian Shield of Saudi Arabia. Zircons from the metaluminous rocks are prismatic, with length-to-width ratios of about 2-4:1 and small pyramidal terminations. In contrast, zircons from three of the four peralkaline complexes either lack well developed prismatic faces (are pseudo-octahedral) or are anhedral. Some of the zircons from the peralkaline granites contain inherited radiogenic lead. This complicates interpretation of the isotopic data and. in many cases, may make the U-Pb method unsuitable for determining the age of a peralkaline granite. Zircons in the metaluminous granites do not contain inheritance and thus, best-fit chords calculated through the data have upper concordia intercepts that indicate the age of intrusion, and lower intercepts that indicate simple episodic lead loss. The results show that these granites were emplaced during multiple intrusive episodes from 670 to 510 Ma (Late Proterozoic to Cambrian).

  8. Paleozoic and Paleoproterozoic Zircon in Igneous Xenoliths Assimilated at Redoubt Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.; Vazquez, J. A.; Wooden, J. L.

    2010-12-01

    Historically active Redoubt Volcano is a basalt-to-dacite cone constructed upon the Jurassic-early Tertiary Alaska-Aleutian Range batholith. New SHRIMP-RG U-Pb age and trace-element concentration results for zircons from gabbroic xenoliths and crystal-rich andesitic mush from a late Pleistocene pyroclastic deposit indicate that ~310 Ma and ~1865 Ma igneous rocks underlie Redoubt at depth. Two gabbros have sharply terminated prismatic zircons that yield ages of ~310 Ma. Zircons from a crystal mush sample are overwhelmingly ~1865 Ma and appear rounded due to incomplete dissolution. Binary plots of element concentrations or ratios show clustering of data for ~310-Ma grains and markedly coherent trends for ~1865-Ma grains; e.g., ~310-Ma grains have higher Eu/Eu* than most of the ~1865-Ma grains, the majority of which form a narrow band of decreasing Eu/Eu* with increasing Hf content which suggests that ~1865-Ma zircons come from igneous source rocks. It is very unlikely that detrital zircons from a metasedimentary rock would have this level of homogeneity in age and composition. One gabbro contains abundant ~1865 Ma igneous zircons, ~300-310 Ma fluid-precipitated zircons characterized by very low U and Th concentrations and Th/U ratios, and uncommon ~100 Ma zircons. We propose that (1) ~310 Ma gabbro xenoliths from Redoubt Volcano belong to the same family of plutons dated by Aleinikoff et al. (USGS Circular 1016, 1988) and Gardner et al. (Geology, 1988) located ≥500 km to the northeast in basement rocks of the Wrangellia and Alexander terranes and (2) ~1865 Ma zircons are inherited from igneous rock, potentially from a continental fragment that possibly correlates with the Fort Simpson terrane or Great Bear magmatic zone of the Wopmay Orogen of northwestern Laurentia. Possibly, elements of these Paleoproterozoic terranes intersected the Paleozoic North American continental margin where they may have formed a component of the basement to the Wrangellia

  9. Zircon U-Pb Ages Chronicle 3 Myr of Episodic Crystallization in the Composite Miocene Tatoosh Pluton, Mount Rainier National Park, Washington Cascades

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.; Du Bray, E. A.; Wooden, J. L.; Mazdab, F. K.

    2007-12-01

    Zircon geochronology of upper crustal plutons can constrain longevities of intermediate to silicic magmatic systems. As part of a larger study of the geochemistry and metallogeny of Tertiary Cascades magmatic arc rocks, we used the USGS-Stanford SHRIMP RG to determine 20 to 28 238U-206Pb ages for zircons from each of 6 quartz monzodiorite (qmd), quartz monzonite (qm), or granodiorite (grd) samples representative of the Tatoosh pluton, and one grd from the nearby Carbon River stock. The 7x12 km composite Tatoosh pluton, discontinuously exposed on the south flank of Mount Rainier, consists of at least 4 petrographic/compositional phases, here termed Pyramid Peak, Nisqually, Reflection Lake, and Tatoosh. These collectively intrude gently folded and weakly metamorphosed basaltic andesite flows and volcaniclastic rocks of the Eocene Ohanapecosh Formation, silicic ignimbrites and sedimentary rocks of the Oligocene Stevens Ridge Formation, and basaltic to intermediate volcanic rocks of the Miocene Fifes Peak Formation. Histograms and relative probability plots of U- Pb ages indicate 2 to 4 age populations within each sample. The weighted mean age of each of the youngest populations (all ±2σ) is interpreted as the time of final solidification: Pyramid Peak qmd (58.5% SiO2) 17.4±0.2 Ma, Nisqually grd (in Paradise Valley; 65.4% SiO2) 16.7±0.2 Ma, Nisqually grd (at Christine Falls; 66.4% SiO2) 17.3±0.2 Ma, Reflection Lake qm (along Pinnacle Peak trail; 66.6% SiO2) 17.1±0.2 Ma, Tatoosh grd (in Stevens Canyon; 67.8% SiO2) 18.2±0.2 Ma, Tatoosh grd (south of Louise Lake; 69.3% SiO2) 19.3±0.1 Ma, and Carbon River grd (68.0% SiO2) 17.4±0.3 Ma. The older Nisqually grd age is indistinguishable from a TIMS zircon age of 17.5±0.1 Ma reported by Mattinson (GSA Bulletin 88:1509-1514, 1977) for grd from a nearby locality. None of the 164 SHRIMP-RG U-Pb ages, including cores, is older than 21 Ma. The relatively small, high-level pluton likely was emplaced and solidified in pulses

  10. U-Pb SHRIMP II age and origin of zircon from lhertzolite of the bug Paleoarchean complex, Ukrainian Shield

    NASA Astrophysics Data System (ADS)

    Lobach-Zhuchenko, S. B.; Baltybaev, Sh. K.; Glebovitsky, V. A.; Sergeev, S. A.; Lokhov, K. O.; Egorova, Yu. S.; Balagansky, V. V.; Skublov, S. G.; Galankina, O. L.; Stepanyuk, L. M.

    2017-12-01

    Complex study of the U-Pb and Lu-Hf systems of zircon from a lhertzolite lens of Archean gneiss enderbites of the Bug complex, Ukrainian Shield, showed that ultramafic magma was contaminated by the material of the country gneiss enderbites. The age of the zircons of 2.81 ± 0.05 Ga corresponds to the period of ultramafic magmatism within the Bug complex. Previously, this peak of endogenic activity was considered the stage of manifestation of metamorphism and magmatism of mafic composition.

  11. Equilibrium and Disequilibrium of 230Th-238U in Zircon from the Minoan Eruption, Santorini, Aegean Sea, Greece

    NASA Astrophysics Data System (ADS)

    Schmitt, A. K.; Stockli, D. F.; Song, E. J.; Storm, S.

    2016-12-01

    The Minoan eruption (ca. 1600 BCE; 40-80 km3 dense rock equivalent) occurred after a ca. 18 ka period of dormancy followed by rapid reinvigoration through arrival of new magma from deep reservoirs colliding with evolved magmas in shallow storage. Although zoned phenocrysts indicate brief timescales ranging between years to decades for final pre-eruptive magma recharge and mixing, it remains unclear how magma accumulation vs. crystallization were balanced in the subvolcanic reservoir during the preceding inter-eruptive cycle. To directly probe magma presence over the repose interval prior to the Minoan eruption and further back in time, we reconnoitered the potential of U-Th zircon geochronology to date the crystallization of individual zircon crystals from pumice from the Minoan eruption. Zircon crystals were extracted from composite pumice samples (several kg each) from basal fall out deposits using gravity and magnetic separation. Etching in cold HF removed adherent glass and revealed the shape of crystals, which were pressed into indium metal to expose unpolished rims to the ion beam of a CAMECA IMS 1270 secondary ionization mass spectrometer. Adherent glass was ubiquitous, indicating that crystals were in contact with melt at the time of eruption. Six of 18 crystals were in 230Th/238U secular equilibrium, two crystals yielded ages of ca. 160 ka, and the remaining rims dated between eruption age and ca. 20 ka. Low Th/U of some secular equilibrium zircon suggests recycling of metamorphic basement zircon, which is also indicated by the presence of rutile in heavy mineral separates. U-Th dates also reveal recycling of zircon from Pleistocene intrusions that likely represent left-over magma from antecedent eruption cycles. We tentatively interpret the dominant zircon population with near-eruption to ca. 20 ka ages to indicate continuous melt presence underneath Santorini during the last repose interval. Distinguishing a hiatus in zircon crystallization between 20 ka

  12. Detrital geochronology of unroofing magmatic complexes

    NASA Astrophysics Data System (ADS)

    Malusà, Marco Giovanni; Villa, Igor Maria; Vezzoli, Giovanni; Garzanti, Eduardo

    2010-05-01

    Tectonic reconstructions performed in recent years are increasingly based on petrographic (Dickinson & Suczek, 1979; Garzanti et al., 2007) and geochronological (Brandon et al., 1998; DeCelles et al., 2004) analyses of detrital systems. Detrital age patterns are traditionally interpreted as a result of cooling induced by exhumation (Jäger, 1967; Dodson, 1973). Such an approach can lead to infer extremely high erosion rates (Giger & Hurford 1989) that conflict with compelling geological evidence (Garzanti & Malusà, 2008). This indicates that interpretations solely based on exhumational cooling may not have general validity (Villa, 2006). Here we propose a new detrital geochronology model that takes into account the effects of both crystallization and exhumational cooling on geochronometers, from U-Pb on zircon to fission tracks on apatite. This model, specifically designed for unroofing magmatic complexes, predicts both stationary and moving mineral-age peaks. Because its base is the ordinary interaction between endogenic and exogenic processes, it is applicable to any geological setting. It was tested on the extremely well-studied Bregaglia-Bergell pluton in the Alps, and on the sedimentary succession derived from its erosion. The consistency between predicted and observed age patterns validates the model. Our results demonstrate that volcanoes were active on top of the growing Oligocene Alps, and resolve a long-standing paradox in quantitative erosion-sedimentation modelling, the scarcity of sediment during apparently fast erosion. Dickinson, W. R. & Suczek, C. A. Plate tectonics and sandstone composition. Am. Assoc. Petrol. Geol. Bull. 63, 2164-2172 (1979). Garzanti, E., Doglioni, C., Vezzoli. G. & Andò, S. Orogenic belts and orogenic sediment provenance. J. Geol. 115, 315-334 (2007). Brandon, M. T., Roden-Tice, M. K. & Garver, J. I. Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geol. Soc. Am. Bull

  13. The timing of eclogite facies metamorphism and migmatization in the Orlica–Śnieżnik complex, Bohemian Massif: Constraints from a multimethod geochronological study

    USGS Publications Warehouse

    Brocker, M.; Klemd, R.; Cosca, M.; Brock, W.; Larionov, A.N.; Rodionov, N.

    2009-01-01

    The Orlica–Śnieżnik complex (OSC) is a key geological element of the eastern Variscides and mainly consists of amphibolite facies orthogneisses and metasedimentary rocks. Sporadic occurrences of eclogites and granulites record high-pressure (HP) to ultrahigh-pressure (UHP) metamorphic conditions. A multimethod geochronological approach (40Ar–39Ar, Rb–Sr, Sm–Nd, U–Pb) has been used to gain further insights into the polymetamorphic evolution of eclogites and associated country rocks. Special attention was given to the unresolved significance of a 370- to 360 Ma age group that was repeatedly described in previous studies. Efforts to verify the accuracy of c.370 Ma K–Ar phengite and biotite dates reported for an eclogite and associated country-rock gneiss from the location Nowa Wieś suggest that these dates are meaningless, due to contamination with extraneous Ar. Extraneous Ar is also considered to be responsible for a significantly older 40Ar–39Ar phengite date of c. 455 Ma for an eclogite from the location Wojtowka. Attempts to further substantiate the importance of 370–360 Ma zircon dates as an indicator for a melt-forming high-temperature (HT) episode did not provide evidence in support of anatectic processes at this time. Instead, SHRIMP U–Pb zircon dating of leucosomes and leucocratic veins within both orthogneisses and (U)HP granulites revealed two age populations (490–450 and 345–330 Ma respectively) that correspond to protolith ages of the magmatic precursors and late Variscan anatexis. The results of this study further underline the importance of Late Carboniferous metamorphic processes for the evolution of the OSC that comprise the waning stages of HP metamorphism and lower pressure HT overprinting with partial melting. Eclogites and their country rocks provided no chronometric evidence for an UHP and ultrahigh-temperature episode at 387–360 Ma, as recently suggested for granulites from the OSC, based on Lu–Hf garnet

  14. Pre-Variscan evolution of the Western Tatra Mountains: new insights from U-Pb zircon dating.

    PubMed

    Burda, Jolanta; Klötzli, Urs

    In situ LA-MC-ICP-MS U-Pb zircon geochronology combined with cathodoluminescence imaging were carried out to determine protolith and metamorphic ages of orthogneisses from the Western Tatra Mountains (Central Western Carpathians). The metamorphic complex is subdivided into two units (the Lower Unit and the Upper Unit). Orthogneisses of the Lower Unit are mostly banded, fine- to medium-grained rocks while in the Upper Unit varieties with augen structures predominate. Orthogneisses show a dynamically recrystallised mineral assemblage of Qz + Pl + Bt ± Grt with accessory zircon and apatite. They are peraluminous (ASI = 1.20-1.27) and interpreted to belong to a high-K calc-alkaline suite of a VAG-type tectonic setting. LA-MC-ICP-MS U-Pb zircon data from samples from both units, from crystals with oscillatory zoning and Th/U > 0.1, yield similar concordia ages of ca. 534 Ma. This is interpreted to reflect the magmatic crystallization age of igneous precursors. These oldest meta-magmatics so far dated in the Western Tatra Mountains could be linked to the fragmentation of the northern margin of Gondwana. In zircons from a gneiss from the Upper Unit, cores with well-developed oscillatory zoning are surrounded by weakly luminescent, low contrast rims (Th/U < 0.1). These yield a concordia age of ca. 387 Ma corresponding to a subsequent, Eo-Variscan, high-grade metamorphic event, connected with the formation of crustal-scale nappe structures and collision-related magmatism.

  15. Late magmatic stage of the zoned Caleu pluton (Central Chile): insights from zircon crystallization conditions

    NASA Astrophysics Data System (ADS)

    Molina, P. G.; Parada, M.; Gutierrez, F. J.; Chang-Qiang, M.; Jianwei, L.; Yuanyuan, L.

    2012-12-01

    The Caleu pluton consists of three N-S elongated lithological zones: Gabbro-Diorite Zone (GDZ), Tonalite Zone (TZ) and Granodiorite Zone (GZ); western, middle and eastern portions of the pluton, respectively. The zones are thought to be previously differentiated in a common, isotopically depleted (Sr-Nd), subjacent magma reservoir at a 4 kbar equivalent depth. The emplacement should have occurred at the climax of the Cretaceous rifting. We present preliminary results of U238/Pb206 zircon geochronology; zircon saturation, Tsat(Zrn), and crystallization temperatures (Ti-in-Zrn); as well as relative oxidation states at time of crystallization, based on: (i) the sluggish REE and HFSE subsolidus diffusivities in zircon; (ii) the behavior of Ti4+↔Si4+ and Ce4+↔Zr4+ isovalent replacement, in addition to a constrained TiO2 activity in almost all typical crustal rocks; and (iii) relative oxidation states at time of crystallization, respectively. The latter are obtained by interpolation of the partition coefficients of trivalent (REE) and tetravalent (HFSE) curves in Onuma diagrams for each zircon, and then estimating relative Ce(IV)/Ce(III) ratios. Results obtained from 4 samples (a total of 77 zircon grains) collected from the three mentioned lithological zones indicate U/Pb ages of approximately 99.5 ±1.5 Ma, 96.8 ±0.6 Ma, and 94.4 +2.2 -0.8 Ma; and Ti-in Zrn ranges of ca. 720-870°C, ca. 680-820°C and ca. 750-840°C, for the GDZ, TZ and GZ samples, respectively. On the other hand Tsat(Zrn) of ca. 750-780°C in the TZ, and ca. 830-890°C in the GZ, were obtained. As expected saturation temperatures are similar or higher than Ti-in-Zrn obtained in zircon grains of TZ and GZ, respectively. Cathodoluminiscence images in zircon suggest a magmatic origin, due to absence of complex zoning patterns and fairly well conserved morphologies. Exceptionally the GDZ sample zircons show evidence of inheritance, indicating a xenocrystic and/or antecrystic origin. A relative Ce

  16. Zircon geochronology and Hf-O isotope geochemistry from granites in the Iapetus Suture Zone in Ireland and the Isle of Man

    NASA Astrophysics Data System (ADS)

    Fritschle, Tobias; Daly, J. Stephen; Whitehouse, Martin J.; McConnell, Brian; Buhre, Stephan

    2014-05-01

    Late Caledonian syn- to post-orogenic granites located in the Iapetus Suture Zone (ISZ) in Ireland and Britain have been related to A-type subduction and possible slab breakoff [1] following the Laurentia-Avalonian collision. Lack of reliable age data (especially in Ireland) has inhibited petrogenetic investigations of these rocks. Hence, ion microprobe U-Pb and oxygen isotope analyses as well as LA-MC-ICPMS Lu-Hf isotopic measurements on zircons from Irish and Isle of Man granites have been undertaken to provide better constraints on this enigmatic episode of the Caledonian Orogeny. Four stages of Late Caledonian granitic magmatism (c. 435, 417, 410 and 394 Ma) are indicated by U-Pb dating of oscillatory-zoned magmatic zircons. The Crossdoney, Kentstown, Drogheda and Ballynamuddagh granites together with a rhyolite from Glenamaddy have yielded U-Pb concordia ages, interpreted as intrusion-ages, between 419.9 ± 4.3 Ma (Glenamaddy) and 415.8 ± 2.0 Ma (Crossdoney) with a weighted average of 417.5 ± 0.9 Ma (MSWD = 1.3). The Glenamaddy Granite - which intruded the Glenamaddy Rhyolite - yielded an age of 410 ± 2.1 Ma. In addition, the Rockabill Granite yielded a younger age of 393.9 ± 1.9 Ma, whereas the Carnsore Granite yielded an older age of 434.6 ± 1.9 Ma. Inherited zircons (487 to 453 Ma) occur in several of the granites, and are interpreted to have been derived from Ordovician arc magmatic rocks accreted within the ISZ. A younger group of c. 440 Ma inherited zircons occurs in the c. 417 Ma Crossdoney and Ballynamuddagh granites. These grains could be related to continued or renewed Silurian arc magmatism. Hf-O isotopic measurements on the dated zircon grains range between -2 and +7 ɛHfi units and 5.5 to 8.5 o δ18O. These are interpreted to indicate the contribution of juvenile mantle melts - possibly derived from the Ordovician arc - to some of the granites. Significant heterogeneities in zircon oxygen isotopes in at least four of the granites further

  17. Mesozoic tectonic history and geochronology of the Kular Dome, Russia and Bendeleben Mountains, Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Harris, Daniel B.

    The tectonic history responsible for formation of the major basins of the Arctic and movement of landmasses surrounding these basins remains unclear despite multidisciplinary efforts. Most studies focus on one of four potential movement pathways of the Arctic Alaska-Chukotka microplate during the Mesozoic and the relationship between this movement and formation of the Amerasian Basin. Due to difficulty in access and harsh climate of the Arctic Ocean, most geological studies focus on landmasses surrounding the Amerasian Basin. For this reason, we have conducted research in the Kular Dome of northern Russia and the Bendeleben Mountain Range of the Seward Peninsula, Alaska in an attempt to better constrain timing of emplacement of plutons in these areas and their associated tectonic conditions. For both areas, U-Pb zircon crystallization geochronology was performed on several samples collected from plutons responsible for gneiss dome formation during the Mesozoic. Dating of these plutons in tandem with field observation and thin section analysis of deformation suggests an extensional emplacement setting for both areas during the Middle to Late Cretaceous. In the Kular Dome, intrusion of the Kular pluton occurred from approximately 111-103 Ma along with extensional development of the nearby Yana fault, which was previously interpreted as a regional suture between deposits of the Kolyma-Omolon superterrane and passive-margin sequences of the Verkhoyansk Fold-Thrust Belt. Evidence for extensional emplacement of the Kular pluton includes top-down shear around mantled porphyroblasts plunging along gentle foliation away from the pluton and abundant low-offset normal faults in the area. The Kular Dome also falls into a north-south oriented belt of Late Cretaceous plutons interpreted to have been emplaced under regional extensional conditions based on geochemical discrimination diagrams. Detrital zircon geochronology was also performed on seven samples collected from Triassic

  18. Timing of the Late Paleozoic Ice Age: A Review of the Status Quo and New U-Pb Zircon Ages From Southern Gondwana

    NASA Astrophysics Data System (ADS)

    Mundil, R.; Griffis, N. P.; Keller, C. B.; Fedorchuk, N.; Montanez, I. P.; Isbell, J.; Vesely, F.; Iannuzzi, R.

    2017-12-01

    Throughout the Carboniferous and Permian Late Paleozoic Ice Age (LPIA), glaciations in southern Gondwana exerted a profound influence on global climate and environment, ocean chemistry, and the nature of sedimentary processes. The LPIA is widely regarded as an analogue for Pleistocene glaciations. Our understanding of the latter, as well as the validity of predictions for the future global climate and environment, depends therefore on our ability to reconstruct the LPIA. A robust chronostratigraphic framework built on high precision/high accuracy geochronology is crucial for the reconstruction of events and processes that occurred during the LPIA, particularly in the absence of high-resolution terrestrial biostratigraphic constraints that apply to both near- and far-field proxy records. The occurrence of volcaniclastic layers containing primary volcanic zircon at many levels throughout southern Gondwana makes such a reconstruction feasible, but complications inevitably arise due to the mixing of older age components with primary volcanic crystals, as well as the potential of unrecognized open system behavior to produce spurious younger ages. These pitfalls cause age dispersion that may be difficult to interpret, or is unrecognized if low precision geochronological techniques are used, resulting in inaccurate radioisotopic ages. Our current efforts in the Parana Basin (Southern Brazil) and the Karoo Basin (South Africa/Namibia) concentrate on building a robust and exportable chronostratigraphic framework based on U-Pb zircon CA-TIMS ages with sub-permil level precision combined with Bayesian approaches for resolving the eruption age of dispersed age spectra to facilitate the reconstruction of glaciogenic processes through the Carboniferous-Permian transition, as well as their implications for global sea level, atmospheric pCO2 and ocean chemistry. We will also review currently available geochronological data from contemporaneous Australian successions and their

  19. Elucidating tectonic events and processes from variably tectonized conglomerate clast detrital geochronology: examples from the Hongliuhe Formation in the southern Central Asian Orogenic Belt, NW China

    NASA Astrophysics Data System (ADS)

    Cleven, Nathan; Lin, Shoufa; Davis, Donald; Xiao, Wenjiao; Guilmette, Carl

    2017-04-01

    This work expands upon detrital zircon geochronology with a sampling and analysis strategy dating granitoid conglomerate clasts that exhibit differing degrees of internal ductile deformation. As deformation textures within clastic material reflect the variation and history of tectonization in the source region of a deposit, we outline a dating methodology that can provide details of the provenance's tectonomagmatic history from deformation-relative age distributions. The method involves bulk samples of solely granitoid clasts, as they are representative of the magmatic framework within the provenance. The clasts are classified and sorted into three subsets: undeformed, slightly deformed, and deformed. LA-ICPMS U-Pb geochronology is performed on zircon separates of each subset. Our case study, involving the Permian Hongliuhe Formation in the southern Central Asian Orogenic Belt, analyzes each of the three clast subsets, as well as sandstone detrital samples, at three stratigraphic levels to yield a profile of the unroofed provenance. The age spectra of the clast samples exhibit different, wider distributions than sandstone samples, considered an effect of proximity to the respective provenance. Comparisons of clast data to sandstone data, as well as comparisons between stratigraphic levels, yield indications of key tectonic processes, in addition to the typical characteristics provided by detrital geochronology. The clast data indicates a minimal lag time, implying rapid exhumation rates, whereas sandstone data alone would indicate a 90 m.y. lag time. Early Paleozoic arc building episodes appear as Ordovician peaks in sandstone data, and Silurian-Devonian peaks in clast data, indicating a younging of magmatism towards the proximal provenance. A magmatic hiatus starts in the Devonian, correlating with the latest age of deformed clasts, interpreted as timing of collisional tectonics. Provenance interpretation using the correlations seen between the clast and sandstone

  20. Crustal melting and recycling: geochronology and sources of Variscan syn-kinematic anatectic granitoids of the Tormes Dome (Central Iberian Zone). A U-Pb LA-ICP-MS study

    NASA Astrophysics Data System (ADS)

    López-Moro, F. J.; López-Plaza, M.; Gutiérrez-Alonso, G.; Fernández-Suárez, J.; López-Carmona, A.; Hofmann, M.; Romer, R. L.

    2018-04-01

    In this study, we report U-Pb Laser Ablation ICP-MS zircon and ID-TIMS monazite ages for peraluminous granitoid plutons (biotite ± muscovite ± cordierite ± sillimanite) in the Tormes Dome, one of the gneiss-cored domes located in the Central Iberian Zone of the Variscan belt of northern Spain. Textural domains in zircon, interpreted to represent the magmatic crystallization of the granitoids (and one monazite fraction in the Ledesma pluton) yielded ages around 320 Ma, in agreement with other geochronological studies in the region. This age is interpreted to date the timing of decompression crustal melting driven by the extensional collapse of the orogenic belt in this domain of the Variscan chain of western Europe. In addition, there are several populations of inherited (xenocrystic) zircon: (1) Carboniferous zircon crystals (ca. 345 Ma) as well as one of the monazite fractions in the coarse-grained facies of the Ledesma pluton that also yielded an age of ca. 343 Ma. (2) Devonian-Silurian zircon xenocrysts with scattered ages between ca. 390 and 432 Ma. (3) Middle Cambrian-Ordovician (ca. 450-511 Ma). (4) Ediacaran-Cryogenian zircon ages (ca. 540-840 Ma). (5) Mesoproterozoic to Archaean zircon (900-2700 Ma). The abundance of Carboniferous-inherited zircon shows that crustal recycling/cannibalization may often happen at a fast pace in orogenic scenarios with only short lapses of quiescence. In our case study, it seems plausible that a "crustal layer" of ca. 340 Ma granitoids/migmatites was recycled, partially or totally, only 15-20 My after its emplacement.

  1. Petrochemistry and zircon U-Pb geochronology of granitic rocks in the Wang Nam Khiao area, Nakhon Ratchasima, Thailand: Implications for petrogenesis and tectonic setting

    NASA Astrophysics Data System (ADS)

    Fanka, Alongkot; Tsunogae, Toshiaki; Daorerk, Veerote; Tsutsumi, Yukiyasu; Takamura, Yusuke; Sutthirat, Chakkaphan

    2018-05-01

    Carboniferous biotite granite, Late Permian hornblende granite, and Triassic biotite-hornblende granite, all of which belong to the Eastern Granite Belt, expose in the Wang Nam Khiao area, Nakhon Ratchasima, northeastern Thailand. The Carboniferous biotite granite is dominated by quartz, K-feldspar, plagioclase, and biotite. The Late Permian hornblende granite contains dominant assemblages of plagioclase, quartz, K-feldspar, hornblende, and minor amount of biotite, while the Triassic biotite-hornblende granite consists of quartz, plagioclase, K-feldspar with small amounts of biotite, and hornblende. The REE patterns with steep decrease from light to heavy REE together with the LILE (e.g. K, Sr) enrichment and depletion of some particular HFSE (e.g. Nb, Ti) indicate low degree of partial melting. Mineral chemistry of biotite and hornblende in the granites reflects crystallization from hydrous calc-alkaline arc-derived magmas possibly formed by subduction. Amphibole-plagioclase thermometry and Al-in-hornblende barometry indicate that the Late Permian hornblende granite and the Triassic biotite-hornblende granite may have equilibrated at 3.0-5.8 kbar/700-820 °C and 2.0-3.2 kbar/600-750 °C, respectively, in the middle-upper crust (about 10-15 km depth). Zircon U-Pb geochronology of the Carboniferous biotite granite, Late Permian hornblende granite and Triassic biotite-hornblende granite yielded intrusion ages of 314.6-284.9 Ma, 253.4 Ma, and 237.8 Ma, respectively, which implies multiple episodes of arc-magmatism formed by Palaeo-Tethys subduction beneath Indochina Terrane during Late Carboniferous/Early Permian, Late Permian and Middle Triassic.

  2. New zircon (U-Th)/He and U/Pb eruption age for the Rockland tephra, western USA

    USGS Publications Warehouse

    Coble, Matthew A.; Burgess, Seth; Klemetti, Erik W.

    2017-01-01

    Eruption ages of a number of prominent Quaternary volcanic deposits remain inaccurately and/or imprecisely constrained, despite their importance as regional stratigraphic markers in paleo-environment reconstruction and as evidence of climate-altering eruptions. Accurately dating volcanic deposits presents challenging analytical considerations, including poor radiogenic yield, scarcity of datable minerals, and contamination of crystal populations by magma, eruption, and transport processes. One prominent example is the Rockland tephra, which erupted from the Lassen Volcanic Center in the southern Cascade arc. Despite a range in published eruption ages from 0.40 to 0.63 Ma, the Rockland tephra is extensively used as a marker bed across the western United States. To more accurately and precisely constrain the age of the Rockland tephra-producing eruption, we report U/Pb crystallization dates from the outermost ∼2 μm of zircon crystal faces (surfaces) using secondary ion mass spectrometry (SIMS). Our new weighted mean 238U/206Pb age for Rockland tephra zircon surfaces is 0.598 ± 0.013 Ma (2σ) and MSWD = 1.11 (mean square weighted deviation). As an independent test of the accuracy of this age, we obtained new (U-Th)/He dates from individual zircon grains from the Rockland tephra, which yielded a weighted mean age of 0.599 ± 0.012 Ma (2σ, MSWD = 5.13). We also obtained a (U-Th)/He age of 0.628 ± 0.014 Ma (MSWD = 1.19) for the Lava Creek Tuff member B, which was analyzed as a secondary standard to test the accuracy of the (U-Th)/He technique for Quaternary tephras, and to evaluate assumptions made in the model-age calculation. Concordance of new U/Pb and (U-Th)/He zircon ages reinforces the accuracy of our preferred Rockland tephra eruption age, and confirms that zircon surface dates sample zircon growth up to the time of eruption. We demonstrate the broad applicability of coupled U/Pb zircon-surface and single-grain zircon (U-Th)/He geochronology to

  3. New zircon (U-Th)/He and U/Pb eruption age for the Rockland tephra, western USA

    NASA Astrophysics Data System (ADS)

    Coble, Matthew A.; Burgess, Seth D.; Klemetti, Erik W.

    2017-09-01

    Eruption ages of a number of prominent Quaternary volcanic deposits remain inaccurately and/or imprecisely constrained, despite their importance as regional stratigraphic markers in paleo-environment reconstruction and as evidence of climate-altering eruptions. Accurately dating volcanic deposits presents challenging analytical considerations, including poor radiogenic yield, scarcity of datable minerals, and contamination of crystal populations by magma, eruption, and transport processes. One prominent example is the Rockland tephra, which erupted from the Lassen Volcanic Center in the southern Cascade arc. Despite a range in published eruption ages from 0.40 to 0.63 Ma, the Rockland tephra is extensively used as a marker bed across the western United States. To more accurately and precisely constrain the age of the Rockland tephra-producing eruption, we report U/Pb crystallization dates from the outermost ∼2 μm of zircon crystal faces (surfaces) using secondary ion mass spectrometry (SIMS). Our new weighted mean 238U/206Pb age for Rockland tephra zircon surfaces is 0.598 ± 0.013 Ma (2σ) and MSWD = 1.11 (mean square weighted deviation). As an independent test of the accuracy of this age, we obtained new (U-Th)/He dates from individual zircon grains from the Rockland tephra, which yielded a weighted mean age of 0.599 ± 0.012 Ma (2σ, MSWD = 5.13). We also obtained a (U-Th)/He age of 0.628 ± 0.014 Ma (MSWD = 1.19) for the Lava Creek Tuff member B, which was analyzed as a secondary standard to test the accuracy of the (U-Th)/He technique for Quaternary tephras, and to evaluate assumptions made in the model-age calculation. Concordance of new U/Pb and (U-Th)/He zircon ages reinforces the accuracy of our preferred Rockland tephra eruption age, and confirms that zircon surface dates sample zircon growth up to the time of eruption. We demonstrate the broad applicability of coupled U/Pb zircon-surface and single-grain zircon (U-Th)/He geochronology to accurate

  4. Detrital zircon study along the Tsangpo River, SE Tibet

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Chung, S.; Liu, D.; O'Reilly, S. Y.; Chu, M.; Ji, J.; Song, B.; Pearson, N. J.

    2004-12-01

    The interactions among tectonic uplift, river erosion and alluvial deposition are fundamental processes that shape the landscape of the Himalayan-Tibetan orogen since its creation from early Cenozoic time. To better understand these processes around the eastern Himalayan Syntaxis, we conducted a study by systematic sampling riverbank sediments along the Tsangpo River, SE Tibet. Detrital zircons separated from the sediments were subjected to U-Pb dating by the SHRIMP II at the Beijing SHRIMP Center and then in-situ measurements of Hf isotope ratios using LA-MC-ICPMS at GEMOC. These results, together with U-Pb ages and Hf isotope data that we recently obtained for the Transhimalayan plutonic and surrounding basement rocks, allow a more quantitative examination of the provenance or protosource areas for the river sediments. Consequently, the percentage inputs from these source areas can be estimated. Our study indicates that, before the Tsangpo River flows into the Namche Barwa Syntaxis of the eastern Himalayas where the River forms a 180° Big Bend gorge and crosscuts the Himalayan sequences, the Gangdese batholith that crops out just north of the River appear to be an overwhelming source accounting for ˜50 % of the bank sediments. The Tethyan Himalayan sequences south of the River are the second important source, with an input of ˜25 %. The proportion of sediment supply changes after the River enters the Big Bend gorge and turns to south: ˜25 % of detrital zircons are derived from the Greater Himalayas so that the input from the Tethyan Himalayas decreases (< 10 %) despite those from the Gangdese batholith remains high ( ˜40 %). Comparing with the sediment budget of the Brahmaputra River in the downstream based on literature Sr, Nd and Os isotope information, which suggests dominant ( ˜90-60 %) but subordinate ( ˜10-40 %) contributions by the (Greater and Lesser) Himalayan and Tibetan (including Tethyan Himalayan) rocks, respectively, the change is interpreted

  5. High-precision U-Pb zircon geochronological constraints on the End-Triassic Mass Extinction, the late Triassic Astronomical Time Scale and geochemical evolution of CAMP magmatism

    NASA Astrophysics Data System (ADS)

    Blackburn, T. J.; Olsen, P. E.; Bowring, S. A.; McLean, N. M.; Kent, D. V.; Puffer, J. H.; McHone, G.; Rasbury, T.

    2012-12-01

    Mass extinction events that punctuate Earth's history have had a large influence on the evolution, diversity and composition of our planet's biosphere. The approximate temporal coincidence between the five major extinction events over the last 542 million years and the eruption of Large Igneous Provinces (LIPs) has led to the speculation that climate and environmental perturbations generated by the emplacement of a large volume of magma in a short period of time triggered each global biologic crisis. Establishing a causal link between extinction and the onset and tempo of LIP eruption has proved difficult because of the geographic separation between LIP volcanic deposits and stratigraphic sequences preserving evidence of the extinction. In most cases, the uncertainties on available radioisotopic dates used to correlate between geographically separated study areas often exceed the duration of both the extinction interval and LIP volcanism by an order of magnitude. The "end-Triassic extinction" (ETE) is one of the "big five" and is characterized by the disappearance of several terrestrial and marine species and dominance of Dinosaurs for the next 134 million years. Speculation on the cause has centered on massive climate perturbations thought to accompany the eruption of flood basalts related to the Central Atlantic Magmatic Province (CAMP), the most aerially extensive and volumetrically one of the largest LIPs on Earth. Despite an approximate temporal coincidence between extinction and volcanism, there lacks evidence placing the eruption of CAMP prior to or at the initiation of the extinction. Estimates of the timing and/or duration of CAMP volcanism provided by astrochronology and Ar-Ar geochronology differ by an order of magnitude, precluding high-precision tests of the relationship between LIP volcanism and the mass extinction, the causes of which are dependent upon the rate of magma eruption. Here we present high precision zircon U-Pb ID-TIMS geochronologic data

  6. Provenance of Carboniferous sedimentary rocks in the northern margin of Dabie Mountains, central China and the tectonic significance: constraints from trace elements, mineral chemistry and SHRIMP dating of zircons

    NASA Astrophysics Data System (ADS)

    Li, Renwei; Li, Shuangying; Jin, Fuquan; Wan, Yusheng; Zhang, Shukun

    2004-04-01

    A suite of slightly metamorphosed Carboniferous sedimentary strata occurs in the northern margin of the Dabie Mountains, central China. It consists, in ascending order, of the upper Huayuanqiang Formation (C 1), the Yangshan Formation (C 1), the Daorenchong Formation (C 1-2), the most widely distributed Huyoufang Formation (C 2) and the Yangxiaozhuang Formation (C 2). The provenance of the Carboniferous sedimentary rocks is constrained by the integration of trace elements, detrital mineral chemistry and sensitive high resolution ion microprobe (SHRIMP) dating of detrital zircons, which can help to understand the connection between the provenance and the Paleozoic tectonic evolution of the Qinling-Dabie Orogen. The trace element compositions indicate that the source terrain was probably a continental island arc. Detrital tourmalines were mainly derived from aluminous and Al-poor metapelites and metapsammites, and some are sourced from Li-poor granitoids, pegmatites and aplites. Detrital garnets, found only in the uppermost Huyoufang Formation, are almandine and Mn-almandine garnets, indicating probable sources mainly from garnetiferous schists, and partly from granitoid rocks. The detrital white K-micas are muscovitic in the Huayuanqiang, Daorenchong and Huyoufang Formations, and phengitic with Si contents (p.f.u.) from 3.20 up to max. 3.47-3.53 in the uppermost Huyoufang and the Yangxiaozhuang Formations, a meta-sedimentary source. Major components in the detrital zircon age structure for the Huyoufang Formation range from 506 to 363 Ma, centering on ˜400 and ˜480 Ma, which is characteristic of the Qinling and Erlangping Groups in the Qinling and Tongbai Mountains, central China. Evidently, the major source of the Carboniferous sedimentary rocks in the northern margin of Dabie Mountains was from the southern margin of the Sino-Korean Craton represented by the Qinling and Erlangping Groups. The source area was an island-arc system during the Early Paleozoic that

  7. U-Pb zircon geochronology and Zr-in-rutile thermometry of eclogites from the Dulan area, North Qaidam ultra-high pressure (UHP) terrane, western China

    NASA Astrophysics Data System (ADS)

    Hernández Uribe, D.; Stubbs, K.; Lehman, M. R.; Gilmore, V.; Kylander-Clark, A. R.; Mattinson, C. G.

    2016-12-01

    The Dulan area, in the North Qaidam terrane, exposes UHP eclogites and gneisses that experienced a 20 Myr UHP event at P-T conditions of 30 kbar and 700 °C. Two eclogites were analyzed using Zr-in-rutile thermometry and zircon U-Pb + trace element analysis to constrain the metamorphic evolution of the area. A kyanite-phengite eclogite presents a mineral assemblage of grt + omp + ph + ky + rt + zo + qz. Rutile analyses show a Zr concentration of 173-250 ppm with a mean of 207 ± 19 ppm. The calculated temperatures yielded 685-716 °C with an average of 700 ± 7°C. Zircon U-Pb analyses gave an upper intercept age of 880 ± 89 Ma. These analyses from cathodoluminiscence (CL)-dark core zircons show a negative Eu anomaly and a steep HREE slope suggesting a magmatic origin for the protolith. Analyses from CL-bright rims gave a weighted mean age of 427 ± 2 Ma. These zircons show an eclogite facies trace elements pattern suggesting that the age represent the HP-UHP event. Titanium concentration in zircons gave a weighted mean of 4.41 ± 0.25 ppm. This Ti concentration yielded a calculated temperature of 674 °C A phengite eclogite shows a mineral assemblage of grt + omp + ph + rt + zo + qz. Rutile in matrix analyses show a Zr concentration of 123-161 ppm with a mean of 139 ± 9 ppm. Calculated temperatures for these rutiles ranges from 659-680 °C with a mean temperature of 668 ± 5 °C. U-Pb analyses from CL-dark zircon cores gave a weighted mean age of 844 ± 7 Ma. These zircons show a negative Eu anomaly and a steep HREE slope suggesting a magmatic origin for the protolith. Analyses from CL-grey rims gave a weighted mean age of 433 ± 4 Ma. These zircons show an eclogite facies trace elements pattern, representing the timing of the HP-UHP event. Titanium concentration in zircons gave a weighted mean of 3.13 ± 0.34 ppm. This concentration yielded calculated temperature 647 °C. The obtained ages are in the same range as the ones obtained for the northern and southern

  8. Geochemical Astro- and Geochronological Constraints on the Early Jurassic

    NASA Astrophysics Data System (ADS)

    Storm, M.; Condon, D. J.; Ruhl, M.; Jenkyns, H. C.; Hesselbo, S. P.; Al-Suwaidi, A. H.; Percival, L.

    2017-12-01

    The Early Jurassic Hettangian and Sinemurian time scales are poorly defined due to the lack of continuous geochemical records, and the temporal constrain of the Toarcian Oceanic Anoxic Event and associated global carbon cycle perturbation is afflicted by geochemical and biostratigraphical uncertainties of the existing radiometric dates from various volcanic ash bearing sections. Here we present a continuous, orbitally paced Hettangian to Pliensbachian carbon-isotope record of the Mochras drill-core (Cardigan bay Basin, UK). The record generates new insights into the evolution and driving mechanisms of the Early Jurassic carbon cycle, and is contributing to improve the Hettangian and Sinemurian time scale. Furthermore, we introduce a new high-resolution carbon-isotope chemostratigraphy, integrated with ammonite biostratigraphy and new U/Pb single zircon geochronology of the Las Overas section (Neuquén Basin, Argentina). The studied section comprises sediments from the tenuicostatum to Dumortiera Andean Ammonite zone (tenuicostatum to levesqui European standard zones). A stratigraphically expanded negative shift in d13Corg values, from -24‰ down to -32­‰, appears in the tenuicostatum and hoelderi ammonite zone, coeval to the negative excursion in European realm which is associated with the Toarcian Oceanic Anoxic Event. The negative isotope excursion appears concomitant with an increase in sedimentary mercury levels, indicating enhanced volcanic activity. TOC values and elemental data suggest a high sedimentation dilution in the tenuicostatum to pacificum zone. The new geochronological data from several volcanic ash beds throughout the section are further improving the temporal correlation between the Early Toarcian isotope event and causal mechanisms

  9. High spatial resolution U-Pb geochronology and Pb isotope geochemistry of magnetite-apatite ore from the Pea Ridge iron oxide-apatite deposit, St. Francois Mountains, southeast Missouri, USA

    USGS Publications Warehouse

    Neymark, Leonid; Holm-Denoma, Christopher S.; Pietruszka, Aaron; Aleinikoff, John N.; Fanning, C. Mark; Pillers, Renee M.; Moscati, Richard J.

    2016-01-01

    The Pea Ridge iron oxide-apatite (IOA) deposit is one of the major rhyolite-hosted magnetite deposits of the St. Francois Mountains terrane, which is located within the Mesoproterozoic (1.5–1.3 Ga) Granite-Rhyolite province in the U.S. Midcontinent. Precise and accurate determination of the timing and duration of oreforming processes in this deposit is crucial for understanding its origin and placing it within a deposit-scale and regional geologic context. Apatite and monazite, well-established U-Pb mineral geochronometers, are abundant in the Pea Ridge orebody. However, the potential presence of multiple generations of dateable minerals, processes of dissolution-reprecipitation, and occurrence of micrometer-sized intergrowths and inclusions complicate measurements and interpretations of the geochronological results. Here, we employ a combination of several techniques, including ID-TIMS and high spatial resolution geochronology of apatite and monazite using LA-SC-ICPMS and SHRIMP, and Pb isotope geochemistry of pyrite and magnetite to obtain the first direct age constraints on the formation and alteration history of the Pea Ridge IOA deposit. The oldest apatite TIMS 207Pb*/206Pb* dates are 1471 ± 1 and 1468 ± 1 Ma, slightly younger than (but within error of) the ~1474 to ~1473 Ma U-Pb zircon ages of the host rhyolites. Dating of apatite and monazite inclusions within apatite provides evidence for at least one younger metasomatic event at ~1.44 Ga, and possibly multiple superimposed metasomatic events between 1.47 and 1.44 Ga. Lead isotop analyses of pyrite show extremely radiogenic 206Pb/204Pb ratios up to ~80 unsupported by in situ U decay. This excess radiogenic Pb in pyrite may have been derived from the spatially associated apatite as apatite recrystallized several tens of million years after its formation. The low initial 206Pb/204Pb ratio of ~16.5 and 207Pb/204Pb ratio of ~15.4 for individual magnetite grains indicate closed U-Pb system behavior in

  10. Zircon dating and mineralogy of the Mokong Pan-African magmatic epidote-bearing granite (North Cameroon)

    NASA Astrophysics Data System (ADS)

    Tchameni, R.; Sun, F.; Dawaï, D.; Danra, G.; Tékoum, L.; Nomo Negue, E.; Vanderhaeghe, O.; Nzolang, C.; Dagwaï, Nguihdama

    2016-09-01

    We present the mineralogy and age of the magmatic epidote-bearing granite composing most of the Mokong pluton, in the Central Africa orogenic belt (North Cameroon). This pluton intrudes Neoproterozoic (~830 to 700 Ma) low- to high-grade schists and gneisses (Poli-Maroua group), and is crosscut or interleaved with bodies of biotite granite of various sizes. The pluton is weakly deformed in its interior, but solid-state deformation increases toward its margins marked by narrow mylonitic bands trending NNE-SSW. The magmatic epidote granitic rocks are classified as quartz monzodiorite, granodiorite, monzogranite, and syenogranite. They are medium- to coarse-grained and composed of K-feldspar + plagioclase + biotite + amphibole + epidote + magnetite + titanite + zircon + apatite. In these granites, the pistacite component [atomic Fe+3/(Fe3+ + Al)] in epidote ranges from 16 to 29 %. High oxygen fugacity (log ƒO2 - 14 to -11) and the preservation of epidote suggest that the magma was oxidized. Al-in hornblende barometry and hornblende-plagioclase thermometry indicate hornblende crystallization between 0.53 and 0.78 GPa at a temperature ranging from 633 to 779 °C. Zircon saturation thermometry gives temperature estimates ranging from 504 to 916 °C, the latter being obtained on samples containing inherited zircons. U/Pb geochronology by LA-ICP-MS on zircon grains characterized by magmatic zoning yields a concordia age of 668 ± 11 Ma (2 σ). The Mokong granite is the only known occurrence magmatic epidote in Cameroon, and is an important milestone for the comparison of the Central Africa orogenic belt with the Brasiliano Fold Belt, where such granites are much more abundant.

  11. Peninsular terrane basement ages recorded by Paleozoic and Paleoproterozoic zircon in gabbro xenoliths and andesite from Redoubt volcano, Alaska

    USGS Publications Warehouse

    Bacon, Charles R.; Vazquez, Jorge A.; Wooden, Joseph L.

    2012-01-01

    Historically Sactive Redoubt volcano is an Aleutian arc basalt-to-dacite cone constructed upon the Jurassic–Early Tertiary Alaska–Aleutian Range batholith. The batholith intrudes the Peninsular tectonostratigraphic terrane, which is considered to have developed on oceanic basement and to have accreted to North America, possibly in Late Jurassic time. Xenoliths in Redoubt magmas have been thought to be modern cumulate gabbros and fragments of the batholith. However, new sensitive high-resolution ion microprobe (SHRIMP) U-Pb ages for zircon from gabbro xenoliths from a late Pleistocene pyroclastic deposit are dominated by much older, ca. 310 Ma Pennsylvanian and ca. 1865 Ma Paleoproterozoic grains. Zircon age distributions and trace-element concentrations indicate that the ca. 310 Ma zircons date gabbroic intrusive rocks, and the ca. 1865 Ma zircons also are likely from igneous rocks in or beneath Peninsular terrane basement. The trace-element data imply that four of five Cretaceous–Paleocene zircons, and Pennsylvanian low-U, low-Th zircons in one sample, grew from metamorphic or hydrothermal fluids. Textural evidence of xenocrysts and a dominant population of ca. 1865 Ma zircon in juvenile crystal-rich andesite from the same pyroclastic deposit show that this basement has been assimilated by Redoubt magma. Equilibration temperatures and oxygen fugacities indicated by Fe-Ti–oxide minerals in the gabbros and crystal-rich andesite suggest sources near the margins of the Redoubt magmatic system, most likely in the magma accumulation and storage region currently outlined by seismicity and magma petrology at ∼4–10 km below sea level. Additionally, a partially melted gabbro from the 1990 eruption contains zircon with U-Pb ages between ca. 620 Ma and ca. 1705 Ma, as well as one zircon with a U-Th disequilibrium model age of 0 ka. The zircon ages demonstrate that Pennsylvanian, and probably Paleoproterozoic, igneous rocks exist in, or possibly beneath, Peninsular

  12. Paleozoic Assemblage of the Northern Sierra Terrane: New Geochronology And Geochemical Data From the Stitching Late Devonian - Early Carboniferous Bowman Lake Batholith, and Associated Rocks

    NASA Astrophysics Data System (ADS)

    Powerman, V.; Hanson, R. E.; Girty, G.; Tretiakov, A.

    2016-12-01

    Previous study (Grove et al., 2008) of detrital zircon ages and the timing of magmatism within the Northern Sierra terrane (NST) suggest that it is exotic relative to western Laurentia, and link it to the Paleozoic Arctic Realm, Baltica and Caledonides. NST is a composite terrane in the North America Cordillera, consisting of four distinct allochthons, thrusted upon each other. As a first step towards the understanding of the origin and tectonic development of the NST we have undertaken the SHRIMP-RG U-Pb zircon dating of the rocks from granites, granodiorites, trondhjemites, tonalites and hypabyssal intrusions, composing the Bowman Lake batholith. The batholith stitches the allochthons of the NST and its crystallization age signifies the timing of juxtaposition SHRIMP-RG analyses from 14 samples yielded an age range of ca. 352-369 Ma, which overlaps the Devonian-Mississipian boundary and constrains the minimum age for amalgamation. Additionally, we have acquired multiple XRF data, favoring the island arc provenance of the Bowman Lake batholith Batholith. Previously proposed ties between NST and Robert Mountains allochthon seem unlikely because the latter was accreted onto the western miogeocline of Laurentia during the Late Dev.-Early Miss. while the NST was most probably still situated within the Arctic Realm. This work has been supported by the grant #14.Z50.31.0017 of the Government of the Russian Federation and by the Russian Foundation for Basic Research grant #15-55-10055. We are grateful to Stanford-USGS SHRIMP-RG center, and personally to Marty Grove and Elizabeth Miller.

  13. The formation and rejuvenation of continental crust in the central North China Craton: Evidence from zircon U-Pb geochronology and Hf isotope

    NASA Astrophysics Data System (ADS)

    Li, Qing; Santosh, M.; Li, Sheng-Rong; Guo, Pu

    2014-12-01

    The Trans-North China Orogen (TNCO) along the central part of the North China Craton (NCC) is considered as a Paleoproterozoic suture along which the Eastern and Western Blocks of the NCC were amalgamated. Here we investigate the Precambrian crustal evolution history in the Fuping segment of the TNCO and the subsequent reactivation associated with extensive craton destruction during Mesozoic. We present zircon LA-ICP-MS U-Pb and Lu-Hf data on TTG (tonalite-trondhjemite-granodiorite) gneiss, felsic orthogneiss, amphibolite and granite from the Paleoproterozoic suite which show magmatic ages in the range of 2450-1900 Ma suggesting a long-lived convergent margin. The εHf(t) values of these zircons range from -11.9 to 12 and their model ages suggest magma derivation from both juvenile components and reworked Archean crust. The Mesozoic magmatic units in the Fuping area includes granite, diorite and mafic microgranular enclaves, the zircons from which define a tight range of 120-130 Ma ages suggesting a prominent Early Cretaceous magmatic event. However, the εHf(t) values of these zircons show wide a range from -30.3 to 0.2, indicating that the magmatic activity involved extensive rejuvenation of the older continental crust.

  14. U-Pb detrital zircon geochronology from the basement of the Central Qilian Terrane: implications for tectonic evolution of northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, Changfeng; Wu, Chen; Zhou, Zhiguang; Yan, Zhu; Jiang, Tian; Song, Zhijie; Liu, Wencan; Yang, Xin; Zhang, Hongyuan

    2018-03-01

    The Tuolai Group dominates the Central Qilian Terrane, and there are different opinions on the age and tectonic attribute of the Tuolai Group. Based on large-scale geologic mapping and zircon dating, the Tuolai Group is divided into four parts: metamorphic supracrustal rocks, Neoproterozoic acid intrusive rocks, early-middle Ordovician acid intrusive rocks and middle Ordovician basic intrusive rocks. The metamorphic supracrustal rocks are the redefined Tuolai complex-group and include gneiss and schist assemblage by faulting contact. Zircon U-Pb LA-MC-ICP-MS dating was conducted on these samples of gneiss and migmatite from the gneiss assemblage, quartzite, two-mica schist and slate from the schist assemblage. The five detrital samples possess similar age spectra; have detrital zircon U-Pb main peak ages of 1.7 Ga with youngest U-Pb ages of 1150 Ma. They are intruded by Neoproterozoic acid intrusive rocks. Therefore, the Tuolai Group belonging to late Mesoproterozoic and early Neoproterozoic. With this caveat in mind, we believe that U-Pb detrital zircon dating, together with the geologic constraints obtained from this study and early work in the neighboring regions. We suggest that the formation age of the entire crystalline basement rocks of metasedimentary sequence from the Central Qilian Terrane should be constrained between the Late Mesoproterozoic and the Late Neoproterozoic, but not the previous Paleoproterozoic. The basement of the Central Qilian Terrane contains the typical Grenville ages, which indicates the Centre Qilian Terrane have been experienced the Grenville orogeny event.

  15. Preliminary study on multi-element profile mapping of crustal and mantle zircons by using Synchrotron Radiation X-ray Fluorescence (SR-XRF)

    NASA Astrophysics Data System (ADS)

    Hasözbek, Altug; Shyam, Badri; Siebel, Wolfgang; Schmitt, Axel; Akay, Erhan; Skinner, Lawrie

    2013-04-01

    Zircon (ZrSiO4) is a mineral of singular importance in the geosciences. Zircon microanalysis has greatly contributed to our understanding of key events in earth's history as certain radioactive heavy elements and their daughter products are well-preserved within the exceptionally stable inorganic matrix of the mineral. A prevailing notion in this field is that zircon, as a mineral, is predominantly a crustal mineral; this has been contested in the last few years with more reports of mantle-derived zircons (Siebel et al., 2009). Zircons enriched from different parts of the upper mantle to lower crust from Turkey (Hasozbek et al. 2010) and Germany (Siebel et al., 2009) will be presented in this study using SR-XRF mapping carried out at beamline 2-IDE at the Advanced Photon Source synchrotron facility (Argonne National Laboratory, USA). The high-resolution (5-10 µm) elemental maps were obtained with collimated and linearly polarized synchrotron radiation (10 to 17 keV) and possess the advantage of being a completely non-destructive technique. Elemental maps of various trace and rare-earth elements along the cross-section of the zircons reveal a zonation-related distribution, which may be used to reveal factors affecting the growth history and dynamics of the crystal formation. Further, abrupt changes in elemental distribution or concentration were found to correspond to faults or inclusions within the zircon crystal. If such observations are found to be applicable for a wide range of samples, elemental mapping with this technique may serve as an important qualitative diagnostic to locating µ-meter inclusions that may be challenging to identify using other techniques (ICP-MS LA, SHRIMP,…) Through these preliminary elemental profile mapping studies of crustal and mantle zircons using SR-XRF methods, we aim to highlight a relatively quick and promising analytical method that may be used to study various geological problems.

  16. Zircon Messengers Reveal the Age and History of Great Basin Crust, Kern Mountains, Nevada

    NASA Astrophysics Data System (ADS)

    Gottlieb, E. S.; Miller, E. L.; Wooden, J. L.

    2011-12-01

    Results of SHRIMP-RG analyses of complexly zoned zircons from muscovite-bearing granitic rocks exposed in the Kerns Mountains of East-Central Nevada constrain the timing, duration, and loci of zircon growth within the interior of the U.S. Cordillera during Late Cretaceous through Eocene time. The Kern Mountains are an exhumed block of greenschist to amphibolite facies metamorphosed miogeoclinal rocks that were pervasively intruded by the Late Cretaceous Tungstonia granite pluton and the Eocene Skinner Canyon and Uvada plutons (Best et al., 1974). Euhedral zircons separated from a coarse-grained (2-3 cm) muscovite-bearing phase of the Tungstonia pluton exhibit complex cathodeluminescence (CL) zonation. Sub-angular to sub-rounded cores with highly variable CL are overgrown by oscillatory-zoned zircon which in turn is rimmed by dark CL zircon (U>5000 ppm). A weighted mean Pb/U age of 70.2±0.9 Ma (n=20, MSWD=2.5) obtained from the oscillatory-zoned zircon coincides with the end of Cretaceous peak metamorphism at shallow crustal levels. Pb/U ages from core zones (n=18) predominantly are 0.9-1.4 Ga (n=11; 7 of which <15% discordant) or 2.4-2.7 Ga (n=5; 1 of which <15% discordant), consistent with ages of detrital zircons within the Late Proterozoic McCoy Creek Group exposed in adjacent ranges. A previously undated muscovite-bearing dike in Skinner Canyon yielded a texturally complex population of subhedral zircon grains. CL imaging of these grains reveals fragmental, ghost-like cores surrounded by irregularly shaped overgrowth zones with diffuse boundaries which are rimmed by oscillatory-zoned zircon. Both oscillatory zoned and gradational rim areas (n=32) yielded Late Cretaceous to Eocene ages. Twelve spots define the age of intrusion at 41.7±0.3 Ma (MSWD=1.8), consistent with the local onset of Eocene magmatism. An older period of zircon growth from ~75-45 Ma, coincident with the proposed duration of the Laramide shallow slab, is defined by zircon with flat to

  17. High-precision U-Pb geochronologic constraints on the Late Cretaceous terrestrial cyclostratigraphy and geomagnetic polarity from the Songliao Basin, Northeast China

    NASA Astrophysics Data System (ADS)

    Wang, Tiantian; Ramezani, Jahandar; Wang, Chengshan; Wu, Huaichun; He, Huaiyu; Bowring, Samuel A.

    2016-07-01

    The Cretaceous continental sedimentary records are essential to our understanding of how the terrestrial geologic and ecologic systems responded to past climate fluctuations under greenhouse conditions and our ability to forecast climate change in the future. The Songliao Basin of Northeast China preserves a near-complete, predominantly lacustrine, Cretaceous succession, with sedimentary cyclicity that has been tied to Milankocitch forcing of the climate. Over 900 meters of drill-core recovered from the Upper Cretaceous (Turonian to Campanian) of the Songliao Basin has provided a unique opportunity for detailed analyses of its depositional and paleoenvironmental records through integrated and high-resolution cyclostratigraphic, magnetostratigraphic and geochronologic investigations. Here we report high-precision U-Pb zircon dates (CA-ID-TIMS method) from four interbedded bentonites from the drill-core that offer substantial improvements in accuracy, and a ten-fold enhancement in precision, compared to the previous U-Pb SIMS geochronology, and allow a critical evaluation of the Songliao astrochronological time scale. The results indicate appreciable deviations of the astrochronologic model from the absolute radioisotope geochronology, which more likely reflect cyclostratigraphic tuning inaccuracies and omitted cycles due to depositional hiatuses, rather than suspected limitations of astronomical models applied to distant geologic time. Age interpolation based on our new high-resolution geochronologic framework and the calibrated cyclostratigraphy places the end of the Cretaceous Normal Superchon (C34n-C33r chron boundary) in the Songliao Basin at 83.07 ± 0.15 Ma. This date also serves as a new and improved estimate for the global Santonian-Campanian stage boundary.

  18. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance

    USGS Publications Warehouse

    Grimes, Craig B.; John, Barbara E.; Kelemen, P.B.; Mazdab, F.K.; Wooden, J.L.; Cheadle, Michael J.; Hanghoj, K.; Schwartz, J.J.

    2007-01-01

    We present newly acquired trace element compositions for more than 300 zircon grains in 36 gabbros formed at the slow-spreading Mid-Atlantic and Southwest Indian Ridges. Rare earth element patterns for zircon from modern oceanic crust completely overlap with those for zircon crystallized in continental granitoids. However, plots of U versus Yb and U/Yb versus Hf or Y discriminate zircons crystallized in oceanic crust from continental zircon, and provide a relatively robust method for distinguishing zircons from these environments. Approximately 80% of the modern ocean crust zircons are distinct from the field defined by more than 1700 continental zircons from Archean and Phanerozoic samples. These discrimination diagrams provide a new tool for fingerprinting ocean crust zircons derived from reservoirs like that of modern mid-ocean ridge basalt (MORB) in both modern and ancient detrital zircon populations. Hadean detrital zircons previously reported from the Acasta Gneiss, Canada, and the Narryer Gneiss terrane, Western Australia, plot in the continental granitoid field, supporting hypotheses that at least some Hadean detrital zircons crystallized in continental crust forming magmas and not from a reservoir like modern MORB. ?? 2007 The Geological Society of America.

  19. When the CA-TIMS therapy fails: the over-enthusiastic, the mixed-up, and the stubborn zircon

    NASA Astrophysics Data System (ADS)

    Corfu, F.

    2009-12-01

    , however, CA-TIMS could provide elegant ways to isolate the metamorphic components. A third category includes zircon populations that fail to achieve consistent ages, or concordant plateaus in multi-step partial dissolutions, even though they may have all the attributes of ideal CA-TIMS objects. The category is exemplified by a 62 Ma magmatic suite with a simple geological history and good quality zircon populations. The zircons have moderate U contents, regular growth zoning and few visible imperfections, yet the data reveal very extensive Pb loss requiring the almost total dissolution of the zircon before reaching the concordant residues. Baking of some of these zircon populations turns the colourless crystals brick-red (but still transparent), the red colour persisting long into the partial dissolution procedure. These features suggest that Pb loss may be related to a submicroscopic network of impurities and primary defects in the crystal structures which form pathways for the diffusion of Pb. Subsequent annealing appears to make the discordant domains impervious to partial dissolution. In conclusion, it is evident that CA-TIMS is a very helpful new technique for U-Pb geochronology, but some limitations must be considered that require case-by-case judgment and good Krogh-type abraders in reserve.

  20. Detrital Zircon Geochronology of Sedimentary Rocks of the 3.6 - 3.2 Ga Barberton Greenstone Belt: No Evidence for Older Continental Crust

    NASA Astrophysics Data System (ADS)

    Drabon, N.; Lowe, D. R.; Byerly, G. R.; Harrington, J.

    2017-12-01

    The crustal setting of early Archean greenstone belts and whether they formed on or associated with blocks of older continental crust or in more oceanic settings remains a major issue in Archean geology. We report detrital zircon U-Pb age data from sandstones of the 3.26-3.20 Ga Fig Tree and Moodies Groups and from 3.47 to 3.23 Ga meteorite impact-related deposits in the 3.55-3.20 Ga Barberton greenstone belt (BGB), South Africa. The provenance signatures of these sediments are characterized by zircon age peaks at 3.54, 3.46, 3.40, 3.30, and 3.25 Ga. These clusters are coincident either with the ages of major episodes of felsic to intermediate igneous activity within and around the belt or with the ages of thin felsic tuffs reflecting distant volcanic activity. Only 15 of the reported 3410 grains (<0.5%) pre-date the age of the oldest rocks in the BGB. The extreme rarity of zircons older than the felsic components of the BGB itself, even after widespread deformation, uplift, and deep erosion of the BGB, implies that an older continental substrate is unlikely to have existed beneath or adjacent to the BGB. Ten of the 15 pre -BGB zircons were recovered from a single meteorite impact-related layer and may have been derived from far beyond the BGB by impact-related processes. The remaining old zircons could represent felsic rocks in older, unexposed parts of the BGB sequence, but are too few to provide evidence for a continental source. This finding offers further evidence that the large, thick, high-standing, highly evolved blocks of continental crust with an andesitic bulk composition that characterize the Earth during younger geologic times were scarce in the early Archean.

  1. Age revision of the Neotethyan arc migration into the southeast Urumieh-Dokhtar belt of Iran: Geochemistry and U-Pb zircon geochronology

    NASA Astrophysics Data System (ADS)

    Hosseini, Mohammad Reza; Hassanzadeh, Jamshid; Alirezaei, Saeed; Sun, Weidong; Li, Cong-Ying

    2017-07-01

    The Urumieh-Dokhtar magmatic belt of Central Iran runs parallel to the Zagros orogenic belt and has been resulted from Neotethys ocean subduction underneath Eurasia. The Bahr Aseman volcanic-plutonic complex (BAC), covering an area 2000 km2 in the Kerman magmatic belt (KMB) in the southern section of the Urumieh-Dokhtar belt, has long been considered as the earliest manifestation of extensive Cenozoic arc magmatism in KMB. The nature and timing of the magmatism, however, is poorly constrained. An area 1000 km2, in BAC and adjacent Razak volcaniclastic complex and Jebal Barez-type granitoids, was mapped and sampled for geochemistry and geochronology. Andesite and basaltic andesite are the main volcanic components in the study area; plutonic bodies vary from tonalite to quartz diorite, granodiorite and biotite-granite. The rocks in BAC display dominantly normal calc-alkaline character. On spider diagrams, the rocks are characterized by enrichments in LILE relative to HFSE and enrichments in LREE relative to HREE. These features suggest a subduction related setting for the BAC. LaN/YbN ratios for the intrusive and volcanic rocks range from 1.41 to 5.16 and 1.01 to 6.42, respectively. These values are lower than those for other known granitoids in KMB, namely the abyssal, dominantly Oligocene Jebal Barez-type (LaN/YbN = 1.66-9.98), and the shallow, dominantly late Miocene Kuh Panj-type (LaN/YbN = 12.97-36.04) granitoids. This suggests a less evolved magma source for the BAC igneous rocks. In Y vs. Nb and Th/Yb vs. La/Yb discrimination diagrams, an island-arc setting is defined for the BAC rocks. The rocks further plot in primitive island-arc domain in Nb vs. Rb/Zr and Y/Nb vs. TiO2 diagrams. The BAC volcanic and plutonic rocks yielded zircon U-Pb ages of 78.1 to 82.7 Ma and 77.5 to 80.8 Ma, respectively. Zircon U-Pb dating of volcanic rocks and granitoids from the adjacent Razak complex and the Jebal Barez-type granitoids indicated 48.2 Ma and 26.1 Ma ages

  2. An integrated zircon geochronological and geochemical investigation into the Miocene plutonic evolution of the Cyclades, Aegean Sea, Greece: part 2—geochemistry

    NASA Astrophysics Data System (ADS)

    Bolhar, Robert; Ring, Uwe; Kemp, Anthony I. S.; Whitehouse, Martin J.; Weaver, Steve D.; Woodhead, Jon D.; Uysal, I. Tonguc; Turnbull, Rose

    2012-12-01

    Zircons from 14 compositionally variable granitic rocks were examined in detail using CL image-guided micro-analysis to unravel the complex magmatic history above the southward retreating Hellenic subduction zone system in the Aegean Sea. Previously published U-Pb ages document an episodic crystallisation history from 17 to 11 Ma, with peraluminous (S-type) granitic rocks systematically older than closely associated metaluminous (I-type) granitic rocks. Zircon O- and Hf isotopic data, combined with trace element compositions, are highly variable within and between individual samples, indicative of open-system behaviour involving mantle-derived melts and evolved supracrustal sources. Pronounced compositional and thermal fluctuations highlight the role of magma mixing and mingling, in accord with field observations, and incremental emplacement of distinct melt batches coupled with variable degrees of crustal assimilation. In the course of partial fusion, more fertile supracrustal sources dominated in the earlier stages of Aegean Miocene magmatism, consistent with systematically older crystallisation ages of peraluminous granitic rocks. Differences between zircon saturation and crystallisation temperatures (deduced from zircon Ti concentrations), along with multimodal crystallisation age spectra for individual plutons, highlight the complex and highly variable physico-compositional and thermal evolution of silicic magma systems. The transfer of heat and juvenile melts from the mantle varied probably in response to episodic rollback of the subducting lithospheric slab, as suggested by punctuated crystallisation age spectra within and among individual granitic plutons.

  3. Record of Hybridization Preserved in Zircon, Aztec Wash Pluton, NV

    NASA Astrophysics Data System (ADS)

    Bromley, S. A.; Miller, C. F.; Claiborne, L. L.; Wooden, J. L.; Mazdab, F. K.

    2007-12-01

    The mid-Miocene Aztec Wash pluton comprises a smaller granite zone and a larger, highly heterogeneous zone in which evidence for interaction between basaltic and granitic magmas is ubiquitous. Granitic rocks in both zones show textural and compositional evidence for crystal accumulation and melt fractionation. In the heterogeneous zone, basalts have chilled, crenulate margins against granitic rocks, and there is widespread evidence for mechanical contamination of each lithology (coarse resorbed alkali feldspar in fine-grained mafic rock; mafic enclaves in granite). "Grey rocks" of intermediate composition are exposed on dm to 100's of m-scale as enclaves, pods, and initially subhorizontal sheets. They are variable texturally, but most are dominantly fine- grained and equigranular. Textures of grey rocks are consistent with rapid solidification from melt-rich magma, and, in combination with isotopic compositions intermediate between felsic and mafic rocks of the pluton, suggest an origin by near-complete homogenization of a hybrid melt (Bleick et al. 2005; Ericksen 2005). The elemental chemistry of zircon preserves information about the evolving magmatic environment in which it was hosted (Claiborne et al., 2006). Owing to its slow dissolution rate, it has the potential to survive periods of undersaturation with only partial resorption. Thus, it may record drastic shifts in T and melt chemistry that would accompany mafic-felsic hybridization. We are investigating zircon zoning patterns by cathodoluminescence (CL) and elemental compositions by SHRIMP-RG to evaluate the record of processes that they preserve. Temperatures of zircon growth are estimated using Ti-in-zircon thermometry (Watson et al. 2006), assuming a(TiO2) of ca. 0.7 (sphene +/-ilmenite are ubiquitous). Zircons from the granite zone yield estimated T's of 700-860 C, whereas those from grey rocks range from 710- 910 C. While both granite and grey zircon populations show dramatic T variations among and

  4. Deciphering the evolution of rapakivi magmas from mineral inclusions in alkali feldspar megacrysts and zircon

    NASA Astrophysics Data System (ADS)

    Heinonen, Aku; Mänttäri, Irmeli; Rämö, Tapani; Larjamo, Kirsi

    2017-04-01

    Rapakivi granites are ferroan (A-type) granites that are characterized by ovoid-shaped alkali feldspar megacrysts (diameter up to 15 cm) commonly mantled by plagioclase forming the namesake rapakivi texture. The 1.63 Ga Wiborg batholith in southeastern Finland is the type area of rapakivi granites. Recent studies into the chemistry and geochronology of the mineral inclusions within the Wiborg rapakivi granite ovoids have shown that the megacrysts may represent magmas that crystallized significantly earlier and either in different P/T conditions or from magmas with dissimilar compositions than the matrices of the respective granites. It is possible that the ovoids crystallized from magmas with more evolved geochemical characteristics than the matrices, including higher levels of REE and other incompatibe elements. All ovoids are perthitic and have concave and rod-shaped quartz, hypidiomorphic or slightly resorbed plagioclase (often with partial quartz rim), zircon, biotite, apatite, and ilmenite (and occasionally minor magnetite) inclusions. The ovoids of the mafic rapakivi granite types have also hornblende and sometimes olivine and clinopyroxene inclusions, whereas the more felsic types have abundant fluorite. In contrast to the ovoids, the groundmass feldspar grains have hardly any inclusions. Differences are also observed in the hornblende compositions between the ovoid inclusion (dominantly ferroedenitic) and matrix (ferropargasitic/hastingsitic) populations. As zircon is an almost ubiquitous inclusion phase, time-integrated trace element composition comparisons of not only ovoid inclusion and matrix populations but also between different morphological types have been possible. Also the zircon crystals themselves contain plenty of inclusions. Alkali feldspar (albite and potassic feldspar) and quartz constitute the bulk of the inclusions within zircon crystals but chloritized mafic minerals, and sometimes also fluorite and ilmenite are common. A detailed

  5. Arc-continent collision of the Coastal Range in Taiwan: Geochronological constraints from U-Pb ages of zircons

    NASA Astrophysics Data System (ADS)

    Geng, Wei; Zhang, Xun-Hua; Huang, Long

    2018-04-01

    The oblique arc-continent collision between the Luzon arc and the southeastern margin of the Eurasian continent caused the uplift of Taiwan. The Coastal Range in eastern Taiwan is the northern section of the Luzon arc in the collision zone and thus records important information about the arc-continent collision. In this paper, we determine and analyze the U-Pb ages of magmatic zircons from the volcanic arc and clastic zircons from the fore-arc basin in the Coastal Range. For the volcanic arc in the Coastal Range, the eruption ages range from 16.8-5 Ma. Given that the initial subduction of the South China Sea oceanic crust (17 Ma) occurred before the Luzon arc formed, we conclude that the volcanic activity of the Coastal Range began at 16.8 ± 1.3 Ma; it was most active from 14 to 8 Ma and continued until approximately 5 Ma. The U-Pb chronology also indicates that the initial stage of arc-continent collision of the Coastal Range started at approximately 5 Ma, when the northern section of the Luzon arc moved away from the magmatic chamber because of the kinematics of the Philippine Sea Plate.

  6. Permian U-Pb (CA-TIMS) zircon ages from Australia and China: Constraining the time scale of environmental and biotic change

    NASA Astrophysics Data System (ADS)

    Denyszyn, S. W.; Mundil, R.; Metcalfe, I.; He, B.

    2010-12-01

    In eastern Australia, the interconnected Bowen and Sydney Basins are filled with terrestrial sediments of late Paleozoic to early Mesozoic age. These sedimentary units record significant evolutionary events of eastern Gondwana during the time interval between two major mass extinctions (end Middle Permian and Permian-Triassic), and also provide lithological evidence for the Carboniferous-Permian Late Paleozoic Ice Age of southern Pangea, considered to be divisible into up to seven discrete glaciation events in Australia [e.g., 1]. These glaciations are currently assigned ages that indicate that the last of the glaciations predate the end Middle Permian mass extinction at ca. 260 Ma. However, the estimates for the time and durations are largely based on biostratigraphy and lithostratigraphy that, in the absence of robust and precise radioisotopic ages, are unacceptably fragile for providing an accurate high-resolution framework. Interbedded with the sediments are numerous tuff layers that contain zircon, many of which are associated with extensive coal measures in the Sydney and Bowen Basins. Published SHRIMP U-Pb zircon ages [2, 3] have been shown to be less precise and inaccurate when compared to ages applying the CA-TIMS method to the same horizons. Also within the late Middle Permian, the eruption of the Emeishan flood basalts in SW China has been proposed to have caused the end Middle Permian mass extinction [e.g., 4], though a causal link between these events demands a rigorous test that can only be provided by high-resolution geochronology. We present new U-Pb (CA-TIMS) zircon ages on tuff layers from the Sydney and Bowen Basins, with the purpose of generating a timescale for the Upper Permian of Australia to allow correlation with different parts of the world. Initial results, with permil precision, date a tuff layer within the uppermost Bandanna Fm. to ca. 252 Ma, a tuff within the Moranbah Coal Measures to ca. 256 Ma, and a tuff within the Ingelara Fm. to

  7. Evolution of the depleted mantle and growth of the continental crust: improving on the imperfect detrital zircon record

    NASA Astrophysics Data System (ADS)

    Vervoort, J. D.; Kemp, A. I. S.; Patchett, P. J.

    2012-04-01

    in the zircon record are often given as prima facie evidence of crustal reworking and recycling during Earth's early history, and underpin models for large volumes of ancient continental crust. For many of these old zircons it may have nothing to do with crustal reworking, but simply reflect unrecognized ancient Pb loss. A more robust picture of the isotopic evolution of the Earth can be gained from an integrated approach of Hf and Nd isotopes in well age-constrained magmatic samples: careful U-Pb zircon geochronology to determine the crystallization age of the rock; Hf isotopic composition of the zircons; and Hf and Nd isotopic measurements of the whole-rocks. We demonstrate this with respect to evolution of the depleted mantle, and discuss the implications for the timing of crust formation. An important part of this approach is the realization that not all rock samples (or zircons!) yield useful, unambiguous results. Inclusion of all Hf isotope data from large zircon databases, unscrutinized for quality and lacking in context, will do more to obscure our understanding of the isotopic evolution of the Earth than to clarify it.

  8. Late Archean intermediate-felsic magmatism of the South Vygozersky and Kamennozersky greenstone structures of Central Karelia

    NASA Astrophysics Data System (ADS)

    Myskova, T. A.; Zhitnikova, I. A.; L'vov, P. A.

    2015-07-01

    The geochemistry and zircon geochronology (U-Pb, SHRIMP-II) of Late Archean intermediate-felsic dikes and plagiogranites of the Shilossky massif of the South Vygozersky and Kamennozersky greenstone belts of Central Karelia were studied. Subvolcanic rocks of the dike complex vary in composition from andesitobasalts to rhyolites, in structural-textural peculiarities, and in the formation age, from 2862 ± 8 to 2785 ± 15 Ma. Compositionally and geochronologically (2853 ± 11 Ma), plagiogranites of the Shilossky massif of the South Vygozersky greenstone belts are close to the most ancient dacite and granodiorite porphyry dikes. Dikes intruded synchronously with intrusion of plagiogranites over a period of at least 70 m.y. Geochronologically, subvolcanic rocks of the dike complex and plagiogranites of the Shilossky massif are similar to granitoids of the TTG assemblages of I- and M-type granites. The Sm-Nd model age of some dikes (2970-2880 Ma) is close to the age of rock crystallization, which is evidence in favor of juvenile origin of magma. Dikes with more ancient model age (3050 Ma) are presumed to contain crustal material. Variations in age and ɛNd (from -2.7 to +2.9) indicate the absence of a unified magmatic source.

  9. Alxa Block Provenance of Ediacaran (Sinian) Sediments in the Helanshan Area: Constraints from Hf Isotopes and U-Pb Geochronology of Detrital Zircons

    NASA Astrophysics Data System (ADS)

    Xiaopeng, D.

    2016-12-01

    The tectonic relationship between the Alxa Block and the North China Craton has long been controversial. The Helanshan area lies at the western margin of the Ordos Block and east of the Alxa Block (Fig.a), and it contains rocks of the lower Zhengmuguan and upper Tuerkeng formations that belong to the Ediacaran system. The Zhengmuguan Formation is made up of abyssal facies rocks including dolomite and glacial conglomerate with dropstones, and the Tuerkeng Formation consists of silty slate of the neritic facies. A discontinuity marks the boundary between the Tuerkeng Formation and the Early Cambrian Suyukou Formation, which is composed mainly of pebbly sandstone towards the base and sandstone towards the top, representing a change in sedimentary facies from terrestrial to littoral.The Neoproterozoic U-Pb ages of zircons from the Ediacaran and Early Cambrian sediments peak at 818 ± 4 Ma (n = 88) and 905 ± 8 Ma (n = 20), consistent with the Neoproterozoic age peaks found in the Precambrian basement of the Alxa Block(Fig.b). There are few Neoproterozoic zircons in the Neoproterozoic strata of the Langshan area, and there are no reports of Neoproterozoic zircons in the Zhuozishan area, northwest of Helanshan, or in the western margin of the neighboring Ordos Basin. A number of Neoproterozoic zircons are found in the Middle Cambrian to Middle Ordovician strata of the Niushoushan area. And while Niushoushan is part of the Hexi Corridor, it did not amalgamate with the NCC before the Early-Middle Cambrian. Therefore, the Neoproterozoic and Early Cambrian sediments in Helanshan record information about Neoproterozoic magmatic events in the Alxa Block, and indicate an Alxa Block provenance(Fig.c).The Hf isotopic characteristics of the Neoproterozoic zircons from the Ediacaran Zhengmuguan Formation in the Helanshan area (eHf(t) = -7.812 to 3.274, TDMC = 2211-1578 Ma, n = 10) are similar to those Neoproterozoic igneous zircons from the Langshan area (eHf(t) = -1.105 to 5

  10. U-Th-Pb zircon ages of some Keweenawan Supergroup rocks from the south shore of Lake Superior

    USGS Publications Warehouse

    Zartman, R.E.; Nicholson, S.W.; Cannon, W.F.; Morey, G.B.

    1997-01-01

    New single-crystal zircon U-Th-Pb ages for plutonic and rhyolitic Keweenawan Supergroup rocks from the south shore of Lake Superior provide geochronological constraints on magmatic evolution associated with the 1.1 Ga Midcontinent rift. Analyses of a granophyric phase of the Mineral Lake intrusion and the Meilen granite, both parts of the Meilen Intrusive Complex, and a laterally extensive rhyolite from the top of the Kallander Creek Volcanics have weighted average 207Pb/206Pb ages of 1102.0 ?? 2.8 Ma (N = 2), 1100.9 ?? 1.4 Ma (N = 5), and 1098.8 ?? 1.9 Ma (N = 4), respectively. Analyses of a pyroclastic rhyolite flow at the top of the Porcupine Volcanics result in variable 207Pb/206Pb ages that range from 1080 to 1137 Ma. This rhyolite exhibits a continuum between morphologically complex and simpler prismatic zircon crystals, the latter yielding concordant analyses having a weighted average 207Pb/206Pb age of 1093.6 ?? 1.8 Ma (N = 2). Four prismatic zircons from an aphyric rhyolite of the Chengwatana Volcanics in the Ashland syncline form a linear array intersecting concordia at 1094.6 ?? 2.1 Ma (MSWD = 1.3). Another presumed Chengwatana rhyolite recovered from drill core intersecting the Hudson-Afton horst in southeast Minnesota yielded only ???20 morphologically indistinguishable zircons. Six analyses give 207Pb/206Pb ages ranging from 1112 to 1136 Ma, including one analysis with a virtually concordant age of 1130 Ma. This age, however, is considerably older than that obtained for the Chengwatana Volcanics in the Ashland syncline or any other precisely dated rock from the Midcontinent rift.

  11. A-type granites from the Guéra Massif, Central Chad: Petrology, geochemistry, geochronology, and petrogenesis.

    NASA Astrophysics Data System (ADS)

    Pham, Ngoc Ha T.; Shellnutt, J. Gregory; Yeh, Meng-Wan; Lee, Tung-Yi

    2017-04-01

    The poorly studied Saharan Metacraton of North-Central Africa is located between the Arabian-Nubian Shield in the east, the Tuareg Shield in the west and the Central African Orogenic Belt in the south. The Saharan Metacraton is composed of Neoproterozoic juvenile crust and the relics of pre-Neoproterozoic components reactivated during the Pan-African Orogeny. The Republic of Chad, constrained within the Saharan Metacraton, comprises a Phanerozoic cover overlying Precambrian basement outcroppings in four distinct massifs: the Mayo Kebbi, Tibesti, Ouaddaï, and the Guéra. The Guéra massif is the least studied of the four massifs but it likely preserves structures that were formed during the collision between Congo Craton and Saharan Metacraton. The Guéra Massif is composed of mostly granitic rocks. The granitoids have petrologic features that are consistent with A-type granite, such as micrographic intergrowth of sodic and potassic feldspar, the presence of sodic- and iron-rich amphibole, and iron-rich biotite. Compositionally, the granitic rocks of the Guéra Massif have high silica (SiO2 ≥ 68.9 wt.%) content and are metaluminous to marginally peraluminous. The rocks are classified as ferroan calc-alkalic to alkali-calcic with moderately high to very high Fe* ratios. The first zircon U/Pb geochronology of the silicic rocks from the Guéra Massif yielded three main age groups: 590 Ma, 570 Ma, 560 Ma, while a single gabbro yielded an intermediate age ( 580 Ma). A weakly foliated biotite granite yielded two populations, in which the emplacement age is interpreted to be 590 ± 10 Ma, whereas the younger age (550 ± 11 Ma) is considered to be a deformation age. Furthermore, inherited Meso- to Paleoproterozoic zircons are found in this sample. The geochemical and geochronology data indicate that there is a temporal evolution in the composition of rocks with the old, high Mg# granitoids shifting to young, low Mg# granitoids. This reveals that the A-type granites in

  12. North Qinling Terrain as a provenance of Kuanping Group: LA-ICP-MS U-Pb Geochronology of detrital zircons

    NASA Astrophysics Data System (ADS)

    Hu, B.; Li, S.; Zhai, M.; Wu, J.; Jia, X.

    2017-12-01

    Though some Neoproterozoic S-type granites in the North Qinling Terrain (NQT), China indicate the collision between the NQT and an unknown block, there are still controversial. The LA-ICP-MS U-Pb ages of detrital zircons of meta-sandstones from the Kuanping Group in Luonan area, NQT, provide sedimentology evidence to prove that the NQT and an unknown block from Rodinia supercontinent have been collided during Meso-Neoproterozoic. The U-Pb ages of detrital zircons from the Kuanping Group show that the main age peaks are at 2.58 Ga, 2.46 Ga, 2.0 Ga, 1.78 Ga, 1.6 Ga, 1.45 Ga and 1.27 Ga. The youngest age of 880 Ma indicates that the sedimentary age of the Kuanping Group is less than 880 Ma. The provenances, which provide 1.45 - 0.88 Ga sediments may come from NQT, which magmatic and metamorphic rocks during this period outcropped. Whereas provenances providing 2.6- 1.6 Ga sediments may come from an unknown block. This indicates that the Kuangping Group received both NQT and the unknown block materials. Therefore, the NQT and the unknown block may have collided before 880 Ma. 889 - 848 Ma A-type granites distributing the NQT was considered forming under a post-collisional tectonics. According the youngest detrital zircon ages of 880 Ma, it is inferred that the Kuanping Basin may also form in the same tectonic environments. Neoproterozoic Kuanping basin and 889 - 848 Ma A-type granites may be a result which NQT broken off a block of Rodinia supercontinent. Acknowledgments: This research is supported by National Key Research and Development Plan of China (2016YFC0601002), Special Fund for Basic Scientific Research of Central Colleges, Chang'an University (310827172201, 0009-2014G1271067) and National Nature Science Foundation of China (41402042).

  13. A cathodoluminescence study on zircons with a complex thermal history traces back Permian crustal events in the Ivrea Zone (South Alpine, Northern Italy)

    NASA Astrophysics Data System (ADS)

    Peressini, G.; Poller, U.

    2003-04-01

    In the context of a U-Pb SHRIMP data-set, a cathodoluminescence (CL) study has been performed on zircons from the Ivrea-Verbano Zone; this is a tectonically bounded section of intermediate to deep crust, tilted and obducted in Alpine time, in which a large deep-crustal intrusion of mantle origin, the Mafic Complex (MC), was emplaced in the Early Permian. Zircons from 16 samples from the different units of the MC have been studied using CL. Three samples collected from the Paragneiss Bearing Belt (PBB) yield some partially reset spot-ages, reflecting the field observation that country rock slabs are frequent in that area. On the other side, unlike in zircons from granites, the cores are invisible under CL-imaging, and this makes the U-Pb spot-age results unpredictable, with a continuous range of ages in the same sample, spanning for an interval of over 35 Ma, followed by some much older peaks, up to 600 Ma. A fourth sample, collected 2 km far, but still within the PBB, defines instead a unique, well-defined age at 287±3 Ma, with no older peaks, its zircons showing a CL pattern typical for metamorphic grains. A different case is displayed by a sample collected from the deeper Amphibole Gabbro unit: each single grain records a complex story of magmatic growth with variable diffusivity conditions. All of them show a second major overprint, that lead to both (re)crystallization and resorption, always corresponding to much lower U and Th contents, with no sensible modification of the Th-U ratio. The age of the second event, though, is not distinguishable from that of first crystallization of the grains, and has not been at such a temperature as to obliterate the fine zoning pattern of the primary grain. The CL patterns of each single grain, composed of different domains, allow considerations on the environmental conditions of growth and (re)crystallization. CL is a very powerful tool itself, revealing crystal-chemical processes. The integration of the CL-study with the

  14. Neoarchean high-pressure metamorphism from the northern margin of the Palghat-Cauvery Suture Zone, southern India: Petrology and zircon SHRIMP geochronology

    NASA Astrophysics Data System (ADS)

    Saitoh, Yohsuke; Tsunogae, Toshiaki; Santosh, M.; Chetty, T. R. K.; Horie, Kenji

    2011-08-01

    We report the metamorphic pressure-temperature ( P- T) history of mafic granulites from two localities in southern India, one from Kanja Malai in the northern margin and the other from Perundurai in the central domain of the Palghat-Cauvery Suture Zone (PCSZ). The PCSZ is described in recent models as the trace of the suture along which crustal blocks were amalgamated within the Gondwana supercontinent during Late Neoproterozoic-Cambrian. The mafic granulite from Kanja Malai yields P- T conditions of 750-800 °C and 8-12 kbar reflecting the partially retrograded conditions following a peak high-pressure (HP) metamorphic event. The common Grt + Cpx + Qtz assemblage in these rocks and lack of decompression texture suggest that peak metamorphism was probably buffered by Grt + Cpx + Opx + Pl + Qtz assemblage, following which the rocks were exhumed through a gradual P- T decrease. The mafic granulite from Perundurai (Grt + Cpx + Pl) contains Opx + Pl symplectite commonly occurring between garnet and clinopyroxene, suggesting the progress of reaction: Grt + Cpx + Qtz → Opx + Pl, with the Grt + Cpx + Qtz representing the peak metamorphic assemblage. The reaction microstructures and calculated P- T conditions suggest that the mafic granulites from Perundurai underwent peak HP metamorphism at P > 12 kbar and T = 800-900 °C and subsequent isothermal decompression along a clockwise P- T path, in contrast to the P- T path inferred for Kanja Malai. The contrasting P- T paths obtained from the two localities suggest that whereas Perundurai is a part of the metamorphic orogen developed within the PCSZ during Gondwana assembly, the high-pressure granulites of Kanja Malai belong to a different orogenic regime. In order to evaluate this aspect further, we analyzed zircons in a charnockite and garnet-bearing quartzo-feldspathic gneiss associated with the HP granulites from Kanja Malai which yielded mean 207Pb/ 206Pb magmatic protolith emplacement ages of 2536.1 ± 1.4 Ma and 2532

  15. Permian A-type rhyolites of the Muráň Nappe, Inner Western Carpathians, Slovakia: in-situ zircon U-Pb SIMS ages and tectonic setting

    NASA Astrophysics Data System (ADS)

    Ondrejka, Martin; Li, Xian-Hua; Vojtko, Rastislav; Putis, Marian; Uher, Pavel; Sobocký, Tomas

    2018-04-01

    Three representative A-type rhyolitic rock samples from the Muráň Nappe of the inferred Silicic Unit of the Inner Western Carpathians (Slovakia) were dated using the high-precision SIMS U-Pb isotope technique on zircons. The geochronological data presented in this paper is the first in-situ isotopic dating of these volcanic rocks. Oscillatory zoned zircon crystals mostly revealed concordant Permian (Guadalupian) ages: 266.6 ± 2.4 Ma in Tisovec-Rejkovo (TIS-1), 263.3 ± 1.9 Ma in Telgárt-Gregová Hill (TEL-1) and 269.5 ± 1.8 Ma in Veľká Stožka-Dudlavka (SD-2) rhyolites. The results indicate that the formation of A-type rhyolites and their plutonic equivalents are connected to magmatic activity during the Permian extensional tectonics and most likely related to the Pangea supercontinent break-up.

  16. In situ detrital zircon (U-Th)/He thermochronology

    NASA Astrophysics Data System (ADS)

    Tripathy, A.; Monteleone, B. D.; van Soest, M. C.; Hodges, K.; Hourigan, J. K.

    2010-12-01

    Detrital studies of both sand and rock are relevant to many problems, ranging from the climate and tectonics feedback debate to the long-term record of orogenic evolution. When applying the conventional (U-Th)/He technique to such studies, two important issues arise. Often, only euhedral grains are permissible for analysis in order to make simple geometric corrections for α-recoil. In detrital samples, this is problematic because euhedral grains can be scarce due to mechanical abrasion during transport, and potentially introduce bias in favour of more proximally sourced grains. Second, inherent to detrital studies is the need to date many grains (>100) per sample to ensure a representative sampling of the sediment source region, thus making robust conventional detrital studies both expensive and time-consuming. UV laser microprobes can improve this by permitting careful targeting of the grain interior away from the α-ejection zone, rendering the α-recoil correction unnecessary, thus eliminating bias toward euhedral grains. In the Noble Gas, Geochemistry, and Geochronology Laboratory at ASU, apatite and zircon have been successfully dated using in situ methods. For this study, the conventional and in situ techniques are compared by dating zircons from a modern river sand that drains a small catchment in the Mesozoic-Cenozoic Ladakh Batholith in NW India. This sample has a simple provenance, which allows us to demonstrate the robustness of the in situ method. Moreover, different microbeam techniques will be explored to establish the most efficient approach to obtain accurate and precise U-Th concentrations using synrock, which is our powdered, homogenized, and reconstituted zircon-rock standard. Without this, such in situ U-Th data would be difficult to obtain. 117 zircons were dated using the conventional (U-Th)/He method, revealing dates ranging from 9.70±0.35 to 106.6±3.5 Ma (2σ) with the major mode at 26 Ma. For comparison, 44 grains were dated using the in

  17. Cogenetic late Pleistocene rhyolite and cumulate diorites from Augustine Volcano revealed by SIMS 238U-230Th dating of zircon, and implications for silicic magma generation by extraction from mush

    USGS Publications Warehouse

    Coombs, Michelle L.; Vazquez, Jorge A.

    2014-01-01

    Augustine Volcano, a frequently active andesitic island stratocone, erupted a late Pleistocene rhyolite pumice fall that is temporally linked through zircon geochronology to cumulate dioritic blocks brought to the surface in Augustine's 2006 eruption. Zircon from the rhyolite yield a 238U-230Th age of ∼25 ka for their unpolished rims, and their interiors yield a bimodal age populations at ∼26 ka and a minority at ∼41 ka. Zircon from dioritic blocks, ripped from Augustine's shallow magmatic plumbing system and ejected during the 2006 eruption, have interiors defining a ∼26 ka age population that is indistinguishable from that for the rhyolite; unpolished rims on the dioritic zircon are dominantly younger (≤12 ka) indicating subsequent crystallization. Zircon from rhyolite and diorite overlap in U, Hf, Ti, and REE concentrations although diorites also contain a second population of high-U, high temperature grains. Andesites that brought dioritic blocks to the surface in 2006 contain zircon with young (≤9 ka) rims and a scattering of older ages, but few zircon that crystallized during the 26 ka interval. Both the Pleistocene-age rhyolite and the 2006 dioritic inclusions plot along a whole-rock compositional trend distinct from mid-Holocene–present andesites and dacites, and the diorites, rhyolite, and two early Holocene dacites define linear unmixing trends often oblique to the main andesite array and consistent with melt (rhyolite) extraction from a mush (dacites), leaving behind a cumulate amphibole-bearing residue (diorites). Rare zircon antecrysts up to ∼300 ka from all rock types indicate that a Quaternary center has been present longer than preserved surficial deposits.

  18. Zircon petrochronology reveals the temporal link between porphyry systems and the magmatic evolution of their hidden plutonic roots (the Eocene Coroccohuayco deposit, Peru)

    NASA Astrophysics Data System (ADS)

    Chelle-Michou, Cyril; Chiaradia, Massimo; Ovtcharova, Maria; Ulianov, Alexey; Wotzlaw, Jörn-Frederik

    2014-06-01

    We present zircon geochronologic (LA-ICPMS and ID-TIMS), trace element and Hf isotopic evidence for a complex evolution of the plutonic roots of the Eocene Coroccohuayco porphyry system, southern Peru. LA-ICPMS U-Pb dating has initially been carried out to optimize grain selection for subsequent high-precision ID-TIMS dating and to characterize crustal assimilation (xenocrystic cores). This combined in-situ and whole-grain U-Pb dating of the same grains has been further exploited to derive a robust temporal interpretation of the complex magmatic system associated with the Coroccohuayco porphyry-skarn deposit. Our data reveal that a heterogeneous gabbrodioritic complex was emplaced at ca. 40.4 Ma and was followed by a nearly 5 Ma-long magmatic lull until the emplacement of dacitic porphyry stocks and dykes associated with the mineralizing event at ca. 35.6 Ma. However, at the sample scale, zircons from the porphyries provide insight into a 2 Ma-long lived “hidden” magmatism (probably at 4-9 km paleodepth) prior to porphyry intrusion and mineralization for which no other evidence can be found on the surface today. These dates together with zircon trace element analysis and Hf isotopes argue for the development of a long-lived magmatic system dominated by amphibole fractionation with an increasing amount of crustal assimilation and the development of a large and sustained thermal anomaly. The system was probably rejuvenated at an increasing rate from 37.5 to 35.6 Ma with injection of fresh and oxidized magma from the lower crust, which caused cannibalism and remelting of proto-plutons. The porphyry intrusions at Coroccohuayco were emplaced at the peak thermal conditions of this upper crustal magma chamber, which subsequently cooled and expelled ore fluids. Zircon xenocrysts and Hf isotopes in the porphyritic rocks suggest that this large upper crustal system evolved at stratigraphic levels corresponding to Triassic sediments similar to the Mitu group that may be

  19. Trace element geochemistry of zircons from mineralizing and non-mineralizing igneous rocks related to gold ores at Yanacocha, Peru

    NASA Astrophysics Data System (ADS)

    Koleszar, A. M.; Dilles, J. H.; Kent, A. J.; Wooden, J. L.

    2012-12-01

    Zircons record important details about the evolution of magmatic systems, are relatively insensitive to alteration, and have been used to investigate the geochemistry, temperature, and oxidation state of volcanic and plutonic system. We examine zircons that span 6-7 m.y. of calc-alkaline volcanic activity in the Yanacocha district of northern Peru, where dacitic intrusions are associated with high-sulfidation gold deposits. The 14.5-8.4 Ma Yanacocha Volcanics include cogenetic lavas and pyroclastic rocks and are underlain by the andesites and dacites of the Calipuy Group, the oldest Cenozoic rocks in the region. We present data for magmatic zircons from the Cerro Fraile dacitic pyroclastics (15.5-15.1 Ma) of the Calipuy Group, and multiple eruptive units within the younger Yanacocha Volcanics: the Atazaico Andesite (14.5-13.3 Ma), the Quilish Dacite (~14-12 Ma), the Azufre Andesite (12.1-11.6 Ma), the San Jose Ignimbrite (11.5-11.2 Ma), and the Coriwachay Dacite (11.1-8.4 Ma). Epithermal high sulfidation (alunite-bearing) gold deposits are associated with the dacite intrusions of the Coriwachay and Quilish Dacites. Zircons from the non-mineralizing rocks typically have lower Hf concentrations and record Ti-in-zircon temperatures that are ~100°C hotter than zircons from the mineralizing intrusions. Temperatures recorded by zircons from the mineralizing intrusions are remarkably similar to those of the underlying Cerro Fraile dacite pyroclastics, but the zircons discussed here generally record SHRIMP-RG 206Pb/238U ages within error of previously published Ar-Ar eruption ages (eliminating antecrystic or xenocrystic origins). These observations suggest that zircons in the mineralizing intrusions form after greater extents of crystallization (and thus record elevated Hf concentrations and lower temperatures) than do zircons in the non-mineralized deposits. Unlike zircons from mineralized units associated with the porphyry Cu(Mo) deposits in Yerington, Nevada, which

  20. New evidence for an old idea: Geochronological constraints for a paired metamorphic belt in the central European Variscides

    NASA Astrophysics Data System (ADS)

    Will, T. M.; Schmädicke, E.; Ling, X.-X.; Li, X.-H.; Li, Q.-L.

    2018-03-01

    New geochronological data reveal a prolonged tectonothermal evolution of the Variscan Odenwald-Spessart basement, being part of the Mid-German Crystalline Zone in central Europe. We report the results from (i) secondary ion mass spectrometry (SIMS) U-Pb dating of zircon, rutile and monazite, (ii) SIMS zircon oxygen isotope analyses, (iii) laser ablation-multicollector-inductively coupled plasma mass spectrometry (LA-MC-ICPMS) zircon Lu-Hf isotope analyses and, (iv) LA-ICPMS zircon and rutile trace element data for a suite of metamorphic rocks (five amphibolite- and eclogite-facies mafic meta-igneous rocks and one granulite-facies paragneiss). The protoliths of the mafic rocks formed from juvenile as well as depleted mantle sources in distinct tectonic environments at different times. Magmatism took place at a divergent oceanic margin (possibly in a back-arc setting) at 460 Ma, in an intraoceanic basin at ca. 445 Ma and at a continental margin at 329 Ma. Regardless of lithology, zircon in eclogite, amphibolite and high-temperature paragneiss provide almost identical Carboniferous ages of 333.7 ± 4.1 Ma (eclogite), 329.1 ± 1.8 to 328.4 ± 8.9 Ma (amphibolite), and 334.0 ± 2.0 Ma (paragneiss), respectively. Rutile yielded ages of 328.6 ± 4.7 and 321.4 ± 7.0 Ma in eclogite and amphibolite, and monazite in high-temperature paragneiss grew at 330.1 ± 2.4 Ma (all ages are quoted at the 2σ level). The data constrain coeval high-pressure eclogite- and high-temperature granulite-facies metamorphism of the Odenwald-Spessart basement at ca. 330 Ma. Amphibolite-facies conditions were attained shortly afterwards. The lower plate eclogite formed in a fossil subduction zone and the upper plate high-temperature, low-pressure rocks are the remains of an eroded Carboniferous magmatic arc. The close proximity of tectonically juxtaposed units of such radically different metamorphic conditions and thermal gradients is characteristic for a paired metamorphic belt sensu Miyashiro

  1. Petrology and geochronology of Mesoproterozoic basement of the Mount Rogers area of southwestern Virginia and northwestern North Carolina: Implications for the Precambrian tectonic evolution of the southern Blue Ridge province

    USGS Publications Warehouse

    Tollo, Richard P.; Aleinikoff, John N.; Dickin, Alan P.; Radwany, Molly S.; Southworth, C. Scott; Fanning, C. Mark

    2017-01-01

    Results from new geologic mapping, SHRIMP U-Pb geochronology, and petrologic studies indicate that Mesoproterozoic basement in the northern French Broad massif near Mount Rogers consists of multiple, mostly granitic plutons, map- and outcrop-scale xenoliths of pre-existing crustal rocks, and remnants of formerly overlying meta-sedimentary lithologies. Zircon and titanite ages demonstrate that these rocks collectively record nearly 350 m.y. of tectonic evolution including periods of igneous intrusion at ca. 1190 to 1130 Ma (Early Magmatic Suite) and ca. 1075 to 1030 Ma (Late Magmatic Suite) and three episodes of regional metamorphism at ca. 1170 to 1140, 1070 to 1020, and 1000 to 970 Ma. The existence of ca. 1.3 Ga age crust is indicated by (1) orthogranofels of ca. 1.32 Ga age in a map-scale xenolith, (2) inherited zircons of ca. 1.33 to 1.29 Ga age in Early Magmatic Suite plutons, and (3) ca. 1.36 to 1.30 Ga age detrital zircons in meta-sedimentary lithologies. Mineral assemblages developed in amphibolites and granofelses indicate that metamorphism during both Mesoproterozoic episodes occurred at upper amphibolite- to lower granulite-facies conditions. Syn-orogenic Early Magmatic Suite plutons emplaced at ca. 1190 to 1145 Ma are characterized by high-K, variably magnesian, dominantly calc-alkalic compositions, and have trace-element characteristics indicative of continental-arc magmatic origin involving melting of thick continental crust. In contrast, ca. 1140 Ma age quartz syenite displays A-type features indicating derivation from depleted crustal sources with increased mantle input during waning stages of regional contraction. Plutons of the compositionally bimodal Late Magmatic Suite include (1) ca. 1060 Ma meta-granite with geochemical characteristics transitional between silicic rocks of arc systems and post-collisional granites of A-type lineage, and (2) ca. 1055 Ma monzodioritic rocks with A-type compositional characteristics that likely reflect

  2. First U-Pb geochronology on detrital zircons from Early-Middle Cambrian strata of the Torgau-Doberlug Syncline (eastern Germany) and palaeogeographic implications

    NASA Astrophysics Data System (ADS)

    Abubaker, Atnisha; Hofmann, Mandy; Gärtner, Andreas; Linnemann, Ulf; Elicki, Olaf

    2017-10-01

    LA-ICP-MS U-Pb data from detrital zircons of the Ediacaran to Cambrian siliciclastic sequence of the Torgau-Doberlug Syncline (TDS, Saxo-Thuringia, Germany) are reported for the first time. The majority of 203 analysed zircon grains is Proterozoic with minor amount of Archean and Palaeozoic grains. The U-Pb ages fall into three groups: 2.8-2.4 Ga (3%), Neoarchean to earliest Palaeoproterozoic; 2.3-1.6 Ga (46%), early to late Palaeoproterozoic; 1.0-0.5 Ga (47%), Neoproterozoic to Cambrian. This age distribution is typical for the West African Craton as the source area and for Cadomian orogenic events in northwestern Gondwana. The samples show an age gap between 1.6 and 1.0 Ga, which is characteristic for West African provenance and diagnostic in distinguishing this unit from East Avalonia and Baltica. The dataset shows clusters of Palaeoproterozoic ages at 2.2-1.7 Ga, that is typical for western Gondwana, which was affected by abundant magmatic intrusions (ca. 2.2-1.8 Ga) during the Eburnean orogeny (West African craton). Neoarchean zircon ages (3%) point to recycling of magmatic rocks formed during the Liberian and Leonian orogenies. Ediacaran to earliest Cambrian rocks of the TDS originated in an active margin regime of the Gondwanan shelf. The following early Palaeozoic overstep sequence was deposited within rift settings that reflects instability of the West-Gondwanan shelf and the separation of terranes from Ordovician onward. The results of this study demonstrate distinct northwestern African provenance of the Cambrian siliciclastics of the TDS. Due to Th-U ratios from concordant zircon analysis, igneous origin from felsic melts is concluded as the source of these grains.

  3. The Mesozoic metamorphic-magmatic events in the Medog area, the Eastern Himalayan Syntaxis: constraints from zircon U-Pb geochronology, trace elements and Hf isotope compositions in granitoids

    NASA Astrophysics Data System (ADS)

    Dong, Hanwen; Xu, Zhiqin; Li, Yuan; Liu, Zhao; Li, Huaqi

    2015-01-01

    Based on the regional geological mapping, several granitoid intrusions had been discovered in the Eastern Himalayan Syntaxis (EHS). In order to constrain their petrogenesis and discuss their relations with the regional tectonics, we carried out U-Pb dating, trace elements and Hf isotope geochemistry studies on zircons separated from the granitoid rocks, in the area of the EHS. In this contribution, the granitoid rocks are mainly composed of diorites (X20-1-6) and granitic gneissic rocks (X2-15-1). The U-Pb zircon dating of diorites yields a crystallization age of 193.8 ± 2.0 Ma. These zircon have ɛ Hf( t) values ranging from -6.48 to -0.05, indicating an involvement of ancient crustal materials in the generation of these igneous rocks. The zircons from the Medog granitic gneissic rock commonly show zoning structures. The REE patterns and abundances of the inherited cores are different from those of the oscillatory rims. The LA-ICP-MS U-Pb zircon in situ analyses indicate that: (1) the zircon cores give multi-stage magmatic event ages ranging from 516 to 1,826 Ma, of which six ages are converged on 1,330-911 Ma, it is considered that the migmatitic gneiss has been formed in this time, and (2) while the zircon rims yield 206Pb/238U weighted mean ages of 217.4 ± 3.0 Ma (MSWD = 3.2), which was interpreted to represent the ages of the Triassic anatexis. Their ɛ Hf( t) values range from -18.98 to -8.36 and -14.22 to 8.72, respectively. The timing of the anatexis in the Medog area is coeval with the widespread metamorphism in Lhasa terrane.

  4. Time-scale calibration by U-Pb geochronology: Examples from the Triassic Period

    NASA Astrophysics Data System (ADS)

    Mundil, R.

    2009-05-01

    U-Pb zircon geochronology, pioneered by Tom Krogh, is a cornerstone for the calibration of the time scale. Before Krogh's innovations, U-Pb geochronology was essentially limited by laboratory blank Pb (typically hundreds of nanograms) inherent in the then existing zircon dissolution and purification methods. The introduction of high pressure HF dissolution combined with miniature ion exchange columns (1) reduced the blank by orders of magnitude and allowed mass-spectrometric analyses of minute amounts of material (picograms of Pb and U). Krogh also recognized the need for minimizing the effects of Pb loss, and the introduction of the air-abrasion technique was the method of choice for two decades (2), until the development of the combined annealing and chemical abrasion technique resulted in essentially closed system zircons (3). These are the prerequisite for obtaining precise (permil-level) and accurate radio-isotopic ages of individual zircons contained in primary volcanic ash deposits, which are primary targets for the calibration of the time scale if they occur within fossil bearing sediments. A prime example is the calibration of the Triassic time scale which improved significantly using these techniques. The ages for the base and the top of the Triassic are constrained by U-Pb ages to 252.3 (4) and 201.5 Ma (5), respectively. These dates also constrain the ages of major extinction events at the Permian-Triassic and Triassic-Jurassic boundaries, and are statistically indistinguishable from ages obtained for the Siberian Traps and volcanic products from the Central Atlantic Magmatic Province, respectively, suggesting a causal link. Ages for these continental volcanics, however, are mostly from the K-Ar (40Ar/39Ar) system which requires accounting and correcting for a systematic bias of ca 1 % between U-Pb and 40Ar/39Ar isotopic ages (the 40Ar/39Ar ages being younger) (6). Robust U-Pb age constraints also exist for the Induan- Olenekian boundary (251.2 Ma, (7

  5. Significance of zircon U-Pb ages from the Pescadero felsite, west-central California coast ranges

    USGS Publications Warehouse

    McLaughlin, Robert J.; Moore, Diane E.; ,; Martens, UWE C.; Clark, J.C.

    2011-01-01

    Weathered felsite is associated with the late Campanian–Maastrichtian Pigeon Point Formation near Pescadero, California. Poorly exposed, its age and correlation are uncertain. Is it part of the Pigeon Point section west of the San Gregorio–Hosgri fault? Does it rest on Nacimiento block basement? Is it dextrally offset from the Oligocene Cambria Felsite, ∼185 km to the southeast? Why is a calc-alkaline hypabyssal igneous rock intrusive into the outboard accretionary prism? To address these questions, we analyzed 43 oscillatory-zoned zircon crystals from three incipiently recrystallized pumpellyite ± prehnite ± laumontite-bearing Pescadero felsite samples by sensitive high-resolution ion microprobe–reverse geometry (SHRIMP-RG) and laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) techniques. Thirty-three zircons gave late Mesozoic U-Pb ages, with single-grain values ranging from 81 to 167 Ma; ten have pre-Mesozoic, chiefly Proterozoic ages. A group of the four youngest Pescadero zircons yielded an apparent maximum igneous age of ca. 86–90 Ma. Reflecting broad age scatter and presence of partly digested sandstone inclusions, we interpret the rest of the zircons (perhaps all) as xenocrysts. Twenty-three zircons were separated and analyzed from two samples of the similar Cambria Felsite, yielding a unimodal 27 Ma U-Pb age. Clearly, the origin of the Upper Oligocene Cambria Felsite is different from that of the Upper Cretaceous Pescadero felsite; these rocks are not correlated, and do not constrain displacement along the San Gregorio–Hosgri fault. Peak ages differ slightly, but relative probability curves for Mesozoic and pre-Mesozoic Pescadero zircons compare well, for example, with abundant U-Pb age data for detrital zircons from Franciscan metaclastic strata ∼100 km to the east in the Diablo Range–San Francisco Bay area, San Joaquin Great Valley Group turbidites, Upper Cretaceous Nacimiento block Franciscan strata, and Upper

  6. Zircon U-Pb ages, Hf isotope data, and tectonic implications of Early-Middle Triassic granitoids in the Ailaoshan high-grade metamorphic belt of Southeast Tibet

    NASA Astrophysics Data System (ADS)

    Wu, Wenbin; Liu, Junlai; Chen, Xiaoyu; Zhang, Lisheng

    2017-04-01

    The Ailaoshan tectonic belt, where the effects of the Paleo-Tethyan ocean evolution and Indian-Eurasian plate collision are superimposed, is one of the most significant geological discontinuities in western Yunnan province of southeast Tibet. An Ailaoshan micro-block within the belt is bounded by the Ailaoshan suture zone to the west and the Red River Fault to the east, and consists of low- and high-grade metamorphic belts. Late Permian-Middle Triassic granitoids that are widely distributed to the west of the Ailaoshan suture zone and within the Ailaoshan micro-block may yield significant information on the Tethyan tectonic evolution of the Ailaoshan tectonic belt. This study reports new LA-ICP-MS zircon U-Pb geochronology and Hf isotope data of four granitoids from the Ailaoshan high-grade metamorphic belt. Zircon grains from the Yinjie granitoid do not have inherited cores and yield a weighted mean U-Pb age of 247.1 ± 2.0 Ma. The zircon ɛ Hf( t) values range from 7.8 to 12.1, and Hf model ages from 775 to 546 Ma, indicating that the granitoid was derived from juvenile crust. The rims of zircons from the Majie and Yuanjiang granitoids yield weighted mean U-Pb ages of 239.5 ± 1.8 and 237.9 ± 2.6 Ma, respectively, whereas the cores yield ages of 1608-352 Ma. The ɛ Hf( t) values of zircon rims range from -20.4 to -5.3, yielding Hf model ages from 2557 to 1606 Ma and suggesting that the source magma of the Majie and Yuanjiang granitoids was derived from ancient crust. An additional granitoid located near the Majie Village yields a zircon U-Pb age of 241.2 ± 1.0 Ma. Based on our geochronological and geochemical data, combined with geological observations, we propose that the Ailaoshan micro-block was derived from the western margin of the Yangtze block, and is comparable to the Zhongzan and Nam Co micro-blocks. The presence of late Permian mafic rocks with rift-related geochemical characteristics within the Ailaoshan micro-block, together with granitoids derived

  7. Provenance and U-Pb geochronology of the Upper Cretaceous El Chanate Group, northwest Sonora, Mexico, and its tectonic significance

    USGS Publications Warehouse

    Jacques-Ayala, C.; Barth, A.P.; Wooden, J.L.; Jacobson, C.E.

    2009-01-01

    The Upper Cretaceous El Chanate Group, northwest Sonora, Mexico, is a 2.8km thick clastic sedimentary sequence deposited in a continental basin closely related to volcanic activity. It consists of three formations: the Pozo Duro (oldest), the Anita, and the Escalante (youngest). Petrographic study, conglomerate pebble counts, and U-Pb geochronology of detrital zircons were performed to determine the source and age of this sequence, and to interpret its tectonic setting. In the sandstones of all three formations, the most abundant grains are those of volcanic composition (Q38F22L 40, Q35F19L46, and Q 31F22L47, respectively). The Pozo Duro Formation includes well-rounded quartz-arenite clast conglomerates, whereas conglomerates of the two upper units have clasts predominantly of andesitic and rhyolitic composition. The most likely source for these sediments was the Jurassic volcanic arc exposed in northern Sonora and southern Arizona. Zircons from five sandstone samples define two main age groups, Proterozoic and Mesozoic. The first ranges mostly from 1000 to 1800Ma, which suggests the influence of a cratonic source. This zircon suite is interpreted to be recycled and derived from the same source area as the quartz-rich sandstone clasts in the basal part of the section. Mesozoic zircons range from Triassic to Late Cretaceous, which confirms the proposed Late Cretaceous age for the sequence, and also corroborates Jurassic felsic source rocks. Another possible source was the Alisitos volcanic arc, exposed along the western margin of the Baja California Peninsula. Of regional significance is the great similarity between the El Chanate Group and the McCoy Mountains Formation of southeastern California and southwestern Arizona. Both are Cretaceous, were deposited in continental environments, and have similar zircon-age patterns. Also, both exhibit intense deformation and locally display penetrative foliation. These features strongly suggest that both units underwent

  8. Altered volcanic ash layers of the Late Cretaceous San Felipe Formation, Sierra Madre Oriental (Northeastern Mexico): Usbnd Pb geochronology, provenance and tectonic setting

    NASA Astrophysics Data System (ADS)

    Velasco-Tapia, Fernando; Martínez-Paco, Margarita; Iriondo, Alexander; Ocampo-Díaz, Yam Zul Ernesto; Cruz-Gámez, Esther María; Ramos-Ledezma, Andrés; Andaverde, Jorge Alberto; Ostrooumov, Mikhail; Masuch, Dirk

    2016-10-01

    A detailed petrographic, geochemical, and Usbnd Pb geochronological study of altered volcanic ash layers, collected in eight outcrops of the Late Cretaceous San Felipe Formation (Sierra Madre Oriental, Northeastern Mexico), has been carried out. The main objectives have been: (1) to establish a deposit period, and (2) to propose a reliable provenance-transport-deposit-diagenetic model. These volcano-sedimentary strata represent the altered remains of vitreous-crystalline ash (main grains: quartz + K-feldspar (sanidine) + Na-plagioclase + zircon + biotite; groundmass: glass + calcite + clinochlore + illite) deposited and preserved in a shallow, relatively large in area, open platform environment. Major and trace element geochemistry indicate that parent volcanism was mainly rhyodacitic to rhyolitic in composition. Discrimination diagrams suggest a link to continental arc transitional to extension tectonic setting. Usbnd Pb geochronology in zircon has revealed that the volcanic ash was released from their sources approximately during the range 84.6 ± 0.8 to 73.7 ± 0.3 Ma, being transported to the depocenters. Burial diagenesis process was marked by: (a) a limited recycling, (b) the partial loss of original components (mainly K-feldspar, plagioclase, biotite and glass), and (c) the addition of quartz, calcite, illite and clinochlore. The location of the source area remains uncertain, although the lack of enrichment in Zr/Sc ratio suggests that ashes were subjected to relatively fast and short-distance transport process. El Peñuelo intrusive complex, at 130-170 km west of the depocenters, is the nearest known zone of active magmatism during the Upper Cretaceous. This intermediate to felsic pluton, characterized by a geochemical affinity to post-orogenic tectonic setting, could be linked to the volcanic sources.

  9. U-series in zircon and 40Ar/39Ar geochronology reveal the most recent stage of a supervolcanic cycle in the Altiplano-Puna Volcanic Complex, Central Andes

    NASA Astrophysics Data System (ADS)

    Tierney, C.; de Silva, S. L.; Schmitt, A. K.; Jicha, B.; Singer, B. S.

    2010-12-01

    The ignimbrite flare up that produced the Altiplano-Puna Volcanic Complex of the Central Andes is characterized by episodic supervolcanism over a ~10 Ma time-span that climaxed about 4Ma. Since peak activity, the temporal and spatial record of volcanism suggests a waning of the system with only one other supervolcanic eruption at 2.6Ma. The most recent phase of volcanism from the APVC comprises a series of late Pleistocene domes that share a general petrochemical resemblance to the ignimbrites. New U-series data on zircons and high precision 40Ar/39Ar age determinations reveal that these effusive eruptions represent a temporally coherent magmatic episode. The five largest domes (Chao, Chillahuita, Chanka, Chascon-Runtu Jarita, and Tocopuri) have a combined volume >40 km3, and are distributed over an elliptical area of over 3000km2 centered at 22°S 68°W. They are crystal rich (>50%) dacites to rhyolites. New 40Ar/39Ar age determinations on biotite for the domes range range from 108±6 to 190±50 ka. However, 40Ar/39Ar ages from sanidine for some of the domes are more precise and span from 87±4 to 97±2 ka. We therefore interpret the eruption age of all these domes to be ~90 - 100 ka. This is consistent with SIMS U-series crystallization ages from the rims of 66 zircon crystals from four of the domes that reveal a fairly continuous spread of ages from ~90 ka to >300 ka with potentially common peaks in zircon ages at 100 ka and ~200 ka. U-Pb dating on the interiors of some of these zircon crystals indicates crystallization ages of up to 1.5 Ma. The common peaks of zircon crystallization between domes suggest that magma that fed these domes shared a larger regional source. Furthermore, the large volume of this potential source and the crystal-rich nature of the lava imply that this source was likely a large body of crystal-mush. The continuous nature of the zircon rim age population indicates that the residence time of this magma body was likely >200kyr. Potential

  10. Tectonic Evolution of the Izmir Ankara Suture Zone in Northwest Turkey Using Zircon U-Pb Geochronology and Zircon Lu-Hf Isotopic Tracers

    NASA Astrophysics Data System (ADS)

    Campbell, C.; Taylor, M. H.; Licht, A.; Mueller, M.; Ocakglu, F.; Moeller, A.; Metais, G.; Beard, K. C.

    2017-12-01

    Detrital zircons from a Cretaceous forearc basin and Tertiary foreland basin located along the Sakarya Zone of the Western Pontides were analyzed to better understand the closure history of the Tethyan oceans. The Variscan Orogeny is characterized by abundant 350-300 Ma U-Pb ages and vertical ɛHf arrays, consistent with a mature magmatic arc that emplaced plutons through a southward growing accretionary margin. An ɛHf pull-up is observed from 300-250 Ma interpreted as rifting of the Intra-Pontide Ocean. The Cimmerian Orogeny is characterized by a 250-230 Ma ɛHf pull-down, followed by a 230-200 Ma magmatic gap consistent with underthrusting of the Karakaya Complex. From 200-120 Ma another magmatic lull is observed. The Alpine Orogeny is characterized by an ɛHf pull-down from 120-85 Ma within Cretaceous forearc sediments and a 100 Ma deviant ɛHf vertical array within Tertiary foreland basin sediments. Minor zircon U-Pb age peaks and contrasting inter-basinal ɛHf evolution are interpreted to represent onset of Andean-style subduction along the southern margin of the Sakarya Zone at 120 Ma followed by crustal thickening until 85 Ma. The deviant 100 Ma ɛHf vertical array within foreland basin detritus is interpreted as initiation of intra-oceanic subduction within the Izmir-Ankara Ocean. An 85-75 Ma ɛHf pull-up from forearc basin sediments is interpreted as slab roll-back along the southern margin of the Sakarya Zone, responsible for final rifting of the Western Black Sea. At 80 Ma, a vertical ɛHf array from Tertiary foreland basin deposits is interpreted to represent synchronous melting of the Tavsanli Zone and intra-oceanic slab break-off. A single 66 Myr pre-collisional grain defines a sharp ɛHf pull-down immediately prior to total arc shut-off, interpreted to represent incipient collision between the Sakarya and Tavsanli zones. A 52 Ma syn-collisional tuff yields minimally intermediate ɛHf values followed by a slight 48 Ma ɛHf pull-down, interpreted as a

  11. Assembling and disassembling california: A zircon and monazite geochronologic framework for proterozoic crustal evolution in southern California

    USGS Publications Warehouse

    Barth, A.P.; Wooden, J.L.; Coleman, D.S.; Vogel, M.B.

    2009-01-01

    The Mojave province in southern California preserves a comparatively complete record of assembly, postorogenic sedimentation, and rifting along the southwestern North American continental margin. The oldest exposed rocks are metasedimentary gneisses and amphibolite, enclosing intrusive suites that range from tonalite and quartz mon-zodiorite to granite with minor trondhjemite. Discrete magmatic episodes occurred at approximately 1790-1730 and 1690-1640 Ma. Evidence from detrital and premagmatic zircons indicates that recycling of 1900-1790 Ma Paleopro-terozoic crust formed the unique isotopic character of the Mojave province. Peak metamorphic conditions in the Mojave province reached middle amphibolite to granulite facies; metamorphism occurred locally from 1795 to 1640 Ma, with widespread evidence for metamorphism at 1711-1689 and 1670-1650 Ma. Structures record early, tight to isoclinal folding and penetrative west-vergent shear during the final metamorphic event in the west Mojave province. Proterozoic basement rocks are overlain by siliciclastic-carbonate sequences of Mesoproterozoic, Neoproterozoic, and Cambrian age, recording environmental change over the course of the transition from stable Mojave crust to the rifted Cordilleran margin. Neoproterozoic quartzites have diverse zircon populations inconsistent with a southwest North American source, which we infer were derived from the western conjugate rift pair within Rodinia, before establishment of the miogeocline. Neoproterozoic-Cambrian miogeoclinal clastic rocks record an end to rifting and establishment of the Cordilleran miogeocline in southern California by latest Neoproterozoic to Early Cambrian time. ?? 2009 by The University of Chicago.

  12. Timing of metasomatism in a subcontinental mantle: evidence from zircon at Finero (Italy)

    NASA Astrophysics Data System (ADS)

    Badanina, I. Yu.; Malitch, K. N.

    2012-04-01

    The Finero phlogopite-peridotite represents a metasomatized residual mantle harzburgite, exposed at the base of the lower-crust section in the Ivrea Zone, Western Alps (Hartmann and Wedepohl 1993). It forms the core of a concentrically zoned sequence of internal layered gabbro, amphibole-rich peridotite and external gabbro. The phlogopite peridotite contains small-size chromitite bodies, with a suite of accessory minerals such as phlogopite, apatite, Ca-Mg carbonates, zirconolite, zircon, thorianite and uraninite, proposed to form during alkaline-carbonatitic metasomatism process within the mantle (Zaccarini et al. 2004). In this study, the combined application of a non-destructive technique to separate zircon from their host rocks (see details at http://www.natires.com) and in-situ analytical technique for compositional and isotopic analysis (SHRIMP-II at Russian Geological Research Institute, St. Petersburg) has provided new more detailed age constraints on the formation of chromitite and related metasomatic events within a mantle tectonite at Finero. Chromitite samples derived from the dump in the prospecting trenches of Rio Creves. In thin sections, zircon occurs as relatively large (up to 200 μm) grains characterized by subhedral to euhedral shapes. Separated grains of zircon form two distinct populations. Dominant zircon population is pale pink and characterized by different shapes (subhedral, subrounded or elongated). In cathodoluminescense, the main set of population is represented by complex grains, which show development of core-rim relationship (most likely recrystallized rim on a preserved core). Subordinate zircon grains are colourless. They are characterized by a smoky cathodoluminescense, with almost no internal pattern. Three main U-Pb age clusters have been recognized. The youngest age cluster, typical for subordinate colourless zircon population and rims in complex grains of dominant pale pink population, show two concordant 206Pb/238U ages (e

  13. Petrological and zircon evidence for the Early Cretaceous granulite-facies metamorphism in the Dabie orogen, China

    NASA Astrophysics Data System (ADS)

    Gao, Xiao-Ying; Zhang, Qiang-Qiang; Zheng, Yong-Fei; Chen, Yi-Xiang

    2017-07-01

    An integrated study of petrology, mineralogy, geochemistry, and geochronology was carried out for contemporaneous mafic granulite and diorite from the Dabie orogen. The results provide evidence for granulite-facies reworking of the ultrahigh-pressure (UHP) metamorphic rock in the collisional orogen. Most zircons from the granulite are new growth, and their U-Pb ages are clearly categorized into two groups at 122-127 Ma and 188 ± 2 Ma. Although these two groups of zircons show similarly steep HREE patterns and variably negative Eu anomalies, the younger group has much higher U, Th and REE contents and Th/U ratios, much lower εHf(t) values than the older group. This suggests their growth is associated with different types of dehydration reactions. The older zircon domains contain mineral inclusions of garnet + clinopyroxene ± quartz, indicating their growth through metamorphic reactions at high pressures. In contrast, the young zircon domains only contain a few quartz inclusions and the garnet-clinopyroxene-plagioclase-quartz barometry yields pressures of 4.9 to 12.5 kb. In addition, the clinopyroxene-garnet Fe-Mg exchange thermometry gives temperatures of 738-951 °C. Therefore, the young zircon domains would have grown through peritectic reaction at low to medium pressures. The younger granulite-facies metamorphic age is in agreement not only with the adjacent diorite at 125 ± 1 Ma in this study but also the voluminous emplacement of coeval mafic and felsic magmas in the Dabie orogen. Mineral separates from both mafic granulite and its adjacent diorite show uniformly lower δ18O values than normal mantle, similar to those for UHP eclogite-facies metaigneous rocks in the Dabie orogen. In combination with major-trace elements and zircon Lu-Hf isotope compositions, it is inferred that the protolith of mafic granulites shares with the source rock of diorites, both being a kind of mafic metasomatites at the slab-mantle interface in the continental subduction channel

  14. Permian-Carboniferous arc magmatism in southern Mexico: U-Pb dating, trace element and Hf isotopic evidence on zircons of earliest subduction beneath the western margin of Gondwana

    NASA Astrophysics Data System (ADS)

    Ortega-Obregón, C.; Solari, L.; Gómez-Tuena, A.; Elías-Herrera, M.; Ortega-Gutiérrez, F.; Macías-Romo, C.

    2014-07-01

    Undeformed felsic to mafic igneous rocks, dated by U-Pb zircon geochronology between 311 and 255 Ma, intrude different units of the Oaxacan and Acatlán metamorphic complexes in southwestern Mexico. Rare earth element concentrations on zircons from most of these magmatic rocks have a typical igneous character, with fractionated heavy rare earths and negative Eu anomalies. Only inherited Precambrian zircons are depleted in heavy rare earth elements, which suggest contemporaneous crystallization in equilibrium with metamorphic garnet during granulite facies metamorphism. Hf isotopic signatures are, however, different among these magmatic units. For example, zircons from two of these magmatic units (Cuanana pluton and Honduras batholith) have positive ɛHf values (+3.8-+8.5) and depleted mantle model ages (using a mean crustal value of 176Lu/177Hf = 0.015) ( T DMC) ranging between 756 and 1,057 Ma, whereas zircons from the rest of the magmatic units (Etla granite, Zaniza batholith, Carbonera stock and Sosola rhyolite) have negative ɛHf values (-1 to -14) and model ages between 1,330 and 2,160 Ma. This suggests either recycling of different crustal sources or, more likely, different extents of crustal contamination of arc-related mafic magmas in which the Oaxacan Complex acted as the main contaminant. These plutons thus represent the magmatic expression of the initial stages of eastward subduction of the Pacific plate beneath the western margin of Gondwana, and confirm the existence of a Late Carboniferous-Permian magmatic arc that extended from southern North America to Central America.

  15. Ti-in-zircon thermometry: applications and limitations

    NASA Astrophysics Data System (ADS)

    Fu, Bin; Page, F. Zeb; Cavosie, Aaron J.; Fournelle, John; Kita, Noriko T.; Lackey, Jade Star; Wilde, Simon A.; Valley, John W.

    2008-08-01

    The titanium concentrations of 484 zircons with U-Pb ages of ˜1 Ma to 4.4 Ga were measured by ion microprobe. Samples come from 45 different igneous rocks (365 zircons), as well as zircon megacrysts (84) from kimberlite, Early Archean detrital zircons (32), and zircon reference materials (3). Samples were chosen to represent a large range of igneous rock compositions. Most of the zircons contain less than 20 ppm Ti. Apparent temperatures for zircon crystallization were calculated using the Ti-in-zircon thermometer (Watson et al. 2006, Contrib Mineral Petrol 151:413-433) without making corrections for reduced oxide activities (e.g., TiO2 or SiO2), or variable pressure. Average apparent Ti-in-zircon temperatures range from 500° to 850°C, and are lower than either zircon saturation temperatures (for granitic rocks) or predicted crystallization temperatures of evolved melts (˜15% melt residue for mafic rocks). Temperatures average: 653 ± 124°C (2 standard deviations, 60 zircons) for felsic to intermediate igneous rocks, 758 ± 111°C (261 zircons) for mafic rocks, and 758 ± 98°C (84 zircons) for mantle megacrysts from kimberlite. Individually, the effects of reduced a_{TiO2} or a_{SiO2}, variable pressure, deviations from Henry’s Law, and subsolidus Ti exchange are insufficient to explain the seemingly low temperatures for zircon crystallization in igneous rocks. MELTs calculations show that mafic magmas can evolve to hydrous melts with significantly lower crystallization temperature for the last 10-15% melt residue than that of the main rock. While some magmatic zircons surely form in such late hydrous melts, low apparent temperatures are found in zircons that are included within phenocrysts or glass showing that those zircons are not from evolved residue melts. Intracrystalline variability in Ti concentration, in excess of analytical precision, is observed for nearly all zircons that were analyzed more than once. However, there is no systematic change in Ti

  16. The Argon Geochronology Experiment (AGE)

    NASA Technical Reports Server (NTRS)

    Swindle, T. D.; Bode, R.; Fennema, A.; Chutjian, A.; MacAskill, J. A.; Darrach, M. R.; Clegg, S. M.; Wiens, R. C.; Cremers, D.

    2006-01-01

    This viewgraph presentation reviews the Argon Geochronology Experiment (AGE). Potassium-Argon dating is shown along with cosmic ray dating exposure. The contents include a flow diagram of the Argon Geochronology Experiment, and schematic diagrams of the mass spectrometer vacuum system, sample manipulation mechanism, mineral heater oven, and the quadrupole ion trap mass spectrometer. The Laser-Induced Breakdown Spectroscopy (LIBS) Operation with elemental abundances is also described.

  17. Geochronological and geochemical constraints on the petrogenesis of Middle Paleozoic (Kwangsian) massive granites in the eastern South China Block

    NASA Astrophysics Data System (ADS)

    Zhang, Feifei; Wang, Yuejun; Zhang, Aimei; Fan, Weiming; Zhang, Yuzhi; Zi, Jianwei

    2012-10-01

    To achieve a better understanding of the Kwangsian orogenic event of the eastern South China Block, this paper documents a set of new zircon U-Pb geochronological and Hf isotopic data and whole-rock elemental and Sr-Nd isotopic analytical results for the representative massive granite intrusions across the Jiangshan-Shaoxing fault. The studied samples are classified into two groups, representing the rocks from the Cathaysia Block to the east of the Jiangshan-Shaoxing Fault (Group 1) and those from the eastern Yangtze Block between the Anhua-Luocheng and Jiangshan-Shaoxing faults (Group 2). The Group 1 samples gave the zircon U-Pb ages of 405-454 Ma and ɛHf(t) values of - 3.6 to - 15.2 with Hf model ages of 1.6-2.4 Ga. Group 2 yielded the zircon U-Pb ages of 400-432 Ma and ɛHf(t) values of - 0.2 to - 12.7 with Hf model ages of 1.3-2.2 Ga. Geochemically, the Group 1 samples (A/CNK = 1.02-1.43) have relatively lower Al2O3, MgO, CaO, P2O5 and ɛNd(t) but higher K2O + Na2O than those of Group 2 (A/CNK = 0.93-1.44). Both groups show similar chondrite-normalized patterns of rare-earth elements with Eu/Eu* values of 0.15-0.92 and strongly negative Ba, Sr, Nb, P and Ti anomalies in primitive mantle-normalized spider diagrams. Their ɛNd(t) values range from - 11.1 to - 8.0 for Group 1, and - 8.9 to - 5.0 for Group 2, generally similar to those of Precambrian paragneiss and contemporaneous gneissoid granites in the eastern South China Block. Our geochronological results indicate that the Kwangsian massive granites in the eastern South China Block were crystallized between 400 Ma and 454 Ma, synchronous to the Kwangsian gneissoid granites along the Wugong and Wuyi-Baiyun-Yunkai domains in the eastern South China Block. The synthesis of these whole-rock geochemical and in-situ zircon Hf isotopic data suggests that both the Group 1 and 2 granites across the Jiangshan-Shaoxing Fault were predominantly derived from a crustal source with some proportional metapelitic and

  18. Early to Middle Jurassic tectonic evolution of the Bogda Mountains, Northwest China: Evidence from sedimentology and detrital zircon geochronology

    NASA Astrophysics Data System (ADS)

    Ji, Hongjie; Tao, Huifei; Wang, Qi; Qiu, Zhen; Ma, Dongxu; Qiu, Junli; Liao, Peng

    2018-03-01

    The Bogda Mountains, as an important intracontinental orogenic belt, are situated in the southern part of the Central Asian Orogenic Belt (CAOB), and are a key area for understanding the Mesozoic evolution of the CAOB. However, the tectonic evolution of the Bogda Mountains remains controversial during the Mesozoic Era, especially the Early to Middle Jurassic Periods. The successive Lower to Middle Jurassic strata are well preserved and exposed along the northern flank of the Western Bogda Mountains and record the uplift processes of the Bogda Mountains. In this study, we analysed sedimentary facies combined with detrital zircon U-Pb geochronology at five sections of Lower to Middle Jurassic strata to detect the tectonic evolution and changes of provenance in the Bogda area. During Early to Middle Jurassic times, the fluvial, deltaic and lacustrine environments dominated in the western section of the Bogda area. The existence of Early Triassic peak age indicates that the Bogda Mountains did not experience uplift during the period of early Badaowan Formation deposition. The Early Triassic to Late Permian granitoid plutons and Carboniferous volcanic rocks from the Barkol and Santanghu areas were the main provenances. The significant change in the U-Pb age spectrum implies that the Eastern Bogda Mountains initiated uplift in the period of late Badaowan Formation deposition, and the Eastern Junggar Basin and the Turpan-Hami Basin were partially partitioned. The Eastern Bogda Mountains gradually became the major provenance. From the period of early Sangonghe to early Toutunhe Formations deposition, the provenance of the sediments and basin-range frame were similar to that of late Badaowan. However, the Eastern Bogda Mountains suffered intermittent uplift three times, and successive denudation. The uplifts respectively happened in early Sangonghe, late Sangonghe to early Xishanyao, and late Xishanyao to early Toutunhe. During the deposition stage of Toutunhe Formation, a

  19. Precise U-Pb Zircon Constraints on the Earliest Magmatic History of the Carolina Terrane.

    PubMed

    Wortman; Samson; Hibbard

    2000-05-01

    The early magmatic and tectonic history of the Carolina terrane and its possible affinities with other Neoproterozoic circum-Atlantic arc terranes have been poorly understood, in large part because of a lack of reliable geochronological data. Precise U-Pb zircon dates for the Virgilina sequence, the oldest exposed part, constrain the timing of the earliest known stage of magmatism in the terrane and of the Virgilina orogeny. A flow-banded rhyolite sampled from a metavolcanic sequence near Chapel Hill, North Carolina, yielded a U-Pb zircon date of 632.9 +2.6/-1.9 Ma. A granitic unit of the Chapel Hill pluton, which intrudes the metavolcanic sequence, yielded a nearly identical U-Pb zircon date of 633 +2/-1.5 Ma, interpreted as its crystallization age. A felsic gneiss and a dacitic tuff from the Hyco Formation yielded U-Pb zircon dates of 619.9 +4.5/-3 Ma and 615.7 +3.7/-1.9 Ma, respectively. Diorite and granite of the Flat River complex have indistinguishable U-Pb upper-intercept dates of 613.9 +1.6/-1.5 Ma and 613.4 +2.8/-2 Ma. The Osmond biotite-granite gneiss, which intruded the Hyco Formation before the Virgilina orogeny, crystallized at 612.4 +5.2/-1.7 Ma. Granite of the Roxboro pluton, an intrusion that postdated the Virgilina orogeny, yielded a U-Pb upper intercept date of 546.5 +3.0/-2.4 Ma, interpreted as the time of its crystallization. These new dates both provide the first reliable estimates of the age of the Virgilina sequence and document that the earliest known stage of magmatism in the Carolina terrane had begun by 633 +2/-1.5 Ma and continued at least until 612.4 +5.2/-1.7 Ma, an interval of approximately 25 m.yr. Timing of the Virgilina orogeny is bracketed between 612.4 +5.2/-1.7 Ma and 586+/-10 Ma (reported age of the upper Uwharrie Formation). The U-Pb systematics of all units studied in the Virgilina sequence are simple and lack any evidence of an older xenocrystic zircon component, which would indicate the presence of a continental

  20. Geochronology of high-pressure granulites from the Czech part of the Zlote Unit (Bohemian Massif)

    NASA Astrophysics Data System (ADS)

    Lange, U.; Bröcker, M.; Trapp, E.

    2003-04-01

    At the NE margin of the Bohemian Massif, granulites occur in the Zlote Unit which is exposed in the border region between Poland and the Czech Republic [e.g. 1, 3]. On the Polish side, outcrop conditions are rather poor. Besides some isolated blocks, granulites are restricted to a very small occurrence near Stary Gieraltow. This exposure has attracted much attention due to findings of presumed coesite pseudomorphs, as inferred from radial fractures around polycrystalline quartz inclusions in garnet [1]. Peak metamorphic conditions were estimated between 21 and 28 kbar at 800 to 1000 °C [2]. Better outcrop conditions of the same tectonic unit are found on the Czech side in the Rychleby Mts [3]. The focus of this study is on the geochronology of granulites from this occurrence. By means of Sm-Nd (garnet, cpx, whole rock) and single grain U-Pb dating of zircon, we have studied felsic and mafic granulites collected near the location Cerveny Dul. A felsic granulite yielded a Sm-Nd age of 337 +/- 4 Ma (two grain-size fractions of garnet, whole rock). Two mafic granulites provided Sm-Nd ages (two grain-size fractions of garnet, cpx and/or whole rock) of 357 +/- 10 Ma and 351 +/- 10 Ma, respectively. The new Sm-Nd results are in good agreement with metamorphic ages reported for other Bohemian granulites and further document the significance of HP-HT metamorphism at c. 350-340 Ma. Single-grain zircon dating of air-abraded grains provided concordant results. Zircons from a mafic granulite yielded an age of 362 +/- 1 Ma. A similar result was reported for a mafic granulite from Stary Gieraltow, based on conventional multigrain analyses of zircon [2]. This age is considered to approximate the timing of crystallisation from a melt. However, it remains unclear whether this process took place before or during early stages of high-pressure metamorphism. The studied felsic granulite yielded a range in zircon ages between 390 to 330 Ma, indicating the presence of inherited magmatic

  1. New U-Pb zircon geochronology of the Choma-Kalomo Block (Zambia) and the Dete-Kamativi Inlier (Zimbabwe), with implications for the extent of the Zimbabwe Craton.

    NASA Astrophysics Data System (ADS)

    Glynn, Sarah; Wiedenbeck, Michael; Master, Sharad; Frei, Dirk

    2015-04-01

    The Choma-Kalomo Block is a north-east trending, Mesoproterozoic terrane located in southern Zambia. It is composed of as yet undated gneissic basement with a high-grade metamorphosed supracrustal metasedimentary sequence, which is intruded by hornblende granites and gneisses of the Choma-Kalomo Batholith, that is dated between ca. 1.37 and 1.18 Ga. Our new zircon U-Pb age data on metasedimentary rocks of the Choma-Kalomo Block identifies samples of different ages, with slightly different provenances. The oldest metasedimentary rock is a muscovite-biotite schist, which has only Palaeoproterozoic detrital zircons, the two age clusters around 2.03-2.02 Ga and 1.8-1.9 Ga, correspond to the ages of granitic intrusion, and metamorphism, in the Magondi Mobile Belt on the western side of the Archaean Zimbabwe Craton. The second sample is a garnetiferous paragneiss, which contains both Palaeoproterozoic (2.04 Ga), and Mesoproterozoic zircons, ca. 1.36 Ga, derived from the granites of the Choma-Kalomo Batholith. The third sample is a biotite-muscovite schist, in which the detrital zircon ages fall into four separate clusters: ca. 3.39 Ga, ca. 2.7-2.6 Ga, ca. 2.1-1.7 Ga (with a peak at ca. 1.18 Ga), and 1.55 - 1.28 Ga. The Archaean zircons in this sample are derived from the Zimbabwe Craton, while the Palaeoproterozoic samples come from the Magondi belt, and the youngest zircons come from both phases of the Choma-Kalomo Batholith. A possible connection between the Choma-Kalomo Block and the Dete-Kamativi Inlier - some 150 km to the south-east in western Zimbabwe - has been proposed on the basis of similarities in the nature of their Sn-Ta-muscovite pegmatite mineralisation. The Dete-Kamativi Inlier, which is part of the Magondi Mobile Belt, is a window into Palaeoproterozoic north-east trending belts of deformed and metamorphosed supracrustal rocks. By dating localities which we suspect form the basement to the surrounding younger sediments, along with selected pegmatites

  2. Zircon growth in shear zones

    NASA Astrophysics Data System (ADS)

    Kaulina, Tatiana

    2013-04-01

    The possibility of direct dating of the deformation process is critical for understanding of orogenic belts evolution. Establishing the age of deformation by isotopic methods is indispensable in the case of uneven deformation overlapping, when later deformation inherits the structural plan of the early strains, and to distinguish them on the basis of the structural data only is impossible. A good example of zircon from the shear zones is zircon formed under the eclogite facies conditions. On the one hand, the composition of zircon speaks about its formation simultaneously to eclogitic paragenesis (Rubatto, Herman, 1999; Rubatto et al., 2003). On the other hand, geological studies show that mineral reactions of eclogitization are often held only in areas of shear deformations, which provides access of fluid to the rocks (Austrheim, 1987; Jamtveit et al., 2000; Bingen et al., 2004). Zircons from mafic and ultramafic rocks of the Tanaelv and Kolvitsa belts (Kola Peninsula, the Baltic Shield) have showed that the metamorphic zircon growth is probably controlled by the metamorphic fluid regime, as evidenced by an increase of zircon quantity with the degree of shearing. The internal structure of zircon crystals can provide an evidence of zircon growth synchronous with shearing. The studied crystals have a sector zoning and often specific "patchy" zoning (Fig. 1), which speaks about rapid change of growth conditions. Such internal structure can be compared with the "snowball" garnet structure reflecting the rotation of crystals during their growth under a shift. Rapidly changing crystallization conditions can also be associated with a small amount of fluid, where supersaturation is changing even at a constant temperature. Thus, the growth of metamorphic zircon in shear zones is more likely to occur in the fluid flow synchronous with deformation. A distinctive feature of zircons in these conditions is isometric shape and sector "patchy" zoning. The work was supported by

  3. Zircon U-Pb, O, and Hf isotopic constraints on Mesozoic magmatism in the Cyclades, Aegean Sea, Greece

    NASA Astrophysics Data System (ADS)

    Fu, Bin; Bröcker, Michael; Ireland, Trevor; Holden, Peter; Kinsley, Leslie P. J.

    2015-01-01

    Compared to the well-documented Cenozoic magmatic and metamorphic rocks of the Cyclades, Aegean Sea, Greece, the geodynamic context of older meta-igneous rocks occurring in the marble-schist sequences and mélanges of the Cycladic Blueschist Unit is as yet not fully understood. Here, we report O-Hf isotopic compositions of zircons ranging in age from ca. 320 Ma to ca. 80 Ma from metamorphic rocks exposed on the islands of Andros, Ios, Sifnos, and Syros with special emphasis on Triassic source rocks. Ion microprobe (SHRIMP II) single spot oxygen isotope analysis of pre-Cretaceous zircons from various felsic gneisses and meta-gabbros representing both the marble-schist sequences and the mélanges of the study area yielded a large range in δ18O values, varying from 2.7 ‰ to 10.1 ‰ VSMOW, with one outlier at -0.4 %. Initial ɛHf values (-12.5 to +15.7) suggest diverse sources for melts formed between Late Carboniferous to Late Cretaceous time that record derivation from mantle and reworked older continental crust. In particular, variable δ18O and ɛHf( t) values for Triassic igneous zircons suggest that magmatism of this age is more likely rift- than subduction-related. The significant crustal component in 160 Ma meta-gabbros from Andros implies that some Jurassic gabbroic rocks of the Hellenides are not part of SSZ-type (supra-subduction zone) ophiolites that are common elsewhere along the margin of the Pelagonian zone.

  4. U-Pb ID-TIMS zircon ages of TTG gneisses of the Aravalli Craton of India

    NASA Astrophysics Data System (ADS)

    Chauhan, Hiredya; Saikia, Ashima; Kaulina, Tatiana; Bayanova, Tamara; Ahmad, Talat

    2015-04-01

    zircon types from UD-16 sample yield a U-Pb discordant age of 2680±30 Ma. Two zircon fractions from UD-17 sample show discordant 207Pb/206Pb ages of 2506 and 2577 Ma. Zircons in our samples have moderate to high U contents (180-770 ppm) with low Th/U ratios (0.2-0.5) in the sample UD-16, characteristic for magmatic zircons from TTG rocks. Thus the obtained age of 2680±30 Ma is interpreted as an age of magmatic crystallization of tonalites. Gopalan, K. et al., (1990): Precambrian Res., 48, 287-297. Ludwig, K.R. (1991): PBDAT program. US. Geol. Surv. Open-file report 88-542, 38 p. Ludwig, K. R. (2008): Isoplot/Ex, version 3.6, Berkeley Geochronology Center, Special Publication no. 4. Upadhyaya, R. et al., (1992): Current Sci., 62(2): 87-92. Wiedenbeck, M. et al., (1996): Chem Geol. 129: 325-340.

  5. Calibrating the Cretaceous normal superchron with high-precision U-Pb zircon geochronology from Songliao Basin, NE China

    NASA Astrophysics Data System (ADS)

    Wang, T.; Ramezani, J.; Wang, C.

    2017-12-01

    The Cretaceous Normal Superchron (CNS) or C34n is defined as the prolonged period of normal geomagnetic polarity, which lasted for approximately 38 Myr from the Aptian to the beginning of the Campanian. Along with the Kiaman Reverse Superchron (Carboniferous-Permian), they constitute the two longest periods of stability in the Earth's magnetic field. Polarity reversals are geologically abrupt events of global extent that form the basis of the Geomagnetic Polarity Timescale. In addition, a causal relationship between the end of a superchron and global environmental change has been hypothesized by some workers. Thus, the precise timing of the onset and termination of CNS has important implications for the correlation of global tectonic, paleoclimatic and paleobiotic events, and may help us better understand the causes and consequences of superchrons. At present, the exact age and duration of CNS are poorly understood, in part due to the relative scarcity of relevant paleomagnetic and radioisotopic data. The end of CNS or the C34n/C33r chron boundary is also considered a suitable proxy for the Santonian-Campanian stage boundary in the absence of diagnostic fossils of global distribution for the latter. The early Campanian ( 84 Ma to 76 Ma) is characterized by a steady cooling of the (greenhouse) climate, preceded by an abrupt (possibly 5-6°C) drop in the global temperatures at the Santonain-Campanian boundary, based on the oxygen isotope record of benthic foraminifera. The peak of dinosaur diversity throughout vast swaths of the continents was reached during the Campanian, as well. Here we present a new age constraint for the termination of CNS based on ash bed geochronology from a near-continuous, subsurface, Cretaceous lacustrine record recovered from the Songliao Basin in Northeast China. This extraordinary record allows integration of high-precision U-Pb geochronology, magnetostratigraphy and cyclostratigraphy that enables a multi-chronometer approach to the

  6. Detrital zircon provenance of the Late Triassic Songpan-Ganzi complex: Sedimentary record of collision of the North and South China blocks

    USGS Publications Warehouse

    Weislogel, A.L.; Graham, S.A.; Chang, E.Z.; Wooden, J.L.; Gehrels, G.E.; Yang, H.

    2006-01-01

    Using detrital zircon geochronology, turbidite deposystems fed from distinct sediment sources can be distinguished within the Songpan-Ganzi complex, a collapsed Middle to Late Triassic turbidite basin of central China. A southern Songpan-Ganzi deposystem initially was sourced solely by erosion of the Qinling-Dabie orogen during early Late Triassic time, then by Qinling-Dabie orogen, North China block, and South China block sources during middle to late Late Triassic time. A northern Songpan-Ganzi system was sourced by erosion of the Qinling-Dabie orogen and the North China block throughout its deposition. These separate deposystems were later tectonically amalgamated to form one complex and then uplifted as the eastern Tibet Plateau. ?? 2006 Geological Society of America.

  7. The earth's oldest known crust - A geochronological and geochemical study of 3900-4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia

    NASA Astrophysics Data System (ADS)

    Maas, Roland; Kinny, Peter D.; Williams, Ian S.; Froude, Derek O.; Compston, William

    1992-03-01

    Trace element characteristics were analyzed and inclusions were identified within a suite of pre-3.9 Ga detritral zircons from western Australia representing the earth's oldest-known minerals. A diversity of trace-element compositions was found, particularly in the REE compositions of the old Mt. Narryer zircons, implying a variety of source-rock compositions and hence, the presence of a differentiated crust in the earth 4.15-4.20 Ga ago. Comparisons drawn with data obtained from younger detrital zircons occurring within the same deposits indicate nothing unique about the chemical compositions of the old grains. A number of interelement covariations were observed among the analyzed grains which were independent of age and isotopic characteristics, most notably that occurring between Lu and Hf. A general positive correlation between total LREE and the U + Th contents is also apparent. The findings indicate an origin in felsic igneous rocks, which has implications for early-Archaean crustal evolution.

  8. Micrometer-scale U-Pb age domains in eucrite zircons, impact re-setting, and the thermal history of the HED parent body

    NASA Astrophysics Data System (ADS)

    Hopkins, M. D.; Mojzsis, S. J.; Bottke, W. F.; Abramov, O.

    2015-01-01

    Meteoritic zircons are rare, but some are documented to occur in asteroidal meteorites, including those of the howardite-eucrite-diogenite (HED) achondrite clan (Rubin, A. [1997]. Meteorit. Planet. Sci. 32, 231-247). The HEDs are widely considered to originate from the Asteroid 4 Vesta. Vesta and the other large main belt asteroids record an early bombardment history. To explore this record, we describe sub-micrometer distributions of trace elements (U, Th) and 235,238U-207,206Pb ages from four zircons (>7-40 μm ∅) separated from bulk samples of the brecciated eucrite Millbillillie. Ultra-high resolution (∼100 nm) ion microprobe depth profiles reveal different zircon age domains correlative to mineral chemistry and to possible impact scenarios. Our new U-Pb zircon geochronology shows that Vesta's crust solidified within a few million years of Solar System formation (4561 ± 13 Ma), in good agreement with previous work (e.g. Carlson, R.W., Lugmair, G.W. [2000]. Timescales of planetesimal formation and differentiation based on extinct and extant radioisotopes. In: Canup, R., Righter, K. (Eds.), Origin of the Earth and Moon. University of Arizona Press, Tucson, pp. 25-44). Younger zircon age domains (ca. 4530 Ma) also record crustal processes, but these are interpreted to be exogenous because they are well after the effective extinction of 26Al (t1/2 = 0.72 Myr). An origin via impact-resetting was evaluated with a suite of analytical impact models. Output shows that if a single impactor was responsible for the ca. 4530 Ma zircon ages, it had to have been ⩾10 km in diameter and at high enough velocity (>5 km s-1) to account for the thermal field required to re-set U-Pb ages. Such an impact would have penetrated at least 10 km into Vesta's crust. Later events at ca. 4200 Ma are documented in HED apatite 235,238U-207,206Pb ages (Zhou, Q. et al. [2011]. Early basaltic volcanism and Late Heavy Bombardment on Vesta: U-Pb ages of small zircons and phosphates in

  9. Micrometer-scale U–Pb age domains in eucrite zircons, impact re-setting, and the thermal history of the HED parent body

    USGS Publications Warehouse

    Hopkins, M.D.; Mojzsis, S.J.; Bottke, W.F.; Abramov, Oleg

    2015-01-01

    Meteoritic zircons are rare, but some are documented to occur in asteroidal meteorites, including those of the howardite–eucrite–diogenite (HED) achondrite clan (Rubin, A. [1997]. Meteorit. Planet. Sci. 32, 231–247). The HEDs are widely considered to originate from the Asteroid 4 Vesta. Vesta and the other large main belt asteroids record an early bombardment history. To explore this record, we describe sub-micrometer distributions of trace elements (U, Th) and 235,238U–207,206Pb ages from four zircons (>7–40 μm ∅) separated from bulk samples of the brecciated eucrite Millbillillie. Ultra-high resolution (∼100 nm) ion microprobe depth profiles reveal different zircon age domains correlative to mineral chemistry and to possible impact scenarios. Our new U–Pb zircon geochronology shows that Vesta’s crust solidified within a few million years of Solar System formation (4561 ± 13 Ma), in good agreement with previous work (e.g. Carlson, R.W., Lugmair, G.W. [2000]. Timescales of planetesimal formation and differentiation based on extinct and extant radioisotopes. In: Canup, R., Righter, K. (Eds.), Origin of the Earth and Moon. University of Arizona Press, Tucson, pp. 25–44). Younger zircon age domains (ca. 4530 Ma) also record crustal processes, but these are interpreted to be exogenous because they are well after the effective extinction of 26Al (t1/2 = 0.72 Myr). An origin via impact-resetting was evaluated with a suite of analytical impact models. Output shows that if a single impactor was responsible for the ca. 4530 Ma zircon ages, it had to have been ⩾10 km in diameter and at high enough velocity (>5 km s−1) to account for the thermal field required to re-set U–Pb ages. Such an impact would have penetrated at least 10 km into Vesta’s crust. Later events at ca. 4200 Ma are documented in HED apatite 235,238U–207,206Pb ages (Zhou, Q. et al. [2011]. Early basaltic volcanism and Late Heavy Bombardment on Vesta: U–Pb ages of small

  10. Cretaceous crust beneath SW Borneo: U-Pb dating of zircons from metamorphic and granitic rocks

    NASA Astrophysics Data System (ADS)

    Davies, L.; Hall, R.; Armstrong, R.

    2012-12-01

    Metamorphic basement rocks from SW Borneo are undated but have been suggested to be Palaeozoic. This study shows they record low pressure 'Buchan-type' metamorphism and U-Pb SHRIMP dating of zircons indicates a mid-Cretaceous (volcaniclastic) protolith. SW Borneo is the southeast promontory of Sundaland, the continental core of SE Asia. It has no sedimentary cover and the exposed basement has been widely assumed to be a crustal fragment from the Indochina-China margin. Metamorphic rocks of the Pinoh Group in Kalimantan (Indonesian Borneo) are intruded by granitoid rocks of Jurassic-Cretaceous age, based on K-Ar dating, suggesting emplacement mainly between 130 and 80 Ma. The Pinoh metamorphic rocks have been described as a suite of pelitic schists, slates, phyllites, and hornfelses, and have not been dated, although they have been correlated with rocks elsewhere in Borneo of supposed Palaeozoic age. Pelitic schists contain biotite, chlorite, cordierite, andalusite, quartz, plagioclase and in some cases high-Mn almandine-rich garnet. Many have a shear fabric associated with biotite and fibrolite intergrowth. Contact metamorphism due to intrusion of the granitoid rocks produced hornfelses with abundant andalusite and cordierite porphyroblasts. Granitoids range from alkali-granite to tonalite and contain abundant hornblende and biotite, with rare white mica. Zircons from granitoid rocks exhibit sector- and concentric- zoning; some have xenocrystic cores mantled by magmatic zircon. There are four important age populations at c. 112, 98, 84 and 84 Ma broadly confirming earlier dating studies. There is a single granite body with a Jurassic age (186 ± 2.3 Ma). Zircons from pelitic metamorphic rocks are typically euhedral, with no evidence of rounding or resorbing of grains; a few preserve volcanic textures. They record older ages than those from igneous rocks; U-Pb ages are Cretaceous with a major population between 134 and 110 Ma. A single sample contains Proterozoic

  11. Ceramic with zircon coating

    NASA Technical Reports Server (NTRS)

    Wang, Hongyu (Inventor)

    2003-01-01

    An article comprises a silicon-containing substrate and a zircon coating. The article can comprise a silicon carbide/silicon (SiC/Si) substrate, a zircon (ZrSiO.sub.4) intermediate coating and an external environmental/thermal barrier coating.

  12. Provenance and detrital zircon geochronologic evolution of lower Brookian foreland basin deposits of the western Brooks Range, Alaska, and implications for early Brookian tectonism

    USGS Publications Warehouse

    Moore, Thomas; O'Sullivan, Paul B.; Potter, Christopher J.; Donelick, Raymond A.

    2015-01-01

    The Upper Jurassic and Lower Cretaceous part of the Brookian sequence of northern Alaska consists of syntectonic deposits shed from the north-directed, early Brookian orogenic belt. We employ sandstone petrography, detrital zircon U-Pb age analysis, and zircon fission-track double-dating methods to investigate these deposits in a succession of thin regional thrust sheets in the western Brooks Range and in the adjacent Colville foreland basin to determine sediment provenance, sedimentary dispersal patterns, and to reconstruct the evolution of the Brookian orogen. The oldest and structurally highest deposits are allochthonous Upper Jurassic volcanic arc–derived sandstones that rest on accreted ophiolitic and/or subduction assemblage mafic igneous rocks. These strata contain a nearly unimodal Late Jurassic zircon population and are interpreted to be a fragment of a forearc basin that was emplaced onto the Brooks Range during arc-continent collision. Synorogenic deposits found at structurally lower levels contain decreasing amounts of ophiolite and arc debris, Jurassic zircons, and increasing amounts of continentally derived sedimentary detritus accompanied by broadly distributed late Paleozoic and Triassic (359–200 Ma), early Paleozoic (542–359 Ma), and Paleoproterozoic (2000–1750 Ma) zircon populations. The zircon populations display fission-track evidence of cooling during the Brookian event and evidence of an earlier episode of cooling in the late Paleozoic and Triassic. Surprisingly, there is little evidence for erosion of the continental basement of Arctic Alaska, its Paleozoic sedimentary cover, or its hinterland metamorphic rocks in early foreland basin strata at any structural and/or stratigraphic level in the western Brooks Range. Detritus from exhumation of these sources did not arrive in the foreland basin until the middle or late Albian in the central part of the Colville Basin.These observations indicate that two primary provenance areas provided

  13. The Comparison of Detrital Zircon Ages to Point Count Provenance Analysis for the Pottsville Sandstone in the Northern Appalachian Foreland Basin Venango County, Pennsylvania

    NASA Astrophysics Data System (ADS)

    Loveday, S.; Harris, D. B.; Schiappa, T.; Pecha, M.

    2017-12-01

    The specific sources of sediments deposited in the Appalachian basin prior to and immediately following the Alleghenian orogeny has long been a topic of debate. Recent advances in U-Pb dating of detrital zircons have greatly helped to determine some of the sources of these sediments. For this study, sandstone samples were collected from the Pottsville Formation in the northern Appalachian Foreland Basin, Venango County, Pennsylvania to provide supplementary data for previous work that sought to describe the provenance of the same sediments by point counts of thin sections of the same units. Results of this previous work established that the provenance for these units was transitional recycled orogenic, including multiple recycled sediments, and that a cratonic contribution was not able to be determined clearly. The previous results suggested that the paleoenvironment was a fluvial dominated delta prograding in the northern direction. However, no geochronologic data was found during this study to confirm this interpretation. We sought to verify these results by U-Pb analysis of detrital zircons. Samples were collected from the areas where the previous research took place. U-Pb ages were found from sample at the highest elevation and lowest elevation. In the first sample, sample 17SL01 (younger sample stratigraphically), the zircons yield U-Pb age range peaks at 442-468 ma and 1037-1081 ma. The probability density plot for this specific sample displays a complete age gap from 500 ma to 811 ma. In the second sample, sample 17SL03 (older rock stratigraphically), the zircons yield U-Pb ages range peaks of 424-616 ma and 975-1057 ma. This sample doesn't show any ages younger than 424 ma and it doesn't display the sample age gap as sample 17SL01 does. The ages of zircons are consistent with thin section point counting provenance results from previous research suggesting zircon transport from the northern direction.

  14. High-Resolution Zircon U-Pb CA-TIMS Dating of the Carboniferous—Permian Successions, Paraná Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Griffis, N. P.; Mundil, R.; Montanez, I. P.; Isbell, J.; Fedorchuk, N.; Lopes, R.; Vesely, F.; Iannuzzi, R.

    2015-12-01

    The late Paleozoic Ice Age (LPIA) is Earth's only record of a CO2-forced climatic transition from an icehouse to greenhouse state in a vegetated world. Despite a refined framework of Gondwanan ice distribution, questions remain about the timing, volume, and synchronicity of high-latitude continental ice and the subsequent deglaciation. These questions ultimately preclude our understanding of linkages between ice volume, sea level, and high- and low-latitude climate. Poor constraints on the timing and synchronicity of glacial and interglacial transitions reflect a lack of high-resolution radioisotopic dates from high-latitude, ice-proximal Carboniferous-Permian successions. The Rio Bonito Fm in Rio Grande do Sul State of southern Brazil hosts the oldest non-glaciogenic Carboniferous- Permian deposits of the Paraná Basin, thus recording the icehouse-to-greenhouse transition. Despite a widespread effort over the last two decades to constrain these deposits in time by means of U-Pb zircon geochronology, published data sets of the Candiota and Faxinal coals of the Rio Bonito Fm host discrepancies that may reflect post- eruptive open system behavior of zircon and analytical artifacts. These discrepancies have hindered the correlation of the Candiota and Faxinal sediments within the larger Gondwanan framework. Here we present the first U-Pb ages on closed system single zircons using CA-TIMS techniques on Permo-Carboniferous ash deposits of the Paraná Basin. Preliminary results indicate two major and distinct coal-forming periods that are separated by ca 10 Ma. Our results and conclusions are not in agreement with multi- crystal U-Pb TIMS and SIMS ages that suggest coeval deposition of the Candiota and Faxinal coals. CA-TIMS analyses applied to zircons from additional ash deposits are aimed at constructing a robust chronostratigraphic framework for the Carboniferous- Permian succession of the Paraná Basin, which will facilitate a better understanding of the timing and

  15. Constraints on the timing of multiple thermal events and re-equilibration recorded by high-U zircon and xenotime: Case study of pegmatite from Piława Górna (Góry Sowie Block, SW Poland)

    NASA Astrophysics Data System (ADS)

    Budzyń, Bartosz; Sláma, Jiří; Kozub-Budzyń, Gabriela A.; Konečný, Patrik; Holický, Ivan; Rzepa, Grzegorz; Jastrzębski, Mirosław

    2018-06-01

    The application of zircon and xenotime geochronometers requires knowledge of their potential and limitations related to possible disturbance of the age record. The alteration of the intergrown zircon and xenotime in pegmatite from the Góry Sowie Block (SW Poland) was studied using the electron microprobe analysis, X-ray WDS compositional mapping, micro-Raman analysis, and LA-ICP-MS U-Pb dating of zircon and xenotime, as well as the U-Th-total Pb dating of uraninite. These microanalytical techniques were applied to understand the formation mechanisms of the secondary textures related to post-magmatic processes in the zircon and xenotime intergrowth, and to constrain their timing. Textural and compositional features combined with U-Pb data indicate that the pegmatite-related crystallization of the zircon and xenotime intergrowth occurred ca. 2.09 Ga (2086 ± 35 Ma for zircon and 2093 ± 52 Ma for xenotime), followed by the re-equilibration of zircon and xenotime ca. 370 Ma (373 ± 18 Ma and 368 ± 6 Ma, respectively) during the formation of the younger pegmatite. The zircon and xenotime were most likely derived from Precambrian basement rocks and emplaced in the pegmatite as a restite. The zircon preserved textures related to diffusion-reaction processes that affected its high-U core (up to ca. 9.6 wt% UO2), which underwent further metamictization and amorphization due to self-radiation damage. The zircon rim and xenotime were affected by coupled dissolution-reprecipitation processes that resulted in patchy zoning, age disturbance and sponge-like textures. Xenotime was also partially replaced by fluorapatite or hingganite-(Y) and Y-enriched allanite-(Ce). The termination of the low-temperature alteration was constrained by the U-Th-total Pb age of the uraninite inclusions that crystallized in zircon at 281 ± 2 Ma, which is consistent with the age of 278 ± 15 Ma obtained from the youngest cluster of U-Pb ages in the re-equilibrated high-U zircon domains. This study

  16. Sokhatiny differentiated gabbro-monzodiorite intrusion from the example of sin-batholitic gabbroids of Yano-Kolymskaya system

    NASA Astrophysics Data System (ADS)

    Izokh, A. E.; Goryachev, N. A.; Al'shevskii, A. V.; Akinin, V. V.

    2012-05-01

    The Sokhatnyi intrusion is an example of a later Mesozoic deferential massif referred to the gabbro-monzodiorite type in Northeastern Russia; according to geological data, it precedes high-alumina granitoids of the Yano-Kolymskaya folded system. It is shown that formation of the layered series of the massif is caused by the crystallized and gravitational fractioning of the high-alumina olivine basalt with increased potassium alkalinity in shallow water media. The boundary facies of the massif are represented by manzogabbroidnorites and monzodiorites. The U-Pb age determinations of zircon (SHRIMP-II) from the taxitite striped biothite gabbro in the lower boundary facies showed 148 ± 1 million years. Thus, taking into account the geological relations and geochronological data on the Sokhatinyi gabbro-monzodiorite, a differential intrusion was formed within the same age period as granite batholites of the Main belt.

  17. Marine and Lacustrine Organic-rich Sedimentary Unit Time Markers: Implications from Rhenium-Osmium Geochronology

    NASA Astrophysics Data System (ADS)

    Selby, D.

    2011-12-01

    Geochronology is fundamental to understand the age, rates and durations of Earth processes. This concerned Arthur Holmes who, for much of his career, attempted to define a geological time scale. This is a topic still important to Earth Scientists today, specifically the chronostratigraphy of sedimentary rocks. Here I explore the Re-Os geochronology of marine and lacustrine sedimentary rocks and its application to yield absolute time constraints for stratigraphy. The past decade has seen the pioneering research of Re-Os organic-rich sedimentary rock geochronology blossom into a tool that can now to be used to accurately and precisely determine depositional ages of organic-rich rock units that have experienced up to low grade greenschist metamorphism. This direct dating of sedimentary rocks is critical where volcanic horizons are absent. As a result, this tool has been applied to timescale calibration, basin correlation, formation duration and the timing of key Earth events (e.g., Neoproterozoic glaciations). The application of Re-Os chronometer to the Devonian-Mississippian boundary contained within the Exshaw Formation, Canada, determined an age of 361.3 ± 2.4 Ma. This age is in accord with U-Pb dates of interbedded tuff horizons and also U-Pb zircon date for the type Devonian-Mississippian Hasselbachtal section, Germany. The agreement of the biostratigraphic and U-Pb constraints of the Exshaw Formation with the Re-Os date illustrated the potential of the Re-Os chronometer to yield age determinations for sedimentary packages, especially in the absence of interbedd tuff horizons and biozones. A Re-Os date for the proposed type section of the Oxfordian-Kimmeridgian boundary, Staffin Bay, Isle of Skye, U.K., gave an age of 154.1 ± 2.2 Ma. This Re-Os age presents a 45 % (1.8 Ma) improvement in precision for the basal Kimmeridgian. It also demonstrated that the duration of the Kimmeridgian is nominally 3.3 Ma and thus is 1.6 Ma shorter than previously indicated. In

  18. Igneous Complexes of the Orochenka Caldera of the East Sikhote-Alin Belt: U-Pb (SHRIMP) Age, Trace and Rare Earth Element Composition, and Au-Ag Mineralization

    NASA Astrophysics Data System (ADS)

    Sakhno, V. G.; Kovalenko, S. V.

    2018-04-01

    New data are presented on the geology and composition of volcanic and intrusive rocks of the Orochenka caldera, which is located in the western part of the East Sikhote Alin volcanic belt. The SHRIMP and ICP MS age of zircons of volcanic and intrusive rocks, respectively, and the composition of the volcanic rocks allow comparison of these complexes with volcanic rocks of the eastern part of the volcanic structure. New data indicate the period of transition between subduction to transform regimes.

  19. Using SHRIMP zircon dating to unravel tectonothermal events in arc environments. The early Palaeozoic arc of NW Iberia revisited

    USGS Publications Warehouse

    Abati, J.; Castineiras, P.G.; Arenas, R.; Fernandez-Suarez, J.; Barreiro, J.G.; Wooden, J.L.

    2007-01-01

    Dating of zircon cores and rims from granulites developed in a shear zone provides insights into the complex relationship between magmatism and metamorphism in the deep roots of arc environments. The granulites belong to the uppermost allochthonous terrane of the NW Iberian Massif, which forms part of a Cambro-Ordovician magmatic arc developed in the peri-Gondwanan realm. The obtained zircon ages confirm that voluminous calc-alkaline magmatism peaked around 500Ma and was shortly followed by granulite facies metamorphism accompanied by deformation at c. 480Ma, giving a time framework for crustal heating, regional metamorphism, deformation and partial melting, the main processes that control the tectonothermal evolution of arc systems. Traces of this arc can be discontinuously followed in different massifs throughout the European Variscan Belt, and we propose that the uppermost allochthonous units of the NW Iberian Massif, together with the related terranes in Europe, constitute an independent and coherent terrane that drifted away from northern Gondwana prior to the Variscan collisional orogenesis. ?? 2007 Blackwell Publishing Ltd.

  20. Geochemistry, thermometry and isotope ratios on the same zircon crystals: the tandem use of quadrupole LA-ICPMS and CA-TIMS

    NASA Astrophysics Data System (ADS)

    Olin, P. H.; Schmitz, M. D.; Crowley, J. L.

    2011-12-01

    Current trends in igneous petrology include the extraction of diverse geochemical information from smaller sample targets by ever more efficient and cost effective means. Igneous zircons are repositories of several types of petrogenetic information, such as magmatic crystallization ages obtained using U-Pb geochronology, magmatic temperatures using Ti-in-zircon geothermometry, and magmatic differentiation and/or mixing trends using trace element contents. Here we demonstrate a tandem quadrupole LA-ICPMS and CA-TIMS approach on single zircon crystals and within domains in single crystals, which extracts all of these data from a single laser spot analysis and then guides the acquisition of CA-TIMS ages at precisions relevant to magmatic histories. We present data from zircon-bearing intrusive and extrusive rocks spanning the compositional spectrum, and highlight results from silicic volcanic rocks with different affinities. The utility of our approach is illustrated in zircons from the Temora diorite, a commonly used standard material which we analysed using 25-μm ablation spots placed on dozens of grains which had been previously annealed and chemically abraded prior to mounting in epoxy. Our LA-ICPMS results illustrate a 3- to 5-fold variation in trace element concentrations and trace element ratios over >150 degrees of cooling as estimated from Ti-in-zircon thermometry. Some geochemical parameters (e.g., Nb/Ta variations and Eu anomalies) are consistent with crystal fractionation during progressive crystallization, while others are bimodal (e.g., Hf and U contents), suggesting the mixing of crystal/magma batches prior to final solidification. LA-ICPMS U-Pb spot ages reproduce the accepted CA-TIMS age within 2% precision and accuracy, while our CA-TIMS results on the same grains constrain the development of the observed geochemical variability to within 100 ka. Other zircon standard materials to be presented include Plesovich syenite, FC1 gabbro, and R33 diorite

  1. Origin and age of zircon-bearing chromitite layers from the Finero phlogopite peridotite (Ivrea-Verbano Zone, Western Alps) and geodynamic consequences

    NASA Astrophysics Data System (ADS)

    Zanetti, Alberto; Giovanardi, Tommaso; Langone, Antonio; Tiepolo, Massimo; Wu, Fu-Yuan; Dallai, Luigi; Mazzucchelli, Maurizio

    2016-10-01

    An investigation has been performed on three chromitite layers segregated in dunite bodies of the Phlogopite Peridotite mantle unit in the Finero complex (FPP, Ivrea-Verbano Zone, Southern Alps) aimed at providing new constraints to their origin and evolution. Field relationships, the sub-chondritic Hf isotopic composition of the zircons (εHf(188) as low as - 5.4), the heavy O isotopic composition of zircons and pyroxenes (δ18O up to 6.9‰), the strict similarity of the trace element composition between the clinopyroxenes and amphiboles from the chromitites and those from the phlogopite harzburgites and pyroxenites forming the typical FPP association, as well as the REE composition of zircons, which approaches equilibrium with the associate clinopyroxene, suggest that the studied chromitites were segregated from melts, highly contaminated from continental crust, during the pervasive cycle of metasomatism recorded by the FPP. An LA-ICP-HRMS survey of chromitite zircon grains has provided Early Jurassic U-Pb ages mostly between 199 ± 3 Ma and 178 ± 2 Ma, with a pronounced peak at 187 Ma. Relevant exceptions are inherited domains of two grains giving Triassic ages of 242 ± 7 Ma and 229 ± 7 Ma, and a third homogeneous zircon giving 208 ± 3 Ma. Our geochronological data and those reported in the literature show that the FPP chromitites have zircon populations with different internal CL textures, but the same sub-chondritic Hf isotopic composition, which define an overall U-Pb age span from 290 Ma to 180. The segregation of the chromitite layers and the main pervasive metasomatism likely occurred in the Early Permian (in a post-collisional, transtensional setting) or before (possibly, in a subduction-related setting). The rejuvenation of the zircon ages was accompanied by a progressive disappearance of the internal zoning, interpreted as the result of a prolonged residence at mantle depths with progressive re-equilibration of the U-Pb system due to thermal

  2. U-Th-Pb geochronology of the Massabesic Gneiss and the granite near Milford, South-Central New Hampshire: New evidence for avalonian basement and taconic and alleghenian disturbances in Eastern New England

    USGS Publications Warehouse

    Aleinikoff, J.N.; Zartman, R.E.; Lyons, J.B.

    1979-01-01

    U-Th-Pb systematics for zircon and monazite from Massabesic Gneiss (paragneiss and orthogneiss) and the granite near Milford, New Hampshire, were determined. Zircon morphology suggests that the paragneiss may be volcaniclastic (igneous) in origin, and thus the age data probably record the date (minimum of 646 m.y.) at which the rock was extruded. A two-stage lead-loss model is proposed to explain the present array of data points on a concordia diagram. Orthogneiss ages range only narrowly and are clustered around 475 m.y. Data for the granite of Milford, New Hampshire, are scattered, but may be interpreted in terms of inheritance and modern lead loss, yielding a crystallization age of 275 m.y. This is the only known occurrence of Avalonian-type basement in New Hampshire and as such provides evidence for the location of the paleo-Africa-paleo- North America suture. The geochronology also further documents the occurrence of disturbances during the Ordovician and Permian. ?? 1979 Springer-Verlag.

  3. Characteristics of zircon suitable for REE extraction

    NASA Astrophysics Data System (ADS)

    Watanabe, Y.; Hoshino, M.

    2011-12-01

    Zircons (ZrSiO4) from Naegi and Ohro granitic pegmatites, Japan and from Saigon alkaline basalt, Vietnam, were mineralogically characterized by inductively couples plasma mass spectrometry (ICP-MS), electron-microprobe analysis (EMPA), X-ray powder diffraction, micro-Raman spectroscopy and leaching experiment. The powder XRD and Raman spectra analyses show that the degree of crystallinity decreases from Saigon, to Ohro and Naegi zircons. Quantitative analytical results by the EMPA indicate that the Naegi and Ohro zircon samples contain a large amount of REE2O3, while REE contents in Saigon zircon are below detection limit. The leaching experiments for the present zircons under the condition of a solvent 1M-HCl, at a room temperature to 250 °C and retention time of 30h resulted in about 100 %, 50 % and 1 % recoveries of REE from the Naegi, Ohro and Saigon zircons, respectively. Leaching experiments for the Naegi zircon under the condition of a solvent 1N-HCl, heating temperature of 50 °C, 100 °C, 150 °C and 200 °C, and retention time 30h, showed that a significant amount of REE was leached out at a temperature above 150 °C. However, the leaching experiments of the Naegi and Ohro zircons at room temperature (about 25 °C) show that REE were hard to be leached. These results indicates that both low crystallinity of zircon and higher leaching temperature are requisite for effective leaching of REE from zircon.

  4. Geochemistry, geochronology and Nd isotopes of the Gogó da Onça Granite: A new Paleoproterozoic A-type granite of Carajás Province, Brazil

    NASA Astrophysics Data System (ADS)

    Teixeira, Mayara Fraeda Barbosa; Dall'Agnol, Roberto; Santos, João Orestes Schneider; de Sousa, Luan Alexandre Martins; Lafon, Jean-Michel

    2017-12-01

    The Gogó da Onça Granite (GOG) comprise a stock located in the Carajás Province in the southeastern part of Amazonian Craton near its border with the Araguaia Belt. Three facies were identified in the pluton: biotite-amphibole granodiorite, biotite-amphibole monzogranite and amphibole-biotite syenogranite. The GGO crosscut discordantly the Archean country rocks and are not foliated. All Gogó da Onça Granite varieties are metaluminous, ferroan A2-subtype granites with reduced character. The major and trace element behavior suggests that its different facies are related by fractional crystallization. Zircon and titanite U-Pb SHRIMP ages show that the pluton crystallized at ∼1880-1870 Ma and is related to the remarkable Paleoproterozoic magmatic event identified in the Carajás Province. Whole-rock Nd isotope data (TDM ages 2.78 to 2.81, εNd values of -9.07 to -9.48) indicate that the GOG magmas derived from an Archaean source compatible with that of some other Paleoproterozoic suites from Carajás Province. The GOG show significant contrasts with the Jamon and Velho Guilherme Paleoproterozoic suites from Carajás Province and the inclusion of the Gogó da Onça granite in any of these suites is not justified. The GOG is more akin to the Serra dos Carajás Suite and to the Seringa and São João granites of Carajás and to the Mesoproterozoic Sherman granite of USA and the Paleoproterozoic Suomenniemi Batholith of Finland. This study puts in evidence the relevance of precise geochronological data and estimation of magma oxidation state in the characterization and correlation of A-type granites.

  5. Mesoproterozoic juvenile mafic-ultramafic magmatism in the SW Amazonian Craton (Rio Negro-Juruena province): SHRIMP U-Pb geochronology and Nd-Sr constraints of the Figueira Branca Suite

    NASA Astrophysics Data System (ADS)

    Teixeira, Wilson; Geraldes, Mauro C.; D'Agrella-Filho, Manoel S.; Santos, João O. S.; Sant'Ana Barros, Márcia A.; Ruiz, Amarildo S.; Corrêa da Costa, Paulo C.

    2011-12-01

    The Figueira Branca Suite (FBS) comprises a layered mafic-ultramafic complex which together with mafic-felsic plugs makes up a string of NW-trending intrusive bodies that are emplaced into the Jauru domain (Rio Negro-Juruena province; 1.80-1.60 Ga). This domain comprises Orosirian calc-alkaline rocks and coeval metamorphic volcanic-sedimentary associations, intruded by voluminous granitoid plutons resulted from outboard Cachoeirinha (1587-1522 Ma) and Santa Helena (1485-1420 Ma) accretionary orogens that eventually created the Rondonian-San Ignacio province along the SW margin of the proto-Amazonian Craton. SHRIMP U-Pb age in zircon for one cumulatic gabbro from the FBS yielded a concordia intercept age of 1425.5 ± 8.0 Ma (MSWD = 1.11). Another gabbroic plug which crops out to the East gives a similar within error concordia intercept zircon age of 1415.9 ± 6.9 Ma (MSWD = 0.25), whereas a nearby monzogranite yields a concordia intercept zircon age of 1428.9 ± 2.8 Ma (MSWD = 1.30). All these results are crystallization ages and constrain an important intraplate magmatic event within the Orosirian continental crust at the time of outboard Santa Helena orogen. On the other hand, igneous titanite from another gabbro located to the West of the FBS yielded a weighted mean 207Pb/ 206Pb crystallization age of 1541 ± 23 Ma (MSWD = 0.74). Therefore this rock is not genetically associated with the FBS, as previously suggested by the field information. Additional Nd-Sr isotopic analyses of the FBS mafic-ultramafic rocks and coeval gabbro showed comparable ɛNd(1.42Ga) values (+3.0 to +4.7) and variable ɛSr(1.42Ga) ones (-39.1 to -8.1). These data plot in the depleted field quadrant of the Nd-Sr diagram, indicating a significant influence of the MORB end-member reservoir in the magma genesis. This interpretation is similarly supported by comparison of the Nd evolutionary path of the FBS with those that characterize the isotopic evolution of the Jauru crust and the

  6. 3. 96 Ga zircons from an Archean quartzite, Beartooth Mountains, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, P.A.; Wooden, J.L.; Nutman, A.P.

    1992-04-01

    U-Pb isotopic systematics of detrital zircons incorporated in a middle Archean quartzite from the Beartooth Mountains, Montana, were investigated with the SHRIMP ion microprobe. These new data reveal an extended and previously unrecognized record of crustal evolution for the northern Wyoming province. Seventy-eight analyses of 67 grains yielded a range of {sup 207}Pb/{sup 206}Pb ages from 2.69 to 3.96 Ga. Concordant analyses from 43 separate grains defined a maximum age for the deposition of the quartzite of 3.30 Ga; other provenance ages extend to 3.96 Ga. Ages of < 3.30 Ga are generally discordant, and appear to reflect late Archeanmore » disturbance of the U-Pb system, including metamorphism at {approximately}2.8 Ga. The predominance of ages at {approximately}3.3 Ga is interpreted to represent the last major episode of crust formation prior to deposition of the quartzite. The concordant analyses of > 3.30 Ga indicate that older crustal components with ages up to 3.96 Ga, or detritus from them, were also in the provenance of this quartzite. This older age is equivalent to that of the oldest known rock from the Acasta gneisses of the Slave province and is exceeded only by the > 4.0 Ga age of detrital zircons of the Yilgarn block of Western Australia. These data support an increased probability for the survival of sialic crust created before the cessation of the late bombardment at 3.8 to 3.9 Ga.« less

  7. Geochronology, petrogenesis and tectonic settings of pre- and syn-ore granites from the W-Mo deposits (East Kounrad, Zhanet and Akshatau), Central Kazakhstan

    NASA Astrophysics Data System (ADS)

    Li, GuangMing; Cao, MingJian; Qin, KeZhang; Evans, Noreen J.; Hollings, Pete; Seitmuratova, Eleonora Yusupovha

    2016-05-01

    There is significant debate regarding the mineralization ages of the East Kounrad, Zhanet and Akshatau W-Mo deposits of Central Kazakhstan, and the petrogenesis and tectono-magmatic evolution of the granites associated with these deposits. To address these issues, we present molybdenite Re-Os dating, zircon U-Pb dating, whole rock geochemistry as well as Sr-Nd-Pb and zircon O-Hf isotopic analyses on the pre-mineralization and ore-forming granites. U-Pb dating of zircons from pre-mineralization granitic rocks yield Late Carboniferous ages of 320-309 Ma, whereas ore-forming granites have Early Permian ages of 298-285 Ma. Molybdenite Re-Os isotopic data indicate a mineralization age of 296 Ma at East Kounrad, 294 Ma at Akshatau and 285 Ma at Zhanet. The pre-ore and ore-forming granites are high-K calc-alkaline, metaluminous to slightly peraluminous I-type granites. The pre-mineralization granites are relatively unfractionated, whereas the ore-forming granites are highly fractionated. The fractionating mineral phases are probably K-feldspar, apatite, Ti-bearing phases and minor plagioclase. The pre-mineralization and ore-forming rocks are characterized by similar Sr-Nd-Pb-Hf-O isotopic compositions ((87Sr/86Sr)i = 0.70308-0.70501, εNd (t) = - 0.5 to + 2.8, 207Pb/204Pb = 15.60-15.82, zircon εHf (t) = + 1.2 to + 15.6 and δ18O = + 4.6 to + 10.3‰), whole rock TDMC (Nd) (840-1120 Ma) and zircon TDMC (Hf) (320-1240 Ma). The isotopic characteristics are consistent with a hybrid magma source caused by 10-30% assimilation of ancient crust by juvenile lower crust. The geochronology and geochemistry of these granites show that the Late Carboniferous pre-mineralization granitic rocks formed during subduction, whereas the Early Permian ore-forming, highly fractionated granite probably underwent significant fractionation with a restite assemblage of K-feldspar, apatite, Ti-bearing phases and minor plagioclase and developed during collision between the Yili and Kazakhstan

  8. Brittle-ductile deformation effects on zircon crystal-chemistry and U-Pb ages: an example from the Finero Mafic Complex (Ivrea-Verbano Zone, western Alps)

    NASA Astrophysics Data System (ADS)

    Langone, Antonio; José Alberto, Padrón-Navarta; Zanetti, Alberto; Mazzucchelli, Maurizio; Tiepolo, Massimo; Giovanardi, Tommaso; Bonazzi, Mattia

    2016-04-01

    A detailed structural, geochemical and geochronological survey was performed on zircon grains from a leucocratic dioritic dyke discordantly intruded within meta-diorites/gabbros forming the External Gabbro unit of the Finero Mafic Complex. This latter is nowadays exposed as part of a near complete crustal section spanning from mantle rocks to upper crustal metasediments (Val Cannobina, Ivrea-Verbano Zone, Italy). The leucocratic dyke consists mainly of plagioclase (An18-24Ab79-82Or0.3-0.7) with subordinate amounts of biotite, spinel, zircon and corundum. Both the leucocratic dyke and the surrounding meta-diorites show evidence of ductile deformation occurred under amphibolite-facies conditions. Zircon grains (up to 2 mm in length) occur mainly as euhedral grains surrounded by fine grained plagioclase-dominated matrix and pressure shadows, typically filled by oxides. Fractures and cracks within zircon are common and can be associated with grain displacement or they can be filled by secondary minerals (oxides and chlorite). Cathodoluminescence (CL) images show that zircon grains have internal features typical of magmatic growth, but with local disturbances. However EBSD maps on two selected zircon grains revealed a profuse mosaic texture resulting in an internal misorientation of ca. 10o. The majority of the domains of the mosaic texture are related to parting and fractures, but some domains show no clear relation with brittle features. Rotation angles related to the mosaic texture are not crystallographically controlled. In addition, one of the analysed zircons shows clear evidence of plastic deformation at one of its corners due to indentation. Plastic deformation results in gradual misorientations of up to 12o, which are crystallographically controlled. Trace elements and U-Pb analyses were carried out by LA-ICP-MS directly on petrographic thin sections and designed to cover the entire exposed surface of selected grains. Such investigations revealed a strong

  9. The Permian-Triassic granitoids in Bayan Obo, North China Craton: A geochemical and geochronological study

    NASA Astrophysics Data System (ADS)

    Ling, Ming-Xing; Zhang, Hong; Li, He; Liu, Yu-Long; Liu, Jian; Li, Lin-Qing; Li, Cong-Ying; Yang, Xiao-Yong; Sun, Weidong

    2014-03-01

    Granitoids near the Bayan Obo giant rare earth element (REE) deposit at the north margin of the North China Craton (NCC), the world's largest light REE (LREE) deposit, have been taken by some authors as the key factors that controlled the mineralization. In contrast, others proposed that the REE deposit has been partially destructed by these granitoids. Here we report systematic studies on geochronology and geochemical characteristics of granitoids of different distances from the orebodies, to investigate the genesis and their relationship to the giant Bayan Obo deposit. Granitoids studied here, including granites and quartz monzonites, are peraluminous with A/CNK = 0.99-1.11, LREE enriched and heavy REE (HREE) depleted, with variable REE concentrations (total REE = 54-330 ppm) and large negative Eu anomaly (δEu = 0.19-0.70). The REE patterns are distinct from those of ore-bearing dolomites. Some samples have slightly higher LREE concentrations, which may have been contaminated by the orebodies during intrusion. Trace elements of the granitoids are characterized by positive Pb anomaly, strong negative Ti anomaly and Nb, Ta and Sr anomalies. The granites exhibit negative Ba anomaly. The granitoids plot within the post-collision granite field in the Pearce diagram, which is consistent with the tectonic regime. The quartz monzonites and one granite have A-type granite characteristics and belong to the A2 subgroup. Zircons in these granitoids have high Th/U values, which are typical for magmatic zircons. High precision U-Pb dating for these zircons by secondary ion mass spectrometry (SIMS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) yields Permian-Triassic 206Pb/238U ages ranging from 243.2 to 293.8 Ma. The formation of the granitoids is > 55 Ma later than the latest ore forming age. The zircons have low La concentrations (0.02-12 ppm), high (Sm/La)N (0.8-685) and Ce/Ce* (1.4-80). The Ti-in-zircon temperature of the granitoids ranges

  10. Zircon (U-Th)/He Thermochronometric Constraints on Himalayan Thrust Belt Exhumation, Bedrock Weathering, and Cenozoic Seawater Chemistry

    NASA Astrophysics Data System (ADS)

    Colleps, Cody L.; McKenzie, N. Ryan; Stockli, Daniel F.; Hughes, Nigel C.; Singh, Birendra P.; Webb, A. Alexander G.; Myrow, Paul M.; Planavsky, Noah J.; Horton, Brian K.

    2018-01-01

    Shifts in global seawater 187Os/188Os and 87Sr/86Sr are often utilized as proxies to track global weathering processes responsible for CO2 fluctuations in Earth history, particularly climatic cooling during the Cenozoic. It has been proposed, however, that these isotopic records instead reflect the weathering of chemically distinctive Himalayan lithologies exposed at the surface. We present new zircon (U-Th)/He thermochronometric and detrital zircon U-Pb geochronologic evidence from the Himalaya of northwest India to explore these contrasting interpretations concerning the driving mechanisms responsible for these seawater records. Our data demonstrate in-sequence southward thrust propagation with rapid exhumation of Lesser Himalayan strata enriched in labile 187Os and relatively less in radiogenic 87Sr at ˜16 Ma, which directly corresponds with coeval shifts in seawater 187Os/188Os and 87Sr/86Sr. Results presented here provide substantial evidence that the onset of exhumation of 187Os-enriched Lesser Himalayan strata could have significantly impacted the marine 187Os/188Os record at 16 Ma. These results support the hypothesis that regional weathering of isotopically unique source rocks can drive seawater records independently from shifts in global-scale weathering rates, hindering the utility of these records as reliable proxies to track global weathering processes and climate in deep geologic time.

  11. Earth history. U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction.

    PubMed

    Schoene, Blair; Samperton, Kyle M; Eddy, Michael P; Keller, Gerta; Adatte, Thierry; Bowring, Samuel A; Khadri, Syed F R; Gertsch, Brian

    2015-01-09

    The Chicxulub asteroid impact (Mexico) and the eruption of the massive Deccan volcanic province (India) are two proposed causes of the end-Cretaceous mass extinction, which includes the demise of nonavian dinosaurs. Despite widespread acceptance of the impact hypothesis, the lack of a high-resolution eruption timeline for the Deccan basalts has prevented full assessment of their relationship to the mass extinction. Here we apply uranium-lead (U-Pb) zircon geochronology to Deccan rocks and show that the main phase of eruptions initiated ~250,000 years before the Cretaceous-Paleogene boundary and that >1.1 million cubic kilometers of basalt erupted in ~750,000 years. Our results are consistent with the hypothesis that the Deccan Traps contributed to the latest Cretaceous environmental change and biologic turnover that culminated in the marine and terrestrial mass extinctions. Copyright © 2015, American Association for the Advancement of Science.

  12. Origins and evolution of rhyolitic magmas in the central Snake River Plain: insights from coupled high-precision geochronology, oxygen isotope, and hafnium isotope analyses of zircon

    NASA Astrophysics Data System (ADS)

    Colón, Dylan P.; Bindeman, Ilya N.; Wotzlaw, Jörn-Frederik; Christiansen, Eric H.; Stern, Richard A.

    2018-02-01

    We present new high-precision CA-ID-TIMS and in situ U-Pb ages together with Hf and O isotopic analyses (analyses performed all on the same grains) from four tuffs from the 15-10 Ma Bruneau-Jarbidge center of the Snake River Plain and from three rhyolitic units from the Kimberly borehole in the neighboring 10-6 Ma Twin Falls volcanic center. We find significant intrasample diversity in zircon ages (ranges of up to 3 Myr) and in δ18O (ranges of up to 6‰) and ɛHf (ranges of up to 24 ɛ units) values. Zircon rims are also more homogeneous than the associated cores, and we show that zircon rim growth occurs faster than the resolution of in situ dating techniques. CA-ID-TIMS dating of a subset of zircon grains from the Twin Falls samples reveals complex crystallization histories spanning 104-106 years prior to some eruptions, suggesting that magma genesis was characterized by the cyclic remelting of buried volcanic rocks and intrusions associated with previous magmatic episodes. Age-dependent trends in zircon isotopic compositions show that rhyolite production in the Yellowstone hotspot track is driven by the mixing of mantle-derived melts (normal δ18O and ɛHf) and a combination of Precambrian basement rock (normal δ18O and ɛHf down to - 60) and shallow Mesozoic and Cenozoic age rocks, some of which are hydrothermally altered (to low δ18O values) by earlier stages of Snake River Plain magmatism. These crustal melts hybridize with juvenile basalts and rhyolites to produce the erupted rhyolites. We also observe that the Precambrian basement rock is only an important component in the erupted magmas in the first eruption at each caldera center, suggesting that the accumulation of new intrusions quickly builds an upper crustal intrusive body which is isolated from the Precambrian basement and evolves towards more isotopically juvenile and lower-δ18O compositions over time.

  13. LA-ICP-MS Pb-U Dating of Young Zircons from the Kos-Nisyros Volcanic Centre, SE Aegean Arc (Greece)

    NASA Astrophysics Data System (ADS)

    Guillong, M.; Von Quadt, A.; Peytcheva, I.; Bachmann, O.

    2014-12-01

    Zircon Pb-U dating has become a key technique for answering many important questions in geosciences. This paper describes a new LA-ICP-MS approach. We show, using previously dated samples of a large quaternary rhyolitic eruption in the Kos-Nisyros volcanic centre (the 161 ka Kos Plateau Tuff), that the precision of our LA-ICP-MS method is as good as via SHRIMP, while ID-TIMS measurements confirm the accuracy. Gradational age distribution over >140 ka of the Kos zircons and the near-absence of inherited cores indicate near-continuous crystallisation in a growing magma reservoir with little input from wall rocks. Previously undated silicic eruptions from Nisyros volcano (Lower Pumice, Nikia Flow, Upper Pumice), which are stratigraphically constrained to have happened after the Kos Plateau Tuff, are dated to be younger than respectively 124 ± 35 ka, 111 ± 42 ka and 70 ± 24 ka. Samples younger than 1 Ma were corrected for initial thorium disequilibrium using a new formula that also accounts for disequilibrium in 230Th decay. Guillong, M. et al., 2014, JAAS, 29, p. 963-967; doi: 10.1039/c4ja00009a.

  14. Habitat Suitability Index Models: Pink shrimp

    USGS Publications Warehouse

    Mulholland, Rosemarie

    1984-01-01

    Shrimp support the most valuable seafood industry in the United States (Roedel 1973; National Marine Fisheries Service 1983). The three most important commercial species are the white shrimp (Penaeus setiferus L.), brown shrimp (P. aztecus Ives), and pink shrimp (P. duorarum Burkenroad). Adult pink shdmp are caught "in commercial quantities throughout most of the geographic ranqe of the species (L indner 1957), and juveni les support a sizable bait shrimp industry along the Florida coast and throughout the Gulf of Mexico (Saloman 1965).

  15. Li isotopes in archean zircons

    NASA Astrophysics Data System (ADS)

    Bouvier, A.; Ushikubo, T.; Kita, N.; Cavosie, A. J.; Kozdon, R.; Valley, J. W.

    2009-12-01

    Li is a fluid mobile, moderately incompatible element with a large mass difference between its two stable isotopes. Different processes can fractionate 7Li/6Li (fluid-rock interaction, metamorphic reactions, and Li diffusion), leading to variation by over 50‰ of δ7Li for common crustal material. These large variations make δ7Li a potential tracer of continental weathering and of the fluids affecting magma sources. Here, we report δ7Li and trace elements in Archean igneous zircons from TTG and sanukitoid granitoids from the Superior Province (Canada) in order to characterize Li in Archean zircons from well-described samples. These data are compared to detrital zircons from the Jack Hills (Western Australia) for which parent rock-type is uncertain. This study aims to better understand Li substitution in zircon and to evaluate the utility of δ7Li and [Li] for Archean petrogenesis. Zircons (n=71) were analyzed for δ7Li and trace elements (Li, P, Ca, Ti, V, Fe, Y, REE, U, Th) using an IMS-1280 ion microprobe. Most of the zircons display typical igneous REE patterns and zoning by CL. [Li] averages 13.1 ± 9 for TTG, 25.7 ± 19 for Sanukitoid and 31.0 ± 14 ppm for Jack Hills zircons, which are distinct from mantle-related zircons (<0.1 ppm). Values of δ7Li average 1.0 ± 4.5‰ for TTGs, 6.3 ± 4.4‰ for sanukitoids and -2.6 ± 8.8‰ for Jack Hills samples. Trace elements were analyzed from single spots in order to evaluate coupled substitutions. Atomic ratios (3Li+Y+REE)/P average 2.6, showing that Li and trivalent atoms are not charge-balanced by P, and suggesting that Li does not replace Zr, according to the xenotime substitution. However, (Y+REE)/(Li+P) atomic ratios average 1.0 ± 0.6, supporting the hypothesis that Li is interstitial and partly compensates trivalent cations. Several observations in this study suggest that [Li] is primary in the studied zircons: i) if Li is interstitial, charge-balance and slow diffusion of REE would control Li mobility

  16. 40Ar/39Ar geochronology of terrestrial pyroxene

    NASA Astrophysics Data System (ADS)

    Ware, Bryant; Jourdan, Fred

    2018-06-01

    Geochronological techniques such as U/Pb in zircon and baddeleyite and 40Ar/39Ar on a vast range of minerals, including sanidine, plagioclase, and biotite, provide means to date an array of different geologic processes. Many of these minerals, however, are not always present in a given rock, or can be altered by secondary processes (e.g. plagioclase in mafic rocks) limiting our ability to derive an isotopic age. Pyroxene is a primary rock forming mineral for both mafic and ultramafic rocks and is resistant to alteration process but attempts to date this phase with 40Ar/39Ar has been met with little success so far. In this study, we analyzed pyroxene crystals from two different Large Igneous Provinces using a multi-collector noble gas mass spectrometer (ARGUS VI) since those machines have been shown to significantly improve analytical precision compared to the previous single-collector instruments. We obtain geologically meaningful and relatively precise 40Ar/39Ar plateau ages ranging from 184.6 ± 3.9 to 182.4 ± 0.8 Ma (2σ uncertainties of ±1.8-0.4%) and 506.3 ± 3.4 Ma for Tasmanian and Kalkarindji dolerites, respectively. Those data are indistinguishable from new and/or published U-Pb and 40Ar/39Ar plagioclase ages showing that 40Ar/39Ar dating of pyroxene is a suitable geochronological tool. Scrutinizing the analytical results of the pyroxene analyses as well as comparing them to the analytical result from plagioclase of the same samples indicate pure pyroxene was dated. Numerical models of argon diffusion in plagioclase and pyroxene support these observations. However, we found that the viability of 40Ar/39Ar dating approach of pyroxene can be affected by irradiation-induced recoil redistribution between thin pyroxene exsolution lamellae and the main pyroxene crystal, hence requiring careful petrographic observations before analysis. Finally, diffusion modeling show that 40Ar/39Ar of pyroxene can be used as a powerful tool to date the formation age of mafic

  17. Detrital zircon U-Pb geochronology and stratigraphy of the Cretaceous Sanjiang Basin in NE China: Provenance record of an abrupt tectonic switch in the mode and nature of the NE Asian continental margin evolution

    NASA Astrophysics Data System (ADS)

    Zhang, Feng-Qi; Chen, Han-Lin; Batt, Geoffrey E.; Dilek, Yildirim; A, Min-Na; Sun, Ming-Dao; Yang, Shu-Feng; Meng, Qi-An; Zhao, Xue-Qin

    2015-12-01

    The age spectra obtained from 505 spots of detrital zircon U-Pb ages of five representative sandstone samples from the Sanjiang Basin in NE China point to a significant change in its provenance during the Coniacian-Santonian. The predominant detrital source for the Sanjiang Basin during the early Cretaceous was the Zhangguangcai Range magmatic belt and Jiamusi Block along its western and southern periphery, whereas it changed in the late Cretaceous to its eastern periphery. The timing of these inferred changes in the detrital source regions and drainage patterns nearly coincide with the age of a regional unconformity in and across the basin. The time interval of non-deposition and unconformity development was coeval with a transitional period between an extensional tectonic regime in the early Cretaceous and a contractional deformation episode in the late Cretaceous. The Sanjiang Basin evolved during this time window from a backarc to a foreland basin. The migration of the coastal orogenic belt and the fold and thrust belt development farther inland during the late Cretaceous marked the onset of regional-scale shortening and surface uplift in the upper plate of a flat (or very shallow-dipping) subduction zone. The stratigraphic record, the detrital source and geochronology of the basinal strata, and the internal structure of the Sanjiang Basin present, therefore, an important record of a tectonic switch in the nature of continental margin evolution of Northeast Asia during the late Mesozoic.

  18. Significance of detrital zircons in upper Devonian ocean-basin strata of the Sonora allochthon and Lower Permian synorogenic strata of the Mina Mexico foredeep, central Sonora, Mexico

    USGS Publications Warehouse

    Poole, F.G.; Gehrels, G.E.; Stewart, John H.

    2008-01-01

    U-Pb isotopic dating of detrital zircons from a conglomeratic barite sandstone in the Sonora allochthon and a calciclastic sandstone in the Mina Mexico foredeep of the Minas de Barita area reveals two main age groups in the Upper Devonian part of the Los Pozos Formation, 1.73-1.65 Ga and 1.44-1.42 Ga; and three main age groups in the Lower Permian part of the Mina Mexico Formation, 1.93-1.91 Ga, 1.45-1.42 Ga, and 1.1-1.0 Ga. Small numbers of zircons with ages of 2.72-2.65 Ga, 1.30-1.24 Ga, ca. 2.46 Ga, ca. 1.83 Ga, and ca. 0.53 Ga are also present in the Los Pozos sandstone. Detrital zircons ranging in age from 1.73 to 1.65 Ga are considered to have been derived from the Yavapai, Mojave, and Mazatzal Provinces and their transition zones of the southwestern United States and northwestern Mexico. The 1.45-1.30 Ga detrital zircons were probably derived from scattered granite bodies within the Mojave and Mazatzal basement rocks in the southwestern United States and northwestern Mexico, and possibly from the Southern and Eastern Granite-Rhyolite Provinces of the southern United States. The 1.24-1.0 Ga detrital zircons are believed to have been derived from the Grenville (Llano) Province to the east and northeast or from Grenvilleage intrusions or anatectites to the north. Several detrital zircon ages ranging from 2.72 to 1.91 Ga were probably derived originally from the Archean Wyoming Province and Early Paleoproterozoic rocks of the Lake Superior region. These older detrital zircons most likely have been recycled one or more times into the Paleozoic sandstones of central Sonora. The 0.53 Ga zircon is believed to have been derived from a Lower Cambrian granitoid or meta-morphic rock northeast of central Sonora, possibly in New Mexico and Colorado, or Oklahoma. Detrital zircon geochronology suggests that most of the detritus in both samples was derived from Laurentia to the north, whereas some detritus in the Permian synorogenic foredeep sequence was derived from the

  19. Hydrogen diffusion in Zircon

    NASA Astrophysics Data System (ADS)

    Ingrin, Jannick; Zhang, Peipei

    2016-04-01

    Hydrogen mobility in gem quality zircon single crystals from Madagascar was investigated through H-D exchange experiments. Thin slices were annealed in a horizontal furnace flushed with a gas mixture of Ar/D2(10%) under ambient pressure between 900 ° C to 1150 ° C. FTIR analyses were performed on oriented slices before and after each annealing run. H diffusion along [100] and [010] follow the same diffusion law D = D0exp[-E /RT], with log D0 = 2.24 ± 1.57 (in m2/s) and E = 374 ± 39 kJ/mol. H diffusion along [001] follows a slightly more rapid diffusion law, with log D0 = 1.11 ± 0.22 (in m2/s) and E = 334 ± 49 kJ/mol. H diffusion in zircon has much higher activation energy and slower diffusivity than other NAMs below 1150 ° C even iron-poor garnets which are known to be among the slowest (Blanchard and Ingrin, 2004; Kurka et al. 2005). During H-D exchange zircon incorporates also deuterium. This hydration reaction involves uranium reduction as it is shown from the exchange of U5+ and U4+ characteristic bands in the near infrared region during annealing. It is the first time that a hydration reaction U5+ + OH- = U4+ + O2- + 1/2H2, is experimentally reported. The kinetics of deuterium incorporation is slightly slower than hydrogen diffusion, suggesting that the reaction is limited by hydrogen mobility. Hydrogen isotopic memory of zircon is higher than other NAMs. Zircons will be moderately retentive of H signatures at mid-crustal metamorphic temperatures. At 500 ° C, a zircon with a radius of 300 μm would retain its H isotopic signature over more than a million years. However, a zircon is unable to retain this information for geologically significant times under high-grade metamorphism unless the grain size is large enough. Refrences Blanchard, M. and Ingrin, J. (2004) Hydrogen diffusion in Dora Maira pyrope. Physics and Chemistry of Minerals, 31, 593-605. Kurka, A., Blanchard, M. and Ingrin, J. (2005) Kinetics of hydrogen extraction and deuteration in

  20. Detrital zircons and Earth system evolution

    NASA Astrophysics Data System (ADS)

    McKenzie, R.

    2016-12-01

    Zircon is a mineral commonly produced in silicic magmatism. Therefore, due to its resilience and exceedingly long residence times in the continental crust, detrital zircon records can be used to track processes associated with silicic magmatism throughout Earth history. In this contribution I will address the potential role of preservational biases in zircon record, and further discuss how zircon datasets can be used to help better understand the relationship between lithospheric and Earth system evolution. I will use large compilations of zircon data to trace the composition and weatherability of the continental crust, to evaluate temporal rates of crustal recycling, and finally to track spatiotemporal variation in continental arc magmatism and volcanic CO2 outgassing throughout Earth history. These records demonstrate that secular changes in plate tectonic regimes played a prominent role in modulating conditions of the ocean+atmosphere system and long-term climate state for the last 3 billion years.

  1. Sulfur in zircons: A new window into melt chemistry

    NASA Astrophysics Data System (ADS)

    Tang, H.; Bell, E. A.; Boehnke, P.; Barboni, M.; Harrison, T. M.

    2017-12-01

    The abundance and isotopic composition of sulfur are important tools for exploring the photochemistry of the atmosphere, the thermal history of mantle and igneous rocks, and ancient metabolic processes on the early Earth. Because the oldest terrestrial samples are zircons, we developed a new in-situ procedure to analyze the sulfur content of zircons using the CAMECA ims 1290 at UCLA. We analyzed zircons from three metaluminous/I-type granites (reduced and oxidized Peninsular range and Elba), which exhibit low sulfur abundance with the average of 0.5ppm, and one peraluminous/S-type zircon (Strathbogie Range), which shows an elevated sulfur level with the average of 1.5ppm. Additionally, we found that sulfur content ranges between 0.4 and 2.3 ppm in young volcanic zircons (St. Lucia). Our analyses of zircons from the Jack Hills, Western Australia, whose ages range between 3.4 and 4.1 Ga, show a variety of sulfur contents. Three out of the ten zircons are consistent with the sulfur contents of S-type zircons; the rest have low sulfur contents, which are similar to those of I-type zircons. The high sulfur content in some of these Jack Hills zircons can be interpreted as indicating their origin in either a S-type granite or a volcanic reservoir. We favor the former interpretation since the Ti-in-zircon temperatures of our Jack Hills zircons is lower than those of volcanic zircons. Future work will be undertaken to develop a systematic understanding of the relationship between melt volatile content, melt chemistry, and zircon sulfur content.

  2. Detrital shocked minerals: microstructural provenance indicators of impact craters

    NASA Astrophysics Data System (ADS)

    Cavosie, A. J.

    2014-12-01

    The study of detrital shocked minerals (DSMs) merges planetary science, sedimentology, mineralogy/crystallography, accessory mineral geochemistry, and geochronology, with the goal of identifying and determining provenance of shock metamorphosed sand grains. Diagnostic high-pressure impact-generated microstructures (planar fractures, planar deformation features) are readily identified on external grain surfaces using standard SEM imaging methods (BSE), and when found, unambiguously confirm an impact origin for a given sand grain. DSMs, including quartz, zircon, monazite, and apatite, have thus far been documented at the Vredefort Dome [1,2,3], Sudbury [4], Rock Elm [5], and Santa Fe [6,7] impact structures. DSMs have been identified in alluvium, colluvium, beach sand, and glacial deposits. Two main processes are recognized that imply the global siliciclastic record contains DSMs: they survive extreme distal transport, and they survive 'deep time' lithification. Distal transport: In South Africa, shocked minerals are preserved in alluvium from the Vaal River >750 km downstream from the Vredefort impact; SHRIMP U-Pb geochronology has confirmed the origin of detrital shocked zircon and monazite from shocked Vredefort bedrock [2]. Vredefort-derived shocked zircons have also been found at the mouth of the Orange River on the Atlantic coast, having travelled ~2000 km downriver from Vredefort [8]. Deep time preservation: Vredefort-derived shocked zircon and quartz has been documented in glacial diamictite from the 300 Myr-old Dwyka Group in South Africa. Shocked minerals were thus entrained and transported in Paleozoic ice sheets that passed over Vredefort [9]. An impact crater can thus be viewed as a unique 'point source', in some cases for billions of years [2,4]; DSMs thus have applications in studying eroded impact craters, sedimentary provenance, landscape evolution, and long-term sediment transport processes throughout the geologic record. This work was supported by

  3. Stratigraphy, age, and depositional setting of the Miocene Barstow Formation at Harvard Hill, central Mojave Desert, California

    USGS Publications Warehouse

    Leslie, Shannon R.; Miller, David M.; Wooden, Joseph L.; Vazquez, Jorge A.

    2010-01-01

    New detailed geologic mapping and geochronology of the Barstow Formation at Harvard Hill, 30 km east of Barstow, CA, help to constrain Miocene paleogeography and tectonics of the central Mojave Desert. A northern strand of the Quaternary ENE-striking, sinistral Manix fault divides the Barstow Formation at Harvard Hill into two distinct lithologic assemblages. Strata north of the fault consist of: a green rhyolitic tuff, informally named the Shamrock tuff; lacustrine sandstone; partially silicified thin-bedded to massive limestone; and alluvial sandstone to pebble conglomerate. Strata south of the fault consist of: lacustrine siltstone and sandstone; a rhyolitic tuff dated at 19.1 Ma (U-Pb); rock-avalanche breccia deposits; partially silicified well-bedded to massive limestone; and alluvial sandstone and conglomerate. Our U-Pb zircon dating of the Shamrock tuff by SHRIMP-RG yields a peak probability age of 18.7 ± 0.1 Ma. Distinctive outcrop characteristics, mineralogy, remanent magnetization, and zircon geochemistry (Th/U) suggest that the Shamrock tuff represents a lacustrine facies of the regionally extensive Peach Spring Tuff (PST). Here we compare zircon age and geochemical analyses from the Shamrock tuff with those of the PST at Stoddard Wash and provide new insight into the age of zircon crystallization in the PST rhyolite. Results of our field studies show that Miocene strata at Harvard Hill mostly accumulated in a lacustrine environment, although depositional environments varied from a relatively deep lake to a very shallow lake or even onshore setting. Rock-avalanche breccias and alluvial deposits near the base of the exposed section indicate proximity to a steep basin margin and detrital studies suggest a southern source for coarse-grained deposits; therefore, we may infer a southern basin-margin setting at Harvard Hill during the early Miocene. Our geochronology demonstrates that deposition of the Barstow Formation at Harvard Hill extended from before

  4. Evolution Of An Upper Crustal Plutonic-Volcanic Plumbing System:Insights From High Precision U-Pb Zircon Geochronology Of Intracaldera Tuff And Intrusions In Silver Creek Caldera, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Mundil, R.; Miller, C. F.; Miller, J. S.; Paterson, S. R.

    2010-12-01

    Study of both plutonic and volcanic regimes in one single magmatic system is a powerful approach towards obtaining a more complete view of the long-term evolution of magma systems. The recently discovered Silver Creek caldera is the source of the voluminous Peach Spring Tuff (PST) (Ferguson, 2008) and presents a unique opportunity to study a field laboratory of a linked plutonic-volcanic system. This relict west-facing half caldera is predominantly filled with trachytic intracaldera tuff with the caldera margin intruded by several petrologically distinct hypabyssal intrusions. These include porphyritic granite with granophyric texture, felsic leucogranite, porphyritic monzonite exposed on NE side of the caldera that is zoned from more felsic to more mafic, and quartz-phyric dikes that intrude the caldera fill. We present preliminary single zircon ages from 4 samples that have been analyzed using the CA-TIMS method after thermal annealing and chemical leaching (Mattinson 2005), including 1 sample from intracaldera tuff and 3 samples from caldera-related intrusions. 3-D total U/Pb isochron ages from all four samples fall within a range of 18.32-18.90 Ma with uncertainties between 0.09 and 0.39 Ma, although some of them lack precision and are compromised by elevated common Pb. For example, zircon from the dated porphyritic monzonite yields an age of 18.32±0.42 Ma (MSWD=2.7) where the excess scatter may result from real age dispersion and/or different compositions of the common Pb contribution. The PST had been dated to ~18.5 Ma by 40Ar/39Ar techniques (Nielson et al., 1990). In order to be compared to U/Pb ages the 40Ar/39Ar age must be adjusted for a revised age for the then used flux monitor (MMbh-1) and corrected for the now quantified systematic bias between 40Ar/39Ar and U/Pb ages (Renne et al., 2010), which results in a corrected age of 18.8 Ma. Thus, the ages for our samples match that of the PST within error. Based on current results, the age difference

  5. Zircon-scale insights into the history of a Supervolcano, Bishop Tuff, Long Valley, California, with implications for the Ti-in-zircon geothermometer

    USGS Publications Warehouse

    Reid, M.R.; Vazquez, J.A.; Schmitt, A.K.

    2011-01-01

    Zircon has the outstanding capacity to record chronological, thermal, and chemical information, including the storage history of zoned silicic magma reservoirs like the one responsible for the Bishop Tuff of eastern California, USA. Our novel ion microprobe approach reveals that Bishop zircon rims with diverse chemical characteristics surround intermediate domains with broadly similar compositions. The highest Y, REE, U, and Th concentrations tend to accompany the largest excesses in Y + REE3+:P beyond what can be explained by xenotime substitution in zircon. Apparent Ti-in-zircon temperatures of <720??C for zircon rims are distinctly lower than most of the range in eruption temperatures, as estimated from FeTi-oxide equilibria and zircon solubility at quench. While permissive of crystallization of zircon at near-solidus conditions, the low Ti-in-zircon temperatures are probably better explained by sources of inaccuracy in the temperature estimates. After apparently nucleating from different melts, zircons from across the Bishop Tuff compositional spectrum may have evolved to broadly similar chemical and thermal conditions and therefore it is possible that there was no significant thermal gradient in the magma reservoir at some stage in its evolution. There is also no compelling evidence for punctuated heat ?? chemical influxes during the intermediate stages of zircon growth. Judging by the zircon record, the main volume of the erupted magma evolved normally by secular cooling but the latest erupted portion is characterized by a reversal in chemistry that appears to indicate perfusion of the magma reservoir by-or zircon entrainment in-a less evolved melt from the one in which the zircons had previously resided. ?? 2010 Springer-Verlag.

  6. Bacterial dynamics in intestines of the black tiger shrimp and the Pacific white shrimp during Vibrio harveyi exposure.

    PubMed

    Rungrassamee, Wanilada; Klanchui, Amornpan; Maibunkaew, Sawarot; Karoonuthaisiri, Nitsara

    2016-01-01

    The intestinal microbiota play important roles in health of their host, contributing to maintaining the balance and resilience against pathogen. To investigate effects of pathogen to intestinal microbiota, the bacterial dynamics upon a shrimp pathogen, Vibrio harveyi, exposures were determined in two economically important shrimp species; the black tiger shrimp (BT) and the Pacific white shrimp (PW). Both shrimp species were reared under the same diet and environmental conditions. Shrimp survival rates after the V. harveyi exposure revealed that the PW shrimp had a higher resistance to the pathogen than the BT shrimp. The intestinal bacterial profiles were determined by denaturing gradient gel electrophoresis (DGGE) and barcoded pyrosequencing of the 16S rRNA sequences under no pathogen challenge control and under pathogenic V. harveyi challenge. The DGGE profiles showed that the presence of V. harveyi altered the intestinal bacterial patterns in comparison to the control in BT and PW intestines. This implies that bacterial balance in shrimp intestines was disrupted in the presence of V. harveyi. The barcoded pyrosequencing analysis showed the similar bacterial community structures in intestines of BT and PW shrimp under a normal condition. However, during the time course exposure to V. harveyi, the relative abundance of bacteria belong to Vibrio genus was higher in the BT intestines at 12h after the exposure, whereas relative abundance of vibrios was more stable in PW intestines. The principle coordinates analysis based on weighted-UniFrac analysis showed that intestinal bacterial population in the BT shrimp lost their ability to restore their bacterial balance during the 72-h period of exposure to the pathogen, while the PW shrimp were able to reestablish their bacterial population to resemble those seen in the unexposed control group. This observation of bacterial disruption might correlate to different mortality rates observed between the two shrimp species

  7. Devonian to Carboniferous collision in the Greenland Caledonides: U-Pb zircon and Sm-Nd ages of high-pressure and ultrahigh-pressure metamorphism

    NASA Astrophysics Data System (ADS)

    Gilotti, Jane A.; Nutman, Allen P.; Brueckner, Hannes K.

    2004-10-01

    A variety of eclogites from an east-west transect across the North-East Greenland eclogite province have been studied to establish the timing of high pressure (HP) and ultrahigh-pressure (UHP) metamorphism in this northern segment of the Laurentian margin. Garnet + omphacite ± amphibole + whole rock Sm-Nd isochrons from a quartz eclogite, a garnet + omphacite + rutile eclogite and a partially melted zoisite eclogite in the western HP belt are 401±2, 402±9 and 414±18 Ma, respectively. Corresponding sensitive high-resolution ion microprobe (SHRIMP) 206Pb/238U ages of metamorphic zircon in the same samples are 401±7, 414±13, and 393 ±10 Ma. Metamorphic zircon domains were identified using morphology, cathodoluminescence (CL) imaging, U, Th, Th/U and trace element contents. Zircon from the quartz eclogite and the garnet + omphacite + rutile eclogite are typical of eclogite facies zircon with rounded to subhedral shapes, patchy to homogenous CL domains, low U, and very low Th and Th/U. The partially melted eclogite contains euhedral zircons with dark, sector-zoned, higher U, Th and Th/U inherited cores. Three cores give a Paleoproterozoic 207Pb/206Pb age of 1,962±27 Ma, interpreted as the age of the leucogabbroic protolith. CL images of the bright overgrowths show faint oscillatory zoning next to homogenous areas that indicate zircon growth in the presence of a HP melt and later recrystallization. Additional evidence that zircon grew during eclogite facies conditions is the lack of a Eu anomaly in the trace element data for all the samples. These results, combined with additional less precise Sm-Nd ages and our earlier work, point to a Devonian age of HP metamorphism in the western and central portions of the eclogite province. An UHP kyanite eclogite from the eastern part of the transect contains equant metamorphic zircon with homogeneous to patchy zoning in CL and HP inclusions of garnet, omphacite and kyanite. These zircons have slightly higher U, Th and Th

  8. The significance of the Medicine Hat Block (southern Alberta, northern Montana) in the assembly of Laurentia: New interpretations from recent single grain zircon geochronological and geochemical data

    NASA Astrophysics Data System (ADS)

    LaDouceur, B. O.; Gifford, J.; Malone, S.; Davis, B.

    2017-12-01

    Keywords: Medicine Hat Block, Zircon, U/Pb ages, Hf isotopes, Laurentia The Medicine Hat Block (MHB) is one of the core cratonic elements that amalgamated in the Paleoproterozoic to form Laurentia. However, unlike many of the other cratons, the role of the MHB in the formation of Laurentia is poorly constrained. Virtually all of the MHB is concealed by Proterozoic and younger supracrustal sequences, limiting the data collected from this craton. The primary source of samples from the MHB comes from two sources: 1) xenoliths of variably metamorphoses gneisses, amphibolites, and meta-plutonic rocks collected from Eocene volcanic rock, and 2) similar lithologies recovered from boreholes that penetrate to the MHB basement. Multigrain zircon TIMS analyses yielded U/Pb ages ranging from 1.70 Ga to 3.26 Ga. Recent zircon single-grain LA-ICPMS U-Pb ages revealed a slightly older range of Archean ages, 2.63 Ga to 3.27 Ga, and two samples yielding Paleoproterozoic ages at 1.78 and 1.82 Ga. Whole-rock Sm/Nd data indicated that the samples formed from crustal sources, with model ages ranging between 1.80 Ga to 3.48 Ga. In-situ zircon Hf isotopic results revealed that Archean-aged zircon are generally suprachondritic, with eHf(t) values between 8.3 and -8.7. In contrast, the Paleoproterozoic grains yielded negative eHf(t) values ranging from -6.8 to -21.2, suggestive of a reworked Archean crustal component in their genesis. In particular, the Sweetgrass Hill xenolith suite is characterized solely by Paleoproterozoic ages, with evolved eHf(t) suggesting that any older U-Pb ages were reset by granulite facies metamorphism and zircon recrystallization. The combined U-Pb and Hf isotopic data from these samples helps illuminate the character of the MHB and its relationships to the Wyoming and Hearne cratons, as well as the Great Falls Tectonic Zone (GFTZ). The ages overlap between cratonic elements; however, the abundance of positive eHf(t) values of the 2.8 Ga ages suggests that the

  9. Etching fission tracks in zircons

    USGS Publications Warehouse

    Naeser, C.W.

    1969-01-01

    A new technique has been developed whereby fission tracks can be etched in zircon with a solution of sodium hydroxide at 220??C. Etching time varied between 15 minutes and 5 hours. Colored zircon required less etching time than the colorless varieties.

  10. At what conditions does zircon grow/dissolve during high-T metamorphism? Relating zircon textures to PT-conditions

    NASA Astrophysics Data System (ADS)

    Kunz, Barbara E.; Regis, Daniele; Manzotti, Paola; Engi, Martin

    2015-04-01

    A key question in ziconology is when and how zircon grows during metamorphism. To shed light on zircon forming processes and the corresponding PT-conditions during high-T metamorphism a case study was undertaken. The Ivrea Zone (N-Italy) exposes a lower continental crustal section in which a continuous metamorphic field gradient from amphibolite to granulite facies is documented. This field gradient is thought to reflect protracted heating during late Paleozoic times, with a probable high-T peak in the Permian. We present first results from a primarily textural study supported by U-Pb ages, Th/U ratios and Ti-in-Zrn thermometry. Four types of zircon were identified based on their overgrowth proportions and the preservation of detrital cores. Zircon grains were thus classified as Type1 - detrital grains with no overgrowth or very narrow rims (300 Ma) and appears to reflect an early dehydration phase. Rim2b has Permian ages (median 275 Ma), is by far the most common overgrowth type, found in a wide PT-range. Its development appears related to biotite breakdown. Rim3 is texturally indicative of magmatic zircon, occurs only in diatexites. Rim4 is the latest overgrowth and is locally found at all metamorphic grades. Textural features suggest late fluid-related recrystallization of existing zircon. At lowest grade (675±35°C, 6±2 kbar) zircons show type1 only, overgrowths are too thin to clearly identify the rim type. Further upgrade (~700°C, 7 kbar) type1 and type2 dominate. Type2 zircons show rim1, rim2a and occasionally rim4. At the Mu-out isograd (750±50°C, 8.2±1.4 kbar) most zircons are of type2, now with rim2b instead of 2a, in addition to rim1 and rim4. Near and in granulite facies (to 800°C, 8±2 kbar) mostly zircon type2 and type4 are present. While rim1 gets more narrow with increasing metamorphic grade, rim2b grows significantly thicker. Occasionally rim2a and rim4 occur. Close to the Bt-out isograd (~860°C, 9.2±1.7 kbar), mostly type3 and type4 are

  11. Zircon U-Pb geochronology, Sr-Nd-Hf isotopic composition and geological significance of the Late Triassic Baijiazhuang and Lvjing granitic plutons in West Qinling Orogen

    NASA Astrophysics Data System (ADS)

    Duan, Meng; Niu, Yaoling; Kong, Juanjuan; Sun, Pu; Hu, Yan; Zhang, Yu; Chen, Shuo; Li, Jiyong

    2016-09-01

    The Qinling Orogen was a consequence of continental collision of the South China Craton with the North China Craton in the Triassic and caused widespread granitoid magmatism. However, the petrogenesis of these granitoids remains controversial. In this paper, we choose the Baijiazhuang (BJZ) and Lvjing (LJ) plutons in the West Qinling Orogen for a combined study of the zircon U-Pb geochronology, whole-rock major and trace element compositions and Sr-Nd-Hf isotopic characteristics. We obtained zircon crystallization ages of 216 Ma and 212 Ma for the BJZ and the LJ plutons, respectively. The granitoid samples from both plutons have high K2O metaluminous to peraluminous compositions. They are enriched in large ion lithophile elements (LILEs), light rare earth elements (LREEs) and depleted in high field-strength elements (HFSEs) with significant negative Eu anomalies. The BJZ samples have initial Sr isotopic ratios of 0.7032 to 0.7078, εNd(t) of - 10.99 to - 8.54 and εHf (t) of - 10.22 to - 6.41. The LJ granitoids have initial Sr isotopic ratios of 0.7070 to 0.7080, εNd(t) of - 5.37 to - 4.58 and εHf(t) of - 3.64 to - 1.78. The enriched isotopic characteristics of the two plutons are consistent with their source being dominated by ancient continental crust. However, two BJZ samples show depleted Sr isotope compositions, which may infer possible involvement of mantle materials. Mantle-derived melt, which formed from partial melting of mantle wedge peridotite facilitated by dehydration of the subducted/subducting Mianlue ocean crust, provide the required heat for the crustal melting while also contributing to the compositions of these granitoids. That is, the two granitic plutons are magmatic responses to the closure of the Mianlue ocean basin and the continental collision between the Yangtze and South Qinling crustal terranes. (143Nd/144Nd)i = (143Nd/144Nd) - (147Sm/144Nd) × (eλt - 1), εNd(t) = [(143Nd/144Nd) / (143Nd/144Nd)CHUR(t) - 1] × 104, (143Nd/144Nd

  12. Record of Fluctuating Magmatic Environments, Melt Fractionation, and Mixing of Crystals: Elemental Compositions of Zircon Zones, Spirit Mountain Batholith, Nevada

    NASA Astrophysics Data System (ADS)

    Miller, C. F.; Claiborne, L. L.; Wooden, J. L.; Mazdab, F. K.; Walker, B. A.

    2006-12-01

    Spirit Mountain batholith is a large, tilted, subvolcanic intrusion in southernmost Nevada (Walker et al., in press; Lowery Claiborne et al., in press). Field relations and elemental chemistry of rocks ranging from felsic cumulates to leucogranites demonstrate both fractionation and frequent recharging. SHRIMP U-Pb analysis of zircon reveals a 2 m.y. history (17.4-15.3 Ma) for the batholith; almost all of the samples record multiple age populations. Elemental concentrations and zoning patterns document the utility of zircon in tracking magmatic environments and crystal transfer processes and provide important insights into the complex and protracted history of the batholith. The data lend strong support to the Watson et al. (2006) Ti-in-zircon thermometer. At reasonable a(TiO2) between 0.5 and 0.9, all calculated T's are consistent with petrological constraints and granite phase equilibria; using a(TiO2) = 0.7, T ranges from 675-900 C. Over this apparent T interval, which reflects a range in Ti from 3.2-34 ppm, concentrations of Hf (6000-18000 ppm), U (20-5000 ppm), and Th (50-13,000 ppm), and REE patterns all vary dramatically and systematically. Hf, U, Th, and Ce/Ce* are negatively correlated with T; LREE/MREE, MREE/HREE, and Eu/Eu* are positively correlated with T. These variations indicate that zircon preferentially incorporated Zr over Hf (hence falling Zr/Hf); U and Th behaved as strongly incompatible elements in the crystallizing assemblage as a whole; compatibility of REE increased with decreasing atomic number (effect of LREE accessories?); Eu+2 was more compatible (feldspars) and Ce+4 less compatible than equivalent +3 REE. All of these trends are consistent with the observed crystallizing assemblage and with general trends in whole rocks. More striking, however, is intrasample and intragrain variability. Although leucogranite samples have a larger proportion of zircon with compositions indicating low T and growth from fractionated melt, all samples have

  13. Detrital zircon provenance from three turbidite depocenters of the Middle-Upper Triassic Songpan-Ganzi complex, central China: Record of collisional tectonics, erosional exhumation, and sediment production

    USGS Publications Warehouse

    Weislogel, A.L.; Graham, S.A.; Chang, E.Z.; Wooden, J.L.; Gehrels, G.E.

    2010-01-01

    To test the idea that the voluminous upper Middle to Upper Triassic turbidite strata in the Songpan-Ganzi complex of central China archive a detrital record of Dabie ultrahigh-pressure (UHP) terrane unroofing, we report 2080 single detrital U-Pb zircon ages by sensitive high-resolution ion microprobe-reverse geometry (SHRIMP-RG) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis from 29 eastern Songpan-Ganzi complex sandstone samples. Low (<0.07) Th/U zircons, consistent with crystallization under UHP conditions, are rare in eastern Songpan-Ganzi complex zircon, and U-Pb ages of low Th/U zircons are incompatible with a Dabie terrane source. An unweighted pair group method with arithmetic mean nearest-neighbor analysis of Kolmogorov-Smirnov two-sample test results reveals that the eastern Songpan-Ganzi complex is not a single contiguous turbidite system but is instead composed of three subsidiary depocenters, each associated with distinct sediment sources. The northeastern depocenter contains zircon ages characterized by Paleozoic and bimodally distributed Precambrian zircon populations, which, together with south-to southeast-directed paleocurrent data, indicate derivation from the retro-side of the Qinling-Dabie (Q-D) collisional orogen wedge. In the central depocenter, the dominantly Paleozoic detrital zircon signature and south-to southwest-oriented paleocurrent indicators reflect a profusion of Paleozoic zircon grains. These data are interpreted to reflect an influx of material derived from erosion of Paleozoic supra-UHP rocks of the Dabie terrane in the eastern Qinling-Dabie orogen, which we speculate may have been enhanced by development of a monsoonal climate. This suggests that erosional unroofing played a significant role in the initial phase of UHP exhumation and likely influenced the petrotectonic and structural evolution of the Qinling-Dabie orogen, as evidenced by compressed Triassic isotherms/grads reported in the

  14. Applications of detrital geochronology and thermochronology from glacial deposits to the Paleozoic and Mesozoic thermal history of the Ross Embayment, Antarctica

    NASA Astrophysics Data System (ADS)

    Welke, Bethany; Licht, Kathy; Hennessy, Andrea; Hemming, Sidney; Pierce Davis, Elizabeth; Kassab, Christine

    2016-07-01

    Till from moraines at the heads of six major outlet glaciers in the Transantarctic Mountains (TAM) and from till beneath three West Antarctic ice streams have a ubiquitous zircon U-Pb age population spanning the time of the Ross/Pan-African Orogenies (610-475 Ma). Geochronology and thermochronology of detrital minerals in these Antarctic glacial tills reveal two different thermal histories for the central and southern TAM. Double-dating of the zircons reveals a geographically widespread (U-Th)/He (ZHe) population of 180-130 Ma in most of the till samples. Sandstone outcrops at Shackleton Glacier, and three Beacon Supergroup sandstone clasts from three moraines, have ZHe ages that fall entirely within this range. The similar population and proximity of many of the till samples to Beacon outcrops lead us to suggest that this extensive ZHe population in the tills is derived from Beacon Supergroup rocks and reflects the thermal response of the Beacon Basin to the breakup of Gondwana. A second population of older (>200 Ma) ZHe ages in tills at the head of Byrd, Nimrod, and Reedy Glaciers. For the tills at the head of the Nimrod and Byrd Glaciers, integrating the double-dated zircon results with 40Ar/39Ar of hornblende, muscovite and biotite, and U-Pb and (U-Th-Sm)/He double-dates on apatite yields a typical pattern of early rapid orogenic cooling (˜4-10°C/Myr) 590-475 Ma after the emplacement of the Granite Harbour Intrusives. Low temperature thermochronometers at these sites yield variable but quite old ages (ZHe 480-70 Ma and AHe 200-70 Ma) that require a long history at low temperature.

  15. Geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes of the Early Jurassic granodiorite from the Sankuanggou intrusion, Heilongjiang Province, Northeastern China: Petrogenesis and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Deng, Ke; Li, Qiugen; Chen, Yanjing; Zhang, Cheng; Zhu, Xuefeng; Xu, Qiangwei

    2018-01-01

    Mesozoic granitoid rocks represent a volumetrically component of the Northeastern (NE) China and preserve useful information about the tectonomagmatic history of this region. The Sankuanggou intrusion associated with skarn Fe-Cu deposit in the Duobaoshan ore field within NE China primarily consists of granodiorite with minor alkali-feldspar granite and diorite, which intrudes the Ordovician Duobaoshan Formation in the region. Zircon LA-ICP-MS U-Pb geochronology and whole-rock geochemistry, and Sr-Nd-Pb-Hf isotope analysis were performed on the Sankuanggou intrusion to investigate the petrogenesis and geodynamic implications. Zircon U-Pb dating of magmatic zircons from the granodiorite rock suggests that the intrusion was emplaced in the Early Jurassic (177 ± 1 Ma). Geochemically, it belongs to the metaluminous to slightly peraluminous high-K calc-alkaline I-type granitoids with a narrow range of SiO2 concentration (65.73-67.33 wt.%), high Ba, Sr, LREE and LILE contents and low abundance of Rb, Y, HREE and HFSE. All of these studied samples have homogeneous initial isotope traits with (87Sr/86Sr)i ranging from 0.70415 to 0.70423, εNd(t) of + 3.6 to + 4.0, (206Pb/204Pb)i = 17.933-18.458, (207Pb/204Pb)i = 15.520-15.587 and (208Pb/204Pb)i = 37.523-38.087, and zircon εHf(t) values varying from + 4.8 to + 9.9. These results, combined with the previous data, demonstrate that the Sankuanggou granitoids were formed by partial melting of the pre-existing juvenile crust in an extensional regime related to the post-collisional setting following the closure of the CAOB rather than previously proposed continental arc setting related to Paleo-Pacific or the Mongol-Okhotsk subduction, although their potential influence should not be dismissed.

  16. Jurassic cooling ages in Paleozoic to early Mesozoic granitoids of northeastern Patagonia: 40Ar/39Ar, 40K-40Ar mica and U-Pb zircon evidence

    NASA Astrophysics Data System (ADS)

    Martínez Dopico, Carmen I.; Tohver, Eric; López de Luchi, Mónica G.; Wemmer, Klaus; Rapalini, Augusto E.; Cawood, Peter A.

    2017-10-01

    U-Pb SHRIMP zircon crystallization ages and Ar-Ar and K-Ar mica cooling ages for basement rocks of the Yaminué and Nahuel Niyeu areas in northeastern Patagonia are presented. Granitoids that cover the time span from Ordovician to Early Triassic constitute the main outcrops of the western sector of the Yaminué block. The southern Yaminué Metaigneous Complex comprises highly deformed Ordovician and Permian granitoids crosscut by undeformed leucogranite dikes (U-Pb SHRIMP zircon age of 254 ± 2 Ma). Mica separates from highly deformed granitoids from the southern sector yielded an Ar-Ar muscovite age of 182 ± 3 Ma and a K-Ar biotite age of 186 ± 2 Ma. Moderately to highly deformed Permian to Early Triassic granitoids made up the northern Yaminué Complex. The Late Permian to Early Triassic (U-Pb SHRIMP zircon age of 252 ± 6 Ma) Cabeza de Vaca Granite of the Yaminué block yielded Jurassic mica K-Ar cooling ages (198 ± 2, 191 ± 1, and 190 ± 2 Ma). At the boundary between the Yaminué and Nahuel Niyeu blocks, K-Ar muscovite ages of 188 ± 3 and 193 ± 5 Ma were calculated for the Flores Granite, whereas the Early Permian Navarrete granodiorite, located in the Nahuel Niyeu block, yielded a K-Ar biotite age of 274 ± 4 Ma. The Jurassic thermal history is not regionally uniform. In the supracrustal exposures of the Nahuel Niyeu block, the Early Permian granitoids of its western sector as well as other Permian plutons and Ordovician leucogranites located further east show no evidence of cooling age reset since mica ages suggest cooling in the wake of crystallization of these intrusive rocks. In contrast, deeper crustal levels are inferred for Permian-Early Triassic granitoids in the Yaminué block since cooling ages for these rocks are of Jurassic age (198-182 Ma). Jurassic resetting is contemporaneous with the massive Lower Jurassic Flores Granite, and the Marifil and Chon Aike volcanic provinces. This intraplate deformational pulse that affected northeastern

  17. Testing ore deposit models using in situ U-Pb geochronology of hydrothermal monazite: Paleoproterozoic gold mineralization in northern Australia

    NASA Astrophysics Data System (ADS)

    Rasmussen, Birger; Sheppard, Stephen; Fletcher, Ian R.

    2006-02-01

    The inability to establish absolute ages for gold deposition in the Pine Creek orogen of northern Australia has led to conflicting ore deposit models, ranging from intrusion related, which predict that gold mineralization was synchronous with granite magmatism (ca. 1835 1820 Ma), to orogenic, which place ore deposition nearly 100 m.y. later. Here we present ion microprobe U-Pb geochronology for a mineralized quartz reef from Tom's Gully mine, Mount Bundey, Northern Territory, Australia, and nearby granitic rocks and associated contact aureoles. Isotopic dating of zircon and monazite indicates that intrusion and contact metamorphism occurred ca. 1825 Ma, whereas hydrothermal monazite from the auriferous quartz reef gives a mean 207Pb/206Pb age of 1780 ± 10 Ma, interpreted as the time of gold mineralization. Mineralization therefore postdated intrusion by ˜45 m.y. and preceded a postulated ca. 1740 1730 Ma cratonwide orogenic gold event by ˜50 m.y. Hence, neither the intrusion-related model nor the recently proposed orogenic model is applicable. Combined with a reevaluation of age data from the nearby Goodall gold deposit, our data suggest that mineralization coincides with, and may be related to, an episode of regional low-grade metamorphism, deformation, and fluid circulation (Shoobridge event). Our results demonstrate the importance of high-precision in situ geochronology and detailed petrography for deciphering age relationships in ore deposits, and of testing the veracity of models for ore formation.

  18. The Effect of Element Substitution on Ti-in-Zircon Geothermometry in Volcanic Zircons from Mount Pinatubo, Philippines

    NASA Astrophysics Data System (ADS)

    Lee, S. L.; Hattori, K.

    2017-12-01

    Despite the extensive application of the Ti-in-zircon geothermometer, its accuracy in natural systems remains uncertain. In order to investigate the parameters contributing to Ti in zircon, we examined zircons from dacitic eruption products of Mount Pinatubo, Philippines, from the Pliocene (>2.5-2.7 Ma), 35000BP and 1991AD. All samples are unaltered and quenched from magmas at 790-825°C (Fe-Ti-oxide thermometry). Furthermore, the magma conditions of 1991 samples are well characterized: 780°C (cummingtonite rims on hornblende, Fe-Ti-oxide thermometry), 2 kbar pressure, 5.5-6.5 wt.% H2O and fO2 of NNO+1.6. Calculated zircon saturation temperatures are 760, 744 and 738°C (oldest to youngest). Zircon Ti concentrations are low (2.0-8.8 ppm), show positive covariation with U (35.6-639 ppm), Th (18.7-696 ppm), ∑REE (237-1310 ppm) and Y (247-1770 ppm), and negative covariation with Hf (7610-12000 ppm). The Ti-in-zircon geothermometer by Ferry and Watson (2007) yields mean temperatures of 690, 666 and 663°C (oldest to youngest), using TiO2 activity=0.6, SiO2 activity=1 and -40°C pressure correction. Therefore, temperatures calculated using this method are underestimated by >100°C. We suggest that elements in the Zr site impact the substitution of Ti in the Si site of zircon. Ti shows a positive covariation with Zr/Hf (37.0-57.3, r2=0.551). The ionic radius of Hf4+ is smaller than Zr4+, whereas cations like U4+, Th4+, REE3+ and Y3+ are larger. The departure from the ideal crystal configuration is evaluated using the parameter Zr/(Hf-x), whereby x=U4+, Th4+, ∑REE and Y3+. Ti contents are more strongly correlated with the parameter than Zr/Hf (r2=0.559, 0.565, 0.608, 0.616; respectively). This suggests that large cations replacing Zr strain the lattice, reducing the amount of Ti incorporated into zircon. This further suggests that ZrSiO4 activity is less than 1 in natural rocks, resulting in the systematic underestimation of Ti-in-zircon temperatures.

  19. Geochemical signatures and magmatic stability of terrestrial impact produced zircon

    NASA Astrophysics Data System (ADS)

    Wielicki, Matthew M.; Harrison, T. Mark; Schmitt, Axel K.

    2012-03-01

    Understanding the role of impacts on early Earth has major implications to near surface conditions, but the apparent lack of preserved terrestrial craters > 2 Ga does not allow a direct sampling of such events. Ion microprobe U-Pb ages, REE abundances and Ti-in-zircon thermometry for impact produced zircon are reported here. These results from terrestrial impactites, ranging in age from ~ 35 Ma to ~ 2 Ga, are compared with the detrital Hadean zircon population from Western Australia. Such comparisons may provide the only terrestrial constraints on the role of impacts during the Hadean and early Archean, a time predicted to have a high bolide flux. Ti-in-zircon thermometry indicates an average of 773 °C for impact-produced zircon, ~ 100 °C higher than the average for Hadean zircon crystals. The agreement between whole-rock based zircon saturation temperatures for impactites and Ti-in-zircon thermometry (at aTiO2 = 1) implies that Ti-in-zircon thermometry record actual crystallization temperatures for impact melts. Zircon saturation modeling of Archean crustal rock compositions undergoing thermal excursions associated with the Late Heavy Bombardment predicts equally high zircon crystallization temperatures. The lack of such thermal signatures in the Hadean zircon record implies that impacts were not a dominant mechanism of producing the preserved Hadean detrital zircon record.

  20. Closed recirculating system for shrimp-mollusk polyculture

    NASA Astrophysics Data System (ADS)

    Wu, Xiongfei; Zhao, Zhidong; Li, Deshang; Chang, Kangmei; Tong, Zhuanshang; Si, Liegang; Xu, Kaichong; Ge, Bailin

    2005-12-01

    This paper deals with a new system of aquaculture, i.e., a closed recirculating system for shrimp-mollusk polyculture. The culture system consisted of several shrimp ponds, a mollusk water-purifying pond and a reservoir. During the production cycle, water circulated between the shrimp and mollusk ponds, and the reservoir compensated for water loss from seepage and evaporation. Constricted tagelus, Sinonovacula constricta, was selected as the cultured mollusk, and Pacific white shrimp, Litopenaeus vannamei, as the cultured shrimp. The main managing measures during the production cycle were: setting and using the aerators; introducting the probiotic products timely into the shrimp ponds; adopting a “pen-closing” method for controlling shrimp viral epidemics; setting the flow diversion barriers in the mollusk pond to keep the circulating water flowing through the pond along a sine-like curve and serve as substrate for biofilm; no direct feeding was necessary for the cultured mollusk until the co-cultured shrimp was harvested; natural foods in the water from the shrimp ponds was used for their foods. Two sets of the system were used in the experiment in 2002 and satisfactory results were achieved. The average yield of the shrimp was 11 943.5 kg/hm2, and that of the mollusk was 16 965 kg/hm2. After converting the mollusk yield into shrimp yield at their market price ratio, the food coefficient of the entire system averaged at as low as 0.81. The water quality in the ponds was maintained at a desirable level and no viral epidemics were discovered during the production cycle.

  1. Transformations to granular zircon revealed: Twinning, reidite, and ZrO2 in shocked zircon from Meteor Crater (Arizona, USA)

    USGS Publications Warehouse

    Cavosie, Aaron; Timms, Nicholas E.; Erickson, Timmons M.; Hagerty, Justin J.; Hörz, Friedrich

    2016-01-01

    Granular zircon in impact environments has long been recognized but remains poorly understood due to lack of experimental data to identify mechanisms involved in its genesis. Meteor Crater in Arizona (United States) contains abundant evidence of shock metamorphism, including shocked quartz, the high pressure polymorphs coesite and stishovite, diaplectic SiO2 glass, and lechatelierite (fused SiO2). Here we report the presence of granular zircon, a new shocked mineral discovery at Meteor Crater, that preserve critical orientation evidence of specific transformations that occurred during its formation at extreme impact conditions. The zircon grains occur as aggregates of sub-µm neoblasts in highly shocked Coconino Formation Sandstone (CFS) comprised of lechatelierite. Electron backscatter diffraction shows that each grain consists of multiple domains, some with boundaries disoriented by 65°, a known {112} shock-twin orientation. Other domains have crystallographic c-axes in alignment with {110} of neighboring domains, consistent with the former presence of the high pressure ZrSiO4 polymorph reidite. Additionally, nearly all zircon preserve ZrO2 + SiO2, providing evidence of partial dissociation. The genesis of CFS granular zircon started with detrital zircon that experienced shock-twinning and reidite formation from 20 to 30 GPa, ultimately yielding a phase that retained crystallographic memory; this phase subsequently recrystallized to systematically oriented zircon neoblasts, and in some areas partially dissociated to ZrO2. The lechatelierite matrix, experimentally constrained to form at >2000 °C, provided an ultra high-temperature environment for zircon dissociation (~1670 °C) and neoblast formation. The capacity of granular zircon to preserve a cumulative P-T record has not been recognized previously, and provides a new method for retrieving histories of impact-related mineral transformations in the crust at conditions far beyond which most rocks melt.

  2. Late Proterozoic-Paleozoic evolution of the Arctic Alaska-Chukotka terrane based on U-Pb igneous and detrital zircon ages: Implications for Neoproterozoic paleogeographic reconstructions

    USGS Publications Warehouse

    Amato, J.M.; Toro, J.; Miller, E.L.; Gehrels, G.E.; Farmer, G.L.; Gottlieb, E.S.; Till, A.B.

    2009-01-01

    The Seward Peninsula of northwestern Alaska is part of the Arctic Alaska-Chukotka terrane, a crustal fragment exotic to western Laurentia with an uncertain origin and pre-Mesozoic evolution. U-Pb zircon geochronology on deformed igneous rocks reveals a previously unknown intermediate-felsic volcanic event at 870 Ma, coeval with rift-related magmatism associated with early breakup of eastern Rodinia. Orthogneiss bodies on Seward Peninsula yielded numerous 680 Ma U-Pb ages. The Arctic Alaska-Chukotka terrane has pre-Neoproterozoic basement based on Mesoproterozoic Nd model ages from both 870 Ma and 680 Ma igneous rocks, and detrital zircon ages between 2.0 and 1.0 Ga in overlying cover rocks. Small-volume magmatism occurred in Devonian time, based on U-Pb dating of granitic rocks. U-Pb dating of detrital zircons in 12 samples of metamorphosed Paleozoic siliciclastic cover rocks to this basement indicates that the dominant zircon age populations in the 934 zircons analyzed are found in the range 700-540 Ma, with prominent peaks at 720-660 Ma, 620-590 Ma, 560-510 Ma, 485 Ma, and 440-400 Ma. Devonian- and Pennsylvanian-age peaks are present in the samples with the youngest detrital zircons. These data show that the Seward Peninsula is exotic to western Laurentia because of the abundance of Neoproterozoic detrital zircons, which are rare or absent in Lower Paleozoic Cordilleran continental shelf rocks. Maximum depositional ages inferred from the youngest detrital age peaks include latest Proterozoic-Early Cambrian, Cambrian, Ordovician, Silurian, Devonian, and Pennsylvanian. These maximum depositional ages overlap with conodont ages reported from fossiliferous carbonate rocks on Seward Peninsula. The distinctive features of the Arctic Alaska-Chukotka terrane include Neoproterozoic felsic magmatic rocks intruding 2.0-1.1 Ga crust overlain by Paleozoic carbonate rocks and Paleozoic siliciclastic rocks with Neoproterozoic detrital zircons. The Neoproterozoic ages are

  3. Zircon U-Pb Geochronology, Hf Isotopic Composition and Geological Implications of the Neoproterozoic Huashan Group in the Jingshan Area, Northern Yangtze Block, China

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Yang, K.

    2015-12-01

    In the northern Yangtze Block, a clear angular unconformity between the Mesoproterozoic sequences (e.g. Dagushi Group) and the overlying Neoproterozoic strata (e.g. Huashan Group) marks the the Jinning orogeny. A combined study of Lu-Hf isotopes and U-Pb ages for detrital zircons from Huashan Group can provide information on the crustal evolution of sedimentary provenances and the timing of the Jinning orogeny. Detrital zircons from Huashan Group have two major U-Pb age populations of about 2.0Ga, 2.65Ga, and three subordinate age groups of about 0.82Ga, 2.5Ga, 2.9Ga with minor >3.0Ga ages. The youngest five analyses yield a weighted average age of 816±9Ma, which is consistent with that of interlayered basalt (824±9Ma, Deng et al., 2013) and roughly defines the minimum depositional age of Huashan Group. Detrital zircons of Huashan Group mostly have two stage Hf isotope model ages (TDM2) between 3.0 to 3.3Ga, indicating that the northern Yangtze Block experienced significant continental crustal growth during the Paleo- to Meso-archean. Similar U-Pb ages of detrital zircons have been obtained from Precambrian sedimentary rocks in the northern Yangtze Block from previous studies (Liu et al., 2008; Guo et al., 2014 and references therein). Recently, ca. 2.65Ga A-type granites had been reported from the Kongling and Huji area, which likely record the thermally stable lithosphere (Chen et al., 2013; Zhou et al., 2015). In combination with this study, it documents the widespread 2.6-2.7Ga magmatic rocks in the northern Yangtze Block. Zhao et al. (2013) demonstrated both the ca. 850Ma tonalite and trondhjemite of the Huangling igneous complex were formed in a continental arc setting. This suggests the Miaowan-Huashan oceanic basin proposed by Bader et al. (2013) has not been closed at ca. 850Ma. This evidence, together with the depositional age of the Huashan Group, indicates the Jinning orogeny took place at 850-820 Ma. [1] Bader et al., 2013 Tectonics [2] Deng et al

  4. The Mesoarchean Tiejiashan-Gongchangling potassic granite in the Anshan-Benxi area, North China Craton: Origin by recycling of Paleo- to Eoarchean crust from U-Pb-Nd-Hf-O isotopic studies

    NASA Astrophysics Data System (ADS)

    Dong, Chunyan; Wan, Yusheng; Xie, Hangqiang; Nutman, Allen P.; Xie, Shiwen; Liu, Shoujie; Ma, Mingzhu; Liu, Dunyi

    2017-10-01

    Mesoarchean and older potassic granites are important indicators of recycling of ancient continental crust early in Earth's history. This study of integrated whole rock and zircon geochemistry and geochronology reports the age and identification of the source materials of the > 200 km2 Mesoarchean Tiejiashan-Gongchangling granite in the Anshan-Benxi area, North China Craton, the largest pre-Neoarchean granite domain in the craton. SHRIMP U-Pb zircon dating on 15 samples indicates the magmatic crystallization of the granites between 2.95 and 3.0 Ga and reveals a superimposed tectonothermal event at 2.91 Ga. The granites are characterized by high SiO2 and K2O, low CaO, FeOt, MgO and TiO2 with peraluminuous features. They show large variations in (La/Yb)n and strong negative Eu and Ba anomalies and Nb, P and Ti depletions. Whole rock Nd and magmatic zircon Hf isotopic compositions show large variations, but with most having εNd(t) and εHf(t) values < 0, with tDM(Nd) and tDM(Hf) values varying from 3.3 to 3.9 Ga and 3.3 to 4.0 Ga, respectively. Magmatic zircons without very strong lead loss (discordance ≤ 20%) have δ18O values of + 3.14 to + 8.39. 3.3-3.7 Ga xenocrystic zircons occur in some samples. The granite formed as a result of recycling of Paleo- to Eoarchean continental material in an intracontinental environment, with little if any contribution from Mesoarchean mantle sources. The sources could be predominantly unaltered ancient gneisses, together with yet to be identified Paleo- to Eoarchean materials affected by early low temperature alteration (weathered rocks or clastic sediment).

  5. Cationic antimicrobial peptides in penaeid shrimp.

    PubMed

    Tassanakajon, Anchalee; Amparyup, Piti; Somboonwiwat, Kunlaya; Supungul, Premruethai

    2011-08-01

    Penaeid shrimp aquaculture has been consistently affected worldwide by devastating diseases that cause a severe loss in production. To fight a variety of harmful microbes in the surrounding environment, particularly at high densities (of which intensive farming represents an extreme example), shrimps have evolved and use a diverse array of antimicrobial peptides (AMPs) as part of an important first-line response of the host defense system. Cationic AMPs in penaeid shrimps composed of penaeidins, crustins, and anti-lipopolysaccharide factors are comprised of multiple classes or isoforms and possess antibacterial and antifungal activities against different strains of bacteria and fungi. Shrimp AMPs are primarily expressed in circulating hemocytes, which is the main site of the immune response, and hemocytes expressing AMPs probably migrate to infection sites to fight against pathogen invasion. Indeed, most AMPs are produced as early as the nauplii developmental stage to protect shrimp larvae from infections. In this review, we discuss the sequence diversity, expression, gene structure, and antimicrobial activities of cationic AMPs in penaeid shrimps. The information available on antimicrobial activities indicates that these shrimp AMPs have potential therapeutic applications in the control of disease problems in aquaculture.

  6. (De)coupled zircon metamictization, radiation damage, and He diffusivity

    NASA Astrophysics Data System (ADS)

    Ault, A. K.; Guenthner, W.; Reiners, P. W.; Moser, A. C.; Miller, G. H.; Refsnider, K. A.

    2017-12-01

    We develop and apply a new protocol for targeting crystals for the zircon (U-Th)/He (He) thermochronometry to maximize effective U (eU) and corresponding closure temperature variability to develop zircon He date-eU correlations observed in some datasets. Our approach exploits visual proxies for radiation damage accumulation (metamictization) during zircon selection. We show that by purposefully targeting a spectrum of zircon textures from pristine to metamict grains, it is possible to generate broad eU variation in suites of zircon from a single sample and zircon He date-eU-metamictization trends that can be exploited to resolve increasingly complex thermal histories. We present plane light photographs, eU concentration, and zircon He results from 59 individual zircons from nine crystalline rock samples. Six of the nine samples come from exposed Proterozoic granitoids on SE Baffin Island, Canada; Boulder Creek, CO; Sandia Mountains, NM; and Mecca Hills, CA. We report data from three Archean Baffin samples to compare with the Proterozoic Baffin sample date-eU-metamictization trend. In each Proterozoic sample, target zircons display a spectrum of metamictization from pristine, transparent crystals to purple-brown, translucent grains. Progressive loss of transparency and increase in discoloration consistently corresponds to an increase in eU in all samples. Individual zircon eU varies from 89-1885 ppm and, within each sample, the total eU spread is 538 ppm to 1374 ppm. For any given eU value, the Archean zircon appear comparatively more metamict than the Proterozoic Baffin grains and samples collectively define a 1681 ppm range in eU, with more restrictive intrasample eU spreads (199-1120 ppm). Proterozoic samples from Baffin, Sandia, and Front Range yield negative zircon He date-eU correlations with intrasample date ranges of 90-783 Ma. Increasing eU and younger dates correspond with increasing metamictization. In contrast, all three Proterozoic Mecca Hills samples

  7. Abundance of Ohio shrimp (Macrobrachium ohione) and Glass shrimp (Palaemonetes kadiakensis) in the unimpounded Upper Mississippi River

    USGS Publications Warehouse

    Barko, V.A.; Hrabik, R.A.

    2004-01-01

    Large rivers of the United States have been altered by construction and maintenance of navigation channels, which has resulted in habitat loss and degradation. Using 7 y of Long Term Resource Monitoring Program data collected from the unimpounded upper Mississippi River, we investigated Ohio and Glass Shrimp abundance collected from four physical habitats of the unimpounded upper Mississippi River: main channel border, main channel border with wing dike, open side channel and closed side channel. Our objective was to assess associations between Ohio and Glass Shrimp abundance, environmental measurements and the four habitats to better understand the ecology of these species in a channelized river system. Ohio Shrimp were most abundant in the open side channels, while Glass Shrimp were most abundant in the main channel border wing dike habitat. Thirty-two percent of the variance in Glass Shrimp abundance was explained by year 1995, year 1998, water temperature, depth of gear deployment, Secchi disk transparency and river elevation. Approximately 8% of variation in Ohio Shrimp abundance was explained by Secchi disk transparency. Catch-per-unit-effort (CPUE) was greatest in 1998 for Glass Shrimp but lowest in 1997. Conversely, CPUE was greatest in 1996 for Ohio Shrimp and lowest in 2000. Both species exhibited inter-annual variability in CPUE. Long-term impacts of river modifications on aquatic invertebrates have not been well documented in many large, river systems and warrants further study. The findings from this study provide ecological information on Glass and Ohio Shrimp in a channelized river system.

  8. Greater epitope recognition of shrimp allergens by children than by adults suggests that shrimp sensitization decreases with age.

    PubMed

    Ayuso, Rosalía; Sánchez-Garcia, Silvia; Lin, Jing; Fu, Zhiyan; Ibáñez, María Dolores; Carrillo, Teresa; Blanco, Carlos; Goldis, Marina; Bardina, Ludmila; Sastre, Joaquín; Sampson, Hugh A

    2010-06-01

    Shellfish allergy is a long-lasting disorder typically affecting adults. Despite its high prevalence, there is limited information about allergenic shrimp proteins and the epitopes implicated in such allergic reactions. We sought to identify the IgE-binding epitopes of the 4 shrimp allergens and to characterize epitope recognition profiles of children and adults with shrimp allergy. Fifty-three subjects, 34 children and 19 adults, were selected with immediate allergic reactions to shrimp, increased shrimp-specific serum IgE levels, and positive immunoblot binding to shrimp. Study subjects and 7 nonatopic control subjects were tested by means of peptide microarray for IgE binding with synthetic overlapping peptides spanning the sequences of Litopenaeus vannamei shrimp tropomyosin, arginine kinase (AK), myosin light chain (MLC), and sarcoplasmic calcium-binding protein (SCP). The Wilcoxon test was used to determine significant differences in z scores between patients and control subjects. The median shrimp IgE level was 4-fold higher in children than in adults (47 vs 12.5 kU(A)/L). The frequency of allergen recognition was higher in children (tropomyosin, 81% [94% for children and 61% for adults]; MLC, 57% [70% for children and 31% for adults]; AK, 51% [67% for children and 21% for adults]; and SCP, 45% [59% for children and 21% for adults]), whereas control subjects showed negligible binding. Seven IgE-binding regions were identified in tropomyosin by means of peptide microarray, confirming previously identified shrimp epitopes. In addition, 3 new epitopes were identified in tropomyosin (epitopes 1, 3, and 5b-c), 5 epitopes were identified in MLC, 3 epitopes were identified in SCP, and 7 epitopes were identified in AK. Interestingly, frequency of individual epitope recognition, as well as intensity of IgE binding, was significantly greater in children than in adults for all 4 proteins. Children with shrimp allergy have greater shrimp-specific IgE antibody levels and

  9. Crustal Zircons from the Podiform Chromitites in Luobusa Ophiolite, Tibet

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.; Komiya, T.; Maruyama, S.

    2004-12-01

    For the past decade, diamonds and unusual mineral asemblages were reported in podiform chromitites of the Luobusa ophiolite, southern Tibet, China (Bai 1993, Bai 2000, Yan 2001) by heavy mineral separation. These include (1) native elements, (2) alloys, (3) carbide, (4) platinium group elements (PGE) and arsenides, (5) silicates (6) oxide, (7) carbonates, (8) minerals with unusual compositons. Despite many questions as to these minerals above still remain open, these mineral inclusions would provide us the important infomation on the formation of the podiform chromitites. In this study, over 100 zircons were discovered by heavy mineral separation of podiform chromitite in Luobusa ophiolite. The discovery of accessory zircons in chromitites allowed us to date the formation of the chromitite and history of tectonic evolutions. Here we report the U-Pb age and mineral inclusions of zircons and discuss with unusually old age zircons. 20 zircon grains in chromitites from No. 1 site were analyzed. Zircons from the chromitites in Luobusa ophiolite are usually euhedral-subhedral and some are rounded. Cathodoluminescence images of these zircons indicate that some zircons have clear oscillatory zoning, whereas other zircons show apparent homogeneous overgrowth. U-Pb dating of these zircons by LA-ICP-MS yielded two different ages. One group has relatively younger age, 107-534Ma, which plots nearly on a concordia line. Another group has older age 1460-1822Ma, which plots off the concordia line. There is insignificant difference of apparent ages within a single zircon grain. For example, a zircon has 1650 Ma in the core, whereas does 1654 Ma in the rim. We identified several mineral inclusions, quartz, feldspar, mica, apatite, within both yonger and older zircons using laser-Raman spectrometry and EPMA. No high-pressure minerals or mantle minerals were identified. This means that these unusually old zircons were formed in low-pressure crustal emvironment. Where did the zircons

  10. Mortality and Morbidity Associated with a New Ciliate Infection of Shrimp that Causes Shrimp Black Gill in the Coastal Southeast USA

    NASA Astrophysics Data System (ADS)

    Price, A. R.; Fowler, A. E.; Frede, R. L.; Walker, A. N.; Lee, R. F.; Frischer, M. E.

    2016-02-01

    Penaeid shrimp including Litopenaeus setiferus (white shrimp), Farfantepenaeus aztecus (brown shrimp), and Farfantepenaeus duorarum (pink shrimp) support the most valuable commercial marine fishery in the US Southeast Atlantic. However, since the mid 1990's the fishery has experienced a significant decline in reported harvest. Although decreased fishing effort has contributed to this decline, the decline has been coincident with the emergence of a new ciliate infection causing gill tissue melanization with evidence of tissue necrosis (Black Gill). The identity of the shrimp Black Gill (sBG) ciliate is still uncertain but is uniquely identified molecularly and microscopically. sBG is widely believed by the shrimping industry to have contributed to the decline of shrimp populations in Georgia and South Carolina, USA where prevalence can reach near 100% in the fall white shrimp season and is associated with large catches of dead and deteriorating shrimp along with soft and recently molted shrimp. In this study we report the first observations of mortality and morbidity associated with sBG ciliate infections in L. setiferus. The sBG ciliate is present from approximately May through January with peak infection rates and visibly melanized gills occurring in the late summer through the fall. Molecular and histological studies indicate that the sBG ciliate is absent from shrimp populations during the winter and spring. In laboratory studies, significant direct mortality of shrimp associated with sBG is observed only for a short period of time during the late summer. However, later in the fall symptomatic shrimp exhibit decreased performance response (endurance and respiratory capacity) that likely leads to increased mortality associated with secondary infections and increased predation rates. These studies support the hypothesis that shrimp Black Gill is negatively impacting wild shrimp populations and the fishery.

  11. Age and source of terrigenous rocks of the turan group of the bureya terrane of the eastern part of the central Asian foldbelt: Results of geochemical (Sm-Nd) and geochronological (U-Pb LA-ICP-MS) studies

    NASA Astrophysics Data System (ADS)

    Sorokin, A. A.; Smirnov, Yu. V.; Kotov, A. B.; Kovach, V. P.

    2014-06-01

    According to Sm-Nd isotopic-geochemical studies, the t Nd(DM) of the terrigenous rocks of the Turan Group of the Bureya terrane is 1.4-1.5 Ga and their sources are Precambrian rocks and (or) younger effusive rocks, the formation of which is related to the reworking of the Late Precambrian continental crust. The U-Pb LA-ICP-MS geochronological studies indicate dominant Vendian-Cambrian (588-483 Ma) and Late Riphean (865-737 Ma) detrital zircons. Our data point to their accumulation at the beginning of the Paleozoic rather than in the Precambrian as is accepted in modern stratigraphic schemes.

  12. Shrimp Farming in the Classroom.

    ERIC Educational Resources Information Center

    Ruggiero, Lovelle

    2000-01-01

    Describes a project on culturing shrimp. Presents observational labs and the experimentation procedure. Provides general information about shrimp, their life span, optimum temperatures, and other important information. (YDS)

  13. Multiple sources for the origin of Late Jurassic Linglong adakitic granite in the Shandong Peninsula, eastern China: Zircon U-Pb geochronological, geochemical and Sr-Nd-Hf isotopic evidence

    NASA Astrophysics Data System (ADS)

    Ma, Liang; Jiang, Shao-Yong; Dai, Bao-Zhang; Jiang, Yao-Hui; Hou, Ming-Lan; Pu, Wei; Xu, Bin

    2013-03-01

    The Linglong granite is one of the most important Mesozoic plutons in the Shandong Peninsula, eastern China, and its petrogenesis has long been controversial, particularly with regard to the nature of source region and geodynamic setting. Our new precise zircon U-Pb dating results reveal that the Linglong granite was emplaced in the Late Jurassic (157-160 Ma). In addition, abundant inherited zircons are identified in the granite with four groups of age peaked at ~ 208, ~ 750, ~ 1800 and ~ 2450 Ma. Geochemical studies indicate that the Linglong granite is weakly peraluminous I-type granite, and is characterized by high SiO2, Sr and La, but low MgO, Y and Yb contents, strongly fractionated REE pattern and high Sr/Y and La/Yb ratios. It also exhibits high initial 87Sr/86Sr ratios (0.7097 to 0.7125), low ɛNd(t) (- 17.7 to - 20.3) and variable zircon ɛHf(t) (- 22.2 to - 8.7) values. Calculation of the zircon saturation temperature (TZr) reveals that the magma temperatures are 760 ± 20 °C, and the lowest TZr value of 740 °C may be close to initial magma temperature of this inheritance-rich rock. Interpretation of the elemental and isotopic data suggests that the Linglong granite has some affinities with the adakite, and was most likely derived from partial melting of thickened lower crust without any significant contribution of mantle components. The presence of a large number of inherited zircons and variable Sr-Nd-Hf isotopic compositions reveal that the Linglong granite probably has multiple sources consisting of the lower crust of both South China Block and North China Block, as well as the collision-related alkaline rocks and UHP metamorphic rocks. The continental arc-rifting related to the Izanagi plate subduction was the most likely geodynamic force for formation of the Jurassic Linglong adakatic granite in the Shandong Peninsula.

  14. Zircon U-Pb dating of eclogite from the Qiangtang terrane, north-central Tibet: a case of metamorphic zircon with magmatic geochemical features

    NASA Astrophysics Data System (ADS)

    Zhai, Qing-guo; Jahn, Bor-ming; Li, Xian-hua; Zhang, Ru-yuan; Li, Qiu-li; Yang, Ya-nan; Wang, Jun; Liu, Tong; Hu, Pei-yuan; Tang, Suo-han

    2017-06-01

    Zircon is probably the most important mineral used in the dating formation of high-pressure (HP) and ultrahigh-pressure (UHP) metamorphic rocks. The origin of zircon, i.e., magmatic or metamorphic, is commonly assessed by its external morphology, internal structure, mineral inclusions, Th/U ratios and trace element composition. In this study, we present an unusual case of metamorphic zircon from the Qiangtang eclogite, north-central Tibet. The zircon grains contain numerous eclogite-facies mineral inclusions, including omphacite, phengite, garnet and rutile; hence, they are clearly of metamorphic origin. However, they display features similar to common magmatic zircon, including euhedral crystal habit, high Th/U ratios and enriched heavy rare earth elements pattern. We suggest that these zircon grains formed from a different reservoir from that for garnet where no trace elements was present and trace element equilibrium between zircon and garnet was achieved. U-Pb dating of zircon gave an age of 232-237 Ma for the eclogite, and that of rutile yielded a slightly younger age of ca. 217 Ma. These ages are consistent with the reported Lu-Hf mineral isochron and phengite Ar-Ar ages. The zircon U-Pb and mineral Lu-Hf isochron ages are interpreted as the time of the peak eclogite-facies metamorphism, whereas the rutile U-Pb and phengite Ar-Ar ages represent the time of exhumation to the middle crust. Thus, the distinction between metamorphic and magmatic zircons cannot be made using only Th/U ratios and heavy REE compositions for HP-UHP metamorphic rocks of oceanic derivation.

  15. Petrogenesis of granodiorite in the Balong region, eastern Kunlun Orogen, China: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Huang, X.; Li, H.; Wang, Y.; Liu, Y.

    2017-12-01

    Numerous granitoid intrusions that close to the Balong region have great scientific significance to reveal tectonic evolution and geodynamic background of eastern Kunlun Orogen (EKO). Balong granodiorite (BLG) is located at the northern of the EKO. It generally emplaced into the Proterozoic to Lower Palaeozoic rocks and contains abundant mafic microgranular enclaves. LA-ICP-MS zircon U-Pb dating of the BLG gives a 206Pb/238U age of 230.7±1.9 Ma, indicating that it was emplaced in the Late Triassic. The BLG is high-K calc-alkaline series and metaluminous, with SiO2 of 59.86 61.83%, K2O+Na2O of 5.98 6.40%, CaO of 4.95 5.77% and P2O5 of 0.14% 0.18%. The granodioritic rocks are enriched in LILE (Ba, Rb, Sr), but depleted in HFSE (Nb, Ta, P, Ti), with weak negative Eu anomalies (δEu=0.70 0.82). Mineralogy and geochemistry of the rocks show an affinity to I-type granite. The BLG, having (87Sr/86Sr)i ratios of 0.70819 to 0.70832, ɛNd(t) values of -5.27 to -5.75, and zircon ɛHf(t) values ranging from -3.86 to -1.34. The whole-rock Nd isotopic model ages (1432 1471 Ma) and zircon Hf isotopic model ages (1205 1357 Ma) indicate that the BLG is generated by partial melting of lower crust (Precambrian metabasaltic basement rocks) with different degree of involvement of mantle material. Combined with regional geological data, the granodiorite was derived from dehydration melting of mafic lower crustal rocks during the subduction of the Anyemaqen ocean lithosphere at Late Permian-Triassic in a subduction setting. Basaltic magma underplating and crust-mantle mixing are main mechanisms for the origin of large-scale I-type granitoid in Balong.

  16. Early Mesozoic paleogeography and tectonic evolution of the western United States: Insights from detrital zircon U-Pb geochronology, Blue Mountains Province, northeastern Oregon

    USGS Publications Warehouse

    LaMaskin, Todd A.; Vervoort, J.D.; Dorsey, R.J.; Wright, J.E.

    2011-01-01

    This study assesses early Mesozoic provenance linkages and paleogeographic-tectonic models for the western United States based on new petrographic and detrital zircon data from Triassic and Jurassic sandstones of the "Izee" and Olds Ferry terranes of the Blue Mountains Province, northeastern Oregon. Triassic sediments were likely derived from the Baker terrane offshore accretionary subduction complex and are dominated by Late Archean (ca. 2.7-2.5 Ga), Late Paleoproterozoic (ca. 2.2-1.6 Ga), and Paleozoic (ca. 380-255 Ma) detrital zircon grains. These detrital ages suggest that portions of the Baker terrane have a genetic affinity with other Cordilleran accretionary subduction complexes of the western United States, including those in the Northern Sierra and Eastern Klamath terranes. The abundance of Precambrian grains in detritus derived from an offshore complex highlights the importance of sediment reworking. Jurassic sediments are dominated by Mesozoic detrital ages (ca. 230-160 Ma), contain significant amounts of Paleozoic (ca. 290, 380-350, 480-415 Ma), Neoproterozoic (ca. 675-575 Ma), and Mesoproterozoic grains (ca. 1.4-1.0 Ga), and have lesser quantities of Late Paleoproterozoic grains (ca. 2.1-1.7 Ga). Detrital zircon ages in Jurassic sediments closely resemble well-documented age distributions in transcontinental sands of Ouachita-Appalachian provenance that were transported across the southwestern United States and modified by input from cratonal, miogeoclinal, and Cordilleran-arc sources during Triassic and Jurassic time. Jurassic sediments likely were derived from the Cordilleran arc and an orogenic highland in Nevada that yielded recycled sand from uplifted Triassic backarc basin deposits. Our data suggest that numerous Jurassic Cordilleran basins formed close to the Cordilleran margin and support a model for moderate post-Jurassic translation (~400 km) of the Blue Mountains Province. ?? 2011 Geological Society of America.

  17. Ancient and modern rhyolite: Using zircon trace element compositions to examine the origin of volcanic rocks

    NASA Astrophysics Data System (ADS)

    Klemetti, E. W.; Lackey, J.; Starnes, J.; Wooden, J. L.

    2011-12-01

    Volcanic rocks are an important marker for magmatism in the Earth's past and may be all that remains (or is exposed) to elucidate on magmagenesis in ancient terranes. Unlike plutonic rocks, which are likely aggregates of many pulses of magmatism over 104 to 106 year timescales, volcanic rocks are snapshots into specific moments in the development of a magmatic system, and in a larger sense, the tectonic setting in which the volcanoes reside. However, volcanic rocks from the rock record are commonly altered, preventing straightforward petrogenetic interpretation. In contrast, studies of refractory trace minerals such as zircon allow original petrogenesis to be recovered. In the south central Sierra Nevada batholith, Triassic to Cretaceous meta-rhyolites of the Mineral King roof pendant record snapshots of rhyolitic volcanism from key intervals of magmatism in the Sierra arc, however these rhyolites are highly altered and deformed, so little can be deduced about the original magmas or their tectonic settings. To resolve this, we recovered zircon from the four principle rhyolite units to date via SHRIMP-RG. Ages on rhyolites at Mineral King range from ˜196 Ma to 134 Ma, with three of the rhyolites being between 134 and 136 Ma. We also measured trace element composition (REE, Hf, Y and others) to explore the origins of the rhyolites. We can examine the processes at work in the development of these rhyolites along the western margin of North America during the Jurassic and Cretaceous by comparing them with modern volcanic arcs that produce abundant rhyolite eruptions, such as the Okataina Caldera Complex, New Zealand. Compared to zircon from the Okataina rhyolites, Mineral King rhyolites show a much more fractionation-dominated pattern of high Eu/Eu* (0.30-0.50) to low (<0.10) Eu/Eu* relative to increasing Hf, suggesting systems dominated by crystal fractionation or derived from a feldspar-rich source, unlike Okataina zircon that suggest abundance crystal recycling

  18. Zircon/fluid trace element partition coefficients measured by recrystallization of Mud Tank zircon at 1.5 GPa and 800-1000 °C

    NASA Astrophysics Data System (ADS)

    Ayers, John C.; Peters, Timothy J.

    2018-02-01

    Hydrothermal zircon grains have trace element characteristics such as low Th/U, high U, and high rare earth element (REE) concentrations that distinguish them from magmatic, metamorphic, and altered zircon grains, but it is unclear whether these characteristics result from distinctive fluid compositions or zircon/fluid fractionation effects. New experiments aimed at measuring zircon/fluid trace element partition coefficients Dz/f involved recrystallizing natural Mud Tank zircon with low trace element concentrations in the presence of H2O, 1 m NaOH, or 1 m HCl doped with ∼1000 ppm of rare earth elements (REE), Y, U and Th and ∼500 ppm of Li, B, P, Nb, Ba, Hf, and Ta. Experiments were run for 168 h at 1.5 GPa, 800-1000 °C, and fO2 = NNO in a piston cylinder apparatus using the double capsule method. LA-ICP-MS analysis shows that run product zircon crystals have much higher trace element concentrations than in Mud Tank zircon starting material. Dz/f values were estimated from run product zircon analyses and bulk composition using mass balance. Most elements behave incompatibly, with median Dz/f being highest for Hf = 8 and lowest for B = 0.02. Addition of NaOH or HCl had little influence on Dz/f values. Dz/f for LREE are anomalously high, likely due to contamination of run product zircon with quenched solutes enriched in incompatible elements, so DLREE were estimated using lattice strain theory. Brice curves for +3 ions yield zircon/fluid DLu/DLa of ∼800-5000. A Brice curve fit to +4 ions yielded DCe4+ values. Estimated concentrations of Ce3+ and Ce4+ show that the average Ce4+/Ce3+ in zircon of 27 is much higher than in fluid of 0.02. Th and U show little fractionation, with median DTh/DU = 0.7, indicating that the low Th/U in natural hydrothermal zircon is inherited from the fluid. Natural fluid compositions estimated from measured Dz/f and published compositions of hydrothermal zircon grains from aplite and eclogite reflect the mineralogy of the host rock, e

  19. Timing of metamorphism and exhumation in the Nordøyane ultra-high-pressure domain, Western Gneiss Region, Norway: New constraints from complementary CA-ID-TIMS and LA-MC-ICP-MS geochronology

    NASA Astrophysics Data System (ADS)

    Butler, J. P.; Jamieson, R. A.; Dunning, G. R.; Pecha, M. E.; Robinson, P.; Steenkamp, H. M.

    2018-06-01

    We present the results of a combined CA-ID-TIMS and LA-MC-ICP-MS U-Pb geochronology study of zircon and associated rutile and titanite from the Nordøyane ultra-high-pressure (UHP) domain in the Western Gneiss Region (WGR) of Norway. The dated samples include 4 eclogite bodies, 2 host-rock migmatites, and 2 cross-cutting pegmatites and leucosomes, all from the island of Harøya. Zircon from a coesite eclogite yielded an age of ca. 413 Ma, interpreted as the time of UHP metamorphism in this sample. Zircon data from the other eclogite bodies yielded metamorphic ages of ca. 413 Ma, 407 Ma, and 406 Ma; zircon trace-element data associated with 413 Ma and 407 Ma ages are consistent with eclogite-facies crystallization. In all of the eclogites, U-Pb dates from zircon cores, interpreted as the times of protolith crystallization, range from ca. 1680-1586 Ma, consistent with Gothian ages from orthogneisses in Nordøyane and elsewhere in the WGR. A zircon core age of ca. 943 Ma from one sample agrees with Sveconorwegian ages of felsic gneisses and pegmatites in the western part of the area. Migmatites hosting the eclogite bodies yielded zircon core ages of ca. 1657-1591 Ma and rim ages of ca. 395-392 Ma, interpreted as the times of Gothian protolith formation and Scandian partial melt crystallization, respectively. Pegmatite in an eclogite boudin neck yielded a crystallization age of ca. 388 Ma, interpreted as the time of melt crystallization. Rutile and titanite from 3 samples (an eclogite and two migmatites) yielded concordant ID-TIMS ages of 378-376 Ma. The results are similar to existing U-Pb data from other Nordøyane eclogites (415-405 Ma). In combination with previous pressure-temperature data from the coesite eclogite, these ages indicate that peak metamorphic conditions of 3 GPa/760 °C were reached ca. 413 Ma, followed by decompression to 1 GPa/810 °C by ca. 397 Ma and cooling below ca. 600 °C by ca. 375 Ma. The results are compatible with protracted UHP

  20. Fingerprints of the Paleotethyan back-arc basin in Central Hainan, South China: geochronological and geochemical constraints on the Carboniferous metabasites

    NASA Astrophysics Data System (ADS)

    He, Huiying; Wang, Yuejun; Zhang, Yanhua; Qian, Xin; Zhang, Yuzhi

    2018-03-01

    Hainan of Southeast Asia has been regarded as a key area for understanding the Late Paleozoic tectonic regime and amalgamation process of the Indochina with South China Blocks that are not well constrained. This paper presents a set of new geochronological, elemental, and Sr-Nd isotopic data for the Paleozoic Bangxi and Chenxing metabasites in Central Hainan. The geochronological data show that the representative samples yield the 40Ar/39Ar plateau age of 328.1 ± 2.6 Ma and zircon U-Pb age of 330.7 ± 4.4 Ma, respectively. They are SiO2- and TiO2-poor, Al2O3-rich mafic rocks. The Chenxing samples are characterized by left-sloping chondrite-normalized REE and N-MORB-like multi-elemental patterns. The Bangxi samples have the E-MORB-like geochemical affinity. All samples show high ɛ Nd(t) values ranging from +5.61 to +9.85. Such signatures suggest their origination of a MORB-like source with the input of subduction-derived components. Our investigation has verified the presence of the Carboniferous metabasites with both MORB- and arc- like geochemical affinities at the Bangxi-Chenxing area in Central Hainan. In combination with the available data from the Jinshajiang, Ailaoshan, and Song Ma suture zones, it is proposed for the development of a Carboniferous back-arc basin along the Ailaoshan-Song Ma and Central Hainan suture zones in response to the subduction of the Paleotethyan main Ocean.

  1. Intestinal bacterial signatures of white feces syndrome in shrimp.

    PubMed

    Hou, Dongwei; Huang, Zhijian; Zeng, Shenzheng; Liu, Jian; Wei, Dongdong; Deng, Xisha; Weng, Shaoping; Yan, Qingyun; He, Jianguo

    2018-04-01

    Increasing evidence suggests that the intestinal microbiota is closely correlated with the host's health status. Thus, a serious disturbance that disrupts the stability of the intestinal microecosystem could cause host disease. Shrimps are one of the most important products among fishery trading commodities. However, digestive system diseases, such as white feces syndrome (WFS), frequently occur in shrimp culture and have led to enormous economic losses across the world. The WFS occurrences are unclear. Here, we compared intestinal bacterial communities of WFS shrimp and healthy shrimp. Intestinal bacterial communities of WFS shrimp exhibited less diversity but were more heterogeneous than those of healthy shrimp. The intestinal bacterial communities were significantly different between WFS shrimp and healthy shrimp; compared with healthy shrimp, in WFS shrimp, Candidatus Bacilloplasma and Phascolarctobacterium were overrepresented, whereas Paracoccus and Lactococcus were underrepresented. PICRUSt functional predictions indicated that the relative abundances of genes involved in energy metabolism and genetic information processing were significantly greater in WFS shrimp. Collectively, we found that the composition and predicted functions of the intestinal bacterial community were markedly shifted by WFS. Significant increases in Candidatus Bacilloplasma and Phascolarctobacterium and decreases in Paracoccus and Lactococcus may contribute to WFS in shrimp.

  2. Seafood consumption habits of South Carolina shrimp baiters.

    PubMed

    Laska, Deborah; Vahey, Grace; Faith, Trevor; Vena, John; Williams, Edith M

    2017-01-01

    Shrimp baiting is a fishing technique used by many South Carolinians and has been regulated in the state since the late 1980s. A postcard survey was developed and included with 400 South Carolina Department of Natural Resources (SCDNR) annual surveys of registered shrimp baiters over a two-year period. The survey contained questions concerning frequency, portion size, baiting locations, and preparation techniques for shrimp as well as other species consumed and demographic information. An overall response rate of 37% was received. The majority of respondents were men over the age of 55 years. Charleston and Beaufort counties were the most common locations for shrimp baiting. Almost half (45.9%) of respondents reported eating locally caught shrimp at least 2-3 times per month. The most common portion size was ½ pound (8 oz. or 277 g), with 44.8% of respondents reporting this as their typical amount of shrimp ingested at one meal. Only 3.7% of respondents reported typically eating the whole shrimp, while all other respondents ingested shrimp with the head removed. The most commonly consumed species besides shrimp were blue crab, oysters, and flounder. According to the US Food and Drug Administration mercury (Hg) guidelines, the majority (97%) of our respondents were not at risk for consuming unsafe levels of Hg from locally caught shrimp. However, this does not take into account other local seafood eaten or other contaminants of concern. These consumption results may be used in conjunction with data on contaminant levels in shrimp to determine potential adverse health risks associated with consumption of locally caught shrimp.

  3. Fission track dating of kimberlitic zircons

    USGS Publications Warehouse

    Haggerty, S.E.; Raber, E.; Naeser, C.W.

    1983-01-01

    The only reliable method for dating kimberlites at present is the lengthy and specialized hydrothermal procedure that extracts 206Pb and 238U from low-uranium zircons. This paper describes a second successful method by fission track dating of large single-crystal zircons, 1.0-1.5 cm in dimension. The use of large crystals overcomes the limitations imposed in conventional fission track analysis which utilizes crushed fragments. Low track densities, optical track dispersion, and the random orientation of polished surfaces in the etch and irradiation cycle are effectively overcome. Fission track ages of zircons from five African kimberlites are reported, from the Kimberley Pool (90.3 ?? 6.5 m.y.), Orapa (87.4 ?? 5.7 and 92.4 ?? 6.1 m.y.), Nzega (51.1 ?? 3.8 m.y.), Koffiefontein (90.0 ?? 8.2 m.y.), and Val do Queve (133.4 ?? 11.5 m.y.). In addition we report the first radiometric ages (707.9 ?? 59.6 and 705.5 ?? 61.0 m.y.) of crustal zircons from kimberlites in northwest Liberia. The fission track ages agree well with earlier age estimates. Most of the zircons examined in this study are zoned with respect to uranium but linear correlations are established (by regression analysis) between zones of variable uranium content, and within zones of constant uranium content (by analysis of variance). Concordance between the fission track method and the U/Pb technique is established and we concluded that track fading from thermal annealing has not taken place. Kimberlitic zircons dated in this study, therefore, record the time of eruption. ?? 1983.

  4. Testing the reliability of information extracted from ancient zircon

    NASA Astrophysics Data System (ADS)

    Kielman, Ross; Whitehouse, Martin; Nemchin, Alexander

    2015-04-01

    Studies combining zircon U-Pb chronology, trace element distribution as well as O and Hf isotope systematics are a powerful way to gain understanding of the processes shaping Earth's evolution, especially in detrital populations where constraints from the original host are missing. Such studies of the Hadean detrital zircon population abundant in sedimentary rocks in Western Australia have involved analysis of an unusually large number of individual grains, but also highlighted potential problems with the approach, only apparent when multiple analyses are obtained from individual grains. A common feature of the Hadean as well as many early Archaean zircon populations is their apparent inhomogeneity, which reduces confidence in conclusions based on studies combining chemistry and isotopic characteristics of zircon. In order to test the reliability of information extracted from early Earth zircon, we report results from one of the first in-depth multi-method study of zircon from a relatively simple early Archean magmatic rock, used as an analogue to ancient detrital zircon. The approach involves making multiple SIMS analyses in individual grains in order to be comparable to the most advanced studies of detrital zircon populations. The investigated sample is a relatively undeformed, non-migmatitic ca. 3.8 Ga tonalite collected a few kms south of the Isua Greenstone Belt, southwest Greenland. Extracted zircon grains can be combined into three different groups based on the behavior of their U-Pb systems: (i) grains that show internally consistent and concordant ages and define an average age of 3805±15 Ma, taken to be the age of the rock, (ii) grains that are distributed close to the concordia line, but with significant variability between multiple analyses, suggesting an ancient Pb loss and (iii) grains that have multiple analyses distributed along a discordia pointing towards a zero intercept, indicating geologically recent Pb-loss. This overall behavior has

  5. High-Precision U-Pb Geochronology and Correlation: An example Using the Neoproterozic-Cambrian Transition

    NASA Astrophysics Data System (ADS)

    Bowring, S. A.; Grotzinger, J. P.; Amthor, J.; Martin, M. E.

    2001-05-01

    The precise, global correlation of Precambrian and Paleozoic sedimentary rocks can be achieved using temporally calibrated chemostratigraphic records. This approach is essential for determining rates and causes of environmental and faunal change, including mass extinctions. For example, The Neoproterozoic is marked by major environmental change, including periods of global glaciation, large fluctuations in the sequestration of carbon and major tectonic reorganization followed by the explosive diversification of animals in the earliest Cambrian. The extreme climatic change associated with these glaciations have been implicated as a possible trigger for the Cambrian explosion. The recognition of thin zircon-bearing air-fall ash in Neoproterozoic and Cambrian rocks has allowed the establishment of a high-precision temporal framework for animal evolution and is helping to untangle the history of glaciations. In some cases analytical uncertainties translate to age uncertainties of less than 1 Ma and when integrated with chemostratigraphy, the potential for global correlations at even higher resolution. Progress in the global correlation of Neoproterozoic strata has been achieved through the use of C and Sr isotope chemostratigraphy although it has been hampered by a lack of precise geochronological and faunal control. For example, the period from ca 800-580 Ma is characterized by at least two and perhaps as many as four glacial events that are interpreted by many to be global glaciations on a "Snowball Earth". A lack of precise chronological constraints on the number and duration of glaciations, multiple large excursions in the carbon isotopic record, and an absence of detailed biostratigraphy have complicated global correlation and hindered our understanding of this important period of Earth history. However, the ongoing integration of chemostratigraphic and geochronological data are improving temporal resolution and detailed correlations. These data are critical for

  6. Hydrogen incorporation and charge balance in natural zircon

    NASA Astrophysics Data System (ADS)

    De Hoog, J. C. M.; Lissenberg, C. J.; Brooker, R. A.; Hinton, R.; Trail, D.; Hellebrand, E.

    2014-09-01

    The water and trace element contents of natural igneous zircons were determined to constrain the mechanism of hydrogen incorporation. The low radiation-damage zircons were derived from Fe-Ti oxide gabbros from the Vema Fracture Zone (11°N, Mid-Atlantic Ridge). They contain up to 1212 ppmw H2O, 1.9 wt.% Y2O3 and 0.6 wt.% P2O5 and are generally strongly zoned. REE + Y are partially charge-balanced by P (Y, REE3+ + P5+ = Zr4+ + Si4+), but a large REE excess is present. On an atomic basis, this excess is closely approximated by the amount of H present in the zircons. We therefore conclude that H is incorporated by a charge-balance mechanism (H+ + REE3+ = Zr4+). This interpretation is consistent with FTIR data of the Vema zircons, which shows a strongly polarised main absorption band at ca. 3100 cm-1, similar to experimentally grown Lu-doped hydrous zircon. The size of this 3100 cm-1 band scales with H and REE contents. Apart from a small overlapping band at 3200 cm-1, no other absorption bands are visible, indicating that a hydrogrossular-type exchange mechanism does not appear to be operating in these zircons. Because of charge-balanced uptake of H, P and REE in zircon, the partitioning of these elements into zircon is dependent on each of their concentrations. For instance, DREEzrc/melt increases with increasing H and P contents of the melt, whereas DHzrc/melt increases with increasing REE content but decreases with increasing P content. In addition, H-P-REE systematics of sector zoning indicate kinetic effects may play an important role. Hence, using H in zircon to determine the water content of melts is problematic, and REE partitioning studies need to take into account P and H2O contents of the melt.

  7. Oxygen isotopic composition and U-Pb discordance in zircon

    USGS Publications Warehouse

    Booth, A.L.; Kolodny, Y.; Chamberlain, C.P.; McWilliams, M.; Schmitt, A.K.; Wooden, J.

    2005-01-01

    We have investigated U-Pb discordance and oxygen isotopic composition of zircon using high-spatial resolution ??18O measurement by ion microprobe. ??18O in both concordant and discordant zircon grains provides an indication of the relationship between fluid interaction and discordance. Our results suggest that three characteristics of zircon are interrelated: (1) U-Pb systematics and concomitant age discordance, (2) ??18O and the water-rock interactions implied therein, and (3) zircon texture, as revealed by cathodoluminescence and BSE imaging. A key observation is that U-Pb-disturbed zircons are often also variably depleted in 18O, but the relationship between discordance and ??18O is not systematic. ??18O values of discordant zircons are generally lighter but irregular in their distribution. Textural differences between zircon grains can be correlated with both U-Pb discordance and ??18O. Discordant grains exhibit either a recrystallized, fractured, or strongly zoned CL texture, and are characteristic of 18O depletion. We interpret this to be a result of metamictization, leading to destruction of the zircon lattice and an increased susceptibility to lead loss. Conversely, grains that are concordant have less-expressed zoning and a smoother CL texture and are enriched in 18O. From this it is apparent that various stages of water-rock interaction, as evidenced by systematic variations in ??18O, leave their imprint on both the texture and U-Pb systematics of zircon. Copyright ?? 2005 Elsevier Ltd.

  8. Petrogenesis of Mesozoic granites in the Xitian, South China: Evidence from whole-rock geochemistry and zircon isotopes

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Sun, J.; He, M.; Hou, Q.; Niu, R.

    2017-12-01

    Mesozoic granitoids are widespread in southeastern China, which accompanied with lots of world-famous polymetallic deposits. The mineralization is believed to be related to the Mesozoic granitic magmatism. However, the petrogenesis of these granites and their relation to the mineralization are still debated. As a typical granitic pluton, Xitian granites from the eastern Hunan Province are formed during this period and associated with tungsten-tin deposit. Whole-rock geochemical, SIMS zircon geochronology and oxygen isotopes, as well as LA-ICPMS zircon Lu-Hf isotopic analyses, were carried out on a suite of rocks from Xitian granitic pluton to constrain their magmatic sources and petrogenesis. Xitian granitic pluton is mainly composed of biotite adamellite, biotite granite, fine-grained granite. SIMS and LA-ICPMS U-Pb dating of zircons indicate that there are two episodes of these rocks, i.e., Late Triassic granites (227-233Ma) and Late Jurassic granites (150-154Ma). The Xitian granites are silica-rich, potassic and weakly peraluminous. Petrographic and geochemical features show that they are highly fractionated I-type granites. The combined elemental and isotopic results indicated that the Late Triassic granite in Xitian area experienced a process of crystal fractionation of crustal-derived magmas coupled with strong assimilation of the surrounding rocks. The occurrence of Jurassic granitoids in Xitian area is attributed to ascending of mantle-derived magmas, which provide heat for partial melting of crustal materials. The Late Jurassic granite may be derived from juvenile crust or partial melting of ancient crustal rocks, whereas high degrees of crystal fractionation further enriched tungsten-tin in the evolved granitic rocks. This work was financially supported by the Research Cooperation between Institute and University of Chinese Academy of Sciences grant (Y552012Y00), Public Welfare Project of the Ministry of land and Resources of China (201211024

  9. Shrimp viral diseases, import risk assessment and international trade.

    PubMed

    Karunasagar, Iddya; Ababouch, Lahsen

    2012-09-01

    Shrimp is an important commodity in international trade accounting for 15 % in terms of value of internationally traded seafood products which reached $102.00 billion in 2008. Aquaculture contributes to over 50 % of global shrimp production. One of the major constraints faced by shrimp aquaculture is the loss due to viral diseases like white spot syndrome, yellow head disease, and Taura syndrome. There are several examples of global spread of shrimp diseases due to importation of live shrimp for aquaculture. Though millions of tonnes of frozen or processed shrimp have been traded internationally during the last two decades despite prevalence of viral diseases in shrimp producing areas in Asia and the Americas, there is no evidence of diseases having been transmitted through shrimp imported for human consumption. The guidelines developed by the World Animal Health Organisation for movement of live animals for aquaculture, frozen crustaceans for human consumption, and the regulations implemented by some shrimp importing regions in the world are reviewed.

  10. Controls on Cenozoic exhumation of the Tethyan Himalaya from fission-track thermochronology and detrital zircon U-Pb geochronology in the Gyirong basin area, southern Tibet

    NASA Astrophysics Data System (ADS)

    Shen, Tianyi; Wang, Guocan; Leloup, Philippe Hervé; van der Beek, Peter; Bernet, Matthias; Cao, Kai; Wang, An; Liu, Chao; Zhang, Kexin

    2016-07-01

    The Gyirong basin, southern Tibet, contains the record of Miocene-Pliocene exhumation, drainage development, and sedimentation along the northern flank of the Himalaya. The tectonic controls on basin formation and their potential link to the South Tibetan Detachment System (STDS) are not well understood. We use detrital zircon (ZFT) and apatite (AFT) fission-track analysis, together with detrital zircon U-Pb dating to decipher the provenance of Gyirong basin sediments and the exhumation history of the source areas. Results are presented for nine detrital samples of Gyirong basin sediments (AFT, ZFT, and U-Pb), two modern river-sediment samples (ZFT and AFT), and six bedrock samples (ZFT) from transect across the Gyirong fault bounding the basin to the east. The combination of detrital zircon U-Pb and fission-track data demonstrates that the Gyirong basin sediments were sourced locally from the Tethyan Sedimentary Sequence. This provenance pattern indicates that deposition was controlled by the Gyirong fault, active since 10 Ma, whose vertical throw was probably < 5000 m, rather than being controlled by normal faults associated with the STDS. The detrital thermochronology data contain two prominent age groups at 37-41 and 15-18 Ma, suggesting rapid exhumation at these times. A 15-18 Ma phase of rapid exhumation has been recorded widely in both southern Tibet and the Himalaya. A possible interpretation for such a major regional exhumation event might be detachment of the subducting Indian plate slab during the middle Miocene, inducing dynamic uplift of the Indian plate overriding its own slab.

  11. Fission track dating of kimberlitic zircons

    NASA Astrophysics Data System (ADS)

    Haggerty, Stephen E.; Raber, Ellen; Naeser, Charles W.

    1983-04-01

    The only reliable method for dating kimberlites at present is the lengthy and specialized hydrothermal procedure that extracts 206Pb and 238U from low-uranium zircons. This paper describes a second successful method by fission track dating of large single-crystal zircons, 1.0-1.5 cm in dimension. The use of large crystals overcomes the limitations imposed in conventional fission track analysis which utilizes crushed fragments. Low track densities, optical track dispersion, and the random orientation of polished surfaces in the etch and irradiation cycle are effectively overcome. Fission track ages of zircons from five African kimberlites are reported, from the Kimberley Pool (90.3 ± 6.5 m.y.), Orapa (87.4 ± 5.7 and 92.4 ± 6.1 m.y.), Nzega (51.1 ± 3.8 m.y.), Koffiefontein (90.0 ± 8.2 m.y.), and Val do Queve (133.4 ± 11.5 m.y.). In addition we report the first radiometric ages (707.9 ± 59.6 and 705.5 ± 61.0 m.y.) of crustal zircons from kimberlites in northwest Liberia. The fission track ages agree well with earlier age estimates. Most of the zircons examined in this study are zoned with respect to uranium but linear correlations are established (by regression analysis) between zones of variable uranium content, and within zones of constant uranium content (by analysis of variance). Concordance between the fission track method and the U/Pb technique is established and we concluded that track fading from thermal annealing has not taken place. Kimberlitic zircons dated in this study, therefore, record the time of eruption.

  12. Provenance of the exotic Northern Sierra terrane (North American Cordillera) based on U-Pb detrital zircon data

    NASA Astrophysics Data System (ADS)

    Powerman, V.; Girty, G.; Hanson, R. E.; Grove, M.; Miller, E. L.; Hourigan, J. K.

    2017-12-01

    Ages of detrital zircons from the Northern Sierra terrane (NST) suggest an exotic provenance with respect to NW Laurentia. We have acquired U-Pb LA-ICPMS dz ages from 16 samples collected from the uppermost NST allochthon, the Sierra City mélange, and 1 sample from the lower Culbertson Lake allochthon. Age distributions can be divided into 3 partly intersecting groups: (a) 6 mélange samples and the 1 Culbertson Lake allochthon sample are dominated by >1 Ga grains; (b)5 samples are characterized by the additional presence of Early Paleozoic and Neoproterozoic grains (520-640;680-800;840-1000Ma); (c) 9 samples, 8 feldspathic, 1—qtz-rich, can be also characterized by the presence of 360-520Ma grains. These results strengthen the non Laurentian nature of detrital sources:(1)most of the detrital age distributions possess ages in the 1.49-1.61Ga interval, the "N.American magmatic gap";(2) Ediacaran zircons cannot be linked to any igneous event within West Laurentia. Most samples possess detrital age distributions that include the 1.0-2.0 Ga peak, characteristic of Baltica rather than Laurentia. These data, supplemented by SHRIMP-RG data (353-368Ma) from stitching igneous units suggest the following model: parts of NST were located at the NE margin of Baltica in the early Paleozoic, receiving "Baltica" (1.0-2.0 Ga) and "Timanide"(Late Vendian — Early Cambrian) zircons. This crustal block was later rifted away from Baltica and by mid-Paleozoic was juxtaposed with allochthons of presumably NW Laurentia provenance. The assembled terrane was involved in a subduction zone, resulting in the emplacement of 353-368Ma igneous rocks. The U-Pb detrital zircon age distributions presented here are similar to signatures of strata in along strike exotic terranes of the North American Cordillera (such as the Yreka terrane of the Klamath Mts., the Alexander terrane of S.Alaska and the Arctic Chukotka-Alaska terrane) by having Timanian, Baltica, and Caledonian signatures. Hence, it

  13. Oxygen diffusion in zircon

    NASA Astrophysics Data System (ADS)

    Watson, E. B.; Cherniak, D. J.

    1997-05-01

    Oxygen diffusion in natural, non-metamict zircon was characterized under both dry and water-present conditions at temperatures ranging from 765°C to 1500°C. Dry experiments were performed at atmospheric pressure by encapsulating polished zircon samples with a fine powder of 18O-enriched quartz and annealing the sealed capsules in air. Hydrothermal runs were conducted in cold-seal pressure vessels (7-70 MPa) or a piston cylinder apparatus (400-1000 MPa) on zircon samples encapsulated with both 18O-enriched quartz and 18O water. Diffusive-uptake profiles of 18O were measured in all samples with a particle accelerator, using the 18O(p, α) 15N reaction. For dry experimental conditions at 1100-1500°C, the resulting oxygen diffusivities (24 in all) are well described by: D dry (m 2/s) = 1.33 × 10 -4exp(-53920/T) There is no suggestion of diffusive anisotropy. Under wet conditions at 925°C, oxygen diffusion shows little or no dependence upon P H 2O in the range 7-1000 MPa, and is insensitive to total pressure as well. The results of 27 wet experiments at 767-1160°C and 7-1000 MPa can be described a single Arrhenius relationship: D wet (m 2/s) = 5.5 × 10 -12exp(-25280/T) The insensitivity of oxygen diffusion to P H 2O means that applications to geologic problems can be pursued knowing only whether the system of interest was 'wet' (i.e., P H 2O > 7MPa ) or 'dry'. Under dry conditions (presumably rare in the crust), zircons are extremely retentive of their oxygen isotopic signatures, to the extent that δ 18O would be perturbed at the center of a 200 μm zircon only during an extraordinarily hot and protracted event (e.g., 65 Ma at 900°C). Under wet conditions, δ 18O may or may not be retained in the central regions of individual crystals, cores or overgrowth rims, depending upon the specific thermal history of the system.

  14. Evidence From Detrital Zircon U-Pb Analysis for Suturing of Pre-Mississippian Terranes in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Moore, T. E.; Potter, C. J.; O'Sullivan, P. B.; Aleinikoff, J. N.

    2007-12-01

    Detrital zircon U-Pb ages of pre-Mississippian sandstones were determined using SHRIMP and LA-ICPMS techniques for four key geographic parts of the Arctic Alaska terrane, northern Alaska. In the northeastern Brooks Range, a sample of quartz-rich turbidites from the Proterozoic Neroukpuk Quartzite yielded zircon ages ranging from 980 Ma to 2.9 Ga with clusters at 980-1100 Ma, 1680-1850 Ma and 2220-2660 Ma. Quartz and chert-bearing sandstone in the Tulageak well from Ordovician-Silurian argillite in basement beneath the North Slope yielded a broad spectrum of ages between 1.0 to 2.1 Ga and 2.8 Ga, including peaks at 1.0-1.2 and 1.5-1.7 Ga. Paleozoic zircons cluster at 390 and 440 Ma in this sample, indicating it is Devonian. Lithic sandstone from the Silurian Iviagik Group at Cape Dyer on the Lisburne Peninsula yielded a variety of ages from 450 to 1600 Ma, with a large peak at 475-600 Ma and several grains between 1.9 and 2.5 Ga. In contrast to the broad distributions of the latter two samples, zircons in metamorphosed Proterozoic-Cambrian(?) lithic sandstone from the an unnamed metagraywacke unit near Mt. Snowden on the Dalton Highway in the southern Brooks Range are largely 600-650 Ma with lesser clusters at 1050-1200 Ma and 1600-1900 Ga. Samples of quartz-rich Mississippian sandstone at the base of the unconformably overlying Mississippian to Triassic Ellesmerian sequence near three of the pre-Mississippian sample locations were also analyzed. Mississippian sandstones from the West Dease well (near the Tulageak well) and at Cape Dyer on the Lisburne Peninsula display zircon distributions similar to those found in the underlying pre-Mississippian samples, indicating the Mississippian clastic strata are locally derived and that the observed zircon distributions are representative of a broad area. However, the Mississippian Kekiktuk Conglomerate, which rests on the Neroukpuk Quartzite in the northeastern Brooks Range, also contains a variety of ages between 560 and

  15. Radiation Damage Study in Natural Zircon Using Neutrons Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lwin, Maung Tin Moe; Amin, Yusoff Mohd.; Kassim, Hasan Abu

    2011-03-30

    Changes of atomic displacements in crystalline structure of natural zircon (ZrSiO{sub 4}) can be studied by using neutron irradiation on the surface of zircon and compared the data from XRD measurements before and after irradiation. The results of neutron irradiation on natural zircon using Pneumatic Transfer System (PTS) at PUSPATI TRIGA Research Reactor in the Malaysian Nuclear Agency are discussed in this work. The reactor produces maximum thermal power output of 1 MWatt and the neutron flux of up to 1x10{sup 13} ncm{sup -2}s{sup -1}. From serial decay processes of uranium and thorium radionuclides in zircon crystalline structure, the emissionmore » of alpha particles can produce damage in terms of atomic displacements in zircon. Hence, zircon has been extensively studied as a possible candidate for immobilization of fission products and actinides.« less

  16. Are there impact-formed zircons in the Hadean record?

    NASA Astrophysics Data System (ADS)

    Wielicki, M. M.; Lu, X.; Bell, E. A.; Schmitt, A. K.; Harrison, T. M.

    2008-12-01

    Detrital Hadean zircons from the Jack Hills, Western Australia, show a remarkable cluster of crystallization temperatures at 680±25°C. This is particularly surprising as a simple model relating rock composition and Zr concentration predicts that a very broad spectrum of crystallization temperatures (ca. 650°C to 1000°C) with a median value of 780°C, would result from impact melting of the Earth's surface. Magmatic fractionation would tend to increase the aforementioned values. Given the predicted high rate of impacts during the Hadean, the absence of such a population in the Jack Hills zircons could signal a profound sampling problem, a hint of a history much different than previously supposed, or our lack of understanding of zircon formation due to impact related processes. We have begun to examine the latter issue by investigating the crystallization temperatures of zircons formed in melt sheets preserved in the geologic record. The Sudbury Igneous Complex, formed at 1850±3 Ma within the second largest impact crater on Earth, includes two igneous units termed the Black and Felsic Norites. Examination of zircons from each by SIMS confirms their crystallization age at 1847.3±2.2 Ma and yields Ti-in-zircon temperatures of 720°C and 750°C, respectively. This is consistent with that predicted from zircon saturation systematics. A statistical test indicates that the combined norite population is distinct from the Hadean temperature distribution. Thus the question arises: where are the Hadean zircons expected to have formed at >780°C via impact processes? Similar analysis is being pursued for zircons from the Vredefort Impact Structure, South Africa, which should provide further information on impact-formed zircon temperature spectra.

  17. Petrology, geochemistry and zircon U-Pb geochronology of a layered igneous complex from Akarui Point in the Lützow-Holm Complex, East Antarctica: Implications for Antarctica-Sri Lanka correlation

    NASA Astrophysics Data System (ADS)

    Kazami, Sou; Tsunogae, Toshiaki; Santosh, M.; Tsutsumi, Yukiyasu; Takamura, Yusuke

    2016-11-01

    The Lützow-Holm Complex (LHC) of East Antarctica forms part of a complex subduction-collision orogen related to the amalgamation of the Neoproterozoic supercontinent Gondwana. Here we report new petrological, geochemical, and geochronological data from a metamorphosed and disrupted layered igneous complex from Akarui Point in the LHC which provide new insights into the evolution of the complex. The complex is composed of mafic orthogneiss (edenite/pargasite + plagioclase ± clinopyroxene ± orthopyroxene ± spinel ± sapphirine ± K-feldspar), meta-ultramafic rock (pargasite + olivine + spinel + orthopyroxene), and felsic orthogneiss (plagioclase + quartz + pargasite + biotite ± garnet). The rocks show obvious compositional layering reflecting the chemical variation possibly through magmatic differentiation. The metamorphic conditions of the rocks were estimated using hornblende-plagioclase geothermometry which yielded temperatures of 720-840 °C. The geochemical data of the orthogneisses indicate fractional crystallization possibly related to differentiation within a magma chamber. Most of the mafic-ultramafic samples show enrichment of LILE, negative Nb, Ta, P and Ti anomalies, and constant HFSE contents in primitive-mantle normalized trace element plots suggesting volcanic arc affinity probably related to subduction. The enrichment of LREE and flat HREE patterns in chondrite-normalized REE plot, with the Nb-Zr-Y, Y-La-Nb, and Th/Yb-Nb/Yb plots also suggest volcanic arc affinity. The felsic orthogneiss plotted on Nb/Zr-Zr diagram (low Nb/Zr ratio) and spider diagrams (enrichment of LILE, negative Nb, Ta, P and Ti anomalies) also show magmatic arc origin. The morphology, internal structure, and high Th/U ratio of zircon grains in felsic orthogneiss are consistent with magmatic origin for most of these grains. Zircon U-Pb analyses suggest Early Neoproterozoic (847.4 ± 8.0 Ma) magmatism and protolith formation. Some older grains (1026-882 Ma) are regarded as

  18. Selenium requirement of shrimp Penaeus chinensis

    NASA Astrophysics Data System (ADS)

    Tian, Yuchuan; Liu, Fayi

    1993-09-01

    Penaeus chinensis were reared in fibreglass tanks for the study of their selenium requirements. The shrimp were fed semipurified diets containing graded levels of selenium, and weight gains, activities of glutatione peroxidase (GSH-Px) and selenium contents in muscle and hepatopancreas were determined. Weight gain and GSH-Px activity were the highest when the shrimp were fed diet containing 20 mg/kg selenium. Good linear correlation was found between GSH-Px activities and selenium contents in the diets, and the number of healthy shrimp. The experiment showed that 20 mg/kg selenium in the diet is optimal for the shrimp and that GSH-Px activity can be an important biochemical index of the selenium nutrition status of the animal.

  19. Zircon-Based Ceramics Composite Coating for Environmental Barrier Coating

    NASA Astrophysics Data System (ADS)

    Suzuki, M.; Sodeoka, S.; Inoue, T.

    2008-09-01

    Studies on plasma spraying of zircon (ZrSiO4) have been carried out by the authors as one of the candidates for an environmental barrier coating (EBC) application, and had reported that substrate temperature is one of the most important factors to obtain crack-free and highly adhesive coating. In this study, several amounts of yttria were added to zircon powder, and the effect of the yttria addition on the structure and properties of the coatings were evaluated to improve the stability of the zircon coating structure at elevated temperature. The coatings obtained were composed of yttria-stabilized zirconia (YSZ), glassy silica, whereas the one prepared from monolithic zircon powder was composed of the metastable high temperature tetragonal phase of zirconia and glassy silica. After the heat treatment over 1200 °C, silica and zirconia formed zircon in all coatings. However, coatings with higher amounts of yttria exhibited lower amounts of zircon. This resulted in the less open porosity of the coating at elevated temperature. These yttria-added coatings also showed good adhesion even after the heat treatment, while monolithic zircon coating pealed off.

  20. Petrology, geochemistry and U-Pb geochronology of magmatic rocks from the high-sulfidation epithermal Au-Cu Chelopech deposit, Srednogorie zone, Bulgaria

    NASA Astrophysics Data System (ADS)

    Chambefort, Isabelle; Moritz, Robert; von Quadt, Albrecht

    2007-10-01

    The Chelopech deposit is one of the largest European gold deposits and is located 60 km east of Sofia, within the northern part of the Panagyurishte mineral district. It lies within the Banat-Srednegorie metallogenic belt, which extends from Romania through Serbia to Bulgaria. The magmatic rocks define a typical calc-alkaline suite. The magmatic rocks surrounding the Chelopech deposit have been affected by propylitic, quartz-sericite, and advanced argillic alteration, but the igneous textures have been preserved. Alteration processes have resulted in leaching of Na2O, CaO, P2O5, and Sr and enrichment in K2O and Rb. Trace element variation diagrams are typical of subduction-related volcanism, with negative anomalies in high field strength elements (HFSE) and light element, lithophile elements. HFSE and rare earth elements were relatively immobile during the hydrothermal alteration related to ore formation. Based on immobile element classification diagrams, the magmatic rocks are andesitic to dacitic in compositions. Single zircon grains, from three different magmatic rocks spanning the time of the Chelopech magmatism, were dated by high-precision U-Pb geochronology. Zircons of an altered andesitic body, which has been thrust over the deposit, yield a concordant 206Pb/238U age of 92.21 ± 0.21 Ma. This age is interpreted as the crystallization age and the maximum age for magmatism at Chelopech. Zircon analyses of a dacitic dome-like body, which crops out to the north of the Chelopech deposit, give a mean 206Pb/238U age of 91.95 ± 0.28 Ma. Zircons of the andesitic hypabyssal body hosting the high-sulfidation mineralization and overprinted by hydrothermal alteration give a concordant 206Pb/238U age of 91.45 ± 0.15 Ma. This age is interpreted as the intrusion age of the andesite and as the maximum age of the Chelopech epithermal high-sulfidation deposit. 176Hf/177Hf isotope ratios of zircons from the Chelopech magmatic rocks, together with published data on the

  1. Early Mesozoic rift basin architecture and sediment routing system in the Moroccan High Atlas

    NASA Astrophysics Data System (ADS)

    Perez, N.; Teixell, A.; Gomez, D.

    2016-12-01

    Late Permian to Triassic extensional systems associated with Pangea breakup governed the structural framework and rift basin architecture that was inherited by Cenozoic High Atlas Mountains in Morocco. U-Pb detrital zircon geochronologic and mapping results from Permo-Triassic deposits now incorporated into the High Atlas Mountains provide new constraints on the geometry and interconnectivity among synextensional depocenters. U-Pb detrital zircon data provide provenance constraints of Permo-Triassic deposits, highlighting temporal changes in sediment sources and revealing the spatial pattern of sediment routing along the rift. We also characterize the U-Pb detrital zircon geochronologic signature of distinctive interfingering fluvial, tidal, and aeolian facies that are preferentially preserved near the controlling normal faults. These results highlight complex local sediment mixing patterns potentially linked to the interplay between fault motion, eustatic, and erosion/transport processes. We compare our U-Pb geochronologic results with existing studies of Gondwanan and Laurentian cratonic blocks to investigate continent scale sediment routing pathways, and with analogous early Mesozoic extensional systems situated in South America (Mitu basin, Peru) and North America (Newark Basin) to assess sediment mixing patterns in rift basins.

  2. Application of U-Pb ID-TIMS dating to the end-Triassic global crisis: testing the limits on precision and accuracy in a multidisciplinary whodunnit (Invited)

    NASA Astrophysics Data System (ADS)

    Schoene, B.; Schaltegger, U.; Guex, J.; Bartolini, A.

    2010-12-01

    The ca. 201.4 Ma Triassic-Jurassic boundary is characterized by one of the most devastating mass-extinctions in Earth history, subsequent biologic radiation, rapid carbon cycle disturbances and enormous flood basalt volcanism (Central Atlantic Magmatic Province - CAMP). Considerable uncertainty remains regarding the temporal and causal relationship between these events though this link is important for understanding global environmental change under extreme stresses. We present ID-TIMS U-Pb zircon geochronology on volcanic ash beds from two marine sections that span the Triassic-Jurassic boundary and from the CAMP in North America. To compare the timing of the extinction with the onset of the CAMP, we assess the precision and accuracy of ID-TIMS U-Pb zircon geochronology by exploring random and systematic uncertainties, reproducibility, open-system behavior, and pre-eruptive crystallization of zircon. We find that U-Pb ID-TIMS dates on single zircons can be internally and externally reproducible at 0.05% of the age, consistent with recent experiments coordinated through the EARTHTIME network. Increased precision combined with methods alleviating Pb-loss in zircon reveals that these ash beds contain zircon that crystallized between 10^5 and 10^6 years prior to eruption. Mineral dates older than eruption ages are prone to affect all geochronologic methods and therefore new tools exploring this form of “geologic uncertainty” will lead to better time constraints for ash bed deposition. In an effort to understand zircon dates within the framework of a magmatic system, we analyzed zircon trace elements by solution ICPMS for the same volume of zircon dated by ID-TIMS. In one example we argue that zircon trace element patterns as a function of time result from a mix of xeno-, ante-, and autocrystic zircons in the ash bed, and approximate eruption age with the youngest zircon date. In a contrasting example from a suite of Cretaceous andesites, zircon trace elements

  3. Sediment unmixing using detrital geochronology

    USGS Publications Warehouse

    Sharman, Glenn R.; Johnstone, Samuel

    2017-01-01

    Sediment mixing within sediment routing systems can exert a strong influence on the preservation of provenance signals that yield insight into the influence of environmental forcings (e.g., tectonism, climate) on the earth’s surface. Here we discuss two approaches to unmixing detrital geochronologic data in an effort to characterize complex changes in the sedimentary record. First we summarize ‘top-down’ mixing, which has been successfully employed in the past to characterize the different fractions of prescribed source distributions (‘parents’) that characterize a derived sample or set of samples (‘daughters’). Second we propose the use of ‘bottom-up’ methods, previously used primarily for grain size distributions, to model parent distributions and the abundances of these parents within a set of daughters. We demonstrate the utility of both top-down and bottom-up approaches to unmixing detrital geochronologic data within a well-constrained sediment routing system in central California. Use of a variety of goodness-of-fit metrics in top-down modeling reveals the importance of considering the range of allowable mixtures over any single best-fit mixture calculation. Bottom-up modeling of 12 daughter samples from beaches and submarine canyons yields modeled parent distributions that are remarkably similar to those expected from the geologic context of the sediment-routing system. In general, mixture modeling has potential to supplement more widely applied approaches in comparing detrital geochronologic data by casting differences between samples as differing proportions of geologically meaningful end-member provenance categories.

  4. Sediment unmixing using detrital geochronology

    NASA Astrophysics Data System (ADS)

    Sharman, Glenn R.; Johnstone, Samuel A.

    2017-11-01

    Sediment mixing within sediment routing systems can exert a strong influence on the preservation of provenance signals that yield insight into the effect of environmental forcing (e.g., tectonism, climate) on the Earth's surface. Here, we discuss two approaches to unmixing detrital geochronologic data in an effort to characterize complex changes in the sedimentary record. First, we summarize 'top-down' mixing, which has been successfully employed in the past to characterize the different fractions of prescribed source distributions ('parents') that characterize a derived sample or set of samples ('daughters'). Second, we propose the use of 'bottom-up' methods, previously used primarily for grain size distributions, to model parent distributions and the abundances of these parents within a set of daughters. We demonstrate the utility of both top-down and bottom-up approaches to unmixing detrital geochronologic data within a well-constrained sediment routing system in central California. Use of a variety of goodness-of-fit metrics in top-down modeling reveals the importance of considering the range of allowable that is well mixed over any single best-fit mixture calculation. Bottom-up modeling of 12 daughter samples from beaches and submarine canyons yields modeled parent distributions that are remarkably similar to those expected from the geologic context of the sediment-routing system. In general, mixture modeling has the potential to supplement more widely applied approaches in comparing detrital geochronologic data by casting differences between samples as differing proportions of geologically meaningful end-member provenance categories.

  5. In-situ Rb-Sr geochronology

    NASA Astrophysics Data System (ADS)

    Anderson, F. S.; Nowicki, K.; Whitaker, T.

    This paper reports on the first rubidium-strontium (Rb-Sr) radiometric dates using a Laser Desorption Resonance Ionization Mass Spectrometry (LDRIMS) instrument capable of being miniaturized for flight to another planet. The LDRIMS instrument produces dates in under 24 hours, requires minimal sample preparation, and avoids the interference and mass resolution issues associated with other geochronology measurements. We have begun testing the bench-top prototype on the Boulder Creek Granite (BCG), from Colorado, comprised primarily of a gneissic quartz monzonite and granodiorite; whole rock Rb-Sr TIMS measurements result in dates of 1700± 40 Ma [1]. Data reduction of the LDRIMS Rb-Sr measurements on calibrated repeat runs result in a date for the BCG of 1.727± 0.087 Ga (n=288, MSWD=1). Most geochronology applications are willing to accept an MSWD up to ~2.7; at MSWD=2, the precision improves to ± 0.062 Ga. This technology is moving from lab prototype to field deployable instrument, and provides an opportunity to directly address the science goals of Mars Sample Return (MSR) within the bounds posed by current scientific, fiscal, and political pressures on the Mars program. Additionally, LDRIMS could potentially be flown to the Moon under the Discovery or New Frontiers program. We posit that in-situ geochronology missions to Mars to triage and validate samples for Mars Sample Return (MSR) are technically feasible in the 2018-2022 time frame.

  6. Isotopic Composition of Oxygen in Lunar Zircons

    NASA Technical Reports Server (NTRS)

    Nemchin, A. A.; Whitehouse, M. J.; Pidgeon, R. T.; Meyer, C.

    2005-01-01

    The recent discovery of heavy oxygen in zircons from the Jack Hills conglomerates Wilde et al. and Mojzsis et al. was interpreted as an indication of presence of liquid water on the surface of Early Earth. The distribution of ages of Jack Hills zircons and lunar zircons appears to be very similar and therefore analysis of oxygen in the lunar grains may provide a reference frame for further study of the early history of the Earth as well as give additional information regarding processes that operated on the Moon. In the present study we have analysed the oxygen isotopic composition of zircon grains from three lunar samples using the Swedish Museum of Natural History CAMECA 1270 ion microprobe. The samples were selected as likely tests for variations in lunar oxygen isotopic composition. Additional information is included in the original extended abstract.

  7. Testing palaeotectonic models for the Internal Hellenides with sediment provenance

    NASA Astrophysics Data System (ADS)

    Meinhold, G.

    2009-04-01

    The Internal Hellenides of Greece are a result of the Alpine-Himalayan orogen. The relationships between different pre-Alpine crustal fragments of the Internal Hellenides are now masked by younger (Mesozoic to Cenozoic) complex structural and metamorphic events. This, together with the scarcity of biostratigraphic, geochronological and palaeomagnetic data, has given rise to equivocal palaeotectonic models and interpretations. However, the age and origin of pre-Alpine basement units in the Internal Hellenides has important implications for our in-depth understanding of the evolution of North Gondwana-derived terranes and consequently for alternative palaeotectonic reconstructions for the Palaeozoic and Mesozoic. A multidisciplinary sediment provenance study was undertaken since sedimentary rocks can provide information about rock lithologies in the source area, which have often been destroyed and recycled during ancient plate tectonic processes. Palaeozoic and Mesozoic sedimentary rocks from key areas of the Internal Hellenides were analysed using whole-rock major- and trace-element geochemistry (XRF, ICPMS), detrital chrome spinel, garnet, white mica and rutile chemistry (EMP), detrital zircon geochronology (SHRIMP, LA-ICPMS) and biostratigraphic analysis. These new data are used to constrain terrane accretion processes and the provenance of crustal sources for sediments during Palaeozoic and Mesozoic times and thus will test palaeotectonic models for the Internal Hellenides. This is expected to shed light on the Palaeo- and Neotethyan evolution in the Eastern Mediterranean.

  8. Age, temperature and pressure of metamorphism in the Tasriwine Ophiolite Complex, Sirwa, Morocco

    NASA Astrophysics Data System (ADS)

    Samson, S. D.; Inglis, J.; Hefferan, K. P.; Admou, H.; Saquaque, A.

    2013-12-01

    Sm-Nd garnet-whole rock geochronology and phase equilbria modeling have been used to determine the age and conditions of regional metamorphism within the Tasriwine ophiolite complex,Sirwa, Morocco. Pressure and temperature estimates obtained using a NaCaKFMASHT phase diagram (pseudosection) and garnet core and rim compositions predict that garnet growth began at ~0.72GPa and ~615°C and ended at ~0.8GPa and ~640°C. A bulk garnet Sm-Nd age of 645.6 × 1.6 Ma, calculated from a four point isochron that combines whole rock, garnet full dissolution and two successively more aggressive partial dissolutions, provides a precise date for garnet formation and regional metamorphism. The age is nearly 20 million years younger than a previous age estimate of regional metamorphism of 663 × 14 Ma based upon a SHRIMP U-Pb date from rims on zircon from the Irri migmatite. The new data provide further constraints on the age and nature of regional metamorphism in the Anti-Atlas mountains and emphasizes that garnet growth during regional metamorphism may not necessarily coincide with magmatism/anatexis which predominate the signature witnessed by previous U-Pb studies. The ability to couple PT estimates for garnet formation with high precision Sm- Nd geochronology highlights the utility of garnet studies for uncovering the detailed metamorphic history of the Anti-Atlas mountain belt.

  9. Microprobe monazite geochronology: new techniques for dating deformation and metamorphism

    NASA Astrophysics Data System (ADS)

    Williams, M.; Jercinovic, M.; Goncalves, P.; Mahan, K.

    2003-04-01

    High-resolution compositional mapping, age mapping, and precise dating of monazite on the electron microprobe are powerful additions to microstructural and petrologic analysis and important tools for tectonic studies. The in-situ nature and high spatial resolution of the technique offer an entirely new level of structurally and texturally specific geochronologic data that can be used to put absolute time constraints on P-T-D paths, constrain the rates of sedimentary, metamorphic, and deformational processes, and provide new links between metamorphism and deformation. New analytical techniques (including background modeling, sample preparation, and interference analysis) have significantly improved the precision and accuracy of the technique and new mapping and image analysis techniques have increased the efficiency and strengthened the correlation with fabrics and textures. Microprobe geochronology is particularly applicable to three persistent microstructural-microtextural problem areas: (1) constraining the chronology of metamorphic assemblages; (2) constraining the timing of deformational fabrics; and (3) interpreting other geochronological results. In addition, authigenic monazite can be used to date sedimentary basins, and detrital monazite can fingerprint sedimentary source areas, both critical for tectonic analysis. Although some monazite generations can be directly tied to metamorphism or deformation, at present, the most common constraints rely on monazite inclusion relations in porphyroblasts that, in turn, can be tied to the deformation and/or metamorphic history. Examples will be presented from deep-crustal rocks of northern Saskatchewan and from mid-crustal rocks from the southwestern USA. Microprobe monazite geochronology has been used in both regions to deconvolute overprinting deformation and metamorphic events and to clarify the interpretation of other geochronologic data. Microprobe mapping and dating are powerful companions to mass spectroscopic

  10. The Diversity of Vibrios Associated with Vibriosis in Pacific White Shrimp (Litopenaeus vannamei) from Extensive Shrimp Pond in Kendal District, Indonesia

    NASA Astrophysics Data System (ADS)

    Sarjito; Harjuno Condro Haditomo, Alfabetian; Desrina; Djunaedi, Ali; Budi Prayitno, Slamet

    2018-02-01

    Vibriosis out breaks frequently occur in extensive shrimps farming. The study were commenced to find out the clinical signs of white shrimp that was infected by the Vibrio and to identify the bacterial associated with vibriosis in the pacific white shrimp, Litopenaeus vannamei. Bacterial isolates were gained from hepatopancreas and telson of moribund shrimps that were collected from extensive shrimp ponds of Kendal District, Indonesia and cultured on Thiosulfate Citrate Bile Salts Sucrose Agar (TCBSA). Isolates were clustered and identified using repetitive sequence-based polymerase chain reaction (rep-PCR). Three representative isolates (SJV 03, SJV 05 and SJV 19) were amplified with PCR using primers for 16S rRNA, and sequence for further identification. The clinical signs of shrimps affected by vibrio were pale hepatopancreas, weak of telson, dark and reddish coloration of smouth, patches of red colour in part of the body on the carapace, periopods, pleuopods, and telson. A total of 19 isolates were obtained and belong to three groups of genus Vibrios. Result of the 16S DNA sequence analysis, the vibrio found in this study related to vibriosis in white shrimps from extensive shrimp ponds of Kendal were closely related to Vibrio harveyi (SJV 03); V. parahaemolyticus (SJV 05) and V. alginolyticus (SJV 19).

  11. A 4.43 Ga Transition from Mega-impact to Habitability Deduced from Microstructural Geochronology of Martian Zircon and Baddeleyite

    NASA Astrophysics Data System (ADS)

    Moser, D.; Reinhard, D. A.; Larson, D. J.; McCubbin, F. M.; Darling, J.; White, L. F.; Arcuri, G.; Irving, A. J.; Tait, K.; Barker, I.

    2017-12-01

    The rates at which early planetary surfaces like those of Mars and Earth transitioned to stability within the heavy bombardment epoch are poorly constrained. Here we show through analysis of the shock history of the earliest mineral remnants of Mars crust, specifically the accessory and highly refractory phases zircon and baddeleyite in martian meteorites, that the transition for Mars was relatively rapid and early. The Moon-sized impactor widely believed to have generated the martian hemispheric dichotomy, would have caused catastrophic heating, impact metamorphism and global re-surfacing by magma.This process would either destroy any primordial accessory phases through melting and vaporization, or impart micro- or nano-structural signatures of ultra-high temperature and/or pressure metamorphism on survivor crystals. We have conducted atom probe and/or correlative electron microscopy on intensely shocked and heated zircon and baddeleyite reference samples from Earth and the Moon, as well as from 4.43 Ga grains occurring as crystals and in lithic clasts in six polished surfaces of the Rabt Sbayta suite of martian polymict regolith breccias (NWA 7475, NWA 7034, NWA 7906, Rabt Sbayta 003). The martian population (n=68) shows no micro- or nano-signatures of ultra high temperature or pressure metamorphism. Instead, it exhibits mostly low-grade shock and thermal features consistent with regolith formation at 1.5 Ga and recent low pressure ( 5GPa) launch to Earth. Taken together with the time for decay of the mega-impact heat effects, as well as the 4.50 Ga age estimate for martian mantle solidification (modelled by other workers) our results indicate an early, 70 million year long transition from initiation of the hemispheric dichotomy to establishment of at least one domain of persistently stable and potentially habitable crust. The accelerated deep mantle convection prompted by mega-impact may have also increased the transport rate of volatiles to the Martian exterior

  12. Convergent Evolution of the Osmoregulation System in Decapod Shrimps.

    PubMed

    Yuan, Jianbo; Zhang, Xiaojun; Liu, Chengzhang; Duan, Hu; Li, Fuhua; Xiang, Jianhai

    2017-02-01

    In adaptating to different aquatic environments, seawater (SW) and freshwater (FW) shrimps have exploited different adaptation strategies, which should generate clusters of genes with different adaptive features. However, little is known about the genetic basis of these physiological adaptations. Thus, in this study, we performed comparative transcriptomics and adaptive evolution analyses on SW and FW shrimps and found that convergent evolution may have happened on osmoregulation system of shrimps. We identified 275 and 234 positively selected genes in SW and FW shrimps, respectively, which enriched in the functions of ion-binding and membrane-bounded organelles. Among them, five (CaCC, BEST2, GPDH, NKA, and Integrin) and four (RasGAP, RhoGDI, CNK3, and ODC) osmoregulation-related genes were detected in SW and FW shrimps, respectively. All five genes in SW shrimps have been reported to have positive effects on ion transportation, whereas RasGAP and RhoGDI in FW shrimps are associated with negative control of ion transportation, and CNK3 and ODC play central roles in cation homeostasis. Besides, the phylogenetic tree reconstructed from the positively selected sites separated the SW and FW shrimps into two groups. Distinct subsets of parallel substitutions also have been found in these osmoregulation-related genes in SW and FW shrimps. Therefore, our results suggest that distinct convergent evolution may have occurred in the osmoregulation systems of SW and FW shrimps. Furthermore, positive selection of osmoregulation-related genes may be beneficial for the regulation of water and salt balance in decapod shrimps.

  13. Gold in Accessory Zircon (the Kozhim Massif, Subpolar Urals)

    NASA Astrophysics Data System (ADS)

    Denisova, Yuliya; Pystin, Aleksandr

    2017-12-01

    The crystals of zircon due to their resistance to external impact of various processes can reveal information about the environment of their formation and the inclusions observed of them. Zircon contains different mineral inclusions: biotite, plagioclase, quartz, apatite, etc. However, there is no information about gold inclusions in the zircons from granites of the Sudpolar Urals. The study results of the inclusions of gold in accessory zircon of the Kozhim granitic massif are presented in this paper. The studied mineral is a dark-brown translucent short-prismatic crystal containing the inclusion of gold and the allocations of quartz. According to studies, the inclusion of gold formed during the growth of zircon and it is the gold covered with a thin film of oxide gold. It was confirmed that the crystallization of the studied zircon occurred at a temperature of 800°C and above on the stage of formation of granites of Kozhim massif. The assumption is made about the additional temperature in the course of which was caused by decreasing of temperature up to 700° C and below during postmagmatic stage.

  14. Tectonomagmatic evolution of the proto Andean Margin: Geochemical characterization and zircon U-Pb geochronologic constraints from the Ecuadorian Eastern Cordilleran granitoids

    NASA Astrophysics Data System (ADS)

    Buchwaldt, R.; Toulkeridis, T.

    2013-05-01

    The timing of pan-Pacific Gondwanide Orogeny in the proto-Andes, and its driving mechanisms are still highly debated and relies predominantly upon whole-rock Rb-Sr and K-Ar chronology and rudimentary mineralogy and geochemistry. In order to decipher these uncertainties we have studied the composition, age and provenance of granitoids along the strike of the Eastern Cordillera of Ecuador and related these deep-seated and surface tectonic processes attending the Late Cretaceous-Palaeogene history of the northern Andes. The plutonic rocks constitute a metaluminous to peraluminous (A/CNK ~ 0.8-1.2), calc-alkaline suite. A unimodal and wide compositional range of the intrusives (49-78 wt. % SiO2) is characteristic of this I-type orogenic suites. Mantle-normalized trace element patterns reveal typical subduction-related signature. Chondrite-normalized REE patterns do not show significant HREE fractionation suggesting the absence of high-pressure residual mineralogy in the source and formation in a "normal thickness", garnet-free crust. Slight Eu anomalies, lowering Sr contents, and concave-up REE patterns of samples dioritic in composition indicate a model involving fractionation of plagioclase, amphibole and pyroxene from a basaltic parent. The analyzed zircon crystals are colorless - transparent ranging in size from 50 to 250 μm. In CL images, 95% of the zircons exhibit oscillatory zonation, characteristic of a magmatic origin. This observation is consistent with the REE zircon composition showing a are characteristic steep positive slope from La to Lu with a significantly positive Ce-anomaly and slight negative Eu-anomaly. There is very little variation in Hf isotopic composition with most of the crust maintains near chondritic Zr/Hf ratios of around 35-40. Our results indicate the development of two tectonic episodes; with the first varying between 210-250 Ma and the second approximate 170-180 Ma. These results are consistent with similar events observed throughout

  15. Geochemistry and Geochronology of the Heilongjiang Complex and Its Implications in the Late Paleozoic Tectonics of Eastern NE China

    NASA Astrophysics Data System (ADS)

    GE, M.; Zhang, J.; Liu, K.; Ling, Y.; Wang, M.; Wang, J.

    2016-12-01

    The Paleozoic to early Mesozoic tectonic framework of Northeast China, especially the Jiamusi block and its related structural belts, are highly debated. In this contribution, geochemical, geochronological and isotopic analyses were carried out on the basalts in the Heilongjiang complex to address these issues. The Heilongjiang complex defines the suture belt between the Jiamusi block and the Songliao block in Northeast China, and the blueschist is a major composition for this complex, coexisting with ultramafic rocks, amphibolite, greenschist, quartzite and mica schist. The blueschist has a mineral association of sodic amphibole, epidote, chlorite, phengite, albite and quartz with accessory phases of apatite, titanite, zircon and ilmenite. Together with the lithological association, the geochemical results present that the protoliths of the blueschist can be divided into the alkaline and tholeiitic basalts and have OIB affinities, formed in an ocean island setting, indicated by the (La/Yb) N values of 3.57 - 11.54, and the (La/Sm) N values of 0.69 - 3.64. The high and positive ɛNd (t) values of + 3.7 to +9.0, and relative enrichment in Nb and Ta show that both the alkaline and tholeiitic basalts may be derived from the asthenospheric mantle. Magmatic zircons from the blueschist in Yilan area yield a 206Pb/238U age of 281 - 288 Ma, interpreted as its protolithic age. The amphibolite from Xiachengzi area has a zircon U-Pb age of 248 ± 4 Ma, interpreted as its protolith age and has N-MORB affinities, supported by (La/Yb)N ratios of 0.60-0.89 and (La/Sm)N of 0.62-0.84, and high ɛNd (t) values ranging from + 7.8 to + 9.5, deriving from a depleted mantle source. A new 40Ar/39Ar amphibole plateau age of 195 ± 3 Ma and a youngest age of 200 Ma of the detrital zircons from Heilongjiang complex are reported to constrain the metamorphic age of the Heilongjiang complex. In addition, a huge north-south trending granitic belt generated from 174 Ma - 200 Ma has been

  16. Improved zircon iron corals for the 1990s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decker, C.

    1992-03-01

    CIBA-GEIGY/Drakenfeld Colors is dedicated to the research and development of consistent and cost-effective ceramic stains for the whitewares industry. After identifying the trends in color for the 1990s. CIBA-GEIGY/Drakenfeld Colors initiated an extensive R D project to improve zircon ion corals for the whitewares industry. These color trends indicated a need for stronger and cleaner zircon iron corals. This paper discusses the chemistry and crystal structure of zircon iron corals. A historical review of Drakenfeld corals will also be presented. The most recent development in Drakenfeld corals will then be compared to other commercially available zircon iron corals. Taking intomore » consideration these comparisons, conclusions will be drawn suggesting the coral of choice for the 1990s.« less

  17. Twinning in Zircon: Not a High-Pressure Phenomenon

    NASA Astrophysics Data System (ADS)

    Jones, G. A.; Moser, D.; Shieh, S. R.; Barker, I.

    2017-12-01

    Microtwins in zircon are commonly found in shocked terrestrial and extraterrestrial samples and are potentially important for shock history and crater reconstruction. Twinning is easily observed with both the optical microscope and variety of electron beam techniques. Twinning as a deformation mechanism is consistent with the high strain rates generated during impact. No constitutive relationships, or even general limits on the physical conditions required for twinning in zircon are known, however. Present speculation on the critical quantity for twin formation, i.e. 10s of GPa of shock pressure (Moser et al. 2011, Timms et al., 2012), has no basis in the underlying mechanisms of twin nucleation, which are related to the motion of dislocations. This erroneous value is due to conflation of twinning sensu stricto with a phase transformation to reidite. Reidite occurs as twin-like lamellae occupying the {112} planes which are thought to be a mirror plane for twinning. We review the crystallographic theory of twinning in zircon. We then evaulate several theories on the nucleation of twins along with their necessary stresses involved. Our aim is to show that shock microtwins in zircon can be a `low pressure' shock phenomenon. This 'low pressure' hypothesis is supported by natural samples. These zircons are from the lower crust nearly 80 km from the centre of the Vredefort impact structure—the most distal zircon shock microstructures yet found in the lithosphere. Twins are present in 10% of the zircon grains greater than 50 µm in diameter. As an extensive, 'low pressure' phenomenon, twins are an easily recognized and potentially widespread record of Earth's impact history.Moser, D.E., Cupelli, C. L., Barker, I., Flowers, R. M., Mowman, J. R., Wooden, J. and Hart, R. (2011) New zircon shock phenomena and their use for dating and […] analysis of the Vredefort dome, Canadian Journal of Earth Sciences 48(2), 117-139.Timms, N.E., Reddy, S. M., Healy, D., Nemchin, A. A

  18. Palynology and detrital zircon geochronology of the Carboniferous Fenestella Shale Formation of the Tethyan realm in Kashmir Himalaya: Implications for global correlation and floristic evolution

    NASA Astrophysics Data System (ADS)

    Agnihotri, Deepa; Pandita, Sundeep K.; Tewari, Rajni; Ram-Awatar; Linnemann, Ulf; Pillai, S. Suresh K.; Joshi, Arun; Gautam, Saurabh; Kumar, Kamlesh

    2018-05-01

    First palynological data, supplemented by detrital zircon U-Pb ages, from the Fenestella Shale Formation near the Gund Village in the Banihal area of Jammu and Kashmir State, India, provide new insights into the floristic evolution of Gondwana during the Late Palaeozoic, especially in India, from where the Carboniferous-Permian macro- and microfloral records are impoverished. We also present a first approach to the palynological correlation of the Carboniferous-Permian palynoassemblages described from the various Gondwana countries. The palynomorphs from the Fenestella Shale Formation are fairly well preserved and diversified and include 11 genera and 18 species. While the trilete spores and striate bisaccate pollen grains are scarce, monosaccate pollen taxa mainly - Parasaccites, Plicatipollenites and Potonieisporites are dominant. The assemblage is most similar to the Parasaccites korbaensis palynozone of the Lower Gondwana basins of the Indian peninsula and the Stage 2 palynozone of the late Carboniferous of east Australia. Besides, it is comparable with the known Carboniferous assemblages of Pakistan, Yemen and South America; Carboniferous-early Permian assemblages of South Africa and Permian assemblages of Antarctica. The sediment source of the siliciclastic shelf and delta deposits intercalated in the Fenestella Shale Formation is a hinterland in which Precambrian rocks dominantly were exposed and the Th-U ratios of detrital zircons suggest, that most rocks exposed on the erosion level in the hinterland had a felsic composition. The youngest U-Pb zircon age of the investigated fossiliferous strata is 329 ± 16 Ma (late Visean to early Serpukhovian), providing a maximum age of deposition of the studied succession. Based on the affinities of the palynofloral assemblage and earlier palaeontological records, a warm, temperate and arid climate has been inferred for the Fenestella Shale Formation.

  19. Beyond symbiosis: cleaner shrimp clean up in culture.

    PubMed

    Militz, Thane A; Hutson, Kate S

    2015-01-01

    Cleaner organisms exhibit a remarkable natural behaviour where they consume ectoparasites attached to "client" organisms. While this behaviour can be utilized as a natural method of parasitic disease control (or biocontrol), it is not known whether cleaner organisms can also limit reinfection from parasite eggs and larvae within the environment. Here we show that cleaner shrimp, Lysmata amboinensis, consume eggs and larvae of a harmful monogenean parasite, Neobenedenia sp., in aquaculture. Shrimp consumed parasite eggs under diurnal (63%) and nocturnal (14%) conditions as well as infectious larvae (oncomiracidia) diurnally (26%). Furthermore, we trialled the inclusion of cleaner shrimp for preventative parasite management of ornamental fish, Pseudanthias squamipinnis, and found shrimp reduced oncomiracidia infection success of host fish by half compared to controls (held without shrimp). Fish held without cleaner shrimp exhibited pigmentation changes as a result of infection, possibly indicative of a stress response. These results provide the first empirical evidence that cleaner organisms reduce parasite loads in the environment through non-symbiotic cleaning activities. Our research findings have relevance to aquaculture and the marine ornamental trade, where cleaner shrimp could be applied for prophylaxis and control of ectoparasite infections.

  20. Beyond Symbiosis: Cleaner Shrimp Clean Up in Culture

    PubMed Central

    Militz, Thane A.; Hutson, Kate S.

    2015-01-01

    Cleaner organisms exhibit a remarkable natural behaviour where they consume ectoparasites attached to “client” organisms. While this behaviour can be utilized as a natural method of parasitic disease control (or biocontrol), it is not known whether cleaner organisms can also limit reinfection from parasite eggs and larvae within the environment. Here we show that cleaner shrimp, Lysmata amboinensis, consume eggs and larvae of a harmful monogenean parasite, Neobenedenia sp., in aquaculture. Shrimp consumed parasite eggs under diurnal (63%) and nocturnal (14%) conditions as well as infectious larvae (oncomiracidia) diurnally (26%). Furthermore, we trialled the inclusion of cleaner shrimp for preventative parasite management of ornamental fish, Pseudanthias squamipinnis, and found shrimp reduced oncomiracidia infection success of host fish by half compared to controls (held without shrimp). Fish held without cleaner shrimp exhibited pigmentation changes as a result of infection, possibly indicative of a stress response. These results provide the first empirical evidence that cleaner organisms reduce parasite loads in the environment through non-symbiotic cleaning activities. Our research findings have relevance to aquaculture and the marine ornamental trade, where cleaner shrimp could be applied for prophylaxis and control of ectoparasite infections. PMID:25706952

  1. Creation of a continent recorded in zircon zoning

    USGS Publications Warehouse

    Moser, D.E.; Bowman, J.R.; Wooden, J.; Valley, J.W.; Mazdab, F.; Kita, N.

    2008-01-01

    We have discovered a robust microcrystalline record of the early genesis of North American lithosphere preserved in the U-Pb age and oxygen isotope zoning of zircons from a lower crustal paragneiss in the Neoarchean Superior province. Detrital igneous zircon cores with ??18O values of 5.1???-7.1??? record creation of primitive to increasingly evolved crust from 2.85 ?? 0.02 Ga to 2.67 ?? 0.02 Ga. Sharp chemical unconformity between cores and higher ??18O (8.4???-10.4???) metamorphic overgrowths as old as 2.66 ?? 0.01 Ga dictates a rapid sequence of arc unroofing, burial of detrital zircons in hydrosphere-altered sediment, and transport to lower crust late in upper plate assembly. The period to 2.58 ?? 0.01 Ga included ???80 m.y. of high-temperature (???700-650 ??C), nearly continuous overgrowth events reflecting stages in maturation of the subjacent mantle root. Huronian continental rifting is recorded by the youngest zircon tip growth at 2512 ?? 8 Ma (??? 600 ??C) signaling magma intraplating and the onset of rigid plate behavior. This >150 m.y. microscopic isotope record in single crystals demonstrates the sluggish volume diffusion of U, Pb, and O in zircon throughout protracted regional metamorphism, and the consequent advances now possible in reconstructing planetary dynamics with zircon zoning. ?? 2008 The Geological Society of America.

  2. Alteration and chemical U-Th-total Pb dating of heterogeneous high-uranium zircon from a pegmatite from the Aduiskii massif, middle Urals, Russia

    NASA Astrophysics Data System (ADS)

    Zamyatin, Dmitry A.; Shchapova, Yuliya V.; Votyakov, Sergey L.; Nasdala, Lutz; Lenz, Christoph

    2017-09-01

    The U-Th-Pb isotope system in the accessory mineral zircon may be disturbed, as for instance by the secondary loss of radiogenic lead. The recognition of such alteration is crucial for the sound interpretation of geochronology results, in particular for chemical dating by means of an electron probe micro-analyser (EPMA). Here we present the example of high-U zircon samples from a granite pegmatite from the Aduiskii Massif, Middle Urals, Russia. The structural and chemical heterogeneity of samples was characterised by EPMA, including joint probability distribution (JPD) analysis of back-scattered electrons (BSE), cathodoluminescence (CL) and U M β images, and by Raman and photoluminescence (PL) spectroscopy. We found a high-U interior region (U up to 11.4 wt%) without any obvious indication of alteration. This domain has stoichiometric composition, and its Raman spectrum is similar to that of amorphous ZrSiO4. In addition, altered lower-U regions are present that are non-stoichiometric and contain non-formula elements such as Ca, Al, Fe, and water up to several wt%. Their Raman spectra yielded a band near 760-810 cm-1 which is not related to any ZrSiO4 vibration; we assign it tentatively to the symmetric stretching of (UO2)2+ groups. This assignment is supported by the observation of a fairly intense PL phenomenon whose spectral position and vibrational-coupling structure strongly indicates a uranyl-related emission. Altered zones were formed by both fluid-driven diffusion reaction and coupled dissolution-reprecipitation processes. The variation of BSE and CL intensities in amorphous high-U zircon is controlled by its chemical composition and the presence of water and uranyl groups. We have determined a weighted mean EPMA age of 246 ± 2 Ma, which agrees reasonably well with previous dating results for the Aduiskii Massif.

  3. Alkanes in shrimp from the Buccaneer Oil Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleditch, B.S.; Basile, B.; Chang, E.S.

    1982-07-01

    A total of 36 samples of shrimp were examined from the region of the Buccaneer oil field, eighteen of which were representatives of the commercial species Penaeus aztecus and the rest were various other species: Penaeus duorarum (pink shrimp), Trachypenaeus duorarum (sugar shrimp), Squilla empusa (mantis shrimp), and Sicyonia dorsalis (chevron shrimp). The alkanes and deuteriated alkanes were completely separated by GC, so a mass spectrometer was not required for their detection and quantitation. To confirm the identities of individual compounds, however, some samples were examined by combined gas chromatography-mass spectrometry. Results show that only thirteen of the forty shrimpmore » collected from the region of the Buccaneer oil field contained petroleum alkanes, and the majority of these were obtained from trawls immediately adjacent to the production platforms. It appears that shrimp caught in the region of the Buccaneer oil field are not appreciably tainted with hydrocarbons discharged from the production platforms. (JMT)« less

  4. Petrography and zircon U-Pb isotopic study of the Bayanwulashan Complex: Constrains on the Paleoproterozoic evolution of the Alxa Block, westernmost North China Craton

    NASA Astrophysics Data System (ADS)

    Wu, Sujuan; Hu, Jianmin; Ren, Minghua; Gong, Wangbin; Liu, Yang; Yan, Jiyuan

    2014-11-01

    The Bayanwulashan Metamorphic Complex (BMC) exposes along the eastern margin of the Alxa Block, the westernmost part of the North China Craton (NCC). BMC is principally composed of metamorphic rocks with amphibole plagiogneiss, biotite plagioclase gneiss and granitic gneiss. Our research has been focused on the petrography and zircon U-Pb geochronology of the BMC to better understand the evolution of the Alxa Block and its relationship with the NCC. Evidences from field geology, petrography, and mineral chemistry indicate that two distinct metamorphic assemblages, the amphibolite and greenschist facies, had overprinted the preexisting granitic gneiss and suggest that the BMC experienced retrograde metamorphic episodes. The LA-ICP-MS zircon U-Pb ages reveal that the primary magmatic activities of BMC were at ca. 2.30-2.24 Ga and the two metamorphic events were at ca. 1.95-1.91 Ga and ca. 1.88-1.85 Ga respectively. These ages indicate that BMC initially intruded during Paleoproterozoic, not as previously suggested at Archean period. The Early Paleoproterozoic metamorphic records and the magmatic thermochronological data in BMC exhibit different evolution paths between the Alxa Block and the NCC. The Alxa Block was most likely an independent Early Paleoproterozoic terrain. Following different amalgamation processes, The Alxa Block combined with Western Block at ca. 1.95 Ga and then united with NCC at ca. 1.85 Ga.

  5. Habitat Suitability Index Models: Northern Gulf of Mexico brown shrimp and white shrimp

    USGS Publications Warehouse

    Turner, Robert Eugene; Brody, Michael S.

    1983-01-01

    A review and synthesis of existing information were used to develop estuarine habitat models for brown shrimp (Penaeus aztecus) and white shrimp (Penaeus setiferus). The models are scaled to produce an index of habitat suitability between 0 (unsuitable habitat) to 1 (optimally suitable habitat) for estuarine areas of the northern Gulf of Mexico. Habitat suitability indexes are designed for use with the habitat evaluation procedures developed by the U.S. Fish and Wildlife Service.

  6. Further geochronological and paleomagnetic constraints on Malani (and pre-Malani) magmatism in NW India

    NASA Astrophysics Data System (ADS)

    Meert, Joseph G.; Pandit, Manoj K.; Kamenov, George D.

    2013-11-01

    At 750 Ma India was part of a larger fragment of eastern Gondwana blocks that included the Seychelles-Mauritia, Madagascar, Sri Lanka and the Enderby Land-Prydz Bay region of East Antarctica. Subduction of the Mozambique Ocean beneath Seychelles-Mauritia, northern Madagascar and northwestern India formed a lengthy continental arc that remained active during the formation of Gondwana. Paleomagnetic data from the Malani rhyolites and associated dykes provide a robust paleomagnetic pole constraining India's position at this time. The rhyolitic and granitic rocks associated with the Malani Igneous Suite (MIS) have robust age constraints; however, the ages of the mafic dykes were inferred solely on the basis of similarity in paleomagnetic directions to the rhyolitic units. Here we present new geochronological data from the Malani mafic dykes that yield a minimum age of 704 Ma. The 207Pb/206Pb ages obtained for the dykes are less-likely to be affected by Pb-loss and yield a more reliable estimate for the age of the mafic dykes of ~ 750 Ma. We argue that intrusion of these mafic (and minor felsic) dykes represents the final pulse of MIS magmatism. Many of the granitic rocks in the region are reported as ‘unclassified’ due to limited geochemical data and/or geochronological ages. Some of these ‘unclassified’ granites are intruded by the mafic dykes sampled in this study near the town of Bilara. The granites yielded zircon core ages of ~ 1100 Ma with younger rims averaging ~ 1020 Ma. We argue that this provides further evidence for a significant orogenic event ~ 1000 Ma that may relate to the collision of the Marwar block with the Banded Gneiss Complex/Bundelkhand craton in north-central India. Other ~ 1000 Ma orogenesis is also known along the Central Indian Tectonic Zone (CITZ) and the Eastern Ghats Mobile Belt. Globally, this same time interval is thought to represent the amalgamation of the supercontinent Rodinia and may also have resulted in the closure of the

  7. Shoreline as a controlling factor in commercial shrimp production

    NASA Technical Reports Server (NTRS)

    Faller, K. H. (Principal Investigator)

    1978-01-01

    An ecological model was developed that relates marsh detritus export and shrimp production, based on the hypothesis that the shoreline is a controlling factor in the production of shrimp through regulation of detritus export from the marsh. LANDSAT data were used to develop measurements of shoreline length and area of marsh having more than 5.0 km shoreline/sq km for the coast of Louisiana, demonstrating the capability of remote sensing to provide important geographic information. These factors were combined with published tidal ranges and salinities to develop a mathematical model that predicted shrimp production for nine geographic units of the Louisiana coast, as indicated by the long term average commercial shrimp yield. The mathematical model relating these parameters and the shrimp production is consistent with an energy flow model describing the interaction of detritus producing marshlands with shrimp nursery grounds and inshore shrimping areas. The analysis supports the basic hypothesis and further raises the possibility of applications to coastal zone management requirements.

  8. Link between SSZ ophiolite formation, emplacement and arc inception, Northland, New Zealand: U Pb SHRIMP constraints; Cenozoic SW Pacific tectonic implications

    NASA Astrophysics Data System (ADS)

    Whattam, Scott A.; Malpas, John; Smith, Ian E. M.; Ali, Jason R.

    2006-10-01

    New U-Pb age-data from zircons separated from a Northland ophiolite gabbro yield a mean 206Pb/ 238U age of 31.6 ± 0.2 Ma, providing support for a recently determined 28.3 ± 0.2 Ma SHRIMP age of an associated plagiogranite and ˜ 29-26 Ma 40Ar/ 39Ar ages ( n = 9) of basalts of the ophiolite. Elsewhere, Miocene arc-related calc-alkaline andesite dikes which intrude the ophiolitic rocks contain zircons which yield mean 206Pb/ 238U ages of 20.1 ± 0.2 and 19.8 ± 0.2 Ma. The ophiolite gabbro and the andesites both contain rare inherited zircons ranging from 122-104 Ma. The Early Cretaceous zircons in the arc andesites are interpreted as xenocrysts from the Mt. Camel basement terrane through which magmas of the Northland Miocene arc lavas erupted. The inherited zircons in the ophiolite gabbros suggest that a small fraction of this basement was introduced into the suboceanic mantle by subduction and mixed with mantle melts during ophiolite formation. We postulate that the tholeiitic suite of the ophiolite represents the crustal segment of SSZ lithosphere (SSZL) generated in the southern South Fiji Basin (SFB) at a northeast-dipping subduction zone that was initiated at about 35 Ma. The subduction zone nucleated along a pre-existing transform boundary separating circa 45-20 Ma oceanic lithosphere to the north and west of the Northland Peninsula from nascent back arc basin lithosphere of the SFB. Construction of the SSZL propagated southward along the transform boundary as the SFB continued to unzip to the southeast. After subduction of a large portion of oceanic lithosphere by about 26 Ma and collision of the SSZL with New Zealand, compression between the Australian Plate and the Pacific Plate was taken up along a new southwest-dipping subduction zone behind the SSZL. Renewed volcanism began in the oceanic forearc at 25 Ma producing boninitic-like, SSZ and within-plate alkalic and calc-alkaline rocks. Rocks of these types temporally overlap ophiolite emplacement and

  9. Implications of SHRIMP and microstructural data on the age and kinematics of shearing in the Asir terrane, southern Arabian Shield, Saudi Arabia

    USGS Publications Warehouse

    Johnson, P.R.; Kattan, F.H.; Wooden, J.L.

    2001-01-01

    The Asir terrane consists of north-trending belts of variably metamorphosed volcanic, sedimentary, and plutonic rocks that are cut by numerous shear zones (Fig. 1). Previous workers interpreted the shear zones as sutures, structures that modify earlier sutures, or structures that define the margins of tectonic belts across which there are significant lithologic differences and along which there may have been major transposition (Frisch and Al-Shanti, 1977; Greenwood et al., 1982; Brown et al., 1989). SHRIMP data from zircons (Table 1) and sense-of-shear data recently acquired from selected shear zones in the terrane help to constrain the minimum ages and kinematics of these shearing events and lead to an overall model of terrane assembly that is more complex than previously proposed. 

  10. Geochemical and zircon isotopic evidence for extensive high level crustal contamination in Miocene to mid-Pleistocene intra-plate volcanic rocks from the Tengchong field, western Yunnan, China

    NASA Astrophysics Data System (ADS)

    Li, Linlin; Shi, Yuruo; Williams, Ian S.; Anderson, J. Lawford; Wu, Zhonghai; Wang, Shubing

    2017-08-01

    SHRIMP zircon Pb/U dating of Cenozoic volcanic rocks in the Tengchong area, western Yunnan Province, China, shows that the dacite and andesitic breccia lavas from Qushi village were intruded at 480 ± 10 ka and 800 ± 40 ka, respectively. Moreover, Pb/U dating of trachyandesite from Tuantian village and olivine basalt from Wuhe village give weighted mean 206Pb/238U ages of 2.82 ± 0.08 Ma and 12.28 ± 0.30 Ma. Corrections for initial 230Th disequilibrium of zircon were used for the former two younger ages. The Tengchong volcanic rocks have a large range of SiO2 (48.6-66.9 wt.%) and mostly belong to a high-K calc-alkaline series. The lavas originated from heterogeneous sources and were modified by subsequent fractional crystallization. The REE and other trace element patterns of the Tengchong volcanic rocks resemble magmas having a large component of continental crust. All have similar degrees of LREE and HREE fractionation and are enriched in LILE, La, Ce and Pb, with depletions in Nb, Ta, Ti, Sr and P relative to primitive mantle. Zircon δ18O values of 6.96 ± 0.17 and 7.01 ± 0.24‰ and highly varied negative εHf(t) values of - 1.5 to - 11.0 and - 10.3 to - 13.7, as well as the presence of inherited zircon grains in the studied samples, indicate that the magmas contain crustal material on a large scale. The Tengchong volcanic rocks have HFSE ratios (e.g., Nb/Ta, La/Nb, Zr/Y) similar to continental flood basalts, indicative of an intra-plate extensional tectonic setting. Widespread distributed faults might have facilitated upwelling of mantle-derived melts and eruptions from shallow crustal magma chambers to form the large volcanic field.

  11. Record of a Statherian rift-sag basin in the Central Espinhaço Range: Facies characterization and geochronology

    NASA Astrophysics Data System (ADS)

    Costa, Alice Fernanda de Oliveira; Danderfer, André; Bersan, Samuel Moreira

    2018-03-01

    Several rift-related sequences and volcanic-plutonic associations of Statherian age occur within the São Francisco block. One succession within the sedimentary record, the Terra Vermelha Group, defines one of the evolutionary stages of the Espinhaço basin in the Central Espinhaço Range. As a result of stratigraphic analyses and supported by U-Pb zircon geochronological data, the evolution of this unit has been characterized. To more effectively delimit its upper depositional interval, the sequence of this unit, which is represented by the Pau d'Arco Formation, was also studied. The sedimentary signature of the Terra Vermelha Group suggests the infilling of an intracontinental rift associated with alluvial fans as well as lacustrine and eolian environments with associated volcanism. The basal succession represented by the Cavoada do Buraco Formation mainly consists of conglomerates with interlayered sandstones and subordinate banded iron formations. Detrital zircon obtained from this unit reveals ages of 1710 ± 21 Ma. The upper succession, represented by the Espigão Formation, records aeolian sandstones with volcanic activity at the top. A volcanic rock dated at 1758 ± 4 Ma was interpreted as the timing of volcanism in this basin. The eolian deposits recorded within the Pau d'Arco Formation were caused by a renewal of the sequence, which represent a stage of post-rift thermal subsidence. The maximum age of sedimentation for this unit is 1675 ± 22 Ma. The basin-infill patterns and Statherian ages suggest a direct link with the first rifting event within the São Francisco block, which was responsible for the deposition of the Espinhaço Supergroup.

  12. Is Myanmar jadeitite of Jurassic age? A result from incompletely recrystallized inherited zircon

    NASA Astrophysics Data System (ADS)

    Yui, Tzen-Fu; Fukoyama, Mayuko; Iizuka, Yoshiyuki; Wu, Chao-Ming; Wu, Tsai-Way; Liou, J. G.; Grove, Marty

    2013-02-01

    Zircons from two Myanmar jadeitite samples were separated for texture, mineral inclusion, U-Pb dating and trace element composition analyses. Three types of zircons, with respect to U-Pb isotope system, were recognized. Type I zircons are inherited ones, yielding an igneous protolith age of 160 ± 1 Ma; Type II zircons are metasomatic/hydrothermal ones, giving a (minimum) jadeitite formation age of 77 ± 3 Ma; and Type III zircons are incompletely recrystallized ones, with non-coherent and geologically meaningless ages from 153 to 105 Ma. These Myanmar jadeitites would therefore have formed through whole-sale metasomatic replacement processes. Compared with Type I zircons, Type II zircons show typical metasomatic/hydrothermal geochemical signatures, with low Th/U ratio (< 0.1), small Ce anomaly (Ce/Ce* = < 5) and low ΣREE content (40-115 ppm). Type III zircons, however, commonly have the above geochemical signatures straddle in between Type I and Type II zircons. It is shown that the resetting rates of various trace element compositions and U-Pb isotope system of inherited zircons are not coupled "in phase" in response to zircon recrystallization during jadeitite formation. The observed abnormally low Th/U ratio and small Ce anomaly of some Type I zircons, as well as the lack of negative Eu anomaly of all Type I zircons, should be suspected to be of secondary origin. In extreme cases, incompletely recrystallized zircons may show typical metasomatic/hydrothermal geochemical signatures, but leave U-Pb isotope system partially reset or even largely unchanged. Such zircons easily lead to incorrect age interpretation, and hence erroneous geological implication. The Myanmar jadeitites, based on the present study, might have formed during the Late Cretaceous subduction before the beginning of India-Asia continental collision at Paleocene. Previously proposed Late Jurassic ages for Myanmar jadeitites are suggested as results rooted on data retrieved from incompletely

  13. Determination of uranium in zircon

    USGS Publications Warehouse

    Cuttitta, F.; Daniels, G.J.

    1959-01-01

    A routine fluorimetric procedure is described for the determination of trace amounts of uranium in zircon. It employs the direct extraction of uranyl nitrate with ethyl acetate using phosphate as a retainer for zirconium. Submicrogram amounts or uranium are separated in the presence of 100,000 times the amount of zirconium. The modified procedure has been worked out using synthetic mixtures of known composition and zircon. Results of analyses have an accuracy of 97-98% of the contained uranium and a standard deviation of less than 2.5%. ?? 1959.

  14. Applications of biotite inclusion composition to zircon provenance determination

    NASA Astrophysics Data System (ADS)

    Bell, Elizabeth A.; Boehnke, Patrick; Mark Harrison, T.

    2017-09-01

    Detrital zircons are the only confirmed surviving remnants of >4.03 Ga crust while younger detrital zircons provide a parallel record of more recent crustal evolution to that preserved in crystalline rocks. Zircons often preserve inclusions that may provide clues as to the origins of out-of-context grains in the sedimentary record. Previous studies have established that inclusions of biotite in magmatic zircon are compositionally well-matched to biotite in the source rock matrix, although a direct application to ancient detrital zircons has not been made. A number of studies have documented variations in the Fe, Mg, and Al contents of magmatic biotite from different source rocks and tectonic settings, suggesting that biotite inclusions may indeed serve as provenance indicators for detrital zircons. Consistent with earlier studies, we find that the FeO*/MgO ratio of magmatic biotite from continental arcs, collisional, and within-plate settings varies with relative oxidation state as well as whole-rock FeO*/MgO, while its Al2O3/(FeO* + MgO) varies with whole-rock A/CNK (molar Al/(2 ṡ Ca + Na + K)). Biotite from oxidized metaluminous and reduced S-type granitoids can be readily distinguished from each other using FeO*/MgO and Al2O3/(FeO* + MgO), while biotite from reduced I-type and oxidized peraluminous granites may in some cases be more ambiguous. Biotite from peralkaline and reduced A-type granites are also distinguishable from all other categories by Al2O3/(FeO* + MgO) and FeO*/MgO, respectively. Biotite inclusions in Hadean zircons from Jack Hills, Western Australia indicate a mixture of metaluminous and reduced S-type host rocks, while inclusions in 3.6-3.8 Ga detrital zircons from the Nuvvuagittuq Supracrustal Belt indicate more oxidized peraluminous magmas. These results highlight the diversity of felsic materials on the early Earth and suggest that biotite inclusions are applicable to zircon provenance throughout the sedimentary record.

  15. Applications of primary and secondary inclusion assemblages for zircon petrogenesis and alteration

    NASA Astrophysics Data System (ADS)

    Bell, E. A.

    2017-12-01

    Igneous zircon often contains abundant mineral inclusions which represent a mixture of primary phases captured during crystallization in magma and secondary phases formed either during late-stage deuteric alteration of a solidifying pluton, during later metamorphism, or during detrital transport and diagenesis in groundwater. Microstructural examination of zircon from both magmatic and metamorphic rocks reveals varying abundances of clearly secondary phases filling cracks and potentially secondary phases in contact with cracks or in disturbed regions of the host zircon. We used EDS and WDS X-ray spectroscopy to examine crack-isolated, crack-intersecting, and crack-filling phases in zircon from Phanerozoic magmatic rocks (USA, Victoria), several Grenville (Blue Ridge, VA) orthogneisses, and detrital zircons in metasediments from Jack Hills, Mt. Narryer (Western Australia) and the Nuvvuagittuq supracrustal belt (northern Quebec). Orthogneiss and detrital zircon appear to retain primary inclusion compositions away from contact with cracks or disturbed regions of zircon (as distinguished by U-Pb). Characteristic trace element patterns associated with chemical alteration of zircon match well with the apparently dominant secondary phases in metasedimentary detrital zircons and magmatic zircon subjected to deuteric alteration. Additionally, high spatial resolution Pb isotopic analyses of secondary phosphates using the CAMECA ims1290 ion microprobe reveal preservation of multiple generations of metamorphic phosphate, in some cases juxtaposed within a single inclusion on the 5-10 micron scale. Zircon can therefore in many cases preserve the compositions of its primary inclusion cargo through later metamorphism. Zircon can also preserve information about individual hydrothermal or metamorphic events during the grain's residence in the crust.

  16. Laser Ablation in situ (U-Th-Sm)/He and U-Pb Double-Dating of Apatite and Zircon: Techniques and Applications

    NASA Astrophysics Data System (ADS)

    McInnes, B.; Danišík, M.; Evans, N.; McDonald, B.; Becker, T.; Vermeesch, P.

    2015-12-01

    We present a new laser-based technique for rapid, quantitative and automated in situ microanalysis of U, Th, Sm, Pb and He for applications in geochronology, thermochronometry and geochemistry (Evans et al., 2015). This novel capability permits a detailed interrogation of the time-temperature history of rocks containing apatite, zircon and other accessory phases by providing both (U-Th-Sm)/He and U-Pb ages (+trace element analysis) on single crystals. In situ laser microanalysis offers several advantages over conventional bulk crystal methods in terms of safety, cost, productivity and spatial resolution. We developed and integrated a suite of analytical instruments including a 193 nm ArF excimer laser system (RESOlution M-50A-LR), a quadrupole ICP-MS (Agilent 7700s), an Alphachron helium mass spectrometry system and swappable flow-through and ultra-high vacuum analytical chambers. The analytical protocols include the following steps: mounting/polishing in PFA Teflon using methods similar to those adopted for fission track etching; laser He extraction and analysis using a 2 s ablation at 5 Hz and 2-3 J/cm2fluence; He pit volume measurement using atomic force microscopy, and U-Th-Sm-Pb (plus optional trace element) analysis using traditional laser ablation methods. The major analytical challenges for apatite include the low U, Th and He contents relative to zircon and the elevated common Pb content. On the other hand, apatite typically has less extreme and less complex zoning of parent isotopes (primarily U and Th). A freeware application has been developed for determining (U-Th-Sm)/He ages from the raw analytical data and Iolite software was used for U-Pb age and trace element determination. In situ double-dating has successfully replicated conventional U-Pb and (U-Th)/He age variations in xenocrystic zircon from the diamondiferous Ellendale lamproite pipe, Western Australia and increased zircon analytical throughput by a factor of 50 over conventional methods

  17. Response of zircon to melting and metamorphism in deep arc crust, Fiordland (New Zealand): implications for zircon inheritance in cordilleran granites

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Shrema; Kemp, A. I. S.; Collins, W. J.

    2018-04-01

    The Cretaceous Mount Daniel Complex (MDC) in northern Fiordland, New Zealand was emplaced as a 50 m-thick dyke and sheet complex into an active shear zone at the base of a Cordilleran magmatic arc. It was emplaced below the 20-25 km-thick, 125.3 ± 1.3 Ma old Western Fiordland Orthogneiss (WFO) and is characterized by metre-scale sheets of sodic, low and high Sr/Y diorites and granites. 119.3 ± 1.2 Ma old, pre-MDC lattice dykes and 117.4 ± 3.1 Ma late-MDC lattice dykes constrain the age of the MDC itself. Most dykes were isoclinally folded as they intruded, but crystallised within this deep-crustal, magma-transfer zone as the terrain cooled and was buried from 25 to 50 km (9-14 kbar), based on published P-T estimated from the surrounding country rocks. Zircon grains formed under these magmatic/granulite facies metamorphic conditions were initially characterized by conservatively assigning zircons with oscillatory zoning as igneous and featureless rims as metamorphic, representing 54% of the analysed grains. Further petrological assignment involved additional parameters such as age, morphology, Th/U ratios, REE patterns and Ti-in-zircon temperature estimates. Using this integrative approach, assignment of analysed grains to metamorphic or igneous groupings improved to 98%. A striking feature of the MDC is that only 2% of all igneous zircon grains reflect emplacement, so that the zircon cargo was almost entirely inherited, even in dioritic magmas. Metamorphic zircons of MDC show a cooler temperature range of 740-640 °C, reflects the moderate ambient temperature of the lower crust during MDC emplacement. The MDC also provides a cautionary tale: in the absence of robust field and microstructural relations, the igneous-zoned zircon population at 122.1 ± 1.3 Ma, derived mostly from inherited zircons of the WFO, would be meaningless in terms of actual magmatic emplacement age of MDC, where the latter is further obscured by younger (ca. 114 Ma) metamorphic overgrowths

  18. High-Precision U-Pb Geochronology of Ice River Perovskite: A Possible Interlaboratory and Intertechnique EARTHTIME Standard

    NASA Astrophysics Data System (ADS)

    Burgess, S. D.; Bowring, S. A.; Heaman, L. M.

    2012-12-01

    Accurate and precise U-Pb geochronology of accessory phases other than zircon are required for dating some LIP basalts or determining the temporal patterns of kimberlite pipes, for example. Advances in precision and accuracy lead directly to an increase in the complexity of questions that can be posed. U-Pb geochronology of perovskite (CaTiO3) has been applied to silica-undersaturated basalts, carbonatites, alkaline igneous rocks, and kimberlites. Most published IDTIMS perovskite dates have 2-sigma precisions at the ~0.2% level for weighted mean 206Pb/238U dates, much less than possible with IDTIMS analyses of zircons, which limits the applicability of perovskite in high-precision applications. Precision on perovskite dates is lower than zircon because of common Pb, which in some cases can be up to 50% of the total Pb and must be corrected for and accurately partitioned between blank and initial. Relatively small changes in the composition of common Pb can result in inaccurate but precise dates. In many cases minerals with significant common Pb are corrected using Stacey and Kramers (1975) two stage Pb evolution model. This can be done without serious consequence to the final date for minerals with high U/Pb ratios. In the more common case where U/Pb ratios are relatively low and the proportion of common Pb is large, applying a model-derived Pb isotopic composition rather than measuring it directly can introduce percent-level inaccuracy to dates calculated with precisely known U/Pb ratios. Direct measurement of the common Pb composition can be done on a U-poor mineral that co-crystallized with perovskite; feldspar and clinopyroxene are commonly used. Clinopyroxene can contain significant in-grown radiogenic Pb and our experiments indicate that it is not eliminated by aggressive step-wise leaching. The U/Pb ratio in clinopyroxene is generally low (20 < mu < 50) but significant. Other workers (e.g. Kamo et al., 2003; Corfu and Dahlgren, 2008), have used two methods

  19. Assessment of Alternative [U] and [Th] Zircon Standards for SIMS

    NASA Astrophysics Data System (ADS)

    Monteleone, B. D.; van Soest, M. C.; Hodges, K.; Moore, G. M.; Boyce, J. W.; Hervig, R. L.

    2009-12-01

    The quality of in situ (U-Th)/He zircon dates is dependent upon the accuracy and precision of spatially distributed [U] and [Th] measurements on often complexly zoned zircon crystals. Natural zircon standards for SIMS traditionally have been used to obtain precise U-Pb ages rather than precise U and Th concentration. [U] and [Th] distributions within even the most homogeneous U-Pb age standards are not sufficient to make good microbeam standards (i.e., yield good precision: 2σ < 5%) for (U-Th)/He dates. In the absence of sufficiently homogeneous natural zircon crystals, we evaluate the use of the NIST 610 glass standard and a synthetic polycrystalline solid “zircon synrock” made by powdering and pressing natural zircon crystals at 2 GPa and 1100°C within a 13 mm piston cylinder for 24 hours. SIMS energy spectra and multiple spot analyses help assess the matrix-dependence of secondary ion emission and [U] and [Th] homogeneity of these materials. Although spot analyses on NIST 610 glass yielded spatially consistent ratios of 238U/30Si and 232Th/30Si (2σ = 2%, n = 14), comparison of energy spectra collected on glass and zircon reveal significant differences in U, UO, Th, and ThO ion intensities over the range of initial kinetic energies commonly used for trace element analyses. Computing [U] and [Th] in zircon using NIST glass yields concentrations that vary by more than 10% for [U] and [Th], depending on the initial kinetic energy and ion mass (elemental, oxide, or sum of elemental and oxide) used for the analysis. The observed effect of chemistry on secondary ion energy spectra suggests that NIST glass cannot be used as a standard for trace [U] and [Th] in zircon without a correction factor (presently unknown). Energy spectra of the zircon synrock are similar to those of natural zircon, suggesting matrix compatibility and therefore potential for accurate standardization. Spot analyses on the zircon powder pellets, however, show that adequate homogeneity of [U

  20. Geochronologic Constraints on Duration of Magma Emplacement and Heat Transfer in the Deep Crust: new data from the Ivrea Zone, Western Alps, Italy

    NASA Astrophysics Data System (ADS)

    Peressini, G.; Quick, J. E.; Poller, U.; Todt, W.; Mayer, A.; Sinigoi, S.; Hofmann, A. W.

    2002-12-01

    The Mafic Complex (MC) of the Ivrea Zone is one of the largest gabbro bodies in the Alps (ca 8 km thick and 30 km long); it intruded the already metamorphic volcano-sedimentary sequence of the Kinzigite Formation (KF) at a depth of more than 20 km during the Late Paleozoic. New geochronologic data constrain the duration of the intrusion. The crustal section, uplifted, tilted and exposed in Alpine time, is tectonically bounded, but essentially undisturbed by Alpine tectonics; the internal structure of the MC and its relations with the KF are well preserved. Intrusion of the MC in extending continental crust is suggested by pre-Triassic, high-T, extensional shear zones in the Ivrea Zone, and is consistent with the internal arcuate structure of the MC, which is defined by high-T foliation and banding, that are discordant to the roof of the intrusion. Rocks in the roof of the MC attain upper-amphibolite grade and show evidence of partial melting within about 2 km of the MC. The country rock was melted as a consequence of heat released by the crystallizing mafic body; the chemistry of the mafic rocks was affected by up to 30% crustal contamination that occurred partially in situ, by mixing of the basaltic melts with anatectic melts derived from depleted crustal rocks. A thin (less than 20 m) seam of leucogranite crystallized from anatectic melt is present at the MC-KF contact. Syntectonic intrusion of leucogranite along shear zones within the KF demonstrates migration of anatectic melts to higher crustal levels. U/Pb SHRIMP ages on magmatic zircons range from 295+4 and 287+4 Ma for the MC, and 280+4 Ma for syntectonic leucogranites in the KF. Thus, intrusion of the MC may have taken as long as 10-15 Ma. Nd-Sm mineral isochrones for the MC range from 244 to 274, indicating that the Complex cooled to temperatures below 750C within about 40 Ma of final crystallization. The heat of crystallization of the MC was accommodated by anatexis and assimilation, and syntectonic

  1. Radioactive Dating: A Method for Geochronology.

    ERIC Educational Resources Information Center

    Rowe, M. W.

    1985-01-01

    Gives historical background on the discovery of natural radiation and discusses various techniques for using knowledge of radiochemistry in geochronological studies. Indicates that of these radioactive techniques, Potassium-40/Argon-40 dating is used most often. (JN)

  2. Zircons as a Probe of Early Luanr History

    NASA Astrophysics Data System (ADS)

    Crow, C. A.; McKeegan, K. D.; Gilmour, J. D.; Crowther, S. A.; Talor, D. J.

    2013-09-01

    Zircons are ideal for investigating the early lunar bombardment because we can measure both U-Pb crystallization ages and fissiongenic Xe degassing ages for the same crystal. We report U-Pb, Pb-Pb and U-Xe ages for three lunar zircons.

  3. 21 CFR 161.175 - Frozen raw breaded shrimp.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Frozen raw breaded shrimp. 161.175 Section 161.175... § 161.175 Frozen raw breaded shrimp. (a) Frozen raw breaded shrimp is the food prepared by coating one..., other than those provided for in this paragraph, are not suitable ingredients of frozen raw breaded...

  4. 21 CFR 161.175 - Frozen raw breaded shrimp.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Frozen raw breaded shrimp. 161.175 Section 161.175... § 161.175 Frozen raw breaded shrimp. (a) Frozen raw breaded shrimp is the food prepared by coating one..., other than those provided for in this paragraph, are not suitable ingredients of frozen raw breaded...

  5. Evidence for Archean inheritance in the pre-Panafrican crust of Central Cameroon: Insight from zircon internal structure and LA-MC-ICP-MS Usbnd Pb ages

    NASA Astrophysics Data System (ADS)

    Ganwa, Alembert Alexandre; Klötzli, Urs Stephan; Hauzenberger, Christoph

    2016-08-01

    The main geological feature of Central Cameroon is the wide spread occurrence of granitoids emplaced in close association with transcurrent regional shear zones. The basement of this vast domain is a Paleoproterozoic ortho-and para-derivative formation, which has been intensely reworked, together with subsequent intrusions and sediments, during the Panafrican orogenesis in the Neoproterozoic. As consequence, the area underwent pervasive metamorphism and intense deformation. This makes it difficult to distinguish between Panafrican metasediments or syntectonic plutonites and their respective basement. Our study presents zircon features (CL-BSE-SE) and in-situ U-Th-Pb LA-MC-ICP-MS geochronology of a meta-sedimentary pyroxene-amphibole-bearing gneiss of the Méiganga area in Central Cameroon. Based on the Internal structures of the zircon four characteristic zonation patterns can be deciphered: 1) cores with magmatic oscillatory zonation 2) zircons with oscillatory or sector zonation, 3) zircons with sector zoning or blurred zoning, and 4) narrow bright un-zoned rims. These groups suggest that the rock experienced a number of geological events. Considering this zircon characteristic, the U-Th-Pb data allow to distinguish four ages: 2116 ± 57 Ma, consistent with ages from the Paleoproterozoic West Central African Belt; 2551 ± 33 Ma which marks a late Neoarchean magmatic event; 2721 ± 27 Ma related to a Neoarchean magmatic even in Central Cameroon, similar to one found in the Congo Craton. A zircon core gives ages around 2925 Ma which provides some evidence of the presence of the Mesoarchean basement prior to the Neoarchean magmatism. A weighted average of lower intercepts ages gives a value of 821 ± 50 Ma, representing the age of later metamorphism event. The various characteristic group and related ages reflect not only the complexity of the history of the pyroxene amphibole gneiss, but also show that the meta-sediment has at least three zircon contributing

  6. Chromatographic, NMR and vibrational spectroscopic investigations of astaxanthin esters: application to "Astaxanthin-rich shrimp oil" obtained from processing of Nordic shrimps.

    PubMed

    Subramanian, B; Thibault, M-H; Djaoued, Y; Pelletier, C; Touaibia, M; Tchoukanova, N

    2015-11-07

    Astaxanthin (ASTX) is a keto carotenoid, which possesses a non-polar linear central conjugated chain and polar β-ionone rings with ketone and hydroxyl groups at the extreme ends. It is well known as a super anti-oxidant, and recent clinical studies have established its nutritional benefits. Although it occurs in several forms, including free molecule, crystalline, aggregates and various geometrical isomers, in nature it exists primarily in the form of esters. Marine animals accumulate ASTX from primary sources such as algae. Nordic shrimps (P. borealis), which are harvested widely in the Atlantic Ocean, form a major source of astaxanthin esters. "Astaxanthin-rich shrimp oil" was developed as a novel product in a shrimp processing plant in Eastern Canada. A compositional analysis of the shrimp oil was performed, with a view to possibly use it as a nutraceutical product for humans and animals. Astaxanthin-rich shrimp oil contains 50% MUFAs and 22% PUFAs, of which 20% are omega-3. In addition, the shrimp oil contains interesting amounts of EPA and DHA, with 10%/w and 8%/w, respectively. Astaxanthin concentrations varied between 400 and 1000 ppm, depending on the harvesting season of the shrimp. Astaxanthin and its esters were isolated from the oil and analysed by NMR, FTIR and Micro-Raman spectroscopy. Astaxanthin mono- and diesters were synthesized and used as standards for the analysis of astaxanthin-rich shrimp oil. NMR and vibrational spectroscopy techniques were successfully used for the rapid characterization of monoesters and diesters of astaxanthin. Raman spectroscopy provided important intermolecular interactions present in the esterified forms of astaxanthin molecules. Also discussed in this paper is the use of NMR, FTIR and Micro-Raman spectroscopy for the detection of astaxanthin esters in shrimp oil.

  7. [Book review] The geochronology and evolution of Africa

    USGS Publications Warehouse

    Wilson, Frederic H.

    1987-01-01

    This book was written 'to provide an up-to-date data bank from which those wishing to construct models concerned with the evolution of Africa .... can draw.' As such, it attempts a survey of 'integrated geology and geochronology' of the African continent throughout the Precambrian and into the Phanerozoic. Political and language divisions often hinder the synthesis of continent-wide data, therefore, this well-indexed inventory of selected data and synthesis of present geochronological knowledge for Africa as a whole provides an important reference for researchers and explorationists, many of whom have limited access to complete collections of the geological literature of Africa.

  8. 50 CFR 622.201 - South Atlantic rock shrimp limited access.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false South Atlantic rock shrimp limited access... SOUTH ATLANTIC Shrimp Fishery of the South Atlantic Region § 622.201 South Atlantic rock shrimp limited access. (a) Commercial Vessel Permits for Rock Shrimp (South Atlantic EEZ). For a person aboard a vessel...

  9. 50 CFR 622.201 - South Atlantic rock shrimp limited access.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false South Atlantic rock shrimp limited access... SOUTH ATLANTIC Shrimp Fishery of the South Atlantic Region § 622.201 South Atlantic rock shrimp limited access. (a) Commercial Vessel Permits for Rock Shrimp (South Atlantic EEZ). For a person aboard a vessel...

  10. Immunization with Hypoallergens of Shrimp Allergen Tropomyosin Inhibits Shrimp Tropomyosin Specific IgE Reactivity

    PubMed Central

    Wai, Christine Y. Y.; Leung, Nicki Y. H.; Ho, Marco H. K.; Gershwin, Laurel J.; Shu, Shang An; Leung, Patrick S. C.; Chu, Ka Hou

    2014-01-01

    Designer proteins deprived of its IgE-binding reactivity are being sought as a regimen for allergen-specific immunotherapy. Although shrimp tropomyosin (Met e 1) has long been identified as the major shellfish allergen, no immunotherapy is currently available. In this study, we aim at identifying the Met e 1 IgE epitopes for construction of hypoallergens and to determine the IgE inhibitory capacity of the hypoallergens. IgE-binding epitopes were defined by three online computational models, ELISA and dot-blot using sera from shrimp allergy patients. Based on the epitope data, two hypoallergenic derivatives were constructed by site-directed mutagenesis (MEM49) and epitope deletion (MED171). Nine regions on Met e 1 were defined as the major IgE-binding epitopes. Both hypoallergens MEM49 and MED171 showed marked reduction in their in vitro reactivity towards IgE from shrimp allergy patients and Met e 1-sensitized mice, as well as considerable decrease in induction of mast cell degranulation as demonstrated in passive cutaneous anaphylaxis assay. Both hypoallergens were able to induce Met e 1-recognizing IgG antibodies in mice, specifically IgG2a antibodies, that strongly inhibited IgE from shrimp allergy subjects and Met e 1-sensitized mice from binding to Met e 1. These results indicate that the two designer hypoallergenic molecules MEM49 and MED171 exhibit desirable preclinical characteristics, including marked reduction in IgE reactivity and allergenicity, as well as ability to induce blocking IgG antibodies. This approach therefore offers promises for development of immunotherapeutic regimen for shrimp tropomyosin allergy. PMID:25365343

  11. Immunization with Hypoallergens of shrimp allergen tropomyosin inhibits shrimp tropomyosin specific IgE reactivity.

    PubMed

    Wai, Christine Y Y; Leung, Nicki Y H; Ho, Marco H K; Gershwin, Laurel J; Shu, Shang An; Leung, Patrick S C; Chu, Ka Hou

    2014-01-01

    Designer proteins deprived of its IgE-binding reactivity are being sought as a regimen for allergen-specific immunotherapy. Although shrimp tropomyosin (Met e 1) has long been identified as the major shellfish allergen, no immunotherapy is currently available. In this study, we aim at identifying the Met e 1 IgE epitopes for construction of hypoallergens and to determine the IgE inhibitory capacity of the hypoallergens. IgE-binding epitopes were defined by three online computational models, ELISA and dot-blot using sera from shrimp allergy patients. Based on the epitope data, two hypoallergenic derivatives were constructed by site-directed mutagenesis (MEM49) and epitope deletion (MED171). Nine regions on Met e 1 were defined as the major IgE-binding epitopes. Both hypoallergens MEM49 and MED171 showed marked reduction in their in vitro reactivity towards IgE from shrimp allergy patients and Met e 1-sensitized mice, as well as considerable decrease in induction of mast cell degranulation as demonstrated in passive cutaneous anaphylaxis assay. Both hypoallergens were able to induce Met e 1-recognizing IgG antibodies in mice, specifically IgG2a antibodies, that strongly inhibited IgE from shrimp allergy subjects and Met e 1-sensitized mice from binding to Met e 1. These results indicate that the two designer hypoallergenic molecules MEM49 and MED171 exhibit desirable preclinical characteristics, including marked reduction in IgE reactivity and allergenicity, as well as ability to induce blocking IgG antibodies. This approach therefore offers promises for development of immunotherapeutic regimen for shrimp tropomyosin allergy.

  12. Geochronology of the proterozoic basement of southwesternmost North America, and the origin and evolution of the Mojave crustal province

    USGS Publications Warehouse

    Barth, Andrew P.; Wooden, Joseph L.; Coleman, Drew S.; Fanning, C. Mark

    2000-01-01

    The Proterozoic Baldwin gneiss in the central Transverse Ranges of southern California, a part of the Mojave crustal province, is composed of quartzofeldspathic gneiss and schist, augen and granitic gneiss, trondhjemite gneiss, and minor quartzite, amphibolite, metagabbro, and metapyroxenite. Sensitive high resolution ion microprobe (SHRIMP) data indicate that augen and granitic gneisses comprise a magmatic arc intrusive suite emplaced between 1783 ± 12 and 1675 ± 19 Ma, adjacent to or through thinned Archean crust. High U/Th rims on zircons in most samples suggest an early metamorphic event at ∼1741 Ma, but peak amphibolite facies metamorphism and penetrative, west vergent deformation occurred after 1675 Ma. The Baldwin gneiss is part of a regional allochthon emplaced by west vergent deformation over a Proterozoic shelf-slope sequence (Joshua Tree terrane). We hypothesize that emplacement of this regional allochthon occurred during a late Early or Middle Proterozoic arc-continent collision along the western margin of Laurentia.

  13. Time evolution of a rifted continental arc: Integrated ID-TIMS and LA-ICPMS study of magmatic zircons from the Eastern Srednogorie, Bulgaria

    NASA Astrophysics Data System (ADS)

    Georgiev, S.; von Quadt, A.; Heinrich, C. A.; Peytcheva, I.; Marchev, P.

    2012-12-01

    Eastern Srednogorie in Bulgaria is the widest segment of an extensive magmatic arc that formed by convergence of Africa and Europe during Mesozoic to Tertiary times. Northward subduction of the Tethys Ocean beneath Europe in the Late Cretaceous gave rise to a broad range of basaltic to more evolved magmas with locally associated Cu-Au mineralization along this arc. We used U-Pb geochronology of single zircons to constrain the temporal evolution of the Upper Cretaceous magmatism and the age of basement rocks through which the magmas were emplaced in this arc segment. High precision isotope dilution-thermal ionization mass spectrometry (ID-TIMS) was combined with laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) for spatial resolution within single zircon grains. Three tectono-magmatic regions are distinguished from north to south within Eastern Srednogorie: East Balkan, Yambol-Burgas and Strandzha. Late Cretaceous magmatic activity started at ~ 92 Ma in the northernmost East Balkan region, based on stratigraphic evidence and limited geochronology, with the emplacement of minor shallow intrusions and volcanic rocks onto pre-Cretaceous basement. In the southernmost Strandzha region, magmatism was initiated at ~ 86 Ma with emplacement of gabbroic to dioritic intrusions and related dikes into metamorphic basement rocks that have previously been overprinted by Jurassic-Lower Cretaceous metamorphism. The Yambol-Burgas region is an extensional basin between the East Balkan and the Strandzha regions, which broadens and deepens toward the Black Sea further east and is filled with a thick pile of marine sediments and submarine extrusive volcanic rocks accompanied by coeval intrusions. This dominantly mafic magmatism in the intermediate Yambol-Burgas region commenced at ~ 81 Ma and produced large volumes of potassium-rich magma until ~ 78 Ma. These shoshonitic to ultrapotassic basaltic to intermediate magmas formed by differentiation of ankaramitic (high

  14. High Pressure Behavior of Zircon at Room Temperature

    NASA Astrophysics Data System (ADS)

    Reichmann, H. J.; Rocholl, A.

    2016-12-01

    Zircon, ZrSiO4, is an ubiquitous mineral in the Earth's crust, forming under a wide range of metamorphic and igneous conditions. Its high content in certain trace elements (REE, Hf, Th, U) and due to its isotopic information, together with its chemical and physical robustness makes zircon an unique geochemical tool and geochronometer. Despite its geological importance there is a disagreement regarding the responds of zircon to elevated pressure, especially about the commencement of a pressure - induced structural phase transition. At elevated pressure zircon (I41/amd) undergoes a pressure induced phase transition to the scheelite structure (I41/a) . In the low pressure and high pressure phase, the (SiO4)4- tetrahedral units are present. However, the onset of the phase transition at room temperature is not well defined: zircon - scheelite transitions have been reported in a pressure regime ranging from 20 to 30 GPa (e.g. Ono et al., 2004). To clarify this issue, we performed Raman spectroscopy measurement up to 60 GPa on a non-metamict single crystal zircon sample (reference material 91500; Wiedenbeck et al., 1995; Wiedenbeck et al., 2004). A closer look at the external lattice modes at 201 cm-1 shows a decreasing of the wavenumbers with increasing pressure up to 21 GPa followed by a steep increase. The lattice modes at 213 and 224 cm-1 also exhibit a subtle kink in this pressure range. This pressure coincides with that one reported for the zircon - scheelite transition (van Westrenen et al., 2004). Another interesting issue is the behavior of the internal modes at higher pressures. The ν3 stretching modes at about 1000 cm-1show distinct discontinuities at 31 GPa accompanied by the emerging of new features in the Raman spectrum suggesting another, pressure triggered modification in the zircon structure. References: Ono, Funakoshi, Nakajima, Tange, and Katsura (2004) Contr. Mineral. Petrol., 147, 505-509. Van Westrenen, Frank, Hanchar, Fei, Finch, and Zha (2004

  15. The double-edged sword of high-precision U-Pb geochronology or be careful what you wish for. (Invited)

    NASA Astrophysics Data System (ADS)

    Bowring, S. A.

    2010-12-01

    Over the past two decades, U-Pb geochronology by ID-TIMS has been refined to achieve internal (analytical) uncertainties on a single grain analysis of ± ~ 0.1-0.2%, and 0.05% or better on weighted mean dates. This level of precision enables unprecedented evaluation of the rates and durations of geological processes, from magma chamber evolution to mass extinctions and recoveries. The increased precision, however, exposes complexity in magmatic/volcanic systems and highlights the importance of corrections related to disequilibrium partitioning of intermediate daughter products, and raises questions as to how best to interpret the complex spectrum of dates characteristic of many volcanic rocks. In addition, the increased precision requires renewed emphasis on the accuracy of U decay constants, the isotopic composition of U, the calibration of isotopic tracers, and the accurate propagation of uncertainties It is now commonplace in the high precision dating of volcanic ash-beds to analyze 5-20 single grains of zircon in an attempt to resolve the eruption/depositional age. Data sets with dispersion far in excess of analytical uncertainties are interpreted to reflect Pb-loss, inheritance, and protracted crystallization, often supported with zircon chemistry. In most cases, a weighted mean of the youngest reproducible dates is interpreted as the time of eruption/deposition. Crystallization histories of silicic magmatic systems recovered from plutonic rocks may also be protracted, though may not be directly applicable to silicic eruptions; each sample must be evaluated independently. A key to robust interpretations is the integration high-spatial resolution zircon trace element geochemistry with high-precision ID-TIMS analyses. The EARTHTIME initiative has focused on many of these issues, and the larger subject of constructing a timeline for earth history using both U-Pb and Ar-Ar chronometers. Despite continuing improvements in both, comparing dates for the same rock

  16. Detrital Zircons Split Sibumasu in East Gondwana

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Chung, S. L.

    2017-12-01

    It is widely accepted that Sibumasu developed as a united terrane and originated from NW Australian margin in East Gondwana. Here we report new detrital zircon U-Pb-Hf isotopic data from Sumatra that, in combination with literature data, challenge and refute the above long-held view. In particular, the East and West Sumatra terranes share nearly identical Precambrian to Paleozoic detrital zircon age distributions and Hf isotopes, indicating a common provenance/origin for them. The Sumatra detrital zircons exhibit a prominent population of ca. 1170-1070 Ma, indistinguishable from those of the Lhasa and West Burma terranes, with detritus most probably sourcing from western Australia. By contrast, Sibuma (Sibumasu excluding Sumatra) detrital zircons display a prevailing population of ca. 980-935 Ma, strongly resembling those of the western Qiangtang terrane, with detrital materials most likely derived from Greater India and Himalayas. Such markedly distinct detrital zircon age profiles between Sumatra and Sibuma require disparate sources/origin for them, provoking disintegration of the widely-adopted, but outdated, term Sibumasu and thus inviting a new configuration of East Gondwana in the early Paleozoic, with Sumatra and West Burma lying outboard the Lhasa terrane in the NW Australian margin and Sibuma situated in the northern Greater Indian margin. More future investigations are needed to establish the precise rifting and drifting histories of Sumatra and Sibuma, as two separated terranes, during the breakup of Gondwana.

  17. Burrowing shrimp as foundation species in NE Pacific estuaries

    EPA Science Inventory

    My talk will be about the my research to characterize the role that burrowing shrimp play as foundation/engineering species in Pacific NW estuaries. My research has focused on measuring the abundance & distribution of two species (ghost shrimp & mud shrimp) at ecosystem scales, ...

  18. Empirical constraints on the effects of radiation damage on helium diffusion in zircon

    NASA Astrophysics Data System (ADS)

    Anderson, Alyssa J.; Hodges, Kip V.; van Soest, Matthijs C.

    2017-12-01

    In this study, we empirically evaluate the impact of radiation damage on zircon (U-Th)/He closure temperatures for a suite of zircon crystals from the slowly cooled McClure Mountain syenite of south-central Colorado, USA. We present new zircon, titanite, and apatite conventional (U-Th)/He dates, zircon laser ablation (U-Th)/He and U-Pb dates, and zircon Raman spectra for crystals from the syenite. Titanite and apatite (U-Th)/He dates range from 447 to 523 Ma and 88.0 to 138.9 Ma, respectively, and display no clear correlation between (U-Th)/He date and effective uranium concentration. Conventional zircon (U-Th)/He dates range from 230.3 to 474 Ma, while laser ablation zircon (U-Th)/He dates show even greater dispersion, ranging from 5.31 to 520 Ma. Dates from both zircon (U-Th)/He datasets decrease with increasing alpha dose, indicating that most of the dispersion can be attributed to radiation damage. Alpha dose values for the dated zircon crystals range from effectively zero to 2.15 × 1019 α /g, spanning the complete damage spectrum. We use an independently constrained thermal model to empirically assign a closure temperature to each dated zircon grain. If we assume that this thermal model is robust, the zircon radiation damage accumulation and annealing model of Guenthner et al. (2013) does not accurately predict closure temperatures for many of the analyzed zircon crystals. Raman maps of the zircons dated by laser ablation document complex radiation damage zoning, sometimes revealing crystalline zones in grains with alpha dose values suggestive of amorphous material. Such zoning likely resulted in heterogeneous intra-crystalline helium diffusion and may help explain some of the discrepancies between our empirical findings and the Guenthner et al. (2013) model predictions. Because U-Th zoning is a common feature in zircon, radiation damage zoning is likely to be a concern for most ancient, slowly cooled zircon (U-Th)/He datasets. Whenever possible, multiple

  19. Petrologic evolution of the Caetano magmatic system: What can we learn from a dissected, 34 Ma caldera in the northern Great Basin, western U.S.A.?

    NASA Astrophysics Data System (ADS)

    Watts, K. E.; Colgan, J. P.; John, D. A.; Henry, C. D.

    2012-12-01

    Eruption of the >1,100 km3 Caetano Tuff and formation of the Caetano caldera occurred during the mid-Tertiary ignimbrite flare-up in the Great Basin. Post-collapse extension and faulting created a series of tilted fault blocks that expose >4 km thick intracaldera tuff, two generations of resurgent granitic plutons, silicic ring-fracture intrusions, a tuff dike that fed the early eruption, and pre- and post-caldera andesites. We integrate new petrologic data for extrusive and intrusive Caetano units with geologic mapping and geochronology to provide an exceptional view into the inner workings of a large caldera center. The Caetano Tuff is a phenocryst-rich (~30-50%) ignimbrite with a mineralogy of plagioclase + sanidine + quartz + biotite + orthopyroxene + Fe-Ti oxides ± hornblende + accessory zircon and allanite. Plagioclase crystals in the Caetano Tuff and cogenetic intrusive units span a wide compositional range (>30 mol% An) and have diverse petrographic textures ranging from euhedral phenocrysts to anhedral, sieved crystals with melt-rich cores. Plagioclase compositions measured by electron microprobe for whole rock thin sections are consistent with compositional zoning of the intracaldera tuff shown by XRF whole rock analyses, oligoclase (~10-30 mol% An) and andesine (~30-50 mol% An) in the most evolved (75-77% SiO2) and least evolved (72-74% SiO2) tuff units, respectively. However, orthopyroxene compositions are apparently decoupled from the host tuff composition, with the highest Mg#s (~60-70%) occurring in the most evolved tuff samples. In the Caetano Tuff, equilibrium pairs of Fe-Ti oxides yield an average eruption temperature of 745°C, which is consistent with the average Ti-in-zircon temperature of 750±70°C (1 stdev, n=90 spots) obtained from Ti concentrations measured by SHRIMP for single zircons. Application of Al-in-hornblende geobarometry indicates an average equilibration pressure of 4.5±0.1 kbar, corresponding to mid-crustal magma storage

  20. Social and ecological challenges of market-oriented shrimp farming in Vietnam.

    PubMed

    Lan, Ngo Thi Phuong

    2013-01-01

    Vietnam is one of the largest shrimp exporters in the world. Since 2010, Vietnam has earned about two billion dollars annually through shrimp exports. As a fertile area of greatest potential for agricultural production in Vietnam, the Mekong Delta has been a major contributor to the country's achievements, especially in the agricultural sector. During recent decades, trade liberation along with various policies in support of aquaculture has accelerated the development of shrimp production in the Delta. Based on an ethnographic study of shrimp farming in the Mekong Delta of Vietnam, I assert that along with great rewards arising from the expansion of shrimp farming areas, productivity, and export value, the shrimp industry has brought various environmental, economic and social challenges. Consequently, shrimp farming is a risky business and local inhabitants have relied on various strategies to cope with these challenges. Risk mitigation in shrimp production and labor migration are the two important strategies of local inhabitants for securing their livelihoods. Water pollution and poor quality post-larvae shrimp are direct consequences of market-oriented production.

  1. Geochemistry and geochronology of the blueschist in the Heilongjiang Complex and its implications in the late Paleozoic tectonics of eastern NE China

    NASA Astrophysics Data System (ADS)

    Ge, Mao-hui; Zhang, Jin-jiang; Liu, Kai; Ling, Yi-yun; Wang, Meng; Wang, Jia-min

    2016-09-01

    The Paleozoic to early Mesozoic tectonic framework and evolution of Northeast China, especially the Jiamusi block and its related structural belts, are highly debated. In this paper, geochemical, geochronological and isotopic analyses were carried out on the blueschist in the Heilongjiang Complex to address these issues. The Heilongjiang Complex defines the suture belt between the Jiamusi block and the Songliao block in NE China, and the blueschist is a major composition for this complex, coexisting with mafic-ultramafic rocks, greenschist, quartzite and mica schist. The blueschist has a mineral association of sodic amphibole, epidote, chlorite, phengite, albite and quartz with accessory phases of apatite, titanite, zircon and ilmenite. Together with the lithological association, the major and trace element compositions present that the protoliths of the blueschist can be divided into the alkaline and tholeiitic basalts and have OIB affinities, formed in an ocean island setting, indicated by the (La/Yb) N values of 3.57 - 11.54, and the (La/Sm) N values of 0.69 - 3.64. The high and positive εNd (t) values of + 3.7 to + 9.0, and relative enrichment in Nb (vs. Th) and Ta (vs. U) show that both the alkaline and tholeiitic basalts may be derived from the asthenospheric mantle with insignificant crustal contamination. Magmatic zircons from the blueschist in Yilan area yield a 206Pb/238U age of 281 ± 3 Ma, interpreted as its protolithic age. The youngest ages of 200 Ma of the detrital zircons in the associated mica schist from Mudanjiang area place constraints on the timing of metamorphism for the blueschist. These indicate that a big ocean existed between the Jiamusi and Songliao blocks at least since the early Permian, and the blueschist formed since the late Triassic to late Jurassic by the subduction of this ocean. Such an ocean during the Permian - Jurassic is difficult to be interpreted by the tectonic evolution of the Paleo-Asian Ocean.

  2. Marine shrimp aquaculture and natural resource degradation in Thailand

    NASA Astrophysics Data System (ADS)

    Flaherty, Mark; Karnjanakesorn, Choomjet

    1995-01-01

    Rising demand for shrimp in the developed nations has helped to foster a dramatic growth in marine shrimp aquaculture, particularly in South America and South Asia. In Thailand, Marine shrimp aquaculture is now an important earmer of foreign exchange. The growth in Production has been achieved through the expansion of the culture area and the adoption of intensive production methods. The conversion of near-shore areas to shrimp culture, however, is proving to have many consequences that impinge on the environmental integrity of coastal areas. This paper reviews the development of Thailand's marine shrimp culture industry and examines the nature of the environmental impacts that are emerging. It then discusses the implications these have for rural poor and the long-term viability of the culture industry.

  3. Contrasting Granite Metallogeny through the Zircon Record: A Case Study from Myanmar.

    PubMed

    Gardiner, Nicholas J; Hawkesworth, Chris J; Robb, Laurence J; Whitehouse, Martin J; Roberts, Nick M W; Kirkland, Christopher L; Evans, Noreen J

    2017-04-07

    Granitoid-hosted mineral deposits are major global sources of a number of economically important metals. The fundamental controls on magma metal fertility are tectonic setting, the nature of source rocks, and magma differentiation. A clearer understanding of these petrogenetic processes has been forged through the accessory mineral zircon, which has considerable potential in metallogenic studies. We present an integrated zircon isotope (U-Pb, Lu-Hf, O) and trace element dataset from the paired Cu-Au (copper) and Sn-W (tin) magmatic belts in Myanmar. Copper arc zircons have juvenile εHf (+7.6 to +11.5) and mantle-like δ 18 O (5.2-5.5‰), whereas tin belt zircons have low εHf (-7 to -13) and heavier δ 18 O (6.2-7.7‰). Variations in zircon Hf and U/Yb reaffirm that tin belt magmas contain greater crustal contributions than copper arc rocks. Links between whole-rock Rb/Sr and zircon Eu/Eu* highlight that the latter can monitor magma fractionation in these systems. Zircon Ce/Ce* and Eu/Eu* are sensitive to redox and fractionation respectively, and here are used to evaluate zircon sensitivity to the metallogenic affinity of their host rock. Critical contents of Sn in granitic magmas, which may be required for the development of economic tin deposits, are marked by zircon Eu/Eu* values of ca. ≤0.08.

  4. Fabrics and geochronology of the Wushan ductile shear zone: Tectonic implications for the Shangdan suture zone in the Qinling orogen, Central China

    NASA Astrophysics Data System (ADS)

    Liang, Xiao; Sun, Shengshi; Dong, Yunpeng; Yang, Zhao; Liu, Xiaoming; He, Dengfeng

    2017-04-01

    The ductile shearing along the Shangdan suture zone during the Paleozoic time is a key to understand the collisional deformation and tectonic regime of amalgamation between the North China Block and the South China Blocks. The Wushan ductile shear zone, a branch of the Shangdan suture, records mylonitic deformation that affected granitic and felsic rocks outcropping in an over 1 km wide belt in the western Qinling Orogenic belt. Shear sense indicators and kinematic vorticity number (0.79-0.99) of the mylonites reveal a dextral shear deformation. The quartz c-axis fabrics indicate activation of combined basal and rhomb slip, prism slip and prism slip. The dynamic recrystallization of quartz is accommodated by combined subgrain rotation and grain boundary migration. These characteristics suggest that the mylonites experienced ductile shear deformation under amphibolite facies conditions at temperatures of 500-650 C. Zircons from granitic mylonite yield a U-Pb age of 910 ± 4.8 Ma, which represents the formation age of the protolith of the mylonite. The ductile shear zone was intruded by a granitic dyke, which yields a zircon U-Pb age of 403 ± 3.5 Ma constraining the minimum age of the ductile shear deformation. Together with regional geology and available geochronological data, these structural characteristics and ages indicate that the Wushan ductile shear zone was formed by dextral shearing following the N-S shortening as a result of collision between the North China and South China blocks along the Shangdan suture.

  5. Fabrics and geochronology of the Wushan ductile shear zone: Tectonic implications for the Shangdan suture zone in the Qinling orogen, Central China

    NASA Astrophysics Data System (ADS)

    Liang, Xiao; Sun, Shengsi; Dong, Yunpeng; Yang, Zhao; Liu, Xiaoming; He, Dengfeng

    2017-05-01

    The ductile shearing along the Shangdan suture zone during the Paleozoic time is a key to understand the collisional deformation and tectonic regime of amalgamation between the North China Block and the South China Blocks. The Wushan ductile shear zone, a branch of the Shangdan suture, records mylonitic deformation that affected granitic and felsic rocks outcropping in an over 1 km wide belt in the western Qinling Orogenic belt. Shear sense indicators and kinematic vorticity number (0.79-0.99) of the mylonites reveal a dextral shear deformation. The quartz c-axis fabrics indicate activation of combined basal and rhomb slip, prism slip and prism slip. The dynamic recrystallization of quartz is accommodated by combined subgrain rotation and grain boundary migration. These characteristics suggest that the mylonites experienced ductile shear deformation under amphibolite facies conditions at temperatures of ∼500-650 °C. Zircons from granitic mylonite yield a U-Pb age of 910 ± 4.8 Ma, which represents the formation age of the protolith of the mylonite. The ductile shear zone was intruded by a granitic dyke, which yields a zircon U-Pb age of 403 ± 3.5 Ma constraining the minimum age of the ductile shear deformation. Together with regional geology and available geochronological data, these structural characteristics and ages indicate that the Wushan ductile shear zone was formed by dextral shearing following the N-S shortening as a result of collision between the North China and South China blocks along the Shangdan suture.

  6. Magmatic oxygen fugacity estimated using zircon-melt partitioning of cerium

    NASA Astrophysics Data System (ADS)

    Smythe, Duane J.; Brenan, James M.

    2016-11-01

    Using a newly-calibrated relation for cerium redox equilibria in silicate melts (Smythe and Brenan, 2015), and an internally-consistent model for zircon-melt partitioning of Ce, we provide a method to estimate the prevailing redox conditions during crystallization of zircon-saturated magmas. With this approach, oxygen fugacities were calculated for samples from the Bishop tuff (USA), Toba tuff (Indonesia) and the Nain plutonic suite (Canada), which typically agree with independent estimates within one log unit or better. With the success of reproducing the fO2 of well-constrained igneous systems, we have applied our Ce-in-zircon oxygen barometer to estimating the redox state of Earth's earliest magmas. Using the composition of the Jack Hills Hadean zircons, combined with estimates of their parental magma composition, we determined the fO2 during zircon crystallization to be between FMQ -1.0 to +2.5 (where FMQ is the fayalite-magnetite-quartz buffer). Of the parental magmas considered, Archean tonalite-trondhjemite-granodiorite (TTG) compositions yield zircon-melt partitioning most similar to well-constrained modern suites (e.g., Sano et al., 2002). Although broadly consistent with previous redox estimates from the Jack Hills zircons, our results provide a more precise determination of fO2, narrowing the range for Hadean parental magmas by more than 8 orders of magnitude. Results suggest that relatively oxidized magmatic source regions, similar in oxidation state to that of 3.5 Ga komatiite suites, existed by ∼4.4 Ga.

  7. 21 CFR 161.176 - Frozen raw lightly breaded shrimp.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Frozen raw lightly breaded shrimp. 161.176 Section 161.176 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Shellfish § 161.176 Frozen raw lightly breaded shrimp. Frozen raw lightly breaded shrimp complies with the...

  8. 21 CFR 161.176 - Frozen raw lightly breaded shrimp.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Frozen raw lightly breaded shrimp. 161.176 Section 161.176 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Shellfish § 161.176 Frozen raw lightly breaded shrimp. Frozen raw lightly breaded shrimp complies with the...

  9. 21 CFR 102.55 - Nonstandardized breaded composite shrimp units.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Nonstandardized breaded composite shrimp units... for Specific Nonstandardized Foods § 102.55 Nonstandardized breaded composite shrimp units. (a) The... described by § 161.175(c)(6) of this chapter, except that the food is made from comminuted shrimp and is not...

  10. Characterization of inclusions in terrestrial impact formed zircon: Constraining the formation conditions of Hadean zircon from Jack Hills, Western Australia

    NASA Astrophysics Data System (ADS)

    Faltys, J. P.; Wielicki, M. M.; Sizemore, T. M.

    2017-12-01

    Due to the discovery and subsequent geochemical analysis of Hadean terrestrial material (e.g. detrital zircon from Jack Hills, Western Australia), a dramatic paradigm shift has occurred in the hypothesized near surface conditions of the first 500 million years of Earth's evolution. From a hellish setting riddled with impactors and not fit for life to a much milder environment that may have been uniquely suitable for the origin of life. Geochemical analyses of these ancient materials have been used to suggest the presence of water at or near the surface as well as the existence of continental crust during the Hadean, both of which have been suggested as necessary for the origin of life. However, the intensity of extraterrestrial bombardment during the Hadean and the effects of such events on the origin of life remains poorly understood. Clearly, as evidenced by Phanerozoic impact events, extraterrestrial impactors have the potential to dramatically effect the environment, particularly the biosphere. Early Earth likely experienced multiple large impact events, as evidenced by the lunar record, however whether those impacts were sufficient to frustrate the origin of life remains an open question. Although multiple lines of evidence, including the inclusion population, suggest the formation of Hadean zircon from Jack Hills as crystallizing in an under-thrust environment from S-type magmas, a recent study has suggested their formation in an impact melt environment analogous to a portion of the Sudbury Igneous Complex at the Sudbury impact structure. To determine between these two formation scenarios we have under-taken an inclusion study of terrestrial impact formed zircon from four of the largest terrestrial impact structures (Sudbury, Canada; Manicouagan, Canada; Vredefort, South Africa; Morokweng, South Africa), to compare to the vast inclusion dataset that exists for Jack Hills zircon. Preliminary data suggests a different inclusion population, from Hadean zircon

  11. Geochronologic evidence of a large magmatic province in northern Patagonia encompassing the Permian-Triassic boundary

    NASA Astrophysics Data System (ADS)

    Luppo, Tomás; López de Luchi, Mónica G.; Rapalini, Augusto E.; Martínez Dopico, Carmen I.; Fanning, Christopher M.

    2018-03-01

    The Los Menucos Complex (northern Patagonia) consists of ∼6 km thick succession of acidic and intermediate volcanic and pyroclastic products, which has been traditionally assigned to the Middle/Late Triassic. New U/Pb (SHRIMP) zircon crystallization ages of 257 ± 2 Ma at the base, 252 ± 2 Ma at an intermediate level and 248 ± 2 Ma near the top of the sequence, indicate that this volcanic event took place in about 10 Ma around the Permian-Triassic boundary. This volcanism can now be considered as the effusive terms of the neighboring and coeval La Esperanza Plutono-Volcanic Complex. This indicates that the climax of activity of a large magmatic province in northern Patagonia was coetaneous with the end-Permian mass extinctions. Likely correlation of La Esperanza- Los Menucos magmatic province with similar volcanic and plutonic rocks across other areas of northern Patagonia suggest a much larger extension than previously envisaged for this event. Its age, large volume and explosive nature suggest that the previously ignored potential role that this volcanism might have played in climatic deterioration around the Permian-Triassic boundary should be investigated.

  12. Suppression of Shrimp Melanization during White Spot Syndrome Virus Infection*

    PubMed Central

    Sutthangkul, Jantiwan; Amparyup, Piti; Charoensapsri, Walaiporn; Senapin, Saengchan; Phiwsaiya, Kornsunee; Tassanakajon, Anchalee

    2015-01-01

    The melanization cascade, activated by the prophenoloxidase (proPO) system, plays a key role in the production of cytotoxic intermediates, as well as melanin products for microbial sequestration in invertebrates. Here, we show that the proPO system is an important component of the Penaeus monodon shrimp immune defense toward a major viral pathogen, white spot syndrome virus (WSSV). Gene silencing of PmproPO(s) resulted in increased cumulative shrimp mortality after WSSV infection, whereas incubation of WSSV with an in vitro melanization reaction prior to injection into shrimp significantly increased the shrimp survival rate. The hemolymph phenoloxidase (PO) activity of WSSV-infected shrimp was extremely reduced at days 2 and 3 post-injection compared with uninfected shrimp but was fully restored after the addition of exogenous trypsin, suggesting that WSSV probably inhibits the activity of some proteinases in the proPO cascade. Using yeast two-hybrid screening and co-immunoprecipitation assays, the viral protein WSSV453 was found to interact with the proPO-activating enzyme 2 (PmPPAE2) of P. monodon. Gene silencing of WSSV453 showed a significant increase of PO activity in WSSV-infected shrimp, whereas co-silencing of WSSV453 and PmPPAE2 did not, suggesting that silencing of WSSV453 partially restored the PO activity via PmPPAE2 in WSSV-infected shrimp. Moreover, the activation of PO activity in shrimp plasma by PmPPAE2 was significantly decreased by preincubation with recombinant WSSV453. These results suggest that the inhibition of the shrimp proPO system by WSSV partly occurs via the PmPPAE2-inhibiting activity of WSSV453. PMID:25572398

  13. Integrated mangrove-shrimp cultivation: Potential for blue carbon sequestration.

    PubMed

    Ahmed, Nesar; Thompson, Shirley; Glaser, Marion

    2018-05-01

    Globally, shrimp farming has had devastating effects on mangrove forests. However, mangroves are the most carbon-rich forests, with blue carbon (i.e., carbon in coastal and marine ecosystems) emissions seriously augmented due to devastating effects on mangrove forests. Nevertheless, integrated mangrove-shrimp cultivation has emerged as a part of the potential solution to blue carbon emissions. Integrated mangrove-shrimp farming is also known as organic aquaculture if deforested mangrove area does not exceed 50% of the total farm area. Mangrove destruction is not permitted in organic aquaculture and the former mangrove area in parts of the shrimp farm shall be reforested to at least 50% during a period of maximum 5 years according to Naturland organic aquaculture standards. This article reviews integrated mangrove-shrimp cultivation that can help to sequester blue carbon through mangrove restoration, which can be an option for climate change mitigation. However, the adoption of integrated mangrove-shrimp cultivation could face several challenges that need to be addressed in order to realize substantial benefits from blue carbon sequestration.

  14. Optimum cooking conditions for shrimp and Atlantic salmon.

    PubMed

    Brookmire, Lauren; Mallikarjunan, P; Jahncke, M; Grisso, R

    2013-02-01

    The quality and safety of a cooked food product depends on many variables, including the cooking method and time-temperature combinations employed. The overall heating profile of the food can be useful in predicting the quality changes and microbial inactivation occurring during cooking. Mathematical modeling can be used to attain the complex heating profile of a food product during cooking. Studies were performed to monitor the product heating profile during the baking and boiling of shrimp and the baking and pan-frying of salmon. Product color, texture, moisture content, mass loss, and pressed juice were evaluated during the cooking processes as the products reached the internal temperature recommended by the FDA. Studies were also performed on the inactivation of Salmonella cocktails in shrimp and salmon. To effectively predict inactivation during cooking, the Bigelow, Fermi distribution, and Weibull distribution models were applied to the Salmonella thermal inactivation data. Minimum cooking temperatures necessary to destroy Salmonella in shrimp and salmon were determined. The heating profiles of the 2 products were modeled using the finite difference method. Temperature data directly from the modeled heating profiles were then used in the kinetic modeling of quality change and Salmonella inactivation during cooking. The optimum cooking times for a 3-log reduction of Salmonella and maintaining 95% of quality attributes are 100, 233, 159, 378, 1132, and 399 s for boiling extra jumbo shrimp, baking extra jumbo shrimp, boiling colossal shrimp, baking colossal shrimp, baking Atlantic salmon, and pan frying Atlantic Salmon, respectively. © 2013 Institute of Food Technologists®

  15. U-Pb and K-Ar geochronology in Paleozoic and Mesozoic intrusive rocks of the Coastal Cordillera, Valparaiso, Chile

    USGS Publications Warehouse

    Gana, Paulina; Tosdal, Richard M.

    1996-01-01

    The U-Pb and K-Ar geochronology applied to intrusive rocks from the Coastal Batholith of Central Chile, demonstrates the existence of a basement block of the Mirasol Unit, with a crystallization age of 299??10 Ma, exposed in the northern block of the Melipilla Fault. The age of 214??1 Ma obtained in the 'Dioritas Gne??isicas de Cartagena Unit', indicates that a Late Triassic magmatism took place in this region; it coincides with the end of an extensive crustal melting period, proposed for northern Chile. The ages of the Jurassic plutonic units (Laguna Verde, Sauce, Pen??uelas and Limache) are restricted to the 156-161 Ma interval, showing in certain cases, inherited zircons from an unknown source. The difference between ages obtained using both chronological methods is a few million years, indicating that a short time passed between the crystallization and the cooling of the plutonic bodies, as well as a fast magmatic differentiation process. The Laguna Verde and Sauce Units, experienced a fast uplift, probably as a result of an extensional tectonic process in the magmatic arc, or induced by the magmatic pressure through fracture zones during Middle Jurassic.

  16. Zircons as a Probe of Early Lunar Impact History

    NASA Astrophysics Data System (ADS)

    Crow, C. A.; McKeegan, K. D.; Gilmour, J. D.; Crowther, S. A.; Taylor, D. J.

    2013-08-01

    Zircons are ideal for investigating the early lunar bombardment because we can measure both U-Pb crystallization ages and fissiongenic Xe degassing ages for the same crystal. We report U-Pb, Pb-Pb and U-Xe ages for two lunar zircons.

  17. Modeling Transfer of Vibrio Parahaemolyticus During Peeling of Raw Shrimp.

    PubMed

    Xiao, Xingning; Pang, Haiying; Wang, Wen; Fang, Weihuan; Fu, Yingchun; Li, Yanbin

    2018-03-01

    This study aimed to qualify the transfer of Vibrio parahaemolyticus during the shrimp peeling process via gloves under 3 different scenarios. The 1st 2 scenarios provided quantitative information for the probability distribution of bacterial transfer rates from (i) contaminated shrimp (6 log CFU/g) to non-contaminated gloves (Scenario 1) and (ii) contaminated gloves (6 log CFU/per pair) to non-contaminated shrimp (Scenario 2). In Scenario 3, bacterial transfer from contaminated shrimp to non-contaminated shrimp in the shrimp peeling process via gloves was investigated to develop a predictive model for describing the successive bacterial transfer. The range of bacterial transfer rate (%) in Scenarios 1 and 2 was 7% to 91.95% and 0.04% to 12.87%, respectively, indicating that the bacteria can be transferred from shrimp to gloves much easier than that from gloves to shrimp. A Logistic (1.59, 0.14) and Triangle distribution (-1.61, 0.12, 1.32) could be used to describe the bacterial transfer rate in Scenarios 1 and 2, respectively. In Scenario 3, a continuously decay patterning with fluctuations as the peeling progressed has been observed at all inoculation levels of the 1st shrimp (5, 6, and 7 log CFU/g). The bacteria could be transferred easier at 1st few peels, and the decreasing bacterial transfer was found in later phase. Two models (exponential and Weibull) could describe the successive bacterial transfer satisfactorily (pseudo-R 2 > 0.84, RMSE < 1.23, SEP < 10.37). The result of this study can provide information regarding cross-contamination events in the seafood factory. This study presented that Vibrio parahaemolyticus cross-contamination could be caused by gloves during the shrimp peeling process. The bacterial transfer rate distribution and predictive model derived from this work could be used in risk assessment of V. parahaemolyticus to ensure peeled shrimp safety. © 2018 Institute of Food Technologists®.

  18. Geochronological constraints on the evolution of El Hierro (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Becerril, Laura; Ubide, Teresa; Sudo, Masafumi; Martí, Joan; Galindo, Inés; Galé, Carlos; Morales, Jose María; Yepes, Jorge; Lago, Marceliano

    2016-01-01

    New age data have been obtained to time constrain the recent Quaternary volcanism of El Hierro (Canary Islands) and to estimate its recurrence rate. We have carried out 40Ar/39Ar geochronology on samples spanning the entire volcanostratigraphic sequence of the island and 14C geochronology on the most recent eruption on the northeast rift of the island: 2280 ± 30 yr BP. We combine the new absolute data with a revision of published ages onshore, some of which were identified through geomorphological criteria (relative data). We present a revised and updated chronology of volcanism for the last 33 ka that we use to estimate the maximum eruptive recurrence of the island. The number of events per year determined is 9.7 × 10-4 for the emerged part of the island, which means that, as a minimum, one eruption has occurred approximately every 1000 years. This highlights the need of more geochronological data to better constrain the eruptive recurrence of El Hierro.

  19. Crystallization process of zircon and fergusonite during hydrothermal alteration in Nechalacho REE deposit, Thor Lake, Canada

    NASA Astrophysics Data System (ADS)

    Hoshino, M.; Watanabe, Y.; Murakami, H.; Kon, Y.; Tsunematsu, M.

    2012-04-01

    The core samples of two drill holes, which penetrate sub-horizontal mineralized horizons at Nechalacho REE deposit in the Proterozoic Thor Lake syenite, Canada, were studied in order to clarify magmatic and hydrothermal processes that enriched HFSE (e.g. Zr, Nb, Y and REE). Zircon is the most common REE minerals in Nechalacho REE deposit. The zircon is divided into five types as follows: Type-1 zircon occurs as single grain in phlogopite and the chondrite-normalized REE pattern is characterized by a steeply-rising slope from the LREE to the HREE with a positive Ce-anomaly and negative Eu-anomaly. This chemical characteristic is similar to that of igneous zircon. Type-2 zircon consists of HREE-rich magmatic porous core and LREE-Nb-F-rich hydrothermal rim. This type zircon is mostly included in phlogopite and fluorite, and occasionally in microcline. Type-3 zircon is characterized by euhedral to anhedral crystal, occurring in a complex intergrowth with REE fluorocarbonates. Type-3 zircons have high contents of REE, Nb and fluorine. Type-4 zircon consists of porous-core and -rim zones, but their chemical compositions are similar to each other. This type zircon is a subhedral crystal rimmed by fergusonite. Type-5 zircon is characterized by smaller, porous and subhedral to anhedral crystals. The interstices between small zircons are filled by fergusonite. Type-4 and -5 zircons show low REE and Nb contents. Occurrences of these five types of zircon are different according to the depth and degree of the alteration by hydrothermal solutions rich in F- and CO3 of the two drill holes, which permit a model for evolution of the zircon crystallization in Nechalacho REE deposit as follows: (1) type-1 (single magmatic zircon) is formed in miaskitic syenite. (2) LREE-Nb-F-rich hydrothermal zircon formed around HREE-rich magmatic zircon (type-2 zircon); (3) type-3 zircon crystallized thorough F and CO3-rich hydrothermal alteration of type-2 zircon which formed the complex

  20. Suppression of shrimp melanization during white spot syndrome virus infection.

    PubMed

    Sutthangkul, Jantiwan; Amparyup, Piti; Charoensapsri, Walaiporn; Senapin, Saengchan; Phiwsaiya, Kornsunee; Tassanakajon, Anchalee

    2015-03-06

    The melanization cascade, activated by the prophenoloxidase (proPO) system, plays a key role in the production of cytotoxic intermediates, as well as melanin products for microbial sequestration in invertebrates. Here, we show that the proPO system is an important component of the Penaeus monodon shrimp immune defense toward a major viral pathogen, white spot syndrome virus (WSSV). Gene silencing of PmproPO(s) resulted in increased cumulative shrimp mortality after WSSV infection, whereas incubation of WSSV with an in vitro melanization reaction prior to injection into shrimp significantly increased the shrimp survival rate. The hemolymph phenoloxidase (PO) activity of WSSV-infected shrimp was extremely reduced at days 2 and 3 post-injection compared with uninfected shrimp but was fully restored after the addition of exogenous trypsin, suggesting that WSSV probably inhibits the activity of some proteinases in the proPO cascade. Using yeast two-hybrid screening and co-immunoprecipitation assays, the viral protein WSSV453 was found to interact with the proPO-activating enzyme 2 (PmPPAE2) of P. monodon. Gene silencing of WSSV453 showed a significant increase of PO activity in WSSV-infected shrimp, whereas co-silencing of WSSV453 and PmPPAE2 did not, suggesting that silencing of WSSV453 partially restored the PO activity via PmPPAE2 in WSSV-infected shrimp. Moreover, the activation of PO activity in shrimp plasma by PmPPAE2 was significantly decreased by preincubation with recombinant WSSV453. These results suggest that the inhibition of the shrimp proPO system by WSSV partly occurs via the PmPPAE2-inhibiting activity of WSSV453. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Pink shrimp as an indicator for restoration of everglades ecosystems

    USGS Publications Warehouse

    Browder, Joan A.; Robblee, M.B.

    2009-01-01

    The pink shrimp, Farfantepenaeus duorarum, familiar to most Floridians as either food or bait shrimp, is ubiquitous in South Florida coastal and offshore waters and is proposed as an indicator for assessing restoration of South Florida's southern estuaries: Florida Bay, Biscayne Bay, and the mangrove estuaries of the lower southwest coast. Relationships between pink shrimp and salinity have been determined in both field and laboratory studies. Salinity is directly relevant to restoration because the salinity regimes of South Florida estuaries, critical nursery habitat for the pink shrimp, will be altered by changes in the quantity, timing, and distribution of freshwater inflow planned as part of the Comprehensive Everglades Restoration Project (CERP). Here we suggest performance measures based on pink shrimp density (number per square meter) in the estuaries and propose a restoration assessment and scoring scheme using these performance measures that can readily be communicated to managers, policy makers, and the interested public. The pink shrimp is an appropriate restoration indicator because of its ecological as well as its economic importance and also because scientific interest in pink shrimp in South Florida has produced a wealth of information about the species and relatively long time series of data on both juveniles in estuarine nursery habitats and adults on the fishing grounds. We suggest research needs for improving the pink shrimp performance measure.

  2. COBALT-60 Gamma Irradiation of Shrimp.

    NASA Astrophysics Data System (ADS)

    Sullivan, Nancy L. B.

    Meta- and ortho-tyrosine were measured using high performance liquid chromatography (HPLC) in conjunction with electrochemical detection in shrimp irradiated using cobalt-60 gamma radiation in the absorbed dose range 0.8 to 6.0 kGy, in nonirradiated shrimp, and in bovine serum albumin (BSA) irradiated in dilute aqueous solution at 25.0 kGy. Ortho-tyrosine was measured in nonirradiated BSA. Para-, meta-, and ortho-tyrosine were measured using HPLC in conjunction with uv-absorption detection in dilute aqueous solutions of phenylalanine irradiated in the absorbed dose range 16.0 to 195.0 kGy. The measured yields of tyrosine isomers were approximately linear as a function of absorbed dose in shrimp, and in irradiated solutions of phenylalanine up to 37.0 kGy. The occurrence of meta- and ortho-tyrosine, which had formerly been considered unique radiolytic products, has not previously been reported in nonirradiated shrimp or BSA. The conventional hydrolyzation and analytical techniques used in the present study to measure meta- and ortho-tyrosine may provide the basis for a method to detect and determine the dose used in food irradiation.

  3. New geochronological history of the Mbuji-Mayi Supergroup (Proterozoic, DRC) through U-Pb and Sm-Nd dating

    NASA Astrophysics Data System (ADS)

    François, Camille; Baludikay, Blaise K.; Storme, Jean-Yves; Baudet, Daniel; Paquette, Jean-Louis; Fialin, Michel; Debaille, Vinciane; Javaux, Emmanuelle J.

    2016-04-01

    The Mbuji-Mayi Supergroup, DRC is located between the Archean-Paleoproterozoic Kasai Craton and the Mesoproterozoic Kibaran Belt. This sedimentary sequence, unaffected by regional metamorphism, preserves a large diversity of well-preserved acritarchs (organic-walled microfossils), evidencing the diversification of complex life (early eukaryotes) for the first time in mid-Proterozoic redox stratified oceans of Central Africa (Baludikay et al., in review). This Supergroup is composed of two distinct lithostratigraphic successions (i) BI Group: a lower siliciclastic sequence (ca. 1175 Myr to ca. 882 Myr or ca. 1050 Myr (Cahen, 1954; Holmes & Cahen, 1955; Delpomdor et al., 2013) unconformably overlying the ca. 2.82-2.56 Gyr granitoid Dibaya Complex to the North (Cahen & Snelling; recent notice on DRC geological map); and (ii) BII Group: a poorly age-constrained upper carbonate sequence with sparse shales . Basaltic lavas (including pillow lavas) overlying the Mbuji-Mayi Supergroup were dated around 950 Myr (Cahen et al., 1974; Cahen et al., 1984). To better constraint the age of this Supergroup in the Meso-Neoproterozoic limit, we combine different geochronological methods, in particular on diagenetic minerals such as monazite (Montel et al., 1996; Rasmussen & Muhling, 2007) and xenotime (McNaughton et al., 1999) but also on detrital zircons. For the BI Group, results of in situ U-Pb dating with LA-ICP-MS on monazite, xenotime and zircon (Laboratoire Magmas et Volcans, Clermont-Ferrand) provide ages between 2.9 and 1.2 Gyr for zircons and between 1.4 and 1.03 Gyr for monazites and xenotimes. New results of in situ U-Th-Pb dating of well-crystallized monazites and xenotimes with Electron MicroProbe (Camparis, UPMC, Paris), highlight that some crystals display zonations with an inherited core older than 1125 Myr and diagenetic rims around 1050-1075 Myr. This suggests that the diagenesis of BI Group is younger than 1175 Myr (Delpomdor et al., 2013) and probably around

  4. Experimental shock deformation in zircon: a transmission electron microscopic study

    NASA Astrophysics Data System (ADS)

    Leroux, H.; Reimold, W. U.; Koeberl, C.; Hornemann, U.; Doukhan, J.-C.

    1999-06-01

    In recent years, apparently shock-induced and, thus, impact-characteristic microdeformations, in the form of planar microdeformation features and so-called strawberry (granular) texture, have been observed in zircons in rocks from confirmed impact structures and from the K/ T boundary. The nature of the planar microdeformations in this mineral is, however, still unknown, and critical information is needed regarding the shock pressure range in which these deformation effects are produced. We experimentally shock deformed two series of thin zircon (ZrSiO 4) target plates, cut perpendicular to the c-axis, at shock pressures of 20, 40, and 60 GPa. The recovered samples were characterized by optical and scanning electron microscopy. In addition, one sample series was studied by transmission electron microscopy (TEM). Microdeformation effects observed at 20 GPa include pervasive micro-cleavage and dislocation patterns. Plastic deformation is indicated by a high density of straight dislocations in glide configuration. The dominant glide systems are <100>{010}. Micro-cleavages, induced by shear stresses during the compression stage, occur mostly in the {100} planes. The large density of dislocations at crack tips shows that plastic deformation was initiated by the micro-cracking processs. At 40 GPa, the sample was partly transformed from the zircon (z) to a scheelite (CaWO 4)-type (s) structure. Planar deformation features (PDFs) containing an amorphous phase of zircon composition are present in the not yet transformed zircon relics. The phase with scheelite structure, initiated in the {100} planes of zircon, consists of thin (0.1 to several μm) bands that crosscut the zircon matrix. The phase transformation is displacive (martensitic) and can be related by {100} z // {112} s and [001] z // <110> s. The scheelite structure phase is densely twinned, with twins in the (112) plane. The 60-GPa sample consists completely of the scheelite structure phase. Crosscutting and

  5. Sub-tropical coastal lagoon salinization associated to shrimp ponds effluents

    NASA Astrophysics Data System (ADS)

    Cardoso-Mohedano, José-Gilberto; Lima-Rego, Joao; Sanchez-Cabeza, Joan-Albert; Ruiz-Fernández, Ana-Carolina; Canales-Delgadillo, Julio; Sánchez-Flores, Eric-Ivan; Páez-Osuna, Federico

    2018-04-01

    Anthropogenic salinization impacts the health of aquatic and terrestrial ecosystems worldwide. In tropical and subtropical areas, shrimp farm aquaculture uses water from adjacent ecosystems to fill the culture ponds, where enhanced evaporation cause salinization of discharged water. In this study, we studied water salinity before and after shrimp farm harvest and implemented a three-dimensional hydrodynamic model to assess the impact on a subtropical coastal lagoon that receives water releases from shrimp ponds. The shrimp pond discharge significantly increased the salinity of receiving waters, at least 3 psu over the local variation. In the worst-case salinization scenario, when harvest occurs after a long dry season, salinity could increase by up to 6 psu. The induced salinization due to shrimp pond effluents remained up to 2 tidal cycles after harvest, and could affect biota. The methodology and results of this study can be used to assess the impacts of shrimp aquaculture worldwide.

  6. Development of the brine shrimp Artemia is accelerated during spaceflight

    NASA Technical Reports Server (NTRS)

    Spooner, B. S.; Metcalf, J.; DeBell, L.; Paulsen, A.; Noren, W.; Guikema, J. A.

    1994-01-01

    Developmentally arrested brine shrimp cysts have been reactivated during orbital spaceflight on two different Space Shuttle missions (STS-50 and STS-54), and their subsequent development has been compared with that of simultaneously reactivated ground controls. Flight and control brine shrimp do not significantly differ with respect to hatching rates or larval morphology at the scanning and transmission EM levels. A small percentage of the flight larvae had defective nauplier eye development, but the observation was not statistically significant. However, in three different experiments on two different flights, involving a total of 232 larvae that developed in space, a highly significant difference in degree of flight to control development was found. By as early as 2.25 days after reactivation of development, spaceflight brine shrimp were accelerated, by a full instar, over ground control brine shrimp. Although developing more rapidly, flight shrimp grew as long as control shrimp at each developmental instar or stage.

  7. From Permo-Triassic lithospheric thinning to Jurassic rifting at the Adriatic margin: Petrological and geochronological record in Valtournenche (Western Italian Alps)

    NASA Astrophysics Data System (ADS)

    Manzotti, Paola; Rubatto, Daniela; Darling, James; Zucali, Michele; Cenki-Tok, Bénédicte; Engi, Martin

    2012-08-01

    Slices of polycyclic metasediments (marbles and meta-cherts) are tectonically amalgamated with the polydeformed basement of the Dent Blanche tectonic system along a major Alpine shear zone in the Western Alps (Becca di Salé area, Valtournenche Valley). A combination of techniques (structural analysis at various scales, metamorphic petrology, geochronology and trace element geochemistry) was applied to determine the age and composition of accessory phases (titanite, allanite and zircon) and their relation to major minerals. The results are used to reconstruct the polyphase structural and metamorphic histories, comprising both pre-Alpine and Alpine cycles. The pre-Alpine evolution is associated with low-pressure high-temperature metamorphism related to Permo-Triassic lithospheric thinning. In meta-cherts, microtextural relations indicate coeval growth of allanite and garnet during this stage, at ~ 300 Ma. Textures of zircon also indicate crystallisation at HT conditions; ages scatter from 263 to 294 Ma, with a major cluster of data at ~ 276 Ma. In impure marble, U-Pb analyses of titanite domains (with variable Al and F contents) yield apparent 206Pb/238U dates range from Permian to Jurassic. Chemical and isotopic data suggest that titanite formed at Permian times and was then affected by (extension-related?) fluid circulation during the Triassic and Jurassic, which redistributed major elements (Al and F) and partially opened the U-Pb system. The Alpine cycle lead to early blueschist facies assemblages, which were partly overprinted under greenschist facies conditions. The strong Alpine compressional overprint disrupted the pre-Alpine structural imprint and/or reactivated earlier structures. The pre-Alpine metamorphic record, preserved in these slices of metasediments, reflects the onset of the Permo-Triassic lithospheric extension to Jurassic rifting.

  8. Trace element determination of zircons from adakites and granitoids: implications for petrogenetic processes

    NASA Astrophysics Data System (ADS)

    Chen, T. W.; Chu, M. F.; Chung, S. L.; Iizuka, Y.

    2017-12-01

    Zircon has long been proposed as a time capsule of crustal formation. Concerning of its high capacity of lithophile elements, the dramatic change of crustal chemical composition in late Archean, i.e. from TTG suites to granitoids, may be recorded in zircon remnants. In this study, major- and trace element contents of zircons from adakites, a modern analogue of TTG suites, in southern Tibet were determined by EPMA and LA-ICPMS, respectively, and compared with those in Gangdese granitoids and Sumatra high/low ΣREE granitoids in order to examine the hypothesis. The REE patterns of zircons in this study show little inter-sample discrepancy though there is significant difference in whole-rock HREE contents between adakites and granitoids. Since none of geochemical feature, including REE contents, of zircons correlates with SiO2 content or ASI of corresponding host rocks, fractional crystallization shows insignificant impact on the compositional variation in zircons. In addition to the influence of lattice strain and charge balance requirements, zircons in these rock samples are proposed to crystallize from the magma mush, so they record the composition with least composition difference, not that of the bulk melt. More specifically, the pre-/co-existing mineral phases, e.g. apatite, play a critical role in preferentially taking the LREE and MREE from melt, and eliminating the HREE depletion in residual melt and thus zircons of Gangdese adakites. With the aim of objectively identifying geochemical discriminants of zircons from adakites and granitoids, statistical analysis was used and then 8 parameters were selected, i.e. Ti, V, Yb, Hf, Sc/Yb, U/Yb, Eu/Eu*, ΣHREE. Despite the zircon populations of adakites- and granitoids-origins overlapping in any bivariate plot, the linear combination of discriminants provides a potential way to distinguish zircons from these two groups.

  9. Peculiar Feldspar And Quartz Inclusions Within Zircons From Anorthosites, North Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Eliwa, H. A.; Dawoud, M. I.; Khalaf, I. M.; Negendank, J. F.; Itaya, T.

    2004-12-01

    Zircons from three anorthosite outcrops along Wadi Dib area, north Eastern Desert of Egypt contain abundant and conspicuous inclusions of quartz, feldspar, amphibole and apatite. These anorthosites, as (50-100m thick) layers, represent the top of mafic-ultramafic intrusions exhibiting rhythmic layering visible by reputation of melanocratic and leucocratic layers. Field and microscopic studies exhibit that these anorthosites were affected by the action of residual magmatic solutions associated with the late stage crystallization of the younger granites, which modified their mineralogical composition. They are composed totally of plagioclase with subordinate amount of clinoenstatite, augite, amphibole, biotite, K-feldspar, and quartz. Accessories are magnetite, ilmenite, apatite and zircon. The abundance and the mode of occurrence of K-feldspar, quartz, and biotite with apatite and zircon among the megacrysts suggest their formation is ascribed to the interaction with the residual solutions. The microprobe data exhibit difference between feldspar and amphiboles contained herein zircons and those as anorthosite mineral constituents. The genetic relationship between zircons and their inclusions suggests later growth of zircons than inclusions and most probably at the final stage of rock modification. Zircons are magmatic and found in the interstitial feldspar and quartz among plagioclase megacrysts in aggregates or as individual grains. The microscopic and SEM images investigation exhibit that most zircons are subhedral to euhedral equant and prismatic crystals. Most zircons have same range of crystal morphologies and internal growth structures with predominance of prism /{100/} and pyramid /{101/} and occasionally prism /{110/} and pyramid /{111/}. No evidences for poly-faceted grains, inherited cores or later overgrowths were detected. CL images distinguished zircons with visible core-rim structures and others with regular and continuous growth zones contained herein

  10. Extinct 244Pu in ancient zircons.

    PubMed

    Turner, Grenville; Harrison, T Mark; Holland, Greg; Mojzsis, Stephen J; Gilmour, Jamie

    2004-10-01

    We have found evidence, in the form of fissiogenic xenon isotopes, for in situ decay of 244Pu in individual 4.1- to 4.2-billion-year-old zircons from the Jack Hills region of Western Australia. Because of its short half-life, 82 million years, 244Pu was extinct within 600 million years of Earth's formation. Detrital zircons are the only known relics to have survived from this period, and a study of their Pu geochemistry will allow us to date ancient metamorphic events and determine the terrestrial Pu/U ratio for comparison with the solar ratio.

  11. 78 FR 33345 - Certain Frozen Warmwater Shrimp From Malaysia: Preliminary Countervailing Duty Determination

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... ``battered shrimp'' (see below). ``Battered shrimp'' is a shrimp-based product: (1) That is produced from... the dusting layer. When dusted in accordance with the definition of dusting above, the battered shrimp...

  12. 78 FR 33350 - Certain Frozen Warmwater Shrimp From Thailand: Preliminary Countervailing Duty Determination

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... and prawns; and (7) certain ``battered shrimp'' (see below). ``Battered shrimp'' is a shrimp-based... of dusting above, the battered shrimp product is also coated with a wet viscous layer containing egg...

  13. 78 FR 33344 - Certain Frozen Warmwater Shrimp From India: Preliminary Countervailing Duty Determination

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ...; and (7) certain ``battered shrimp'' (see below). ``Battered shrimp'' is a shrimp-based product: (1... of dusting above, the battered shrimp product is also coated with a wet viscous layer containing egg...

  14. Raman study of radiation-damaged zircon under hydrostatic compression

    NASA Astrophysics Data System (ADS)

    Nasdala, Lutz; Miletich, Ronald; Ruschel, Katja; Váczi, Tamás

    2008-12-01

    Pressure-induced changes of Raman band parameters of four natural, gem-quality zircon samples with different degrees of self-irradiation damage, and synthetic ZrSiO4 without radiation damage, have been studied under hydrostatic compression in a diamond anvil cell up to ~10 GPa. Radiation-damaged zircon shows similar up-shifts of internal SiO4 stretching modes at elevated pressures as non-damaged ZrSiO4. Only minor changes of band-widths were observed in all cases. This makes it possible to estimate the degree of radiation damage from the width of the ν3(SiO4) band of zircon inclusions in situ, almost independent from potential “fossilized pressures” or compressive strain acting on the inclusions. An application is the non-destructive analysis of gemstones such as corundum or spinel: broadened Raman bands are a reliable indicator of self-irradiation damage in zircon inclusions, whose presence allows one to exclude artificial color enhancement by high-temperature treatment of the specimen.

  15. Hf isotope compositions In detrital zircons as a new tool for provenance studies

    NASA Astrophysics Data System (ADS)

    Jacobsen, Y. J.; Münker, C.; Mezger, K.

    2003-04-01

    Identifying the provenance of continental sediments is a major issue in palaeo-tectonic studies, providing important information for paleogeographic reconstructions. Isotope studies, e.g. those of whole rock Sm-Nd or detrital zircon U-Pb dating, have widely been used for this purpose. Here we assess the potential of combined Lu-Hf data and U-Pb ages determined on the same single detrital zircons as a new tool for provenance studies. Due to the low Lu/Hf ratios in zircons the Hf isotope composition of a zircon changes insignificantly after its crystallization. Thus each particular grain preserves information on the Hf-siotpe composition of its source and the age of this source. Provided that both the U-Pb and Lu-Hf isotope systems have not been disturbed, this information can be used to constrain the sources of each individual zircon. In order to demonstrate the capability of Hf isotope studies on detrital zircons for provenance studies, we obtained combined U-Pb ages and Lu-Hf isotope data for zircons from the Cambrian Junction Formation in New Zealand. The Junction Formation was deposited on the (present) SE margin of Gondwana near the Australian continent and consists of turbidites, siltstones and conglomerates [1]. Typical continent derived Paleozoic sediments in SE Gondwana generally show characteristic age maxima at 500-600 Ma, 1000-1200 Ma (Grenvillian) and additional older peaks (early Proterozoic to Archean) [2]. We focused on two groups of detrital zircons with Grenvillian and Proterozoic to Late Archean ages. The initial ɛHf values for these zircons range from 0.7 to -15.5 for the Grenvillian and from -5.2 to -14.1 for the Proterozoic/Archean zircons. Corresponding two stage Hf model ages range from ca. 1500 to 2500 Ma for the Grenvillian and from ca. 3200 to 3600 Ma for the Proterozoic/Archean zircons. Furthermore it can be shown that the Grenvillian zircons must have been derived from recycled Grenvillian provinces. Comparison of these Hf model ages

  16. Efficient use of shrimp waste: present and future trends.

    PubMed

    Kandra, Prameela; Challa, Murali Mohan; Jyothi, Hemalatha Kalangi Padma

    2012-01-01

    The production of shrimp waste from shrimp processing industries has undergone a dramatic increase in recent years. Continued production of this biomaterial without corresponding development of utilizing technology has resulted in waste collection, disposal, and pollution problems. Currently used chemical process releases toxic chemicals such as HCl, acetic acid, and NaOH into aquatic ecosystem as byproducts which will spoil the aquatic flora and fauna. Environmental protection regulations have become stricter. Now, there is a need to treat and utilize the waste in most efficient manner. The shrimp waste contains several bioactive compounds such as chitin, pigments, amino acids, and fatty acids. These bioactive compounds have a wide range of applications including medical, therapies, cosmetics, paper, pulp and textile industries, biotechnology, and food applications. This current review article present the utilization of shrimp waste as well as an alternative technology to replace hazardous chemical method that address the future trends in total utilization of shrimp waste for recovery of bioactive compounds.

  17. Interpreting U-Pb data from primary and secondary features in lunar zircon

    NASA Astrophysics Data System (ADS)

    Grange, M. L.; Pidgeon, R. T.; Nemchin, A. A.; Timms, N. E.; Meyer, C.

    2013-01-01

    In this paper, we describe primary and secondary microstructures and textural characteristics found in lunar zircon and discuss the relationships between these features and the zircon U-Pb isotopic systems and the significance of these features for understanding lunar processes. Lunar zircons can be classified according to: (i) textural relationships between zircon and surrounding minerals in the host breccias, (ii) the internal microstructures of the zircon grains as identified by optical microscopy, cathodoluminescence (CL) imaging and electron backscattered diffraction (EBSD) mapping and (iii) results of in situ ion microprobe analyses of the Th-U-Pb isotopic systems. Primary zircon can occur as part of a cogenetic mineral assemblage (lithic clast) or as an individual mineral clast and is unzoned, or has sector and/or oscillatory zoning. The age of primary zircon is obtained when multiple ion microprobe analyses across the polished surface of the grain give reproducible and essentially concordant data. A secondary set of microstructures, superimposed on primary zircon, include localised recrystallised domains, localised amorphous domains, crystal-plastic deformation, planar deformation features and fractures, and are associated with impact processes. The first two secondary microstructures often yield internally consistent and close to concordant U-Pb ages that we interpret as dating impact events. Others secondary microstructures such as planar deformation features, crystal-plastic deformation and micro-fractures can provide channels for Pb diffusion and result in partial resetting of the U-Pb isotopic systems.

  18. Determination of zircon/melt trace element partition coefficients from SIMS analysis of melt inclusions in zircon

    NASA Astrophysics Data System (ADS)

    Thomas, J. B.; Bodnar, R. J.; Shimizu, N.; Sinha, A. K.

    2002-09-01

    Partition coefficients ( zircon/meltD M) for rare earth elements (REE) (La, Ce, Nd, Sm, Dy, Er and Yb) and other trace elements (Ba, Rb, B, Sr, Ti, Y and Nb) between zircon and melt have been calculated from secondary ion mass spectrometric (SIMS) analyses of zircon/melt inclusion pairs. The melt inclusion-mineral (MIM) technique shows that D REE increase in compatibility with increasing atomic number, similar to results of previous studies. However, D REE determined using the MIM technique are, in general, lower than previously reported values. Calculated D REE indicate that light REE with atomic numbers less than Sm are incompatible in zircon and become more incompatible with decreasing atomic number. This behavior is in contrast to most previously published results which indicate D > 1 and define a flat partitioning pattern for elements from La through Sm. The partition coefficients for the heavy REE determined using the MIM technique are lower than previously published results by factors of ≈15 to 20 but follow a similar trend. These differences are thought to reflect the effects of mineral and/or glass contaminants in samples from earlier studies which employed bulk analysis techniques. D REE determined using the MIM technique agree well with values predicted using the equations of Brice (1975), which are based on the size and elasticity of crystallographic sites. The presence of Ce 4+ in the melt results in elevated D Ce compared to neighboring REE due to the similar valence and size of Ce 4+ and Zr 4+. Predicted zircon/meltD values for Ce 4+ and Ce 3+ indicate that the Ce 4+/Ce 3+ ratios of the melt ranged from about 10 -3 to 10 -2. Partition coefficients for other trace elements determined in this study increase in compatibility in the order Ba < Rb < B < Sr < Ti < Y < Nb, with Ba, Rb, B and Sr showing incompatible behavior (D M < 1.0), and Ti, Y and Nb showing compatible behavior (D M > 1.0). The effect of partition coefficients on melt evolution during

  19. Successful propagation of shrimp yellow head virus in immortal mosquito cells.

    PubMed

    Gangnonngiw, Warachin; Kanthong, Nipaporn; Flegel, Timothy W

    2010-05-18

    Research on crustacean viruses is hampered by the lack of continuous cell lines susceptible to them. To overcome this problem, we previously challenged immortal mosquito and lepidopteran cell lines with shrimp yellow head virus (YHV), followed by serial, split-passage of whole cells, and showed that this produced cells that persistently expressed YHV antigens. To determine whether such insect cultures positive for YHV antigens could be used to infect shrimp Penaeus monodon with YHV, culture supernatants and whole-cell homogenates were used to challenge shrimp by injection. Shrimp injected with culture supernatants could not be infected. However, shrimp injection-challenged with whole-cell homogenates from Passage 5 (early-passage) of such cultures died with histological and clinical signs typical for yellow head disease (YHD), while homogenates of mock-passaged, YHV-challenged cells did not. By contrast, shrimp challenged with cell homogenates of late-passage cultures became infected with YHV, but survived, suggesting that YHV attenuation had occurred during its long-term serial passage in insect cells. Thus, YHV could be propagated successfully in C6/36 mosquito cells and used at low passage numbers as a source of inoculum to initiate lethal infections in shrimp. This partially solves the problem of lack of continuous shrimp cell lines for cultivation of YHV.

  20. Effect of α-damage on fission-track annealing in zircon

    USGS Publications Warehouse

    Kasuya, Masao; Naeser, Charles W.

    1988-01-01

    The thermal stability of confined fission-track lengths in four zircon samples having different spontaneous track densities (i.e., different amounts of ??-damage) has been studied by one-hour isochronal annealing experiments. The thermal stability of spontaneous track lengths is independent of initial spontaneous track density. The thermal stability of induced track lengths in pre-annealed zircon, however, is significantly higher than that of spontaneous track lengths. The results indicate that the presence of ??-damage lowers the thermal stability of fission-tracks in zircon.